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CHAPTER I 

 

INTRODUCTION 

 

Many students persistently misunderstand fractions and have difficulty assessing fraction 

magnitude (e.g., Brown & Quinn, 2007; U.S. Department of Education, 2008). For example, on 

the 2013 NAEP assessment, 40% of fourth-grade students could not determine that thirds were 

bigger than fourths, fifths, and sixths. Similarly, 65% of eighth-grade students could not explain 

that ½ + 3/8 + 3/8 was greater than one. One reason students struggle with assessing fraction 

magnitude is that fractions have different properties than whole numbers. One common error 

students make is overgeneralizing whole number properties to fractions; that is, they incorrectly 

apply whole number counting properties to fraction concepts (e.g., Ni & Zhou, 2005). For 

example, students may assume that 1/12 is larger than ½ because the whole number 12 is larger 

than 2. The following section includes an overview of theories attempting to explain why 

students tend to operate with whole number bias with fractions. This is followed by an overview 

of common error patterns with assessing fraction magnitude and goals of the present study.   

Theories on Whole Number Bias 

There are differing opinions about why students tend to overgeneralize whole number 

properties to fractions. Evolutionary (e.g., Geary, 2006) and conceptual change approach theories 

(e.g., Ni & Zhou, 2005; Vamakoussi & Vosniadou, 2010; Vosniadou, Vamvakoussi, & Skopeliti, 

2008) both claim that whole numbers are easier to learn than fractions because instruction 

primarily focuses on the one-to-one counting properties of whole numbers. Whole numbers are 

successive, discrete, and have predictable calculation properties (e.g., Vosniadou et al., 2008). 
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Students have difficulty expanding their understanding of number representation when fractions 

are introduced in the upper elementary grades. Unlike whole numbers, fractions are not 

successive, they are not discrete, and they do not have predictable calculation properties (e.g., 

Vosniadou et al., 2008). According to these theories, overgeneralizing whole number properties 

to fractions is a result of forming a coherent explanatory framework of number as counting 

number. Students then struggle to reconcile the differing properties between whole numbers and 

fractions because fractions do not fit into this explanatory framework. As such, whole number 

knowledge interferes with developing a conceptual understanding of fractions.  

Siegler, Thompson, and Schneider (2011) propose a somewhat different theory of 

numerical development as  “a process of progressively broadening the class of numbers that are 

understood to possess magnitudes and of learning the functions that connect that increasingly 

broad and varied set of numbers to their magnitudes” (p. 275). According to them, students 

experience difficulty with fractions because they have a hard time simultaneously considering 

the numerator and denominator when assessing magnitude. In this way, Siegler et al. hold that 

whole-number knowledge does not necessarily interfere with fraction learning, but students must 

be explicitly taught that fractions have magnitude and can be ordered, compared, and placed on 

the number line. Without explicitly teaching these skills, students rely on the only relevant 

knowledge they have for assessing fraction magnitude – whole number knowledge.  

The distinction between Siegler et al.’s (2011) theory and the earlier ones may seem 

small, but in contrast to evolutionary and conceptual change approach theories, Siegler et al.’s 

theory focuses on deficits in instruction as the key issue explaining why students struggle to 

consolidate properties of whole numbers and fractions. Typical instruction in the United States 

fails to emphasize how to conceptually assess fraction magnitude. As a result, students rely on 
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whole number properties to determine fraction value and thus struggle to expand their concept of 

number to include fractions. If instruction does not emphasize magnitude understanding, students 

will likely continue to operate with whole number bias, which helps explain why whole number 

comparing patterns are common.   

Common Error Patterns with Assessing Fraction Magnitude   

 It is well documented that individuals have substantial difficulty assessing fraction 

magnitude (e.g., Bonato, Fabbri, Umilta, & Zorzi, 2007; Schneider & Siegler, 2010; Siegler et 

al., 2011). I located three studies that investigated the accuracy with which individuals compare 

fractions and the comparing error patterns on which problem solvers rely. Stafylidou and 

Vosniadou (2004) investigated the explanatory frameworks for comparing and ordering fractions 

of 200 average-performing middle- and high- school students. One common misconception was 

the belief that a fraction is composed of two independent whole numbers, e.g., “the value of a 

fraction increases when the numbers that comprise it increase” (p. 507). This belief holds that as 

the whole number values in the numerator or denominator increases, the value of the fraction 

also increases. Accordingly, many students ordered or compared fractions based on the whole-

number value in the numerator or the denominator (e.g., 2/6 > ½, which is incorrect).  

Another common misconception was the belief that the value of a fraction increases 

when the whole numbers that comprise it decrease. This somewhat more advanced 

misconception reflects some rudimentary understanding that fractions with smaller denominators 

have bigger parts, but lacks understanding that the numerator and denominator operate 

synergistically to determine fraction value. Both these misconceptions decreased as students got 

older (i.e., more fifth-, sixth-, and seventh-grade students committed these errors than did eighth-

grade or high school students).  
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Similar misconceptions about fraction values were found by DeWolf and Vosniadou 

(2011) among 28 adult undergraduate students enrolled at a prestigious university. The 

undergraduates were presented with 40 fraction pairs on the computer and asked to determine 

which fraction was bigger. Twenty of the fraction pairs were consistent with whole number 

ordering. That is, the larger of the two fractions was also the one with larger whole numbers in 

the numerator and denominator (e.g., 5/6 > ½). The other 20 fraction pairs were inconsistent with 

whole number ordering. That is, the larger of the two fractions had smaller whole numbers in the 

numerator and the denominator (e.g., 4/6 > 5/10). Accuracy and speed of response were superior 

for items that were consistent with whole number ordering than for items that were inconsistent 

with whole number ordering, which suggests that estimating fraction magnitude is difficult even 

for advanced students. This speaks to the difficulty of thinking about the numerator and 

denominator concurrently to assess a fraction’s value when the comparison is inconsistent with 

whole number knowledge.  

Like DeWolf and Vosniadou (2011), Meert, Grégoire, and Noël (2010) found that 

students were more accurate and quicker to respond when the fraction pairs were consistent with 

whole number ordering than inconsistent with whole number ordering. Average-achieving fifth- 

(n = 24) and seventh-grade (n = 44) students identified the larger value within 64 pairs of 

fractions. Thirty-two of the pairs had the same numerator (i.e., inconsistent with whole number 

ordering), and 32 pairs had the same denominator (i.e., consistent with whole number ordering). 

Seventh-grade students were more accurate and quicker to respond for both problem types than 

were fifth-grade students. However, the same numerator problems were difficult for both fifth- 

and seventh-grade students, as indicated by slower response times and decreased accuracy.  
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The Present Study 

Across the age range studied, students demonstrated consistent whole number ordering 

errors when assessing fraction magnitude. Yet, I identified no prior study that investigated error 

patterns among fourth-grade students, examined the error patterns of students at risk for 

mathematics difficulties, or used different types of fraction knowledge to predict the probability 

of committing these errors. Previous intervention research (e.g., Cramer, Post, & delMas, 2002; 

Fuchs et al., 2013; Fuchs et al., 2014; Fuchs et al., in preparation-a; Fuchs et al., in preparation-

b) has shown that teaching students how to assess fraction magnitude significantly improves 

their conceptual understanding of fractions, but none of these studies investigated how specific 

types of fraction knowledge predict at-risk students’ error patterns. It is clear from NAEP data 

and the studies reviewed (DeWolf & Vosniadou, 2011; Meert et al., 2010; Stafylidou & 

Vosniadou, 2004) that many students struggle with assessing fraction magnitude. Describing the 

frequency and types of errors among at-risk fourth graders has important implications for 

designing curriculum to improve students’ conceptual understanding of fractions in the era of 

Common Core State Standards (CCSS, 2012).      

