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SHORT ABSTRACT 

Lung cancer is deadly, killing more people than breast, colon and prostate cancer combined. 

Surgeons evaluating patients for lung cancer face a dilemma: to operate and subject the individual 

to operation associated mortality and morbidity or not operate and possibly miss early diagnosis 

and treatment.  No models designed for surgeons evaluating lung lesions.  We successfully 

estimated the TREAT model. A model designed for surgeons with an internally validated AUC of 

0.87 and Brier score of 13.  

 

If the TREAT model is applied to a national population, its accuracy may decrease due to local 

conditions.  To determine the possible extent of such variation, benign disease prevalence after 

lung surgery was estimated using 2009 Medicare hospital discharge data.  Significant variation in 

benign disease prevalence between states was observed with a low of 1.3% in Vermont and a 

high of 25% in Hawaii. The causes for this observed variation are unknown. Residence in a 

county with high fungal lung disease prevalence was not associated with increased likelihood of 

benign disease. 

 

FDG-PET scan variance was observed in the national ACOGOS Z4031 trial.  FDG-PET 

sensitivity (82%) and specificity (31%) were significantly lower than in previous published 

studies.  Granuloma occurred in 68% of the false positive FDG-PET scans and sensitivity varied 

significantly between sites.  Scan accuracy increased with increasing lung lesion size. Whether 

the observed variation is caused by practice variation, referral patterns, fungal lung disease, or 

other factors is unknown.   

 

A meta-analysis examined FDG-PET accuracy to diagnose lung lesions sought to determine if 

other researchers had observed variance in FDG-PET accuracy. Seven studies reported false 
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positive scans arising from granulomas caused by infectious lung disease. Specificity of those 

studies was 59%, significantly lower than the specificity (77%) observed in the remaining 53 

studies.  Studies whose mean lesion size was less than or equal to 20 mm had significantly lower 

sensitivity than studies conducted in larger lesions. 

 

The TREAT model shows clinical promise and should be externally validated. The causes of 

observed variation in benign disease prevalence and FDG-PET accuracy should be investigated 

with particular attention made to measuring infectious disease exposures that cause granulomas. 
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ABSTRACT 

 

More people die in the United States (US) from lung cancer than from breast, colon, and prostate 

cancer combined with over 160,000 deaths occurring annually.  Early detection, diagnosis and 

treatment improve cancer survival. Screening for early detection of disease with low dose 

computed tomography (LDCT) reduced lung cancer related mortality by 20% in a recently 

concluded national trial; however, screening resulted in many false positive results requiring 

further evaluation. Surgeons evaluating patients for lung cancer face a dilemma: to operate and 

potentially subject the individual to significant operation associated mortality and morbidity or 

not operate and possibly miss early diagnosis and opportunities for treatment. F18-

fluorodeoxyglucose positron emission tomography (FDG-PET) is one of the most accurate, non-

invasive tests available for diagnosing lung nodules. However, lung granulomas with an 

infectious disease etiology appear physiologically and metabolically similar to cancer and 

generate false positive CT and FDG-PET scans. If an association exists between imaging detected 

granulomas and the infectious lung diseases that created them, then populations may exist that 

will not benefit from FDG-PET scans for diagnosis of lung cancer. If the prevalence of benign 

diagnosis after lung surgery varies across the US, then the benefit from a national screening 

program will likely be less in areas with higher benign disease prevalence. Exploration of 

possible causes of regional variation in benign disease prevalence and creation of a predictive 

model for surgeons to diagnose lung cancer has the potential to reduce the morbidity and 

mortality arising from unnecessary surgery for patients with benign disease.  

 

Current models estimating lung cancer risk were not developed in populations being evaluated by 

surgeons. Using the diagnostic information available to surgeons at the point of decision to 

operate that includes the diagnostic work-up of all previous specialists combined, the TREAT 
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Lung Cancer model was estimated. Clinical and radiographic imaging information was 

retrospectively collected from a population being evaluated for known or suspected lung cancer 

by surgeons at Vanderbilt University Medical Center. The predictors for lung cancer included: 

age, sex, smoking history, pre-operative symptoms, previous history of cancer, body mass index, 

predicted forced expiratory volume in one second, lesion characteristics, and FDG-PET avidity. 

The TREAT model better discriminated lung cancer (AUC=0.89, 95%CI: 0.86-0.92) in the 

surgical evaluation population than the previously validated Mayo model (AUC=0.80, 95%CI: 

0.76-0.85). The TREAT model was better calibrated using the Brier score metric (0.12) when 

compared to the Mayo model (0.17). When the variables from the Mayo model were re-estimated 

using the Vanderbilt population (AUC 0.83, 95% CI: 0.79-0.87), the more comprehensive 

TREAT model continued to better discriminate cancer from benign disease (p<0.001). Lesion 

size, age, avidity on a FDG-PET scan, and observed growth on serial CT scans were the strongest 

predictors for lung cancer. The model had little reduction in AUC (0.87) or Brier score (0.12) on 

internal validation with bootstrap methodology. 

 

The TREAT model to predict lung cancer was more accurate than previously published models. 

Its 89% AUC is the highest among all published models. However, to be clinically useful in a 

surgical evaluation population with its high prevalence of lung cancer, all variables that might 

indicate benign disease or influence the primary predictive variables of growth or FDG-PET 

avidity must be explored. Granulomas arising from infectious lung diseases including 

histoplasmosis, coccidiomycosis, blastomycosis and tuberculosis have been reported in the 

literature and generate false positive imaging scans for lung cancer. Granulomas were the most 

common benign diagnosis after surgery for suspected lung cancer in this research, and they were 

60% to 70% of the etiologies observed with false positive FDG-PET scans. Also, individuals with 

clinical early stage disease, a population similar to that likely found in the successful national CT 

screening program, have smaller lung nodules. Published literature and clinical data from a 
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national trial showed that FDG-PET scans failed to differentiate cancer from benign disease in 

populations with smaller lesions or with endemic infectious lung disease. This research calls into 

question the use of FDG-PET scans for diagnosis in populations with lesions under 2cm or 

having a high prevalence of infectious lung disease.  

  

To investigate the possible range of variability in benign disease, benign disease point prevalence 

after surgical operation was investigated by state in the 2009 Medicare population. Each 

individual was matched to a probability of fungal lung disease prevalence as measured in a 

national surveillance program from the 1960s. Benign disease prevalence variation was observed 

between states, from a low of 1.3% in Vermont to a high of 25% in Hawaii. The median point 

prevalence by state was 8.9% (IQR: 7.8 – 10.9; chi2<0.001). Historic fungal lung disease 

prevalence by county of residence at the time of surgery was not associated with benign disease at 

the individual level (p=0.9).   

 

In a secondary analysis examining the variation of FDG-PET scan diagnostic accuracy in 682 

individuals from a completed national trial, lower sensitivity and specificity was observed (82% 

and 31% respectively) compared to previously published studies. Wide variation in sensitivity 

across enrolling sites was observed (68% to 91%; p=0.03). Variation in the specificity of FDG-

PET scans was also observed (15% to 44%; p=0.72); however, the small number of benign 

disease cases at each individual site resulted in little power to draw conclusions regarding the 

specificity of FDG-PET scan variation by enrolling site. Scan accuracy increased with increasing 

lung lesion size. Of the 80 false positive scans, 69% were granulomas. All positive FDG-PET 

scans were examined separately and false positive FDG-PET scans were not found to be 

associated with historic fungal lung disease exposure after adjusting for age and size of the lung 

lesion (p=0.12). The causes of the observed variation in FDG-PET scan results are unknown. 

Possible causes of observed variation include verification bias which results in higher sensitivity 
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and lower specificity, practice variation, infectious lung diseases which generate granulomas that 

mimic cancer, or other unknown causes.  

 

A systematic review of the literature was conducted to examine whether other researchers had 

found similar poor performance of FDG-PET scans in the diagnosis of lung cancer and to update 

a meta-analysis conducted in 2001.  A systematic review of the literature found 60 studies 

reporting FDG-PET scan accuracy to diagnose lung cancer. The studies showed that FDG-PET 

scan sensitivity to diagnose lung cancer declines as lesion size decreases and the specificity 

increases slightly. The advent of fusion PET and CT scanners slightly increased sensitivity (88.4, 

95% CI: 84.2-91.7 to 90.0, 95% CI: 86.5-92.6) and significantly increased the specificity (69.4, 

95% CI: 63.0-75.2 to 77.9, 95% CI: 70.7-83.8) for diagnosis in 29 studies when compared to 24 

studies that reported using PET only scanners. In seven studies reporting endemic infectious lung 

disease, the sensitivity of FDG-PET was higher (91%, 95% CI: 90%-94%) to the 53 studies 

(90%, 95% CI: 82%-93%) that did not report infectious lung disease in the underlying study 

population. However, the specificity was lower in areas of endemic infectious lung diseases that 

cause granulomas (59%, 95% CI: 46%-70%) when compared to those studies that did not report 

underlying infectious disease (77%, 95%CI: 69%-86%) 

 

No direct association was observed between fungal lung disease exposures and higher benign 

disease prevalence or false positive FDG-PET scans. No direct measurement of fungal lung 

disease exposure was possible in this analysis. The prevalence of benign disease after lung 

surgery varied by state and the cause of this observation, whether practice variation, verification 

bias, infectious lung disease or other unknown causes, is not known at this time. Investigating 

possible causes of the observed variation in FDG-PET scan accuracy and in benign disease 

prevalence after lung surgery is needed in future research. Such information will inform policy 

makers and health researchers as they examine the efficacy of a national lung cancer screening 
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program. Furthermore, the influence of local practice and locally endemic benign lung disease on 

the diagnosis of lung cancer must be better understood and incorporated into any lung cancer 

predictive models for surgeons before such a model can be clinically implemented nationally.   
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Chapter 1 

 

 

1.0 An introduction to lung cancer, its epidemiology, evaluation and diagnosis 
 with a focus on variables for predictive modeling   
 

 1.1 Epidemiology of lung cancer 

 

Lung cancer is the most common cause of cancer-related death in the United States (US) and kills 

more people than breast, prostate, and colorectal cancers combined (Figure 1). An estimated 

226,160 new cases and 160,340 deaths from lung cancer occurred in the US in 2012, accounting 

for approximately 17% of annual incident cancers and 28% of all cancer deaths.1,2 One in 

fourteen individuals born today will be diagnosed with lung cancer at some time during their 

lifetime based upon incidence rates from 2007-2009. Lung cancer diagnosis and treatment exerts 

a significant economic burden as well. The US spends an estimated $10.3 billion on direct lung 

cancer care, which comprises 10% of all cancer related healthcare expenditures.3 These direct 

costs are dwarfed by the estimated $83 billion lost in productivity from caregiving to those with 

the disease and lost wages from early mortality.4 

 

Lung cancer, like most cancers, is a complex and diverse disease. It is caused primarily by 

environmental factors. Known risk factors for lung cancer include smoking tobacco, radon 

exposure, air pollutants, second-hand smoke, occupational exposures and individual genetic 

susceptibility. The primary risk factor for both small cell (SCLC), which comprises 14% of all 

lung cancers, and non-small cell lung cancer (NSCLC), which comprises the remaining 86%, is 

tobacco smoking. Approximately 85 to 90% of the population attributable risk for lung cancer is 
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due to tobacco smoking.5 Among non-smokers lung cancer is a relatively rare disease, less than 

15 per 100,000 person-years.6   

 

Lung cancer incidence has declined as smoking prevalence has declined in the US. The age-

adjusted incidence rates for lung cancer in the US, according to Surveillance Epidemiology and 

End Results (SEER) data, peaked in 1992 at 69.4 cases per 100,000 person-years. The trend in 

incidence has fallen with 58.8 per 100,000 person-years in 2009, the most recently available 

data.7 Among women, age-adjusted incidence has decreased to 51.2 per 100,000 since reaching 

its peak of 53.5 in 2005 (Figure 2). The incidence rate of lung cancer in men has steadily declined 

from its peak of 102.1 per 100,000 person-years in 1984 to 69.2 in 2009. Age-adjusted mortality 

rates in the US have seen slight declines in recent years for women (38.6 per 100,000) from their 

peak in 2002 of 41.6 per 100,000 person-years. A more dramatic decline in mortality among men 

has been observed from an age-adjusted high in 1990 of 90.6 to 62 per 100,000 person-years in 

2009.8 

 

The overall 5-year survival rate for lung cancer is 15.2%. This poor prognosis is largely due to 

the cancer’s typically advanced stage at the time of diagnosis.9 In comparison, using the more 

granular American Joint Committee on Cancer staging schema, populations with localized, 

pathological stage 1A lung cancer have a 73% 5-year survival rate, while metastatic stage IV 

disease has a 1.8% survival rate.10,11 To date, only surgical removal of cancerous tissue can cure 

lung cancer. Surgery for lung cancer is only indicated in those who can withstand the physical 

rigors of major surgery and have localized stage 1 or stage 2 disease.12 To reduce the mortality 

burden from lung cancer, detection of disease in its earlier stages when surgical treatment is a 

possibility is necessary. Early diagnosis and treatment that reduces lung cancer related mortality 

has been the subject of much research in the lung cancer field; however, none of the methods for 
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early detection had reduced mortality from lung cancer prior to the advent of low dose computed 

tomography (LDCT) scans.13-17 

 

1.2 The National Lung Screening Trial and the possibility of screening for lung 
cancer  

 

The recently concluded National Lung Screening Trial (NLST) was a two-arm randomized 

controlled trial that screened 53,454 asymptomatic individuals at high risk for lung cancer with 

either LDCT or chest x-ray. A 20% decrease in lung cancer related mortality in the LDCT arm 

was observed compared to those randomized to the chest x-ray arm (Figure 3). All-cause 

mortality was 7% less in the LDCT arm as well. However, the false positive rate for LDCT was 

96.4% and 39% of all participants had at least one positive scan between the three annual scans 

conducted during the trial. The success of LDCT in reducing mortality compared to chest 

radiograph in the NLST has caused physician and patient advocate groups to propose screening 

guidelines for lung cancer. The American College of Chest Physicians (ACCP), American 

Society of Clinical Oncology, National Comprehensive Cancer Network (NCCN), American 

Association of Thoracic Surgery, American Cancer Society, American Lung Association and 

American Thoracic Society all endorse using the NLST screening regimen as the basis for lung 

cancer screening.18 In addition, the NCCN expanded the pool of those to potentially be screened 

from ages 55 through 74 to 50 through 74, with more than a 20 pack-year history of smoking or 

who also have any secondary risk factors including: family history of lung cancer among first 

degree relatives, previous cancer, asbestos or radon exposure, chronic obstructive pulmonary 

disease, or occupational exposure to a known lung carcinogen (Table 1).19   

 

Cost effectiveness of LDCT screening has been estimated to be as low as $19,00020 to over 

$110,000 per quality adjusted life year using the NLST based risk criteria21 for screening 

inclusion and accepted screening guidelines described above. More accurate estimates of cost-
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effectiveness within the NLST are expected to be published shortly.22 The publication of results 

from the NLST, the promulgation of clinical guidelines, and endorsement of LDCT lung cancer 

screening by clinical and patient advocacy groups led the US Preventive Services Task Force to 

initiate a review of their 2007 recommendation against screening with LDCT. Public 

announcement of the Task Force’s draft review of their recommendation is expected in of 2013.23 

Should the Task Force find strong evidence of benefit from lung cancer screening with LDCT, 

then Medicare and other insurers would be required to cover the expense of screening with 

LDCT. Thus, screening for lung cancer would join that of breast, colon, cervical and prostate 

cancer. 

 

Using the proposed screening guidelines based upon the NLST definition of a high risk 

individual, an estimated 7.4 million current and former smokers would be eligible for lung 

screening.24,25 In the National Lung Screening Trial (NLST), a lung abnormality was identified in 

39% of patients during the screening protocol requiring additional diagnostic testing, but less than 

4% of those were malignant.26 If the false positive rate for national screening is similar to that 

found during the trial, an estimated 2.9 million abnormalities will be found on LDCT over the 

first three years of the screening program, each requiring additional surveillance and diagnostic 

testing.   

 

1.3 Conceptual framework for the surgical evaluation of lung nodules and the 
diagnosis of lung cancer 

 
 

An individual can present to a clinician for evaluation and diagnosis of a lung nodule suspicious 

for lung cancer three ways: symptomatically, incidental discovery of the nodule after imaging for 

another clinical indication, and from periodic screening. Irrespective of source, the diagnosis of 

lung cancer begins with radiographic imaging of the chest and detailed history and physical of the 
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individual. Previously, most lung cancer was diagnosed symptomatically (estimated 75%), but 

incidental discovery has increased recently with the proliferation of imaging modalities like CT 

scans.27 If a screening program is initiated in the US, then an explosion in asymptomatic lung 

nodules requiring diagnosis will occur. Since the lung is difficult to access outside the immediate 

proximity to an airway, clinicians rely heavily on available non-invasive diagnostic tools, like 

radiographic imaging, to diagnose lung cancer. 

 

Lung anomalies on radiograph are generally characterized as either lung nodules, opacities, 

lesions or masses. Abnormalities or lesions of the lung are generally classified according to size 

at maximum average diameter and morphological characteristics that are observable on 

radiograph. Lung nodules are larger than 3mm in maximum diameter and less than 30mm (Figure 

4A). Lung masses are 30mm and larger in size. Nodules and masses appear as generally solid 

collections of tissue on CT scan (Figure 4B). Ground glass opacities and ground glass nodules 

can vary widely in size and are characterized by their non-solid appearance or shadow 

consistency on imaging (Figure 4C).28 For the purpose of this dissertation, “nodule” and “lesion” 

are synonymous.   

 

Figure 5 illustrates the three-step progression of a lung lesion in an individual from the time at 

which the lesion is “Undetectable” (step 1) to “Detectable” (step 2) and finally to the surgical 

evaluation of a “Suspicious” lesion (step 3). This conceptual framework begins with the “at risk” 

patient prior to developing a detectable suspicious lung lesion and moves through time until a 

definitive diagnosis of cancer or benign disease occurs at the time of an operation or through 

prolonged radiographic surveillance. At each step of their evaluation, patients accumulate 

additional clinical and imaging diagnostic information until presenting to the surgeon who must 

decide to either operate or continue following the lesion radiographically over time. 
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In the first step, the patient has an “undetectable lung lesion”. Every person has genetic, 

demographic, environmental and behavioral risk factors for the development of lung cancer. 

While smoking and advanced age are the primary risk factors for developing lung cancer, clinical 

diagnoses of other lung diseases like chronic obstructive pulmonary disease (COPD), asbestosis, 

etc. may also increase or decrease the risk of lung cancer. Most individuals are asymptomatic at 

this point in the growth and detectability of a lung lesion. Models developed to estimate the 

likelihood of lung cancer in this population of undetectable lung lesions focus on common 

epidemiologic risk factors including age, sex, race, years smoked, number of cigarettes smoked 

per day, family history of cancer, occupational exposures to carcinogens, age at smoking 

initiation, or years since smoking cessation.29-33 This first group of epidemiologic models uses 

population characteristics to estimate the likelihood of developing cancer over a one-year, five-

year, or ten-year time frame. These population risk models categorize individuals into cancer risk 

strata, and those strata at highest risk are then likely candidates for LDCT screening or greater 

surveillance. The most widely used in the US is the Bach model.29,34 Other models including 

those by Spitz, Tammemagi, and Cassidy have been validated.30,35-38 One model by Hoggart and 

colleagues, though promising, has not been validated but performed similarly to the Bach 

model.39 Model accuracy as measured by C-statistic or area under the curve (AUC) is 65% to 

80% among the four models and 60% to 75% in external validation populations. The prevalence 

of disease in the populations from which these models were developed range from 0.01% to 1% 

(Table 2).33,40 In high risk cohorts like that included in the NLST, lung cancer incidence was 6.45 

per 1000 person years.22   

 

Once a lung lesion is present, the individual can be clinically evaluated, the nodule discovered 

and categorized, and likelihood of cancer assessed. Discovery and evaluation of a lung lesion is 

encapsulated in Step 2 of the conceptual model. In this step, the lesion is radiographically 

detectable by CT scan and clinical symptoms may or may not be present. LDCT scans are fairly 
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sensitive (90-95%) in the detection of lung lesions down to 3 to 5mm, and high dose, thin slice 

CT scans can detect lung anomalies smaller than 3mm.41 Common symptoms of possible lung 

cancer include unexplained weight loss, shortness of breath and hemoptysis. Discernible imaging 

characteristics of the lesion are now observable on CT scan and indicate the relative likelihood 

the lesion is cancerous. The prevalence of lung cancer in this population is much higher than that 

prior to lesion discovery.  Four percent of lung anomalies discovered on LDCT scan were 

cancerous in the NLST and a higher prevalence of disease (25-55%) was observed in the training 

datasets for the Mayo, Solitary Pulmonary Nodule (SPN) and Veterans Affairs models developed 

to diagnose lung cancer in indeterminate lung nodules.35,42,43  Clinical guidelines suggest an 

individual be evaluated by a primary care physician or pulmonologist who makes a clinical 

assessment of cancer risk.   

 

The correct diagnosis of a nodule suspicious for lung cancer is as much art as science. The 

clinician must individualize care by weighing the risks of increasingly invasive procedures and 

the patient’s physiological status with the need to treat in a timely fashion.  The diagnosis of lung 

cancer, as described hereafter, relies upon NCCN and ACCP as well as Fleischner Society 

guidelines, which both the NCCN and ACCP incorporate into their clinical guidelines.19,27,41,44-46 

The assessment of a lung lesions cancer risk should be based upon either clinical judgment or a 

validated prediction model at the time of evaluation (Figure 6).27,45   

 

The pre-operative diagnosis of lung cancer combines two classifications of clinical information.  

The first is primarily epidemiologic in nature and includes risk factors such as: age, smoking 

history, family history of cancer, occupational exposures to carcinogenic agents, environmental 

exposures and previous diagnostic history of other, non-cancerous lung diseases. These risk 

factors describe known population risks for developing lung cancer and are commonly obtained 

during initial clinical evaluation. Lesion or nodule specific information on lung cancer risk is 
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derived from imaging and various invasive procedures to obtain a tissue diagnosis. Data used to 

diagnose an individual can be placed on a continuum of increasingly invasive diagnostic tests. An 

examination starts with a history and physical, then progresses to an LDCT scan or chest x-ray, 

sputum cytology, a high dose CT scan with injected contrast or Positron Emission Tomography 

scan with injected radiotracer F18-fluorodeoxyglucose (FDG-PET). Each of these tests generates 

non-invasive diagnostic information. CT scans with contrast and FDG-PET scans are currently 

the most sensitive and specific non-invasive tests available. According to a meta-analysis, 

combination PET/CT scans have the highest overall accuracy with sensitivity of 92-96% and 

specificity of 78-84%.47,48 This combination of imaging modalities offers anatomic, morphologic 

and metabolic information on the lung lesion.45 Sputum cytology is a non-invasive test that can 

provide a pathological diagnosis, but has poor sensitivity and specificity.45 Increasingly invasive 

tests to obtain a tissue diagnosis include bronchoscopy, endobronchial ultrasound with biopsy, 

fine needle aspiration, thoracoscopic biopsy and finally thoracotomy. 

 

According to national guidelines, if the likelihood of cancer is less than 5% then continued 

surveillance with follow-up LDCT scans is recommended. When the likelihood of cancer is 

greater than 60% then surgical biopsy including bronchoscopy with biopsy, CT guided biopsy, 

mediastinoscopy or surgical resection is recommended. When the likelihood of malignancy is 

between 5% and 60%, then diagnostic CT scan with imaging contrast, FDG-PET scan or other 

non-invasive test is recommended (figure 6). Nodules greater than 8mm in maximum diameter 

are candidates for evaluation by injected radiotracer F18-fluorodeoxyglucose (FDG) followed by 

combined positron emission tomographic and computed tomographic scan (FDG-PET). A 

negative FDG-PET scan indicates a low likelihood of cancer. A scan is indicative of possible 

cancer when hypermetabolism, more commonly called avidity is observed. If the lesion is 

determined to be avid by FDG-PET scan, a biopsy or surgical excision should then be pursued to 

obtain pathological tissue diagnosis. If not avid, then continued surveillance by annual LDCT is 
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suggested. For any nodule that is stable or decreases in size on subsequent LDCT, continued 

surveillance with decreasingly frequent LDCT is warranted for an additional two years. 

Continued annual LDCT should be considered for those patients who are eligible for lung cancer 

screening until the individual is no longer eligible for definitive treatment of a lung cancer that 

could occur.19,41   

 

Three validated models are available to estimate the likelihood of lung cancer after detection of a 

lung lesion on radiographic imaging.35,36,42,43 Each model includes age, history of previous cancer, 

smoking history of the individual, the size of the lesion and one or more imaging characteristics 

from CT scans. Imaging characteristics associated with higher risk of cancer include a growth on 

serial CT scans; having a spiculated, diffuse coronal, spiky or pointed edge on the surface of the 

lesion compared to a lobulated or smooth lesion edge; and a lesion location in the upper lung. The 

SPN model developed by Gurney and colleagues also includes hemoptysis, lesion cavitation 

which indicates likely benign disease when cavitation is smaller than 16mm, calcification which 

also indicates benign disease, and FDG-PET avidity.49 The prevalence of lung cancer observed in 

the populations from which these models were developed ranged from 25% to 55%. The AUCs 

for these models were between 70% and 80%. Table 2 lists the models from Steps one and two of 

the conceptual model described in Figure 5 as well as the variables used in each model for 

comparison purposes.   

 

After a lesion has been detected, the clinician must estimate the likelihood of cancer using a 

predictive model or their clinical judgment. The evaluating clinician may also consider whether 

the likelihood for cancer is great enough to warrant referral to a surgeon for additional assessment 

and possible treatment. If so, the surgeon compiles all relevant diagnostic data acquired to date 

and may order additional testing to better estimate both the probability of cancer as well as 

whether the patient is a low enough operative risk to benefit from surgery. Additional testing may 
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include more invasive tests like endobronchial ultrasound, fine needle aspiration or navigational 

bronchoscopy. Assessment of operative risk includes pulmonary function tests and cardiac stress 

or diffusing capacity for carbon monoxide tests. At this point in the evaluation process, surgeons 

have access to all available data including patient risk factors, clinical and imaging 

characteristics, and the results of any additional procedural or operative evaluation tests. A final 

assessment of cancer risk occurs and a decision to operate or to continue surveillance through 

periodic radiographs is made. The surgeon weighs the likelihood of cancer with the possible 

benefits to the patient and possible harms from the procedure and plans a course of care which is 

personalized to the individual after conversation with the patient.46   

 

Epidemiologic risk models, such as those developed by Cassidy, Spitz, Tammemagi and Bach, 

assess a patient’s risk for developing cancer prior to imaging at step one in our conceptual model 

for evaluating lung lesions. These models assist in determining who benefits most from lung 

cancer screening by LDCT scan.29,31,33,40 Swensen’s Mayo model, Gould’s VA model and 

Gurney’s SPN calculator estimate the probability of cancer in patients with a known radiographic 

abnormality on CT scan or chest x-ray.42,43 These diagnostic models estimate the probability of 

malignancy to help the clinician decide in step two who needs watchful waiting, additional 

testing, or surgical referral. No published models are available for the surgeon evaluating 

individuals for possible surgical biopsy. Isbell and colleagues showed that Swensen’s Mayo 

model and Gurney’s SPN calculator model had similar accuracy to predict lung cancer as 

reported in the original studies (AUC of 78 and 80 respectively) but were poorly calibrated in the 

validation dataset from a single institution’s thoracic surgery practice. The prevalence of cancer 

in most surgical populations is between 50% and 80%. The three models available to evaluate 

lung nodules were developed or validated in populations with 25% to 55% cancer prevalence. 

Thus, all lung nodule risk models were developed in non-surgical populations with a lower 

prevalence of cancer compared to surgical populations. Currently available models to assess the 
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risk a lung nodule is cancerous tend to underestimate the likelihood of cancer in individuals with 

cancer and overestimate the probability of cancer in those with benign disease when applied to 

surgical populations.50  

 

Unlike the colon, breast or prostate, the lung is a difficult organ to access for some biopsies, and 

many individuals seeking diagnosis have poor lung function from their prolonged tobacco smoke 

exposure. Less invasive biopsies, like fine needle aspiration and transthoracic needle lung biopsy, 

are frequently complicated by pneumothorax or atrial fibrillation (15-25%) or by less frequent 

and more severe complications including internal bleeding or lung failure requiring mechanical 

ventilation.51-54 These biopsies are often not recommended for lesions occurring more centrally 

within the lung or near major vessels. Minimally invasive lung resection for biopsy of a lung 

nodule has a similar profile of complications but also has significant risk for mortality associated 

with it. In the NLST, which included primarily large academic cancer centers and procedures 

performed by thoracic specialists, surgeons experienced a 1.2% mortality rate within 60 days of 

their lung operation. Other researchers have found the mortality rate for thoracoscopic surgery to 

be even higher, between 2 and 5% within 30 days of the operation, depending upon the 

population and specialization of the surgeon.55,56 In comparison, breast lumpectomy with lymph 

node sampling has a 0% 30-day postoperative mortality rate.57 Thus, surgical lung biopsy has 

significant risk associated with the operation. The surgeon evaluating a lung nodule faces a 

significant dilemma: should he/she subject the patient to an operation with the possible range of 

complications associated with this major surgery, or miss catching the lung cancer and the only 

opportunity for a cure available if the cancer is early stage local disease. 

