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CHAPTER I 

 

INTRODUCTION AND SUMMARY 

 

 Introduction 

  Stroke is a highly prevalent condition, especially among the elderly, that results in high 

costs to the individual and society [1][2]. It is a leading cause of disability, commonly 

involving deficits of motor function. Every 45 seconds in the United States, someone suffers 

a stroke, which is an interruption in circulation to part of the brain. About 700,000 Americans 

will have a stroke this year, making it the nation's number 3 killers, according to the 

American Stroke Association. Anything that could help a patient regain useful function of a 

limb and help with activities of daily living, and make them more independent would be 

useful.   

 Clinical results have indicated that movement assisted therapy can have a significant 

beneficial impact on a large segment of the population affected by stroke. In recent years, 

new techniques adopting a task-oriented approach have been developed to encourage active 

training of the affected limb, which assume that control of movement is organized around 

goal-directed functional tasks [3][4]. “Shaping” is one of the task oriented behavioral training 

techniques employed in Constraint-Induced Movement (CI) therapy [3]-[5], which has the 

effect of placing optimal adaptive task practice procedures into a systematic, standardized 

and quantified format. The availability of such training techniques, however, is limited by the 

amount of costly therapist’s time they involve, and the ability of the therapist to provide 

controlled, quantifiable and repeatable assistance to complex arm and hand motion. 

Consequently, robot assisted rehabilitation could be used to automate labor-intensive training 

technique, to provide programmable levels of assistance to the patients, and to quantitatively 

monitor and adapt to the patient’s progress during rehabilitation.  

  

Robot-Assisted Rehabilitation Systems 

 Robot-assisted rehabilitation for physical rehabilitation has been an active research area 

for the last few years to assist, enhance and quantify rehabilitation [6]- [18]. The robot-

assisted therapies provide autonomous training where patients are engaged in repeated and 

intense practice of goal-directed tasks leading to improvements in motor function. Several 

rehabilitation robotic systems are being developed to automate therapy for the arm and hand 

following stroke. The MIT-Manus (Massachusetts Institute of Technology Manus) [6][7], 
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Assisted Rehabilitation and Measurement (ARM) Guide [8][9], Mirror Image Movement 

Enabler (MIME) [10]-[12] and GENTLE/s  [13] are developed to facilitate arm movement of 

the stroke patients. New rehabilitation therapy environments are under development to permit 

the training of real-life functional tasks involving reaching and grasping [14]. Rutgers Master 

II-ND [15], a hand exoskeleton [16], the CyberGrasp [17], and a robotic device (HWARD) 

[18] are also being developed to facilitate the hand movement of the stroke patients. 

MIT Manus (Figure 1) is the pioneering robotic rehabilitation system which was 

developed at the Massachusetts Institute of Technology (MIT) in the early 1990s [6],[7]. The 

MIT Manus therapy robot permits stroke survivors to practice two-dimensional (2-D) point-

to-point movements. MIT Manus uses impedance controller to provide assistance to move the 

patient’s arm to the target position, where the patients can visually see their movement and 

the target location. It is configured for safe and stable operation in close physical contact with 

humans. Stroke patients have demonstrated improvements in shoulder strength and executing 

smooth movements by using MIT Manus. For example, the patients could follow a desired 

circular trajectory more closely with training with MIT Manus and their velocity profile 

began to look like a bell-shape with less corrective movements. 

 

 
Figure 1. MIT Manus 

 

The other well-known robot-assisted rehabilitation device called Assisted Rehabilitation 

and Measurement (ARM) Guide [8],[9] is developed at the Rehabilitation Institute of 

Chicago. ARM Guide is developed to allow stroke subjects to perform the reaching tasks, 

which is capable of generating both horizontal and vertical motion (Figure 2). The subject's 
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forearm/hand is strapped to a specially designed splint that slides along a linear constraint 

(Figure 2). A motor assists or resists the arm movement along the linear bearing. The device 

is mounted on a stand for height adjustment, and can be flipped to measure reaching with the 

left/right hand. The orientation of the ARM Guide can be manually changed for either 

vertical or horizontal planes, however the device, can not provide assistance to the patients 

for both planes at the same time. A guided-force training algorithm is designed with the ARM 

Guide to train the patients. In this training algorithm the patients attempt to reach forward at a 

comfortable speed to the end of his/her range of motion. Throughout the movement, a six-

axis load cell is monitored for off-axis forces above a 10 N threshold. Once such a force is 

detected, the motor locks the position of the hand piece and the user receives real-time 

graphical feedback of the force error. When the six-axis load cell detects appropriate forces 

toward the target, the graphical cue is removed and the motor unlocks the hand piece, which 

allows the user to progress toward the target. When the subject is moving toward the task, the 

ARM Guide resists/assists the subject’s movement. A graphical interface on a computer 

monitor represents the current position of the ARM Guide and a target position.  

 

  
Figure 2. Assisted Rehabilitation and Measurement Guide (ARM Guide) 

 

Mirror Image Movement Enabler (MIME) robotic rehabilitation device is developed at 

Stanford University and the Veterans Affairs Palo Alto Health Care System [10]-[12]. MIME 

robot permits stroke survivors to practice three-dimensional (3D) point-to-point reaching 

movements occurring in the real world. A PUMA-560 robot is mounted beside the table, 

which is modified so that the subjects can interact with the robot in a stable and repeatable 

 3



manner (Figure 3). The subject's arm is strapped into the splint with the wrist. The interaction 

force between the subject and the device during the reaching tasks are measured using a force 

sensor. A quick-release coupling mechanism is designed to shut down power when a certain 

torque level is exceeded. The motion of the robot is monitored in order to prevent potentially 

hazardous situations from occurring. Several modes of the robot-assisted movement have 

been implemented with MIME, including passive, active-assisted, and active-constrained, as 

well as a bimanual mode in which MIME continuously moves the impaired limb to the mirror 

image position of the unimpaired limb as measured with a digitizing linkage. In the passive 

mode, the patient remains passive while the robot moves the arm along a pre-programmed 

position trajectory using proportional-integral-derivative (PID) controller. In the active 

assisted mode the patient initiates the movement and the robot assists and guides the motion 

along the desired position trajectory. In the active-constrained mode, a force sensor attached 

to a PUMA 560 robotic manipulator which measures the direction of the force generated by 

the patient’s hand at the interface between the hand and the robot. If the patient applies force 

in the desired direction, then the robot moves the subject’s arm in the direction of the motion. 

If the applied force is misdirected, then the robot stops moving toward the target and 

programmed impedance allowed the robot to deflect slightly in the direction of the force. 

Subjects have improvement in a scale that measures functional independence in Activities of 

Daily Living (ADL). Patients who received robot therapy had statistically larger 

improvements in the motor impairment scale and larger gains in strength and reach extent. 

 

 
Figure 3. Mirror Image Movement Enabler (MIME)  
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 GENTLE/s is developed at the University of Reading for neurorehabilitation of stroke 

patients. GENTLE/s is designed to both improve the quality of treatment and reduce costs 

(Figure 4) [13]. GENTLE/s permits stroke survivors to practice three-dimensional (3D) point-

to-point reaching movements occurring in a haptic virtual environment. A 3 Degree-of-

freedom (DOF) robot called HapticMaster is integrated with a virtual environment. Subjects 

practice “reach-and-grasp” type of movements (without the grasp component) through 

interaction with a virtual room. The patient’s arm is put in an elbow orthosis with wires 

suspending it from an overhead frame in order to eliminate the gravity effect. The GENTLE/s 

provides the assistance to the patients to move to the target positions along with a predefined 

path using admittance control. The visual guidance is provided in the form of start/end points 

for a specific movement pattern. There are 3 different levels of movement control, which are 

passive, active-assisted and active mode. In the patient passive mode, the patient lacks the 

power to initiate the movement and remains passive, and the device moves the arm along the 

pre-defined path. In active-assisted mode, the device starts moving as long as the patient 

initiates the movement and the device helps the user to reach the desired position. In active 

mode, unlimited time is given to the patients to finish the correct task and the device provides 

assistance when the patient deviates from the pre-defined path. The results show that the 

GENTLE/s is effective in improving recovery and the device has been accepted from both the 

subjects and the therapists. Similar robotic rehabilitation system has been used in Medical 

College of Wisconsin, which is called the Activities of Daily Living Exercise Robot 

(ADLER), for training of the stroke patients (Fig. 5) [14]. ADLER supports seated functional 

tasks such as drinking, eating and game playing tasks like tic-tac-toe. A Functional Electrical 

Stimulation (FES) glove for grasping action is under development to be integrated to ADLER 

system to perform the ADL tasks.  

 

 
Figure 4. GENTLE/s 
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Figure 5. Activities of Daily Living Exercise Robot (ADLER) 

 

 A similar number of hand assistive devices have also been reported in the literature.  

Rutgers Master II-ND [15] is one of the hand assistive devices designed for dextrous 

interactions with virtual environments.  Rutgers Master II-ND uses a unique design to actuate 

the tips of three fingers as well as the thumb (Fig. 6). The device is developed in the State 

University of New Jersey. The Rutgers Master II-ND uses custom-made pneumatic cylinders 

to push the fingertips out from the palm.  In order to determine the angle of the pneumatic 

cylinder two hall-effect sensors are placed at the base of each pneumatic cylinder. 

Additionally two infrared sensors inside the cylinders are used to measure the travel distance 

of the piston. The angle and cylinder length is used to determine the position of the fingertip. 

Rutgers Master II-ND is an example of a lightweight and palm-mounted finger manipulator. 

It is still not clear whether it is possible to pull the fingers in toward the palm. 

 
Figure 6.  The Rutgers Master II-ND 
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 Another hand device, which is capable of actuating all three joints of the index finger in 

both flexion and extension, is developed by a team at Carnegie Mellon University [16] (Fig. 

7). The Carnegie Mellon University hand device is developed as a manipulator to assist the 

patients for their grasping activity. Two pneumatic cylinders are used to flex and three 

springs are used to extend these three joints of the index. However, this hand device is not 

capable of actuating the proximal interphalangeal (PIP) and the distal interphalangeal (DIP) 

joints independently. Motion of the DIP and the PIP joints are coupled.  Electromyography 

(EMG) signals from the patient's forearm are used to determine the intention of the patients 

during the grasping activity.  

 

 
Figure 7.  The Carnegie Mellon Hand Device 

 

 CyberGrasp [17] is the only commercially available hand assistive device which is built 

to provide extensive forces to the tips of the fingers and the thumb for grasping. However, 

this device cannot provide flexive forces (Fig. 8). The CyberGrasp is developed as part of a 

CyberGlove for interactions with virtual environments, and has been successfully used in 

medical applications and remote handling of hazardous materials.  
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Figure 8.  CyberGrasp 

 

 A Hand-Wrist Assisting Robotic Device (HWARD) as shown in Fig. 9 has been 

developed to assist repetitive grasping and releasing movements while allowing the patient to 

feel real objects during therapy [18]. HWARD is a 3 degrees-of-freedom (DOF) which is 

pneumatically-actuated backdriveable robotic device. 

 

 
Figure 9.  Hand-Wrist Assisting Robotic Device (HWARD) 

 

 Current State-of-the-Art in Robot-Assisted Rehabilitation  

 There are significant research activities in the development of new methodologies for 

robot-assisted rehabilitation in the last few years. The promising results of the above-

mentioned rehabilitation robotic systems indicate that the robots could be used as effective 

rehabilitation tools. Current theories of stroke rehabilitation point towards paradigms of 

intense and repetitive use of the affected limb as a means for motor program reorganization. 
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However, it has also been demonstrated in [19] that repetitive execution of simple motor 

tasks may not be as effective as execution of more complex motor tasks that involve in-depth 

cognitive processing. Thus, it would be useful if a rehabilitation task can be designed, where 

the patients not only make repetitive movement but also pay attention to tracking accuracy 

which requires cognitive processing. However, in such a tracking task, the patients may not 

be able to track the desired motion because of their impairments. Thus a low-level assistive 

controller is required to provide assistance to the patient to complete this tracking task in an 

accurate manner.   

It has also been noticed that the existing robotic rehabilitation systems primarily use low-

level assistive controllers to assist the movement of the patients’ arms. For example, MIT 

Manus uses an impedance controller [6],[7], MIME uses a PID controller [10]-[12] and 

GENTLE/s uses an admittance controller [13] for arm movement assistance. However, to our 

knowledge, none of these systems has a dedicated high-level decision making mechanism 

that can comprehensively monitor the task, provide assessment of the progress, and alter the 

task parameters to impart effective therapy based on the patient’s performance in an 

automated manner. In these cases, therapist decides the task parameters (e.g., desired 

reaching distance, desired speed of motion etc.) and continuously monitors the patient’s 

progress to update the task parameters and to ensure the safety of the patients. As a result, it 

is likely to consume more time of the therapist, increase the workload of the therapist, and 

consequently, increase the cost of treatment. Thus, in this case a high-level decision making 

mechanism will likely to help in therapist’s decision-making and make the robotic 

rehabilitation process safer.  

 Additionally, in robot-assisted therapies the patients attempt to make voluntary 

movements while the robotic device provides assistance to complete the desired rehabilitation 

task. Many of these existing robotic rehabilitation devices ensure the smoothness of the 

movement by specifying the desired trajectory of the task as the minimum jerk trajectory as 

originally proposed by [28]. The idea is that if the subject can follow the desired minimum 

jerk trajectory, the motion will be smooth. However, the ability of the subject to follow a 

prescribed trajectory and therefore result in smooth interaction is a function of the interaction 

dynamics between the robot and the subject. Thus, it could be useful if a control framework 

can be designed to modify the interaction dynamics between the robot and the subject which 

will result in smooth interaction.  

Moreover, it has been noticed that the existing arm and hand rehabilitation systems are 

limited by their inability to simultaneously assist both arm and hand movements. This 
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limitation is critical because the stroke therapy literature supports the idea that the ADL 

focused tasks (emphasis on task-oriented training), which engage patients to perform the 

tasks in enriched environments have shown significant increase in the motor recovery after 

stroke [39]-[42]. Robots that cannot simultaneously assist both arm and hand movements are 

of limited value in the task-oriented approach that involve practicing complex tasks. Thus, it 

is desirable to design a control framework to achieve the desired coordinated motion between 

the arm movement and the hand movement. 

 

Scope and Summary of the Research

 In this dissertation, we initially design a low-level assistive controller to be used to 

provide robotic assistance as and when needed to the subjects to complete a rehabilitation 

task. This rehabilitation task is designed in such a way that the subjects not only make 

repetitive arm movement but also pay attention to the tracking accuracy of the desired motion 

trajectory that requires cognitive processing.  Then, the low-level assistive controller is 

modified to provide the robotic assistance to the subjects in such a manner that the interaction 

between the robot and the subject is smooth. Later, a control architecture is presented in 

terms of a hybrid system model combining a high-level controller and the low-level assistive 

controller. The high-level controller is designed to help the therapist in: i) determining the 

task parameters dynamically based on the patients’ performance and implementing the new 

set of parameters; and ii) monitoring the safety related events in an automated manner and 

generating an accommodating plan of action should such an event happen. Finally, the 

control architecture has been augmented to coordinate multiple assistive devices (arm and 

hand assistive devices) which will enable the subjects to perform the ADL tasks. As a part of 

this work, a rehabilitation robotic system is built in the laboratory. The real-time 

experimental setup and rehabilitation tasks are designed with the consultation of a physical 

therapist to demonstrate the efficacy of the presented work. The proposed research is 

presented in 4 manuscripts which are given as:  

 

Manuscript 1:  Design and Implementation of an Assistive Controller for Rehabilitation 
Robotic Systems 

 
 

Background 

 Current theories of stroke rehabilitation focuses on the intense and repetitive use of the 

affected limb. However, it has also been demonstrated in [19] that repetitive execution of 

 10



simple motor tasks may not be as effective as execution of more complex motor tasks that 

involve in-depth cognitive processing. Precision-demanding tasks that challenge motor 

learning processes create richer conditions for change in the brain reorganization on rats 

[20][21], primates [22][23] and human [24]. It was shown that the movement tracking 

training that requires cognitive processing achieved greater gains in performance than that of 

movement training that did not require cognitive processing [19][25]. Additionally, it was 

shown that finger movement tracking training produced greater gains in the range of motion 

and tracking accuracy compared to finger movement training that required no temporospatial 

processing [26].  

 

Summary of Contribution 

 There are two contributions in this work, first is to design a rehabilitation task such that 

the subjects not only make repetitive movements but also pay attention to the tracking 

accuracy of the desired motion trajectory, and the second is to design a controller to provide 

the robotic assistance to the subjects to help them to track the rehabilitation task in an 

accurate and concentrated manner. The effectiveness of the method is verified by the real-

time experiments on unimpaired subjects. Manuscript 1 is based on the following paper:  

• Erol D. and Sarkar N., “Design and Implementation of an Assistive Controller for 

Rehabilitation Robotic Systems”, International Journal of Advanced Robotic Systems 

(accepted to be published in vol. 4 no.3, September 2007). 

 

Manuscript 2:  Intelligent Control for Robotic Rehabilitation after Stroke 

 

Background 

It has been noticed that the existing robotic rehabilitation systems mainly use low-level 

assistive controllers to assist the movement of the patients’ arms [6],[7], [10]-[13]. In these 

cases, the task parameters (e.g., desired reaching distance, desired speed of motion etc.) are 

pre-defined at the beginning of the therapy and the therapist continuously monitors the 

patient’s progress and quickly determines if the task parameters are needed to be changed to 

adapt to the patients’ performance. Then these task parameters are updated by the therapist to 

be executed by the low-level assistive controllers. In addition, the therapist is required to pay 

attention to the safety related issues during the robot assisted therapy. If such an issue occurs, 

the therapist needs to take necessary action to ensure the safety of the patients.  
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Summary of Contribution 

The main contribution of this work is design of an intelligent controller, which is called a 

high-level controller, i) to monitor the progress of the patient to determine the task 

parameters dynamically; and ii) to monitor safety related events in an automated manner to 

make decisions on the modification of the task that might be needed for the therapy. We 

believe that such an intelligent controller will likely to help in therapist’s decision-making 

and make the robotic rehabilitation process safer. Manuscript 2 is based on the following 

papers: 

• Erol D. and Sarkar N., “Intelligent Control for Robotic Rehabilitation after Stroke”, 

Journal of Intelligent and Robotic Systems (under review).  

