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ABSTRACT

Oncology phase II clinical trials are used to evaluate the initial effect of a new regimen

to determine if there warrants further study in a phase III clinical trial. Two-stage designs

with an early futility stop are commonly used in these phase II trials. It is common for

attained sample sizes in these trials to be different from the designed sample sizes due

to over- and under- enrollment. Currently, when the attained sample size differs from

that planned, common practice is to treat the attained sample sizes as planned, and this

practice leads to invalid inference. In this thesis, we examine the problems and solutions in

hypothesis testing for two-stage phase II clinical trial designs when attained sample sizes

differ from the planned sample sizes. We describe existing methods for redesigning trials

when there is over- or under-enrollment in either the first or second stage and introduce

a new method for redesigning a two-stage clinical trial when the first stage sample size

deviates from planned. We focus our investigation when there is over- or under-enrollment

in the first stage. We compare the frequentist methods of Chang et al., Olson and Koyama,

and the Likelihood two-stage design by applying these methods to two-stage designs with

deviations in the first stage of ±10. We examine type I error rates, power, probability

of early termination and expected sample size under the null hypothesis in a number of

two-stage designs. We also compare error rates in these methods using a Monte Carlo

simulation.
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Chapter 1

Introduction

Oncology phase II clinical trials are often used to evaluate the initial effect of a new

regimen to determine if further study is warranted in a phase III clinical trial [1, 2, 3]. Si-

mon’s two-stage design [2] is a commonly used design in phase II oncology clinical trials.

Koyama and Chen [3] point out that it is common for actual sample sizes of these phase II

trials to differ from the planned, pre-specified sample sizes. Under-enrollment happens due

to unanticipated accruement speed or drop-out rates, while multi-center trials can be de-

layed in communication of enrollment and response information causing over-enrollment.

Currently, when the attained sample size differs from planned, common practice is to treat

the attained sample sizes as planned. Though, this practice leads to invalid inference, and

controlling error rates in hypothesis testing in these cases is not straightforward [1, 3].

Therefore, extensions of two-stage designs for hypothesis testing with unplanned sample

size changes is essential.

Many traditional frequentist methods have been proposed to handle unplanned sample

sizes in the second stage while using the planned stage I sample size; however, our litera-

ture review found that only a few traditional frequentist methods handle unplanned sample

sizes in stage I. Moreover, when focusing on deviations in sample sizes in the second

stage, many proposed methods are adjusting inference procedures rather than proposing

a redesign, where a redesign is a new two-stage design based on the original design and

attained sample sizes that is used to carry out hypothesis testing. Likelihood based designs,

that can be used to extend Simon’s design, offer a nice solution to handling sample size

deviations because these designs offer flexibility in sample size without inflation of the

type I error rate. Because calculations of p-values are complicated when attained sample

sizes are different from planned [3], we focus on methods that offer redesigns of a planned
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two-stage design that will be prespecified along with the planned design.

In this paper, we discuss the different approaches for two-stage designs when the at-

tained stage II sample size is different from planned and when attained sample sizes in the

first stage is different from planned. We review common two-stage designs in chapter 2

and illustrate redesign methods in chapters 3 and 4. In chapter 5, we review a concrete

example from a Likelihood-based clinical trial, and in chapter 6, we present results of a

numerical and theoretical study comparing traditional frequentist properties of approaches

in the setting where stage I sample size differs from planned.
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Chapter 2

Background

Two-stage designs for clinical trials are common designs for phase II oncology clinical

trials [2]. In two-stage designs, the null hypothesis, H0 : p ≤ p0, is tested against the

alternative, H1 : p > p0, where p is the true response probability and p0 is the highest

probability of response that would indicate that the research regimen is uninteresting. The

power is set at p1 (p1 > p0), the lowest probability of response that would indicate that the

research regimen warrants further investigation. Under these hypotheses, it is required that

the type I error rate be less than α and power be greater than 1−β . The general framework

of a two-stage design includes a sample size and critical value in each of the two-stages.

Let n1 denote the first stage sample size, nt the sample size at the end of the second stage,

and let n2 be the sample size for the second stage; n2 = nt − n1. Let X1 be the number of

successes observed in the first stage and X2 be the number of additional successes in the

second stage so that X1∼Binomial(n1, p) and X2∼Binomial(n2, p). Also, let Xt =X1+X2.

In the first stage, n1 subjects are enrolled. Let r1 be the first stage critical value. If r1 or

fewer subjects (X1 ≤ r1) are successes, then the trial is stopped for futility. If r1 + 1 or

more subjects are successful, then the trial continues to the second stage by enrolling n2

additional subjects. Let rt the critical value for the end of the second stage. If rt or fewer

out of the nt subjects are successful (Xt = X1 +X2 ≤ rt), the treatment is considered to be

futile, otherwise if Xt ≥ rt +1 subjects succeed, the treatment is considered to be effective

and will warrant further study.