 

Prior to surgical evaluation, all prediction models, radiographic studies, and clinical evaluations 

are designed to rule in cancer and maximize sensitivity. Consequently, 20% to 40% of diagnostic 

lung operations result in a benign diagnosis.58-62 Thoracoscopic surgery in the NLST had a 24% 
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benign disease result prevalence at final pathology.22 Clearly, a model developed in a surgical 

population, with its larger available information set and higher prevalence of disease, is warranted 

to aid surgeons in the evaluation of lung nodules and avoid unnecessary surgeries.  Possible 

variables representing known risk factors or predictive variables will be discussed further below. 

 

1.4 Epidemiologic predictors of lung cancer  

 

Predictors of lung cancer in populations being evaluated for possible surgery can be categorized 

into two broad groups, epidemiologic and radiographic. Epidemiologic predictors, as discussed 

earlier, include age; sex; race; number of years of smoking; number of cigarettes smoked per day; 

family history of cancer; occupational exposures to carcinogens; age at smoking initiation; years 

of smoking cessation; presence of other lung diseases like emphysema or COPD; and presence of 

symptoms like hemoptysis, shortness of breath, unplanned weight loss, or fatigue. Factors unique 

to surgical populations that indicate relative tobacco exposure and the individual’s response to 

that exposure include body mass and relative lung function. Radiographic imaging variables 

associated with lung cancer include the location of the lesion in the lung, rate of growth, 

physiological shape, and metabolic activity relative to surrounding lung tissue. Each predictor and 

its association with lung cancer will be examined and use in other lung cancer prediction models 

discussed below. 

 

Host Factors and Lung Cancer Risk from Smoking 

Smoking has been a known cause of lung cancer for nearly six decades63,64. Doll and Hill’s 

seminal findings from their prospective cohort study confirmed previous retrospective studies that 

found tobacco smoking causes lung cancer.63 Approximately 80% of women and 90% of men 

diagnosed with lung cancer were smokers.  In the US smoking prevalence peaked among males in 

the 1940s and 50s at around 67%. Smoking prevalence peaked for US females in the late 1960s at 
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approximately 44%. Active tobacco smoking remains the greatest risk factor for lung cancer, 

although passive tobacco smoke exposure is a contributing risk factor especially among non-

smokers. Tobacco smoke and the carcinogenic chemicals in the smoke act on the lung to generate 

cancer through a number of biological processes. Polycyclic aromatic hydrocarbons (PAH), 

carcinogenic metals, and N-nitrosamines are all present in tobacco smoke and exert their effects 

on the lung and carcinogenesis through both gene mutations and the formation of DNA adducts 

(Figure 7). The subsequent cellular changes and mutation proliferation result in lung cancer.65,66   

 

There is an observed dose-response between smoking and lung cancer risk.32,43,67 The relative risk 

per year of contracting lung cancer increases between 8% and 17% per 10 cigarettes per day 

additionally smoked.68,69 The change in risk due to smoking is generally monotonic70,71 and 

Tammemagi found a non-linear relationship between the number of cigarettes smoked per day 

and lung cancer risk.33 The age at which smoking began, the number of cigarettes smoked per 

day, and the duration of smoking all influence the likelihood of developing lung cancer.29,72 

Current smokers have a 20-fold increase in lung cancer risk compared to never-smokers5. In one 

study, the cumulative risk of dying from lung cancer before age 85 was 22.1% for a male smoker 

and 11.9% for a female smoker of European descent, in the absence of competing causes of 

death. This compares to a 1.1% probability for a man and 0.8% probability for a woman non-

smoker dying from lung cancer before age 85.73 Smoking is often measured in pack-

years19,29,30,38,43, cigarettes per day33, years of smoking30,32 or as ever having smoked more than 

100 cigarettes30,35,42 when used in predictive modeling. 

 

Smoking cessation decreases all cause and lung cancer related mortality irrespective of the age at 

which one stops smoking.74,75 The benefits of quitting smoking for reducing lung cancer risk are 

also well documented.76,77 The benefits of smoking cessation to lung cancer risk reduction stop at 

around two times the risk for former smokers when compared to never smokers.78,79 Decreased 
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risk of lung cancer changes little after 15 years post-cessation, but risk remains elevated among 

smokers compared to non-smokers for at least 30 years after cessation.69  Years of smoking 

cessation or having quit smoking as a dichotomous outcome are included in screening 

models.19,29,30,33 Any model estimating lung cancer risk must include some measure of smoking 

exposure. 

 

Sex Differences in Lung Cancer Incidence 

Sex differences in lung cancer risk from smoking in the US have been observed in the past, and 

women have been considered more susceptible to developing lung cancer.80-82 More men are 

diagnosed with lung cancer than women but smoking prevalence among men has historically 

been higher compared to women. The gap in smoking rates between men and women has greatly 

narrowed and in 2009 23.5% of men and 17.9% of women were smokers.83 As the rates of 

smoking among both men and women have become more similar since the 1960s, their lung 

cancer incidences and age adjusted lung cancer death rates have converged (Figure 1).84,85 After 

controlling for smoking duration, age at initiation, and intensity, no sex specific differences in 

lung cancer risk have been found.29,70,85-87 However, death from lung cancer is lower in women 

compared to men, and this difference in cancer related death has been consistent over time.88,89 

 

Separating sex specific risk for lung cancer from that associated with smoking habits has been 

difficult. Some researchers investigating incident lung cancers found women smokers had higher 

risks for lung cancer when compared to male smokers, especially after age 70.81 Women have 

been found to have different distributions of lung cancer histology. Specifically, non-smoking 

women of all races are two to four times more likely to have bronchioloalveolar cancer compared 

to men.90-92 Among non-smokers, age and temporal biases within the cohorts studied may have 

influenced the relationship given that women live longer than men.93 A recent study examined sex 

specific risk for lung cancer by pooling non-smokers from 13 cohorts and 22 cancer registries 
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from around the world.73  Thun and colleagues found no differences in lung cancer age-

standardized incidence rates between men and women age 40 and higher.73 Sex is not included as 

an independent variable in any lung cancer prediction models of lung nodules; however, the Bach 

model includes sex as a covariate and the models developed by Spitz and Cassidy matched cases 

and controls on sex (Table 2).38,40  

 

Race 

A number of population studies have found that racial differences in response to smoking and 

lung cancer risk may occur due to intensity, types of cigarettes smoked or other environmental 

factors such as access to care or socio-economic status. Incidence rates of lung cancer among 

smokers are higher among African American men compared to Caucasian men67 Smoking 

prevalence among African American men is slightly higher than that observed among white men. 

However, the literature remains mixed as to whether race is an independent host factor for 

smoking related risk for lung cancer incidence. African Americans and Native Hawaiians appear 

to have higher risk of lung cancer at lower smoking exposure (<31 cigarettes a day). Lung cancer 

risks were similar among heavy smokers across races and sexes in one large multi-racial cohort94, 

and only African American heavy smokers had higher lung cancer risks in a case-control study.95  

 

One conjectured cause of the observed higher lung cancer risks among African Americans is their 

higher prevalence of mentholated cigarette smoking, 62% among African Americans compared to 

23% among Caucasian smokers.96 Menthol cigarettes are thought to be more difficult to quit 

compared to non-flavored cigarettes, thus contributing to the lung cancer burden from 

smoking.96,97 A recent study examined menthol cigarette use, lung cancer and smoking cessation 

in the Southern Community Cohort. The authors compared incidence and rates of smoking 

cessation between African American smokers and Caucasian smokers. They found lower 

incidence of lung cancer among menthol smokers irrespective of race and similar likelihood of 



   

16 
 

quitting smoking irrespective of the type of cigarette smoked.98 Other prospective studies also 

found no increased risk from mentholated cigarettes.99 Race is included only in the Tammemagi 

PLCO model for screening (Table 2).33 Years of education completed as a predictive variable was 

included in the Tammemagi PLCO model.  However, race in combination with education may be 

more indicative of socio-economic status or as an indirect measurement of occupational or other 

environmental exposures that are not fully captured by smoking. As such, race may be an 

important variable in epidemiologic models of lung cancer risk, but not in models assessing the 

risk from a discovered lung nodule.   

 

Second-hand Tobacco Smoke  

Exposure to second-hand or environmental tobacco smoke as a cause of cancer was first reported 

in 1981 in a study of non-smoking Asian women married to smokers100,101 More recent studies 

and meta-analyses found a dose-response relationship between lung cancer and environmental 

tobacco smoke exposure which strengthened the causal relationship found in earlier studies and 

reviews.102-104 In nonsmokers exposed to second hand smoke had seven percent of the cotinine 

and other tobacco specific metabolites compared to current smokers.105 Cotinine is a metabolite 

of nicotine and directly varies with the amount of nicotine inhaled. It is commonly used to 

estimate smoking exposure. Population exposure to second-hand smoke has been estimated to be 

around 40%, and an estimated one-fourth of lung cancer cases among non-smokers or 3,000 

deaths per year are attributable to environmental tobacco smoke in the US.103 Reduction of this 

exposure through recent workplace and public area restrictions of tobacco smoking has resulted 

in cotinine serum levels decreasing 2 to 3 fold compared to levels observed in the late 1980s.106,107 

Thus second hand smoke exposure, while a significant historical risk factor, will decrease in 

importance as a risk factor in the future with continued success of public health initiatives to 

reduce exposure to this carcinogen. 
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Second-hand smoke exposure has been included in some lung cancer risk models that estimated 

the likelihood of cancer among nonsmokers. The models were less accurate at estimating risk 

among nonsmokers when compared to former or current smokers as measured by AUC. Only 

Tammemagi and colleagues report evaluating second hand smoke exposure at a possible 

covariate.32 The NCCN guidelines for defining populations likely to benefit from screening 

specifically excluded environmental tobacco smoke exposure from the high risk group who 

should seek screening with LDCT. Second-hand smoking exposure is not a predictive variable in 

any models estimating lung cancer risk given a lung lesion found on radiograph (Table 2). No 

lung cancer prediction models that combine smoking and nonsmoking populations include 

second-hand smoking exposure. 

 

Non-smoking related exposures and risk factors for lung cancer 

Other environmental exposures associated with increased lung cancer risk include: naturally 

occurring radon (10-15% population attributable risk), asbestos, metal dusts and other 

occupational exposures (9-15%), and outdoor air pollutants (1-2%).5,107 Collectively, these 

environmental and occupational exposures represent much of the attributable risk in the 10% to 

15% of all lung cancers that occur among nonsmokers.107 Residential and occupational radon 

exposure is the second leading cause of lung cancer behind cigarettes.108 Asbestos, arsenic, 

chromium, nickel, beryllium and silica have been shown to increase risk for developing lung 

cancer among exposed, non-smoking workers. Other chemicals, including organic solvents, 

pesticides and non-ferrous metal dust or fumes have not consistently been shown to cause cancer 

in non-smokers.109-111 A number of studies have shown increased risk from radon and 

occupational carcinogen exposure concomitant with tobacco smoking.112 Wide variances in 

estimated occupational exposures are not uncommon in the literature, making risk estimation for 

individual chemicals problematic. Occupational exposure remains a significant burden for lung 

cancer in the US and across much of the developed world.111,113-115     
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Radon, asbestos, and occupational exposures are included in NCCN guidelines for defining 

possible high risk individuals eligible for screening. Outdoor air pollution has been reported as 

increasing lung cancer risk; however, the biases from residual confounding from occupational 

and smoking exposures does not allow for accurate estimates of risk.107,115 Radon and 

occupational exposure are significant risk factors for lung cancer at the population level, 

especially among nonsmokers.  Asbestos exposure is a risk factor in the Bach, Spitz and 

Liverpool models.  Occupationally occurring dust exposure is a risk factor in the Spitz model. No 

environmental risk factors are included in a lung cancer model that estimates risk after a lung 

nodule has been discovered (Table 2). 

 

Age and Lung Cancer 

Lung cancer is generally a disease of the elderly. Fewer than 1 in 100,000 individuals under age 

30 develop lung cancer.9 Lung cancer risk increases with age for both smokers and non-smokers. 

Lung cancer risk in non-smokers is 23 per 100,000 person years in individuals between the ages 

of 60 and 80.  The increased risk appears to be similar among never-smokers irrespective of race, 

except for Hispanics and African-American men about which there is too little data.73 Nearly two-

thirds of incident lung cancers occur in those over age 65. The median age at initial diagnosis is 

71 years.116  Age is included in all published lung cancer risk models.  The NCCN lung cancer 

screening recommendations consider those over age 55 years or over 50 years with additional risk 

factors as being in the high risk category (Table 2).   

 

Body Mass Index as a Risk Factor for Lung Cancer 

The evidence for body mass index (BMI) as a risk factor for lung cancer independent from 

smoking is generally weak and conflicting. A small case control study in non-smokers found 

those with a BMI over 30 had twice the odds of developing cancer when compared to those with 
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a BMI below 21.117 In a more recent study of the Women’s Health Initiative, BMI was found to 

be inversely related to lung cancer risk in smokers. In populations of non-smokers no association 

was found between BMI and lung cancer after adjusting for other lung cancer risk factors. BMI 

has been found to be inversely related to cancer incidence in populations with a history of tobacco 

use in a number of studies.98,118,119 BMI, independent of smoking, has not been found to be 

associated with lung cancer in a prospective cohort to date. Studies examining the relationship 

between BMI and lung cancer may suffer from residual confounding from smoking or from some 

other unknown biological mechanism occurring or associated with higher BMI as protective for 

lung cancer. Additional studies are needed to determine whether BMI is a lung cancer risk factor 

independent of smoking. As a possible predictive variable for lung cancer modeling, BMI is 

included only in Tammemagi’s PLCO model for screening (Table 2).33  BMI, like chronic 

obstructive pulmonary disease, may indicate the individual’s response to prolonged smoking 

exposure. It should be investigated as a predictor of lung cancer when evaluating lung nodules 

suspicious for lung cancer. 

  

Non-cancer lung disease 

Recent studies have shown a strong association between lung disease and lung cancer. An 

estimated 40 to 70% of those with lung cancer have co-morbid COPD.120 COPD has been found 

to be an independent risk factor for lung cancer in a number of studies.120-122 Individuals with 

COPD have a twofold higher risk for lung cancer  and are more likely to have squamous cell 

histology if diagnosed with lung cancer. Other lung diseases not directly caused by smoking have 

mixed results in their association with lung cancer risk. Asthma, for example, was associated with 

decreased risk of lung cancer in males in one study.122 On the other hand, pulmonary fibrosis and 

interstitial lung disease have been shown to exhibit an inflammatory response in airway 

epithelium leading to dysplasia. Subsequently, these two diseases have been found to be possible 

risk factors for lung cancer.123,124 Non-cancer lung diseases like COPD or pulmonary fibrosis are 
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an inclusion criteria for proposed NCCN lung cancer screening guidelines and may be an 

important risk factor for early detection.125 Tammemagi’s PLCO model, Spitz’s model, Cassidy’s 

Liverpool lung cancer screening model and the NCCN guidelines all include either COPD, 

emphysema, or COPD with other non-cancerous lung diseases in their risk estimation.  

 

Genetic Factors in Lung Cancer Risk 

An estimated 11% of smokers eventually develop lung cancer.126 The lack of lung cancer in the 

majority of those who smoke leads to the hypothesis that significant heritable risk factors exist 

and influence the tumorigenesis from tobacco exposure to lung cancer105 Studies showing an 

association between family history of cancer and increased lung cancer risk support this 

hypothesis.5,127 Aggregation of lung cancer within families has been shown in both case-control 

and cohort studies. One study examining the genetic evidence among twins and a second study in 

non-smokers and their first-degree relatives found higher risks for lung cancer within families. 

Furthermore, associations were stronger in lung cancers occurring at a younger ages.128,129 

Genetic mutations are grouped into two distinct categories: germline and somatic. Germline 

mutations are heritable and occur in a body’s reproductive cells. These mutations are incorporated 

into the DNA of every cell in the body of the offspring. For example, a germline mutation to the 

p53 region may make one more susceptible to the carcinogens in tobacco smoke or increase 

cancer risk independent of tobacco smoke exposure. Somatic mutations arise after conception. 

These mutations are not heritable and can arise from natural copy errors that are maintained 

through the DNA replication process or from environmental exposures that alter DNA. Biological 

pathways that regulate cells and mechanistically detoxify tobacco smoke can each be affected by 

either type of mutation (Figure 7).   

 

Cytochrome-p450 metabolizes the non-reactive compounds in tobacco smoke, primarily 

polycyclic aromatic hydrocarbons for example, into highly reactive intermediates. These reactive 
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compounds may bind to DNA and cause genetic injury (Figure 7). Glutathione s-transferase then 

transforms the intermediates created primarily by cytochrome-p450 into complexes that are more 

easily excreted. Germline mutations to genes which regulate either pathway may influence lung 

cancer risk.130,131  Similarly, mutations that influence enzymes from these pathways have been 

shown to increase lung cancer risk.132,133   

 

A second area of genetic interest is the tumor suppressor gene, p53. This gene influences multiple 

cellular response pathways relevant to carcinogenesis of various cancers and is not unique to lung 

cancer. The types of mutations in this gene in populations with lung cancer appear to be different 

between smokers and non-smokers. As such, the mutations in the p53 gene are likely somatic 

rather than germline. A third pathway for lung cancer susceptibility involves DNA repair and 

DNA repair capacity. Both germline and somatic mutations occur in the capacity of DNA repair 

enzymes to overcome miscoding or promote apoptosis. For example, DNA methylation, both 

hyper-methylation and hypo-methylation depending upon gene regions, increases risk.134 

Comprehensive review of genetic variations in the cause of lung cancer is beyond the scope of 

this chapter and other sources better serve this purpose.135-138   

 

Currently, no serum biomarker or other genetic test is recommended to assess risk for screening 

or diagnostic purposes.44 However, family history of lung cancer is a common risk factor among 

the risk models for screening populations. The Cassidy Liverpool model breaks family history of 

lung cancer into three categories: no history, early onset (<60 years), and late onset (≥60 years). 

Spitz defined family history as two or more relatives with history of any cancer. Tammemagi’s 

PLCO model defined family history of lung cancer as a dichotomous (yes or no) variable of lung 

cancer risk.   
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 1.5 Summary of epidemiological risk factors for lung cancer 

 

When assessing the variety of risk factors used to predict lung cancer, only age and some 

measurement of smoking exposure are common across all lung cancer risk models. These two 

variables are included in both screening models and in models assessing risk after the discovery 

of a lung lesion. Age is modeled linearly or as a categorical variable in the instance of NCCN 

guidelines or in Gurney’s Bayesian SPN model. Smoking exposure definition varies by model. 

The screening models, which rely solely on epidemiologic information, attempt to measure both 

the dose and duration of exposure by including cigarettes per day as well as years of smoking or 

the combination of the two as measured by pack-years. Length of smoking cessation is also 

considered in the Bach, Spitz and PLCO screening models as well as in the VA model for 

assessing lung lesions.  

 

Sex, COPD or emphysema, occupational exposures to dust or asbestos, and family history of 

cancer are each common predictive variables across three of the four screening models. COPD, 

occupational exposures and family history of lung cancer are additional risk factors that made 

individuals between ages 50 and 55 with between 20 and 30 pack years of smoking history 

eligible for LDCT screening in the NCCN screening guidelines (Table 1). Previous history of 

cancer is a risk factor in the PLCO and Liverpool screening models and in the Mayo and SPN 

lung nodule models. Race, education, and BMI are predictive variables only in the PLCO model.  

   

When examining the totality of the four validated lung cancer screening models (Bach, Spitz, 

Tammemagi PLCO 2012, and Cassidy Liverpool), the Tammemagi PLCO 2012 model, by 

Tammemagi et al.,  included the same broad factors of risk found in the other three models except 

for occupational exposure to asbestos. The Tammemagi PLCO model used modern statistical 

prediction techniques and best model development practices. It also had the highest apparent 
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AUC (80) and experienced only slight reduction in AUC in external validation sets. Estimated 

AUC in validation sets varied between 70 and 78 depending on the cancer risk cut-off used to 

include patients in the validation sets. The intent of these screening models, which rely 

exclusively on epidemiologic information, is to determine the characteristics of a population that 

would most benefit from screening. This screened population is a subset of those who will 

develop lung cancer.  Pinsky and Berg estimate that implementing a screening program based 

upon the NCCN guidelines or the more inclusive estimates of risk from the Tammemagi PLCO 

model will discover fewer than 10,000 of the 160,000 annual lung cancers.139 Many of the 

remaining 150,000 cancers will present to clinicians as either incidentally discovered lung lesions 

or symptomatically. Irrespective of the presentation to a surgeon, imaging will be available and 

the host of information that imaging provides can be used to estimate the likelihood of cancer. 

One study found that information from a CT scan was better at discriminating individuals with 

lung cancer than all the epidemiologic information combined.140   

 

1.6 Radiographic imaging and predicting lung cancer risk 

 

Once a lung lesion has been discovered, the breadth of information that imaging provides can be 

used to further characterize the lesion and it’s propensity to be cancerous. Imaging characteristics 

can be categorized broadly as either physical or metabolic. Physical characteristics include lesion 

shape, size and location in the lung. Lesions located in the upper lung are more likely to be of a 

smoking etiology and thus lung cancer, while lesions in the lower lung lobes are more commonly 

associated with infectious or granulomatous etiologies.35,42  Spiculation, coronal, or spikey edge 

characteristics (Figure 4A and 4B) indicate undifferentiated cells and thus cancer. Smooth lesion 

edges are common to calcified and benign tumors.27,141 Lung nodules smaller than 1 centimeter 

(cm), as measured by maximum diameter on a radiograph, are more often benign.27 Nodules over 

3 cm in diameter are 5 fold more likely to be cancerous than nodules about 1.5 cm in diameter.142  



   

24 
 

Lesion size as a predictive variable is common to all three models estimating lung cancer risk 

among patients with lung lesions.   

 

Metabolic characteristics include growth, doubling rate or volume change and radiotracer 

estimated avidity. Clinicians often consider lesion growth as the strongest indicator of cancer 

risk.143   Growth on serial radiographs is defined as an increase in mean diameter of 2 mm for 

nodules initially less than 15 mm in size and an increase of at least 15% compared to baseline 

scan for nodules more than 15 mm in size at baseline.19 However, a rapid increase in size should 

raise the suspicion of an inflammatory process or the possibility of small cell lung cancer. 

Volumetric measurement of lesions is a fairly recent development that shows some promise in 

screening populations with repeated scans to estimate the likelihood a lesion is cancerous.144 

Lesion volume is generated with 3 dimensional radiographic measurement and estimates the 

doubling time of a lesion by measuring the change in volume between subsequent volumetric CT 

scans. Proponents of volumetric measurement state this method more accurately measures growth 

of a lesion.145,146  This measurement has not been incorporated in any predictive models of lung 

lesions to date. Avidity measured by a PET scanner requires injection of a radiotracer and is not 

recommended until after a CT scan has been conducted. A combined PET-CT scan is considered 

among the most accurate, non-invasive diagnostic tests for lung cancer and is often conducted 

immediately prior to surgery.19,46,48 FDG-PET avidity is included in the SPN model in addition to 

growth, lesion size and edge characteristics.142  

 

  FDG-PETs role in diagnosing lung cancer  

Since the late 1990s, FDG-PET has become widely accepted for non-invasive clinical diagnosis 

and staging of lung cancer.46,147 FDG-PET scans use a fluorine radiotracer (F18) attached to a 

glucose receptor analogue (deoxyglucose). Hypermetabolism of lung tissue is measured by 

comparing tissue with higher concentrations of the radiotracer tagged glucose analogue (FDG) 
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which is above the background of surrounding lung tissue (Figure 8). When hypermetabolism is 

observed, the lesion is classified as being FDG avid or simply avid. Avidity is sometimes 

measured on a continuous scale called standard uptake value (SUV). SUV is estimated by 

measuring the average radionuclide activity concentration across the region of interest observed 

on the FDG-PET image at one time point and comparing that value with the background level 

measured in nearby lung tissue or by the injected radioactivity divided by body weight. An SUV 

above 2.5 is considered avid and suspicious for cancer by common convention among 

radiologists and thoracic clinicians.148-150   

 

Metabolically active tissues preferentially consume the FDG glucose analogue. Neoplastic cells, 

inflammatory lesions, wounds and active benign tumors have higher glucose metabolism. Slow 

growing cancers, especially neuroendrocrine tumors or lesions with little metabolic activity, will 

often not be distinguished on a FDG-PET scan and such cancerous nodules are known to generate 

false negative results. Inflammatory lesions, wounds and growing benign tumors are often 

metabolically active and known to cause false positive scan results.151,152 

 

A meta-analysis has shown FDG-PET to have high sensitivity (97%) and moderate specificity 

(78%) to identify lung cancer when the size of the lung nodule is greater than 1 cm.47 47 The 

estimated AUC of FDG-PET to diagnose lesions greater than 1cm across all the studies in the 

meta-analysis was 91% and the likelihood ratio for a positive test was 7.1.47 47 Based on the 

results of this study, FDG-PET was determined to be cost effective in the evaluation of patients 

with a solitary pulmonary nodule.153 153 Subsequently, FDG-PET was approved by Centers for 

Medicare and Medicaid Services for diagnosis of lung nodules suspicious of lung cancer in 2001, 

and current clinical guidelines recommend its use.46,154  In 2001, fusion FDG-PET/CT scanners 

became available. This scanning technology uses a computer program to adjust for breathing and 

other physiological factors to create a dynamic image of both the physical morphology of the 
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lung from the CT scan as well as the metabolic activity of the FDG-PET scan. Some studies have 

found the combination scanners to be more sensitive and specific in identifying lung cancer than 

PET scans alone.155-157 A recent review of published fusion FDG-PET and CT scan studies found 

slightly higher accuracy but not significantly different than the earlier meta-analysis by Gould 

and colleagues.48 The National Comprehensive Cancer Network guidelines advocate the use of 

combination FDG-PET/CT scans to diagnose solid or partially solid lung nodules whose 

maximum diameter is at least 8mm.   

 

However, the accuracy of FDG-PET is inconsistent, and false positive results are associated with 

infectious fungal lung disease and other inflammatory or infectious disease processes. The 

accuracy of FDG-PET drops significantly in areas with endemic granulomatous disease and up to 

30% of thoracic operations in these areas result in a benign diagnosis.158,159 Unfortunately, most 

of the studies included in Gould’s seminal 2001 meta-analysis were from medical centers in 

Europe, Japan and New England, areas that had low endemic granulomatous disease prevalence. 

The observed differences in the accuracy of FDG-PET to diagnose lung cancer may indicate an 

unintended selection bias in many of the earlier studies of FDG-PET accuracy used by the two 

meta-analyses. In some regions of the US where the prevalence of fungal lung disease is high or 

in Asia and Africa where tuberculosis is endemic 160-162, FDG-PET may not be effective in the 

diagnosis of lung cancer compared to CT alone.  

 

1.7 Infectious lung diseases as a spectrum bias of FDG-PET for diagnosis of 
lung cancer 

 

Infectious lung diseases that generate granulomas include fungal lung diseases from mycotic 

pathogens and mycobacteria, of which tuberculosis is the most common. Both classes of 

infectious pathogens have been shown to cause granulomas leading to false positive FDG-PET 

scans.158,163-168  The three major mycotic infections in order of North American prevalence are 
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histoplasmosis, coccidioidomycosis and blastomycosis.169,170 169,170 Chronic exposure to each 

individual pathogen is not known, as cross-reactivity between pathogens to the diagnostic skin 

test occurs.170  Prevalence of the three pathogens was 17.6% among naval recruits living in a 

single county screened between 1958 and 1969.170 Acute episodes of disease requiring 

hospitalization or outpatient therapy have been reported in elderly populations. The highest 

incidence rate was for histoplasmosis at 3.3 per 100,000 person years, followed by 

coccidioidomycosis (3.2 per 100,000 person years) and blastomycosis (0.7 cases per 100,000 

person years).169 Other less common fungal diseases include cryptococcosis, aspergillosis, 

actinomyocis, nocardiosis, candidiasis, and echinococcosis. Histoplasmosis is endemic across the 

Mississippi, Ohio, Missouri and Tennessee River valleys and an estimated 50 million individuals 

have been infected with histoplasmosis capsulatum.171  Coccidioidomycosis is endemic across the 

Southwest and San Joaquin valley in California.172  The highest incidence of coccidioidomycosis 

occurs in Arizona.173 Blastomycosis is the most broadly dispersed fungal disease of the three. 

Endemic areas occur across the southeastern US and up through the Great Lakes and as far west 

as Texas. Highest incidences are observed in the Ohio and Mississippi river valleys and lower 

Great Lakes area169 (Figure 9A). Mycotic fungal spores reside in soil as well as in bat and avian 

feces. Farmers, construction workers and those who engage in outdoor activity in rural areas have 

the highest risk of inhaling the spores. Acute and deadly single site outbreaks have been 

documented and were associated with nearby soils having a high concentration of avian fecal 

material and subsequently being disturbed by construction equipment.171,174 

 

Fungal lung disease is generally asymptomatic or causes flu-like symptoms. Immunocompetent 

individuals exposed to a fungal load that does not generate an acute response will create 

antibodies and typically eliminate the infection in less than 14 days. Reinfection is common in 

endemic areas. Current diagnosis of acute or disseminated pulmonary histoplasmosis is 

determined by serological or urine test.175,176 Only the skin antigen test is sensitive to exposures 
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that occurred more than two to three years prior. Similar to the tuberculosis skin test, the skin test 

for histoplasmosis is cross-reactive to coccidioidomycosis and blastomycosis. A skin reaction 

occurred if the individual was previously exposed to one of the fungi, but the test is no longer 

commercially produced and reagents for the skin test are no longer available.171   

 

An estimated 1 in 2,000 people infected by histoplasmosis will develop chronic pulmonary 

disease. Among individuals with symptomatic coccidioidomycosis disease who require antifungal 

treatment, 5% develop irreversible bronchiectasis, pulmonary nodules, or residual lung 

cavities.177 Granuloma formation in the lung is one possible result for any fungal infection. 