Hecht and Vagi (2012) found that fourth- and fifth-grade students identified with 

mathematics difficulties (operationalized as scoring below the 25th percentile on a standardized 

mathematics test) had lower than expected procedural and conceptual knowledge about fractions 

compared to average-achieving students. This is probably true among the present study’s at-risk 

sample. Lower conceptual knowledge likely leads to higher frequencies of errors than the 

average-achieving samples just reviewed (DeWolf & Vosniadou, 2011; Meert et al., 2010; 

Stafylidou & Vosniadou, 2004). In the present study, risk was operationalized as scoring below 

the 35th percentile on a measure of whole-number knowledge at the start of fourth grade (when 
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fraction knowledge is insufficiently developed to screen on). Because the curriculum primarily 

focuses on whole-number knowledge in grades K-3, students who continue to demonstrate 

difficulty with whole numbers in fourth grade will likely have difficulty understanding fraction 

concepts as they attempt to expand their concept of number to include rational numbers.    

The present study had four purposes. The first purpose was to describe fraction ordering 

error patterns among fourth-grade students identified as at risk for developing mathematics 

difficulties. As the theories of numerical development suggest (Geary, 2006; Ni & Zhou, 2005; 

Vamakoussi & Vosniadou, 2010; Vosniadou et al., 2008; Siegler et al., 2011), students 

demonstrate difficulty with fractions because fraction properties are inconsistent with whole-

number properties. Preventing difficulty, when fractions become the focus of instruction at 

fourth grade is important, especially because fraction knowledge has been found to be a unique 

predictor of future performance in algebra (Bailey, Hoard, Nugent, & Geary, 2012; Booth & 

Newton, 2012; Brown & Quinn, 2007; Siegler et al., 2012).  

In this study, I refer to errors in which students order fractions from least to greatest 

based on the whole number values in the numerator and/or the denominator as whole number 

ordering errors. I hypothesized that these errors were the most common ordering error among at-

risk fourth graders; that the next most common error involved students formulating judgments 

about fraction magnitude based solely on the value of the denominator. That is, students indicate 

that the fraction with the smallest denominator is the largest fraction and the fraction with the 

largest denominator is the smallest fraction without concurrently considering the value in the 

numerator (e.g., 5/8<3/4<½). In this study, I refer to this type of error as a smallest denominator 

– biggest fraction ordering error. This error is more advanced than whole number ordering 

errors, because it indicates rudimentary knowledge that the smaller denominator means the 

 
 

6 



fraction has bigger parts. This misconception exemplifies the lack of appreciation that the 

numerator also factors in to the value of the fraction.  

The second purpose was to examine performance differences among students from three 

different academic years over the period in which the school district moved toward 

implementation of CCSS (2012). This is interesting because CCSS emphasize the measurement 

interpretation of fractions, in which understanding fraction magnitude (e.g., ordering fractions 

from least to greatest) is central. As indicated by NAEP (2013) and the studies reviewed above 

(DeWolf & Vosniadou, 2011; Meert et al., 2010; Stafylidou & Vosniadou, 2004), many students 

fail to master this skill. Although the district moved toward implementation of CCSS, I suspected 

there to be no performance differences among cohorts. This is because the sample included 

students at risk for mathematics difficulties.  

The third purpose was to assess the effect of problem type (i.e., problems with the same 

numerator versus problems with different numerators and different denominators) on accuracy 

and whole number ordering errors. (Smallest denominator – biggest fraction ordering errors 

could not occur on same numerator problems.) I expected greater accuracy on the same 

numerator problems. In addition, consistent with Stafylidou and Vosniadou’s (2004) finding that 

students believe that fraction values increase as the whole number values that comprise it 

decrease, whole number ordering errors are likely more common for same numerator problems 

than problems with different numerators and different denominators. This is because the 

numbers on the top are the same, and students easily resort to whole number knowledge to order 

the fractions based on the whole number values in the denominator.  

The fourth purpose was to assess the effect of part-whole and measurement 

understanding of fractions on accuracy, whole number ordering errors, and smallest denominator 
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– biggest fraction ordering errors. Part-whole and measurement understanding were chosen as 

predictors of errors because each construct represents a component of conceptual understanding 

of fractions (e.g., Kilpatrick, Swafford, Findell, 2001) and help to explain individual differences 

in fraction skills (Hecht, Close, & Santiso, 2003). Each ordering problem could only have one 

outcome (i.e., each problem was correct or incorrect). If incorrect, only one error type was 

possible. Therefore, each of these outcomes (i.e., correct, whole number ordering error, smallest 

denominator – biggest fraction ordering error) was analyzed with a separate statistical model.  

In this study, part-whole understanding was indexed by performance on a subset of 

released fraction items from the NAEP (U.S. Department of Education, 2010). Part-whole 

understanding emphasizes part to whole relationships. This type of fraction knowledge is often 

represented as shaded parts of a shape or as pieces of pizza (e.g. Charalambous & Pitta-Pantazi, 

2007). The curriculum in the district where this study took place primarily focuses on part-whole 

understanding. Such understanding is foundational, but not sufficient, for developing an 

understanding of fraction magnitude (e.g., Charalambous & Pitta-Pantazi, 2007). For example, 

Smith, Solomon, and Carey (2005) documented that students could accurately judge the relative 

size of unit fractions (i.e., a fraction with 1 in the numerator) using part-whole explanations but 

were unable to accurately answer other questions about fraction magnitude properties (e.g., when 

you multiply a fraction by another fraction, the amount gets smaller). Because part-whole 

understanding provides an inadequate basis for succeeding with comparisons among non-unit 

fractions (Smith et al., 2005), I hypothesized that part-whole understanding fails to significantly 

predict the probability of correctly answering a problem and committing (or not committing) an 

ordering error when measurement understanding is controlled for in the model.   

Measurement understanding was indexed by the accuracy with which students placed 
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fractions on the 0-2 number line and performance on a subset of measurement items from the 

NAEP (U.S. Department of Education, 2010). Measurement understanding indexes the 

magnitude value of fractions and knowledge that fractions can be ordered, compared, and placed 

on the number line (e.g., Siegler et al., 2011; Wu, 2008). I expected superior measurement 

understanding to significantly predict accuracy and committing a smallest denominator – biggest 

fraction ordering error. In the first year of a strong focus on fraction learning (i.e., fourth-grade), 

at-risk students likely do not have advanced measurement understanding. Therefore, an increase 

in smallest denominator – biggest fraction ordering errors concurrent with an increase in 

measurement understanding may represent “a transitory phase in the process of fraction 

learning” and reflect the difficulties students have when they take on new information about 

ordering fractions (Stafylidou & Vosniadou, 2004, p. 512). By contrast, I expected an inverse 

relation between measurement understanding and the probability of committing a whole number 

ordering error. That is, the higher students’ measurement understanding, the less likely they were 

to commit a whole number ordering error.  

To extend the focus further, students in the final cohort also completed an assessment that 

probed their measurement understanding more deeply, by asking them to provide explanations 

for how they compared nine pairs of fractions. Understanding how students’ verbal explanations 

relate to overall accuracy and error patterns is interesting, because sound explanations have been 

found to significantly predict mathematics achievement (Wong, Lawson, & Keeves, 2002). I 

expected the relation between student explanations and accuracy and error patterns to parallel the 

proposed relation between these outcomes and performance on number line and the NAEP 

measurement items. That is, students’ ability to write sophisticated explanations likely increases 

the probability of correctly answering a problem and committing a smallest denominator – 
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biggest fraction ordering error, and decreases the probability of committing a whole number 

ordering error. This hypothesis is consistent with Wong, Lawson, and Keeves’s (2002) finding 

that sound student explanations significantly predict mathematics achievement (i.e., increasing 

accuracy and decreasing error).  
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CHAPTER II 

 

METHOD 

 

Participants included 227 at-risk fourth-grade students. Risk was defined as scoring 

below the 35th percentile on a measure of whole-number knowledge (Wide Range Achievement 

Test–4 [WRAT-4]; Wilkinson, 2008). The 227 students were from three cohorts within three 

larger randomized control trials. In the larger randomized control trials, students had been 

randomly assigned to intervention or control. For the present study, I relied exclusively on the 

control group (i.e., those that did not receive intervention), because intervention was designed to 

disrupt the developmental pattern expected for these students. Cohort 1 included 84 students; 

cohort 2 included 72 students; and cohort 3 included 71 students. The present study added the 

analysis of error types to previous reports based on the full sample (Fuchs et al., 2014, in 

preparation, in preparation), and results presented here do not overlap with those presented with 

previously reported findings.  

