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CHAPTER 1.  MALDI IMAGING MASS SPECTROMETRY: AN 

OVERVIEW 

Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) 

is an enabling tool in biological research. Since the first publication in 1997,
1
 the technology has 

been applied to study the distribution of a wide variety of analyte classes including metabolites, 

lipids, peptides, and proteins in biological samples.
2-4

 In a typical MALDI IMS experiment, a 

frozen or fixed tissue is sectioned and thaw-mounted onto a target. The tissue section is then 

coated with a MALDI matrix usually by sublimation or a spray-based method. The matrix-coated 

tissue sample is analyzed by a serial raster of a laser across the tissue section, acquiring a mass 

spectrum at each defined x, y coordinate. Following data acquisition, the spectral intensities can 

be plotted for multiple ions of interest to provide two-dimensional maps of their molecular 

distribution.  

Current techniques for mapping the distributions of species in a biological tissue include 

immunohistochemistry, chemical staining, and radioactive labeling. In general, these techniques 

rely on an ability to quantify specific targets in the specimen, usually requiring prior knowledge 

of their presence and often tags for their detection. Furthermore, these techniques typically allow 

the investigation of one compound at a time. IMS is superior to these approaches in that it can 

detect hundreds of molecular species at a time and requires no prior knowledge about a specimen 

thereby making it a particularly powerful tool for discovery.
5-6

 In this introductory chapter, I 

provide relevant background and discuss multiple aspects of this technology. In the subsequent 

chapters, my contributions to this field are described. 
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1.1. Ionization Methods 

Before molecules can be analyzed by mass spectrometry (MS), they must be ionized. 

Current approaches are typically categorized into those involving soft and hard ionization. 

Electron ionization (EI) is the most common hard ionization method. In this approach, energetic 

electrons are fired directly at atoms or molecules in the gas phase to produce ions. The highly 

energetic nature of this process typically results in the fragmentation of large molecules. As a 

result, investigations using hard ionization methods are typically limited to the analysis of 

compounds weighing below 600 Da. 

The development of soft ionization techniques such as matrix-assisted laser 

desorption/ionization (MALDI) and electrospray ionization (ESI) for mass spectrometry has 

enabled the study of large molecules weighing up to hundreds of thousands of Daltons.
7
 These 

soft ionization methods are so labeled because the energy is gradually imparted to the molecules.  

As a result, these methods are able to vaporize and ionize large intact molecules without 

extensive fragmentation.
8-9

 In ESI, a high voltage (2.5 – 6.0 kV) is applied between a nozzle and 

a surrounding chamber causing an ejection of a solution as charged droplets. As the solvent 

evaporates, electrostatic forces within the droplets accumulate and cause ion ejection. In this 

process, multiply charged species may also be formed, which has been useful for extending the 

practical mass range of intact molecules that may be detected.   

Figure 1.1 illustrates key aspects of the MALDI process. Central to this soft ionization 

approach is the use of a matrix—typically a small organic molecule that efficiently absorbs laser 

energy. The analyte is co-crystallized with the matrix so that a laser striking this co-crystal 

results in the vaporization of both the matrix and the embedded analytes. In a second role, the 
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matrix molecule also helps to ionize the analyte molecules, although the exact mechanism of 

ionization is still debated.
10

 

 

Figure 1.1. A schematic illustration of the MALDI mechanism. To provide a soft ionization 

process, the matrix and analyte molecules are first co-crystallized. Then, a laser is targeted at the 

co-crystal causing desorption and ionization of the molecules for detection. 

A variety of other ionization methods have also been developed for imaging mass 

spectrometry, mainly secondary ion mass spectrometry (SIMS)
11-12

 and desorption electrospray 

ionization (DESI). SIMS was conceptualized by J. J. Thomson in 1910, and the first experiments 

were conducted by Herzog and Viehbock in 1949.
13

 In SIMS, a focused primary ion beam is 

targeted at the surface of the specimen and the ejected secondary ions that are analyzed using a 

mass spectrometer. SIMS is able to provide high spatial resolution (50-100 nm) but is typically 

limited to the analysis of molecules with m/z smaller than 2000 Da.
12

 

DESI was developed in 2004 by Graham Cooks at Purdue University.
14

 In this technique, 

charged droplets and solvent ions generated by electrospray are directed toward the surface to be 

analyzed. Upon impact, the charged particles solvate and ionize the molecules at the sample 
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surface. The resulting analyte ions travel through the air into a differentially pumped chamber 

that is connected to a mass spectrometer. DESI is limited to a spatial resolution of 35 µm and a 

mass range below m/z 2000.
15

  

1.2. The Current State of MALDI-IMS Technology 

There are three distinct yet interconnected areas of research in MALDI imaging mass 

spectrometry: sample preparation, instrumentation, and data analysis. Sample preparation 

includes the handling of tissue specimens, solvent washing to enhance particular signals, and the 

development of novel preparation methods. Instrumentation research focuses on enhancing 

sensitivity, increasing spatial resolution, and expanding the throughput of IMS instruments. Data 

analysis includes the development of new algorithms to do automatic data evaluation, statistical 

methods for data mining, and recent visualization techniques
16

 for the fusion of imaging mass 

spectrometry results with those from other imaging modalities. 

1.2.1. Sample Preparation 

Sample preparation includes all steps prior to loading the sample in the mass 

spectrometer. These steps include the extraction of a tissue sample from an animal or a patient, 

its sectioning and mounting onto a substrate, any washing steps, and finally the application of the 

matrix. In general, the sample preparation steps must be tailored to the tissue type and the class 

of analytes to be analyzed.
17

 Schwartz et al. investigated a range of sample preparation methods 

and found that the matrix, its crystal size, tissue washing procedures, matrix concentration, 

solvent composition, and concentration of signal-enhancing species such as TFA affected 

MALDI-MS signals.
18

 In addition, the type of target (AnchorChip vs. Ground steel target) also 

influenced the signal.
19
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For the preparation of fresh-frozen tissues for MALDI-IMS, the tissue is mounted on a 

chuck using an optimal cutting temperature compound (OCT) and sectioned inside a cryostat 

into slices between 3-20 µm in thickness as shown in Figure 1.2. The sectioned tissue is thaw-

mounted onto a conductive substrate that is typically indium tin oxide (ITO)-coated glass. The 

tissue section is then washed with solvents to remove unwanted species. If lipids are the analytes 

of interest, washes with buffer solutions are used to remove salts that may cause ion 

suppression.
20

 If proteins are to be analyzed, organic washes are also used to remove lipids from 

the tissue sample.
21

  

After the series of solvent washes, a matrix is applied to the tissue section. Typical 

delivery approaches include automated sprayers, a robotic spotter, or a sublimation device. 

Robotic spotters enable the best extraction of analytes from the tissue sample into the matrix; 

however, they suffer from a lower throughput due to the serial nature of this deposition 

approach. Spray-based methods can provide homogeneous coatings and a higher throughput and 

are an attractive option for most applications. Sublimation provides the ability to deposit matrix 

with a small crystal size that is useful for high-resolution applications.
22

  

 

Figure 1.2. Typical sample preparation process involves cryosectioning of a tissue, solvent 

washing, and matrix application. 
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1.2.2. Instrumentation  

MS instruments consist of a laser source, associated optics, a sample stage, a mass 

analyzer, and a detection scheme. The laser source provides the necessary energy to generate 

ions from a sample. For imaging, the laser beam can be focused and positioned at different 

locations on a sample to investigate spatial variations. This process occurs in a chamber that is 

typically operated at vacuum pressures below 10 mTorr although intermediate and atmospheric 

pressure MALDI have been developed.
23

 

The development of mass analyzers with improved capabilities is an active area of 

research. Time-of-flight (TOF), quadrupole, Fourier transform ion cyclotron resonance (FTICR) 

and Orbitrap are among the most commonly used mass analyzers for MALDI-IMS.
24

 In my 

work, I primarily relied on TOF and FTICR analyzers and the basis for their operations is 

detailed below. 

TOF analyzers rely on the premise that all ions have the same initial kinetic energy as 

they are desorbed from a target. As the ions then accelerate through an electric field, their 

increase in kinetic energy is equivalent to the decrease in the electrical potential as described by 

𝐸𝐾 =
1

2
𝑚𝑣2 = 𝑧𝑒𝑉; 𝑣 =

𝐷

𝑡
         (1.1) 

where EK is kinetic energy, m is mass, v is velocity, z is charge, t is the flight-time of an ion, eV 

is the applied voltage, and D is the distance to the detector. In eq 1.1, as D and eV are constant 

for all ions, the relationship between t and a m/z ratio can be expressed by: 

𝑡 =  𝐷√
𝑚

2𝑧𝑒𝑉
            (1.2) 
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Eq 1.2 shows that t is directly proportional to the square-root of the mass-to-charge ratio. For 

ions of greater mass, a longer time is needed for them to reach the detector. As a result, time 

measurements of the detected signals are used to determine ion masses. In general, the mass 

resolution of TOF mass spectrometers is limited by the differences in energy provided to the 

analyte molecules from the laser pulse which results in ions varying in their initial kinetic 

energies. These differences compromise the relationship between the mass-to-charge ratio for an 

ion and its time-of-flight as expressed in eq 1.2.  

Various methods have been developed to improve the resolution of TOF instruments. 

Delayed extraction introduces a delay of 100 – 300 ns in the application of an electric field post-

ionization. During this time, ions of similar mass with greater kinetic energy travel further away 

from the target than those with less kinetic energy. When the voltage gradient is then introduced 

between the target plate and the ground electrode, the faster ions being further away from the 

target experience a lower electrical potential and therefore gain less kinetic energy by the electric 

field than do other ions. Conversely, ions having lower initial velocities are closer to the target 

when the field is applied, and these ions experience a higher electrical potential and a greater 

gain in kinetic energy. Thus, the result of this pulsed ion extraction process is to narrow the 

kinetic energy distribution of the ions. 

Figure 1.3 shows an approach where the addition of a reflector to the ion path is used to 

further enhance the resolution of TOF instruments. A reflector is a voltage lens that reverses the 

direction of ion travel. Ions of the same m/z ratio that have a greater kinetic energy (shown in 

Figure 1.3 in gray) penetrate deeper into the reflector relative to those that have a lower kinetic 

energy (shown in Figure 1.3 in black). As a result, ions of the same m/z ratio with higher kinetic 

energy have longer path-lengths ensuring that they reach the detector at the same time as the ions 
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of the same m/z ratio with lower kinetic energy. By this process, the reflector sharpens the peak 

for common ions to improve mass resolution at the expense of minimal losses in sensitivity. 

While TOF analyzers provide the highest mass range and are typically less expensive 

than other mass analyzers, they offer limited molecular specificity with a mass resolution on the 

order of 10,000.
25

 More advanced multiple-reflection methods in time-of-flight mass 

spectrometry have been developed recently that enable mass resolution of up to 100,000 that 

show promise for the future.  

The detector at the end of the flight-tube is responsible for measuring the intensity of the 

delivered ions as a function of time. A micro-channel plate (MCP) is the most common type of 

detector in a TOF-MS instrument. The MCP converts incident ions into measured secondary 

electrons with a rapid response time, although the efficiency of this conversion declines as the 

ion velocity decreases. Since the ion velocity varies inversely with the square root of mass for 

common kinetic energies, the detection efficiency for a MCP declines as the mass of the ion 

increases placing limits on the mass of the ion that can be detected.  

 

Figure 1.3. Schematic diagram of a TOF MS with a reflector. The MALDI ion source consists of 

a laser and a sample plate. The reflector improves the mass resolution by increasing the path 
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length for ions (i.e, those shown in gray) with greater kinetic energy. This figure is reproduced 

with permission of the Annual Review of Biochemistry.
26

 

Fourier transform mass spectrometry (FTMS) is the most sensitive method of ion 

detection and also provides the highest mass accuracy for its signals. FTMS was developed by 

Melvin B. Comisarow and Alan G. Marshall in 1974.
27

 In this method, the ions are trapped in an 

ion cyclotron resonance (ICR) cell by the magnetic field from a superconducting magnet that is 

cooled by a combination of liquid helium and nitrogen. The cost of these superconducting 

magnets makes this technique very expensive with only a handful of labs having access to these 

types of instruments.  

The FTMS method of mass analysis relies on the measurement of resonant frequencies of 

the ions as they oscillate in the ICR cell. As the ions enter the ICR cell, they experience a 

Lorentz force (F) that is directly proportional to their charge (z), their velocity (v), and the 

strength of the magnetic field (B) by 

 𝐹 =  𝑧𝑣𝐵          (1.3) 

As the Lorentz force acts in a direction perpendicular to the velocity of the ion and the magnetic 

field, the ions are forced to travel in a circular motion. The frequency of the ion motion (ωc) is 

inversely proportional to its m/z ratio by 

𝑚

𝑧
=

𝐵

2𝜋𝜔𝑐
          (1.4) 

At this stage, no signal can be observed because the radius of motion is too small. To enhance 

this movement, a radio frequency sweep by excitation plates perturb the ions to higher orbits. As 

the ions are excited to higher orbits, they induce a current within the detector plates. The 
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frequency of the induced current is the same as the cyclotron frequency of the ions (ωc), and the 

intensity of this current is proportional to the number of ions. The signal produced in the detector 

plates represents the convolution of all frequencies and their intensities. A Fourier transform is 

used to de-convolute the overall time-domain signal to produce a frequency vs. intensity 

spectrum that is then converted to a mass vs. intensity spectrum. A schematic overview of the 

FTMS operation is shown in Figure 1.4. 

 

Figure 1.4. Schematic overview of the FTMS approach. Excitation plates produce a frequency 

sweep that excites the ions held in a resonance cell to a higher orbit. The ions in the higher orbit 

induce a measured current in the employed detector plates. The time domain signal for this 

current is Fourier transformed into a frequency spectrum that is then converted to a mass 

spectrum. This figure was reproduced with the permission of Dr. Paul Gates, University of 

Bristol. 

1.2.3. Data Analysis 

Data analysis is a critical component of the overall experimental scheme. Large data sets 

ranging from tens to hundreds of gigabytes are normally analyzed in MALDI-IMS. A variety of 

commercial packages are available for these operations. For example, FlexImaging provides a 

convenient format for visualizing image data acquired using Bruker instrumentation. 
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Several pre-processing steps are applied to the spectral data to enhance analysis. These 

include normalization, baseline subtraction, and peak picking. Normalization is used to account 

for local variations in crystal size and laser energies across the sample. Total ion current (TIC) is 

the most common parameter used for normalizing spectra. In this approach, the total area under 

the spectrum is computed and set equal across all spectra.
28

 TIC normalization can improve the 

ability to compare signals among similar cell types; however, it is less useful for normalizing 

data obtained across significantly different cell types.
29

 In those cases, the addition of mass 

exclusion lists corresponding to the dominant peaks from different regions may be required prior 

to TIC normalization to address the issue. 

Another significant development in the area of data analysis is image fusion, where 

image data acquired using distinct imaging modalities are combined.
16

 At the mass spectrometry 

level, data sets acquired using TOF and FTICR platforms can be fused together to combine the 

advantage from these methods. For example, TOF analyzers have a much higher throughput that 

is useful for high spatial resolution imaging. In contrast, FTICR analyzers offer a higher 

molecular specificity but at a lower throughput compared to TOF platforms. Image fusion 

couples the individual strengths of these techniques to allow ion images to be obtained that have 

both high spatial resolution and high chemical specificity. Perhaps more strikingly, images from 

IMS and microscopy can also be fused together to enhance spatial resolution.
16

 Here, the high 

throughput and high spatial resolution of microscopy is combined with the molecular 

information from MALDI-IMS. In the future, the fusion of complementary imaging modalities 

can be expected to aid the visualization of increasingly complex biological and chemical details.   
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1.3. Research Objectives 

MALDI-IMS has been used in a wide-range of applications spanning drug discovery and 

quantitation,
30

 disease diagnosis,
31

 clinical proteomics, microbiology,
32

 food toxicity
33

 and 

fundamental biological research. Diverse analyte classes such as drug molecules, metabolites, 

lipids, and proteins can be detected. Despite its immense analytical capability, IMS is primarily 

used for research applications. Clinical and industrial labs have been slow to adopt IMS due to 

its seemingly complex sample preparation procedures and lack of standardized methods. 

Different washing protocols, a multitude of available matrices, and variations in their use 

represent a huge obstacle for non-expert users.  

An additional challenge for the broader use of MALDI IMS beyond the research 

laboratories is a lack of standardized methods to benchmark instrument performance. For 

example, the laser performance varies over its lifetime as does the cleanliness of the source and 

these factors influence the obtained MS signal. In addition, user-defined parameters such as laser 

energy and focus setting can introduce further variability in the data. The development of a 

standardized target for benchmarking instrument performance prior to obtaining an image would 

be exceedingly useful to reduce variability. Instrumentation specifications could be recorded to 

allow rigorous comparisons of imaging results obtained at different times and by different 

laboratories.  

A goal in this thesis was to develop novel, readily standardized, and high-throughput 

preparation methods for MALDI-IMS that can reduce the burden of sample preparation from the 

end user and minimize experimental and instrumental variability. In this work, methods of 

surface modification, self-assembly, and lithography are used to produce tools for IMS that 

include user-friendly protocols. The developed techniques are intended to expedite the adoption 
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of MALDI IMS for clinical and industrial applications by their ease, reliability, and ability to be 

standardized. My specific objectives are outlined below: 

1. Formulate a practical definition for spatial resolution in MALDI-IMS. Evaluate the 

effects of imaging parameters such as beam size, beam profile, and step size on the 

effective spatial resolution in obtained images. 

2. Fabricate standardized patterned surfaces useful for objectively assessing and comparing 

MS instrument performance, particularly spatial resolution. The pattern would provide a 

defined set of features consisting of molecules that are readily desorbed and ionized by a 

laser source without requiring the presence of a MALDI matrix. These targets should be 

safe and stable over time to allow repeated use. Routine automated computational 

methods should also be developed for objectively assessing the effects of operating 

conditions on an instrument’s spatial resolution prior to obtaining an image of a 

biological sample. 

3. Develop pre-coated targets containing both matrix and an enzyme to provide a more 

rapid, simplified, readily standardized alternative to current sample preparation methods. 

These targets should include both matrix and enzyme to avoid the need for deposition 

steps by the end user. The method should allow proteins within a tissue sample to be 

digested and the resulting peptides be imaged directly from the tissue with minimal 

experimental effort or variability. For analysis, the resulting image data from peptide 

fragments will be linked to LC-MS/MS data to yield identification of the parent proteins 

in the tissue sample based on accurate mass. 
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CHAPTER 2.  DEFINING SPATIAL RESOLUTION IN MALDI 

IMAGING MASS SPECTROMETRY 

Spatial resolution is a critical parameter in imaging mass spectrometry (IMS). Aside from 

determining the overall quality of the resulting image, spatial resolution has significant 

consequences on the acquisition time of an image and its resulting file size. In general, the 

resolution of any image is directly related to the number of pixels in each unit area. Given that 

the pixels in MALDI-IMS are acquired in series, the acquisition time and file size for an image 

are directly proportional to the number of pixels. Thus, an improvement in the resolution of an 

image is often at the expense of longer acquisition times and larger file sizes.  

This chapter develops theoretical foundations for defining spatial resolution in imaging 

mass spectrometry. The presented ideas and concepts are adapted from other surfaces analytical 

techniques such as light and electron microscopy, x-ray imaging, and SIMS. The first part of this 

chapter discusses the knife edge method and its use in measuring beam size for different beam 

profiles. The second part of this chapter focuses on defining a spatial resolution threshold for 

MALDI IMS and calculating the resulting spatial resolution for a combination of step sizes and 

beam sizes. 

2.1. Knife-Edge Method 

Beam size is an important parameter in determining spatial resolution as it defines the 

area responsible for generating a signal from a particular coordinate location in an image. The 

knife-edge method is commonly used in the surface analytical community to measure width of 

an incident beam, particularly for lasers. In this approach, a knife edge is translated through a 
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laser beam and the transmitted laser intensity is measured using a photodiode or other method of 

detection (Figure 2.1). A minimum in intensity is measured when the blade blocks the entire 

laser, while a maximum in intensity is observed when the laser is fully exposed. The laser 

intensity profile measured by the photodiode as a function of translation distance for the knife 

edge enables measurement of the beam width.  

 

Figure 2.1. Measurement principle of the knife-edge method. The blade is translated along the x-

direction, and the transmitted light is measured by a photodiode.  

Figure 2.2 illustrates the application of the knife-edge to various Gaussian beam profiles. 

To consider the effect of beam size, Figure 2.2a shows the profiles for Gaussian beams of three 

different widths. For these cases, Figure 2.2b shows the expected total ion current as a blade is 

translated perpendicular to the direction of the beam. The fractional beam intensity that reaches a 

detector downstream varies from full to no intensity, differing in the required translation distance 

for the blade to accomplish this intensity change. Based on the shape of the profile in Figure 

2.2b, the width of the Gaussian beam can be deduced where smaller beam widths generate 

sharper changes in the total ion current with blade movement. 
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Figure 2.2. Application of the knife-edge method to measure the beam width. (a) Profiles for 

Gaussian beams of different widths  (b) Expected total ion current as measured by a photodiode 

as a blade is translated across Gaussian beams of different widths. 

2.2. Modeling 1-D Beams 

In order to determine the resulting spatial resolution that could be obtained for an incident 

laser, it is useful to first determine the influence of its beam profile. In this section, three model 

profiles for the laser beam are considered: Top-hat, Gaussian, and Lorentzian. The probability 

density, cumulative density, and full-width-at-half-maximum (FWHM) for each of these beam 

profiles are listed in Table 2.1 and displayed in Figure 2.3. The FWHM is a standard measure of 

beam size and its relationship to overall signal intensity depends on the type of distribution. For 

the Top-hat distribution, its FWHM encompasses 100% of the intensity in its cumulative density 

function due to the sharp edges in its profile. For the Gaussian distribution, its FWHM contains 

76% of the total intensity, corresponding to an associated increase in signal from 12% to 88% 

over this region. The Lorentzian distribution has broader tails and a sharper peak in comparison 

to the Gaussian distribution. As a result, only 50% of the total intensity is contained within the 

FWHM. The positions of its FWHM correspond to an associated increase in signal from 25% to 

75%.  
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Table 2-1. Properties of one-dimensional Top-hat, Gaussian, and Lorentzian distributions 

centered at x = 0.  

 Probability Density Function Cumulative Density Function FWHM 

Top-hat 
1

2𝑎
 𝑓𝑜𝑟 − 𝑎 < 𝑥 < 𝑎 

𝑥 + 𝑎

2𝑎
𝑓𝑜𝑟 − 𝑎 < 𝑥 < 𝑎 2 𝑎 

Gaussian 
1

𝜎√2𝜋
 𝑒𝑥𝑝 ( −

𝑥2

2𝜎2) 
1

2
[1 + erf (

𝑥

𝜎√2
)] 2√2𝑙𝑛2 𝜎 

Lorentzian 

1

𝜋𝛾 [1 + (
𝑥
𝛾)

2
]
 1

𝜋
arctan (

𝑥

𝛾
) +

1

2
 2 𝛾 

 

 

Figure 2.3. One-dimensional Top-hat, Gaussian, and Lorentzian distributions along with their 

cumulative density functions. All functions are centered at x = 0. The FWHM is marked for all 

three beam profiles. 
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2.3. Convolution of One-dimensional PSF with a Step Function 

Model functions can be used to describe the loss of spatially separated differences 

between an object and its image as resulting from characteristics of the imaging instrument. The 

choice of model function to describe this effect depends on the optical setup. The images 

obtained for simple objects are calculated here considering various model functions. As a first 

example, image functions can be computed for an object  that is defined by the step function: 

𝑜 = 1   𝑓𝑜𝑟 𝑥 ≥ 𝑏
𝑜 = 0   𝑓𝑜𝑟 𝑥 < 𝑏

         (2.1) 

where o represents the object function that changes its value from 0 to 1 at x = b. For a Top-hat 

beam, the image function can be easily constructed by imagining the Top-hat profile moving 

across this step function as shown in Figure 2.4. The width and the height of the Top-hat beam 

are 2a and  
1

2𝑎
, respectively, where a is an arbitrary constant. As the Top-hat beam approaches 

the edge of the boundary, the overlap between the Top-hat profile and the step function becomes 

positive. The integral of the overlap is equal to the area of the highlighted rectangle in Figure 2.4. 

For a Top-hat beam of normalized intensity, the intensity level across the beam is constant and is 

equal to 
1

2𝑎
. The length of the highlighted rectangle in Figure 2.4 is equal to (x’ – b + a) where x’ 

corresponds to the center position of the Top-hat beam. The resulting image function, i(x’), is 

equal to the area of overlap by: 

𝑖(𝑥′) =  
𝑥′−𝑏+𝑎

2𝑎
   𝑓𝑜𝑟 (𝑏 − 𝑎) ≤  𝑥’ ≤ (𝑏 + 𝑎)     (2.2) 
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Figure 2.4. (a) Convolution of a Top-hat beam of width 2a with a step function as described by 

eq 2.1. The Top-hat beam of width designated by the dashed black lines moves along the x-axis. 

As the beam overlaps the step function, a positive signal is generated for the image. (b) The 

image function increases linearly once overlap begins with the step function, and then increases 

with position as the area of overlap continues to increase. It reaches a maximum value that no 

longer changes when the beam completely overlaps the step function. 