Granulomatous disease of the lung can look identical to cancerous tissue on a CT or PET scan 

(Figure 8) and can have all the hallmarks of a cancerous lesion including symptomatic 

hemoptysis, growth on repeated CT scans, spiculated edge characteristics and lack of 

calcification.178 While fungal lung diseases are the primary etiology of granulomas in the US and 

North America, tuberculosis is the more common cause of granulomas in Asia, Africa and 

developing countries.161,162,164,177,179-184 

 

 If infectious lung diseases like histoplasmosis in North America and tuberculosis in Southeast 

Asia and Africa generate granulomas and these granulomas reduce the specificity of FDG-PET 

scans to diagnose lung cancer, then the lack of published studies reflecting the impact of these 

infectious diseases on FDG-PET specificity may indicate a spectrum bias in the published 

literature and meta-analyses. Spectrum bias is a form of selection bias wherein the breadth or 

complexity of a disease is not well reflected in the population undergoing a diagnostic test185. 

Spectrum bias more commonly occurs when outliers in risk stratification are not included in the 

test population. For example, a cholesterol test is very accurate at classifying heart disease when 

the population with disease was recruited from a heart clinic and had moderate to high levels of 

cholesterol. An unbiased assessment of the test requires high and low levels of cholesterol in both 
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those with and without disease in order to reflect the possible population in which the test would 

be applied. Similarly, a diagnostic test may be highly accurate in moderately high or low risk 

strata but perform poorly in the tails of the risk distribution. With respect to FDG-PET scans, the 

prevalence of infectious lung disease and the granulomatous disease created by those infections 

may be causing the bias in published FDG-PET scan results.   

 

For infectious lung diseases the geographic variation in the prevalence of these diseases may have 

inadvertently created just such a bias for FDG-PET scans. This bias occurs in those with  

granulomas that, in turn, only influences or confounds diagnostic imaging and not the probability 

of lung cancer. This bias only becomes important in the context of diagnosing lung cancer with 

diagnostic imaging. No published reports have found granulomatous disease increasing or 

decreasing the likelihood someone develops lung cancer. Thus infectious lung diseases are not a 

confounder of lung cancer. Rather, granulomas from the disease generate false positive FDG-PET 

results which then influence the clinician’s estimate of the probability of lung cancer.   

 

1.8 Geographic variation in the diagnosis of lung cancer 

 

Evidence of geographic variation in the diagnosis of lung cancer after surgery or in the diagnostic 

accuracy of FDG-PET has implications for any models attempting to predict lung cancer in 

populations being evaluated by surgeons. Evidence of either implies that local variation in benign 

disease prevalence, patient work-up, fungal lung disease or other unknown factors occur and may 

influence a clinical prediction model.  

 

There is a fourfold geographic variation in lung cancer incidence across the US. Kentucky has the 

highest rate among both men (125.1 per 100,000) and women (80.3 per 100,000), and Utah has 

the lowest rates (29.2 for men and 19.0 per 100,000 for women).8 These incidence rates mirror 
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the historical smoking prevalence in those states and have remained fairly consistent over time. 

The variation in lung cancer rates follows smoking rates across the country. Fungal lung disease 

varies greatly by region of the country in the US. For example, the histoplasmosis prevalence in 

the central and western portions of Tennessee and Kentucky is between 80% and 97%, while in 

the Boston area and Pacific Northwest, it is a rare disease (Figure 9A and 9B).170  Variation in 

benign lung disease rates may occur across the US as well and reflect underlying infectious 

disease prevalence. The interaction between local smoking prevalence and infectious lung disease 

prevalence is unknown. The influence of local practice or referral patterns, clinical expertise and 

availability of specialists on the prevalence of benign disease after a lung operation for suspected 

lung cancer is also unknown.   

 

Whether geographic variation in the diagnosis of lung cancer after thoracoscopic surgery for 

suspected lung cancer occurs is unknown in the US. Answering this basic question is the first step 

in determining the scope of the variation in the surgical diagnosis of lung cancer. If such variation 

occurs and is clinically significant then examination of possible causes of that variation becomes 

important. One possible cause of variation in the US could be fungal lung diseases as a direct 

cause of benign lung diseases. Another indirect cause would be fungal lung diseases’ influence on 

FDG-PET scan accuracy to diagnose lung cancer.  

 

We can exploit the observed variation in the geographic distribution of fungal lung disease in 

North America to test the hypothesis that fungal lung disease confounds FDG-PET accuracy to 

diagnose lung cancer. If FDG-PET specificity varies inversely with endemic fungal lung disease, 

then we have both a possible measurement of the amount of bias in specificity caused by fungal 

lung disease and a strong argument supporting current clinical observation that fungal lung 

disease reduces FDG-PET accuracy to diagnose lung cancer. Secondly, if fungal lung disease is 

associated with benign disease after surgery for suspected lung cancer, then this is further 
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evidence of another factor that influences the surgical diagnosis of lung cancer.  Some 

measurement of fungal lung disease should be considered in predicting lung cancer. Finally, 

reports of granulomas of the lung and their underlying infectious diseases should appear in the 

literature as other researchers seek to improve the diagnosis of lung cancer.  A systematic review 

examining FDG-PET diagnostic accuracy could describe current knowledge as to the tests 

characteristics and factors that affect the diagnosis of lung cancer. 

 

1.9 Conclusion 

 

No clinical prediction model exists designed for surgeons evaluating a lung nodule prior 

to surgical biopsy. Existing models are either poorly calibrated to the higher prevalence 

of lung cancer in surgical populations or do not incorporate the breadth of information 

available to the surgeon at the point of decision to operate.  Because lung cancer is so 

deadly, patients and providers must aggressively pursue a diagnosis to rule out cancer. 

The high rates of benign disease after surgery observed in many of the lung cancer 

studies will be unchanged without an intervention for surgeons to aid their 

decision.50,56,59,62,186 The need for such a model will only increase as chest imaging 

technology progresses or a lung cancer screening regimen is implemented. 

 

A prediction model estimated with data from a single institution has limited clinical 

usefulness if local variation in cancer or benign disease after surgery occurs across the 

US.  Determining whether such variation is present and then exploring the possible 

causes of that variation are necessary prior to implementing a predictive model for lung 

cancer nationally.  Some evidence indicates radiographic imaging accuracy to diagnose 
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lung cancer varies across the US.  Since a predictive model for surgeons will rely heavily 

on such imaging, defining the extent of variation and possible causes of that variation 

will strengthen any prediction model for lung cancer applied nationwide. 

 

This dissertation begins the process of creating a clinical prediction model, the TREAT 

model, for surgeons evaluating individuals for lung cancer.  It explores whether variation 

in the diagnosis of lung cancer currently exists.  This research also begins to examine 

possible causes of variation that influence what is currently considered the most accurate 

radiographic imaging, FDG-PET scans.  These questions reflect current knowledge 

regarding predicting lung cancer and explore possible new information of import and for 

surgeons and patients struggling to answer the question, “Is it cancer?”       
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TABLES Chapter 1 
 
 
Table 1. Screening Criteria Risk Status – National Comprehensive Cancer Network 

High Risk Moderate Risk Low Risk 
Age 55 -74 
 

Age ≥ 50 Age < 50  

≥ 30 pack year history ≥ 20 pack year history OR 
second-hand smoke exposure 

< 20 pack year history  

Current smoker OR  
Smoking cessation ≤ 15 years 

No additional risk factors  

ORa    Age ≥ 50   

≥ 20 pack year history AND   
One additional risk factor (other 
than second-hand smoke)b 

  

a NCCN criteria category 2B level of evidence. 
b Risks include - Radon exposure, asbestos exposure, occupational exposure, cancer history, family history, other lung  
disease (COPD or pulmonary fibrosis). 
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Table 2: Comparison of existing predictive lung cancer models 
 Used for Screening Used for surgical referral after 

discovery of a lung lesion 
 Bach* Spitz Liverpool PLCO2012 Mayo VA SPN 
Age √ m m √ √ √ √ 
Race  m  √    
Sex √ m m     
Smoking Status  
     Ever/never 

     
√ 

 
√ 

 

     Years since quitting smoking √ √  √  √  
     Pack-Years  √ √    √ 
     Duration of smoking √   √    
     Cigarettes per day √   √    
Family History of lung cancer  √ √ √    
Education    √    
BMI    √    
Emphysema/COPD  √ √ √    
Environmental exposures** √ √ √     
Nodule Size (max diameter)     √ √ √ 
Nodule lung location     √  √ 
Nodule shape     √  √ 
Nodule growth       √ 
Previous cancer history (not lung)   √ √ √  √ 
Contrast CT scan positive       √ 
Hemoptysis       √ 
FDG-PET Avidity       √ 
Population Prevalence       √ 
ROC in validation and development  61-77 57-73 71 70-80 78-83 73-79 80 
m  = Variable matched in case-control study 
*   =  Predictive for smokers or ex-smokers only 
** = Asbestos (Bach, Spitz, Liverpool), Dust (Spitz), and Hayfever (Spitz) 
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FIGURES 

 
Figure 1. Annual Incidence and Mortality for the Most Common Cancers: 2012.  
Source: American Cancer Society, Cancer Statistics 2012 
 

 
 
Figure 2.Age Adjusted U.S.  Lung and Bronchus Cancer Incidence and Mortality Rates by 
Sex, 1975-2009.   Source: SEER 2012 
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Figure 3. Results of the National Lung Screening Trial.  Detection of lung  
Cancers by study arm (A) and Cumulative lung cancer related death by 
study arm (B).  Source: NLST, 2012. 
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Figure 6. Diagnostic guidelines of lung nodules suspicious for lung cancer.  Adapted from 
Wahidi, Chest 2007 

 

 

Figure 7. Mechanistic framework for understanding how cigarette smoking causes lung 
cancer. Source: Hecht, Int J Cancer 2012. 
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Figure 8. Avid FDG-PET/CT scan of a granuloma 
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Figure 9A. Fungal lung disease prevalence, histoplasmin skin was cross reactive with 
coccidioidomycosis and blastomycosis (from Edwards et al, Am Rev Resp Dis 1969)  
 

 
Figure 9B.  Geographic distribution of histoplasmosis in persons >65 years of age, United 
States, 1999-2008. Values are number of cases/100,000 person years (from Baddley et al, 
Emerg Inf Dis 2011). 
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Chapter 2 

 

 

II. Development and validation of a clinical prediction model to estimate lung cancer 
risk for those being evaluated for surgery 

 

2.1  Introduction 

 

Lung cancer is the leading cause of cancer-related mortality in the U.S. among men and 

women.1,2 Poor prognosis for lung cancer remains common despite the steady decline in 

incidence of lung cancer likely due to , declining smoking rates, increased awareness in the 

general population, and the advent of new technologies to detect lung cancer in early stages of the 

disease. The average five-year survival rate for lung cancer is 16%, due to the late stage of the 

disease at the time of diagnosis.3 To decrease mortality from lung cancer beyond reducing 

smoking prevalence in the population, early detection and treatment are necessary. The National 

Lung Screening Trial (NLST) recently found a 20% reduction in deaths from lung cancer by 

screening a high risk population with low dose computed tomography (LDCT). However, 39% of 

patients screened with LDCT scans had at least one positive screening test (identification of 

suspicious nodule) requiring additional diagnostic evaluation.4 In addition, after nodule discovery 

and radiographic surveillance, 24% of procedures diagnosed benign disease. Other studies 

describing surgery for known or suspected lung cancer report benign disease between 20% and 

40%.5-8  

 

Unlike biopsy for other cancers with a screening regimen, the lung is difficult to access, and lung 

biopsy has significant risks associated with the procedure. Reviews of outcome after lung surgery 

have found 1% to 4% mortality rates within 30 days of surgery and rates as high as 7% at 90 
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days.9-12 The surgeon’s dilemma is balancing the likelihood that a lung nodule is cancerous with 

the possible harm caused by a surgical biopsy. A national screening program with LDCT would 

likely result in a reduction of lung cancer deaths but an increase in unnecessary deaths from 

invasive diagnostic procedures unless preoperative non-invasive evaluation for lung cancer 

becomes more accurate than it is in current practice. 

 

Diagnostic Evaluation of Patients with Lung Nodules 

The surgeon evaluating a patient with a lung nodule is in a unique clinical position. Surgeons 

have a relatively large body of diagnostic information often compiled from a variety of other 

specialists. Tests to determine whether the patient can survive an operation that may culminate in 

a lobectomy also influence the decision process. The American College of Chest Physicians and 

the National Cancer Comprehensive Network practice guidelines detail an evidence-based 

algorithm for the diagnosis of lung cancer.13,14 The guidelines require clinicians to estimate the 

likelihood of lung cancer using their clinical expertise or a validated prediction model. If the 

probability of lung cancer is greater than 60%, then patients are referred to a surgeon for further 

evaluation and diagnostic resection. If the patient’s probability of cancer is less than 5% then 

continued periodic surveillance with LDCT is suggested. If the patient has an intermediate 

probability of cancer, between 5% and 60%, then additional testing for lung cancer is 

recommended. Testing may include F18-fluorodeoxyglucose positron emission tomography 

(FDG-PET) or minimally invasive biopsy like bronchoscopy, endobronchial ultrasound, or fine 

needle aspiration.15,16  

 

The Mayo model17, the VA model18 and the Solitary Pulmonary Nodule (SPN) model19,20 have 

been externally validated for the prediction of lung cancer. Each of the three models uses 

epidemiological risk factors, such as age and smoking history, or symptomatic indications like 

hemoptysis, as well as imaging data including lesion size, growth, location and edge 
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characteristics (Table 1). These three models were developed in populations with lower 

prevalence of lung cancer than is observed by surgeons evaluating lung nodules suspicious for 

lung cancer. A clinical prediction model in a population whose prevalence of disease is 50% to 

80% and includes FDG-PET scans has not yet been published and current predictive models 

perform poorly in this population.20 Surgeons need a clinical model to help avoid the significant 

mortality and morbidity that accompanies thoracoscopic surgery for diagnosis of lung cancer 

without missing the lung cancer itself.21  

  

2.2 Methods 

   

  Study Population 

The Vanderbilt Lung Cancer Cohort was composed of two sources of individuals: 1) using 

Vanderbilt University Medical Center's Thoracic Surgery Quality Improvement database, 453 

patients were identified who underwent a surgical procedure for known or suspected non-small 

cell lung cancer (NSCLC) from January 2005 to October 2010. Demographic and clinical data for 

each surgery was abstracted using the Society of Thoracic Surgeons National Database for 

General Thoracic Surgery specifications and guidelines.22 Each lesion was confirmed by 

pathologic examination after thoracotomy, thoracoscopy, mediastinoscopy, or bronchoscopy with 

biopsy; and 2) a separate group of 39 individuals who had been evaluated by a thoracic surgeon 

for possible cancer but who underwent radiographic surveillance rather than surgery was included 

as well. Individuals with known metastatic disease, individuals without a definitive clinical 

diagnosis after surgery, or those who underwent re-operation on a known malignancy were 

excluded. Non-surgical patients with less than 18 months of radiographic surveillance or clinical 

follow-up were excluded. Patients with no physician or radiological report of maximum pre-

operative nodule size were also excluded. Vanderbilt University Institutional Review Board 

approved this study (IRB# 090781).  
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Radiographic data was abstracted by medical reviewers with experience from previous studies 

using radiologist reports of the most recent pre-operative CT scans for lesion growth, edge 

characteristics, and FDG-PET avidity.5,6,20,23 Lesion edge characteristics were defined by the 

terms smooth, lobulated, lobular, lobed, GGO, GGN, coronal, corona, spiky, or spiculated in the 

radiologists’ reports and designated by medical reviewers as either smooth, lobulated, ground 

glass opacity, spiculated or indeterminate. Growth on serial radiographs occurring at least 60 days 

apart is defined as an increase in mean diameter of 2mm for nodules initially less than 15mm in 

size and an increase of at least 15% compared to a baseline scan for nodules more than 15mm in 

size at baseline.13 For cases with one preoperative radiograph or whose subsequent radiograph 

was fewer than 60 days and deemed too short a time span to record lesion growth, the case was 

designated as “insufficient data.” FDG-PET scan results were categorized into four groups based 

on copies of the original physician reports or original scans. Categorization was determined by 

either physician report or by maximum standard uptake value (SUV). The categories of avidity 

and their corresponding SUVs are: Not avid/Not cancerous (SUV=0), Low avidity/Not likely 

cancerous (SUV 0.1 to 2.5), Avid/Likely cancerous (SUV 2.5 to 5) and Highly avid/Cancerous 

(SUV>5). Any radiological reports of insufficient quality to determine diagnosis, shape 

characteristics, or FDG-PET avidity by chart review were reviewed for determination by a 

thoracic surgeon. If no designation could be made, then original scans were reviewed by a 

thoracic radiologist blinded to clinical pretest data and pathological outcome. Pre-operative 

symptoms were defined as any documented evidence in the medical record of the following: 

shortness of breath, unplanned weight loss, pneumothorax, fatigue, pain, COPD, chronic 

bronchitis, pneumonia or bronchiolitis. Predicted forced exhaled volume in one second (FEV1) 

was a continuous variable based on the most recent pulmonary function test prior to surgery. 
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  Statistical analysis 

A multivariable logistic regression model, hereafter referred to as the TREATmodel, was 

developed to predict lung cancer, following the methodology of Harrell and Steyerberg.24,25 

Missing data was imputed using multiple imputation with chained equations. Multinomial logistic 

regression was used to impute categorical variables, and predictive mean matching was the 

method of imputation for all other variables. Missing data was analyzed by variable to determine 

the percentage missing of each variable, correlation between variables with missing data, and 

whether patterns of missing data suggest violation of the assumption that data are missing at 

random (MAR).26 A 10 imputed dataset burn-in was used and an additional 50 imputed datasets 

were then generated. These fifty datasets were used for all subsequent model estimation. After 

imputation, variable distributions were visually examined. Imputed data outside the range of 

observed data was limited to the maximum or minimum observed value. A sensitivity analysis 

was conducted comparing the estimated model using imputation results with chained equations to 

the same models using a multivariate normal imputation model that solely used predictive mean 

matching.  A separate sensitivity analysis compared the multiply imputed data with a model using 

complete data. 

 

Model development was guided by examination of published models predicting lung cancer in a 

population with lung nodules or lesions. Nonlinear associations between continuous variables and 

lung cancer were evaluated using restricted cubic splines of 3 and 5 knots, and linearity was 

tested using the Wald statistic. The model’s ability to discriminate between cancer and benign 

disease was evaluated by area under the receiver-operating-characteristic curve (AUC). Model 

calibration, the comparison of a model’s predicted probabilities to observed probabilities, was 

assessed with Brier score. Graphical interpretation of the model used partial effect plot and 

nomogram of the model (Appendix 1.3 and 1.4). 
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The developed model was internally validated using the .632 bootstrap method to estimate 

optimism corrected measures of AUC and Brier score.27 The .632 bootstrap method creates a new 

population by randomly sampling with replacement from the Vanderbilt Lung Cancer Cohort. 

The complete dataset was created with missing data being replaced by the mean value of imputed 

data across all 50 imputations. The model was then re-estimated for each bootstrap iteration and 

an iteration-specific AUC and Brier score created. This bootstrap process was repeated 500 times. 

Optimism corrected AUC and Brier score were estimated using the weighted equation from 

Efron.27,28 Large decreases in AUC or increases in Brier score indicate high optimism in model 

estimation and possible overfitting or lack of a stable, valid model. Due to the limited sample size 

and the limited power available to detect interactions between variables, no interactions were 

included in the model. A separate sensitivity analysis was conducted to estimate maximum 

possible AUC from the available variables by estimating a model with all clinically feasible 

interactions between variables included in a purposely overfitted model.    

 

AUC and Brier score for the Mayo model were estimated using published variable coefficients 

from the original article (MayoOriginal).17 The Mayo model probability of a malignant 

pulmonary nodule is of the form: 

 =  ex/(1+ex); 

where x = −6.8272 + (0.0391*age) + (0.7917*smoking history) + (1.3388*previous non-thoracic 

cancer) + (0.1274*lesion size) + (1.0407*spiculated lesion edge) + (0.7838*upper lobe location). 

Unlike the originally estimated and validated Mayo model, all cases with previous cancer were 

included in the comparative analysis. In their original study, Swensen and colleagues only 

included those with extra-thoracic cancer who were treated more than five years previous to the 

current evaluation.17  
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 Using the same variables as the original Mayo model cancer risk was predicted in the same 

population as the fitted TREAT model and variable coefficients re-estimated (MayoVUMC). A 

model with only non-imaging variables was estimated (EpiModel) and compared to a model 

composed of only imaging (ImageModel). Differences between model AUCs were measured 

using the binomial exact test.  Graphic comparisons of poor model fit used Bland-Altman plots 

for differences in predicted likelihood of cancer between the two models.   

 

Analysis of demographic variables and pre-specified predictors of lung cancer according to lung 

cancer status were conducted utilizing only observed data. The T-test was used to examine 

differences in continuous variables, the Wilcoxon signed-rank test for differences in medians, and 

the Fisher’s exact test for categorical variables. Analysis for imputation, model estimation and 

internal validation was performed in R v3.0.1 and Stata v12(College Station, TX). Code is found 

in Appendix 1.  

 

2.3  Results 
 

 
Lung cancer prevalence was 72%. Diagnosis was determined pathologically in 453 (92%) and by 

radiographic follow-up in 39 (8%) individuals. Complete data was available for 264 individuals. 

Those with a cancer diagnosis were more likely to have complete data (58%) than those with 

benign disease (43%). Missing data occurred with FDG-PET scan (22%), growth on serial CT 

scans (13%), predicted FEV1 (10%) and pre-operative disease symptoms (7%). The remaining 

variables of interest had less than 5% missing data. In univariate analysis, self-reported race, pre-

operative symptoms and previous history of cancer were not significantly different between those 

with or without lung cancer. Lung cancer was inversely related to body mass index (BMI) and 

predicted FEV1. Lung cancer was associated with sex, age, smoking, increasing lesion size, lesion 
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location in either upper lobe of the lung, lesion growth on serial radiographs, spiculated edge 

characteristics and FDG-PET avidity (Table 2).  

 

The imputation model consisted of the outcome (cancer or benign disease), height as a 

component of BMI, and any previous history of smoking as a dichotomous variable. Independent 

variables used as predictors of lung cancer risk in the fitted TREAT model were used in the 

imputation model and included: age, sex, pack years, lesion size, lesion location, lesion growth, 

spiculated lesion edge characteristic, predicted FEV1, BMI, previous history of cancer, any pre-

operative symptoms and FDG-PET avidity. FDG-PET avidity had the highest variance inflation 

due to imputation (1.37) on the estimated model followed by lesion growth for the insufficient 

data category (1.25) and then by any pre-operative symptoms (1.24).  

 

   Comparison of lung cancer risk models 

In the TREAT model lung cancer risk significantly increased with age, pre-operative lesion size, 

lesion growth, history of previous cancer and FDG-PET avidity (Table 3). Smoking intensity 

measured by pack years had a non-linear association with lung cancer in univariate analysis but 

not in multivariate analysis (p=0.1). The non-linear association between pack years and lung 

cancer risk was maintained in the TREAT model (Figure 2).   

 

The AUC for the TREAT model was 0.89 (95% CI: 86 - 92) and Brier score was 0.12. Internal 

validation with .632 bootstrap estimated an optimism adjusted AUC of 0.87 and Brier score of 

0.13. The MayoOriginal model, using published coefficients to estimate lung cancer risk, had an 

AUC of 0.80 (95% CI: 76 - 85) which was significantly less (P<0.001) than the AUC observed 

for the TREAT model. The Mayo model generally overestimated risk and its Brier score was 

0.17, showing poorer calibration than the new model. The MayoVUMC model used the original 

Mayo model variables, re-estimated coefficient values based on the Vanderbilt lung cancer 
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population, and had lower AUC 0.83 (95%CI: 79 - 87, p<0.001) than the TREAT model and 

similar Brier score (0.12) (Figure 3). The overfitted TREAT model had slightly higher AUC 

(0.90; 95%CI: 86 - 92) and slightly lower Brier score (0.11) than the TREAT model without 

interaction terms. 

 

In a separate analysis of classes of models, the lung cancer predictive model that included only 

epidemiologic data (age, smoking history, any pre-operative symptoms, predicted FEV1, previous 

history of cancer, BMI, race, and sex) had an AUC of 0.77 (95% CI: 72 – 82). The model relying 

on imaging data only (lesion location, size, FDG-PET avidity, lesion edge characteristics, growth 

on serial radiographs) had an AUC of 0.84 (95% CI: 80 – 88) and was significantly higher than 

the model with only epidemiologic variables (p=0.02) (Figure 4). 

 

Bland-Altman plots showed the Mayo model more frequently overestimated risk of lung cancer 

when compared to the TREAT model (Figure 5). No systematic differences in model risk 

estimation were observed between the TREAT and Mayo models for the covariates of age, 

smoking status, and pack years (Figure 6A, 6B and 6C). FDG-PET avidity and growth showed a 

systematic difference in predictive values between the two models. These two variables indicate 

metabolic activity of the lesion and were included only in the TREAT model. The Mayo model 

on average predicted a slightly higher risk of lung cancer compared to the TREAT model in 

individuals with no growth (Figure 6D) and a significantly higher risk among individuals with 

non-avid scans (Figure 6E). 

 

2.4 Discussion 
 

To date, to our knowledge, no clinical prediction model for lung cancer in a thoracic surgery 

population has been published. The TREAT lung cancer model found a high and consistent 
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predictive discrimination for lung cancer. The TREAT model used pre-specified variable 

selection based on covariates of lung cancer risk published in validated screening and lung lesion 

diagnostic models. Given the TREAT model’s high level of discrimination, it may be of value 

providing clinical guidance in estimating individual likelihood of lung cancer if externally 

validated.  

 

Although the TREAT model is relatively simple and includes no interaction terms and only one 

non-linear variable, a more complex over-fitted model found negligible improvement in AUC 

(0.90) compared to the apparent TREAT model AUC of 0.89. This small increase in 

discriminatory power indicates the TREAT model explains well the relationship between the 

variables in the model and the likelihood of lung cancer as currently specified. Little additional 

information is likely to be gleaned from the variables used in the TREAT model. 

   

Surgeons evaluating pulmonary nodules are faced with a basic question of equipoise. Is the risk 

for cancer such that the individual should undergo the possible harms arising from thoracoscopic 

surgery to determine diagnosis of the nodule? Diagnostic lung surgery has a 1-4% mortality rate 

associated with the procedure and 1.2% of those with benign disease in the NLST died within 60 

days of their procedure.9,29 Complications including prolonged air leak (5%) and atrial fibulation 

(11%) are also common from the procedure and recovery takes 4-6 weeks among non-

complicated patients.21,29,30 If the patient under evaluation has marginal lung function and other 

pre-operative comorbidities, then the likelihood of a poor outcome increases. This procedural risk 

is juxtaposed against the danger of missing a curable lung cancer. One suggested solution is for 

the clinician to delay biopsy and treatment until a more definitive non-invasive diagnosis is 

possible. The window of best prognosis from the time of lesion discovery to stage progression 

and metastasis is not well known; however, one study found that untreated clinical stage 1 lung 
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cancer had a median survival time of only 9 months.31 Thus clinical belief is that even among 

small and localized cancer, treatment should not be delayed if possible.  

 

The superior performance of the TREAT lung cancer model (AUC 0.89) compared to the Mayo 

model in its original published form (MayoOriginal AUC 0.80) or re-estimated within the 

Vanderbilt population (MayoVUMC AUC 0.83) arises from two factors. First, the population 

being evaluated by surgeons has a higher prevalence of lung cancer than other lung nodule 

evaluation populations. Current predictive models for lung nodules were established in 

populations being evaluated by pulmonologists (Mayo model) and radiologists (SPN model). A 

finding of risk from these models results in a referral to a proceduralist to establish tissue 

diagnosis and course of treatment. The performance of the Mayo model was similar to the AUC 

observed in the original study (0.83) and in the validation study in a population of veterans 

(0.80).17,18 The Mayo model performed well in the Vanderbilt population although the prevalence 

of disease was higher (72%) than that found in the original population in which the model was 

developed (23%) or validated (44%).17-19 However, the Mayo and SPN models underestimate risk 

for cancer in the lower quintiles of lung cancer risk.20 The higher prevalence of lung cancer is not 

uncommon in surgical populations being evaluated for lung cancer,6,32,33 which was one of the 

motivating factors for development of the TREAT model specifically for surgeons.  

 

The second factor contributing to the TREAT model’s superior discrimination is the addition of 

FDG-PET avidity and lesion growth as predictive variables. Each variable represents metabolic 

activity of the lesion which is information relatively independent from other imaging variables 

like lesion shape or size. The TREAT model takes advantage of the additional information 

available to clinicians at the time of decision to operate. The addition of FDG-PET, lesion 

growth, predicted FEV1 and presentation with any symptoms improved discrimination between 

benign disease and lung cancer. Each variable contributed to the variance explained, and FDG-
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PET avidity and lesion growth were the third and fourth strongest explanatory variables behind 

lesion size and age (Figure 7). 

 

The Bland-Altman plots reinforced the importance of FDG-PET avidity and lesion growth among 

the factors that discriminate a higher likelihood of lung cancer. When a lesion was not FDG-PET 

avid or did not have growth on serial radiographs, then the Mayo model had a consistently higher 

predicted probability of lung cancer and was associated with the largest differences in predicted 

risk between the Mayo and TREAT models. The distribution of this systematic bias was 

concentrated in the lower spectrum of risk (Figures 6D and 6E). Variables common to both 

models like age and smoking status did not show a systematic bias in predicted risk for lung 

cancer between the two models (Figures 6A-6C). Measurement of metabolic activity through 

FDG-PET and lesion growth appear to be an important biological factor missing from the Mayo 

model. 