Screening Measure 

WRAT-4-Arithmetic includes 40 problems of increasing difficulty. At fourth grade, it 

primarily assesses students’ proficiency with whole number computation skill, and includes 37 

computation problems (addition, subtraction, multiplication, and division) and three estimation 

problems. Alpha on the sample for cohorts 1, 2, and 3 were .85, .85, and .74, respectively.  

Fraction Measures  

 Ordering fractions. Ordering Fractions is a subtest from the Fraction Battery-2012-

revised (Schumacher, Namkung, Malone, & Fuchs, 2012), and requires students to order nine 
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sets of three fractions from least to greatest. Three problems have the same numerator and six 

problems have different numerators and different denominators. All discrepancies were 

discussed and resolved. Alpha on the sample for cohorts 1, 2, and 3 was .82, .79, and .79, 

respectively.  

Coding of ordering errors. Each item on each student’s test was first coded for accuracy. 

If the student answered a problem incorrectly, their answer was assigned an error type. See Table 

1 for the coding sheet and error possibilities by problem. I identified two error types: whole 

number ordering errors and smallest denominator – biggest fraction ordering errors.  

There were three examples of whole number ordering errors, depending on the problem. 

The first example included incorrectly ordering the fractions from least to greatest based on the 

whole-number value in the numerator and denominator. That is, students would get the same 

incorrect answer whether they ordered the three fractions from least to greatest based on the 

whole number in the numerator or the denominator (e.g., ½<2/6<5/8; problems A, C, and F). The 

second example included incorrectly ordering the fractions from least to greatest based on the 

whole-number value in the denominator (i.e., same numerator problems). Students ordered the 

whole numbers in the denominator from least to greatest (e.g., ½<1/5<1/12; problems B, D, E, 

G, H, and I). Students did not demonstrate an understanding that when a unit is divided into more 

parts (i.e., a bigger denominator), each of the parts gets smaller. The third example included 

incorrectly ordering the fractions from least to greatest based on the whole-number value in the 

numerator (e.g., ½<2/8<¾; problems D, H, and I). 

 Smallest denominator – biggest fraction ordering errors occurred when students 

incorrectly ordered the three fractions from least to greatest considering the size of the parts (i.e., 

the denominator), but not the number of parts (i.e., the numerator) in each fraction. For example, 
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for 3/10, 7/12, and ½, students would incorrectly order them 7/12<3/10<½. That is, students 

assumed that the smaller the denominator, the bigger the fraction. This error could occur on 

problems A, C, D, H, and I.  

To ensure that this error type was consistent with how students understood fractions, 

smallest denominator – biggest fraction ordering errors were only coded as present if students 

also got all of the same numerator problems correct on the test (problems B, E, and G). Accuracy 

on the same numerator problems indicated that students understood that as the denominator gets 

smaller, the size of the parts gets smaller. However, they could not transfer this knowledge to a 

set of fractions that had different numerators and different denominators and failed to account for 

the number of parts (i.e., the numerator) when ordering the fractions. If students did not get the 

same numerator problems correct, the coder could not assume that students had an understanding 

about how the denominator affects the size of the fraction.   

 If a student’s answer did not fit into any category, their error was coded as a no category 

error. No category errors typically included students writing the wrong fractions in the blanks, or 

writing the same fraction twice (therefore, an error type could not be assigned). If students did 

not attempt the problem, this was also coded. Two independent coders scored all of the tests and 

entered the data. On the first scoring attempt, coders scored the tests with 98.65% accuracy. 

Part-whole understanding. The NAEP part-whole items include eight released fourth- 

and eighth-grade problems from the National Assessment of Education Progress (U.S. 

Department of Education, 2010). Seven questions ask students to identify or write fractions using 

a picture, and one question assesses students’ part-whole understanding with a word problem. 

The maximum score for the part-whole items is 9. Alpha on the sample for cohorts 1, 2, and 3 

was .50, .47, and .59, respectively.  
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 Measurement understanding. Three measures indexed students’ measurement 

understanding. Fraction Number Line (Hamlett, Schumacher, & Fuchs, 2011, adapted from 

Siegler et al., 2011) requires students to place proper fractions, improper fractions, and mixed 

numbers on the 0-2 number line. Students are presented with a number line on a computer screen 

and instructed to place the fraction where they think it goes. The fractions include: 12/13, 7/9, 

5/6, ¼, 2/3, ½, 1/19, 3/8, 7/4, 3/2, 4/3, 7/6, 15/8, 1 1/8, 1 1/5, 1 5/6, 1 2/4, 1 11/12, 5/5, and 1. 

The fractions are presented in random order. Scores reflect students’ percentage of absolute 

error, which indicates the average percent difference between where the student placed the 

fraction and where the fraction actually goes. Lower scores indicate greater accuracy. Therefore, 

students’ scores were multiplied by -1 so a positive relation between number line and the 

outcome reflected superior performance. Test-retest reliability for cohort 2 was .80. 
 

The NAEP measurement items include 11 released fourth- and eighth-grade problems 

from the National Assessment of Education Progress (U.S. Department of Education, 2010). 

Four questions require students to write or identify equivalent fractions, four questions require 

students to order or compare fractions, and three questions require students to write or identify 

fractions on a number line The maximum score for the measurement items is 15. Alpha on the 

sample for cohorts 1, 2, and 3 was .67, .77, and .71, respectively.   

Explaining Comparing Problems (cohort 3 only) from the Fraction Battery-2013-revised 

(Schumacher, Namkung, Malone, & Fuchs, 2013) requires students to explain why one fraction 

is greater than or less than another fraction. Students are instructed to place the greater than or 

less than sign between the two fractions and then write an explanation for and draw a picture to 

show how to think about the comparison in values and to reveal why their answer makes sense. 

There are nine items. Three problems have the same numerator, three have the same 
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denominator, and three require students to compare a fraction to ½. Scoring awards credit for 

four components of sound explanations. Each component is either present or absent, and each 

component is weighted to account for the sophistication of the explanation.  

The first component indexes the accuracy of sign placement between the two fractions 

being compared (e.g., 4/5 > 4/8). Students receive a “1” if the sign is correct. The second and 

third components assess whether students demonstrate an understanding of how the numerator 

and denominator work together to make an amount. Because these components indicate a more 

advanced understanding of fractions, they are weighted more heavily. Students must demonstrate 

that the (a) numerator indicates the number of parts in a fraction and (b) denominator indicates 

the size of the parts in the fraction. These two components are scored independently, and 

students receive a “2” if the component is present, and a “0” if the component is not present. For 

example, when comparing 4/5 and 4/8, credit is awarded if the explanation includes information 

about the size of the parts (2 points) and the number of parts (2 points), e.g., “Both fractions have 

the same number of parts, but fifths are bigger than eighths so 4/5 is greater than 4/8.”  

 The last component assesses the tenability of a picture the student draws to support the 

verbal explanation. A correct picture includes drawing two units the same size (e.g., rectangles 

that start and end at the same place), correctly dividing the unit into equal parts (the 

denominator), and correctly shading in the appropriate number of parts (the numerator). This 

component receives a “1” if present. The maximum score of each of the nine items is 6 points, 

for a maximum total score of 54. See the appendix for examples and non-examples of sound 

explanations. Two independent coders scored all of the tests and entered the data. On the first 

scoring attempt, coders scored the tests with 98.08% accuracy. All discrepancies were discussed 

and resolved. Alpha for cohort 3 was .90.  
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Fraction Instruction in the Classroom  

The district uses enVision Math, which includes two units on fractions (Scott Foresman-

Addison Wesley, 2011). Fraction content includes adding and subtracting, constructing 

equivalent fractions, word problems, and explaining concepts using words and pictures. 