• Erol D., Sarkar. N and Halder B., “A High-Level Controller for Robot-Assisted 

Rehabilitation,” IEEE International Conference of the Engineering in Medicine and 

Biology Society (EMBS), New York, USA, 2006, pp. 3234 – 3237. 

• Erol D. and Sarkar. N, “Intelligent Control Framework for Robotic Rehabilitation 

after Stroke”, IEEE International Conference on Robotics and Automation, (ICRA), 

Rome, Italy, 2007, pp. 1238-1243. 

 

Manuscript 3:  An Approach to Smooth Human-Robot Interaction in Robot-Assisted 
Rehabilitation

 

 

Background 

  In robot-assisted therapies, the patients attempt to make voluntary movements while the 

robotic device provides assistance to complete the desired rehabilitation task. It is desirable to 

provide the robotic assistance to the patients in such a manner that the resulting interaction 

between the robot and the patient is smooth. In the literature jerk has been used as a measure 

of the smoothness of the prescribed motion, where minimum jerk implied smooth movement 

[27],[29]. The numerical value of the jerk has been used as a metric to determine the 

movement smoothness during stroke recovery [30]. Furthermore, smoothness of the 

movement has been quantified by the mean squared magnitude of the jerk [27],[29],[31]. 

Many of the existing robotic rehabilitation devices such as [8]-[13] try to ensure the 

smoothness of the motion by specifying the desired trajectory of the task as the minimum jerk 

trajectory as originally proposed by [28]. The idea is that if the subject can follow the desired 

minimum jerk trajectory, the motion will be smooth and consequently, the force applied by 
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the subject will also be smooth. Here the smoothness is measured by the rate of the change of 

the force applied by the subject. However, when the subject cannot follow the specified 

desired motion trajectory entirely by his/her own effort, he/she will need robotic assistance. 

Note that the manner in which this robotic assistance is imparted could affect the rate of 

change of the subject applied force. For example, if the robot provides assistance with a high 

overshoot, then the subject is required to overcome this overshoot by changing his/her 

applied force in a rapid manner. This scenario could result in more variation in subject 

applied force, which implies non-smooth interaction. 

 

Summary of Contribution 

 The main contribution of this work is to modify the low-level assistive controller in such 

a way that the interaction between the robot and the subject is smooth. We have shown that 

suitable modification of the interaction dynamics between the robot and the subject will result 

in less variation of the force applied by the subject (smooth interaction) to complete the task 

for any type of desired trajectory including the minimum jerk trajectory. A control framework 

is proposed in here, which is called an artificial neural network (ANN) based Proportional-

Integral (PI) gain scheduling controller, that will automatically adjust the control gains for 

each subject such that the resultant interaction dynamics between the subject and the robot 

could result in smooth interaction. The control gains are determined based on online 

estimation of the human arm parameters (i.e., stiffness). The ANN, which is trained offline, 

adjusts the control gains online. The proposed controller combines the benefit of system 

identification technique with the robustness of neural network-based methods. Manuscript 3 

is based on the following papers:  

•  Erol D and Sarkar. N, “An Approach to Smooth Robotic Assistance for 

Rehabilitation”, International Journal of Robotics Research (under review). 

• Erol D and Sarkar. N, “Smooth Human-Robot Interaction in Robot-Assisted 

Rehabilitation”, IEEE International Conference on Rehabilitation Robotics: Frontiers 

of the Human-Machine Interface (ICORR), Noordwijk, Netherlands, 2007 (accepted). 

• Erol D., Mallapragada V., Sarkar N, Uswatte G. and Taub E.,"A New Control 

Approach for Robot Assisted Rehabilitation", IEEE International Conference on 

Rehabilitation Robotics: Frontiers of the Human-Machine Interface (ICORR), 

Chicago, USA, 2005,  pp. 323 - 328. 
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• Erol D., Mallapragada V., Sarkar N, Uswatte G. and Taub E., "Autonomously 

Adapting Robotic Assistance for Rehabilitation Therapy",  IEEE/RAS-EMBS 

International Conference on Biomedical Robotics and Biomechatronics (BioRob), 

Pisa, Italy, 2006, pp. 567 – 572.  

• Erol D., Mallapragada V. and Sarkar N., "Adaptable Force Control in Robotic 

Rehabilitation", IEEE International Workshop on Robot and Human Interactive 

Communication (RO-MAN), Nashville, USA, 2005, pp. 649 - 654.  

• Mallapragada V. Erol D. and Sarkar N., “A New Method of Force Control for 

Unknown Environments, Advanced Robotic”, International Journal of Advanced 

Robotic Systems (accepted to be published in vol. 4 no.3, September 2007). 

• Mallapragada V., Erol D. and Sarkar N., "A New Method for Force Control for 

Unknown Environments", IEEE International Conference on Intelligent Robots and 

Systems, (IROS), Beijing, China, 2006, pp. 4509 – 4514. 

 

Manuscript 4:  Coordinated Robotic Assistance for Activities of Daily Living Tasks  
 

Background 

 Even though existing arm and hand rehabilitation systems have shown promise of clinical 

utility, they are limited by their inability to simultaneously assist both arm and hand 

movements. This limitation is critical since ADL focused tasks have shown to increase in the 

motor recovery after stroke [39]-[42]. The great majority of the activities of daily living 

(ADL) tasks require participation of both the arm and the hand movements.. 

 

Summary of Contribution 

 The main contribution of this paper is to present a new control architecture that 

coordinates assistive devices in a systematic manner as necessary for a particular ADL task. 

This control architecture exploits hybrid system modeling techniques to provide robotic 

assistance for ADL tasks. Hybrid control framework has been effectively used in other fields, 

such as industrial robotics, medicine, and manufacturing [38], however, it is applicability for 

rehabilitation purposes is new. We argue that the proposed control architecture based on 

hybrid system framework could be useful in coordinating the assistive device controllers in a 

safe and complex manner to satisfy a variety of ADL task requirements. Such a controller is 

expected to address the need in the field of the rehabilitation robotics. Manuscript 4 is based 

on the following paper:  
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• Erol D. and Sarkar N., “Coordinated Robotic Assistance for Activities of Daily 

Living”, IEEE International Conference on Intelligent Robots and Systems, (IROS), 

San Diego, USA 2007 (Submitted). 

• Erol D. and Sarkar N., “Supervisory Control Architecture for Coordination of Arm 

and Hand Robotic Assistive Devices for Activities of Daily Living Tasks”, IEEE 

Transactions on Neural and Rehabilitation Engineering (Preparation for Submission).  
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CHAPTER II: MANUSCRIPT 1 

 

DESIGN AND IMPLEMENTATION OF AN ASSISTIVE CONTROLLER FOR 
REHABILITATION ROBOTIC SYSTEMS 

 

 

Duygun Erol & Nilanjan Sarkar 

 

(Accepted in International Journal of Advanced Robotic Systems) 

 

Abstract 

 The goal of our research is to develop an assistive controller for robotic rehabilitation of 

the upper extremity after stroke. The controller is used to provide robotic assistance to 

participants to help them to track a desired motion trajectory required for the rehabilitation 

task in an accurate and concentrated manner. This rehabilitation task is designed to ensure 

concentrated repetitive motion that requires cognitive processing. Experimental results on 

unimpaired participants are presented to demonstrate the effectiveness and feasibility of the 

proposed controller. 

Keywords:  assistive controller, movement tracking training, robot-assisted rehabilitation 

 

1. Introduction 

 Stroke is a highly prevalent condition especially among the elderly that results in high 

costs to the individual and society (Matchar, D.B. & Duncan, P.W., 1994). According to the 

American Heart Association, in the U.S., approximately 700,000 people suffer a first or 

recurrent stroke each year (American Heart Association, 2006). It is a leading cause of 

disability, commonly involving deficits of motor function.  

 Recent clinical results have indicated that movement assisted therapy can have a 

significant beneficial impact on a large segment of the population affected by stroke or other 

motor deficit disorders. Experimental evidence suggests that intensive movement training of 

new motor tasks is required to induce long-term brain plasticity. The availability of 

movement training techniques, however, is limited by the amount of costly therapist’s time 

they involve and the ability of the therapist to provide controlled, quantifiable and repeatable 

assistance to arm movement. Consequently, robot assisted rehabilitation that can 
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quantitatively monitor and adapt to patient’s progress, ensure consistency during 

rehabilitation may provide a solution to these problems.    

 In the last few years, robot-assisted rehabilitation for physical rehabilitation of the stroke 

patients has been an active research area to assist, monitor, and quantify rehabilitation 

therapies (Krebs 2004, Lum 2006, Kahn 2006, Loureiro 2003). These robotic devices are 

used to recover arm movement after stroke, which provide opportunities for repetitive 

movement exercise and more standardized delivery of therapy with the potential of enhancing 

quantification of the therapeutic process. The first robotic assistive device used as a 

therapeutic tool, the MIT Manus (Krebs 2003, 2004) uses impedance controller to provide 

assistance to move the patient’s arm to the target position in an active assisted mode, where 

patients can visually see their movement and target location. In (Krebs 2004) they expand the 

capabilities of MIT Manus to include motion in a three-dimensional workspace to rehabilitate 

other muscle groups and limb segments than shoulder and elbow. The Mirror Image 

Movement Enabler (MIME) and the Assisted Rehabilitation and Measurement (ARM) Guide, 

expanded the investigations of therapeutic applications of robots into the chronic stroke 

population. MIME uses a PUMA 560 manipulator to provide assistance to move the subject’s 

arm with a pre-programmed position trajectory using Proportional-Integral-Derivative (PID) 

controller (Lum 2006). ARM Guide is capable of generating both horizontal and vertical 

motion, and giving resistance and support to the patient (Kahn 2006). The GENTLE/s 

(Loureiro 2003) is a haptic robot used to provide assistance to patients to move to the target 

positions along with a predefined path using admittance control. The subject’s movement 

trajectory is represented in the virtual environment.  

 The promising results of the above-mentioned rehabilitation robotic systems indicate that 

robots could be used as effective rehabilitation tools. Current theories of stroke rehabilitation 

point towards paradigms of intense and repetitive use of the affected limb as a means for 

motor program reorganization. However, it has also been demonstrated in (Carey 2005) that 

repetitive execution of simple motor tasks may not be as effective as execution of more 

complex motor tasks that involve in-depth cognitive processing. Precision-demanding tasks 

that challenge motor learning processes create richer conditions for change in the brain 

reorganization on rats (Black 1990, Kleim 2002), primates (Plautz 2000, Nudo 1996) and 

human (Pascual-Leone 1995). It was shown that movement tracking training that requires 

cognitive processing achieved greater gains in performance than that of movement training 

that did not require cognitive processing (Carey 2005). Additionally, it was shown that finger 

movement tracking training produced greater gains in the range of motion and tracking 
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accuracy compared to finger movement training that required no temporospatial processing 

(Carey 2006). Thus, it would be useful if a tracking movement training method can be 

developed, where the patients not only make repetitive movement but also pay attention to 

tracking accuracy. However, in such a tracking task, patients may not be able to track the 

desired motion because of their impairments. Thus, a rehabilitation robotic system can be 

designed to provide assistance to the patient to track the desired motion accurately based on 

his/her performance.  

 In this paper, we present a controller to be used to provide robotic assistance as and when 

needed to the participants to complete an upper arm rehabilitation task. This task is designed 

to impart movement training that requires cognitive processing. Note that the presented 

assistive controller is not specific to a given rehabilitation robotic system but can be 

integrated with any previously proposed rehabilitation systems. However, in order to 

demonstrate the efficacy of the proposed assistive controller, we needed to develop a 

rehabilitation robotic system, which is also presented in the paper.  

 This paper is organized as follows. It first presents the proposed rehabilitation robotic 

system in Section 2. The methodology section (Section 3) includes task description, 

controller design, and decision logic of robotic assistance.  Experiments and results are 

presented in Section 4. Section 5 discusses the potential contributions of this work and 

possible future research directions. 

 

2. The Rehabilitation Robotic System

 A PUMA 560 robotic manipulator is used as the main hardware platform in this work. 

The manipulator is augmented with a force-torque sensor and a hand attachment device (Fig. 

1).   

 

2.1. Hardware 

 The PUMA 560 is a 6 degrees-of-freedom (DOF) device consisting of six revolute joints 

(PUMA web site). In order to record the force and torque applied by the human, an ATI 

Gamma force/torque sensor is used. The robot is interfaced with Matlab/Real-time Workshop 

to allow fast and easy system development. The force values recorded from the force/torque 

sensor are obtained using a National Instruments PCI-6031E data acquisition card with a 

sampling time of 0.001 seconds. The joint angles of the robot are measured using encoder 

with a sample time of 0.001 seconds from a Measurement Computing PCI-QUAD04 card. 

The torque output to the robot is provided by a Measurement Computing PCIM-DDA06/16 
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card with the same sample time. A computer monitor is placed in front of the subject to 

provide visual feedback about his/her motion trajectory during the execution of the task. 

 

 
Fig. 1. Participant Arm attached to Robot 

 

2.2. Hand Attachment Device 

 Since in this work we are primarily interested in effecting assistance to the upper arm, we 

design a hand attachment device where the participant’s arm is strapped into a splint that 

restricts wrist and hand movement. The PUMA 560 is attached to that splint to provide 

assistance to the upper arm movement using the assistive controller (Fig. 1). Forearm padded 

aluminum splint (from MooreMedical), which ensures the participant’s comfort, is used as a 

splint in this device. We further design a steel plate with proper grooves that hold two small 

flat-faced electromagnets (from Magnetool Inc.) that are screwed on it. This plate is also 

screwed with the force-torque sensor, which provides a rigid connection with the robot. We 

attach a light-weight steel plate under the splint, which is then attached to the electromagnets 

of the plate. These electromagnets are rated for continuous duty cycle (100% duty cycle), i.e., 

they can run continuously at normal room temperature. Pull ratings of these magnets are 40lb. 

We have used two electromagnets to have a larger pulling force to keep the splint attached to 

the hand attachment device. An automatic release (AU) rectifier controller (Magnetool Inc.) 

has been used to provide a quick, clean release of these electromagnets. A push button, which 

has been connected to the AU Rectifier Controller, is used to magnetize and demagnetize the 
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electromagnets when the participant wants to remove the hand attachment device from the 

robotic manipulator in a safe and quick manner.  

 

2.3. Safety discussion about both the use of PUMA 560 Robotic Manipulator and Hand 
Attachment Device 
 Ensuring safety of the participant is a very important issue when designing a 

rehabilitation robotic system. Thus, in case of emergency situations, therapist can press 

emergency button. The patient and/or the therapist can quickly release the patient’s arm from 

the PUMA 560 by using the quick-release hand attachment device (as  described above) to 

deal with any physical safety related events. In order to release the participant’s arm from the 

robot, the push button is used. When the push button is pressed electromagnets are 

demagnetized instantaneously and the participant is free to remove the splint from the robot. 

This push button can also be operated by a therapist. Additionally, we have covered the 

corner of the arm device with a foam self stick tape in order to avoid sharp surface.  

 

3. Methodology 

 The objectives of the current work is to: i) design an upper arm movement rehabilitation 

task that requires cognitive processing as well as could contribute to a variety of functional 

daily living activities, and ii) design a controller to provide robotic assistance to help 

participants to perform the above movement rehabilitation task. In what follows we present 

the basic design of the task and the assistive controller.  

 

3.1. Task Design 

 Let us first briefly review the task design of some well-known robotic rehabilitation 

systems. MIT Manus uses impedance controller to provide assistance to move the patient’s 

arm to the target position in an active assisted mode, where patients can visually see their 

movement and target location (Krebs 2003, 2004). MIME provides assistance to move the 

participant’s arm with a pre-programmed position trajectory using proportional-integral-

derivative (PID) controller (Burgar 2000, Lum 2006). The participant is asked to maintain a 

specified off-axis force while they are trying to reach toward a goal position using ARM 

Guide (Kahn 2006). The GENTLE/s provides assistance to the patients to move to the target 

positions along with a predefined path using admittance control. The participant’s movement 

trajectory is represented in the virtual environment in (Loureiro 2003). The therapy tasks 
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designed for the rehabilitation robotic devices require predominantly shoulder motion or 

elbow motion, or some of them require the combination of both shoulder and elbow motion.  

 We choose a reaching task that is commonly used for rehabilitation of upper extremity 

after stroke. In this task, the participants are asked to move their arms in the forward direction 

to reach a desired point in space and then bring it back to the starting position repeatedly 

within a specified time. In other words, they have to follow a desired position trajectory. The 

reaching task designed in here requires combination of the shoulder and elbow which could 

increase the active range of motion (AROM) in shoulder and elbow in preparation of later 

functional reaching activities in rehabilitation. The allowable motion is restricted only to the 

direction of the task. For example, if the task requires the participants to move their arms in 

the Y-direction, then they will not be able to move their arms in X or Z directions. However, 

they can move their arms in the Y-direction at a velocity that could be the same, higher or 

lower than the desired velocity. The idea here is to improve the ability of the participant’s 

arm movement in one direction at a time by helping them to improve their speed of 

movement. Improving the speed of movement for such tasks is an important criterion to 

measure the success of a therapy. For example, in Constraint Induced Movement Therapy 

(CIMT) (Taub 1999) during the performance of the wipe table task, participants are required 

to complete as many back and forth motion as possible in a certain amount of time across the 

table and back between the two targets. The number of times of the completed movement in a 

certain amount of time is used as a metric to evaluate the participants’ progress. If the 

participants can improve their speed of movement, the metric described above will capture 

this progress. In this work, we constrain the motion of the arm in the horizontal plane and in 

one direction (along the Y-axis). Although, in this work the motion of the arm is constrained 

in the horizontal plane in one direction (along the Y-axis), it could also be designed for other 

directions (e.g., X-axis) or combination of directions (e.g., XY-axes) based on task 

requirements (only shoulder or elbow motion or the combination of shoulder and elbow 

motion). 

 In order to include cognitive processing within this reaching task, we ask the participants 

to follow a visually presented desired motion trajectory that is likely to command their 

concentration. The participants receive visual feedback of both their actual position and the 

desired position trajectories on a computer screen, which is placed in front of them.  They are 

asked to pay attention to tracking the desired position trajectory as accurately as possible, 

which keeps them focused on the task. The visual feedback is used not only to inform the 

participants of how closely they are tracking the desired motion but also as a motivational 
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factor to keep them focused on the task. The tip of the position trajectory that the participant 

is required to follow represents the velocity of the task trajectory.  