 

As with most research this study has a number of weaknesses. The Vanderbilt Lung Cancer 

Cohort was a retrospective cohort which relied on chart review. Vanderbilt is a tertiary referral 

academic medical center and may not be representative of other surgical practices evaluating lung 

lesions. Other populations in other parts of the country may have differing prevalence of disease, 

differing referral patterns, radiologist expertise or other underlying factors, like fungal lung 

disease prevalence, that are relevant to a clinical prediction model but either not measured or not 

included in the TREAT model. 

 

Another weakness with this study is the high amount of missing data for variables of interest in 

the Vanderbilt Lung Cancer Cohort.  Missing FDG-PET scan results (22% missing) occurred 

most frequently overall.  Among the 39 who were managed by active surveillance, four had a 

FDG-PET scan. Of the 66 missing an FDG-PET scan in the entire cohort, 35 (53%) were in the 
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active surveillance group and did not undergo surgery. Conversely, among those with cancer, 

individuals with a high likelihood of lung cancer also were more likely to have missing FDG-PET 

scans. The lack of FDG-PET scan among those at the highest and lowest risk for lung cancer 

reflects clinical practice in which tests are not ordered that will not materially change the clinical 

decision to operate.  This pattern of work-up bias between individuals indicates that the data is 

not missing completely at random.  Similarly, predicted FEV1 is generally not performed unless 

surgery is likely and clinical guidelines suggest everyone receive a pulmonary function test, of 

which predicted FEV1 is a component, prior to surgery. The observed pattern and cause of the 

missing data may be a violation of the MAR assumption required for multiple imputation to be 

robust in its representation of the underlying true population. 

 

Patterns that suggest high correlation between seemingly unrelated variables like FEV1 and FDG-

PET scan may indicate an unknown underlying cause of missing data that is not captured in the 

observed data. Cluster analysis of the variables in the dataset showed moderate correlation 

(Appendix 1.1).  The multiple imputation methodology depends on missing data being missing at 

random (MAR) or the more restrictive missing completely at random mechanism. The MAR 

mechanism of missing data assumes that “missingness” depends upon or is explained by the 

observed variables and observations within the dataset and not on unobserved variables or 

unobserved individuals outside the dataset. Inclusion of the 39 non-surgical patients increased the 

amount of missing data for FDG-PET and predicted FEV1. However, their inclusion into the 

cohort captured a broader population of risk and better represented the entire population of lung 

nodules evaluated by surgeons. Logistic regression models were developed to predict the 

likelihood of a record’s variable being missing.  If the outcome (cancer) remained a significant 

variable after controlling for the other relevant variables, then the missing at random assumption 

is violated. For FDG-PET, lesion growth, and predicted FEV1 the cancer outcome was not 

significantly associated with predicting the cancer a record would have missing data.  Of the three 
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variables with missing data, cancer was most predictive of FEV1 (p=0.11) of having missing data. 

Therefore, the mechanism of missing data was likely MAR. If the likelihood an individual will 

have missing data had been associated with the outcome of cancer then non-ignorable missing 

data occurs and the assumptions behind valid imputation were violated. Such was not the case 

here. Furthermore, this dataset is retrospective, includes all persons evaluated by a thoracic 

surgeon and reflects the spectrum of risk likely to be encountered by a thoracic surgeon which 

removed the problem of non-ignorable missing data due to selection bias.34,35  

 

The FDG-PET scan and lesion growth results were primarily derived from the radiologist’s report 

and most individual patient FDG-PET scans were not reviewed by a radiologist or surgeon for 

this analysis. Reliance on radiologist’s report, while a limitation, also mirrors clinical practice 

where often the surgeon must rely on external expert interpretation if the original scans are not 

available or are of poor quality.  Individuals missing information on lesion growth were reviewed 

by a thoracic radiologist. After review a third category was created representing an individual 

with a single study or someone with serial studies who did not have a large enough interval 

between scans to determine growth. Approximately 40 of the 65 with lung cancer and missing 

data from this variable arose from the lack of stored scans in the radiology system. These missing 

scans were more likely to occur in individuals diagnosed between 2005 and 2007. 

 

Another limitation of this study was that family history of cancer was not collected in the 

Vanderbilt Lung Cancer Cohort. Screening models whose focus is on population-level lung 

cancer risk have included first degree family member history of cancer in their cancer risk 

predictions.36,37 Tammemagi et al. found that only among individuals with significant tobacco 

exposure was family history of cancer a risk factor.37 It is unknown whether family history adds 

new information to the existing cancer risk model, or to the TREAT model, since models that 
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include family history do not include radiographic predictive factors and the existing 

epidemiologic variables explain much of the observed variation with an AUC of 0.77. 

 

The Vanderbilt Lung Cancer Cohort is composed of individuals with known or suspected lung 

cancer. Ideally, a population composed of only suspected lung cancer would be used. Those with 

known lung cancer tend to have larger, growing, FDG-PET avid lesions. These cancers are more 

easily biopsied or diagnosed through sputum cytology. Inclusion of these individuals may bias 

our point estimates and standard errors for lesion size, FDG-PET avidity and growth. Another 

weakness of this analysis is the lack of an external validation dataset in which to compare the 

robustness of our results. Although little optimism was observed in the bootstrap adjusted AUC 

or Brier scores, the model must be validated in separate, external populations prior to use in the 

clinical setting.  

 

This study is unique in a number of ways which add strength and import to its results. This is the 

first study to predict lung cancer in a cohort with a lung nodule being evaluated by thoracic 

surgeons. The TREAT model includes a combination of strong predictors of lung cancer 

including FDG-PET avidity and lesion growth that have not been previously published. The high 

AUC and optimism adjusted AUC indicate a model that discriminates lung cancer better than 

other published models. If the TREAT model is externally validated then it can act as the base 

model of lung cancer risk when evaluating new biomarkers and diagnostic tests for lung cancer in 

surgical populations. Future work will validate this model in external datasets and prospectively 

evaluate the impact of the model in the clinical setting.  
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2.5 Conclusion  

 

In a population with a radiographically confirmed lung lesion being evaluated for possible 

surgery, the TREAT lung cancer model predicted the risk for lung cancer with high accuracy. The 

model was internally validated and showed little optimism in its estimate accuracy to discriminate 

between lung cancer and benign disease. The TREAT model incorporates the full spectrum of 

epidemiological and radiographic evidence and better predicts lung cancer with a higher AUC 

than existing published models. This model should be validated in external datasets and if valid 

applied in a prospective study to reduce unnecessary lung surgeries.   
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Table 1. Variables used in published, validated clinical lung 
cancer prediction models 
Variable Mayo Model VA Model SPN Model 

Age √ √ √ 

Smoking (Y/N) √ √  

Smoking - Pack Years   √ 

Years quit smoking  √  

Hemoptysis   √ 

Previous Cancer √   

Lesion Size √ √ √ 

Lesion Growth   √ 

Spiculation √  √ 

Lesion Location √  √ 

FDG-PET Avidity   √ 
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  Table 2. Univariate analysis of demographics and radiological data 

 Cancer 
N=352 

Benign 
N=140 

P-value 

Male (%) 192 (55)   60 (43) 0.02 

Caucasian (%) 
Missing  N=2 

324  (92) 
0 

128 (93) 
2 

0.79 

Age (SD)     65 (10.7)     55 (13.9) <0.001 

Smoking Status – Ever  (%) 297 (84)  81 (58) <0.001 

Median Pack – years among smokers 
(IQR) 
     Missing  N = 8 

        45 (30, 60) 
6 

       35 (20, 50) 
2 

0.001 

BMI, kg/m2 (SD) 
     Missing N=2 

   26.9 (5.5) 
0 

   29.6 (7.1) 
2 

<0.001 

Mean Predicted FEV1 (SD) 
     Missing N = 50 

    75.4 (18.8) 
17 

    84.5 (20.8) 
33 

<0.001 

Pre-operative symptoma (%) 
     Missing N = 33 

  82 (25.5) 
30 

36 (26.3) 
3 

0.85 

Previous history of cancer 136 (38.6) 45 (32.1) 0.18 

Upper lobe location 
     Missing N = 13 

214 (62.2) 
8 

69 (51.1) 
5 

0.03 

Lesion Size, Ave mm (SD)     31.6 (19.4)    18.8 (12.0) <0.001 

Growth 
     Missing N = 65 

160 (55.4) 
63 

 41 (29.7) 
2 

<0.001 

Spiculation 
     Missing N = 19 

176 (52.1) 
14 

38 (28.2) 
5 

<0.001 

FDG-PET Avidityb 

     Missing N = 109 
283 (86.2) 

43 
45 (60.1) 

66 
<0.001 

a – Symptoms include: hemoptysis, unplanned weight loss, shortness of breath, fatigue or chest 
pain 
b - Includes avidity categories “avid/likely cancerous – SUV 2.5-5” and “highly avid/cancerous 
     SUV >5” 
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Table 3. Multivariate logistic regression of lung cancer prediction model 

 Na Odds Ratio (95% CI) p-value 

Age (per year) 492 1.05 (1.03, 1.08) <0.001 

BMI 490 0.97 (0.93, 1.02) 0.24 

Gender - Male 492 0.94 (0.54, 1.64) 0.84 

Pack Yearsb 484 1.03 (1.01, 1.05) 0.02 

Pack Years’b 484 0.98 (0.95, 1.00) 0.09 

Lesion Size (per mm) 492 1.06 (1.04, 1.08) <0.001 

Spiculated lesion edge 473 1.42 (0.78, 2.59) 0.26 

Lesion location – upper lobe 479 1.00 (0.57, 1.75) 0.99 

Lesion Growth 

        No lesion growth 

427  

(ref) 

 

(ref) 

        Insufficient data on growth  1.25 (0.56, 2.79) 0.59 

        Growth observed  2.97 (1.45, 6.12) 0.003 

History of previous cancer 492 1.95 (1.07, 3.55) 0.03 

Predicted FEV1 442 0.99 (0.97, 1.00) 0.07 

Any pre-operative symptoms 459 0.63 (0.33, 1.19) 0.16 

FDG-PET Avid 382 6.81 (3.04, 15.3) <0.001 

a reported N is number of individuals with complete data in the dataset  

b Pack-years was modeled with a non-linear relationship with cancer.  Odds ratios are not directly 
interpretable and are included here for reporting purposes only.  See Figure 2 for graph of 
relationship.  
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Figure 1. Hosmer-Lemeshow test showing poor (p<0.001) calibration of SPN and Mayo 
models in a surgical population (from Isbell et al, Annals of Thoracic Surgery, 2011) 

 

Figure 2. Comparison of three relationships between pack years and lung cancer. 
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Figure 3. Comparison of AUC for two Mayo models and TREAT model  

 

Figure 4. Comparison of AUC for a model composed of only imaging data (ImageModel) 
and epidemiological data (EpiModel) (p=0.02) 
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Figure 5. Bland – Altman plot of log(odds) predicted risk for the TREAT and Mayo model.  
X axis is the log odds of lung cancer for TREAT model plus the log odds of lung cancer in 
the mayo model divided by 2.  Y axis is the log odds of lung cancer for TREAT model minus 
the log odds of lung cancer in the mayo model.  

 

Figure 6A. Bland – Altman plot of the difference in the log odds of the TREAT and Mayo 
models across participants age.  Red lines are the upper and lower confidence interval +/- 2 
standard deviations. 
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Figure 6B. Box plot of the difference in the log odds of the TREAT and Mayo models across 
by smoking history.  Red lines are the upper and lower confidence interval +/- 2 standard 
deviations. 

 

Figure 6C. Scatter plot of the difference in the log odds of the TREAT and Mayo models 
across pack-years.  Red lines are the upper and lower confidence interval +/- 2 standard 
deviations. 
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Figure 6D. Box plot of the difference in log odds of the TREAT and Mayo models across the 
three growth categories.  “Single” growth refers to participants with only one LDCTG scan 
or too short a per-operative period for serial scans to report growth.  Red lines are the 
upper and lower confidence interval +/- 2 standard deviations. 

 

Figure 6E. Box plot of the difference in the log odds of the TREAT and Mayo models across 
based upon FDG Avidity.  Red lines are the upper and lower confidence interval +/- 2 
standard deviations. 
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Figure 7. Chi-square plot of relative contribution to explaining variance by each dependent 
variable. 
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Chapter 3 

 

 

 

III.  Geographic variation in the diagnosis of lung cancer and implications for screening 
and diagnosis of lung cancer. 

 

3.1  Background 
 

Hundreds of thousands  of lung nodules are evaluated annually throughout the US.1  This number 

is likely to increase with the implementation of a national screening program for lung cancer. The 

National Lung Screening Trial (NLST) conducted a randomized control trial comparing annual 

screening with annual low dose computed tomography (LDCT) scans to chest x-rays in a 

population at high risk for lung cancer.  LDCT reduced lung cancer related mortality by 20% and 

all-cause mortality by 7.6% compared to screening with chest x-ray.2 A number of physician 

societies and patient advocate groups have since established guidelines recommending lung 

cancer screening using LDCT scans in populations similar to that enrolled in the NLST.3-5 The 

Affordable Care Act tasked the US Preventive Services Task Force with reviewing disease 

screening programs. If after their review the Task Force finds that a screening program provides 

significant benefit to those screened, then their recommendation for screening must be covered by 

insurers. The Task Force is currently reviewing the new evidence provided by the NLST and will 

publish their recommendations regarding lung cancer screening in 2013.6,7 Given the results of 

the NLST and the support for screening from both patient advocate groups and physician 

societies, a national lung cancer screening program for high risk populations using LDCT scans is 

likely in the near future. 
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Although there was a reduction in lung cancer related mortality in the NLST, 96% of lung 

abnormalities found by LDCT were false positive findings.2 Other studies have found similarly 

high false positive rates from CT scans.8 Furthermore, 24% of all lung procedures to diagnose 

lung cancer identified benign disease. Using the results of the NLST and the study’s definition of 

the appropriate population to screen, an estimated 7.4 to 8.7 million individuals per year could be 

eligible for screening.9,10 If 80% of the 8 million eligible were screened, then approximately 2.6 

million anomalies would be discovered requiring further diagnostic testing over the first three 

years of a screening program. These findings will generate over 1 million repeat CT scans, an 

additional 170,000 FDG-PET scans and 80,000 diagnostic operations, 20,000 of which would 

have a pathological finding of benign disease.  

 

Should a screening program be introduced in the US, then variation in the diagnosis and treatment 

of lung cancer may arise.  Geographic variation in screening efficacy and outcomes due to 

healthcare access, provider bias and carcinogenic exposures were observed in screening programs 

for breast, colon and prostate.11-14 Similar issues may occur with the implementation of screening 

for lung cancer.  Understanding variation in existing practice as well as identifying factors that 

induce variation and are unique to lung cancer screening, can inform clinicians and policy makers 

prior to its implementation.  Initiatives and policy can then be crafted, informed by epidemiology 

and health services research, to improve the administration of lung cancer screening.15  This 

research addresses two factors of possible importance to the implementation of a lung cancer 

screening program. 

 

First, the variation of benign disease prevalence in the US is unknown. If variation in benign 

disease occurs between states or regions of the country then this observed variation may be 

indicative of systemic underlying causes that should be determined, measured and where possible 

addressed as part of implementing a screening program. Should clinically significant variation in 
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benign disease prevalence exist, then a screening program may have geographically varying 

results. Measuring the amount of variation and possible patterns of variation in benign disease is 

the first step in determining whether a problem exists and the extent of the problem.   

 

Second, clinicians rely heavily on radiographic imaging for the non-invasive diagnosis of lung 

cancer. Diagnostic guidelines recommend using F18-fluorodeoxyglucose positron emission 

tomography (FDG-PET) for the diagnosis of lung cancer after lung lesion discovery.3  FDG-PET 

scans are considered among the most accurate and cost effective non-invasive tests available for 

the diagnosis of lung cancer.16-18 Some investigators have questioned the accuracy of FDG-PET 

in regions of the country were granulomatous disease is highly prevalent.19-21  They hypothesize 

that some populations would not benefit from a diagnostic FDG-PET scan and should only 

receive CT scans. The following analysis examines each issue in turn and the possible impact on 

screening for lung cancer. 

 

3.2 Geographic variation in benign disease prevalence after surgical lung 
resection in the US. 

 

  Introduction 

The NLST reported screening with LDCT led to the discovery and treatment of more early stage 

lung cancer.  This stage shift resulted in a 20% decrease in lung cancer related mortality 

compared to screening with chest x-ray.  The participants in the NLST were recruited and 

received most of their care at National Cancer Institute designated cancer centers by teams with 

extensive experience and specialization in lung cancer diagnosis and treatment.2,22 Yet even with 

this expertise, 24% of procedures performed to diagnosis lung cancer indicated benign disease 

and not lung cancer. A screening regimen for lung cancer with LDCT will likely lead to care 

being conducted by more clinical generalists and the efficacy of the screening intervention may 
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be reduced and the number of individuals needing to be screened to cure one lung cancer 

increase.23   

 

Geographic variability of benign lung disease prevalence has significant implications for a 

national lung cancer screening program. Geographic variation may indicate a mismatch of 

specialist availability or practice variation. Population risks for lung cancer, like smoking 

prevalence, or underlying risk factors for benign disease, like granuloma caused by endemic 

fungal lung disease, may not be evenly distributed over the landscape. The first step in identifying 

whether geographic variation exists and is clinically significant is to estimate the amount of 

variation across the US. Then possible causes of the observed variation can be explored. 

 

One possible cause of variation in the US could be fungal lung diseases which are the most 

common cause of benign granulomas. Granuloma formation is possible from any fungal lung 

disease.  The three most common fungal lung diseases occurring in the US are histoplasmosis, 

coccidioidomycosis, and blastomycosis.  Soils act as reservoirs for fungal spores that cause 

fungal lung disease.  Historically, fungal lung disease prevalence varied greatly by region of the 

country (Figure 1). If benign granulomas are causing variation in benign disease prevalence then 

regions with higher prevalence of fungal lung disease should be associated with high benign 

disease prevalence after lung surgery compared to regions with low fungal lung disease.  

 

We describe the benign disease point prevalence after surgical lung resection at the state level 

using the 2009 Medicare Provider Analysis and Review Hospital National Limited Data Set 

(MEDPAR).  This administrative billing dataset includes all 14.7 million inpatient discharges for 

calendar year 2009 covered by Medicare.  Medicare insurance covers hospital care for over 95% 

of all individuals over age 65 and is among the most comprehensive representation of hospital 

activity among the elderly.24  The median age for diagnosis of lung cancer is 71 years of age.25  
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Thus using Medicare hospital data will include the majority of the US population who had 

surgery for known or suspected lung cancer.  Fungal lung disease prevalence is examined as 

possibly being associated with geographic variation in benign disease point prevalence in the 

same surgical population. 

 

3.3 Methods: geographic variation in benign disease prevalence after surgical 
resection  

 
 

Study population 

We conducted a retrospective cohort study using the 2009 MEDPAR dataset.  The MEDPAR 

dataset contains claims data for services provided to beneficiaries admitted to Medicare certified 

inpatient hospitals and skilled nursing facilities during the 2009 calendar year.  The accumulation 

of claims occurs from the individual’s date of admission to date of discharge represents one 

hospital stay.  Records represent final action on the claims data submitted by the hospital after all 

adjustments have been resolved. This dataset was made available by the Center for Medicare 

Services (CMS) and included ICD-9CM codes for as many as 10 diagnoses. The primary 

diagnosis was determined by CMS as the diagnosis responsible for the majority of care delivered 

during that hospital stay.  Each record also included sex, county of residence at the time of 

admission and as many as 10 procedures that occurred during that stay. The primary procedure 

was determined by the procedure responsible for the majority of hospital days or healthcare 

services provided during that stay.26  

 

All individuals with a primary procedure ICD-9 code of lung resection or thoracoscopic biopsy 

(32.2, 32.9, 32.3, 32.40, 32.41, 32.49, 32.6, 32.9, 33.1, 33.2, or 33.28) were included in the study 

(N=33,655).  Those who had a second hospitalization with a primary procedure of lung resection 

or biopsy (N=538) were excluded from further analysis.  These procedures were likely re-
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operations from the initial hospitalization, treatment for later stage disease or palliative in nature.  

Outcome of the surgery was categorized by primary diagnosis. Diseases were classified into 

benign, cancerous or a disease not arising from a lung nodule. Benign diseases included: 

histoplasmosis, aspergillosis, blastomycosis, coccidiodomycosis, candida, other mycotic disease 

not otherwise specified, sarcoidosis, lung abscess, tuberculosis, other mycobacterial disease, 

pulmonary fibrosis, benign neoplasm, coin lesion, Wegeners granuloma, dermatophytosis, other 

non-neoplastic diseases of the bronchus, pulmonary diseases due to other mycobacteria and 

benign disease of the lung not otherwise specified.  Cancer diagnoses included all malignant lung 

neoplasms of the lung or bronchus, secondary neoplasms of the lung, malignant neoplasm of the 

pleura, carcinoma in situ of the lung or bronchus, neuroendrocrine neoplasms, and neoplasms of 

unspecified nature in the respiratory system.  

 

The diseases not arising from a lung nodule included: metastatic lung cancer, empyema, 

idiopathic pulmonary fibrosis, pneumonia, pneumonopathy, pneumothorax, emphysema, acute 

respiratory failure, septicemia and unspecified pleural effusion.  Each individual with a disease 

not arising from a lung nodule was excluded from further analysis. Total surgeries were grouped 

by state and point prevalence of benign disease was estimated by dividing the number of 

individuals with benign disease after lung surgery by the sum of lung surgeries for cancerous and 

benign disease.     

 

Fungal Lung Disease Exposure 

Over 1.2 million men age 17 to 21 received a histoplasmin skin test during physical examination 

upon entry into the Navy between 1959 and 1968. The histoplasmin skin test was similar to the 

modern tuberculosis skin test in that a solution with histoplasmosis capsulatum was injected 

subcutaneously and if a skin reaction occurred, the host had been exposed to histoplasmosis or 

coccidioidomycosis or blastomycosis with which the test was cross reactive.27 For purposes of the 
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national surveillance, a skin induration of at least 4mm was considered a positive reaction for 

fungal exposure. Among this population 488,010 white males reported residing in only one 

county during their lifetime prior to recruitment.28 Other races were not reported due to lack of 

sufficient numbers to allow county level public reporting of prevalence. Positive histoplasmin 

skin tests occurred in 16.5% of the white males from a single county of residence. Prevalence 

among the 488,010 participants was collated across years and reported in tabular form by county 

or groups of contiguous counties within a state.  

 

Fungal lung disease prevalence was assigned to 498 individual counties or state economic areas 

as reported in the 1969 National Surveillance Survey.28 This historical prevalence was used to 

assign to MEDPAR lung surgery patients their likely prevalence of fungal lung disease. State 

economic area lung disease prevalence estimates based on the 1969 survey were entered into a 

geographical information system (GIS) (ArcGIS v10, Redlands, CA).  The patient’s geographic 

residence was defined as their self-reported county of residence at the time of hospitalization and 

was added to the GIS.  New counties created since 1969 were assigned to state economic areas 

based upon the location of the county seat. All counties created since 1969 were within the 1969 

state economic areas and no population based weighting of exposure was necessary. Outcome of 

cancer or benign disease after surgery was input into this GIS for each individual. Estimated 

fungal lung disease exposure based upon participant’s county of residence at hospitalization, were 

examined for association with individual outcome of benign disease or lung cancer.  

 

Statistical Analysis 

Benign diagnosis point prevalence was estimated at the state level by dividing the total number of 

benign cases by the sum of the benign cases and malignant cases.  Benign disease point 

prevalence was compared between states using Pearson chi-square test.  Sensitivity analysis was 

conducted by removing the states with the highest and lowest benign disease prevalence and 
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benign disease point prevalence was estimated in this sample of 48 states.  Fungal lung disease 

prevalence based on county of residence at time of hospitalization and derived from 1969 national 

survey was compared between individuals with benign disease and those with cancer using 

univariate analysis with the Wilcoxon rank-sum test. All statistical analysis was conducted with 

Stata v12 (College Station, TX)  

 

3.4 Results 

 

 There were 25,378 Medicare beneficiaries that had a lung operation for known or suspected lung 

cancer in 2009.  Among these, 2,328 (9.2%) had a benign diagnosis and 23,050 had a diagnosis of 

lung cancer. Benign diagnosis was more frequent among women (9.8%) than men (8.5%) after 

surgery.  Crude in hospital mortality rate for all patients and among those with cancer was 2.3%. 

The mortality rate for patients with benign disease was 2.1%. A significant difference in crude 

mortality rate was not observed between those diagnosed with lung cancer and individuals 

diagnosed with benign disease (p=0.86).  Prevalence of benign disease varied significantly (chi-

square p<0.001) across states from a low of 1.3% in Vermont to a high of 25.0% in Hawaii 

(Figure 3).  Median benign disease by state was 8.9% (IQR: 7.8 – 10.9).  Other states with high 

prevalence included Wyoming (18.4%), New Mexico (16.7%) and Montana (14.5%).  States with 

low prevalence of benign disease were Idaho (5.2%), Maine (5.7%) and Rhode Island (5.7%). 

After excluding Vermont and Hawaii as possible outliers, significant differences in benign 

disease point prevalence between states remained (p=0.001). 

 

Median fungal lung disease prevalence mapped from the 1969 surveillance data was 5.5% (IQR: 

2.2%, 23.8%) among those with a diagnosis of lung cancer.  Median fungal lung disease 

prevalence was 5.2% (IQR: 2.2%, 23.9%) among those with a benign diagnosis.  Fungal lung 

disease prevalence was highly skewed with mean prevalence of 17.5% (standard deviation 
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24.0%) for those diagnosed with cancer. Fungal lung disease prevalence was estimated to 

be17.6% (standard deviation 24.3%) among individuals with a benign diagnosis. significant 

differences in fungal lung disease prevalence between those with cancer or a benign diagnosis 

was not observed (p=0.90).   

 

3.5 Discussion 

 

The benign disease point prevalence between states varied significantly in the 2009 Medicare 

population in univariate analysis.  The four Rocky Mountain States, Montana, Wyoming, 

Colorado, and New Mexico as well as Arizona, Nevada, Nebraska and Kansas had benign disease 

point prevalence between 10.8% (Kansas) and 18.4% (Wyoming). The three states of Maine 

(5.7%), New Hampshire (7.4%) and Vermont (1.3%) had low point prevalences.  These were the 

main observable clustering of benign disease by state.   

 

Screening for lung cancer in states with higher prevalence of benign disease will likely result in 

higher frequencies of benign diagnosis and exposing individuals to possible harm from surgery 

related mortality, given the variation in benign disease after lung surgery across the US.  Both 

outcomes act to decrease the efficacy of a screening program within high benign prevalence 

states.  Understanding the causes of the observed variation can inform clinical and policy 

interventions to decrease variation and improve the outcome of surgery for suspected lung cancer. 

 

Locally endemic fungal lung diseases were explored as a possible cause for higher benign disease 

prevalence. In univariate analysis, no statistically significant relationship was evident between 

individually estimated fungal lung disease exposure and benign disease after lung surgery. 

Estimated median exposures among those with cancer or benign disease (5.5% and 5.2% 

respectively) were one third the mean exposure and median exposure among those with benign 
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disease was actually lower than exposure among those with lung cancer. We estimated individual 

exposure based upon a national survey conducted from 1959 to 1968 of young, healthy men who 

lived in a single county. Using this survey of lung disease prevalence is problematic in a number 

of ways.  

 

First, the MEDPAR population is an elderly population compared to those surveyed in 1969 and 

may well have lived in multiple residences with a variety of occupations prior to surgery in 2009. 

Their exposure history is likely much more complex than the simple model used here to estimate 

individual exposure as being equal to the average likelihood of exposure based upon residence at 

time of diagnosis.  

 

Second, exposure prevalence from fungal lung diseases may be difference today, 44 years after 

the 1969 survey was completed. Fungal spores reside in soils and are preferential to floodplains 

and farmland in relatively humid climes.  Baddley and colleagues found higher prevalence of 

acute histoplasmosis in the elderly in the Nebraska and the Northern Great Lakes area than 

previously found.29 This may indicate a migration over time of fungal spores up the Missouri 

River valley and from the lower to the upper Great Lakes and New England or, in the case of the 

Northeastern US, increases seasonal mobility of New England populations to regions of higher 

fungal lung disease prevalence in the south.   

 

Finally, our individual exposure estimate based upon aggregate county level prevalence may 

suffer from the ecological fallacy. Ecological fallacy occurs when individual characteristics are 

assumed to be represented by an aggregated measure.  We used the average prevalence in each 

county or economic area from the Edward study to represent individual exposure. This assumed 

average, based upon a geographic area, may misclassify individual exposure. Increased 

urbanization and impermeable cover of soils may have greatly reduced possible exposure. The 
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reduction in rural population and farming occupations over this time period would act to reduced 

individual exposure as well. However, exposure is increased among those in agricultural 

industries or who frequent the outdoors. The lack of individual data on occupation also hampers 

estimation from another important vector of fungal lung disease exposure. 

 

Given the national demographic trends in the last 40 years of increased urbanization and 

increased mobility, one can conjecture that both trends cause misclassification of fungal lung 

disease exposure in such a way to attenuate any association toward the null. For example, 

increased urbanization concentrates populations in urban areas as well as spreads the extent of the 

urban geography into previously rural environments. The decrease in exposure to soils and 

transmission of fungal spores in urbanized areas would likely lead to overestimation prevalence 

of fungal lung disease in both those with and without cancer when using the 1969 study. On the 

other hand, greater population mobility would cause those currently residing in urban areas to be 

assigned a low prevalence when their historical exposure could be higher.  

