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CHAPTER 1

INTRODUCTION

1.1 The reconstruction problem

A fundamental problem in signal processing called signal reconstruction, or signal

recovery, is the determination of a signal x ∈Rd from a sequence of samples {yn} obtained

from x. Studies on the reconstruction problem have resulted in major breakthroughs in

technology in the past century, and practical solutions to the problem are still essential in

the advancement of fields such as image processing and speech recognition. In this work,

we will consider the reconstruction problem in the framework that the samples yn ∈ R are

linear measurements, which are defined as inner products yn = 〈x,ϕn〉 between x and a

set of measurement vectors {ϕn} ⊂ Rd . In particular, our focus will be on algorithms that

seek to either recover the true signal x or produce an estimate x̃ ∈ Rd of x using linear

measurements. Many questions that are of both practical and theoretical interest then arise

naturally under this setting:

• Which algorithms allow one to reconstruct x perfectly, if possible?

• If one cannot exactly recover x from {yn}, then how precise can the estimate x̃ be?

• How does noise or quantization of measurements affect the algorithms?

• Can one solve the problem if the measurements come in a streaming fashion?

In this chapter, we will quickly review some developments centered around the afore-

mentioned questions in the field of digital signal processing.
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1.2 Reconstruction from noiseless measurements

Suppose that the measurements are free from noise, then solving the reconstruction

problem from linear measurements yn = 〈x,ϕn〉 is equivalent to solving a system of linear

equations in the form of

Ax = y, (1.1)

where x ∈Rd , y = (y1,y2, ...,yN)
T ∈RN , and A ∈MN,d(R) is an N by d matrix whose j-th

row is ϕ j ∈ Rd . The most common approach to produce an estimate x̃ from (1.1) is by

setting

x̃ = arg min
z∈Rd
‖Az− y‖2. (1.2)

In other words, a solution is obtained by minimizing a cost function f (z) = ‖Az−y‖2. It is

well-known that the solution to (1.2) is x̃ = A†y, where A† is the Moore-Penrose pseudoin-

verse of A. However, because most implementations of the pseudoinverse rely on calculat-

ing singular value decompositions, computing x̃ from the pseudoinverse quickly becomes a

rather expensive task to perform as the number of measurements increases. Therefore, prac-

tical solutions to (1.2) are often computed iteratively using a family of algorithms known

as gradient descent [24].

The system of linear equations (1.1) is called an overdetermined system if N > d, and

an underdetermined system if N < d. Other than gradient descent, there are other iterative

algorithms that solve (1.1), which one may prefer over gradient descent for practical con-

siderations such as better convergence rates or support for streaming data. For example,

there is also a family of algorithms called Projection onto Convex Sets (POCS) methods,

also known as Alternating Projection methods, that solves (1.1) by iteratively projecting

the estimate onto the solution space of each equation in the system. POCS methods have

found applications in computerized tomography [10], and here we will outline a particular

method from the POCS family called the Kaczmarz method [14]. Given an arbitrary initial

estimate x0 ∈ Rd , the Kaczmarz algorithm iteratively produces a new estimate x j+1 ∈ Rd

2



from the previous estimate x j ∈ Rd by

x j+1 = x j +
yi−〈ϕi,x j〉
‖ϕi‖2 ϕi, (1.3)

where i = j mod N + 1 and ϕi is the i-th row of A. The estimates {xn} produced by the

Kaczmarz method have long been known to converge to the least square solution (1.2),

but bounds on the convergence rate remained unclear. Recently, a randomized version of

the Kaczmarz algorithm was proposed in [26] that works as follows: instead of choosing

ϕi in a cyclic manner, each row ϕi is sampled randomly with a probability proportional

to its Euclidean norm ‖ϕi‖. The randomized Kaczmarz algorithm with row sampling was

shown to converge exponentially fast for consistent overdetermined systems in [26], and

further analysis provided bounds on almost sure exponential convergence with random

measurements in [1]. Moreover, in [16], the randomized Kaczmarz algorithm with row

sampling is found to be a special case of stochastic gradient descent [21].

When one has an underdetermined system in (1.1), regularization can be used to find

an estimate x̃ in the solution space, but it is unlikely to recover the true signal x. However,

much work has been done in the last two decades in the field of compressed sensing to find

sparse solutions for underdetermined systems by exploiting structures of the matrix A and

by making use of L1-optimization techniques. Such solvers of underdetermined systems

fall outside the scope of our discussion, and we refer the readers to [6] for a systematic

overview of the theory of compressed sensing.

1.3 The noise model

When noise is present, (1.1) becomes

Ax = y+ ε, (1.4)

where ε ∈RN is a random vector. The presence of noise in (1.4) means one cannot solve
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for x ∈ Rd exactly and has to seek instead an estimate x̃ ∈ Rd of x. Besides introducing

uncertainty to estimates, noise also affects the stability of algorithms. As a result, many

algorithms in Section 1.2 no longer have a known guarantee for general A, and additional

conditions are required. One common constraint on A in a noisy situation is to require an

upper bound on the condition number cond(A). If {ϕn} happens to form a frame, which

we will define in the next section, then bounding the cond(A) can also be thought of as

bounding the ratio between optimal upper frame bound and lower frame bound as defined

in (1.6).

A natural source of error is the round-off error inherited from the precision of mea-

suring instruments. In the language of digital signal processing, the errors are the result

of quantization and are often modeled by dithering. In this section, we will describe the

idea of quantization and a procedure called subtractive dithering [22, 23] that allows one

to model the quantization error as noises uniformly distributed on [−δ ,δ ]. Let A ⊂ R be

a finite set, which we call the quantization alphabet, and define the scalar quantizers Q

associated with A by

∀u ∈ R, Q(u) = QA (u) = argminq∈A |u−q|.

Let K ∈ N and define a 2K-level midrise quantization alphabet with stepsize 2δ by

Aδ
K = {−(2K−1)δ , . . . ,−3δ ,−δ ,δ ,3δ , . . . ,(2K−1)δ}.

In the case of subtractive dithering, δ > 0 is half of the quantization step size and is

known a priori. Subtractive dithering then works as follows. Given an i.i.d. random noise

sequence {wn}N
n=1 known as a dither, we use Aδ

K to quantize the dithered noise sequence

〈x,ϕn〉+wn to obtain a quantized sequence q̃n = Qδ (〈x,ϕn〉+wn). The dithers are then

subtracted from the quantized sequence to give qn := q̃n−wn. With appropriate dither

{wn}N
n=1, the errors εn = 〈x,ϕn〉− qn are i.i.d. uniform random variables on [−δ ,δ ]. For
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this reason, we will adopt a uniform noise model throughout our work.

1.4 Frames

Generating a sequence of linear measurements {yn} ⊂R from a signal x ∈Rd is equiv-

alent to representing x by y = (y1, . . . ,yN)
T ∈ RN using a set of vectors {ϕn} by setting

yn = 〈x,ϕn〉. The ability to represent a vector by a given collection of vectors is of central

importance in linear algebra, for which the consideration often starts with basis vectors

that provide a unique representation of vectors in a vector space. For simplicity, we will re-

strict our discussion to only vectors in Hilbert spaces in this section. A countable sequence

{ϕn} ⊂H is a basis for a Hilbert space H if, for all x ∈H , there exist a unique sequence

of scalars an = an(x) such that

x = ∑
n

anϕn, (1.5)

where the series converges in the norm of H . From the definition, if one has access to the

measurement vectors ϕn and corresponding an, then one can estimate x by considering the

partial sums x j = ∑
j
n=1 anϕn. However, the requirement that (1.5) being a unique represen-

tation means every coefficient an is necessary in reconstructing x. Therefore, rather than

finding a unique representation with basis vectors, one may prefer using a set of vectors

called frames that provides a redundant representation of the signal x. As our work in the

following chapters focused on solving overdetermined systems, we will now briefly review

the definition and basic properties of a frame. For an introduction to the theory of bases

and frames, we refer the readers to [9].

Definition 1.4.1. Let H be a Hilbert space and V = {ϕn} ⊂H be a sequence in H . We

say V is a frame for H if there exist numbers 0 < A≤ B < ∞ such that for all x ∈H ,

A‖x‖2 ≤∑
n
|〈x,ϕn〉|2 ≤ B‖x‖2. (1.6)

Moreover, V is called a tight frame if A = B in (1.6).
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The next definition helps to simplify symbols involved in reconstructing x from ϕn.

Definition 1.4.2. Given a frame V = {ϕn} ⊂H , the frame operator S : H→ H is defined

by

Sx = ∑
n
〈x,ϕn〉ϕn, x ∈H .

From Theorem 8.13 in [9], if we have a frame V ⊂H with frame bounds 0 < A ≤

B < ∞, the associated frame operator S is a topological isomorphism of H onto itself, and

{S−1
ϕn} is also a frame for H with frame bounds B−1 and A−1. The frame {S−1

ϕn} is

called the canonical dual frame for {ϕn} that one can use to reconstruct x using the next

proposition.

Proposition 1.4.3. Given a frame V ⊂H , then for each x ∈H ,

x = ∑
n
〈x, ϕ̃n〉ϕn = ∑

n
〈x,ϕn〉ϕ̃n, (1.7)

where both series converge unconditionally in the norm of H .

Definition 1.4.4 (Linear reconstruction). Let x ∈ Rd . Given a set of measurement vec-

tors {ϕn}N
n=1 ⊂ Rd and linear measurements {〈x,ϕn〉+ εn}N

n=1 of x corrupted with a noise

sequence {εn}N
n=1, the linear construction estimate at the j-th step is defined by

x j =
j

∑
n=1

(yn + εn)ϕ̃n.

One can show that when εn are i.i.d. uniform noise for n = 1, . . . ,N, then the mean

squared error of linear reconstruction converges to 0 in O(N−1) when the measurement

vectors {ϕn} form a unit-norm tight frame [7].

1.5 Reconstruction based on consistency constraints

Linear reconstruction has an optimal mean error rate O(N−1) when the measurement

vectors {ϕn} form a unit-norm tight frame and the noises εn are i.i.d. uniformly distributed,
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but the algorithm itself does not take advantage of the uniform noise model. If we know

the j-th measurement 〈x,ϕ j〉 is corrupted by a noise ε j uniformly distributed on [−δ ,δ ],

then the j-th estimate x j ∈ Rd of an iterative algorithm can address this fact by enforcing

consistency constraints that

∣∣〈x,ϕn〉−〈x j,ϕn〉+ εn
∣∣≤ δ , ∀n = 1, . . . , j. (1.8)

In other words, if we set the estimate error at j-th step to be z j = x− x j, then (1.8) ensures

∣∣〈z j,ϕn〉+ εn
∣∣≤ δ , ∀n = 1, . . . , j,

which says that the magnitude of error in a direction defined by ϕn should not be greater

than the upper bound of quantization error δ . In the subsequent chapters, we analyze two

algorithms that are developed on the idea of enforcing consistent constraints: consistent

reconstruction and the Rangan-Goyal algorithm. In particular, we will investigate their

expected convergence behaviors with random measurement vectors. The bottom line is

that, with i.i.d. random measurement vectors under reasonable conditions, the p-th error

moment of both algorithms converges to 0 in O(N−p). We present the algorithms here.