 The task presented here incorporates cognitive processing by asking the participants to 

follow the tip of the visually presented trajectory. The tip of the trajectory represents the 

current desired velocity. By asking the participant to follow the tip makes him/her focused on 

the task.  This task is different from other tasks that have been used in the context of robotic 

rehabilitation in that here we are interested in improving the speed of motion in one direction 

at a time using visual feedback, which could be useful in a number of therapy tasks. 

 

3.2. Controller Design  

 The controller designed in this work is responsible for providing robotic assistance to a 

participant to complete the movement tracking task in an accurate manner. The existing 

robotic rehabilitation systems operate in robot task-space to provide robotic assistance to the 

patients to follow a desired trajectory to complete a rehabilitation task (Krebs 2004, Lum 

2006, Kahn 2006). Recently, a human-arm joint impedance controller is proposed, which 

operates in joint-space, to provide assistance to the subjects to follow desired joint angle 

trajectory (Culmer 2005) specified for each individual joint (e.g., elbow joint). It is still not 

clear, however, whether the assistance in the task-space or in the joint-space will likely to 

have the best results for rehabilitation purposes. In this work, we design a controller that is 

responsible for providing the robotic assistance to the subjects to complete a rehabilitation 

task in task-space. In this controller, an outer force feedback loop is designed around an inner 

position loop (Fig. 2). The tracking of the reference trajectory is guaranteed by the inner 

motion control (Sciavicco 1996). The desired force, which is given as a force reference to the 

controller, is computed by a planner.  The proposed controller is similar to an impedance 

controller; however it allows specifying the reference time varying force directly. The 

equations of motion for the robot are given by: 

 2M ( q )q Co( q )( q ,q ) Ce( q ) q G( q )Γ = + + +  (1) 

   Tu J ( q )F M ( q )q V ( q ,q ) G ( q )− = + +

 where M( q )  represents the inertia matrix,  V( is the summation of the matrix of 

coriolis torques Co  and centrifugal torques 

q,q )

( q )( q,q ) 2Ce( q ) q , G(  is the vector of gravity 

torques.  is the generalized joint force torque which is calculated using , where 

 is the input to the manipulator,  is the Jacobian matrix and  is the contact force 

q )

Γ Tu J ( q )F−

u J( q ) F
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exerted by the manipulator. Using inverse dynamics control, manipulator dynamics are 

linearized and decoupled via a feedback. The dynamic equation of the robotic manipulator 

was given in (1). Control input u to the manipulator is designed as follows: 

  (2) 
Tu M( q )y V( q,q ) G( q ) J F= + + +

 

 
Fig.  2. Low-level Assistive Controller 

 

 which leads to the system of double integrators 

 q y=  (3) 

  In (3), represents a new input. The new control input is designed so as to allow 

tracking of the desired force . To this purpose, the control law is selected as follows: 

y y

Fd

 
1 1y J( q ) M ( K x K ( x x ) M J( q,q )q )pd d f d

− −= − + − −
 (4) 

 where x f  is a suitable reference to be related to force error. Md  (mass), (damping) 

and 

Kd

K p (stiffness) matrices specify the target impedance of the robot. x  and x  are the 

position and the velocity of the end-effector in the Cartesian coordinates, respectively. The 

relationship between the joint space and the Cartesian space acceleration is used to determine 

the position control equation:  

 x J( q )q J( q,q )q and x J( q )y J( q,q )q= + = +  (5) 

 By substituting (4) into (5), we obtain 

1 1x J(q)(J(q) M ( K x K (x x) M J(q,q)q)) J(q,q)qpd d f d
− −= − + − − +  

                                                      1 1x M K x M K ( x x )d d d p f
− −= − + −  

 M x K x K x K xp pd d f+ + =  (6) 
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 Equation (6) shows the position control tracking of x  with dynamics specified by the 

choices of , and Kd K p Md  matrices. Impedance is attributed to a mechanical system 

characterized by these matrices that allows specifying the dynamic behavior. Let Fd  be the 

desired force reference, which is computed using a PID velocity loop:  

 d( x x )dF P ( x x ) I ( x x )dt Ddd d d d d dt
−= − + − +∫  (7) 

 where xd , x , P  ,d Id  and  are the desired velocity, actual velocity, the proportional, 

integral and derivative gains of the PID velocity loop, respectively. The relationship between 

Dd

x f  and the force error is expressed in (8) as: 

 x P( F F ) I ( F F )dtd iif d= − + −∫  (8) 

    where and  are the proportional and  integral gains, respectively, and  is the force 

applied by the human. Equations 

P I Fi

(6) and  (8) are combined to obtain below equation: 

 M x K x K x K ( P( F F ) I ( F F )dt )d ip p id d d+ + = − + −∫  (9) 

 We can observe from (9) that the desired force response is achieved by controlling the 

position of the manipulator.  

 

3.3. Decision of Robotic Assistance during Task Execution 

 During the tracking task, the activation of the low-level assistive controller to provide 

robotic assistance is decided based on the participant’s actual velocity ( x ). If the actual 

velocity lies within an acceptable band, then it is understood that the participant is able to 

track the trajectory without robotic assistance. The acceptable band consists of upper and 

lower bounds on velocity, which are defined as: 

 percentage percentagex x x * , x x x *upper d d lower d d100 100
⎛ ⎞ ⎛= + = −⎜ ⎟ ⎜
⎝ ⎠ ⎝

⎞
⎟
⎠

 (10) 

 where percentage is the value used to increment and decrement the desired velocity to define 

the upper and the lower velocities for the selected xd . If the x  is not between  and 

, then the low-level controller is activated to provide assistance to keep the 

participant’s motion in the desired velocity range. However, note that any participant will 

require a finite amount of time to generate the desired motion. The controller should not be 

activated until it is determined that the participant is not able to generate the required motion 

by his/her own effort. Thus, initially a desired 

xupper

xlower

xd  is decided and it’s upper ( ) and xupper
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lower ( ) bound is calculated using xlower (10). In order to determine the velocity trajectories 

x ( t )d , x ( t )upper  and x ( t )lower , we use a generator block using Matlab/Simulink Blockset. 

This block generates smooth velocity trajectories within a specified distance using a skew-

sine function. As a result, we define an algorithm to determine the average velocity of the 

participant xave  (as opposed to instantaneous velocity) and average value of the upper 

 and lower  velocity bounds for a given period of time, which are used to 

decide if the robotic assistance is needed. 

xupperave xlowerave

xave ,  and  are calculated using 

the equations:   

xupperave xlowerave

( ) ( ) ( ) ( ) ( ) (
t

)
f tf tf1 1 1x x(t ) ,x x (t ) , x x (t )ave upperave upperlowerave lowertf ti tf ti tf tit ti t ti t tits ts ts

= = =∑ ∑ ∑− − −= = =
 (11) 

 where tf ,ti and are the final time, the starting time and the sampling time, respectively. ts

x( t )  is the participant’s actual velocity at time . If  is satisfied, 

then the low-level controller is not activated and the participant continue tracking task 

without robotic assistance. If   is not satisfied then the controller is 

activated to provide robotic assistance to the participant to track the desired motion.  

t x x xave upperavelowerave < <

x x xave upperavelowerave < <

 

3.4. Switching Mechanism 

 Note that the controller will be switching in and out to provide robotic assistance. In order 

to ensure smooth switching, a switching mechanism that we have previously shown to 

guarantee bumpless switching for satisfactory force response (Mallapragada et al., 2006) is 

used in this work. This mechanism modifies the position reference, which is the input for the 

inner loop of the force controller, at the time of the switching in such a way that it is equal to 

the position reference at the time before switching occurred. The control action in (8) can be 

modified as below:                            

 x ( t ) x( t ) and x ( t ) Pe( t ) I( X ( t ) X )dti iofp ff= = + +  (12) 

 Here x ( t )fp  is the position reference when the controller is not active, which is equal to 

the position of the human/robot x ( t ) . x ( t )ff
 is the position reference determined using the 

 and  gains when the controller is active. P I X ( t )i  represents the integral action and X io is 

the initial condition of the error integrator. e(  is defined as the t ) F Fid − . If t s is the time of 
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switching, then equation (12) can be used to find the position reference just before the time of 

switching: 

 x ( t ) x( t )sfp
− = s

−  (13) 

 where x( t )s
− represents the position of the human/robot right before the switching 

occurred. The position reference just after the switching is given as: 

 x ( t ) Pe( t ) I( X ( t ) X )dts s si ioff
+ + += + +  (14) 

 The integral action associated with the controller is reset during the switching so that: 

 X ( t ) 0i s
+ =  (15) 

 The force error defined as F Fid −  is set to zero just after the time of the switching for a 

small period of time. Hence:                  

 Pe( t ) 0s
+ =  (16) 

 After the time of the switching  which is calculated using Fd (7), and Fi , which is 

recorded from the force sensor are provided to the controller. The initial condition  is 

defined as: 

Xio

 X x( t ) /sio I−=  (17) 

 Then, substituting (15)-(17) into (14) we can observe that 

 x ( t ) x ( t )sff fp s
+ −=  (18) 

 This relation ensures that the position reference is indeed continuous during switching 

which guarantees bumpless activation and deactivation of the controller. 

 

4. Results 

 In this section we present the experiments and the results of the experiments with 

unimpaired participants. 

 

4.1. Experiments 

 

4.1.1. Experiment Procedure 

 Participants are seated in a height adjusted chair as shown in Fig. 1 (top left). The height 

of the PUMA 560 robotic manipulator has been adjusted for each participant to start the 
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tracking task in the same arm configuration. The starting arm configuration is selected as 

shoulder at neutral 0° position and elbow at 90° flexion position. The task requires moving 

the arm in forward flexion to approximately 60° in conjunction with elbow extension to 

approximately 0°. Participants are asked to place their forearm on the hand attachment device 

as shown in Fig. 1 (bottom left) when the starting arm configuration is fixed. The push button 

has been given to the participants that can be used during the task execution in case of 

emergency situations (Fig. 1- bottom middle). The participants receive visual feedback of 

their position on a computer monitor on top of the desired position trajectory (Fig. 1-top 

right).  Participants were asked to execute the tracking task 50 times. 

 

4.1.2. Description of the Experiments 

 We had conducted two experiments to evaluate the proposed assistive controller. In the 

first experiment, the participants were required to perform the tracking task without any 

external resistance applied to his/her upper arm. Participants were asked to track the position 

trajectory displayed on the computer screen. The participant’s xave  was calculated using (11) 

and if it was in between   and  then the robot did not need to provide any 

assistance. However, friction and gravity compensation were always activated in order for the 

participant to move the robot along with his/her arm in an effortless way. If the 

xupperave xlowerave

xave  was not 

between  and , then assistive controller was activated to provide robotic 

assistance to complement the participant’s effort to complete the task in a precise manner. 

During these two experiments, the number of trials and the number of times participant 

needed robotic assistance were recorded to observe the improvement of participant’s 

movement ability.  

xupperave xlowerave

 In the second experiment, we asked the participant to perform the same task as in 

Experiment 1; however, in this case, the participant’s arm movement ability was constrained 

with a resistive band (Thera-bands). This was done to simulate the movement of a stroke 

patient who may experience variable stiffness during the course of motion. In order to apply 

resistance to participant’s upperarm, a mechanism was designed as shown in Fig. 3. Thera-

bands are color-coded into many levels of resistance, thus different color resistive bands can 

be selected in order to simulate different stiffness of the stroke patient’s arm.  We selected the 

green (heavy) color resistive band for our experiment, because it provided sufficient 

resistance to the participant’s movement while not inhibiting their ability to complete the 
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task. The mechanism has a rod which can slide right or left to change the position of the 

attachment and can be used for both right-handed and left-handed participants. The rod has 

holes on it to adjust the location of the resistive band on the upper arm that may vary among 

participants. The resistive band is connected to the participant’s upper arm through a soft 

strapped attachment to prevent the participant’s arm from the irritation that may be caused 

when the band is stretched. A seat-belt mechanism that connects the rod to the resistive band 

attachment can be used to release the rod from the resistive band quickly.   

 

 
Fig. 3a. Initially No Resistance is applied to the Participant’s Upper Arm, Fig. 3b. Resistance 

is applied to the Participant’s Upper Arm in the Direction of Motion as the Task Begins 
 

4.2. Results 

 Three female and one male participants within the age range of 25-30 years took part in 

the experiments that were described in above. All participants were right-handed. In these 

experiments (i.e., Experiments 1 and 2 as described in above), the participant tried to track 

the desired position trajectory by visually looking at the computer screen. Each participant 

performed the task 50 times for each experiment. x  was selected as 0.02m/s, which was 

chosen in consultation with a physical therapist who works with stroke patients at the 

Vanderbilt Stallworth Rehabilitation Hospital. The and  were selected as 25% 

more and less of 

xupper xlower

x , which were 0.025m/s and 0.015m/s, respectively.  The range could be 

increased or decreased based on the participant’s movement ability. Then, x ( t )d , x ( t )upper  

and x ( t )lower  velocity trajectories were generated using the reference block. The xave , 
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xupperave  and were calculated using xlowerave (11) at every 5 seconds. 5 seconds were 

sufficient to estimate the progress of the participant. If  was not 

satisfied then the controller was activated for the next 5 seconds to provide robotic assistance 

to the participant to track the desired motion within the desired velocity range.  

x x xave upperavelowerave < <

 In the first experiment (E1), each participant performed the tracking task without any 

external resistance applied to his/her upper arm. The idea was to assist the participants as and 

when they were out of the velocity band. It was noticed that the participants needed less 

assistance from the robot as they practiced more (Table 1). This result implies that the 

participants learned how to accomplish the task with practice.  

 

Table 1. Number of Times Robot Assisted for E1 

 
 

 Now we present the detailed analysis of the data for one participant (P1) as an example to 

demonstrate the effectiveness of the assistive controller. This data represented P1’s 50th trial. 

It could be observed from Fig. 4 that the participant’s average velocity (dots), which was 

calculated every 5 seconds using (11), was out of range at A, B and C points. The  controller 

was activated for the next 5 seconds to provide robotic assistance in order to take 

participant’s velocity inside the velocity boundary, thus the  controller was active between A-

A’, B-B’ and C-C’ (Fig. 5). It could be seen that the participant’s velocity was brought inside 

the desired range at A’, B’ and C’ points (Fig. 4), which verified that the assistive ability of 

the proposed controller. 
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Fig. 4. Calculated Average Velocities for Experiment 1 

 

 
Fig. 5.  Assistive Controller Triggering 

 

 We further analysed the amount of time taken by the assistive controller ( ts , in seconds) 

to take x  into the desired velocity range. Here ts  is defined as the settling time, which is the 

time taken between the moment the controller was activated and the actual velocity reached 

the boundary of the desired velocity range. The mean and standard deviation of ts  for all 

participants’ data for E1 are presented in Table 2.  

 

Table 2. Settling Time for E1 
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 Thus it can be observed from the above set of results that the proposed  controller could 

assist as and when needed and the provided robotic assistance could quickly (i.e., in 

approximately 0.55 seconds) bring the participant’s velocity in the desired range.  

 In the second experiment (E2), the participant’s arm movement ability was constrained 

with a resistive band as shown in Fig. 3. The participants were asked to track the desired 

motion by visually looking at the screen as before. It was observed that the participants 

needed more robotic assistance when their motion was constrained. It could also be observed 

from Table 3, participants learned how to accomplish the task with practice. We present the 

mean and standard deviation of the settling time of the assistive controller in Table 4 for all 

participants’ data when they performed E2. 

 

Table 3. Number of Times Robot Assisted for E2 

 
 

 The second experiment was conducted to observe the performance of the controller in an 

artificially constrained motion scenario, which might provide insight about applying the 

system to stroke patients whose movement could be naturally constrained. It can be observed 

that the controller was able to assist as and when needed and could bring the actual velocity 

of the participant’s arm within the desired range in about 0.65 seconds. 

 

Table 4. Settling Time for E2 
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5. Conclusion and Future Work 

 We have designed a movement tracking task where the participants not only make 

repetitive movement but also pay attention to the desired speed of motion from visual 

feedback. The task was designed in such a manner that it required cognitive processing. 

Including cognitive processing in the task design is an important criteria because it had been 

previously shown that the movement tracking task that requires cognitive processing 

achieved greater gains for brain reorganization of stroke patients than that of movement task 

that does not require cognitive processing (Carey 2005, 2006).  

 We have presented a controller to provide robotic assistance to participants to complete 

the movement tracking task. The assistive controller is evaluated with unimpaired 

participants.  The results have demonstrated that the controller provided robotic assistance to 

participants as and when needed and quickly brought the participant’s velocity in the desired 

range (i.e., in approximately 0.55 seconds for Experiment 1 and 0.65 seconds for Experiment 

2).  

 We have used a switching mechanism to guarantee bumpless activation and deactivation 

of the controller.  

 We have shown that the participants needed less assistance from the robot as they 

practiced more, which implies that the participant’s ability to complete the desired motion 

within a defined velocity range have been improved. Improving the velocity of patient’s 

movement could be an important criterion to measure the success of a rehabilitation therapy.  

 We are aware that a PUMA 560 robot might not be ideal for rehabilitation applications. 

However the use of the hand attachment device, which has been described in Section 2, 

provided a quick release mechanism to protect the participant’s arm from injuries. Note that 

the presented assistive controller is not specific to the proposed rehabilitation robotic system 

but can be integrated with any previously proposed rehabilitation robotic system.   

 An important direction for future development involves testing the usability of the 

proposed assistive robot controller with stroke patients. Functional magnetic resonance 

imaging (fMRI) procedure can be used to investigate whether the presented task that included 

cognitive processing result in long-term brain reorganization.   
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Abstract 

 The paper presents a new control approach to robot assisted rehabilitation for stroke 

patients. The control architecture is represented in terms of hybrid system model combining a 

high-level and a low-level assistive controller. The high-level controller is designed to 

monitor the progress and safety of the rehabilitation task. It also makes decisions on the 

modification of the task that might be needed for the therapy. We design a low-level assistive 

controller to provide robotic assistance for an upper arm rehabilitation task that works in 

coordination with the proposed high-level controller. Experimental results on unimpaired 

participants are presented to demonstrate the efficacy of both the high-level and low-level 

assistive controller.  