Let b denote the binomial probability mass function,

b(x,n, p) =
(

n
x

)
px(1− p)n−x,x = 1,2, ..,n (2.1)
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and B denote the cumulative binomial distribution function,

B(x,n, p) =
x

∑
i=0

(
n
i

)
pi(1− p)n−i,x = 1,2, ..,n (2.2)

The probability of early termination (PET) with a given probability p in two-stage designs

is

PET = B(r1,n1, p) = P[X1 ≤ r1|n1, p] (2.3)

The expected sample size for a given p is then

EN = n1 +(1−PET)n2 (2.4)

and the conditional power is then

CP(x1,n2, p) =
n2

∑
x2=rt−x1+1

b(x2,n2, p) (2.5)

It then follows that unconditional power, UCP(p), given probability p, is given by

UCP(p) = 1−

(
B(r1,n1, p)+

min[n1,rt ]

∑
x=r1+1

b(x, p,n1)B(rt− x,n2, p)

)

=
n1

∑
x1=r1+1

{
n2

∑
x2=rt−x1+1

b(x2,n2, p)

}
b(x1,n1, p)

(2.6)

We require UCP(p1)≥ 1−β and UCP(p0)≤ α

Simon introduced Optimal and Minimax criteria for selecting good designs [2]. An

Optimal two-stage design is a two-stage design which minimizes the expected sample size

under the null hypothesis (EN0) while still satisfying the type I and type II error probabil-

ity restrictions. The Minimax design minimizes the maximum sample size (nt = n1 + n2)

while satisfying error constraints. Jung et al. [4] introduced an extension of Simon’s de-

signs called Admissible designs that are considered a compromise between Optimal and
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Minimax. Admissible designs minimize q× nt +(1− q)×EN for a given q ∈ [0,1] [4].

Admissible designs satisfy (α,β ) constraints and obtain an expected sample size and max-

imum sample size somewhere between those of Optimal and Minimax designs. Admissible

designs may be attractive because they have agreeable properties of both the Minimax and

Optimal design. Simon’s designs do not allow for early termination of the trial for efficacy

[2], and we do not consider such designs here. We focus this paper on two-stage designs

that are either Optimal, Minimax, or Admissible.
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Chapter 3

Deviation from Planned Sample Sizes In Sec-

ond Stage

When over-enrollment occurs in the first stage, a straightforward solution is to perform

an interim analysis on the planned number of first stage subjects, and adjust the testing

procedure for a sample size in the second stage that may be different than planned. Like-

wise, it is also straightforward to simply wait for the appropriate enrollment for the first

stage when under-enrollment occurs in the first stage. This is why much of the literature

that handles sample size deviations only consider deviations in the second stage. Literature

exists describing point estimation of the response rate and p-values for hypothesis testing

when stage two sample size is modified [3][5][6][7][8][9][10]. Porcher et al. [1] conducted

a comprehensive review of these methods. Among them is Koyama and Chen who have

shown that the p-value in two-stage trials will depend on the planned design in addition to

the attained data and is complicated in the setting of unplanned sample size [3]. We only

focus on methods that recalculate critical values for hypothesis testing or decision-making,

called redesigns, and will not focus on p-value calculations.

In the cases where we evaluate stage I as planned and over- or under-enrollment occurs

in the second stage, it is possible to adjust the testing procedure for the attained enrollment

in the second stage. This is possible under the assumption of non-informative dropouts;

stage I is concluded when the number of non-missing subjects is equal to the planned stage

I sample size, and if over-enrollment occurs in the first stage, those subjects will only be

considered for the second stage analysis [3]. Koyama and Chen propose a method for in-

ference when stage II sample sizes deviate from the planned stage II sample size [3]. Let
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n1,nt ,r1,rt ,α and β be the original design parameters as defined earlier. The authors let the

first stage remain as planned and propose a redesign of the second stage. Using conditional

power evaluated at p0, they calculate a new critical value, r∗t , by finding the maximum

integer such that

CP(x1,n∗2, p0)≤CP(x1,n2, p0)≡ P[X∗2 ≥ r∗t |X1 = x1, p0]≤ P[X2 ≥ rt |X1 = x1, p0] (3.1)

where X∗2 ∼ Binomial(n∗2, p0) and n∗2 is the attained stage II sample size. This method will

result in a controlled unconditional type I error rate because the new critical value gives a

conditional type I error rate that is more conservative than the original conditional type I

error rate, regardless of the observed stage II sample size. The authors comment that with

the new critical value, r∗t , the total number of positive responses required to reject the null

hypothesis at the end of the study may be different depending on x1 because it is conditional

on the result of the first stage.