Definition 1.5.1 (Consistent reconstruction). Let x ∈ Rd . Given a set of measurement vec-

tors {ϕn}N
n=1 ⊂Rd and linear measurements {〈x,ϕn〉+εn}N

n=1 of x that are corrupted with

a uniform distributed noise sequence {εn}N
n=1 ⊂ [−δ ,δ ], the consistent reconstruction es-

timate x̃ ∈ Rd for x is produced by selecting an arbitrary solution to the linear feasibility

problem

|〈x̃,ϕn〉−〈x,ϕn〉− εn| ≤ δ , ∀n = 1, . . . ,N. (1.9)

In consistent reconstruction, because of the freedom to choose any solution from the

convex region defined by (1.9) in Rd , the analysis in Chapter 2 concerns the worst case

error in (1.9).
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Definition 1.5.2 (Rangan-Goyal algorithm). Let x ∈ Rd . Given a set of measurement vec-

tors {ϕn}N
n=1 ⊂ Rd , linear measurements {〈x,ϕn〉+ εn}N

n=1 of x that are corrupted with a

uniform distributed noise sequence {εn}N
n=1 ⊂ [−δ ,δ ], and an initial estimate x0 ∈Rd , the

Rangan-Goyal algorithm produces the j-th estimate iteratively by setting

x j := x j−1 +
ϕ j

‖ϕ j‖2 Tδ

(
〈x,ϕ j〉−〈x j−1,ϕ j〉+ ε j

)
,

where Tδ : R→ R is a soft-thresholding function defined by

Tδ (y) =


y−δ , if y > δ ,

0, if |y| ≤ δ ,

y+δ , if y <−δ .

(1.10)

The Rangan-Goyal algorithm does not actually force each estimate x j to satisfy the

consistency constraints (1.8). Instead the algorithm only updates the estimate x j if the

previous estimate x j−1 breaks the j-th consistency constraint.
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CHAPTER 2

CONSISTENT RECONSTRUCTION

2.1 Overview of algorithm

Consistent reconstruction is a method for estimating a signal x ∈ Rd from a collec-

tion of linear measurements that have been corrupted by uniform noise or, more generally,

bounded noise. Estimation with uniform noise arises naturally in quantization problems

in signal processing, especially in connection with dithering and the uniform noise model

[13, 20]. Consistent reconstruction has been used as a signal recovery method for memo-

ryless scalar quantization [3, 2, 8, 20, 28], Sigma-Delta quantization [27], and compressed

sensing [11, 12, 17]. See [19] for background and motivation on consistent reconstruction

and estimation with uniform noise.

Let x ∈ Rd be an unknown signal and let {ϕn}N
n=1 ⊂ Rd be a given spanning set for

Rd that is used to make linear measurements 〈x,ϕn〉 of x. We consider the problem of

recovering an estimate for x from noisy measurements

qn = 〈x,ϕn〉+ εn, 1≤ n≤ N, (2.1)

where {εn}N
n=1 are random variables in R. For the setting of this chapter, we suppose the

noise level δ > 0 is fixed and known, the noise model is that {εn}N
n=1 are independent

uniform random variables on [−δ ,δ ] but are unknown, the collection {ϕn}N
n=1 is known

but randomly generated, and the true signal x is unknown. We focus on the situation when

{ϕn}N
n=1 are independent versions of a random vector ϕ ∈ Rd whose distribution we refer

to as the sampling distribution.

Consistent reconstruction seeks an estimate x̃ for the unknown signal x that is con-

sistent with the knowledge that the noise is bounded in [−δ ,δ ]. Specifically, consistent
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reconstruction produces an estimate x̃ ∈ Rd for x by selecting any solution of the linear

feasibility problem

|〈x̃,ϕn〉−qn| ≤ δ , 1≤ n≤ N. (2.2)

There are generally infinitely many solutions to this feasibility problem. In this chapter, we

mainly focus on the worst case error associated to consistent reconstruction.

2.1.1 Worst case error

To describe the worst case error of consistent reconstruction, note that if x̃ is any solu-

tion to (2.2), then the error (x̃− x) lies in each of the closed convex sets

En =
{

u ∈ Rd : |〈u,ϕn〉− εn| ≤ δ

}
. (2.3)

whose intersection forms the following error polytope

PN =
N⋂

n=1

En, (2.4)

that is the set of all possible errors associated to consistent reconstruction (2.2). The worst

case error WN associated to consistent reconstruction is thus defined by

WN = max{‖u‖ : u ∈ PN} , (2.5)

where ‖ · ‖ denotes the Euclidean norm on Rd .

2.1.2 Background

The main results in [19] proved error bounds for the expected worst case error squared

E[(WN)
2] of consistent reconstruction when the sampling vectors {ϕn}N

n=1 are drawn at

random from a suitable probability distribution on the unit sphere Sd−1.
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The work in [19] considered sampling vectors {ϕn}N
n=1 ⊂ Sd−1 that are independently

drawn instances of a unit-norm random vector ϕ that satisfies the following admissibility

condition:

∃α ≥ 1,∃0 < s≤ 1, ∀0≤ t ≤ 1, ∀x ∈ Sd−1, Pr[ |〈x,ϕ〉| ≤ t]≤ αts. (2.6)

See Section 5 of [19] for further discussion of the admissibility condition (2.6). For exam-

ple, if ϕ is uniformly distributed on Sd−1 then ϕ satisfies (2.6) with s= 1 and α =
2Γ( d

2 )√
πΓ( d−1

2 )
.

On the other hand, if ϕ has a point mass then ϕ does not satisfy (2.6).

Suppose that {ϕn}N
n=1 ⊂ Sd−1 are independently drawn at random according to a dis-

tribution that satisfies the admissibility condition (2.6). Theorem 5.5 and Corollary 5.6 in

[19] prove that there exist absolute constants c1,c2 > 0 such that if

N ≥ c2d ln(32(2α)1/s),

then the expected worst case error squared for consistent reconstruction satisfies

E[(WN)
2]≤ c1δ 2d2(2α)1/s ln2(16(2α)1/s)

(N +1)(N +2)
.

Moreover, in the special case when {ϕN}N
n=1 are drawn independently at random according

to the uniform distribution on Sd−1, Theorem 6.1 and Corollary 6.2 in [19] proved a refined

error bound with a constant that has cubic dependence on the the dimension

E[(WN)
2]≤ cδ 2d3

N2 .

For perspective, it is known that mean squared error rates of order 1/N2 are generally

optimal for estimation with uniform noise, see [20].
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2.1.3 Overview and main results

The error bounds for consistent reconstruction in [19] only considered the mean squared

error E[(WN)
2] and only considered the admissibility condition (2.6) in the setting of unit-

norm random vectors (for example, this excludes the case of Gaussian random vectors).

The main contributions of this chapter are twofold:

1. We prove bounds on general error moments E[(WN)
p] for consistent reconstruction.

Our main results show that the error decreases like E[(WN)
p]. 1/N p, as the number

of measurements N increases.

2. We establish a general admissibility condition on the sampling distribution that does

not require ϕ to be unit-norm.

In Section 2.2, we prove our first main result, Theorem 2.2.5, which gives upper bounds on

E[(WN)
p] for unit-norm sampling distributions. Section 2.3 builds on Theorem 2.2.5 and

proves our second main result, Theorem 2.3.4, for general sampling distributions that need

not be unit-norm.

2.2 Error moments for consistent reconstruction: unit-norm distributions

In this section we prove our first main result, Theorem 2.2.5. Theorem 2.2.5 extends

Theorem 5.5 in [19] to the setting of general error moments E[(WN)
p]. In this section,

we assume that the sampling vectors {ϕn}N
n=1 are unit-norm and satisfy the admissibility

condition (2.6). We shall later remove the unit-norm requirement from the admissibility

condition in Section 2.3.

2.2.1 Consistent reconstruction and coverage problems

We begin by recalling a useful connection between consistent reconstruction and a

problem on covering the sphere by random sets.
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Definition 2.2.1. Let {ϕn}N
n=1 be a set of unit-norm vectors and let {εn}N

n=1 ⊂ [−δ ,δ ]. For

each λ > 0, define

Bn (λ ) = B(ϕn,εn,λ ) =

{
u ∈ Sd−1 : 〈u,ϕn〉>

εn +δ

λ
or 〈u,ϕn〉<

εn−δ

λ

}
=
{

u ∈ Sd−1 : |λ 〈u,ϕn〉− εn|> δ

}
. (2.7)

In our setting, the sets Bn(λ ) are random subsets of Sd−1 because {ϕn}N
n=1 and {εn}N

n=1

are random.

Note that each Bn (λ ) can be expressed as a union of two (possibly empty) antipodal

open spherical caps of different sizes

Bn (λ ) = Cap
(
ϕn,θ

+
n
)
∪Cap

(
−ϕn,θ

−
n
)
, (2.8)

where the angular radii θ+
n and θ−n are given by

θ
+
n =


arccos

(
δ+εn

λ

)
, if δ + εn < λ ,

0, otherwise,

and

θ
−
n =


arccos

(
δ−εn

λ

)
, if δ − εn < λ ,

0, otherwise.

The following lemma shows a connection between consistent reconstruction and the

problem of covering the unit sphere by the random sets Bn(λ ), see Lemma 4.1 in [19].
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Lemma 2.2.2. For all λ > 0, the worst case error satisfies

Pr [WN > λ ]≤ Pr

[
Sd−1 6⊂

N⋃
n=1

Bn (λ )

]
. (2.9)

The following lemmas collect upper bounds on Pr
[
Sd−1 6⊂

⋃N
n=1 Bn (λ )

]
that are spread

out over various parts of [19].

Lemma 2.2.3. If λ ≥ 4δ then

Pr

[
Sd−1 6⊂

N⋃
n=1

Bn (λ )

]
≤ 4d−1(4s

α)N
(

δ

λ

)sN−d+1

. (2.10)

Lemma 2.2.3 was shown in equation (5.9) in [19].

Lemma 2.2.4. If 0≤ λ ≤ 4(2α)1/sδ then

Pr

[
Sd−1 6⊂

N⋃
n=1

Bn (λ )

]

≤
N

∑
k=0

q(k,d−1,α,s)
(

N
k

)(
1− λ

4δ (2α)1/s

)N−k(
λ

4δ (2α)1/s

)k

, (2.11)

where q(k,d−1,α,s) satisfies

q(k,d−1,α,s)≤ 1, (2.12)

and

k ≥ 2d ln(16(2α)1/s)

ln(4/3)
=⇒ q(k,d−1,α,s)≤

(
3
4

)k/2

. (2.13)

The bound (2.11) appears in (5.12) in [19]. The bound (2.12) follows from (5.11) in

[19], and the bound (2.13) appears in Step VI in the proof of Theorem 5.5 in [19].
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2.2.2 Error moment bounds

We now prove our first main result that provides error moment bounds for consistent

reconstruction.