Instruction largely relies on part-whole understanding and procedures.  

 Supplemental survey data about classroom instruction were also collected for cohorts 2 

and 3 to determine what teachers relied on for fractions instruction and how they taught 

comparing fractions. For cohort 2, 2% of teachers exclusively relied on the textbook, 72% used a 

combination of the textbook and CCSS, and 26% used only CCSS in their classroom. For cohort 

3, 0% of teachers exclusively relied on the textbook, 85% used a combination of the textbook 

and CCSS, 13% used only CCSS, and 2% used another curriculum in their classroom.  

For the comparing fractions survey, we asked teachers what percentage of instructional 

time was spent teaching how to compare fractions using the following: (a) cross multiplying, (b) 

number lines, (c) benchmark fractions, (d) finding common denominators, (e) drawing a picture 

of each fraction, (f) reference manipulatives, (g) thinking about the meaning of the numerator 

and denominator, and (h) other. For cohort 2, these respective percentages were: (a) 12.5%, (b) 

14%, (c) 10%, (d) 27%, (e) 19%, (f) 7%, (g) 8.5%, and (h) 3%. For cohort 3, these respective 

percentages were: (a) 21%, (b) 12%, (c) 13%, (d) 21%, (e) 15%, (f) 7%, (g) 8%, and (h) 2%. 

Procedure 

Students in cohorts 1, 2, and 3 were screened with the WRAT-4 in the fall of fourth grade 

(2012, 2013, and 2014, respectively). Ordering Fractions, Fraction Number Line, the NAEP, 

and Explaining Comparing Problems (cohort 3 only) were administered in the spring of fourth 

grade, at which time fraction instruction in their classroom had already occurred. We 
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administered Explaining Comparing Problems only for cohort 3. Students in cohorts 1 and 2 

took posttests in a whole-class setting; students in cohort 3 completed posttests in small-groups 

of two to six students.  

Testers were graduate research assistants employed by the local university. All research 

assistants received training on testing protocol during two four-hour sessions. Research assistants 

practiced administering the tests and passed a fidelity check before administering the tests in 

schools. Research assistants were also trained on scoring. They received a score sheet outlining 

scoring protocol and the project coordinator was available to answer any questions. Two 

independent research assistants scored and entered the data for each test. All scoring 

discrepancies were discussed and resolved.  

Data Analysis  

Data analysis included three steps. The first was to determine how accurately students 

ordered fractions and how frequently they committed errors. The second step included running 

four cross-classified random-effects logistic regression models (CCREM) for each outcome (i.e., 

accuracy, whole number ordering errors, and smallest denominator – biggest fraction ordering 

errors). The models were run using the lme4 command in R (Bates et al., 2013). The data 

structure included three levels. Problem-by-problem student responses were at Level 1. Because 

each student answered the same nine problems, responses were cross-classified by student and 

problem at Level 2. Students were also nested within cohort at Level 3. See Figure 1 for a 

depiction of the cross-classified hierarchical data structure.  
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Figure 1. Cross-classified hierarchical data structure (depicted for cohort 1). 

 

The first CCREM assessed the effect of cohort membership (cohort 1 served as the 

referent group for this analysis) on accuracy, whole number ordering errors, and smallest 

denominator – biggest fraction ordering errors:  

 

The second CCREM assessed whether problem type (i.e., problems with the same 

numerator versus problems with different numerators and different denominators) significantly 

predicted accuracy or committing a whole-number ordering error: 

 

Because smallest denominator – biggest fraction ordering errors could only occur on ordering 

problems with different numerators and different denominators, problem type was not a relevant 

predictor for this error outcome.    
  

The third CCREM assessed whether part-whole understanding (i.e., NAEP part-whole 

items) and measurement understanding (i.e., number line and NAEP measurement items) 

Level 1 (Responses) 

Level 2 (Student, Problem) 

R1  R2  R3 …R9  R10  R11  R12 …R756  

J1  J2…J84  W1  W2  W3      …W9 

Level 3 (Cohort) C1  C2  C3  
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significantly predicted the probability of correctly answering a problem, committing a whole 

number ordering error, or committing a smallest denominator – biggest fraction ordering error:  

 

To make the intercept interpretable, all of the student-level predictors were centered at their 

respective means. Therefore, the intercept could be interpreted as the probability of correctly 

answering a problem or committing an error at the predictors’ respective means.  

Analyzing student accuracy included the full sample of 2,043 responses. However, 

because the purpose of analyzing errors was to compare the probability of committing one error 

over another error, analysis of these errors excluded correct answers from their respective 

models. Of the 2,043 responses that could have whole number ordering errors, 379 were 

correctly answered. Therefore, the total sample for the whole number ordering error outcome 

included 1,664 responses with errors. That is, students either committed a whole number 

ordering error or some other type of error (i.e., smallest denominator – biggest fraction ordering 

error, an error that could not be categorized, or did not attempt the problem). Of the 1,135 

responses that could have smallest denominator – biggest fraction ordering errors (this error 

could only occur on five of the nine ordering problems), 85 were correctly answered. That is, 

students either committed a smallest denominator – biggest fraction ordering error or some other 

type of error (i.e., a whole number ordering error, an error that could not be categorized, or did 

not attempt the problem). Therefore, the total sample for the smallest denominator – biggest 

fraction ordering error outcome included 1,050 responses with errors.  

The fourth CCREM assessed whether students’ ability to explain comparing problems 

(cohort 3 only; n = 71 students) significantly predicted the probability of correctly answering a 
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problem (n = 639 responses), committing a whole number ordering error (n = 513 responses), or 

committing a smallest denominator – biggest fraction ordering error (n = 322 responses):  

 

To contextualize results, the final (third overall) step was to convert all significant logit 

coefficients to probabilities using the following formula:  

 

For all student-level predictors, these probabilities were calculated at the following values: one 

standard deviation below the mean, at the mean (i.e., the intercept), one standard deviation above 

the mean, and two standard deviations above the mean. This allowed assessment of how the 

probability of correctly answering a problem or committing an error changed as a function of an 

increase or decrease in part-whole and measurement understanding. For problem type, the 

calculated probability reflects how likely students were to correctly answer a problem or commit 

a whole number ordering error when the ordering problem had the same numerator versus 

different numerators and different denominators.  
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Table 1 
 
Ordering errors coding form 
 
 Student/Teacher/Cohort 
  Answer  Fraction Understanding Error 

Problem 
Correct = 1 

Incorrect = 0 WN WN-D WN-N SD-BF NC-WF NC DNA 

A.*    1
2

  5
8

  2
6
 0         1 1 2 3 4 5 6 7 

B.      1
2

  1
5

  1
12

 0         1 1 2 3 4 5 6 7 

C.*    3
10

  7
12

  1
2
 0         1 1 2 3 4 5 6 7 

D.*    3
4

  1
2

  2
8
 0         1 1 2 3 4 5 6 7 

E.       1
8

  1
3

  1
2
 0         1 1 2 3 4 5 6 7 

F.       5
4

  9
8

  7
6
 0         1 1 2 3 4 5 6 7 

G.       1 4
6

  1 4
12

  1 4
10

 0         1 1 2 3 4 5 6 7 

H.*     7
12

  10
6

  3
2
 0         1 1 2 3 4 5 6 7 

I.*       1 7
8

 1 2
10

  1 1
2
 0         1 1 2 3 4 5 6 7 

Note. WN = whole number ordering errors; WN.D = whole number (denominator specific) 
ordering errors; WN-N: whole number  (numerator specific) ordering errors; SD-B = smallest 
denominator – biggest fraction ordering errors; NC-WF = no category errors where students 
wrote the wrong fractions or the same fraction twice; NC = no category errors (i.e., could not 
determine an error pattern); DNA = did not attempt. If an error is gray, that means that particular 
error could not occur on the problem.  
 