 

Key words: robot-assisted rehabilitation, intelligent controller, movement tracking training  
 

1. Introduction 

  Stroke is a highly prevalent condition especially among the elderly that results in high 

costs to the individual and society [1]. According to the American Heart Association, in the 

U.S., approximately 700,000 people suffer a first or recurrent stroke each year [2]. It is a 

leading cause of disability, commonly involving deficits of motor function. Recent clinical 

results have indicated that movement assisted therapy can have a significant beneficial impact 

on a large segment of the population affected by stroke or other motor deficit disorders. 

Experimental evidence suggests that intensive movement training of new motor tasks is 

required to induce long-term brain plasticity [3]. In the last few years, robot-assisted 

rehabilitation for rehabilitation of the stroke patients has been an active research area, which 

provide repetitive movement exercise and standardized delivery of therapy with the potential 

of enhancing quantification of the therapeutic process [4]-[10].  
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 The first robotic assistive device used as a therapeutic tool, the MIT Manus [7][8] uses an 

impedance controller to provide assistance to move the patient’s arm to the target position in 

an active assisted mode, where patients can visually see their movement and target location. 

Mirror Image Movement Enabler (MIME) [6] uses a PUMA 560 manipulator to provide 

assistance to move the subject’s arm with a pre-programmed position trajectory using 

Proportional-Integral-Derivative (PID) controller. Assisted Rehabilitation and Measurement 

(ARM) Guide [5],[9], is another robotic system that is capable of generating both horizontal 

and vertical motion, which provides assistance or resistance to the patient’s movement to 

complete the reaching task. The GENTLE/s is a commercially available haptic robot used to 

provide assistance to patients to move to the target positions along with a predefined path 

using admittance control. The subject’s movement trajectory is represented in the virtual 

environment [10]. Studies with these robotic devices verified that robot-assisted rehabilitation 

results in improved performance of functional tasks. 

  The existing robotic rehabilitation systems primarily use low-level assistive controllers to 

assist the movement of patients’ arms. For example, MIT Manus uses an impedance 

controller, MIME uses a PID controller and GENTLE/s uses an admittance controller for 

movement assistance. In some cases, the rehabilitation system keeps track of the status of the 

task (e.g., AutoCITE [11]). However, to our knowledge, none of these systems has a 

dedicated high-level controller that can comprehensively monitor the task, provide 

assessment of the progress, and alter the task parameters to impart effective therapy based on 

the patient’s performance in an automated manner. Instead, in these existing robotic 

rehabilitation systems, a therapist administers the therapy where he/she monitors the progress 

of the tasks, patient’s safety, and assess whether the task needs to be updated based on current 

condition of the therapy. As a result, it is likely to consume more time of the therapist, 

increase workload of the therapist, and consequently, increase the cost of treatment. In the 

current work, we present the design and development of a high-level controller that work in 

conjunction with the low-level assistive controllers such that it can determine the task updates 

dynamically based on patients’ performance; and monitor the safety related events in an 

automated manner and generate an accommodating plan of action. This high-level controller 

is designed in such a manner that it can be extended without altering the low-level assistive 

controllers, by including more task status information and decision rules. It is expected, this 

augmentation of the low-level assistive controllers with a high-level controller will help the 

therapist to use his/her time more productively in higher-level decision making and possibly 

allowing him/her to supervise multiple patients simultaneously.  
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  The primary focus of this paper is to present an intelligent controller, which is called a 

high-level controller, to monitor the progress of the task and to make decisions on the 

modification of the task that might be needed for the therapy. In this paper, we also design a 

low-level assistive controller that works in coordination with the high-level controller. Note 

that the presented high-level controller is not specific to a given low-level assistive controller 

but can be integrated with any previously proposed rehabilitation systems.   

 This paper is organized as follows. It first presents the overall control architecture in 

Section 2. Then the rehabilitation robotic system is presented in Section 3. The low-level 

assistive controller and the high-level controller of the overall control architecture have been 

described in Section 4 and Section 5, respectively. Results of the experiments are presented in 

Section 6 to demonstrate the efficacy of the high-level controller on unimpaired participants.  

Section 7 discusses potential contributions of this work and possible directions for future 

work.   

 

2. Control Architecture 

  Let us first present the proposed control architecture of a robot-assisted rehabilitation 

system in the context of a rehabilitation task called reaching task. The reaching task designed 

in here requires combination of the shoulder and elbow movement, which could increase the 

active range of motion (AROM) in shoulder and elbow in preparation of later functional 

reaching activities in rehabilitation. In this task, the participants are asked to move their arms 

in the forward direction to reach a desired point in space and then bring it back to the starting 

position repeatedly within a specified time. In other words, they have to follow a desired 

motion trajectory. The participants receive visual feedback of both their actual motion and the 

desired motion trajectories on a computer screen, which is placed in front of them.  They are 

asked to pay attention to tracking the desired motion trajectory as accurately as possible, 

which keeps them focused on the task. The visual feedback is used not only to inform the 

participants of how closely they are tracking the desired motion but also as a motivational 

factor to keep them focused on the task.  

 The stroke patients may not be able to track the desired motion trajectory because of their 

motor impairment. A low-level assistive controller could be used to provide robotic 

assistance to participants’ arm movement as and when needed to help them to complete the 

reaching task. Note that various robot, human and general task related information, called 

events, could affect the reaching task. For example, if the robot joint motor develops any 

fault; or if the patient feels uncomfortable he/she might want to stop the task; or the patient is 
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more than capable of performing the current task and he/she needs more challenging task etc. 

These set of information may require some adjustments of the planning of the task. As a 

result, the low-level assistive controller also needs to be aware of these adjustments of the 

task to accomplish the therapy requirements.   

 In order to provide therapy that can accommodate the above requirements, a high-level 

controller could be used in conjunction with the low-level assistive controller that monitors 

the task and patient’s safety and informs the low-level assistive controller about the task 

updates. The high-level controller in here plays the role of a human supervisor (therapist) 

who would otherwise monitor the task and assess whether the task needs to be updated. 

However, in general, the high-level controller and the low-level assistive controller cannot 

communicate directly because each may require different types of inputs and outputs. For 

example, a high-level controller may operate in the discrete domain whereas a low-level 

assistive controller may operate in the continuous domain. Thus an interface is required 

which can convert continuous-time signals to sequences of discrete values and vice versa. 

Hybrid system theory provides mathematical tools that can accommodate both continuous 

and discrete system in a unified manner. As a result, in this work, we take the advantage of 

using a hybrid system model to design our control architecture. A hybrid system model has 

three parts, a “Plant”, a “Controller” (supervisor) and an Interface [12],[13]. In order to avoid 

confusion about terminology, we call the “Controller” in hybrid system model a high-level 

controller in this paper. The continuous part, identified as the “Plant” is the low-level 

assistive controller. Fig. 1 presents the proposed control architecture. There has been no work 

to our knowledge on designing such a hybrid system for rehabilitation purposes. However, in 

this paper, we argue that such a hybrid system framework could be useful in automating 

robotic rehabilitation and providing important aid to the therapist. Hybrid control framework 

has been effectively used in other fields, such as industrial robotics, medicine, and 

manufacturing [14]. Note that the presented control architecture is not specific to a reaching 

task but can be used for any other rehabilitation tasks.  

 In this architecture (Fig. 1), the state information from the robot and the human is 

monitored by the process-monitoring module through the interface to trigger the relevant 

events. Each event is represented as a plant symbol so that the high-level controller can 

recognize the event. Once the high-level controller receives the event through a plant symbol, 

the decision making module of the high-level controller generates sequences of control 

actions using its decision rules. The high-level controller is designed considering the need of 

the therapist and the patient and it can be easily modified and extended for new task 
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requirements. The decision of the high-level controller is sent to the low-level assistive 

controller through the interface using the control symbols. Interface converts the control 

symbols to the plant inputs which are used to update the task. The updated task is then 

executed by the low-level assistive controller. This cycle continues to complete the therapy. 

  The proposed control architecture is flexible and extendible in the sense that new events 

can be included and detected by simply monitoring the additional state information from the 

human and the robot, and accommodated by introducing new decision rules and new low-

level assistive controllers.   

 

 
Figure 1 Control Architecture 

 

3. Rehabilitation Robotic System 

 A PUMA 560 robotic manipulator is used as the main hardware platform in this work. 

The manipulator is augmented with a force-torque sensor and a hand attachment device (Fig. 

2).  The microcontroller board of the PUMA is replaced to develop an open architecture 

system to allow implementing the advanced controllers (e.g., low-level assistive and high-

level controllers).  
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Figure 2 Participant Arm Attached to Robot 

 

3.1. Hardware 

 The PUMA 560 is a 6 degrees-of-freedom (DOF) device consisting of six revolute axes. 

Each major axis (joints 1, 2 and 3) is equipped with electromagnetic brake, which is activated 

when power is removed from the motors, thereby locking the robot arm in a fixed position. 

The technical specifications of this robotic device can be found in [15]. In order to record the 

force and torque we have used ATI Gamma force/torque sensor. We have interfaced the robot 

with Matlab/Realtime Workshop to allow fast and easy system development. The force 

values recorded from the force/torque sensor are obtained using a National Instruments PCI-

6031E data acquisition card with a sampling time of 0.001 seconds. The joint angles of the 

robot are measured using encoder readings with a sample time of 0.001 seconds from a 

Measurement Computing PCI-QUAD04 card. The torque output to the robot is given with a 

Measurement Computing PCIM-DDA06/16 card with the same sample time. A computer 

monitor is placed in front of the participant to provide visual feedback about his/her motion 

trajectory during the execution of the task. 

 

3.2. Hand Attachment Device

 Since in this work we are primarily interested in effecting assistance to the upper arm, we 

design a hand attachment device where the participant’s arm is strapped into a splint that 

restricts wrist and hand movement. The PUMA 560 is attached to that splint to provide 

assistance to the upper arm movement using the assistive controller (Fig. 2). Forearm padded 

aluminum splint (from MooreMedical), which ensures the participant’s comfort, is used as a 
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splint in this device. We further design a steel plate with proper grooves that hold two small 

flat-faced electromagnets (from Magnetool Inc.) that are screwed on it. This plate is also 

screwed with the force-torque sensor, which provides a rigid connection with the robot. We 

attach a light-weight steel plate under the splint, which is then attached to the electromagnets 

of the plate. These electromagnets are rated for continuous duty cycle (100% duty cycle), i.e., 

they can run continuously at normal room temperature. Pull ratings of these magnets are 40lb. 

We have used two electromagnets to have a larger pulling force to keep the splint attached to 

the hand attachment device. An automatic release (AU) rectifier controller (Magnetool Inc.) 

has been used to provide a quick release of these electromagnets. A push button, which has 

been connected to the AU Rectifier Controller, is used to magnetize and demagnetize the 

electromagnets when the participant wants to remove the hand attachment device from the 

robotic manipulator in a safe and quick manner.  

 

3.3. Safety Discussion about both the Use of a PUMA 560 Robotic Manipulator and Hand 
Attachment Device 
 Ensuring safety of the participant is a very important issue when designing a 

rehabilitation robotic system. Thus, in case of emergency situations, therapist can press 

emergency button. The patient and/or the therapist can quickly release the patient’s arm from 

the PUMA 560 by using the quick-release hand attachment device (as  described above) to 

deal with any physical safety related events. In order to release the participant’s arm from the 

robot, the push button is used. When the push button is pressed electromagnets are 

demagnetized instantaneously and the participant is free to remove the splint from the robot. 

This push button can also be operated by a therapist. Additionally, we have covered the 

corner of the arm device with a foam self stick tape in order to avoid sharp surface. 

 

3.4. Kinematic and Dynamic Model

 We first present the kinematic and dynamic model of the PUMA since these models are 

used for designing controllers used in this work. The forward kinematic equations of a 

PUMA 560 are available in the literature [16]-[18]. However, we have introduced a tool 

frame to include the location of the human arm through the hand attachment device. This 

frame has its origin located at the center of the splint with the same frame assignments as 4th 

and 6th joints of PUMA. The position and orientation of the human arm is calculated in the 

Cartesian coordinates using forward kinematics considering the tool frame. The forward 

kinematics equations used to calculate and X ,Y Z  are given in [19]. The Jacobian matrix 

 44



J( q )  used in the low-level assistive controller is found by taking the derivation of and X ,Y

Z  with respect to first three joints of PUMA .   q [ q q q ]1 2 3=

  [ ]x x x TJ( q ) , x X Y Z
q q q1 2 3

∂ ∂ ∂
= =

∂ ∂ ∂

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

  (1) 

 The orientation of the human arm is controlled by the last three joints of the PUMA. For 

the particular task considered in this work, we needed to keep the arm in a configuration such 

that it aligns with the direction of the motion. In order to achieve this objective we kept 

(4q4
th joint of PUMA) and q (55

th joint of PUMA) at their initial values and the desired value 

of  (i.e., q ) (6q6 6d
th joint of PUMA) is calculated using (2), where  is the initial value 

of . These three joint were separately controlled by a proportional-derivative (PD) 

controller because the low-level assistive controller was designed to provide positional 

assistance for the task. 

q6doffset

q6

  1q pi / 2 tan ( X , Y ) q6d 6doffset
−= − − +   (2) 

 We have used a well known explicit model of the dynamics of the PUMA 560 arm [16], 

where the equations of motion for the robot are given in (3). M ( q )  represents the inertia 

matrix,  V (  is the summation of the matrix of coriolis torques Co  and centrifugal 

torques 

q,q ) ( q )( q,q )

2Ce( q ) q , and  is the vector of gravity torques. G( q ) Γ  is the generalized joint force 

torque which is calculated using , where u  is the input to the manipulator, Tu J F− J( q )  is the 

Jacobian matrix and F  is the contact force exerted by the manipulator. This model is used in 

the proposed low-level assistive controller (described later). The details of each term in  (3) 

and the numerical values of the parameters of the model are given in [16].  

 
2M ( q )q Co( q )( q ,q ) Ce( q ) q G( q )

Tu J ( q )F M ( q )q V ( q ,q ) G( q )

Γ = + + +

− = + +
  (3) 

 

4. Low-Level Assistive Controller 

 We design a low-level assistive controller that works in coordination with the high-level 

controller to perform the rehabilitation task. The high-level controller generates appropriate 

commands (which are presented in detail in Section 5) for the low-level assistive controller so 

that it can provide assistance to the participants to complete the rehabilitation task. In what 

follows we first present the basic design of the low-level assistive controller, and then 
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provide details of decision of the robotic assistance. Last, we present a switching mechanism 

that ensures the smoothness when the low-level assistive controller will be switching in and 

out to provide robotic assistance. 

 

4.1. Controller Design 

The controller designed in this work is responsible for providing robotic assistance to a 

participant to complete the movement tracking task in an accurate manner [19]. The existing 

robotic rehabilitation systems operate in robot task-space to provide robotic assistance to the 

patients to follow a desired trajectory to complete a rehabilitation task [4]-[10]. Recently, a 

human-arm joint impedance controller is proposed, which operates in joint-space, to provide 

assistance to the subjects to follow desired joint angle trajectory specified for each individual 

joint (e.g., elbow joint) [20]. It is still not clear, however, whether the assistance in the task-

space or in the joint-space will likely to have the best results for rehabilitation purposes. In 

this work, we design a controller that is responsible for providing the robotic assistance to 

subjects to complete a rehabilitation task in task-space. In this controller, an outer force 

feedback loop is designed around an inner position loop. The outer force control is in charge 

of computing a suitable reference end-effector trajectory, which ensures a compliant behavior 

of the manipulator when the end effector interacts with the participant. The tracking of the 

reference trajectory is guaranteed by the inner motion control loop [21] (Fig. 3). The desired 

force, which is given as a force reference to the force controller, is computed by a planner. In 

the planner, velocity error is transformed into a force reference using an outer PID velocity 

loop.  

 

 
Figure 3 Low-Level Assistive Controller 

 

 Using inverse dynamics control, manipulator dynamics are linearized and decoupled via a 

feedback. The dynamic equation of the robotic manipulator was given in  (3). Control input u  
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to the manipulator is shown in (4). Equation (4) leads to the system of double integrator, 

,  where  represents a new input. q y= y

  Tu M ( q ) y V ( q ,q ) G( q ) J F= + + +   (4) 

 The new control input  is designed so as to allow tracking of the desired force y Fd . To 

this purpose, the control law is selected as given in (5). x f  is a suitable reference to be 

related to force error. M d (mass), (damping), and Kd K p  (stiffness) matrices specify the 

target impedance of the robot. x  and x  are the position and velocity of the end-effector in the 

Cartesian coordinates, respectively.  

    (5) 1 1y J ( q ) M ( K x K ( x x ) M J ( q ,q )q )pd d f d
− −= − + − −

 The relationship between the joint and the Cartesian space acceleration is used to 

determine position control equation.  

  x J ( q ) y J ( q ,q )q= +   (6) 

 By substituting (5) into (6), we obtain (7). Equation (7) shows the position control 

tracking of x  with dynamics specified by the choices of, M d ,  and Kd K p  matrices. 

Impedance is attributed to a mechanical system characterized by these matrices that allows 

specifying the dynamic behavior. 

  M x K x K x K xp pd d+ + = f   (7) 

 Fd , which is the desired force reference, is computed using a PID velocity loop, where 

 and  are the desired velocity, actual velocity, the proportional, integral and 

derivative gains of the PID velocity loop, respectively. 

, Id dx , x, Pd Dd

 
d( x x )dF P ( x x ) I ( x x )dt Dd d d d d d dt

−
= − + − +∫   (8) 

 The relationship between x f  and the F Fid −  is expressed in (9), where P  and  are the 

proportional and integral gains, respectively, and 

I

Fi  is the interaction force between robot 

and the human. 

  x P( F F ) I ( F F )dti if d d= − + −∫   (9) 

      Equations (7) and (9) are combined to obtain: 

  M x K x K x K ( P( F F ) I ( F F )dt )p p i id d d d+ + = − + −∫   (10) 
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 We can observe from (10) that the desired force response is achieved by controlling the 

position of the manipulator.   