For beam distributions that are not uniform, a point-spread-function can be defined that is 

synonymous with a probability density function for the beam intensity with position. The point-

spread-function for a Gaussian beam is given by eq 2.3: 

𝑃𝑆𝐹(𝑥) =  
1

𝜎√2𝜋
 𝑒

−(
𝑥2

2𝜎2)
         (2.3) 

where σ represents the width of the Gaussian beam. The image intensity at a given location (𝑥′) 

can be computed by integrating the product of the object pattern, o(x), and the PSF in the x- 

dimension: 

𝑖(𝑥′) =  ∫ 𝑜(𝑥)𝑃𝑆𝐹(𝑥 − 𝑥′)𝑑𝑥
+∞

−∞
        (2.4) 

For the step function defined by eq 2.1, since o(x) = 1 for x > b, this integral in eq 2.4 could be 

simplified as: 
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𝑖(𝑥′) = ∫ 𝑃𝑆𝐹(𝑥 − 𝑥′)𝑑𝑥 
∞

𝑏
 = 

1

𝜎√2𝜋
∫ 𝑒

−(
𝑥2

2𝜎2)
𝑑𝑥 

∞

𝑏
        (2.5)  

Using the integral relationship ∫ 𝑒−𝑡2
𝑑𝑡

𝑥

0
=   

√𝜋

2
erf(𝑥), eq 2.5 can be recast as 

𝑖(𝑥′) =
1

2
[[1 +  erf (

𝑥′ −𝑏 

√2𝜎
)]           (2.6) 

For a Lorentzian profile, its PSF is given by 

 𝑃𝑆𝐹(𝑥) =  
1

𝜋𝛾[1+(
𝑥
𝛾

)
2

]

         (2.7) 

Inserting this PSF into eq 2.4 yields the following image function for a Lorentzian beam over a 

step edge: 

𝑖(𝑥′) = ∫ 𝑃𝑆𝐹(𝑥 − 𝑥′)𝑑𝑥 
∞

𝑏
 = 

1

𝜋𝛾
∫

1

[1+(
𝑥−𝑥′

𝛾
)

2
]

𝑑𝑥 
∞

𝑏
    (2.8)  

Using the integral relationship: ∫
𝑑𝑥

1+𝑥2 = 𝑎𝑟𝑐𝑡𝑎𝑛𝑥 + 𝐶, eq 2.8 can be written as: 

𝑖(𝑥′) =
1

𝜋
arctan (

𝑥′−𝑏

𝛾
) +  

1

2
        (2.9) 

For the case in eq 2.9 where b = 0, the image for a Lorentzian beam profile over a step function 

is illustrated by the cumulative density function shown in Figure 2.3. 

2.4. Convolution of Two-dimensional PSF with a Step Function 

In the previous section, derivations of the image functions for three different one-

dimensional PSFs and a step function were developed. In this section, I extend this discussion to 

derive the image functions for various two-dimensional PSFs and a step function.  
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The molecular ion image obtained from an object in MALDI-IMS can be represented as 

the convolution between the pattern for the object and beam profile represented by the point 

spread function (PSF). Mathematically, a convolution can be expressed as 

𝑖(𝑥′, 𝑦′) = 𝑜(𝑥, 𝑦)⨂ 𝑃𝑆𝐹(𝑥 − 𝑥′, 𝑦 − 𝑦′)       (2.10) 

where 𝑖(𝑥′, 𝑦′) represents the image intensity at each specified beam location (𝑥′, 𝑦′), 𝑜(𝑥, 𝑦) 

describes the object pattern in a 2D plane, and 𝑃𝑆𝐹(𝑥 − 𝑥′, 𝑦 − 𝑦′) describes the beam profile in 

a 2D plane with its center point at (𝑥′, 𝑦′). The operator ⨂ denotes the convolution between 

these two functions. As the image intensity at a given location (𝑥′, 𝑦′) can be computed by 

integrating the product of the object pattern and the PSF in the x- and y- dimensions, eq 2.10 can 

be rewritten as 

𝑖(𝑥′, 𝑦′) =  ∫ ∫ 𝑜(𝑥, 𝑦)𝑃𝑆𝐹(𝑥 − 𝑥′, 𝑦 − 𝑦′)𝑑𝑥𝑑𝑦
+∞

−∞

+∞

−∞
       (2.11) 

Eq 2.11 provides a general method for determining an image function from a known PSF and an 

object function. This approach is general and does not assume a specific beam profile or a 

particular object pattern. In the following discussion, eq 2.11 is applied to determine the two-

dimensional image functions for various model beam profiles and a step function.  

Top-hat Beam Profile 

A two-dimensional Top-hat profile represents a circular region with a uniform intensity 

distribution. An illustration of a Top-hat beam is shown in Figure 2.5a. Its PSF is given by: 

𝑃𝑆𝐹(𝑥, 𝑦) =  𝐼    𝑓𝑜𝑟 𝑥2 + 𝑦2  <  𝑎2       (2.12) 
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where a is the beam radius for a normalized PSF, I = 
1

𝜋𝑎2
. The variation in beam intensity in one 

direction can be expressed by a line spread function (LSF) that represents the convolution of the 

PSF with an infinitely narrow line:  

𝐿𝑆𝐹(𝑥) = ∫ ∫ 𝑃𝑆𝐹(𝑥, 𝑦)𝛿(𝑥 − 𝑥′)𝑑𝑥′𝑑𝑦
∞

−∞

∞

−∞
= ∫ 𝑃𝑆𝐹(𝑥, 𝑦)𝑑𝑦

∞

−∞
=

2

𝜋
√𝑎2 − 𝑥2    

(2.13) 

With this LSF, the image function expressing the two-dimensional result for a Top-hat beam 

profile and an object described by a step function in one direction can be calculated as follows: 

𝑖(𝑥’, 𝑦’) = ∫
2

𝜋
√𝑎2 − 𝑥2𝑥

−𝑎
𝑑𝑥        (2.14) 

=
1

𝜋
[𝑥√𝑎2 − 𝑥2 + 𝑎2𝑡𝑎𝑛−1 (

𝑥

√𝑎2−𝑥2
)]

−𝑎

𝑥

     

=  
1

𝜋
[𝑥√𝑎2 − 𝑥2 + 𝑎2𝑡𝑎𝑛−1 (

𝑥

√𝑎2−𝑥2
)]  +  

𝑎2

2
               

=  
1

𝜋
[𝑥√𝑎2 − 𝑥2 + 𝑎2𝑠𝑖𝑛−1 (

𝑥

𝑎
)]  +  

𝑎2

2
               (2.15) 

The functions expressed by eq 2.12, 2.13, and 2.15 are illustrated in Figure 2.5 which displays 

the Top-hat beam profile, its LSF, which is obtained by integrating along one dimension, and its 

image function across a step function which is obtained by integrating the LSF along the second 

dimension. 
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Figure 2.5. (a) A two-dimensional Top-hat beam with radius set to 1 µm and intensity 1/π. (b) 

The Top-hat beam with intensity integrated in the y-direction results in the shown line-spread 

function. (c) The intensity of the Top-hat profile is integrated along x and y generating the image 

function for the convolution of a step function and the Top-hat beam. 

Gaussian Beam Profile 

For a two-dimensional Gaussian-shaped beam, its PSF is represented as 

𝑃𝑆𝐹(𝑥 − 𝑥′, 𝑦 − 𝑦′)   =  
1

𝜎𝑥𝜎𝑦2𝜋
 𝑒

− (
(𝑥−𝑥′)

2

2𝜎𝑥
2  + 

(𝑦−𝑦′)
2

2𝜎𝑦
2 )

      (2.16) 

where x’ and y’ are the center locations of the beam, and σx and σy are characteristic widths of the 

beam in the x- and y- dimensions, respectively. For a circular beam, σx and σy are equal, and for 

an elliptical beam, σx and σy have different values.  

For a 2-D pattern consisting of a sharp edge that extends in the y-direction, the object 

pattern can be described in the orthogonal x-direction by the step function 

𝑜 = 0    𝑓𝑜𝑟 𝑥 < 𝑏
𝑜 = 1    𝑓𝑜𝑟 𝑥 ≥ 𝑏

                (2.17) 

where b represents the boundary where the value for the object changes abruptly from 0 to 1.  

For imaging such an object pattern with a Gaussian beam, the image function can be expressed 

based on eq 2.11 as 
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𝑖(𝑥′, 𝑦′) =  ∫ ∫
1

𝜎22𝜋
 𝑒

− (
(𝑥−𝑥′)

2

2𝜎𝑥
2 + 

(𝑦−𝑦′)
2

2𝜎𝑦
2 )

𝑑𝑥
∞

𝑏

∞

−∞
𝑑𝑦      (2.18) 

Separation of variables yields 

𝑖(𝑥′, 𝑦′) =  
1

𝜎𝑥𝜎𝑦2𝜋
 ∫ 𝑒

−
(𝑥−𝑥′)

2

2𝜎𝑥
2 𝑑𝑥 ∫  𝑒

−
(𝑦−𝑦′)

2

2𝜎𝑦
2∞

−∞

∞

𝑏
𝑑𝑦     (2.19) 

Simplification using the substitutions 𝑔 =  
𝑦− 𝑦’

√2𝜎𝑦
,

𝑑𝑔

𝑑𝑦
=

1

√2𝜎𝑦
, and 𝑑𝑦 = √2𝜎𝑦𝑑𝑔 leads to the 

expression   

𝑖(𝑥′, 𝑦′) =  
1

𝜎𝑥𝜎𝑦2𝜋
 ∫ 𝑒

−
(𝑥−𝑥′)

2

2𝜎𝑥
2 𝑑𝑥 ∫  𝑒−𝑔2∞

−∞

∞

𝑏
√2𝜎𝑦𝑑𝑔     (2.20) 

that using the integration relationship 𝑒𝑟𝑓(𝑥)  =  
2

√𝜋
∫ 𝑒−𝑡2𝑥

0
𝑑𝑡 allows the image function to be 

expressed as 

𝑖(𝑥′, 𝑦′) =  
1

𝜎𝑥𝜎𝑦2𝜋
 ∫ 𝑒

−
(𝑥−𝑥′)

2

2𝜎𝑥
2 𝑑𝑥

∞

𝑏
[

√𝜋𝜎𝑦

√2
erf (𝑔)]

−∞

∞

     (2.21) 

As = 2, 

𝑖(𝑥′, 𝑦′) =  
1

𝜎𝑥√2𝜋
 ∫ 𝑒

−
(𝑥−𝑥′)

2

2𝜎𝑥
2 𝑑𝑥

∞

𝑏
       (2.22) 

which provides an expression for the LSF of the two-dimensional Gaussian profiles as  

𝐿𝑆𝐹 =  
1

𝜎𝑥√2𝜋
𝑒

−
(𝑥−𝑥′)

2

2𝜎𝑥
2          (2.23) 



25 

 

since eq 2.22 includes the integral of the PSF in the y-direction which is equivalent to the LSF. A 

plot of the LSF for a two-dimensional Gaussian beam is shown in Figure 2.6b, which is 

equivalent to the profile for a one-dimensional Gaussian beam.  

To determine an explicit expression for the image function for a two-dimensional 

Gaussian beam over a step function, eq 2.22 is recast using the substitutions of ℎ =  
𝑥− 𝑥’

√2𝜎𝑥
,

𝑑ℎ

𝑑𝑥
=

1

√2𝜎𝑥
, and 𝑑𝑥 = √2𝜎𝑥𝑑ℎ to yield 

 𝑖(𝑥′, 𝑦′) =  
1

𝜎𝑥√2𝜋
 ∫  𝑒−ℎ2∞

𝑏− 𝑥’

√2𝜎𝑥

√2𝜎𝑥𝑑ℎ      (2.24) 

Using the integration relationship 𝑒𝑟𝑓(𝑥) =  
2

√𝜋
∫ 𝑒−𝑥2𝑥

0
𝑑𝑥,  

𝑖(𝑥′, 𝑦′) =  
1

𝜎𝑥√2𝜋
 [

√𝜋𝜎𝑥

√2
erf (ℎ)]𝑏− 𝑥’

√2𝜎𝑥

∞

       (2.25) 

which yields 

𝑖(𝑥′, 𝑦′) =
1

2
(1 + erf (

𝑥’−𝑏 

√2𝜎𝑥
))       (2.26) 

to provide the image function shown in Figure 2.6c for the convolution of a two-dimensional 

Gaussian beam and a step function. The FWHM in this expression is the same as that for one-

dimensional Gaussian function. 
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Figure 2.6. (a) A two-dimensional Gaussian beam with σ set to 1. (b) The Gaussian beam 

integrated along the y-direction generates the shown LSF. (c) The Gaussian beam with intensity 

integrated in both the x and y directions generates an image function for the convolution of the 

Gaussian beam with a step function. 

Lorentzian Beam Profile 

As a two-dimensional Lorentzian profile cannot be integrated in two-dimensions to give a 

finite value, a corresponding image function cannot be obtained for this profile by the approach 

detailed above. In imaging, the Lorentzian function has utility in modelling lens aberration 

and/or particle scattering within a sample. While an evaluation of the effects of a two-

dimensional Lorentzian profile on an image function could be done by excluding intensity from 

the beam below a certain threshold, this analysis was not pursued due to the uncertainty in 

selecting an appropriate threshold.  

2.5. Convolution of Two-dimensional PSF with Custom Objects 

In the previous sections, a simple step function was used as an object to be imaged. For 

an object that is not as easily defined as a step function, it is not always possible to obtain a 

mathematical solution for its image function. In such cases, a numerical method can be used to 

produce the corresponding image function. It is worth noting that analytically derived 

mathematical solutions assume infinitesimally small step sizes in their derivation. As such, they 
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do not include the effects that step size or sampling frequency can have on the spatial resolution 

in the actual image. To include these factors, a numerical model was developed to examine the 

effects of step size and beam size on spatial resolution.  

To illustrate these effects, a considered test object is shown in Figure 2.7. The object is 

the letter F drawn on a 2-D plane with 10 x 10 blocks. Each block is a square of dimensions 100 

µm x 100 µm. The red color represents the intensity of 1, and the blue color represents the 

intensity of 0.  

 

Figure 2.7. A test object consisting of the letter F drawn on 1 mm x 1 mm field. The red color 

represents the intensity of 1, and the blue color represents the intensity of 0.   

Figure 2.8 displays the results from a numerical simulation where the test object in Figure 

2.7 was convoluted with a Gaussian beam (refer to Appendix B for the employed MATLAB 

code) where both σx and σy were set to 5 µm. The images were obtained using step sizes of 5, 10, 

25, and 50 µm. In the figure, the effect of step size on the resolution is evident with the edges of 

the pattern being defined in their width by the increasing step sizes. Further, the fraction of the 
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total pixels that represent regions of full (red) or no (blue) intensity decreases as the step size is 

increased, denoting a loss in spatial resolution.  

 

Figure 2.8. Images of the test object in Figure 2.7 acquired at step sizes of 5, 10, 25, and 50 µm. 

The images were calculated by convoluting the Gaussian beam with the object. The beam width, 

σ, was held fixed at 5 µm. 

In the second set of simulated images, the step size was held constant at 5 µm and σ was 

varied from 1 to 25 µm. Figure 2.9 displays the results where a loss of spatial resolution is 

apparent with increases in σ. In these images, the edges are blurred when σ is greater than the 

step size. For values of σ less than half the step size (not shown), the images were similar in 

appearance. These results illustrate the degree that the spatial resolution in an image is 

influenced by both σ and step size to the extent that one factor may have a dominant effect.  
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Figure 2.9. Images of the test object in Figure 2.7 acquired at σ values of 1, 5, 10, and 25 µm. 

The step size was held fixed at 5 µm. The images were calculated by convoluting the Gaussian 

beam with the object.  

2.6. Defining a Resolution Criterion 

While the blurring induced by step size and beam size is visually apparent in Figures 2.8 

and 2.9, a method is needed for providing a quantitative measurement of spatial resolution. In 

general, the spatial resolution in an image improves as the step size is decreased for a given beam 

diameter. However, diminishing improvements were observed if the step size is decreased to 

values below the beam size. In this section, the effects of beam size and step size on the spatial 

resolution are examined in more detail. Additionally, a criterion for defining spatial resolution in 

a manner that is compatible with the specific operating conditions of MALDI IMS is developed.  
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Before considering the specific case of MALDI-IMS, it is useful to consider how spatial 

resolution is defined for other techniques. In light and electron microscopy, a simple definition of 

spatial resolution is “the minimum spacing at which two features in an image can be recognized 

as distinct and separate.
34

 Typically, a threshold must be set to give a sufficient degree of 

confidence in the identification of two objects as distinct. In optical microscopy, the Rayleigh 

criterion sets a resolution limit as corresponding to the separation between two equal point 

sources such that the maximum from one source falls on the minimum of the other. For this case, 

a dip is apparent in the summed image from these two sources (Figure 2.10). For comparison, the 

Abbe and Sparrow limits represent alternative definitions of the resolution limit where the region 

between the two sources in the summed image contains a small dip (Abbe) or a flat region 

(Sparrow). By these definitions, the Rayleigh limit assigns the spatial resolution with a highest 

value and the Sparrow limit with the lowest value for images of the same inherent spatial 

resolution. In other words, these methods each provide their own specific (albeit arbitrary) metric 

for defining spatial resolution. The limits for these three cases are shown in Figure 2.10. 

 

Figure 2.10. Various conventional resolution limits and their definitions. In the Rayleigh 

criterion, the first minimum of one Airy profile overlaps the maximum of a second Airy profile, 

with the sum of the two profiles showing a distinct dip. In the Abbe limit, a small dip is still 
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discernible between the two maxima. In the Sparrow criterion, the sum of the two Airy patterns 

produces a flat intensity profile. This figure is adapted from an advanced microscopy guide from 

the University of Utah. 

The Rayleigh, Abbe, and Sparrow limits provide useful theoretical constructs for defining 

spatial resolution, but they do not factor in experimental conditions such as noise and sampling 

frequency that complicate their direct use. As an alternative, a modulation transfer function 

(MTF) has been used to establish a resolution criterion.
35

 In this method, contrast is calculated by 

the expression 

 𝐶 =
𝐼𝑚𝑎𝑥−𝐼𝑚𝑖𝑛

𝐼𝑚𝑎𝑥+𝐼𝑚𝑖𝑛
          (2.27) 

where Imin and Imax represent minimum and maximum intensities, respectively. The ratio of the 

contrast in an image relative to the contrast for the object is known as a modulation transfer 

function 

𝑀𝑇𝐹(𝑓)  =  
𝐶𝑖𝑚𝑎𝑔𝑒(𝑓)

𝐶𝑜𝑏𝑗𝑒𝑐𝑡(𝑓)
         (2.22) 

where f represents the spatial frequency. For test patterns, the object is assumed to have perfect 

contrast, that is, Cobject = 1. In eq 2.22, the contrast for an image is dependent on the spatial 

frequency of the pattern. As the spatial frequency increases (i.e., the pattern element are repeated 

more frequently in a define spatial region), the contrast of an image decreases. The MTF 

represents the quality of transfer from the object to the image. A MTF value of 1 implies perfect 

image quality whereas lower values of MTF represents greater losses in spatial information.  

The MTF requires the determination of differences in the maximum and minimum 

intensities. In applying this approach to experimental MALDI-IMS results, I observed that there 
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was a greater degree of variability in the maximum MS signal from regions that should give a 

common full value than from blank regions that should give a common zero value. Due to the 

greater differences from these former regions, a method whereby changes in the minimum 

intensity are used for the evaluation of spatial resolution would be more reliable. Figure 2.11 

shows a developed approach detailed later in the thesis where the resolution criterion on the gap 

between two patterned regions was defined at 10% of the maximum signal. If the signal in the 

‘empty regions’ exceeded more than 10% of the maximum signal, then the resolution limit at that 

gap-size was not satisfied (shown in red in the figure as not resolved). If the signal in the empty 

regions was consistently below the threshold (as shown in green in the figure), those gaps are 

said to be resolved. By this approach, a designation of the achieved spatial resolution was 

straightforward, in contrast with the MTF approach that required an evaluation at each spatial 

frequency. I note that the method illustrated in Figure 2.11 assumes nothing about shape of the 

beam profile. As such, the generality of the approach allows its application to any beam profile 

including those that are irregularly shaped as demonstrated later in the thesis.   
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Figure 2.11. A schematic definition of the resolution threshold. Here, the valleys in the MS 

signal corresponding to the gaps between crystal violet lines must dip below a specified 

threshold set at 10% of the maximum signal for the resolution limit to be satisfied. In contrast, if 

the valleys do not consistently dip below the threshold, the corresponding gaps are considered 

not resolved. Here, gaps of dimension 45 µm and above are resolved. 

For the approach shown in Figure 2.11 for determining spatial resolution, its 

measurement of spatial resolution may be influenced by the width of the lines that sandwich a 

gap of a specific size. To address this issue, signal data were computed for a pattern of lines with 

gap distances varying from 1 to 30 µm and differing in the widths of the lines. Specifically, the 

image signals were computed for patterns of lines where the gaps between the lines were twice, 

equal to, or one half the widths of the lines. In all three cases, both the beam width and the step 

size were maintained at 5 µm. Figure 2.12 summarizes these results showing that the 

measurement of spatial resolution by this approach was unaffected by the width of the lines. 

Specifically, the resolved gap size was similar (19 or 20 µm) in all three cases, where the line 

width for the condition where the resolution threshold was achieved ranged from 10 to 38 µm. 



34 

 

For assessing a threshold where a minimum value is achieved, the gap size is the most important 

factor for this approach.   

 

Figure 2.12. The effect of the ratio of line-width to line-gap on the measurement of spatial 

resolution using a 10% threshold of maximum signal. The ratio between these two features of the 

lines had little influence on the measurement of spatial resolution as the measured spatial 

resolution was 19-20 µm in all three cases.  
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In MALDI-IMS, step size and beam size both impact the spatial resolution in an image as 

illustrated in Figures 2.8 and 2.9. To explore their effects in greater detail, simulated ion images 

were generated for various combinations of step sizes and beam sizes, and the spatial resolutions 

for these conditions were determined. Before conducting these simulations, a test object was 

designed where the gap between parallel lines was gradually increased from 1 µm to 100 µm as 

shown in Figure 2.13. A common structural pattern consisting of five parallel lines for each gap 

size formed a repeating feature in the test object, albeit of different sizes. Among each set of five 

lines, their widths were equal to the spacing between them. A larger gap was used to separate 

adjacent sets of lines to aid in distinguishing one set from another. The first region consisted of 

lines with widths and gaps from 1 to 10 µm in size increasing in 1 µm increments. The second 

region consisted of a similar arrangement with 10 to 50 µm features increasing in 2 µm 

increments. The third region consisted of features 50 to 100 µm in size increasing in 5 µm 

increments. In each of these regions, the employed patttern consisting of five lines (and four 

gaps) allowed multiple tests at each gap size as  way to provide increased confidence in the 

determination of spatial resolution. 
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Figure 2.13. A test object pattern used to assess spatial resolution for various combinations of 

step sizes and beam sizes. The red color represents the intensity of 1 and the blue color 

represents the intensity of 0. The line-widths range from 1 to 100 µm. The pattern contains five 

sets of replicate lines for a given line-width. The spacing between the adjacent lines is equal to 

their line-width. The spacing between the sets of five lines is 25 µm for features ≤ 10 µm, 50 µm 

for features between 10 and 50 µm, and 100 µm for features > 50 µm . 

The object pattern in Figure 2.13 was convoluted with a Gaussian beam of constant σ = 5 

µm using different step sizes. Simulated images were obtained using step sizes of 5, 10, 15, 20, 

25, and 50 µm that are presented below. For the 5 and 10 µm step sizes, the smallest interval that 

was consistently resolved was 20 µm (Figure 2.14) with the 18 µm gap being resolved 

occasionally. That the obtained spatial resolutions were the same for both cases suggests that its 

value is limited by the beam size in these two simulations. For comparison, the beam diameter 

that encloses 90% of the area under the PSF curve is called the 90% signal width. For a beam 

with σ = 5 µm, the 90% signal width is 16.5 µm. This value represents the theoretical limit for 
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the spatial resolution of a Gaussian beam with σ = 5 µm using a 10% threshold assuming an 

infinitely small step size. The results in Figure 2.14 compare favorably with this value. 

 

Figure 2.14. Linescans across the test object in Figure 2.13 for 5 and 10 µm step sizes with a 

constant σ of 5 µm. Spatial resolution is measured to be 20 µm in both cases.  

Above a 10 µm step size, the measured resolution increased above the 20 µm value 

obtained using smaller step sizes. With the 15 and 20 µm step sizes, the line scans showed a 

regular transition from displaying minimum values below the 10% threshold on large gap sizes 

to displaying minimum values close to half intensity on the smaller gap sizes. With the 25 µm 

step size, the signal was less well defined, particularly across the smaller gap sizes (Figure 2.15).  

Despite this difference in appearance, the criterion of a consistent achievement of a signal below 
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the threshold value could be used and the spatial resolution was measured to be 38 µm. As the 

step sizes were increased above 25 µm with the beam width held constant, the measured values 

of the spatial resolution at these conditions approached those of the step size. Table 2-2 

summarizes the spatial resolution results obtained from the simulations using the test object in 

Figure 2.13 for the six step sizes.  

 

Figure 2.15. Linescan across the test object in Figure 2.13 at a 25 µm step size with σ = 5 µm. 