Zeng et al. [11] propose methodology that attempts to maximize the unconditional

power while controlling for the type I error to calculate the stage II critical value for the

attained second stage sample size. The authors define r∗2 to be the new second stage critical

value when x1 ≥ r1 and r∗t ≡ r∗2 +x1. The second stage critical value will be the integer that

maximizes

Power =
n1

∑
x1=r1

(
n1

x1

)
px1

1 (1− p1)
n1−x1

n∗2

∑
x2=r∗2

(
n∗2
x2

)
px2

1 (1− p1)
n∗2−x2 (3.2)

while subject to

Type I error =
n1

∑
x1=r1

(
n1

x1

)
px1

0 (1− p0)
n1−x1

n∗2

∑
x2=r∗2

(
n∗2
x2

)
px2

0 (1− p0)
n∗2−x2 ≤ α (3.3)

Though it is theoretically possible to find r∗2, it does not have a closed form solution, and

the computation is exhaustive. Instead, the authors propose a normal approximation for the
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binomial random variable to ease the computation of power. That is,

n∗2

∑
x2=r∗2

(
n∗2
x2

)
px2(1− p)n∗2−x2 ≈ 1−Φ

(
r∗2−n∗2 p√
n∗2 p(1− p)

)
(3.4)

Substituting the above equation in for power and type I error, and using Lagrange multi-

pliers and differentiating with respect to r∗2, the problem is then equivalent to solving the

equation

(
1

p0(1− p0)
− 1

p1(1− p1)

)
r∗2

2−
2n∗2(p0− p1)

(1− p0)(1− p1)
r∗2 +

n∗2
2(p0− p1)

(1− p0)(1− p1)
−2n∗2log

(
λa(x1)

b(x1)

)
= 0

(3.5)

where a(x1) =
(n1

x1

)
px1

0 (1− p0)
n1−x1 , b(x1) =

(n1
x1

)
px1

1 (1− p1)
n1−x1 , and λ is the Lagrange

multiplier. The new critical value, r∗2, is then max(0,min(r∗2,n
∗
2)). The authors suggest

searching over a reasonable range of λ to find a λ such that the type I error is as closed to

α as possible.

The authors performed a numerical study to compare and found that, in almost all

scenarios that were considered, Zeng et al.’s method had higher power than Koyama and

Chen, and this is mostly because Koyama and Chen’s method most often results in a lower

type I error rate due to conservative controlling of conditional type I error.
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Chapter 4

Deviation from Planned Sample Sizes in First

Stage

A straightforward solution to under-enrollment in the first stage is to simply wait until

the appropriate enrollment has been reached. Because accruement of subjects can be unex-

pected in the first stage, and some situations require early evaluation of the first stage, it is

still imperative that methods are available to handle situations where attained sample sizes

differ from the planned sample size in stage I. Green and Dahlberg [12] and Chen and Ng

[13] propose methods for inference when first stage sample sizes differ from those planned.

Recall that p0 is the highest probability of response that would indicate that the research

regimen is uninteresting and p1 is the lowest probability of response that would indicate

that the research regimen warrants further investigation. Green and Dahlberg propose a

method for sample size deviations by extending the Southwest Oncology Group (SWOG)

standard approach to phase II trial design, where the SWOG’s standard approach is to use

only two-stage designs with a type I error rate of 5% and power of 90%. Southwest On-

cology Group’s inference method suggestion is to perform a hypothesis test on H0 : p = p1

versus H1 : p < p1 in the first stage with type I error rate of 2% and concluding futility if

the p-value for this test is ≤ 0.02. They then suggest testing H0 : p = p0 versus H1 : p > p0

in the second stage at the 0.05 level. The type I error rate of 2% corresponds to intuition

regarding what constitutes evidence in favor of a hypothesis when the sample size is half of

the planned total and we test p1 in the first stage since one is more concerned with missing

an active agent [12]. Green and Dahlberg extend the SWOG approach by applying this

testing method on the attained design, but by performing an unadjusted 0.055 level test
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of H0 based on the attained total sample size at the second stage. This means that they

perform a hypothesis test on H0 : p = p1 versus H1 : p < p1 at the first stage at the 0.02

level based on the attained sample size (n∗∗1 ) and then perform the unadjusted 0.055 level

test of H0 based on the attained total sample size. [12] The 0.055 level was chosen because

of the discreteness of the binomial distribution and to achieve a type I error rate closer to

0.05. The authors demonstrated that this approach controls type I error and achieves desired

power only in the limited situation when an overall α-level is 0.05, and it is unclear how

this method would generalize to any α-level [14]. Li et al. also indicate that this limited

approach, and particularly testing a hypothesis in the first stage with a type I error rate of

2%, is arbitrary and lacks theoretical justification.

Chen and Ng [13] suggest an approach to unplanned sample sizes by considering a

range of sample sizes in both the first and second stages. They search these ranges for the

Minimax and Optimal designs that satisfy error constraints using the average probability

of termination for all possible first stage sample sizes and average expected sample size for

all possible stage I and stage II sample size combinations that they consider [13]. Some

limitations of this approach are that attained sample sizes may fall outside of the specified

ranges, and only the average error probabilities are controlled rather than the actual error

probabilities corresponding to the attained sample sizes.

4.1 Chang et al. Alternative Designs and Adaptation

Chang et al. [15] proposed an alternative design that is an extension of two-stage de-

signs in order to handle unplanned sample sizes in both the first and second stages, though

we only consider this extension for over- and under-enrollment in the first stage. Their

method calculates new critical values for attained sample sizes a priori, and thus one is

able to create and pre-specify a new design based on a preferred Simon or Admissible de-

sign in defense of the events of unplanned sample sizes.

