HIGH MASS ACCURACY COUPLED TO SPATIALLY-DIRECTED PROTEOMICS FOR IMPROVED PROTEIN IDENTIFICATIONS IN IMAGING MASS SPECTROMETRY EXPERIMENTS

By

David Geoffrey Rizzo

Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Chemistry

August, 2016 Nashville, Tennessee

Approved: Richard M. Caprioli, Ph.D. Kevin L. Schey, Ph.D. John A. McLean, Ph.D. Michael P. Stone, Ph.D. Copyright © 2016 by David Geoffrey Rizzo All Rights Reserved This work is dedicated to my family and friends, who have shown nothing but support for me in all of life's endeavors.

ACKNOWLEDGEMENTS

"As we express our gratitude, we must never forget that the highest appreciation is not to utter words, but to live by them."

- John F. Kennedy –

There are many people I must thank for showing kindness, encouragement, and support for me during my tenure as a graduate student. First and foremost, I would like to thank my research advisor, Richard Caprioli, for providing both ample resources and guidance that allowed me to grow as a scientist. Our discussions about my research and science in general have helped me become a much more focused and discerning analytical chemist. I must also thank my Ph.D. committee members, Drs. Kevin Schey, John McLean, and Michael Stone, who have brought valuable insight into my research and provided direction along the way. My undergraduate advisor, Dr. Facundo Fernández, encouraged me to begin research in his lab and introduced me to the world of mass spectrometry. It was his motivation that drove me to pursue my Ph.D.

Every member of the Mass Spectrometry Research Center, both past and present, has guided me in some form or fashion. I would not be where I am today without the support of my "lab family", both on a personal and scientific level. Maureen Casey was always there to brighten up the lab with humor and support. I will certainly miss going to see "Mama Maureen" and have her fix any problem almost immediately. Dr. Peggi Angel advised me as a rotation student when I first came to Vanderbilt and I strived to emulate her passion for science. Amanda Hachey, Salisha Hill, and Dr. Kristie Rose in the Proteomics Core could not have been more accommodating as I plunged into the vast field of proteomics. They were always there to share their wisdom, helping me learn new techniques that will be invaluable in my career. Drs. Megan Gessel, Joshua Nicklay, Glenn Harris, Jeffrey Spraggins, and Boone Prentice have all been vital to my development as a scientist, acting as soundboards for ideas and encouraging me to enjoy successes and learn from failures. Whenever I needed to vent about science or life, they were there to listen. The fellow graduate students in lab who have seen me through this journey have left a lasting impression on me as well. They have always been there to lend a hand and I will truly miss seeing them in lab every day.

None of this would be possible without support from my family and friends. My mother, Robin, and father, Joe, encouraged me to pursue my love of science from an early age, even if that meant driving to enrichment programs early Saturday mornings. They taught me how to be a hard worker and independent person, but to never forget that no man is an island. Success and humility should never be mutually exclusive. My brother, Joey, and my sister, Meghan, continue to encourage me every day in everything that I do. Meghan has listened to the recap of my current state of life at day's end, and for that, I am eternally grateful. I cannot forget Rebecca Rosenberg, who has been a part of our family since the first grade. We have grown up together and will always be there to ground each other, no matter how far apart we are. My dogs, Marco and Polo, are the first things I see when I wake up and the last things I see when I go to bed. They've made the roughest days better, always showing excitement and affection when I get home (no matter how late that may be). Lastly, I would like to thank my entire extended family, including all of my aunts, uncles, and cousins. Though my grandparents could not be here to see this achievement, I know they would all be proud of such an accomplishment.

I must also acknowledge the funding support of grants from the NIH/NIGMS (5P41 GM103391-05 and 5R01 GM058008), the NIH Shared Instrumentation Grant Program (1S100D012359-01), and a fellowship from Aegis Sciences Corporation.

V

TABLE OF CONTENTS

DEDICATION	iii
ACKNOWLEDGEMENTS	iv
TECHNICAL ABBREVIATIONS	ix
LIST OF TABLES	xi
LIST OF FIGURES x	iii
Chapter	
I. INTRODUCTION & RESEARCH OBJECTIVES	1
Matrix-Assisted Laser/Desorption Ionization Mass Spectrometry Imaging Mass Spectrometry	1 3
Fourier Transform Ion Cyclotron Resonance Mass Spectrometry	5
Traditional Approaches to Protein Identification in IMS Experiments	11
II MALDI ETICD IMS OF INTACT DEOTEINS, LISING MASS ACCUDACY	14
TO LINK PROTEIN IMAGES WITH PROTEOMICS DATA	16
Introduction	16
Methodologies for MALDI FTICR IMS and Identification of Intact Proteins	17
Matrix Application	17 17
MALDI FTICR IMS	18
Histology	18
Protein Purification for Identifications	19
LC-Coupled Tandem Mass Spectrometry (ETD)	19
Data Analysis	20
MALDI FTICR IMS of Rat Brain as a Model System for Protein Imaging	21
Conclusions	30 20
	39
III. SPATIALLY-TARGETED EXTRACTIONS TO IMPROVE PEPTIDE	
IDENTIFICATIONS FROM MALDI FTICR IMS EXPERIMENTS	40
Introduction	40

	Methodologies for Trypsin Application, in situ Digestion, Incubation and	
	MALDI IMS for Peptides	41
	Tissue Preparation	41
	Trypsin Digestion	42
	Matrix Application	42
	MALDI FTICR IMS	43
	Peptide Extraction from Tissue	
	LC-Coupled Tandem Mass Spectrometry (HCD)	
	Data Analysis	44
	Delocalization	11
	MALDI FTICR IMS and Localized Pentide Analysis of Biological Samples	
	Conclusions	4 0 57
IV.	ADVANCED HYDROGEL TECHNOLOGIES FOR ENHANCED ON-TISSUE	
	PROTEIN DIGESTION AND IMPROVED SPATIAL LOCALIZATION	58
	Introduction	58
	Methodologies for Hydrogel Comparisons & Analysis	60
	Tissue Preparation and In-Solution Digests	60
	Hydrogel Workflow	61
	LC-Coupled Tandem Mass Spectrometry (HCD)	62
	Data Analysis	63
	Optimizing Trypsin Concentration for Efficient On-Tissue Digestion	64
	Exprise ting Smaller Hydrogels for More Leasting Analyte Extraction	69 00
	Comparison of Sample Collection Methods	80 85
	Differential Proteomic Analysis of Pat Carabellum Substructures	00 88
	Conclusions	
V.	CONCLUSIONS & PERSPECTIVES	93
	MALDI FTICR IMS of Intact Proteins	93
	Spatially-Targeted Extractions Coupled to MALDI FTICR IMS Experiments	94
	Advanced Hydrogel Technologies	95
	Future Research Directions	96
	Conclusions	97
Ap	pendix	
A.	Protein Identifications Unique to the "White Matter" Hydrogel	99
B.	Protein Identifications Unique to the "Molecular Layer" Hydrogel	107
C.	Protein Identifications Common to both the "White Matter" and "Molecular Laver"	

\sim .		Willie Middlei	una	Molecular Eager	
	Hydrogels				112

References	
Curriculum Vitae	144

TECHNICAL ABBREVIATIONS

2-NPG: 2-nitrophloroglucinol
9AA: 9-aminoacridine
ANOVA: analysis of variance
ACN: acetonitrile
ccRCC: clear cell renal cell carcinoma
CHCA: α-cyano-4-hydroxycinnamic acid
CID: collision induced dissociation
CMBT: 5-chloro-2-mercaptobenzothiazole
CT: computed tomography
Da: Dalton
DAN: 1,5-Diaminonapthalene
df: degrees of freedom
DHA: 2,5-dihydroxyacetophenone
DHB: 2,5-dihydroxybenzoic acid
ESI: electrospray ionization
ETD: electron-transfer dissociation
FID: free induction decay
FTICR: Fourier transform ion cyclotron resonance
H&E: hemotoxylin and eosin
HPLC: high-performance liquid chromatography
IHC: immunohistochemistry

IMS: imaging mass spectrometry ITO: indium-tin-oxide LC: liquid chromatographic LCM: laser capture microdissection MALDI: matrix-assisted laser desorption/ionization MRI: magnetic resonance imaging MS: mass spectrometry MS/MS: tandem MS Mr: molecular mass m/z: mass-to-charge ratio Nd:YAG: neodymium-doped yttrium aluminum garnet Nd:YLF: neodymium-doped yttrium lithium garnet ppm: parts per million RF: radio frequency RP: resolving power SA: sinapinic acid S/N: signal-to-noise ratio THAP: 2',4',6'-trihydroxyacetophenone TOF: time-of-flight TOF/TOF: time-of-flight/time-of-flight UV: ultraviolet

LIST OF TABLES

Table	Page
3.1. Protein Identifications from Rat Brain Regions Exclusively Observed by Microextraction Analysis	46
3.2. Protein Identifications from Resected Human ccRCC Tumor Regions Exclusively Observed by Microextraction Analysis	48
4.1. Average Numbers of Identified Trypsin Autolytic Peptides from Hydrogels with Different Trypsin Concentrations	59
4.2. Analysis of Variance (ANOVA) for Numbers of Identified Trypsin Autolytic Peptides from Hydrogels with Different Trypsin Concentrations	60
4.3. Tukey's Multiple Comparison Test for Differences in Numbers of Identified Trypsin Autolytic Peptides from Hydrogels with Different Trypsin Concentrations	60
4.4. Average Numbers of Protein Identifications from Hydrogels with Different Trypsin Concentrations	61
4.5. Analysis of Variance (ANOVA) for Numbers of Protein Identifications from Hydrogels with Different Trypsin Concentrations	61
4.6. Tukey's Multiple Comparison Test for Differences in Numbers of Protein Identifications from Hydrogels with Different Trypsin Concentrations	62
4.7. Gel Formulation Protocols for Each Polyacrylamide Percentage	63
4.8. Average Numbers of Protein Identifications from Hydrogels with Different Polyacrylamide Percentages	64
4.9. Analysis of Variance (ANOVA) for Numbers of Protein Identifications from Hydrogels with Different Polyacrylamide Percentages	64
4.10. Tukey's Multiple Comparison Test for Differences in Numbers of Protein Identifications from Hydrogels with Different Polyacrylamide Percentages	64
4.11. Molecular Weight Bins of Protein Identifications from 7.5% and 18% Polyacrylamide Hydrogels and the Uniprot Rat Proteome	66
4.12. Average Numbers of Protein Identifications from Control (Blank) Hydrogels	67

4.13. Average Numbers of Protein Identifications from the Analysis of a Technical Replicate Experiment Repeated Three Times	
4.14. Average Diameter Measurements of Hydrogels Fabricated with Different Diameter Biopsy Punches	
4.15. Average Numbers of Protein Identifications from Hydrogels Fabricated with Different Diameter Biopsy Punches	
4.16. Analysis of Variance (ANOVA) for Numbers of Protein Identifications from Hydrogels Fabricated with Different Diameter Biopsy Punches	
4.17. Tukey's Multiple Comparison Test for Differences in Numbers of Protein Identifications from Hydrogels Fabricated with Different Diameter Biopsy Punches72	
4.18. Average Numbers of Protein Identifications from Different Sample Collection Methods	
4.19. Analysis of Variance (ANOVA) for Numbers of Protein Identifications from Different Sample Collection Methods75	
4.20. Tukey's Multiple Comparison Test for Differences in Numbers of Protein Identifications from Different Sample Collection Methods75	
4.21. The 10 Highest Ranked Hydrogel-Mediated Protein Identifications Unique to the White Matter or Molecular Layer of the Rat Cerebellum	

LIST OF FIGURES

Figure Page
1.1. Structures of Common MALDI Matrices
1.2. Schematic Outline of a Typical IMS Workflow for Fresh Frozen Tissue Samples
1.3. Defining Mass Resolution and Mass-Measurement Precision
1.4. Fourier Transform Ion Cyclotron Resonance (FTICR) MS Signal Detection Process
1.5. Implementation of Laser Capture Microdissection10
1.6. Schematic Overview of 'Bottom-Up' and 'Top-Down' Approaches Employed for Tandem Mass Spectrometry-Based Protein Identification and Characterization
2.1. General Sample Preparation Workflow for MALDI FTICR Protein IMS and Subsequent Identification Strategies Using ETD Fragmentation
2.2. MALDI FTICR IMS Average Spectra of Intact Proteins from Transversally Sectioned Rat Brain Tissue
2.3. MALDI FTICR IMS Data Collected from Transversally Sectioned Rat Brain Tissue
2.4. Selected Ion Images of Identified Intact Proteins from Rat Brain Tissue Collected Using MALDI FTICR IMS
2.5. High Mass Resolution Top-Down ETD for the $[M + 8H]^{8+}$ Charge State of Thymosin $\beta4$
2.6. ETD LC-MS/MS Data for N-Terminally Acetylated Thymosin β ₁₀
2.7. ETD LC-MS/MS Data for ATP Synthase Subunit Epsilon
2.8. ETD LC-MS/MS Data for Histone H4 (N-Acetylated, K21 Dimethylated)
2.9. ETD LC-MS/MS Data for Histone H4 (N-Acetylated, K17 Acetylated, K21 Dimethylated)
2.10. Selected Ion Images of Identified Intact Proteins from Human clear cell Renal Cell Carcinoma Collected Using MALDI FTICR IMS

3.1. General Sample Preparation Workflow for MALDI FTICR Peptide IMS and Subsequent Identification Strategies Using CID/HCD Fragmentation	42
3.2. Utilizing MALDI IMS to Aid in the Assessment of Enzymatic Incubation Conditions	44
3.3. LC-MS/MS Analysis of Rat Brain Regions Sampled by Microextraction and Tissue Homogenization	45
3.4. LC-MS/MS Analysis of Resected Human ccRCC Tumor Regions Sampled by Microextraction and Tissue Homogenization	47
3.5. MALDI FTICR IMS of Rat Brain Peptides Identified By Localized Extraction Methods	50
4.1. General Hydrogel Fabrication, Usage, and Extraction Workflow	58
4.2. Average Numbers of Identified Trypsin Autolytic Peptides from Hydrogels with Different Trypsin Concentrations	59
4.3. Average Numbers of Protein Identifications from Hydrogels with Different Trypsin Concentrations	52
4.4. Average Numbers of Protein Identifications from Hydrogels with Different Polyacrylamide Percentages	55
4.5. Molecular Weight Distributions of Protein Identifications from 7.5% and 18% Polyacrylamide Hydrogels and the Uniprot Rat Proteome	56
4.6. Average Numbers of Protein Identifications from Control (Blank) Hydrogels	57
4.7. Average Numbers of Protein Identifications from the Analysis of a Technical Replicate Experiment Repeated Three Times	59
4.8. Differential Comparison of Protein Identifications from a Technical Replicate Experiment Repeated Three Times	59
4.9. Average Diameter Measurements of Hydrogels Fabricated with Different Biopsy Punch Diameters	71
4.10. Evaluating the Utility and Effectiveness of Smaller Diameter Hydrogels in a Proteomics Workflow	73
4.11. Average Numbers of Protein Identifications from Different Sample Collection Methods	76

4.12. Differential Proteomic Analysis of Rat Cerebellum Substructures	7	7
---	---	---

CHAPTER I

INTRODUCTION

Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

Mass spectrometry (MS) is a powerful technology that allows for the simultaneous measurement of multiple molecular species, with no *a priori* knowledge about the analyte required. Detection by MS is achieved by measuring an analyte's mass-to-charge ratio (m/z), thus requiring the analyte to be ionized and have a charge. One such method of ionization is matrix-assisted laser desorption/ionization (MALDI) MS. First developed in the 1980s,^{*l.* 2} MALDI is achieved by applying a matrix that absorbs at the wavelength of a laser and facilitates molecular desorption and ionization.³ Both UV and IR lasers have been shown to be successful in MALDI experiments,^{*4. 5*} though most current commercial instruments utilize UV lasers. Solid state lasers, such as frequency-tripled Nd:YAG and Nd:YLF, and nitrogen (N₂) lasers are by far the most common lasers used in MALDI experiments.

The mechanism(s) of ionization during the MALDI process are still being investigated and debated, with evidence to support both the lucky survivor and gas phase protonation models.⁶ Briefly, the lucky survivor model stipulates that analytes are incorporated into the matrix crystals with their respective charge states preserved from solution. The gas phase protonation model describes neutral analyte molecules undergoing gas phase collisions with charged matrix ions, leading to charge transfer and ionized analyte species. More extensive reviews can be found elsewhere for greater detail and empirical evidence.^{6, 7} There are a wide variety of matrices available that have shown to be effective in the analysis of different classes of biomolecules (Figure 1.1), such as dihydroxybenzoic acid (DHB) for lipids,^{8, 9} α -cyano-4-hydroxycinnamic acid (CHCA) for peptides,^{10, 11} and sinapinic acid (SA) for proteins.^{12, 13} Novel matrices are continuing to be discovered and synthesized to improve sensitivity and selectivity.^{14, 15} While most are small organic molecules, unconventional matrices, such as graphite,^{1, 16} nanoparticles,^{17, 18} and ionic liquids¹⁹⁻²¹ have also been utilized for specific analytes.

Figure 1.1. Structures of common MALDI matrices.(a) 2,5-dihydroxybenzoic acid – DHB; (b) 1,5-diaminonaphthalene – DAN; (c) 9-aminoacridine – 9AA; (d) 2,5-dihydroxyacetophenone – DHA; (e) 2-nitrophloroglucinol – 2-NPG; (f) 3,5-dimethoxy-4-hydroxycinnamic acid, or sinapinic acid – SA; (g) 2',4',6'-trihydroxyacetophenone – THAP; (h) 5-chloro-2-mercaptobenzothiazole – CMBT; (i) α -cyano-4-hydroxycinnamic acid – CHCA.

Imaging Mass Spectrometry

MALDI imaging mass spectrometry (IMS) enables the visualization of biomolecules in tissue by combining the sensitivity and selectivity of mass spectrometry with the spatially descriptive characteristics of classic histology. Originally described by Caprioli et al.,²² the technology has been applied to the analysis of a variety of analyte classes, including pharmaceuticals,^{23, 24} metabolites,²⁵ lipids,²⁶ peptides,^{11, 27} and proteins.^{28, 29}

Briefly, MALDI IMS experiments are performed by cutting fresh frozen or fixed tissue into thin sections and flat-mounting them onto a target. The sample is then coated with a MALDI matrix. This can be achieved by acoustically spotting matrix in discrete regions,^{30, 31} spraying matrix onto the sample surface manually or robotically,^{28, 32} or by employing dry coating techniques such as sublimation.^{9, 33}

During acquisition, virtually defined regions of the tissue are irradiated by a laser in an array of discrete points generating a mass spectrum at each x,y coordinate. Typically, image spatial resolution is defined by the size of the laser spot on target and the spacing between the points in the array. Spectral intensities for a given ion are then plotted across the array, creating ion images that can be compared with stained images of the tissue providing an additional molecular dimension to classical histologic analysis (Figure 1.1).³⁴

MALDI IMS of intact proteins is of particular interest because in a single experiment it has the potential to spatially describe the many endogenous proteoforms of a given protein, the various molecular forms which a protein product of a single gene can take (e.g., genetic variations and post-translational modifications).³⁵ However, protein imaging experiments have been hindered by the inability to structurally identify observed peaks, inhibiting the contextualization of IMS results with biological processes.

3

Figure 1.2. Schematic outline of a typical IMS workflow for fresh frozen tissue samples. Sample pretreatment steps include cutting and mounting the tissue section on a conductive target. Matrix is applied in an ordered array across the tissue section and mass spectra are generated at each x,y coordinate for protein analysis or tandem MS (MS/MS) spectra for protein identification. Reproduced from Ref. 32 with permission from Nature Reviews Cancer.³⁴

Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

First, the definitions of mass resolution and mass resolving power must be established. Mass resolution refers to the separation (typically in Daltons) between two peaks in a mass spectrum. In figure 1.3a, this is represented by $\Delta m_{50\%}$, the peak full-width at half-maximum of the peak height. Mass resolving power factors in the specific m/z of the peak, calculated by $(m/z)/\Delta m_{50\%}$.³⁶ The superior resolving power of the Fourier transform ion cyclotron resonance (FTICR) mass spectrometers has been used to investigate drugs and metabolites,³⁷ lipids,³⁸ and peptides³⁹ in biological tissue samples, where near-isobaric species are able to be differentiated.

Figure 1.3. Defining mass resolution and mass-measurement precision. (a) Two equalmagnitude mass spectral peaks of equal width, separated by one peak width at half-maximum peak height, $\Delta m_{50\%}$. Mass resolution is typically defined as $\Delta m_{50\%}$, whereas mass-resolving power is typically defined as m/ $\Delta m_{50\%}$. (b) Relation between the mass-measurement precision predicted for the average of many measurements, and the signal-to-noise ratio and number of data points per peak width for a single mass spectrum. Reproduced from Ref. 34 with permission from the Annual Review of Analytical Chemistry.³⁶

Additional figures of merit include mass precision and mass accuracy. Mass imprecision,

denoted as $\sigma(m)$, accounts for the deviation of many mass measurements in a root-mean-squared

fashion. The mass precision is therefore the inverse of this value, or $1/\sigma(m)$. Mass precision can be practically calculated for most instruments by:

mass precision =
$$c(\frac{S}{N})\sqrt{number of data points per peak width}$$

where c is a constant that is determined by the peak shape. For FT instruments, the spectral baseline noise is independent of the signal.⁴⁰ A prediction of precision can therefore be made, using the S/N and sampling of individual measurements (Figure 1.3b). The last figure of merit discussed is mass accuracy. Mass accuracy describes the exact molecular mass of a particular analyte and how well the instrument is able to measure that exact mass.⁴¹ Internal and external calibrations ensure minimal deviations from the expected measured value.⁴²

Fourier transform ion cyclotron resonance (FTICR) mass spectrometers are examples of instruments with high figures of merit that have become more prevalent in the realm of MALDI MS over the past few decades.⁴³⁻⁴⁵ These analyzers have remarkably high resolving power (10⁵ -10⁶) and high mass accuracy, typically on the order of low to single digit ppm errors.⁴⁶ Though the fundamentals are critical to fully understanding the power and scope of the instrument, they have been covered elsewhere at length.^{36, 46, 47} Therefore, only the key concepts will be discussed and how they pertain to imaging mass spectrometry in particular.

Two essential components of the FTICR are a strong, fixed magnetic field and a cell that traps ions within this field. Ions will adopt a circular trajectory when they come into contact with the magnetic field, orbiting within the cell. This can be explained by centripetal and centrifugal forces for a given magnetic field (B) and an ion velocity (v):

Centripetal force:
$$F = qvB$$

Centrifugal force:
$$F' = \frac{mv^2}{r}$$

The forces will eventually balance, stabilizing the trajectory:

$$qvB = \frac{mv^2}{r}$$
$$qB = \frac{mv}{r}$$

Once the ion completes a full rotation, in a circular trajectory of $2\pi r$ with a frequency

$$v = \frac{v}{2\pi r}$$

Therefore the angular velocity, ω , is equal to:

$$\omega = 2\pi v = \frac{v}{r} = \frac{q}{m}B$$

Now simplified, the frequency and angular velocity depend on the ratio of (q/m)B.⁴⁷ This rotation, or non-coherent cyclotron motion, occurs within an ICR cell consisting of three sets of plates positioned opposite of each other: two excitation, two trapping, and two detection plates. As their names imply, the trapping plates are meant to keep the ions within the ICR cell during the analysis. The two excitation plates lying in parallel to the magnetic field apply a radio frequency (RF) current to the cell to excite the ions and cause them to coalesce into coherent ion packets with wider radii.⁴⁸ The ions do not collide with the detection plates, as seen in other mass analyzers, but rather induce a charge as they pass by, allowing for many measurements of the same packet(s) of ions (Figure 1.4a). The resulting readout is in a time-domain signal (Figure 1.4b), and a fast Fourier transform is performed to convert it into a frequency-domain (Figure

1.4c). Finally, a calibration of frequency-to m/z produces a mass spectrum with mass-to-charge ratios being plotted (Figure 1.4d).

Figure 1.4. Fourier transform ion cyclotron resonance (FTICR) MS signal detection process. (a) Schematic representation of excited ion cyclotron rotation, (b) time-domain image-current signal from opposed detection electrodes, (c) frequency-domain spectrum obtained by fast Fourier transform of the digitized time-domain signal, and (d) Fourier transform–ion cyclotron resistance m/z spectrum obtained by calibrated frequency-to-m/z conversion. Reproduced from Ref. 34 with permission from the Annual Review of Analytical Chemistry.³⁶

Spatially-Directed Tissue Collection Methods

Successful tissue-based proteomics experiments require the adequate extraction of proteins from very complex biological matrices. Traditionally, this has achieved by homogenizing the tissue and performing solution-based extraction or enrichment prior to an LC-based separation.⁴⁹⁻⁵¹ This approach is very comprehensive in terms of total number of analytes detected, but any spatial component to the tissue is lost in the homogenization process. Furthermore, the dynamic range of proteins can span nearly seven orders of magnitude, while most modern mass spectrometers can only achieve up to four orders of magnitude in untargeted methods.⁵² Proteins in high abundance will overshadow lower abundance species if not adequately separated, causing missed protein identifications.

One method used to provide a spatial component to the collection process is laser capture microdissection (LCM). Samples are observed through a microscope and regions of interest are marked for collection. These can be large regions of tissue, individual cells, or even intercellular components.⁵³⁻⁵⁵ A finely-focused laser is used to then perforate the tissue region, then defocused to catapult the tissue into a collection device for down-stream analysis.⁵⁶ Figure 1.5 shows a schematic of this process as well as the very precise nature of collection achieved. The main disadvantage of this technology is the potential cost for equipment and upkeep. The required number of cells for a particular experiment is variable depending on the analyte, with rather large cell counts needed to successfully detect certain protein classes.⁵⁷

Liquid-based collection strategies have also been developed to maintain spatial localizations during extraction. Manual microextractions have been used to target substructures within kidney and brain sections, using common lab materials such as pipettes and gel-loading tips. ^{58,59} Liquid extraction surface analysis (LESA) and liquid microjunction surface sampling

are similar approaches that utilize droplet contact to robotically extract analytes from the surface.⁶⁰⁻⁶² Most applications of the technology have spatial limitations of around 1mm, though this a major focus for future development.⁶³

Figure 1.5. Implementation of laser capture microdissection (LCM). (a) Schematic of LCM collecting single cells from a tissue section. (b) Top – H&E stained section of tissue prior to LCM collection; Bottom – Same area post-LCM collection of 1.2 mm diameter circular region. Scale bar for (b) and (c) is 200 μ m. 1.5a was reproduced from Ref. 51 with permission from the International Journal of Molecular Sciences.⁵⁶

The recent development of gel-based extraction methods have shown success from many biological tissues, both fresh frozen and formalin-fixed, paraffin-embedded.^{64, 65} The polymers serve a dual purpose, both delivering reagents to the specific regions of tissue and extracting analytes for off-line analysis. The targeted digestion and extraction has even identified modified integral membrane proteins from brain sections.⁶⁶ Current fabrication methods create hydrogels with diameters of 1-3 mm, similar to both the manual and robotic liquid extraction methods.⁶⁷ A reduction of size while maintaining the high caliber of proteomic results would greatly improve the applicability of this approach in both the academic and clinical fields.

Traditional Protein Identification Approaches for IMS Experiments

Protein identification strategies fall into three general categories; bottom-up, top-down, and indirect identification (Figure 1.6).⁶⁸ Bottom-up experiments involve enzymatic digestion of the protein mixture prior to analysis by mass spectrometry.⁶⁹ For imaging experiments, proteins are digested on tissue by applying an enzyme and performing hydrolysis in a way that preserves the spatial integrity of the proteins. Matrix is then applied, and both MS and MS/MS analyses are performed directly from tissue.^{70, 71} Because MALDI ions tend to be singly charged, collision induced dissociation (CID) is often the method used for fragmentation. This approach can be advantageous because it extends the mass range of observable proteins by enzymatic digestion. Further, for most anatomic pathology examinations of biopsies, the tissue has been formalin fixed and paraffin embedded for preservation, and so bottom-up proteomics is the preferred procedure for analysis. The downside is that in practice, fragmenting peptides from tissue is hindered by the inability to effectively isolate ions from the considerable background signal and low fragmentation efficiencies for singly-charged peptides. Additionally, performing bottom-up

experiments in general may miss information regarding post-translational modifications (PTMs) if the modified peptide is not detected.

Figure 1.6. Schematic overview of 'bottom-up' and 'top-down' approaches employed for tandem mass spectrometry-based protein identification and characterization. The colored circles represent the amino acids of a protein, while the colored triangle and rectangle represent post-translational modifications. Reproduced from Ref. 47 with permission from the Royal Society of Chemistry.⁶⁸

Top-down strategies⁷² provide another approach for protein identification in IMS experiments. Here identifications are made through measurements of intact proteins followed by on-tissue MS/MS analysis. This approach is ideal for spatially describing the different proteoforms of endogenous proteins. However, similar to bottom-up experiments, on-tissue fragmentation of intact proteins is restricted by poor fragmentation efficiency for singly-charged proteins. Moreover, because most ions produced by MALDI have low charge states, electron-based fragmentation mechanisms (e.g., electron transfer dissociation) are often ineffective. Although work has been done to increase the charge state of ions generated from standards and tissue through matrix spotting approaches,⁷³ supercharging matrices^{74, 75} or "ESI-like" surface analysis techniques⁷⁶⁻⁸⁰ (e.g., LAESI, DESI, and MALDESI), further development is needed to improve image quality and sensitivity.

Indirect identification is an alternative approach that uses secondary information such as mass accuracy and spatial localization to link separate IMS and proteomics experiments. Because differences in preferential ionization between ESI and MALDI often lead to different peptides being detected, a direct link can be made between the two experiments by performing the analysis on intact proteins. Typically, protein images are collected using a linear time-of-flight (TOF) MS to accommodate for the relatively high *m*/*z* range. Then, with a serial section, proteins are extracted and analyzed using either top-down or bottom-up LC-ESI MS/MS based identification strategies. Protein extraction can be performed by homogenizing the entire section^{81, 82} or by using spatially directed extraction technologies.⁸³ A major advantage of indirect identification is that it allows both the imaging and proteomics experiments to be operated under optimal conditions maximizing the sensitivity of both technologies. However, protein imaging using MALDI TOF MS does not provide the resolving power and mass accuracy

necessary to correlate imaging data to proteomics experiments with high confidence. Mass accuracies for MALDI TOF measurements are particularly skewed when collecting data directly from tissue, which introduces sample height differences and can promote surface charging attributable to the insulating nature of many tissues. In practice, the mass accuracy of a MALDI TOF protein imaging experiment is limited to 20–100 ppm, making identification based on mass accuracy unachievable. These negative sample surface effects on spectral quality are minimized when using decoupled mass analyzers such as FTICR, Orbitrap, and orthogonal TOF mass spectrometers.

Summary and Research Objectives

The objectives of this dissertation are to develop robust analytical methods of MALDI FTICR IMS, both or peptides and intact proteins. This will be achieved through sample preparation and instrumentation improvements. The proper combination of matrix and solvent can be pivotal to improving signal from imaging experiments. An added benefit of the FTICR is that the source is at reduced pressure, meaning that volatile matrices that have shown promise on other platforms would be perfectly suited for the FTICR. There is a much lower risk of matrix subliming off of the sample and the ion optics are situated in a way that matrix accumulation would not interfere with the signal for longer acquisition time imaging runs. By incorporating high mass resolution and accuracy into a protein imaging platform, new biology can be investigated by looking at overlapping proteoforms or post-translationally modified species. Though traditionally mass-limited, the FTICR mass spectrometer has the capability of unambiguous protein identification by accurate mass when used in tandem with accurate mass fragmentation information. Additionally, the implementation of spatially-localized extraction methods for protein identification has shown promise from previous iterations, but needs to be thoroughly evaluated and characterized before being incorporated into a routine assay. Hydrogel technologies are currently much larger than is required to accurately target many biological features. By improving the formulations, enzyme concentrations, and other factors within the hydrogel process, they will be able to be used in true histology-direct workflow with minimal interferences from surrounding regions of tissue.

Objective 1: Develop methods for direct tissue analysis of proteins on high-performance instrumentation such as FTICR mass spectrometers.

Objective 2: Assess the current methods of IMS-based protein identification by top-down and bottom-up methodologies, and improve identification confidence by incorporating spatially-driven proteomics.

Objective 3: Develop advanced hydrogel technologies capable of achieving sub-millimeter diameters while maintaining robust proteomic signal.

CHAPTER II

MALDI FTICR IMS OF INTACT PROTEINS: USING MASS ACCURACY TO LINK PROTEIN IMAGES WITH PROTEOMICS DATA

Introduction

Large portions of this section were adapted from J. M. Spraggins et al., *Journal of the American Society for Mass Spectrometry*, Copyright 2015 Springer⁸⁴ and J. M. Spraggins et al., *Proteomics*, Copyright 2016 John Wiley & Sons, Ltd.⁸⁵

Fourier transform mass spectrometers, such as Fourier transform ion cyclotron resonance (FTICR)⁴⁷ and orbital trapping (Orbitrap),^{86, 87} provide the highest mass resolution and accuracy of all mass analyzers. For imaging experiments, these high performance instruments routinely produce ion images with mass resolving powers greater than 50,000 ($m/\Delta m$ 50%) and mass accuracies better than 5 ppm.^{25, 37, 88} These instruments are extremely valuable for tissue analysis where high resolving power is necessary to distinguish endogenous nominal isobars and high mass accuracy allows for more robust identification. Recently, accurate mass measurements (<5 ppm) have been shown to greatly increase the reliability of peptide identification by dramatically reducing the number of false positive identifications for IMS experiments using indirect identification strategies.^{89, 90} FT-based IMS in combination with LC-ESI MS/MS has also proven to be useful for small molecule⁹¹ and lipid analysis.⁸⁸ Neither FTICR nor Orbitrap platforms have traditionally been used for MALDI IMS of intact proteins because FT-based platforms have been m/z range limited. However, modern instrumentation (source ion optics) and access to

higher magnetic fields has dramatically improved the sensitivity and throughput of FTICR platforms at higher mass ranges.

Methodologies for MALDI FTICR IMS and Identification of Intact Proteins

Tissue Preparation

Fresh frozen rat brains and human clear cell renal cell carcinoma (ccRCC) samples were investigated due to the extensive literature surrounding protein IMS of these tissues using other mass analyzers and platforms.⁹²⁻⁹⁵ Frozen tissue was sectioned to 10-12 microns and mounted onto conductive Indium-tin-oxide (ITO) coated slides (Delta Technologies, Loveland, CO, USA). Tissues were washed to remove interfering lipids and salts in sequential washes of 70% ethanol (30 seconds), 100% ethanol (30 seconds), Carnoy fluid (6:3:1 ethanol: chloroform: acetic acid) (2 minutes), 100% ethanol (30 seconds), ddH₂O (30 seconds), and 100% ethanol (30 seconds).⁹⁶

Matrix Application

Matrix was applied using a TM Sprayer (HTX Technologies, Carrboro, NC, USA) with 15 mg/mL DHA in 9:1 ACN:ddH₂O with 0.2% TFA. Sprayer conditions include a flow rate 0.1 mL/min, nitrogen flow of 10 psi, spray temperature of 80°C, a spray velocity of 1,100 mm/min, 4 passes with offsets and rotations, and 9:1 ACN:ddH₂O as the pushing solvent. Samples were rehydrated as previously described ⁹⁷ at 37°C for 3 minutes with 1 mL of 50 mM acetic acid as the rehydration solvent. This aids in the extraction of analytes into the matrix layer as the matrix recrystallizes.

MALDI FTICR IMS

High mass resolution imaging experiments were performed using a 15T Bruker MALDI FTICR mass spectrometer (Bruker Daltonics, Billerica, MA, USA). The instrument is equipped with an Apollo II dual MALDI/ESI ion source and a Smartbeam II 2kHz Nd:YAG (355nm) laser. Data were collected from m/z 1,100 – 25,000 with a data size of 1MB per spectrum. Special tuning of the Funnel RF amplitude (250 Vpp), accumulation hexapole (1.4 MHz, 1950 Vpp), transfer optics (1 MHz, 380 Vpp), time of flight delay (2.8 ms), and ICR cell (Sweep excitation power: 48%) were required for high m/z analysis. Although all parameters play a role in improving ion transmission through the source ion optics, tuning of the accumulation hexapole had the greatest impact on ion signal for high mass ions. External calibration was performed prior to analysis using CsI clusters. Ion images consisted of 13,596 pixels and 14,632 pixels for rat brain and ccRCC samples respectively. All protein identifications were made using mass accuracy (<5 ppm) of the highest intensity isotope by comparing MALDI FTICR IMS data to previously reported results or the compiled MSiMass database.⁹⁸

Histology

Immediately following MALDI IMS experiments, matrix was removed from samples using 100% ethanol and samples were hydrated through graded ethanol to ddH₂O prior to using the Masson's Trichrome stain kit. Briefly, samples were incubated in a mordant solution, and then immersed in a Weigert's hematoxylin solution to stain cell nuclear contents black. A Biebrich Scarlet-Acid Fuchsin solution was used to stain acidophilic tissue components such as keratin and intercellular fiber red, and an aniline blue solution was used to stain collagen and mucus blue. Optical images of stained tissue sections were obtained at 20x magnification using a Leica SCN400 Brightfield Slide Scanner.

Protein Purification for Identification

Rat brain was sectioned on a Leica cryostat and cerebrum was separated from cerebellum by a chilled razor blade. The cerebellum and cerebrum tissue sections were collected into corresponding pre-weighed Eppendorf tubes. At least 10 sections were combined into each tube before extraction was performed. An extraction solution composed of 25mM Tris (pH7.4), 50mM NaCl, and 0.25mM EDTA was made and approximately 350 μ L was pipetted into each tube. An ice-chilled homogenizer was used to homogenize the tissues, with 15–20 homogenization strokes used to liquefy the samples. A 150 μ L aliquot of each homogenized again using the tissue homogenizer and set on ice for 30min with intermittent vortexing to avoid sample aggregation. Homogenates were spun down at 20,000×g for 15 min and the supernatants collected. A Bradford assay (Thermo Scientific Pierce, Rockford, IL, USA) was used to quantify total protein concentration from each sample and the concentrations were adjusted to 2 μ g/ μ L with 0.1% formic acid for subsequent LC analysis.

LC-Coupled Tandem Mass Spectrometry (ETD)

Rat brain homogenate extracts were loaded onto a reversed phase capillary trap column using a helium-pressurized cell (pressure bomb). The trap column was packed with C_8 reverse phase material. Once the sample was loaded, the trap column was connected to a capillary analytical column equipped with a laser-pulled emitter tip and packed with 15 cm of C_8 material.

Using an Eksigent NanoLC Ultra HPLC, proteins were gradient-eluted at a flow rate of 500 nL/min, and the mobile phase solvents consisted of 0.1% formic acid, 99.9% water (solvent A) and 0.1% formic acid, 99.9% acetonitrile (solvent B). The gradient consisted of 5%-50% B in 55 min, followed by 50%–95% B in 8 min. Upon gradient-elution, proteins were mass analyzed on an ETD-enabled LTQ Orbitrap Velos mass spectrometer, equipped with a nanoelectrospray ionization source (Thermo Scientific, San Jose, CA, USA). The instrument was operated using a data-dependent method. Full scan spectra of m/z 400– 2,000 (resolving power: 60,000 at m/z200) were acquired as the initial scan event per duty cycle. For data-dependent scan events, the four most abundant ions in each MS scan were selected for fragmentation using ETD in the Velos ion trap. Dynamic exclusion was enabled allowing a repeat count of 1 within 20 seconds. ETD tandem mass spectra were acquired sequentially using the LTQ Velos ion trap followed by the Orbitrap (RP: 15,000 at m/z 200) for mass analysis. An isolation width of 3 Da and an ETD reaction time of 80 ms were used for MS/MS spectra. The MSⁿ AGC target value in the ion trap was set to 2×10^4 , the MSⁿ AGC target for Orbitrap scan events was 8×10^5 , and the ETD reagent ion (fluoranthene) AGC target was set to 1×10^5 .

Data Analysis

Fragmentation spectra were *de novo* sequenced using Thermo Fisher Scientific Xcalibur[™] Software and searched using BLAST databases. Once confident identifications were made, theoretical fragment ions produced from MS-Product within Protein Prospector (University of California at San Francisco) were matched to observed fragment ions within the spectra.

Figure 2.1. General sample preparation workflow for MALDI FTICR protein IMS and subsequent identification strategies using ETD fragmentation.

MALDI FTICR IMS of Rat Brain as a Model System for Protein Imaging

For MALDI IMS, protein identification has traditionally been limited by poor sensitivity and fragmentation efficiency for on-tissue analysis or inadequate mass accuracy to effectively correlate imaging data with proteomics experiments using indirect identification strategies. As shown in Figure 2.2, MALDI FTICR IMS is capable of overcoming these challenges by producing imaging data of intact proteins with high mass resolution and accuracy. Initial analysis of rat brain tissue provided rich data with good sensitivity for ions up to $m/z \sim 12,000$ (Figure 2.2a). The presented data, which are plotted as the overall average from the entire imaging experiment, were collected with a resolving power of $\sim 40,000$ at m/z 5,000 resulting in 2,123 peaks between m/z 2,000 and 12,000 with S/N > 20. Expanding the intensity scale (Figure 2.2b) shows the overall complexity and quality of the data.

MALDI FTICR IMS provides the mass resolution necessary to distinguish protein charge states and overlapping isotopic distributions from neighboring ions (Figure 2.2c). The resolving
power of the experiment is more than sufficient to resolve the isotopic envelope for a given protein, enabling unambiguous assignment of charge state as demonstrated by the difference in isotope spacing between the singly charged ion labeled 1 (spacing: ~1.00 Da) and the doubly charged ions labeled 2 and 3 (spacing: ~0.501 Da). Although not all of the isotopic patterns were fully resolved, at least 10 different species can be discerned from the MALDI FTICR IMS results in just the 70 Da window spanning m/z 5,630–5,700. It should be noted that, although at lower signal intensity, the singly charged ions of the proteins observed as doubly charged in this mass range were detected with m/z values >10,000.