 

4.2. Decision of Robotic Assistance during Task Execution 

 During the tracking task, the activation of low-level assistive controller to provide robotic 

assistance is decided based on the participant’s actual velocity, x . The participants will 

require a finite amount of time to generate the desired motion. The robotic assistance should 

not be activated until it is determined that the participant is not able to generate the required 

motion by his/her own effort. Thus, initially the desired xd  is decided and then it’s upper 

( )xu  and lower ( )xl  bounds are calculated using (11). The average velocity of the participant 

 (as opposed to instantaneous velocity) and average value of the upper  (  and lower 

 velocity bounds for a given period of time are calculated using 

xave )

)

xuave

(xlave (11) to decide if the 

robotic assistance is needed. The  is the value used to define the upper and lower 

velocities for the selected 

percentage

xd .  and ts  are the final time, starting time and sampling time, 

respectively.       

tf , ti

 

( ) ( ) ( ) ( ) ( ) ( )

percentage percentage
x x x * , x x x *u d d l d d100 100

tf tf tf1 1 1x x( t ) , x x ( t ) , x x ( t )u lave uave lavetf ti tf ti tf tit ti t ti t ti
ts ts ts

= + = −

= = =∑ ∑− − −= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
=

               (11) 

 If x x  is satisfied, then the low-level assistive controller is not activated and 

the participant continue tracking task without robotic assistance. If  is not 

satisfied then the low-level assistive controller is activated to provide assistance to the 

participant to track the desired motion.  

xave uavelave < <

x x xave uavelave < <

 

4.3. Switching Mechanism 

Note that the low-level assistive controller will be switching in and out to provide robotic 

assistance. In order to ensure smooth switching, a switching mechanism that we have 

previously shown to guarantee bumpless switching for a satisfactory force response [22] is 

used in this work. This mechanism modifies the position reference, which is the input for the 

inner loop of the low-level assistive controller, at the time of the switching in such a way that 

it is equal to the position reference at the time before switching occurred. The control action 
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in (9) can be modified as (12), where the x ( t )fp  is the position reference determined when 

the low-level assistive controller is not active, which is equal to the position of the tool frame 

x( t ) . x ( t )ff  is the position reference determined using the P  and  gains when the low-

level assistive controller is active.  represents the integral action and  is the initial 

condition of the error integrator. e(  is defined as the 

I

X ( t )i Xio

t ) F Fid − .  

 
x ( t ) x( t )fp

x ( t ) Pe( t ) I( X ( t ) X )dti ioff

=

= + +
  (12) 

 If  ts  is the time of switching, the position reference can be found using (13). x( t )s
−  

represents the position of the tool frame just before the switching occurred.   

 
x ( t ) x( t )s sfp

x ( t ) Pe( t ) I( X ( t ) X )dts s i s ioff

− −=

+ + += + +
  (13) 

 The integral action associated with the low-level assistive controller is reset during the 

switching iX ( t ) 0s
+ = .  The F Fid −  is set to zero just after the time of the switching for a small 

period of time . The initial condition is set as Pe( t ) 0s
+ = X x( t ) / Iio s

−= . When these 

definitions are substituted in (13) we get (14). (14) ensures that the position reference is 

indeed continuous during switching, which guarantees bumpless activation and deactivation 

of the low-level assistive controller.  

  x ( t ) x ( t )s sff fp
+ −=   (14) 

 

5. The High-Level Controller 

  The high-level controller monitors the progress of the task, the status of the plant, and 

makes decision on the modification of the task that might be needed for the therapy. The 

decision of the high-level controller is executed by the low-level assistive controller to 

accomplish the task requirements. In this section, we first present the theory of the high-level 

controller, followed by the design rationale and details of the high-level controller.  

 

5.1. Theory 

The high-level controller is a discrete-event system (DES) deterministic finite automaton, 

which is specified by D ( P, X ,R, , )ψ λ=  [12],[13]. Here P  is the set of discrete states. Each 
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event is represented as a plant symbol, where  is the set of such symbols, for all discrete 

states. The next discrete state is activated based on the current discrete state and the 

associated plant symbol using the following transition function: . In order to 

notify the low-level assistive controller the next course of action in the new discrete state, the 

controller generates a set of symbols, called control symbols, denoted by 

X

: P X Pψ × →

R , using an output 

function: . The action of the high-level controller is described in : P Rλ → (15), where 

p , p Pi j ∈ , x Xk ∈  and .  i  and r Rc ∈ j  represent the index of discrete states.   and   

represent the index of plant symbols and control symbols, respectively.  is the time index 

that specifies the order of the symbols in the sequence.   

k c

n

    (15) 
p [ n ] ( p [ n 1], x [ n ])j i k

r [ n ] ( p [ n ])c j

ψ

λ

= −

=

 

5.2. Design Rationale for the High-Level Controller 

Let us explain the role of each element of the automaton D ( P, X ,R, , )ψ λ=  in the context 

of rehabilitation tasks. P  is the set of discrete states. A rehabilitation therapy may consist of 

several actions and each discrete state may capture one of these actions.  The action that takes 

place in each discrete state could be used to update the rehabilitation task. For example, if 

improving the speed of motion is the objective, then each category of speed (e.g., slow, 

medium, fast etc.) could be chosen as discrete states. When new actions are required for a 

rehabilitation task, new states can easily be included in the set of the states, P . Once the set 

P is chosen, the next design parameters are what are called “events” that could affect the 

rehabilitation task. Events are various robot, human and general task related information that 

provide the current status of the task. The set of events are not unique and are decided 

considering the need of the therapy, and the capabilities of the rehabilitation robotic systems. 

Generally the available sensory information from the robotic systems and the input from the 

therapist and the participant provide the core of the set of the events. When these events 

occur it may require some adjustments of the planning of the rehabilitation task. As discussed 

earlier, this sensory information may not be directly interpreted by the high-level controller. 

As a result, each event is represented as a plant symbol so that the high-level controller can 

recognize the events.  is the set of the plant symbols, which is designed based on the set of 

events. The transition function   uses the current state and the plant symbol to 

determine the next action that is required to update the rehabilitation task. For example, when 

X

: P X Pψ × →
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the participant is performing the rehabilitation task and an event that requires the task to be 

stopped occurs, then the transition function is used to transit from one active state, which 

executes the task as required, to another one, which stops the task execution, based on the 

event. The high-level controller generates a control symbol, which is unique for each state, 

using the output function λ .  is the set of the control symbols. The output of the control 

symbols are plant inputs which is in charge of the modification of the rehabilitation task. The 

control symbols and its outputs are decided based on the task requirements and the abilities of 

the low-level assistive controller. For example, if the objective of the rehabilitation task is to 

increase the participant’s range of motion, then the control symbol generates plant inputs to 

the low-level assistive controller to change the desired goal position of the task in order to 

make the task more/less challenging for the participant. It is clear from the above discussion 

that the design of the various elements of the automaton 

R

D ( P, X ,R, , )ψ λ=  is not unique and is 

dependent on the task at hand, and sensory information available from the robotic system. In 

what follows we present the design of these elements with regard to the objective of the 

rehabilitation task we present in this paper. 

 The design of the elements of D ( P, X ,R, , )ψ λ=  for the reaching task that has been 

described in Section 2 is motivated by the specific objective of the task. In here, the objective 

of the reaching task is to improve the participant’s speed of movement while considering the 

current movement ability of the participant and the safety of the task. The participant is 

required to complete the movement in a certain amount of time, which represents the velocity 

of the task trajectory. The desired velocity trajectory could be updated to improve the 

participant’s speed of movement and to ensure the safety of the participant. Thus the discrete 

states could be the level of speed at which the therapy is imparted to the participant. In order 

to decide the set of events, all sensory information that the current rehabilitation robotic 

systems can generate is analyzed. The rehabilitation robotic system used in this work has a 

force sensor to record the applied force by the participant, a PCI card to record the robot joint 

angles, and pause, stop and restart buttons for task execution. A counter is also used to record 

the number of times a participant needed robotic assistance to determine the improvement of 

participant’s movement ability. This set of information is used to define several events in our 

work. Once the discrete states and the events are determined, the necessary plant and control 

symbols are designed based on the structure of the high-level and low-level assistive 

controllers, and the objectives of the task (e.g., when should discrete states be changed, how 
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to increase or decrease speed etc.). The design details of the high-level controller for the 

reaching task are given in the next section. 

 

5.3. Design Details of the High-Level Controller 

 We initially define the following plant states : stay, difficult, easy, stop and pause. Stay p

( )p1  implies the participant needs to continue the task at the same difficulty level by keeping 

the desired velocity same. Difficult ( )p2  means the participant has improved his/her task 

performance and task need to be more challenging by increasing the desired velocity. 

Similarly, easy ( )p3  implies changing the task parameters to make the task easier by 

decreasing the desired velocity. Stop ( )p4  and pause ( )p5  are defined in their usual ways.  

New plant states can easily be included in the design of the high-level controller when new 

control actions are needed to modify the task parameters.  

The state information from the robot and the human is decided to define the events. The 

state information from the robot and the human can be a continuous signal or a discrete value. 

Let SRn and SHn represent the sets of robot and human state information, respectively. In this 

research, the continuous signals that are detected from the robot are: i) robot’s joint angles 

(SR1), ii) the force reference calculated using (8) (SR2), iii) the participant’s velocity, which is 

measured from the tool frame velocity (SR3). The discrete value detected from the robot is the 

participant’s progress during the tracking task (SR4). In order to find SR4, the number of times 

participant needed robotic assistance at 10th trial (n10) and at 50th trial (n50) were recorded. 

Decision logic is defined to determine the value of SR4  using  (16). pΔ  is the percentage 

change of velocity that can be defined by the therapist and it can be person-specific. 

 

( )( ) { }

( )( ) { }

{ }

pif n n n * then S 110 10 R450 100

pelseif n n n * then S 110 10 R450 100

else S 0R4

Δ

Δ

< − =

> + =−

=

  (16) 

 Robot and human state information is monitored to trigger relevant events to modify the 

task. When these events are triggered, the interface provides the necessary plant symbol ( )x  

to the high-level controller. Currently we have defined nine events for the proposed high-

level controller. However, the number of events can be easily extended. Five of these (E1, 

E2, E3, E4 and E5) are robot generated, and three of these (E6, E7 and E8) are human 

generated events. The other event, which is a secondary event, is called SE1. This is used to 

detect the previous state when the participant wants to continue with the task after he/she 
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stops. The high-level controller needs to know which state was active before the pause or stop 

button was pressed in order to provide the same task parameters to the participant when 

he/she resumes the task. For example, when the participant presses pause button, a value is 

assigned to SE1. This value is retrieved when the participant resumes the task so that he or 

she can continue the therapy with the same task requirements. Events are reset at the 

beginning of task execution. Additionally, the triggered event is reset when a new event 

occurs. When the participant requires less, more or same level of robotic assistance to track 

the desired trajectory, E1, E2 and E3 is triggered, respectively. E4 occurs when the robot’s 

joint angles are out of range.  If the force reference (calculated by (8)) provided to the low-

level assistive controller to assist the participant and the participant’s velocity ( )x  are above 

predefined threshold values, then E5 and E6 are triggered, respectively. E7 occurs when the 

participant presses the pause or the stop button. In order to continue with the task, the 

participant resets the pause button and E8 event is triggered. Plant symbols ( )x  are designed 

based on the events as shown in Table 1. The  are known from the robot’s 

specifications.  and  are determined by the therapist at the beginning of the 

task execution. Note that if any of E4, E5, E6, and E7 or their combinations occurs then the 

state stop (  is activated. Thus we assign the same plant symbol, 

jo int_ lim its

Fdthreshold xthreshold

)p4 x4  for these events. 

 

Table 1 Plant Symbols for the High-Level Controller 

 
 The secondary event, SE1, is defined as follows: if the state is difficult and E7=1, then 

SE1=1. We assign a corresponding plant symbol x6 . Similarly, if the state is easy and E7=1, 
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then SE1=2, and the plant symbol x7  is assigned. If the state is stay and E7=1, then SE1=3. 

We assign a corresponding plant symbol x8 . SE1 releases state information when E7=0 and 

E8=1.   

When any of these events is triggered, the high-level controller decides the next plan of 

action to modify the task. When an event is triggered, the corresponding plant symbol ( )x  is 

generated by the interface. The current state ( )p   and the plant symbol ( )x  are used by the 

high-level controller to determine the next state. Then the high-level controller generates the 

corresponding control symbol  for this new state and provides it to the interface. The 

control mechanism of the proposed high-level controller is shown in Fig. 4 (left). In this 

figure, s are corresponding control symbols for each plant symbol 

( )r

rc xk , where c=1,2,…5 and 

k=1,2,…8. Any event that generates corresponding plant symbols xk  along with the current 

state  information pi  determines the next  and as a result, , where i=1,2,…5 and 

j=1,2,…5. In our application only one state is active at any given time, and therefore we 

uniquely assign a control symbol  for each discrete state 

p j rc

ri pi . Since the low-level assistive 

controller cannot interpret the control symbols, the interface converts them to the appropriate 

values for α  and β  for (17) to execute the task. The available control symbols  and their 

corresponding 

ri

α  and β  values for the plant input are defined in a table in Fig. 4 (right).  

 

 
Figure 4 Control Mechanism for the High-Level Controller 

 

The plant equation which determines the desired velocity for the low-level assistive 

controller is defined in (17), where de is selected as a constant value to increase and lta
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decrease the xd , which makes the task more or less challenging. xdm  is the new desired 

velocity value used to determine the new xu  and xl .  

  x ( x ( * delta ))dm dβ α= +   (17) 

 Then x ,  and  are calculated using (11). If   is not 

satisfied then the low-level assistive controller is activated to provide assistance to 

complement participant’s effort to complete the task in a precise manner. The 

Matlab/Simulink/Stateflow software is used to implement the proposed high-level controller 

ave xuave xlave x x xave uavelave < <

[23] (Fig. 5).   

 

 
Figure 5 Stateflow Model for the High-Level Controller 

 

6. Results 

 In this section we present the experimental procedure and the results of the 

experiments with unimpaired participants. 

 

6.1. Experiment Procedure 

 Participants are seated in a height adjusted chair as shown in Fig. 2 (top left). The 

height of the PUMA 560 robotic manipulator has been adjusted for each participant to start 

the tracking task in the same arm configuration. The starting arm configuration is selected as 

shoulder at neutral 0° position and elbow at 90° flexion position. The task requires moving 

the arm in forward flexion to approximately 60° in conjunction with elbow extension to 
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approximately 0°. Participants are asked to place their forearm on the hand attachment device 

as shown in Fig. 2 (bottom left) when the starting arm configuration is fixed. The push button 

has been given to the participants that can be used during the task execution in case of 

emergency situations (Fig. 2 - bottom middle). The participants receive visual feedback of 

their position on a computer monitor on top of the desired position trajectory (Fig. 2-top 

right).  Participants are asked to execute the tracking task 50 times.  

 

6.2. Results 

6.2.1. Low-Level Assistive Controller Evaluation 

 Three female and one male participants within the age range of 25-30 years, right-handed 

participants took part in the experiment. The participants tried to track the desired position 

trajectory by visually looking at the computer screen. x  was selected as 0.02m/s, which was 

chosen in consultation with a physical therapist who works with stroke patients at the 

Vanderbilt Stallworth Rehabilitation Hospital. The xu  and xl  were selected as 25% more and 

less of x , which were 0.025m/s and 0.015m/s, respectively. The range could be increased or 

decreased based on the participant’s movement ability. Then ,  and  were 

calculated using 

xave xuave xlave

(11) at every 5 seconds. 5 seconds were sufficient to estimate the progress of 

the participant. Thus, the condition  was checked to decide the activation 

of the low-level assistive controller. The idea of the low-level assistive controller was to 

assist the participants as and when they were out of the velocity band. 

x x xave uavelave < <

  Participants were asked to execute the tracking task 50 times. The number of trials and 

the number of times participant needed robotic assistance were recorded. Friction and gravity 

compensation were always activated in order for the participant to move the robot along with 

his/her arm in an effortless way. We had noticed that the participants needed less assistance 

from the robot as they practiced more (Table 2), which implies that the participants learned 

how to accomplish the task with practice.  
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Table 2 Number of Times Robot Assisted 

 
 

 We represent P1’s 50th trial data as an example to show the task performance. It could be 

observed from Fig. 6 that the P1’s average velocity (stars), which was calculated every 5 

seconds using (11), was out of range at  A, B and C points (Fig. 6). The low-level assistive 

controller was activated for the next 5 seconds between A-A’, B-B’ and C-C’. It could be seen 

that the P1’s velocity was brought inside the desired range at  A’, B’ and C’ points (Fig. 6), 

which verified the assistive ability of the low-level assistive controller.  
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Figure 6 Calculated Average Velocities 

 

 We further analysed the amount of time taken by the low-level assistive controller ( ts , in 

seconds) to take x  into the desired velocity range. Here ts  is defined as the settling time, 

which is the time taken between the moment the low-level assistive controller was activated 

and the actual velocity reached the boundary of the desired velocity range. The mean and 

standard deviation of ts  for all participants’ data are presented in Table 3. It can be seen that 

the low-level assistive controller could assist the participants when needed and could quickly 

(i.e., in approximately 0.55 seconds) bring the participants’ velocity within the desired range.  
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Table 3 Settling Time 

 
 

6.2.2. High-Level Controller Evaluation 

 In order to demonstrate the efficacy of the proposed high-level controller, we had 

designed two experiments. In the first experiment, we had demonstrated the efficacy of the 

proposed high-level controller to modify the task when the participant improved his/her 

movement ability to track the desired trajectory. In the second experiment, we had 

demonstrated the efficacy of the high-level controller to modify the task in order to ensure the 

safety of the participants.  