We use this method to pre-specify new designs; that is, we calculate new critical values

10



for different combinations of possible deviations in sample sizes pre-attainment. Again, let

n1, nt , r1, rt , p0, p1, α , and β be the original, planned design parameters. Now, let n∗∗1 be

the attained sample size for the first stage and let n∗∗2 be the attained sample size for the

second stage.

Chang et al. propose a method for updating the stage I critical value based on the

following β -spending function, where m is the attained sample size in the first stage.

β (m) =

 β1m/n1 if m≤ n1

β1 +(β −β1)(m−n1)/n2 if m > n1

(4.1)

Where β1 = P(X1 ≤ r1|n1, p = p1) is the stage I type II error probability. They then find a

new stage one critical value, s1, using this probability spending function such that P(X1 ≤

s1|n∗∗1 , p = p1)≈ β (n∗∗1 ), where≈means “closest to.” After s1 is selected, they then search

for an integer for the second stage critical value, st , that satisfies

P(X1 > s1,Xt > st |n∗∗1 ,n∗∗2 , p0)

=
n∗∗1

∑
s1

P(X2 > st−X1|X1 = x1)P(X1 > s1)

≤α

(4.2)

Chang et al.’s design can be used for any α-level and is flexible, close to the original de-

sign, and preserves the desired traditional frequentist type I error rate.

We modify Chang et al.’s method because we prefer to be conservative when stray-

ing from a desired Simon’s or Admissible design. We modify the Chang et al.’s approach

by selecting s1 such that the new design’s probability of early termination under the null,

(PET∗∗0 ), is closest to the planned PET under the null (PET0). This is conservative because

when the attained stage I sample size deviates further from the planned sample size, the

PET∗∗0 in Chang et al.’s designs can get further from the original design’s. By selecting the
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closest integer such that the PET∗∗0 is closest to planned, the probability of early termination

is greater under large deviations. We select s1 such that

P(X1 ≤ s1|n∗∗1 , p0)≈ P(X1 ≤ r1|n1, p0) (4.3)

We then select the stage two critical value, st , in the same fashion as Chang et al.’s

design. Another conservative option would be to be choose s1 such that the probability of

early termination under the null with the redesign is greater than or equal to the original

design. In either case, these conservative designs tend to be close when the attained sample

size is close to the original, so we consider the case where the probability of early termina-

tion is closest to the original. We call this adaptation to Chang et al.’s design “Olson and

Koyama’s design (OK design).”

4.2 Likelihood Design

Briefly, likelihood methods in phase II designs use the likelihood ratio as a measure

of evidence [16]. The Law of Likelihood states that “if the first hypothesis, H1, implies

that the probability that a random variable X takes the value x is P1(X), while the second

hypothesis, H2, implies that the probability is P2(x), then the observation X = x is evidence

supporting H1 over H2 if and only if P1(x) > P2(x), and the likelihood ratio measures the

strength of evidence.” [17] Define the likelihood function Ln(p) in phase II trials to be

Ln(p) = P(X |p,n)

=

(
n
x

)
px(1− p)n−x

∝ px(1− p)n−x

(4.4)
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Here, the likelihood ratio is

LRn =
Ln(p1)

Ln(p2)

=
px

1(1− p1)
n−x

px
2(1− p2)n−x

(4.5)

The hypothesis that is better supported is the hypothesis that assigns a higher probability

to the observed events [17]. If the likelihood ratio is greater than 1, the evidence favors

H1 over H2, and if the likelihood ratio is less than 1, the evidence favors H2 over H1. The

likelihood ratio is continuous on the scale of (0,∞), and this scale can be broken up into

categories such as ‘weak’ and ‘strong’ evidence [17]. We make the following decision at

the conclusion of the study. If the LRn ∈ [0,1/k], there is evidence for the null hypothesis,

if LRn ∈ [1/k,k], there is weak evidence for either hypothesis, and if LRn ∈ [k,∞], there is

evidence for the alternative hypothesis, where k is a value that is a benchmark for distin-

guishing strength of evidence.

To illustrate the use of the likelihood ratio as a measure of evidence, consider a study

with the response rate of patients. Suppose a researcher is interested in looking at the

response (yes/no) of 50 patients, while testing the null hypothesis, H0 : p = 0.3, versus

H1 : p= 0.45. Because the response of each patient is independent and binary, the probabil-

ity model is binomial, as in equation (4.4), where p is the unknown probability of response.

Suppose 17 responses were observed. Then equation (4.5) gives us the likelihood ratio

0.317(1−0.3)50−17

0.4517(1−0.45)50−17 = 2.90 (4.6)

This likelihood ratio means that the data support H0 over H1 by a factor of 2.90. If we

used a benchmark of k = 8, this would mean the evidence in favor of H0 over H1 is weak

because 2.90 < 8. Figure 4.1 is the likelihood function standardized by the maximum value

(a constant) and gives a visual representation of the evidence about p over the parameter

space. We see that the null hypothesis value is represented by the circle on the likelihood

function x-axis where the alternative hypothesis is represented by the square. The ratio of

13



Figure 4.1: Likelihood function for probability of response
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function with a value of 0.34, and this is called the maximum likelihood estimator (MLE).