 

While fungal lung disease acting through the mechanism of granulomas has biological 

plausibility as a cause of geographic variation of benign disease prevalence, the available 

geographically based estimates of fungal lung disease exposure are methodologically 

questionable. Independent verification of exposure through either direct measurement or a better 

estimate of fungal lung disease reservoirs in soils through land cover maps is necessary. Ideally, 

this land cover mapping would also be coupled with data on an individual’s occupational and 

residence history. 

 

Another possible cause of the observed variation in benign disease prevalence is the varying 

smoking rates by state. The prevalence of smoking in adults over age 18 who smoked more than 

100 cigarettes in 2009 ranged from a low of 9.8% in Utah to a high of 25.6% in West Virginia 



98 
 

and Kentucky.30 However, current smoking prevalence would not accurately represent smoking 

exposure since the latency period for the development of lung cancer is approximately 20 years. 

Jemal and colleagues found that the smoking prevalence between 1992 and 2007 decreased in all 

states except Wyoming.  Nationally, smoking among men decreased from 26.5% to 20.1% and 

among women decreased from 21.5% to 15.5%.  The largest decreases occurred in western states 

and the smallest decrease occurred in the Midwest.  Therefore, state level or ideally county level 

smoking prevalence from the early 1990’s would be necessary to control for smoking prevalence 

as a confounder. Higher prevalence of smoking results in more lung cancer in that state’s 

population.31,32  In our analysis we were unable to discriminate between those with known lung 

cancer and those with suspected lung cancer at the time of surgery.  This resulted in a  lower 

national mean prevalence of benign disease (9.2%) in this study when compared to the NLST 

(24%)2 or other surgical studies (20% to 40%).19,33,34  Therefore, higher rates of smoking and 

subsequent higher lung cancer prevalence in the state’s population will inflate the denominator in 

estimating prevalence and decrease the benign disease prevalence. States with higher smoking 

prevalence will tend to have lower benign prevalence compared to states with low smoking 

prevalence.  Not accounting for smoking prevalence likely biases the variance between states 

upward. Smoking prevalence from the 1992 Tobacco Use Supplement to the Current Population 

Survey was not available publically by state at the time of analysis.  However, a free source of 

this data has been located reporting smoking prevalence by sex by state.  Additional analysis 

using this resource will be future work.  

 

Surgical practice variation is well documented in outcomes literature related to diagnosis, hospital 

mortality, complications, and length of stay.35-39  In a recent study examining changing benign 

surgery rates at a single institution, the authors found that implementation of minimally invasive 

surgical technique reduced morbidity and mortality associated with the surgery, but they also 

observed that benign disease diagnosis rates increased after implementation of video assisted 
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thoracoscopic surgery.   The authors conjectured that due to a broader range of patients able to 

undergo surgery with the new and lower risk from the new surgical method, clinicians were 

willing to more aggressively pursue a diagnosis.  The risk threshold missing a cancer had 

effectively been reduced because the risk for undergoing surgery had decreased34.  Varying risk 

thresholds, training and specialist availability may all play a role in the observed benign disease 

prevalence variation.  The impact of new technology in the diagnosis and treatment of lung 

cancer should be explored to determine whether differential adoption by geography or across time 

influenced benign disease prevalence.  

 

Another clinical group pursuing best practices in lung cancer screening and treatment found that 

resection for benign disease could be minimized with adherence to a clinical diagnostic protocol 

even in an area with endemic histoplasmosis.40  The success of this clinical group in diagnosing 

lung cancer suggests that best practices do exist and that promulgation of such practices could 

reduce some of the observed variation in benign disease prevalence.  Much like the efforts to 

establish best practices in mammography screening,41,42 creation and promulgation of evidence 

based best clinical practices for diagnosis and treatment of lung cancer is critical to the success of 

a national lung cancer screening program.3,43 

 

One other weakness of this study is its analysis of one year of Medicare data to estimate benign 

disease variability.  Benign disease prevalence may not remain stable over time and individual 

states may jump between quartiles of disease prevalence.  Such variation over time by a state 

would weaken these results. Additional years of data should be pursued to estimate the relative 

stability of a state’s prevalence and their association with changes in practice described above.  A 

more complete model of benign disease prevalence variation that includes beneficiary 

demographics, smoking and fungal lung disease exposures, and practice changes that can vary 

over time and across the US would best be able to estimate benign disease prevalence.  
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In conclusion this exploratory study found significant variation by state in the point prevalence of 

benign disease after surgery for known or suspected lung cancer in the elderly.  The robustness of 

these results should be explored further by exploring variation in benign disease prevalence by 

state over time and associations with smoking and fungal lung disease prevalence. The high 

prevalence of benign disease in some states would decrease the efficacy of a screening program 

for early detection and treatment of lung cancer in those states.  

 

3.6  Geographic variation in the FDG-PET accuracy to diagnosis of early stage 
lung cancer in the ACOSOG Z4031 Trial 

 

  Background 

Once a lung lesion has been discovered, surgeons rely heavily on radiographic imaging for the 

non-invasive diagnosis of lung cancer.  According to national guidelines if a lung nodule is larger 

than 8mm in diameter and either the probability of cancer is between 5% and 60% or the nodule 

does not exhibit characteristics indicative of a benign etiology like calcification, then a F18-

fluorodeoxyglucose positron emission tomography (FDG-PET) combined with computed 

tomography scan is suggested for the non-invasive diagnosis of a lung nodule.3,43,44  Meta-

analyses of FDG-PET diagnostic accuracy reported a 96% sensitivity and 78% specificity.45,46 

FDG-PET scan is among the most accurate non-invasive tests available for the diagnosis of lung 

nodules.46  

 

FDG-PET scans were used as part of the diagnostic process in 8.3% of the individuals with a 

positive CT scan during the NLST. If a national lung screening program is implemented using the 

NLST criteria and proposed guidelines, then an estimated 170,000 FDG-PET scans at a cost of 

$2,000 to $3,000 per scan will be performed to diagnose the screening discovered lung 

lesions.2,47,48 However, some studies have questioned the efficacy of FDG-PET scans to diagnose 
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lung cancer where granuloma generating diseases of the lung are endemic.19,21 Granulomatous 

disease of the lung can look identical to cancerous tissue on CT or FDG-PET scan. It can have all 

the hallmarks of a cancerous lesion including symptomatic hemoptysis, growth on repeated CT 

scans, spiculated edge characteristics and the lack of calcification (Figure 2)49,50 Lung granulomas 

are often caused by fungal diseases in the US.34,51-54 Researchers in countries where tuberculosis 

is the etiological cause of most granuloma also question the use of FDG-PET to diagnose lung 

cancer.55,56 In these studies the specificity of FDG-PET was 25% to 50%, much lower than that 

reported in either meta-analysis. 

 

Granuloma is a common benign diagnosis of lung nodules in the US and accounts for 45% to 

65% of pathologically determined benign disease after FDG-PET imaging.16,19,52 Approximately 

15% to 40% of benign granulomas demonstrated an active fungal disease in these studies.  As 

described earlier, fungal lung disease prevalence varies widely across the US (Figure 1). What is 

not well understood is the interaction of endemic fungal lung disease, subsequent lung granuloma 

formation and its impact on FDG-PET imaging.  The studies by Croft and Deppen occurred in 

regions of the country were histoplasmosis prevalence was over 80% in the 1969 national survey.  

The relationship between endemic fungal lung disease and degradation of FDG-PET specificity 

may be localized to areas of extreme fungal disease prevalence or it may directly reflect local 

conditions and exposure patterns unique to a locale and the activities of the population or practice 

variation. If FDG-PET scan accuracy to diagnose lung cancer varies with endemic fungal lung 

disease, then populations may exist that would not benefit from this expensive diagnostic test.   

 

Furthermore, FDG-PET scans may not be as sensitive to detecting lesions below 2cm in 

maximum diameter.45 A screening population like that in the NLST has 50% pathologically 

determined stage 1 disease at time of diagnosis.  This compares to 15% stage 1 disease at 

diagnosis under current symptomatically and incidentally discovered lung cancer.  Clinical stage 
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1 disease is broken down further into stage 1A where the tumor is less than 3 cm in maximum 

diameter on radiograph (40% prevalence in the NLST) and stage 1B where the tumor is greater 

than 3 cm (10% prevalence in the NLST).  In clinical stage 1 disease, no lymph nodes are 

enlarged indicating possible local metastasis and no other tumors are evident in the lungs, bone or 

other organs.  The high prevalence of smaller lesions that typify the type of lesion discovered in 

LDCT screening may reduce the efficacy of FDG-PET to detect cancerous lesions and decrease 

the sensitivity of the test in a screening population. The NLST did not include FDG-PET 

outcomes in its study, but another national surgical trial found limited usefulness in FDG-PET for 

preventing unnecessary surgery of clinical stage 1 disease.33 The combination of reduced 

sensitivity due to the larger numbers of smaller lesions coupled with possibly poorer specificity 

among populations with endemic fungal lung disease may make FDG-PET scans a particularly 

ineffective test in screening populations in the US. A national study of participants with clinical 

stage 1 lung cancer who had a FDG-PET scan would emulate lesions arising from a screening 

program and presenting to surgeons for diagnosis.   

 

The recently concluded American College of Surgeons Oncology Group (ACOSOG) Z4031 trial 

evaluated participants with clinical stage 1 Non-small Cell Lung Cancer (NSCLC). The 

ACOSOG Z4031 trail obtained FDG-PET results in addition to bio-specimens associated with the 

studies primary research aim and provides the largest national sample to determine the accuracy 

of FDG-PET to diagnose early stage lung cancer to date. We conducted a secondary analysis of 

the ACOSOG trial to estimate the accuracy of FDG-PET to diagnose lung cancer in patients with 

known or suspected clinical stage 1 lung cancer. The possible exposure to fungal lung disease in 

this trial was likely to vary widely as this was a national trial with participants enrolling from a 

variety of cities and regions of the country. With this unique population we examined whether 

FDG-PET scan accuracy varied by the size of the lesion, by study site and whether false positive 

FDG-PET scans were associated with an estimated fungal lung disease exposure.  We 
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hypothesized that a population with smaller lesions and residing in a region of endemic fungal 

lung disease would likely not benefit from a FDG-PET scan for diagnosis prior to surgery. 

 

3.7 Methods 

 

Study Population 

The primary objective of the ACOSOG Z4031 study “Use of Proteomic Analysis of Serum 

Samples for Detection of Non-Small Cell Lung Cancer” (5U10CA076001-11) was to determine 

prospectively whether a serum proteomic profile can predict the presence of primary NSCLC in 

patients with suspicious lung lesions who are candidates for lung resection. The study design was 

a prospective study of 1000 patients undergoing lung resection for clinically known or suspicious 

clinical stage 1 lung lesions. The ACOSOG trial was a national study that occurred across 23 

states and Ontario, Canada in 51 hospitals in 39 cities (Figure 3). Patients were enrolled in the 

ACOSOG Z4031 trial from February 2004 to May 2006.  Inclusion criteria were: 1) 18 years or 

older, 2) clinically suspicious lung lesion that was possible stage 1 lung cancer, 3) CT scan < 60 

days prior to the lung resection and no evidence of metastatic disease, 4) no untreated 

malignancies, 5) no malignancy within the past 5 years except effectively treated basal cell or 

squamous cell skin cancer, surgically treated carcinoma in situ of the cervix, or surgically treated 

lobular carcinoma in situ of the ipsilateral or contralateral breast with low risk for recurrence, and 

6) able to provide informed consent.  Exclusion criteria included patients who had: 1) undergone 

previous lung resection within the preceding 30 days, 2) received prior chemotherapy or 

radiotherapy and 3) received a blood product transfusion of any kind within the past 60 days of 

the operative procedure.57  The ACOSOG Z4031 prospective clinical trial contains data on 969 

patients who met all the eligibility criteria.   
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Data Collection 

At time of enrollment age, sex, race, ethnicity, body mass index, date of operation, pre-operative 

clinical stage, CT radiologist reports, FDG-PET radiologist reports, enrolling site and zip or 

postal code of patient residence were collected. Follow up of the study participants was 5 years 

since time of enrollment.  Operative notes and pathological reports were collected along with 30 

day mortality status, status at last follow-up, date of last follow-up, and cause of death if dead at 

last follow-up.  All data were stored and maintained by the ACOSOG data center.   Additional 

data was extracted from ACOSOG case report forms and study analysis was conducted under a 

separate ACOSOG approved protocol (Z4095). Data abstracted from the study case report forms 

by two trained medical reviewers included: clinical maximum lesion diameter according to CT or 

PET/CT immediately prior to surgery, smoking status, smoking pack years, pre-operative FDG-

PET scan result and standard uptake value (SUV), pathological result for benign disease, and 

cancer histology.  FDG-PET scan results were categorized based on the radiologist descriptor of 

avidity or maximum SUV. Four categories of FDG-PET scan results were not avid/not cancerous 

(SUV=0), low avidity/not likely cancerous (SUV 0.1 to 2.5), avid/likely cancerous (SUV≥2.5 to 

5) and highly avid/cancerous (SUV≥5).  Categories were based on radiological guidelines and 

clinical convention.52,58 No original scans were reviewed. Pathological reports and operative notes 

were reviewed to determine etiology of benign disease and the specific cancer diagnosis. This 

secondary analysis of the ACOSOG Z4031 study was approved by the Vanderbilt IRB. 

 

Association with Fungal Lung Disease Exposure 

Fungal lung disease prevalence used the 1969 National Surveillance Survey and the details of this 

survey were described earlier in this chapter.28 Unlike the MEDPAR data, individually reported 

zip codes were available in the Z4031 trial.  The patient’s residence was defined as the 

geographic center of their self-reported residential zip code at the time of study enrollment and 

was entered into the GIS.  When a zip code crossed multiple state economic areas or counties and 
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possible differing fungal lung disease prevalence exposure, then fungal lung disease prevalence 

was weighted according to the proportion of the population in the zip code that was within a state 

economic area. Fungal lung disease exposure was the population weighted average disease 

prevalence for each county the zip code occurred. Population data were derived from 2000 census 

track data and mapped to each zip code occurring in 2000.59,60 Census data from 2010 was not 

available at the time of analysis and since the majority ACOSOG Z4031 study participant of 

enrollment occurred prior to 2006, the 2000 census was assumed to be more representative of the 

national distribution of adults than 2010 census data.  FDG-PET results, pathological diagnosis 

and estimated fungal lung disease exposure for each participant were added into the GIS. 

Estimated fungal lung disease exposure based upon participant zip code at study enrollment, were 

examined for association with individual pre-operative FDG-PET results. 

  

Statistical Analysis 

Differences in the demographics between the benign and malignant participants were compared 

using a t-test for continuous variables (age and lesion size) and binomial proportions test for 

differences in proportions (sex, race and FDG-PET avidity). Enrolling clinics in the same city or 

clinics in the same practice group were combined for geographic analysis of FDG-PET accuracy 

and outcome reported by city. Sensitivity, specificity, positive and negative predictive values 

were calculated for the ACOSOG study population who had FDG-PET scans available and 

among cities having at least 25 enrollees (N=8). The FDG-PET accuracy to diagnose lung cancer 

equals true positives plus true negatives divided by the total population tested and was calculated 

using the pathological diagnosis as the gold standard. Differences in the sensitivity and specificity 

between institutions were estimated using the chi-square statistic. The accuracy of FDG-PET by 

CT size group was compared with an analysis of variance. A logistic regression model was used 

to estimate the association of historical fungal lung disease prevalence of the patient’s residence 
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at time of enrollment with false positive FDG-PET scan results among all positive FDG-PET 

scans, adjusting for age at diagnosis and maximum lesion size reported on pre-operative CT. 

 

3.8  Results 

 

Our current analysis had 682 participants which met the ACOSOG Z4031 trial eligibility criteria 

and had a preoperative FDG-PET scan.  Benign disease was found in 116 patients (17%) and lung 

cancer in 566 patients (83%). Microbiology results were abstracted from pathological or 

operative reports and only 11% of benign cases have an unknown etiology. Of the 116 benign 

cases, 75 (65%) were documented in the pathology report as being granulomatous and 30 (26%) 

of the granulomas had documented histoplasmosis etiology in the pathology report. Smoking data 

was not collected at time of study enrollment but was abstracted for this analysis, resulting in 280 

(29%) patients with smoking exposure information. Patients with cancer were more likely to be 

older, non-Caucasian, and have larger lesions that were FDG-PET avid than patients with benign 

disease (Table 1).   

 

The overall accuracy of FDG-PET to diagnose lung cancer was 73% when compared to the 

pathologic diagnosis. The sensitivity and specificity were 82% and 31% and the positive and 

negative predictive values were 85% and 26%, respectively (Table 2). Table 3 shows the 

pathology of the enrollees with false positive and false negative FDG-PET scans.  The majority of 

patients with false positive FDG-PET scans had granulomas and the majority of false negative 

FDG-PET scan results had adenocarcinoma.  Of the 80 false positives, 69% of these were 

granulomas. Twenty-one of the 36 true positive lesions (58%) wee granulomas. Among the 101 

lung nodules with a false negative FDG-PET scan, 11 were less than or equal to 1 cm in 

maximum diameter measured by CT pre-operatively, and 62% of these lesions were 
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adenocarcinoma, 11% were squamous, 10% were broncho-alveolar cell and 9% had a 

neuroendocrine pathology.  

 
 
There were 8 cities with more than 25 participants (Table 4). The observed sensitivity by city 

varied from 68% to 91% (p=0.03) and the specificity ranged from 15% to 44% (p=0.72). FDG-

PET accuracy improved with lesion size (Figure 2) from 67% in lesions that were one to two cm 

(sensitivity 76% and specificity 35%) to 84% in lesions that were three to five cm (sensitivity 

90% and specificity 18%) (p<0.001).   

 

The median estimated prevalence of fungal lung disease in patients with FDG-PET avid lesions 

was 5.6% (IQR 2.7, 28.5). We evaluated the association of fungal lung disease prevalence and 

false positive FDG-PET scans among those with a positive FDG-PET scan using logistic 

regression, controlling for age and pre-operative CT size. Of 545 positive FDG-PET scans, 480 

had a valid residential zip code which could be assigned a 1969 fungal lung disease prevalence 

based on their residence at enrollment. Age (OR 1.04, 95% CI 1.01-1.07) and pre-operative CT 

size (OR 1.04, 95% CI 1.02-1.07) were strongly associated with a positive FDG-PET scan 

(p<0.01). The prevalence of fungal lung disease increased the likelihood of a false positive scan 

(OR 0.99, 95% CI 0.98-1.002), but the association was not statistically significant (p = 0.12). 

 

3.9 Discussion 

 

The poor results of FDG-PET to diagnose lung cancer in the ACOSOG Z4031 trial give insight 

into possible issues for this imaging modality when applied to lung nodules arising from a 

screening population. The ACOSOG Z4031 study had participants from 17 cities with enrolling 

centers that also participated in the NLST. Pathological stage 1A disease was observed in 45% of 

the ACOSOG trial and in 40% of the NLST. The NLST had more stage 3 and 4 lung cancer, and 
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the ACOSOG trial had more operable stage 2 disease. Individuals with CT evidence of possible 

metastatic disease would receive a FDG-PET scan for non-invasive staging and not for 

diagnosis.61,62 Thus, some number of participants in the NLST who received a FDG-PET scan did 

so for staging purposes and not for diagnosis.  Individuals with clinically determined stage 3 and 

stage 4 lung cancer are not candidates for surgery.  This analysis does not address the accuracy of 

FDG-PET for staging. The NLST did not collect data on FDG-PET scans, and direct comparison 

of FDG-PET accuracy between the Z4031 trial and the NLST is not possible. Even with these 

differences between the two populations, a number of conclusions can be drawn regarding the use 

of FDG-PET scans and extrapolated to the types of lesions likely to be found in a low dose CT 

screening environment.  

 

Currently available PET scanners have limited ability to detect metabolically active lesions 

smaller than 8 mm, and FDG-PET isn’t recommended for lesions smaller than 8 mm due to high 

false negative rates.3,63 For those lesions between one and three cm in diameter, a recent meta-

analysis found FDG-PET to be accurate (sensitivity 94% and specificity 83%).64 Stage 1A and 

stage 2A disease are characterized by T1 tumors that are smaller than three cm in diameter.65 The 

much lower sensitivity observed in the ACOSOG trial may be caused by this population having 

more lesions less than three cm compared to the studies used in the meta-analysis. The accuracy 

in the 448 lesions smaller than three cm was 68%. If smaller lesions can be expected to arise from 

a screening population than a clinical population, then the lower sensitivity of FDG-PET may be 

more similar to that observed in our study than previously reported in the literature. 

 

The specificity of FDG-PET to diagnose lung cancer in this trial is similar to two previously 

reported surgical series from Iowa City, Iowa and Nashville, Tennessee.19,21 Both of these regions 

have a high prevalence of fungal lung disease. Croft and colleagues reported a sensitivity and 

specificity of 93% and 40% respectively in their smaller (N=74), Midwest cohort, with all 
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imaging performed at a tertiary referral center.21 Deppen et al reported a sensitivity of 92% and 

specificity of 40% in a patient population (N=279) predominantly from the south central U.S., 

with imaging performed at a variety of regional imaging centers. Both studies noted elevated 

numbers of false positive scans and lowered specificity. The underlying populations from each 

study had a high prevalence of endemic fungal lung disease and granulomas were the most 

common benign results observed. The current study also had a preponderance of granulomas.    

   

The results from this study differ from prior meta-analyses by Gould et al which reported a 

sensitivity and specificity of 96% and 78%, respectively and by Cronin et al who report similar 

results for combined FDG-PET/CT scans (94% and 83%, respectively). 45,64 The differences in 

our current analysis compared to the two meta-analyses may arise from a number of factors. First, 

verification bias may be present in our current study due to the entire ACOSOG study population 

having a pathologic diagnosis after surgical resection. Not all results reported in either meta-

analysis relied solely on participants having a pathological diagnosis. Verification bias may 

explain the observed low specificity but does not explain the lower sensitivity in this study when 

compared to previous reports.66  

 

The population of patients in the Z 4031 trail may also be different from those collected from 

publications used by the meta-analyses. The inclusion criteria of the Z4031 trial required clinical 

stage 1 disease prior to surgery. Other single institution series include those with known or 

suspected lung cancer, as well as, all pre-diagnosis clinical stages. A large number of sites 

contributing patients in the ACOSOG study are in regions of the United States with a high 

prevalence of fungal lung disease; and consequently, a large number of granulomas were 

observed in this series. This was not true for the sites used in the meta-analyses. Granulomatous 

disease and the fungal lung disease and tuberculosis that cause them are rare in Europe and Japan.  

In Gould’s meta-analysis 727 of the 1474 (49%) lesions included were from either Japan or 
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European populations. At least another 15% of the lesions in the meta-analysis were from regions 

of the US where granulomatous disease is rare. Finally, the FDG-PET scans in the ACOSOG 

study were performed at many different institutions as well as from community imaging centers 

and were read by a variety of radiologists. This lack of uniformity in test administration and 

reporting likely introduced variability in scanning quality and interpretation by the radiologists. 

The studies included in both meta-analyses where conducted primarily at academic medical 

centers by thoracic radiologist specialists and not in the community setting.  Overall, our current 

study reports a reduced sensitivity and specificity and reduced accuracy of FDG-PET to diagnose 

lung cancer when compared to published meta-analysis. 

 

No association was observed between false positive FDG-PET scans and historical fungal lung 

disease after controlling for an individual’s age and lesion size.  The fungal lung disease 

increased the likelihood of a false positive FDG-PET scan but not significantly (p=0.12). The 

issues surrounding use of the 1969 survey were described in detail above.  In summary estimating 

fungal lung disease with the 1969 national survey may lead to exposure misclassification due to: 

1) ecological fallacy of assigning individual exposure from a population average, 2) historical 

data are being applied to an older population that has more varied exposure profile than that 

surveyed, 3) there is some evidence of migration of fungal spores over time, and 4) the 

distribution of both population to more urban settings and urbanization of the landscape over the 

last 44 years likely reduced exposure. Thus, it is not possible to know the direction of bias within 

the ACOSOG study population due to the counteracting effect of the various possible 

mechanisms of misclassification. Available estimates of exposure are methodologically 

questionable and require independent verification.  

 

Except for cytopathology or microbiology testing of the lung lesion after surgery, there is no 

method of directly measuring fungal exposure.  The skin test used in the 1969 survey is no longer 
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in production. There are three possibilities to solve the problem of determining whether an 

individual was exposed to fungal lung disease: reproduce the old skin test, better estimate fungal 

spore reservoirs in soils with land cover modeling or find another radiographic or biological 

biomarker that indicates the lesion is a granuloma. Land cover mapping of environments 

preferential to fungus spores coupled with an individual’s movement over time in the landscape 

could estimate individual fungal lung disease exposure.  Such an estimate should be a significant 

improvement over assigning a prevalence based upon representation of the population average 

within the arbitrary political boundary of a county.  

 

Our study is one of the largest series evaluating the accuracy of FDG-PET to diagnose lung 

cancer in clinical stage 1 disease and represents a national sample with over 650 patients from 39 

cities in the United States. Cancer or benign disease was determined pathologically as all patients 

had a surgical resection. Because it is a clinical study in a large national sample from multiple 

institutions with multiple surgeons and interpreting radiologists, the results from this analysis are 

generalizable to clinical practice for early stage patients being evaluated for surgical resection.  

However, as our study is a secondary analysis of a clinical trial designed and powered for other 

purposes, biases associated with retrospective reviews of the FDG-PET results are possible. To 

reduce these biases, reviewers were used who had experience with these types of chart reviews, 

were blinded to the final pathology and staging and did not conduct the statistical analyses. 

Because FDG-PET scans were performed at multiple academic and community centers, there 

were no standard FDG-PET scan administration or interpretation protocols. We believe this is 

both a strength and weakness of the study as it increases the generalizability of the study 

nationally but the results may not be applicable to high volume centers with expertise in FDG-

PET scans.  In addition, this study does not address the role of FDG-PET scan for clinical staging 

of lung cancer. 
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In conclusion, the accuracy of FDG-PET scan to diagnose lung cancer in a national sample of 

patients with known or suspected clinical stage 1 NSCLC is less than previously published meta-

analyses. Clinicians must assess the pre-test probability of disease and consider whether a 

positive or negative FDG-PET scan will material alter their treatment decisions. Smaller, stage 1 

lesions less than three cm in diameter may reduce the diagnostic yield of FDG-PET to such an 

extent that FDG-PET should not be used for diagnostic purposes. A positive scan is more likely 

to be cancer, because the prevalence of disease in a population being evaluated by surgeons is 

generally above 60%. False positive scan are common. Therefore, results of FDG-PET should be 

interpreted cautiously when diagnostic or treatment decisions are being made for patients with 

suspicious pulmonary lesions. Further research is needed to determine the impact of fungal lung 

disease on false positive FDG-PET results. In addition, additional diagnostic tests should be 

developed and used to minimize false negative results when adenocarcinoma, carcinoid or 

bronchoalveolar cell tumors are suspected.   
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Table 1. Characteristics of MEDPAR inpatient discharges with lung surgery,  
  United States 2009 

Characteristic Cancer 
N=23050 

Benign Disease 
N=2,328 

Male sex (% of diagnosis) 11,619 (49.6) 1,266 (45.6) 

White race (%) 20,734 (90.0) 2,063 (88.6) 

Age category 

         <65 

      65-69 

      70-74 

      75-79 

      80-84 

         >84 

 

  2,129   (9.4) 

  6,088 (26.4) 

  5,989 (26.0)  

  5,011 (21.7) 

  2,950 (12.8) 

     883   (3.8) 

 

423 (10.7) 

687 (26.7) 

591 (25.9) 

389 (21.3) 

177 (12.3) 

  61   (3.7) 

 

Table 2. Descriptive Characteristics of ACOSOG Z4031 patients with FDG-PET Scans 

Characteristic Cancer 

N=566 

Benign 

N=116 

p-valuea 

Male (%)  253 (45)    54 (47)     0.71 

Caucasian (%)  517 (91) 113 (97)    0.03 

Mean Age (SD)    67 (10)      61 (11) <0.001 

Lesion Size mm (SD) 26 (0.61) 20 (0.95)  <0.001 

FDG-PET Avidb (%)  465 (82)    80 (69) 0.002 

a Continuous variable statistics use t-test (Age and Lesion Size) and 
binomial proportions test for differences in proportions (Gender, 
Race and FDG-PET Avidity). 
b The categories of avidity and their corresponding SUV are: Not 
avid/Not cancerous (SUV=0), Low avidity/Not likely cancerous 
(SUV 0.1 to 2.5), Avid/Likely cancerous (SUV 2.5 to 5) and Highly 
avid/Cancerous (SUV>5).  PET avid was the sum of Avid/ likely 
cancerous and Highly avid/Cancerous (SUV≥2.5).   
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Table 3. Pathology of false negative and false positive lesions 

 

 

Malignant 

FDG-PET Non-Avid 

(False Negatives) * 

Adenocarcinoma 62 

Squamous Cell 11 

Bronchoalveolar Cell 11 

Carcinoid/Neuroendocrine 9 

Other NSCLC  4 

Other Cancer 1 

Small Cell 1 

Unknown 2 

 

Benign 

FDG-PET Avid 

 (False Positives) 

Granuloma** 55 

 Benign Tumor 8 

Active Infectious disease*** 9 

Fibrosis 4 

Other 4 

*11 of the false negatives were <1cm 

**Granuloma includes histoplasmosis, atypical mycobacteria, blastomycosis, cryptococcus, 

coccidiodomycosis, aspergillosis and nonspecific granulomas.   