Spatial resolution was measured to be 38 µm. The line scan is less defined that are those in 

Figure 2.14 obtained using a smaller step size. 
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Table 2-2. Spatial resolution obtained using the method outlined in Figure 2.11 and the test 

object in Figure 2.13 as a function of step size for a Gaussian beam of constant width σ = 5 µm, a 

corresponding FWHM of 11.8 µm, and a 90% signal width of 16.5 µm. 

Step Size  

(µm) 

Resolution  

(µm) 

5 20 

10 20 

15 26 

20 30 

25 38 

50 60 

 

In a second set of simulations using the test object in Figure 2.13,  a value of σ of 10 µm 

was employed with step sizes having values of 5, 10, 15, 20, 25, and 50 µm. For these 

conditions, the theoretical minimum resolution for a Gaussian beam with σ = 10 µm would be 

32.9 µm based on its 90% signal width. Figure 2.16 shows the results for selected step sizes. For 

a 5 µm step size, the smallest interval to be resolved was 36 µm, which was close to the expected 

theoretical limit of 32.9 µm. At a 10 m step side, the smallest interval resolved consistently 

increased slightly to 40 m. The shapes of the two line scans appeared similar and well-defined. 

In constrast, at a 50 µm step size, the signal appeared less regular suggesting complete loss of 

spatial information for small feature sizes (Figure 2.17). For regions where the step size was 

larger than the feature size, this irregularity in the signal is to be expected as the sampling is less 

arbitrary and may be periodic with the spacing of the pattern. Despite these issues, the criterion 

of a consistent achievement of a signal below the threshold value still applied. Table 2-3 
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summarizes the spatial resolution results obtained from these simulations using the test object in 

Figure 2.13 for the six step sizes and σ = 10 µm. 

 

Figure 2.16. Simulated scan lines for the test object in Figure 2.13 obtained using step sizes of 5 

and 10 µm and a constant σ of 10 µm. Spatial resolutions were measured to be 36 and 40 µm, 

respectively. 
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Figure 2.17. Simulated scan lines for the test object in Figure 2.13 obtained using a step size of 

50 µm and a σ of 10 µm. Spatial resolutions was measured to be 75 µm. 

Table 2-3. Spatial resolution obtained using the method outlined in Figure 2.11 and the test 

object in Figure 2.13 as a function of step size for a Gaussian beam of width σ = 10 µm, a 

corresponding FWHM of 23.5 µm, and a 90% signal width of 32.9 µm. 

Step Size  

(µm) 

Resolution  

(µm) 

5 36 

10 40 

15 42 

20 44 

25 50 

50 75 

 

In a third set of simulations using the test object in Figure 2.13, a value σ of 20 µm was 

employed, with step sizes having values of 5, 10, 15, 20, 25, and 50,µm. In this case, the 

theoretical minimum resolution is 65.8 µm as calculated by the 90% signal width for a Gaussian 
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beam with σ = 20 µm. Figure 2.18 shows the results for a selection of these step sizes. With step 

sizes ranging from 5 to 20 µm, the smallest gap in the pattern that was consistently resolved was 

70 µm, which is close to the theoretical limit of 65.8 µm based on its 90% signal width. With the 

50 µm step size, the shape of the signal was less defined than with the smaller step sizes as 

observed in the earlier figures and simulations under related conditions. A resolution limit of 100 

µm was obtained with the 50 µm step size. Table 2-4 summarizes the spatial resolution results 

obtained from these simulations for the six step sizes.  
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Figure 2.18. Simulated scan lines for the test object in Figure 2.13 obtained using step sizes of 5, 

10, and 50 µm and a constant σ of 10 µm. Spatial resolutions were measured to be 70, 70 and 

100 µm, respectively. 
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Table 2-4. Spatial resolution obtained using the method outlined in Figure 2.11 and the test 

object in Figure 2.13  as a function of step size for a Gaussian beam of width σ = 20 µm, a 

corresponding FWHM of 47.1 µm, and a 90% signal of 65.8 µm. 

Step Size  

(µm) 

Resolution  

(µm) 

  5   70 

10   70 

15   70 

20   70 

25   75 

50 100 

 

Figure 2.19 summarizes the results of these three sets of simulations examining the 

effects of beam width and step size on spatial resolution. In the figure, the measured spatial 

resolution worsens as the step size or the beam size increases. At the smallest step sizes, the 

obtained measurements of spatial resolution were close to the values expected theoretically for 

these beam widths based on their 90% signal widths. Improvements in spatial resolution in 

Figure 2.19 were modest (or not observed) when the step size was reduced below values roughly 

twice that of .  For MALDI-IMS, this observation implies that the optimal conditions with 

regard to image resolution and data acquisition are those where the step size has a value that is 

roughly two times . Image acquisition with step sizes below these values results in no (or little) 

improvement in actual spatial resolution. This suggests is that the additional instrument time and 

larger data files associated with the use of step sizes smaller than these values provide no (or 

little) benefit to spatial resolution in MALDI-IMS. 
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Figure 2.19. Spatial resolution as a function of step size and beam width ( = 5, 10, and 20 m) 

using simulated results for a Gaussian beam and the test object in Figure 2.13. Spatial resolution 

was determined using a threshold limit of 10% of maximum signal by the method detailed in 

Figure 2.11. Representative linescans are presented in Figures 2.14 to 2.18. 

When the step size is must larger than the 90% beam width, the beam width can 

contribute significantly to the obtained spatial resolution. For example, with a step size of 50 m, 

spatial resolution values of 100 m to 60 m were obtained for Gaussian beams of widths  of 

20 and 5 m, respectively. The general trend is that the spatial resolution depends on both beam 

size and step size, with reductions in both offering improvements when step size is greater than 2 

times . When the step size is greater than twice , the obtained spatial resolution in an image is 

roughly equal to the sum of the step size and twice the beam width  for a Gaussian beam. For 

other beam shapes, a related relationship between spatial resolution, step size, and a 

characteristic beam width likely applies. The measurement of spatial resolution using the 10% 
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threshold provides a convenient approach for characterizing spatial resolution. A different 

threshold can be chosen to generate similar measurement depending on the application.  
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CHAPTER 3.  FABRICATION OF A STANDARD RETICLE SLIDE FOR 

MALDI-IMS 

Chapter 2 sets the theoretical definition for quantifying spatial resolution. Spatial 

resolution in MALDI imaging is a function of laser beam size and raster step size. The extent of 

blurring induced by the imaging device was quantified using the established criterion. In 

particular, two parameters affecting spatial resolution were investigated: the beam characteristics 

and step sizes in a 2D plane. The properties of the sample can also affect the measurement. In 

particular, the sample thickness can determine if the image was acquired in oversampling vs. 

overlapping mode and threshold ablation/ ionization energy can alter the effective beam size 

measurement. Experimental data must be acquired for a well-defined object to evaluate effective 

spatial resolution. In this chapter, I discuss the development of a well-defined pattern that is 

compatible with MALDI-IMS. 

Patterned surfaces as resolution standards for imaging mass spectrometry have been 

developed by other researchers, particularly BAM-L200 by Senoner and Unger.
36

 BAM-L200 

consisted of 142 layers of AlGaAs-InGaAs-GaAs formed by metal organic vapor phase epitaxy 

(MOVPE) on a GaAs wafer substrate. This stack of layers was cross-sectioned and carefully 

polished to provide 23 gratings with graded periods between 2 and 600 nm. This object was 

subsequently used to assess spatial resolution in surface analysis techniques such as secondary 

ion mass spectrometry (SIMS). However, the metallic targets are not appropriate for MALDI 

IMS as the required power for ablation/ ionization is typically higher compared to that needed 

for organic substrates. Additionally, the size scale of 2 and 600 nm is too small for MALDI-IMS. 
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3.1. Design Requirements 

At the outset, a list of design criteria for the materials and processes to be used in the 

construction of a reticle for MALDI-IMS was established. Their selection was based on a 

knowledge of the specific needs for MALDI-IMS and the likely best patterning approaches for 

generating usable features. The listed chemical attributes affect the choice of compound which 

influences the method of patterning that is required. Included: 

a. A compound that can be easily seen using optical microscopy i.e. it is colored 

b. A compound that is stable over time 

c. A compound that is readily desorbed and ionized by a laser without requiring a 

MALDI matrix 

d. A required laser energy for ablation and ionization that is similar to that typically 

used for investigations of biological tissues 

e. A fabrication process that is inexpensive, rapid and amenable to being scaled up 

for high-throughput generation 

3.2. Choice of Compounds for Reticle 

Organic dyes were chosen to be readily visible under a microscope when cast as a thin 

film. A number of dyes were screened to identify those compounds that provided strong mass 

spectrometry signals with little fragmentation. Figures 3.1 and 3.2 provide the mass spectra and 

the chemical structures along with the mass spectra for the various candidate dyes that were 

explored. Figure 3.1 shows spectra for tris(8-hydroxyquinolinato)aluminum (Alq3), laccaic acid 

A, and fast blue B salt. The spectra for these compounds do not show corresponding 

monoisotopic peaks suggesting fragmentation or molecular rearrangement in the gaseous phase. 
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Due to a lack of clean spectra, these compounds were deemed to be unsuitable for the reticle 

development. Figure 3.2 shows the spectra for copper (II) phthalocyanine, crystal violet, and 

rhodamine B. These compounds show clean spectra with peaks corresponding to the intact 

molecules. For copper (II) phthalocyanine, peaks were observed at 575 and 577 Da nominal 

masses corresponding to the 
63

Cu and 
65

Cu
 
isotopes. For both crystal violet and rhodamine B, 

peaks were observed for their [M – Cl
-
]

+
 ions. Additionally, the power needed for ablation and 

ionization was similar to that used in a typical MALDI experiment.   

 

Figure 3.1. Mass spectra for tris(8-hydroxyquinolinato)-aluminum, laccaic acid A, and fast blue 

B salt. Laser power was 94%, 96%, and 89%, respectively. No intact molecules were observed 

suggesting that these molecules fragmented or rearranged in the gas phase. 
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Figure 3.2. Mass spectra for copper (II) phthalocyanine, crystal violet, and rhodamine. For 

copper (II) phthalocyanine, two peaks are observed at nominal masses of 575 and 577 Da 

corresponding to 
63

Cu and 
65

Cu isotopes. For both crystal violet and rhodamine B, [M –Cl
-
]

+
 

peaks are observed at m/z 372 and 443 Da, respectively.  

3.3. Selection of Fabrication techniques 

Many surface patterning approaches have been developed by the Whitesides group and 

others.
37

 These patterning methods can be divided into those done in a top-down or bottom-up 

approach. Conventional top-down patterning methods include photolithography and scanning 
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beam lithography. These methods are encumbered by high capital costs and routine access to a 

clean-room facility, motivating the development of alternative approaches. Unconventional 

approaches for fabrication include both top-down and bottom-up approaches. Molding, 

embossing, and printing are primarily classified as top-down. Scanning probe lithography and 

self-assembly are classified as bottom-up even though they use templates that are typically 

fabricated by the top-down approaches. 

Conventional photolithography techniques were used to form the template. Once the 

template was fabricated, printing and self-assembly methods were used to fabricate many 

patterns because of inexpensive technology and high-throughput. Printing methods can be 

subdivided into additive, subtractive and diffusive printing. Additive printing employs an inked 

PDMS stamp and a bare substrate. Upon contact between the stamp and the substrate, the 

material transfers from the stamp to the substrate provided that the force of adhesion is stronger 

between the substrate and the material. First used to transfer self-assembled monolayers, the 

technique has now been extended to transfer biomolecules, colloidal particles, and polymers. In 

contrast to additive stamping, subtractive printing removes the material from the substrate as the 

stamp is peeled off. In this case, the compound is spin-coated on the substrate, and the stamp is 

brought into contact with the spin-coated surface. The compound adheres to the stamp more 

strongly than the substrate and is therefore peeled off. Lastly, diffusive stamping is similar to 

subtractive stamping in that the material is removed from the substrate. However, instead of 

simply adhering to the stamp, the material diffuses into the bulk of the PDMS stamp. All three 

forms of stamping have limitations requiring specific interactions between the material to be 

transferred and the substrate or the stamp.  
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Self-assembly relies on having molecules assemble in a pre-defined way to build a larger 

structure. When used in two dimensions, a surface can be functionalized with thiols or other 

compounds to impart spatially selective properties. The resulting differences in surface energies 

then direct molecules in a second step to spontaneously assemble in a spatially directed manner. 

3.4. Stamp Fabrication 

Both printing and self-assembly methods require a stamp that provides the template for 

patterning. Conventional photolithography techniques are employed to fabricate a template for 

the stamp. Polydimethylsiloxane (PDMS) is chosen as the material for the stamp because of its 

commercial availability and its widespread applications. The process of stamp fabrication is 

divided into three parts: designing the photomask, photolithography and PDMS molding as 

illustrated in Figure 3.3. 

 

Figure 3.3. Fabrication of the PDMS stamp consists of three steps: designing the photomask, 

photolithography, and PDMS molding.  

3.4.1. Designing the Photomask 

The photomask was designed in freely available CAD software called DraftSight. The 

resulting .dwg file was sent to CAD/Art Services, Inc. The pattern was printed on a transparency 
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sheet using a high-resolution printer (Orbotech LP9008) that can print features down to 10 µm. 

For higher resolution mask, a chrome mask and the laser writer in Vanderbilt Institute of 

Nanoscale Science and Engineering were employed (Laser Writer Heidelberg Instruments 

µPG101).  

Figure 3.4 depicts a couple of different photomasks designs. The first design consisted of 

increasingly spaced lines with separations ranging from 30 µm to 200 µm. The line widths were 

25 µm in the left region, 50 µm in the middle region and 100 µm in the right region of the mask. 

The second design consisted of circles with separations ranging in dimensions from 30 µm to 

200 µm.  

 

Figure 3.4. Photomask developed in a CAD software. (a) Line-gaps ranging from 30 to 200 µm 

(b) Circles with separations ranging from 30 to 200 µm.  

3.4.2. Photolithography  

The photomask was printed as a 2D pattern onto a transparent substrate. Conventional 

photolithographic methods were used to create a corresponding 3D relief pattern from the 
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photomask. Equipment outside of a cleanroom was utilized to save costs. A detailed list of 

equipment and the employed methods are included below. 

Selection of the photoresist 

Various polymeric materials have been developed for use as resists for 

microlithography.
38

 In general, resists function by a change in their solubility due to a radiation-

induced chemical reaction. Such reactions can either increase the solubility of the polymer 

(positive tone) or decrease its solubility (negative tone) in the irradiated regions.  

A wide variety of positive and negative tone resists have been developed by companies 

such as Dow Chemical, Microchem, Shipley, and Micro Resist Technology. SU-8, an epoxy-

based negative photoresist, was selected due to its ability to generate high aspect ratio features 

and stable vertical sidewalls. Depending on the desired aspect ratio and the lateral dimension of 

the relief structure, a specific member of the SU-8 3000 series can be chosen. Based on literature 

review, an aspect ratio between 0.3 and 1.0 for patterned structures is useful for contact printing 

applications.
39

 For example, aspect ratios below 0.3 can result in the recessed regions of the 

stamp coming into contact with the substrate causing poor patterning for feature sizes below 

<100 nm. Aspect ratio above 1.0 may cause the vertical walls to bend causing blurry printing. 

Biswal et al. found that PDMS stamp with features ranging from 10 – 250 µm in lateral 

dimensions with 1.9 µm in thickness accurately transferred pattern by contact printing.
40

 This 

suggests for features ≥ 10 µm aspect ratios between 0.2 – 0.008 are acceptable.  

Since feature sizes in the range of 25 µm to 100 µm are needed for this application, 25 

µm thickness of the photoresist is recommended as that will lead to aspect ratios in the range of 

0.25 to 1. Equipment and process are described in more detail below. 
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Equipment 

1. Spin Coater (MODEL-WS-650MZ-23NPP) 

2. UV source (Dymax Light Curing System, Model 5000 flood) Intensity: 225 mW/cm
2
 

3. Two hot plates  

4. Stopwatch 

5. Tweezers 

6. Pressurized nitrogen and a vacuum source 

Process 

1. Substrate Cleaning 

Clean glass slide or silicon wafer by rinsing with acetone, isopropanol, and water. For 

best results substrates should be cleaned with a piranha etch (using H2SO4 & H2O2) followed 

by a de-ionized water rinse. Substrates may also be cleaned using reactive-ion etching.  

2. Spin Coat SU-8 3025 (Results in ~25 µm thick photoresist coating) 

a. Dispense 1 ml of resist for each (25 mm) of substrate diameter 

b. Spin at 500 rpm for 5-10 sec with acceleration of 100 rpm/sec 

c. Spin at 3000 rpm for 30 sec with acceleration of 300 rpm/sec 

3. Soft Bake for 8 min at 95 °C 

To optimize baking times, remove the wafer from the hot-plate after the 

prescribed time and allow it to cool to room temperature. Then return the wafer to the 

hotplate. If the film ‘wrinkles’, leave the wafer on the hotplate for a few more minutes. 

Repeat the cool-down and heat-up cycle until ‘wrinkles” are no longer seen in the film 

after placing the wafer on the hotplate 
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4. UV Exposure: 25 sec with an absorptive neutral density filter 0.4 

a. Eliminate UV radiation below 350 nm using a long pass filter to obtain vertical 

sidewalls 

b. 170 mJ/cm
2
 of net radiation in needed for 25 µm SU-8 layer on a silicon wafer. 

Detailed procedure for optimizing exposure time is outlined below. 

5. Post Exposure Bake for 3 minutes at 95 °C  

1 min at 65 °C is recommended before post exposure bake for stress reduction 

6. Develop for 5 min in SU-8 developer  

Strong agitation is recommended for high aspect ratio and/or thick film structures  

7. Rinse and Dry:  

a. Spray/ wash the developed image with fresh developer solution for 10 sec.  

b. Then spray/wash with IPA for another 10 sec 

c. Air dry with filtered, pressurized air or nitrogen 

Optimization of Exposure Time 

One of the key parameters in the photo-lithography process is exposure time. The power 

rating on the UV source is 225 mW/cm
2
. The SU-8 recipe suggests 170 mJ/cm

2
 for silicon wafer 

and 255 mJ/cm
2
 for the glass substrate.  Based on these numbers, exposure times of 0.75 sec and 

1.13 sec were calculated for silicon and glass substrates, respectively. For a glass substrate, 

exposure time of 1-2 second did not yield a pattern as most of the features were rinsed off in the 

developer solution. As the exposure time increased to 3 sec, features were observed although 

they were significantly enlarged. Figure 3.5 shows that the enlargement of 50 µm square as the 
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exposure time increased from 3 to 10 seconds. Even at 3 seconds, the size of the feature was 80 

µm. At 5 sec, the height and width increased to over 90 µm. At 10 second exposure time, the 

square measured 116 x 111 µm. This increase was likely due to non-collimated beam 

undercutting the 50 µm feature on the photomask. 

 

Figure 3.5. A 50 µm square feature on the photomask was transferred onto the SU-8 feature. The 

feature size increases significantly as the exposure time increases. The size of the feature after 3 

s, 5 s, and 10 s exposure time are shown above.  

Features ranging from 1-100 µm were exposed to UV radiation to experimentally 

determine the optimal exposure time. The photomask is shown in Figure 3.6a. Figure 3.6b shows 

SU-8 features on the glass substrate after the 3 sec exposure. Features above 50 µm coalesced 

together indicating overexposure whereas features below 20 µm were fully rinsed off suggesting 

poor adhesion. If the exposure time was too short, the SU-8 pillars were dissolved away in the 

developer solution. If the exposure time was too long, not all photoresist was removed from the 

masked regions. Figure 3.7 shows the height of the pillars as measured by optical profilometry. 

The distance between base and top of the pillars was measured to be 28 µm. 
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Figure 3.6. (a) Chrome mask showing features from 100 to 1 µm. (b) SU-8 master on glass 

indicates that features below 30 µm did not adhere to glass. All features have grown significantly 

in size from those on the mask. 

 

Figure 3.7. (a) A top-down view of the SU-8 feature that measures 80 µm in width (50 µm on 

the photomask). (b) The cross section of the pillar along the red line. The height of the pillar is 

28 µm. 

The exposure time of 0.75 s was deemed too short for silicon wafer especially since the 

exposure time on the UV-light curing system can only be controlled in increments of 1 s. An 
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absorptive neutral density filter 0.4 (50 mm square) was used to remove part of the ultraviolet- 

light and thereby increase the exposure time. Figure 3.8 shows that the filter blocked all of the 

radiation below 340 nm. The transmission gradually rose from 0 to 15%, as the wavelength 

increased from 340 nm to 390 nm. Above 400 nm, the transmission fluctuated around 40%. 

Based on the specifications of the UV Curing System, the range of emitted wavelengths is 

between 320 and 390 nm. Thus, the majority of the light was absorbed, and only about 5% of the 

light was transmitted on average in the 340 – 390 nm region. I examined a range of exposure 

times between 10 and 30 s and found that an exposure time of 25 s worked best. Figure 3.9 

shows an SU-8 master with 30, 50, and 60 µm features produced on silicon using a 25 s 

exposure. 

 

Figure 3.8. Transmission spectrum for a 0.4 optical density absorptive neutral density filter. 
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Figure 3.9. SU-8 master consisting of an array of circles ranging in size from 30 to 60 µm in 

diameter. The features were fabricated on a silicon wafer using SU-8 3025 photoresist and UV-

photolithography. 

3.4.3. Soft-lithography  

Creating the photolithographic master can be expensive, particularly in the cleanroom 

environment. For features down to 25 µm in size, photolithography could be performed with few 

resulting patterning imperfections in a laboratory fume hood rather than in a cleanroom. The cost 

of this process can be further amortized by producing several replicas from the original master. 

Polydimethylsiloxane (PDMS) was chosen as the polymer used for creating replicas of the SU-8 

patterns because of its beneficial rheological properties. Because of its viscoelastic properties, 

PDMS behaves as a viscous liquid at long flow times. As it is poured over the SU-8 master, it 

faithfully adapts to the surface of the master. Among the various types of commercial PDMS, 

Sylgard 184 from Dow Corning has been used most commonly for fabrication of stamps with 

feature sizes larger than 500 nm.
41

 

The protocol used for fabricating the PDMS stamp was as follows: 
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1. The SU-8 master was cleaned with isopropyl alcohol and then dried with compressed air 

2. The Sylgard monomer and the cross-linker were mixed in a 10:1 ratio by weight in a 

disposable plastic container. About 25 g of the mixture is recommended to fill a 3.5” 

Petri dish to a thickness of 5 mm. The viscous mixture was thoroughly mixed using a 

metal spatula for 3-5 min to ensure homogeneous distribution of the monomer and the 

crosslinker.  

3. The plastic container was placed in a desiccator for 30 min to remove the trapped bubbles 

from the PDMS solution. After the bubbles had been removed, the pre-polymer solution 

was poured on top of the master.  

4. The Petri dish with the master and the pre-polymer solution was placed in the oven at 80 

°C for 2 h. The polymerization reaction takes 24 h to complete at room temperature.  

5. The stiffness of the resulting stamp is directly related to the temperature of reaction and 

the ratio of the crosslinking agent. At higher temperatures and/or higher ratios of the 

crosslinking agent, a stiffer stamp is produced. 

Figure 3.10 shows a 50 µm pillar on the SU-8 master and the corresponding 50 µm well 

on the PDMS stamp. 
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Figure 3.10. Optical profilometry of an SU-8 master and a resulting PDMS stamp. (a) 

Photoresist master with a 50 µm pillar. (b) A resulting PDMS well produced using soft-

lithography from the SU-8 master. 

The PDMS molding process could be repeated using the stamp as a master to create a 

negative replica of the stamp shown above. To minimize adhesion between the PDMS master 

and newly formed PDMS, the PDMS master was silanized with heptadecafluoro-1,1,2,2-

tetrahydrodecyl-1-trichlorosilane for 1 h under vacuum. The silanization to generate a low 

energy surface on the PDMS master prevents PDMS-PDMS molding. The pre-polymer solution 

was poured onto the stamp and incubated in an oven as described earlier in this section. 

3.5.  Patterning using Printing 

3.5.1. Detachment Lithography 

After fabrication of the stamp, various options were available for generating patterned 

surfaces. Detachment lithography or subtractive stamping provides a method for patterning 

organic molecules on a surface.
42,43

 This process is based on the relative adhesion strengths of 
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the organic dye to be patterned with the PDMS mold and with the substrate. In general, a pattern 

will be produced if the dye adheres to the PDMS stamp more strongly than it does to the 

substrate. The feasibility of this process can be determined by the work of adhesion, W1,2, 

between two materials as described by  

𝑊1,2 =  𝛾1+ 𝛾2 −  𝛾12         (3.1) 

where 𝛾1 and 𝛾2 represent the surface energies of materials 1 and 2, and 𝛾12 is the interfacial 

energy between the two materials. For the case of patterning rubrene on an ITO substrate using a 

PDMS stamp, if 𝑊𝑟𝑢𝑏𝑟𝑒𝑛𝑒,𝑃𝐷𝑀𝑆 >  𝑊𝑟𝑢𝑏𝑟𝑒𝑛𝑒,𝐼𝑇𝑂, then the subtractive stamping should proceed to 

remove rubrene from the ITO substrate in regions contacted by the PDMS stamp.  