A 1/8 support interval, shown by the red line, is (0.21, 0.48), and a 1/32 support interval,

shown by the blue line, is (0.18,0.52). A support interval identifies all parameter values

for p that are consistent with the data at a certain level (k), and the values that are most

consistent with the data occur at the crest of the likelihood function – near the MLE [17].

Furthermore, the probability of observing weak evidence is

γi = P(ka ≤ LRn ≤ kb|Hi),ka ≤ 1≤ kb (4.7)

i=0 for null hypothesis and i=1 for alternative hypothesis, where ka and kb are lower and

upper benchmarks, respectively, for description of evidence. Usually, kb = k and ka = 1/k.
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The probability of observing strong evidence is

τi =

 P(LRn > kb|Hi) if i = 1

P(LRn < kb|Hi) if i = 0
(4.8)

and the probability of observing misleading evidence is

λi =

 P(LRn > kb|Hi) if i = 0

P(LRn < kb|Hi) if i = 1
(4.9)

Misleading evidence is observing strong evidence for the incorrect hypothesis over the

correct hypothesis, similar to a type I or a type II error. One advantage of a likelihood se-

quential design is that the universal bound of misleading evidence under the null hypothesis

is P(LRn > kb|H0)≤ 1
kb

for any n≥ 1 when 1
ka
= kb = k > 1. This is advantageous because

the probability that the trial is stopped with misleading evidence under the null hypothesis

at any point in time is less than or equal to 1
kb

. As data accumulate, the probability of mis-

leading evidence converges to 0, and this probability is often much less than 1
kb

[18] [19].

Ayers and Blume [16] consider a phase II two-stage design based on the likelihood.

Their likelihood two-stage design will enroll n1 subjects into the first stage. If we observe a

likelihood ratio that is ka1 < LRn1 < kb1 , where ka1 and kb1 are benchmarks for description

of evidence in the first stage, we continue to the second stage. If we observe LRn1 ≤ ka1 ,

the study will stop for futility and if we observe LRn1 ≥ kb1 , the study will stop for efficacy.

In stage II, n2 subjects are enrolled, and the decision is based on LRnt = LRn1LRn2 . If LRnt

is kat < LRnt < kbt , where kat and kbt are benchmarks at the end of stage II, then the study

will conclude with weak evidence. The study will conclude with evidence for the alterna-

tive hypothesis if LRnt ≥ kbt and evidence for the null hypothesis if LRnt ≤ kat . Because

these designs are not restricted by error rates, this method offers favorable flexibility for

unplanned sample sizes in the first stage. Likewise, one is able to add cohorts and the end
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of the second stage when there proves to be weak evidence without penalization because

the strength of evidence is unaffected by the number of looks at the data [17].

We compare traditional frequentist and Likelihood two-stage designs by adapting the

Likelihood two-stage design to emulate conventional two-stage designs such as Optimal,

Minimax, or Admissible designs with binary evidential zones: reject the null or fail to

reject the null. In order to do this, one can start with a Simon-like two-stage design and

redesign with a likelihood ratio approach by setting

ka1 =

(
p1(1− p0)

p0(1− p1)

)r1
(

1− p1

1− p0

)n1

=

(
1− p0

1− p1

)r1−n1
(

p1

p0

)r1

,

kat =

(
p1(1− p0)

p0(1− p1)

)rt
(

1− p1

1− p0

)nt

=

(
1− p0

1− p1

)rt−nt
(

p1

p0

)rt

,

kb1 = ∞,

kbt = ∞,

(4.10)

where n1,nt ,r1,r2 are two-stage design parameters. Then, using ka j and kb j , we recal-

culate the critical values, s1 and st , using

s1 =
log(ka1)−n∗∗1 log

(
1−p1
1−p0

)
log
(

p1(1−p0)
p0(1−p1)

)
st =

log(kat )−n∗∗t log
(

1−p1
1−p0

)
log
(

p1(1−p0)
p0(1−p1)

)
(4.11)

where n∗∗t is the total attained sample size at the end of stage II. If s1 < 0 or st < 0, they

are set equal to zero. It is possible for these critical values to be less than 0 when the study

design has small sample sizes and deviation from the planned sample size is extreme. Under

the traditional frequentist two-stage design conditions and using these critical values, we

can calculate design characteristics for any attained n1 and nt for a given p. The probability

16



of weak evidence for a probability p at the end of the first stage is

γ1,p = 1−B(s1,n∗∗1 , p) (4.12)

and the probability of strong evidence for a given p at the end of stage one is

τ1,p = B(s1,n∗∗1 , p) (4.13)

At the end of the second stage, the probability of weak evidence is

γt,p =
n∗∗1

∑
x=s1+1

b(x,n∗∗1 , p)−B(s1− x,n∗∗t −n∗∗1 , p) (4.14)

and the probability of strong evidence is

τt,p = τ1,p +
n∗1

∑
x=s1+1

(b(x,n∗1, p)×B(s1− x,n∗∗t −n∗1, p)) (4.15)