Figure 2.2. MALDI FTICR IMS average spectra of intact proteins from transversally sectioned rat brain tissue. The average spectrum of the entire imaging data set is shown in (**a**). Expanding the intensity scale (**b**) highlights the overall complexity and quality of the data with singly and doubly charged protein signals detected between m/z 1,000 and 12,000. Data were collected with a resolving power of ~40,000 at m/z 5,000 providing isotopic resolution and allowing ions of different charge states and modifications to be distinguished (**c**). The ion labeled 1 is singly charged and ions labeled 2 and 3 are examples of doubly charged ions. For comparison, MALDI TOF IMS data set collected in linear mode from a serial tissue section is displayed in (**d**). Electronic noise peaks are labeled (*)

Figure 2.2d represents the average spectrum from a serial tissue section using MALDI TOF IMS in linear mode. These data are typical of most protein imaging experiments and clearly demonstrate the difficulty in making accurate identifications using low mass resolution IMS. Although reflectron TOF can provide higher mass resolution, at the expense of sensitivity due to the propensity for post-source decay,⁹⁹ linear MALDI TOF analysis was unable to resolve the complex mixture of overlapping proteoforms and proteins of differing charge states detected from rat brain tissue in this same m/z window (m/z 5,630–5,700).

Additionally, peak shifts and broadening, likely due to surface charging or varying sample height, are clearly observed. MALDI FTICR platforms are not subject to adverse effects related to surface characteristics because the mass analyzer is decoupled from the ion source. However, TOF analyzers have a dramatic throughput advantage over FT-based platforms because pixel acquisition rates for FT instruments are generally limited by the scan time of the detection event. Although tunable, to maintain relatively high mass resolving powers, images are typically collected with scan times ranging from 0.5 to 2 s, limiting acquisition rates to ~ 2 pixel/s. TOF mass analyzers equipped with high repetition rate lasers, on the other hand, are limited by ion flight times that range from ~ 10 to 200 µs and are able to rapidly produce ion images with acquisition rates that approach 10-30 pixel/s.¹⁰⁰⁻¹⁰² FTICR instruments can also suffer from space charge effects, limiting the observable dynamic range. This can be overcome using front-end accumulation techniques such as continuous accumulation of selected ions (CASI).¹⁰³ Both platforms have specific advantages for IMS experiments, but the ability of MALDI FTICR MS to produce ion images with high mass resolution and accuracy is ideal for imaging and identifying proteins from biological tissues.

Figure 2.3. MALDI FTICR IMS data collected from transversally sectioned rat brain tissue. Selected ion images (A) are color-coordinated based on charge state (Blue: 1+, Pink: 2+ and Yellow: 3+). The overall average spectrum for the 100 μ m imaging experiment is shown in (B) highlighting each peak used to generate the selected ion images (A). Expanded *m/z* windows (C– E) highlight the ability to detect proteins up to roughly *m/z* 17,000 while providing the mass resolving power necessary to differentiate overlapping isotopic envelopes and determine protein

charge states. Electronic noise peaks have been greyed and marked (*) to simplify the spectrum (B).

Figure 2.3 shows the capabilities of MALDI FTICR MS for protein imaging experiments. The analysis of rat brain tissue using MALDI FTICR IMS provided rich data with good sensitivity for ions up to $m/z \sim 17000$ and proteins approaching 20 kDa (Figure 2.3a). The spectral data (Figure 2.3b–e), which are plotted as the overall average from the entire imaging experiment, were collected with a resolving power of ~70,000 at m/z 5,000, resulting in 2,695 peaks between m/z 1,100–17,000 with S/N > 20. These data represent the largest ions detected from tissue using MALDI FTICR IMS with an m/z increase of ~5,000 compared to previously reported results.⁸⁴ It is noted that this resolving power is not the theoretical limit of the spectral performance for MALDI FTICR protein imaging. For all experiments, resolving power is tuned to provide the performance necessary to resolve the target analytes but maintain the practicality of collecting imaging data. To achieve a resolving power of 70,000 at m/z 5,000, a time-domain signal of ~2 s is required. Although detection events can be extended to increase resolving power further, the throughput of the experiment can become prohibitive for collecting ion images with large number of pixels.

The peak for each of the selected ion images is highlighted by the colored dots overlaid on the full-scan spectrum (Fig. 2.3b). Expanding the m/z scale (Figure 2.3c-e) shows the overall complexity and quality of the data. MALDI FTICR IMS provides the mass resolution necessary to distinguish overlapping isotopic distributions from neighboring ions (Figure 2.3c and d) and protein charge states (Figure 2.3d). The resolving power of the experiment is more than sufficient to resolve the isotopic envelope for a given protein, enabling unambiguous assignment of charge states as demonstrated by the difference in isotope spacing between the singly charged ion labeled 1+ (spacing: $m/z \sim 1.0$) and the doubly charged ion labeled 2+ (spacing: $m/z \sim 0.5$ Da). The same is true for higher m/z ions. Although not fully resolved, MALDI FTICR IMS can resolve the isotopic envelope even for a protein detected at m/z 16,790.86 (Fig. 2.3e). Selected ion images are color-coordinated based on charge state (Blue: 1+, Pink: 2+ and Yellow: 3+).

Although protein identification was not the goal of this particular experiment, highperformance MALDI FTICR IMS also improves the ability to identify proteins observed in imaging experiments. High mass resolution IMS enables the differentiation between different proteoforms and provides the mass accuracy (<5 ppm) needed to link imaging data to orthogonal LC-based proteomics experiments and databases of previously identified biomolecules.⁸⁴ For example, the largest ion detected in this experiment was m/z 16,790.864 (highest intensity isotope). Based on previously reported protein identifications from rat brain in imaging experiments,¹⁰⁴ it is most likely calmodulin (theoretical m/z 16,790.847, ~1 ppm mass accuracy). Calmodulin is a Ca²⁺-binding protein that activates several intracellular enzymes (e.g. kinases, phosphates and adenyl cyclases) in cells.¹⁰⁵ In the brain, Ca²⁺/calmodulin signaling is involved in processes such as neurotransmitter release, transcriptional regulation, and cell death.^{106, 107}

Figure 2.4. Selected ion images of identified intact proteins from rat brain tissue collected using MALDI FTICR IMS. Ions were identified using mass accuracy to correlate imaging results with separate top-down proteomics experiments. For comparison, the tissue was H&E stained following IMS analysis. Doubly charged ions are indicated in parentheses.

Figure 2.4 shows selected ion images at m/z 4,936.536 ($[[M + H]^{1+}$), m/z 4,963.502 ($[[M + H]^{1+}$), m/z 5,636.074 ($[[M + H]^{1+}$), m/z 5,653.700 ($[[M + 2H]^{2+}$, 11.3kDa), and m/z 5,674.720 ($[[M + 2H]^{2+}$, 11.4kDa). Imaging data were collected at a spatial resolution of 75 µm (pixel spacing) with ~38,000 total pixels. Even at this modest spatial resolution, substructures within the cerebellum (white matter, granular cell layer, and molecular layer) are clearly resolved. To minimize interference from overlapping isotopic patterns, images were plotted by selecting only the highest intensity isotope for each protein. Each of the presented ion images has a distinct spatial distribution within rat brain tissue. The ion at m/z 5,636.074 is detected throughout the brain; however, within the cerebellum it can be found at higher intensities in the molecular layer. Ions at m/z 5,653.700 and m/z 5,674.720 are both found to be enriched in the granular cell layer of the cerebellum and proteins detected at m/z 4,936.536 and m/z 4,963.502 are absent from the tissue was stained by H&E following IMS analysis. All of the ion distributions are consistent with observed structures in the microscopy image.

Proteins highlighted in Figure 2.4 were identified using mass accuracy as the link between MALDI FTICR IMS data and LC-ESI top-down proteomics results. All top-down experiments were performed in high mass resolution mode (resolving power: ~60,000 at m/z 200) using standard identification strategies. The protein detected at m/z 4,963.502 by MALDI FTICR IMS was identified as N-terminally acetylated thymosin β 4 (T β ₄-NtermAC, 0.1ppm). Top-down ETD data for the [M + 8H]⁸⁺ charge state of T β ₄-NtermAC (m/z 621.4440, 0.13ppm) can be found in Figure 2.5. The protein was determined to be acetylated on the Nterminus based on the observed mass shift of ~42.01 for all observed c ions. The ion at m/z 4,936.536 was determined to be N-terminally acetylated thymosin β 10 (T β ₁₀-NtermAC,

0.1ppm – Figure 2.6). Thymosin β 4 and β 10 are known to bind monomeric actin (G-actin) and regulate actin polymerization (F-actin). Controlled actin polymerization is essential for normal cytoskeletal function.^{108, 109} The protein detected by MALDI FTICR IMS at m/z 5,636.074 was identified as mitochondrial ATP synthase subunit ε (ATPase- ε , -2.3ppm Figure 2.7). ATPase- ε is a subunit of the F1 complex of ATP synthase, a 500kDa protein found in mitochondria that is critical for production of ATP.^{110, 111} The MALDI ions detected at m/z 5,653.700 and m/z 5,674.720 are both doubly charged proteoforms of histone H4; the first of which, m/z 5,653.700, is acetylated at the N-terminus and the amino acid residue lysine 21 hypothesized to be dimethylated,¹¹² though the MS/MS data was unable to confirm this due to poor fragment ion peak signals (H4-NtermAC/K21Me2*, -1.2ppm Figure 2.8). The ion at m/z 5,674.720 is similar but has an additional acetylation of the lysine at position 17 (H4-NtermAC/K17AC/K21Me2 Figure 2.9). These fragmentation spectra were able to confirm the location of the dimethylation, corroborated with previously observed PTM locations in the Uniprot database. Histone H4 is one of five primary histone proteins that act as the structural core of nucleosomes. Histone H4 is known to undergo extensive acetylation and methylation, which is thought to control gene expression.^{113, 114} MALDI FTICR IMS provides the mass resolution and accuracy needed to differentiate the complex mixture of proteins and their associated proteoforms while enabling identifications to be made with greater confidence than with traditional MALDI TOF experiments.

Figure 2.5. High mass resolution top-down ETD for the $[M + 8H]^{8+}$ charge state of thymosin β 4. Selected c (red) and z (blue) ions are labeled clearly showing acetylation on the N-terminus. The amino acid sequence highlighting the fragmentation coverage is also provided.

Figure 2.6. ETD LC-MS/MS data for N-terminally acetylated thymosin β_{10} . The charge state distribution is shown in the top panel with the specific charge state selected for MS/MS highlighted in red. ETD fragmentation data is shown in the bottom panel including selected c (red) and z (blue) ion annotations. A summary of the observed fragments and sequence coverage is also included.

Figure 2.7. ETD LC-MS/MS data for ATP synthase subunit epsilon. The charge state distribution is shown in the top panel with the specific charge state selected for MS/MS highlighted in red. ETD fragmentation data is shown in the bottom panel including selected c (red) and z (blue) ion annotations. A summary of the observed fragments and sequence coverage is also included.

Figure 2.8. ETD LC-MS/MS data for Histone H4 (N-acetylated, K21 dimethylated*). The charge state distribution is shown in the top panel with the specific charge state selected for MS/MS highlighted in red. ETD fragmentation data is shown in the bottom panel including selected c (red) and z (blue) ion annotations. A summary of the observed fragments and sequence coverage is also included.*: hypothesized PTM location based on previous literature.¹¹²

Figure 2.9. ETD LC-MS/MS data for Histone H4 (N-acetylated, K17 acetylated, K21 dimethylated). The charge state distribution is shown in the top panel with the specific charge state selected for MS/MS highlighted in red. ETD fragmentation data is shown in the bottom panel including selected c (red) and z (blue) ion annotations. A summary of the observed fragments and sequence coverage is also included.

Observed Protein Expression in clear cell Renal Cell Carcinoma (ccRCC)

Cancer diagnoses of the kidney and renal pelvis are estimated to reach over 61,000 people in the United States in 2015, with roughly a 23% mortality rate.¹¹⁵ Over 90% of these diagnoses will be of renal cell carcinoma, of which the majority will be clear cell renal cell carcinoma (ccRCC).¹¹⁵ Detection and imaging of these tumors have typically been performed through computed tomography (CT) and magnetic resonance imaging (MRI),¹¹⁶ though immunological and biomarker assays have become more prevalent in diagnostics.¹¹⁷ Many ccRCC tumors are resistant to chemotherapy and radiation therapy, so nephrectomies still remain the gold standard of treatment with a greatly improved prognosis if the tumor is completely removed.¹¹⁸ Unfortunately, visual and histological assessments of tumor margins can prove insufficient, with incomplete resections leading to disease recurrence.¹¹⁹ Molecular localization patterns in and around the tumor can provide insight into the tumor microenvironment and aid in defining the molecular margin.⁹⁴

MALDI FTICR IMS protein data collected from human ccRCC tissue is shown in Fig. 2.10. These data have similar figures of merit to the previously discussed rat brain FTICR IMS analysis. The average spectrum from the entire imaging experiment shows ions detected with good sensitivity up $m/z \sim 16,000$ (Fig. 2.10b). The data were collected with a resolving power of $\sim 75,000$ at m/z 5,000 resulting in 4,051 peaks detected between m/z 2,000–16,000 with S/N > 20. An overlay of the proteins detected at m/z 5,653.732, m/z 4,936.521 and m/z 7,934.107 show good correlation to tissue substructures visualized by histological staining (Fig. 2.10a). Hemoglobin subunit beta was detected at m/z 7,934.107 (HBB, $[M+2H]^{2+}$, 4.7 ppm) and was observed throughout the kidney with regions of highest intensities near the tumor regions. Normal kidney functions include removing excess organic molecules from the blood through

small filtration units called glomeruli. However, renal cell carcinoma, like many other tumors, utilizes the process of angiogenesis to promote vascularization in and around the developing tumor. This in turn supplies the tumor with blood rich in nutrients for growth and proliferation.¹²⁰ Localization of hemoglobin to these regions likely corresponds to a highly vascularized carcinoma.

The ion observed at m/z 4,936.521 was found to be N-terminally acetylated thymosin β 10 (Thy β 10-AC, [M+H]¹⁺, 3.0 ppm) and was localized specifically to the tumor region, with relatively low abundance in surrounding normal tissue. Thymosin β 10 organizes the cytoskeleton between cells by regulating the formation of actin polymers. The relative abundances have been shown to rapidly increase during the development of various cancers, including renal cell carcinoma.¹²¹ Histones are core components of the nucleosome and regulate DNA repair and replication. They have been shown to have many post-translational modifications, effectively altering their function within biological systems. Histone H4 has been observed in relatively lower abundance in cancerous regions compared to normal tissue,¹²² however recent work has shown that renal cell carcinoma and many other cancers can alter histone modification pathways, changing the post-translational modifications that are expressed.¹²³ The image of m/z 5,653.732, determined to be histone H4 with an acetylation and dimethylation (HH4-AC/2Me, [M+2H]²⁺, - 4.4 ppm), shows an increased abundance in the adjacent normal tissue, with significantly lower signal in the tumor region.

A unique aspect of performing protein imaging experiments using MALDI FTICR IMS is the ability to both generate multiply charged ions using MALDI matrices such as DHA and then accurately determine the charge state of highly charged ions. Figure 2.10c-f show the ion images and isotopic distributions for the $[M+H]^{1+}$, $[M+2H]^{2+}$, $[M+3H]^{3+}$, and $[M+6H]^{6+}$ charge states of

37

Figure 2.10. Selected ion images of identified intact proteins from human clear cell renal cell carcinoma collected using MALDI FTICR IMS. Observed substructures in the overlaid 30 µm ion image of m/z 5,653.732 (HH4-AC/2Me, [M+2H]²⁺, red), m/z 4,936.521 (Thy β 10-AC, [M+H]¹⁺, blue), and m/z 7,934.107 (HBB, [M+2H]²⁺, yellow), were consistent with the trichrome staining following IMS acquisition (A). The overall average spectrum for the 100 µm imaging experiment is shown in B highlighting each peak used to generate the selected ion images (A). Ion images and isotopic distributions for the [M+H]¹⁺, [M+2H]²⁺, [M+3H]³⁺, and [M+6H]⁶⁺ charge states of hemoglobin subunit beta are shown in (C–F). Electronic noise peaks have been greyed and marked (*) to simplify the spectrum (B).

hemoglobin subunit beta. Although the 2+ charge state is detected with much greater intensity, the other ions are still detected with good sensitivity. The generation of multiply charged ions using low mass resolution instruments can complicate spectral interpretation, particularly for complex samples such as biological tissues. However, the ability to produce highly charged ions using high resolving power instrumentation that can differentiate overlapping isotopic patterns to simplify interpretation is advantageous in moving larger proteins into the effective m/z range of the instrument. This potentially improves the capability of top-down fragmentation experiments directly from tissue.

Conclusions

Imaging mass spectrometry is a highly sensitive and efficient discovery tool used to enhance classic histologic analysis by providing specific molecular detail. However, identification of detected proteins remains a significant challenge. Indirect identification is one of the most effective strategies for identifying molecules of interest in IMS experiments. By separately performing MALDI IMS and LC-MS/MS, each can be operated optimally for their individual tasks. Previously, this strategy has lacked sufficient mass accuracy in the imaging data to correlate the two approaches with high confidence. MALDI FTICR MS is now capable of overcoming this challenge by producing ion images with high mass resolution (~75,000 at m/z 5,000) and accuracy (<5 ppm) for proteins up to and beyond 16,000 Da. This has been achieved by carefully optimizing sample preparation methods as well as tuning instrument parameters to increase signal of higher molecular weight species. Analysis of control rat brain tissue and human kidney tumor tissue showed that protein charge states and complex mixtures of proteoforms were able to be distinguished, making identification more feasible and allowing these tissues to be studied with unprecedented molecular detail.

CHAPTER III

SPATIALLY-TARGETED EXTRACTIONS TO IMPROVE PEPTIDE IDENTIFICATIONS FROM MALDI FTICR IMS EXPERIMENTS

Introduction

While top-down proteomic approaches now provide a method for the identification of intact molecular species from tissue, many improvements still need to be made. Functional top-down databases are still relatively new,^{124, 125} and have not had decades of curation as seen by larger genomic databases.^{126, 127} Protein databases may not have all of the isoforms, splice variants, or post-translationally modified forms of the protein listed, as many are still unknown.¹²⁸ Additionally, many clinical samples are stored in tissue banks after formalin fixation and paraffin embedding. This process chemically cross-links the proteins within the sample, maintaining cellular histology and stabilizing them for long-term storage.¹²⁹ This process is irreversible, meaning that accessing proteins for proteomics or MALDI IMS requires an alternate approach.

Bottom-up approaches to proteomics rely on the enzymatic digestion of proteins into peptide components, bypassing the cross-linked nature of the formalin-fixed sample.^{130, 131}Extensive literature exists on optimizing enzymatic digestion for specific samples, but it has been focused largely on in-solution digestions.¹³²⁻¹³⁴ These strategies traditionally use homogenization to aid in the extraction of analytes, thus resulting in the loss of any spatial information from the sample. The procedures are effective, resulting in rich datasets for identifications but process can be extensive and require a relatively large amount of sample.

The introduction of *in situ* digestion of tissue samples has allowed for spatial information to be maintained while still providing peptide signatures for protein identification.^{11, 135} Trypsin or other enzymes can be applied directly to the tissue, then the peptides can be analyzed by MALDI IMS or extracted for bottom-up identifications. The use of hydrogel technologies for this approach will be discussed in greater detail in Chapter IV. Regardless of the method, the goal of identifying peptides from specific regions of biological samples remains the same.

For MALDI peptide IMS experiments, time-of-flight (TOF) mass spectrometers have commonly been used due to the high sensitivity and dynamic range, large practical mass range, reasonable molecular specificity, and high throughput of the TOF analyzer.¹³⁶ Complex samples such as tissue provide many interferences, and the resolving power of TOF instruments can prove insufficient. Additionally, inherent mass accuracy differences between TOF imaging platforms and high performance LC-ESI-MS/MS require wide mass windows to match IMS spectral peaks to corresponding LC-MS/MS peaks for potential identification. By incorporating higher-performing instruments, such as FTICRs, into peptide imaging workflows, accurate mass measurements can be achieved.^{137, 138}

Methodologies for Trypsin Application, *in situ* Digestion, Incubation and MALDI IMS for Peptides

Tissue Preparation

Fresh frozen rat brains and human clear cell renal cell carcinoma (ccRCC) samples were investigated because protein localization patterns were already investigated in Chapter II. Frozen tissue was sectioned to 10-12 microns and mounted onto conductive Indium-tin-oxide (ITO)-coated slides. Tissues were washed to remove interfering lipids and salts as with the protein analysis. ⁹⁶

Trypsin Digestion

Trypsin was applied to the tissue sections using a modified TM Sprayer, which allowed for lower rate applications. Matrix application flow rates are typically on the order of 0.1-0.5 mL/min, while the trypsin methods call for 7.5 μ L/min to allow for a relatively dry coating. This minimizes delocalization or enzyme "pooling" on the tissue surface. Samples were placed in an incubation chamber^{39, 96} containing 100 mM ammonium bicarbonate, sealed with lab tape, and incubated at 37°C for 14 hrs. After incubation, samples were removed from the incubation chamber and dried in a desiccator prior to matrix application.

Matrix Application

Matrix was applied using a TM Sprayer with 15 mg/mL DHA in 9:1 ACN:ddH₂O with 0.2% TFA. Sprayer conditions include a flow rate 0.1 mL/min, nitrogen flow of 10 psi, spray temperature of 80°C, a spray velocity of 1,100 mm/min, 4 passes with offsets and rotations, and 9:1 ACN:ddH₂O as the pushing solvent. This is the same method that was used to successfully image proteins by MALDI FTICR and therefore was chosen because of the robust signal. Samples were rehydrated as previously described ⁹⁷ at 37°C for 3 minutes with 1 mL of 50 mM acetic acid as the rehydration solvent.

MALDI FTICR IMS

High mass resolution imaging experiments were performed using a 15T Bruker MALDI FTICR mass spectrometer, as in Chapter II. Instrument tuning was performed in a similar fashion as before, though the mass range was limited to m/z 5,000-8,000 to minimize the detection of electronic interferences. DHA provided robust peptide signal from tissue samples and resolving power was adjusted to maximize signal intensity and minimize unresolved peaks. External calibration was performed prior to analysis using CsI clusters and protein standards.

Peptide Extraction from Tissue

Microextractions were performed for both proteins and peptides using 20% acetonitrile and a gel-loading pipette tip as previously described.⁸³ A 1 μ L solution was pipetted onto the tissue and repeated aspirated then withdrawn. This was repeated 3x and collected into 2 μ L of 20% acetonitrile.

LC-Coupled Tandem Mass Spectrometry

Microextracts were loaded onto a reversed phase capillary trap column using a heliumpressurized cell (pressure bomb). The trap column was packed with C18 reverse phase material. Using an Eksigent NanoLC Ultra HPLC, proteins were gradient-eluted at a flow rate of 500 nL/min, and the mobile phase solvents consisted of 0.1% formic acid, 99.9% water (solvent A) and 0.1% formic acid, 99.9% acetonitrile (solvent B). The gradient consisted of 5%–50% B in 55 min, followed by 50%–95% B in 8 min. Upon gradient-elution, peptides were mass analyzed on a Thermo Q Exactive mass spectrometer, equipped with a nanoelectrospray ionization source. HCD tandem mass spectra were acquired in a top 20 data-dependent manner.

Data Analysis

Tandem mass spectra were searched using SEQUEST software against the corresponding *Rattus norvegicus* or *Homo sapien* Uniprot database. Identified peptides were matched to their corresponding proteins and assembled in Scaffold 4.0 software. Confident identifications were made with protein identification probabilities of \geq 99%, protein identification probabilities of \geq 95%, and a minimum of 2 distinct peptides per protein.

Figure 3.1. General sample preparation workflow for MALDI FTICR peptide IMS and subsequent identification strategies using HCD fragmentation.

Optimizing Incubation Conditions to Maximize Digestion and Minimize Delocalization

Though a great deal of research has focused on trypsin digestion, traditional approaches utilize in-solution digests, where the sample is dissolved into a solution containing the enzyme.^{133, 134} The digestions conditions, such as buffer pH and concentration of enzyme present in-solution, can be easily maintained. These conditions become much more challenging for *in situ* trypsin digestion because digestion efficiency must be balanced with analyte localization.^{139, 140} If analytes become delocalized in the tissue, then the spatial component is lost, thus negating the usefulness of such a technique. Discrete application of enzymes has proven successful

previously, minimizing the area analytes are able to delocalize within.^{11, 141} However, delocalization can occur not only during the enzyme application step, but also during the incubation process. Efforts to minimize incubation times have proven successful with the introduction of microwave-assisted digestion.^{67, 142} Alternatively, incubation chambers can be used to provide a humid environment for the tissue, and by extension the trypsin, to remain hydrated.³⁹ Since these are typically home-built, there is a great deal of variation that can be observed from method to method. To assess analyte delocalization during the incubation process, four serial rat brain sections were used. Each tissue was washed in an identical manner prior to trypsin application, and trypsin was applied to all four sections simultaneously using a TM Sprayer. The only difference in the four conditions was the amount of ammonium bicarbonate present in the incubation chambers.

After an over-night incubation, matrix was applied to all four sections at the same time and they were analyzed on a MALDI FTICR as one image to account for any normalization or visualization discrepancies that could occur. Figure 3.2 shows selected ion images of different peptides for each incubation condition. There are a few noticeable trends from this experiment that shed light onto the incubation process. The sample incubated with 50 μ L of 100 mM ammonium bicarbonate appeared to have the least amount of delocalization, when comparing the ion images to the histology of the rat brain. As the volume of ammonium bicarbonate in the incubation chamber increased, the localization patterns seem to degrade fairly rapidly. Conversely, there were peaks observed in the higher-volume ammonium bicarbonate incubations that showed little or no intensity in the 50 or 100 μ L conditions. This is most likely due to the fact that higher ammonium bicarbonate volumes led to a more humid environment in the incubation chambers. As these vapors condensed back down onto the tissue, this allowed for optimal trypsin digestion to occur on the tissue surface. The lower volumes would not have provided the same level of moisture in the chambers, so therefore the efficiency of the digestion would have suffered, potentially leading to inactive trypsin or incomplete digestion. To balance digestion conditions and localization, incubation volumes of 50-100 μ L were chosen for subsequent experiments.

Figure 3.2. Utilizing MALDI IMS to aid in the assessment of enzymatic incubation conditions. Tissues were prepared and imaged in an identical manner, with only the volume of 100 mM ammonium bicarbonate in the incubation chamber being varied.

MALDI FTICR IMS and Localized Peptide Analysis of Biological Samples

To properly assess on-tissue digestion efficiencies or presence of miscleavages, peptide identifications must be established. On-tissue fragmentation of peptides has been used in many instances with great success.^{92, 143} However, throughput for this process is very low, and many instruments can be limited, either by the inherent nature of the instrument or low signal intensities. As discussed previously, indirect identification methods have proven to be very successful because each analysis is run with optimal conditions.

Traditionally, peptide identification has been achieved using homogenization and insolution digestion.¹³² This can add a level of variability though, because the digestion conditions would be different from an on-tissue digest. To minimize differences in peptides observed from MALDI IMS and LC-ESI-MS/MS approaches, the digestion should remain the same for both. This means performing the digestion *in situ*, then extracting peptides for subsequent LC analysis. Microextracts have already been shown to provide robust signal from localized regions of tissue,⁸³ and this approach was used to extract peptides from three different regions of rat brain post-digestion. The extracts were analyzed independently and compared to a traditional homogenization approach. Figure 3.3 shows the three regions that were chosen for extraction on the H&E section. When comparing the peptide and protein overlap between the regions, there are distinct analytes from each region that are not found in the other two. Table 3.1 shows the identities of these unique proteins from each region. This highlights the strength of a spatiallydirected approach, focusing identification strategies only on the region of interest, rather than the tissue as a whole.

Figure 3.3. LC-MS/MS analysis of rat brain regions sampled by microextraction and tissue homogenization. Identifications were considered confident within Scaffold Proteome Viewing software when they had a 99.9% Protein Threshold, a 95% Peptide Threshold, and a minimum of 2 peptides.

70 Protein Identifications Unique to the "Microextracts":							
Description	Accession	Region 1	Region 2	Region 3			
40S ribosomal protein S16	sp P62250 RS16_RAT	Х		Х			
40S ribosomal protein S18	sp P62271 RS18_RAT	Х	Х	Х			
40S ribosomal protein S25	sp P62853 RS25_RAT			Х			
60S ribosomal protein L23a	sp P62752 RL23A_RAT			Х			
60S ribosomal protein L8	sp P62919 RL8_RAT		Х				
Adaptor protein complex AP-2, alpha 1 subunit (Predicted)	tr D3ZUY8 D3ZUY8_RAT		Х	Х			
ADP/ATP translocase 2	sp Q09073 ADT2_RAT	X					
ATPase, H+ transporting, V1 subunit D, isoform CRA_c	tr Q6P503 Q6P503_RAT		Х	Х			
Brevican, isoform CRA_a	tr G3V8G4 G3V8G4_RAT		X				
Chaperonin subunit 8 (Theta) (Predicted), isoform CRA_a	tr D4ACB8 D4ACB8_RAT	X	X	Х			
Creatine kinase, mitochondrial 1, ubiquitous	tr Q5BJT9 Q5BJT9_RAT	X	X	Х			
Cytochrome b-c1 complex subunit 7	tr B2RYS2 B2RYS2_RAT		X				
Disks large-associated protein 4	sp P97839 DLGP4_RAT		X				
D-tyrosyl-tRNA(Tyr) deacylase	tr B0K014 B0K014_RAT		X	X			
Epb4.9 protein	tr B2GUY4 B2GUY4_RAT		X	X			
Erythrocyte protein band 4.1-like 3, isoform CRA_b	tr G3V874 G3V874_RAT	X	X	X			
Fusion, derived from t(1216) malignant liposarcoma (Human)	tr Q5PQK2 Q5PQK2_RAT	X		X			
GIPase activating protein (SH3 domain) binding protein 2	tr Q6AY21 Q6AY21_RAT		X	X			
GTP-binding nuclear protein Ran, testis-specific isoform	sp/Q8K586 RANT_RAT			X			
Heat shock /0 kDa protein 4L	UD27055UD27055 DAT	X	X	X			
Heat shock /0kDa protein 12A (Predicted), isoform CRA_a	upjszcssidjszcs5_rat	X		X			
Hemogooin subunit beta-2	SP[F11517]HBB2_KAT	X	X	X			
Histone H1.5	spidszenujhts_kat	X	X	X			
Histone H2A type 1	spjpu2202/hZA1_KAT	X	v	X			
Histone H2B	tr[D4A81/[D4A81/_KA1	X	X	X			
Histone H4	spip62804 H4_KA1	X					
Inositoi porypnospnate- i-pnospnatase		X	v	v			
Linid absorbets absorbets a related protein tras 4	u O3V0L4 O3V0L4_KA1		A V	Λ			
Lipit phospitale phospitalese-related protein type 4	SPIQ/IND/LPPR4_KAI,EOSV804/OSV804_KAI	v	A V	v			
NADH dahudraganasa (Ubiquinana) 1 bata subaammlay. 7 (Bradiatad)		- A	A V	A V			
NADH dehydrogenase (Ubiquinone) Fe S protein 7	u DSELT DSELT_KAT		A V	Λ			
NADH dehydrogenase (Ubiquinone) fevonrotain 1		v	Λ	v			
Na K Cleatransporter	HQ9XIIDQ5XIID_KAI	- X		Λ			
Ndufa4 protein	tiB2RZD6B2RZD6 RAT		x				
Neurotrimin	tr/G3V964/G3V964_RAT			x			
Neutral amino acid transporter ASCT1	tiO76GI 91076GI 9 RAT	x		X			
Phosphatase and actin regulator 1	sp[P62024]PHAR1_RAT			X			
Phosphorylase	tr/B2GV03/B2GV03_RAT.tr/G3V6Y6/G3V6Y6_RAT	x	x	X			
Profilin	trD3ZDU5 D3ZDU5 RAT	X	X				
Protein Ank2 (Fragment)	trF1M9N9F1M9N9 RAT	X	Х	Х			
Protein Ankrd63	tr D3ZKY6 D3ZKY6 RAT			Х			
Protein Atp6v1a	tr D4A133 D4A133_RAT	_	Х	Х			
Protein Cttn	tr D3ZGE6 D3ZGE6_RAT,tr O70420 O70420_RAT,tr Q66HL2 Q66HL2_RAT		Х				
Protein Epb4112	tr D3ZM69 D3ZM69_RAT	X					
Protein Gprin3	tr D3ZF21 D3ZF21_RAT			Х			
Protein Icam5	tr D4A435 D4A435_RAT		Х				
Protein LOC684828	tr M0R7B4 M0R7B4_RAT	Х	Х	Х			
Protein Napg	tr D4A0E2 D4A0E2_RAT		Х	Х			
Protein Ncam2 (Fragment)	tr F1M8G9 F1M8G9_RAT			Х			
Protein Pcdh1 (Fragment)	tr F1M8K1 F1M8K1_RAT		X				
Protein Pcp2	tr D3ZXP8 D3ZXP8_RAT	Х					
Protein RGD1310819 (Fragment)	tr D3ZBU7 D3ZBU7_RAT		Х	Х			
Protein Sptbn1	tr G3V6S0 G3V6S0_RAT,tr Q6XD99 Q6XD99_RAT	X	X	Х			
Protein Srsf3	tr Q0ZFS8 Q0ZFS8_RAT			Х			
Protein Tceal5	tr M0RDJ7 M0RDJ7_RAT		X	Х			
Protein Tppp	tr D3ZQL7 D3ZQL7_RAT	X	X	Х			
Protem Tubb4a	tr B4F/C2 B4F7C2_RAT	X	X	X			
RAB10, member RAS oncogene family	triQ5RKJ9 Q5RKJ9_RAT	X	X	X			
KAP1, G1Pase activating protein 1, isoform CRA_a	upf1LV89/F1LV89_RAT	_		X			
Rat apolipoprotein E protein	uQ65ZS/Q65ZS/_RAT	_	X	Y			
Kat gutatnione S-transferase	UQULDP3/Q0LDP3_KAT			X			
KNA-binding motif protein, X chromosome retrogene-like	SP/P84386/KMXRL_RAT	X	X	X			
Septin 5, isoform CRA_d			X	X			
Septin /		X	X	X			
SP120 Transmission for the Data base	UC03000202000000000000000000000000000000	v	X	X			
Transcription factor Pur-Deta	UFILSLIFILSLI_KAI	X	X	X V			
1 roponiyosin alpha Isolom Undernatarirad protein		X	X	X v			
Zara hata dahin (Fragmant)	uld7f122ld7f122_KA1,0[f1WAJ2[f1WAJ2_KA1	v	v	A V			
zero oeta-giooni (riaginent)		Λ	Λ	Λ			

Table 3.1. Protein identifications from rat brain regions exclusively observed by microextraction analysis. Identifications were considered confident within Scaffold Proteome Viewing software when they had a 99.9% Protein Threshold, a 95% Peptide Threshold, and a minimum of 2 peptides.

While the rat brain does provide various substructures and spatial heterogeneity, a more complex sample was chosen to validate this approach. A human ccRCC tumor sample contained various stages of tumor progression, the adjacent normal tissue, and a margin in between these two regions. Performing a similar microextract and homogenate analysis, peptide and protein identifications were collected. There were much greater variations between identifications within the microextract regions, both at the peptide and protein level (Figure 3.4). This is supported by previous reports highlighting the very heterogeneous nature of molecules within these tumors.⁹⁴ A similar trend was observed for the microextract and homogenate comparison as was seen in the rat brain sample. Table 3.2 lists the identified proteins unique to the microextract analysis. Overall, the number of protein identifications was lower for the human ccRCC sample compared to the rat brain, most likely due to the fibrotic nature of the tumor. This was highlighted in the homogenization process, where extensive homogenization did not completely solubilize the tissue.

Figure 3.4. LC-MS/MS analysis of resected human ccRCC tumor regions sampled by microextraction and tissue homogenization. Identifications were considered confident within Scaffold Proteome Viewing software when they had a 99.9% Protein Threshold, a 95% Peptide Threshold, and a minimum of 2 peptides.

68 Protein Identifications Unique to the "Microextracts":							
Description	Accession	Normal	Margin	Tumor			
14-3-3 protein beta/alpha	sp P31946 1433B HUMAN	Х	X	Х			
40S ribosomal protein S18	splP62269IRS18 HUMAN		Х				
Actin, aortic smooth muscle	sp P62736 ACTA HUMAN,sp P68032 ACTC HUMAN	Х	Х	Х			
Acyl-CoA synthetase family member 2, mitochondrial	sp Q96CM8 ACSF2 HUMAN	Х					
Adenosylhomocysteinase	splP23526 SAHH_HUMAN	x					
Alcohol dehydrogenase [NADP(+)]	spP14550 AK1A1_HUMAN	X	x				
Alpha-actinin_1	sp P12814 ACTN1_HIMAN		x				
Alpha-crystallin B chain	sp/P02511/CRYAB_HUMAN			x			
Anolinoprotein E	splP02649 APOF HUMAN		v				
ATD synthese sounling faster 6 mitschendriel	apiD18850 ATD51_HUMAN	v	<u>A</u>				
Differentianel ATD demondent directorementane binane (EAD AMD have (avaliaine)	spir 18859 ATF55_HUMAN	X V	 				
Gebeerin 1	splQ3LAA5 DHAK_HUMAN	A	v				
Calponin-1	sp P51911 CNN1_HUMAN		X				
Clusterin	sp P10909 CLUS_HUMAN	 	<u>X</u>				
Collagen alpha-1(VI) chain	sp P12109 CO6A1_HUMAN		X				
Collagen alpha-1(XVIII) chain	sp P39060 COIA1_HUMAN		X				
Collagen alpha-2(VI) chain	sp P12110 CO6A2_HUMAN		X				
Complement factor B	sp P00751 CFAB_HUMAN		X	X			
Cysteine and glycine-rich protein 1	sp P21291 CSRP1_HUMAN		X				
Cysteine and glycine-rich protein 2	sp Q16527 CSRP2_HUMAN		X				
Cytochrome c oxidase subunit 5B, mitochondrial	sp P10606 COX5B_HUMAN	X					
Cytosol aminopeptidase	sp P28838 AMPL_HUMAN	X					
Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial	sp P30038 AL4A1_HUMAN	X					
Desmin	sp P17661 DESM_HUMAN		Х				
Dihydropyrimidinase-related protein 3	sp Q14195 DPYL3_HUMAN		Х				
Disabled homolog 2	sp P98082 DAB2_HUMAN	X					
Electron transfer flavoprotein subunit beta	sp P38117 ETFB HUMAN	Х					
Elongation factor Tu, mitochondrial	sp P49411 EFTU_HUMAN	Х					
Enovl-CoA hydratase, mitochondrial	splP30084/ECHM_HUMAN	x					
Heat shock 70 kDa protein 1A/1B	splP08107/HSP71_HUMAN	x	x	x			
Heat shock cognate 71 kDa protein	sp P10107 HSP7C_HUMAN	x	x	x			
Heterogeneous nuclear ribonucleoprotein A1	sp P09651 R0A1_HUMAN			x			
Heterogeneous nuclear ribonucleoprotein A1	splP22626IPOA2_HUMAN		v	X X			
Heterogeneous nuclear ribonucleoproteins A2/B1	apip07010HNBBC_HUMAN	v	<u>A</u>	Λ			
Helefogeneous nuclear ribonucleoproteins C1/C2	sp[F07910]HIVKFC_HOMAN	A	v				
Histone H1.0	sp[P0/303]H10_HUMAN	v		v			
Histone H1.2	sp P16403 H12_HUMAN	X	X	А			
Inter-alpha-trypsin inhibitor heavy chain H1	sp P1982/ T1H1_HUMAN		X				
Ladinin-1	sp O00515 LAD1_HUMAN	X					
Latent-transforming growth factor beta-binding protein 2	sp Q14767 LTBP2_HUMAN		X				
LIM and SH3 domain protein 1	sp Q14847 LASP1_HUMAN		X				
Lipoma-preferred partner	sp Q93052 LPP_HUMAN		X				
Lumican	sp P51884 LUM_HUMAN	X	X				
Malate dehydrogenase, mitochondrial	sp P40926 MDHM_HUMAN	X					
Myosin light polypeptide 6	sp P60660 MYL6_HUMAN		X				
Myosin regulatory light polypeptide 9	sp P24844 MYL9_HUMAN		Х				
Palladin	sp Q8WX93 PALLD_HUMAN		Х				
PDZ and LIM domain protein 7	sp Q9NR12 PDLI7_HUMAN		Х				
Peptidyl-prolyl cis-trans isomerase A	sp P62937 PPIA_HUMAN,sp PPIA_HUMAN	Х	Х	1			
Periostin	sp Q15063 POSTN_HUMAN		Х				
Phosphoenolpyruvate carboxykinase [GTP], mitochondrial	sp Q16822 PCKGM_HUMAN	Х					
Prelamin-A/C	sp P02545 LMNA HUMAN		Х				
Probable ATP-dependent RNA belicase DDX17	spl092841/DDX17_HUMAN			х			
Profilin-1	spP07737PROF1_HUMAN	x	x	-			
Prolargin	splP51888 PRFLP_HUMAN		x				
Protein NDRG1	spl092597/NDRG1_HUMAN	x		x			
Pho GDP dissociation inhibitor 1	spiP52565iGDIP1_HUMAN	x x	v	x x			
Sontin 0		A	A	x v			
Serum alhumin	spi2201120jati 12_110MAN	v	v	A V			
	sp[P02768]ALBU_HUMAN	<u> </u>	A V	л			
Soron and Sris domain-containing protein 1	SPIQ7DA00 SKDS1_HUWAN	<u> </u>					
Synaptopodin	SPIQONDV/ISYNPO_HUMAN	 	X				
Synaptopodin-2	splQ9UMS6 SYNP2_HUMAN	 	<u>X</u>				
Tensin-1	sp Q9HBL0 TENS1_HUMAN	L	X				
Thiosultate sulfurtransferase	sp Q16/62 THTR_HUMAN	X	<u> </u>				
Transgelin-2	sp P37802 TAGL2_HUMAN	L	X				
Transmembrane protein C19orf77	sp O75264 CS077_HUMAN	X	L				
Tropomyosin alpha-1 chain	sp P09493 TPM1_HUMAN	ļ	X				
Tropomyosin alpha-4 chain	sp P67936 TPM4_HUMAN		X				
Tropomyosin beta chain	sp P07951 TPM2_HUMAN	X	Х				
Tubulin beta-4B chain	sp P68371 TBB4B_HUMAN	х	х				

Table 3.2. Protein identifications from resected human ccRCC tumor regions exclusively observed by microextraction analysis. Identifications were considered confident within Scaffold Proteome Viewing software when they had a 99.9% Protein Threshold, a 95% Peptide Threshold, and a minimum of 2 peptides.