Theorem 2.2.5. Suppose that {ϕn}N
n=1⊂ Sd−1 are independently drawn at random accord-

ing to a distribution that satisfies the admissibility condition (2.6) with parameters α ≥ 1

and 0 < s ≤ 1. If p ∈ N and N ≥ (d + p)/s, then the pth error moment for consistent

reconstruction satisfies

E[(WN)
p]≤ C ′ δ p

(
p

∏
j=1

(N + j)

)−1

+C ′′ δ p
(

1
2

)N

, (2.14)

where

C ′ =C′p,α,s = 2p(4(2α)1/s)p

(
2d ln(16(2α)1/s)

ln(4/3)
+ p

)p(
∞

∑
k=1

(k+1)p−1(3/4)k/2

)
,

and

C ′′ =C′′p,α,s,d = 2p(32(2α)1/s)p+d−1.

Proof. We proceed by directly building on the proof of Theorem 5.5 in [19].

Step 1. We need to compute

E[(WN)
p] = p

∫
∞

0
λ

p−1 Pr[WN > λ ]dλ . (2.15)

By Lemma 2.2.2, we have

E[(WN)
p]≤ p

∫
∞

0
λ

p−1 Pr

[
Sd−1 6⊂

N⋃
n=1

Bn (λ )

]
dλ . (2.16)

Thus, it suffices to bound the integral on right side of (2.16).

Step 2. We shall bound the integral in (2.16) by breaking it up into three separate

15



integrals. We begin by estimating the integral in the range 0≤ λ ≤ 4δ (2α)1/s.

Using (2.11) and a change of variables gives

p
∫ 4δ (2α)1/s

0
λ

p−1 Pr

[
Sd−1 6⊂

N⋃
n=1

Bn (λ )

]
dλ

≤ p
N

∑
k=0

q(k,d−1,α,s)
(

N
k

)∫ 4δ (2α)1/s

0
λ

p−1
(

1− λ

4δ (2α)1/s

)N−k(
λ

4δ (2α)1/s

)k

dλ

= p
N

∑
k=0

q(k,d−1,α,s)
(

N
k

)(
4δ (2α)1/s

)p ∫ 1

0
vk+p−1(1− v)N−kdv

= p
(

4δ (2α)1/s
)p N

∑
k=0

q(k,d−1,α,s)
(

N
k

)
(N− k)!(k+ p−1)!

(N + p)!

= p
(

4δ (2α)1/s
)p
(

p

∏
j=1

(N + j)

)−1[ N

∑
k=0

(k+ p−1)!
k!

q(k,d−1,α,s)

]
. (2.17)

Here, we used the property of the beta function that

∫ 1

0
vk+p−1(1− v)N−kdv =

(N− k)!(k+ p−1)!
(N + p)!

. (2.18)

It remains to bound the sum ∑
N
k=0

(k+p−1)!
k! q(k,d−1,α,s) in (2.17). We will bound this

sum by breaking it up into two separate sums, in an analogous manner to Step VI in the

proof of Theorem 5.5 in [19]. Let

K =

⌊
2d ln(16(2α)1/s)

ln(4/3)

⌋
. (2.19)

Since q(k,d−1,α,s)≤ 1, we have

K

∑
k=0

(k+ p−1)!
k!

q(k,d−1,α,s)≤
K

∑
k=0

(K + p−1)p−1 ≤ (K + p)p. (2.20)

16



Using (2.13) we have

N

∑
k=K+1

(k+ p−1)!
k!

q(k,d−1,α,s)≤
∞

∑
k=K+1

(k+ p−1)!
k!

(
3
4

)k/2

≤
∞

∑
k=K+1

(k+ p−1)p−1
(

3
4

)k/2

=
∞

∑
k=1

(k+K + p−1)p−1
(

3
4

)(k+K)/2

≤ (K + p)p−1
∞

∑
k=0

(k+1)p−1
(

3
4

)k/2

= (K + p)p−1Sp, (2.21)

where Sp = ∑
∞
k=1(k+1)p−1(3/4)k/2 satisfies 1 < Sp < ∞.

By (2.20) and (2.21) we have

N

∑
k=0

(k+ p−1)!
k!

q(k,d−1,α,s)≤ (K + p)p(1+Sp)≤ 2(K + p)p Sp. (2.22)

Combining (2.17) and (2.22) yields

p
∫ 4δ (2α)1/s

0
λ

p−1 Pr

[
Sd−1 6⊂

N⋃
n=1

Bn (λ )

]
dλ

≤ 2p(4δ (2α)1/s)p(K + p)pSp

(
p

∏
j=1

(N + j)

)−1

. (2.23)

Step 3. Next, we bound the integral (2.16) in the range 4δ (2α)1/s ≤ λ ≤ 8δ (2α)1/s.

By Lemma 2.2.3 we know that in this range of λ ,

Pr

[
Sd−1 6⊂

N⋃
n=1

Bn (λ )

]
≤ (16(2α)1/s)d−1

(
1
2

)N

.
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Thus

p
∫ 8δ (2α)1/s

4δ (2α)1/s
λ

p−1 Pr

[
Sd−1 6⊂

N⋃
n=1

Bn (λ )

]
dλ

≤ p(16(2α)1/s)d−1
(

1
2

)N ∫ 8δ (2α)1/s

4δ (2α)1/s
λ

p−1dλ

≤ δ
p(16(2α)1/s)d+p−1

(
1
2

)N

. (2.24)

Step 4. We next bound the integral (2.16) in the range λ ≥ 8δ (2α)1/s. By Lemma 2.2.3

we know that in this range of λ ,

Pr

[
Sd−1 6⊂

N⋃
n=1

Bn (λ )

]
≤ 4d−1(4s

α)N
(

δ

λ

)sN−d+1

.

It follows that when N ≥ (d + p)/s,

p
∫

∞

8δ (2α)1/s
λ

p−1 Pr

[
Sd−1 6⊂

N⋃
n=1

Bn (λ )

]
dλ

≤ p ·4d−1(4s
α)N

δ
sN−d+1

∫
∞

8δ (2α)1/s
λ

p−sN+d−2dλ

= p ·4d−1(4s
α)N

δ
sN−d+1

(
(8δ (2α)1/s)p−sN+d−1

sN− p−d +1

)

≤ p ·δ p(32(2α)1/s)p+d−1
(

1
2

)N

. (2.25)

Combining (2.16), (2.23), (2.24) and (2.25) completes the proof.

Theorem 2.2.5 yields the following corollary.

Corollary 2.2.6. Suppose that {ϕn}N
n=1 ⊂ Sd−1 are independently drawn at random ac-

cording to a distribution that satisfies the admissibility condition (2.6) with parameters

α ≥ 1 and 0 < s≤ 1. If p ∈ N and

N ≥max
{

2
ln2

[
ln
(

C′′

C′

)
+2p ln

(
4p

e ln2

)]
,
d + p

s

}
, (2.26)
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then

E[(WN)
p]≤ 2C′δ p

(
p

∏
j=1

(N + j)

)−1

, (2.27)

where C′,C′′ are as in Theorem 2.2.5.

Proof. In view of Theorem 2.2.5, it suffices to show that if N satisfies (2.26) then

C′′
(

1
2

)N

≤C′
(

p

∏
j=1

(N + j)

)−1

.

Equivalently, it suffices to show

ln
(

C′′

C′

)
+

p

∑
j=1

ln(N + j)≤ N ln2. (2.28)

To begin, note that

∀x > 0, ln(x)≤ x−1,

gives

ln(N) = ln
(

N ln2
4p

)
+ ln

(
4p
ln2

)
≤ N ln2

4p
−1+ ln

(
4p
ln2

)
=

N ln2
4p

+ ln
(

4p
e ln2

)
. (2.29)

Next, use (2.29) and N ≥ (d + p)/s≥max{p,2} to obtain

p

∑
j=1

ln(N + j) =
p

∑
j=1

[
ln(N)+ ln

(
1+

j
N

)]
≤ p ln(N)+ p ln2

≤ 2p ln(N)

≤ N ln2
2

+2p ln
(

4p
e ln2

)
. (2.30)
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In view of (2.30), to show (2.28) it suffices to have

ln
(

C′′

C′

)
+

N ln2
2

+2p ln
(

4p
e ln2

)
≤ N ln2. (2.31)

Since (2.31) holds by the assumption (2.26), this completes the proof.

We conclude this section with some perspective on the dimension dependence of the

constant C′ in Theorem 2.2.5 and Corollary 2.2.6. We consider the special case when ϕ

is uniformly distributed on the unit-sphere Sd−1 with d ≥ 3. In this case, one may take

s = 1 and α = 2Γ(d/2)√
πΓ((d−1)/2) in (2.6), see Example 5.1 in [19], and the constant C′ is of

order
(

d
3
2 lnd

)p
. Here, the logarithmic factor lnd is an artifact of the general setting of

Theorem 2.2.5. In particular, for p = 2 the refined analysis in Theorem 6.1 and Corollary

6.2 of [19] shows that the factor lnd can be removed when ϕ is uniformly distributed on

the unit-sphere Sd−1. A similar analysis extends to moments with general values of p ∈ N

and shows that the factor lnd can be replaced by an absolute constant that is independent

of d.

2.3 Error moments for consistent reconstruction: general distributions

In Section 2.2 we proved bounds on the pth error moment for consistent reconstruction

when the measurements are made using i.i.d. copies of a unit-norm random vector ϕ ∈

Sd−1. In this section, we relax the unit-norm constraint to accommodate more general

distributions.

2.3.1 General admissibility condition

Definition 2.3.1. We shall say that a random vector ϕ ∈ Rd satisfies the general admissi-

bility condition if the following conditions hold:

• ϕ = aψ , where a is a non-negative random variable, ψ is a unit-norm random vector,
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and a and ψ are independent.

• ψ satisfies the admissibility condition (2.6).

• ∃C > 0 such that

∀λ > 0, λ Pr[aλ ≤ 1]≤C. (2.32)

• ra = Pr[a > 1] satisfies 0 < ra < 1.

Example 2.3.2. A sufficient condition for the small-ball inequality (2.32) to hold is when

a is an absolutely continuous random variable whose probability density function f is in

L∞(R). In this case, for each λ > 0,

Pr [aλ ≤ 1] = Pr
[

a≤ 1
λ

]
=
∫ 1/λ

0
f (a)da≤ ‖ f‖∞

λ
.

This shows that a large class of probability distributions satisfy the conditions in Definition

2.3.1. For example, if ϕ is a random vector whose entries are i.i.d zero mean Gaussian

random variables, then ϕ satisfies the conditions in Definition 2.3.1.