The probability of early termination under the null hypothesis is then

PET0 = τ1,p0
(4.16)

and the expected sample size under the null hypothesis is

EN0 = n∗∗1 + γ1,p0× (n∗∗t −n∗∗1 ) (4.17)

Ayers and Blume [16] show that the Likelihood designs often preserve type I error rates,

although, some cases exceed nominal rates with an increase in power. Under the Likeli-

hood design, error rates tend to be less of an issue because the average of the error rates,

α+β

2 , is minimized with the likelihood approach [16]. For the purpose of comparing meth-

ods, we do not consider the cases in which cohorts can be added after the second stage. We

17



also only consider Likelihood redesign methods to emulate traditional frequentist designs

– to calculate new critical values – and do not consider pure likelihood method two-stage

design as formerly introduced.

We consider new approaches to unplanned sample sizes in the first stage in both the

traditional frequentist and likelihood settings. In the interest of prespecifying designs, we

focus on deviation from the planned sample size only in the first stage because it is im-

practical to prespecify limitless combinations of unplanned sample sizes in both the first

and second. Because it is desired to stay as closely to the original design as possible for

financial and resource planning reasons, we investigate this method while maintaining the

original second stage sample size (n2) or original total sample size (nt). Then, the two sit-

uations we consider are 1. n∗∗2 = nt −n∗∗1 and 2. n∗∗t = n∗∗1 +n2. Lastly, we refer to Chang

et al., OK, and Likelihood designs as “attained designs”.
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Chapter 5

Example

In order to compare these new methods for deviation of sample size in the first stage,

we first introduce an example. An actual phase II cancer clinical trial was designed using

a Likelihood two-stage design. In order to follow the convention, the trial would only stop

early for futility. The planned design parameters are n1 = 17, nt = 41, r1 = 7, rt = 21,

p0 ≤ 0.4, and p1 ≥ 0.6. This study design has an expected sample size of 25.6 and a

probability of early termination of 64% under the null hypothesis. This is considered an

Admissible design and meets the nominal type I error rate, α = 0.05, and type II error rate,

β = 0.2 where the actual type I error rate is 0.047. The authors provide alternative interim

stopping rules for sample sizes that deviate from the planned design using the Likelihood

approach as shown in Table 5.1. These new designs have a probability of early termination

under the null that exceed 50% and preserve type I and type II error rates. Using the

original likelihood design, but varying n1, one can use Chang et al.’s method and Olson and

Koyama’s method to obtain similar results. The total sample size is equal to the planned

total sample size, n∗∗t = nt in this case. We compare attained methods’ characteristics, in

particular, type I error, power, probability of early termination under the null hypothesis,

and expected sample size under the null hypothesis. Recall that s1 is the new stage I critical

value, n∗∗1 is the attained stage I sample size, and PET∗∗0 is the probability of termination

under the null hypothesis for the attained design. Let EN∗∗0 be the expected sample size

under the null hypothesis for the attained design.

This example illustrates the comparability of the three attained design methods. Gen-

erally, the stopping rules between the Chang et al. design, OK design, and the Likelihood

design are the same when the probability of early termination under the null exceeds 50%.
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Table 5.1: Example of stopping rules for deviations from the planned stage I sample size

Design s1 n∗∗1 PET∗∗0 EN∗∗0
Likelihood ratio favoring H0
that corresponds to Simon’s

futility stopping rule
Likelihood 6 16 53% 27.8 1/5.062
Chang et al. 6 16 53% 27.8

Olson and Koyama 7 16 72% 23.1
Likelihood 7 17 64% 25.6 1/3.375
Chang et al. 7 17 64% 25.6

Olson and Koyama 7 17 64% 25.6
Likelihood 7 18 56% 28 1/5.062
Chang et al. 7 18 56% 28

Olson and Koyama 7 18 56% 28
Likelihood 8 19 67% 26.3 1/3.375
Chang et al. 8 19 67% 26.3

Olson and Koyama 8 19 67% 26.3
Likelihood 8 20 60% 28.5 1/5.062
Chang et al. 8 20 60% 28.5

Olson and Koyama 8 20 60% 28.5
Likelihood 9 21 69% 27.2 1/3.375
Chang et al. 9 21 69% 27.2

Olson and Koyama 9 21 69% 27.2
Likelihood 10 23 71% 28.2 1/3.375
Chang et al. 10 23 71% 28.2

Olson and Koyama 10 23 71% 28.2
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When n1 = 16, the Olson and Koyama’s design gives a more conservative critical value;

this is expected by design and the discreteness of the binomial distribution.
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Chapter 6

Results

We compare the methods of Chang et al., Olson and Koyama, and the Likelihood by

first selecting either an Admissible, Minimax, or Optimal two-stage design. Each method

is applied to deviations in first stage sample size of up to ±10. We suggest keeping the

original total planned sample size or the original planned second stage sample size the

same when utilizing Chang et al.’s and Olson and Koyama’s methods to stay close to the

original design. We choose to keep total sample size the same in our investigation because

this approach is more realistic when resources and budget are fixed for the planned total

sample size and this inhibits the ability to stray radically from the planned design.