When comparing to a homogenization strategy, the combined results of the microextracts provided roughly one third of the protein identifications. This was expected because there were many parts of the tissue that were not sampled by microextraction that would have contributed to the homogenate identifications. However, there were ~70 protein identifications made by the microextract workflow that were not observed in the homogenate (Tables 3.1 and 3.2). The sample complexity of a microextract is much less than that of an in-solution digest of a tissue homogenate. Therefore, it stands to reason that it is much less likely for analytes to be suppressed during the LC analysis. Data-dependent acquisitions rely on peak intensities and exclusion lists to sort through spectra in real time, and samples such as homogenates have much larger differences in analyte dynamic range. This is not to say that abundant peptides and proteins would not also be observed in microextract analyses, however by reducing the complexity of a sample can aid in observing species that may coelute with highly abundant species and otherwise go undetected.

With the high performance characteristics of the FTICR and Q Exactive, peptide identifications could be made using mass accuracy to link the data sets, in a similar manner as described in Chapter II. Peak lists were compared between the MALDI IMS data and the LC-based identification approaches. Identifications were made for peaks with less than 5 ppm mass errors relative to the peptide molecular weight. Figure 3.4 shows examples of ions that were identified using this strategy. To do a complete and thorough comparison, informatics and isotope modelling software would prove beneficial. As the molecular weight increases, the isotopic distribution shifts from the monoisotopic peak. For larger peptides, this means that the most abundant isotope, which provides the highest S/N ion image, would not match to the theoretical mass of the peptide in most databases. Incorporating mass tolerances and isotopic

information into comparisons would provide for more efficient searches and higher yields in terms of confident identifications.

Figure 3.5 MALDI FTICR IMS of rat brain peptides identified by localized extraction methods. Identifications were made by localized microextractions and verified with tissue homogenization methods. All peptide identifications had mass errors of ~5 ppm or less.

Conclusions

Peptide analysis by MALDI FTICR IMS have been improved by robust sample preparation methods, including incubation optimization and spatially localized extraction for identifications. The incorporation of methods previously used for protein analysis have also improved sensitivity from biological tissues, providing analyte-rich spectra. Small volumes of ammonium bicarbonate (50-100 μ L) in the incubation chamber yielded the least amount of observed analyte delocalization while still producing spectra rich in peptide signals. The microextraction method allowed for bottom-up proteomic data to be analyzed on Q Exactive while still maintaining a 1 mm spatial area from within the tissue sections. In fact, roughly 70 protein identifications in each case study were only observed from the microextract analysis compared to a traditional homogenization approach. The high mass resolution and mass accuracy of these two instruments were used to correlate IMS and proteomic data for both rat brain and human ccRCC tumor samples. By utilizing the microextraction method to identify analytes by LC-MS/MS, identifications of peptides were made without the need for bulk tissue homogenization. These data showed the capabilities of MALDI FTICR IMS to provide the molecular specificity needed to overcome the challenges associated with direct tissue analysis.
CHAPTER IV

ADVANCED HYDROGEL TECHNOLOGIES FOR ENHANCED ON-TISSUE PROTEIN DIGESTION AND IMPROVED SPATIAL LOCALIZATION

Introduction

Protein identification for IMS experiments has historically been performed by homogenizing pieces of tissue, performing protein fractionation and digestion, and then leveraging classical LC-MS/MS bottom-up proteomics methods.^{144, 145} Protein peaks observed in the IMS experiment are then matched to those observed in the LC-MS/MS experiment.¹⁴⁶ In Chapter II, top-down proteomics was used to help match high mass accuracy MALDI protein imaging mass spectrometry data to LC-based identifications of intact proteins.^{84, 85} While bulk tissue homogenization provides analyte-rich samples for downstream proteomics experiments, little to no spatial information is retained. This reduces the ability to confidently correlate protein signals from the IMS experiment to the protein identifications from the LC-MS/MS experiment.

One method that enables protein identification while still maintaining some level of spatial localization is laser capture microdissection (LCM), where sample regions are perforated with a laser and catapulted into a collection device for downstream analysis.⁵³⁻⁵⁵ Depending on the focus of the laser and magnification power of the microscope, individual cells or cell types can be collected out of complex samples, such as tissue biopsies,¹⁴⁷ plants,¹⁴⁸ or even individual glomeruli.¹⁴⁹ Though ideal for targets smaller than a millimeter, LCM instrumentation can be cost-prohibitive, time-consuming, and require substrates compatible with the laser. Traditionally, large cell counts have been required to produce robust proteomics results.⁵⁷

Within the last several years, several other extraction approaches have been developed to extract proteins from tissue sections while preserving localization. For example, liquid microextractions have proven successful for targeting distinct regions of tissue for a wide variety of analyte classes.^{58,59} Approaches such as liquid extraction surface analysis (LESA) have the added benefit of automated sample extraction and processing⁶⁰, and can be coupled directly to the mass spectrometer for either top-down or bottom-up analyses.^{62,150} In these types of experiments, the spatial limitation of the extraction is typically dictated by the physical characteristics of the liquid-sample interface, such as droplet diameter, contact angle, and surface tension.¹⁵¹ Though research is ongoing to reduce the size of this effective footprint, most current applications have extraction diameters on the millimeter scale.

An alternative approach to direct liquid extractions or capture-based methods is the incorporation of hydrogel technologies into proteomic workflows.^{64, 66} These polymer gels act as both a delivery system of reagents, such as enzymes, directly to the tissue sample, and a tool for localized analyte extraction. This allows for digestion and extraction to occur within one incubation period. Different iterations of hydrogels have been used in several biological applications, including both fresh frozen^{64, 66, 152} and formalin-fixed, paraffin-embedded⁶⁵ (FFPE) samples. Hydrogels can be advantageous because of the relatively low-cost of the materials used in their preparation, straightforward use, and ability to perform diverse types of experiments in different areas of the same tissue section. Previous approaches have used hydrogels with diameters between 1-2 mm,^{66, 152} which is similar in size to the areas sampled by liquid extractions.

Methodologies for Hydrogel Comparisons & Analysis

Tissue Preparation and In-Solution Digests

Fresh frozen rat livers were used because of their relatively large size compared to other organs, and due to the moderate homogeneity in terms of cell type and structure. As in chapters II and III, samples were sectioned at 12 μ m and thaw-mounted onto microscope slides and dried in a desiccator for 30 minutes before washing with the Carnoy's solution protocol⁹⁶ to remove endogenous salts and lipids. For experiments utilizing discrete regions of tissue collected by biopsy punch for in-solution digests, tissues were cryostectioned in an identical manner as above. While the tissue section was still frozen in the cryostat, a 1.5 mm diameter biopsy punch was used to resect regions from the tissue, and the thin tissue punch was moved to an Eppendorf tube for in-solution digestion and analysis. For LCM collection, areas of washed tissue sections were collected in circular regions with diameters of 1.2 mm and 1.5 mm to equal the hydrogel and tissue punch diameters, respectively. Samples were collected into 20 μ L of 100 mM ammonium bicarbonate in the cap of a PCR tube to ensure that the sample remained in the cap and did not fall back onto the surface.

Both LCM and tissue punch samples underwent in-solution digests modified from previous reports.¹⁵³ Briefly, the samples were suspended in solutions consisting of 10 μ L TFE, 25 μ L 0.1 μ g/ μ L trypsin, and a total of 65 μ L 100 mM ammonium bicarbonate. Only 45 μ L of 100 mM ammonium bicarbonate was added to the LCM samples, as 20 μ L was already present from the collection process. Samples were incubated at 37°C for 14 hours, dried using a centrifugal vacuum concentrator and then reconstituted in 0.1% TFA. Extracts were desalted and purified using C₁₈ ZipTips and analytes were eluted into new low-retention microcentrifuge

tubes. Samples were dried down and reconstituted in 10 μ L 0.1% formic acid for LC-MS/MS analysis.

Hydrogel Workflow

Fabrication: Gels were cast as previously described by Nicklay et al.,⁶⁶ with modifications made to the manufacturer's gel formulation guidelines in order to achieve 7.5%, 10%, 12%, 15%, and 18% polyacrylamide gels. Briefly, 30% acrylamide/bis-acrylamide, 1.5M Tris (pH 8.7), and ddH₂O were combined in a vacuum flask and degassed under vacuum for 30 minutes with constant stirring. The solution was poured into a 60 x 15 mm polystyrene Petri dish and 10% ammonium persulfate and TEMED were added. The Petri dish was covered and gently swirled to ensure even mixing, then left to polymerize overnight. The resulting polymer had a measured thickness of ~1.7 mm. Biopsy punches of varying sizes (4, 3, 2, 1.5, 1, 0.75, and 0.5 mm) were used to fabricate hydrogels of different diameters. Individual hydrogels were collected in Eppendorf tubes and dried in a centrifugal vacuum concentrator for long-term storage at -80°C. Placement and incubation: Tissue sections were brought to room temperature in a desiccator prior to hydrogel placement. Porcine trypsin was dissolved in 100 mM ammonium bicarbonate (pH 7.8) to produce concentrations of 0.01, 0.025, 0.1 or $1 \mu g/\mu L$. Hydrogels were reswelled for 15 min in these trypsin solutions, except for the tissue blanks, which consisted of 7.5% and 18% polyacrylamide hydrogels swelled with 100 mM ammonium bicarbonate alone prior to placement. Hydrogels were placed on the tissue sections, ensuring minimal excess liquid and good contact with the tissue surface. Each experimental condition was repeated a minimum of

three times to allow for statistical analysis. A subset of the trypsin-swelled 7.5% and 18% polyacrylamide hydrogels were placed directly on the microscope slide surface with no tissue

present to serve as trypsin blanks. All samples were placed in an incubation chamber^{39, 96} containing 1 mL of 100 mM ammonium bicarbonate, sealed with lab tape, and incubated at 37°C for 14 hrs. Samples were removed from the incubation chamber and hydrogels were placed in Eppendorf tubes for analyte extraction.

Extraction from the hydrogels: Analytes were extracted using a modified version of a previous hydrogel extraction protocol,^{66, 152} utilizing increasing organic solutions (50%, 60%, 80%, and 3x 95% ACN containing 5% formic acid) alternating with 100 mM ammonium bicarbonate. The organic solutions aided in solubilizing the extracted peptides as well as dehydrating the gels. Conversely, the ammonium bicarbonate rehydrated the gels, reswelling them in between organic steps. Each step had a 5 min incubation followed by centrifugation for 5 min at 6,610xg. The supernatants from each step were pooled into siliconized low-retention microcentrifuge tubes. Once the extraction process was completed, the combined supernatants were dried down using a centrifugal vacuum concentrator and reconstituted in 0.1% TFA. Extracts were desalted and purified using C_{18} ZipTips and analytes were eluted into new low-retention microcentrifuge tubes. The samples were again dried and reconstituted in 10 µL 0.1% formic acid for LC-MS/MS analysis. For instrument reproducibility experiments, three hydrogel extracts (post ZipTip purification) were combined into one tube, dried down, and then reconstituted in 30 µL 0.1% formic acid for LC-MS/MS analysis.

LC-Coupled Tandem Mass Spectrometry (HCD)

Bottom-up analysis was performed using an Orbitrap Fusion Tribrid Mass Spectrometer (Thermo Scientific) coupled to an Easy-nLC 1000 (Thermo Fisher Scientific) ultrahigh pressure liquid chromatography (UHPLC) system. Peptides separation was achieved using a 75 µm inner diameter, 25 cm long PepMap RSLC C18 column (2 µm, 100 Å, Acclaim) with a flow rate of 300 nL/min (mobile phase solvent A: 0.1% formic acid, 99.9% water; mobile phase solvent B: 0.1% formic acid, 99.9% acetonitrile). The LC gradient ran from 2-20% B in 100 min, 20-32% B in 20 min, 32-95% B in 1 min, 95% B for 4 min, 95-2% B for 2 min, and the column equilibrated at 2%B for 3 min. Following gradient-elution, peptides were ionized using nanoelectrospray ionization on a Nanospray Flex ion source (Thermo Fisher Scientific). The Orbitrap mass spectrometer was operated in a 3 second top speed data-dependent acquisition (DDA) mode. Fourier transform mass spectra (FTMS) were acquired at 120,000 resolution with an automated gain control (AGC) target of 200,000 and a maximum injection time of 50 ms. Precursor ions were filtered according to monoisotopic precursor assignment and charge state (9> z >1 required). Previously interrogated precursor ions were omitted using a dynamic exclusion window (30 s \pm 10 ppm). Precursor ions for MS/MS analysis were isolated using a 1.5 m/z quadrupole mass filter isolation window and were fragmented with higher energy dissociation (HCD) using a normalized collision energy of 35%. Ion trap MS/MS spectra were collected using an AGC target of 1,000 and maximum injection time of 40 ms.

Data Analysis

Raw data files were converted to .mgf format by msConvert (ProteoWizard). Files were then searched against the Uniprot *Rattus norvegicus* proteome and processed using X! Tandem's GPM Cyclone web interface using the predefined Orbitrap (20 ppm) method. Methionine oxidations were included as potential modifications. Confident protein identifications were made with a 2 unique peptide threshold as well as an FDR of less than 2%. Statistical tests were subsequently performed on the data using Graphpad Prism software, including one-way ANOVAs and Tukey's multiple comparison tests to assess significance at α =0.05 (95% confidence).

Figure 4.1: General hydrogel fabrication, usage, and extraction workflow. Hydrogels were fabricated in advance in large quantities and stored in cold temperatures to ensure minimal contamination or bacterial growth.

Optimizing Trypsin Concentration for Efficient On-Tissue Digestion

Previous reports have used 1 μ g/ μ L trypsin concentrations in hydrogels for successful digestion for proteomics experiments.^{66, 154} This moderately high concentration of enzyme can be cost-prohibitive when performing many hydrogel experiments using proteomics-grade trypsin. Additionally, even with reductive methylation¹⁵⁵ and TPCK treatment¹⁵⁶ to reduce autolysis and non-specific cleavages, trypsin autolytic peaks are still present in concentration-dependent quantities as seen in Table 4.1 and Figure 4.2. These values encompass all tryptic peptide identifications, including multiple charge states of the same peptide, modified and unmodified forms of individual peptides, as well as peptides containing missed cleavages. Statistical

comparisons were performed to highlight the significant concentration dependence for autolytic peaks (Tables 4.2 & 4.3). Loading of the hydrogels with trypsin concentrations which maximize digestion yet minimize enzyme consumption and interference is important to the broad-scale adoption of this methodology.

Trypsin Autolytic Peptides from Hydrogels with Different Trypsin Concentrations									
Trypsin Concentration (µg/µL)	n	Average	Variance	Std Deviation					
0.01	3	19	16	4					
0.025	3	19	17	4					
0.1	3	51	49	7					
1	3	199	247	16					

Table 4.1. Average numbers of identified trypsin autolytic peptides from hydrogels with different trypsin concentrations. Hydrogels containing 1 μ g/ μ L trypsin produced the highest number of autolytic trypsin peptide identifications.

ANOVA for Trypsin Autolytic Peptides from Hydrogels with Different Trypsin										
Concentrations										
Source of Variation	Sum of Squares	df	Mean Square	F	P-value	F crit				
Between Groups	6.68E+04	3	2.23E+04	270.0762	2.24E-08	4.0662				
Within Groups	6.59E+02	8	8.24E+01							
Total	6.74E+04	11								

Table 4.2. Analysis of variance (ANOVA) for numbers of identified trypsin autolytic peptides from hydrogels with different trypsin concentrations, confirming a statistically significant difference among the concentrations (F>F crit).

Tukey's Multiple Comparison Test for Trypsin Autolytic Peptides from Hydrogels with Different Trypsin											
Concentrations											
Trypsin Concentration (µg/µL)	Mean Diff.	q	Significant? P < 0.05?	Summary	95% CI of diff						
0.01 vs 0.025	0.00E+00	0.000	No	ns	-23.74 to 23.74						
0.01 vs 0.1	-3.23E+01	6.169	Yes	*	-56.07 to -8.595						
0.01 vs 1	-1.80E+02	34.410	Yes	***	-204.1 to -156.6						
0.025 vs 0.1	-3.23E+01	6.169	Yes	*	-56.07 to -8.595						
0.025 vs 1	-1.80E+02	34.410	Yes	***	-204.1 to -156.6						
0.1 vs 1	-1.48E+02	28.240	Yes	***	-171.7 to -124.3						

Table 4.3. Tukey's multiple comparison test for numbers of identified trypsin autolytic peptides from hydrogels with different trypsin concentrations at the 0.05 significance level. ns: not significant; *: $p \le 0.05$; **: $p \le 0.01$; ***: $p \le 0.001$

Figure 4.2. Average numbers of identified trypsin autolytic peptides from hydrogels with different trypsin concentrations. n=3 for each concentration of trypsin. *: $p \le 0.05$; **: $p \le 0.01$; ***: $p \le 0.001$

When comparing the number of non-trypsin protein identifications and variances between the concentrations of trypsin (Tables 4.4 and 4.5), there are observed differences in the total number of protein identifications. However, they are not statistically significant for hydrogels containing 0.025, 0.1, and 1 $\mu g/\mu L$ trypsin (1107 \pm 10, 1114 \pm 8, and 1075 \pm 14 protein identifications, respectively) as seen in Table 4.6 and Figure 4.3. There was a significant decline in the number of identified proteins when the concentration was decreased to 0.01 $\mu g/\mu L$, with a total of 892 \pm 84 protein identifications. This is most likely due to a non-optimal trypsin:analyte ratio, with decreased enzymatic efficiency experienced with both too much and too little enzyme.¹⁵⁷ Trypsin concentrations that are too low relative to the analyte concentration will result in incomplete digestion or missed cleavages, while too high of a ratio of trypsin could lead to non-specific digestion.¹³² Hydrogels containing 0.1 $\mu g/\mu L$ trypsin had the highest number of identified proteins with the lowest variances, and were used for all subsequent experiments.

Protein Identifications from Hydrogels with Different Trypsin									
Concentrations									
<i>Trypsin Concentration (µg/µL)</i>	n	Average	Variance	Std Deviation					
0.01	3	892	7077	84					
0.025	3	1107	91	10					
0.1	3	1114	69	8					
1	3	1075	184	14					

Table 4.4. Average numbers of protein identifications detected from hydrogels with different trypsin concentrations. Hydrogels containing 0.1 μ g/ μ L trypsin produced the highest number of identifications with the lowest standard deviation.

ANOVA for Protein Identifications from Hydrogels with Different Trypsin Concentrations										
Source of Variation	Sum of Squares	df	Mean Square	F	P-value	F crit				
Between Groups	9.86E+04	3	3.29E+04	17.7085	6.83E-04	4.0662				
Within Groups	1.48E+04	8	1.86E+03							
Total	1.13E+05	11								

Table 4.5. Analysis of variance (ANOVA) for numbers of identified proteins from hydrogels with different trypsin concentrations, confirming a statistically significant difference among the concentrations (F>F crit).

Tukey's Multiple Comparison Test for Protein Identifications from Hydrogels with Different Trypsin Concentrations										
<i>Trypsin Concentration (µg/µL)</i>	Mean Diff.	q	Significant? P < 0.05?	Summary	95% CI of diff					
0.01 vs 0.025	-2.15E+02	8.632	Yes	**	-327.3 to -102.0					
0.01 vs 0.1	-2.22E+02	8.927	Yes	**	-334.6 to -109.4					
0.01 vs 1	-1.83E+02	7.358	Yes	**	-295.6 to -70.37					
0.025 vs 0.1	-7.33E+00	0.295	No	ns	-120.0 to 105.3					
0.025 vs 1	3.17E+01	1.273	No	ns	-80.97 to 144.3					
0.1 vs 1	3.90E+01	1.568	No	ns	-73.63 to 151.6					

Table 4.6. Tukey's multiple comparison test for differences in identified proteins from hydrogels with different trypsin concentrations at the 0.05 significance level. ns: not significant; *: $p \le 0.05$; **: $p \le 0.01$; ***: $p \le 0.001$

Figure 4.3. Average numbers of protein identifications from hydrogels containing different concentrations of trypsin. n=3 for each concentration of trypsin. *: $p \le 0.05$; **: $p \le 0.01$; ***: $p \le 0.001$

Increasing Polyacrylamide Percentages for Improved Hydrogel Rigidity

The percentage of polyacrylamide in a polymer solution can dictate many physical attributes, such as porosity, rigidity, and elasticity.¹⁵⁸ Of particular interest is how these factors affect the production and functionality of hydrogels in a proteomics workflow. Previous reports of hydrogel fabrications have utilized 7.5% polyacrylamide (37.5:1 monomer:crosslinker) to fabricate hydrogels, due mainly to its prevalence in the field of proteomic separations. Increasing

this percentage of polyacrylamide results in more rigid polymers, which are, in turn, more amenable to perforating individual hydrogels using punch biopsies. However, at higher percentages of polyacrylamide, analyte mobility may be hindered, preventing optimal extraction of proteins and peptides into the gel.¹⁵⁹

Altering the percentage of polyacrylamide within the hydrogels according to Table 4.7 led to no statistical differences between the resulting numbers of protein identifications (Tables 4.8-4.10). All five percentages had approximately 1,200 confident identifications within the respective standard deviations, as seen in Figure 4.4.

% Acrylamide	7.5%	10%	12%	15%	18%
30% Acrylamide/Bis (mL)	1.25	1.67	2.00	2.50	3.00
1.5 M Tris, pH 8.7 (mL)	1.25	1.25	1.25	1.25	1.25
ddH ₂ O (mL)	2.48	2.06	1.73	1.23	0.73

Table 4.7. Gel formulation protocols for each polyacrylamide percentage. These solutions were degassed prior to polymerization with 50 μ L 10% ammonium persulfate and 10 μ L TEMED.

Protein Identifications from Hydrogels with Different Polyacrylamide Percentages									
Percent Polyacrylamide	п	Average	Variance	Std Deviation					
7.5%	5	1195	748	27					
10%	3	1193	3634	60					
12%	4	1214	2185	47					
15%	3	1203	1010	32					
18%	5	1234	883	30					

Table 4.8. Average numbers of protein identifications from hydrogels with different polyacrylamide percentages.

ANOVA for Hydrogels with Different Polyacrylamide Percentages										
Source of Variation Sum of Squares df Mean Square F P-value										
Between Groups	5.01E+03	4	1.25E+03	0.8399	5.21E-01	3.0556				
Within Groups	2.24E+04	15	1.49E+03							
Total	2.74E+04	19								

Table 4.9. Analysis of variance (ANOVA) for numbers of protein identifications from hydrogels with different polyacrylamide percentages, confirming no statistically significant difference among the percentages (F<F crit).

Tukey's Multiple Compar	Tukey's Multiple Comparison Test for Hydrogels with Different Polyacrylamide Percentages										
Percent Polyacrylamide (%)	Mean Diff.	q	Significant? P < 0.05?	Summary	95% CI of diff						
7.5% vs 10%	2.07E+00	0.104	No	ns	-85.02 to 89.15						
7.5% vs 12%	-1.89E+01	1.029	No	ns	-98.84 to 61.14						
7.5% vs 15%	-7.27E+00	0.364	No	ns	-94.35 to 79.82						
7.5% vs 18%	-3.86E+01	2.235	No	ns	-114.0 to 36.82						
10% vs 12%	-2.09E+01	1.003	No	ns	-112.0 to 70.16						
10% vs 15%	-9.33E+00	0.419	No	ns	-106.7 to 88.03						
10% vs 18%	-4.07E+01	2.039	No	ns	-127.7 to 46.42						
12% vs 15%	1.16E+01	0.555	No	ns	-79.49 to 102.7						
12% vs 18%	-1.98E+01	1.078	No	ns	-99.74 to 60.24						
15% vs 18%	-3.13E+01	1.571	No	ns	-118.4 to 55.75						

Table 4.10. Tukey's multiple comparison test for differences in numbers of protein identifications from hydrogels with different polyacrylamide percentages at the 0.05 significance level. ns: not significant; *: $p \le 0.05$; **: $p \le 0.01$; ***: $p \le 0.001$

Figure 4.4. Average numbers of protein identifications from hydrogels with different polyacrylamide percentages. Each hydrogel was swelled with 0.1 $\mu g/\mu L$ trypsin prior to placement. n \geq 3 for each concentration. No statistically significant differences were observed between the percentages of polyacrylamide hydrogels.

The molecular weight distributions of identified proteins were consistent for both the 7.5 and 18% polyacrylamide, with no observable mass bias as the percentage of polyacrylamide was increased (Table 4.11 and Figure 4.5). This supports the hypothesis that even though the porosity of the hydrogel decreases with increasing percentages of polyacrylamide, the resulting analyte extraction of peptides is unhindered. These distributions closely mirror that of the rat proteome, confirming relatively even proteomic sampling from the tissue. Since the 18% polyacrylamide hydrogels yielded similar numbers of protein identifications when compared to the traditional 7.5% polyacrylamide hydrogels, the 18% gels were chosen to fabricate all subsequent hydrogels because of the ability to more easily and reproducibly prepare the hydrogels.

Molecular Weight	7.5	7.5% Polyacrylamide		189	18% Polyacrylamide			
Bins (Da)	Average	Variance	Std Deviation	Average	Variance	Std Deviation	Kat Proteome	
<1,000	0.00%	0.0000%	0.00%	0.00%	0.0000%	0.00%	0.00%	
1,000	0.00%	0.0000%	0.00%	0.00%	0.0000%	0.00%	0.01%	
5,000	0.03%	0.0001%	0.08%	0.03%	0.0000%	0.05%	0.53%	
10,000	1.27%	0.0001%	0.12%	1.25%	0.0005%	0.23%	2.14%	
15,000	4.67%	0.0003%	0.18%	4.64%	0.0002%	0.15%	6.03%	
20,000	5.59%	0.0002%	0.14%	5.67%	0.0001%	0.11%	6.57%	
40,000	32.85%	0.0050%	0.71%	33.00%	0.0017%	0.41%	31.46%	
60,000	27.11%	0.0036%	0.60%	27.10%	0.0005%	0.23%	20.67%	
75,000	10.22%	0.0007%	0.27%	10.16%	0.0004%	0.19%	9.21%	
100,000	7.91%	0.0012%	0.35%	7.97%	0.0004%	0.19%	9.70%	
150,000	6.51%	0.0012%	0.35%	6.35%	0.0005%	0.21%	8.24%	
200,000	1.68%	0.0010%	0.32%	1.86%	0.0009%	0.31%	2.73%	
500,000	1.94%	0.0004%	0.21%	1.72%	0.0012%	0.34%	2.53%	
>500,000	0.22%	0.0000%	0.05%	0.24%	0.0000%	0.06%	0.17%	

Table 4.11. Molecular weight bins of protein identifications from 7.5% and 18% polyacrylamide hydrogels and the Uniprot Rat Proteome. Both 7.5% and 18% polyacrylamide hydrogels were used to ensure there was no bias among polyacrylamide percentages.

Figure 4.5. Molecular weight distributions of protein identifications from 7.5% and 18% polyacrylamide hydrogels and the reviewed protein identifications in the Uniprot rat protein database. Masses of identified proteins were binned for the 7.5% (red) and 18% (blue) polyacrylamide hydrogels (left axis), as well as the UniProt rat proteome (yellow – right axis). n=5 for both of the hydrogel conditions.

In order to ensure that the variability in protein identifications were not due to background interferences, a series of controls were investigated (Table 4.12). Five replicates of 7.5% and 18% polyacrylamide hydrogels containing no trypsin (tissue blanks) were examined to assess endogenous peptide extraction from tissue. No confident identifications were consistently made for the 7.5% polyacrylamide hydrogels, while the 18% polyacrylamide hydrogels produced statistically insignificant numbers of identifications (74 ± 84 confident proteins). Additionally, hydrogels swelled with trypsin and placed directly onto the microscope slide were used to gauge sample preparation contamination, such as analyte delocalization caused by tissue washes. The 7.5% polyacrylamide hydrogels did produce a number of protein identifications, though largely inconsistent. Conversely, the 18% polyacrylamide hydrogels resulted in negligible identifications. No over-arching trends were observed for either set of blanks, supporting the hypothesis that variations in protein identifications were due to the experimental conditions rather than any background interferences.

Protein Identifications from Control (Blank) Hydrogels									
Control (Blank)	n	Average	Variance	Std Deviation					
7.5% Polyacrylamide - No Tissue	3	148	3884	62					
18% Polyacrylamide - No Tissue	3	0	0	1					
7.5% Polyacrylamide - No Trypsin	5	0	0.3	1					
18% Polyacrylamide - No Trypsin	5	74	6986.7	84					

Table 4.12. Average numbers of protein identifications from control (blank) hydrogels. Both 7.5% and 18% polyacrylamide hydrogels were used to ensure there was no bias among polyacrylamide percentages. Tissue blanks were hydrogels swelled in 100 mM ammonium bicarbonate and incubated on tissue (no trypsin). Trypsin blanks were hydrogels swelled in trypsin solutions, but placed directly onto the microscope slide (no tissue).

Figure 4.6. Average numbers of protein identifications from control (blank) hydrogels. Both 7.5% and 18% polyacrylamide hydrogels were used to ensure there was no bias among polyacrylamide percentages. Tissue blanks were hydrogels swelled in 100 mM ammonium bicarbonate and incubated on tissue (no trypsin). Trypsin blanks were hydrogels swelled in 0.1 μ g/ μ L trypsin solutions, but placed directly onto the microscope slide (no tissue). n=5 for tissue blanks (no trypsin) and n=3 for trypsin blanks (no tissue).

Instrument reproducibility was also assessed to confirm minimal instrument bias between analytical runs. Any discrepancies in liquid chromatographic separation or mass spectrometric acquisition would be observed from technical replicates of a single sample. The number of protein identifications from this triplicate analysis was highly reproducible, resulting in an average of 1,072 confident identifications with a standard deviation of only five proteins, as seen in Table 4.13 and Figure 4.7. When comparing the actual protein identifications, there was a great deal of overlap between the replicates, again highlighting the reproducibility of the analysis (Figure 4.8). A total of 860 proteins were identified in the three replicate runs, which accounts for 63.9% of all protein identifications. An additional 149 proteins were identified in any two of the three runs, or 11% of the protein identifications. This meant that only 25% of the identifications were only observed in a single replicate run.

Protein Identifications from Technical Replicate Runs of a Hydrogel					
Extract					
Replicate 1	Replicate 2	Replicate 3	Average	Variance	Std Deviation
1071	1077	1067	1072	25	5

Table 4.13. Average number of protein identifications from the analysis of a technical replicate experiment repeated three times. Three hydrogel extracts (18% polyacrylamide, 3 mm biopsy punch) were pooled together and diluted three-fold to achieve a total concentration comparable to a single hydrogel experiment. This solution was analyzed three times and the protein identification numbers were compared. The methods appear to be highly reproducible, with an average of 1072 ± 5 identified proteins.

Figure 4.7. Average number of protein identifications from the analysis of a technical replicate experiment repeated three times. Reproducibility of the HPLC-MS/MS methods and instrumentation were assessed. Three hydrogel extracts (18% polyacrylamide, 3 mm biopsy punch) were pooled together and diluted three-fold to achieve a total concentration comparable to a single hydrogel experiment. This solution was analyzed three times and the protein identification numbers were compared. The methods appear to be highly reproducible, with an average of 1072 ± 5 identified proteins.

Replicate 3

Figure 4.8. Venn diagram of protein identifications from the three hydrogel replicates. Over 60% of the identified proteins were found in all three hydrogels (860 protein identifications), and this number increases to \sim 75% if proteins identified in any two out of the three runs are considered (1,009 protein identifications). Only \sim 8% of the identifications from each replicate run were unique and not found in the other runs.

Fabricating Smaller Hydrogels for More Localized Analyte Extraction

Ten hydrogels were fabricated using 4, 3, 2, 1.5, 1, 0.75, and 0.5 mm biopsy punches, and the resulting hydrogel diameters were measured using a microscope (Table 4.14 and Figure 4.9). Although the hydrogels did not have the same diameter as the biopsy punches used to fabricate them, the standard deviations were $<250 \mu$ m for each measurement group. The discrepancy between the punch diameter and the hydrogel diameter can be attributed to the ductile properties of the gel, causing distortion during the perforation process. This was only minimally observed at larger dimensions, with hydrogel diameters measuring >75% of the punch diameter for the 4, 3, 2, 1.5, and 1 mm biopsy punches. However, utilizing the 0.75 and 0.5 mm biopsy punches resulted in reproducible hydrogel diameters of 357 and 259 µm respectively, which is $\sim50\%$ of the biopsy punch diameters.

Diameter Me	asurements o	f Hydrogels F	abricated with	n Different Bi	opsy Punch I	Diameters	
Punch Biopsy Diameter (mm)	4	3	2	1.5	1	0.75	0.5
Hydrogel Diameter Measurement 1 (µm)	3841.82	2377.81	1691.71	1306.00	793.98	335.54	350.67
Hydrogel Diameter Measurement 2 (µm)	3828.62	2337.26	1833.46	1353.32	811.13	388.52	397.20
Hydrogel Diameter Measurement 3 (µm)	3863.37	2477.06	1293.73	1284.28	876.03	374.44	275.60
Hydrogel Diameter Measurement 4 (µm)	4042.53	2577.23	1443.58	1251.36	781.31	397.98	303.59
Hydrogel Diameter Measurement 5 (μm)	4013.39	2517.99	1554.02	1317.16	737.70	341.40	267.69
Hydrogel Diameter Measurement 6 (μm)	3934.26	2393.63	1764.33	1135.85	765.36	271.01	204.14
Hydrogel Diameter Measurement 7 (μm)	3704.35	2860.60	1583.74	1133.80	700.42	343.89	219.31
Hydrogel Diameter Measurement 8 (µm)	3939.23	2715.70	1764.33	955.47	674.80	390.22	217.87
Hydrogel Diameter Measurement 9 (µm)	3990.17	2932.39	1919.14	1013.83	808.63	335.54	177.98
Hydrogel Diameter Measurement 10 (µm)	3994.13	2928.34	1813.09	1281.62	812.09	388.52	180.12
Average	3915.19	2611.80	1666.11	1203.27	776.15	356.71	259.42
Variance	10963.26	53505.39	37902.15	18635.68	3498.97	1533.67	5433.66
Std Deviation	104.71	231.31	194.68	136.51	59.15	39.16	73.71

Table 4.14. Average diameter measurements of hydrogels fabricated with different diameters biopsy punches. Ten measurements were recorded for each biopsy punch diameter.

Figure 4.9. Measured diameters of 18% polyacrylamide hydrogels fabricated with different diameter biopsy punches. (a) A graph of the biopsy punch diameters vs. measured hydrogel diameters. n=10 for each measurement and the standard deviation is plotted. (b) Optical images of each hydrogel size as well as the measured diameters and standard deviation for each measurement. Scale bar: 1 mm.

In order to test the utility of these smaller diameter hydrogels, hydrogels fabricated from biopsy punches with diameters of 2, 1.5, 1, 0.75, and 0.5 mm were investigated. As the diameter of the biopsy punch decreased, ultimately decreasing the fabricated hydrogel diameter, the number of protein identifications showed a similar trend (Table 4.15-4.17). The 2 mm biopsy punch hydrogels resulted in 1,052 identifications with a standard deviation of only 7 identifications. The standard deviations for the 1.5, 1, 0.75, and 0.5 mm biopsy punches were higher, with standard deviations of 77, 56, 78, and 56 identifications, respectively. However, even the smallest diameter hydrogels still provided 671 confident protein identifications. (Figure 4.10a). To ensure the hydrogels were only sampling from the tissue directly beneath them, the tissue sections were H&E stained post-hydrogel removal. Figure 4.10b shows the result of a 259 μ m diameter hydrogel digestion on a rat liver section with the surrounding tissue largely undisturbed from the digestion and extraction process. The vast majority of the signal is therefore derived only from cells being sampled under the hydrogels.

Protein Identifications from Hydrogels Fabricated with Different Biopsy Punch Diameters					
Biopsy Punch Diameter (mm)	Count	Average	Variance	Std Deviation	
0.5	3	671	3163	56	
0.75	4	708	6065	78	
1	3	827	3082	56	
1.5	3	902	5869	77	
2	3	1052	43	7	

Table 4.15. Average numbers of protein identifications from hydrogels fabricated with different diameter biopsy punches. Hydrogels containing 0.1 μ g/ μ L trypsin produced the highest number of identifications with the lowest standard deviation.

ANOVA for Hydrogels Fabricated with Different Biopsy Punch Diameters						
Source of Variation	Sum of Squares	df	Mean Square	F	P-value	F crit
Between Groups	2.98E+05	4	7.46E+04	19.2963	6.20E-05	3.3567
Within Groups	4.25E+04	11	3.86E+03			
Total	3.41E+05	15				

Table 4.16. Analysis of variance (ANOVA) for numbers of protein identifications from hydrogels fabricated with different diameter biopsy punches, confirming a statistically significant difference among the diameters (F>F crit).

Tukey's Multiple Comparison Test for Hydrogels Fabricated with Different Biopsy Punch Diameters							
Biopsy Punch Diameter (mm)	Mean Diff.	q	Significant? P < 0.05?	Summary	95% CI of diff		
0.5 vs 0.75	-3.70E+01	1.102	No	ns	-190.6 to 116.6		
0.5 vs 1	-1.56E+02	4.337	No	ns	-319.8 to 8.497		
0.5 vs 1.5	-2.31E+02	6.436	Yes	**	-395.2 to -66.84		
0.5 vs 2	-3.81E+02	10.620	Yes	***	-545.2 to -216.8		
0.75 vs 1	-1.19E+02	3.535	No	ns	-272.2 to 34.89		
0.75 vs 1.5	-1.94E+02	5.779	Yes	*	-347.6 to -40.44		
0.75 vs 2	-3.44E+02	10.250	Yes	***	-497.6 to -190.4		
1 vs 1.5	-7.53E+01	2.099	No	ns	-239.5 to 88.83		
1 vs 2	-2.25E+02	6.278	Yes	**	-389.5 to -61.17		
1.5 vs 2	-1.50E+02	4.179	No	ns	-314.2 to 14.16		

Table 4.17. Tukey's multiple comparison test for differences in numbers of protein identifications from hydrogels fabricated with different diameter biopsy punches at the 0.05 significance level. ns: not significant; *: $p \le 0.05$; **: $p \le 0.01$; ***: $p \le 0.001$

Figure 4.10. Evaluating the utility and effectiveness of smaller diameter hydrogels in a proteomics workflow. (a) Average number of protein identifications detected from 18% polyacrylamide hydrogels fabricated with different diameter biopsy punches all containing 0.1 μ g/ μ L trypsin. n≥3 for each size. (b) H&E-stained tissue section after a 260 μ m diameter hydrogel (0.5 mm biopsy punch) was removed. The outline of the hydrogel is represented by the yellow dotted line. Scale bar: 100 μ m.

An approximate calculation was performed to assess the number of cells beneath a 259 μ m diameter hydrogel, defined by the ratio of the surface area of the hydrogel to the surface area of a eukaryotic cell (conservatively estimated to be 10 μ m in diameter¹⁶⁰):

$$\pi r^{2} = A$$

$$\pi (\frac{259\mu m}{2})^{2} = 5.27x \ 10^{4} \mu m^{2}$$

$$\pi r^{2} = A$$

$$\pi (\frac{10\mu m}{2})^{2} = 78.5 \ \mu m^{2}$$

$$\frac{5.27x \ 10^{4} \ \mu m^{2} \ hydrogel \ area}{78.5 \ \mu m^{2} \ cell \ area} = 671 \ cells$$

Though this calculation makes assumptions about the circular shape of both hydrogels and cells, the approximation provides general context for the protein yields from such small sample areas. Comparatively, LCM-based protocols traditionally recommend cell counts at least an order of magnitude higher for robust protein-based analyses.⁵⁷

Comparison of Sample Collection Methods

A direct comparison of hydrogel-mediated protein identifications to both LCM and tissue homogenization methodologies was performed to validate the hydrogel approaches against existing methods. A biopsy punch with a diameter of 1.5 mm was used to fabricate hydrogels with a resulting diameter of ~1.2 mm. The same diameter biopsy punch was used to perforate 12 μ m-thick tissue sections and place the 1.5 mm tissue punches into individual Eppendorf tubes. To account for the discrepancy between the diameters of the hydrogel and the tissue punches, LCM was used to collect circular regions at diameters of both 1.2 and 1.5 mm. The hydrogels were incubated on-tissue, while the LCM and tissue punch digestions were incubated for the same amount of time in-solution.