In Definition 2.3.1, there would be no loss of generality if a were scaled differently

so that 0 < Pr[a > T ] < 1 for some T > 0. In particular, suppose that ϕn = anψn with

0 < Pr[an > T ] < 1, and qn = 〈x,ϕn〉+ εn with εn uniformly distributed on [−δ ,δ ]. Then

x̃ ∈ Rd satisfies

|〈x̃,ϕn〉−qn| ≤ δ if and only if |〈x̃,ϕ ′n〉−q′n| ≤ δ
′,

where ϕ ′n = ϕn/T = a′nψn and a′n = an/T and q′n = 〈x,ϕ ′n〉+ ε ′n, where ε ′n = εn/T is uni-

formly distributed on [−δ ′,δ ′] with δ ′ = δ/T .
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2.3.2 Coverage problems revisited

Suppose that {ϕn}N
n=1 are i.i.d. versions of a random vector ϕ that satisfies the con-

ditions of Definition 2.3.1. In particular, ϕn = anψn, where {an}N
n=1 i.i.d. versions of

a random variable a, and {ψn}N
n=1 are i.i.d. versions of a random vector ψ . Similar to

Lemma 2.2.2, the worst case error WN for consistent reconstruction can be bounded by

Pr[WN > λ ]≤ Pr

[
Sd−1 6⊂

N⋃
n=1

B(ψn,εn,anλ )

]
, (2.33)

where B(ψn,εn,anλ ) is defined using (2.7).

2.3.2.1 Conditioning and a bound by caps with an = 1

The following lemma bounds (2.33) by coverage probabilities involving caps with an =

1.

Lemma 2.3.3. Suppose {ϕn}N
n=1, with ϕn = anψn, are i.i.d. versions of a random vector ϕ

that satisfies the conditions of Definition 2.3.1. Then

Pr

[
Sd−1 6⊂

N⋃
n=1

B(ψn,εn,anλ )

]

≤
N

∑
j=1

Pr

[
Sd−1 6⊂

j⋃
n=1

B(ψn,εn,λ )

]
bino( j,N,r)+(1− r)N , (2.34)

where

bino( j,N,r) =
(

N
j

)
r j(1− r)N− j,

and r = ra = Pr[a > 1] is as in Definition 2.3.1.

Proof. Let J j,N denote the event that exactly j elements of {an}N
n=1 satisfy an > 1. Since
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the {an}N
n=1 are independent versions of the random variable a,

Pr[J j,N ] =

(
N
j

)
(Pr[a > 1]) j(1−Pr[a > 1])N− j

=

(
N
j

)
r j(1− r)N− j = bino( j,N,r).

Thus,

Pr

[
Sd−1 6⊂

N⋃
n=1

B(ψn,εn,anλ )

]

=
N

∑
j=0

Pr

[
Sd−1 6⊂

N⋃
n=1

B(ψn,εn,anλ )

∣∣∣∣∣J j,N

]
Pr
[
J j,N

]
=

N

∑
j=0

Pr

[
Sd−1 6⊂

N⋃
n=1

B(ψn,εn,anλ )

∣∣∣∣∣J j,N

]
bino( j,N,r). (2.35)

By (2.7), when an > 1 we have B(ψn,εn,anλ )⊃ B(ψn,εn,λ ). Thus for 1≤ j ≤ N,

Pr

[
Sd−1 6⊂

N⋃
n=1

B(ψn,εn,anλ )

∣∣∣∣∣J j,N

]
≤ Pr

Sd−1 6⊂
⋃

{n:an>1}
B(ψn,εn,anλ )

∣∣∣∣∣∣J j,N


≤ Pr

Sd−1 6⊂
⋃

{n:an>1}
B(ψn,εn,λ )

∣∣∣∣∣∣J j,N


= Pr

[
Sd−1 6⊂

j⋃
n=1

B(ψn,εn,λ )

]
, (2.36)

where the last equality holds because {an}N
n=1 are i.i.d. random variables that are indepen-

dent of the i.i.d. random vectors {ψn}N
n=1. For j = 0, we use the trivial bound

Pr

Sd−1 6⊂
⋃

{n:an>1}
B(ψn,εn,λ )

∣∣∣∣∣∣J j,N

≤ 1.

Combining (2.35) and (2.36) completes the proof.

To bound the binomial terms in Lemma 2.3.3 it will be useful to recall Hoeffding’s
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inequality for Bernoulli random variables. If 0 < p < 1 and m≤ N p, then

m

∑
j=0

bino( j,N, p)≤ exp
(
−2(N p−m)2 /N

)
. (2.37)

2.3.2.2 Covering and discretization

A useful technique for bounding coverage probabilities such as (2.33) is to discretize

the problem by discretizing the sphere Sd−1 with an ε-net, see [5]. In this section, we

briefly recall necessary aspects of this discretization method as used in [19].

Recall that a set Nε ⊂ Sd−1 is a geodesic ε-net for Sd−1 if

∀x ∈ Sd−1, ∃z ∈Nε , such that arccos(〈x,z〉)≤ ε.

For the remainder of this section, let Nε be a geodesic ε- net of cardinality

#(Nε)≤
(

8
ε

)d−1

.

It is well known that geodesic ε-nets of such cardinality exist, e.g., see Lemma 13.1.1 in

[15] or Section 2.2 in [19].

Recalling (2.8), define the shrunken bi-cap Tε [B(ψn,εn,anλ )] by

Tε [B(ψn,εn,anλ )] = Cap
(
ψn,Tε(θ

+
n )
)
∪Cap

(
−ψn,Tε(θ

−
n )
)
,

where

Tε(θ) =


θ − ε, if θ ≥ ε,

0, if 0≤ θ ≤ ε.

Similar to equations (5.4) and (5.5) in [19], the coverage probability (2.33) can be dis-

24



cretized as follows

Pr

[
Sd−1 6⊂

N⋃
n=1

B(ψn,εn,anλ )

]
≤ Pr

[
Nε 6⊂

N⋃
n=1

Tε [B(ψn,εn,anλ )]

]

≤
(

8
ε

)d−1
(

sup
z∈Sd−1

Pr
[
z 6∈ Tε [B(ψn,εn,anλ )]

])N

. (2.38)

Similar to equation (5.6) in [19], one has that

B(ψn,εn,anλ )⊃
{

u ∈ Sd−1 : |〈u,ψn〉|>
2δ

anλ

}

and

Tε [B(ψn,εn,anλ )]⊃
{

u ∈ Sd−1 : |〈u,ψn〉|>
2δ

anλ
+ ε

}
.

This gives

Pr
[

z 6∈ Tε [B(ψn,εn,anλ )]

]
≤ Pr

[
|〈z,ψn〉| ≤

2δ

anλ
+ ε

]
. (2.39)

2.3.3 Moment bounds for general distributions

We now state our next main theorem.

Theorem 2.3.4. Suppose that {ϕn}N
n=1 are i.i.d. versions of a random vector ϕ that satisfies

the conditions of Definition 2.3.1. Let r = ra = Pr[a > 1] be as in Definition 2.3.1. If

N ≥ 2(d + p)
sr

, (2.40)

then the pth error moment for consistent reconstruction satisfies

E [(WN)
p]≤ pC′

(
2δ

Nr

)p

+ pC′′δ p
(

1
2

)Nr/2

+δ
p
Λ

pe−Nr2/2 +δ
pC′′′

(
1
2

)N

,

where C′,C′′ are as in Theorem 2.2.5, Λ is defined by (2.42) and (2.57), and C′′′ is defined

by (2.60) and (2.57).
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Proof. As in Theorem 2.2.5 we shall use (2.15). In view of (2.33), we need to estimate

E[(WN)
p]≤ p

∫
∞

0
λ

p−1 Pr

[
Sd−1 6⊂

N⋃
n=1

B(ψn,εn,anλ )

]
dλ . (2.41)

Step 1. We begin by estimating the integral in (2.41) over the range 0≤ λ ≤Λδ , where

Λ = max{Λ0,Λ1}, with Λ0 =
2s+3C

α
and Λ1 = 4

(
2K′′

) s+1
s , (2.42)

where C,α,s are the parameters in (2.6) and Definition 2.3.1, and K′′ is defined in (2.57).

By Lemma 2.3.3 we have

p
∫

Λδ

0
λ

p−1 Pr

[
Sd−1 6⊂

N⋃
n=1

B(ψn,εn,anλ )

]
dλ

≤ p
∫

Λδ

0
λ

p−1
N

∑
j=0

Pr

[
Sd−1 6⊂

j⋃
n=1

B(ψn,εn,λ )

]
bino( j,N,r)dλ

= p
∫

Λδ

0
λ

p−1
bNr/2c

∑
j=0

Pr

[
Sd−1 6⊂

j⋃
n=1

B(ψn,εn,λ )

]
bino( j,N,r)dλ (2.43)

+ p
∫

Λδ

0
λ

p−1
N

∑
j=dNr/2e

Pr

[
Sd−1 6⊂

j⋃
n=1

B(ψn,εn,λ )

]
bino( j,N,r)dλ . (2.44)

Hoeffding’s inequality and the trivial bound Pr
[
Sd−1 6⊂

⋃ j
n=1 B(ψn,εn,λ )

]
≤ 1 can be

used to bound (2.43) as follows

p
∫

Λδ

0
λ

p−1
bNr/2c

∑
j=0

Pr

[
Sd−1 6⊂

j⋃
n=1

B(ψn,εn,λ )

]
bino( j,N,r)dλ

≤ p
∫

Λδ

0
λ

p−1

(
bNr/2c

∑
j=0

bino( j,N,r)

)
dλ

≤ p
(

e−Nr2/2
)∫ Λδ

0
λ

p−1dλ

= δ
p
Λ

pe−Nr2/2. (2.45)
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To bound the integral in (2.44), recall (2.40) and note that if j satisfies (d + p)/s ≤

dNr/2e ≤ j ≤ N, then the bounds on (2.16) obtained in the proof of Theorem 2.2.5 give

that

p
∫

Λδ

0
λ

p−1 Pr

[
Sd−1 6⊂

j⋃
n=1

B(ψn,εn,λ )

]
dλ

≤ p
∫

∞

0
λ

p−1 Pr

[
Sd−1 6⊂

j⋃
n=1

B(ψn,εn,λ )

]
dλ

≤C′δ p

(
p

∏
l=1

( j+ l)

)−1

+C′′δ p
(

1
2

) j

≤ C′δ p

jp +C′′δ p
(

1
2

) j

, (2.46)

where C′ and C′′ are as in Theorem 2.2.5.

Using (2.46), along with ∑
N
j=0 bino( j,N,r) = 1, one may bound (2.44) as follows

p
N

∑
j=dNr/2e

∫
Λδ

0
λ

p−1 Pr

[
Sd−1 6⊂

j⋃
n=1

B(ψn,εn,λ )

]
bino( j,N,r)dλ

≤ p
N

∑
j=dNr/2e

bino( j,N,r)

[
C′δ p

jp +C′′δ p
(

1
2

) j
]

≤ pδ
p

[
2pC′

(Nr)p +C′′
(

1
2

)Nr/2
]

N

∑
j=dNr/2e

bino( j,N,r)

≤ pδ
p

[
C′
(

2
Nr

)p

+C′′
(

1
2

)Nr/2
]
. (2.47)

Applying the bounds (2.45) and (2.47) to (2.43) and (2.44) gives

p
∫

Λδ

0
λ

p−1 Pr

[
Sd−1 6⊂

N⋃
n=1

B(ψn,εn,anλ )

]
dλ

≤ δ
p
Λ

pe−Nr2/2 + pC′
(

2δ

Nr

)p

+ pC′′δ p
(

1
2

)Nr/2

. (2.48)

Step 2. We next estimate the integral in (2.41) over the range λ ≥ Λδ . By (2.38) and
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(2.39) we have

Pr
[
Sd−1 6⊂

N⋃
n=1

B(ψn,εn,anλ )

]

≤
(

8
ε

)d−1
(

sup
z∈Sd−1

Pr
[
|〈z,ψn〉| ≤

2δ

anλ
+ ε

])N

. (2.49)

We therefore need to bound Pr[|〈z,ψn〉| ≤ 2δ

anλ
+ ε].