Figure 3.11a shows a schematic representation of the subtractive stamping process. In 

brief, ITO-coated glass was spin-coated with the dye of interest. The PDMS stamp was brought 

into contact with the spin-coated surface for 30 s to 1 min. The stamp was gently peeled off to 

leave behind a pattern of the dye on the ITO substrate. Figure 3.11b shows that a pattern of 

rubrene could be successfully obtained by this method. The circles in the image are 50 µm in size 

and form a pattern of separated rubrene features on ITO.  
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Figure 3.11. (a) Process for subtractive stamping. A PDMS stamp is brought into contact with a 

spin-coated surface. As the stamp is peeled off, contacted dye is removed. (b) Pattern of rubrene 

circles produced using subtractive stamping. 

3.5.2. Diffusive Stamping 

A second approach using a PDMS for patterning is shown in Figure 3.12a that is based 

on a diffusive printing process as described by Packard et al
44

. In this method, a dye is spin-

coated on a substrate such as glass. The stamp is brought into contact with the spin-coated 

surface for a period to allow the dye to diffuse into contacting areas of the stamp. When the 

stamp is later removed from the surface, a pattern is left on the glass as shown in Figure 3.12.  

The time needed for patterning by this diffusive printing approach is generally longer 

than that required for adhesive stamping. It depends on the chemical diffusivity of the dye into 

the PDMS which can be a slow process. Figure 3.12b shows some representative data for the 

amount of dye removed as a function of time.
44

 For these literature data, the rate of removal was 

fastest for 3-(4-biphenylyl)-4-phenyl-5-tert-butyl phenyl-1,2,4-triazole (TAZ) and slowest for 

2,2′,2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi). After 60 min, about 250 
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nm of TAZ was removed from a film by contact with PDMS as compared to less than 25 nm of 

TPBi that was removed over the same period. The contact time required for the diffusive 

stamping process depends both on the dye to be patterned and the thickess of its coating. 

 

Figure 3.12. (a) Process for diffusive stamping. (b) Prolonged contact with a PDMS stamp 

results in a greater thickness of material removed for each of the five organic materials studied 

here. Figure reproduced with permission of Langmuir.
44

 

The process of diffusive stamping was employed to pattern Oil Red O (ORO). For this 

process, it was critical to ensure long contact times between the stamp and the substrate to 

remove ORO completely from the contacted regions. Figure 3.13 shows that 30 min was an 

insufficient length of time to remove ORO from the surface as poor contrast was observed 

between the ORO and blank regions. If the stamp was left in contact with the surface for 1 h, 

ORO could be fully removed from the contacted regions. The length of time required to fully 
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remove the ORO was directly related to the thickness of the film, where films measured to be 40 

nm by contact profilometry required 1 h for their complete removal. 

 

Figure 3.13. (a) Optical image of the ORO patterns obtained after a PDMS stamp was peeled 

from the surface. A contact time of 30 min with the PDMS stamp was insufficient to remove 

ORO from the contacted regions; however, a contact time of 1 h completely removed ORO from 

the contacted regions. (b) A comparison of the photomask designed in CAD software along with 

the ORO pattern that was produced using diffusive lithography.  

3.6.  Patterning using Surface Directed Self-assembly 

An alternative approach for fabricating pattern organic films relied on a surface-directed 

self-assembly process for depositing organic molecules onto a functionalized substrate.
41

 The 
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first step in the process was the patterning of a surface with a hydrophobic thiol. The adsorbed 

hydrophobic thiols then directed the deposition of the organic compound to be patterned in a 

second step into discrete areas. The method for surface functionalization is described below: 

 

Surface functionalization 

1. A standard gold-coated glass slide was cut into three square-shaped slides each 

measuring 1” x 1.” 

2. A PDMS stamp was inked with the solution of hexadecanethiol (~2 mM) using a Q-tip. 

The Q-tip was dipped into the solution of hexadecanethiol (HDT). The excess solvent 

was removed by grazing the tip against the rim. The entire surface of PDMS was gently 

coated with HDT. 

3. 10 mL of H2O2 and 5 mL of KOH were poured into a glass Petri dish. Cut gold slides 

were immersed in this solution for 90 s to remove organic impurities from the gold 

surface. After 90 s, the slides were withdrawn from the solution, rinsed with water and 

ethanol, and dried in a stream of clean pressurized air.  

4. After cleaning the gold slide, the stamp was brought into contact with the gold slide for 

30 s to functionalize the gold surface. The edge of the stamp was first put in contact with 

the gold surface, and then the stamp was gradually tilted to bring it into full contact. This 

method minimized the possibility of trapping air bubbles. 

3.6.1. Solvent Casting 

After patterning a gold surface with a hydrophobic thiol by the PDMS stamp, the 

functionalized gold surface was used to direct the self-assembly of compounds in a spatially 

controlled manner. A saturated solution of the compound to be patterned was deposited on top of 
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the functionalized surface. As the solvent evaporated, crystals of the compound selectively 

deposited onto the bare gold regions and avoided deposition on the hydrophobic areas. As a 

result of this selectivity, a patterned coating of the compound was produced. The process of 

patterning α-cyano-4-hydroxycinnamic acid (CHCA) using this method is described below:  

1. CHCA was dissolved at 10 mg/mL in Carnoy solution. Carnoy solution consists of 6:3:1 

ethanol: chloroform: acetic acid 

2. Water was added to this solution in a 1:1 ratio. The addition causes the solution to phase 

separate into organic and aqueous phases.  

3. The aqueous phase was collected using a pipette and deposited onto the functionalized 

surface. As the solvent evaporated, the matrix crystallized and deposited in the 

hydrophilic regions. The solvent evaporation took about 30 min.  

 

The directed self-assembly process is depicted in Figure 3.14. In the middle panel, the 

green areas represent gold regions that were stamped with the hydrophobic thiol, leaving the 

unstamped yellow areas more hydrophilic. A resulting pattern of CHCA produced by this 

process is shown in Figure 3.15.   

 

Figure 3.14. Directed self-assembly method for patterning CHCA. PDMS stamp inked with 

HDT was brought into contact with the cleaned gold surface. CHCA solution was deposited onto 



69 

 

the functionalized gold surface where CHCA molecules selectively deposited into the patterned 

hydrophilic regions.  

 

Figure 3.15. A patterned array of CHCA produced using self-assembly. Each circle of CHCA is 

about 200 µm in diameter, and the center-to-center distance is 300 µm. 

Sinapinic acid was also patterned using this selective deposition process. The density of 

crystals could be easily controlled by varying the time of deposition. The sinapinic acid solution 

was pipetted onto the functionalized gold surface, and the solution was left on the slide for a 

specified period ranging from 1 to 11 min. As shown in Figure 3.16, the density of sinapinic acid 

increased as the time of deposition increased.  

 

Figure 3.16. A microarray of sinapinic acid. The density of sinapinic acid crystal increased with 

the time of deposition. 
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3.6.2. Spin Coating  

Selective deposition requires specific interactions between the substrate, the solvent and 

the solute. The process works well for relatively non-polar compounds such as sinapinic acid and 

CHCA. However, this method does not function for polar compounds. For example, crystal 

violet deposited in bulk on a functionalized gold and was not affected by the thiol pattern. 

Further testing involved forming a liquid layer of dye solution on the substrate and then quickly 

tilting the slide to remove the bulk liquid. Only small amounts of liquid would remain on the 

surface, and these remnants were confined to regions of bare gold. This technique was simple but 

had low reproducibility and could not form complete patterns on a substrate. Deposition was 

much more successful when carried out in a spin coater. The centrifugal force generated by the 

spin coater removed the bulk dye solution. The general spin coating procedure was as follows: 

the sample was spun at 600 rpm for 10 seconds during which the crystal violet solution can be 

deposited vertically. Typically, 300 µL of the solution was deposited. Most of the deposited 

solution was immediately removed from the substrate surface leaving behind a thin liquid film. 

Next, the sample was accelerated to 2000 RPM, and this rate of rotation was maintained for 2 

minutes. The high rotation rate reduced the thickness of the liquid film to a level that pulled 

away from hydrophobic regions to form a pattern.  

Water, acetonitrile, acetone, ethanol, and various combinations of these solvents were 

attempted. Water was found to be too polar; droplets of CV in water quickly dewetted the 

functionalized gold surface leaving no pattern behind. It is hypothesized that the lower the 

surface tension of the solvent, the slower it de-wets and greater the likelihood of leaving behind 

dye in designed patterns. Ethanol provided the appropriate solvent for the formation of a pattern. 

The solution was sonicated for 10 minutes and filtered with 0.45 µm mesh. A concentration 
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range between 2 – 20 mg/mL was attempted; 2 mg/mL generated a very thin pattern of CV 

whereas 20 mg/mL resulted in random blotches on the pattern. Solution with concentration of 10 

mg/mL provided a good compromise between the amount of material deposited and ‘cleanliness’ 

of the pattern.  

3.7. Characterization of the Reticle 

The reticle was characterized using optical microscopy, contact profilometry and atomic 

force microscopy. Figure 3.17a shows a representative optical image for a reticle prepared in a 

traditional wet chemical laboratory environment.  The image shows a series of parallel lines of 

crystal violet (dark regions) separated by changing distances between them. The crystal violet 

lines ranged in thickness from 300 to 800 nm, as measured using contact profilometry and 

atomic force microscopy. In general, the narrower lines were thinner than the wider lines. In 

comparing the reticle pattern with that of our photomask, the measured widths of the crystal 

violet lines and the gaps between them were both ~2% smaller than those in the mask. This 

difference was attributed to shrinkage of the PDMS stamp as no size differences were found 

between the features in the photomask pattern and those in the SU-8 master.  Figure 3.17b shows 

a magnified view for one of the 100 µm wide crystal violet lines from the reticle. In this image, 

both sides of the crystal violet line show an edge sharpness of better than 1 m which was 

routinely achieved across all lines by the fabrication method.  

MS signals from the crystal violet pattern were readily obtained by direct laser ablation 

without the use of the matrix. Figure 3.17c displays a representative mass spectrum from the 

reticle, showing a monoisotopic peak at m/z 372.5 that corresponds to crystal violet (M) after the 

loss of chlorine ion, [M –Cl]
+
. The ease of generating of the peak at m/z 372.5 and measuring its 
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intensity provided the basis for mapping variations in its locational intensity from the reticle and 

using these variations for determining spatial resolution. 

 

Figure 3.17. (a) Optical microscopy image of the reticle. The widths of the crystal violet lines 

are 25 µm, 50 µm, and 100 µm from left to right. The gaps between the crystal violet lines range 

from 30 µm to 200 µm. (b) Magnified view of a 100 µm crystal violet line. (c) Mass spectrum 

obtained from the reticle showing a monoisotopic peak at m/z 372.5 Da that represents crystal 

violet after the loss of its chlorine ion. Direct laser ablation was sufficient to detect this peak for 

crystal violet without the use of a matrix. 

The reticle was also characterized using contact profilometry and atomic force 

microscopy (AFM). Figure 3.18 shows the results acquired using Stylus contact profilometer in 

VINSE. A diamond tip was translated across the reticle and differences in height were measured. 

The results indicate that the height of the features was generally between 300 – 600 nm except 

for some unusually thick lines towards the left that were between 1000-1600 nm. Additionally, 
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the wider lines towards the right show ‘M’ shaped profile; this profile is attributed to faster rates 

of evaporation along the edges.
45

 Figure 3.19 shows AFM image at the edge of 100 µm crystal 

violet line. The AFM image shows that several large crystals with heights up to 280 nm.  

 

Figure 3.18. A contact profilometery scan across the crystal violet pattern measuring the height 

of the features. 

 

Figure 3.19. An AFM image acquired at the edge of a crystal violet line. Several peaks up to 280 

nm in height are observed in the crystal violet region. 
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CHAPTER 4.  A STANDARD RETICLE SLIDE TO OBJECTIVELY 

EVALUATE SPATIAL RESOLUTION AND INSTRUMENT 

PERFORMANCE IN IMAGING MASS SPECTROMETRY 

4.1. Overview 

Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) 

is an enabling tool for medical and biological research. Since the first publication in 1997,
1
 the 

technology has been applied to study the distribution of wide variety of analyte classes including 

metabolites, lipids, peptides, and proteins in biological samples.
2-4

 In a typical MALDI IMS 

experiment, a frozen or fixed tissue is sectioned and thaw-mounted onto a target. The resulting 

tissue section is coated with a MALDI matrix usually by sublimation or spray-based methods. 

The matrix-coated tissue sample is then analyzed by a serial raster of the laser across the tissue 

section, acquiring a mass spectrum at each defined x, y coordinate. Following the acquisition, the 

spectral ion intensity is plotted for ions of interest providing two-dimensional maps of specific 

molecular distributions.  

Instrumental conditions in IMS experiments offer tradeoffs in various aspects of 

performance. For example, higher spatial resolution IMS generates a greater number of pixels in 

a given area compared to the same area sampled at a lower spatial resolution. Consequently, 

higher spatial resolution images allow the visualization of fine structural detail; however, the file 

size for such images will be greater and their acquisition time will be longer. Depending on the 

experimental task or question to be answered, instrument parameters are typically selected to 

achieve particular image characteristics. Beam optics, laser energy, the number of laser shots, 
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and stage step size can be independently tuned for each experiment. For example, to achieve 

high spatial resolution, Gaussian laser beams have successfully been focused to small diameters, 

whereas smartbeam
TM

 (Bruker Daltonics) lasers have been developed to yield high sensitivity.
46

 

Spatial resolution is also limited by sample stage positioning, with most commercial instruments 

offering 1-10 µm stage accuracy. As vendors and investigators actively refine instrumentation, 

objective methods are needed to test for and correct hardware inaccuracies (e.g., inaccuracies in 

data acquisition and stage positioning) that can diminish spatial resolution. Monitoring the 

consequences of instrumental parameters and catching potential errors affecting spatial 

resolution is crucial to maintaining high-quality IMS data. 

Several investigators have reported methods for evaluating spatial resolution in secondary 

ion mass spectrometry (SIMS). Senoner et al.
47

 fabricated a multilayer structure comprising 

alternating layers of GaAs, AlGaAs, and InGaAs using metal organic chemical vapor deposition. 

They used this target in cross-section to evaluate spatial resolution in SIMS across 16 

laboratories in 10 countries.
48

 They scanned the beam across a narrow strip (0.5-50 nm) of 

Al0.65Ga0.35As and used the intensity profile to estimate the beam width. They also imaged a 

series of parallel lines to estimate spatial resolution using the Rayleigh criterion.
34

 Passarelli and 

Ewing fabricated a reticle with gratings of liposomes and PEG that they used to measure spatial 

resolution in TOF-SIMS and MALDI-TOF, obtaining FWHM values of ~2-4 µm and ~184 µm, 

respectively.
35

 The high value of FWHM observed in the case of MALDI-TOF was because of 

subsequent steps required for sample preparation, including the use of a solvent-based matrix 

spray that caused delocalization of the liposomes and PEG. This confounding factor prevented 

the intrinsic measurement of MALDI instrument spatial resolution. Fagerer et al.
49

 placed a 

tungsten grid on top of matrix coatings to evaluate spatial resolution in a MALDI-TOF 
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instrument with continuous stage motion. While the use of a grid as a physical mask with defined 

openings provided a simple approach, the laser beam was distorted upon transmission through 

the grid. 

In the present work, we developed a method to measure the spatial resolution of a given 

instrumental setup of an imaging mass spectrometer. Our approach employs a device that 

consists of a crystal violet pattern on a conductive substrate; crystal violet was selected because 

it readily desorbs and ionizes upon laser ablation. Imaging this crystal violet pattern enables a 

direct measurement of beam size and spatial resolution without the delocalizing effect of matrix 

application or the distorting effect of a masking grid as encountered for other methods. The 

developed reticle provides a reliable standard for measuring and comparing spatial resolution 

across different MALDI imaging platforms. With the reticle, the measurements of spatial 

resolution could be automated. We also present results using this approach to evaluate the effects 

of the laser energy and focus setting on spatial resolution. The reticle described here includes 

patterned features with dimensions ranging from 30 to 200 µm. The lithographic techniques used 

in the fabrication of the reticle can be scaled down to smaller dimensions when needed for 

evaluating spatial resolutions below 30 µm.
50

  

4.2. Methods 

Mass Spectrometry Instrumentation. The reticle was used to assess the performance of 

three mass spectrometers: a Bruker UltrafleXtreme MALDI-TOF/TOF (Billerica, MA), a Bruker 

Rapiflex MALDI Tissuetyper (Billerica, MA), and a SimulTOF 300 Tandem MALDI-TOF/TOF 

(SimulTOF Systems, Sudbury, MA). The Bruker Ultraflextreme was equipped with a 

smartbeam
TM

 and operated in positive ion reflector mode at 20 kV. A laser step size of 5 µm was 

used in both the x- and y-directions. The laser focus setting was set to different settings including 
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‘ultra’, ‘medium’, and ‘small’. Laser power was individually adjusted for each focus setting to 

enable comparable ion current for crystal violet. Each pixel represents signal accumulated from 

100 laser shots. 

The Rapiflex was also equipped with smartbeam
TM

 laser and operated in positive ion 

reflector mode at 20 kV. A laser step size of 5 µm was used in the x-direction; a step size of 30 

to 70 µm was utilized in the y-direction as stated in the text. The laser focus setting was set to 

‘single’, ‘mod 5’, and ‘mod 5 defocus’.  The laser power was individually adjusted for each 

focus setting. Each pixel represents signal accumulated from 50 laser shots. 

The SimulTOF 300 Tandem was operated in positive ion reflector mode at 8 kV. This 

system is equipped with a 349 nm, diode-pumped, frequency-tripled Nd:YLF laser (Spectra-

Physics, Santa Clara, CA) capable of laser repetition rates up to 5 kHz. The laser energy was 

controlled by adjusting the current applied to the diode and was maintained at 14.5 µJ/pulse for 

all experiments (as measured prior to attenuation, which was kept constant). The instrument 

utilizes continuous laser raster sampling. All images were acquired under instrument conditions 

set for 50 µm spatial resolution (50 µm spatial resolution in the x-direction as defined by the 

laser repetition rate, stage speed, and number of hardware averages, and 50 µm spatial resolution 

in the y-direction as defined by the motor step size between continuously rastered rows). We 

systematically altered laser repetition rate, stage speed, and number of hardware averages as 

noted in the text to maintain a lateral spatial resolution of 50 µm. 

 

Data Analysis. Image data for edge spread and point-spread methods were acquired on 

the UltrafleXtreme using Bruker FlexImaging 3.0 and were imported into MATLAB using a 
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conversion tool created within this lab. Subsequent numerical analysis was conducted in 

MATLAB; the relevant code is provided in Supporting Information (see SI-1).  The curve fitting 

toolbox was used to model experimental results, and 18-20 rows of data were averaged together 

to determine beam sizes. Data for determining spatial resolution using line gratings were 

acquired on the Rapiflex using Bruker FlexImaging 5.0. The data were converted into Analyze 

7.5 format, and further analysis was conducted in MATLAB (see Supporting Information, SI-2). 

For line-scan determination of spatial resolution, 10 rows were averaged together. Image data 

from the reticle acquired on the SimulTOF instrument were analyzed using the SimulTOF 

Viewer. 

4.3.  Results and Discussion 

4.3.1. Laser Alignment and Accuracy 

The circular feature of CHCA can be used to test the laser alignment. A laser pulse is 

directed at the center of 200 µm CHCA crystal in the instrument software. After 1000 laser shots 

a 60 µm crater is created. As shown in Figure 4.1 below, the ablation crater is at an offset of 25 

µm from the center of the CHCA circle indicating that the laser was not aligned accurately with 

the stage. An array of features with various sizes can be used to verify the laser accuracy. Laser 

accuracy is particularly important for histology-directed analysis where the molecular profiles 

are needed from localized regions on the tissue.  
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Figure 4.1. Evaluation of laser alignment using a patterned array of CHCA. The laser was 

targeted at the center of the spot. The ablation crater was at an offset of 25 µm from the center of 

the spot suggesting misalignment of the laser. 

4.3.2. Qualitative Evaluation of Spatial Resolution 

The synthetic pattern produced by lithography techniques was used to evaluate the spatial 

resolution of the MALDI source of the Bruker Ultraflextreme TOF instrument. In the designed 

pattern shown in Figure 4.2, the white material represents organic compounds and the black 

represents empty regions. The linewidth increases from 30 µm to 200 µm. The pattern was 

imaged with a 25 µm raster step size. From the “zoomed in” ion images at the bottom of the 

figure, it can be concluded that this imaging setup can adequately resolve lines of 80 µm, but is 

not able to resolve line widths of 40 µm.  
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Figure 4.2. Qualitative evaluation of spatial resolution using an oil red O pattern with 

separations ranging from 30 to 200 µm. Above 80 µm separation, the lines are clearly resolved; 

however, 40 µm separation is not resolved.  

4.3.3. Measurement of Gaussian Beam Size by Imaging a Sharp Edge 

A routine method for measuring the beam size of an irradiated spot on a target within an 

IMS instrument would be useful for characterizing instrument performance and assessing the 

effects of alterations made during instrument development on instrument resolution. The ‘knife 

edge’ method is a common approach for characterizing beam size, where the beam intensity is 

measured as a sharp edge is translated perpendicular to its path.
51-52

  An analogous approach can 

be used where the beam is translated across a sharp edge of a patterned feature, and the obtained 

line profile is evaluated.  The steepness of the edge profile can then be used to characterize the 

sharpness of the image.
51

 This measurement of signal intensity across the sharp edge of a pattern 

is attractive because it is simple, it characterizes the beam size at the site of interest, and it can 

yield similar profiles even for very different beam shapes.  
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With a suitable target, the edge spread profile approach can be adapted for MALDI IMS 

and provides a measurement of the beam size responsible for generating detectable signals. This 

measured ‘effective’ beam size would be the region of the laser beam with intensity above the 

threshold needed for ablating material and generating ionized molecular species for detection.  

The actual size of the laser beam on the target would be larger than that obtained by this 

approach; however, as this measurement only reflects the region of the incident beam that 

generates MS signal, it would provide more suitable information for assessing spatial resolution 

for MALDI-IMS.  

We employed this edge spread profile approach to characterize the spot sizes provided by 

a Bruker Ultraflextreme mass spectrometer under three different focus settings: ultra, medium, 

and small. At each setting, the power was set just above the ionization threshold to prevent 

excessive ablation of crystal violet from the reticle during the scan. In the experiment, the laser 

beam was scanned toward the edge of a crystal violet feature on the reticle in 5 µm steps as 

illustrated in Figure 4.3a. The crystal violet pattern consisted of parallel lines, each having edge 

resolutions of better than 1 µm as estimated from microscopy images at high magnification 

(Figure 3.17b). Figure 4.3b-d shows the signal intensity for crystal violet at these three focus 

settings as the position of the crystal violet edge was translated across the incident laser.  

Typically, multiple adjacent non-overlapping scan lines were combined for analysis. In Figure 

4.3b-d, all three scans exhibited a transition from no to full signal as the edge moved across the 

beam. At each setting, we separated the scans of signal intensity with stage position into three 

regions: a background signal from the bare substrate, a rising signal across the edge, and a 

maximum signal from the crystal violet area. We fit horizontal lines to the background and 

maximum signals and applied a polynomial fit to the rising signal between these values. To 
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compare these profiles, we determined values of 12-88%, the lateral distance over which the 

signal intensity changed from 12 to 88% of the signal difference across the edge, as this distance 

corresponds to the full-width half maximum (FWHM) for a Gaussian profile. For FWHM values 

greater than 30 m, the profiles exhibited well-defined shapes for this analysis.  In contrast, 

smaller spot sizes (< 20 m) were more sensitive to local differences in the amounts of crystal 

violet on the surface, leading to greater difficulties in fitting the region of maximum intensity by 

a horizontal line. Despite this challenge, we estimate the uncertainty in 12-88% to be a few 

micrometers. 
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Figure 4.3. Edge spread profile analysis obtained by scanning a smartbeam laser across a crystal 

violet edge. (a) Schematic illustration of laser pulses traversing the crystal violet edge as the 

stage is moved in 5 m steps. (b)-(d) Average ion intensity for crystal violet vs. distance (µm) at 

three different laser focus settings: ‘ultra’, ‘medium’, and ‘small’. Effective beam sizes were 

measured to be 40 µm, 32 µm, and 11 µm, respectively. The signal intensities with respect to the 

distance are the average from ~20 adjacent scans.  

Table 4-1 summarizes the averaged results from three independent edge spread profile 

measurements using the reticle at each of three focus settings. The data were obtained under 

acquisition conditions where the average signal intensities were at similar levels to minimize 

differences in ablation levels. The measured FWHM values showed good reproducibility at each 

setting and clearly distinguished the differences in lateral size for the different beam settings. 
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Table 4-1. Results from edge spread profile analysis of a smartbeam laser at various focus 

settings. The ± values represent standard deviations from three measurements. 

Laser 

Focus 

Setting 

Laser 

Power 

Average 

Signal/Pixel 

(x 10
4
) 

𝜟𝟏𝟐−𝟖𝟖% 

(µm) 

Ultra 82.0% 9.6 45 ± 4 

Medium 83.2% 7.5 31.9 ± 0.3 

Small 84.8% 7.1 11.2 ± 0.8 

 

4.3.4. Measurement of Gaussian Beam Size Using the Convolution of PSF 

with the Object Pattern 

The edge spread profile method described above involves imaging a single sharp edge or 

a step function. Its precision is limited by the available step size for the scan, particularly for 

smaller beams. As shown above, variations in the signal intensity in a region where its value 

should be a maximum can introduce uncertainties for defining the position of the edge. To 

overcome this issue, we extended the edge spread profile method to the characterization of a 

pattern of step edges separated by known distances. The separation distances between the crystal 

violet features on the reticle and their widths were defined by the photomask used to generate the 

reticle and verified by optical microscopy. In cross-section, the pattern provides a series of rising 

and falling edges with known distances between them, thereby reducing the uncertainty in the 

position of any one edge profile in a scan. By this approach, the results across multiple edges can 

be evaluated simultaneously for measurement of the effective beam size on the target. 