Protein Identifications from Different Sample Collection Methods						
Sample Collection Methods	Count	Average	Variance	Std Deviation		
1.2mm LCM	3	708	272	17		
1.5mm LCM	3	764	4033	64		
1.2mm Hydrogel	3	902	5869	77		
1.5mm Tissue Punch	3	889	320	18		

Table 4.18. Average numbers of protein identifications from different sample collection methods. The 1.2 mm diameter hydrogel and 1.5 mm diameter tissue punch yielded the highest number of identifications.

ANOVA for Different Sample Collection Methods						
Source of Variation	Sum of Squares	df	Mean Square	F	P-value	F crit
Between Groups	8.13E+04	3	2.71E+04	10.3305	3.99E-03	4.0662
Within Groups	2.10E+04	8	2.62E+03			
Total	1.02E+05	11				

Table 4.19. Analysis of variance (ANOVA) for numbers of protein identifications from different sample collection methods, confirming a statistically significant difference among the methods (F>F crit).

Tukey's Multiple Comparison Test for Different Sample Collection Methods					
Sample Collection Method	Mean Diff.	q	Significant? P < 0.05?	Summary	95% CI of diff
1.2mm LCM vs 1.5mm LCM	-5.53E+01	1.871	No	ns	-189.3 to 78.60
1.2mm LCM vs 1.2mm Hydrogel	-1.94E+02	6.549	Yes	**	-327.6 to -59.73
1.2mm LCM vs 1.5mm Tissue Punch	-1.81E+02	6.120	Yes	*	-314.9 to -47.06
1.5mm LCM vs 1.2mm Hydrogel	-1.38E+02	4.678	Yes	*	-272.3 to -4.396
1.5mm LCM vs 1.5mm Tissue Punch	-1.26E+02	4.249	No	ns	-259.6 to 8.271
1.2mm Hydrogel vs 1.5mm Tissue Punch	1.27E+01	0.428	No	ns	-121.3 to 146.6

Table 4.20. Tukey's multiple comparison test for differences in numbers of protein identifications from different sample collection methods at the 0.05 significance level. ns: not significant; *: $p \le 0.05$; **: $p \le 0.01$; ***: $p \le 0.001$

Figure 4.11. Average numbers of protein identifications from different sample collection methods. Circular tissue regions with diameters of 1.2 and 1.5 mm were collected by LCM. A 1.5 mm biopsy punch was used to collect circular regions of tissue and perform in-solution digests in parallel to LCM experiments. Hydrogels with diameters of 1.2 mm were placed on serial tissue sections and incubated for the same period of time as the in-solution digests. n=3 for each method. ns: not significant; *: $p \le 0.05$; **: $p \le 0.01$; ***: $p \le 0.001$

Compared to the tissue punch method, which requires separate collection and incubation steps, the hydrogel digestion/extraction process yielded statistically similar results as seen in Tables 4.18-4.20 and Figure 4.11 (889 \pm 18 and 902 \pm 77 protein identifications, respectively). Though manual manipulation of hydrogels may prove challenging with smaller diameter gels, a tissue punch of the same diameter would inherently prove to be more difficult.

The 1.2 mm hydrogel outperformed both the 1.2 mm and 1.5 mm LCM experiments, which had 708 ± 17 and 764 ± 64 identifications. The decreased number of protein identifications from the LCM process relative to the other methods is most likely due to sample loss during the catapulting process of the sample into the collection apparatus. Though robust, this transfer method is not 100% efficient, as seen by particulates falling back down onto the sample between laser pulses. This, compounded by the high cost of equipment, potentially long collection times, and separate digestion steps, highlights an advantage of the hydrogel technologies.

Differential Proteomic Analysis of Rat Cerebellum Substructures

The need for spatially-directed proteomic analyses is particularly useful for spatially heterogeneous tissue samples with many different cell types. These can include organ substructures, ^{31, 161} the interface between a host and infectious agents, ^{146, 162} or the infiltration of diseased tissue, such as a cancerous growth, into surrounding healthy tissue.^{71, 94, 163, 164} The rat cerebellum is a simple example that has many distinct layers comprising the tissue, including the white matter, granule layer, and molecular layer.

Hydrogels were fabricated with a 1 mm diameter biopsy punch and placed on either the white matter or the molecular layer, designated by the circles in Figure 4.12a. These hydrogels

were placed less than 1 mm away from each other to highlight the ability of hydrogel technologies to perform independent experiments in close spatial proximity. LC-MS/MS experiments showed that while there was a great deal of overlap between the identified proteins from each region, the white matter had 272 unique proteins and the molecular layer had 174 unique proteins (Figure 4.12b). The top ten unique protein identifications based on X! Tandem rankings for each hydrogel are listed in Table 4.21.

	Accession	Description
	TBA1_RAT	Tubulin alpha-1A chain
	MAG_RAT	Myelin-associated glycoprotein
ف	NOTC3_RAT	Neurogenic locus notch homolog protein 3
tte	MOG_RAT	Myelin-oligodendrocyte glycoprotein
Ma	HNRPD_RAT	Heterogeneous nuclear ribonucleoprotein D0
ite	CXA1_RAT	Gap junction alpha-1 protein
Wh	H2A4_RAT	Histone H2A type 4
	PIMT_RAT	Protein-L-isoaspartate(D-aspartate) O-methyltransferase
	CDC5L_RAT	Cell division cycle 5-like protein
	NOVA1_RAT	RNA-binding protein Nova-1
	TBA2_RAT	Tubulin alpha-1B chain
	CAC1G_RAT	Voltage-dependent T-type calcium channel subunit alpha-1G
er	MYH11_RAT	Myosin-11
Lay	NDKB_RAT	Nucleoside diphosphate kinase B
ar J	UN13A_RAT	Protein unc-13 homolog A
cul	HD_RAT	Huntingtin
ole	NRX2A_RAT	Neurexin-2
Σ	THIKA_RAT	3-ketoacyl-CoA thiolase A, peroxisomal
	ITB1_RAT	Integrin beta-1
	CO3A1_RAT	Collagen alpha-1(III) chain

Table 4.21. The 10 highest-ranked hydrogel-mediated protein identifications unique to the white matter or molecular layer of the rat cerebellum.

Figure 4.12. Differential proteomic analysis of rat cerebellum substructures. (a) H&E section of 12 μ m thick rat cerebellum tissue after two hydrogels with diameters of ~777 μ m were placed on either the white matter or molecular layer. The regions have been denoted by the circles overlaid on the H&E. Scale bar: 2 mm. (b) Venn diagram of protein identifications from the two cerebellum regions. The diagram is color-coded to match the circles shown in (a).

These identifications within the rat cerebellum are supported by previous literature reports.¹⁶⁵ For example, myelin-associated glycoprotein and myelin-oligodendrocyte glycoprotein are highly expressed in white matter regions within the central nervous system and are found to diminish with age, leading to disorders such as Alzheimer's and Parkinson's disease.¹⁶⁶⁻¹⁶⁸ Conversely, neurexin-2 and voltage-dependent T-type calcium channel subunit alpha-1G, found in the molecular layer, mediate neuronal signaling and electrophysiological activity, respectively.^{169, 170} A complete list of identified proteins can be found in Appendix A-C. One potential explanation for the high overlap is due to the granule layer, seen as dark purple in the H&E stained section, and the Purkinje layer, which is a one-cell thick layer between the white matter and the granule layer. Both hydrogels were tangential to these layers, with small portions present within the digestion/extraction regions underneath the hydrogels. It stands to reason that proteins are relatively homogeneous within specific layers, so both hydrogels would extract similar analytes from these interfering regions of tissue.

Conclusions

The current methodologies for hydrogel-mediated analysis have been improved to allow for more efficient analyte:trypsin ratios and the use of more rigid polymers. Trypsin concentrations were reduced 10-fold while still maintaining the detection of over 1,000 proteins. The use of 18% polyacrylamide to cast hydrogels led to more reproducible hydrogel diameters as well as the ability to fabricate smaller hydrogels down to 260 μ m. Even these narrow hydrogels provided robust proteomics data, with over 670 proteins confidently identified. The tissue adjacent to these small hydrogels does not appear to be altered in any way, as seen by H&E staining post-hydrogel removal. This means that the hydrogels are truly sampling the tissue directly below them, not delocalizing into the surrounding areas.

On-tissue hydrogel digestion and extractions performed statistically better than insolution digests from LCM and were comparable to tissue punch workflows, supporting this methodology as an easy to use and cost-effective alternative for many biological studies. When applying the newly optimized hydrogels to a rat cerebellum tissue, close to 1,000 proteins were identified from the white matter and molecular layer. Though there was a great deal of overlap between the identified proteins between the two substructures, 272 identifications were unique to the white matter and 174 identifications were unique to the molecular layer. Upon closer inspection, the top-ranked proteins that were unique to each region made biological sense, and were supported by previous literature reports.

CHAPTER V

CONCLUSIONS & PERSPECTIVES

MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to Link Protein Images with Proteomics Data

Next-generation MALDI imaging platforms can provide unprecedented performance in terms of mass resolution for spatial proteomics experiments. The advantages of performing imaging experiments of intact proteins using MALDI FTICR IMS have been shown with vastly different tissue types. In the analysis of rat brain tissue, the ability to detect proteins with good sensitivity up to $m/z \sim 17,000$ and proteins as large as ~ 20 kDa was achieved. This is an m/z increase of almost 5,000 over previously reported results. IMS of rat brain tissue and clear cell renal cell carcinoma tissue from a human patient using MALDI FTICR IMS produced ion images with high mass resolution (~75,000 at m/z 5,000) and accuracy (< 5 ppm). The analysis of ccRCC tissue elucidated proteins that were observed to be at greater abundance in the healthy tissue regions of the tissue (HH4-AC/2Me, [M+2H]²⁺, -4.4 ppm), within the tumor (Thyβ10-AC, [M+H]¹⁺, 3.1 ppm), and also localized to areas of increased vascularization around the tumor (HBB, [M+2H]²⁺, 4.7 ppm). These data showed the capabilities of MALDI FTICR IMS to provide the molecular specificity needed to overcome the challenges associated with direct tissue analysis. Improving spectral performance criteria such as mass resolving power and accuracy are critical for next-generation molecular imaging experiments. Specifically, direct tissue analysis provides unique challenges associated with overcoming bimolecular complexity and protein identification. For example, only 15 confident IMS identifications were made using this approach, due in large part to differences in observed peaks between the MALDI IMS and LC-
ESI MS/MS experiments. Although many more peaks were observed in each data set, the focus of this study was on the ions observed in both sets. Continued work must focus on addressing the inherent differences between these two ionization techniques in order to increase the number of identifications.

Spatially-Targeted Extractions to Improve Peptide Identifications from MALDI FTICR IMS Experiments

MALDI FTICR IMS can be an extremely useful tool for not only protein imaging, but peptide imaging as well. High mass resolution and mass accuracy aids in differentiating near isobaric peptide signals, many of which have overlapping isotopic envelopes. Though matrices such as CHCA have been used previously for peptide IMS experiments, the incorporation of a DHA method has greatly improved the signal intensities and peak abundances. This volatile matrix can rapidly sublime off of samples in high vacuum sources, such as those found on TOFs, but the reduced pressure source of the FTICR makes it perfectly amenable to DHA imaging. Sample preparation optimization also included the investigation of incubation conditions to ensure sufficient digestion while still minimizing delocalization. Volumes of ammonium bicarbonate were reduced to 50-100 μ L for over-night digests, but still maintained robust peptide signals detected on the FTICR.

Integrating spatially-driven proteomic identification approaches, such as microextractions, into the imaging workflow provided rich peptide and protein datasets. This method is favored over homogenization because it maintains spatial information while remaining relatively easy to perform. Additionally, approximately 70 proteins were identified from the microextract that were not observed in the homogenate analysis. Microextracts have been used to

94

extract proteins prior to in-solution digestion, but extracting peptides from a tissue that has undergone the same *in situ* digestion as is used for imaging mass spectrometry experiments increases the chance that the peptides will be observed in both datasets. It reduces a major variable that could interfere with the confident identifications of peptides and proteins from tissue.

Advanced Hydrogel Technologies For Enhanced On-Tissue Protein Digestion and Improved Spatial Localization

Although previous iterations of hydrogels have successfully performed spatially-directed proteomics analyses from tissue, improvements could still be made to all aspects of their use. The reduction of trypsin concentrations from 1 $\mu g/\mu L$ to 0.1 $\mu g/\mu L$ produced no statistical different in the number of protein identifications. This can be beneficial to make the technology even more cost-effective, especially if many hydrogel experiments are being performed simultaneously. Further experiments revealed that increasing the percentage of polyacrylamide from 7.5% to 18% formed a more rigid polymer. The rigidity allowed for hydrogels to be fabricated from smaller diameter punch biopsies, reproducibly creating the first hydrogels of this type with diameters of 260 µm. Alterations to the percentage of polyacrylamide showed no decrease in protein identifications, or in the molecular weight ranges of proteins identified. Reducing the diameter of the hydrogels did decrease the number of protein identifications, which is to be expected as less tissue is being sampled. However, even the smallest diameter hydrogels yielded ~670 confident identifications. Hydrogels performed as well as or better than LCM and tissue punches of the same area, which shows the power of performing digestions and extractions in one incubation step. When applied to the white matter and molecular layer within rat cerebellum tissue sections, rich datasets were observed for each hydrogel. This again highlights the technology, providing around 1,000 protein identifications while maintaining their localization within the tissue.

Future Research Directions

Detection of proteins from tissue with masses >17kDa using MALDI FTICR IMS represents a significant advancement in molecular imaging technologies; however, a vast number of endogenous proteins have even larger molecular weights. Diminished sensitivity for larger proteins is likely due to the difficulty in desorbing higher molecular weight analytes from tissue and limited ion transfer efficiencies of these analytes for many commercial source components (e.g., multipoles and ion funnels). This issue is not unique to MALDI FTICR IMS experiments, as the majority of proteins detected from tissue using MALDI-TOF platforms are typically <30kDa. Continuing to develop new methods for detecting and identifying proteins is critical to exposing the underlying biology that drives the images we collect. High mass accuracy and resolving power instrumentation enables such identifications to be made with high confidence.

Additionally, the detectable mass range can be extended by *in situ* tryptic digestion and imaging of tryptic peptides. Many hurdles still remain to be overcome, such as reduction and alkylation steps which are routinely used in in-solution digestion protocols. By breaking the cysteine bonds and allowing the protein to unfold, enzymes have better access to internal cleavage sites, improving overall sequence coverage. Heat-denaturing the tissue prior to digestion could provide a solution-free alternative, and has begun to be incorporated as an antigen retrieval step for FFPE IMS workflows. Additionally, more standard rehydration conditions would allow for better reproducibility from day to day and from person to person.

Modified trypsin able to withstand high temperatures would allow for more rapid digestion times, minimizing the chance of delocalization from the moisture in the incubation chamber.

Hydrogels have become highly useful tools for histology-driven analyses on a wide range of biological specimens, where specific anatomical features are targeted for direct profiling or identifications. However, as the targets of such analyses continue to become smaller and smaller, the hydrogel diameters will also need to decrease. Accurate placement of such hydrogels is important in experiments with very small spatial features. Manual manipulation is likely not feasible at these dimensions and the introduction of more precise equipment, such as micromanipulators, will improve this facet. Robotic manipulation would improve placement accuracy and precision, especially when used in conjunction with microscopy-directed targets. Alternatively, incorporating an array of hydrogels would allow for a multiplexed approach where hydrogels of interest within the array can be excised and subsequently analyzed. By incorporating the hydrogel technologies into proteomic workflows, robust and reproducible results can now be achieved at smaller dimensions, opening the door for targeting smaller anatomical features, such as specific substructures within tissues, or future clinical applications.

Conclusions

In summary, high resolution MALDI IMS and spatially-directed proteomics experiments were used to improve protein identification confidence as well as provide alternatives to basic homogenization strategies. Methods have been developed to routinely image proteins on an FTICR, achieving m/z measurements of 17,000 and above. When comparing to top-down ETD fragmentation identifications, proteins were able to be matched to IMS ions with accuracies of less than 5 ppm. Peptide imaging was also improved, with similar sample preparation conditions

yielding robust peptide imaging datasets. Optimizing the incubation conditions resulted in better localization within the tissue section. Hydrogel technologies have also been advanced to target smaller biological regions, while still providing over 670 confident protein identifications. Hydrogels outperformed analogous LCM experiments and were comparable to traditional tissue homogenization approaches on the same amount of tissue.

These approaches can be incorporated into almost any protein-driven investigation to yield confident identifications with distinct imaging mass spectrometry patterns representative of the natural distributions within the tissue. High mass accuracy and resolution can be used to parse apart protein variations, such as isoforms, splice variants, or post-translationally modified forms. As hydrogel dimensions continue to decrease, smaller features within tissue can be targeted for unambiguous protein identifications. Scientific communities that study heterogeneous tissues, such as infectious disease and cancer research, would greatly benefit from these technological advancements to detect protein changes quickly, efficiently, and confidently. Understanding proteomic changes within complex systems is paramount to understanding biological processes like disease pathogenesis and progression.

272 Protein Identifications Unique to the "White Matter" Hydrogel										
X! Tandem Rank	log(e)	log(I)	Accession	Description	Mr	Unique Peptides	Total Peptides	% (measured)	% (corrected)	
22	-364.1	6.68	TBA1_RAT	Tubulin alpha-1A chain	50.1	41	82	43	63	
72	-165.6	6.34	AT1A4_RAT	Sodium/potassium-transporting ATPase subunit alpha-4	113.9	2	2	3.6	6	
151	-90.7	5.82	MAG_RAT	Myelin-associated glycoprotein	69.3	11	18	16	36	
195	-75.5	5.68	HSP71_RAT	no protein information available	8.6	9	26	46	57	
233	-65.6	4.93	NOTC3_RAT	Neurogenic locus notch homolog protein 3	244.1	10	10	8.9	17	
236	-64.7	5.41	MOG_RAT	Myelin-oligodendrocyte glycoprotein	27.9	9	12	34	66	
242	-63.3	5.4	HNRPD_RAT	Heterogeneous nuclear ribonucleoprotein D0	38.2	9	15	23	58	
269	-57.8	5.41	CXA1_RAT	Gap junction alpha-1 protein	42.9	8	10	22	32	
287	-55.4	6.34	H2A4_RAT	Histone H2A type 4	14.1	8	14	32	73	
319	-51.8	4.95	CDC5L_RAT	Cell division cycle 5-like protein	92.2	7	7	12	19	
321	-51.2	5.4	PIMT_RAT	Protein-L-isoaspartate(D-aspartate) O-methyltransferase	24.5	8	9	33	45	
327	-50.1	5.22	NOVA1_RAT	RNA-binding protein Nova-1	48.4	7	7	15	31	
329	-50	5.13	TR150_RAT	Thyroid hormone receptor-associated protein 3	108.2	7	7	9.7	17	
335	-48.8	5.61	NDKA_RAT	Nucleoside diphosphate kinase A	17.2	6	8	26	29	
372	-43.6	5.2	MYO1D_RAT	Unconventional myosin-Id	116	7	7	5.7	8	
378	-42.8	4.67	MAST1_RAT	Microtubule-associated serine/threonine-protein kinase 1	170.9	7	7	5.1	7	
394	-40.6	5.37	PP2AB_RAT	Serine/threonine-protein phosphatase 2A catalytic subunit beta isoform	35.6	5	8	12	16	
403	-39.4	5.43	RAB10_RAT	Ras-related protein Rab-10	22.8	5	7	24	35	
425	-37.5	5.2	S6A11_RAT	Sodium- and chloride-dependent GABA transporter 3	69.9	5	7	6.1	19	
431	-36.4	5.2	NUCKS_RAT	Nuclear ubiquitous casein and cyclin-dependent kinase substrate 1	27.1	5	6	21	30	
449	-34.7	5.51	PRDX1_RAT	Peroxiredoxin-1	22.1	2	3	5	6	
451	-34.4	5.38	RAB3B_RAT	Ras-related protein Rab-3B	24.8	3	3	11	15	
458	-34	5.09	LAT1_RAT	Large neutral amino acids transporter small subunit 1	55.9	4	4	5.3	19	
473	-32.7	5.17	GBB1_RAT	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1	37.2	2	2	11	16	
488	-31.5	5	FPPS_RAT	Farnesyl pyrophosphate synthase	40.8	5	6	12	17	
500	-30.8	5.06	TOP1_RAT	DNA topoisomerase 1	90.7	5	5	7.3	14	
506	-30.3	4.58	ABCF1_RAT	ATP-binding cassette sub-family F member 1	95.2	5	5	8.3	11	
507	-30.3	4.83	CELR3_RAT	Cadherin EGF LAG seven-pass G-type receptor 3	359.1	5	5	2.6	4	
519	-29.3	5.05	TCEA1_RAT	Transcription elongation factor A protein 1	33.9	5	5	15	22	
527	-28.6	5.25	KAP2_RAT	cAMP-dependent protein kinase type II-alpha regulatory subunit	45.4	3	4	6.3	9	
535	-28.3	4.85	AL3A2_RAT	Fatty aldehyde dehydrogenase	54	4	4	8.5	15	
541	-28.1	5.01	CTL1_RAT	Choline transporter-like protein 1	73	4	5	7.2	17	
542	-28.1	4.52	B3A3_RAT	Anion exchange protein 3	135.3	5	5	9.6	17	
553	-27.6	5.5	MYPR_RAT	Myelin proteolipid protein	29.9	4	6	8	22	
557	-27	4.89	DNJA2_RAT	DnaJ homolog subfamily A member 2	45.7	4	6	22	33	
559	-26.9	5.02	GCP_RAT	Probable tRNA N6-adenosine threonylcarbamoyltransferase	34.6	4	5	14	14	
564	-26.8	5.14	RS9_RAT	40S ribosomal protein S9	22.4	4	4	19	30	
565	-26.6	4.77	NUP53_RAT	Nucleoporin NUP53	34.8	4	5	17	34	

272 Protein Identifications Unique to the "White Matter" Hydrogel										
X! Tandem Rank	log(e)	log(I)	Accession	Description	Mr	Unique Peptides	Total Peptides	% (measured)	% (corrected)	
573	-26	4.9	ERC2_RAT	ERC protein 2	110.5	2	2	4.2	6	
576	-25.8	4.63	NCBP1_RAT	Nuclear cap-binding protein subunit 1	91.9	4	4	5.1	8	
578	-25.6	4.84	CADH2_RAT	Cadherin-2	365.2	2	2	0.8	2	
585	-25.4	5.03	ZN238_RAT	Zinc finger and BTB domain-containing protein 18	58.3	4	5	11	13	
591	-25.2	5.29	ACBP_RAT	Acyl-CoA-binding protein	9.9	4	9	44	72	
592	-25.2	4.7	OX2G_RAT	OX-2 membrane glycoprotein	31.1	4	4	15	55	
597	-24.9	4.82	WBP11_RAT	WW domain-binding protein 11	70	4	4	8.4	15	
600	-24.7	5.08	PERI_RAT	Peripherin	53.5	3	3	6.2	8	
605	-24.5	4.9	SMC1A_RAT	Structural maintenance of chromosomes protein 1A	143.1	4	6	3.2	5	
608	-24.1	5	HMOX2_RAT	Heme oxygenase 2	35.7	4	4	16	24	
609	-24	4.91	NEUA_RAT	N-acylneuraminate cytidylyltransferase	48.1	4	4	12	18	
611	-23.7	4.39	SCG2_RAT	Secretogranin-2	71	4	4	8.9	11	
612	-23.7	4.41	DBPA_RAT	Y-box-binding protein 3	38.8	3	4	12	18	
616	-23.6	4.94	GAK_RAT	Cyclin-G-associated kinase	143.6	4	4	2.6	5	
617	-23.6	4.91	NUPL_RAT	Arf-GAP domain and FG repeat-containing protein 1	58.1	3	4	8.9	22	
619	-23.5	5.33	PSA2_RAT	Proteasome subunit alpha type-2	25.8	4	6	21	34	
623	-23.4	5	PRS6B_RAT	26S protease regulatory subunit 6B	47.4	4	5	9.8	14	
624	-23.4	4.11	DKC1_RAT	H/ACA ribonucleoprotein complex subunit 4	56.4	3	3	10	13	
625	-23.3	5.11	RAP2B_RAT	Ras-related protein Rap-2b	20.5	3	3	16	18	
627	-23.1	4.96	PCNP_RAT	PEST proteolytic signal-containing nuclear protein	20.2	4	4	24	28	
630	-23	4.71	PTN23_RAT	Tyrosine-protein phosphatase non-receptor type 23	163.4	3	3	2.3	4	
632	-22.8	5.24	SEP10_RAT	Septin-10	53	3	3	9.2	12	
636	-22.7	4.75	ERG19_RAT	Diphosphomevalonate decarboxylase	43.9	3	3	8.5	11	
639	-22.7	4.95	SFRS5_RAT	Serine/arginine-rich splicing factor 5	30.9	3	3	13	30	
640	-22.7	5.22	HMGA1_RAT	High mobility group protein HMG-I/HMG-Y	11.6	3	6	22	37	
641	-22.7	5.37	RS7_RAT	40S ribosomal protein S7	22.1	4	4	14	22	
643	-22.6	5.39	ARL8B_RAT	ADP-ribosylation factor-like protein 8B	21.5	4	5	24	33	
644	-22.6	5.3	RAB4A_RAT	Ras-related protein Rab-4A	23.9	2	2	12	14	
645	-22.5	4.72	MRP1_RAT	Multidrug resistance-associated protein 1	171.4	4	4	3.8	6	
647	-22.4	5.04	ENSA_RAT	Alpha-endosulfine	13.3	3	6	32	41	
651	-22.1	5.07	CYTC_RAT	Cystatin-C	15.4	3	5	19	30	
655	-22	4.51	S4A7_RAT	Sodium bicarbonate cotransporter 3	135.9	4	4	6.9	14	
656	-22	5.31	RL18_RAT	60S ribosomal protein L18	21.5	3	3	17	41	
667	-21.4	5.36	HDGR3_RAT	Hepatoma-derived growth factor-related protein 3	22.4	3	5	14	22	
672	-20.9	4.57	PDLI5_RAT	PDZ and LIM domain protein 5	63.2	4	4	11	17	
678	-20.6	4.77	DNMT1_RAT	DNA (cytosine-5)-methyltransferase 1	182.7	4	4	4.4	6	
679	-20.5	4.74	HMCS1_RAT	Hydroxymethylglutaryl-CoA synthase, cytoplasmic	57.4	3	3	7.3	12	
680	-20.5	4.81	MOT1_RAT	Monocarboxylate transporter 1	53.2	3	3	10	21	

272 Protein Identifications Unique to the "White Matter" Hydrogel										
X! Tandem Rank	log(e)	log(I)	Accession	Description	Mr	Unique Peptides	Total Peptides	% (measured)	% (corrected)	
682	-20.4	4.88	NOLC1_RAT	Nucleolar and coiled-body phosphoprotein 1	73.5	4	4	6.7	9	
685	-20.3	5.15	RL13_RAT	60S ribosomal protein L13	24.2	3	3	10	17	
693	-19.8	4.75	FAHD1_RAT	Acylpyruvase FAHD1, mitochondrial	24.5	3	3	17	19	
694	-19.8	5.03	ILF2_RAT	Interleukin enhancer-binding factor 2	51.3	3	4	7.1	8	
696	-19.7	4.75	NCLN_RAT	Nicalin	63	3	4	6.2	13	
702	-19.4	5.25	RL14_RAT	60S ribosomal protein L14	23.2	3	3	9.4	21	
703	-19.4	4.31	MBB1A_RAT	Myb-binding protein 1A	152.2	3	3	3.7	5	
705	-19.3	4.62	NFIA_RAT	Nuclear factor 1 A-type	55.9	3	3	8.4	15	
708	-19.2	5	RS24_RAT	40S ribosomal protein S24	15.4	3	4	23	48	
709	-19.2	4.09	CSPG4_RAT	Chondroitin sulfate proteoglycan 4	251.8	3	3	1.8	3	
710	-19.1	4.94	GPSN2_RAT	Very-long-chain enoyl-CoA reductase	36.1	3	4	8.8	20	
714	-19	5.16	CSN2_RAT	COP9 signalosome complex subunit 2	51.6	3	3	14	20	
717	-18.9	4.66	ADRM1_RAT	Proteasomal ubiquitin receptor ADRM1	42.1	3	3	9.1	27	
719	-18.8	5.27	PRP19_RAT	Pre-mRNA-processing factor 19	55.2	3	4	8.5	13	
721	-18.8	4.9	OAT_RAT	Ornithine aminotransferase, mitochondrial	48.3	3	3	6.8	10	
725	-18.6	4.78	PP2CB_RAT	Protein phosphatase 1B	42.9	2	2	10	12	
730	-18.3	4.66	SFR12_RAT	Splicing regulatory glutamine/lysine-rich protein 1	56.8	3	3	8.3	28	
734	-18.2	4.63	RABE2_RAT	Rab GTPase-binding effector protein 2	61.9	3	3	6.1	9	
742	-17.8	4.79	SNP23_RAT	Synaptosomal-associated protein 23	23.2	2	2	14	18	
744	-17.7	4.75	PEX19_RAT	Peroxisomal biogenesis factor 19	32.5	3	3	14	18	
745	-17.7	4.98	MPPB_RAT	Mitochondrial-processing peptidase subunit beta	54.3	3	3	5.9	9	
746	-17.7	4.55	COPB2_RAT	Coatomer subunit beta'	102.4	3	3	3.2	4	
755	-17.5	4.89	SCPDH_RAT	Saccharopine dehydrogenase-like oxidoreductase	47.1	3	3	14	20	
763	-17.3	5.98	H33_RAT	Histone H3.3	15.2	3	4	16	23	
770	-17.1	4.58	PCYOX_RAT	Prenylcysteine oxidase	56.3	3	3	9.3	11	
771	-17.1	4.92	SYUG_RAT	Gamma-synuclein	12.9	3	4	23	41	
772	-17.1	4.39	PP1RB_RAT	Protein phosphatase 1 regulatory subunit 11	13.9	2	2	41	50	
773	-17.1	4.72	DPP2_RAT	Dipeptidyl peptidase 2	55.1	3	3	4.6	8	
774	-17	4.64	CNN3_RAT	Calponin-3	36.4	3	3	12	22	
776	-17	4.89	BLMH_RAT	Bleomycin hydrolase	52.3	3	3	6.4	7	
782	-16.9	4.58	NP1L1_RAT	Nucleosome assembly protein 1-like 1	45.3	2	2	7.9	14	
785	-16.6	4.95	CREB1_RAT	Cyclic AMP-responsive element-binding protein 1	36.6	3	3	4.1	15	
787	-16.5	4.6	MYO5B_RAT	Unconventional myosin-Vb	213.6	2	2	1.3	2	
793	-16.4	4.49	NRX2B_RAT	Neurexin-2-beta	70.5	3	3	5.7	10	
794	-16.4	5	HMCS2_RAT	Hydroxymethylglutaryl-CoA synthase, mitochondrial	56.9	2	2	3.3	5	
800	-16.3	4.61	AL1A1_RAT	Retinal dehydrogenase 1	54.3	3	3	8	10	
801	-16.2	4.67	RL10_RAT	60S ribosomal protein L10	24.5	3	3	13	20	
802	-16.2	4.89	CACB2_RAT	Voltage-dependent L-type calcium channel subunit beta-2	73.2	3	3	6.4	9	

272 Protein Identifications Unique to the "White Matter" Hydrogel										
X! Tandem Rank	log(e)	log(I)	Accession	Description	Mr	Unique Peptides	Total Peptides	% (measured)	% (corrected)	
803	-16.2	4.58	HCN1_RAT	Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 1	102.4	3	3	4.6	9	
807	-16	5	SEPT9_RAT	Septin-9	63.8	3	3	4.4	6	
808	-15.9	4.64	GBRA6_RAT	Gamma-aminobutyric acid receptor subunit alpha-6	51.2	3	3	8.2	12	
809	-15.9	5.28	RS26_RAT	40S ribosomal protein S26	12.9	3	3	20	36	
814	-15.7	4.95	FIS1_RAT	Mitochondrial fission 1 protein	17	3	4	17	26	
817	-15.6	5.05	RL23A_RAT	60S ribosomal protein L23a	17.7	3	4	17	37	
818	-15.5	4.65	GCYB1_RAT	Guanylate cyclase soluble subunit beta-1	70.4	3	3	4.4	6	
819	-15.5	4.6	MYPT1_RAT	Protein phosphatase 1 regulatory subunit 12A	115.2	3	5	3.6	6	
821	-15.5	4.52	CPSM_RAT	Carbamoyl-phosphate synthase [ammonia], mitochondrial	164.5	3	3	3	5	
823	-15.4	4.82	PDC6I_RAT	Programmed cell death 6-interacting protein	44	3	3	6.5	11	
825	-15.3	4.84	BPNT1_RAT	3'(2'),5'-bisphosphate nucleotidase 1	33.2	3	3	9.7	11	
828	-15.1	4.62	DLC2A_RAT	Dynein light chain roadblock-type 1	10.9	2	2	12	13	
831	-14.8	5	XKR4_RAT	XK-related protein 4	72.7	3	3	5.7	11	
833	-14.7	5.04	PTBP2_RAT	Polypyrimidine tract-binding protein 2	57.5	3	3	5.8	11	
834	-14.7	4.58	FAAA_RAT	Fumarylacetoacetase	45.9	2	2	6	9	
837	-14.5	4.8	NMDZ1_RAT	Glutamate receptor ionotropic, NMDA 1	105.4	3	3	4.5	8	
839	-14.4	5.06	NPM_RAT	Nucleophosmin	32.5	3	3	14	17	
842	-14.3	4.53	CORO7_RAT	Coronin-7	48.9	2	3	5.6	8	
844	-14.3	4.36	HBS1L_RAT	HBS1-like protein	74.7	3	3	7.7	10	
845	-14.2	4.37	CLD11_RAT	Claudin-11	22	2	2	6.3	15	
847	-14	4.58	CO1A2_RAT	Collagen alpha-2(I) chain	129.5	3	3	4.2	5	
848	-14	4.82	CSPG2_RAT	Versican core protein	299.8	2	2	0.7	1	
850	-13.8	4.57	IF5A1_RAT	Eukaryotic translation initiation factor 5A-1	16.7	2	2	22	27	
851	-13.7	3.74	LAT2_RAT	Large neutral amino acids transporter small subunit 2	58.2	2	2	7.5	23	
856	-13.3	4.35	TSC2_RAT	Tuberin	201.2	2	2	1.7	2	
857	-13.2	4.39	PTBP1_RAT	Polypyrimidine tract-binding protein 1	59.3	2	3	6.7	11	
858	-13.2	4.28	PHLPP_RAT	PH domain leucine-rich repeat protein phosphatase 1	183.2	2	2	1.2	2	
859	-13.2	4.51	UCHL3_RAT	Ubiquitin carboxyl-terminal hydrolase isozyme L3	26.1	2	2	11	15	
861	-13.1	4.39	NMT1_RAT	Glycylpeptide N-tetradecanoyltransferase 1	56.8	2	2	8.1	11	
863	-13	4.27	CP2D1_RAT	Cytochrome P450 2D1	57.1	2	2	9.1	12	
866	-12.8	4.73	SIRT2_RAT	NAD-dependent protein deacetylase sirtuin-2	39.5	2	2	5.1	6	
870	-12.5	4.43	SQSTM_RAT	Sequestosome-1	47.7	2	2	6.4	9	
871	-12.5	4.25	CPNS1 RAT	Calpain small subunit 1	28.6	2	2	8.5	14	
875	-12.2	4.99	DOCK9_RAT	Dedicator of cytokinesis protein 9	82.4	2	2	2.5	3	
877	-12.1	4.61	S61A1_RAT	Protein transport protein Sec61 subunit alpha isoform 1	52.1	2	2	4.6	10	
878	-12.1	4.23	ADCY2_RAT	Adenylate cyclase type 2	123.2	2	2	2.1	4	
879	-12.1	4.91	RL38_RAT	60S ribosomal protein L38	8.1	2	3	26	55	
885	-12	4.36	PA1B3_RAT	Platelet-activating factor acetylhydrolase IB subunit gamma	25.8	2	2	12	14	

272 Protein Identifications Unique to the "White Matter" Hydrogel										
X! Tandem Rank	log(e)	log(I)	Accession	Description	Mr	Unique Peptides	Total Peptides	% (measured)	% (corrected)	
887	-12	4.7	ELOB_RAT	Transcription elongation factor B polypeptide 2	13.2	2	2	12	12	
888	-12	4.45	CD81_RAT	CD81 antigen	25.9	2	3	8.1	23	
890	-11.9	4.35	FBX6_RAT	F-box only protein 6	32.8	2	2	6.3	9	
891	-11.9	4.38	CCD16_RAT	Zinc finger protein 830	41.6	2	2	5.9	8	
892	-11.9	4.75	TCP4_RAT	Activated RNA polymerase II transcriptional coactivator p15	14.3	2	2	14	17	
895	-11.8	4.34	A1I3_RAT	Alpha-1-inhibitor 3	163.7	2	2	1.8	3	
898	-11.7	4.73	CPSF5_RAT	Cleavage and polyadenylation specificity factor subunit 5	26.2	2	2	11	16	
901	-11.7	4.41	PGTB_RAT	Geranylgeranyl transferase type-2 subunit beta	36.8	2	2	13	27	
902	-11.6	4.77	RL17_RAT	60S ribosomal protein L17	21.3	2	2	12	20	
904	-11.5	3.94	ATF2_RAT	Cyclic AMP-dependent transcription factor ATF-2	52.3	2	2	10	22	
905	-11.5	4.67	TBAP_RAT	Protein Dr1	19.4	2	2	11	18	
908	-11.4	4.4	AMPD3_RAT	AMP deaminase 3	88.4	2	2	2.6	4	
911	-11.3	4.29	NOP5_RAT	Nucleolar protein 58	60	2	2	5.2	8	
912	-11.3	4.5	RL15_RAT	60S ribosomal protein L15	24	2	2	10	15	
913	-11.3	4.42	NDE1_RAT	Nuclear distribution protein nudE homolog 1	38.5	2	2	6.4	8	
917	-11.2	4.61	LMAN1_RAT	Protein ERGIC-53	57.9	2	2	4.1	7	
918	-11.1	4.55	SVIP_RAT	Small VCP/p97-interacting protein	8.2	2	2	29	42	
922	-11.1	4.59	SCN2B RAT	Sodium channel subunit beta-2	24.1	2	3	11	21	
923	-11.1	4.21	GCP60_RAT	Golgi resident protein GCP60	60.3	2	2	4.6	7	
924	-11	4.59	NUDC2 RAT	NudC domain-containing protein 2	17.7	2	2	17	22	
925	-11	4.37	UBE4A_RAT	Ubiquitin conjugation factor E4 A	122.3	2	3	2.4	4	
927	-10.9	4.79	RS4X_RAT	40S ribosomal protein S4, X isoform	29.4	2	3	8	11	
928	-10.9	4.65	RL9_RAT	60S ribosomal protein L9	21.9	2	2	14	26	
929	-10.9	4.79	RBM4B RAT	RNA-binding protein 4B	40	2	2	4.8	7	
930	-10.8	4.28	TOP2A_RAT	DNA topoisomerase 2-alpha	173.1	2	2	1.9	3	
931	-10.8	4.23	UBQL1 RAT	Ubiquilin-1	62	2	2	4.3	10	
932	-10.8	4.18	CLIC4_RAT	Chloride intracellular channel protein 4	28.5	2	2	16	20	
933	-10.8	4.41	PSB3_RAT	Proteasome subunit beta type-3	22.9	2	2	14	23	
935	-10.8	4.73	UB2D4 RAT	Ubiquitin-conjugating enzyme E2 D2B	16.6	2	2	17	57	
937	-10.7	4.96	CYTB_RAT	Cystatin-B	11.2	2	3	31	40	
939	-10.7	4.76	FHL1_RAT	Four and a half LIM domains protein 1	31.9	2	2	6.4	9	
941	-10.7	5.03	BAF_RAT	Barrier-to-autointegration factor	10	2	3	42	52	
942	-10.7	4.48	SH3K1_RAT	SH3 domain-containing kinase-binding protein 1	78	2	2	3.8	5	
943	-10.7	4.65	TCTP_RAT	Translationally-controlled tumor protein	19.4	2	2	5.2	9	
944	-10.7	4.09	 ABCA2_RAT	ATP-binding cassette sub-family A member 2	270.8	2	2	1.7	3	
945	-10.7	3.91	GMPR1_RAT	GMP reductase 1	37.5	2	2	8.1	11	
946	-10.6	4.15	CDK9 RAT	Cyclin-dependent kinase 9	42.7	2	2	6.2	8	
947	-10.6	4.46	HSPB1_RAT	Heat shock protein beta-1	22.9	2	2	11	16	