For the remainder of this step set

A =
(

α

C

) 1
s+1
(

4δ

λ

) s
s+1

and ε =
2δ

Aλ
=

(
1
2

)(
4δC
λα

) 1
s+1

. (2.50)

By (2.42), note that λ ≥ Λδ ≥ Λ0 δ implies that 0 < ε ≤ 1/4.

For any z ∈ Sd−1 we have

Pr
[
|〈z,ψn〉| ≤

2δ

anλ
+ ε

]
= Pr

[
|〈z,ψn〉| ≤

2δ

anλ
+ ε

∣∣∣∣an > A
]

Pr [an > A] (2.51)

+ Pr
[
|〈z,ψn〉| ≤

2δ

anλ
+ ε

∣∣∣∣an ≤ A
]

Pr [an ≤ A] . (2.52)

We now bound the terms appearing in (2.51). Recall that λ ≥Λδ implies that 4δ/(Aλ )=

2ε ≤ 1/2. By our choice of ε in (2.50), and using the admissibility assumption (2.6), for

each λ ≥ Λδ one has

Pr
[
|〈z,ψn〉| ≤

2δ

anλ
+ ε

∣∣∣∣an > A
]

Pr [an > A]

≤ Pr
[
|〈z,ψn〉| ≤

2δ

Aλ
+ ε

∣∣∣∣an > A
]

Pr [an > A]

= Pr
[
|〈z,ψn〉| ≤

4δ

Aλ

∣∣∣∣an > A
]

Pr [an > A]

≤ Pr
[
|〈z,ψn〉| ≤

4δ

Aλ

]
≤ α

(
4δ

Aλ

)s

. (2.53)
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To bound (2.52), note that by (2.32) one has Pr [an ≤ A]≤CA, and thus

Pr
[
|〈z,ψn〉| ≤

2δ

anλ
+ ε

∣∣∣∣an ≤ A
]

Pr [an ≤ A]≤ Pr [a≤ A]≤CA. (2.54)

Using the bounds (2.53) and (2.54) in (2.51) and (2.52) gives

Pr
[
|〈z,ψn〉| ≤

2δ

anλ
+ ε

]
≤ α

(
4δ

Aλ

)s

+CA. (2.55)

Since our choice of A in (2.50) gives

α

(
4δ

Aλ

)s

=CA,

we have

Pr
[
|〈z,ψn〉| ≤

2δ

anλ
+ ε

]
≤ 2CA = 2C

(
α

C

) 1
s+1
(

4δ

λ

) s
s+1

. (2.56)

Thus, combining (2.49) and (2.56), gives

Pr

[
Sd−1 6⊂

N⋃
n=1

B(ψn,εn,anλ )

]
≤
(

8
ε

)d−1
[

2C
(

α

C

) 1
s+1
(

4δ

λ

) s
s+1
]N

=

(
16
(

αλ

4δC

) 1
s+1
)d−1[

2C
(

α

C

) 1
s+1
(

4δ

λ

) s
s+1
]N

.

To simplify notation, let

K′ =
(

16
(

α

C

) 1
s+1
)d−1

and K′′ = 2C
(

α

C

) 1
s+1

, (2.57)
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so that

Pr

[
Sd−1 6⊂

N⋃
n=1

B(ψn,εn,anλ )

]
≤ K′

(
λ

4δ

) d−1
s+1
[

K′′
(

4δ

λ

) s
s+1
]N

= K′ (K′′)N
(

4δ

λ

)( sN−d+1
s+1 )

. (2.58)

Since 0< s≤ 1 and 0< r < 1, note that (2.40) implies
( sN−d+1

s+1 − p+1
)
≥ 2. By (2.58)

we have

p
∫

∞

Λδ

λ
p−1 Pr

[
Sd−1 6⊂

N⋃
n=1

B(ψn,εn,anλ )

]
dλ

≤ pK′(K′′)N
∫

∞

Λδ

λ
p−1
(

4δ

λ

)( sN−d+1
s+1 )

dλ

= pK′(K′′)N(4δ )p−1
∫

∞

Λδ

(
4δ

λ

)( sN−d+1
s+1 −p+1)

dλ

= pK′(K′′)N(4δ )p
∫

∞

Λ/4

(
1
λ

)( sN−d+1
s+1 −p+1)

dλ

= pK′(K′′)N(4δ )p
(

Λ

4

)p− sN−d+1
s+1

(
sN−d +1

s+1
− p
)−1

.

≤ pK′(K′′)N(4δ )p
(

Λ

4

)p− sN−d+1
s+1

= pK′(4δ )p
(

Λ

4

)p+ d−1
s+1
[

K′′
(

4
Λ

) s
s+1
]N

.

Since (2.42) implies that K′′
( 4

Λ

) s
s+1 ≤ 1/2, it follows that

p
∫

∞

Λδ

λ
p−1 Pr

[
Sd−1 6⊂

N⋃
n=1

B(ψn,εn,anλ )

]
dλ ≤ δ

pC′′′
(

1
2

)N

, (2.59)

where

C′′′ = pK′4p
(

Λ

4

)p+ d−1
s+1

. (2.60)

Combining (2.41), (2.48) and (2.59) completes the proof.
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Similar to Corollary 2.2.6, the following corollary of Theorem 2.3.4 shows that E[(WN)
p]

is at most of order 1/N p when N is sufficiently large.

Corollary 2.3.5. Let {ϕn}N
n=1 be as in Theorem 2.3.4. There exist constants C1,C2 > 0

such that

∀N ≥C1, E [(WN)
p]≤ C2δ p

N p . (2.61)

The constants C1,C2 depend on α,s,C, p,d.
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CHAPTER 3

THE RANGAN-GOYAL ALGORITHM

3.1 Preliminaries

Suppose that an unknown signal x∈Rd was measured with a sequence of measurement

vectors {ϕn}N
n=1 ⊂Rd . The sequence of linear measurements {〈x,ϕn〉+εn〉}N

n=1 are known

to be corrupted by noises {εn}N
n=1⊂R. The question is, how well can one recover the signal

x from the sequence of linear measurements? Under the assumption that the noises εn are

i.i.d. random variables uniformly distributed on [−δ ,δ ] for some δ > 0, Rangan and Goyal

(RG) proposed an iterative algorithm in [20] that estimates x from {〈x,ϕn〉+ εn〉}N
n=1 as

follows. Initializing with arbitrary x0 ∈ Rd , at each step the RG algorithm updates the

estimate xn by setting

xn := xn−1 +
ϕn

‖ϕn‖2 Tδ (〈x,ϕn〉−〈xn−1,ϕn〉+ εn) , (3.1)

where Tδ : R→ R is a soft-thresholding function defined by

Tδ (y) =


y−δ , if y > δ ,

0, if |y| ≤ δ ,

y+δ , if y <−δ .

(3.2)

The use of the soft-thresholding function Tδ is motivated by the consistency constraint:

at each iteration, our estimate error x− xn−1 should satisfy

|〈x− xn−1,ϕn〉| ≤ δ ,

and if not, the RG algorithm shrinks x− xn−1 in a direction opposite to the direction of ϕn
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by an amount depending on δ . In this chapter, we will investigate the convergence behavior

of the RG algorithm. In particular, we are interested in general moments of the estimate

error zn = x− xn ∈ Rd at the n-th iteration, which can be written as

zn = zn−1−
ϕn

‖ϕn‖2 Tδ (〈zn−1,ϕn〉+ εn) .

3.1.1 Background

When the measurement vectors {ϕn}N
n=1 are taken from i.i.d distributions, the RG al-

gorithm has been shown to converge almost surely in [20]. Moreover, the second error

moment of the RG algorithm has been shown to converge to 0 at the rate O(N−2) if ϕn are

i.i.d. copies of a unit-norm random vector ϕ which satisfies a set of reasonable assump-

tions [18]. The goal of this chapter is to extend the results in [18] by showing the p-th error

moment of the RG algorithm converges for any p≥ 2 under reasonable assumptions on the

set of random measurement vectors {ϕn}N
n=1.

In this chapter, we expand the result in [18] by replacing the unit-norm condition on

measurement vectors ‖ϕ‖= 1 by ‖ϕ‖ ≤ A for some A > 0 and generalize the result on the

convergence rate of second error moment to p-th error moment for all p ≥ 2. To this end,

we will impose a set of assumptions on the random vector ϕ similar to a probabilistic frame

condition as follows:

Assumption 3.1.1. We require the random measurement vectors {ϕn}N
n=1 ⊂Rd and noises

{εn}N
n=1 ⊂ R in (3.1) to satisfy the following conditions:

• {ϕn}N
n=1 are i.i.d. copies of a single random vector ϕ ∈ Rd .

• {εn}N
n=1 are i.i.d. uniform random variables on [−δ ,δ ].

• ϕ j and εk are independent for all pairs onf indices ( j,k).
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• Given the random vector ϕ , there exist constants Cp,C′p > 0 for each positive integer

p such that

Cp‖x‖pE‖ϕ‖ ≤ E
[∣∣∣∣〈x,

ϕ

‖ϕ‖

〉∣∣∣∣p ‖ϕ‖]≤C′p‖x‖pE‖ϕ‖, for all x ∈ Rd. (3.3)

• The constants in (3.3) satisfy C4k−1 >
4k

4k+1C′4k+1 for all k ≥ 1.

Example 3.1.2. As an example of a set of measurement vectors that satisfies Assumption

3.1.1, consider the case when the measurement vectors {ϕn}N
n=1 are i.i.d. copies of a single

Gaussian random vector ϕ . That is, ϕ =
(

ϕ(1),ϕ(2), ...,ϕ(d)
)

where each ϕ(i) ∼N (µ,σ)

for some fixed µ and σ > 0. Assume without loss of generality that E‖ϕ‖ = 1, we will

show this setup satisfies the fourth and fifth conditions in Assumption 3.1.1. First, note that

ϕ being isotropic implies that ϕ/‖ϕ‖ and ‖ϕ‖ are independent. Therefore |〈x,ϕ/‖ϕ‖〉|p

and ‖ϕ‖ are also independent random variables. Hence,

E
[∣∣∣∣〈x,

ϕ

‖ϕ‖

〉∣∣∣∣p ‖ϕ‖]
= E

∣∣∣∣〈x,
ϕ

‖ϕ‖

〉∣∣∣∣p ·E‖ϕ‖
= ‖x‖p ·E

∣∣∣∣〈 x
‖x‖

,
ϕ

‖ϕ‖

〉∣∣∣∣p .
Let us define the random variable Z := |〈x/‖x‖,ϕ/‖ϕ‖〉|. Since ϕ/‖ϕ‖ is a uniform

random variable distributed on Sd−1, Z has the following probability density function fZ

according to [25], where Γ is the gamma function:
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fZ(z) =


2Cd(1− z2)(d−3)/2, if z ∈ [0,1],

0, otherwise,

where Cd =
Γ
(d

2

)
√

πΓ
(d−1

2

) , and Γ(z) :=
∫

∞

0
tz−1e−tdt.