*Starred problems were only coded as smallest denominator – biggest fraction ordering errors if 
students also got Problems B, E, and D correct (i.e., the same numerator problems). Answering 
these problems correct indicates that students understand that as the denominator gets smaller, 
the parts get bigger. However, students failed to correctly address the value in the numerator for 
problems that have fractions with different numerators and different denominators. All errors 
were entered as a “1” for present and a “0” for absent.  
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CHAPTER III 

 

RESULTS 

 

Of the 2,043 responses, 379 were correctly answered (i.e., 19%). The most common 

ordering error was whole number ordering errors. Of the 1,664 responses with errors, 1,078 had 

whole number ordering errors (i.e., 65%). The next most common error was smallest 

denominator – biggest fraction ordering errors. Of the 1,050 responses with errors (this error 

could only occur on five of the nine ordering problems), 190 had smallest denominator – biggest 

fraction ordering errors (i.e., 18%). Students also committed random errors: They wrote the 

incorrect fraction or the same fraction twice (i.e., 5% of errors) or committed an error that we 

could not categorize because it did not fit a pattern (i.e., 17% of errors). See Table 2 for 

frequencies of correct answers and errors by cohort and across the sample.  

Effect of Cohort on Accuracy, Whole Number Ordering Errors, and Smallest Denominator 

– Biggest Fraction Ordering Errors 

 There were no significant differences among cohorts on accuracy or the frequency of 

errors. See Table 3 for a summary of the CCREM results. Therefore, cohort membership (i.e., 

Level 3) was dropped from subsequent analyses.   

Effect of Problem Type on Accuracy and Whole Number Ordering Errors 

 See Table 4 for a summary of the CCREM results. Problem type significantly predicted 

the probability of correctly answering a problem. The probability of correctly answering a same 

numerator problem was .155. The probability of correctly answering a problem with different 
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numerators and different denominators was .012. Problem type did not significantly predict the 

probability of committing a whole number ordering error.  

Effect of Part-Whole and Measurement Understanding on Accuracy, Whole Number 

Ordering Errors, and Smallest Denominator – Biggest Fraction Ordering Errors 

See Table 5 for a summary of the CCREM results. Performance on NAEP part-whole 

items (M = 6.33, SD = 1.50), number line (M = 0.52, SD = 0.14), and NAEP measurement items 

(M = 5.09, SD = 2.78) significantly predicted the probability of correctly answering a problem. 

To contextualize results, all significant logit coefficients were converted to probabilities at one 

standard deviation below the mean, at the mean, one standard deviation above the mean, and two 

standard deviations above the mean. At these respective values, the probability of correctly 

answering a problem was .011, .035, .100, and .254.  

Performance on number line and NAEP measurement items significantly predicted the 

probability of committing a whole number ordering error. By contrast, performance on NAEP 

part-whole items did not significantly predict the probability of committing a whole number 

ordering error (p = .738). The probability of committing a whole number ordering error when 

students performed one standard deviation below the mean, at the mean, one standard deviation 

above the mean, and two standard deviations above the mean on all three predictor variables was 

.986, .727, .092, and .004, respectively.  

 Performance on NAEP part-whole items, number line, and NAEP measurement items did 

not significantly predict the probability of committing a smallest denominator – biggest fraction 

ordering error. Because none of the predictors was statistically significant, probabilities were not 

calculated.  
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Effect of Students’ Explanations (Cohort 3 Only) on Accuracy, Whole Number Ordering 

Errors, and Smallest Denominator – Biggest Fraction Ordering Errors 

 Students’ ability to explain comparing problems (M = 6.97, SD = 3.97) significantly 

predicted the probability of correctly answering a problem and committing a whole number 

ordering error. Students’ explanations did not significantly predict the probability of committing 

a smallest denominator – biggest fraction ordering error (p = .065). See Table 6 for student 

explanation component scores and Table 7 for a summary of the CCREM results.  

Effect of Each Individual Predictor on Probabilities  

To determine whether one predictor variable had a greater effect on the probability of 

correctly answering a problem, committing a whole number ordering error, I also calculated 

probabilities for each predictor variable individually at one standard deviation below the mean, 

one standard deviation above the mean, and two standard deviations above the mean while 

holding the other two predictor variables constant at their respective means. Because part-whole 

and measurement understanding did not significantly predict the probability of committing a 

smallest denominator – biggest fraction ordering errors, these respective probabilities were not 

calculated. See Table 8 for these respective probabilities.  
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Table 2 
 
Frequencies of Correct Answers, Whole Number Ordering Errors, Smallest Denominator – Biggest Fraction Ordering Errors, No 
Category Errors, and Did Not Attempt Errors 
 

 Correct % WNa % SD-BFc % NC-WFa % NCa % DNAa % 
Cohort 1 
2011-2012 116 15% 417 65% 52 13% 28 4% 120 19% 23 4% 

Cohort 2 
2012-2013 137 21% 318 63% 75 22% 27 5% 87 17% 4 1% 

Cohort 3 
2013-2014 126 20% 343 67% 63 20% 25 5% 73 14% 9 2% 

Across 
cohorts 

379 
N = 2,043 

19% 1,078 
n = 1,664 

65%b 190 
n = 1,050 

18% 80 
n = 1,664 

5% 280 
n = 1,664 

17% 36 
n = 1,664 

2% 

Note: WN = whole number ordering errors; SD-BF = smallest denominator – biggest fraction ordering errors; NC-WF = no category 
errors where students wrote the wrong fractions or the same fraction twice; NC = no category errors (i.e., could not determine an error 
pattern); DNA = did not attempt.  
aIndicates the frequency of errors of the responses that had errors (i.e., subtracting correct answers from the denominator).  
b46% of WN ordering errors included ordering the three fractions from least to greatest based on the whole number value in the 
denominator (e.g., ½<1/5<1/12); 33% of WN ordering errors included ordering the three fractions from least to greatest based on the 
whole number values in the numerator and denominator (e.g., ½<2/6<5/8); 21% of WN ordering errors included ordering the three 
fractions from least to greatest based on the whole number values in the numerator (e.g., ½<2/8<¾).  
cIndicates the frequency of smallest denominator – biggest fraction ordering errors of the responses that had errors (i.e., subtracting 
correct answers from the denominator). This error could only occur on five of the nine ordering problems. 
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Table 3  
 
Effect of Cohort on Accuracy, Whole Number Ordering Errors, and Smallest Denominator – Biggest Fraction Ordering Errors 
 
Outcome   γ SE z p Variance 
Accuracy Fixed Effects  (intercept) -3.97 0.64 -6.23 <.001  
  Cohort 2 0.96 0.54 1.78 .075  
  Cohort 3  0.78 0.54 1.43 .152  
        
 Random effects Student      7.43 
  Problem     1.89 
        
Whole number ordering error Fixed Effects (intercept) 1.00 0.69 1.45 .148  
  Cohort 2 -0.76 0.96 -0.78 .435  
  Cohort 3  0.54 0.97 0.58 .581  
        
 Random effects Student      23.98 
  Problem     0.51 
        
Smallest denominator –  Fixed effects (intercept) -10.41 1.08 -9.61 <.001  
biggest fraction ordering error  Cohort 2 0.74 1.12 0.66 .509  
  Cohort 3  0.47 1.16 0.41 .685  
        
 Random effects Student      134.89 
  Problem     0.72 
 Note: Cohort 1 was the referent group.  
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Table 4  
 
Effect of Problem Type on Accuracy and Whole Number Ordering Errors 
 
Outcome   γ SE z p Variance 
Accuracy Fixed Effects  (intercept) -4.38 0.44 -10.06 <.001  
  Same N 2.68 0.51 5.23 <.001  
        
 Random effects Student      7.97 
  Problem     0.45 
        
Whole number ordering error Fixed Effects (intercept) 0.74 0.45 1.67 .095  
  Same N 0.41 .52 0.79 .428  
        
 Random effects Student      23.55 
  Problem     0.47 
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Table 5  
 