 In the first experiment, we had used P1’s low-level assistive controller results. , which 

is the percentage change of velocity in 

pΔ

(16), was selected as 30, which could be varied based 

on participant’s progress and the therapist’s choice. It was observed from Table 2 that n10=8 

and n50=3 and (16) was satisfied, thus E1 was triggered and the plant symbol x1  was 

generated from the interface. difficult ( )p2  state became active and the control symbol r   

was generated. The interface converted this control symbol to 

2

1α =  and 1β = . Amount of the 

increment  to increase the difficulty level of the task was an important issue that needed 

to be decided. In rehabilitation therapies, increasing 

delta

xd  with a small increment would be 

more desirable especially for low-functioning stroke patients. In this experiment, we had 

incremented xd  by 20%, where delta 0.004= . New desired velocity was calculated using (17), 

which was 0.024m/s. The velocity boundaries were calculated using (11) as 0.03m/s and 

0.018m/s for xu  and xl , respectively. We had asked P1 to perform the tracking task 50 times 

with this new velocity boundary. Low-level assistive controller provided robotic assistance to 

the participant as and when they were out of the new velocity band. It was observed that the 

P1 needed more robotic assistance when the desired velocity to complete the task was 

increased. It could be seen that P1 learned how to accomplish the task with practice (Table 4). 
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Table 4 Number of Times Robot Assisted for P1 with New Velocity Boundary 

 
 

 In the second experiment, we had assumed a safety event had occurred when P1 was 

performing the task with new increased velocity band. In this experiment, at some point of 

time during the task P1 wanted to pause for a while and then reset the pause button when she 

was ready to complete the rest of the task. This scenario might represent when a stroke 

patient want to pause for a while due to some discomfort. When the task had initially started, 

E1 was triggered and the plant symbol x1  was generated from the interface. difficult ( )p2  

state became active and the control symbol  was given to the interface. The interface 

converted this control symbol to constant values 

r2

1α =  and 1β = . The plant equation (17) 

was used to calculate xdm (the desired velocity), which was 0.024m/s. The reaching task 

required participant to move 0.3m, thus, the initial position (0), desired position (0.3) and 

desired xdm (0.024m/s) was provided to the reference block to generate the smooth desired 

velocity trajectory from A to B (Fig.7-left-solid line).  

 When P1 pressed the pause button at B, E7 was triggered. When E7 was triggered, plant 

symbol x4  was generated from the interface and stop ( )p4  state became active. When stop 

state was active, the high-level controller provided the control symbol  and r4 0β =  was 

given to (17) and xdm  was determined as zero. The zero velocity could cause a sudden stop. 

In order to prevent P1 from suddenly stopping, the reference generator block was used to 

provide a smooth velocity trajectory to bring the motion to stop. In this case, the velocity was 

detected when E7 was triggered and the desired velocity was given as zero and using the 

reference generator block, the smooth desired velocity was given to the low-level assistive 

controller from B to C (Fig.7-left-solid line). It could be seen that P1’s position (Fig. 7 - right) 

did not change after the velocity became zero until P1 reset the pause button. SE1 was set to 1 

because the state was difficult and E7=1. When the participant reset the pause button, E8 was 

triggered and x5  plant symbol was given to the interface, and pause ( )p5  state became active 
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and the high-level controller provided . Then r5 x6  was given to the interface because SE=1. 

The corresponding control symbol r  was generated, and 2 1α =  and 1β =  values were given 

to (17) to calculate xdm , which was 0.024m/s. It could be seen that the high-level controller 

resumed the task in such a manner that the participant could continue with the therapy with 

the same task parameters. The participant’s position at the time of the triggering of E8 was 

automatically detected and was given as an initial position to the reference generator block 

and the desired position was set to 0.3. The velocity trajectory from C to D was generated and 

given to the low-level assistive controller (Fig.7-left-solid line). On the other hand, if we did 

not use this high-level controller, the desired velocity trajectory would not have been 

automatically modified to register the intention of the participant to pause the task. As a 

result, the velocity trajectory would have followed the dashed line in Fig. 7-left. In such a 

case, when P1 wanted to start the task again, the desired velocity trajectory would start at 

point C’ with non-zero velocity (Fig.7-left-dashed line). This could create unsafe operating 

condition. In addition, since the desired velocity computation would not have included the 

pause action, restarting the task at point C’ would not allow the completion of the task as 

desired. For example, in this case, if P1 had used the dashed velocity trajectory, she would 

start moving in the opposite direction at point C’. It could be possible to pre-program all 

types of desired velocity trajectories beforehand and retrieve them as needed. However, for 

non-trivial tasks such a mechanism might be too difficult to manage and extend as needed. 

The presented high-level controller provides a systematic mechanism to tackle such issues. It 

could also be seen that new velocity trajectories could be created dynamically using the 

generator block. In order to generate the required trajectories, the task parameters were 

needed. High-level controller monitored the progress of the task and made decision on the 

modification of the task parameters.  

 When the participant reached the desired position, which was 0.3m, then the velocity 

trajectory from D to E was generated and given to the low-level assistive controller (Fig.7-

left-solid line) so that P1 moved back to the starting position (Fig.7-right).  
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Figure 7 Motion Trajectories When Task is paused 

 

 As could be seen from the results of Experiments 1 and 2, the high-level controller 

determined the task parameters dynamically based on the participant’s performance and 

monitored the safety related events to generate the necessary motion trajectories at the 

required time.   

 

7. Conclusion and Future Work 

 In this paper we present a new control approach to offer robotic assistance for stroke 

patients that include the coordination between a high-level controller and a low-level assistive 

controller. The control architecture presented here is an example of a hybrid control system.  

There has been no work to our knowledge on designing similar type of control architecture 

for rehabilitation purposes. We present the design of a low-level assistive controller which is 

used to provide robotic assistance for an upper arm rehabilitation task. The high-level 

controller coordinates with the low-level assistive controller to improve the robotic assistance 

with the following objectives: 1) to monitor the upper arm rehabilitation task; and ii) to make 

necessary decisions to address the status of the task. We present a systematic design 

procedure for the high-level controller to accomplish the above objectives. Note that the 

proposed high-level controller can be integrated with other low-level controllers with minor 

modifications.  

 We have conducted experiments with unimpaired participants and demonstrated the 

usefulness of the high-level and low-level assistive controllers. The results of the use of the 

low-level assistive controller have demonstrated that the participants needed less assistance 

from the robot as they practiced more, which implies that the participant’s ability to complete 

the desired motion within a defined velocity range have been improved. We have also 

 61



demonstrated that the low-level assistive controller provides assistance to the participants as 

and when needed and quickly brought the participant’s velocity in the desired range (i.e., in 

approximately 0.55 seconds). The results of the use of the high-level controller have 

demonstrated that the task parameters could be determined dynamically based on the 

participant’s performance and monitored for safety related events to generate the necessary 

motion trajectories at the required time. The speed of motion is used as the task parameter in 

this paper. However, the high-level controller can determine other task parameters such as 

desired reaching position. In some of the rehabilitation tasks, the reaching task is shaped by 

defining the target position closer to or away from the patient to change the difficulty level of 

the task. In such a case, for example, the high-level controller can determine the target 

position based on the participant’s progress while monitoring the safety related events.     

 An important direction for future development involves testing the usability of the 

proposed control architecture with stroke patients. New methods to detect human state 

information can be integrated into the control architecture such as ECG signals can be used to 

monitor patients’ heart rate to detect their exhaustion and a voice recognition system can be 

integrated to examine the patient’s verbal commands. The proposed control architecture is 

flexible and extendible in the sense that new events can be included and detected by simply 

monitoring the additional state information from the human and the robot.  In this regard, we 

are currently working with Vanderbilt University's Stallworth Rehabilitation Hospital to 

include additional human and robot information.  
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Abstract 

 The goal of this work is to develop a control framework to provide robotic assistance for 

rehabilitation tasks to the subjects in such a manner that the interaction between the subject 

and the robot is smooth. This is achieved by designing a methodology that automatically 

adjusts the control gains of the robot controller to modify the interaction dynamics between 

the robot and the subject. In order to automatically determine the control gains for each 

subject, an artificial neural network (ANN) based proportional-integral (PI) gain scheduling 

controller is proposed. The human arm model is integrated within the controller where the 

ANN uses estimated human arm parameters to select the appropriate PI gains for each subject 

such that the resultant interaction dynamics between the subject and the robot could result in 

smooth interaction. Experimental results are presented to demonstrate the efficacy of the 

proposed ANN-based PI gain scheduling controller on unimpaired subjects.  

KEY WORDS – rehabilitation robotics, human arm parameter estimation, gain scheduling, 

smooth interaction 

1. Introduction 

 Stroke is a highly prevalent condition [1], especially among the elderly that results in high 

costs to the individual and society [2]. According to the American Heart Association (2006), 

in the U.S., approximately 700,000 people suffer a first or recurrent stroke each year [1]. It is 

a leading cause of disability, commonly involving deficits of motor function. Recent clinical 

results have indicated that movement assisted therapy can have a significant beneficial impact 

on a large segment of the population affected by stroke or other motor deficit disorders. 

Experimental evidence suggests that intensive movement training of new motor tasks is 

required to induce long-term brain plasticity. New techniques adopting a task-oriented 

approach have been developed to encourage active training of the affected limb, which 
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assume that control of movement is organized around goal-directed functional tasks [3]. For 

example, “Shaping” is one of the task-oriented behavioural training techniques employed in 

Constraint-Induced Movement Therapy (CIMT), [4] which has the effect of placing optimal 

adaptive task practice procedures into a systematic, standardized, and quantified format. The 

availability of such training techniques, however, is limited by the amount of costly 

therapist’s time they involve, and the ability of the therapist to provide controlled, 

quantifiable and repeatable assistance to complex arm movement. Consequently, robot 

assisted rehabilitation that can quantitatively monitor and adapt to patient progress, and 

ensure consistency during rehabilitation may provide a solution to these problems.  

 Robot-assisted rehabilitation for rehabilitation of the stroke patients has been an active 

research area, which provide repetitive movement exercise and standardized delivery of 

therapy with the potential of enhancing quantification of the therapeutic process [5]-[12]. The 

first robotic assistive device used as a therapeutic tool, the MIT Manus [9][10] uses an 

impedance controller to provide assistance to move patient’s arm to the target position in an 

active assisted mode, where patients can visually see their movement and target location. 

Mirror Image Movement Enabler (MIME) [5] uses a PUMA 560 manipulator to provide 

assistance to move the subject’s arm with a pre-programmed position trajectory using 

Proportional-Integral-Derivative (PID) controller. Assisted Rehabilitation and Measurement 

(ARM) Guide [8],[12] is another robotic system that is capable of generating both horizontal 

and vertical motion, which provides assistance or resistance to the patient’s movement to 

complete the reaching task. The GENTLE/s is a commercially available haptic robot used to 

provide assistance to patients to move to the target positions along with a predefined path 

using admittance control. The subject’s movement trajectory is represented in the virtual 

environment [11]. Studies with these robotic devices verified that robot-assisted rehabilitation 

results in improved performance of functional tasks for stroke patients. New rehabilitation 

therapy environments are under development to permit training of real-life functional tasks 

involving reach, grasp, as well as object transportation in three dimensional (3-D) space [6] 

[7] for stroke patients. 

 In robot-assisted therapies, patients attempt to make voluntary movements while the 

robotic device provides assistance to complete the desired rehabilitation task. It is desirable to 

provide the robotic assistance to patients in such a manner that the resulting interaction 

between the robot and the patient is smooth. In the literature jerk has been used as a measure 

of smoothness of the prescribed motion, where minimum jerk implied smooth movement 

[13]- [26]. The numerical value of jerk has been used as a metric to determine the movement 
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smoothness during stroke recovery [27]. Furthermore, smoothness of the movement has been 

quantified by the mean squared magnitude of jerk [13]-[26],[28]. Many of the existing 

robotic rehabilitation devices such as [8]-[12] try to ensure the smoothness of motion by 

specifying the desired trajectory of the task as the minimum jerk trajectory as originally 

proposed by [13]. The idea is that if the subject can follow the desired minimum jerk 

trajectory, the motion will be smooth and consequently, the force applied by the subject will 

also be smooth. Here the smoothness is measured by the rate of the change of the force 

applied by the subject. However, when the subject cannot follow the specified desired motion 

trajectory entirely by his/her own effort, he/she will need robotic assistance. Note that the 

manner in which this robotic assistance is imparted could affect the rate of change of the 

subject applied force. For example, if the robot provides assistance with a high overshoot, 

then the subject is required to overcome this overshoot by changing his/her applied force in a 

rapid manner. This scenario could result in more variation in subject applied force, which 

implies non-smooth interaction. In here, we use the rate of change of the applied force by the 

subject as a measure of smooth interaction, which is termed as smooth interaction index or 

SII.  

 In this work, we will show that suitable modification of the interaction dynamics between 

the robot and the subject will result in less variation of the force applied by the subject 

(smooth interaction) to complete the task for any type of desired trajectory including the 

minimum jerk trajectory. The interaction dynamics depends on the dynamics of the human 

arm as well as the dynamics of the robot. While the dynamics of the human arm cannot be 

modified, the dynamics of the robot can be changed by adjusting the control parameters of 

the robot controller.  A control framework is proposed in here, which is called an artificial 

neural network (ANN) based Proportional-Integral (PI) gain scheduling controller, that will 

automatically adjust the control gains for each subject such that the resultant interaction 

dynamics between the subject and the robot could result in smooth interaction. The control 

gains are determined based on online estimation of the human arm parameters (i.e., stiffness). 

The online estimation is performed in parallel with the control computation, and thus does 

not introduce any destabilizing effect on the control performance. The ANN, which is trained 

offline, adjusts the control gains online. The proposed controller combines the benefit of 

system identification technique with the robustness of neural network-based methods.  

 This paper is organized as follows: Section 2 presents the control approach that includes 

the basic assistive controller, the human arm parameter estimation technique, the design of 

the gain scheduling to result in smooth interaction, and the gain switching mechanism. 
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Section 3 describes the experimental setup, tasks and experimental procedure. In Section 4, 

we present the results obtained with the real-time implementation of the proposed ANN-

based PI gain scheduling controller on unimpaired subjects. Section 5 presents a brief 

discussion on the performance of the proposed ANN-based PI gain scheduling controller and 

possible future research directions.  

 

2. Control Framework 

In our previous work, we propose an assistive controller to provide robotic assistance to 

the subjects to complete a rehabilitation task [17]. An outer force feedback loop is designed 

around an inner position loop. The tracking of the reference trajectory is guaranteed by the 

inner motion control. Previous research in rehabilitation robotics mostly employed a position 

based Proportional-Integral-Derivative (PID) control, an impedance control and an 

admittance control [5]-[12]. The assistive controller is similar to an impedance controller; 

however it allows specifying the desired time varying force directly.  

In this work, we augment the basic assistive controller in such a manner that the resulting 

interaction between the robot and the subject is smooth. It will be shown in this work 

(Section 4) that different control gains result in different smooth interaction index (SII) for 

the same subject when performing the same task. Furthermore, same control gains may result 

in different SII for different subjects. As a result, one needs to choose suitable control gains 

that result in smooth interaction for each subject. Thus, it would be ideal if the control gains 

could be mapped directly to SII. However, it could also be possible to obtain similar SII 

characteristics using different gains for different subjects. This necessitates choosing the 

control gains that can differentiate each individual subject for the purpose of the smooth 

interaction. Since the human arm characteristics (e.g., stiffness) could vary for different 

subjects as well as for the same subject during various phases of the task, we propose to use 

human arm parameters to differentiate subjects as well as to map the suitable control gains 

subject to the smooth interaction. The mapping between the human arm parameters and the 

control gains is nonlinear. As a result, we take advantage of artificial neural network (ANN) 

for mapping, which has the ability to map complex nonlinear relationships between input and 

output data using patterns learned during training. In order to develop and use this map, ANN 

requires the knowledge of the human arm parameters, which is determined using a system 

identification method. The ANN is first trained offline using a training data set consisting of 

human arm parameters as inputs and suitable Proportional-Integral (PI) control gains that 

result in smooth interaction as outputs. Afterwards, ANN is used in conjunction with the 
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human arm parameter estimation module to predict the suitable gains for the subject based on 

the estimated human arm parameters in real-time. The online estimation and the gain 

prediction using ANN are performed in parallel with the control computation, and thus they 

do not introduce any destabilizing effect on the control performance. However, it should be 

noted that instantaneous switching of control gains could destabilize the system or cause a 

large overshoot. Hence, a gain switching mechanism is designed to achieve a smooth transfer 

of control gains.  

Fig. 1 shows the schematic of the overall control framework. While the subject performs 

the task, his/her arm characteristics are determined using the human arm parameter 

estimation module. The output of the human arm parameter estimation module is given to the 

gain prediction to result in smooth interaction module as an input to predict the suitable 

control gains. The above-mentioned human arm parameter estimation and gain prediction, as 

shown in a dashed box in Fig. 1, can be done at the same sampling frequency as the robot 

controller or at a slower rate depending on the computational capabilities of the system. It 

may not be needed to estimate and change the control gains frequently because the human 

arm parameters may not change rapidly. Note that the robot controller does not require that 

this parameter estimation and gain prediction to be completed at the same sampling time. In 

the presented work, we perform all the computation shown in Fig. 1 at the same sampling 

time (1000 Hz). However, the gains were changed only when there was substantial difference 

between the current and the predicted gains. The gain switching module ensures that when 

the control gains are changed, the system does not experience instability.  

 

 
Fig. 1. Control Framework 

 

 In what follows, we first present the basic assistive controller, the human arm parameter 

estimation technique, design of the gain prediction to result in smooth interaction, and the 

gain switching mechanism.  
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2.1. Basic Assistive Controller 

The existing robotic rehabilitation systems operate in robot task-space to provide robotic 

assistance to the patients to follow a desired trajectory to complete a rehabilitation task [5]-

[12]. Recently, a human-arm joint impedance controller is proposed, which operates in joint-

space, to provide assistance to the subjects to follow desired joint angle trajectory [18] 

specified for each individual joint (e.g., elbow joint). It is still not clear, however, whether the 

assistance in the task-space or in the joint-space will likely to have the best results for 

rehabilitation purposes. In this work, we design a controller that is responsible for providing 

the robotic assistance to subjects to complete a rehabilitation task in task-space [17]. In this 

controller, an outer force feedback loop is designed around an inner position loop (Fig. 2). 

The tracking of the reference trajectory is guaranteed by the inner motion control [19]. The 

desired force, which is given as a force reference to the controller, is computed by a planner. 

The proposed controller is similar to an impedance controller; however it allows specifying 

the reference time varying force directly.   