We present results that are limited to our primary problem of interest in Tables 6.1

through 6.6. In each design table, the planned design is specified, and the first stage sample

size varies from planned, while maintaining the original total sample size. We compare

attained methods’ characteristics, in particular, type I error, power, probability of early

termination under the null hypothesis, and expected sample size under the null hypothesis.

Table 6.1 displays a planned Admissible design with varying first stage sample size ±

10. We notice that under low p0 and p1 (0.1 and 0.25, respectively), s1 will vary between

each method. Though, power and type I error are likely to be similar between and within

each attained method, and expected sample size is also consistent. The Likelihood and

Chang et al. method are more at risk of low probability of early termination, especially

when the sample size is lower than planned. Table 6.2 shows an Optimal design when p0

is 0.5. Between attained designs, particularly when there is under-accrual, s1 is moderately

inconsistent. We particularly see a disagreement in designs when n∗∗1 = n1− 10 or more.

The Likelihood design is anticonservative in type I error and conservative in type II error in
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some cases, displaying a α∗∗ > α and 1−β ∗∗ > 1−β . The Chang et al. and OK designs

both have a conservative type I error for all sample size deviations, though Chang et al. and

Likelihood designs often maintain higher power than Olson and Koyama’s. Probability of

early termination is closest to the original under Olson and Koyama’s and thus have a

much lower expected sample size under the null hypothesis, with as much as a difference

of approximately 23.

Table 6.3 displays results from a planned Minimax design when p0 is larger than 0.5.

Here, the Likelihood design has desirable properties where type I error and power are

consistently close to the planned design for all deviations in sample size. Though, when the

sample size is severely under-accrued, the probability of early termination nearly halves.

The expected sample size is consistent between designs. The OK designs stray from the

planned nominal type I and type II error rates when there is over-accrual. When there is

moderate to large over-accrual, the error rates in the Chang et al. designs can be much

lower than the planned error rates and the PET∗∗0 can reach above 90%.

Table 6.4 through 6.6 display results for planned designs when α = β = 0.1. Table 6.4

displays attained design characteristics for deviations in sample size when the planned first

stage sample size is low. In all three attained designs, we see that when the attained sample

size is lower than planned, there is a significant drop in power and a moderate to severe

drop in type I error. The probability of early termination almost occurs with probability 1

when the attained sample size is n∗∗1 = 1. In practice, though, accrual lower than planned

here is not practical. When there is over-accrual, attained design characteristics are not

concerning.

Table 6.5 illustrates the similarity between attained designs when p0 = 0.3. All designs

and their deviations are relatively consistent in type I error, power, and PET0. Though, the

Olson and Koyama’s design is most consistent in the probability of early termination with

the planned design, but we see a conservative deviation in type I error for large over-accrual.

Table 6.6 displays similar results as Table 6.3.
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Figures 6.1 and 6.2 display Monte Carlo simulation results for an average of 20 two-

stage designs that are Minimax, Optimal, or Admissible with α = 0.05,β = 0.20 and

n∗∗t = n∗∗1 + n2 and n∗∗t = nt , respectively. Therefore, each point will be an average of

attained type I error or power for 20 two-stage designs under different sample size devia-

tions. These simulations further support our choice to keep the planned total sample size as

planned because the error rates are closer to the original design more often for sample size

deviations ±10 when maintaining the original total sample size rather than original second

stage sample size (Figures 6.1 and 6.2). In Figure 6.1 we see that the average type I error

rate for the Likelihood design is often above 0.05; we see a parabolic decrease in power in

Chang et al.’s method and a sharp linear increase in power in the OK method, which is not

a fruitful result.

When keeping the original total sample size as planned, Figure 6.2 shows that, on aver-

age, the Likelihood two-stage design has power above the nominal power and type I error

rate below the nominal α-level for all sample size deviations ±10. Both Chang et al.’s and

Olson and Koyama’s methods are conservative in type I error for all sample size deviations

and thus are more likely to suffer in power. Figure 6.3 shows a similar Monte Carlo simu-

lation, though it displays the average of the average type I error rate and the average type

II error rate. The simulation confirms that the Likelihood design minimizes the average

of the error rates, while Chang et al.’s method performs better in this sense when there is

under-enrollment, while Olson and Koyama performs better when there is over-enrollment.
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Figure 6.3: Monte Carlo Simulation of the Average of the Average Type I and Type II Error Rates of 20
Simon-like Designs when Stage I Sample Size Deviates from Planned for Attained Designs (n∗∗t = nt ) Num-
ber of Simulations = 10000.
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Chapter 7

Discussion and Conclusion

Deviations from the planned second stage sample size has been better studied than de-

viations from the planned first stage sample size. Some methods have been proposed on

decision rules, and Koyama and Chen had introduced a redesign when the first stage sam-

ple size is as planned. Because the calculation of a proper p-value in this case is more

straightforward than when stage I differs, there may be less literature proposing these re-

designs. Though, one could calculate a p-value ignoring the sample paths for deviations in

either the first or second stage as if the two-stage design were a single stage with attained

values. If this were done, the decision could be different than that of the proper p-value

which considers sample paths, and how to decide how small the p-value is needed in order

to determine statistical significance is unclear.