To describe the signal intensity expected from the beam moving in a direction 

perpendicular to the parallel lines of crystal violet on the reticle, we employed a general two-
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dimensional point spread function (PSF) that would describe the beam profile (i.e., shape, size, 

and power distribution). The PSF can be considered as an impulse response of the incident laser 

beam on the target that is responsible for producing a blurred image of the actual pattern. The 

PSF profile for the incident beam may have a Gaussian, Top-hat, Lorentzian, or other shape 

depending on the optical setup. When used to image a pattern, the intensity of each pixel 𝑖(𝑥′, 𝑦′) 

in the resulting image represents a convolution between the pattern provided by the target being 

imaged and its blurring by the PSF. The mathematical representation for this convolution is 

presented in detail in chapter 2 along with the development of general mathematical expressions 

to describe the expected variations in signal intensity for imaging a pattern of parallel lines. For a 

Gaussian-shaped beam, the signal intensity obtained by scanning across four parallel lines in the 

perpendicular direction with widths and separation distances for the pattern shown in Figure 4a 

can described by the equation: 

𝑖(𝑥′, 𝑦′) =

 𝐴𝑚𝑖𝑛 +  𝐴1 [erf (
𝑥−𝑏

√2𝜎
) −  erf (

𝑥−𝑏−100

√2𝜎
)] + 𝐴2 [erf (

𝑥−𝑏−260

√2𝜎
) −  erf (

𝑥−𝑏−360

√2𝜎
)] +

𝐴3 [erf (
𝑥−𝑏−540

√2𝜎
) −  erf (

𝑥−𝑏−640

√2𝜎
)] +  𝐴4 [erf (

𝑥−𝑏−840

√2𝜎
) −  erf (

𝑥−𝑏−940

√2𝜎
)]  (4.1) 

where x’ and y’ are the center positions of the incident beam, σ is a parameter describing the 

width of the beam in the x-direction, b represents the position along the x-axis of the first rising 

edge (i.e., the edge of the first line), Amin represents a background signal level, and A1, A2, A3, and 

A4 represent the maximum signal amplitudes obtained on each line. The different values for these 

maximum signal amplitudes accommodate for local intensity variations in the maxima from each 

feature should they occur.   
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Figure 4.4b shows experimental data of the signal intensity obtained from line scans 

performed on the test pattern shown in Figure 4.4a along with the best fit by eq 4.1. The 

experimental data were obtained with a step size of 5 µm, an acquisition setting of 100 

shots/pixel, an ‘ultra’ focus setting, and a power setting of 82.0%. The signal intensity exhibits 

four rising and four falling transitions, with the maximum signal intensity obtained from each 

line showing some variations. The data are fit well by eq 4.1, yielding a 95% confidence range of 

16.4 ± 0.8 µm for the characteristic beam width, σ, at this acquisition setting. The second set of 

experimental data obtained under the same operating conditions yielded a 95% confidence range 

for σ of 16.8 ± 1.0 µm, showing good reproducibility for the method. 

Related experimental data sets of signal intensity as a function of laser focus position and 

power setting were obtained on the pattern of four lines to examine their effects on the 

characteristic beam width.  Figure 4.4c shows that using a ‘medium’ focus setting and a power 

setting of 83.2% resulted in a smaller beamwidth, σ, of 13.1 ± 0.7 µm. As the ‘medium’ 

instrumental setting provided a more focused beam than the ‘ultra’ setting, the σ value was 

expected to be reduced as was observed. For this data set, the best fit exhibited flatter tops than 

those in Figure 4.4b, resulting from greater sharpness in the rising and falling transitions. Figure 

4.4d shows the results for the ‘small’ focus setting at a power setting of 84.8%. Under these 

conditions, the fit to eq 4.1 produced a 95% confidence range for σ of 5.4 ± 0.9 µm. Flatter tops 

are even more apparent in the fit for the ‘small’ focus setting, consistent with the greater 

sharpness in the rising and falling transition regions. Table 2 summarizes the results of these and 

related experiments showing the reliability of the determined values of σ. As the focus is 

changed from ‘ultra’ to ‘medium’ to ‘small’, the FWHM of the beam decreased from 40 ± 2 µm 

to 30.8 ± 1.6 µm to 13 ± 2 µm. 
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Across these three different focus settings, a consistent 95% confidence range of ± 1.0 

µm or less on the value of σ was obtained, corresponding to a FWHM range of ± 2.0 µm or less, 

when a sufficient laser power setting was used. In all cases, the model fit the transition regions 

well, with the greatest departures being in the regions of maximum signal intensity, possibly 

reflecting local variations in crystal violet amounts within the patterned lines. These differences 

likely affect little the measurement of σ as its primary influence on eq 4.1 is the sharpness of the 

fitting curve in the rising and falling transition regions. The known locations of and the distances 

between these transition regions in the pattern allow the determination of σ by a fully objective 

curve fitting algorithm, providing a notable advantage over the analysis method performed over a 

single step edge (Figure 4.3) where the exact position of the edge in a scan is not known.  

Further, the fitting approach using eq 4.1 is amenable to being conducted under automated 

control and being performed on other related patterned structures with different separation 

distances and line widths for determining σ with greater confidence by a global fitting strategy. 

Table 4-2 summarizes the results of experiments testing the effects of various 

instrumental settings on the determined values of σ. As the focus setting was changed from 

‘ultra’ to ‘medium’ to ‘small’, the measured FWHM values for the beam showed a reproducible 

change from 40 to 13 m. The values obtained at each focus setting were consistent with each 

other, with small differences in laser intensity causing small variations in the uncertainty values. 

Laser power settings that yielded much weaker signal intensities produced fits having the 

greatest uncertainty in the fitted FWHM values; however, the 95% confidence intervals on the 

FWHM values measured at the lower laser power settings were consistent with those obtained at 

that focus setting and a higher laser power setting. 
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Figure 4.4. Edge-profile analysis across multiple rising and falling edge profiles of known 

spacings. (a) Crystal violet pattern before laser ablation. Each crystal violet line is 100 µm wide; 

the gaps between the lines are 160 µm, 180 µm, and 200 µm from left to right. Beam focus and 

power settings were adjusted manually for each of the three experiments. (b) Beam focus = 

‘ultra’; σ = 16.4 µm. (c) Beam focus = ‘medium’; σ = 13.1 µm. (d) Beam focus = ‘small’; σ = 

5.4 µm. Data are fit are to eq 4.1 to provide measurements of σ. 
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Table 4-2. Beam width values obtained from edge spread analysis across multiple rising and 

falling edge profiles of known spacings under different focus and power settings.  

Laser 

Focus 

Setting 

Laser 

Power 

Average 

Signal/Pixel 

(x 10
4
) 

𝝈 

(µm) 

FWHM 

(µm) 

Ultra 82.0% 9.0 16.8 ± 1.0 40 ± 2 

82.0% 9.6 16.4  ± 0.8 38.6 ± 1.9 

Medium 83.2% 7.5 13.1 ± 0.7 30.8 ± 1.6 

82.4% 0.3 12.2 ± 2.7 29 ± 6 

Small 84.8% 7.1 5.4  ± 0.9 13 ± 2 

84.8% 8.0 5.5 ± 0.8 13.0 ± 1.9 

At each of the focus settings in the Table 4-2, the step size (5 µm) was smaller than the 

calculated FWHM values for the beam. As a result, adjacent laser spots overlapped with one 

another during a scan raising the concern whether oversampling could be occurring that could 

affect signal intensity. In preparing the reticle, the crystal violet features were fabricated to be 

sufficiently thick (> 300 nm) to ensure that they would not be completely ablated during a scan 

when typical laser power settings were used. An optical image of the crystal violet pattern after 

imaging is provided in Figure 4.5a showing that most of the crystal violet is retained. We tested 

to ensure that such changes to the crystal violet film did not dramatically affect signal intensity. 

Under the standard laser power settings, we found that the signals provided from previously 

investigated homogenous areas of crystal violet were roughly 90% or more of those obtained 

previously unexamined areas and the measured FWHM values were unchanged. At higher power 

settings, it was possible to ablate greater amounts of crystal violet (as shown in Figure 4.5b) and 

produce results compatible with oversampling. For example, in scanning a previously 

investigated region at a ‘large’ (i.e., intermediate between “medium’ and ‘ultra’) focus setting, a 
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FWHM value of 21.9 ± 1.4 µm was obtained that was roughly 10 µm smaller than was obtained 

for this setting in a first scan. The lower value of FWHM is consistent with an oversampling type 

of experiment in which the signal intensity would rise more quickly and reach a plateau faster 

across a pattern. By proper control of conditions, oversampling could be avoided. By such 

repeated scans, the reticle provided the ability to evaluate whether its measurements of the 

spatial resolution were compromised by oversampling effects. 

 

Figure 4.5. Optical images of 100 µm-wide crystal violet lines after MALDI imaging. (a) Effect 

of operating in an overlapping mode where a moderate laser power was used. (b) Effect of 

operating in an oversampling mode where a high laser power was used.  

4.3.5. Use of Line Gratings to Determine Spatial Resolution 

Spatial resolution is defined as the smallest spacing in an image that can be recognized as 

distinct and separate within a specified threshold. The effective beam sizes determined by the 

edge spread and PSF methods detailed above provide a measurement related to spatial resolution 

but are themselves not a direct measure of spatial resolution.  The ability to resolve a small 

region with attributes different from those adjacent to it underlies most determinations of spatial 

resolution.  Various criteria have been suggested for assessing spatial resolution such as those 
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reported by Rayleigh and Sparrow that have been primarily used for optical measurements.  The 

Rayleigh criterion measures the separation between two equal point sources such that the central 

maximum in the signal originating from one source overlays with the minimum signal from the 

other. An empirical estimate of spatial resolution is made based on the observation of an 

intensity level from a region that has a value that is 19% lower in intensity from that of two 

nearby maxima, as expected for two equal point sources with this separation.
34

 The Sparrow 

criterion defines the minimum possible spatial resolution by the observation of a dip in the 

obtained signal from separated equal point source.
34

  A drawback of these methods is that neither 

of these criteria includes experimental uncertainties such as noise in their theoretical assignment 

of spatial resolution.  The reliance of the Rayleigh and Sparrow criteria on the ability to discern 

modest differences in the signal from those that may be due to noise severely limits the 

application of these criteria for IMS.  Instead, we employed a threshold level where the ability to 

distinguish separated sources of no signal intensity was used to provide a measurement of spatial 

resolution.  Specifically, we defined a threshold level of 10%, so that if the signal intensity 

dipped to a value less than 10% of that of the maximum as the laser beam is scanned across a 

striped pattern, the features are said to be resolved.  

For determination of spatial resolution in IMS, we designed a pattern that would provide 

a series of parallel stripes that differed in their separation distances between them. Figure 4.6a 

shows an illustration of the line grating design used to produce the photomask that yielded the 

reticle pattern.  The numerical values in Figure 4.6a represent the separation distances (the black 

regions) in microns between adjacent stripes (the white regions) of the reticle pattern.  The white 

regions in the photomask correspond to those areas on the reticle that contain crystal violet, and 

the black regions define their separation.  Figure 4.6b shows an optical image of a crystal violet 
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pattern obtained using the photomask by the procedure summarized in Figure 1.  The crystal 

violet areas appear black against the gold background for the uncovered areas.  Figure 4.6c 

shows the ion image collected at m/z of 372.5 ± 0.2 Da corresponding to the positively charged 

hexamethyl pararosanilium ion from crystal violet. The image was acquired at a 10 µm step size, 

a 70% focus setting, and 84% power. The image data were converted to a graphical view shown 

in Figure 4.6d by averaging ion intensities from 10 sequential scans. The signal switches from 

high to low-intensity values across the pattern, with the minimum values increasing in intensity 

from regions with smaller separation distances between the crystal violet regions.  The red line in 

Figure 4.6d shows the cut-off used for establishing spatial resolution from the pattern. The cut-

off was set to 10% of the maximum intensity. If the ion intensity from a region with a particular 

separation distance fell below this cut-off value, the instrumental conditions are said to resolve 

that feature size.  Relatedly, the instrumental conditions were unable to resolve a particular 

feature size if the ion intensity from a region with that separation distance did not fall below this 

cut-off value.  The data in Figure 4.6d exhibit a progression of behaviors.  In Figure 4.6d, the 

smallest separation distance resolved consistently was 45 µm, as the line-scan in this region 

(highlighted in green) consistently yielded signals below the 10% cut-off value. At a smaller 

separation distance of 40 µm between the striped regions, the yellow region notes a limiting 

resolution as the line-scan dips below the cut-off inconsistently (three out the four times). The 

red region (35 µm separation distances) highlights results obtained below the limit of resolution 

as the line-scan intensity was consistently above the 10% cut-off value across this striped region.  

We note that this general method would be applicable to irregularly shaped beams and not just 

limited to Gaussian, Lorentzian, or Top-hat beam profiles.  
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Figure 4.6. (a) Photomask pattern as designed in CAD software with specified dimensions in 

microns. The white rectangular regions represent transparent areas, and the surrounding black 

regions are opaque. (b) Resulting crystal violet pattern fabricated using the photomask, soft 

lithography, and surface patterning techniques. (c) Ion image acquired by MALDI IMS of the 

distribution of m/z 372.5 Da corresponding to signal from crystal violet after the loss of chlorine. 

(d) Line-scan of ion intensity for crystal violet across the pattern. The threshold signal (red line) 

is calculated as 10% of the obtained signal from regions with crystal violet. 

We applied the method detailed in Figure 4.6 using the 10% threshold to measure the 

spatial resolutions across various operating conditions. Table 4-3 summarizes the results of 

experiments performed at three different laser focus setting: ‘single,' ‘mod 5,’ and ‘mod 5 

defocused.' At each focus setting, three different power settings were tested.  For each 

experiment, we also compared the spatial resolution measurements obtained from the line-scan 

analysis with the size of ablation craters produced in homogeneous coatings of crystal violet 

under the same instrumental conditions. For the ‘single’ laser focus setting, the intensity values 

dipped below the 10% threshold value between each stripe for all power settings, demonstrating 

a spatial resolution below 30 µm. For the ‘mod 5’ laser focus setting, the smallest resolved 

separation was 50 µm at a laser power setting of 39.4% and was 60 µm at laser power settings of 
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43.4% and 47.4%. For the ‘mod 5 defocused’ laser focus setting, the resolved separation spacing 

was below 30 µm for 62.8% power, while at laser power settings of 66% and 70%, the smallest 

resolved separation increased to 35 µm and 70 µm, respectively.  Across all laser focus settings, 

the smallest resolved separation between features grew with increasing power suggesting a 

greater sampling area by the beam at higher power levels. 

Table 4-3. Measurements of spatial resolution using line gratings across various instrument 

settings 

Laser Focus 

Setting 

Laser 

Power 

(%) 

Smallest Resolved 

Separation 

(m) 

Single 19.0 <30 

 21.0 <30 

 23.0 <30 

Mod 5 39.4 50 

 43.4 60 

 47.4 60 

Mod 5 defocused 62.8 <30 

 66.0 35 

 70.0 70 

 

For comparison with the obtained spatial resolution measurements, we exposed 

homogeneous coatings of crystal violet to repeated laser pulses at the above instrument 

conditions and measured the size of the resulting ablation craters. We note that the number of 

laser pulses required to generate visible ablation craters in the crystal violet coating was ~20 
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times that used to obtain the data in Figure 4.6c. Images of the resulting ablation craters are 

provided in Figure 4.7. For comparison, each image includes an overlay with dimensions of the 

smallest resolved separation obtained using the line grating at that instrumental condition from 

Table 4-3. 

At the ‘single’ laser focus setting, individual ablation craters less than 30 m in diameter 

were obtained at the three investigated power settings, consistent with the ability to consistently 

resolve separation spacings of 30 m and greater below the 10% threshold level. At the ‘mod 5’ 

laser focus setting, the ablation patterns consisted of five separated craters, with one in the center 

and the other four positioned around it. Their relative positions appeared unaffected by laser 

power; however, the diameters of the five craters were larger at the higher power settings.  At the 

lowest power setting of 39.4%, two of the peripheral craters appeared less developed than the 

other three craters suggesting that most of the ablation occurred from a more limited region, 

consistent with the ability to resolve a smaller separation than at the higher power settings.  

Ablation craters of similar size were produced at the higher laser power settings of 43.4% and 

47.4% consistent with a common separation spacing of 60 m being resolved at these two 

conditions. Using the 10% threshold level, the obtained separation spacing of 60 m from the 

line-scan analysis was smaller than the distance between the furthest ablated regions (~80 m); 

however, it compared favorably to the furthest distance between the regions—the center of each 

crater—where the greatest ablation occurred. At the ‘mod 5 defocused’ laser focus setting, 

ablation occurred non-homogenously over broad areas but appeared more concentrated at the 

lower power settings. For example, at the 62.8% power setting, ablation was observed from 

regions more than 60 m apart; however, most of the ablation occurred from a smaller region 

less than 30 m in diameter. At the higher power settings of 66% and 70%, the ablated regions 
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extended out more than 100 m; however, most of the ablation occurred from more localized 

regions ~40 and ~80 m in diameter, respectively, at these settings. In comparing these values 

with the spatial resolution measurements obtained using the 10% threshold level, the lower 

values representing the size of main ablated regions correlated favorably with those measured 

with the reticle.  This agreement with measurements based on ion intensity suggests that while 

the laser pulse may ablate material from a broader area, a minimal signal is generated from the 

outer regions.  The laser energy may be insufficient in the peripheral regions to ionize crystal 

violet or the signal from these areas may contribute little to the overall signal produced by a 

laser.   
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Figure 4.7.  Optical images of the ablation craters formed in a homogeneous coating of crystal 

violet after 1000 shots under various focus and laser power settings using a Bruker Rapiflex. (a) 

‘Single’ 19.0% power (b) ‘Single’ 21.0% power (c) ‘Single’ 23% power (d) ‘Mod 5’ 39.4% 

power (e)  ‘Mod 5’ 43.4% power (f) ‘Mod 5’ 37.4% power (g) ‘Mod 5 defocus’ 62.8% power (h) 

‘Mod 5 defocus’ 66.0% power (i) ‘Mod 5 defocus’ 70.0% power. ‘Single’ ‘Mod 5’ and ‘Mod 5 

defocus’ designate specific focus settings on the Bruker Rapiflex used for ablation.  The boxes 

included in each image are sized at the smallest resolved separation determined using the line-

scan method with values given in Table 4-3. 

The ablation craters shown in Figure 4.7 as generated by laser pulses at various operating 

conditions illustrate a common problem in relating the ablation crater to spatial resolution for 

IMS.  In general, the non-uniform, complex shape of the laser beam and its lack of homogeneity 

challenge defining its suitable size. As such, any assignments of a “beam size” from such 
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ablation results include subjective assessments of how a single dimension can define their 

pattern. As the areas of ablation may not directly correspond to the areas that generate a signal, 

such determinations of their size provide a gross estimate for image resolution that may lack 

meaning. In contrast, the approach presented in Figure 4.6 provides an objective result that relies 

directly on the analysis of ion intensity as would determine spatial resolution in IMS. Any effects 

from the complexity of the beam shape, its pattern, and heterogeneity as they influence spatial 

resolution in imaging are effectively considered in a particular direction by the described line 

grating approach. 

We attempted Gaussian-based fits to irregularly shaped beams shown in Figure 4.8. For a 

Mod 5 displayed in Figure 4.7f, the Gaussian fit is shown in Figure 4.8a. The R-squared value is 

0.72 in Figure 4.8a, compared to > 0.99 for all Gaussian beams. Additionally, there is a large 

degree of uncertainty in σ (± 9 µm). Figure 4.8b shows a Gaussian fit for a Mod 5 defocused 

beam corresponding to the shape illustrated in Figure 4.7h. In this case, Gaussian approximation 

was closer with the R-squared value of 0.92 and a smaller uncertainty in σ (± 3 µm). In general, a 

true Gaussian beam has a R-squared value greater than 0.99. Lower R-squared suggest non-

Gaussian beam profile and the resulting value of σ is only a gross estimate of the beam size. 
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Figure 4.8. Application of a Gaussian model to the irregularly shaped beams. (a) Data 

corresponds to a ‘Mod 5’ beam as shown in Figure 4.7f. (b) Data  corresponds to a ‘Mod 5 

defocused’ beam as shown in Figure 4.7h. 

4.3.6. Effect of Matrix Application on Spatial Resolution 

The patterned organic material was used to test delocalization due to matrix application 

methods. Figure 4.11 compares an excessively wet spray-based method of matrix application 
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with a dry application process (sublimation). A lipid-soluble compound, Oil Red O, was 

patterned using diffusive stamping.
44

 One slide was sprayed with sinapinic acid in 50% 

acetonitrile using an automated sprayer. A second slide was sublimated with a uniform coating 

of the same matrix material. The two slides were imaged using the Bruker Ultraflextreme 

MALDI-TOF instrument with a raster step size of 50 µm. The ion images show that the solvent 

based spray application caused extensive delocalization, essentially obliterating the Oil Red O 

pattern while the sublimated sample preserved the pattern. We can visually distinguish line 

widths up to 50 µm in the middle region.  This experiment clearly shows the importance of 

carefully controlling the surface wetness with solvent spray devices.  Drying periods of about 10 

sec between spray deposits dramatically reduced this diffusion (data not shown). 

 

Figure 4.9. Evaluation of matrix application methods (a) Sublimation preserves the pattern of 

Oil Red O, and line-widths down to 50 µm are visible (b) Spray-based methods caused 

significant delocalization of the pattern due to wet spraying conditions. 
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4.3.7. Applications of the Reticle in Diagnosing Pixel Striping in High-

throughput MS Instrumentation  

Modern MS instruments can be operated at very rapid acquisition speeds (up to 100 

pixels/sec). High throughput can be particularly useful when analyzing large tissue areas and for 

clinical studies that require the analysis of a large number of tissue specimens. In experimental 

tests with the reticle on a SimulTOF 300 Tandem instrument, we noticed that ‘pixel striping’ 

occurred at high acquisition rates (Figure 4.10a and 4.11b). The pixel striping manifested itself 

by the appearance of elongated pixels, that is, pixels that were longer than the defined 

instrumental spatial resolution of the experiment. Initially, we sought to quantify the degree of 

pixel striping by determining the number of pixels acquired in a constant area as a function of 

acquisition conditions (Figure 4.11). As the SimulTOF instrument utilizes continuous laser raster 

sampling, the spatial resolution is defined by: 

𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = 𝐻. 𝐴. (
𝑣𝑠𝑡𝑎𝑔𝑒

𝑓𝑟𝑒𝑝
)       (4.2) 

where vstage is the sample stage velocity, frep is the laser repetition rate, and H.A. (hardware 

average) is the number of laser shots averaged for a single pixel.
53-54

 In these experiments, the 

lateral spatial resolution and hardware averages were held constant (at 50 µm and 50 averages, 

respectively). The laser repetition rate and stage velocity were altered systematically to sample 

different pixel acquisition rates (e.g., given the constant 50 hardware averages utilized, a stage 

velocity of 0.5 mm/s and a laser repetition rate of 500 Hz resulted in 50 µm pixels being acquired 

at 10 pixels/s). Solely based off of these initial pixel numbers reported in Figure 4.11, it was 

clear that elongated pixels were affecting the image quality at higher acquisition speeds. 

However, the source of these errors was unclear: were the errors occurring at the beginning or 
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end of each continuously scanned line as the stage accelerated and decelerated? Did the errors 

occur at regular intervals throughout the image? By using known pattern provided by the reticle, 

we were able to determine that these elongated pixels appeared more at less at random (Figure 

4.10a). 

 

Figure 4.10. Display of 50 µm ion images of the reticle under instrumental conditions of (a) 

laser repetition rate of 4000 Hz, stage speed of 4 mm/s, 50 hardware averages, 80 pixel/s 

acquisition speed, 500 ps mass bin size and (b) laser repetition rate of 500 Hz, stage speed of 0.5 

mm/s, 50 hardware averages, 10 pixel/s acquisition speed, 500 ps mass bin size. We note that the 

spatial resolution measured by the reticle in these examples will be larger than the spatial 

resolution defined by eq 4.2 because the instrument utilizes continuous raster sampling, and the 

employed laser power was insufficient to perform proper oversampling. 

Through a series of investigations, we determined that the data acquisition step was 

responsible for the pixel elongations. Specifically, by varying the mass bin size at constant pixel 

acquisition speeds, we were able to alter the degree of pixel striping in the image. The mass bin 

size is the frequency at which data points are acquired across the mass spectrum. As the mass bin 

size was decreased, more data points across the mass range were sampled (and at a faster 

frequency) and the data size load on the digitizer was increased (Figure 4.11), which resulted in 
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an increase in pixel striping (Figure 4.10a versus 4.10b). As the data load was increased, the 

ability to efficiently write data from the digitizer to the computer hard disk was compromised. 

This information importantly allows us to determine under which instrumental operating 

conditions we can expect to obtain the highest quality MS images. Compared to the number of 

pixels theoretically required to sample the defined area (black dotted line in Figure 4.11), a 

threshold can be set for deeming the level of pixel striping satisfactory for quality IMS 

experiments. Setting this threshold at a pixel loss of 5%, at 10 pixels/s the mass bin size can be 

adjusted as small as 500 ps. At 20 pixels/s, the mass bin size must be 1000 ps or larger. At 40 

pixels/s and above, the mass bin size must be at least 2000 ps.  