Therefore, for all p > 0 and d > 2,

E
∣∣∣∣〈 x
‖x‖

,
ϕ

‖ϕ‖

〉∣∣∣∣p = E|Z|p

= 2Cd

∫ 1

0
zp(1− z2)(d−3)/2dz

=Cd

∫ 1

0
t(p−1)/2(1− t)(d−3)/2dt

=Cd ·B
(

p+1
2

,
d−1

2

)

=
Γ
(d

2

)
√

πΓ
(d−1

2

) · Γ
(

p+1
2

)
Γ
(d−1

2

)
Γ

(
p+d

2

)
=

Γ
(d

2

)
Γ

(
p+1

2

)
√

πΓ

(
p+d

2

) ,

where B = B(x,y) is the beta function,

B(x,y) :=
∫ 1

0
tx−1(1− t)y−1dt, ∀x,y > 0.

If we set

Cp =C′p :=
Γ
(d

2

)
Γ

(
p+1

2

)
√

πΓ

(
p+d

2

) ,
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then from the property of gamma function that Γ(z+1) = zΓ(z), one has

C4k−1

C′4k+1
=

Γ(2k)
Γ(2k+1)

·
Γ
(4k+d+1

2

)
Γ
(4k+d−1

2

)
=

1
2k
· 4k+d−1

2
. (3.4)

When combined with k,d ≥ 1, (3.4) means

C4k−1

C′4k+1
≥ 1 >

4k
4k+1

.

So both the fourth and the fifth conditions in Assumption 3.1.1 hold for i.i.d. Gaussian

random vectors {ϕn}N
n=1 when E‖ϕ‖= 1.

3.1.2 Main results

In the next section, Theorem 3.2.1 provides bounds on the p-th error moment of RG

algorithm for all p ≥ 2 when RG is initialized with a good condition on a set of random

measurement vectors {ϕn}N
n=1 that satisfies Assumption 3.1.1 and ‖ϕ‖ ≤ A. Theorem 3.3.6

then extends the result to general initial condition. In both theorems, the error moments are

shown to be decreasing like

E[‖x− xN‖p].
1

N p ,

as the number of measurements N increases.

3.2 Error moments under good initial condition

The behavior of the RG algorithm depends the magnitude of the estimate error z j :=

x− x j. In this section, we restrict the problem to the initial condition that ‖z0‖ = ‖x−

x0‖ ≤ 2δ/A, which we refer to as the “good” initial condition. To simplify notation, for

conditional expectation of a random variable X = X(Y,Z) on Y , we write EY [X ] instead of
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E [X |Z] with the implicit understanding that the expected value is conditioned on Z. The

main result here is that the p-th error moment of RG algorithm converges to zero at the rate

O (N−p) for any p ≥ 2, shown in Corollary 3.2.3 of the main theorem, if we also require

that ‖ϕ‖ ≤ A. The main theorem bounds the even error moments of RG algorithm:

Theorem 3.2.1. Suppose that {ϕn}N
n=1 ⊂ Rd are i.i.d. versions of a single random vector

ϕ ∈ Rd with ‖ϕ‖ ≤ A for some A > 0, that {εn}N
n=1 are i.i.d. uniform random variables

on [−δ ,δ ], and that Assumption 3.1.1 holds. Given x ∈Rd and noisy linear measurements

{〈x,ϕn〉+ε}N
n=1, let {xn}N

n=0⊂Rd denote the RG estimate of x with initial estimate x0 ∈Rd

at the n-th step. If ‖x− x0‖ ≤ 2δ/A, then for all p ∈ N such that p+1≤ n≤ N, one has

E‖x− xn‖2p ≤
[

2p
Mp,δ (n+1)

]2p

.

The constant Mp,δ is defined by

Mp,δ := min

{
p

δ
√

p+1
,− λ

2δ

bp/2c

∑
k=1

A2k−1

(
C4k−1−

4k
4k+1

C′4k+1

)}
> 0, (3.5)

where λ = E‖ϕ‖, the constants Ck and C′k are defined in Assumption 3.1.1, and Ak are

defined by

Ak =
k

∑
j=0

(
k
j

)
(−2)k− j

(k+ j+1)
.

Corollary 3.2.2. With the same assumptions on {ϕn}N
n=1 and {εn}N

n=1 and notations in

Theorem 3.2.1, if ‖x− x0‖ > 2δ/A but ‖x− xn0‖ ≤ 2δ/A holds for some n0 ≥ 1 instead,

then for all n≤ N and p ∈ N that satisfies p+1≤ n−n0 we have

E
[
‖x− xn‖2 ∣∣x− xn0

]
≤
[

2p
Mp,δ ((n−n0)+1)

]2p

.

Other error moment bounds are then derived from the even error moment bounds:
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Corollary 3.2.3. Under the same assumptions and notations in Theorem 3.2.1, for all p∈N

such that p+1≤ n≤ N one has

E‖zn‖2p+q ≤
[

2p
Mp,δ (n+1)

]2p+q

, ∀ 0 < q < 2.

If ‖x− x0‖> 2δ/A but ‖x− xn0‖ ≤ 2δ/A holds for some n0 ≥ 1 instead, we also have for

all n≤ N and p≥ 2 that satisfies p+1≤ n−n0

E
[
‖x− xn‖2p+q ∣∣x− xn0

]
≤
[

2p
Mp,δ ((n−n0)+1)

]2p+q

.

Proof. Applying Holder’s inequality, we obtain

E‖zn‖2p+q = E
[
‖zn‖2p+q ·1

]
≤
(
E‖zn‖(2p+q)· 2p

2p+q

) 2p+q
2p ·1

=
(
E‖zn‖2p) 2p+q

2p

≤
[

2p
Mp,δ (n+1)

]2p+q

.

The proof of Theorem 3.2.1 will rely on the following lemmas, the first of which from

[20] states that the errors of RG estimates decrease monotonically:

Lemma 3.2.4. Let x ∈ Rd . With any measurements vectors {ϕn}N
n=1, any uniformly noise

sequence {εn}N
n=1 ⊂ [−δ ,δ ], and any initial condition x0 ∈ Rd , the RG estimates {xn}N

n=1

satisfy

‖x− xn‖ ≤ ‖x− xn−1‖, ∀1≤ n≤ N.

The next lemma is a combinatorial result.
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Lemma 3.2.5. Let

Ak :=
k

∑
j=0

(
k
j

)
(−2)k− j

(k+ j+1)
,

then A1 =−2/3, and Ak+1/Ak =−(2k+2)/(2k+3) for all k ∈ N.

Proof. Straightforward calculation shows that A1 =−2/3. For k > 1, define

Dk(x) :=
k

∑
j=0

(
k
j

)
xk+ j+1

k+ j+1
.

Note that Ak = (−2)2k+1 ·Dk(−1/2). and Ak+1/Ak = (−2)2 ·Dk+1(−1/2)/Dk(−1/2).

Therefore it suffices to show that

Dk+1 (−1/2)
Dk (−1/2)

=− k+1
4k+6

.

Now (Dk)
′(x) =

k
∑
j=0

(k
j

)
xk+ j = xk(1+ x)k and Dk(0) = 0, so

Dk(−1/2) = Dk(−1/2)−Dk(0)

=
∫ −1/2

0
xk(1+ x)kdx

= (−1)k+1
∫ 1/2

0
tk(1− t)kdt

= (−1)k+1B(1/2;k+1,k+1),

where B(x;a,b) =Bx(a,b) is the incomplete Beta function as defined in [4]. By convention,

let B(a,b) denote the Beta function and Ix(a,b) denote the regularized incomplete Beta

function where B(a,b) =: Ix(a,b)Bx(a,b). With the identity that Ix(a,a) = 1
2 I4x(1−x)(a,

1
2)
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[4, Eq. 8.17.6] and noting that I1(a,b) = 1, we have

Dk+1 (−1/2)
Dk (−1/2)

=−B(1/2;k+2,k+2)
B(1/2;k+1,k+1)

=−
I1/2(k+2,k+2)B(k+2,k+2)
I1/2(k+1,k+1)B(k+1,k+1)

=−B(k+2,k+2)
B(k+1,k+1)

=− k+1
(k+1)+(k+2)

· B(k+1,k+2)
B(k+1,k+1)

=− k+1
(k+1)+(k+2)

· 1
2

=− k+1
4k+6

,

as desired. Thus the proof is complete.

The next lemma computes the error moment Eεn‖zn‖p conditioning on both ϕn and

zn−1.

Lemma 3.2.6. With ϕ ∈Rd and δ > 0 fixed, let ε be a uniform random variable on [−δ ,δ ].

For u ∈R , define Fδ : R→R by Fδ (u) = Fδ (u,ε) := (1/‖ϕ‖2)Tδ (u+ ε) [Tδ (u+ ε)−2u]

where Tδ is the soft-thresholding function in (3.2). If |u| ≤ 2δ , then for all m > 0,

Eε [Fδ (u,ε)
m] =

m

∑
j=0

(
m
j

)
(−2)m− j

‖ϕ‖2m
|u|2m+1

2δ (m+ j+1)
.

Proof. First, we calculate the expected value of powers of T (u+ ε) where the uniform

random variable ε has a constant probability density p(ε) = 1/2δ . Note that T (u+ ε) is

nonzero when u+ε−δ > 0 or u+ε +δ < 0. Since |ε| ≤ δ , only u+ε−δ > 0 can be true
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when u > 0. So for 0 < u≤ 2δ and m > 0,

E [T (u+ ε)m] =
∫

δ

−δ

T (u+ ε)m p(ε)dε

=
∫

δ

δ−u
(u+ ε−δ )m dε

2δ

=
um+1

2δ (m+1)
.

On the other hand, only u+ ε +δ < 0 can be true when −2δ ≤ u < 0, so in this case

E [T (u+ ε)m] =
∫

δ

−δ

T (u+ ε)m d p(ε)

=
∫ −δ−u

−δ

(u+ ε +δ )m dε

2δ

=− um+1

2δ (m+1)
.

Hence for |u| ≤ 2δ one has

Eε [T (u+ ε)m] =


um+1

2δ (m+1)
, if u≥ 0,

− um+1

2δ (m+1)
, if u < 0.