***Infectious disease includes active Mycobacterium tuberculosis and active pneumonia 
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Table 4. Accuracy of FDG-PET to diagnose cancer among patients with clinical stage1 
NSCLC 
 
FDG-PET Cancera Benign   

Avidb 465 80 PPVc  85%  95%CI: (82, 88)  

Not-Avid 101 36 NPVd  26%  95%CI: (19, 35)  

 

Sensitivity  82%   95%CI: (79, 85) 

Specificity  31%   95%CI: (23, 40) 

Prevalence 83% 95%CI: (80, 86) 

 

 

aDiagnosis was based upon pathological result of the surgically resected specimen.  
bFDG-PET avidity was defined by an SUV > 2.5 or moderate or intense uptake.   
cPPV = positive predictive value 
dNPV = negative predictive value 
 
 

 

Table 5. FDG-PET sensitivity and specificity by enrolling city with at least 25 participants 

 

N 

462 

Sensitivity (%) Cancer 

N=378 

Specificity (%) Benign 

N=84 

Durham, NC 41 91 33 25 8 

Birmingham, AL 111 89 98 15 13 

Philadelphia, PA 78 85 66 46 12 

Pittsburg, PA 68 78 60 25 8 

Charlottesville, VA 52 76 34 33 18 

Cincinnati, OH 31 73 22 33 9 

St. Louis, MO 54 68 47 29 7 

Los Angeles, CA 27 67 18 44 9 

Chi-square test  p = 0.03  p = 0.72  
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Figure 1. Fungal lung disease prevalence, histoplasmin skin was cross reactive with 
coccidioidomycosis and blastomycosis (from Edwards et al, 1969) 
 

 
 
Figure 2. CT scan of a spiculated granuloma in a patient presenting with hemoptysis 
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Figure 3. Consort diagram of benign disease after surgery for known or suspected lung 
cancer, 2009 MEDPAR  
 

 

Figure 4. Point prevalence of benign disease after lung surgery by state in 2009 MEDPAR 
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Figure 5. Enrolling site location with size of circle corresponding to participation volume – 
51 sites in 39 cities.  Individual dots are study participants residence by zip code at time of 
enrollment.  Dots are overlapping for those with identical zip codes. 
 

 
 
Figure 6. Accuracy of FDG-PET to diagnose lung cancer by lesion size in millimeters. 
Accuracy = (True Positives + True Negatives) / Total Population in size group  
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Chapter 4 

 

 

IV. Variation in FDG-PET Accuracy to Diagnose Lung Cancer: a meta-analysis 

 

4.1 Introduction 

 

Clinicians rely heavily on radiographic imaging to discover and non-invasively diagnose lung nodules 

between 3 and 30mm in diameter. Lung nodules smaller than 30 mm are frequently asymptomatic and 

discovered incidentally from non-invasive imaging for other medical indications. One-third of these 

incidentally discovered nodules are malignant in persons over age 35.1 Guidelines for the management of 

lung nodules suggest relying on imaging to assess the risk that a lung nodule is cancerous and using 

increasingly intensive and invasive tests as the likelihood of cancer increases.2,3 As described in previous 

chapters, if the lesion is larger than 8 mm and the individual’s assessed risk for lung cancer is between 5% 

and 60%, then F18-Fluorodeoxyglucose positron emission tomography combined with helical CT (FDG-

PET/CT) is suggested for non-invasive imaging to characterize the lesion’s metabolic activity.   

 

FDG is a glucose analog (deoxyglucose) attached to an 18-Fluorine radionuclide. When injected into an 

individual, the glucose is consumed by metabolically active tissue and the radionuclide preferentially 

accumulates in the active tissue. Metabolically active organs like the heart, brain and gonads concentrate 

the radionuclide.4 Positron emissions from the radionuclide are detected by a positron emission 

tomographic scanner ring. In a modern combination PET/CT scanner, the PET image is combined with a 

CT image that adds anatomical structures to the PET image. Normal lung tissue is not metabolically 

active and thus does not accumulate the radionuclide. Neoplastic cells, pneumonia and other 

inflammatory diseases, wounds, and active benign tumors like hamartomas and granulomas have higher 



126 
 

glucose metabolism than the surrounding normal tissue and thus accumulate the 18F radionuclide 

attached to the glucose analog within the lung.5,6 This differential in normal, compared to abnormal, 

metabolism makes FDG-PET scans useful in the diagnosis of lung cancer.4 Less active tissue including 

slow-growing adenocarcinomas or carcinoid tumors do not concentrate the radionuclide. Lesions with 

low metabolic activity and lesions smaller than 8 mm commonly generate false negative scans.  

 

FDG-PET is 90% to 94% accurate in the characterization of cancer or benign disease in lung nodules, 

with a sensitivity of 96% to 99% and specificity of 78% to 82% according to previous meta-analyses.7,8 

FDG-PET has been demonstrated to reduce non-therapeutic resections (e.g. resection for benign lesions 

or metastatic disease) by 17% to 20%9-12. For these reasons, FDG-PET is widely accepted for the clinical 

diagnosis and staging of lung cancer in patients with suspicious lung nodules.13,14 

 

Since the publication of the meta-analysis in 2001, FDG-PET has been adopted worldwide for the clinical 

diagnosis and staging of lung cancer. When a test becomes widely adopted and is applied outside the 

controlled environment of clinical trials, the diagnostic accuracy of the test is usually diminished.15 The 

observed decrease in accuracy may be due to practice variation and poor quality control. Poorer accuracy 

may also arise in sub-populations within which some test-influencing factor is prevalent. If the 

confounding factor was not prevalent in the original studies measuring the diagnostic accuracy of the test, 

then a form of selection bias may have occurred in the original research. 

 

 

Recent studies observed reduced FDG-PET accuracy in diagnosing lung cancer in patients with lung 

lesions where histoplasmosis and other fungal lung diseases are endemic.16,17 Histoplasmosis, 

coccidioidomycosis and blastomycosis are the most prevalent fungal lung diseases in the US and are 

common etiologies of lung granulomas. Histoplasmosis and blastomycosis are endemic across much of 

the Mississippi, Ohio and Missouri River valleys through southern Ontario while coccidioidomycosis is 
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prevalent in the southwest US.18 Some international studies also found reduced FDG-PET accuracy in 

diagnosing lung cancer.19,20 These studies occurred in areas of endemic tuberculosis which is the primary 

cause of lung granulomas outside of North America.18,21 We undertook a systematic review and meta-

analysis of publications describing FDG-PET accuracy to diagnose lung cancer among patients being 

evaluated with lung nodules or masses and published since the earlier meta-analysis by Gould and 

colleagues.8 This meta-analysis investigated whether FDG-PET accuracy varies between studies 

according to characteristics associated with the tests, settings, participants or methodology. Our meta-

analysis also specifically investigated possible variation in diagnostic test accuracy caused by locally 

endemic infectious lung diseases in study participants.  

 

4.2  Methods 

  

  Study Selection 

Studies evaluating individuals for possible lung cancer using FDG-PET or combined FDG PET/CT scans 

were reviewed, including published and unpublished studies. We searched Medline using the Pubmed 

interface, Embase and the New York Academy of Medicine Grey Literature Report. The literature search 

in each database included any of the terms lung cancer, pulmonary nodule, lesion, non-small cell lung 

cancer, or NSCLC. From this set of publications additional descriptors were required that included any of 

the terms diagnostic, positron emission tomography, PET, fluorodeoxyglucose, FDG, or combinations of 

those terms (see Appendix 2). Unpublished abstracts were reviewed and extracted by a research librarian. 

Publication could be in any language, but the abstract had to appear in English in one of the above 

databases to be included. Bibliographies from meta-analyses and literature reviews were examined 

individually and papers of interest were included in the final list of abstracts for review. A search was 

conducted for published studies between October 2000 and March 2011. Complete citations including 

authors,  Pubmed identification number, abstract and year of publication were imported electronically into 

a dedicated REDCap database for abstract review and data extraction.  
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Exclusion Criteria 

All published abstracts were examined independently by two reviewers for inclusion. If either investigator 

deemed a study worthy of consideration after reviewing the abstract, then the publication received 

subsequent review and data extraction. Studies with 100% cancer prevalence or 100% benign disease 

prevalence were excluded. Studies reporting staging using FDG-PET and not reporting the results of lung 

nodule scans were excluded. Case reports were excluded. Studies with 10 or fewer participants were also 

excluded. Those studies not reporting enough information to determine the number of true positive, true 

negative, false positive and false negative results were excluded. Studies that preselected specific 

histologies, tumor characteristics in imaging including minimum standard uptake value, ground glass 

opacity observed in CT prior to FDG-PET scan, or lesion location in the lung were excluded. Studies 

using only gamma camera PET scanners were excluded. One study could be excluded for multiple 

reasons. Unpublished abstracts not excluded based on the above criteria but could be matched to a 

subsequent publication were excluded. Publications whose population, in part or in whole, was included 

in multiple studies were excluded so that the population under study contributed only once to the meta-

analysis. Authors were contacted to determine the uniqueness of a study population when multiple studies 

that possibly included the same population were observed and eligibility was uncertain.   

 

  Study quality 

Two reviewers independently assessed the quality of each study according to prospective criteria using a 

modified QUADAS set of 12 questions.22,23 The questions addressed the technical quality of the index 

test, the technical quality of the reference test, the independence and accuracy of the test interpretation, 

and the sample size and population representation. To evaluate agreement between the raters for 

assessments of study eligibility, we calculated the observed percentage of agreement and the kappa 

coefficient for inter-rater reliability. Study quality was graphically reviewed and subanalysis was 

conducted on prospective versus retrospective studies. Studies that used only pathological diagnosis were 
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compared to studies that used both pathological and radiographic determination of diagnosis, and studies 

that blinded reviewers to patient demographic and history were compared to those that did not. 

 

  Data Synthesis and Analysis  

After abstract review, articles designated for full text review and data extraction were independently 

coded into a database by two reviewers. All articles were reviewed and coded by one investigator (SD). 

Two other investigators (CK and AM) divided the articles into two groups and independently reviewed 

the full text and extracted relevant data. Each publication was reviewed independently twice. 

Discrepancies in coding were reviewed by the investigators and an independent clinician. Changes were 

agreed upon by consensus. Additional data extraction beyond citation, authors and year of publication 

included: type of population studied, method of determining final diagnosis, method of determining 

benign disease, scanner type, patient demographics, reported presence of infectious lung diseases, 

infectious lung disease prevalence, and country or region where the participant population was recruited 

(see Appendix 2 for database metadata). The methodology of designating the PET scan results included 

the metric of measuring FDG-PET avidity, which was either standard uptake value (SUV), modified 

SUV, radiologist’s assessment, or other. The number of levels of risk or avidity and the SUV threshold 

used to differentiate benign and cancerous diagnosis of disease were recorded.  For each study a 2x2 

contingency table of test and disease result was created. Sensitivity and specificity, diagnostic odds ratio, 

and positive and negative likelihood ratios for each article were estimated, and 95% confidence intervals 

were calculated based upon normal approximations to the binomial distribution.   

 

FDG-PET test performance was estimated in a pooled fashion using forest plots, and hierarchical 

summary receiver operator curves (SROC) were generated. Study heterogeneity was quantitatively 

measured by Cochrane Q and I2 statistics and assessed graphically by forest plot and SROC curve. 

Publication bias was graphically charted by funnel plot and quantitatively measured by Deek’s 

Asymmetry Test. Sub-group analysis was conducted by forest plots.  
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Considerable heterogeneity is expected in diagnostic studies and a meta-analysis model was created to 

summarize test performance by using a bivariate random-effects binomial regression model. This model 

was formulated so that the test results were conditioned on the probability of disease. This approach 

allowed fixed and random effects modeling of clinically relevant variables. For variables with missing 

data, multiple imputation with chained equations was performed. Predictive mean matching models 

estimated all missing data. An imputed dataset burn-in was used and an additional 10 imputed datasets 

were then generated. These 10 datasets were used for all subsequent model estimation.  

 

Study characteristics likely to generate heterogeneity were chosen for sub-group analysis and included in 

the meta-analysis model as linear effects within the random and fixed effect model. Those characteristics 

included: endemic infectious lung disease in the study population, mean or median lesion diameter less 

than 2 cm, the method of diagnosis, method of blinding scan readers, and scanner type as a categorical 

variable. Other study characteristics measuring relative quality were examined in sensitivity analysis to 

determine if they materially changed the results of the meta-analysis model.   

 

Variables measuring domains of study quality examined in sensitivity analysis included whether the study 

was prospective or retrospective, the method of final diagnosis and year of publication. Publication year 

was examined in both a linear and non-linear fashion. To determine whether the diagnostic accuracy of 

FDG-PET has changed over time, we ordered the studies chronologically, estimated each study’s 

diagnostic log odds ratio and performed a cumulative meta-analysis.24 The diagnostic odds ratio is defined 

as true positives divided by the false negative results; this fraction is then divided by the ratio of false 

positive to true negative results (TP/FN) / (FP/TN). Analysis of clinical relevance was conducted by 

estimating positive and negative likelihood ratios for the combined studies and plotting the estimated 

likelihoods with 95% confidence intervals graphically. All analysis was performed with STATA (v12, 

College Station, TX).  
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4.3 Results 

 

  Study identification 

1,218 articles and 33 meta-analyses or reviews were found. An additional 13 articles were added from the 

meta-analyses or reviews for a total of 1,231 articles that met the search criteria. Upon initial abstract 

review, 1013 articles were excluded. An article could be excluded for multiple reasons, but the most 

common reason for exclusion during either portion of the review was 100% cancer prevalence (637) 

(Figure 1).   

 

Five abstracts were included from foreign language journals and four of these were translated into 

English.25-28 The remaining abstract that was not translated had enough information in the English abstract 

to estimate sensitivity and specificity and test accuracy.29 One unpublished conference abstract was 

included in the initial review and its later publication was used in the secondary review.16 Two hundred 

and eighteen studies received full review and 158 were excluded upon this secondary review. The 

remaining 60 studies met all inclusion criteria and were used for final analysis. The total number of 

participants among the 60 studies was 6,347 and median study participant size was 75 (IRQ: 47, 127). 

Cancer prevalence among all 6,347 participants was 63.8%. Individual study cancer prevalence varied 

from 21% to 90% with a median prevalence of 62.6% across studies. Twenty-five of the 60 studies (42%) 

were conducted prospectively. Seven of 60 studies documented endemic infectious lung disease in the 

population scanned.16,17,20,30-33  

 

In a pooled analysis of all 60 studies using an unadjusted random effects model, sensitivity was 89% 

(95% CI: 87%, 91%) and specificity was 74% (95% CI: 70%, 78%) (Figure 2). Pooled diagnostic odds 

ratio was 24 (95%CI: 18, 33). The unadjusted area under the hierarchical summary receiver operator 

curve was 0.90 (95%CI: 0.87, 0.93) (Figure 3). Significant heterogeneity beyond that explained by 
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differences in thresholds chosen for diagnosis within studies was observed across studies for both 

sensitivity, with I2 of 81% (95%CI: 77%, 86%), and specificity, with an I2 of 76% (95%CI: 70%, 82%). 

Therefore, estimates of pooled sensitivity and specificity and the SROC should be interpreted with 

caution as they did not reflect differences in population and the assumptions for pooling data were 

violated. Heterogeneity of diagnostic odds ratio measured by I2 was 98 (95%CI; 95, 99) and an estimated 

5% of observed variability in sensitivity and specificity likely arose from variation in cutpoints across the 

60 studies. I2 values greater than 75% are indicative of strong heterogeneity between studies.34 Published 

studies of FDG-PET scan accuracy included small studies reporting low to moderate accuracy, and 

Deeks’ asymmetry test was not statistically significant for publication bias (p = 0.18) (Figure 4). 

 

Differences in FDG-PET accuracy over time were examined with a cumulative analysis of the diagnostic 

odds ratio accumulated over the years of publication (Appendix 2, Figure 1). Studies were grouped into 

four three-year populations of studies and their diagnostic odds ratios pooled. No statistically significant 

differences in accuracy measured by diagnostic odds ratio were observed between any two groups of 

studies. A bivariate boxplot was constructed to examine the interrelationship between sensitivity and 

specificity in the unadjusted random effects model (Appendix 2, Figure 2). The slight oblong distribution 

of the covariance region indicates a slight preference for sensitivity of FDG-PET scan over specificity and 

an asymmetric SROC. 

 

  Meta-analysis model 

A random-effects logistic regression model was created.  Heterogeneity between studies remained (rho 

=0.08 95%CI: 0.04, 0.12) after accounting for variability between studies caused by whether the study 

reported granulomas arising from endemic infectious lung disease or the scanner type, whether or not 

readers were blinded to patient information, and the average size of the lung lesion in the cohort being 

less than or equal to 20 mm (Table 2). Missing data occurred in 25 (42%) studies. Multiple imputation 

was performed with chained equations. Missing data occurred in a monotone pattern between the two (3% 
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of the 60 studies) reported neither blinding method nor a mean or median lesion size.35,36 The multiple 

imputation model was estimated using pathological diagnosis of cancer or benign disease, the year of the 

study, the method of diagnosis, scanner type, study specific cancer prevalence, whether the study was 

retrospective or prospective, and whether the study reported locally endemic infectious lung disease. The 

point estimates of the meta-analysis model variables using complete case data were generally higher than 

those from the imputed data, but the overall results were similar (Table 2).  

 

Odds ratios for the interaction terms with cancer that are greater than one increase sensitivity; odds ratios 

less than one decrease sensitivity. Odds ratios for variables without interaction with cancer influence 

specificity inversely. Therefore, odds ratios increased specificity when their values were less than one, 

and odds ratios decreased specificity when their odds ratios were greater than one. The variable’s overall 

effect on sensitivity was determined by the sum of coefficients for direct effect and for the interaction 

between the variable and a cancer diagnosis. For example, studies using combined PET/CT scanners had 

higher specificity (OR 0.63; 95%CI: 0.43, 0.94) and sensitivity (OR 1.47; 95%CI: 1.21, 2.31) when 

compared to studies that used PET only variables, the method of blinding scan readers (17%), and mean 

or median lesion size (23%). Two studies scanners. The pooled sensitivity from the meta-analysis model 

was 89% (95%CI: 82%, 94%). Estimated pooled specificity was 75% (95%CI: 46%, 86%). 

 

Sub-group analysis 

Seven studies reporting infectious lung disease endemic to the local population had significantly lower 

specificity, 59% (95%CI: 46%, 70%; p<0.001)16,17,20,30-33 compared to a specificity of 77% (95%CI: 70%, 

86%) in the remaining 53 studies (Figure 5). A sensitivity of 91% (95%CI: 90%, 93%) for the endemic 

disease studies were slightly higher compared to the other 53 studies, specificity 90% (95%CI 82%, 

93%). One study by Chundru and colleagues was an outlier in terms of cutpoint choice.30  The Bryant 

paper exerted significant influence due to its large size (N=585) compared to the remaining 6 studies that 

had a combined population of 60632. Excluding these two studies resulted in a sensitivity of 90% (95%CI 
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87%, 93%) that was the same as the 53 studies that did not report endemic infectious lung disease. The 

remaining 5 studies had a much lower specificity (39%; 95%CI: 29%, 51%) and excluding these two 

studies from the pool of studies that reported endemic infectious lung disease removed all heterogeneity 

for sensitivity and reduced heterogeneity for specificity measured by I2 by half to 43%. The SROC for 

these five studies was 0.88 (95%CI: 0.85, 0.91) (Figure 6). 

 

Among the 24 studies reporting average or median lesion diameter less than or equal to 20mm, the 

estimated sensitivity was 88% (95%CI: 82%, 91%).20,26,28,32,37-56 The 19 studies with average or median 

diameter greater than 20 mm had higher sensitivity, 91% (95%CI: 87%, 94%)16,17,27,31,57-71 compared to the 

studies with smaller mean lesion size (Figure 7). Specificity of FDG-PET to diagnose lung cancer was not 

significantly different between studies based upon mean lesion size. Specificity was 71% (95%CI: 42%, 

83%) among studies with mean lesion size above 20 mm and 75% (95%CI: 54%, 85%) specificity for 

studies reporting mean lesion size less than or equal to 20 mm.  

 

Combined PET/CT scanners were significantly more specific (p=0.02) and sensitive (p<0.001) when 

compared to PET only scanners (Figure 8). Twenty-five studies reported using PET only scanners in their 

diagnostic processes.17,27,29,31,33,36,39-41,46-48,56-59,61,72-79 Twelve of the 25 studies were published between 

2000 and 2002; combined PET/CT scanners became clinically available in 2001. The sensitivity for PET 

only scanners was 87.3% (95%CI: 82%, 91%). The sensitivity for the 28 studies using combined PET/CT 

scanners was 90.5% (95%CI: 87%, 94%).16,20,25,26,28,30,32,35,37,38,49-55,65,66,69-71,80-85 The sensitivity for the 

seven studies that used a PET or PET/CT scanner in combination with another type of scan was 91.2% 

(95%CI: 88, 93) which was significantly (p=0.03) higher than PET only scanners and similar to PET/CT 

scanner sensitivity.42,45,63,64,68,86,87 The specificity for PET only scanners was 70% (95%CI: 56%, 79%) 

which was significantly lower (p=0.02) than the observed specificity for combined PET/CT scanners, 

77.5% (95%CI: 57%, 86%). The specificity reported for scanners that used PET and some other 

radiographic modality was 76% (95%CI: 71%, 80%) and was not significantly different from PET only 
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scanners (p=0.65). Among the other imaging modalities reported, three studies used single-photon 

emission computerized tomography (SPECT) as the alternative secondary scanning modality.45,63,64 Two 

reported using F18-fluorothyminidine (FLT) in conjunction with FDG.68,87 One used a sodium iodide 

detector86 and one created an algorithm of staggered PET scans and a model in conjunction with standard 

uptake values.42 

 

  Study Quality 

Thirty-five (58%) of the included studies were retrospective and 25 (42%) were prospective studies 

(Table1). There was no statistically significant difference in sensitivity (90% and 89%) or specificity 

(76% and 74%) based upon study enrollment method. Method of diagnosis was either entirely based upon 

pathological diagnosis or a combination of pathological diagnosis and radiographic surveillance. There 

was no statistically significant difference in sensitivity between studies reporting using pathology only 

(90%; 95%CI: 82%, 94%) and those using a combination of methods for diagnosis (89%; 95%CI: 82%, 

93%). Studies using only pathological diagnosis had lower specificity (70%: 95%CI: 48%, 86%) than 

those reporting using a combination of methods (77%; 95%CI: 48%, 88%), but the differences were not 

statistically significant. 

 

 

Twelve studies blinded the scan reader to both patient history and outcomes of previous tests (Figure 

9).25,28-30,33,41,53,56,60,84,86 Scan readers were not blinded to patient history and outcome in 37 studies (60%). 

Another 12 studies did not report enough information to determine the method of reader 

blinding.31,35,36,40,42,46,48,51,55,57,58,70 The twelve studies that reported blinding of readers had slightly lower 

sensitivity (88%; 95%CI: 82%, 92%) and specificity (70%; 95%CI: 57%, 86%) when compared to the 37 

studies that did not (sensitivity 90%; 95%CI: 84%, 94% and specificity 74%; 95%CI: 46%, 80%). This 

was the only study quality variable used in the meta-analytic model and multiple imputation was used to 

estimate missing data for blinding in those 12 studies not reporting method of blinding. 
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The quality metric that most studies failed to meet was patients receiving the same reference standard 

regardless of index test result (58% No). Many studies examined the test accuracy in the clinical setting. 

Since FDG-PET scans are part of the diagnostic work up and considered standard of care for diagnosing 

lung cancer, this result is to be expected. Twenty-seven studies had fewer than 25 cancer or 25 benign 

cases. Most often studies lacked sufficient benign cases, and this was reflected in the higher variability of 

specificity across all studies. Most studies (83%) emulated the use of the test as it would be used in 

practice.  

 

Agreement between reviewers for the initial examination for eligibility of the 1,231 abstracts was 

examined quantitatively. The observed agreement for study eligibility between the three reviewers was 

94.1%, and Cohen’s Kappa was 0.85 showing strong agreement between reviewers. Consensus was used 

when reviewers disagreed for the remaining data abstracted and agreement was not reviewed 

quantitatively. 

 

4.4  Discussion 

 

For the last decade molecular imaging with FDG-PET has become part of the diagnostic process for lung 

nodules suspicious for non-small cell lung cancer. The limitation of FDG in smaller lesions or slower 

growing cancers has been well documented.3,4,88 Recently, significant research efforts have been 

undertaken by radiologists to find a complement or a replacement for FDG-PET scans.87,89-93 To date, no 

replacement for FDG has been suggested for the diagnosis of lung cancer.2,88 Previous meta-analyses 

found FDG-PET to be highly sensitive and fairly specific in the diagnosis of lung cancer.7,8 In our study, 

the sensitivity (89%; 95%CI: 82%, 94%) was less than the median sensitivity (94.2%; 95%CI: 89.1%, 

97.0%) reported by Gould.8 Specificity (75%; 95%CI: 46%, 86%) was also less than the specificity 

observed (83.3%) in the earlier meta-analysis.8 The unadjusted model estimated summary receiver 
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operating curve (SROC) was 0.90 (95%CI: 0.87, 0.93) and this estimated SROC was similar to that 

reported by Gould and colleagues (SROC 0.91; 95%CI: 0.89, 0.93). However, under conditions of a 

correctly pooled meta-analysis, differences between studies should be illustrated by a choice of different 

combinations of sensitivity and specificity and movement along the curve. Thus, studies should cluster 

along the SROC curve and within the 95% prediction contour. The large dispersion of studies and large 

prediction area illustrates the wide variance or heterogeneity between studies (Figure 3). This dispersion 

of study points suggests multiple SROC curves for the different populations observed across the studies 

being evaluated. Thus, the plotted SROC curve does not comply with the assumptions for a single pooled 

SROC. Both the SROC curve in this study and in the Gould meta-analysis showed significant 

heterogeneity across studies.   

 

This meta-analysis had slightly greater variance in both sensitivity and specificity when compared to 

either earlier meta-analysis. Yet our meta-analysis had a pooled population that was four times larger than 

that reported in Gould and five times that reported in Cronin’s meta-analysis. The more sensitive nature 

of the systematic review that included studies comparing FDG-PET to other imaging modalities and 

seeking  the causes of the observed heterogeneity results in recently published articles are likely the 

causes of the greater variance in this study’s FDG-PET accuracy. Significant heterogeneity arose from 

three sources not related to the quality of study in this meta-analysis. They were the type of scanner used, 

the mean or median size of the lesion examined, and endemic infectious lung disease in the study 

population.  

 

The newer technology of combination PET/CT scanners has generally replaced the stand-alone PET 

scanner since their introduction into clinical practice in 2001.94,95 This analysis found significant 

improvement in sensitivity and specificity among the studies of combination PET/CT scanners when 

compared to studies using stand-alone PET scanners. Others have found the newer combined scanners to 

also improve non-invasive staging of lung cancer.96,97   
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Among the 24 studies that reported average or median lesion diameters of 20mm or less, pooled 

sensitivity was 88% which was significantly less (p=0.001) than the sensitivity (91%) in those studies 

whose mean or median diameter was greater than 20 mm. The populations undergoing FDG-PET scans in 

the studies reviewed had high prevalences of lung cancer; the median prevalence was 63% across all 

studies. The high prevalence of disease coupled with the low survival rate for lung cancer resulted in 

clinicians preferring sensitivity over specificity. The observed 3% difference in sensitivity appears 

clinically insignificant on its face; however, this seemingly small difference arising from studies with 

lesions less than 20mm in diameter and with 63% lung cancer prevalence translated into missing two 

cancers per 100 individuals scanned. High dose CT scans with less than 5 mm thin slices have a high 

sensitivity (95%), but the specificity of such scans is only 50%.98-100 The high specificity of FDG-PET 

scans is one of the primary reasons they have been recommended for the diagnosis of lung cancer. 

 

 

Seven studies reported confounding of FDG-PET specificity due to false positive granulomas generated 

by endemic infectious lung disease.16,17,20,30-33 The pooled specificity among the seven studies was 59%. 

Granuloma prevalence in the population with benign diagnoses within these studies ranged from 45%32 to 

over 75%.20 Studies reporting endemic infectious lung disease included the largest two individual studies 

(N=585 and 211) in the systematic review.16,32 Mean lung cancer prevalence in these seven studies was 

76.7% compared to the 60.7% prevalence observed in the remaining 53 studies. Two of the seven studies 

were retrospective16,31 and five studies determined diagnosis with pathology only.16,17,20,32,33  

 

Of the seven studies, Bryant et al. and Chundru et al. were identified as possible outliers. The article by 

Bryant and colleagues is of interest in that it was both the largest study in the analysis (9% of the total); it 

reported benign granulomas as a common diagnosis from false positive FDG-PET scans; and the reported 

sensitivity (93%) and specificity (75%) were the most accurate among the seven studies. The study by 
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Chundru and colleagues may not have been from consecutive patients and may have selected an enriched 

population with benign disease, which would cause it to be excluded from all analysis.  The novel method 

of assessing the likelihood of cancer in the Chundru was unique among all studies.30 For the five 

homogeneous studies SROC was 0.88 with a sensitivity of 90% and a specificity of 39%, which is a 

striking difference from the specificity of 59% when the Bryant and Chundru studies are included in the 

pooled estimates. One possible explanation for the difference in specificity results from the Bryant et al. 

paper can be found by comparing it to the study by Deppen et al. Bryant and colleagues derived their 

population from central and southern Alabama, and Deppen and colleagues reported on FDG-PET scans 

of the population immediately to the north. Both studies are from large tertiary academic medical centers 

and report results from a thoracic surgery population. But the prevalence of fungal lung disease in middle 

Tennessee, northern Alabama and southern Kentucky is twice that found in central and southern 

Alabama. Therefore, the prevalence of benign granulomas among those being evaluated was less in 

Bryant’s study. The lower specificity of FDG-PET scans in populations with endemic infectious lung 

disease puts into question the cost effectiveness of FDG-PET in the diagnosis of lung cancer when 

compared to thin slice, high dose CT scans with contrast in such populations. FDG-PET scans are over 

five times more expensive than high dose CT scans. High dose CT scans cost between $350 and $500 

compared to the $2000-$3000 for a FDG-PET scan.96,101 The strikingly low specificity in the seven 

studies and in the five more homogeneous studies raises the question of how such a sub-population could 

have been missed in prior meta-analyses. 