 

Figure 4.11. The number of pixels acquired in a defined 1 mm x 11 mm area as a function of 

mass bin size at different pixel acquisition rates. The theoretical number of pixels required to 

sample this 11 mm
2
 area is shown as a black dotted line. Pixel numbers observed greater than 

this theoretical number are likely due to imperfect (smaller) pixel sizes being acquired at the 

beginning and end of each continuously scanned line as the stage is accelerated and decelerated. 
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4.4. Conclusions 

A developed reticle consisting of patterned lines of crystal violet on a gold-coated slide 

provides a convenient method for measuring the beam diameter and spatial resolution for 

MALDI-IMS.  The reticle is readily prepared using a combination of soft lithography to define 

and control feature sizes and selective dewetting to form a patterned coating of crystal violet on a 

conductive substrate.  Crystal violet provides a suitable material for assessing spatial resolution 

in IMS as it is readily ionized and easily detected under conditions employed in MALDI IMS 

without requiring the presence of a supplemental matrix coating.  The direct imaging of the 

crystal violet pattern avoids delocalizing effects that could affect the pattern upon matrix 

application.  In contrast to other approaches, the described crystal violet-based reticle requires no 

overlay of a grid to mask off regions for presenting a pattern and thereby is not subject to the 

distorting effects that an applied grid can produce.  The thickness of the crystal violet pattern is 

sufficient that its features and dimensions can be examined and verified by optical microscopy. 

Various methods are presented that can be used with the reticle for measurement of 

spatial resolution in IMS in an objective manner. The edge spread method enables determination 

of the effective Gaussian-based full-width half-maximum of the incident beam by measuring the 

change in signal intensity from 12% to 88% across the edge of the crystal violet pattern.  This 

approach has been generalized for use across a series of edges by convoluting the pattern of the 

object with a point spread function (PSF) to describe the beam profile.  With the reticle, a one-

dimensional PSF is employed for evaluating multiple edges simultaneously.  The defined 

spacings on the reticle between separated edges are used to improve the effectiveness of this 

method as they reduce uncertainties in assigning the edge positions.  In a direct test of spatial 

resolution, the various separation distances on the reticle between patterned crystal violet 



105 

 

features provide an outcome-based test that can distinguish the limits of spatial resolution under 

particular instrumental conditions.  This line grating approach provides a direct demonstration of 

instrument performance.  Both methods rely on the use of defined thresholds or mathematical 

fitting to provide objective measurements of spatial resolution that could be developed to allow 

automated operation.  Their implementation requires no post-analysis of the reticle outside the 

mass spectrometer, in comparison with approaches that determine the size of ablated features by 

microscopy, which are often subjective.  In contrast to such methods, the determined spatial 

resolution using the reticle relies on the analysis of obtained signal rather than on secondary 

factors such as beam size or ablation patterns that play a role in spatial resolution but are not 

direct measures of spatial resolution.  For irregularly shaped laser beams, the reticle provides a 

measure of spatial resolution that factors in the area where the majority of the signal is generated. 

 The reticle has been used to obtain measurements of a spatial resolution under a variety 

of defined experimental conditions including different laser focus and power settings.  The 

results exhibit qualitative agreement with changes in beam shape and size, providing a more 

relevant measurement.  We note that while the spatial resolution measurements using the reticle 

may not be directly transferrable to the spatial resolution on tissue or other specimens (due to 

differences in ionization efficiency, the presence of matrix, etc.), the methods described here can 

provide an accurate evaluation of instrument setup  They further allow assessment of differences 

in instrument performance that can influence image quality between different samples as well as 

between measurements performed on different dates or from different instruments.  The 

determination of how the relative spatial resolution is affected as instrumental hardware and 

software conditions are varied is critical.  In particular, instrumental conditions that cause 

unsatisfactory ‘pixel striping’ on a MALDI-TOF mass spectrometer were diagnosed. By 
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providing an objective evaluation of spatial resolution, the reticle will be exceedingly useful in 

the development of future IMS instruments and in benchmarking their performance. Future 

directions for this work include having feature sizes below 25 µm as needed for anticipated 

higher resolution IMS instruments under development.  
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CHAPTER 5.  ENZYMATIC DIGESTION IN IONIC MATRIX 

5.1. Background 

Enzymatic digestion of proteins is critical for the analysis of large proteins that cannot be 

detected in intact form, the identification of proteins directly from tissue, and the analysis of 

formalin-fixed tissues where proteins are crosslinked. The current method for digestion of 

proteins within the tissue and their subsequent MALDI analysis involves serial spotting of 

enzyme and matrix.
55-56

 This process takes a long time—4-8 hours for a single tissue section. 

Typically, trypsin is used as an enzyme requiring a pH of 7.5-8.5 for optimal activity. Common 

matrices for peptide analysis such as CHCA are acidic and thus spotted after trypsin application.   

In this chapter, a method is developed whereby enzyme and matrix can be applied 

simultaneously. One-step application of all reagents will simplify the process and enable 

significant savings in time. As noted, the major challenge with the one-step application is that 

acidic matrix would inhibit trypsin activity. To address this challenge, CHCA is paired with a 

base resulting in an ionic matrix. The activity of trypsin in the ionic matrix is examined and the 

ability of the ionic matrix to generate ions for tryptic fragments is investigated.  

5.2. Trypsin as an Enzyme 

Trypsin is a serine protease that is found in digestive systems of many vertebrates and is 

frequently extracted from cow’s or pig’s pancreas. It is the most extensively used enzyme in 

proteomics applications because of its high specificity. Additionally, trypsin generates peptides 

in the mass range of 500-3000 that is amenable to mass spectrometry analysis. It cleaves mainly 



108 

 

at the carboxyl side of the amino acids lysine and arginine except when either if followed by 

proline.  

The optimal pH for trypsin activity is between 7.5-8.5.
57

 An aqueous buffer solution is 

used—typically 50 mM triethylammonium bicarbonate or 12.5 mM ammonium bicarbonate—to 

ensure optimal digestion conditions. Trypsin is added to the protein mixture in 1:20 mass ratio. 

The digestion can be in solution, in-gel or directly on tissue. Some of the trypsin may digest 

itself in a process known as autolysis. 

Optimal temperature for both in-solution and in-gel digestion is 37 °C although trypsin 

that has been modified by reductive methylation has optimal activity between 50-60 °C with 

enzymatic digestion 12 times faster than that at 37 °C.
58-59

 While aqueous buffer solution is 

typically used for digestion some studies claim that digestion is more efficient in organic 

solvents. In particular, Strader et al.
60

 found that 80% acetonitrile consistently provided greater 

precent converage relative to any other solvent system.  

5.3. Buffering Capacity of Ionic Matrix 

The challenge in combining enzyme and matrix in the same solution is that typical 

matrices such CHCA and DHB are acidic inhibiting trypsin activity. A base was used to convert 

the matrix into its ionic form to overcome the acidic environment. Crank et al. 
61

 tested a range 

of bases and discovered several bulky bases can be paired with CHCA to form an ionic liquid 

matrix. Diisopropylethylamine (DIEA) was selected as a base because its bulky structure yielded 

an ionic liquid after reaction with CHCA.
62

 Its hygroscopic environment would be favorable for 

the extraction of peptides and proteins from the tissue and could provide suitable conditions for 

trypsin activity. Additionally, DIEA is volatile and can be readily added to CHCA from the 
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vapor phase. The resulting liquid was found to have a compatible pH and a buffering capacity. 

Figure 5.1 compares the buffering capacity of this ionic matrix with ammonium bicarbonate, a 

common buffer used for tryptic digestion. 10 ml solutions of DIEA-CHCA and NH4HCO3 (both 

at 100 mM concentration) were used. Ionic matrix maintained pH between 6-9 as up to 2 mL of 

1% base or acid was added. The buffering capacity of ionic matrix ensured stable pH as it was 

applied to the tissue.  

 

Figure 5.1. Comparison of the buffering capacity of DIEA-CHCA ionic matrix and ammonium 

bicarbonate buffer. 10 mL of each solution was used for titration and both solutions had a 

concentration of 100 mM. The ionic matrix maintained a pH between 6 and 9 through addition of 

2 mL of 0.3 M HCl or 0.2 M KOH.  

5.4. Detection of Tryptic Peptides in Ionic Matrix 

While the ionic matrix provided a suitable pH for tryptic digestion, it was found to be 

unsuitable for detection of peptides using MALDI-MS. The MS signal was noisy in most 

locations on the target plate and only a few droplets provided a detectable MS signal. An acid 

rinse was deemed necessary to remove the base and convert the matrix into its crystalline form 

even though the rinse may dissolve the peptides. A number of solvent rinses were implemented 

including 1-25% trifluoroacetic acid (TFA) and 1-25% acetic acid (AcOH) to determine suitable 

conditions for the acid rinse. The slide was immersed in the acid solution for 1 min. After 1 min, 
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the slide was removed from the solvent and placed in a vertical position to allow the residual 

acid to trickle off. Finally, the slide was air dried, and optical images were acquired.  

Figure 5.2 shows the results of these acid rinses. The control sample contained an 

equivalent amount of CHCA without any DIEA providing a basis of comparison for the amount 

of matrix lost during the rinse. The majority of the matrix was lost for acetic acid rinses. TFA 

performed significantly better in retaining the matrix. Some of the matrix was also lost in the 

case of 1% TFA and 5% TFA; concentrations of 10% or above showed a minimal loss. Since 

TFA is 1000 times more acidic than AcOH based on pKa values, the rate of reaction between the 

acid and ionic matrix was expected to be much faster in the case of TFA. On the other hand, the 

rate of dissolution was expected to be comparable between the two acids. In the case of AcOH, 

the ionic matrix likely dissolved into the solution before it was converted to the crystalline state. 

On the other hand, TFA rapidly converted the ionic matrix into its crystalline form that was 

insoluble in the acidic solution. 

 

Figure 5.2. A hand-spotted droplet of CHCA (control sample) is shown on the left. Ionic matrix 

droplets (1 µL) were spotted onto the slides that were immersed in the acidic solutions for 1 min. 

The slides were dried after the acidic rinse and the optical images were acquired. The control 

sample had the same amount of CHCA but did not undergo the conversion and the rinse steps.  
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The optical images suggest that TFA at 10% or higher concentration provided maximum 

retention of the matrix post-rinse. The effect of acid rinse on the MS signal was also examined. 

Mass spectra were collected for three cases: (a) CHCA and standard peptides (control), (b) 

CHCA and standard peptides rinsed with TFA, (c) CHCA and standard peptides mixture that 

was converted to the ionic matrix and then rinsed with TFA. The standard peptides included 

Angiotensin II from humans at m/z 1046.54, [Glu1]-FibrinopeptideB at m/z of 1570.68 and 

Insulin Chain B at m/z of 3494.66. 

Figure 5.3 shows the results of these experiments. The top panel illustrates the spectrum 

for the control experiment where the standard peptides and CHCA were mixed; all three standard 

peptides were observed. The intensity of the standard peptides decreases as m/z increases due to 

instrumentation bias against large peptides. The second panel shows the results after the spots 

containing matrix and standard peptides were rinsed. Visually, there was no major loss of CHCA 

crystals during the TFA rinse. An additional peak at m/z 644 was observed after washing that 

was due to the formation of matrix adduct corresponding to 3M + 2K.
63

 The MS spectrum in the 

third panel corresponds to the experiment where the standard and CHCA mixture was hydrated 

with (DIEA) and then rinsed with TFA. All three peaks for the standard peptides as well as the 

matrix adduct at 644 Da were observed. An additional peak was observed at m/z of 3533 likely 

corresponding to insulin adduct with a potassium ion. These results suggest that conversion to 

the ionic matrix and the acid rinse does not remove peptides.  
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Figure 5.3. Effect of TFA rinses on mass spectrometry signal for standard peptides. Standard 

peptides include angiotensin II (1046.5 Da), fibrinopeptide B (1570.7 Da) and insulin chain B 

(3494.7 Da). The top panel shows the spectrum for control experiment with CHCA and standard 

peptides without an acidic rinse. The middle panel shows the spectrum after TFA rinse. The peak 

at 644 Da was due to the formation of matrix adduct (3M +2K). The bottom panel illustrates the 

spectrum after conversion of CHCA to the ionic matrix and TFA rinse. All three standard 

peptides were observed. The peak at m/z of 3533 was likely due to the formation of potassium 

adduct with insulin. 
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5.5. Digestion of a Protein Standard in Ionic Matrix 

The optimal pH for trypsin activity is between 7.5-8.5.
57

 As such, the ability to fabricate a 

functional pre-coated slide containing both matrix and trypsin poses a challenge as most MALDI 

matrices used for peptide analysis (such as CHCA and DHB) are acidic in nature and would 

therefore inhibit trypsin activity. To address this issue, previous studies involving in situ 

digestion by trypsin for MALDI-IMS have employed separate steps to apply the trypsin and the 

matrix to tissue samples.
64-65

 In order to allow both matrix and trypsin, we used a base to 

neutralize the acidity of the CHCA to maintain trypsin activity. We selected 

diisopropylethylamine (DIEA) as the base because its bulky structure yields an ionic liquid upon 

reaction with CHCA.
61-62

 We hypothesized that its hygroscopic environment would be favorable 

for the extraction of peptides and proteins from the tissue and provide suitable conditions for 

trypsin activity. DIEA offered other benefits as it is volatile and can be readily added to CHCA 

from the vapor phase.  We measured the ionic liquid formed from CHCA and DIEA to have a 

pH of 8 and a buffering capacity similar to that of ammonium bicarbonate. 

Using cytochrome c as a convenient protein of known sequence and readily identifiable 

fragments, we evaluated the activity of trypsin in the CHCA-DIEA ionic liquid medium. Ionic 

matrices have shown promise for the detection of lipids, proteins, and peptides by MALDI IMS 

from tissue samples.
62, 66

 As we obtained low MS signals directly from the CHCA-DIEA ionic 

matrix, conversion to crystalline CHCA by a rinse with 10% TFA was necessary to detect 

peptides. Figure 5.4 compares mass spectral results for trypsin digestion of cytochrome c in the 

CHCA-DIEA ionic matrix with control experiments performed without trypsin or cytochrome c. 

In the case of CHCA-DIEA (Figure 5.4a), only matrix adducts were observed as expected. When 

trypsin was added to the ionic matrix (Figure 5.4b), trypsin autolysis peaks were present at m/z 
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659, 2163 and 2273 Da. When both trypsin and cytochrome c were present, several tryptic 

fragments from cytochrome c were observed in the mass spectrum (Figure 5.4c). These peaks 

highlighted in Figure 5.4c by asterisks were not observed in the control spectra. No autolysis 

peaks are evident in Figure 1c when both cytochrome c and trypsin were present as the signal 

due to digestion of the cytochrome c were much stronger than those in Figure 5.4b. The results 

show that CHCA-DIEA provides a suitable environment for trypsin digestion. 
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Figure 5.4. MALDI-TOF spectra show digestion of cytochrome c in ionic matrix medium. The 

mass spectra for (a) CHCA-DIEA, (b) CHCA-DIEA and trypsin, and (c) CHCA-DIEA, trypsin, 

and cytochrome c are shown above. The samples were incubated for 24 h at 37 °C. The autolysis 

products are marked with degree sign, and tryptic fragments of cytochrome c are marked with 

asterisks. In all cases, 1 µL of the solution was spotted on the plate; the plate was immersed in 

cold 10% TFA to convert the matrix into its crystalline form before MALDI analysis. 

5.6. On-tissue Digestion Using the Ionic Matrix  

After the successful digestion of cytochrome c, a similar spotting experiment was 

performed on rat brain tissue. 1 uL solutions of the ionic matrix with trypsin and ionic matrix 

without trypsin were separately spotted on the cerebellum of the serial rat brain sections. The 
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samples were incubated for 2 hours at 37 °C and spectra were collected using MALDI-

TOF/TOF.     

Figure 5.5 shows the result of this experiment. Figure 5.5a shows the control case of the 

ionic matrix without any trypsin. Only lipid signals were observed around 700 Da, and the rest of 

the spectrum was blank. Figure 5.5b shows the results for a spotting experiment using the 

conventional method of trypsin in buffer followed by matrix deposition. Additional peaks were 

seen in the peptide range in the spectra with trypsin; these new peaks did not match to any of the 

autolytic peaks so were likely tryptic fragments of proteins within the tissue. Figure 5.5c shows 

the results for the case of trypsin and ionic matrix deposited in a single step. Additional peaks 

were observed in this case suggesting successful digestion. None of these peaks match to 

autolysis products.  
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Figure 5.5. Hand-spotted experiments on rat brain tissue comparing tryptic digestion in a buffer 

solution with tryptic digestion in the ionic matrix. (a) A control experiment where only CHCA-

DIEA was deposited without any trypsin. (b) Trypsin was deposited and after incubation matrix 

was spotted. (c) One-step process where trypsin and matrix were deposited simultaneously. After 

incubation, the slide was immersed in 10% TFA. In all cases, 1 µL solution was used, and 

digestion was conducted at 37 °C for 2 h. Serial sections of rat brain were used, and the solution 

was deposited in the similar area of the brain. Same concentration of trypsin was utilized in both 

(b) and (c).  
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CHAPTER 6.  PRE-COATED SURFACES FOR PROTEIN DIGESTION 

AND PEPTIDE IMAGING 

6.1. Introduction 

Matrix-assisted laser desorption/ ionization imaging mass spectrometry (MALDI-IMS) is 

a powerful technology in biological research enabling imaging of biomolecules within thin tissue 

specimens. In a typical experiment, a thin tissue (3-12 um) is cryosectioned and placed on a 

conductive substrate. The tissue section is washed to remove salts and unwanted species, and 

then coated with a MALDI matrix that is typically a small organic molecule. The matrix aids in 

the desorption and ionization of the analytes. Analysis is performed by scanning a laser across 

the tissue section, acquiring mass spectral data at each defined x, y position. Two-dimensional 

maps of molecular distributions are generated from the spectral intensity for ions of interest 

across the sample. 

In a typical MALDI imaging experiment, signals from proteins up to 25 kDa in molecular 

weight can be obtained directly from a tissue sample. Larger proteins are difficult to detect as the 

detection efficiency of a microchannel plate detector declines as the mass of the ion increases.
66

 

Additionally, larger proteins are difficult to solubilize and incorporate into the matrix crystals.
67

 

This limitation precludes the observation of higher molecular weight biological species such as 

cytokines, growth factors, enzymes, receptors, and other biomolecules. Specific sample 

preparation methods have been developed to detect proteins up to 70 kDa in mass. These include 

the application of ferulic acid as a matrix and use of Triton X-100 and xylene to solubilize large 
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proteins.
68-69

 Due to inherent limitations in detection and ion optics, such large proteins are 

difficult to detect on a routine basis.
70

 

An approach for measuring the distribution of large proteins (>25 kDa) in a tissue sample 

by MALDI-IMS involves their in situ tryptic digestion and subsequent MS imaging of generated 

fragments.
55

 In this approach, trypsin is serially spotted onto a tissue section to digest the 

proteins. Robotic spotters are used to control the digestion conditions, and in a second step, spot 

matrix on top of these individual regions. These post-coating methods have been used for the 

analysis of both formalin-fixed
56, 71

  and fresh-frozen tissues.
55

 The advantages of this in situ 

digestion process include an on-tissue identification of proteins and a preservation of their spatial 

localization in contrast to LC-MS/MS approaches that are done on tissue homogenates where 

spatial information is limited. Further, the on-tissue analysis provides spatial distributions for the 

parent proteins and their daughter peptides that can be co-related and provide further verification 

in the identification. Despite these advantages, its use is challenged by a cumbersome process 

whereby sequentially spotting of matrix and trypsin onto a tissue sample can take hours for each 

tissue specimen. In addition, the robotic spotters needed for trypsin deposition are costly, and 

their spatial resolution is limited to 200-300 µm. 

As an alternative to current post-tissue processing methods for MALDI-IMS, we are 

developing approaches that incorporate species such as matrix and enzymes onto targets prior to 

tissue availability. The goal is to simplify tissue preparation for MALDI-IMS and avoid time-

consuming post-tissue deposition steps and the need for costly specialized equipment.  In our lab, 

previous work has shown that matrix pre-coated targets can provide simple, standardized, and 

rapid methods for sample preparation. Grove et al. used pre-coated targets consisted of thin 

matrix films for the imaging of small molecules across a series of tissue sections.
72

 Yang et al. 
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demonstrated the successful imaging of lipid and protein distributions in brain and kidney tissues 

using such pre-coated slides.
73-74

 In this work, we detail the development of targets pre-coated 

with both an enzyme and matrix and their use for the indirect imaging of large proteins from 

generated tryptic fragments on frozen tissue samples.  

The approach involves the sequential coating of an ITO slide with a matrix and trypsin 

using a robotic sprayer in advance of the tissue availability. Onto the pre-coated slide, a thin (3-4 

µm) section of frozen tissue is then thaw-mounted directly. The slide is placed in a chamber 

saturated with diisopropylethylamine and water to allow the acidic matrix (CHCA) to convert 

into an ionic liquid. This conversion provides a suitable pH and liquid environment for tryptic 

digestion. The slide is then rinsed with a strong acid to return the CHCA matrix to its solid form.  

Peptides fragments generated during the trypsin digestion are then imaged directly from the slide 

using MALDI-IMS. Here we demonstrate the ability of matrix and trypsin pre-coated targets to 

digest proteins in rat brain samples and show the co-localization of generated daughter peptides 

as confirmation of the method. 

6.2. Experimental Section 

Materials 

Acetonitrile (ACN), trifluoroacetic acid (TFA), α-cyano-4-hydroxycinnamic acid 

(CHCA), diisopropylethylamine (DIEA), trypsin from bovine pancreas, and cytochrome c from 

the equine heart were purchased from Sigma-Aldrich (St. Louis, MO). Conductive indium tin 

oxide (ITO)-coated microscope slides were purchased from Delta Technologies (Loveland, CO). 

Frozen rat brain was obtained from Pel-Freez (Rogers, AR) and stored at −80°C. 

Digestion of Protein Standard 
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A test solution of ionic matrix consisting of 50 µM CHCA and 100 µM DIEA was 

prepared in water. Cytochrome C and trypsin at 10 µM and 0.5 µM, respectively, were added to 

allow digestion. After incubation for 24 h at 37 °C, 1 µL of the solution was spotted onto a 

MALDI target. Cold 10% TFA in water (0 °C) was spotted onto sample to convert the ionic 

matrix into its crystalline form. After 1 min of contact, the acid solution was decanted, and the 

MALDI plate was dried in a desiccator prior to analysis using a Bruker Ultraflextreme MALDI-

TOF in reflectron mode.  

Slide Fabrication 

Matrix and trypsin are sequentially spray-coated on an ITO-coated glass slide using a 

HTX TM Sprayer (HTX Technologies, LLC, Chapel Hill, NC). CHCA was dissolved in a 9:1 

acetonitrile:water solution at 10 mg/mL. To deposit the matrix, the sprayer was operated at a 0.2 

mL/min flow rate using a HPLC pump, a 2 mm track spacing, a 1000 mm/min nozzle velocity, a 

70 °C nozzle temperature, a 6 psig nebulizer pressure, and 90% ACN as a pushing solvent. The 

number of passes was varied between 10 to 20 to control the thickness of the matrix coating. 

In a second step, trypsin as a 2 mg/mL solution in water was sprayed on top of the matrix 

coating. A syringe pump was used to accommodate the flow rate of 30 µL/min used for trypsin 

deposition. The sprayer conditions were 2 mm track spacing, 1000 mm/min nozzle velocity, 30 

°C nozzle temperature, 6 psig nebulizer pressure, and water as a pushing solvent. The number of 

passes was varied between 4 to 12 to control the density of trypsin. 

Tissue Mounting 

Frozen rat brain tissue was sectioned to 4 µm at -20 °C using a Leica CM 3050S cryostat 

(Leica Microsystems GmbH, Wetzlar, Germany). A pre-coated slide in the cryostat chamber was 
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warmed for 2 s using a finger and placed directly on top of the sectioned tissue. The tissue 

adhered to the slightly warmer slide in preference to the cold metal plate. The tissue was then 

thaw-mounted on the slide using thermal energy from the finger. 

In situ Tryptic digestion 

The mounted tissue section was placed in a chamber saturated with 

diisopropylethylamine for 5 min to convert CHCA into its ionic liquid form. After conversion, 

the slide was placed in a plastic petri dish, sealed with tape, and kept in an oven for 3-16 h at 37 

℃. After cooling to room temperature, the slide was immersed in a solution of 10% TFA at 0 ℃ 

for 1 min to return the matrix to its crystalline form. The slide was dried in a desiccator before 

MALDI analysis. 

MALDI IMS 

Imaging experiments were performed using a 15T Bruker MALDI FTICR mass 

spectrometer (Bruker Daltonics, Billerica, MA, USA). The instrument is equipped with an 

Apollo II dual MALDI/ESI ion source and a Smartbeam II 2 kHz Nd:YAG (355 nm) laser. All 

images were collected using the small laser setting (~50 µm) with a pixel spacing of 100 µm in 

both x and y directions. Data were collected from m/z of 500 to 4000 with a resolving power of 

130,000 at 1000 m/z. External calibration was performed prior to analysis using CsI clusters. 