 

 
Fig. 2. Basic Assistive Controller 

 

 The dynamic equations of motion for the robot are given by: 
2M ( q )q Co( q )( q ,q ) Ce( q ) q G( q )

Tu J ( q )F M ( q )q V ( q ,q ) G( q )

Γ = + + +

− = + +
                                                                   (1) 

 where M( q )  represents the inertia matrix,  V(  is the summation of the matrix of 

coriolis torques Co  and centrifugal torques 

q,q )

( q )( q,q ) 2Ce( q ) q ,  is the vector of gravity 

torques.  is the generalized joint force torque which is calculated using  , 

where  is the input to the manipulator, 

G( q )

Γ Tu J ( q )F−

u J( q )  is the Jacobian matrix and F  is the contact 

force exerted by the manipulator. Using inverse dynamics control, manipulator dynamics are 

linearized and decoupled via a feedback. The dynamic equation of the robotic manipulator 

was given in (1). Control input u to the manipulator is designed as follows: 
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  (2) Tu M( q )y V( q,q ) G( q ) J F= + + +

 which leads to the system of double integrators 

 q y=  (3) 

  In (3),  represents a new input. The new control input   is designed so as to allow 

tracking of the desired force . To this purpose, the control law is selected as follows: 

y y

Fd

 1 1y J( q ) M ( K x K ( x x ) M J( q,q )q )pd d f d
− −= − + − −    (4) 

 where x f  is a suitable reference to be related to force error. Md (mass),  (damping) 

and 

Kd

K p  (stiffness) matrices specify the target impedance of the robot. x  and x  are the 

position and velocity of the end-effector in the Cartesian coordinates, respectively. The 

relationship between the joint space and the Cartesian space acceleration is used to determine 

position control equation.  

 x J ( q )q J ( q ,q )q and x J ( q ) y J ( q ,q )q= + = +          (5) 

 By substituting (4) into (5), we obtain 

1 1x J( q )( J ( q ) M ( K x K ( x x ) M J( q,q )q )) J ( q,q )qpd d f d
− −= − + − − +  

                                                                  1 1x M K x M K ( x xd d d p f )− −=− + −  

 M x K x K x K xp pd d f+ + =                               (6) 

 Equation (6) shows the position control tracking of x  with dynamics specified by the 

choices of , Kd K p  and Md  matrices. Impedance is attributed to a mechanical system 

characterized by these matrices that allows specifying the dynamic behavior. Let  be the 

desired force reference, which is computed using a PID velocity loop:                                     

Fd

 
d( x x )dF P ( x x ) I ( x x )dt Ddd d d d d dt

−= − + − +∫  (7) 
 
 where xd , x , ,  and Pd Id dD  are the desired velocity, actual velocity, the proportional, 

integral and derivative gains of the PID velocity loop, respectively. The relationship between 

x f  and the force error is expressed in (8) as: 

  x P( F F ) I ( F F )dtd iif d= − + −∫  (8) 

 
    where  and  are the proportional and integral gains, respectively, and P I Fi  is the force 
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applied by the human. Equations (6) and  (8)  are combined to obtain below equation: 

  M x K x K x K ( P( F F ) I ( F F )dt )d ip p id d d+ + = − + −∫   (9) 

 We can observe from (9) that the desired force response is achieved by controlling the 

position of the manipulator.  

 

2.2. Human Arm Parameter Estimation 

 We propose to use human arm parameters to differentiate subjects for mapping the 

suitable control gains to result in smooth interaction. A human arm can be characterized by 

its impedance parameters (mass, stiffness and damping). Many researchers in the fields of 

biology and robotics have developed models of the impedance characteristics of the human 

arm [20]-[27]. It has been shown that human arm stiffness varied greatly between subjects, 

tasks, perturbation patterns and experimental devices [20]-[23], [26].  

 We use a rehabilitation task that requires low velocity since high velocity task is not 

feasible for most low-functioning stroke patients. It was previously discussed in [26] that in 

the low velocity range (0.02m/s or less); the stiffness coefficient dominates over the mass and 

the damping coefficient during a human-robot task. Thus we use the following single degree 

of freedom arm dynamic model: 

 F K xΔ Δ=  (10) 

 where K is the stiffness of the human arm in the task space. The above model uses 

equilibrium point hypothesis [28]-[32]. Equilibrium point hypothesis suggests that movement 

of the subject’s arm is generated by shifting the equilibrium position of the arm at a constant 

rate from its initial configuration to final configuration. In (10) xΔ  is difference between the 

current arm position and the equilibrium position, and FΔ  is the difference between the force 

applied by the subject at the current arm position and the force applied by the subject at the 

equilibrium position.  

Various system identification techniques can be used to estimate the stiffness in (10). In 

this work ARX (Auto Regressive eXogenous) model is chosen to estimate the stiffness of the 

human arm [33]. ARX model structure is one of the simplest parametric structures one can 

use with very little numerical difficulty. The parameters of the ARX model are estimated 

using a recursive least-squares (RLS) method. RLS method is one of the most well known 

algorithms used in adaptive filtering, system identification and adaptive control. Its 

popularity is mainly due to its fast convergence speed [34].        

 Let n  be the time-step index. The following difference equation is obtained: 
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 F [ n ] K x[ n ]Δ Δ=  (11) 

 Equation (11) can be cast into the regressor form as follows: 

 Ty[ n] [ n] [ n]ϕ θ=  (12) 

 with [ n ] K [ n ]θ =  representing the parameter matrix, [ n] x[ n]ϕ Δ= the regression vector, 

and  the output vector. The RLS solution to determine K is given by: y[n] F[n]Δ=

  (13) T[ n] [ n 1] G[ n]( y[ n] [ n] [ n 1])θ θ ϕ θ= − + − −

 where the gain factor  determines how the current prediction error G[ n]

Ty[n] [n] [n 1]ϕ θ− −  affects the update of parameter estimation.  is determined using: G[ n ]

  C[ n 1] [ n]G[ n] T [ n]C[ n 1] [ n]
ϕ

λ ϕ ϕ

−
=

+ −
 (14) 

 where λ  is the forgetting factor that influences the weight given to earlier data relative to 

the newly acquired data. C[  is the covariance matrix of the estimated parameter, which is 

calculated using Equation 

n ]

(14). 

 
T1 C[ n 1] [ n] [ n]C[ n 1]C[ n] C[ n 1] T [ n]C[ n 1] [ n]

ϕ ϕ
λ λ ϕ ϕ
⎡ ⎤−= − −⎢

+ −⎣ ⎦

−
⎥  (15) 

 The initial guess for the covariance matrix C and the forgetting factor λ  are specified by 

the user to estimate K. For our application, λ is chosen to be 0.999. The time taken by the 

RLS algorithm to converge to estimate K is dependant on the forgetting factor. A low 

forgetting factor quickens the convergence, but is more susceptible to noise whereas a higher 

forgetting factor takes longer time to converge but is less susceptible to noise.    

 

2.3. Gain Prediction to Result in Smooth Interaction 

 In order to predict the gains to obtain smooth interaction, a mapping is designed using 

artificial neural network (ANN) between the human arm parameters and the suitable control 

gains. In this work, the human arm stiffness estimate K is used as the sole input vector and 

suitable Proportional (P) and Integral (I) gains that result in smooth interaction are used as the 

corresponding target (output) vectors to train the neural network offline. The most common 

form of supervised training is the error backpropagation algorithm. We use a multi-layer 

ANN with back-propagation method for mapping the arm stiffness to the suitable control 

gains. The training data set is chosen in such a way that it spans a large range of the stiffness 

to cover a variety of subjects. Once the ANN is trained offline, it can work online in 
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conjunction with the human arm parameters estimation module to generate suitable control 

gains based on estimated stiffness of the human arm.  

 

2.4. Gain Switching Mechanism 

 The control gains are predicted using the ANN that has been trained offline. If the 

predicted gains are instantaneously switched during the execution of the task, it could 

destabilize the system or cause undesired transients in the force response, which is not 

preferred in rehabilitation therapies. Hence, to achieve a satisfactory force response, a smooth 

control signal has to be retained during switching. Therefore, gain switching can be viewed as 

a bumpless transfer between two PI controllers with different gains. A Bumpless transfer 

strategy for switching between a manual controller and an automatic PI controller is 

presented in [35]. In our previous work [36], bumpless switching between PI controllers with 

different gains to track a desired force for unknown environments was presented. The gain 

switching mechanism modifies the position reference, which is the input for the inner loop of 

the controller, at the time of the switching in such a way that it is equal to the position 

reference at the time before switching occurred. This mechanism ensures that the position 

reference is indeed continuous during switching which guarantees bumpless switching. The 

PI control action in (8) can be written as below:  

 x Pe I edtf = + ∫  (16) 

 where e  is the force error and calculated using e F Fid= − . (16) can be written as: 

 ( )x ( t ) P e( t ) I X ( t ) Xi ii ifi = + + o  (17) 

  and P I  are the proportional and integral gains, respectively, where x ( t )fi  is the 

position reference determined using the initial gains Pi  and . Ii X ( t )i  represents the integral 

action and Xio  is the initial condition of the error integrator. If ts  is the time of switching, 

then equation (17) can be used to find the position reference just before the time of switching 

as described below: 

 ( )x ( t ) P e( t ) I X ( t ) Xi s ios si ifi
− − −= + +  (18) 

 Let the gains predicted by the ANN be represented as Pa  and . The position reference 

just after switching is given as below: 

Ia

 ( )x ( t ) P e( t ) I X ( t ) Xa s aos a s afa
+ + += + +  (19) 
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 where X ( t )a  represents the integral action and Xao  is the initial condition of the error 

integrator associated with the ANN gains. Note that the force error does not change 

significantly during the switching procedure since the sample time for the controller is very 

small for small sampling time. Hence, 

 e( t ) e( t )s s
− +≈  (20) 

 The integral action associated with the ANN gains is reset during switching so that, 

 X ( t ) 0a s
+ =  (21) 

 If the initial condition of the error integrator associated with the ANN gains is defined as: 

 
x ( t ) P e( t )fi s a sXao Ia

− −−
=  (22) 

 The relationships (20)-(22) are substituted into (19) to obtain: 

 x ( t ) x ( t )s sfi fa
− +=               (23) 

 Equation (23) ensures that the position reference is indeed continuous during switching 

which guarantees bumpless transfer.  

 Fig. 3 presents a detailed overall control architecture of the proposed ANN-based PI gain 

scheduling controller that has the ability to result in smooth interaction by adjusting the 

control gains. The human arm parameters are determined using the system identification 

module. The output of the system identification module is given to the artificial neural 

network (ANN) module as an input to predict suitable control gains to obtain smooth 

interaction. When the predicted control gains are changed, gain scheduling mechanism 

ensures the smooth transfer of control gains.  

 

 
Fig. 3. ANN-based PI Gain Scheduling Control Architecture 
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3. Experiments and Tasks 

In this section, we first present the rehabilitation robotic system that is designed to 

evaluate the proposed ANN-based PI gain scheduling controller. Then the descriptions of the 

tasks and experiments are introduced.  

 

3.1. The Rehabilitation Robotic System 

 We have developed a rehabilitation robotic system that uses a PUMA 560 robotic 

manipulator, which is augmented with a force-torque sensor and a hand attachment device 

(Fig. 4). The microcontroller board of the PUMA is replaced to develop an open architecture 

system to allow implementing the proposed ANN-based PI gain scheduling controller. A tool 

frame is introduced to include the location of the human arm through the hand attachment 

device. 

 

3.1.1. Hardware 

 The PUMA 560 is a 6 degrees-of-freedom (DOF) device consisting of six revolute joints. 

Each major joint (joints 1, 2 and 3) is equipped with an electromagnetic brake, which is 

activated when power is removed from the motors, thereby locking the robot arm in a fixed 

position. The technical specifications of this robotic device can be found in [37]. In order to 

record the force and torque, an ATI Gamma force/torque sensor [38] is used. The robot is 

interfaced with Matlab/Real-time Workshop to allow fast and easy system development. The 

force values recorded from the force/torque sensor are obtained using a National Instruments 

PCI-6031E data acquisition card with a sampling time of 0.001 seconds. The joint angles of 

the robot are measured using encoder with a sample time of 0.001 seconds from a 

Measurement Computing PCI-QUAD04 card. The torque output to the robot is provided by a 

Measurement Computing PCIM-DDA06/16 card with the same sample time. A computer 

monitor is placed in front of the subject to provide visual feedback about his/her motion 

trajectory during the execution of the task. 
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Fig. 4. Subject Arm attached to Robot 

 

3.1.2. Hand Attachment Device 

  Since in this work we are primarily interested in effecting assistance to the upper arm, a 

hand attachment device is designed where the subject’s arm is strapped into a splint that 

restricts wrist and hand movement. Typically, to practice rehabilitation tasks with robotic 

devices, the stroke survivor’s impaired arm is attached to a robot, which supports the arm 

against gravity. The subject is asked to use the arm to make a movement with or without the 

assistance from the robot [5]-[12]. In here, a PUMA 560 is attached to a splint to provide 

assistance to the upper arm movement using the proposed ANN-based PI gain scheduling 

controller (Fig. 4). Forearm padded aluminum splint (from MooreMedical), which ensures 

the subject’s comfort, is used as a splint in this device. A steel plate with proper grooves is 

designed that holds two small flat-faced electromagnets (from Magnetool Inc.) that are 

screwed on it. This plate is also screwed with the force-torque sensor, which provides a rigid 

connection with the robot. A light-weight steel plate under the splint is attached, which is 

then attached to the electromagnets of the plate. These electromagnets are rated for 

continuous duty cycle (100% duty cycle), i.e., they can run continuously at normal room 

temperature. Pull ratings of these magnets are 40lb. Two electromagnets have been used to 

have a larger pulling force to keep the splint attached to the hand attachment device. An 

automatic release (AU) rectifier controller (Magnetool Inc.) has been used to provide a quick 

release of these electromagnets. A push button, which has been connected to the AU Rectifier 

Controller, is used to magnetize and demagnetize the electromagnets when the subject wants 
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to remove the hand attachment device from the robotic manipulator in a safe and quick 

manner.  

 

3.1.3. Safety discussion about both the use of a PUMA 560 Robotic Manipulator and hand 
attachment device 

 Ensuring safety of the subject is a very important issue when designing a rehabilitation 

robotic system. Thus, in case of emergency situations, therapist can press an emergency 

button. The patient and/or the therapist can quickly release the patient’s arm from the PUMA 

560 by using the quick-release hand attachment device (as  described above) to deal with any 

physical safety related events. In order to release the subject’s arm from the robot, the push 

button is used. When the push button is pressed electromagnets are demagnetized 

instantaneously and the subject is free to remove the splint from the robot. This push button 

can also be operated by a therapist. Additionally, the corner of the arm device has been 

covered with a foam self stick tape in order to avoid sharp surface. 

 

3.2. Task Design 

 Let us first briefly review the task design of some well-known robotic rehabilitation 

systems. MIT Manus uses impedance controller to provide assistance to move the patient’s 

arm to the target position, where patients can visually see their movement and target [9][10]. 

MIME provides assistance to move the subject’s arm with a pre-programmed position 

trajectory using proportional-integral-derivative (PID) controller [5]. The subject is asked to 

maintain a specified off-axis force while he/she is trying to reach toward a goal position using 

ARM Guide [8],[12]. The GENTLE/s provides assistance to patients to move to the target 

positions along with a predefined path using admittance control. The subjects visually see 

their movement and the target in a virtual environment [11]. ADLER, which is a robot 

therapy environment, is developed to assist an impaired arm along trajectories for real-life 

tasks (such as reach, grasp in 3-D space) using admittance control [6] [7]. The therapy tasks 

designed for the existing rehabilitation robotic devices require predominantly shoulder 

motion or elbow motion, or some of them require the combination of both shoulder and 

elbow motion.  

 A reaching task is chosen that is commonly used for rehabilitation of upper extremity 

after stroke. In this task, the subjects are asked to move their arms in the forward direction to 

reach a desired point in space and then bring it back to the starting position repeatedly within 
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a specified time. In other words, they have to follow a desired position trajectory. The desired 

position trajectory in here is selected as the minimum-jerk trajectory [13] which is given as: 

 
3 4t t tx( t ) x ( x x ) 10 15 6i if d d d

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + − ⎜ − + ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

5

⎟
 (24) 

where xi , x f  and are initial position, final position and duration of the movement, 

respectively. The subjects are required to follow the tip of the desired motion trajectory 

which represents the desired velocity. The reaching task designed in here requires 

combination of the shoulder and elbow which could increase the active range of motion 

(AROM) in shoulder and elbow in preparation of later functional reaching activities in 

rehabilitation. The allowable motion is restricted only to the direction of the task. For 

example, if the task requires the subject to move his/her arm in the Y-direction, then he/she is 

not allowed to move his/her arm in X or Z directions. However, he/she can move his/her arm 

in the Y-direction at a velocity that could be the same, higher or lower than the desired 

velocity. Although, in this work the motion of the arm is constrained in the horizontal plane 

in one direction (along the Y-axis), it could also be designed for other directions (e.g., X-

axis) or combination of directions (e.g. XY-axes) based on task requirements (only shoulder 

or elbow motion or the combination of shoulder and elbow motion).   

d

 We have designed this reaching task such that the subjects not only make repetitive 

movement but also pay attention to the desired motion from visual feedback. The task was 

designed in such a manner that it required cognitive processing. Including cognitive 

processing in the task design is an important criterion because it had been previously shown 

that the movement tracking task that requires cognitive processing achieved greater gains for 

brain reorganization of stroke patients than that of movement task that does not require 

cognitive processing [39],[40]. In order to include cognitive processing within this reaching 

task, the subjects are asked to follow a visually presented desired motion trajectory that is 

likely to command their concentration. The subjects receive visual feedback of both their 

actual position and the desired position trajectories on a computer screen, which is placed in 

front of them. They are asked to pay attention to tracking the desired position trajectory as 

accurately as possible, which keeps them focused on the task. The visual feedback is used not 

only to inform the subjects of how closely they are tracking the desired motion but also as a 

motivational factor to keep them focused on the task. 
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3.3. Experiment Procedure 

 Subjects are seated in a height adjusted chair as shown in Fig. 4 (top left) during the 

performance of the task. The height of the PUMA 560 robotic manipulator has been adjusted 

for each subject to start the tracking task in the same arm configuration. The starting arm 

configuration is selected as shoulder at neutral position 0° and elbow at 90° flexion position. 