(3.6)

From (3.6) it follows that for |u| ≤ 2δ and m > 0,

Eε [Fδ (u,ε)
m] = Eε

[
1

‖ϕ‖2m Tδ (u+ ε)m [Tδ (u+ ε)−2u]m
]

= Eε

[
1

‖ϕ‖2m Tδ (u+ ε)m
m

∑
j=0

(
m
j

)
Tδ (u+ ε) j (−2u)m− j

]

=
m

∑
j=0

(
m
j

)
(−2u)m− j

‖ϕ‖2m Eε

[
Tδ (u+ ε)m+ j

]
=

m

∑
j=0

(
m
j

)
(−2)m− j

‖ϕ‖2m
|u|2m+1

2δ (m+ j+1)
,

and the proof is complete.

41



Lemma 3.2.7. For p ≥ 1 and C > 0, define fp : R→ R by fp(x) = x−Cx(p+1)/p. Setting

K = (p/C)p ≥ 1, then for all N ≥ p+1 we have

fp (x)≤
K

(N +1)p , ∀x ∈
[

0,
K
N p

]
.

Proof. First derivative test shows that f is increasing between 0 and K/(p+ 1)p. Hence

N ≥ p+1 implies

fp

([
0,

K
N p

])
⊂
[

0, fp

(
K
N p

)]
,

and it is sufficient to show that

fp

(
K
N p

)
=

K
N p −

CK(p+1)/p

N p+1 ≤ K
(N +1)p ,

which is equivalent to showing that

(N−CK1/p)(N +1)p ≤ N p+1. (3.7)

By rearranging terms in (3.7), the problem reduces to proving that

CK1/pN p+1(N +1)p ≥ N(N +1)p,

which is guaranteed by the assumption that CK1/p ≥ p≥ 1.

We are now ready to prove the main theorem in this section.

Proof of Theorem. Let us define zk = x− xk ∈ Rd to be the error of RG estimate at k-th

iteration. Set un = 〈zn−1,ϕn〉, then

‖zn‖2p =
(
‖zn−1‖2 +Fδ (un,εn)

)p

=
p

∑
m=0

(
p
m

)
‖zn−1‖2(p−m) [Fδ (un,εn)]

m .
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We will now compute the error moments conditioned on εn, ϕn, and zn−1 successively.

First, using Lemma 3.2.6 we have the error moment conditioned on εn:

Eεn‖zn‖2p =
p

∑
m=0

(
p
m

)
‖zn−1‖2(p−m)Eεn [(Fδ )

m(u,ε)]

= ‖zn−1‖2p +
p

∑
m=1
‖zn−1‖2(p−m)

m

∑
j=0

(
m
j

)
(−2)m− j

‖e‖2m
|u|2m+1

2δ (m+ j+1)
. (3.8)

Next, taking expected value on (3.8) with respect to ϕn results in

Eεn,ϕn‖zn‖2p = ‖zn−1‖2p +
1

2δ

p

∑
m=1

m

∑
j=0

(
m
j

)
(−2)m− j

m+ j+1
‖zn−1‖2(p−m)×Eϕn

[
|u|2m+1

‖ϕn‖2m

]
= ‖zn−1‖2p

+
1

2δ

p

∑
m=1

(
m

∑
j=0

(
m
j

)
(−2)m− j

m+ j+1
‖zn−1‖2(p−m)

)

×Eϕn

[∣∣∣∣〈zn−1,
ϕn

‖ϕn‖

〉∣∣∣∣2m+1

‖ϕn‖

]
.

Letting λ := E‖ϕ‖, the fourth condition in Assumption 3.1.1 says

C2m+1λ‖zn−1‖2m+1 ≤ Eϕn

[∣∣∣∣〈zn−1,
ϕn

‖ϕn‖

〉∣∣∣∣2m+1

‖ϕn‖

]
≤C′2m+1λ‖zn−1‖2m+1.

So, by choosing C̃2m+1 =C2m+1 if m is odd and C̃2m+1 =C′2m+1 if m is even, one has

Eε,ϕn‖zn‖2p ≤ ‖zn−1‖2p +
λ

2δ

(
p

∑
m=1

m

∑
j=0

(
m
j

)
(−2)m− j

m+ j+1
C̃2m+1

)
‖zn−1‖2p+1

= ‖zn−1‖2p +
λ

2δ

bp/2c

∑
k=1

(
A2k−1C4k−1 +A2kC′4k+1

)
‖zn−1‖2p+1

= ‖zn−1‖2p +
λ

2δ

bp/2c

∑
k=1

A2k−1

(
C4k−1−

4k
4k+1

C′4k+1

)
‖zn−1‖2p+1.
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Because Assumption 3.1.1 requires C4k−1/C′4+1 > 4k/(4k+1) for all k ≥ 1, if we set

Mp,δ := min

{
pA

δ
√

p+1
,
−λ

2δ

bp/2c

∑
k=1

A2k−1

(
C4k−1−

4k
4k+1

C′4k+1

)}
, (3.9)

then Mp,δ > 0 and

Eε,ϕn‖zn‖2p ≤ ‖zn−1‖2p−Mp,δ‖zn−1‖2p+1.

Finally, by taking the expected value with respect to zn−1, it follows from Hölder’s inequal-

ity that

E‖zn‖2p ≤ Ezn−1‖zn−1‖2p−Mp,δEzn−1‖zn−1‖2p+1

≤ Ezn−1‖zn−1‖2p−Mp,δ
(
Ezn−1‖zn−1‖2p) 2p+1

2p .

At this point we set

Kp,σ := (2p/Mp,δ )
2p.

To apply Lemma 3.2.7, we need to make sure that x = Ezn−1‖zn−1‖2p ≤ (2p/Mp,δ )
2p/N p.

Because ‖zn−1‖ ≤ ‖z0‖ ≤ 2δ/A implies E‖zn−1‖2p ≤ (2δ/A)2p, by bounding 1/N p above

with 1/(p+1)p we obtain the necessary condition

Mp,δ ≤
pA

δ
√

p+1
,

which is guaranteed by (3.9). So from Lemma 3.2.7 one has

E‖zn‖2p ≤
Kp,σ

(n+1)2p =

[
2p

Mp,δ (n+1)

]2p

, ∀n≥ p+1.

Therefore the 2p-th error moment of RG algorithm converges to zero in O
(
N−2p) for all

p ∈ N and the proof of theorem is complete.
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3.3 General error moments

In this section we build up on Theorem 3.2.1 and provide bounds on the error moments

under general initial condition where one may have ‖z0‖ > 2δ/A while still under the

assumption that ‖ϕ‖ ≤ A. The idea is the following: because the error z j decreases mono-

tonically, after many iterations it is unlikely to have ‖zn0‖> 2δ/A for some n0 > 0. In fact,

as shown in Lemma 3.3.3, if ‖z0‖ > 2δ/A, then with positive probability, each iteration

of RG reduces the estimate error by at least δ/A. Hence, given initial condition ‖z0‖ > 0,

we can compute the expected number of steps needed for RG estimate error z j to fall into

the range where we can apply Theorem 3.2.1. The first lemma provides a deterministic

condition on the random variable ϕ .

Lemma 3.3.1. Suppose that the random measurement vector ϕ satisfies ‖ϕ‖ ≤ A and As-

sumption 3.1.1. Let

B =
1
2

C1E‖ϕ‖ and α =

(
B
A

)2

,

where C1 is defined in Assumption 3.1.1. Then for all x ∈ Rd with ‖x‖> 2δ/A, we have

Pr
[
|〈x,ϕ〉| ≥ 2δ

√
α and ‖ϕ‖ ≥ B

]
≥ B

A−B
> 0.
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Proof. First note that 2B =C1E‖ϕ‖ ≤ A from Assumption 3.1.1. Also one has

2B‖x‖ ≤ E |〈x,ϕ〉|

= E
[
|〈x,ϕ〉|

∣∣∣∣ |〈x,ϕ〉|> B‖x‖
]

Pr
[
|〈x,ϕ〉|> B‖x‖

]
+E

[
|〈x,ϕ〉|

∣∣∣∣|〈x,ϕ〉| ≤ B‖x‖
]

Pr
[
|〈x,ϕ〉| ≤ B‖x‖

]
≤ ‖x‖A ·Pr

[
|〈x,ϕ〉|> B‖x‖

]
+B‖x‖ ·Pr

[
|〈x,ϕ〉| ≤ B‖x‖

]
= ‖x‖A ·Pr

[
|〈x,ϕ〉|> B‖x‖

]
+B‖x‖

(
1−Pr

[
|〈x,ϕ〉|> B‖x‖

])
. (3.10)

Rearranging (3.10) to get

B‖x‖ ≤ (A−B)‖x‖Pr
[
|〈x,ϕ〉|> B‖x‖

]
,

and as a result

Pr
[
|〈x,ϕ〉|> B‖x‖

]
≥ B

A−B
.

Note that ‖ϕ‖< B implies |〈x,ϕ〉| ≤ B‖x‖, hence

Pr
[
|〈x,ϕ〉|> B‖x‖ and ‖ϕ‖< B

]
= 0. (3.11)

Finally, because

B‖x‖ ≥ B
(

2δ

A

)
= 2δ

√
α,

from (3.11) we obtain

Pr
[
|〈x,ϕ〉| ≥ 2δ

√
α and ‖ϕ‖ ≥ B

]
≥ Pr

[
|〈x,ϕ〉|> B‖x‖ and ‖ϕ‖ ≥ B

]
= Pr

[
|〈x,ϕ〉|> B‖x‖

]
≥ B

A−B
,

46



and the proof is complete.

The next lemma provides a lower bound on the amount of estimate error reduced by

RG at each step.

Lemma 3.3.2. For fixed δ > 0, let ε be a random variable uniformly distributed on [−δ ,δ ].

Define Fδ : R→ R by

Fδ (u) = Fδ (u,ε) :=
1
‖e‖2 φδ (u+ ε) [φδ (u+ ε)−2u] . (3.12)

Fix 0 < α < 1, then for u ∈ Rd ,

Pr
[
Fδ (u)< λ

∣∣ |u| ≥ 2δ
√

α and ‖ϕ‖ ≥ B
]
>
√

3α/4 > 0,

for all λ such that −αδ 2 ≤ B2λ < 4δ 2−u2.

Proof. Without loss of generality, one can assume that u > 0. Since u > 0, either u > 2δ

or 2δ
√

α ≤ u ≤ 2δ from the conditioning. So there are two possible cases depending on

magnitude of u.

Case 1. (u > 2δ ) When u > 2δ ,

Fδ (u,ε) =
1
‖e‖2 (u+ ε−δ ) [(ε−δ )−u] =

1
‖e‖2

[
(ε−δ )2−u2

]
.
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Because ‖ϕ‖ ≥ B,
1

B2

[
(ε−δ )2−u2

]
< λ =⇒ Fδ (u,ε)< λ and hence

Pr
[
Fδ (u,ε)< λ

∣∣ |u| ≥ 2δ
√

α and ‖ϕ‖ ≥ B
]

≥ Pr
[

1
B2

[
(ε−δ )2−u2

]
< λ

∣∣∣∣ |u| ≥ 2δ
√

α and ‖ϕ‖ ≥ B
]

= Pr
[
(ε−δ )2−u2 < B2

λ

∣∣∣ |u| ≥ 2δ
√

α and ‖ϕ‖ ≥ B
]

=


0, if B2λ <−u2,

√
u2+B2λ

2δ
, if −u2 ≤ B2λ ≤ 4δ 2−u2

1, if B2λ > 4δ 2−u2.