 

In the meta-analysis by Gould and colleagues, 727 of the 1,474 (49%) lesions included were from studies 

that reported on either Japanese or European populations. Fungal lung disease and tuberculosis that 

causes granulomas are rare in Europe and Japan. At least another 15% of the lesions in the meta-analysis 

were from regions of the US where granulomatous disease is rare. Similarly, in the meta-analysis by 

Cronin, 860 of the 1,190 lesions (72%) reported in the 22 studies reviewed were from populations where 

infectious lung disease was rare. One of the studies from Germany included in both meta-analyses 



140 
 

concluded that the prevalence of histoplasmosis and coccidioidomycosis was far lower in Europe and that 

their results may not translate to North America.102 These imaging centers that dominated the early 

reporting of FDG-PET results may have introduced a spectrum bias into the evaluation of FDG-PET 

scans to diagnose lung nodules. The lack of infectious lung disease in the populations being evaluated for 

lung cancer resulted in optimistic estimates of the test’s specificity. In regions where infectious lung 

disease is highly prevalent, the specificity of FDG-PET scans to diagnose lung nodules suspicious for 

lung cancer appears to be near 40%.   

 

These two conclusions have significant implications for clinicians. In individuals who are being evaluated 

for lung cancer and reside in a region of the US or in other countries with significant endemic infectious 

lung disease with lesions less than 20 mm, a FDG-PET/CT scan will not likely differentiate the lesion as 

cancer or benign disease. The false positive rate is high, which reduces the positive likelihood ratio and 

the false negative rate is also too high to elicit a differential diagnosis. The lower positive and negative 

likelihood ratios observed in this meta-analysis in populations with small nodules from areas with 

endemic infectious lung disease greatly limit the usefulness of FDG-PET. This limitation is illustrated in 

likelihood quadrant plots.   

 

A likelihood quadrant graph plots the positive and negative likelihood ratio of a test. The plot is divided 

into four quadrants based upon a designation of a “discriminating” test. A highly discriminating 

diagnostic test will have a positive likelihood ratio above 10 and a negative likelihood ratio less than 0.1 

(Upper Left Quadrant). Such a test, if negative, will definitively rule out disease due to its low negative 

likelihood ratio, and if positive will rule in disease due to its high positive likelihood ratio. The 2001 

meta-analysis reported a positive likelihood ratio of 7.1 and a negative likelihood ratio of 0.06. Tests with 

high positive likelihood ratios (>10) and high negative likelihood ratios (>0.1) are best at confirming 

presence of disease (Upper Right Quadrant) while tests with low positive likelihood ratios (<10) and low 

negative likelihood ratios (<0.1) best discriminate those without disease (Lower Left Quadrant). Studies 
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that have low positive likelihood ratios (<10) and high negative likelihood ratios (>0.1) are relatively poor 

tests for discriminating either those with or without disease (Lower Right Quadrant).   

 

For each of the plots (Figures 11 to 13) the pre-test probability of disease was the pooled lung cancer 

prevalence (63.8%) and each study is plotted according to its individually estimated positive and negative 

likelihood ratio. Figure 11 displays all the studies in this meta-analysis. As we can see, a majority of 

studies lie in the Lower Right Quadrant. The pooled likelihood ratios and their respective 95% confidence 

intervals (positive LR 3.56, 95%CI: 1.51, 6.71 and negative LR 0.15, 95%CI: 0.07-0.39) are the brown 

diamond and crosshairs bisecting the diamond. The high sensitivity of most studies placed them in the 

lower left quadrant. Only one study is in the preferred upper left quadrant.86 Figure 12 displays only the 7 

studies that reported endemic infectious lung disease. Except for the Bryant study (point 3) with its high 

sensitivity (93%)30 and low negative likelihood ratio (0.09) and the study by Chundru et al. (point 5) with 

its high specificity and high positive likelihood ratio (7.5)30, none of the other six studies were near either 

discriminating quadrant. The pooled positive likelihood ratio was 2.21 (95%CI: 1.67-3.10) and the 

negative likelihood ratio was 0.15 (95%CI: 0.10-0.22). For the clinician deciding whether to order a 

FDG-PET scan for a patient from an area with high prevalence of endemic infectious lung disease, there 

is little likelihood that the test will discriminate whether the individual has or does not have the disease.   

 

Lesions under 15 mm are known to reduce the sensitivity of FDG-PET in lung cancer diagnosis.8 The test 

is not recommended in nodules smaller than 8 mm3. In Figure 13, the 24 studies reporting a mean or 

median lesion diameter less than or equal to 20 mm had a pooled positive likelihood ratio of 3.75 

(95%CI: 2.07, 6.35) and a negative likelihood ratio of 0.16 (95% CI: 0.11, 0.30). Sixteen of the twenty-

four studies lie within the non-discriminating lower right quadrant and the combined likelihood ratios and 

their confidence intervals lie entirely within this quadrant as well. These two aspects of poor 

discrimination for FDG-PET scan, endemic infectious lung disease, and smaller lesion size should cause 

the clinician to question the need to order a FDG-PET scan when they occur in patients. In these 
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instances, when no indication of metastatic disease is evident in prior imaging, the additional expense of a 

FDG-PET scan may not be warranted as the results will not likely change the diagnostic plan to obtain a 

biopsy or watch for further indications of cancer or benignity.  

 

 

The limitations of this analysis are those common to any meta-analysis and include publication bias, 

selection bias, and heterogeneity of those studies included. While no significant publication bias was 

observed according to Deek’s funnel plot and test, this is not proof that no bias exists. Since FDG-PET 

has been well established for the diagnosis of lung cancer, there may be a bias for reporting poor results 

of FDG-PET accuracy in more recent years. Among those studies testing a novel radiopharmaceutical 

there may have been reporting or other study biases not well captured in this review which was more 

general in its nature. An argument can be made that studies reporting results from PET only scanners no 

longer reflect clinical practice and should not be included in this analysis.  However, we attempted to 

control for the shortcomings of PET only scanners in the random effects model so that the impact on 

FDG-PET accuracy in studies reporting results from smaller lesions and from regions with endemic 

infectious lung disease could be explored. To avoid selection bias, this meta-analysis reviewed 

unpublished studies and attempted to broadly review studies reporting use of FDG-PET to characterize 

lung nodules and evaluate them for lung cancer.   

 

Heterogeneity across studies reporting diagnostic test accuracy is to be expected. We attempted to control 

for such heterogeneity through a bivariate random-effects binomial regression model with a number of 

clinically important covariates. Significant differences between studies remained after including those 

covariates and as such, the pooled analysis is only an approximation. Another weakness of this meta-

analysis was the use of multiple imputations for two variables, the blinding of readers and lesion size. The 

missing data pattern was monotonic which allows most imputation methods to be statistically robust103, 

and there did not appear to be systematic bias in the mechanism of why either variable was missing. 
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4.5 Conclusion 

 

This meta-analysis found a reduction in FDG-PET specificity in certain localized populations that 

reported endemic infectious lung disease. FDG-PET may not offer differential diagnosis for lung cancer 

in individuals with lesions smaller than 20 mm or who have had significant exposure to granuloma 

causing lung infections. Therefore, it is likely that some populations exist that would not benefit from a 

FDG-PET scan for the diagnosis of a lung nodule suspicious for lung cancer. The effectiveness of FDG-

PET/CT scans compared to high dose CT scans in these populations may be much lower than previously 

reported.101      
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Table 1: Participant and Study Characteristics for Diagnosis of Pulmonary Nodules. 

Citation Study Method Scanner 
Type 

Number 
of scans 

Mean or 
Median Age 

% CA 
Prevalence 

Study 
Population 

Diagnosis 
Method Blinding 

Halter G, 2000 57 Prospective PET 67 44 63% Surgical Pathology Only NR 
Higashi K, 200140 Prospective PET 66 65 82% Radiological Pathology Only NR 
Hung G, 200158 Prospective PET 26 53 77% Undetermined Pathology Only NR 
Imdahl A, 200159 Prospective PET 87 61 79% Surgical Pathology Only Yes 
Menda Y, 200160 Retrospective PET 127 64 68% Radiological Pathology Only No 

Roman M, 200179 Prospective PET 61 67 90% Oncological Pathology & 
Observation No 

Sasaki M, 200136 Retrospective PET 94 NR 80% Radiological Pathology & 
Observation NR 

Skehan S, 200176 Retrospective PET 77 64 74% Radiological Pathology & 
Observation Yes 

Uppot R, 200177 Prospective PET 25 63.5 44% Radiological Pathology & 
Observation Yes 

Yang S, 200161 Not reported PET 56 65 63% Undetermined Pathology & 
Observation Yes 

Croft, D 200217 Retrospective PET 85 63.2 82% Pulmonary Pathology Only Yes 

Keith C, 200286 Retrospective  89 66.7 54% Pulmonary Pathology & 
Observation No 

Lee J, 2001 41 Prospective PET 71 NR 61% Radiological Pathology & 
Observation No 

Demura Y, 200363  Prospective PET/CT-
SPECT 80 65 63% Radiological Pathology Only Yes 

Pastorino U, 200378 Prospective PET 42 58 48% Radiological Observation* Yes 
Buck A, 200587 Prospective PET 43 61.9 40% Radiological Pathology Only Yes 

Kahn D, 200464 Prospective PET/CT-
Other 157 68 78% Radiological Pathology & 

Observation Yes 

Bastarrika G, 200538 Prospective PET/CT 25 54.7 52% Oncological Pathology & 
Observation Yes 

Chhajed P, 200572 Retrospective PET 74 64 69% Pulmonary Pathology & 
Observation Yes 

Ding Q, 2005 28 Prospective PET/CT 60 56 50% Radiological Pathology Only No 
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Citation Study Method Scanner 
Type 

Number 
of scans 

Mean or 
Median Age 

% CA 
Prevalence 

Study 
Population 

Diagnosis 
Method Blinding 

Halley A, 2005 45 Multi-arm 
Trial 

PET/CT-
SPECT 

 

28 59 64% Radiological Pathology & 
Observation 

Yes 

Herder GJ, 200573 Prospective PET 106 64 58% Oncological Pathology & 
Observation Yes 

Mamede, M 200533 Prospective PET 60 65 77% Surgical Pathology Only No 

Nomori H, 200544 Prospective PET 139 59 66% Surgical Pathology & 
Observation Yes 

Sachs S, 200583 Retrospective PET/CT 161 62.4 44% Pulmonary Pathology & 
Observation Yes 

Bryant A ,200632 Prospective PET/CT 585 66 85% Surgical Pathology Only Yes 
Christensen J, 
200639 Retrospective PET 42 66 60% Pulmonary Pathology & 

Observation Yes 

Ferran N, 200665 Prospective PET/CT 29 52 69% Radiological Pathology Only Yes 

Naalsund A, 200647 Prospective PET 29 62 69% Radiological Pathology & 
Observation Yes 

Yi  C, 200646 Prospective PET/CT 119 55 66% Radiological Pathology & 
Observation NR 

Kim SK, 200749 Retrospective PET/CT 42 67 69% Pulmonary Pathology Only Yes 
Núñez R, 200727 Prospective PET 83 69 86% Radiological Pathology Only Yes 
Orlacchio A, 200726 Prospective PET/CT 56 63 46% Undetermined Pathology Only Yes 
Tsunezuka Y, 
200748 Prospective PET 150 65 55% Surgical Pathology Only NR 

Veronesi G, 200784  
Retrospective 

- screening PET/CT 157 57 37% Radiological Pathology & 
Observation No 

Wang F, 200766 Prospective PET/CT 44 62 71% Radiological Pathology & 
Observation Yes 

Alkhawaldeh K, 
200842 Retrospective PET/CT 

Dual 265 67 27% Radiological Pathology & 
Observation NR 

Baram D, 200870 Retrospective PET/CT 313 62 69% Surgical Pathology & 
Observation NR 

Chundru S, 2008 30 Prospective PET/CT 62 68 21% Radiological Pathology & 
Observation Yes 
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Citation Study Method Scanner 
Type 

Number 
of scans 

Mean or 
Median Age 

% CA 
Prevalence 

Study 
Population 

Diagnosis 
Method Blinding 

Degirmenci B, 
200852 

Retrospective PET/CT 49 69 53% Radiological Pathology & 
Observation 

Yes 

Jeong S, 200850 Retrospective PET/CT 100 58 40% Radiological Pathology & 
Observation Yes 

Kim SC, 200831 Retrospective PET 158 70.3 65% Radiological Pathology & 
Observation NR 

Lan X, 200835 Prospective PET/CT 45 53 62% Radiological Pathology & 
Observation NR 

Ohno Y, 200851 Prospective PET/CT 202 72 75% Radiological Pathology & 
Observation NR 

Pauls S, 200869 Prospective PET/CT 261 64.3 83% Radiological Pathology & 
Observation Yes 

Tian  J, 200868 Prospective PET/CT 
Other 55 55 29% Radiological Pathology & 

Observation Yes 

Yamamoto Y, 
200885 Retrospective PET/CT 54 70 67% Radiological Pathology & 

Observation Yes 

Aukema T, 200980 Prospective PET/CT 114 63 84% Pulmonary Pathology Only Yes 

Kagna O, 2009 53 Retrospective PET/CT 93 67 40% Surgical Pathology & 
Observation No 

Ning X, 200929 Prospective PET 101 53.6 65% Undetermined Pathology & 
Observation No 

Ohba Y, 200954 Prospective PET/CT 130 NR 78% Pulmonary Pathology Only Yes 

Schillaci O, 200925 Prospective PET/CT 30 59.3 60% Radiological Pathology & 
Observation No 

Barnett P, 201037 Prospective PET/CT 375 66 54% Pulmonary Pathology & 
Observation Yes 

Chang C, 201081 Retrospective PET/CT 117 62 37% Radiological Pathology & 
Observation Yes 

Grgic A, 201082 Retrospective PET/CT 140 62 57% Radiological Pathology & 
Observation Yes 

Huang Y, 201071  Retrospective PET/CT 56 59 61% Undetermined Pathology & 
Observation Yes 

Sathekge M, 2010 20 Prospective PET/CT 30 60 47% Radiological Pathology Only Yes 
Deppen S, 201116 Retrospective PET/CT 211 64 80% Surgical Pathology Only Yes 
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Citation Study Method Scanner 
Type 

Number 
of scans 

Mean or 
Median Age 

% CA 
Prevalence 

Study 
Population 

Diagnosis 
Method Blinding 

Macdonald K, 
201156 Retrospective PET 54 65.2 48% Radiological Pathology & 

Observation No 

Ohno Y, 201155 Prospective PET/CT 76 73 57% Radiological Pathology & 
Observation NR 

NR= Not reported 

 

Table 1. Participant and Study Characteristics for Diagnosis of Pulmonary Nodules. (Continued) 

 

Citation Mean or 
Median Size 

Lesion Size Range Sensitivity 
(95%CI) 

Specificity 
(95%CI) 

Endemic Infectious Disease (Type, 
Country or Region) 

Halter G, 2000 57 NR 14-73 84  81 No 
Higashi K, 200140 20 8 to 63 81 (69-91) 42 No 
Hung G, 200158 26 12  45 95 50 No 
Imdahl A, 200159 30 NR 90 72 No 
Menda Y, 200160 33 5-100 94 76 No 
Roman M, 200179 NR NR 96 83 No 
Sasaki M, 200136 NR NR 81 79 No 
Skehan S, 200176 NR NR 95 85 No 
Uppot R, 200177 NR NR 91 71 No 
Yang S, 200161 NR 18-72 94 71 No 

Croft, D 200217 
 

44 7-170 93 40 
Yes 

(Histoplasmosis, Iowa, USA) 
Keith C, 200286 NR NR 92 95 No 
Lee J, 2001 41 18.5 7-30 88 75 No 
Demura Y, 200363  NR 11 to 60 76 56 No 
Pastorino U, 200378 NR NR 90 82 No 
Buck A, 200587 NR NR 94 73 No 
Kahn D, 200464 22 5 - 105 96 71 No 
Bastarrika G, 200538 13 8-20 69 91 No 
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Citation Mean or 
Median Size 

Lesion Size Range Sensitivity 
(95%CI) 

Specificity 
(95%CI) 

Endemic Infectious Disease (Type, 
Country or Region) 

Chhajed P, 200572 NR ≤ 30 94 70 No 
Ding Q, 2005 28 18 5-30 90 93 No 
Halley A, 2005 45 20 5-30 94 70 No 
Herder GJ, 200573 NR NR 97 71 No 

Mamede, M 200533 
 

NR NR 87 21 
Yes 

(Tuberculosis, Japan) 
Nomori H, 200544 20 10 to 30 58 77 No 
Sachs S, 200583 NR NR 90 83 No 

Bryant A ,200632 
NR 

<25 93 75 
Yes  

(Granuloma, Alabama, USA) 
Christensen J, 200639 15 7-25 88 76 No 
Ferran N, 200665 26 10-60 100 88 No 
Naalsund A, 200647 17 5-30 90 67 No 
Yi  C, 200646 20 6.2-30 96 88 No 
Kim SK, 200749 15 7-30 97 85 No 
Núñez R, 200727 25 10-120 85 41 No 
Orlacchio A, 200726 18 ≤ 30 77 100 No 
Tsunezuka Y, 200748 NR ≤ 20 76 64 No 
Veronesi G, 200784  20.5 NR 88 93 No 
Wang F, 200766 48 12-110 100 46 No 
Alkhawaldeh K, 200842 17.5 5-30 90 80 No 
Baram D, 200870 28.8 11-180 82 78 No 

Chundru S, 2008 30 
 

20 5-30 65 92 
Yes 

(Granuloma, Michigan, USA) 
Degirmenci B, 200852 16.5 NR 62 80 No 
Jeong S, 200850 21 9 to 30 88 77 No 

Kim SC, 200831 

 
 

29 2-110 87 53 

Yes 
(Inflammation and Granuloma, 

New York, USA) 
Lan X, 200835 NR NR 86 65 No 
Ohno Y, 200851 15.7 5-30 93 54 No 
Pauls S, 200869 41 7-140 96 87 No 
Tian  J, 200868 28.2 6-110 88 59 No 
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Citation Mean or 
Median Size 

Lesion Size Range Sensitivity 
(95%CI) 

Specificity 
(95%CI) 

Endemic Infectious Disease (Type, 
Country or Region) 

Yamamoto Y, 200885 NR NR 97 50 No 
Aukema T, 200980 NR NR 97 56 No 
Kagna O, 2009 53 16 3-30 77 83 No 
Ning X, 200929 NR NR 79 77 No 
Ohba Y, 200954 20 10-30 74 79 No 
Schillaci O, 200925 19 3.5-30 83 91 No 
Barnett P, 201037 17 NR 95 87 No 
Chang C, 201081 NR NR 88 89 No 
Grgic A, 201082 NR NR 94 63 No 
Huang Y, 201071  24 5-100 79 77 No 

Sathekge M, 2010 20 
 

19 NR 86 25  
Yes 

(Tuberculosis, South Africa) 

Deppen S, 201116 
 

29 5-140 92 40 (25-56) 
Yes 

(Histoplasmosis, Tennessee, USA) 
Macdonald K, 201156 16.5 4-30 58 89 (72-98) No 
Ohno Y, 201155 15.8 8-30 91(78-97) 52 (34-69) No 
 

NR= Not reported 
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Table 2. Meta-analysis bivariate random effects modela 

 
 Complete Case Analysis N=35 Multiple Imputation N=60 
 Odds 

Ratio 
95% CI p-value Odds 

Ratio 
95% CI p-value 

Cancer 24.30 14.4 - 40.9 <0.001 23.6 16.1 - 34.5 <0.001 
 Endemic Disease   3.51    1.96 - 6.27 <0.001 2.57 1.53 - 4.31 <0.001 
   Endemic Disease w/CA b   0.41     0.25 - 0.67 <0.001 0.50 0.34 - 0.75   0.001 
 PET only scanner   Ref  Ref Ref Ref Ref Ref 

    PET/CT scanner   0.49    0.29 - 0.84 0.01  .63 0.43 - 0.94 0.02 
    PET/CT scanner w/CA b      3.04    1.87 - 4.93 <0.001 2.31 1.64 - 3.25 <0.001 

    PET+Other scanner    1.28   0.59 - 2.78 0.53 .88 0.50 - 1.53 0.64 

    PET+Other w/CA   0.82   0.39 - 1.77 0.63 1.77 1.05 - 3.00 0.03 
 Lesion size ≤ 20mm   0.66   0.40 - 1.07 0.09 0.89 0.60 - 1.30 0.53 

  Lesion size ≤ 20mm w/CAb   0.63  0.41 - 0.99 0.04 0.73 0.53 - 1.00 0.05 
 Blinding of readers   1.73  1.01 - 2.96 0.05 1.53 0.98 - 2.38 0.06 

  Blinding w/CA   0.86  0.51 - 1.43 0.55 0.76 0.51 - 1.12 0.16 

 Rho for random effects   0.07  0.03 - 0.13 <0.001 0.08 0.04 - 0.12 <0.001 
a Odds ratios for interaction terms with cancer which are greater than one increase sensitivity and odds ratios less than one decrease 
sensitivity. Odds ratios for variables without interaction with cancer influence specificity inversely.  Odds ratios with values less than one 
increased specificity. Odds ratios with values greater than one decreased specificity.  The variable’s overall effect on sensitivity is 
determined by the sum of coefficients for direct and interaction term. 
b Interaction term for variable interacting with those diagnosed with cancer. 
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Figure 1. Consort diagram of systematic review of eligible studies. 
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Figure 2: Forest plot of individual study estimates using simple pooled sensitivity and specificity and study heterogeneity, (I2) 
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Figure 3.Summary ROC curve from the unadjusted random effects model and  
estimated 95% prediction contour within which the curve and summary operating  
point may be located. 
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Figure 4. Deeks’ Funnel Plot and Asymmetry Test for publication bias. No significant slope coefficient (p=0.18)  
was observed and generally random study diagnostic odds ration distribution is illustrative of likely lack of  
publication bias. When the regression line has a significant slope (p<0.05 or <0.10), then a relationship is observed  
between diagnostic odds ratio and the size of the study and indicated likely publication bias. 
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Figure 5. Sub-group analysis of 7 studies reporting endemic infectious lung disease, Forest plot.  Sensitivity, 
specificity and their confidence intervals are estimated using meta-analysis model with multiple imputation for covariates 
of reader blinding and mean lesion size. 
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Figure 6. SROC with random effects model for 5 studies reporting endemic infectious lung disease. 
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Figure 7. Sub-group analysis of studies with mean or median lesion size less than or equal to 20mm in diameter, Forest plot.  Combined 
sensitivity, specificity and their confidence intervals are estimated using meta-analysis model with multiple imputation for covariates 
of reader blinding and mean lesion size. 
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Figure 8. Sub-group analysis of studies reporting use of PET only scanners, Forest plot.  Combined sensitivity, specificity and their 
confidence intervals are estimated using meta-analysis model with multiple imputation for covariates of reader blinding and mean lesion 
size. Reported studies are only those without missing data. 
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Figure 9. Sub-group analysis of studies reporting blinding of readers to patient history, Forest plot.  Combined sensitivity, 
specificity and their confidence intervals are estimated using meta-analysis model with multiple imputation for covariates of 
reader blinding and mean lesion size. Reported studies are only those without missing data. 
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Figure 10. QUADAS quality metrics reported for each study by 2 reviewers. 
 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%
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test results?
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Figure 11. Likelihood ratio graph for all studies. Diamond and crosshatch is the estimated positive (3.56) and negative (0.147) likelihood 
ratio from the random effects meta-analysis model with covariates and the 95% confidence interval for positive (1.52, 6.71) and negative 
(0.07, 0.39) likelihood ratio. The gray diamond represents the results from the Gould 2001 meta-analysis. 
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Figure 12. Likelihood ratio graph for seven studies reporting endemic infectious lung disease. Diamond and crosshatch is the estimated 
positive (2.21) and negative (0.15) likelihood ratio from the random effects meta-analysis model with covariates and the 95% confidence 
interval for positive (1.67, 3.1) and negative (0.10, 0.22) likelihood ratio. 
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Figure 13. Likelihood ratio graph for seven studies reporting mean or median lesion size less than or equal to 20 mm. Diamond and 
crosshatch is the estimated positive (3.75) and negative (0.16) likelihood ratio from the random effects meta-analysis model with 
covariates and the 95% confidence interval for positive (2.01, 6.35) and negative (0.11, 0.30) likelihood ratio.
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Chapter 5 

 

 

V.  Summary and Future Directions 

This dissertation sought to help surgeons diagnose individuals with lung lesions suspicious for lung 

cancer.  Increasingly, clinicians rely on radiographic imaging for the identification and diagnosis of 

possible lung cancer, and they use the same imaging to determine the lesions’ characteristics non-

invasively. Discriminating lung cancer from other benign etiologies is complicated by benign 

granulomatous disease of the lung that can physically and metabolically appear similar to common lung 

neoplasms upon imaging. Using a retrospectively collected cohort of individuals being evaluated by 

thoracic surgeons for possible lung cancer, I estimated and internally validated a clinical predictive model 

using data available to surgeons at the time of operative evaluation. This highly enriched dataset contains 

multiple diagnostic tests, some of which were not available prior to this point in the diagnostic work-up of 

the patient.  

 

Variation in benign disease prevalence after lung surgery by state was also estimated in a separate 

analysis of Medicare administrative data. If a screening program using low dose CT scans to detect lung 

cancer is implemented nationally, then variation in the prevalence of benign disease after lung surgery 

may cloud the efficacy of screening and indicate possible local or systemic factors that gave rise to the 

observed variation. Given the importance of FDG-PET scans in the diagnostic process, factors that 

influence the accuracy of FDG-PET scans were explored through a systematic review and meta-analysis 

of the published literature and through secondary analysis of the nationally conducted ACOSOG Z4031 

trial in clinical stage 1 lung cancer. The association between observed benign disease and fungal lung 

disease exposure in the Medicare population and in a separate analysis of false positive FDG-PET scans 
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in the ACOSOG trial was conducted using historic surveillance information with fungal lung disease 

prevalence by county.  A summary of the results is outlined below: 

1. Currently available models for estimating lung cancer risk after the discovery of a lung nodule or 

lesion were calibrated to populations with far lower prevalence of disease than what was found 

among individuals being evaluated for surgical biopsy. The more extensive diagnostic data 

available to surgeons allowed for the estimation of a predictive model, the TREAT model, that 

better discriminated cancer from benign disease (AUC 0.89 95%CI: 0.86, 0.92) when compared 

to the Mayo model, using the Mayo model’s published point estimates (AUC 0.80: 95%CI: 0.76, 

0.85) as well as the Mayo model’s variables and re-estimating the coefficients of those variables 

within the Vanderbilt Lung Cancer Cohort (AUC 0.83; 95%CI: 0.79, 0.87). The TREAT model 

was better calibrated within the Vanderbilt Lung Cancer Cohort (Brier score 0.12) when 

compared to the Mayo model which estimated cancer likelihood using published point estimates 

(Brier score 0.17) and was the same for the Mayo model re-estimated within the Vanderbilt 

cohort (Brier score 0.12). Little optimism was observed after internal validation of the TREAT 

model using a bootstrap method with an AUC of 0.87 and Brier score of 0.13 (Chapter 2). 

 

2. Benign disease prevalence after lung surgery varied widely by state in the 2009 Medicare 

population. The mean prevalence across the US was 9.1% and the median state point prevalence 

was 8.9% (IRQ 7.8%, 10.9%). The lowest prevalence was observed in Vermont (1.2%) and the 

highest in Hawaii (25%). After excluding these two states as possible outliers, significant 

differences in benign disease prevalence after surgery remained (p=0.001) in the 48 states 

examined.  An in-hospital mortality rate of 2.1%  was observed among those patients with benign 

disease. No differences in estimated fungal disease exposure between patients with cancer and 

patients with benign disease were observed (p=0.90), although the measurement of infectious 

disease exposure using historical exposure in young white men was likely flawed. The cause of 
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observed differences in benign disease prevalence between states is not known but may be due to 

practice variation, work-up bias or locally endemic lung diseases. (Chapter 3). 

 

3. The accuracy of FDG-PET scans in diagnosing lung cancer was examined in the completed 

ACOSOG Z4031 trial. The trial included only those individuals with clinical stage 1 lung cancer. 