272 Protein Identifications Unique to the "White Matter" Hydrogel										
X! Tandem Rank	log(e)	log(I)	Accession	Description	Mr	Unique Peptides	Total Peptides	% (measured)	% (corrected)	
951	-10.5	4.68	CYH1_RAT	Cytohesin-1	46.2	2	2	8	11	
953	-10.4	4.55	D2HDH_RAT	D-2-hydroxyglutarate dehydrogenase, mitochondrial	58.8	2	2	5	8	
956	-10.3	4.44	RS27_RAT	40S ribosomal protein S27	9.3	2	2	27	33	
957	-10.3	4.47	B2MG_RAT	Beta-2-microglobulin	13.7	2	2	17	25	
959	-10.2	4.56	RL35A_RAT	60S ribosomal protein L35a	12.5	2	2	17	32	
964	-10.1	4.3	TSNAX_RAT	Translin-associated protein X	33	2	2	8.3	10	
965	-10.1	4.4	HMGB2_RAT	High mobility group protein B2	24	2	2	11	17	
968	-10	4.32	MA2C1_RAT	Alpha-mannosidase 2C1	115.9	2	2	2.3	3	
970	-9.9	4.51	SCFD1_RAT	Sec1 family domain-containing protein 1	72.2	2	2	4.9	7	
972	-9.9	4.44	SUMO2_RAT	Small ubiquitin-related modifier 2	10.9	2	2	21	48	
973	-9.9	4.71	CYB5_RAT	Cytochrome b5	34	2	2	9	13	
975	-9.9	4.57	KPCA_RAT	Protein kinase C alpha type	76.6	2	2	5.1	8	
982	-9.8	4.47	LCAP_RAT	Leucyl-cystinyl aminopeptidase	117.1	2	2	1.6	3	
983	-9.8	4.68	GCS1_RAT	Mannosyl-oligosaccharide glucosidase	91.8	2	2	3.4	5	
984	-9.7	3.98	GLRB_RAT	Glycine receptor subunit beta	55.9	2	2	3	4	
985	-9.7	4.42	RNPS1_RAT	RNA-binding protein with serine-rich domain 1	34.2	2	2	6.9	12	
987	-9.7	4.01	ADNP_RAT	Activity-dependent neuroprotector homeobox protein	91.3	2	3	4	6	
990	-9.6	4.67	CB032_RAT	CB1 cannabinoid receptor-interacting protein 1	18.6	2	2	13	24	
991	-9.6	4.82	ATOX1_RAT	Copper transport protein ATOX1	7.3	2	2	49	57	
994	-9.6	4.64	NCB5R_RAT	NADH-cytochrome b5 reductase 3	34	2	2	9	13	
995	-9.5	4.88	ATP5E_RAT	ATP synthase subunit epsilon, mitochondrial	5.6	2	2	32	73	
998	-9.4	4.49	FBRL_RAT	rRNA 2'-O-methyltransferase fibrillarin	34.2	2	2	8.6	10	
999	-9.4	3.75	RCOR2_RAT	REST corepressor 2	57.9	2	2	6.1	8	
1000	-9.4	4.07	CA077_RAT	Chromatin target of PRMT1 protein	26.5	2	2	12	20	
1002	-9.4	4.47	ZN265_RAT	Zinc finger Ran-binding domain-containing protein 2	37.8	2	2	6.3	10	
1005	-9.3	4.33	SMU1 RAT	WD40 repeat-containing protein SMU1	57.5	2	2	4.3	6	
1006	-9.3	4.51	ELOA1_RAT	Transcription elongation factor B polypeptide 3	87.1	2	2	4	6	
1008	-9.3	4.56	CIRBP_RAT	Cold-inducible RNA-binding protein	18.6	2	2	10	15	
1009	-9.3	4.1	STX4_RAT	Syntaxin-4	34.2	2	2	11	17	
1010	-9.3	4.25	PTPRN_RAT	Receptor-type tyrosine-protein phosphatase-like N	106.2	2	2	3.1	6	
1012	-9.2	4.41	XPO1_RAT	Exportin-1	123	2	2	2.1	3	
1014	-9.1	4.31	GGABP_RAT	Coiled-coil domain-containing protein 91	50.1	2	2	5.4	9	
1015	-9.1	4.32	DUOX2 RAT	Dual oxidase 2	171.4	2	2	2.2	3	
1016	-9.1	4.99	FABPE_RAT	Fatty acid-binding protein, epidermal	14.9	2	2	12	19	
1017	-9.1	4.23	GUC2F_RAT	Retinal guanylyl cyclase 2	124.3	2	2	2.3	3	
1018	-9.1	4.85	MT1_RAT	Metallothionein-1	6	2	2	39	100+	
1019	-9	4.71	KCNA2_RAT	Potassium voltage-gated channel subfamily A member 2	56.7	2	2	5.4	11	
1020	-9	4.21	CENG1_RAT	Arf-GAP with GTPase, ANK repeat and PH domain-containing protein 2	124.4	2	2	1.9	3	

272 Protein Identifications Unique to the "White Matter" Hydrogel										
X! Tandem Rank	log(e)	log(I)	Accession	Description	Mr	Unique Peptides	Total Peptides	% (measured)	% (corrected)	
1022	-9	4.37	KIF5C_RAT	Kinesin heavy chain isoform 5C	27	2	2	11	16	
1023	-9	4.77	GSTT2_RAT	Glutathione S-transferase theta-2	27.3	2	2	8.6	12	
1024	-8.9	4.66	FZD1_RAT	Frizzled-1	71	2	2	3.3	6	
1026	-8.9	4.67	TS101_RAT	Tumor susceptibility gene 101 protein	44	2	2	5.1	9	
1027	-8.9	4.53	TM55A_RAT	Type 2 phosphatidylinositol 4,5-bisphosphate 4-phosphatase	28	2	3	12	16	
1028	-8.9	4.23	PHLB1_RAT	Pleckstrin homology-like domain family B member 1	93.5	2	2	2.3	3	
1029	-8.9	4.7	ACY2_RAT	Aspartoacylase	35.6	2	2	5.7	9	
1030	-8.9	4.32	SAM68_RAT	KH domain-containing, RNA-binding, signal transduction-associated protein 1	48.3	2	2	3.8	7	
1031	-8.8	4.6	RINI_RAT	Ribonuclease inhibitor	49.9	2	2	6.8	8	
1032	-8.8	4.43	DHI1_RAT	Corticosteroid 11-beta-dehydrogenase isozyme 1	31.9	2	2	8.3	10	
1033	-8.8	4.38	KEAP1_RAT	Kelch-like ECH-associated protein 1	69.4	2	2	3	4	
1034	-8.8	4.86	CHSP1_RAT	Calcium-regulated heat stable protein 1	15.9	2	2	17	27	
1035	-8.7	4.08	SYPM_RAT	Probable prolinetRNA ligase, mitochondrial	53.3	2	2	5.9	7	
1036	-8.7	4.69	I2C2_RAT	Protein argonaute-2	97.3	2	2	3	4	
1037	-8.7	4.75	DNJC8_RAT	DnaJ homolog subfamily C member 8	29.8	2	2	6.7	10	
1040	-8.6	4.82	COPB_RAT	Coatomer subunit beta	106.9	2	3	2.8	4	
1041	-8.6	4.52	RABP1_RAT	Cellular retinoic acid-binding protein 1	3.7	2	2	58	70	
1042	-8.6	4.99	PDZK3_RAT	PDZ domain-containing protein 2	293.7	2	2	0.9	1	
1043	-8.6	4.41	THYG_RAT	Thyroglobulin	304.4	2	2	0.9	2	
1044	-8.5	4.05	LRP2_RAT	Low-density lipoprotein receptor-related protein 2	518.9	2	2	1.1	2	
1046	-8.5	4.63	CAD23_RAT	Cadherin-23	365.2	2	2	0.8	2	
1047	-8.5	3.99	NEO1_RAT	Neogenin	150.5	2	2	2.6	4	
1048	-8.5	4.45	MRP5_RAT	Multidrug resistance-associated protein 5	160.8	2	2	1.5	3	
1049	-8.5	4.41	DLP1_RAT	Decaprenyl-diphosphate synthase subunit 2	44.3	2	2	5.7	8	
1050	-8.5	4.33	PRGR_RAT	Progesterone receptor	99.3	2	2	3.8	5	
1051	-8.5	4.57	CABIN_RAT	Calcineurin-binding protein cabin-1	242.7	2	2	1.6	2	
1052	-8.4	4.02	ORML3_RAT	ORM1-like protein 3	17.5	2	2	17	27	
1053	-8.4	4.84	SLIT3_RAT	Slit homolog 3 protein	167.7	2	2	1.4	2	
1054	-8.4	4.65	RNF39_RAT	RING finger protein 39	38.3	2	2	6.8	8	
1057	-8.4	4.36	HRH1_RAT	Histamine H1 receptor	55.7	2	2	6.4	14	
1059	-8.3	4.76	R4RL1_RAT	Reticulon-4 receptor-like 1	49.7	2	2	4.7	10	
1060	-8.3	4.6	SSBP3_RAT	Single-stranded DNA-binding protein 3	37.7	2	2	7.5	28	
1063	-8.3	4.68	MYO9B_RAT	Unconventional myosin-IXb	224.9	2	2	1.1	1	
1064	-8.3	3.83	CRBN_RAT	Protein cereblon	50.8	2	2	13	19	
1066	-8.2	4.08	K1C19_RAT	Keratin, type I cytoskeletal 19	44.6	2	2	5.7	6	
1070	-8.2	4.35	BRE1B_RAT	E3 ubiquitin-protein ligase BRE1B	113.8	2	2	2.4	3	
1071	-8.1	3.97	ZEP2_RAT	Human immunodeficiency virus type I enhancer-binding protein 2 homolog	267.3	2	2	2	3	
1072	-8.1	4.38	MPPA_RAT	Mitochondrial-processing peptidase subunit alpha	58.6	2	2	3.8	5	

272 Protein Identifications Unique to the "White Matter" Hydrogel											
X! Tandem Rank	log(e)	log(I)	Accession	Description	Mr	Unique Peptides	Total Peptides	% (measured)	% (corrected)		
1073	-8.1	4.55	KLH10_RAT	Kelch-like protein 10	68.9	2	2	4.1	5		
1074	-8.1	4.7	ROCK1_RAT	Rho-associated protein kinase 1	159.5	2	2	1.2	2		
1076	-8	4.37	P5CR2_RAT	Pyrroline-5-carboxylate reductase 2	33.7	2	2	5.6	8		
1077	-8	4.09	UN13B_RAT	Protein unc-13 homolog B	183.9	2	2	1.4	2		
1078	-8	4.73	SPEG_RAT	Striated muscle-specific serine/threonine-protein kinase	353.9	2	2	0.6	1		
1079	-7.9	5.03	TEP1_RAT	Telomerase protein component 1	291.5	2	2	0.7	1		

174 Protein Identifications Unique to the "Molecular Layer" Hydrogel										
X! Tandem Rank	log(e)	log(I)	Accession	Description	Mr	Unique Peptides	Total Peptides	% (measured)	% (corrected)	
17	-321.7	6.61	TBA2_RAT	Tubulin alpha-1B chain	50.1	35	69	44	64	
118	-99.1	5.39	MYH11_RAT	Myosin-11	152.4	11	12	8.5	15	
149	-80.4	4.97	CAC1G_RAT	Voltage-dependent T-type calcium channel subunit alpha-1G	250.2	12	12	7	13	
225	-58.5	5.18	K6PL_RAT	ATP-dependent 6-phosphofructokinase, liver type	85.2	4	4	5	9	
231	-56.7	5.65	GNA11_RAT	Guanine nucleotide-binding protein subunit alpha-11	42	3	3	11	15	
261	-49.6	5.36	HXK2_RAT	Hexokinase-2	102.5	2	2	3.1	4	
273	-47.8	5.64	NDKB_RAT	Nucleoside diphosphate kinase B	17.3	6	10	32	37	
298	-45	5.67	GNAI3_RAT	Guanine nucleotide-binding protein G(k) subunit alpha	40.4	2	2	5.9	10	
305	-43.6	5.11	GRIA3_RAT	Glutamate receptor 3	100.3	2	2	3.6	6	
317	-41.6	5.34	ITPR2_RAT	Inositol 1,4,5-trisphosphate receptor type 2	306.9	2	2	1.1	2	
362	-36.8	5.11	UN13A_RAT	Protein unc-13 homolog A	196.2	6	7	3.4	6	
406	-32.8	5.07	K2C8_RAT	Keratin, type II cytoskeletal 8	53.9	3	3	9.8	15	
416	-32.3	4.58	HD_RAT	Huntingtin	343.5	5	6	3.1	5	
421	-32	4.9	NRX2A_RAT	Neurexin-2	185.2	5	7	5.1	8	
445	-30	4.91	THIKA_RAT	3-ketoacyl-CoA thiolase A, peroxisomal	43.8	5	6	11	15	
451	-29	4.71	ITB1_RAT	Integrin beta-1	88.4	5	5	11	21	
453	-28.9	4.54	CLIC6_RAT	Chloride intracellular channel protein 6	64.6	4	4	11	17	
477	-26.9	4.61	CO3A1_RAT	Collagen alpha-1(III) chain	138.9	5	5	5.3	8	
492	-25.6	4.33	LPP_RAT	no protein information available	68.2	4	4	16	24	
494	-25.6	5.16	ITPR3_RAT	Inositol 1,4,5-trisphosphate receptor type 3	304.1	2	2	1.5	2	
521	-23.9	4.97	ARBK1_RAT	Beta-adrenergic receptor kinase 1	79.7	4	5	6.8	8	
524	-23.9	5.06	NRX1A_RAT	Neurexin-1	166.1	3	3	2.6	4	
527	-23.9	4.67	FIBB_RAT	Fibrinogen beta chain	54.3	4	4	11	12	
529	-23.7	4.53	PHAR2_RAT	Phosphatase and actin regulator 2	62.2	4	5	10	18	
536	-23.4	5.12	ARF4_RAT	ADP-ribosylation factor 4	20.3	2	2	13	16	
542	-23.2	4.84	UN13C_RAT	Protein unc-13 homolog C	249	4	5	2.3	4	
543	-23.1	4.74	STRN_RAT	Striatin	86.2	4	4	7.9	13	
547	-23	4.34	CO2A1_RAT	Collagen alpha-1(II) chain	134.5	4	4	5.1	6	
550	-22.8	4.82	L2GL1_RAT	Lethal(2) giant larvae protein homolog 1	112.4	3	3	3.1	6	
551	-22.7	5.08	RAC1_RAT	Ras-related C3 botulinum toxin substrate 1	21.4	3	3	19	34	
556	-22.5	4.94	TAGL_RAT	Transgelin	22.5	4	4	20	22	
573	-21.7	5.14	CYH3_RAT	Cytohesin-3	46.3	4	5	9.8	15	
577	-21.5	4.51	APBA1_RAT	Amyloid beta A4 precursor protein-binding family A member 1	92.6	4	5	6.4	10	
595	-20.2	4.99	GNAZ_RAT	Guanine nucleotide-binding protein G(z) subunit alpha	40.7	2	2	6.8	9	
605	-19.9	5.24	RAB4B_RAT	Ras-related protein Rab-4B	23.6	2	2	12	15	
608	-19.8	4.54	SYGP1_RAT	Ras/Rap GTPase-activating protein SynGAP	143	3	3	3.1	5	
609	-19.6	4.47	BCAR1_RAT	Breast cancer anti-estrogen resistance protein 1	104.2	3	3	3.2	5	
617	-19.4	4.93	RHEB_RAT	GTP-binding protein Rheb	20.5	3	4	18	30	

174 Protein Identifications Unique to the "Molecular Layer" Hydrogel										
X! Tandem Rank	log(e)	log(I)	Accession	Description	Mr	Unique Peptides	Total Peptides	% (measured)	% (corrected)	
628	-18.9	4.57	CANB1_RAT	Calcineurin subunit B type 1	19.2	3	3	22	26	
631	-18.8	4.88	PP1B_RAT	Serine/threonine-protein phosphatase PP1-beta catalytic subunit	37	2	2	5.5	8	
633	-18.8	4.45	ZN148_RAT	Zinc finger protein 148	88.7	3	3	9.3	15	
634	-18.7	4.7	CACB3_RAT	Voltage-dependent L-type calcium channel subunit beta-3	54.5	3	3	6.4	9	
637	-18.7	4.54	TM109_RAT	Transmembrane protein 109	26.2	3	3	19	55	
639	-18.5	4.62	CSN8_RAT	COP9 signalosome complex subunit 8	23.2	3	4	22	31	
641	-18.5	4.73	KACA_RAT	Ig kappa chain C region, A allele	11.7	3	4	24	29	
643	-18.5	4.81	RALB_RAT	Ras-related protein Ral-B	23.3	3	3	16	24	
648	-18.4	4.86	FIBG_RAT	Fibrinogen gamma chain	50.6	3	3	7.6	9	
655	-18.1	4.72	PI52A_RAT	Phosphatidylinositol 5-phosphate 4-kinase type-2 alpha	46.2	2	2	7.9	14	
656	-18	4.8	DDAH1_RAT	N(G),N(G)-dimethylarginine dimethylaminohydrolase 1	31.3	3	5	12	17	
666	-17.7	4.44	CYB5M_RAT	Cytochrome b5 type B	16.3	3	3	15	21	
667	-17.7	4.73	GLPK_RAT	Glycerol kinase	57.4	3	4	5.9	8	
670	-17.5	4.42	LAMP1_RAT	Lysosome-associated membrane glycoprotein 1	43.9	3	3	13	42	
674	-17.2	4.73	ALAT_RAT	Alanine aminotransferase 1	54.9	3	3	5.9	8	
678	-17.1	4.92	ARF6_RAT	ADP-ribosylation factor 6	19.9	3	3	17	25	
679	-17	4.54	MGR4_RAT	Metabotropic glutamate receptor 4	101.8	3	3	3.5	5	
680	-17	4.34	SNX17_RAT	Sorting nexin-17	52.8	2	2	5.7	7	
684	-16.7	4.85	ADHX_RAT	Alcohol dehydrogenase class-3	39.4	3	3	8.3	11	
687	-16.7	4.81	SCN4A_RAT	Sodium channel protein type 4 subunit alpha	208.7	2	2	2.2	6	
695	-16.4	4.64	PTPRA_RAT	Receptor-type tyrosine-protein phosphatase alpha	90.2	3	3	4.1	7	
699	-16.2	3.9	A2MG_RAT	Alpha-2-macroglobulin	163.6	3	3	3.8	6	
700	-16.2	5.39	MLP3B_RAT	Microtubule-associated proteins 1A/1B light chain 3B	16.3	3	3	18	38	
705	-15.9	4.71	ACTN1_RAT	Alpha-actinin-1	102.9	3	4	3.4	4	
708	-15.8	4.62	KC1D_RAT	Casein kinase I isoform delta	47.3	3	3	7	11	
709	-15.8	4.76	TMM33_RAT	Transmembrane protein 33	28	2	2	7.7	10	
712	-15.7	4.81	TRXR1_RAT	Thioredoxin reductase 1, cytoplasmic	54.3	3	3	8.4	10	
714	-15.7	4.43	NF1_RAT	Neurofibromin	316.9	3	4	1.8	3	
719	-15.4	4.9	PSB2_RAT	Proteasome subunit beta type-2	22.9	3	4	16	22	
720	-15.4	3.82	TAOK1_RAT	no protein information available	115.9	3	3	7.8	14	
731	-15.2	4.52	PDLI4_RAT	PDZ and LIM domain protein 4	35.5	3	3	9.7	14	
733	-15.1	4.7	PUR6_RAT	Multifunctional protein ADE2	46.9	3	3	7.3	10	
734	-15.1	4.37	RBBP7_RAT	Histone-binding protein RBBP7	47.8	3	3	7.5	13	
737	-14.9	5.09	UCRH_RAT	Cytochrome b-c1 complex subunit 6, mitochondrial	10.4	2	4	20	25	
738	-14.9	4.33	ARHGB_RAT	Rho guanine nucleotide exchange factor 11	168.4	3	4	3.5	5	
743	-14.7	4.49	HSP47_RAT	Serpin H1	46.5	2	2	6	9	
745	-14.7	4.23	PLCG1_RAT	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1	148.5	3	3	2.4	3	
748	-14.5	4.89	MARK1_RAT	Serine/threonine-protein kinase MARK1	88.2	2	2	3.7	5	

174 Protein Identifications Unique to the "Molecular Layer" Hydrogel										
X! Tandem Rank	log(e)	log(I)	Accession	Description	Mr	Unique Peptides	Total Peptides	% (measured)	% (corrected)	
753	-14.1	5.05	RS13_RAT	40S ribosomal protein S13	17.1	2	2	13	19	
759	-13.9	4.61	ARHG7_RAT	Rho guanine nucleotide exchange factor 7	73.1	2	2	3.3	5	
760	-13.7	4.19	XKR7_RAT	no protein information available	64.3	2	2	5.5	9	
766	-13.4	4.91	PP2AA_RAT	Serine/threonine-protein phosphatase 2A catalytic subunit alpha isoform	35.6	2	2	5.5	7	
772	-13.2	4.42	ICAL_RAT	Calpastatin	71.3	2	2	4.9	8	
774	-12.8	5.12	CDIPT_RAT	CDP-diacylglycerol-inositol 3-phosphatidyltransferase	23.6	2	5	8.9	15	
780	-12.4	4.47	PSMF1_RAT	Proteasome inhibitor PI31 subunit	29.8	2	2	8.1	15	
790	-12	4.23	TRIM9_RAT	E3 ubiquitin-protein ligase TRIM9	79.2	2	2	3.7	5	
796	-11.7	4.71	DHSB_RAT	Succinate dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial	16.8	2	2	13	18	
800	-11.6	4.67	PSA3_RAT	Proteasome subunit alpha type-3	28.3	2	2	7.9	15	
803	-11.5	4.38	GBRG2_RAT	Gamma-aminobutyric acid receptor subunit gamma-2	54	2	2	4.7	8	
805	-11.4	4.46	CCD93_RAT	Coiled-coil domain-containing protein 93	72.6	2	2	3.3	5	
806	-11.4	4.2	ELOC_RAT	Transcription elongation factor B polypeptide 1	12.5	2	2	25	47	
812	-11.2	4.37	KPRB_RAT	Phosphoribosyl pyrophosphate synthase-associated protein 2	40.8	2	2	5.7	7	
814	-11.1	4.37	PLAK_RAT	Junction plakoglobin	81.7	2	2	3.8	5	
815	-11.1	4.24	SL9A1_RAT	Sodium/hydrogen exchanger 1	91.6	2	2	5.4	12	
817	-11.1	4.53	STX7_RAT	Syntaxin-7	29.6	2	2	9.6	17	
818	-11.1	4.29	CREL1_RAT	Cysteine-rich with EGF-like domain protein 1	45.7	2	2	5	6	
820	-11.1	4.39	RL13A_RAT	60S ribosomal protein L13a	23.3	2	2	13	21	
821	-11	4.76	PPAC_RAT	Low molecular weight phosphotyrosine protein phosphatase	18	2	2	27	44	
827	-10.9	4.46	FAAH_RAT	Fatty-acid amide hydrolase 1	63.3	2	2	7.1	9	
829	-10.9	4.81	UK14_RAT	Ribonuclease UK114	14.2	2	2	26	28	
831	-10.9	4.63	MIRO2_RAT	Mitochondrial Rho GTPase 2	69.1	2	2	3.4	6	
832	-10.8	3.65	VGFR2_RAT	no protein information available	150.3	2	2	4.5	8	
838	-10.7	5.11	ARC1A_RAT	Actin-related protein 2/3 complex subunit 1A	41.6	2	2	6.2	7	
842	-10.7	5.02	TF2B_RAT	Transcription initiation factor IIB	34.8	2	2	2.8	4	
848	-10.5	4.43	GFPT2_RAT	Glutaminefructose-6-phosphate aminotransferase [isomerizing] 2	76.8	2	2	4.8	6	
854	-10.4	4.15	CAC1B_RAT	Voltage-dependent N-type calcium channel subunit alpha-1B	262.1	2	2	1.5	3	
855	-10.4	4.72	GABR1_RAT	Gamma-aminobutyric acid type B receptor subunit 1	111.5	2	2	2.5	4	
857	-10.3	4.91	NQO1_RAT	NAD(P)H dehydrogenase [quinone] 1	30.8	2	2	7	9	
859	-10.3	4.71	HCFC2_RAT	Host cell factor 2	79.1	2	2	1.2	2	
860	-10.3	4.2	CSTN3_RAT	Calsyntenin-3	105.9	2	2	2.6	5	
861	-10.3	4.25	KCNH7_RAT	Potassium voltage-gated channel subfamily H member 7	134.8	2	2	3	5	
862	-10.2	4.57	CD166_RAT	CD166 antigen	65	2	2	3.8	7	
863	-10.2	4.01	PDPK1_RAT	3-phosphoinositide-dependent protein kinase 1	63.6	2	2	4.8	6	
865	-10.2	4.66	VPS45_RAT	Vacuolar protein sorting-associated protein 45	64.9	2	2	3	4	
866	-10.2	4.77	GCA_RAT	Ig gamma-2A chain C region	35.2	2	2	6.2	9	
867	-10.1	4.47	APT_RAT	Adenine phosphoribosyltransferase	19.5	2	2	20	22	

X! Tandem Rank	log(e)	log(I)	Accession	Description	Mr	Unique Peptides	Total Peptides	% (measured)	% (corrected)
870	-10.1	4.41	AP4A_RAT	Bis(5'-nucleosyl)-tetraphosphatase [asymmetrical]	16.8	2	2	15	19
872	-10.1	4.26	COR1B_RAT	Coronin-1B	53.8	2	2	7.4	15
876	-10	4.75	D3D2_RAT	Enoyl-CoA delta isomerase 1, mitochondrial	32.2	2	2	7.6	12
878	-10	4.62	MT2_RAT	Metallothionein-2	6.1	2	3	48	100+
885	-9.9	4.26	S20A1_RAT	Sodium-dependent phosphate transporter 1	74.1	2	2	5.9	12
888	-9.8	4.6	COMT_RAT	Catechol O-methyltransferase	29.6	2	2	9.1	11
889	-9.8	4.48	ROBO1_RAT	no protein information available	180.6	2	2	1.2	2
891	-9.8	4.58	NEDD4_RAT	E3 ubiquitin-protein ligase NEDD4	102.3	2	2	5.2	7
892	-9.8	4.51	TIMP4_RAT	no protein information available	25.6	2	2	7.6	11
895	-9.7	4.02	GDF15_RAT	no protein information available	33.4	2	2	9.2	12
896	-9.7	4.58	CP4F4_RAT	Cytochrome P450 4F4	60	2	2	3.3	4
897	-9.7	4.11	TBX3_RAT	no protein information available	79.3	2	2	3.9	8
898	-9.7	4.28	WNK4_RAT	no protein information available	132.8	2	2	3.7	6
899	-9.7	4.55	NTRK3_RAT	no protein information available	97	2	2	2.1	4
903	-9.6	4.77	SERB_RAT	Phosphoserine phosphatase	25	2	2	8	9
906	-9.6	4.49	ASB2_RAT	Ankyrin repeat and SOCS box protein 2	70.2	2	2	4.1	5
908	-9.6	4.41	NDST1_RAT	no protein information available	100.7	2	2	2.5	4
910	-9.5	4.39	FAM5A_RAT	BMP/retinoic acid-inducible neural-specific protein 1	88.6	2	2	3.2	5
911	-9.5	4.68	EXOC3_RAT	Exocyst complex component 3	86.4	2	3	2.3	3
914	-9.4	4.56	HAPIP_RAT	Kalirin	218.7	2	2	1.1	2
915	-9.3	4.48	DSRAD_RAT	Double-stranded RNA-specific adenosine deaminase	129.8	2	2	2.3	3
917	-9.3	4.67	CACP_RAT	Carnitine O-acetyltransferase	70.8	2	3	3.2	6
920	-9.2	4.42	MGR7_RAT	no protein information available	102.2	2	2	3.1	5
926	-9.1	4.23	PANK4_RAT	Pantothenate kinase 4	86.2	2	2	3	3
927	-9.1	4.43	COA1_RAT	Acetyl-CoA carboxylase 1	265	2	2	1	1
929	-9	4.45	RBBP9_RAT	Putative hydrolase RBBP9	21	2	2	8.1	10
930	-9	4.52	NRX3A_RAT	Neurexin-3	173.9	2	2	1.3	2
932	-9	4.46	CP2DA_RAT	Cytochrome P450 2D10	57	2	2	4.2	6
933	-9	3.79	GAS6_RAT	no protein information available	74.6	2	2	7.9	10
934	-9	4.24	MFN2_RAT	Mitofusin-2	86.1	2	2	3.6	5
936	-8.9	4	DAK_RAT	Triokinase/FMN cyclase	59.4	2	2	6.1	8
939	-8.9	3.98	PGCA_RAT	Aggrecan core protein	221	2	2	1.9	5
940	-8.9	4.63	SCAM5_RAT	Secretory carrier-associated membrane protein 5	26.1	2	2	7.7	34
942	-8.9	4.41	ITM2B_RAT	no protein information available	30.3	2	2	8.6	12
943	-8.9	4.56	STXB5_RAT	Syntaxin-binding protein 5	127.6	2	2	1.9	3
944	-8.8	4.83	TBX5_RAT	no protein information available	57.7	2	2	3.1	4
946	-8.7	4.42	STA5A_RAT	Signal transducer and activator of transcription 5A	90.8	2	2	2.1	3
947	-8.7	4.1	MVP_RAT	Major vault protein	95.6	2	2	2.9	3
867	-10.1	4.47	APT_RAT	Adenine phosphoribosyltransferase	19.5	2	2	20	22

	174 Protein Identifications Unique to the "Molecular Layer" Hydrogel									
X! Tandem Rank	log(e)	log(I)	Accession	Description	Mr	Unique Peptides	Total Peptides	% (measured)	% (corrected)	
948	-8.7	5.01	GBRL2_RAT	Gamma-aminobutyric acid receptor-associated protein-like 2	13.7	2	2	9.4	11	
949	-8.7	4.36	RTKN_RAT	no protein information available	61.1	2	2	5.8	7	
950	-8.7	4.76	GSH1_RAT	Glutamatecysteine ligase catalytic subunit	72.4	2	2	3.9	6	
953	-8.6	4.28	TIM8B_RAT	Mitochondrial import inner membrane translocase subunit Tim8 B	9.3	2	3	16	17	
955	-8.6	3.77	FINC_RAT	Fibronectin	272.3	2	2	1.8	3	
956	-8.6	4.68	GSHB_RAT	Glutathione synthetase	52.3	2	2	5.1	7	
959	-8.5	4.35	EXOC7_RAT	Exocyst complex component 7	75	2	2	3.8	6	
960	-8.4	4.49	ANKS3_RAT	no protein information available	73	2	2	6.8	8	
964	-8.4	4.61	SYCP2_RAT	Synaptonemal complex protein 2	172.5	2	2	1.5	2	
966	-8.3	4.62	LRC57_RAT	no protein information available	26.7	2	2	9.2	11	
968	-8.3	3.66	AKAP6_RAT	A-kinase anchor protein 6	254.2	2	2	1.8	3	
969	-8.3	4.71	TGM1_RAT	Protein-glutamine gamma-glutamyltransferase K	90.7	2	2	3.4	5	
970	-8.3	4.8	PAFA2_RAT	Platelet-activating factor acetylhydrolase 2, cytoplasmic	43.5	2	2	6.2	7	
971	-8.2	4.66	TIM_RAT	no protein information available	138.5	2	2	1.6	2	
973	-8.2	4.63	ULA1_RAT	NEDD8-activating enzyme E1 regulatory subunit	60.3	2	2	2.4	4	
976	-8.1	4.36	MRS2L_RAT	no protein information available	49.3	2	2	6	7	
977	-8.1	4.32	PTN9_RAT	Tyrosine-protein phosphatase non-receptor type 9	67.9	2	2	4	5	
978	-8.1	3.75	CAN10_RAT	no protein information available	74.5	2	2	6.3	8	
980	-8.1	4.54	HCN3_RAT	Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3	86.8	2	2	3.7	5	
981	-8.1	4.77	HGS_RAT	Hepatocyte growth factor-regulated tyrosine kinase substrate	86.2	2	2	1.7	4	
982	-8	4.5	HCN4_RAT	no protein information available	128.7	2	2	1.9	3	
983	-7.9	4.17	MK12_RAT	no protein information available	42	2	2	6.5	10	

APPENDIX C: Protein Identifications	Common to both the "White]	Matter" and "Molecular Laye	er" Hydrogels
-------------------------------------	-----------------------------	-----------------------------	---------------

	755 Protein Identifications Common to the "White Matter" and "Molecular Layer" Hydrogels									
A	Description	М.,	X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides		
Accession	Description	Mr	(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Layer)	Matter)	(Molecular Layer)		
1433B_RAT	14-3-3 protein beta/alpha	27.9	148	139	6	7	11	11		
1433E_RAT	14-3-3 protein epsilon	29.2	55	54	25	22	41	42		
1433F_RAT	14-3-3 protein eta	28.1	69	74	16	9	24	16		
1433G_RAT	14-3-3 protein gamma	28.2	91	70	9	14	15	18		
1433T_RAT	14-3-3 protein theta	27.8	82	92	6	5	14	13		
1433Z_RAT	14-3-3 protein zeta/delta	27.8	58	62	17	15	28	24		
2AAB_RAT	Serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A beta isoform	66	940	713	2	3	2	3		
2ABA_RAT	Serine/threonine-protein phosphatase 2A 55 kDa regulatory subunit B alpha isoform	51.6	881	811	2	2	2	2		
3HIDH_RAT	3-hydroxyisobutyrate dehydrogenase, mitochondrial	35.3	286	456	8	5	9	5		
A1AT_RAT	Alpha-1-antiproteinase	46.1	712	773	3	2	3	2		
A4_RAT	Amyloid beta A4 protein	86.6	752	717	3	3	3	3		
AATC_RAT	Aspartate aminotransferase, cytoplasmic	46.2	180	191	11	10	12	11		
AATM_RAT	Aspartate aminotransferase, mitochondrial	47.3	93	108	17	14	26	22		
ABI1_RAT	Abl interactor 1	51.5	841	807	2	2	2	3		
ABLM2_RAT	Actin-binding LIM protein 2	68	427	240	5	8	5	8		
ACADL_RAT	Long-chain specific acyl-CoA dehydrogenase, mitochondrial	47.8	579	704	4	2	4	2		
ACADV_RAT	Very long-chain specific acyl-CoA dehydrogenase, mitochondrial	70.7	554	286	4	7	4	7		
ACLY_RAT	ATP-citrate synthase	120.6	176	328	11	6	11	7		
ACON_RAT	Aconitate hydratase, mitochondrial	85.4	31	47	37	24	57	35		
ACOT2_RAT	Acyl-coenzyme A thioesterase 2, mitochondrial	49.7	806	783	3	2	3	2		
ACPH_RAT	Acylamino-acid-releasing enzyme	81.3	936	664	2	3	2	3		
ACSL6_RAT	Long-chain-fatty-acidCoA ligase 6	78.1	593	533	4	4	5	4		
ACTA_RAT	Actin, aortic smooth muscle	42	87	63	2	3	2	5		
ACTG_RAT	Actin, cytoplasmic 2	41.8	32	23	34	33	76	75		
ACTN4_RAT	Alpha-actinin-4	104.7	411	498	6	4	7	4		
ADDA_RAT	Alpha-adducin	80.3	84	83	18	15	23	19		
ADDB_RAT	Beta-adducin	80.4	182	188	10	10	10	12		
ADDG_RAT	Gamma-adducin	78.8	171	172	11	10	13	13		
ADT1_RAT	ADP/ATP translocase 1	32.8	197	156	11	11	15	14		
ADT2_RAT	ADP/ATP translocase 2	32.7	215	196	5	5	5	5		
AFAD_RAT	Afadin	207.5	375	636	6	3	6	3		
AGRN_RAT	Agrin	208.5	1039	640	2	3	2	3		
AINX_RAT	Alpha-internexin	56.1	26	82	31	17	52	21		
AK1A1_RAT	Alcohol dehydrogenase [NADP(+)]	36.4	262	297	8	6	11	6		
AL9A1_RAT	4-trimethylaminobutyraldehyde dehydrogenase	53.6	210	403	9	4	10	5		
ALBU_RAT	Serum albumin	68.7	340	226	6	8	8	10		
ALDH2_RAT	Aldehyde dehydrogenase, mitochondrial	56.5	282	361	8	5	8	6		
ALDOA_RAT	Fructose-bisphosphate aldolase A	39.2	53	55	23	18	42	36		

	755 Protein Identifications Common to the "White Matter" and "Molecular Layer" Hydrogels									
. ·			X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides		
Accession	Description	Mr	(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Layer)	Matter)	(Molecular Layer)		
ALDOC_RAT	Fructose-bisphosphate aldolase C	39.1	33	37	33	25	63	64		
ALDR_RAT	Aldose reductase	35.6	305	279	7	6	7	8		
AMPB_RAT	Aminopeptidase B	72.6	589	589	4	3	4	4		
AMPH_RAT	Amphiphysin	74.8	94	115	16	14	19	15		
AMPM2_RAT	Methionine aminopeptidase 2	53	868	852	2	2	2	2		
AN32A_RAT	Acidic leucine-rich nuclear phosphoprotein 32 family member A	28.5	273	638	9	3	9	4		
ANGT_RAT	Angiotensinogen	51.9	792	710	3	3	3	3		
ANM1_RAT	Protein arginine N-methyltransferase 1	40.5	1025	877	2	2	2	2		
ANXA1_RAT	Annexin A1	38.7	849	622	2	3	2	4		
ANXA2_RAT	Annexin A2	38.5	444	399	5	5	5	5		
ANXA3_RAT	Annexin A3	36.2	267	285	8	6	11	7		
ANXA5_RAT	Annexin A5	35.6	405	346	6	6	6	6		
ANXA6_RAT	Annexin A6	75.6	123	223	15	9	20	9		
AOFA_RAT	Amine oxidase [flavin-containing] A	59.5	547	396	4	5	4	5		
AOFB_RAT	Amine oxidase [flavin-containing] B	58.2	455	765	5	2	8	4		
AP180_RAT	Clathrin coat assembly protein AP180	93.5	164	162	10	10	11	14		
AP1B1_RAT	AP-1 complex subunit beta-1	104.5	185	105	3	15	4	16		
AP2A2_RAT	AP-2 complex subunit alpha-2	103.8	144	94	14	16	16	20		
AP2B1_RAT	AP-2 complex subunit beta	104.5	109	110	14	7	19	10		
AP2M1_RAT	AP-2 complex subunit mu	49.6	539	561	5	4	5	4		
APC_RAT	Adenomatous polyposis coli protein	310.3	681	588	4	4	4	4		
APEX1_RAT	DNA-(apurinic or apyrimidinic site) lyase	35.4	367	819	6	2	9	2		
APLP2_RAT	Amyloid-like protein 2	86.8	1007	762	2	2	2	2		
APOE_RAT	Apolipoprotein E	35.7	238	142	8	11	9	15		
AQP4_RAT	Aquaporin-4	34.5	737	787	3	2	7	3		
ARAF_RAT	Serine/threonine-protein kinase A-Raf	67.5	659	853	4	2	5	2		
ARF1_RAT	ADP-ribosylation factor 1	20.6	311	282	7	6	9	13		
ARF5_RAT	ADP-ribosylation factor 5	20.4	459	407	2	2	4	2		
ARK72_RAT	Aflatoxin B1 aldehyde reductase member 2	40.6	723	620	3	3	3	4		
ARL3_RAT	ADP-ribosylation factor-like protein 3	20.4	805	465	3	4	3	4		
ARP2_RAT	Actin-related protein 2	44.7	460	304	5	6	5	6		
AT1A1_RAT	Sodium/potassium-transporting ATPase subunit alpha-1	113	2	5	61	49	130	123		
AT1A2_RAT	Sodium/potassium-transporting ATPase subunit alpha-2	112.1	3	6	27	25	48	46		
AT1A3_RAT	Sodium/potassium-transporting ATPase subunit alpha-3	111.6	4	7	17	15	37	25		
AT1B1_RAT	Sodium/potassium-transporting ATPase subunit beta-1	35.2	213	252	8	7	10	9		
AT1B2_RAT	Sodium/potassium-transporting ATPase subunit beta-2	33.4	230	174	8	9	17	23		
AT2A2_RAT	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2	114.7	80	57	19	22	20	29		
AT2A3_RAT	Sarcoplasmic/endoplasmic reticulum calcium ATPase 3	109.3	88	89	17	14	19	17		

	755 Protein Identifications Common to the "White Matter" and "Molecular Layer" Hydrogels										
			X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides			
Accession	Description	Mr	(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Layer)	Matter)	(Molecular Layer)			
AT2B1 RAT	Plasma membrane calcium-transporting ATPase 1	138.6	41	48	14	8	14	9			
AT2B2_RAT	Plasma membrane calcium-transporting ATPase 2	136.7	19	15	42	38	65	57			
AT2B3_RAT	Plasma membrane calcium-transporting ATPase 3	138.5	34	36	19	15	22	16			
AT2B4_RAT	Plasma membrane calcium-transporting ATPase 4	133	65	106	3	2	3	2			
AT5F1_RAT	ATP synthase F(0) complex subunit B1, mitochondrial	28.9	377	400	6	5	7	6			
ATG3_RAT	Ubiquitin-like-conjugating enzyme ATG3	35.8	689	893	3	2	3	2			
ATP5H_RAT	ATP synthase subunit d, mitochondrial	18.6	433	315	5	6	5	9			
ATP5I_RAT	ATP synthase subunit e, mitochondrial	8.1	443	512	5	3	8	5			
ATP5J_RAT	ATP synthase-coupling factor 6, mitochondrial	12.5	217	259	8	6	10	7			
ATPA_RAT	ATP synthase subunit alpha, mitochondrial	59.7	17	16	42	35	73	67			
ATPB_RAT	ATP synthase subunit beta, mitochondrial	56.3	11	25	45	30	75	55			
ATPD_RAT	ATP synthase subunit delta, mitochondrial	17.6	398	294	5	5	5	7			
ATPG_RAT	ATP synthase subunit gamma, mitochondrial	30.2	218	293	10	7	11	10			
ATPO_RAT	ATP synthase subunit O, mitochondrial	23.4	172	200	10	9	15	12			
ATX10_RAT	Ataxin-10	53.7	786	871	3	2	4	2			
BACH_RAT	Cytosolic acyl coenzyme A thioester hydrolase	42.7	205	423	9	5	13	5			
BAIP2_RAT	Brain-specific angiogenesis inhibitor 1-associated protein 2	59.1	429	245	5	8	5	8			
BASI_RAT	Basigin	42.4	461	390	5	5	5	5			
BASP_RAT	Brain acid soluble protein 1	21.6	70	66	19	16	34	30			
BAT2_RAT	Protein PRRC2A	228.9	199	433	12	5	12	6			
BAT3_RAT	Large proline-rich protein BAG6	114.6	312	729	7	3	11	4			
BCAS1_RAT	Breast carcinoma-amplified sequence 1 homolog	58.6	125	490	13	4	17	4			
BCAT1_RAT	Branched-chain-amino-acid aminotransferase, cytosolic	46	480	544	5	4	7	6			
BDH_RAT	D-beta-hydroxybutyrate dehydrogenase, mitochondrial	38.2	810	559	3	3	4	5			
BIEA_RAT	Biliverdin reductase A	33.5	893	440	2	5	2	5			
BIN1_RAT	Myc box-dependent-interacting protein 1	64.5	174	141	9	10	15	13			
BSN_RAT	Protein bassoon	418	8	3	54	72	68	87			
C1QBP_RAT	Complement component 1 Q subcomponent-binding protein, mitochondrial	30.7	489	388	4	4	5	5			
C1TC_RAT	C-1-tetrahydrofolate synthase, cytoplasmic	100.8	259	155	8	10	8	10			
CAC1A_RAT	Voltage-dependent P/Q-type calcium channel subunit alpha-1A	251.4	271	207	8	10	9	12			
CAC1H_RAT	Voltage-dependent T-type calcium channel subunit alpha-1H	260.9	1038	557	2	4	2	4			
CAC2D_RAT	Voltage-dependent calcium channel subunit alpha-2/delta-1	123.7	756	497	3	4	3	4			
CAH2_RAT	Carbonic anhydrase 2	29	572	777	4	2	7	3			
CAH8_RAT	Carbonic anhydrase-related protein	32.8	333	267	6	6	7	7			
CALB1_RAT	Calbindin	29.8	187	138	10	11	14	19			
CALB2_RAT	Calretinin	31.4	124	126	14	13	24	20			
CALD1_RAT	Non-muscle caldesmon	60.5	604	652	4	3	4	3			
CALM_RAT	Calmodulin	16.7	322	243	7	8	14	17			