We focused our investigation and results on deviations from the planned first stage sam-

ple size. One argument against redesigning these trials in the first place could be that re-

searchers always have the option to simply wait until stage I sample size is met. In practice,

though, some ethical matters may arise that would give the researcher incentive to evaluate

the first stage prematurely. For instance, if a new regimen appears to be more beneficial

than historical treatments, but statistical requirements prevent new subjects from being en-

rolled until all currently enrolled subjects record responses, a researcher may consider this

unethical. In this case, n∗∗1 < n1 where n∗∗1 would be subjects who have recorded responses.

Having a decision rule for a case such as this would alleviate some discomfort from both

the researcher and statistician, though abuse of new decision rules would be discouraged.

We suggest a redesign of a trial for attained sample sizes using the planned total sam-

ple size for practical reasons such as resources and inability to stray far from the planned
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design. A numerical study also suggested that it may be desirable to redesign trials using

the planned total sample size because it better controls type I error for all attained methods

and power is closer to the nominal power more often. Furthermore, if one employs Chang

et al.’s method, the sample size is radical in the first stage, and the resulting probability of

continuing is less than 0.05, it will be impossible for a type I error to occur. This will then

reduce the two-stage design to a one-stage design which is considerably different than the

planned design, so this is further support for using the planned total sample size. Assuming

that redesigns use the planned total sample size, results from different two-stage designs

were presented. Chang et al. and the Olson and Koyama methods primarily differ when

there are extreme sample size shifts. This is most likely due to the nature of their methods

and their primary goals of maintaining type II error spending versus probability of early

termination.

Recommending the use of these designs in practice will depend on the desire of statis-

tical approach of the researcher. Blume states, ”Hypothesis testing procedures do not place

any interpretation on the numerical value of the likelihood ratio. The extremeness of an

observation is measured, not by the magnitude of the likelihood ratio, but by the probabil-

ity of observing a likelihood ratio that large or larger. It is the tail area, not the likelihood

ratio, that is the meaningful quantity in hypothesis testing” [17]. Thus, the primary argu-

ment for using Chang et al.’s or the OK method is in the case that the researcher does not

want to abandon hypothesis testing. If the researcher prefers to use a traditional frequentist

approach with hypothesis testing, it may be recommended that the Olson and Koyama’s

approach is used because it results in higher average power across deviations. Because it

may be of concern that researchers take advantage of the ability to deviate from the planned

design, Olson and Koyama’s method also penalizes deviation by resulting in a higher prob-

ability of early termination when there is under-accrual than Chang et al’s method.

Overall, there are many advantages to using a Likelihood two-stage design. One advan-

tage to the Likelihood design is that it is able to add cohorts of subjects at the end of the
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second stage if weak evidence is obtained without threatening frequentist properties such

as type I error. Another advantage to the Likelihood approach is that inference is more

straightforward because one is not concerned with error rates or p-values. The likelihood

is unaffected by the number of looks at the data and the evidence is independent of the

probability of observing misleading evidence [17]. Though we don’t consider calculating

p-values when stage I differs from planned, it would be complicated if one wished to do so,

whereas Likelihood methods would not require this because evidence is represented by a

simple calculation of the likelihood ratio. Likelihood designs are also more generalizable.

The Likelihood two-stage approach could be generalized easily to three stages, whereas the

Chang et al. and OK designs would not be able to generalize in such a way. In this paper,

though, we are very much restricting the Likelihood design and not taking full advantage

of its natural characteristics. One could simply use a pure Likelihood design and avoid

traditional frequentist issues altogether.

In general, though, if a researcher wanted to design a study using the restricted designs

as described in this paper, the OK design and the Likelihood design are highly competi-

tive and achieve similar results when the probability of early termination is reasonable (i.e.

above 50%). One design may be more favorable than the other depending on the hypothe-

ses being tested and the amount of over- or under-enrollment.

We do not consider redesigns when both the first and second stage accrual are not as

planned because if one is interested in prespecifying stopping criteria for sample size devi-

ations, the number of combinations needed to be specified in order to prespecify the exact

combination that will occur is unreasonable. Though, these attained designs are able to

accommodate if this is desired. Lastly, a primary concern that we have with redesigning

trials for unplanned sample sizes is that researchers could take advantage of the these new

stopping criteria and stray from the planned design too often. It is for this reason that one

may consider adapting Chang et al.’s design using a very conservative rule in the first stage

and have the probability of early termination under the null always be higher than planned.
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When deviations are extreme, especially where there is underacrrual, evaluating the trial

early would be highly penalized by potentially having a very high probability of early ter-

mination. Overall, intentional early or late evaluation of the first stage without sound reason

is highly discouraged and will not result in optimal statistical properties.
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