Since u > 2δ > 2δ
√

α , we have

Pr
[
Fδ (u,ε)< λ

∣∣ |u| ≥ 2δ
√

α and ‖ϕ‖ ≥ A
]

≥
√

u2 +B2λ

2δ
≥
√

4αδ 2−αδ 2

2δ
=
√

3α/4 > 0,

for all λ such that −αδ 2 ≤ B2λ < 4δ 2−u2.

Case 2. (2δ
√

α ≤ u≤ 2δ ) In this case,

Fδ (u,ε) =


0, if −δ ≤ ε ≤ δ −u,

(ε−δ )2−u2, if δ −u < ε ≤ δ .
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It follows that

Pr
[
Fδ (u,ε)< λ

∣∣ |u| ≥ 2δ
√

α and ‖ϕ‖ ≥ B
]

=


0, if B2λ <−u2,

√
u2+B2λ

2δ
, if −u2 ≤ B2λ ≤ 0,

1, if B2λ > 0.

Since u > 2δ
√

α , we have similarly

Pr
[
Fδ (u,ε)< λ

∣∣ |u| ≥ 2δ
√

α and ‖ϕ‖ ≥ B
]

≥
√

u2 +B2λ

2δ
≥
√

4αδ 2−αδ 2

2δ
=
√

3α/4 > 0,

for λ such that −αδ 2 ≤ B2λ < 0.

Following Lemma 3.3.1 and Lemma 3.3.2, the next lemma combines the result and

provides a lower bound on the amount of error reduced whenever the input x j of RG is

more than 2δ/A away from the true x.

Lemma 3.3.3. Fix δ > 0. Suppose ε is a uniform random variable on [−δ ,δ ] and the

random vector e ∈ Rd satisfies Assumption 3.1.1. Assume also that ϕ , ε are independent.

Let Fδ be defined as in (3.12), then with the constants A, B, and α defined in Lemma 3.3.1,

for z ∈ Rd with ‖z‖> 2δ/A we have

Pr

[
Fδ (〈z,ϕ〉,ε)<−

(
δ

A

)2
]
>

√
3B2

2A(A−B)
=: CA,B > 0.

Proof. The result follows immediately from from Lemma 3.3.1 and 3.3.2 with α = (B/A)2
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since

Pr

[
Fδ (〈z,ϕ〉,ε)<−

(
δ

A

)2
]

=Pr
[

Fδ (〈z,ϕ〉,ε)<
−αδ 2

B2

]
≥Pr

[
Fδ (〈z,ϕ〉,ε)<

−αδ 2

B2

∣∣∣∣ |〈z,ϕ〉| ≥ 2δ
√

α and ‖ϕ‖ ≥ B
]

·Pr
[
|〈z,ϕ〉| ≥ 2δ

√
α and ‖ϕ‖ ≥ B

]
>

B
A−B

√
3α

4
> 0.

The next lemma gives a bound on the probability of having the estimate error zn staying

outside the “good” region where ‖zn‖ ≤ 2δ/A, after n iterations of RG.

Lemma 3.3.4. Under the same assumptions and notations in Lemma 3.3.3, if we set M to

be the smallest positive integer such that

‖z0‖2−M(δ/A)2 < (2δ/A)2,

then for all n > M−1 one has

Pr
[
‖zn‖>

2δ

A

]
≤ anbcn,

where

a = M(1−CA,B)
−M, b = (M−1), c = (1−CA,B). (3.13)

Proof. Let I be the event I =
{
‖z j‖> 2δ/A, ∀ j = 0, . . . ,n−1

}
. Because

‖zn‖2 = ‖z0‖2 +
n−1

∑
j=0

Fj(〈z j−1,ϕ j〉,ε j),
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we define X to be the random variable

X = Card

{
j : Fj(〈z j−1,ϕ j〉,ε j)<−

(
δ

A

)2

, j = 0,1, . . . ,n−1

}
.

X can be viewed as the number of “good” RG iterations where we have z j < z j−1− (δ/A)

and the RG estimate error decreases for more than δ/A. From the definition of X and M,

we have

Pr [X ≥M |I ]≤ Pr
[
‖zn‖ ≤

2δ

A

∣∣∣∣I ] ,
which implies

Pr
[
‖zn‖>

2δ

A

∣∣∣∣I ]≤ Pr [X < M |I ] .

However, having ‖z j+1‖ ≤ ‖z j‖ for all j = 0,1, . . . ,n−1 tells us that

Pr
[
‖zn‖>

2δ

A

∣∣∣∣I c
]
= 0,

so

Pr
[
‖zn‖>

2δ

A

]
≤ Pr [X < M |I ] .

The next step is to bound Pr [X < M |I ], the probability of having less than M good RG

iterations. We can do so by bounding the probability of having exactly k good iterations,

where k < M , as follows. For any 0≤ k < M, fix a set of indices

{ j0 < j1 < .. . < jn−k} ⊂ {1, . . . ,n},

where j0, j1, . . . , jn−k are indices of bad iterations during which the RG estimate error pos-

sibly decreases for less than or equal to δ/A. Then, from the independency assumption

on ϕ j and ε j, we can apply Lemma 3.3.3 on the largest index jn−k to get a bound on the
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probability of having bad iterations at exactly the j0, . . . , jn−k-th iterations of RG. Hence,

Pr

[
Fjl(〈z jl−1,ϕ jl〉,ε jl)≥−

(
δ

A

)2

, l = 1, . . . ,n− k

∣∣∣∣∣I
]

= Pr

[
Fjl(〈z jl−1,ϕ jl〉,ε jl)≥−

(
δ

A

)2

, l = 1, . . . ,n− k−1

∣∣∣∣∣I
]

×Pr

[
Fjn−k(〈z jn−k−1,ϕ jn−k〉,ε jn−k)≥−

(
δ

A

)2
∣∣∣∣∣I
]

≤ (1−CA,B) ·Pr

[
Fjl(〈z j−1,ϕ jl〉,ε jl)≥−

(
δ

A

)2

, l = 1, . . . ,n− k−1

∣∣∣∣∣I
]
.

By repeated application of Lemma 3.3.3 on the largest remaining index jl , we obtain an

upper bound on the probability of having k good iterations:

Pr

[
Fjl(〈z jl−1,ϕ jl〉,ε jl)≥−

(
δ

A

)2

, l = 1, . . . ,n− k

∣∣∣∣∣I
]
≤ (1−CA,B)

n−k. (3.14)

Therefore for any k < M,

Pr [X = k |I ]≤
(

n
k

)
(1−CA,B)

n−k.
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Finally, for n > M−1,

Pr
[
‖zn‖>

2δ

A

]
≤ Pr [X < M |I ]

=
M−1

∑
k=0

Pr [X = k |I ]

≤
M−1

∑
k=0

(
n
k

)
(1−CA,B)

n−k

≤ (1−CA,B)
n−M

M−1

∑
k=0

(
n
k

)
≤ (1−CA,B)

n−M
M−1

∑
k=0

nk

≤MnM−1(1−CA,B)
n−M.

Lemma 3.3.5. Given b > 0 and 0 < c < 1, then for each p ∈ N, we have

∀n > 1,
n

∑
j=1

jbc j

(n− j)2p ≤
Dp

n2p ,

where Dp is defined in (3.15).

Proof. Because 0 < c < 1, given p > 0, the product jb+2pc j is dominated by c j. Hence we

can find constants D̃p = D̃p(b,c) such that jb+2pc j ≤ D̃p for all j ∈ N. Therefore,

n

∑
j=1

jbc j

(n− j)2p ≤ D̃p

dn/2e

∑
j=1

1
j2p(n− j)2p + D̃p

n

∑
j=bn/2c

1
j2p(n− j)2p

≤ 2D̃p

(
2
n

)2p ∞

∑
j=1

1
j2p ≤

Dp

n2p ,

where

Dp = 2D̃p ·22p ·
∞

∑
j=1

1
j2p . (3.15)
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We are now ready to prove the theorem.

Theorem 3.3.6. Fix p ∈ N. Suppose that {ϕn}N
n=1 ⊂ Rd are i.i.d. random vectors with

‖ϕn‖ ≤ A, that {εn}N
n=1 are i.i.d. uniform random variables on [−δ ,δ ], and that Assump-

tion 3.1.1 holds. Given x∈Rd and noisy measurements {〈x,ϕn〉+εn}N
n=1, let {xn}N

n=0 ∈Rd

denote the RG estimate of x with initial estimate x0 ∈ Rd . Denote the error of RG estimate

at the n-th iteration by zn := x− xn. Then for all N > p+1, we have

E‖zN‖2p ≤ ‖z0‖2p(p+1)aNbcN−p +

(
2p

Mp,δ

)2p Dp

[N− (p+1)]2p , (3.16)

where a,b,c are defined in (3.13), Mp,δ is defined in (3.5), and Dp is defined in (3.15).

Proof. First, we condition E‖zN‖2p with the probability that the error z j falls into the ap-

plicable range of Theorem 3.2.1. The sum is split at j = N− p because Theorem 3.2.1 does

not apply to the first p+1 terms. Therefore,

E‖zN‖2p = E
[
‖zN‖2p

∣∣∣∣‖zN−1‖>
2δ

A

]
Pr
[
‖zN−1‖>

2δ

A

]
(3.17)

+
N−1

∑
j=N−p

[
‖zN‖2p

∣∣∣∣‖z j‖>
2δ

A
,‖z j−1‖ ≤

2δ

A

]
Pr
[
‖z j‖>

2δ

A
,‖z j−1‖ ≤

2δ

A

]

+
N−p−1

∑
j=1

[
‖zN‖2p

∣∣∣∣‖z j‖>
2δ

A
,‖z j−1‖ ≤

2δ

A

]
Pr
[
‖z j‖>

2δ

A
,‖z j−1‖ ≤

2δ

A

]
.

Next, we bound the probability in the first two terms of (3.17) with Lemma 3.3.4 and

monotonicity of z j that ‖z j+1‖ ≤ ‖z j‖. We also bound the third term in (3.17) by applying

Theorem 3.2.1, Lemma 3.3.4, and Lemma 3.3.5 to obtain

E‖zN‖2p ≤ ‖z0‖2p
N

∑
j=N−p

a jbc j +
N−p−1

∑
j=1

[
2p

Mp,δ ((n− j)+1)

]2p

a jbc j

≤ ‖z0‖2p(p+1)aNbcN−p +

(
2p

Mp,δ

)2p Dp

[N− (p+1)]2p .
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Because the first term in (3.16) is dominated by cN with 0 < c < 1, we have the follow-

ing corollary.

Corollary 3.3.7. With the assumptions and notations in Theorem 3.3.6, for each p ∈ N

there exists a constant C > 0 such that for N > p+1,

E‖zN‖2p ≤ C
N2p .
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