	755 Protein Identifications Common to the "White Matter" and "Molecular Laver" Hydrogek										
			Y! Tandom Rank	X! Tandem Rank	Unique Pentides	Unique Pentides	Total Pantidas (White	Total Pantidas			
Accession	Description	Mr	(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Layer)	Matter)	(Molecular Layer)			
CALX RAT	Calnexin	67.2	188	280	11	6	14	8			
CAN2 RAT	Calnain-2 catalytic subunit	79.7	490	519	5	4	5	6			
CAND1 RAT	Cullin-associated NEDD8-dissociated protein 1	136.3	143	199	12	9	13	11			
CAP1 RAT	Adenvivi cyclase-associated protein 1	51.4	347	331	7	6	7	7			
CAP2 RAT	Adenvivl cyclase-associated protein 2	52.9	353	383	6	6	7	6			
CAPS1 RAT	Calcium-dependent secretion activator 1	146.2	193	125	10	13	14	13			
CATA RAT	Catalase	59.6	521	446	4	5	5	5			
CATD_RAT	Cathepsin D	44.7	736	958	3	2	5	2			
CCDC8_RAT	Coiled-coil domain-containing protein 8	69.5	1021	974	2	2	4	2			
CDC37_RAT	Hsp90 co-chaperone Cdc37	44.5	354	537	7	4	8	4			
CDK5_RAT	Cyclin-dependent-like kinase 5	33.2	981	707	2	3	3	3			
CDS2_RAT	Phosphatidate cytidylyltransferase 2	51.3	509	571	4	3	7	4			
CH10_RAT	10 kDa heat shock protein, mitochondrial	10.8	279	255	7	7	10	10			
CH60_RAT	60 kDa heat shock protein, mitochondrial	60.9	120	81	14	17	25	23			
CJ058_RAT	Redox-regulatory protein FAM213A	25.7	894	514	2	4	2	4			
CLAP2_RAT	CLIP-associating protein 2	140.6	75	61	21	20	22	22			
CLCA_RAT	Clathrin light chain A	27	626	686	4	3	4	4			
CLCB_RAT	Clathrin light chain B	25.1	784	437	3	5	3	6			
CLH_RAT	Clathrin heavy chain 1	191.5	20	10	43	40	60	55			
CLUS_RAT	Clusterin	51.3	1013	726	2	3	2	3			
CN37_RAT	2',3'-cyclic-nucleotide 3'-phosphodiesterase	47.2	50	134	26	12	53	16			
CNKR2_RAT	Connector enhancer of kinase suppressor of ras 2	117.3	751	513	3	4	3	4			
CNTN1_RAT	Contactin-1	113.4	40	29	31	31	47	47			
CNTN2_RAT	Contactin-2	113	219	176	10	10	12	11			
CNTP1_RAT	Contactin-associated protein 1	155.8	477	194	5	9	6	10			
CO1A1_RAT	Collagen alpha-1(I) chain	137.8	368	752	7	3	7	3			
CO3_RAT	Complement C3	186.3	247	224	9	8	12	10			
CO5A1_RAT	Collagen alpha-1(V) chain	183.9	1069	967	2	2	2	2			
COF1_RAT	Cofilin-1	18.4	232	233	9	8	11	9			
COPD_RAT	Coatomer subunit delta	57.2	764	912	3	2	3	2			
COX2_RAT	Cytochrome c oxidase subunit 2	25.9	562	386	4	5	5	7			
COX41_RAT	Cytochrome c oxidase subunit 4 isoform 1, mitochondrial	19.5	348	389	7	5	12	8			
COX5A_RAT	Cytochrome c oxidase subunit 5A, mitochondrial	16.1	718	775	3	2	5	3			
COX5B_RAT	Cytochrome c oxidase subunit 5B, mitochondrial	13.9	161	215	10	7	23	18			
CPLX1_RAT	Complexin-1	15.1	245	374	8	4	15	9			
CPSF7_RAT	Cleavage and polyadenylation specificity factor subunit 7	51	760	873	3	2	4	2			
CPT2_RAT	Carnitine O-palmitoyltransferase 2, mitochondrial	74.1	954	651	2	3	2	3			
CRK RAT	Adapter molecule crk	33.8	570	594	4	3	4	5			

	755 Protein Identifications Common to the "White Matter" and "Molecular Laver" Hydrogels										
			X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides			
Accession	Description	Mr	(White Matter)	(Molecular Laver)	(White Matter)	(Molecular Laver)	Matter)	(Molecular Laver)			
CRTC RAT	Calreticulin	48	355	409	7	5	8	5			
CSAD RAT	Cysteine sulfinic acid decarboxylase	55.2	978	894	2	2	3	2			
CSDE1 RAT	Cold shock domain-containing protein E1	88.8	903	808	2	2	3	2			
CSK21_RAT	Casein kinase II subunit alpha	45	843	913	3	2	3	2			
CSKI1_RAT	Caskin-1	150.3	297	148	7	12	10	12			
CSKP_RAT	Peripheral plasma membrane protein CASK	103.2	889	336	2	6	2	6			
CSN1_RAT	COP9 signalosome complex subunit 1	53.4	631	698	4	3	4	3			
CSN4_RAT	COP9 signalosome complex subunit 4	46.3	556	647	4	3	5	4			
CSPG3_RAT	Neurocan core protein	135.5	976	900	2	2	2	2			
CSRP1_RAT	Cysteine and glycine-rich protein 1	20.5	729	798	3	2	3	2			
CTBP1_RAT	C-terminal-binding protein 1	46.6	587	471	4	4	4	4			
CTNB1_RAT	Catenin beta-1	85.4	486	302	5	7	6	8			
CUL5_RAT	Cullin-5	90.8	406	644	6	3	6	3			
CYC_RAT	Cytochrome c, somatic	11.5	401	864	4	2	5	2			
CYLN2_RAT	CAP-Gly domain-containing linker protein 2	115.4	523	340	4	6	5	7			
DBNL_RAT	Drebrin-like protein	48.6	531	401	4	5	4	6			
DC1I1_RAT	Cytoplasmic dynein 1 intermediate chain 1	72.7	323	392	7	5	7	6			
DC1I2_RAT	Cytoplasmic dynein 1 intermediate chain 2	71.1	426	750	4	2	8	5			
DC1L1_RAT	Cytoplasmic dynein 1 light intermediate chain 1	56.8	561	846	4	2	6	2			
DC1L2_RAT	Cytoplasmic dynein 1 light intermediate chain 2	54.7	727	412	3	5	3	5			
DCAK1_RAT	Serine/threonine-protein kinase DCLK1	47.7	648	635	4	3	5	3			
DCE1_RAT	Glutamate decarboxylase 1	66.6	790	816	3	2	3	3			
DCE2_RAT	Glutamate decarboxylase 2	65.4	606	823	4	2	4	2			
DCTN4_RAT	Dynactin subunit 4	53.1	650	464	4	5	4	6			
DCXR_RAT	L-xylulose reductase	25.7	720	682	3	3	3	3			
DDX1_RAT	ATP-dependent RNA helicase DDX1	82.4	257	703	9	3	9	4			
DDX46_RAT	Probable ATP-dependent RNA helicase DDX46	117.3	362	722	7	3	7	3			
DEK_RAT	Protein DEK	42.9	697	965	3	2	3	2			
DEST_RAT	Destrin	18.4	826	688	2	3	4	5			
DGKZ_RAT	Diacylglycerol kinase zeta	103.9	783	357	2	5	2	5			
DHB4_RAT	Peroxisomal multifunctional enzyme type 2	79.2	326	234	7	8	8	8			
DHCA_RAT	Carbonyl reductase [NADPH] 1	30.4	955	782	2	2	2	2			
DHE3_RAT	Glutamate dehydrogenase 1, mitochondrial	61.4	60	80	22	16	37	26			
DHPR_RAT	Dihydropteridine reductase	25.5	275	598	7	3	9	3			
DHSA_RAT	Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial	71.6	198	262	10	7	13	10			
DHSO_RAT	Sorbitol dehydrogenase	42.8	869	902	2	2	2	2			
DLG1_RAT	Disks large homolog 1	100.5	272	160	7	9	10	9			
DLG2 RAT	Disks large homolog 2	94.9	186	135	11	12	11	13			

	755 Protein Identifications Common to the "White Matter" and "Molecular Laver" Hydrogels										
			X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides			
Accession	Description	Mr	(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Laver)	Matter)	(Molecular Layer)			
DLG3 RAT	Disks large homolog 3	93.5	596	429	4	3	4	5			
DLG4 RAT	Disks large homolog 4	80.4	569	309	3	5	4	5			
DLGP1 RAT	Disks large-associated protein 1	110.1	478	303	5	7	6	7			
DLGP3_RAT	Disks large-associated protein 3	105.9	853	756	2	2	2	2			
DLGP4_RAT	Disks large-associated protein 4	108	791	356	2	6	4	6			
DNJC5_RAT	DnaJ homolog subfamily C member 5	22.1	909	511	2	4	3	5			
DNM1L_RAT	Dynamin-1-like protein	83.9	108	98	15	15	15	17			
DOPD_RAT	D-dopachrome decarboxylase	13	574	586	4	3	6	5			
DPP3_RAT	Dipeptidyl peptidase 3	83	470	430	5	5	5	5			
DPP6_RAT	Dipeptidyl aminopeptidase-like protein 6	97.2	463	485	4	4	7	5			
DPYL1_RAT	Dihydropyrimidinase-related protein 1	62.2	68	49	15	19	18	24			
DPYL2_RAT	Dihydropyrimidinase-related protein 2	62.2	21	34	40	28	72	56			
DPYL3_RAT	Dihydropyrimidinase-related protein 3	61.9	168	107	6	10	10	16			
DPYL4_RAT	Dihydropyrimidinase-related protein 4	61	101	93	16	15	27	27			
DPYL5_RAT	Dihydropyrimidinase-related protein 5	61.5	261	272	9	7	9	7			
DREB_RAT	Drebrin	77.3	435	349	5	6	6	6			
DYHC_RAT	Cytoplasmic dynein 1 heavy chain 1	531.9	5	8	66	47	74	53			
DYN1_RAT	Dynamin-1	95.9	18	26	45	34	60	50			
DYN2_RAT	Dynamin-2	98.2	140	264	3	2	3	2			
DYN3_RAT	Dynamin-3	95.5	103	131	9	8	9	9			
DYNA_RAT	Dynactin subunit 1	141.8	116	73	15	19	17	19			
EAA1_RAT	Excitatory amino acid transporter 1	59.7	177	91	10	14	24	36			
EAA2_RAT	Excitatory amino acid transporter 2	62.1	250	348	9	6	14	7			
EAA4_RAT	Excitatory amino acid transporter 4	60.7	577	268	4	6	4	8			
ECHA_RAT	Trifunctional enzyme subunit alpha, mitochondrial	82.5	387	288	6	7	6	8			
ECHB_RAT	Trifunctional enzyme subunit beta, mitochondrial	51.4	352	343	7	6	7	6			
ECHM_RAT	Enoyl-CoA hydratase, mitochondrial	31.5	549	770	4	2	4	4			
EDF1_RAT	Endothelial differentiation-related factor 1	16.4	757	904	3	2	3	3			
EF1A1_RAT	Elongation factor 1-alpha 1	50.1	150	193	12	5	15	11			
EF1A2_RAT	Elongation factor 1-alpha 2	50.4	154	175	3	10	5	12			
EF1G_RAT	Elongation factor 1-gamma	49.9	229	385	9	5	10	6			
EF2_RAT	Elongation factor 2	95.1	225	157	10	12	13	13			
EFG1_RAT	Elongation factor G, mitochondrial	83.7	765	963	3	2	3	2			
EI2BD_RAT	Translation initiation factor eIF-2B subunit delta	57.8	733	486	3	4	3	4			
ELAV4_RAT	ELAV-like protein 4	40.9	446	801	5	2	5	2			
ENOA_RAT	Alpha-enolase	47	49	58	23	18	39	35			
ENOG_RAT	Gamma-enolase	47	78	76	13	12	20	16			
EPN1 RAT	Epsin-1	60.1	654	528	3	4	5	6			

	755 Protein Identifications Common to the "White Matter" and "Molecular Laver" Hydrogels									
			X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides		
Accession	Description	Mr	(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Layer)	Matter)	(Molecular Layer)		
EPN2_RAT	Epsin-2	62.3	767	565	2	4	2	4		
ERP29_RAT	Endoplasmic reticulum resident protein 29	28.6	417	232	6	8	8	10		
ES1_RAT	ES1 protein homolog, mitochondrial	28.2	278	381	7	4	9	5		
ETFA_RAT	Electron transfer flavoprotein subunit alpha, mitochondrial	35	412	925	6	2	6	2		
ETFB_RAT	Electron transfer flavoprotein subunit beta	27.5	351	275	6	6	7	6		
ETFD_RAT	Electron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial	68.2	967	461	2	5	2	5		
EXOC4_RAT	Exocyst complex component 4	110.5	768	483	3	4	3	4		
EXOC8_RAT	Exocyst complex component 8	81	741	657	3	3	3	3		
EZRI_RAT	Ezrin	69.2	475	534	2	2	2	3		
F107B_RAT	Protein FAM107B	15.6	629	619	4	3	4	4		
F10A1_RAT	Hsc70-interacting protein	41.3	613	642	4	3	5	3		
FABPB_RAT	Fatty acid-binding protein, brain	14.7	657	538	3	3	4	3		
FABPH_RAT	Fatty acid-binding protein, heart	14.6	436	443	5	5	6	5		
FAS_RAT	Fatty acid synthase	272.5	71	65	21	19	29	22		
FAT2_RAT	Protocadherin Fat 2	480.4	338	79	8	19	8	20		
FIBA_RAT	Fibrinogen alpha chain	86.6	290	711	7	3	7	3		
FKB1A_RAT	Peptidyl-prolyl cis-trans isomerase FKBP1A	11.8	666	742	3	2	5	2		
FLOT1_RAT	Flotilin-1	47.5	439	337	6	6	6	7		
FLOT2_RAT	Flotillin-2	47	740	333	3	6	3	6		
FOLH1_RAT	Glutamate carboxypeptidase 2	84.5	615	789	4	2	4	2		
FTHFD_RAT	Cytosolic 10-formyltetrahydrofolate dehydrogenase	99.1	264	145	7	11	8	11		
FUBP2_RAT	Far upstream element-binding protein 2	74.2	67	277	22	7	27	9		
FUMH_RAT	Fumarate hydratase, mitochondrial	54.4	129	212	13	8	18	10		
G3P_RAT	Glyceraldehyde-3-phosphate dehydrogenase	35.7	47	96	28	15	63	40		
G6PD_RAT	Glucose-6-phosphate 1-dehydrogenase	59.2	274	417	8	5	9	6		
GABR2_RAT	Gamma-aminobutyric acid type B receptor subunit 2	105.7	599	382	4	5	4	6		
GABT_RAT	4-aminobutyrate aminotransferase, mitochondrial	56.4	223	216	9	8	9	11		
GBB2_RAT	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2	37.2	440	230	5	8	8	12		
GBLP_RAT	Receptor of activated protein C kinase 1	34.9	382	690	6	3	7	4		
GBRA1_RAT	Gamma-aminobutyric acid receptor subunit alpha-1	51.7	919	685	2	3	2	3		
GBRB2_RAT	Gamma-aminobutyric acid receptor subunit beta-2	54.6	598	345	4	6	4	6		
GCB_RAT	Ig gamma-2B chain C region	36.5	780	804	3	2	3	2		
GDIA_RAT	Rab GDP dissociation inhibitor alpha	50.5	115	67	16	18	24	26		
GDIB_RAT	Rab GDP dissociation inhibitor beta	50.7	216	169	8	7	9	8		
GEPH_RAT	Gephyrin	83.2	358	263	7	7	7	7		
GFAP_RAT	Glial fibrillary acidic protein	49.9	36	32	34	30	55	52		
GGT4_RAT	Gamma-glutamyltransferase 7	70.3	779	669	2	3	2	3		
GHC2_RAT	Mitochondrial glutamate carrier 2	33.6	778	931	3	2	3	2		

	755 Protein Identific	cations Common	to the "White Matter"	' and ''Molecular Layer'	' Hydrogels			
Accession	Description	Mr	X! Tandem Rank (White Matter)	X! Tandem Rank (Molecular Layer)	Unique Peptides (White Matter)	Unique Peptides (Molecular Layer)	Total Peptides (White Matter)	Total Peptides (Molecular Layer)
GIPC1_RAT	PDZ domain-containing protein GIPC1	36.1	670	764	3	2	3	2
GIT1_RAT	ARF GTPase-activating protein GIT1	85.2	865	952	2	2	3	2
GLNA_RAT	Glutamine synthetase	42.1	179	260	10	6	19	12
GLO2_RAT	Hydroxyacylglutathione hydrolase, mitochondrial	28.9	706	681	3	3	4	3
GLSK_RAT	Glutaminase kidney isoform, mitochondrial	74	153	195	11	9	20	13
GMFB_RAT	Glia maturation factor beta	16.6	860	506	2	4	2	5
GNAI1_RAT	Guanine nucleotide-binding protein G(i) subunit alpha-1	40.2	318	173	2	5	2	6
GNAI2_RAT	Guanine nucleotide-binding protein G(i) subunit alpha-2	40.3	160	163	8	8	10	9
GNAO1_RAT	Guanine nucleotide-binding protein G(o) subunit alpha	39.9	62	78	22	17	29	23
GNAQ_RAT	Guanine nucleotide-binding protein G(q) subunit alpha	41.4	234	198	9	9	11	12
GNAS_RAT	Guanine nucleotide-binding protein G(s) subunit alpha isoforms short	45.6	293	532	6	3	7	3
GPDA_RAT	Glycerol-3-phosphate dehydrogenase [NAD(+)], cytoplasmic	37.2	380	404	7	5	9	6
GPDM_RAT	Glycerol-3-phosphate dehydrogenase, mitochondrial	80.9	268	673	9	3	9	3
GRAP1_RAT	GRIP1-associated protein 1	96	294	152	8	12	8	12
GRB2_RAT	Growth factor receptor-bound protein 2	25.2	603	916	4	2	4	2
GRIA1_RAT	Glutamate receptor 1	101.5	546	244	5	7	5	8
GRIA2_RAT	Glutamate receptor 2	98.6	722	249	2	5	2	6
GRIA4_RAT	Glutamate receptor 4	100.7	485	300	5	3	7	4
GRID2_RAT	Glutamate receptor ionotropic, delta-2	113.2	119	84	15	16	18	22
GRP75_RAT	Stress-70 protein, mitochondrial	73.8	48	71	22	16	31	18
GRP78_RAT	78 kDa glucose-regulated protein	72.3	44	56	25	18	30	25
GSK3A_RAT	Glycogen synthase kinase-3 alpha	51	701	306	3	6	3	6
GSK3B RAT	Glycogen synthase kinase-3 beta	46.7	916	858	2	2	3	2

25.8

25.5

27.7

23.3

53.5

20.7

21.8

39.3

13.4

13.9

11.2

20.6

15.2

15.8

15.8

GSTM1_RAT Glutathione S-transferase Mu 1

GSTM4_RAT Glutathione S-transferase Yb-3

Histone H1.0

Histone H1.4

Histone H2A.Z

Histone H4

Histone H2B type 1

Core histone macro-H2A.1

Hemoglobin subunit alpha-1/2

Hemoglobin subunit beta-1

Hemoglobin subunit beta-2

28 kDa heat- and acid-stable phosphoprotein

GSTP1_RAT Glutathione S-transferase P

GTR3_RAT

H10_RAT

H12_RAT

H2AY_RAT

H2AZ_RAT

H2B_RAT

HAP28_RAT

HBA_RAT

HBB1_RAT

HBB2_RAT

H4_RAT

GSTO1_RAT Glutathione S-transferase omega-1

Solute carrier family 2, facilitated glucose transporter member 3

	755 Protein Identifications Common to the "White Matter" and "Molecular Laver" Hydrozels									
			X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides		
Accession	Description	Mr	(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Layer)	Matter)	(Molecular Layer)		
HCC1_RAT	SAP domain-containing ribonucleoprotein	23.5	668	539	3	4	3	4		
HCD2_RAT	3-hydroxyacyl-CoA dehydrogenase type-2	27.1	363	359	6	5	8	8		
HDGF_RAT	Hepatoma-derived growth factor	26.5	418	694	5	3	7	3		
HMGB1_RAT	High mobility group protein B1	24.7	317	779	8	2	11	2		
HMGN2_RAT	Non-histone chromosomal protein HMG-17	9.2	481	665	4	3	14	4		
HNRPG_RAT	RNA-binding motif protein, X chromosome	42.2	149	599	13	4	15	5		
HNRPK_RAT	Heterogeneous nuclear ribonucleoprotein K	50.9	54	100	23	14	52	27		
HNRPM_RAT	Heterogeneous nuclear ribonucleoprotein M	73.6	57	179	25	10	30	10		
HNRPQ_RAT	Heterogeneous nuclear ribonucleoprotein Q	59.7	695	663	3	3	4	4		
HOME3_RAT	Homer protein homolog 3	39.9	131	60	13	18	15	26		
HPCL1_RAT	Hippocalcin-like protein 1	22.2	246	209	8	8	15	12		
HPRT_RAT	Hypoxanthine-guanine phosphoribosyltransferase	24.5	687	426	3	4	5	6		
HS105_RAT	Heat shock protein 105 kDa	96.4	479	269	4	7	6	8		
HS70L_RAT	Heat shock 70 kDa protein 1-like	70.5	130	186	3	3	3	3		
HS90B_RAT	Heat shock protein HSP 90-beta	83.1	37	41	34	26	44	35		
HSP7C_RAT	Heat shock cognate 71 kDa protein	70.8	15	24	44	33	92	67		
HXK1_RAT	Hexokinase-1	102.3	63	50	23	24	25	29		
ICLN_RAT	Methylosome subunit pICln	26.1	692	875	3	2	3	2		
IDH3A_RAT	Isocitrate dehydrogenase [NAD] subunit alpha, mitochondrial	39.6	239	228	9	8	13	9		
IDH3B_RAT	Isocitrate dehydrogenase [NAD] subunit beta, mitochondrial	42.3	183	153	10	11	10	12		
IDH3G_RAT	Isocitrate dehydrogenase [NAD] subunit gamma 1, mitochondrial	42.8	594	587	4	3	6	4		
IDHC_RAT	Isocitrate dehydrogenase [NADP] cytoplasmic	46.7	525	520	5	4	6	6		
IF2A_RAT	Eukaryotic translation initiation factor 2 subunit 1	36	855	489	2	4	2	4		
IF39_RAT	Eukaryotic translation initiation factor 3 subunit B	90.9	214	505	8	4	11	5		
IF5_RAT	Eukaryotic translation initiation factor 5	48.9	950	691	2	3	2	3		
ILF3_RAT	Interleukin enhancer-binding factor 3	95.9	248	744	9	2	10	2		
IMB1_RAT	Importin subunit beta-1	97.1	277	435	8	5	8	6		
IMPA1_RAT	Inositol monophosphatase 1	30.5	283	311	7	6	7	6		
INP4A_RAT	Type I inositol 3,4-bisphosphate 4-phosphatase	105.5	308	210	7	10	7	10		
IP3KA_RAT	Inositol-trisphosphate 3-kinase A	50.8	673	227	3	8	3	9		
IPP2_RAT	Protein phosphatase inhibitor 2	22.9	484	516	5	4	5	4		
IREB1_RAT	Cytoplasmic aconitate hydratase	98.1	545	480	5	5	5	6		
ITPR1_RAT	Inositol 1,4,5-trisphosphate receptor type 1	313.1	6	4	60	55	80	75		
ITSN1_RAT	Intersectin-1	137.1	961	610	2	3	2	4		
IVD_RAT	Isovaleryl-CoA dehydrogenase, mitochondrial	46.4	452	574	5	3	5	4		
K0152_RAT	Malectin	32.4	707	675	3	3	3	3		
K6PF_RAT	ATP-dependent 6-phosphofructokinase, muscle type	85.4	189	197	10	7	12	9		
K6PP_RAT	ATP-dependent 6-phosphofructokinase, platelet type	85.7	181	113	10	14	15	17		

APPENDIX C: Protein Identifications Common to both the "White Matt	ter" and "Molecular Layer" Hydrogels (Cont'd)
--	---

755 Protein Identifications Common to the "White Matter" and "Molecular Layer" Hydrogels								
			X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides
Accession	Description	Mr	(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Layer)	Matter)	(Molecular Layer)
KAD1_RAT	Adenylate kinase isoenzyme 1	21.6	258	258	8	7	10	9
KAD2_RAT	Adenylate kinase 2, mitochondrial	26.2	607	928	4	2	4	2
KAD4_RAT	Adenylate kinase 4, mitochondrial	25.2	513	630	5	3	6	4
KAP0_RAT	cAMP-dependent protein kinase type I-alpha regulatory subunit	42.9	361	444	6	4	8	4
KAP3_RAT	cAMP-dependent protein kinase type II-beta regulatory subunit	46	514	692	5	3	5	3
KAPCA_RAT	cAMP-dependent protein kinase catalytic subunit alpha	40.5	958	545	2	4	2	5
KAT1_RAT	Kynurenineoxoglutarate transaminase 1, mitochondrial	51.6	907	460	2	5	2	5
KCAB2_RAT	Voltage-gated potassium channel subunit beta-2	41	543	751	4	2	6	3
KCC2A_RAT	Calcium/calmodulin-dependent protein kinase type II subunit alpha	54.1	346	366	3	3	3	3
KCC2B_RAT	Calcium/calmodulin-dependent protein kinase type II subunit beta	60.4	107	140	15	9	24	15
KCC2D_RAT	Calcium/calmodulin-dependent protein kinase type II subunit delta	60	206	133	6	12	9	15
KCC2G_RAT	Calcium/calmodulin-dependent protein kinase type II subunit gamma	59	224	325	2	2	2	2
KCC4_RAT	Calcium/calmodulin-dependent protein kinase type IV	53.1	155	312	12	7	15	9
KCNA1_RAT	Potassium voltage-gated channel subfamily A member 1	56.3	571	924	4	2	5	2
KCNC1_RAT	Potassium voltage-gated channel subfamily C member 1	65.8	824	799	3	2	3	2
KCNC3_RAT	Potassium voltage-gated channel subfamily C member 3	94.3	989	909	2	2	2	2
KCND2_RAT	Potassium voltage-gated channel subfamily D member 2	70.5	753	828	3	2	3	2
KCRB_RAT	Creatine kinase B-type	42.7	14	14	41	37	93	109
KCRU_RAT	Creatine kinase U-type, mitochondrial	47	441	562	5	3	8	5
KIF1B_RAT	Kinesin-like protein KIF1B	204	423	418	6	5	6	5
KIF3C_RAT	Kinesin-like protein KIF3C	89.8	996	662	2	3	2	3
KKCC2_RAT	Calcium/calmodulin-dependent protein kinase kinase 2	64.4	884	554	2	4	2	4
KLC1_RAT	Kinesin light chain 1	63.2	350	458	7	4	8	4
KPCE_RAT	Protein kinase C epsilon type	83.4	550	476	4	4	6	6
KPCG_RAT	Protein kinase C gamma type	78.3	192	242	10	7	11	10
KPYM_RAT	Pyruvate kinase PKM	57.6	35	31	32	29	53	42
KS6A1_RAT	Ribosomal protein S6 kinase alpha-1	82.8	830	290	2	6	2	6
L1CAM_RAT	Neural cell adhesion molecule L1	140.8	867	405	2	5	2	5
LA_RAT	Lupus La protein homolog	47.7	457	845	5	2	6	2
LAMB2_RAT	Laminin subunit beta-2	196.3	266	168	9	11	9	12
LANC1_RAT	LanC-like protein 1	45.2	910	616	2	3	2	5
LAP2_RAT	Lamina-associated polypeptide 2, isoform beta	50.1	141	475	11	4	15	4
LASP1_RAT	LIM and SH3 domain protein 1	30	126	167	13	9	16	16
LDHA_RAT	L-lactate dehydrogenase A chain	36.4	173	466	6	3	7	3
LDHB_RAT	L-lactate dehydrogenase B chain	36.5	83	247	18	8	27	12
LETM1_RAT	LETM1 and EF-hand domain-containing protein 1, mitochondrial	83	132	221	13	9	14	9
LGI1_RAT	Leucine-rich glioma-inactivated protein 1	63.7	534	758	4	2	4	2
LIN7A_RAT	Protein lin-7 homolog A	25.8	464	493	5	2	5	3

755 Protein Identifications Common to the "White Matter" and "Molecular Laver" Hydrogels										
			X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides		
Accession	Description	Mr	(White Matter)	(Molecular Laver)	(White Matter)	(Molecular Laver)	Matter)	(Molecular Laver)		
LIN7C RAT	Protein lin-7 homolog C	21.8	638	320	2	6	2	7		
LIPA3_RAT	Liprin-alpha-3	133.3	300	122	8	14	8	19		
LIPA4_RAT	Liprin-alpha-4	117.9	508	393	5	4	5	4		
LIS1_RAT	Platelet-activating factor acetylhydrolase IB subunit alpha	46.5	341	415	7	5	7	5		
LKHA4_RAT	Leukotriene A-4 hydrolase	69	512	576	5	4	5	4		
LMNA_RAT	Prelamin-A/C	74.3	86	69	15	17	19	19		
LMNB1_RAT	Lamin-B1	66.4	56	85	24	14	34	16		
LPP3_RAT	Phospholipid phosphatase 3	35.3	660	347	3	5	6	9		
LRC59_RAT	Leucine-rich repeat-containing protein 59	34.8	1075	886	2	2	2	2		
LSAMP_RAT	Limbic system-associated membrane protein	37.3	575	441	4	5	6	8		
LUZP1_RAT	Leucine zipper protein 1	117.1	256	724	10	3	11	3		
LXN_RAT	Latexin	25.6	688	629	3	3	6	9		
LYPA1_RAT	Acyl-protein thioesterase 1	24.7	777	868	3	2	3	2		
LYRIC_RAT	Protein LYRIC	63.9	620	809	4	2	4	2		
M2OM_RAT	Mitochondrial 2-oxoglutarate/malate carrier protein	34.1	376	289	6	6	7	7		
MAOX_RAT	NADP-dependent malic enzyme	64	482	371	5	5	6	5		
MAP1A_RAT	Microtubule-associated protein 1A	299.3	13	27	52	36	73	45		
MAP1B_RAT	Microtubule-associated protein 1B	269.3	10	9	50	43	65	54		
MAP2_RAT	Methionine aminopeptidase 2	202.3	30	35	39	29	44	34		
MARCS_RAT	Myristoylated alanine-rich C-kinase substrate	29.6	28	22	34	30	65	65		
MARE1_RAT	Microtubule-associated protein RP/EB family member 1	29.9	748	531	2	4	2	5		
MARE2_RAT	Microtubule-associated protein RP/EB family member 2	37	430	530	6	4	8	4		
MARE3_RAT	Microtubule-associated protein RP/EB family member 3	31.9	447	570	5	3	7	3		
MARK2_RAT	Serine/threonine-protein kinase MARK2	80.8	492	413	5	5	5	6		
MARK3_RAT	MAP/microtubule affinity-regulating kinase 3	88.7	816	723	3	2	3	2		
MATR3_RAT	Matrin-3	94.4	104	143	15	11	22	16		
MAVS_RAT	Mitochondrial antiviral-signaling protein	53.8	798	747	3	3	3	3		
MBP_RAT	Myelin basic protein	21.4	45	222	28	8	111	13		
MDHC_RAT	Malate dehydrogenase, cytoplasmic	36.3	111	192	15	9	19	13		
MDHM_RAT	Malate dehydrogenase, mitochondrial	35.6	106	136	14	11	18	13		
MDR1_RAT	Multidrug resistance protein 1	141.3	728	884	3	2	3	3		
MECP2_RAT	Methyl-CpG-binding protein 2	53	142	645	12	3	16	4		
MEPD_RAT	Thimet oligopeptidase	78.1	390	824	6	2	7	2		
MGR1_RAT	Metabotropic glutamate receptor 1	133.2	797	178	3	10	3	11		
MK01_RAT	Mitogen-activated protein kinase 1	41.1	637	439	4	3	4	3		
MK03_RAT	Mitogen-activated protein kinase 3	43	739	281	2	7	2	8		
MLRA_RAT	Myosin regulatory light chain RLC-A	19.8	675	438	3	4	4	7		
MMSA RAT	Methylmalonate-semialdehyde dehydrogenase [acylating], mitochondrial	57.8	520	380	4	5	4	5		

755 Protein Identifications Common to the "White Matter" and "Molecular Laver" Hydrogels									
			X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides	
Accession	Description	Mr	(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Layer)	Matter)	(Molecular Layer)	
MOES_RAT	Moesin	67.6	392	500	6	4	6	5	
MP2K1_RAT	Dual specificity mitogen-activated protein kinase kinase 1	43.3	502	425	5	5	7	6	
MPCP_RAT	Phosphate carrier protein, mitochondrial	39.4	289	266	8	7	13	9	
MRCKA_RAT	Serine/threonine-protein kinase MRCK alpha	196.9	516	961	5	2	5	2	
MRCKB_RAT	Serine/threonine-protein kinase MRCK beta	194.8	664	353	3	6	4	6	
MRIP_RAT	Myosin phosphatase Rho-interacting protein	117	548	276	5	7	5	7	
MRP_RAT	MARCKS-related protein	19.7	749	702	3	3	4	5	
MTPN_RAT	Myotrophin	12.7	832	771	2	2	2	3	
MYH10_RAT	Myosin-10	228.8	29	11	39	43	52	52	
MYH9_RAT	Myosin-9	226.1	96	68	12	15	15	19	
MYL6_RAT	Myosin light polypeptide 6	16.8	241	472	8	4	11	5	
MYO5A_RAT	Unconventional myosin-Va	211.6	51	43	26	25	34	30	
NAC2_RAT	Sodium/calcium exchanger 2	100.5	235	185	8	9	9	13	
NCAM1_RAT	Neural cell adhesion molecule 1	94.6	42	38	30	26	36	49	
NCKP1_RAT	Nck-associated protein 1	128.8	400	937	6	2	6	2	
NCPR_RAT	NADPHcytochrome P450 reductase	76.8	969	901	2	2	2	2	
NDRG2_RAT	Protein NDRG2	40.8	136	164	11	9	13	17	
NEB2_RAT	Neurabin-2	89.6	284	201	8	9	10	11	
NECP1_RAT	Adaptin ear-binding coat-associated protein 1	29.8	551	434	4	4	5	6	
NEDD8_RAT	NEDD8	9	661	715	3	3	3	3	
NEGR1_RAT	Neuronal growth regulator 1	37.8	505	503	4	4	4	5	
NEUM_RAT	Neuromodulin	23.6	77	51	19	20	34	42	
NFASC_RAT	Neurofascin	137.9	66	87	20	15	25	20	
NFH_RAT	Neurofilament heavy polypeptide	115.3	38	218	30	8	36	9	
NFL_RAT	Neurofilament light polypeptide	61.2	25	150	35	9	49	9	
NFM_RAT	Neurofilament medium polypeptide	95.6	12	166	50	7	74	9	
NHERF_RAT	Na(+)/H(+) exchange regulatory cofactor NHE-RF1	38.7	170	239	11	8	12	10	
NHRF2_RAT	Na(+)/H(+) exchange regulatory cofactor NHE-RF2	37.3	683	585	3	3	4	3	
NLGN2_RAT	Neuroligin-2	90.9	407	508	6	4	7	4	
NLGN3_RAT	Neuroligin-3	93.8	646	835	3	2	4	2	
NLTP_RAT	Non-specific lipid-transfer protein	58.8	761	736	3	3	4	3	
NONO_RAT	Non-POU domain-containing octamer-binding protein	54.9	313	701	8	3	11	3	
NOS1_RAT	Nitric oxide synthase, brain	160.5	410	190	6	9	7	10	
NP1L4_RAT	Nucleosome assembly protein 1-like 4	43.9	408	376	5	5	6	6	
NPTN_RAT	Neuroplastin	31.3	862	611	2	3	3	3	
NPTX1_RAT	Neuronal pentraxin-1	47.2	789	874	3	2	3	2	
NPTXR_RAT	Neuronal pentraxin receptor	52.3	649	402	4	5	4	5	
NRCAM_RAT	Neuronal cell adhesion molecule	133.8	203	154	11	12	11	12	

755 Protein Identifications Common to the "White Matter" and "Molecular Layer" Hydrogels									
A	Description	М.	X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides	
Accession	Description	Mr	(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Layer)	Matter)	(Molecular Layer)	
NRDC_RAT	Nardilysin	132.9	977	474	2	4	2	4	
NSF1C_RAT	NSFL1 cofactor p47	40.7	118	123	14	13	17	16	
NTRI_RAT	Neurotrimin	38	1001	671	2	3	2	3	
NUCB1_RAT	Nucleobindin-1	53.5	515	830	5	2	5	2	
NUCL_RAT	Nucleolin	77	252	428	9	5	9	5	
NUDC_RAT	Nuclear migration protein nudC	38.4	373	250	7	8	7	8	
NUDT3_RAT	Diphosphoinositol polyphosphate phosphohydrolase 1	19.1	915	728	2	2	3	2	
NUHM_RAT	NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial	27.4	324	387	7	5	7	6	
ODO2_RAT	Dihydrolipoyllysine-residue succinyltransferase component of 2-oxoglutarate dehydrogenase complex,	48.9	365	284	6	6	8	8	
ODP2_RAT	Dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex, mitoch	58.7	212	202	9	7	11	9	
ODPA_RAT	Pyruvate dehydrogenase E1 component subunit alpha, somatic form, mitochondrial	43.2	135	211	12	8	14	11	
ODPB_RAT	Pyruvate dehydrogenase E1 component subunit beta, mitochondrial	38.8	134	159	12	10	18	12	
OGT1_RAT	UDP-N-acetylglucosaminepeptide N-acetylglucosaminyltransferase 110 kDa subunit	115.5	663	572	3	4	5	4	
OPLA_RAT	5-oxoprolinase	137.6	840	509	3	4	4	4	
OSBL1_RAT	Oxysterol-binding protein-related protein 1	107.7	1058	740	2	3	2	3	
OXR1_RAT	Oxidation resistance protein 1	84.1	138	217	11	8	11	10	
OXRP_RAT	Hypoxia up-regulated protein 1	111.2	201	251	11	8	14	10	
PA1B2_RAT	Platelet-activating factor acetylhydrolase IB subunit beta	25.6	634	398	3	5	4	5	
PABP1_RAT	Polyadenylate-binding protein 1	70.7	249	291	9	7	9	8	
PACN1_RAT	Protein kinase C and casein kinase substrate in neurons protein 1	50.4	194	189	10	9	19	16	
PACN2_RAT	Protein kinase C and casein kinase substrate in neurons 2 protein	55.9	583	869	3	2	3	2	
PACS1_RAT	Phosphofurin acidic cluster sorting protein 1	104.6	540	447	4	4	5	4	
PADI2_RAT	Protein-arginine deiminase type-2	75.3	330	649	7	3	8	3	
PAIRB_RAT	Plasminogen activator inhibitor 1 RNA-binding protein	44.7	518	646	3	3	7	3	
PAK1_RAT	Serine/threonine-protein kinase PAK 1	60.5	331	338	7	6	10	7	
PAK2_RAT	Serine/threonine-protein kinase PAK 2	57.9	339	375	5	3	10	7	
PARK7_RAT	Protein deglycase DJ-1	20	555	549	4	4	7	4	
PCCA_RAT	Propionyl-CoA carboxylase alpha chain, mitochondrial	77.7	754	422	2	4	2	4	
PCCB_RAT	Propionyl-CoA carboxylase beta chain, mitochondrial	58.6	522	602	4	3	4	3	
PCLO_RAT	Protein piccolo	552.4	46	21	30	36	32	45	
PDCD8_RAT	Apoptosis-inducing factor 1, mitochondrial	66.7	402	579	6	3	6	3	
PDE4B_RAT	cAMP-specific 3',5'-cyclic phosphodiesterase 4B	82	993	677	2	3	2	3	
PDIA1_RAT	Protein disulfide-isomerase	56.9	292	334	8	6	12	6	
PDIA3_RAT	Protein disulfide-isomerase A3	56.6	90	103	17	15	21	18	
PDIA4_RAT	Protein disulfide-isomerase A4	72.7	325	851	8	2	8	3	
PDIA6_RAT	Protein disulfide-isomerase A6	48.1	356	257	5	6	6	7	
PDK2_RAT	[Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 2, mitochondrial	46.1	926	951	2	2	2	2	
PDXK_RAT	Pyridoxal kinase	34.9	280	323	8	6	10	8	