Effect of Measurement (i.e., Number Line and NAEP Measurement Items) and Part-Whole Understanding (i.e., NAEP Part-Whole 
Items) on Accuracy, Whole Number Ordering Errors, and Smallest Denominator – Biggest Fraction Ordering Errors 
 
Outcome   γ SE z p Variance 
Accuracy Fixed Effects  (intercept) -3.31 0.54 -6.07 <.001  
  NAEP_PW 0.30 0.14 2.08 .038  
  NL 3.51 1.49 -2.37 .018  
  NAEP_M  0.42 0.08 5.16 <.001  
        
 Random effects Student      4.19 
  Problem     2.11 
        
Whole number ordering error Fixed Effects (intercept) 0.98 0.47 2.07 .039  
  NAEP_PW -0.10 0.30 -0.34 .738  
  NL -8.70 3.52 -2.47 .013  
  NAEP_M  -0.69 0.19 -3.57 <.001  
        
 Random effects Student      23.62 
  Problem     0.56 
        
Smallest denominator –  Fixed effects (intercept) -9.29 1.04 -8.89 <.001  
biggest fraction ordering error  NAEP_PW 0.37 0.44 0.85 .394  
  NL 2.34 4.19 0.56 .576  
  NAEP_M  0.42 0.23 1.84 .066  
        
 Random effects Student      94.05 
  Problem     0.60 
Note: NAEP_PW = NAEP part-whole items; NL = number line; NAEP_M = NAEP measurement items 
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Table 6  
 
Means and Standard Deviations for Component Scores for Students’ Explanations (Cohort 3 Only; n = 71) 
 
 

 Correct sign placement  Number of parts  Size of parts  Correct Drawing 

 M (SD)  M (SD)  M (SD)  M (SD) 
Cohort 3 
2013-2014 5.58 (2.07)  0.45 (1.18)  0.34 (0.96)  0.61 (1.74) 
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Table 7  
 
Effect of Students’ Explanations (Cohort 3 Only; n = 71) on Accuracy, Whole Number Ordering Errors, and Smallest Denominator – 
Biggest Fraction Ordering Errors  
 
Outcome   γ SE z p Variance 
Accuracy Fixed Effects  (intercept) -2.91 0.59 -4.97 <.001  
  Explanation 0.32 0.08 4.00 <.001  
        
 Random effects Student      4.39 
  Problem     1.53 
        
Whole number ordering error Fixed Effects (intercept) 4.74 2.09 2.27 .023  
  Explanation -1.44 0.45 -3.24 .001  
        
 Random effects Student      111.23 
  Problem     3.38 
        
Smallest denominator –  Fixed effects (intercept) -8.13 1.178 -4.56 <.001  
biggest fraction ordering error  Explanation 0.66 0.36 1.84 .065  
        
 Random effects Student      85.62 
  Problem     0.91 
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Table 8  
 
Effect of Each Individual Predictor on Accuracy and Whole Number Ordering Errorsa 

Outcome Predictorb -1 SD +1 SD +2 SDs 
Accuracy   NAEP part-whole .023 .054 .082 
 Number line  .022 .056 .089 
 NAEP measurement .011 .105 .271 
     
 Student explanations .015 .165 .418 
     
Whole number ordering error NAEP part-whole -2.91 0.59 -4.97 
 Number line  .899 .443 .192 
 NAEP measurement .948 .282 .055 
     
 Student explanations >.999 .269 .001 
     
Note: aPart-whole and measurement understanding did not significantly predict the probability of committing a smallest denominator 
– biggest fraction ordering error. Therefore, these effects were not calculated.  
bThese probabilities reflect the effect of each predictor at one standard deviation below the mean, one standard deviation above the 
mean, and two standard deviations above the mean while holding the other predictor variables constant at their respective means. 
Student explanations were analyzed in a separate statistical model.  
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CHAPTER IV 

 

DISCUSSION 

 

There were four purposes to the present study. The first was to describe fraction ordering 

error patterns among fourth-grade students at risk for developing mathematics difficulties. The 

second purpose was to determine whether performance differed in terms of accuracy and error 

patterns among students from three different academic years over the period in which the school 

district moved toward implementation of CCSS (2012). The third purpose was to determine 

whether students were more accurate and more likely to commit whole number ordering errors 

on problems with the same numerator versus problems with different numerators and different 

denominators. The fourth purpose was to determine whether part-whole and measurement 

understanding of fractions significantly predicted the probability of correctly answering a 

problem, committing a whole number ordering error, and committing a smallest denominator – 

biggest fraction ordering error.  

In this section, I discuss findings for each research question by outcome (i.e., accuracy, 

smallest denominator – biggest fraction ordering errors, and whole number ordering errors). I 

present findings on accuracy and smallest denominator – biggest fraction ordering errors first to 

then focus on findings related to the most pervasive ordering error – whole number ordering 

errors. Therefore, I center the majority of the discussion on how measurement understanding 

relates to the probability of committing whole number ordering errors. Next, I discuss practical 

implications and curriculum recommendations as they relate to remediating whole number 

ordering errors, followed by a discussion of study limitations.  
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Accuracy 

Consistent with previous research (DeWolf & Vosniadou, 2011; Meert et al., 2010; 

Stafylidou & Vosniadou, 2004), students in the present study demonstrated substantial difficulty 

assessing fraction magnitude, with no significant differences among cohorts on accuracy for 

these low performers as the school district moved toward CCSS implementation. Across years, 

after their first year of intensive instruction on fractions, fourth-grade students correctly ordered 

fractions on only 19% of problems.  

Contrary to what I expected, part-whole understanding significantly predicted the 

probability of correctly answering a problem. This is likely because students can accurately 

assess fraction magnitude using part-whole knowledge when fractions have the same numerator 

(Smith et al., 2005), and the same numerator problems were slightly easier for students than 

problems with different numerators and different denominators (examples where part-whole 

understanding serves students well for accurately assessing fraction magnitude). However, 

although significant, part-whole understanding had a minimal effect in increasing the probability 

of correctly answering a problem. The probability of correctly answering a problem at one 

standard deviation below the mean for NAEP part-whole items was 2%; at two standard 

deviations above the mean, the probability only increased to 8%. Although part-whole 

understanding is foundational for developing an understanding of fraction magnitude (e.g., 

Charalambous, & Pitta-Pantazi, 2007), students cannot accurately use part-whole knowledge for 

more difficult problems with different numerators and different denominators. This was 

evidenced by the fact that the probability of correctly ordering fractions with different 

numerators and different denominators was only 1.2%, as compared to a 16% probability when 

fractions had the same numerator.  
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The curriculum in the district where this study took place primarily relied on teaching 

part-whole understanding of fractions and did not emphasize measurement understanding (i.e., 

understanding fraction magnitude). However, based on the CCREM results, it appears that 

performance on the NAEP measurement items and the ability to explain comparing problems 

(with the latter measure indexed only in cohort 3) had the strongest effect on the probability of 

correctly answering a problem. When students performed one standard deviation below the mean 

on the NAEP measurement items (and at the mean on number line and NAEP part-whole items), 

there was a 1% probability of correctly ordering fractions. However, when students performed 

two standard deviations above the mean, the probability of correct ordering increased to 27%.  

Similarly, when students performed one standard deviation below the mean on explaining 

comparing problems (cohort 3 only), there was a 2% probability of correctly answering a 

problem. By contrast, when students performed two standard deviations above the mean, the 

probability of correctly answering a problem increased to 42%. Considering students only 

correctly answered 19% of the problems overall, the effect of performance on NAEP 

measurement items and explaining comparing problems (cohort 3 only) was substantial. This 

result is not surprising, as research suggests that verbal explanations are positively related to 

overall mathematics achievement (e.g., Wong et al., 2002). If students are capable of accurately 

describing how the numerator and denominator work together to create magnitude, they are more 

likely to accurately order fractions from least to greatest.    

Although significant, performance on number line had a less substantial effect than 

performance on NAEP measurement items and explaining comparing problems (cohort 3 only). 