All participants underwent surgery and pathological diagnosis of their lung lesion. The clinical 

characteristics of the lesions evaluated in the ACOSOG trial were similar to those found in the 

recently completed National Lung Screening Trial, thus giving possible insight into the accuracy 

of FDG-PET scans in diagnosing lung cancer in screening populations. Among the 692 

individuals with usable FDG-PET scans, lung cancer prevalence was 83%. The sensitivity (82%; 

95%CI: 79%, 85%) and specificity (31%; 95%CI: 23%, 40%) of FDG-PET to diagnose lung 

cancer were much lower than that published in previous meta-analyses. Significant variation in 

sensitivity (p=0.03) was found between eight enrolling cities that recruited at least 25 

participants. The sensitivity varied from a low of 67% to a high of 91%. FDG-PET scan accuracy 

increased with increasing lung lesion size. A separate analysis found no association between false 

positive scan results and exposure to fungal lung diseases (histoplasmosis, blastomycosis and 

coccidiomycosis) using the historical prevalence of fungal disease during the 1960s to estimate 

fungal lung disease exposure. No association was observed between false positive scans and 

fungal lung disease after adjusting for age and lung lesion size on pre-operative CT scans. 

(Chapter 3).    

 

4. A systematic review of published and unpublished literature found 1,231 abstracts that 

investigated FDG-PET scan accuracy to diagnose lung cancer. After initial review, data 

abstraction was performed on 218 published articles. Articles that reported staging and not 

diagnosis, or included only lung cancer cases and not benign disease cases, were the most 

commonly excluded from the review. Sixty of the 218 abstracted articles were included for meta-
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analysis. Overall pooled sensitivity among the 60 reports was 89% (95%CI: 87%, 91%) and 

specificity was 74% (95%CI: 70%,78%); however, significant heterogeneity was observed across 

studies beyond what was expected from differences in threshold sensitivity and specificity choice 

between studies. A binomial random effects model was estimated that included covariates of 

clinical significance. Those covariates were: lesion size, scanner type, method of blinding 

radiograph readers and presence of endemic infectious lung disease. Heterogeneity between 

studies remained after inclusion of these covariates. The estimated sensitivity was 89% (95%CI: 

82%, 92%) and specificity was 75% (95%CI: 46%, 86%). Sub-group analysis found differences 

in FDG-PET accuracy by scanner type. PET only scanners (n=25 studies) had significantly lower 

sensitivity (88%) (p<0.001) and specificity (69%) (p=0.02) when compared to combined PET/CT 

scans (sensitivity 90% and specificity 78%, n=29 studies). In 24 studies with lung lesions less 

than or equal to 20 mm in diameter, sensitivity was 88% compared to 91% in the 19 studies 

whose mean or median lesion size was greater than 20 mm (p=0.05). The specificity was similar 

between the two groups. Seven studies from populations with high endemic infectious lung 

disease reported lower specificity (59%) and similar sensitivity (90%) to the 53 studies that did 

not report infectious lung disease in the studied population. The diagnostic accuracy of FDG-PET 

varied little across the 11 years reviewed, and no evidence of publication bias was observed 

across the 60 studies (Chapter 4). 

 

A clinically viable predictive model designed for surgeons evaluating lung nodules suspicious for lung 

cancer was successfully estimated and internally validated. Collectively this analysis also found that 

FDG-PET’s performance in diagnosing lung cancer was much poorer than previously published. These 

results call into question the use of this expensive, non-invasive test for diagnosis of smaller lung nodules 

or in populations where endemic infectious disease is high. This sensitive test remains an important 

predictor for lung cancer, and the use of FDG-PET for staging of lung cancer was not addressed in any of 



 
 

177 

 

the research conducted in this dissertation. The prevalence of benign disease after surgery was found to 

vary widely across the US, but the reasons for the observed variation are not well known. Practice 

variation and work-up bias, infectious lung disease induced granuloma, and other unknown factors are all 

possible causes. No association between fungal lung disease and false positive FDG-PET scans was 

observed. Understanding the factors that influence benign disease prevalence and patient selection prior to 

surgery are necessary steps in exploring relevant predictors of local variation to be added to a nationally 

applicable model to predict lung cancer for surgeons. This research raised a number of questions to be 

addressed in future work.  They include: 

1. The proposed TREAT model for lung cancer appears promising and should be externally 

validated. External validation would ideally be conducted in a variety of datasets that vary across 

the spectrum of fungal lung disease prevalence. This is an indirect method of determining 

whether a variable is missing from the model. One would expect that as the prevalence of fungal 

lung disease decreases, the accuracy of radiographic imaging to diagnose lung cancer increases. 

Thus the amount of variance explained by those variables collectively should increase. More 

complex time–to-event models or a linear model with interactions between variables and non-

linear relationships should be explored as more data becomes available. Finally, local factors like 

cancer prevalence at the practice level, availability of specialists, and diagnostic practice variation 

should be explored to make the model more robust in a national setting.    

 

2. The estimates for fungal lung disease exposure used in these analyses were indirect and likely 

flawed. The estimates used county and regional level prevalence measured in naval recruits from 

the 1960s. This young, healthy population who lived in one location for their entire lives was not 

representative of the much older and more mobile population being evaluated for lung cancer.  

Misclassification in the current analysis was likely. Current demographics and land use have 

changed greatly over the past 50 years and some evidence shows migration of fungal lung disease 
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to the upper Midwest. Since histoplasmosis and other fungal lung diseases reside primarily in 

soils, a land cover analysis using geographical information systems and available satellite 

imaging of land use could be conducted to estimate exposure based upon soil conditions, land 

cover impermeability and areas of possible exposure.  

 

3. Measurement of fungal lung disease exposure using land maps and historical prevalences are both 

indirect measurements of exposure and are subject to misclassification and ecological bias. Using 

serum and lung tissue samples on hand in the Vanderbilt Lung Spore repository, researchers can 

directly measure the presence of fungal lung disease in these biological samples and link those 

results to available imaging results. Such data would allow the estimation of the prevalence of 

fungal lung disease in false positive imaging. Subsequently, investigation into radiographic or 

biomarker evidence indicating presence of fungal lung disease or granuloma should be pursued, 

as currently available biomarkers for lung cancer diagnosis have achieved mixed results.
1
   

 

 

4. If fungal lung disease complicates the diagnosis of lung cancer and leads to higher rates of benign 

disease, then a natural experiment should be possible where clinicians trained in areas with low 

prevalence of infectious lung disease and who subsequently moved to areas with high prevalence 

of disease would exhibit a change in their patients’ benign disease prevalence over time. This 

change in practice would occur as clinicians learn how to incorporate fungal lung disease into 

their diagnostic process. Essentially, one would expect clinicians to learn how to recognize fungal 

lung disease over time, and their prevalence of benign disease after  procedures should decrease. 

Using contacts through clinical societies and training programs, we would contact individual 

surgeons and pulmonologists who were trained in areas where fungal lung disease is rare and 

currently practice in areas of high prevalence and measure their prevalence of benign disease over 

time. A similar experiment could be conducted for radiologists.  
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5. The causes of the observed variation in benign disease prevalence by state in the Medicare 

population are unknown at this time. The implementation of technological innovations like video 

assisted thoracotomy and robotic assisted surgery has increased the population who can receive 

surgical biopsy for the diagnosis of lung cancer. One center found their benign disease prevalence 

after surgery doubled with the implementation of the newer video assisted thoracotomy when 

compared to the older surgical technique.
2
 These and other factors that represent practice 

variation or work-up bias may influence the benign disease prevalence across states and over 

time. Prevalence variation between states and across years should be explored in national 

datasets. Understanding how broad changes to clinical practice and local factors influence benign 

disease prevalence in populations being evaluated for lung cancer can inform policy makers 

evaluating the efficacy of a national screening program for lung cancer. 

 

6. The systematic review and meta-analysis for FDG-PET diagnostic accuracy was conducted 

through 2001 and should be updated to include research published since 2011 and the results 

should be disseminated. Using the results of the meta-analysis, we will conduct a cost-

effectiveness study to determine whether populations exist that would not likely benefit from a 

FDG-PET scan to diagnose lung cancer. 

 

 

Given the results of the National Lung Screening Trial (NLST) and the support for screening healthy, 

high risk individuals with low dose computed tomography by clinical and patient advocacy groups, we 

will likely see screening for lung cancer in the near future. The implementation of a national screening 

program for lung cancer will increase the volume of CT-discovered lung anomalies requiring diagnosis by 

approximately 2.6 million, extrapolating from the results of the NLST.
3
 An estimated 80,000 diagnostic 

operations will be conducted as part of the diagnostic process. Surgeons evaluating lung nodules and 
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weighing the decision to undertake a diagnostic operation need a clinically useful model to help in that 

decision process. This research is the first step toward developing such a model. The initial results of the 

TREAT model are promising and should be externally validated. The impact of fungal lung disease on 

diagnostic imaging remains unclear. Whether the observed variances in FDG-PET scans arose from local 

practice variation or from endemic infectious lung disease was not established in this research. However, 

a growing body of evidence has shown that FDG-PET scans perform poorly in the diagnosis of smaller 

lesions or in regions where the patient population has been exposed to infectious lung disease. As the US 

moves toward screening for lung cancer with low dose CT scans, researchers should examine why the 

prevalence of benign disease varies in order to inform health policy and clinical guidelines as we seek to 

better diagnose and treat this deadly disease. 
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Appendix 1 

 

 

 

Appendix 1.1  Cluster analysis – missing data and missing data patterns 
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Appendix 1.2  Results of imputation for the 1st observation across 50 imputed datasets. 
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Appendix 1.2 Results of imputation for the 1st observation across 50 imputed datasets. 
(Continued) 
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Appendix 1.2 Results of imputation for the 1st observation across 50 imputed datasets. 
(Continued)

 

Appendix 1.3 Odds Ratios and confidence bars, using dichotomous differences or quartiles of 
continuous variables for assessing the effects on the odds of lung cancer. 
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Appendix 1.4 Nomogram for TREAT lung cancer model 

 

R code 

library("Hmisc") 
library("rms") 
library("boot") 
library("rpart") 
 
## get data from shared directory 496 observations and 30 variables 
predict.out.09062012 <- read.delim("F:/Thoracic Surgery Research/Common folder/Lung Cancer 
Cohort/Nodule study/predictive model/predict out 10162012.txt") 
 
describe (na.detail.response=TRUE, predict.out.09062012) 
s<-summary(cancer~ age + gender + bmi + smokeyn + pack_years + ct_size + spicul + upperlobe 
+ prev_cancer +  fev1_pred + anysympt + growthcat + petpos34, data=predict.out.09062012) 
s 
w<-latex(s) 
plot(s) 
par(mfrow=c(1,1)) 
nimp <- 50   ### number of imputation 
set.seed (5690) 
nx<-naclus(predict.out.09062012) 
plot(nx); naplot(nx) #Show patterns of NAs - missing data 
 
f  <- aregImpute(~cancer + age + wandw+ bmi + gender + growthcat+ smokeyn + pack_years + 
ct_size + spicul + upperlobe + prev_cancer +  fev1_pred + anysympt  + weight + petpos34, 
n.impute=nimp, x=TRUE, nk=3, tlinear=F, data=predict.out.09062012) 
par(mfrow=c(2,2)) 
print (f, digits=3) 
plot (f, nclass=NULL, type=c('ecdf','hist'),datadensity=c("hist", "none", "rug", "density"), 
diagnostics=T, maxn=1) 
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m<-lrm(is.na(petpos34) ~ cancer + age + wandw+ bmi + gender + growthcat+ smokeyn + 
pack_years + ct_size + spicul + upperlobe + prev_cancer +  fev1_pred + anysympt, 
data=predict.out.09062012 ) 
m 
 
#fit the logistic regression model assuming additive variables and non-linear pack years 
lungCA <- fit.mult.impute(cancer~ age + bmi + gender+rcs(pack_years,3) + ct_size + spicul + 
growthcat + upperlobe +  prev_cancer +  fev1_pred + anysympt + petpos34, lrm, f, 
data=predict.out.09062012) 
 
varcov0<-vcov(lungCA) 
serror0<-sqrt(diag(vcov(lungCA))) 
 
options(digits=3) 
post.anova<-anova(lungCA) 
par(mfrow=c(1,1)) 
plot(post.anova) 
print(post.anova) 
print(lungCA) 
exp(cbind(OR=coef(lungCA), confint.default(lungCA)))##OR and confidence interval using 
reported std errors 
 
 
lungCA.test<-lungCA[[3]] 
Ctrain<-lungCA.test [6]## Apparent C index 
Btrain<-lungCA.test [11]## Apparent Brier Score 
Btrain 
Ctrain 
 
##Heidi's OR and 95% CI code 
lrm_OR <- function(lrmin) { 
   
  temp <- data.frame("coef"=lrmin$coefficients) 
  temp$se <- NA 
  for ( i in 1:nrow(temp)) { 
    temp$se[i] <- sqrt(lrmin$var[i,i]) 
  } 
   
  temp$OR <- round(exp(temp$coef),3) 
  temp$LCI <- round(exp(temp$coef-1.96*temp$se),3) 
  temp$UCI <- round(exp(temp$coef+1.96*temp$se),3) 
  temp$CI <- paste(temp$LCI,temp$UCI,sep=" to ") 
  temp$p <- round(1-pchisq((temp$coef/temp$se)^2,1) ,4) 
  colnames(temp) <- c("Coef", "se", "Odds Ratio","LCI", "UCI", "CI","p-value") 
  print(temp[,c("Coef", "se", "Odds Ratio","CI","p-value" )]) 
   
} 
lrm_OR(lungCA) 
 
#complete case analysis 
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lungCA.complete <- lrm(cancer~ age + bmi + gender+rcs(pack_years,3) + ct_size + spicul + 
growthcat + upperlobe +  prev_cancer +  fev1_pred + anysympt + petpos34, 
data=predict.out.09062012) 
varcov0<-vcov(lungCA.complete) 
serror0<-sqrt(diag(vcov(lungCA.complete))) 
 
options(digits=3) 
post.anova.complete<-anova(lungCA.complete) 
par(mfrow=c(1,1)) 
plot(post.anova.complete) 
print(post.anova.complete) 
lungCA.test<-lungCA.complete[[3]] 
Ctrain.c<-lungCA.test [6]## Apparent C index 
Btrain.c<-lungCA.test [11]## Apparent Brier Score 
Btrain.c 
Ctrain.c 
 
#overfitted model 
overfit.lungCA <- fit.mult.impute(cancer~ age + bmi + gender+rcs(pack_years,4) + rcs(ct_size,4) 
+ spicul + growthcat + upperlobe +  prev_cancer +  rcs(fev1_pred,4) + anysympt + petpos34 + 
petpos34%ia%rcs(ct_size,4) + anysympt%ia%rcs(fev1_pred,4) + petpos34*growthcat + 
growthcat%ia%rcs(ct_size,4), lrm, f, data=predict.out.09062012) 
##Heidi's OR and 95% CI code 
lrm_OR <- function(lrmin) { 
   
  temp <- data.frame("coef"=lrmin$coefficients) 
  temp$se <- NA 
  for ( i in 1:nrow(temp)) { 
    temp$se[i] <- sqrt(lrmin$var[i,i]) 
  } 
   
  temp$OR <- round(exp(temp$coef),3) 
  temp$LCI <- round(exp(temp$coef-1.96*temp$se),3) 
  temp$UCI <- round(exp(temp$coef+1.96*temp$se),3) 
  temp$CI <- paste(temp$LCI,temp$UCI,sep=" to ") 
  temp$p <- round(1-pchisq((temp$coef/temp$se)^2,1) ,4) 
  colnames(temp) <- c("Coef", "se", "Odds Ratio","LCI", "UCI", "CI","p-value") 
  print(temp[,c("Coef", "se", "Odds Ratio","CI","p-value" )]) 
   
} 
lrm_OR(overfit.lungCA) 
overfit.lungCA.test<-overfit.lungCA[[3]] 
over.Ctrain<-overfit.lungCA.test [6]## Apparent C index 
over.Btrain<-overfit.lungCA.test [11]## Apparent Brier Score 
over.Btrain 
over.Ctrain 
 
#fit Mayo model in VUMC population for comparison of AUC and brier 
mayoCA<-fit.mult.impute (cancer~age + ct_size + smokeyn + spicul +  prev_cancer + upperlobe, 
lrm, f, data=predict.out.09062012) 
varcov.m<-vcov(mayoCA) 
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serror.m<-sqrt(diag(vcov(mayoCA))) 
 
options(digits=3) 
postm.anova<-anova(mayoCA) 
plot(postm.anova) 
print(postm.anova) 
exp(cbind(OR=coef(mayoCA), confint.default(mayoCA)))##OR and confidence interval using 
reported std errors 
print (mayoCA) 
 
mayoCA.test<-mayoCA[[3]] 
Cmayotrain<-mayoCA.test [6]## Apparent C index 
Bmayotrain<-mayoCA.test [11]## Apparent Brier Score 
Bmayotrain 
Cmayotrain 
 
#fit SPN model in VUMC population for comparison 
SPN.CA<-fit.mult.impute (cancer~age + ct_size + spicul + pack_years + prev_cancer + 
upperlobe + growthcat +petpos34 + hemotypsis, lrm, f, data=predict.out.09062012) 
varcov.m<-vcov(SPN.CA) 
serror.m<-sqrt(diag(vcov(SPN.CA))) 
 
options(digits=3) 
postSPN.anova<-anova(SPN.CA) 
plot(postSPN.anova) 
print(postSPN.anova) 
exp(cbind(OR=coef(SPN.CA), confint.default(SPN.CA)))##OR and confidence interval using 
reported std errors 
print (SPN.CA) 
 
 
SPN.CA.test<-SPN.CA[[3]] 
CSPN.train<-SPN.CA.test [6]## Apparent C index 
BSPN.train<-SPN.CA.test [11]## Apparent Brier Score 
BSPN.train 
CSPN.train 
 
###getting predicted probabilities for ROC analysis and bootstrap optimism 
 
phat.data<-data.frame(predict.out.09062012$study_id) 
   
for (j in 1:nimp) { 
compl<-predict.out.09062012 
  train.impute<-impute.transcan(f, imputation=j, data=predict.out.09062012, list.out=TRUE, 
pr=F, check=F) ##get imputed values using f model above and imputed dataset j 
  compl[names(train.impute)]<-train.impute  ###put imputed values and names into new dataset 
   
  imagefit<-predict(overfit.lungCA, compl, type="fitted") ##get prediction coefficients from 
lungCA model and estimated predicted cancer using withheld data in test that has become a 
complete cases dataset using imputation 
 phat.data<-cbind(phat.data,imagefit) 
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   } 
xhead<-c("study_id","phat1", "phat2","phat3", "phat4","phat5", "phat6","phat7", "phat8","phat9", 
"phat10","phat11", "phat12","phat13", "phat14","phat15", "phat16","phat17", "phat18","phat19", 
"phat20", "phat21", "phat22","phat23", "phat24","phat25", "phat26","phat27", "phat28","phat29", 
"phat30","phat31", "phat32","phat33", "phat34","phat35", "phat36","phat37", "phat38","phat39", 
"phat40", "phat41", "phat42","phat43", "phat44","phat45", "phat46","phat47", "phat48","phat49", 
"phat50") 
names(phat.data)<-xhead 
phat.data<-cbind(phat.data, phatbar=rowMeans(phat.data[,-1])) 
 
d<-datadist(compl) 
options(datadist="d") 
nomogram(overfit.lungCA) 
fsum<-summary(overfit.lungCA) 
fsum 
plot(fsum) 
plot (overfit.lungCA, xlim=c(0,1), ylim=c(0,1)) 
 
###getting predicted probabilities MAYO model for ROC analysis 
phatmayo.data<-data.frame(predict.out.09062012$study_id) 
 
for (j in 1:nimp) { 
  compl.mayo<-predict.out.09062012 
  trainmayo.impute<-impute.transcan(f, imputation=j, data=predict.out.09062012, list.out=TRUE, 
pr=F, check=F) ##get imputed values using f model above and imputed dataset j 
  compl.mayo[names(trainmayo.impute)]<-trainmayo.impute  ###put imputed values and names 
into new dataset 
   
  phatfit.mayo<-predict(overfit.lungCA, compl.mayo, type="fitted") ##get prediction coefficients 
from lungCA model and estimated predicted cancer  
   
  phatmayo.data<-cbind(phatmayo.data,phatfit.mayo) 
   
} 
 
names(phatmayo.data)<-xhead 
phatmayo.data<-cbind(phatmayo.data, pmayobar=rowMeans(phatmayo.data[,-1])) 
phatmayo.data 
 
pbar.out<-merge (phat.data, phatmayo.data,by="study_id") 
write.table(pbar.out, file="F:/Thoracic Surgery Research/Common folder/Lung Cancer 
Cohort/Nodule study/predictive model/imputed mayo treatover.ROC.csv", sep=",") 
 
plot (phatbar, pmayohat) 
 
##epidemiology only predictive model 
epi.ca<-fit.mult.impute (cancer~age +gender + rcs(pack_years, 4) + prev_cancer  + anysympt + 
hemotypsis + bmi, lrm, f, data=predict.out.09062012) 
varcov.m<-vcov(epi.ca) 
serror.m<-sqrt(diag(vcov(epi.ca))) 
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options(digits=3) 
postSPN.anova<-anova(epi.ca) 
plot(postSPN.anova) 
print(postSPN.anova) 
exp(cbind(OR=coef(epi.ca), confint.default(epi.ca)))##OR and confidence interval using reported 
std errors 
print (epi.ca) 
##imaging only model 
image.ca <- fit.mult.impute(cancer~  rcs(ct_size, 4) + spicul + growthcat + upperlobe +  
petpos34, lrm, f, data=predict.out.09062012) 
varcov.m<-vcov(image.ca) 
serror.m<-sqrt(diag(vcov(image.ca))) 
 
options(digits=3) 
postimage.anova<-anova(image.ca) 
plot(postimage.anova) 
print(postimage.anova) 
exp(cbind(OR=coef(image.ca), confint.default(image.ca)))##OR and confidence interval using 
reported std errors 
print (image.ca) 
 
#END TRAINING MODEL ESTIMATION 
nboot <- 500  ### number bootstrap resampling 
sum_c<-0 
sum_b<-0 
n<-nrow(predict.out.09062012) 
   
for (i in 1:nboot){ 
  x1<-sample(n,n,replace=T) #bootstrap with replacement from the original 
  x_train<-compl[x1,]  #training dataset 
  x_test<-compl[-x1,]   #test dataset from original dataset and not in training 
  
  ##estimated model with bootstrap training set 
  lungCA.train <- fit.mult.impute(cancer~ age +  gender+ bmi + rcs(pack_years,3) + ct_size + 
spicul + growthcat + upperlobe +  prev_cancer +  fev1_pred + anysympt + petpos34, lrm, f, 
data=x_train, pr=F) 
   
  ########### calculated C-index and Brier from bootstrap test set by each imputed dataset 
iteration 
  Ctest<-0 
  Briertest<-0 
     for (j in 1:nimp){ 
   
   
  pfit<-predict(lungCA.train, x_test, type="fitted") ##get prediction coefficients from 
lungCA.train model and estimated predicted cancer using withheld data in test that has become a 
complete cases dataset using imputation 
   
  ##get C-index from likelihood ratio test and get brier score within this imputation iteration 
  lrm_test <- lrm(x_test$cancer ~ pfit)  #c-index using current test     
  cindex.test<-lrm_test[[3]] 
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  if (lrm_test$coefficient[2]>0) Ctest_temp<-cindex.test[6]else 
  Ctest_temp<-1-cindex.test[6]  ##occasionally if predictive relationship is inverted, then c-index 
<0.5, adjusting for this possibility   
  Btest_temp<-cindex.test[11] 
  Ctest<-Ctest+Ctest_temp 
  Briertest<-Briertest+Btest_temp 
  
  }  
  sum_b<-sum_b+(Briertest/nimp) 
  sum_c<-sum_c+(Ctest/nimp) 
  
} 
 boot632.c<-(0.368*Ctrain)+(0.632*(sum_c/nboot)) 
 boot632.brier<-(0.368*Btrain)+(0.632*(sum_b/nboot)) 
boot632.c 
boot632.brier 
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Appendix 2 

 

 

 
/*********************************************************************/ 
/* Diagnosis for lung cancer *****************************************/ 
/*********************************************************************/ 
 
data nis.biopsy nis.no_biopsy; 
 set 'F:\PATH NAME HERE; 
 
array out1 PR1; 
 
 do over out1; 
 
  if out1 in: ('3220','3229') then lung_excision=1; 
 if out1 in: ('3230') then segmental_resection=1; 
 if out1 in: ('3240','3241','3249') then lobectomy=1; 
 if out1 in: ('3260') then disection_lung=1; 
 if out1 in: ('3290') then other_lung_excision=1; 
 if out1 in: ('3310') then lung_incision=1; 
 if out1 in: ('3320') then thora_lung_biopsy=1; 
 if out1 in: ('3328') then open_lung_biopsy=1; 
 
 
end; 
 
 if lung_excision=1 or segmental_resection=1 or lobectomy=1 or 
disection_lung=1 or other_lung_excision=1 or 
    lung_incision=1 or thora_lung_biopsy=1 then output nis.biopsy; 
    else output nis.no_biopsy; 
run; 
 
proc freq data=nis.biopsy; 
tables lung_excision segmental_resection lobectomy disection_lung 
other_lung_excision 
    lung_incision thora_lung_biopsy; 
run; 
 
data nis.lung; 
 set nis.biopsy; 
 
array out3 DX1; 
 
 do over out3; 
 
 if out3 in: ('1150','1151','1159') then histoplasmosis=1; 
 if out3 in: ('1160','1161','1162') then blastomycotic_inf=1; 
 if out3 in: 
('0110','0111','0112','0113','0114','0115','0116','0117','0118','0119') 
then tuberculosis=1; 
 if out3 in: ('1140','1143','1144','1145','1149') then coccidio=1; 
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 if out3 in: 
('1170','1171','1172','1173','1174','1175','1176','1177','1178','1179') 
then other_mycoses=1; 
 if out3 in: ('5130','5131') then lung_abscess=1; 
 if out3 in: ('135') then sarcoidosis=1; 
 if out3 in: ('51889') then other_lung_dis=1; 
 if out3 in: ('2123') then benign_neoplasm=1; 
 if out3 in: ('5198','51919') then other_dis_bronchus=1; 
 if out3 in: ('1124') then candida=1; 
 if out3 in: ('1620','1622','1623','1624','1625','1628','1629') 
then malignant_lung=1; 
 if out3 in: ('1630','1631','1638','1639') then 
malignant_pleura=1; 
 if out3 in: ('1970') then sec_malig_resp=1; 
 if out3 in: ('2312') then brunchus_insitu=1; 
 if out3 in: ('2357') then bronchus_uncertain=1; 
 if out3 in: ('2391') then bronchus_unsp=1; 
 if out3 in: ('7931') then coin_lesion_nodule=1; 
 if out3 in: ('4464') then wegeners=1; 
 if out3 in: ('0310','20961','7866') then other_benign=1; 
 if out3 in: ('20921') then other_malig=1; 
  
 end; 
 
array out4 DX1; 
 
do over out4; 
  
 if out4 in: ('5120','5121','5128') then pneumothorax=1; 
 if out4 in: ('5100','5109') then empyema=1; 
 if out4 in: 
('1980','1981','1982','1983','1984','1985','1986','1987','1988') then 
sec_malig_nos=1; 
 if out4 in: ('5163') then ipf=1; 
 if out4 in: ('515') then chronic_ipf=1; 
 if out4 in: ('1961') then intrathoracic_lymph_node=1; 
 if out4 in: 
('1971','1972','1973','1974','1975','1976','1977','1978') then 
sec_malig_resp_ex=1; 
 end; 
 
 
run; 
 
data nis.lung; 
 set nis.lung; 
 
/**********************************/ 
/*dichotomize age for calculations*/ 
/**********************************/ 
 
if age<18 and age ne "." then agec=0; 
if age>=18 and age ne "." then agec=1; 
if age=". " then agec="."; 
 
run; 



195 
 

Appendix 3 

 

 

 

Appendix 3.1 FDG-PET imaging in the diagnosis of lung cancer 

Last updated March 30, 2011 

Search terms Search resultS 

#1   lung neoplasms[mh] OR lung cancer[tiab] OR lung nodule[tiab] OR lung 
nodules[tiab] OR pulmonary nodule[tiab] OR pulmonary nodules[tiab] 
OR lung lesion[tiab] OR lung lesions[tiab] OR pulmonary lesion[tiab] 
OR pulmonary lesions[tiab] 

166,206 

#2  Positron-Emission Tomography[mh] OR fluorodeoxyglucose F18[mh] 
OR fluorodeoxyglucose F18[nm] OR FDG-PET[tiab] OR FDG-
PET/CT[tiab] OR positron emission tomography[tiab] 

39401 

#3 #1 AND #2 AND eng[la] AND humans[mh] AND 2000:2011[dp] 2244 
#4    #3 AND case reports[pt]  542 
#5 #3 AND letter[pt] 77 
#6   #3 AND review[pt] 370 
#7   #3 AND editorial[pt]  32 
#9   #3 AND comment[pt] 97 
#9 #3 AND practice guideline[pt] 9 
#10 #3 AND historical article[pt] 4 

#11 #3 AND news[pt] 4 

#12 #3 AND meta-analysis[pt] 11 

#13 #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 
OR #14 OR #15 

1026 

#14 #3 NOT #13 1218 
Key:  [la] language; [mh] medical subject heading; [nm] substance name; [pt] 

publication type; [dp] publication date; [tiab] keyword in title or abstract Science Citation 
Index Search, Web of Science Interface 
TS=(fdg) AND TS=(pet) AND TS=(lung) AND TS=((screen OR screening OR diagnosis 
OR diagnose OR diagnostic)) 

Refined by: Document Type=( PROCEEDINGS PAPER OR MEETING ABSTRACT ) 
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Appendix 3.1. Cumulative meta-analysis of diagnostic odds ratio. 
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Appendix 3. 2. Bivariate boxplot of log odds sensitivity and log odds specificity for all studies. 
Oblong shape of boxplot indicates threshold preference for higher sensitivity and an asymmetric 
SROC curve. 
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