755 Protein Identifications Common to the "White Matter" and "Molecular Layer" Hydrogels										
Accession	Description	Mu	X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides		
Accession	Description	IVIT	(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Layer)	Matter)	(Molecular Layer)		
PEBP1_RAT	Phosphatidylethanolamine-binding protein 1	20.7	145	214	11	8	16	11		
PEP19_RAT	Purkinje cell protein 4	6.7	306	575	7	2	12	5		
PGAM1_RAT	Phosphoglycerate mutase 1	28.5	337	326	7	6	8	9		
PGAM2_RAT	Phosphoglycerate mutase 2	28.6	558	368	3	2	3	2		
PGCB_RAT	Brevican core protein	96	314	834	8	2	8	2		
PGK1_RAT	Phosphoglycerate kinase 1	44.4	61	117	21	11	33	18		
PGM1_RAT	Phosphoglucomutase-1	61.2	165	254	11	7	17	8		
PGRC1_RAT	Membrane-associated progesterone receptor component 1	21.5	395	373	5	5	5	5		
PHB_RAT	Prohibitin	29.8	209	274	9	7	11	8		
PHB2_RAT	Prohibitin-2	33.3	220	205	9	9	10	11		
PI51C_RAT	Phosphatidylinositol 4-phosphate 5-kinase type-1 gamma	75.5	566	367	4	5	4	5		
PI52B_RAT	Phosphatidylinositol 5-phosphate 4-kinase type-2 beta	47.2	462	394	5	5	5	6		
PICA_RAT	Phosphatidylinositol-binding clathrin assembly protein	69.2	796	372	2	5	2	5		
PIPNA_RAT	Phosphatidylinositol transfer protein alpha isoform	31.8	601	546	4	4	4	4		
PIPNB_RAT	Phosphatidylinositol transfer protein beta isoform	31.3	952	945	2	2	2	2		
PITM1_RAT	Membrane-associated phosphatidylinositol transfer protein 1	134.9	445	319	5	6	6	7		
PLAP_RAT	Phospholipase A-2-activating protein	87	472	365	5	5	5	5		
PLCB1_RAT	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1	138.3	414	314	5	7	5	7		
PLCB3_RAT	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-3	139.4	882	650	2	3	2	3		
PLCB4_RAT	1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-4	134.4	677	321	4	6	4	6		
PLEC1_RAT	Plectin	533.2	9	28	55	37	64	40		
PLM_RAT	Phospholemman	10.4	671	473	3	4	5	4		
PLPP_RAT	Pyridoxal phosphate phosphatase	33.1	454	467	4	4	7	5		
PLST_RAT	Plastin-3	70.3	296	355	7	6	8	6		
PP1A_RAT	Serine/threonine-protein phosphatase PP1-alpha catalytic subunit	37.5	448	468	5	4	5	4		
PP1G_RAT	Serine/threonine-protein phosphatase PP1-gamma catalytic subunit	37	979	501	2	3	2	3		
PP1R7_RAT	Protein phosphatase 1 regulatory subunit 7	41.3	1068	463	2	5	2	6		
PP2BA_RAT	Serine/threonine-protein phosphatase 2B catalytic subunit alpha isoform	58.6	89	97	15	15	22	21		
PP2BB_RAT	Serine/threonine-protein phosphatase 2B catalytic subunit beta isoform	59.1	191	208	4	3	4	4		
PP2CA_RAT	Protein phosphatase 1A	42.4	581	591	4	3	6	3		
PPIA_RAT	Peptidyl-prolyl cis-trans isomerase A	17.7	422	342	5	5	7	10		
PPIB_RAT	Peptidyl-prolyl cis-trans isomerase B	22.8	533	613	5	3	5	3		
PPID_RAT	Peptidyl-prolyl cis-trans isomerase D	40.6	822	457	3	5	3	5		
PPT1_RAT	Palmitoyl-protein thioesterase 1	34.4	880	786	2	2	3	2		
PRDX2_RAT	Peroxiredoxin-2	21.6	200	330	8	6	12	9		
PRDX5_RAT	Peroxiredoxin-5, mitochondrial	22.2	276	350	7	6	10	9		
PRDX6_RAT	Peroxiredoxin-6	24.7	167	183	10	9	13	10		
PRIO RAT	Major prion protein	27.8	726	788	3	2	4	3		

755 Protein Identifications Common to the "White Matter" and "Molecular Laver" Hydrogels									
			X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides	
Accession	Description	Mr	(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Layer)	Matter)	(Molecular Layer)	
PROF1_RAT	Profilin-1	14.8	315	470	7	4	9	5	
PROF2_RAT	Profilin-2	14.9	815	592	2	3	2	3	
PRS4_RAT	26S protease regulatory subunit 4	49.2	450	496	5	4	7	4	
PRS6A_RAT	26S protease regulatory subunit 6A	49.1	595	462	4	4	4	4	
PRS7_RAT	26S protease regulatory subunit 7	48.4	370	358	6	5	6	6	
PRS8_RAT	26S protease regulatory subunit 8	45.6	467	659	4	3	5	3	
PRVA_RAT	Parvalbumin alpha	11.8	590	436	4	5	4	5	
PSA1_RAT	Proteasome subunit alpha type-1	29.5	526	397	4	5	4	6	
PSA4_RAT	Proteasome subunit alpha type-4	29.5	938	836	2	2	2	2	
PSA5_RAT	Proteasome subunit alpha type-5	26.4	610	593	4	3	4	3	
PSA6_RAT	Proteasome subunit alpha type-6	27.4	580	850	4	2	4	2	
PSA7_RAT	Proteasome subunit alpha type-7	28.3	731	632	3	3	3	3	
PSB1_RAT	Proteasome subunit beta type-1	26.5	704	606	3	3	4	3	
PSB4_RAT	Proteasome subunit beta type-4	29.2	781	603	3	3	3	3	
PSB6_RAT	Proteasome subunit beta type-6	25.3	622	668	4	3	4	3	
PSD9_RAT	Disks large homolog 4	24.8	495	683	5	3	6	3	
PSIP1_RAT	PC4 and SFRS1-interacting protein	59.6	133	612	13	3	15	4	
PTMA_RAT	Prothymosin alpha	12.2	304	442	7	4	15	8	
PTMS_RAT	Parathymosin	11.4	669	564	3	4	5	5	
PTN11_RAT	Tyrosine-protein phosphatase non-receptor type 11	68.4	665	754	4	2	4	2	
PTPRZ_RAT	Receptor-type tyrosine-protein phosphatase zeta	255.2	237	161	8	9	12	12	
PURB_RAT	Transcriptional activator protein Pur-beta	33.3	320	313	7	6	8	6	
PYC_RAT	Pyruvate carboxylase, mitochondrial	129.6	113	95	15	17	18	18	
PYGB_RAT	Glycogen phosphorylase, brain form	96	95	116	16	13	18	15	
PYGM_RAT	Glycogen phosphorylase, muscle form	97.1	243	124	7	11	8	11	
QKI_RAT	Protein quaking	37.6	442	697	5	3	5	3	
RAB14_RAT	Ras-related protein Rab-14	23.8	301	335	6	4	7	4	
RAB18_RAT	Ras-related protein Rab-18	23	795	555	3	4	4	4	
RAB1A_RAT	Ras-related protein Rab-1A	22.5	416	308	3	5	4	6	
RAB1B_RAT	Ras-related protein Rab-1B	22.1	537	482	2	2	2	2	
RAB2A_RAT	Ras-related protein Rab-2A	23.5	465	295	5	5	7	10	
RAB35_RAT	Ras-related protein Rab-35	23	491	395	2	3	3	3	
RAB3A_RAT	Ras-related protein Rab-3A	25	270	170	7	8	16	20	
RAB3C_RAT	Ras-related protein Rab-3C	25.9	471	324	3	4	3	5	
RAB6A_RAT	Ras-related protein Rab-6A	15.8	501	329	5	6	8	8	
RAB7_RAT	Ras-related protein Rab-7a	23.5	251	180	8	9	11	10	
RABE1_RAT	Rab GTPase-binding effector protein 1	99.4	496	672	5	3	5	3	
RALA_RAT	Ras-related protein Ral-A	23.5	674	839	3	2	3	2	

755 Protein Identifications Common to the "White Matter" and "Molecular Laver" Hydrogels									
			X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides	
Accession	Description	Mr	(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Layer)	Matter)	(Molecular Layer)	
RANT RAT	GTP-binding nuclear protein Ran, testis-specific isoform	24.4	567	716	4	3	5	3	
RAP1A_RAT	Ras-related protein Rap-1A	21	299	377	7	5	10	5	
RASN_RAT	GTPase NRas	21.2	686	414	3	5	6	7	
RB11B_RAT	Ras-related protein Rab-11B	24.3	389	241	6	8	6	8	
RB6I2_RAT	ELKS/Rab6-interacting/CAST family member 1	108.8	196	42	10	26	11	29	
RCN2_RAT	Reticulocalbin-2	37.4	872	580	2	4	3	5	
RGS3_RAT	Regulator of G-protein signaling 3	106.3	1067	658	2	3	2	3	
RGS7_RAT	Regulator of G-protein signaling 7	55.7	602	341	4	6	4	6	
RGS8_RAT	Regulator of G-protein signaling 8	20.9	971	615	2	3	3	3	
RHOA_RAT	Transforming protein RhoA	21.8	517	563	4	3	7	4	
RIB1_RAT	Dolichyl-diphosphooligosaccharide protein glycosyltransferase subunit 1	68.3	222	307	9	6	9	7	
RIB2_RAT	Dolichyl-diphosphooligosaccharide protein glycosyltransferase subunit 2	69	584	560	4	3	5	4	
RIC8A_RAT	Synembryn-A	59.8	835	767	2	2	2	2	
RIMS1_RAT	Regulating synaptic membrane exocytosis protein 1	179.5	344	119	7	13	7	13	
RIMS2_RAT	Regulating synaptic membrane exocytosis protein 2	175.8	846	363	3	6	3	6	
RL19_RAT	60S ribosomal protein L19	23.5	820	794	2	2	3	3	
RL24_RAT	60S ribosomal protein L24	17.8	716	844	3	2	3	2	
RL26_RAT	60S ribosomal protein L26	17.3	804	802	3	2	3	2	
RL27_RAT	60S ribosomal protein L27	15.7	711	795	3	2	3	2	
RL3_RAT	60S ribosomal protein L3	46	466	923	5	2	8	2	
RL31_RAT	60S ribosomal protein L31	14.5	992	938	2	2	2	2	
RL4_RAT	60S ribosomal protein L4	47.1	221	792	8	2	9	2	
RL5_RAT	60S ribosomal protein L5	34.3	628	793	4	2	5	2	
RL6_RAT	60S ribosomal protein L6	33.4	438	661	5	3	6	5	
RL7_RAT	60S ribosomal protein L7	30.3	369	499	7	4	7	4	
RL7A_RAT	60S ribosomal protein L7a	29.8	691	558	3	3	3	4	
RL8_RAT	60S ribosomal protein L8	27.9	642	883	4	2	4	2	
RLA0_RAT	60S acidic ribosomal protein P0	34.2	538	621	4	3	6	4	
RLA2_RAT	60S acidic ribosomal protein P2	11.7	409	525	5	3	8	4	
ROA1_RAT	Heterogeneous nuclear ribonucleoprotein A1	34.1	102	219	14	7	18	8	
ROA3_RAT	Heterogeneous nuclear ribonucleoprotein A3	39.6	114	182	13	10	21	13	
ROCK2_RAT	Rho-associated protein kinase 2	159.3	231	86	9	17	9	17	
RP3A_RAT	Rabphilin-3A	75.8	169	101	11	14	11	18	
RPGF4_RAT	Rap guanine nucleotide exchange factor 4	50.1	836	746	2	3	2	3	
RS14_RAT	40S ribosomal protein S14	16.1	494	523	4	3	4	3	
RS16_RAT	40S ribosomal protein S16	16.3	732	785	3	2	3	2	
RS18_RAT	40S ribosomal protein S18	17.7	483	623	5	3	7	6	
RS19_RAT	40S ribosomal protein S19	15.9	419	487	6	4	8	4	

755 Protein Identifications Common to the "White Matter" and "Molecular Layer" Hydrogels									
. ·			X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides	
Accession	Description	Mr	(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Layer)	Matter)	(Molecular Layer)	
RS21_RAT	40S ribosomal protein S21	9.1	813	566	2	3	2	3	
RS23_RAT	40S ribosomal protein S23	15.7	921	840	2	2	3	2	
RS25_RAT	40S ribosomal protein S25	13.7	503	882	5	2	5	2	
RS28_RAT	40S ribosomal protein S28	7.8	621	706	3	2	4	3	
RS3_RAT	40S ribosomal protein S3	26.7	263	488	8	4	8	4	
RS3A_RAT	40S ribosomal protein S3a	29.8	614	590	3	4	5	4	
RS6_RAT	40S ribosomal protein S6	28.7	381	769	5	2	5	2	
RS8_RAT	40S ribosomal protein S8	24.1	497	578	4	4	5	4	
RSSA_RAT	40S ribosomal protein SA	32.7	397	379	5	4	6	5	
RTN1_RAT	Reticulon-1	83	97	75	15	17	20	21	
RTN4_RAT	Reticulon-4	126.3	76	112	20	14	26	19	
RUVB1_RAT	RuvB-like 1	50.2	775	581	3	4	3	4	
S12A5_RAT	Solute carrier family 12 member 5	123.5	175	213	11	9	13	10	
S14L2_RAT	SEC14-like protein 2	46.1	700	972	3	2	3	2	
S27A1_RAT	Long-chain fatty acid transport protein 1	71.2	532	481	4	4	5	4	
S4A4_RAT	Electrogenic sodium bicarbonate cotransporter 1	121.3	139	104	13	15	18	26	
S6A17_RAT	Sodium-dependent neutral amino acid transporter SLC6A17	81	421	596	5	3	6	3	
SAFB1_RAT	Scaffold attachment factor B1	104.5	190	301	10	6	14	7	
SAHH_RAT	Adenosylhomocysteinase	47.4	240	344	9	6	12	6	
SC6A1_RAT	Sodium- and chloride-dependent GABA transporter 1	67	618	797	4	2	5	3	
SC6A9_RAT	Sodium- and chloride-dependent glycine transporter 1	70.5	788	757	2	2	4	2	
SCAM1_RAT	Secretory carrier-associated membrane protein 1	38	563	253	4	8	5	11	
SCN2A_RAT	Sodium channel protein type 2 subunit alpha	227.7	166	121	11	12	13	15	
SEPT5_RAT	Septin-5	42.8	838	360	3	5	3	6	
SEPT7_RAT	Septin-7	50.5	112	88	15	15	21	28	
SERA_RAT	D-3-phosphoglycerate dehydrogenase	56.3	228	238	9	8	10	8	
SET_RAT	Protein SET	33.4	586	689	4	3	4	3	
SFRS2_RAT	Serine/arginine-rich splicing factor 2	25.3	386	491	6	4	8	6	
SFXN1_RAT	Sideroflexin-1	35.4	413	410	4	4	5	5	
SFXN3_RAT	Sideroflexin-3	35.4	364	256	6	7	8	10	
SFXN5_RAT	Sideroflexin-5	37.3	399	431	5	4	5	4	
SGTA_RAT	Small glutamine-rich tetratricopeptide repeat-containing protein alpha	34.1	493	567	4	3	6	4	
SH3G1_RAT	Endophilin-A2	41.5	385	332	5	5	5	6	
SH3G2_RAT	Endophilin-A1	28.4	211	283	9	6	12	13	
SHAN1_RAT	SH3 and multiple ankyrin repeat domains protein 1	226.2	158	46	12	24	14	29	
SHAN2_RAT	SH3 and multiple ankyrin repeat domains protein 2	158.6	424	59	6	19	6	23	
SHAN3_RAT	SH3 and multiple ankyrin repeat domains protein 3	193.1	504	292	5	6	6	7	
SHPS1_RAT	Tyrosine-protein phosphatase non-receptor type substrate 1	55.7	253	165	8	10	12	11	

755 Protein Identifications Common to the "White Matter" and "Molecular Laver" Hydrogels										
			X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides		
Accession	Description	Mr	(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Layer)	Matter)	(Molecular Laver)		
SKP1 RAT	S-phase kinase-associated protein 1	18.5	699	749	3	2	5	3		
SLK_RAT	STE20-like serine/threonine-protein kinase	137.8	560	448	4	5	4	5		
SMC3_RAT	Structural maintenance of chromosomes protein 3	138.4	384	735	7	3	7	3		
SNAA_RAT	Alpha-soluble NSF attachment protein	33.2	227	220	9	8	10	12		
SND1_RAT	Staphylococcal nuclease domain-containing protein 1	101.9	117	271	15	7	15	8		
SNG1_RAT	Synaptogyrin-1	25.7	658	270	3	6	3	7		
SNIP_RAT	SRC kinase signaling inhibitor 1	129.7	81	40	20	27	23	31		
SNP25_RAT	Synaptosomal-associated protein 25	23.3	99	45	14	23	31	48		
SNX1_RAT	Sorting nexin-1	59	653	626	3	3	3	3		
SODC_RAT	Superoxide dismutase [Cu-Zn]	15.8	552	600	4	3	6	3		
SPRE_RAT	Sepiapterin reductase	28.1	914	778	2	2	2	2		
SPRL1_RAT	SPARC-like protein 1	70.6	428	299	5	7	6	7		
SPTA2_RAT	Spectrin alpha chain, non-erythrocytic 1	284.5	1	1	118	120	154	165		
SPTN2_RAT	Spectrin beta chain, non-erythrocytic 2	270.9	7	2	57	70	72	96		
SRC_RAT	Proto-oncogene tyrosine-protein kinase Src	59.9	684	278	3	7	4	7		
SSDH_RAT	Succinate-semialdehyde dehydrogenase, mitochondrial	52.2	343	427	7	5	8	6		
STIP1_RAT	Stress-induced-phosphoprotein 1	62.5	85	144	19	12	21	14		
STMN1_RAT	Stathmin	17.1	291	604	8	3	9	3		
STRN3_RAT	Striatin-3	50.4	1004	495	2	4	2	5		
STTP1_RAT	Elongator complex protein 2	91.7	876	847	2	2	2	2		
STX1A_RAT	Syntaxin-1A	33	371	181	3	6	3	8		
STX1C_RAT	Syntaxin-1B	33.2	73	52	19	21	37	44		
STX6_RAT	Syntaxin-6	29	568	541	3	3	4	3		
STXB1_RAT	Syntaxin-binding protein 1	67.5	39	18	29	34	39	55		
SUCA_RAT	Succinyl-CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial	35	360	518	5	4	7	4		
SUOX_RAT	Sulfite oxidase, mitochondrial	54.3	920	721	2	3	2	3		
SV2A_RAT	Synaptic vesicle glycoprotein 2A	82.6	456	204	5	8	7	14		
SV2B_RAT	Synaptic vesicle glycoprotein 2B	77.5	766	411	2	4	3	5		
SYD_RAT	AspartatetRNA ligase, cytoplasmic	57.1	309	384	8	6	9	6		
SYN1_RAT	Synapsin-1	73.9	43	20	26	32	63	65		
SYN2_RAT	Synapsin-2	63.4	110	53	12	18	18	29		
SYN3_RAT	Synapsin-3	63.3	1056	825	2	2	3	2		
SYNG_RAT	Synergin gamma	74	960	826	2	2	2	2		
SYNJ1_RAT	Synaptojanin-1	172.8	59	77	23	17	27	21		
SYPH_RAT	Synaptophysin	33.3	432	568	4	3	7	8		
SYT1_RAT	Synaptotagmin-1	47.4	285	246	6	4	6	6		
SYT12_RAT	Synaptotagmin-12	46.6	357	158	7	10	7	10		
SYT2 RAT	Synaptotagmin-2	47.2	159	109	11	13	11	17		
755 Protein Identifications Common to the "White Matter" and "Molecular Laver" Hydrogels										
--	---	-------	----------------	-------------------	-----------------	-------------------	-----------------------	-------------------		
			X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides		
Accession	Description	Mr	(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Layer)	Matter)	(Molecular Layer)		
SYTC RAT	ThreoninetRNA ligase, cytoplasmic	80.5	769	627	3	3	3	3		
SYUA_RAT	Alpha-synuclein	14.5	255	171	6	8	7	12		
SYUB_RAT	Beta-synuclein	14.5	146	132	11	11	18	14		
SYV_RAT	ValinetRNA ligase	140.3	383	391	6	5	7	5		
SYYC_RAT	TyrosinetRNA ligase, cytoplasmic	58.9	676	316	3	7	4	7		
TAGL3_RAT	Transgelin-3	24.7	393	318	6	6	11	10		
TALDO_RAT	Transaldolase	37.4	453	784	5	2	5	2		
TAU_RAT	Microtubule-associated protein tau	78.4	105	99	14	14	24	23		
TBA8_RAT	Tubulin alpha-8 chain	50	52	44	3	4	5	5		
TBB1_RAT	Tubulin beta-2B chain	49.9	16	12	43	40	89	82		
TBB3_RAT	Tubulin beta-3 chain	50.4	27	30	11	6	18	10		
TBB5_RAT	Tubulin beta-5 chain	49.6	23	13	10	9	21	17		
TCPA_RAT	T-complex protein 1 subunit alpha	60.3	152	184	11	9	12	10		
TCPD_RAT	T-complex protein 1 subunit delta	57.9	157	128	11	12	14	13		
TENR_RAT	Tenascin-R	149.3	163	129	11	12	11	12		
TERA_RAT	Transitional endoplasmic reticulum ATPase	89.2	79	64	20	20	29	27		
THIL_RAT	Acetyl-CoA acetyltransferase, mitochondrial	44.7	207	287	9	6	14	8		
THIM_RAT	3-ketoacyl-CoA thiolase, mitochondrial	41.8	738	515	3	4	4	4		
THIO_RAT	Thioredoxin	11.5	896	618	2	3	2	3		
THTM_RAT	3-mercaptopyruvate sulfurtransferase	32.8	511	507	4	4	6	5		
THTR_RAT	Thiosulfate sulfurtransferase	33.3	374	730	6	2	6	3		
TIM13_RAT	Mitochondrial import inner membrane translocase subunit Tim13	10.5	524	449	5	4	5	5		
TIM44_RAT	Mitochondrial import inner membrane translocase subunit TIM44	51	980	833	2	2	2	2		
TKT_RAT	Transketolase	67.6	92	187	16	9	26	11		
TMOD2_RAT	Tropomodulin-2	39.5	295	229	8	8	11	12		
TOIP1_RAT	Torsin-1A-interacting protein 1	65.6	758	918	3	2	3	2		
TPD54_RAT	Tumor protein D54	24	510	454	4	4	6	5		
TPIS_RAT	Triosephosphate isomerase	26.8	316	351	6	5	18	14		
TPM1_RAT	Tropomyosin alpha-1 chain	32.7	342	206	5	9	6	9		
TPM4_RAT	Tropomyosin alpha-4 chain	28.4	336	248	7	6	7	6		
TPP2_RAT	Tripeptidyl-peptidase 2	138.1	635	582	4	4	5	4		
TRA2B_RAT	Transformer-2 protein homolog beta	33.6	391	890	5	2	9	2		
TRFE_RAT	Serotransferrin	76.3	1003	810	2	2	2	2		
TRIM3_RAT	Tripartite motif-containing protein 3	80.7	328	369	7	5	7	5		
TRXR2_RAT	Thioredoxin reductase 2, mitochondrial	56.5	900	654	2	3	4	4		
TWF1_RAT	Twinfilin-1	40.1	724	370	3	5	3	5		
TXNL1_RAT	Thioredoxin-like protein 1	32.1	334	352	7	6	9	6		
UAP56_RAT	Spliceosome RNA helicase Ddx39b	49	137	522	13	4	18	5		

APPENDIX C: Protein Identifications Common to both the "White Matter" and "Molecular Layer" Hydrogels (Cont'd)

755 Protein Identifications Common to the "White Matter" and "Molecular Layer" Hydrogels								
Accession	Description	Mr	X! Tandem Rank	X! Tandem Rank	Unique Peptides	Unique Peptides	Total Peptides (White	Total Peptides
			(White Matter)	(Molecular Layer)	(White Matter)	(Molecular Layer)	Matter)	(Molecular Layer)
UB2V2_RAT	Ubiquitin-conjugating enzyme E2 variant 2	16.2	499	856	5	2	6	2
UBA3_RAT	NEDD8-activating enzyme E1 catalytic subunit	51.7	854	761	2	2	2	2
UBE2N_RAT	Ubiquitin-conjugating enzyme E2 N	17.1	415	776	6	2	7	3
UBIQ_RAT	no protein information available	8.6	226	265	9	7	26	13
UCHL1_RAT	Ubiquitin carboxyl-terminal hydrolase isozyme L1	24.8	469	791	5	2	8	3
UCRI_RAT	Cytochrome b-c1 complex subunit Rieske, mitochondrial	29.4	178	127	11	12	12	13
UE1D1_RAT	Ubiquitin-like modifier-activating enzyme 5	44.9	873	768	2	2	2	2
UGGG1_RAT	UDP-glucose:glycoprotein glucosyltransferase 1	173.9	474	424	5	5	5	5
UQCR2_RAT	Cytochrome b-c1 complex subunit 2, mitochondrial	48.3	121	203	14	9	17	12
USMG5_RAT	Up-regulated during skeletal muscle growth protein 5	6.4	588	552	3	3	6	4
VAMP1_RAT	Vesicle-associated membrane protein 1	12.8	345	419	5	4	8	9
VAMP3_RAT	Vesicle-associated membrane protein 3	11.5	388	510	5	2	6	3
VAPA_RAT	Vesicle-associated membrane protein-associated protein A	27.2	281	378	8	5	11	5
VAPB_RAT	Vesicle-associated membrane protein-associated protein B	26.8	582	526	3	3	4	3
VATB2_RAT	V-type proton ATPase subunit B, brain isoform	56.5	100	90	16	14	30	23
VATF_RAT	V-type proton ATPase subunit F	13.4	498	548	4	3	5	3
VCIP1_RAT	Deubiquitinating protein VCIP135	134.5	897	432	2	5	2	5
VDAC1_RAT	Voltage-dependent anion-selective channel protein 1	30.6	147	120	11	12	20	19
VDAC2_RAT	Voltage-dependent anion-selective channel protein 2	31.7	307	455	6	4	13	6
VDAC3_RAT	Voltage-dependent anion-selective channel protein 3	30.8	404	607	4	3	6	4
VDP_RAT	General vesicular transport factor p115	107.1	303	420	8	5	8	5
VIAAT_RAT	Vesicular inhibitory amino acid transporter	57.4	966	907	2	2	2	2
VIGLN_RAT	Vigilin	141.5	265	540	8	3	10	4
VIME_RAT	Vimentin	53.6	184	39	11	27	12	36
VISL1_RAT	Visinin-like protein 1	22	204	327	10	6	14	7
VPP1_RAT	V-type proton ATPase 116 kDa subunit a isoform 1	96.3	98	114	16	13	23	19
VTI1A_RAT	Vesicle transport through interaction with t-SNAREs homolog 1A	26	544	727	5	3	5	3
WBP2_RAT	WW domain-binding protein 2	28.1	974	813	2	2	2	2
WDR7_RAT	WD repeat-containing protein 7	163.1	396	177	6	9	6	9
WNK1_RAT	Serine/threonine-protein kinase WNK1	225.1	963	696	2	3	2	3
XAB2_RAT	Pre-mRNA-splicing factor SYF1	99.9	759	755	3	3	3	3
XPP1_RAT	Xaa-Pro aminopeptidase 1	69.6	528	469	5	5	5	5
YBOX1_RAT	Nuclease-sensitive element-binding protein 1	35.6	468	459	5	4	7	4

APPENDIX C: Protein Identifications Common to both the "White Matter" and "Molecular Layer" Hydrogels (Cont'd)

REFERENCES

- [1] Tanaka, K., Waki, H., Ido, Y., Akita, S., Yoshida, Y., Yoshida, T., and Matsuo, T. (1988) Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry, *Rapid Communications in Mass Spectrometry 2*, 151-153.
- [2] Karas, M., Bachmann, D., Bahr, U., and Hillenkamp, F. (1987) Matrix-assisted ultraviolet laser desorption of non-volatile compounds, *International Journal of Mass Spectrometry and Ion Processes 78*, 53-68.
- [3] Karas, M., and Hillenkamp, F. (1988) Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons, *Analytical Chemistry 60*, 2299-2301.
- [4] Kampmeier, J., Dreisewerd, K., Schürenberg, M., and Strupat, K. (1997) Investigations of 2, 5-DHB and succinic acid as matrices for IR and UV MALDI. Part: I UV and IR laser ablation in the MALDI process, *International journal of mass spectrometry and ion* processes 169, 31-41.
- [5] Kirpekar, F., Berkenkamp, S., and Hillenkamp, F. (1999) Detection of double-stranded DNA by IR-and UV-MALDI mass spectrometry, *Analytical chemistry 71*, 2334-2339.
- [6] Jaskolla, T. W., and Karas, M. (2011) Compelling evidence for Lucky Survivor and gas phase protonation: the unified MALDI analyte protonation mechanism, *J Am Soc Mass Spectrom 22*, 976-988.
- [7] Karas, M., and Kruger, R. (2003) Ion formation in MALDI: the cluster ionization mechanism, *Chem Rev 103*, 427-440.
- [8] Schiller, J., Süss, R., Fuchs, B., Müller, M., Petković, M., Zschörnig, O., and Waschipky, H. (2007) The suitability of different DHB isomers as matrices for the MALDI-TOF MS analysis of phospholipids: which isomer for what purpose?, *Eur Biophys J 36*, 517-527.
- [9] Hankin, J. A., Barkley, R. M., and Murphy, R. C. (2007) Sublimation as a Method of Matrix Application for Mass Spectrometric Imaging, *Journal of the American Society for Mass Spectrometry 18*, 1646-1652.
- [10] Li, L., Garden, R. W., Romanova, E. V., and Sweedler, J. V. (1999) In Situ Sequencing of Peptides from Biological Tissues and Single Cells Using MALDI–PSD/CID Analysis, *Analytical Chemistry* 71, 5451-5458.
- [11] Groseclose, M. R., Andersson, M., Hardesty, W. M., and Caprioli, R. M. (2007) Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry, *Journal of Mass Spectrometry* 42, 254-262.
- [12] Chaurand, P., and Caprioli, R. M. (2002) Direct profiling and imaging of peptides and proteins from mammalian cells and tissue sections by mass spectrometry, *Electrophoresis 23*, 3125-3135.
- [13] Fitzgerald, M. C., Parr, G. R., and Smith, L. M. (1993) Basic matrixes for the matrixassisted laser desorption/ionization mass spectrometry of proteins and oligonucleotides, *Analytical Chemistry* 65, 3204-3211.
- [14] Li, J., Inutan, E., Wang, B., Lietz, C., Green, D., Manly, C., Richards, A., Marshall, D., Lingenfelter, S., Ren, Y., and Trimpin, S. Matrix Assisted Ionization: New Aromatic and Nonaromatic Matrix Compounds Producing Multiply Charged Lipid, Peptide,

and Protein Ions in the Positive and Negative Mode Observed Directly from Surfaces, *Journal of The American Society for Mass Spectrometry*, 1-19.

- [15] Francese, S., Bradshaw, R., Flinders, B., Mitchell, C., Bleay, S., Cicero, L., and Clench, M. R. (2013) Curcumin: A Multipurpose Matrix for MALDI Mass Spectrometry Imaging Applications, *Analytical Chemistry 85*, 5240-5248.
- [16] Calvano, C. D., van der Werf, I. D., Sabbatini, L., and Palmisano, F. (2015) On plate graphite supported sample processing for simultaneous lipid and protein identification by matrix assisted laser desorption ionization mass spectrometry, *Talanta 137*, 161-166.
- [17] Arakawa, R., and Kawasaki, H. (2010) Functionalized Nanoparticles and Nanostructured Surfaces for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry, *Analytical Sciences 26*, 1229-1240.
- [18] McLean, J. A., Stumpo, K. A., and Russell, D. H. (2005) Size-selected (2-10 nm) gold nanoparticles for matrix assisted laser desorption ionization of peptides, *Journal of the American Chemical Society* 127, 5304-5305.
- [19] Armstrong, D. W., Zhang, L. K., He, L. F., and Gross, M. L. (2001) Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry, *Analytical Chemistry* 73, 3679-3686.
- [20] Gimenez, E., Benavente, F., Barbosa, J., and Sanz-Nebot, V. (2010) Ionic liquid matrices for MALDI-TOF-MS analysis of intact glycoproteins, *Analytical and Bioanalytical Chemistry 398*, 357-365.
- [21] Jones, J. J., Batoy, S., Wilkins, C. L., Liyanage, R., and Lay, J. O. (2005) Ionic liquid matrixinduced metastable decay of peptides and oligonucleotides and stabilization of phospholipids in MALDI FTMS analyses, *Journal of the American Society for Mass Spectrometry 16*, 2000-2008.
- [22] Caprioli, R. M., Farmer, T. B., and Gile, J. (1997) Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS, *Analytical Chemistry* 69, 4751-4760.
- [23] Huang, J. T., Hannah-Qiuhua, L., Szyszka, R., Veselov, V., Reed, G., Wang, X., Price, S., Alquier, L., and Vas, G. (2012) Molecular imaging of drug-eluting coronary stents: method development, optimization and selected applications, *J Mass Spectrom* 47, 155-162.
- [24] Nilsson, A., Goodwin, R. J. A., Shariatgorji, M., Vallianatou, T., Webborn, P. J. H., and Andren, P. E. (2015) Mass Spectrometry Imaging in Drug Development, *Analytical Chemistry 87*, 1437-1455.
- [25] Bhandari, D. R., Schott, M., Roempp, A., Vilcinskas, A., and Spengler, B. (2015) Metabolite localization by atmospheric pressure high-resolution scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging in whole-body sections and individual organs of the rove beetle Paederus riparius, *Analytical and Bioanalytical Chemistry 407*, 2189-2201.
- [26] Berry, K. A. Z., Hankin, J. A., Barkley, R. M., Spraggins, J. M., Caprioli, R. M., and Murphy, R. C. (2011) MALDI Imaging of Lipid Biochemistry in Tissues by Mass Spectrometry, *Chemical Reviews 111*, 6491-6512.
- [27] Schober, Y., Guenther, S., Spengler, B., and Roempp, A. (2012) High-resolution matrixassisted laser desorption/ionization imaging of tryptic peptides from tissue, *Rapid Communications in Mass Spectrometry 26*, 1141-1146.

- [28] Deutskens, F., Yang, J., and Caprioli, R. M. (2011) High spatial resolution imaging mass spectrometry and classical histology on a single tissue section, *Journal of Mass Spectrometry 46*, 568-571.
- [29] Seeley, E. H., Schwamborn, K., and Caprioli, R. M. (2011) Imaging of intact tissue sections: moving beyond the microscope, *J Biol Chem 286*, 25459-25466.
- [30] Aerni, H. R., Cornett, D. S., and Caprioli, R. M. (2006) Automated acoustic matrix deposition for MALDI sample preparation, *Analytical Chemistry 78*, 827-834.
- [31] Grey, A. C., Chaurand, P., Caprioli, R. M., and Schey, K. L. (2009) MALDI Imaging Mass Spectrometry of Integral Membrane Proteins from Ocular Lens and Retinal Tissue, *Journal of Proteome Research 8*, 3278-3283.
- [32] Reyzer, M. L., Hsieh, Y. S., Ng, K., Korfmacher, W. A., and Caprioli, R. M. (2003) Direct analysis of drug candidates in tissue by matrix-assisted laser desorption/ionization mass spectrometry, *Journal of Mass Spectrometry 38*, 1081-1092.
- [33] Angel, P. M., Spraggins, J. M., Baldwin, H. S., and Caprioli, R. (2012) Enhanced sensitivity for high spatial resolution lipid analysis by negative ion mode matrix assisted laser desorption ionization imaging mass spectrometry, *Anal Chem 84*, 1557-1564.
- [34] Schwamborn, K., and Caprioli, R. M. (2010) INNOVATION Molecular imaging by mass spectrometry - looking beyond classical histology, *Nature Reviews Cancer 10*, 639-646.
- [35] Smith, L. M., Kelleher, N. L., and Consortium Top Down, P. (2013) Proteoform: a single term describing protein complexity, *Nature Methods 10*, 186-187.
- [36] Marshall, A. G., and Hendrickson, C. L. (2008) High-resolution mass spectrometers, *Annu Rev Anal Chem (Palo Alto Calif)* 1, 579-599.
- [37] Cornett, D. S., Frappier, S. L., and Caprioli, R. M. (2008) MALDI-FTICR imaging mass spectrometry of drugs and metabolites in tissue, *Analytical Chemistry 80*, 5648-5653.
- [38] Wang, X., Han, J., Pan, J., and Borchers, C. H. (2014) Comprehensive imaging of porcine adrenal gland lipids by MALDI-FTMS using quercetin as a matrix, *Anal Chem 86*, 638-646.
- [39] Wenke, J. L., Rose, K. L., Spraggins, J. M., and Schey, K. L. (2015) MALDI Imaging Mass Spectrometry Spatially Maps Age-Related Deamidation and Truncation of Human Lens Aquaporin-0, *Invest Ophthalmol Vis Sci 56*, 7398-7405.
- [40] G Marshall, A., T Blakney, G., Chen, T., K Kaiser, N., M McKenna, A., P Rodgers, R., M Ruddy, B., and Xian, F. (2013) Mass resolution and mass accuracy: how much is enough?, *Mass Spectrom (Tokyo) 2*, S0009.
- [41] Williams Jr, D. K., Hawkridge, A. M., and Muddiman, D. C. (2007) Sub Parts-Per-Million Mass Measurement Accuracy of Intact Proteins and Product Ions Achieved Using a Dual Electrospray Ionization Quadrupole Fourier Transform Ion Cyclotron Resonance Mass Spectrometer, *Journal of the American Society for Mass* Spectrometry 18, 1-7.
- [42] Flora, J. W., Hannis, J. C., and Muddiman, D. C. (2001) High-Mass Accuracy of Product Ions Produced by SORI-CID Using a Dual Electrospray Ionization Source Coupled with FTICR Mass Spectrometry, *Analytical Chemistry 73*, 1247-1251.
- [43] Cimino, J., Calligaris, D., Far, J., Debois, D., Blacher, S., Sounni, N. E., Noel, A., and De Pauw, E. (2013) Towards lipidomics of low-abundant species for exploring tumor

heterogeneity guided by high-resolution mass spectrometry imaging, *Int J Mol Sci* 14, 24560-24580.

- [44] Jones, E. E., Dworski, S., Canals, D., Casas, J., Fabrias, G., Schoenling, D., Levade, T., Denlinger, C., Hannun, Y. A., Medin, J. A., and Drake, R. R. (2014) On-tissue localization of ceramides and other sphingolipids by MALDI mass spectrometry imaging, *Anal Chem 86*, 8303-8311.
- [45] Sun, N., Fernandez, I. E., Wei, M., Wu, Y., Aichler, M., Eickelberg, O., and Walch, A. (2016) Pharmacokinetic and pharmacometabolomic study of pirfenidone in normal mouse tissues using high mass resolution MALDI-FTICR-mass spectrometry imaging, *Histochem Cell Biol 145*, 201-211.
- [46] Amster, I. J. (1996) Fourier Transform Mass Spectrometry, *Journal of Mass Spectrometry 31*, 1325-1337.
- [47] Marshall, A. G., Hendrickson, C. L., and Jackson, G. S. (1998) Fourier transform ion cyclotron resonance mass spectrometry: A primer, *Mass Spectrometry Reviews* 17, 1-35.
- [48] Schweikhard, L., and Marshall, A. G. (1993) Excitation modes for Fourier transform-ion cyclotron resonance mass spectrometry, *Journal of the American Society for Mass Spectrometry* 4, 433-452.
- [49] Peng, Y., Gregorich, Z. R., Valeja, S. G., Zhang, H., Cai, W., Chen, Y. C., Guner, H., Chen, A. J., Schwahn, D. J., Hacker, T. A., Liu, X., and Ge, Y. (2014) Top-down proteomics reveals concerted reductions in myofilament and Z-disc protein phosphorylation after acute myocardial infarction, *Mol Cell Proteomics* 13, 2752-2764.
- [50] Wisniewski, J. R., Zougman, A., Nagaraj, N., and Mann, M. (2009) Universal sample preparation method for proteome analysis, *Nature methods* 6, 359.
- [51] Caldwell, R. L., and Caprioli, R. M. (2005) Tissue profiling by mass spectrometry: a review of methodology and applications, *Mol Cell Proteomics 4*, 394-401.
- [52] Zubarev, R. A. (2013) The challenge of the proteome dynamic range and its implications for in-depth proteomics, *Proteomics* 13, 723-726.
- [53] Banks, R. E., Dunn, M. J., Forbes, M. A., Stanley, A., Pappin, D., Naven, T., Gough, M., Harnden, P., and Selby, P. J. (1999) The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis--preliminary findings, *Electrophoresis 20*, 689-700.
- [54] Fend, F., and Raffeld, M. (2000) Laser capture microdissection in pathology, *J Clin Pathol* 53, 666-672.
- [55] Castro, N. P., Merchant, A. S., Saylor, K. L., Anver, M. R., Salomon, D. S., and Golubeva, Y. G. (2016) Adaptation of Laser Microdissection Technique for the Study of a Spontaneous Metastatic Mammary Carcinoma Mouse Model by NanoString Technologies, *PLoS One 11*, e0153270.
- [56] Gross, A., Schoendube, J., Zimmermann, S., Steeb, M., Zengerle, R., and Koltay, P. (2015) Technologies for Single-Cell Isolation, *Int J Mol Sci 16*, 16897-16919.
- [57] Espina, V., Wulfkuhle, J. D., Calvert, V. S., VanMeter, A., Zhou, W., Coukos, G., Geho, D. H., Petricoin, E. F., and Liotta, L. A. (2006) Laser-capture microdissection, *Nat Protoc* 1, 586-603.
- [58] Schey, K. L., Anderson, D. M., and Rose, K. L. (2013) Spatially-Directed Protein Identification from Tissue Sections by Top-Down LC-MS/MS with Electron Transfer Dissociation, *Anal Chem*.