FlexImaging 5.0 (Bruker Daltonics) was used to visualize ion images.  

In-gel tissue extraction and LC-MS analysis 

Polyacrylamide hydrogels were fabricated using the procedures described by Harris et al. 

and Taverna et al. 
75-76

 A cylindrical piece of polyacrylamide gel measuring 2 mm in diameter 
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and 2 mm in height was loaded with trypsin and placed onto the cerebellum region of a brain 

tissue section for 4 h. The gel was removed from the tissue and placed in an Eppendorf tube into 

which an extracting solution containing 50% ACN and 5% formic acid was pipetted to fully 

cover the hydrogel. After 15 min of gentle agitation, the solution was collected and replaced by a 

100 mM ammonium bicarbonate solution. The Eppendorf tube was agitated for 15 min to re-

swell the gel. This process of extraction and re-swelling was repeated 2 additional times. The 

extracts were dried down and reconstituted in 0.1% formic acid. The solution was analyzed using 

LC-MS/MS, and the results were analyzed using Scaffold 4.2.1(Proteome Software, Portland, 

Oregon). 

Identification of tryptic peptides 

Using the results from LC-MS/MS experiment, 20 most abundant proteins in the tissue sample 

were found based on unique spectra count. For each of the abundant proteins, tryptic peptide 

sequences were generated allowing for up to 2 missed cleavages using Mmass. Peak picking 

from FTICR average spectrum was performed in Mmass software, and this peak list was 

compared to the tryptic peptides list based on accurate mass allowing for up to 5 ppm error. Ion 

images were generated for selected matched peptides.  

6.3. Results and Discussion 

6.3.1. Fabrication and Application of the Pre-coated Slides 

The advantage of pre-coated slides is that the matrix and enzyme can be applied prior to 

tissue. The slides can be prepared in batches and many samples prepared in a single experiment. 

In a typical preparation, matrix and trypsin were sequentially spray-coated onto an ITO-coated 

glass slide in two steps using a HTX TM Sprayer as shown schematically in Figure 6.1(a). 
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Typical CHCA and trypsin densities were ~0.35 mg/cm
2
 and 30 µg/cm

2
, respectively. Peptide 

signals from tissue samples were significantly lower when the enzyme and matrix were mixed 

and sprayed in one step compared to the case where enzyme and matrix were sprayed 

sequentially.  

The amount of expected CHCA deposited on a slide was calculated based on 

instrumental conditions using the equation below: 

𝑀𝑎𝑠𝑠 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑒𝑑 =
 # 𝑜𝑓 𝑝𝑎𝑠𝑠𝑒𝑠 𝑥 𝑐𝑜𝑛𝑐.𝑥 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑡𝑟𝑎𝑐𝑘 𝑠𝑝𝑎𝑐𝑖𝑛𝑔 𝑥 𝑠𝑡𝑎𝑔𝑒 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦
      (6.1) 

In practice, a fraction of the aerosolized matrix was deposited away from the slide. Table 

6-1 compares the ratio of actual coverage of CHCA with that calculated using eq 6.1. The ratio 

of the actual and calculated coverages is defined as deposition efficiency. The deposition 

efficiency of the matrix application depended on both the nozzle temperature and the nebulizing 

pressure.  The efficiency of the process increases from 44% to 74% as the pressure is reduced 

from 13 psig to 6 psig while the temperature is kept constant at 30 °C (cases 1 and 2). Again, the 

efficiency improves from 35% to 47% as the pressure is reduced from 13 psig to 10 psig while 

the temperature is kept constant at 70 °C (cases 3 and 4). As the nozzle temperature was 

increased from 30 °C to 70 °C while the pressure was kept constant at 13 psig, the efficiency of 

the process was reduced from 44% to 35%. Thus, lower temperature and pressure result in  high 

efficiency. 

Lower pressure and temperature resulted in wet spraying conditions which lead to 

inhomogeneous coating, particularly large crystal size. Due to a tradeoff between high efficiency 

and the homogeneity of the coating, a moderate pressure and temperature must be used. In 
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particular, a temperature of 70 °C and a pressure of 10 psig produced a homogenous coating with 

modest efficiency. 

Table 6-1. Comparison of actual matrix density with calculated density for spray-coated slides. 

The ratio of actual and calculated density is defined as deposition efficiency. Flow rate was 0.2 

mL/min in all cases. 

Temp. 

(°C) 

Pressure 

(psig) 

Deposition 

Efficiency 

30 13 44% 

30 6 74% 

70 13 35% 

70 10 47% 

 

The use of a pre-coated slide for tissue analysis is shown schematically in Figure 6.1(b). 

A thin tissue section was sectioned and thaw-mounted directly on top of a pre-coated slide. The 

slide was then placed in a chamber saturated with DIEA and water (5 min) during which the 

matrix turned into yellowish viscous liquid. After conversion to an ionic liquid, the slide was 

incubated in a sealed petri dish at 37 °C. Tryptic peptides were observed using incubation time as 

short as 3 hours; however, overnight incubation yielded greater extent of digestion as evidenced 

by greater signal intensities. After incubation, the slide was immersed in cold (~0 °C) 10% TFA 

for 1 min to remove DIEA and return CHCA to its crystalline state.  
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Figure 6.1. (a) Matrix and trypsin are sequentially sprayed onto a conductive substrate (b) 

General procedure for preparing a tissue sample for analysis using a pre-coated slide. The tissue 

sample is placed onto a pre-coated slide. It is hydrated by exposure to DIEA and water and then 

incubated in a sealed chamber for 3 to 16 h at 37 °C. Immersion in 10% TFA for 1 min returns 

the matrix to its crystalline form. 

6.3.2. Effect of Matrix Concentration on the Peptide Spectra 

Yang et al. found that matrix density on a pre-coated substrate affected the signal 

intensities for both proteins and lipids. For proteins, 1.1 mg/cm
2
 or higher densities provided a 

good signal, but slides with lower matrix densities had reduced performance. For lipids, optimal 

matrix density was 0.3-0.4 mg/cm
2
. Since peptides have mass ranges between proteins and 

lipids, we expected the optimal density to be between 0.3-1 mg/cm
2
.  In our experiments, CHCA 

concentrations in that range were examined as shown in Figure 6.2. Trypsin concentration was 

held constant at 15 µg/cm
2
 and 4 µm thick rat brain sections were used in all three cases. Strong 

lipid signals between m/z 600-800 were observed for all three conditions. We were particularly 

interested in peptide signals between 900-3000 Da. We found that concentration between 0.3 – 
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0.4 mg/cm
2
 provided the best peptide signals. Further reduction in matrix concentration was not 

feasible as the coverage becomes incomplete after conversion to the crystalline matrix. We 

hypothesize that the additional matrix reduces the effective trypsin concentration and thus lowers 

peptide signals. Alternatively, the thicker coatings are not fully converted to ionic matrix after 5 

minutes causing non-optimal pH for digestion.  

 

Figure 6.2. Effect of matrix concentration on peptide signal from rat brain tissue. Trypsin 

concentration was 15 µg/cm
2
 in each case, and the tissue thickness was 4 µm. Digestion was 

done for 3 h at 37 °C. Data were collected on Bruker Rapiflex MALDI-TOF. 
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6.3.3. Effect of Trypsin Concentration on Peptide Signal 

The amount of trypsin is an important parameter in controlling the rate and extent of 

digestion. Previous studies employing robotic spotters to deposit matrix and trypsin on tissue 

samples found that the optimal trypsin concentration was in the range 2 – 5 µg/cm
2
.
77

 Multiple 

passes of trypsin spotting were employed to enable optimal extraction. Since repeated extraction 

is not possible with pre-coated slides, we anticipated that higher concentration of trypsin would 

be needed. To address this issue, we investigated a range of enzyme concentrations from 0 to 30 

µg/cm
2
, where the matrix density (0.37 mg/cm

2
) and digestion conditions (4 h at 37 °C) were 

held constant. Representative average spectra in Figure 6.3 show the changes effected by trypsin 

concentration. Without any enzyme, some signals are seen on m/z values between 700 and 900 

Da that correspond to lipids. The strongest signals in the spectrum are from lipid dimers and 

appear between 1400 and 1700. As the trypsin concentration was increased from 0 to 30 µg/cm
2
, 

the relative intensity of the lipid dimers decreased in the spectra. This decrease is due to an 

increased intensity of other signals from generated peptides. In the spectra, the peptide signals 

were strongest with an enzyme concentration of 30 µg/cm
2
, although a trypsin concentration of 

15 µg/cm
2 

also yielded good signal. Increases in trypsin concentration above 30 µg/cm
2 

are not 

recommended due to disproportionate increases in signals due to autolysis signals that 

complicate measurement of peptide signals from tissue.  
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Figure 6.3. Effect of trypsin concentration on mass spectra obtained from rat brain tissue 

sections prepared using the pre-coated slides. Trypsin densities at the surface were: 0 µg/cm
2
, 3 

µg/cm
2
, 15 µg/cm

2
, and 30 µg/cm

2
; CHCA density was 0.37 mg/cm

2
. Digestions were conducted 

at 37 °C for 4 h. 
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6.3.4. Optimizing Hydration Time On-Tissue 

The pre-coated slides are inserted in a glass container that is saturated with DIEA vapor 

to convert the acidic matrix to ionic matrix. The extent of conversion is directly dependent on the 

time in the hydration chamber. If the hydration time is too short, then the pH is likely acidic 

preventing activation of trypsin. If the hydration time is too long, the peptides may delocalize 

reducing the spatial resolution. Slides were placed in hydration chamber for a time ranging from 

1 to 15 min to determine the optimal hydration time. Figure 6.4 shows the optical images for 

each condition after 20 hours of digestion with a 4 µm tissue section. After 1 min of hydration, 

the top layer of the matrix is converted to ionic liquid while the majority of the matrix remains in 

the crystalline form. The optical image shows dark tissue on top of the matrix coating. As the 

time of hydration increases, greater fraction of the crystalline matrix is converted into the ionic 

liquid promoting greater mixing between the tissue and the liquid. In the presence of ionic liquid, 

the tissue appears more transparent.   
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Figure 6.4. Optical images of the serial rat brain tissue sections after hydration for different 

lengths of time. 

Figure 6.5 shows the mass spectrum for each of the conditions acquired using a MALDI-

TOF/TOF instrument. After 1 min of hydration, very few peaks are observed. After 5 min, 

significantly more peaks were observed between m/z 800-4000. After 10 min, the peak intensity 

increased further for some of the peptides. We compared the relative ion intensity of tryptic 

peptides from myelin basic protein to make a more detailed comparison. The results are shown in 

Table 6-2 for 5 min and 10 min hydration. For the four selected peptides, 10 min hydration 

yields higher signal-to-noise ratio. In particular, for m/z at 1502.77 and 2141.08, the signal-to-

noise ratio was about 3 times greater for the 10 min hydration relative to 5 min hydration. Based 

on the spectral quality and the tabulated data, we can conclude that 1 min hydration provided 
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minimal digestion, and 10 min hydration yielded greater extent of digestion relative to 5 min 

hydration. 

 

Figure 6.5. Mass spectra acquired from rat brain tissue sections using the pre-coated slides after 

hydration for different lengths of time. 
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Table 6-2. Tryptic fragments of myelin basic protein. 

5 min 10 min 

m/z S/N, m/z S/N, 10  min 

861.44 4.6 1019.55 5.2 

1502.77 8.8 1502.77 25.8 

2141.08 6.1 2141.11 22.6 

2933.50 4.9 2933.50 4.1 

 

Figure 6.6 compares the spatial localization after 5 min and 10 min hydration of the tissue 

section. The finger-like structures in the cerebellum region of the brain are well defined for 5 

min hydration. However, for 10 min hydration, these structures have poor localization. Thus, 5 

min hydration provides a good balance between localization and extent of digestion.  
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Figure 6.6. Tryptic peptides of myelin basic protein imaged directly from serial rat brain tissue 

sections after 5 min (a) and 10 min (b) of hydration. Hydration was conducted in a chamber 

saturated with DIEA and water. 



135 

 

6.3.5. Hydration During Incubation 

In a conventional post-coated experiment, moist conditions are used within the incubation 

chamber. A wet paper towel is typically included to provide a source of moisture. For pre-coated 

slides, experiments with and without water in the incubation chamber were conducted. In one 

experiment, a dry incubation was used, and the temperature was maintained at 37 °C. In the 

second experiment, same incubation conditions were used except that 2 mL of water was spotted 

on a wet paper towel. The slide placed in wet incubation chamber looked visibly wet after 

removal from oven.  

Figure 6.7 compares the average mass spectra for both cases. The spectrum 

corresponding to the dry incubation was dominated by lipid signals. Peptide signal was only 

observed when the spectrum was enlarged as shown in the inset. The spectrum corresponding to 

a wet incubation chamber showed significantly more peptides without any zoom indicating that 

the relative concentration of tryptic peptides was much higher.  
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Figure 6.7. Average mass spectra acquired from serial rat brain tissues sections. (a) Digestion 

was conducted in a dry incubation chamber. (b) Digest was conducted in a wet incubation 

chamber.  

Figure 6.8 compares peptide localization between the two experiments. Dry incubation 

showed nice localization for tryptic fragments corresponding to myelin basic protein. Ion images 

were also plotted for experiments with wet incubation chamber at the same m/z. Wet incubation 

showed no discernible localization. Thus, while wet incubation shows higher quality spectrum it 

causes extensive delocalization and is not recommended 
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Figure 6.8. Comparison of spatial localization in experiments done in dry vs. wet incubation 

chamber. (a) Ion images show clear localization (b) Extensive delocalization is observed. 

6.3.6. FTICR Imaging of Coronal Section of Rat Brain 

Once the feasibility of the digestion in the ionic matrix was established, and the optimal 

trypsin and matrix densities were determined, the usefulness of these pre-coated substrates for 

MALDI IMS was demonstrated using rat brain tissue. The rat brain tissue section was cut at 4 

µm and prepared using the procedure described in Figure 6.1. The digestion was conducted for 4 

h at 37 °C. Analysis by MALDI FTICR generated hundreds of signals in 1000-5000 m/z range as 

shown in Figure 6.9. The mass resolution was 130,000 at m/z of 1000. Many of the detected 

signals were matched to tryptic fragments of the proteins found in rat brain using LC-MS/MS 

analysis.  

Myelin basic protein, essential in the formation of central nervous system and neuronal 

transmission, was identified using this method.
78

 The major isoform in adult rat brains has been 

reported to have a molecular weight of 14.2 kDa. Theoretical tryptic peptides of 14.2 kDa 
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isoform of myelin basic protein were generated in mMass software. Comparison of the 

experimental peaks in the average spectrum with the calculated masses yielded 13 matches 

within 1 ppm. Ion images corresponding to all of those peaks show co-localization providing 

further verification in the identification. Selected images are shown in Figure 6.10. These images 

indicate that the myelin basic protein is localized in corpus callosum and thalamus. A similar 

distribution was observed in the previous study.
55

 

PEP-19 and neurogranin were also identified using a similar procedure of mass matching. 

Figure 6.11 shows that neurogranin is localized in the cerebral cortex and hippocampal region. 

PEP-19 is localized with high intensity in the thalamus and with reduced intensity in the cerebral 

cortex. These distributions are in agreement with the previous study.
79

 Table 6-3 includes the 

data for these three proteins. The highest error observed in any of these matches was 1.3 ppm 

suggesting a high level of confidence in our identifications.   
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Figure 6.9. Average spectrum acquired from rat brain tissue section using the pre-coated slide. 

Tissue thickness was 4 µm and digestion was conducted for 4 h at 37 °C. The spectrum shows 

hundreds of signals are detected. The insets demonstrate the high resolution of the detected 

signals. 
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Figure 6.10. Selected ion images for tryptic fragments of 14.2 kDa isoform of myelin basic 

protein. Rat brain tissue section was prepared using pre-coated approach and the data were 

acquired using 15 T MALDI-FTICR instrument. The images were acquired at 100 µm spatial 

resolution. All nine signals were matched to theoretical masses within 1 ppm.  
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Figure 6.11. Tryptic fragments from a rat brain tissue section are displayed for (a) Neurogranin 

(7.5 kDa) and (b) PEP-19 (6.8 kDa). Neurogranin is localized in the cerebral cortex and 

hippocampal region of the brain. PEP-19 is localized in the thalamus and the cerebral cortex. 

 

 

 

 

 

 

 

 

 



142 

 

Table 6-3. List of proteins detected in a coronal rat brain section, including molecular weight of 

intact protein (MW), the MW for observed tryptic peptides, and the sequence determined using 

accurate mass matching. 

Protein detected in the tissue 

Tryptic peptides from In Situ Digest 

[M + H]+
exp [M + H]+

cal ppm Sequence 

Myelin Basic Protein (14.2 kDa) 

    

 

861.4358 861.4360 -0.2 r.SGSPMARR. 

 

1019.5651 1019.5646 0.5 r.HGFLPRHR.d 

 

1067.5023 1067.5017 0.6 r.FSWGGRDSR.s 

 

1336.6318 1336.6314 0.3 k.YLATASTMDHAR.h 

 

1460.7168 1460.7169 -0.1 r.TQDENPVVHFFK.n 

 

1502.7709 1502.7710 -0.1 r.TTHYGSLPQKSQR.t 

 

1745.8385 1745.8388 -0.1 r.HGSKYLATASTMDHAR.h 

 

1755.8643 1755.8660 -1.0 r.DTGILDSIGRFFSGDR.g 

 

2141.1123 2141.1138 -0.7 r.TQDENPVVHFFKNIVTPR.t 

Neurogranin (7.5 kDa) 

    

 

1064.5233 1064.5232 0.1 k.GPGPGGPGGAGGAR.g 

 

1192.6200 1192.6181 1.5 r.KGPGPGGPGGAGGAR.g 

PEP-19 (6.8 kDa) 

    

 

1923.8266 1923.8277 -0.6 k.VQEEFDIDMDAPETER.a 

 

2051.9231 2051.9226 0.2 k.KVQEEFDIDMDAPETER.a 

 

6.3.7. FTICR Imaging of Horizontal Section of Rat Brain 

A horizontal rat brain section was also prepared using the pre-coated approach. Figure 8 

shows the obtained ion images. Image data were collected at a spatial resolution of 100 µm 

(pixel spacing) with ~16,000 pixels. Even at this modest resolution, substructures within the 

brain (white matter and molecular layer) are clearly resolved. To minimize interferences from 
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overlapping isotopic patterns, images were plotted by selecting only the highest intensity isotope 

for each peptide. All peptides corresponding to the same protein show co-localization. Myelin 

basic protein was localized in the corpus callosum and the white matter in the cerebellum region. 

Neurogranin is present in the cerebral cortex and absent from the cerebellum region. Brain acid 

soluble protein 1 was localized fairly uniformly in the brain except for cerebellum region. 

Myristoylated alanine-rich C-kinase substrate was present in high concentration in the molecular 

layer and in lower concentration in the cerebral cortex and the thalamus. It was absent from the 

white matter and the corpus callosum.   

 

Figure 6.12. MALDI ion images of horizontal rat brain tissue section. (a) Serial section stained 

using hematoxylin and eosin (H&E). Peptides corresponding to (b) Myelin basic protein (c) 

Neurogranin (d) Brain acid soluble protein 1 (e) Myristoylated alanine-rich C-kinase substrate (f) 

Spectrin alpha chain, non-erythrocytic 1. Digestion was conducted at 37 °C for 15 h.  
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Table 6-4. List of proteins detected in a horizontal rat brain section, including molecular weight 

of intact protein (MW), the MW for observed tryptic peptides, and the sequence determined 

using accurate mass matching. 

Protein detected in the tissue 

Tryptic peptides from In Situ Digest 

[M + H]+
exp [M + H]+

cal ppm Sequence 

Myelin Basic Protein (21.5 kDa) 

    

 

1081.5472 1081.5425 4.4 r.FFSGDRGAPK.r 

 

1502.7742 1502.7710 2.1 r.TTHYGSLPQKSQR.t 

 

1745.8407 1745.8388 1.1 r.HGSKYLATASTMDHAR.h 

 

2141.1096 2141.1138 -2.0 r.TQDENPVVHFFKNIVTPR.t 

 

2933.5194 

 

2933.5268 

 

-2.5 

 

r.TQDENPVVHFFKNIVTPRTPPPSQGK.g 

 

Neurogranin (7.5 kDa) 1192.6125 1192.6181 -4.7 r.KGPGPGGPGGAGGAR.g 

 

1781.8427 1781.8460 -1.9 k.SGECGRKGPGPGGPGGAGGAR.g 

 

1904.8947 1904.8958 -0.6 r.KGPGPGGPGGAGGARGGAGGGPSGD. 

Brain Acid Soluble Protein 1 

(21.8 kDa)     

 2132.9216 2132.9214 0.1 k.AGEASAESTGAADGAPQEEGEAK.k 

 2673.3394 2673.3366 1.1 k.APAPAAPAAEPQAEAPVASSEQSVAVKE. 

 3011.3897 3011.3865 1.1 k.SEGAAEEQPEPAPAPEQEAAAPGPAAGGEAPK.a 

 3283.5230 3283.5197 1.0 k.AGEASAESTGAADGAPQEEGEAKKTEAPAAGPEAK.s 

 3565.6542 3565.6565 -0.6 k.AEPEKSEGAAEEQPEPAPAPEQEAAAPGPAAGGEAPK.a 

Myristoylated Alanine-rich C-

Kinase Substrate (29.8 kDa) 

    

 

2432.0937 2432.0848 3.6 r.EAEAAEPEQPEQPEQPAAEEPR.a 

 2799.2164 2799.2048 4.1 k.DEAAAAAGGDAAAAPGEQAGGAGAEGAEGGESR.e 

 

3558.6081 3558.5991 2.6 r.EAEAAEPEQPEQPEQPAAEEPRAEEPSEAVGEK.a 

Spectrin Alpha Chain,  

Non-erythrocytic 1 (284 kDa)      

 1676.7818 1676.7762 3.3 k.HEDFEKSLSAQEEK.i 

 1774.8493 1774.8541 -2.7 k.LIQNNHYAMEDVATR.r 

 2271.1482 2271.1490 -0.3 k.HQKHQAFEAELHANADRIR.g 
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6.3.8. Imaging Lipids Using the Pre-coated Slides 

In a typical post-coated preparation for protein or peptide analysis, organic washes are 

typically used to remove lipids.
21

 After these organic washes, lipids signals in the mass spectrum 

are greatly reduced. Since no organic washes are utilized in the pre-coated approach, lipid signals 

can also be detected along with the peptides. Figure 6.13 shows selected ion images for major 

lipids found in rat brain. Tentative identifications based on mass accuracy are also listed. These 

lipids have been previously identified in our lab.  

 

Figure 6.13. Lipid ion images acquired simultaneously using the pre-coated slides for a rat brain 

tissue section. Tentative identifications were based on mass accuracy.  

6.3.9. Storage Conditions 

Ideally, trypsin pre-coated slides would be prepared in batches and used as needed. Thus, 

it is important to establish the performance of trypsin pre-coated slides after storage. The slides 

were stored at 4 ℃ for 6 months and 18 months, and their performance was compared with a 

freshly prepared slide. In all three cases, standard preparation protocol was employed including 4 

µm tissue thickness, 5 min hydration, incubation at 37 ℃ overnight (~16 h) and 10% TFA rinse. 

Figure 6.14 compares the mass spectra generated from each of the three slides using serial rat 

brain tissue sections. Since the data for these slides was acquired separately, the absolute ion 



146 

 

intensity is not directly comparable. However, relative ion intensity can be compared by 

examining the peptide signals between m/z 1700-4000 and the broad lipid peaks around m/z 800 

and 1500. In the case of freshly prepared slides, the peptide signal was relatively strong between 

1700-4000. For 6- and 18-month-old slides, the signal was dominated by lipid peaks although 

some peptides were seen. Thus, we conclude that the performance of the stored slides was 

reduced after storage.  
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Figure 6.14. Average mass spectra acquired from serial rat brain tissue sections using a freshly 

prepared pre-coated slide, a 6-month-old slide, and a 8-month-old slide. Serial rat brain tissue 

sections were mounted on the pre-coated slides and incubated overnight at 37 °C. The relative 

amount of lipid and peptide signal are compared to evaluate the overall performance. Lipid 

signals are located at m/z 600-750 and 1450-1600. Peptide signals appear between m/z 1600 – 

4000, although some peptides signals are interspersed with the lipid signals. The relative amount 

of peptide signal is highest in the freshly prepared slides and is lower in the 6- and 18-month-old 

slides. 

 

 

Figure 6.15 compares the ion images obtained from the three slides. Most abundant 

tryptic fragments of myelin basic protein from each experiment are chosen. Freshly prepared 

slides performed the best with crisp ion images and clear spatial localization, especially in the 

cerebellum region. For 6- and 18-month-old slides, the quality of the ion images deteriorated in 

two aspects. First, the ion images were noisier for older slides. Secondly, the finger-like 

structures in the cerebellum region were poorly defined.  
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Figure 6.15. Ion images of myelin basic protein acquired using a freshly prepared pre-coated 

slide are compared with those obtained using slides stored for 6 months and 18 months. Serial rat 

brain tissue sections were mounted onto the pre-coated slides and incubated overnight at 37 °C. 