The probability of correctly answering a problem when a student performed one standard 

deviation below the mean on number line was 2%. At two standard deviations above the mean, 
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the probability increased to only 9%. I expected performance on number line to parallel the 

effect of performance on NAEP measurement items on accuracy.  

Of course, it is not surprising that increased measurement understanding significantly 

predicted students’ ability to correctly order fractions from least to greatest, in that ordering also 

indexes measurement understanding. But it is interesting that performance on NAEP 

measurement items and explaining comparing problems had a more substantial effect in 

increasing the probability of correctly answering a problem than did performance on number 

line. One reason for this is that the NAEP measurement items tested a broader range of 

measurement understanding than did number line. That is, the NAEP measurement items tested 

students’ ability to order fractions from least to greatest, compare fractions, place fractions on the 

number line, and construct equivalent fractions.  

Performance on number line, on the other hand, was a narrow measure testing whether 

students could spatially represent fraction magnitude on a 0-2 number line. Although previous 

research suggests that students’ ability to accurately place fractions on the number line 

significantly predicts students’ development of understanding about fractions (e.g., Jordan et al., 

2013; Siegler et al., 2011), many students have difficulty placing fractions on the number line 

(e.g., Opfer & Devries, 2008; Siegler et al., 2011). To combat this difficulty, instruction must 

focus on developing students’ fluency with a range of fraction magnitude concepts, including 

equivalence, ordering, and comparing (Smith, 2002). This will not only improve students’ ability 

to place fractions on the number line, but also improve students’ conceptual understanding. The 

greater students’ accuracy on a range of measurement tasks (i.e., ordering, comparing, number 

line, equivalence), the more likely they are to accurately order fractions. 
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Smallest Denominator – Biggest Fraction Ordering Errors 

Smallest denominator – biggest fraction ordering errors did not occur as frequently as 

expected. Of the errors made on the five problems with potential for this error (i.e., 1,050 

responses), 18% were smallest denominator – biggest fraction ordering errors. There were no 

significant differences among cohorts on the frequency of this error. Contrary to what I expected, 

performance on number line, NAEP measurement items, and NAEP part-whole items did not 

significantly predict the probability of committing a smallest denominator – biggest fraction 

ordering error.  

The low frequency of smallest denominator – biggest fraction errors could explain why 

part-whole and measurement understanding failed to predict the probability of this error, as it 

only occurred 190 times in the sample. Although results do not speak to how part-whole and 

measurement understanding are related to the probability of committing this error, this type of 

error may still represent a transitional phase as students attempt to assimilate fractions into their 

numerical framework (Stafylidou & Vosniadou, 2004). However, because students made very 

few of these errors, I could not examine the tenability of this hypothesis. Future research should 

investigate whether this type of error represents a transition from operating with whole number 

bias to assimilating fractions into a single numerical framework.  

Whole Number Ordering Errors 

The most interesting finding of this study was that whole number ordering errors were 

pervasive among the sample of at-risk fourth-grade students. The majority of students ordered 

fractions from least to greatest based on the whole number values in the numerator and/or 

denominator, and there were no significant differences among cohorts on the frequency of whole 

number ordering errors. Of the errors made, 65% were in this error category. Students were just 
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as likely to commit a whole number ordering error when fractions had the same numerator as 

when fractions had different numerators and different denominators.  

Part-whole understanding. As expected, part-whole understanding did not significantly 

predict the probability of committing whole number ordering errors when measurement 

understanding was controlled. That is, increased part-whole understanding did not significantly 

decrease the probability of committing a whole number ordering error. This is interesting 

because students were just as likely to commit whole number ordering errors on problems with 

the same numerator (examples where part-whole understanding can lead to accurate answers). 

Same numerator problems were no easier than problems with different numerators and different 

denominators for students who tended to operate with whole number bias. As previously 

discussed, part-whole understanding is foundational but not sufficient for understanding fraction 

magnitude. Based on these results, it appears that only focusing on teaching part-whole 

understanding will not decrease the likelihood of operating with whole number bias.  

Measurement understanding. Unlike part-whole understanding, performance on 

number line, NAEP measurement items, and explaining comparing problems (cohort 3 only) all 

significantly predicted the probability of whole number ordering errors. Superior measurement 

understanding dramatically decreased whole number ordering errors. When a student performed 

one standard deviation below the mean on number line, the probability of committing a whole 

number ordering error was 90%; the probability of committing this error decreased to 19% at 

two standard deviations above the mean. For NAEP measurement items, when a student 

performed one standard deviation below the mean, the probability of committing a whole 

number ordering error was 95%; the probability decreased to 5% at two standard deviations 

above the mean. For explaining comparing problems (cohort 3 only), the probability of 
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committing a whole number ordering error was 99.99% one standard deviation below the mean; 

the probability decreased to 0.1% at two standard deviations above the mean.  

Parallel to the observed relation with accuracy, performance on NAEP measurement 

items and explaining comparing problems had the strongest effect on decreasing the probability 

of committing whole number ordering errors. As previously discussed, the NAEP measurement 

items tested a broader range of magnitude topics than did number line. Although the number line 

is a good representational tool for teaching fraction magnitude topics (e.g., Keijzer and Terwel, 

2003), many students struggle with the number line (Opfer & Devries, 2008; Siegler et al., 

2011). Because of this, students’ measurement understanding must also include deep 

understanding of and fluency with equivalence, ordering, and comparing to reduce the likelihood 

of committing whole number ordering errors.  

Results from this study suggest that accurately explaining how to assess fraction 

magnitude may be a key component in increasing students’ conceptual understanding of 

fractions. One of the CCSS (2012) fraction standards requires students to “extend core 

understanding of fraction equivalence and ordering” (www.corestandards.org). This includes 

accurately comparing fractions with different numerators and different denominators by creating 

common denominators or comparing to a benchmark fraction such as ½. However, results from 

the present study suggest that at-risk fourth grade students had not achieved this benchmark, as 

indicated by the low scores on explaining comparing problems. Of a possible 54 points on the 

test, the average explanation score was only 7 points. 

Moreover, although students are expected to justify their answer with a verbal 

explanation and a visual fraction model, results from the explaining comparing problems 

measure (cohort 3 only) suggest these at-risk students have substantial difficulty verbally 
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explaining how to compare fractions. This corroborates previous research that suggests many 

American students (not just low performing students) struggle to construct verbal explanations. 

For example, in a descriptive study comparing American and Chinese students’ learning of 

place-value, Yang and Cobb (1995) found that Chinese students constructed far superior verbal 

explanations about mathematics concepts than their U.S. counterparts. In a similar descriptive 

study comparing mathematics classroom discourse, Stigler and Perry (1988) showed that 

Japanese teachers devoted the majority of class time on modeling how to explain the problem-

solving process. Teachers stressed the importance of thinking through the correct answer. By 

contrast, American teachers spent little time on explanations. There is a long history of 

achievement discrepancies between the United States and Asian countries in mathematics (e.g., 

Provasnik et al., 2012). The ability to explain concepts and connect ideas in mathematics may be 

a key factor explaining this achievement gap (e.g., Stigler & Perry, 1988).  

Not only did students fail to provide satisfactory verbal explanations, many of the 

explanations provided were based on whole number knowledge. In fact, 38% of the explanations 

provided on the explaining comparing problems measure included incorrect whole-number 

explanations. These problematic whole-number explanations included examples such as stating 

that “3/6 is bigger than ¾ because 6 is bigger than 4” or cross-multiplying and comparing whole 

number values to compare the fractions. The prevalence of these types of whole-number 

explanations indicates students have deep misconceptions about fraction properties and how to 

assess fraction magnitude.       

Instructional implications. The focus of instruction in the district where the study took 

place primarily emphasized part-whole understanding. However, results suggest that part-whole 

understanding is insufficient for reducing the likelihood of operating with whole number bias. 
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Without emphasizing that fractions have magnitude and can be ordered, compared, and placed 

on the number line, students resort to the only knowledge they have: whole number knowledge. 