- [59] Turiák, L., Shao, C., Meng, L., Khatri, K., Leymarie, N., Wang, Q., Pantazopoulos, H., Leon, D. R., and Zaia, J. (2014) Workflow for combined proteomics and glycomics profiling from histological tissues, *Anal Chem 86*, 9670-9678.
- [60] Van Berkel, G. J., Kertesz, V., Koeplinger, K. A., Vavrek, M., and Kong, A. N. (2008) Liquid microjunction surface sampling probe electrospray mass spectrometry for detection of drugs and metabolites in thin tissue sections, *J Mass Spectrom* 43, 500-508.
- [61] Kertesz, V., and Van Berkel, G. J. (2010) Liquid microjunction surface sampling coupled with high-pressure liquid chromatography-electrospray ionization-mass spectrometry for analysis of drugs and metabolites in whole-body thin tissue sections, *Anal Chem 82*, 5917-5921.
- [62] Sarsby, J., Martin, N. J., Lalor, P. F., Bunch, J., and Cooper, H. J. (2014) Top-down and bottom-up identification of proteins by liquid extraction surface analysis mass spectrometry of healthy and diseased human liver tissue, *J Am Soc Mass Spectrom* 25, 1953-1961.
- [63] Wisztorski, M., Desmons, A., Quanico, J., Fatou, B., Gimeno, J. P., Franck, J., Salzet, M., and Fournier, I. (2016) Spatially-resolved protein surface microsampling from tissue sections using liquid extraction surface analysis, *Proteomics*.
- [64] Harris, G. A., Nicklay, J. J., and Caprioli, R. M. (2013) Localized in situ hydrogelmediated protein digestion and extraction technique for on-tissue analysis, *Anal Chem 85*, 2717-2723.
- [65] Taverna, D., Pollins, A. C., Nanney, L. B., Sindona, G., and Caprioli, R. M. (2015) Histology-guided protein digestion/extraction from FFPE pressure ulcer biopsies, *Exp Dermatol.*
- [66] Nicklay, J. J., Harris, G. A., Schey, K. L., and Caprioli, R. M. (2013) MALDI imaging and in situ identification of integral membrane proteins from rat brain tissue sections, *Anal Chem* 85, 7191-7196.
- [67] Taverna, D., Norris, J. L., and Caprioli, R. M. (2015) Histology-directed microwave assisted enzymatic protein digestion for MALDI MS analysis of mammalian tissue, *Anal Chem 87*, 670-676.
- [68] Scherperel, G., and Reid, G. E. (2007) Emerging methods in proteomics: top-down protein characterization by multistage tandem mass spectrometry, *Analyst 132*, 500-506.
- [69] Zhang, Y., Fonslow, B. R., Shan, B., Baek, M.-C., and Yates, J. R., III. (2013) Protein Analysis by Shotgun/Bottom-up Proteomics, *Chemical Reviews 113*, 2343-2394.
- [70] Schwartz, S. A., Weil, R. J., Johnson, M. D., Toms, S. A., and Caprioli, R. M. (2004) Protein profiling in brain tumors using mass spectrometry: Feasibility of a new technique for the analysis of protein expression, *Clinical Cancer Research 10*, 981-987.
- [71] Balluff, B., Rauser, S., Meding, S., Elsner, M., Schoene, C., Feuchtinger, A., Schuhmacher, C., Novotny, A., Juetting, U., Maccarrone, G., Sarioglu, H., Ueffing, M., Braselmann, H., Zitzelsberger, H., Schmid, R. M., Hoefler, H., Ebert, M. P., and Walch, A. (2011) MALDI Imaging Identifies Prognostic Seven-Protein Signature of Novel Tissue Markers in Intestinal-Type Gastric Cancer, *American Journal of Pathology 179*, 2720-2729.
- [72] Kelleher, N. L. (2004) Top-down proteomics, Anal Chem 76, 197A-203A.
- [73] Liu, Z., and Schey, K. L. (2008) Fragmentation of multiply-charged intact protein ions using MALDI TOF-TOF mass spectrometry, *J Am Soc Mass Spectrom 19*, 231-238.

- [74] Trimpin, S., Inutan, E. D., Herath, T. N., and McEwen, C. N. (2010) Laserspray Ionization, a New Atmospheric Pressure MALDI Method for Producing Highly Charged Gas-phase Ions of Peptides and Proteins Directly from Solid Solutions, *Molecular & Cellular Proteomics 9*, 362-367.
- [75] Inutan, E. D., Richards, A. L., Wager-Miller, J., Mackie, K., McEwen, C. N., and Trimpin, S. (2011) Laserspray ionization, a new method for protein analysis directly from tissue at atmospheric pressure with ultrahigh mass resolution and electron transfer dissociation, *Mol Cell Proteomics 10*, M110.000760.
- [76] Takats, Z., Wiseman, J. M., Gologan, B., and Cooks, R. G. (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization, *Science 306*, 471-473.
- [77] Nemes, P., and Vertes, A. (2007) Laser ablation electrospray ionization for atmospheric pressure, in vivo, and imaging mass spectrometry, *Analytical Chemistry* 79, 8098-8106.
- [78] Robichaud, G., Barry, J. A., Garrard, K. P., and Muddiman, D. C. (2013) Infrared Matrix-Assisted Laser Desorption Electrospray Ionization (IR-MALDESI) Imaging Source Coupled to a FT-ICR Mass Spectrometer, *Journal of the American Society for Mass Spectrometry 24*, 92-100.
- [79] Kiss, A., Smith, D. F., Reschke, B. R., Powell, M. J., and Heeren, R. M. A. (2014) Top-down mass spectrometry imaging of intact proteins by laser ablation ESIFT-ICR MS, *Proteomics* 14, 1283-1289.
- [80] Robichaud, G., Barry, J. A., and Muddiman, D. C. (2014) IR-MALDESI Mass Spectrometry Imaging of Biological Tissue Sections Using Ice as a Matrix, *Journal of the American Society for Mass Spectrometry 25*, 319-328.
- [81] Mascini, N. E., and Heeren, R. M. A. (2012) Protein identification in mass-spectrometry imaging, *Trac-Trends in Analytical Chemistry* 40, 28-37.
- [82] Gessel, M. M., Norris, J. L., and Caprioli, R. M. (2014) MALDI imaging mass spectrometry: Spatial molecular analysis to enable a new age of discovery, *Journal of Proteomics 107*, 71-82.
- [83] Schey, K. L., Anderson, D. M., and Rose, K. L. (2013) Spatially-Directed Protein Identification from Tissue Sections by Top-Down LC-MS/MS with Electron Transfer Dissociation, *Analytical Chemistry* 85, 6767-6774.
- [84] Spraggins, J. M., Rizzo, D. G., Moore, J. L., Rose, K. L., Hammer, N. D., Skaar, E. P., and Caprioli, R. M. (2015) MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to Link Protein Images with Proteomics Data, J Am Soc Mass Spectrom 26, 974-985.
- [85] Spraggins, J. M., Rizzo, D. G., Moore, J. L., Noto, M. J., Skaar, E. P., and Caprioli, R. M. (2016) Next-generation technologies for spatial proteomics: Integrating ultra-high speed MALDI-TOF and high mass resolution MALDI FTICR imaging mass spectrometry for protein analysis, *Proteomics*.
- [86] Makarov, A. (2000) Electrostatic axially harmonic orbital trapping: A highperformance technique of mass analysis, *Analytical Chemistry 72*, 1156-1162.
- [87] Zubarev, R. A., and Makarov, A. (2013) Orbitrap Mass Spectrometry, *Analytical Chemistry 85*, 5288-5296.
- [88] Wang, X., Han, J., Pan, J., and Borchers, C. H. (2014) Comprehensive Imaging of Porcine Adrenal Gland Lipids by MALDI-FTMS Using Quercetin as a Matrix, *Analytical Chemistry 86*, 638-646.

- [89] Minerva, L., Boonen, K., Menschaert, G., Landuyt, B., Baggerman, G., and Arckens, L. (2011) Linking Mass Spectrometric Imaging and Traditional Peptidomics: A Validation in the Obese Mouse Model, *Analytical Chemistry 83*, 7682-7691.
- [90] Schober, Y., Schramm, T., Spengler, B., and Roempp, A. (2011) Protein identification by accurate mass matrix-assisted laser desorption/ionization imaging of tryptic peptides, *Rapid Communications in Mass Spectrometry 25*, 2475-2483.
- [91] Manier, M. L., Spraggins, J. M., Reyzer, M. L., Norris, J. L., and Caprioli, R. M. (2014) A derivatization and validation strategy for determining the spatial localization of endogenous amine metabolites in tissues using MALDI imaging mass spectrometry, *Journal of Mass Spectrometry* 49, 665-673.
- [92] Groseclose, M. R., Andersson, M., Hardesty, W. M., and Caprioli, R. M. (2007) Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry, *Journal of Mass Spectrometry 42*, 254-262.
- [93] Seeley, E. H., Oppenheimer, S. R., Mi, D., Chaurand, P., and Caprioli, R. M. (2008) Enhancement of protein sensitivity for MALDI imaging mass spectrometry after chemical treatment of tissue sections, *Journal of the American Society for Mass Spectrometry 19*, 1069-1077.
- [94] Oppenheimer, S. R., Mi, D. M., Sanders, M. E., and Caprioli, R. M. (2010) Molecular Analysis of Tumor Margins by MALDI Mass Spectrometry in Renal Carcinoma, *Journal of Proteome Research 9*, 2182-2190.
- [95] Jones, E. A., Shyti, R., van Zeijl, R. J., van Heiningen, S. H., Ferrari, M. D., Deelder, A. M., Tolner, E. A., van den Maagdenberg, A. M., and McDonnell, L. A. (2012) Imaging mass spectrometry to visualize biomolecule distributions in mouse brain tissue following hemispheric cortical spreading depression, *J Proteomics 75*, 5027-5035.
- [96] Yang, J., and Caprioli, R. M. (2011) Matrix Sublimation/Recrystallization for Imaging Proteins by Mass Spectrometry at High Spatial Resolution, *Analytical Chemistry 83*, 5728-5734.
- [97] Yang, J., and Caprioli, R. M. (2011) Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution, *Anal Chem 83*, 5728-5734.
- [98] McDonnell, L. A., Walch, A., Stoeckli, M., and Corthals, G. L. (2014) MSiMass list: a public database of identifications for protein MALDI MS imaging, *J Proteome Res 13*, 1138-1142.
- [99] Cornett, D. S., Peschke, M., LaiHing, K., Cheng, P. Y., Willey, K. F., and Duncan, M. A. (1992) Reflectron time-of-flight mass spectrometer for laser photodissociation, *Review of Scientific Instruments 62*, 2177-2186.
- [100] Trim, P. J., Djidja, M.-C., Atkinson, S. J., Oakes, K., Cole, L. M., Anderson, D. M. G., Hart, P. J., Francese, S., and Clench, M. R. (2010) Introduction of a 20 kHz Nd:YVO4 laser into a hybrid quadrupole time-of-flight mass spectrometer for MALDI-MS imaging, *Analytical and Bioanalytical Chemistry 397*, 3409-3419.
- [101] Spraggins, J. M., and Caprioli, R. M. (2011) High-Speed MALDI-TOF Imaging Mass Spectrometry: Rapid Ion Image Acquisition and Considerations for Next Generation Instrumentation, *Journal of the American Society for Mass Spectrometry 22*, 1022-1031.
- [102] Prentice, B. M., Chumbley, C. W., and Caprioli, R. M. (2015) High-speed MALDI MS/MS imaging mass spectrometry using continuous raster sampling, *Journal of Mass Spectrometry 50*, 703-710.

- [103] Jones, E. E., Powers, T. W., Neely, B. A., Cazares, L. H., Troyer, D. A., Parker, A. S., and Drake, R. R. (2014) MALDI imaging mass spectrometry profiling of proteins and lipids in clear cell renal cell carcinoma, *Proteomics 14*, 924-935.
- [104] Ye, H., Mandal, R., Catherman, A., Thomas, P. M., Kelleher, N. L., Ikonomidou, C., and Li, L. (2014) Top-down proteomics with mass spectrometry imaging: a pilot study towards discovery of biomarkers for neurodevelopmental disorders, *PLoS One 9*, e92831.
- [105] Johanson, R. A., Sarau, H. M., Foley, J. J., and Slemmon, J. R. (2000) Calmodulin-binding peptide PEP-19 modulates activation of calmodulin kinase II In situ, *J Neurosci 20*, 2860-2866.
- [106] Berridge, M. J., Bootman, M. D., and Roderick, H. L. (2003) Calcium signalling: dynamics, homeostasis and remodelling, *Nat Rev Mol Cell Biol* 4, 517-529.
- [107] O'Sullivan, B. P., and Freedman, S. D. (2009) Cystic fibrosis, *Lancet 373*, 1891-1904.
- [108] Siripala, A. D., and Welch, M. D. (2007) SnapShot: actin regulators I, *Cell 128*, 626.
- [109] Siripala, A. D., and Welch, M. D. (2007) SnapShot: Actin regulators II, *Cell 128*, 1014-1014.
- [110] von Ballmoos, C., Wiedenmann, A., and Dimroth, P. (2009) Essentials for ATP Synthesis by F1F0 ATP Synthases, In *Annual Review of Biochemistry*, pp 649-672.
- [111] Habersetzer, J., Ziani, W., Larrieu, I., Stines-Chaumeil, C., Giraud, M.-F., Brethes, D., Dautant, A., and Paumard, P. (2013) ATP synthase oligomerization: From the enzyme models to the mitochondrial morphology, *International Journal of Biochemistry & Cell Biology* 45, 99-105.
- [112] Sautiere, P., Tyrou, D., Moschetto, Y., and Biserte, G. (1971) [Primary structure of glycine-rich and arginine-rich histone isolated from chloroleukemic tumor of the rat], *Biochimie 53*, 479-483.
- [113] Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution, *Nature 389*, 251-260.
- [114] Arnaudo, A. M., and Garcia, B. A. (2013) Proteomic characterization of novel histone post-translational modifications, *Epigenetics & Chromatin 6*.
- [115] Siegel, R. L., Miller, K. D., and Jemal, A. (2015) Cancer statistics, 2015, *CA Cancer J Clin 65*, 5-29.
- [116] Wu, Y., Kwon, Y. S., Labib, M., Foran, D. J., and Singer, E. A. (2015) Magnetic Resonance Imaging as a Biomarker for Renal Cell Carcinoma, *Dis Markers 2015*, 648495.
- [117] Hernandez-Yanez, M., Heymach, J. V., and Zurita, A. J. (2012) Circulating biomarkers in advanced renal cell carcinoma: clinical applications, *Curr Oncol Rep 14*, 221-229.
- [118] Krabbe, L.-M., Bagrodia, A., Margulis, V., and Wood, C. G. (2014) Surgical Management of Renal Cell Carcinoma, *Semin intervent Radiol 31*, 027-032.
- [119] Chow, W. H., Dong, L. M., and Devesa, S. S. (2010) Epidemiology and risk factors for kidney cancer, *Nat Rev Urol 7*, 245-257.
- [120] Roesch-Ely, M., Nees, M., Karsai, S., Ruess, A., Bogumil, R., Warnken, U., Schnölzer, M., Dietz, A., Plinkert, P. K., Hofele, C., and Bosch, F. X. (2007) Proteomic analysis reveals successive aberrations in protein expression from healthy mucosa to invasive head and neck cancer, *Oncogene 26*, 54-64.
- [121] Hall, A. K. (1991) Differential expression of thymosin genes in human tumors and in the developing human kidney, *Int J Cancer 48*, 672-677.

- [122] Hardesty, W. M., and Caprioli, R. M. (2008) In situ molecular imaging of proteins in tissues using mass spectrometry, *Anal Bioanal Chem 391*, 899-903.
- [123] Ramakrishnan, S., Ellis, L., and Pili, R. (2013) Histone modifications: implications in renal cell carcinoma, *Epigenomics 5*, 453-462.
- [124] LeDuc, R. D., Taylor, G. K., Kim, Y.-B., Januszyk, T. E., Bynum, L. H., Sola, J. V., Garavelli, J. S., and Kelleher, N. L. (2004) ProSight PTM: an integrated environment for protein identification and characterization by top-down mass spectrometry, *Nucleic acids research 32*, W340-W345.
- [125] Zamdborg, L., LeDuc, R. D., Glowacz, K. J., Kim, Y.-B., Viswanathan, V., Spaulding, I. T., Early, B. P., Bluhm, E. J., Babai, S., and Kelleher, N. L. (2007) ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry, *Nucleic acids research 35*, W701-W706.
- [126] Kılıç, S., Sagitova, D. M., Wolfish, S., Bely, B., Courtot, M., Ciufo, S., Tatusova, T., O'Donovan, C., Chibucos, M. C., Martin, M. J., and Erill, I. (2016) From data repositories to submission portals: rethinking the role of domain-specific databases in CollecTF, *Database (Oxford) 2016*.
- [127] Consortium, U. (2011) Ongoing and future developments at the Universal Protein Resource, *Nucleic Acids Res 39*, D214-219.
- [128] Tran, J. C., Zamdborg, L., Ahlf, D. R., Lee, J. E., Catherman, A. D., Durbin, K. R., Tipton, J. D., Vellaichamy, A., Kellie, J. F., Li, M., Wu, C., Sweet, S. M., Early, B. P., Siuti, N., LeDuc, R. D., Compton, P. D., Thomas, P. M., and Kelleher, N. L. (2011) Mapping intact protein isoforms in discovery mode using top-down proteomics, *Nature 480*, 254-258.
- [129] Fox, C. H., Johnson, F. B., Whiting, J., and Roller, P. P. (1985) Formaldehyde fixation, *J Histochem Cytochem 33*, 845-853.
- [130] Diehl, H. C., Beine, B., Elm, J., Trede, D., Ahrens, M., Eisenacher, M., Marcus, K., Meyer, H. E., and Henkel, C. (2015) The challenge of on-tissue digestion for MALDI MSI- a comparison of different protocols to improve imaging experiments, *Anal Bioanal Chem* 407, 2223-2243.
- [131] Luebker, S. A., Wojtkiewicz, M., and Koepsell, S. A. (2015) Two methods for proteomic analysis of formalin-fixed, paraffin embedded tissue result in differential protein identification, data quality, and cost, *Proteomics 15*, 3744-3753.
- [132] Norrgran, J., Williams, T. L., Woolfitt, A. R., Solano, M. I., Pirkle, J. L., and Barr, J. R. (2009) Optimization of digestion parameters for protein quantification, *Anal Biochem* 393, 48-55.
- [133] Borner, G. H., and Fielding, A. B. (2014) Using in-solution digestion, peptide fractionation, and a Q exactive mass spectrometer to analyze the proteome of clathrin-coated vesicles, *Cold Spring Harb Protoc 2014*, 1192-1195.
- [134] Qiao, J., Kim, J. Y., Wang, Y. Y., Qi, L., Wang, F. Y., and Moon, M. H. (2016) Trypsin immobilization in ordered porous polymer membranes for effective protein digestion, *Anal Chim Acta 906*, 156-164.
- [135] Gustafsson, O. J. R., Briggs, M. T., Condina, M. R., Winderbaum, L. J., Pelzing, M., McColl, S. R., Everest-Dass, A. V., Packer, N. H., and Hoffmann, P. (2015) MALDI imaging mass spectrometry of N-linked glycans on formalin-fixed paraffin-embedded murine kidney, *Analytical and Bioanalytical Chemistry 407*, 2127-2139.

- [136] Vestal, M. L. (2009) Modern MALDI time-of-flight mass spectrometry, *J Mass Spectrom* 44, 303-317.
- [137] Bereman, M. S., Nyadong, L., Fernandez, F. M., and Muddiman, D. C. (2006) Direct high-resolution peptide and protein analysis by desorption electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry, *Rapid communications in mass spectrometry 20*, 3409-3411.
- [138] Schober, Y., Schramm, T., Spengler, B., and Rompp, A. (2011) Protein identification by accurate mass matrix-assisted laser desorption/ionization imaging of tryptic peptides, *Rapid Communications in Mass Spectrometry 25*, 2475-2483.
- [139] Herring, K. D., Oppenheimer, S. R., and Caprioli, R. M. (2007) Direct Tissue Analysis by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry: Application to Kidney Biology, Seminars in Nephrology 27, 597-608.
- [140] Groseclose, M. R., Massion, P. P., Chaurand, P., and Caprioli, R. M. (2008) High-throughput proteomic analysis of formalin-fixed paraffin-embedded tissue microarrays using MALDI imaging mass spectrometry, *Proteomics 8*, 3715-3724.
- [141] Franck, J., Arafah, K., Barnes, A., Wisztorski, M., Salzet, M., and Fournier, I. (2009) Improving tissue preparation for matrix-assisted laser desorption ionization mass spectrometry imaging. Part 1: using microspotting, *Analytical chemistry 81*, 8193-8202.
- [142] Chen, Z., Li, Y., Lin, S., Wei, M., Du, F., and Ruan, G. (2014) Development of continuous microwave-assisted protein digestion with immobilized enzyme, *Biochem Biophys Res Commun* 445, 491-496.
- [143] Stauber, J., MacAleese, L., Franck, J., Claude, E., Snel, M., Kaletas, B. K., Wiel, I. M. V. D., Wisztorski, M., Fournier, I., and Heeren, R. M. A. (2010) On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry, *Journal of the American Society for Mass Spectrometry 21*, 338-347.
- [144] Lemaire, R., Menguellet, S. A., Stauber, J., Marchaudon, V., Lucot, J. P., Collinet, P., Farine, M. O., Vinatier, D., Day, R., Ducoroy, P., Salzet, M., and Fournier, I. (2007) Specific MALDI imaging and profiling for biomarker hunting and validation: fragment of the 11S proteasome activator complex, Reg alpha fragment, is a new potential ovary cancer biomarker, *J Proteome Res 6*, 4127-4134.
- [145] Lagarrigue, M., Becker, M., Lavigne, R., Deininger, S. O., Walch, A., Aubry, F., Suckau, D., and Pineau, C. (2011) Revisiting rat spermatogenesis with MALDI imaging at 20microm resolution, *Mol Cell Proteomics 10*, M110.005991.
- [146] Moore, J. L., Becker, K. W., Nicklay, J. J., Boyd, K. L., Skaar, E. P., and Caprioli, R. M. (2014) Imaging mass spectrometry for assessing temporal proteomics: Analysis of calprotectin in Acinetobacter baumannii pulmonary infection, *Proteomics* 14, 820-828.
- [147] Wang, H. Y. (2007) Laser capture microdissection in comparative proteomic analysis of hepatocellular carcinoma, *Methods Cell Biol 82*, 689-707.
- [148] Kaspar, S., Weier, D., Weschke, W., Mock, H. P., and Matros, A. (2010) Protein analysis of laser capture micro-dissected tissues revealed cell-type specific biological functions in developing barley grains, *Anal Bioanal Chem 398*, 2883-2893.
- [149] Waanders, L. F., Chwalek, K., Monetti, M., Kumar, C., Lammert, E., and Mann, M. (2009) Quantitative proteomic analysis of single pancreatic islets, *Proc Natl Acad Sci* USA 106, 18902-18907.

- [150] Van Berkel, G. J., and Kertesz, V. (2009) Application of a liquid extraction based sealing surface sampling probe for mass spectrometric analysis of dried blood spots and mouse whole-body thin tissue sections, *Anal Chem* 81, 9146-9152.
- [151] Quanico, J., Franck, J., Dauly, C., Strupat, K., Dupuy, J., Day, R., Salzet, M., Fournier, I., and Wisztorski, M. (2013) Development of liquid microjunction extraction strategy for improving protein identification from tissue sections, *J Proteomics* 79, 200-218.
- [152] Taverna, D., Pollins, A. C., Sindona, G., Caprioli, R. M., and Nanney, L. B. (2015) Imaging mass spectrometry for assessing cutaneous wound healing: analysis of pressure ulcers, *J Proteome Res* 14, 986-996.
- [153] Mathews, T. P., Hill, S., Rose, K. L., Ivanova, P. T., Lindsley, C. W., and Brown, H. A. (2015) Human phospholipase D activity transiently regulates pyrimidine biosynthesis in malignant gliomas, *ACS Chem Biol* 10, 1258-1268.
- [154] Taverna, D., Boraldi, F., De Santis, G., Caprioli, R. M., and Quaglino, D. (2015) Histology-directed and imaging mass spectrometry: An emerging technology in ectopic calcification, *Bone 74*, 83-94.
- [155] Rice, R. H., Means, G. E., and Brown, W. D. (1977) Stabilization of bovine trypsin by reductive methylation, *Biochim Biophys Acta* 492, 316-321.
- [156] Carpenter, F. H. (1967) [26] Treatment of trypsin with TPCK, In *Methods in Enzymology*, p 237, Academic Press.
- [157] Hustoft, H. K., Reubsaet, L., Greibrokk, T., Lundanes, E., and Malerod, H. (2011) Critical assessment of accelerating trypsination methods, *J Pharm Biomed Anal 56*, 1069-1078.
- [158] Denisin, A. K., and Pruitt, B. L. (2016) Tuning the Range of Polyacrylamide Gel Stiffness for Mechanobiology Applications, *ACS Appl Mater Interfaces*.
- [159] Blattler, D. P., Garner, F., van Slyke, K., and Bradley, A. (1972) Quantitative electrophoresis in polyacrylamide gels of 2–40%, *Journal of Chromatography A 64*, 147-155.
- [160] Alkhas, A., Hood, B. L., Oliver, K., Teng, P. N., Oliver, J., Mitchell, D., Hamilton, C. A., Maxwell, G. L., and Conrads, T. P. (2011) Standardization of a sample preparation and analytical workflow for proteomics of archival endometrial cancer tissue, J *Proteome Res 10*, 5264-5271.
- [161] Velic, A., Macek, B., and Wagner, C. A. (2010) Toward quantitative proteomics of organ substructures: implications for renal physiology, *Semin Nephrol 30*, 487-499.
- [162] Dhanwani, R., Khan, M., Alam, S. I., Rao, P. V., and Parida, M. (2011) Differential proteome analysis of Chikungunya virus-infected new-born mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis, *Proteomics 11*, 1936-1951.
- [163] Steurer, S., Borkowski, C., Odinga, S., Buchholz, M., Koop, C., Huland, H., Becker, M., Witt, M., Trede, D., Omidi, M., Kraus, O., Bahar, A. S., Seddiqi, A. S., Singer, J. M., Kwiatkowski, M., Trusch, M., Simon, R., Wurlitzer, M., Minner, S., Schlomm, T., Sauter, G., and Schlüter, H. (2013) MALDI mass spectrometric imaging based identification of clinically relevant signals in prostate cancer using large-scale tissue microarrays, *Int J Cancer 133*, 920-928.
- [164] Kondo, T. (2014) Inconvenient truth: cancer biomarker development by using proteomics, *Biochim Biophys Acta 1844*, 861-865.

- [165] Maurya, D. K., Sundaram, C. S., and Bhargava, P. (2010) Proteome profile of whole cerebellum of the mature rat, *Proteomics 10*, 4311-4319.
- [166] Nguyen, T., Mehta, N. R., Conant, K., Kim, K. J., Jones, M., Calabresi, P. A., Melli, G., Hoke, A., Schnaar, R. L., Ming, G. L., Song, H., Keswani, S. C., and Griffin, J. W. (2009) Axonal protective effects of the myelin-associated glycoprotein, *J Neurosci 29*, 630-637.
- [167] Bartzokis, G. (2011) Alzheimer's disease as homeostatic responses to age-related myelin breakdown, *Neurobiol Aging 32*, 1341-1371.
- [168] Xie, F., Zhang, J. C., Fu, H., and Chen, J. (2013) Age-related decline of myelin proteins is highly correlated with activation of astrocytes and microglia in the rat CNS, *Int J Mol Med 32*, 1021-1028.
- [169] Yunker, A. M., Sharp, A. H., Sundarraj, S., Ranganathan, V., Copeland, T. D., and McEnery, M. W. (2003) Immunological characterization of T-type voltage-dependent calcium channel CaV3.1 (alpha 1G) and CaV3.3 (alpha 1I) isoforms reveal differences in their localization, expression, and neural development, *Neuroscience* 117, 321-335.
- [170] Pregno, G., Frola, E., Graziano, S., Patrizi, A., Bussolino, F., Arese, M., and Sassoè-Pognetto, M. (2013) Differential regulation of neurexin at glutamatergic and GABAergic synapses, *Front Cell Neurosci 7*, 35.

Work: (615) 343-3503

Cell: (404) 578-0354

david.g.rizzo@vanderbilt.edu

Permanent Ada	lress	University Address		
320 Old Hickor	y Blvd	Mass Spectrometry Research Center		
Unit 1808		Vanderbilt University		
Nashville, TN 3	7221	PMB 407916		
		Nashville, TN 37240-7916		
Education				
2010-Present	Vanderbilt University, Nashville, TN Doctor of Philosophy in Chemistry Graduate Research Advisor: Dr. R Graduate Thesis: High Mass Accu Proteomics for Improved Protein Identification Experiments GPA: 3.69	y; Anticipated Graduation: April 2016 ichard M. Caprioli racy Coupled to Spatially Directed ns in Imaging Mass Spectrometry		
2005-2009	Georgia Institute of Technology, Atlanta, Bachelor of Science in Chemistry Certificate in Social/Personality Ps Undergraduate Research Advisor: Undergraduate Thesis: Amino Acid Electrospray Ionization Tandem M GPA: 3.23	GA (Research Option) with Honors sychology Dr. Facundo M. Fernández d Profiling by Reactive Desorption fass Spectrometry (DESI-MS/MS)		

Laboratory Experience

2010- Graduate Research Assistant (Vanderbilt University Department of Chemistry)

- Present
- Developed sample preparation and instrumentation methods to perform
- robust protein IMS on a 15T MALDI FTICR
 Optimized on-tissue digestion methods and incubation procedures to ensure sufficient enzymatic digestion as evaluated by MALDI IMS
- Performed localized microextracts for LC-MS/MS protein and peptide identifications to correlate to ions observed in MALDI FTICR IMS experiments

- Thoroughly investigated functional properties of trypsin-filled polyacrylamide hydrogels to improve reproducibility and reduce the diameter for spatially-targeted proteomics experiments
 - Evaluated trypsin concentration, polyacrylamide percentages, and hydrogel diameter based on the number of protein identifications
 - Applied optimized hydrogel technology to rat cerebellum substructures to differentially identify proteins based on hydrogel placement
- 2008- Undergraduate Researcher (Georgia Institute of Technology Department of Chemistry)
 - Developed MS methods for the detection of amino acids by reactive DESI-MS/MS
 - Assessed binding efficiencies of reactive DESI additives, such as crown ethers and β -cyclodextrin

Presentations (Presenting Author Underlined)

- 12) High Mass Accuracy Coupled to Spatially-Directed Proteomics for Improved Protein Identifications in Imaging Mass Spectrometry Experiments (Poster) <u>David G. Rizzo</u>, Jeffrey M. Spraggins, Jessica L. Moore, Kristie L. Rose, Richard M. Caprioli *The NATO Science for Peace and Security Program Advanced Study Institute* (Calabria, Italy, 2016)
- Developing and Assessing Polyacrylamide Hydrogel Technologies for Improved Protein Extraction from Targeted Regions of Biological Tissues (Poster) - <u>David G. Rizzo</u>, Jessica L. Moore, Boone M. Prentice, Jeremy L. Norris, Richard M. Caprioli 63rd ASMS Conference on Mass Spectrometry & Allied Topics (St. Louis, MO, 2015)
- 10) Spatial Extraction and Enrichment of Phosphopeptides from Tissues Using Hydrogels Containing Metal Ion-Functionalized Nanopolymers (Poster) – <u>M. Lisa Manier</u>, Jamie L. Wenke, **David G. Rizzo**, Jeremy L. Norris, Kevin L. Schey, Richard M. Caprioli 63rd ASMS Conference on Mass Spectrometry & Allied Topics (St. Louis, MO, 2015)
- 9) Top-Down and Bottom-Up Analyses of Proteins on the Same Tissue Section Using High Mass Resolution Imaging Mass Spectrometry (Poster) - <u>David G. Rizzo</u>, Jeffrey M. Spraggins, Kristie L. Rose, Richard M. Caprioli 62nd ASMS Conference on Mass Spectrometry & Allied Topics (Baltimore, MD, 2014)
- 8) Imaging and Accurate Mass Identifications of Intact Proteins above 10kDa Using Multiply Charged Ions and High Resolution MS (Poster) <u>David G. Rizzo</u>, Jeffrey M. Spraggins, Kristie L. Rose, Richard M. Caprioli

61st ASMS Conference on Mass Spectrometry & Allied Topics (Minneapolis, MN, 2013)

- 7) Visualizing Biomolecular Modifications in Tissue: Integrating Mass Difference (Δ-m/z) Scanning Algorithms and MALDI FT-ICR Imaging Mass Spectrometry (Oral) - Jeffrey M. Spraggins; Raf Van de Plas; Kerri J. Grove; David G. Rizzo; Richard M. Caprioli 61st ASMS Conference on Mass Spectrometry & Allied Topics (Minneapolis, MN, 2013)
- 6) Integrating the Spatial Domain and Top-Down Proteomics using Mass Accuracy: Enhancing Protein Mapping for Biological Applications (Oral) – Jeffrey M. Spraggins, David G. Rizzo, Jessica L. Moore, Eric P. Skaar, Richard M. Caprioli ASMS Annual Sanibel Conference: Top Down Proteomics (St. Pete Beach, FL, 2013)
- 5) Imaging of Proteins Up to 80kDa in Biological Tissues by MALDI MS (Poster) David

G. Rizzo, Erin H. Seeley, Junhai Yang, Richard M. Caprioli

60th ASMS Conference on Mass Spectrometry & Allied Topics (Vancouver, BC, Canada, 2012)

- 4) Amino Acid Profiling in Biological Mixtures by Reactive Desorption Electrospray Ionization Tandem Mass Spectrometry (DESI MS/MS) (Poster) - <u>David G. Rizzo</u>, Leonard Nyadong, Facundo M. Fernández 42nd Annual Southeast Regional ACS Undergraduate Research Conference (Kennesaw State University, Kennesaw, GA, 2010)
- 3) Amino Acid Profiling in Serum by On-plate Solid Phase Extraction and Multicapillary Desorption Electrospray Ionization Mass Spectrometry (DESI MS) (Poster) – <u>David G.</u> <u>Rizzo</u>, Leonard Nyadong, Facundo M. Fernández Undergraduate Research Opportunities Program (UROP) Spring Symposium (Georgia Institute of Technology, Atlanta, GA, 2009)
- 2) Amino Acid Profiling in Biological Mixtures by Reactive Desorption Electrospray Ionization Tandem Mass Spectrometry (DESI MS/MS) (Poster) - <u>David G. Rizzo</u>, Leonard Nyadong, Facundo M. Fernández Georgia Institute of Technology Chemistry REU Summer Program Symposium - Aquatic Chemical Ecology (Georgia Institute of Technology, Atlanta, GA, 2009)
- Amino Acid Profiling in Biological Mixtures by Reactive Desorption Electrospray Ionization Tandem Mass Spectrometry (DESI MS/MS) (Poster) - <u>David G. Rizzo</u>, Leonard Nyadong, Asiri S. Galhena, Facundo M. Fernández *Herty Medalist Undergraduate Research Symposium* (Morehouse College, Atlanta, GA, 2009)

Publications

- 2015 Jeffrey M. Spraggins, David G. Rizzo, Jessica L. Moore, Kristie L. Rose, Neal D. Hammer, Eric P. Skaar, and Richard M. Caprioli, *Journal of the American Society for Mass Spectrometry*, 2015, 26 (6), 974-85. "MALDI FTICR IMS of Intact Proteins: Using Mass Accuracy to Link Protein Images with Proteomics Data"
- 2016 Jeffrey M. Spraggins, David G. Rizzo, Jessica L. Moore, Michael J. Noto, Eric P. Skaar, and Richard M. Caprioli, *Proteomics*, 2016, "Next-generation Technologies for Spatial Proteomics: Integrating Ultra-high Speed MALDI-TOF and High Mass Resolution MALDI FTICR Imaging Mass Spectrometry for Protein Analysis"
- *In Draft* **David G. Rizzo**, Boone M. Prentice, Jessica L. Moore, Jeremy L. Norris, Richard M. Caprioli. "Advanced Hydrogel Technologies for Enhanced On-Tissue Protein Digestion and Improved Spatial Localization"

Teaching Experience

- 2015 Vanderbilt Internal Fundamental Mass Spectrometry Lecture Series Lecturer
 "Fundamentals of Ion Mobility"
- **2015** Vanderbilt AspirnautTM HS Summer Internship Program Research Mentor
- 2013-2015 Advanced Imaging Mass Spectrometry (AIMS) Laboratory Course Workshop Leader
 - "Instrumentation: Ion Mobility" 2013-2015

- "Matrix Application: Robotic Spraying" 2013-2015
- "Sample Preparation: Washing and Staining" 2013

2010-2011 Vanderbilt University Chemistry Department Teaching Assistant

- Chem 295: Advanced Integrated Laboratory (Senior Capstone Lab) Spring 2011
- Chem 104A: General Chemistry Lab Fall 2010

Awards

2015-2016	Aegis Sciences Fellowship in Chemistry at Vanderbilt University
2009	Herty Medalist Undergraduate Research Symposium Award
2009	Georgia Institute of Technology Chemistry REU Summer Program Aquatic Chemical Ecology
Fall 2008- Spring 2009; Fall 2005-Spring 2007	Georgia Institute of Technology Dean's List

Leadership Experience/Activities

2012-2013	Vanderbilt University Chemistry Department Warren Lecture Search Committee				
2012-2013	Vanderbilt University Chemistry Graduate Student Association				
	• Founding member and analytical chemistry representative				
	• Liaison to the department of chemistry faculty and administration				
2011-Present	American Society for Mass Spectrometry Member				
2009-2011	American Chemical Society Member				
2008-2009	Connect with Tech Host				
	• Hosted high school students interested in coming to Georgia Tech,				
	compus classes and student life				
	• Student life O & A penalist for potential students and parents				
2006 2000	• Student me QCA parents for potential students and parents				
2000-2009	2006: Graak Week Events Committee Spring 2007: Homecoming Events				
	2000; Greek week Evenis Committee, Spring 2007; Homecoming Evenis Committee Chain Eall 2007; Creek Neighborhood Association Chain Eall				
	2008 Spring 2000; Earth Day Planning Committee Spring 2000)				
2007 2000	2008-Spring 2009; Earin Day Planning Commutee, Spring 2009)				
2006-2009	Phi Sigma Pi National Honor Fraternity – Epsilon Theta Chapter (Charter				
	Member, Fall 2006; Initiate Education Officer, Spring 2007-Spring 2008)				
2005-2009	Sigma Nu Fraternity – Gamma Alpha Chapter (Campus Involvement Chair,				
	2006; Kitchen Administrator, Fall 2006-Fall 2007; Honor Council: Member,				
	Spring 2006-Fall 2009; Chair, Fall 2007-Fall 2008; Lieutenant				
	Commander/Vice President, Fall 2007-Fall 2008; Housing Manager, Fall				
	2008-Fall 2009)				

Instrumentation, Skills, and Software

- Tissue Sectioning and Handling
 - Thermo HM325 Microm Microtome
 - Leica CM 3050S, Leica CM 1900, and Thermo NX70 Cryotomes
 - Leica CM 3600 XP Cryomacrotome
 - Zeiss PALM MicroBeam Laser Capture Microdissection (LCM)
 - FFPE tissue deparaffination and antigen retrieval
 - Tissue washing
 - Histological staining
- MALDI Matrix Application Systems
 - HTX TM-Sprayer robotic sprayer
 - Labcyte Portrait 630 acoustic spotter
 - Home-built sublimation apparatus
 - Thin layer chromatography (TLC) hand sprayer apparatus
- MALDI TOF and TOF/TOF MS
 - Bruker autoflex, ultrafleXtreme, rapifleX MALDI Tissuetyper
- MALDI FTICR MS
 - Bruker SolariX 9.4T & 15T
- Quadrupole-ion mobility-oTOF MS
 - Waters Synapt G2 and G2-Si
- HPLC
 - Waters nanoAcquity
 - Waters 2690 HPLC
- Bruker flexControl, flexAnalysis/dataAnalysis, flexImaging, ClinProTools
- Waters MassLynx, Driftscope, HDImaging
- Thermo Xcalibur
- mMass Open Source Mass Spectrometry Tool
- Scaffold Proteomics Viewer Software
- Vulcan Analytical Protalyzer Proteomics Software
- OriginLab Data Analysis and Graphing Software
- ChemDraw
- Microsoft Office