Ion images corresponding to tryptic fragments of myelin basic protein are shown here. Freshly 

prepared slides show higher quality images and the finger-like structures in the cerebellum 

regions are fully resolved. Older slides show noisier images and finger-like structures are poorly 

resolved.  
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Table 6-5 compares the signal-to-noise (S/N) ratio for the three data sets of tryptic 

fragments of myelin basic protein. We find that the S/N ratio was between 200 and 700 for a 

freshly prepared slide. For a 6-month slides, the S/N ratio is below 100 except for the m/z of 

2141.109. For a 18-month-slide, the S/N ratio was even lower ranging between 10 – 70.  

Table 6-5. Comparison of signal-to-noise ratio for three sets of slides 

Myelin Basic Protein 

m/z S/N, Fresh 

 

m/z S/N, 6 months 

 

m/z S/N,18 months 

1081.548 280.3 

 

1019.567 31.9 

 

861.436 61.2 

1502.771 589.4 

 

1336.625 34.3 

 

1013.590 13.3 

1745.839 249.2 

 

2141.109 575.0 

 

1502.771 33.8 

2141.112 703.9 

 

2370.187 79.4 

 

1745.839 15.6 

2933.516 205.8 

 

2453.229 19.6 

 

2141.112 25.9 

 

6.3.10. Development of Microarrays to Minimize Analyte Delocalization 

As discussed in section 6.3.4., hydration of the tissue can induce analyte delocalization 

causing a loss in spatial information of biomolecules. Matrix microarrays have been fabricated 

using the lithographic procedures described in Chapter 3 to minimize delocalization of analytes. 

Figure 6.16 illustrates the employed workflow using arrayed targets. Trypsin was manually 

sprayed onto the matrix array, and thin tissue sections (3- 5 µm) were thaw-mounted on this 

slide. After the tissue was mounted, the slide was placed in a chamber saturated with DIEA and 

water for 2 min. The acidic matrix absorbed the amine forming an ionic matrix. After digestion 

for 2 h at 37 °C, the slide is rinsed with 2% TFA to remove the DIEA and recast the matrix as 

crystals.  
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Figure 6.16. Workflow for on-tissue digestion and peptide imaging. 

After the rinsing step, the sample was ready to be analyzed using mass spectrometry. 

Using this approach, we imaged the coronal section of the rat brain using a Bruker Daltonics 

Autoflex Speed MALDI-TOF. Fig 6.17 shows the obtained imaging results. Ion images 

corresponding m/z of 789.0 and 793.7 show high intensity in the corpus callosum region whereas 

ion images corresponding m/z of 862 and 1857 show localization in the thalamus. 

 

Figure 6.17. Peptide imaging of a coronal section of rat brain using a pre-coated array 

containing both matrix and trypsin. The right half of the tissue section was imaged. The average 

spectrum is shown on the right.  

The results in Figure 6.17 are a promising start towards the development of and 

application of microarray slides, but a direct comparison with homogeneous targets is yet to be 

done. Additionally, microarray technology requires alignment of the laser with the matrix spots. 

Figure 6.18 illustrates this problem. The middle figure shows the optical image of the target after 

laser interrogation. The top zoomed-in inset indicates that the laser ablation crater is aligned with 

the matrix spot generating an optimal signal. However, the lower inset indicates that laser 
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ablation was at the edge of matrix spot generating a non-optimal signal. At 100 µm pitch 

distance, rotational and translational alignment of the laser with matrix spots becomes 

challenging. Presently, the FlexImaging software only allows for step size adjustment in 

increments of 1 µm and does not allow for rotational adjustment which is dictated by teaching 

points. Thus, for this approach to work modifications need to be made to the software acquisition 

system 

 

Figure 6.18. The challenge of aligning laser with matrix array. The middle figure shows the 

optimal image of the arrayed target after MALDI analysis. The laser ablation craters are 

superimposed on top of the matrix spots. The top inset indicates that the laser spot is aligned with 

the matrix spot in certain locations. The bottom inset indicates that in certain locations ablation 

craters and matrix spots are misaligned. 
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6.4. Conclusions 

Matrix and trypsin pre-coated slides provide a simple approach to image proteins and 

lipids within biological tissues. The pre-coated method reduces the burden of sample preparation 

from the end user and allows faster sample preparation. The pre-coated slides could be stored in 

a freezer and can be used to prepare multiple tissue samples at the same time. The tissues are 

simply mounted on the pre-coated substrate, hydrated and then incubated in the oven.  

The molecular information can be identified by linking MALDI imaging data to LC-

MS/MS using accurate mass. The co-localization of peptides coming from the same parent 

protein provides additional verification in the identification. Some large proteins were identified 

using MALDI-IMS including myristoylated alanine-rich C-kinase substrate (29.8 kDa) and 

spectrin alpha chain, non-erythrocytic 1 (284 kDa).    

One challenge to the pre-coated methodology is that the tissue section cannot be washed 

after mounting onto the pre-coated slides as that might dissolve the trypsin and matrix coating. 

Thus, peptide sensitivity is reduced due to the presence of lipids. The advantage here is that 

lipids can also be imaged in addition to peptides on the same tissue section. Future approaches 

may investigate washing lipids from the tissue immediately after extraction from the animal and 

before freezing.  
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CHAPTER 7.  CONCLUSIONS AND PERSPECTIVES 

7.1. Development of Standard Reticle Slide 

The first major accomplishment of this work was the development of a standard reticle 

pattern for quantifying spatial resolution in MALDI-IMS. Lithographic techniques were used to 

fabricate stamps with features ranging between 25 and 200 µm in size. High-throughput 

patterning methods were developed to shape hydrophobic and polar dyes into a specified pattern. 

A single SU-8 master was used to produce tens of PDMS stamps, and each stamp was used more 

than 20 times for functionalizing gold surfaces making this process inexpensive. Self-assembly 

process to form the crystal violet pattern is rapid; the process of contact printing and self-

assembly was completed in less than 5 min.  

In addition to a MALDI-compatible pattern, computational models were developed for 

quantifying beam size and spatial resolution of the ion images. Image functions were derived for 

model beams and boundary conditions from the pattern were applied to determine the expected 

image. Subsequently, the determined image function was fit to the experimental data to 

determine beam sizes along with their corresponding uncertainties. For a Gaussian beam, the 

accuracy of FWHM measurement was better than 2 µm provided sufficient laser energy was 

used to give an acceptable signal. The accuracy of the measurement was largely dependent on 

the step size; a smallest possible step size of 5 µm was implemented. For measurements of 

FWHM for smaller beams (FWHM < 5 µm) and for higher precision in measurement, steps sizes 

will need to be reduced proportionally.  
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The overall spatial resolution of the imaging instrument under the operating conditions 

was quantified using a line grating of crystal violet. Several scan lines were acquired across the 

crystal violet lines, and their ion intensities were added together. A resolution threshold was 

specified at 10% of ion signal; in other words, a gap size between adjacent crystal violet lines is 

said to be resolved when the MS signal in the ‘empty’ region dips below 10% of the maximum 

signal. The advantage of the line grating method is that it can be applied to irregular beam 

profiles whereas the measurement of spot sizes is presently limited to model beam profiles. 

7.2. Next Generation of the Reticle 

The current version of the reticle is limited to measuring spatial resolution down to 30 

µm. Next generation of the reticle will require sub-micron features to quantify resolution in the 

state of the art MS instruments. Working towards this goal fabrication tools within the VINSE 

clean room were used to fabricate features below 10 µm. The new version of the reticle is 

designed to have features ranging from 1 µm to 100 µm divided into 3 segments: 1 – 10 µm, 10 – 

50 µm, and 50 – 100 µm. The 50 – 100 µm regions consisted of features in 5 µm increments, and 

each feature had five replicates to enable confident identification (see Figure 7.1). The second 

region from 10 to 50 µm also consisted of 5 lines for each dimension but the increments were 2 

µm. Thus, within this range, the accuracy will be +/- 2 µm. The third region contained features 

from 1 to 10 µm in increments of 1 µm.   
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Figure 7.1. Photomask design for the next generation of the reticle contains three regions for 

testing: 1-10 µm, 10-50 µm, and 50-100 µm. The 1-10 µm region contains features in 1 µm 

increments, the 10-50 µm region contains features in 2 µm increments, and the 50-100 µm region 

contains features in 5 µm increments. For each feature, five replicates are included to enable 

confident measurement of spatial resolution. In the figure, features smaller than 20 µm are not 

apparent. White areas in the photomask represent transparent regions that allow UV light 

transmission through the photoresist.  

The photomask design was printed onto a chrome-coated substrate as shown in Figure 

7.2. Heidelberg laser writer (µPG 101) with a 405 nm diode laser was used to irradiate the 

photoresist, and the pattern was developed in MF319 solution to remove the exposed photoresist. 

The substrate was then inserted in etchant 9030 for 1 min to remove the exposed chrome. 

Finally, oxygen plasma was used to remove the remaining photoresist.  
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Figure 7.2. Process for designing the chrome mask. A glass substrate is coated with chrome, and 

a AZ1518 photoresist layer is patterned using a Heidelberg Laser Writer. The exposed 

photoresist is developed in MF319 solution. Etchant 9030 is used to remove the exposed chrome 

followed by an O2 plasma to remove remaining photoresist.  

The fabricated photomask is shown in Figure 7.3. Figure 7.3a shows the 1” x 1” region 

on the photomask that was patterned. Figure 7.3b-c shows the 1 µm features were barely 

resolved on the photomask whereas 2 µm features were clearly resolved. In both cases, the line 

width was enlarged.  

 

Figure 7.3. Photomask fabricated using a Heidelberg laser writer. (a) The substrate measured 5” 

x 5” and a small region is used for printing (1” x 1”) (b) An expected 1 µm line width was 

enlarged to 1.8 µm, and two of the lines coalesced together. (c) Expected 2 µm lines were 

enlarged to about 2.4 µm. The tan color corresponds to non-transparent chrome layer, and the 

darker color is due to a black background. 
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 Photolithography process was implemented using the new mask with features down to 2 

µm in size (see Figure 7.4a). As the UV light is transmitted through the mask it diffracts 

producing features that are larger than intended sizes. As shown in Figure 7.4d, the broadening 

of the feature can cause individual lines to merge together. The angle of diffraction is directly 

dependent on the size of the aperture and the extent of line broadening can be calculated by the 

product of the diffraction angle and the thickness of the photoresist using the small angle 

approximation. The employed photoresist (SU-8 3025) was 25 µm thick when spin-coated onto 

the substrate. Using this photoresist, distinct features down to 8 µm can be produced as shown in 

Figure 7.4. To enable fabrication of smaller features, a photoresist with lower viscosity should be 

employed to generate thinner coating. For example, SU-8 3005 will lead to coatings that are 5 

µm in thickness so that the process can be scaled down to 2 µm features. 

 

Figure 7.4. Fabrication of the next generation of the reticle. (a) Photolithography process that 

exposes the photoresist through a photomask. (b) Generated 10 µm features.  
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Figure 7.5 demonstrates the image of crystal violet pattern produced using the developed 

stamp. Line with widths of 9 µm or smaller coalesced together suggesting that the gap between 

the lines was insufficient to ensure distinct features. The density of crystal violet shows gradient 

corresponding to the size of the features. As the feature size increases, the thickness of crystal 

violet increases. Due to these reasons adhesive/ diffusive printing is recommended for 

dimensions below 10 µm.  

 

Figure 7.5. Crystal violet lines produced using the next generation stamp. Lines with widths of 9 

µm or smaller coalesce together suggesting that the gap between the lines was insufficient. 10 

µm lines were isolated. The thickness of the lines increases as the width of the line increases.  
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Three major improvements were made in this new version of the reticle. First, the 

smallest feature on this version was 10 µm in size compared to 25 µm in the previous version. 

Secondly, 5 replicates were included for each dimension enabling a higher degree of confidence 

in our measurements whereas previously only two or three replicates existed. Thirdly, finer 

increments were employed in this version allowing for a higher precision in the measurement of 

resolution. The fabrication process has to be tailored to the size range of the features precluding 

the possibility of including the full range of features sizes on a single reticle slide. The 

fabrication process has to be separately optimized for three set of ranges: 100 nm – 1 µm, 1 - 10 

µm, 10 - 200 µm. 

7.3. Development of the Pre-coated Slides 

The second major accomplishment of this work was the fabrication of trypsin pre-coated 

substrates for high-throughput proteomic analysis. Trypsin and matrix were spray-coated onto 

ITO-coated slides, and a tissue was thaw-mounted onto these pre-coated slides. The peptides can 

be digested, imaged and identified based on mass accuracy. These targets streamline the process 

for preparing tissue samples, minimize the burden of sample preparation on the end user and 

improve spatial resolution from 200 µm to 75 µm. 

One of the challenges with the pre-coated slides is that the tissue cannot be solvent-

washed to remove unwanted species once it is placed onto the pre-coated slide. As a result, lipids 

and lipid dimers were dominant in the obtained mass spectra. A couple of approaches are 

suggested to address this issue. First, whole organs could be immersed in ethanol solution 

immediately after extraction from the animal to remove lipids prior to freezing the sample. A 

second approach would involve chemically linking the trypsin to the surface making it resistant 
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to solvent washes. Ma et al. have suggested the fabrication scheme for such a surface.
80

 

Tetraethoxysilane and 3-amino-propyltriethoxysilane were reacted together to form a monolith 

network.  Glutaraldehyde was used to couple the monolith support with trypsin. The 

immobilized trypsin had significantly higher activity relative to trypsin in-solution. These 

surfaces can be adapted for the pre-coated approach whereby tissue section is mounted onto 

these immobilized surfaces, and the slide is solvent washed to remove lipids and salts, incubated 

to digest proteins, and coated with matrix. 

The second major challenge was the inability to store pre-coated slides at 4 °C due to 

reduced performance after storage for 6 to 18 months. The storage ability needs to be 

investigated in more detail by using an assay to measure the trypsin activity on the pre-coated 

surface. Standard substrates such as p-nitroaniline or nα-benzoyl-DL-arginine 4-nitroanilide 

hydrochloride could be used to measure trypsin activity after it is deposited on the surface.
81

 

7.4. Application of Pre-coated Slides to Formalin-fixed Paraffin-

Embedded Tissues 

Formalin-fixed paraffin embedded (FFPE) tissues are tremendously important in the 

clinical environment given the vast repositories of such samples in tissue banks with associated 

pathological, clinical, and patient outcome information.
56, 64, 82

 Multiple groups have developed 

methods imaging FFPE tissues by IMS that involve laborious antigen retrieval and on-tissue 

digestion methods.
 58, 64, 71, 83

 The application of enzyme and matrix pre-coated slides will be 

particularly useful for FFPE tissues.  

In a proof-of-principle experiment, the ability of the ionic matrix to enable digestion of 

FFPE tissues was tested. The FFPE rat brain tissue underwent typical processing conditions 
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including sectioning, mounting on an ITO-coated glass substrate, paraffin removal, and antigen 

retrieval. After these processing steps trypsin in ionic matrix was spotted on top of the tissue to 

digest the proteins. A serial tissue section was prepared using the conventional approach using 

trypsin in ammonium buffer solution. Figure 7.6 below compares the mass spectral results. 

Several peaks were observed in both cases showing efficient digestion. Ionic matrix preparation 

provided richer spectra with more peaks and higher intensities.  

 

Figure 7.6. Digestion of FFPE rat brain tissue by hand-spotting trypsin in the ionic matrix and 

trypsin in 100 mM ammonium bicarbonate buffer solution on serial tissue sections. The trypsin 

concentration was the same in both cases, and the same region of the tissue was used. 



162 

 

An additional advantage of the ionic matrix preparation is that smaller spot sizes were 

obtained due to a higher surface tension and a single step deposition. Figure 7.7 shows the spot 

sizes as measured after robotic deposition. The average spot diameter for a preparation involving 

buffer solution was 210 µm compared to 164 µm using ionic matrix approach. This reduction in 

spot size will be especially beneficial for histology directed analysis where the area of analysis is 

directly limited by the spot size. 

 

Figure 7.7. Comparison of spot sizes using conventional buffer approach and ionic matrix 

approach.  

Lastly, the applicability of pre-coated slides towards analysis of FFPE tissues was 

evaluated for an imaging experiment. Sagittal mouse brain tissue sections were prepared using 

conventional robotic spotting methods and the pre-coated methods. Figure 7.8 compares the 

representative mass spectra obtained from these two experiments. Pre-coated slides showed 

better signal-to-noise ratio suggesting improved digestion although these peaks need to be 

identified to make conclusive statements.  
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Figure 7.8. Digestion of FFPE rat brain tissue using conventional approach employing a robotic 

spotter and the pre-coated approach. Presented representative spectra were obtained using 

MALDI-TOF/TOF.  
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Figure 7.9 compares the ion images acquired using the conventional methods and the pre-

coated approach. Due to different extraction medium, a different selection of ions was observed 

in each case. A step size of 300 µm was used in the case of conventional preparation. For the 

pre-coated approach, a step size of 100 µm was used allowing observation finer biological detail. 

These experiments show the promise of pre-coated slides in preparing clinically significant FFPE 

samples.  

 

Figure 7.9. Digestion of FFPE rat brain tissue by trypsin in the ionic matrix and trypsin in 100 

mM ammonium bicarbonate buffer solution. A 1 uL solution was hand-spotted onto serial tissue 

sections. The trypsin concentration was the same in both cases (0.1 mg/mL).  
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APPENDIX A. MATLAB DESCRIPTIONS OF MODEL BEAM 

PROFILES 

2D Top-hat Profile 

% Top-hat 2D 

  
x = -5:0.05:5; 
y = -5:0.05:5; 
a = 1; 
% y = -5:0.05:5; 

  
i = find (x <= a & x >= -a); 
j = find (x > a | x < -a); 
k = find(x > a); 

  

  
z = zeros(201,201); 
for m = 1:201 
    for n = 1:201 
if x(m)^2 + y(n)^2 < 1 
    z(m,n) = 1/pi; 
else 
    z(m,n) = 0; 
end 
    end 
end 

  
% Probability density function 
 

 
surf(x,y,z,'EdgeColor','flat')     

     
% Line spread function 

 
pdf(i) = 1/pi*2*sqrt(a^2 - x(i).^2); 
pdf (j) = 0; 
figure; plot(x,pdf) 

  
% Cumulative density function 

  
cdf(i) = 1/pi*[x(i).*sqrt(a^2 - x(i).^2) + a^2*atan(x(i)./sqrt(a^2 - 

x(i).^2)) + pi*a^2/2]; 
cdf(j) = 0; 
cdf(k) = 1; 

  
figure; 
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plot(x,cdf) 

 

2D Gaussian Profile 

sigma = 1; 
mu = 0; 
x = -5:0.05:5; 
y = -5:0.05:5; 

  
% Probability density function 

  
PDF_2D = zeros(201); 
for i = 1:201 
PDF_2D(:,i) = 1/(sigma^2*2*pi)*exp(-(x-mu).^2/(2*sigma^2) - (y(i)-

mu).^2/(2*sigma^2)); 
end 

  
surf(x,y,PDF_2D,'edgecolor','none') 

  
% Line spread function 

  
LSF = 1/(sigma*sqrt(2*pi))*exp(-(x-mu).^2/(2*sigma^2)); 
figure; plot(x, LSF) 

  
% Cumulative density function 

  
CDF = 1/2*(1 + erf(x/(sqrt(2)*sigma))); 
figure; plot(x, CDF) 

 

1D Lorentzian Profile 

% Lorentzian 1-D 

  
x = -5:0.05:5; 
gamma = 1; 
x0 = 0; 

  
 

% Probability density function 

 

figure; pdf = 1./[pi*gamma*(1 + ((x - x0)/gamma).^2)]; 
plot(x,pdf) 

 

% Cumulative density function 

  
cdf = 1/pi*atan((x-x0)/gamma) + 1/2; 
figure; plot(x,cdf) 
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APPENDIX B. MATLAB CODE FOR CALCULATION OF IMAGES 

FROM A TEST PATTERN  

Test pattern with increment features ranging from 1 to 100 um, 

separated groupings 

The following code describes the test pattern presented in Figure 2.13 

   
% i = feature size 
% j = number for each feature including blanks 
% k = to the space counter 
 

k = 100; 
z(1:k) = 0; 
for i = 1:10 
    for j = 1:10 
        k = k + i; 
        if mod(j,2) == 0 
            z(k:k+i-1) = 1; 
        else 
            z(k:k+i-1) = 0; 
        end 
    end 
    k = k +20; 
end 

  
for i = 11:50 
    if mod(i,2) == 0 
   for j = 1:10 
        k = k + i; 
        if mod(j,2) == 0 
            z(k:k+i-1) = 1; 
        else 
            z(k:k+i-1) = 0; 
        end 
    end 
    k = k +50; 
    end 
end 

  
for i = 51:100 
    if mod(i,5) == 0 
   for j = 1:10 
        k = k + i; 
        if mod(j,2) == 0 
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            z(k:k+i-1) = 1; 
        else 
            z(k:k+i-1) = 0; 
        end 
    end 
    k = k +100; 
    end 
end 

  
for i = 2:600 
    z(i,:) = z(1,:); 
end 

  
% surf(z,'edgecolor','none') 
imagesc(z) 

 

2D Gaussian Function             

% output is the value of Gaussian function at each value of x and y 
% mat is the matrix of 2D space defined by x and y 
% Sigma controls the width of the Gaussian beam 
% center = [center_x center_y] is the position of the beam center 

  
function [mat] = gauss2d(mat, sigma, center) 
gsize = size(mat); 
[R,C] = ndgrid(1:gsize(1), 1:gsize(2)); 
mat = gaussC(R,C, sigma, center); 

  
function val = gaussC(x, y, sigma, center) 
xc = center(1); 
yc = center(2); 
exponent = ((x-xc).^2 + (y-yc).^2)./(2*sigma^2); 
val       = (exp(-exponent)); 
end 

  
end 

 

Convolution of the test pattern with a 2D Gaussian  

% Convolution of pattern and Gaussian Function 

  
% x is the distance in x-direction 
% y is the value of -1 and +1 

  
clear i j k   

  
[dim1 dim2] = size(z); 

  
ss = 5; %Step Size 
sigma = 5;  

  
x = ss:ss:(dim2-100); 
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y = ss:ss:(dim1-100); 

  
image = zeros(dim1,dim2); 

  
mat = zeros(101); 
gauss_array = gauss2d(mat, sigma, [50 50]); 

  
k = randi([0 3], 1,600/ss); 

  
for i = 1:(dim2-100)/ss 
    for j = 1:(dim1-100)/ss 
            z_ROI = z(y(j):y(j)+ 100, x(i) - k(j):x(i)+100 - k(j)); 
            conv = z_ROI.*gauss_array; 
            image(j*ss+50:j*ss+ss+49, i*ss+50:i*ss+ss+49) = sum(sum(conv)); 
    end 
end 

  
figure;plot(1:dim2,sum(image,1), 'b') 
str = sprintf('Image: Step size = %d and Sigma = %d',ss, sigma); 
title(str) 
xlabel('x-distance (\mum)') 
ylabel('Intensity (arbitrary units)') 

  
a = sum(image,1); 
y = zeros(1,dim2) + mean(a(200:dim2))*0.1/0.5; 
hold on; plot(1:dim2,y, 'r') 
set(gca,'fontsize',14) 
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APPENDIX C. LINE SCAN DATA FOR A BRUKER ULTRAFLEX 

TOF/TOF 

Table C-1. Effect of laser focus setting on the spatial resolution. Three different focus settings 

were tested: 51% (Medium), 70% (Small) and 100% (Minimum). Power was adjusted 

individually for each setting to ensure comparable MS signal. Results shown for Ultraflex 

TOF/TOF, positive reflectron mode, 40 laser shots, 1000 Hz laser frequency, and 10 µm stage 

step size. In the computation of average signal, the blank pixels was excluded. About 10 adjacent 

scan lines were averaged in each case. 

Laser Focus  

(%) 

Average 

Signal/Pixel 

(x 10
4
)  

Minimum Resolved 

Feature 

(m) 

51 3.33 60 

51 3.10 60 

51 3.71 60 

70 1.91 45 

70 1.69 45 

70 1.93 45 

100 3.82 <30 

100 4.34 <30 

100 4.58 <30 
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Figure C.1. Effect of laser focus setting on the spatial resolution. As the focus setting was 

changed from ‘medium’ to ‘minimum’, the spatial resolution increased from 60 µm to below 30 

µm. Results shown for Ultraflex TOF/TOF, positive reflectron mode, 40 laser shots, 1000 Hz 

laser frequency, and 10 µm stage step size. In the computation of average signal, the blank pixels 

was excluded. About 10 adjacent scan lines were averaged in each case. 
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Table C-2. Effect of laser power setting on the spatial resolution. Focus setting was set constant 

at 80% for all three cases. Results shown for Ultraflex TOF/TOF, positive reflectron mode, 40 

laser shots, 1000 Hz laser frequency, and 10 µm stage step size. In the computation of average 

signal, the blank pixels were excluded. About 10 adjacent scan lines were averaged in each case. 

Total Power  

(%) 

Average 

Signal/Pixel 

(x 10
4
)  

Minimum Resolved 

Feature 

(m) 

80.5 0.344 35 

81.4 1.78 50 

82.3 4.88 90 
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Figure C.2. Effect of power setting on the spatial resolution. As the beam power was increased 

from the low to the high setting, the spatial resolution decreased from 35 to 90 µm. Results 

shown for Ultraflex TOF/TOF, positive reflectron mode, 40 laser shots, 1000 Hz laser frequency, 

and 10 µm stage step size. In the computation of average signal, the blank pixels were excluded. 

About 10 adjacent scan lines were averaged in each case. 
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