Operating with whole number bias can have a substantial negative effect on students’ ability to 

succeed in higher-level mathematics courses such as algebra (Bailey et al., 2012; Booth & 

Newton, 2012; Brown & Quinn, 2007; Siegler et al., 2011).  

Results from this study corroborate previous research highlighting the importance of 

explicitly teaching how to conceptually assess fraction magnitude (e.g., Cramer et al., 2003; 

Fuchs et al., 2013; Fuchs et al., 2014; Fuchs et al., in preparation-a; Fuchs et al., in preparation-b; 

Siegler et al., 2011; Smith, 2002). However, many American teachers may struggle to do this 

because they themselves have insufficient fraction understanding. For example, in a descriptive 

study comparing American and Japanese fourth-grade teachers’ understanding of rational 

numbers, Moseley, Okamoto, and Ishida (2007) found that American teachers relied almost 

exclusively on part-whole relationships to describe fraction concepts. But they often inaccurately 

described fraction concepts and struggled to rationalize how to apply part-whole explanations to 

more difficult concepts like proportional reasoning. By contrast, Japanese teachers’ explanations 

of fraction concepts focused more on quantity relationships. They could apply these explanations 

to more difficult mathematics concepts such as proportional reasoning.  

Like teachers in the Moseley et al. (2007) study, teachers in this study’s district may also 

struggle to rationalize how to apply part-whole explanations to more difficult fraction topics such 

as ordering fractions with different numerators and different denominators. This explains why 

many teachers reported that they focused on procedural methods for assessing magnitude (e.g., 

cross-multiplying). However, teaching procedures without concepts likely leaves students 

confused and unable to judge the accuracy of their answers (Kilpatrick et al., 2001; Rittle-
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Johnson & Siegler, 1998), as both conceptual and procedural knowledge are important for 

developing conceptual understanding (e.g., Rittle-Johnson, Siegler, & Alibali, 2001).    

Results suggest that one potential strategy for reducing whole number bias is revamping 

instruction to focus on magnitude understanding (i.e., measurement interpretation). Previous 

research supports this finding. For example, in four years of intervention research, Fuchs et al. 

(2013), Fuchs et al. (2014), Fuchs et al. (in preparation-a), and Fuchs et al. (in preparation-b) 

found that at-risk fourth-grade students who received intervention emphasizing the measurement 

interpretation of fractions significantly outperformed control students on comparing fractions, 

ordering fractions, number line, and NAEP. In fact, the treatment students from these cited 

studies made very few ordering errors. The scope and sequence of all four studies included 

explicitly teaching students conceptual strategies for comparing fractions with the same 

numerator, the same denominator, and fractions with different numerators and different 

denominators using ½ as a benchmark. These strategies were extended to ordering and placing 

fractions on the number line. Part-whole understanding was a component of instruction, but was 

not the focus of the curriculum.  

Revamping instruction to focus on magnitude understanding is not a new idea. The CCSS 

(2012) and the National Mathematics Advisory Panel (U.S. Department of Education, 2008) both 

emphasize the importance of teaching fraction magnitude to boost students’ conceptual 

understanding of fractions. However, given there were no differences among cohorts on accuracy 

or error patterns, as the district moved toward CCSS implementation, it appears that the CCSS 

are not being effectively implemented – at least for students with risk for mathematics difficulty. 

This sample of at-risk students, who received their fraction instruction within general education 

classrooms, had limited measurement understanding. Their scores on the measurement items 
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were much lower than expected compared to average-achieving classmates. For example, Fuchs 

et al. (2013, 2014) reported that the achievement gap between the at-risk control students (similar 

to those included in the present study’s sample) and a sample of low-risk students (i.e., average-

achieving classmates) was approximately one standard deviation on NAEP measurement items. 

(Average-achieving student data were not collected for number line performance.) However, for 

students who instead received the intervention program, this achievement gap was nearly 

eliminated.  

Although the pattern of errors is unknown for a sample of average-achieving students (as 

these data were not collected), previous research (e.g., DeWolf & Vosniadou, 2011; Meert et al., 

2010; Stafylidou & Vosniadou, 2004) suggests that even average-achieving students struggle to 

assess fraction magnitude. This speaks to the importance of improving fraction instruction to 

benefit all students (Siegler et al., 2011). It is possible to reduce students’ tendency to operate 

with whole number bias (i.e., Fuchs et al., 2013; Fuchs et al., 2014; Fuchs et al., in preparation-a; 

Fuchs et al., in preparation-b). However, more work must be done to achieve the standards goals 

of the CCSS (2012) and improve students’ conceptual understanding of fractions.    

Limitations  

 Of course, this study must be viewed in light of limitations. First, this study examined 

only the differential predictability of two types of fraction understanding – part-whole and 

measurement. Although part-whole and measurement understanding represent important 

components of conceptual understanding (e.g., Kilpatrick et al., 2001) and help to explain 

individual differences in fraction skills (Hecht et al., 2003), there are also other interpretations of 

fractions. These include defining a fraction as a ratio (i.e., a fraction represents a relationship 

between two quantities), a quotient (i.e., a/b represents the decimal value of a divided by b), or 
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an operator (i.e., a fraction represents a quantity that can be reached by multiplying smaller 

units). The present study did not analyze these constructs because they are not typically assessed 

or taught in fourth grade. This is not to say that these constructs are not important. But laying a 

foundation for students to understand fraction magnitude (i.e., measurement understanding) in 

the first year of fraction learning will likely prepare them to consolidate the many interpretations 

of fractions in the later grades.  

 Second, the reliability of the NAEP part-whole items was lower than expected (i.e., < 

.70). It could be that there were fewer NAEP part-whole items than NAEP measurement items, 

which affects the overall reliability of the test (Cronbach, 1951). However, because the items 

were released NAEP items actually given to students, I felt this subset of questions was a 

realistic set of part-whole questions that students may encounter on a standardized test to assess a 

range of part-whole understanding.  

 Third, I reported how teachers taught students fractions using a self-report survey. I did 

not conduct live observations in the classroom to determine whether what they reported was in 

line with how they were actually teaching fraction concepts. Therefore, these data must be 

viewed as an approximation of how teachers teach fractions in their classroom.   

 Despite these limitations, results support previous intervention research (e.g., Cramer et 

al., 2002; Fuchs et al., 2013; Fuchs et al., 2014; Fuchs et al., in preparation-a; Fuchs et al., in 

preparation-b) that suggests one strategy for reducing students’ tendency to operate with whole 

number bias is to increase their measurement understanding and allow students to explain how 

they got their answer. In these studies, instruction explicitly taught students how to compare 

fractions, order fractions, and place fractions on the number line and give students the 

opportunity to construct conceptual verbal explanations for how to complete these tasks. In the 
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present study, performance on a wide range of measurement tasks (i.e., NAEP measurement 

items) and the ability to explain comparison problems had a dramatic effect of reducing whole 

number ordering errors among fourth-grade students at risk for developing mathematics 

difficulties.  
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APPENDIX 
 
Examples and Non-Examples of Sound Explanations  
 
Explanation Component  Example 

1) Correct sign 
1 point  

1/4 > 1/8  

2) Number of parts (numerator)  
2 points  

The fractions have the same/different number of 
parts 
 
Draws an arrow on picture to show they have the 
same number of parts 

3) Size of parts (denominator) 
2 points   

The fractions have the same/different size parts 
 
Draws an arrow to the parts and indicates which is 
bigger/smaller, or that both units have the same size 
parts 

4) Accurate picture 
2 points  

Units are the same size, divided into equal parts, 
parts shaded 

 
Example sound explanation: 6 points  
 

1) Correct sign: ¼ > 1/8 (1 point)  
2) Number of parts (2 points)  
3) Size of parts (2 points)  
4) Accurate picture (1 point)  

 
    
 
        
 
Same number of parts, but fourths are bigger than eighths  
 
 
Non-example sound explanation:  
 
Inaccurate picture – ¼ is not larger than 1/8 (0 points)  
 
    
 
        
  
3/6 is bigger than ¾ because 6 is bigger than 4.  

Bigger parts 
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