The task requires moving the arm in forward flexion to approximately 60° in conjunction 

with elbow extension to approximately 0°. Subjects are asked to place their forearm on the 

hand attachment device as shown in Fig. 4 (bottom left), when the starting arm configuration 

is fixed. The push button has been given to the subjects that can be used during the task 

execution in case of emergency situations (Fig. 4- bottom middle). The subjects receive 

visual feedback of their position on a computer monitor on top of the desired position 

trajectory (Fig. 4-top right).  

 

3.4. Description of Experiments 

 Two experiments were conducted in this research: i) to demonstrate each subject required 

different control gains to result in smooth interaction during the execution of the 

rehabilitation task, and ii) to evaluate the proposed ANN-based PI gain scheduling controller. 

Experiments were performed on unimpaired subjects.  

Experiment 1: The purpose of this experiment is to demonstrate that each subject may require 

different control gains for the same task in order to result in smooth interaction.   

 10 subjects were asked to perform the tracking task that was described in Section 3.2. Four 

female and six male, 20-32 years old, right-handed, unimpaired subjects participated in this 

study. Each subject performed 10 trials of the tracking task to become familiar with the task. 

When subjects became familiar with the task, they performed the tracking task with different 

PI gains. In order to determine the range of PI gains, a pilot study involving 3 subjects was 

performed. During the pilot study it was observed that PI gains which were above 0.0002 for 

P and 0.0007 for I resulted in jerky motion. Furthermore, the subjects could not track the 

desired motion trajectory well when the PI gains were selected below 0.00005 for 

Proportional (P) and 0.0001 for Integral (I). Thus, in order to generate training data for the 

ANN, the following 5 PI gains were used that covered the range of the upper and lower limits 

of the PI gains described above (Table 1). Note that all these 5 sets of gains could be used for 

each subject to complete the desired task. Each subject performed the task with these 5 PI 

gains.  
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Table 1. Control Gains 

 
 

  In order to determine the suitable control gains for each subject, the smoothness of 

interaction index (SII) is calculated as follows: 

 
F ( t ) F ( t 1) dFi iSII dttΔ

− −
= =  (25) 

 where Fi  is the force applied by the subject and F ( t ) F ( t 1 )i i− − , ( t )Δ  are the changes in 

force, and in time, respectively. In order to avoid the noise amplification in differentiation of 

the Fi  data, we use an eighth-order butterworth low-pass filter. The rate of change of the 

force applied by the subject demonstrates the smoothness of the interaction between the robot 

and the subject. Then the mean of ,SII SII , was calculated to determine the average 

smoothness of interaction during the execution of the task using Equation (26). The less 

variation in subject applied force implied smooth interaction. Thus, the control gains which 

resulted in minimum SII  was selected as the suitable control gains for that subject.  

 SII mean( SII )=  (26) 

Experiment 2: The purpose of this experiment is to evaluate the effectiveness of the proposed 

ANN based PI gain scheduling controller to result in smooth interaction.  

 Experiment 1 was used to demonstrate that there was a need to change control gains for 

each subject to result in smooth interaction. Here, we first demonstrate that even for the same 

subject changing control gains during different phases of the task may result in smooth 

interaction. Then, we show that the proposed ANN based PI gain scheduling controller could 

be used to determine and apply such control gains to result in smooth interaction for different 

subjects as well as for the same subject for different parts of the motion of the same task.  

 

4. Results 

 The main focus of this paper is to present the new control framework which is shown in 

Fig. 3. However, the basic assistive controller (as shown in Fig. 2) is an important part of this 

new control framework that is responsible for generating the commanded force to complete 
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the task. Hence we first summarize the validation of the basic assistive controller from our 

previous work [17], [36] for the sake of completeness of the results. Then the results of the 

experiments described in Section 3.4 are provided. 

 

4.1. Validation of the Basic Assistive Controller 

 The basic assistive controller has been previously verified in two ways. First, we asked 

the robot to apply a desired force on a spring-damper system (Fig. 5) [36]. We presented the 

force response of the controller in Fig. 6. As can be seen, the robot was able to track the 

desired force using the basic assistive controller, which is shown in Fig. 6.  

 

 
Fig. 5. Spring-damper system 
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Fig.  6. Force Response  

 

 Second, after establishing the fact that the robot controller could indeed provide a desired 

force, we experimentally demonstrated that it could be used to generate appropriate 
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assistance to enable subjects to track a desired velocity [17]. Subjects were asked to track the 

desired motion displayed on the computer screen. If the subject could not track the desired 

motion in a defined velocity boundary, then the basic assistive controller was activated 

otherwise there was no need to provide robotic assistance to the subject to track the desired 

velocity. x  was selected as 0.02m/s. The 
ux  and lx  were selected as 25% more and less of x , 

which were 0.025m/s and 0.015m/s, respectively. The average velocity of the subject ( )xave , 

the upper (  and lower (  velocity boundaries were calculated using ) )xuave xlave
(27) at every 5 

seconds. 5 seconds were sufficient to estimate the progress of the subject. 

 
( ) ( ) ( ) ( ) ( ) (

tf tf tf1 1 1 )x x(t ) ,x x (t ) ,x x (t )ave uave u lave ltf ti tf ti tf tit ti t ti t tits ts ts
= = =∑ ∑− − −= =

∑
=

 (27) 

 where tf ,  and  are the final time, starting time and sampling time, respectively. The 

condition  was checked to decide the activation of the basic assistive 

controller. It could be observed from Fig. 7, which presented one of the subjects data, that the 

subject’s average velocity (stars), which was calculated every 5 seconds using 

ti ts

x x xave uavelave < <

(27), was out 

of range at A, B and C points (Fig. 7). The controller was activated for the next 5 seconds 

between A-A’, B-B’ and C-C’. It could be seen that the subject’s velocity was brought inside 

the desired range at A’, B’ and C’ points (Fig. 7), which verified that the controller could 

provide sufficient assistance to the subject to bring the velocities inside the desired range.  
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4.2. The ANN-based PI Gain Scheduling Controller – its need and usefulness 

 In Section 3.4 we describe two sets of experiments to demonstrate the benefit of the 

proposed controller. Here we present the results of those experiments. Note that following 

experiments were conducted using the minimum-jerk trajectory which is given in (24) .  

Experiment 1: The purpose of this experiment is to demonstrate that each subject may require 

different control gains for the same task in order to result in smooth interaction.   

 In order to demonstrate different control gains resulted in different  for each subject SII

SII  was calculated using (26). 10 subjects performed the position tracking task (described in 

3.2) using the basic assistive controller (described in Section 2.1) with 5 different PI gains 

that were given in Table 1. The desired position trajectory was calculated using (24). In here, 

xi , x f  and  was selected as 0, 0.3m and 20 s, respectively when the subject was asked to 

move forward, and 0.3m , 0 m and 20 s, respectively when the subject was asked to move 

backward. Table 2 presented the 

d

SII  calculated for each subject with 5 PI gains. It could be 

observed from Table 2 that different were obtained for different control gains for the 

same subject. Furthermore, same control gains resulted in different for different subjects. 

In order to test whether the difference between 

SII

SII

SII  values were obtained by chance or not, 

we had used one-way ANOVA test. ANOVA test is used to determine whether the means of 

groups are statistically different from each other [41]. ANOVA results had been presented in 

Table 3a and 3b. Table 3a showed that the difference in SII  for each subject was statistically 

significant within 99% confidence level and was not obtained by chance. This implied that 

the SII  difference was due to the change in control gains. Table 3b showed that the 

difference in SII  for different subjects for the same set of control gains was statistically 

significant within 99% confidence level, which implied that the change in SII  was due to the 

difference in subjects. In other words, the above results imply that for each subject, SII could 

be reduced by selecting the control gains appropriately.  
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Table 2. SII Values for 10 Subjects with 5 Different PI Gains  

 
 

Table 3a. ANOVA Analysis for Each Subject with 5 Different PI Gains, Table 3b. ANOVA 
Analysis for one PI Gain Set with 10 Subjects 

 
 

Experiment 2: The purpose of this experiment is to evaluate the effectiveness of the proposed 

ANN based PI gain scheduling controller to result in smooth interaction 

  Experiment 1 results demonstrated that one needs to change the control gains that results 

in smooth interaction for each subject. It would be ideal if the control gains could be mapped 

directly to . However, as shown in Table 2, similar characteristics could also be 

obtained using different gains for different subjects. For example, the same 

SII SII

SII  was obtained 

for S3 with PI3 and for S5 with PI2. Thus, a mapping parameter was needed to differentiate 

among subjects. Human arm characteristics could be used as such mapping parameters. In 

this work, ANN was designed to map human arm stiffness as inputs and suitable control 

gains that result in smooth interaction as outputs. Thus, ANN required the knowledge of 

stiffness parameter, which was determined using the system identification method described 

in Section 2.2.  

 The accuracy of the system identification method had been demonstrated with a spring-

damper system in our prior work [36]. A traditional PI based force controller was used to 

generate a constant contact force on different environments, where ARX model was used to 
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estimate environment parameters (stiffness and damping coefficients). Estimated stiffness 

values were very close (within 4.28% range) to the actual ones.  

 The force and position data were recorded to determine the stiffness of each subject using 

(10). The precise estimation of the stiffness was dependent on the movement of the 

equilibrium point. It was discussed in [27] that a small movement of the equilibrium point 

was desirable because it did not influence the accuracy of the value of the estimated stiffness 

for tasks that were performed with low velocity (0.02m/s or less). Therefore, the duration of 

the equilibrium shifts to determine the equilibrium force and position ( Feq  and xeq ) was 

selected as 0.01s to keep the movement of the equilibrium point small.  

 It was noticed that the human arm stiffness varied during the task. While the exact 

variations were different for different subjects, the nature of the variation was similar. For 

every subject, the stiffness could be classified into four parts. In the first part, when the task 

began, the subject initiated movement towards the forward direction and the stiffness 

increased and reached a peak. Then the stiffness started decreasing and sometimes became 

negative as the motion progressed (Part II). When the subject started moving in backward 

direction, the stiffness started increasing and reached a peak (Part III). Finally the stiffness 

started decreasing as the motion progressed (Part IV) (Fig. 8). Negative stiffness could be due 

to when contracted muscles were stretched at high velocity as discussed in [42]-[43]. In the 

literature muscle stiffness in the ankle joint of humans and monkeys had been reported as 

negative when the muscle force rose higher during muscle shortening than muscle 

lengthening [42]-[43]. 
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Fig. 8. Stiffness of Subject 1 
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 The stiffness characteristics were similar for all 10 subjects as shown in Fig. 8. Note that 

the ANN was trained with stiffness as the input and the suitable control gains as the outputs. 

Since stiffness varied during the motion, the subject might need different control gains at 

different parts of the motion to obtain smooth interaction. Thus, the stiffness and the suitable 

control gains could be obtained separately for each part of the motion (e.g., Parts I, II, III and 

IV) and then used to train ANN. The control gains that resulted in minimum SII  among 5 PI 

gains for each part of the motion were selected as the suitable control gains. Table 4 

presented the suitable PI gains for each subject. As it could be seen from Table 4 that one 

subject might need different control gains during different phases of the task to obtain smooth 

interaction. Table 4 implied that the motion would result in higher SII  if any one set of 

control gains were applied throughout the entire motion. For example, S4 would need PI2 for 

Part I followed by PI3 for Part II, followed by PI2 for Part III and finally PI4 for Part IV that 

would result in the minimum SII  for the set of control gains. 

 

Table 4. Suitable PI Gain for Each Part of the Motion for 10 Subjects 

 
 

 In order to represent subject’s arm characteristics, we extracted three features of the 

stiffness , which were the mean K Kμ (Mean), the standard deviation Kσ (Std) and the 

maximum (Max). We assumed that these 3 features were sufficient to capture the 

variation of the stiffness of the arm during the motion for the initial investigation. However, 

there could be additional features that might need to be explored in the future work. , 

Kmax

Kmax

Kμ , and Kσ  were calculated and presented in Table 5.  
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Table 5. Stiffness Values for Each Part of the Motion for 10 Subjects 

 
 

 In order to demonstrate the evaluation of the proposed ANN-based PI gain scheduling 

controller first we trained the ANN and then used it in the real-time experiment to 

demonstrate that the ANN could predict control gains that result in smooth interaction for 

new subjects, whose data were not included in the training. 6 new subjects were invited to the 

laboratory, one female and five males, 26-30 years old, right-handed, unimpaired subjects. 

The ANN was trained offline using the stiffness as inputs (Table 5) and control gains as 

outputs (Table 4). The Levenberg-Marquardt (LM) algorithm (which was given as trainlm in 

Matlab Neural Network Toolbox) was used to train the ANN, which was able to obtain lower 

mean squared errors than any of the other algorithms available in the toolbox. In this 

application the error goal, which was the mean-squared error (MSE) [41], was selected as 10-

8 for both the P and the I gains. To determine the appropriate number of hidden neurons, the 

LM backpropagation networks with 3, 5, 7, 10 and 15 hidden neurons were evaluated. The 

MSE between the outputs of the networks (P’ and I’ gains), which was trained with 3, 5, 7, 10 

and 15 hidden neurons, and the target outputs (P and I gains – given in Table 4) were 

calculated. The MSE for the number of neurons 7 for both P and I gains was the closest to the 

10-8 (Table 6), thus a 7 neuron hidden layer feedforward LM backpropagation ANN was 

selected for this application. We designed two such ANN – one for the P-gain prediction and 

one for the I-gain prediction in order to improve the accuracy of the ANN. The time for 

neural network (offline) training in Matlab using a 1.2GHz PC for the selected number of 

neurons was 0.82s for P and 0.77s for I.  
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Table 6. Mean-Squared Error (MSE) for LM Backpropagation Network 

 
 

 In order to verify whether the predicted gains would indeed result in smooth interaction 

during the task performance, 6 subjects were asked to perform the tracking task using ANN-

based PI gain scheduling controller (shown in Fig. 3) in real-time. The initial gains were 

chosen to be the same for every subject. The controller was required to change the control 

gains based on the subject’s arm stiffness to obtain smooth interaction. Every 0.5s data was 

used to estimate , which was then used to determine the , K Kmax Kμ , and Kσ  at every 

sampling time using a sliding window. The control gains were predicted continuously, 

however it may not be required to switch control gains frequently because the stiffness of the 

subjects may not change rapidly. In this work, we choose a fixed switching time of 2 seconds 

for gain switching. However, the effect of switching time on smooth interaction will need to 

be explored in a systematic manner in the future work. In order to analyze whether the 

predicted gains resulted in smooth interaction, we compared the following SII  values in 

Table 7. 1SII  represented the minimum rate of change of the force applied by subject when 

the most appropriate control gains were selected manually from the chosen set of control 

gains for each subject. Any other control gains from that set would result in higher rate of 

change of the force applied for that subject. 2SII  represented the highest of those SII . It 

should be noted that we argue in this paper that even though there could be multiple sets of 

control gains that could be used to complete the task, specific sets of gains would be more 

suitable (in terms of smooth interaction) for specific subjects. The idea here was to verify 

whether the ANN predicted gains resulted in smooth interaction values better than 2SII , and 

possibly closer to the 1SII  values obtained through manually tuned best control gains. In this 

quest, we define 
1 2( )

2

SII SII
SII midpoint

+
=  as the mid-point metric to determine whether 

the SII  obtained were closer to 1SII . In Table 7, 3SII  was obtained when the PI gains were 

changed at every 2 seconds using the proposed ANN-based PI gain scheduling controller. It 

could be seen from Table 7 that using the proposed ANN-based PI gain scheduling controller, 
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it was possible to predict the control gains which resulted in smooth interaction that was 

better than SII midpoint  for all subjects. Furthermore, we had determined the median of the 

SII median  obtained with the 5 PI gains. The median is used to indicate the center point of a 

distribution. In here, median was used to represent the center SII value obtained among 5 

different PI gains. Thus, if we could reduce the SII  which resulted in less than the 

SII median , then we could say that the SII  resulted with the predicted control gains were in 

the lower range of SII median . This would confirm that the 3SII  obtained using ANN-based 

PI gain scheduling controller were closer to 1SII  obtained through manually tuned best 

control gains. As it could be seen from Table 7 3SII  was less than SII median  for all subjects 

except S11 (83.3% success). We had also determined how much the proposed controller was 

able to improve SII  from the maximum one 2SII . Equation (28) was used to determine the 

percentage SII  improvement. It could be seen from Table 7 that the SII  improvement was in 

the range of 24 %-33 %.  

 
SII SII2 3SII Improvement * 100

SII 2
⎛ ⎞−

= ⎜ ⎟
⎝ ⎠

  (28) 

Table 7. Comparison of SII  Values 

 
 

Finally, Figs. 9a and b presented PI gain switching at every 2 seconds for S3 as an 

example. Note that sometimes the gains stayed at the previous values when the ANN 

predicted the same gains. 
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Fig. 9a. Proportional Gain (P) Changes for S3  
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Fig. 9b. Integral Gain (I) Changes for S3 

 

We had also noticed that the percentage error between the SII  obtained from best 

manually tuned control gains, i.e., 1SII , and 3SII , which was obtained by the ANN-based 

gain scheduling controller, were very close for 3 subjects (less than 4%, which were 0.45%, 

3.79%, and 2.37% for S12, S14 and S15, respectively). In order to test whether the closeness 

of  1SII , and 3SII , were obtained by chance or not, we had used the t-test, which was used to 

assess the probability of getting close mean values by chance [41]. Alpha level was selected 

as 0.01. It could be seen from Table 8 that the difference between two means was statistically 

significant within 99% confidence level so that they were not obtained by chance. 
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Table 8. t-test Evaluation of 1SII  and 3SII  

 
 

5. Discussion and Conclusion 

  In this work, we design a control framework that will automatically adjust the control 

gains for each subject such that the resultant interaction dynamics between the subject and the 

robot could result in smooth interaction. In order to demonstrate the smooth interaction, the 

rate of change of the force applied by the subject is evaluated. The results in Section 4 show 

that control gains could play an important role to obtain the smooth interaction. For example, 

for the same motion, different control gains result in different rate of change of force applied 

by the subject for the same subjects. In addition, for the same motion and for the same control 

gains, different rate of change of subject applied force are obtained for different subjects. 

Thus we design a new automated method of determining suitable control gains for each 

subject that will result in smooth interaction. This method could relieve the burden on a 

therapist to manually tune the control gains for each subject.  

 In this paper an ANN-based PI gain scheduling controller is presented which was used to 

provide robotic assistance to the subjects in such a manner that the resulting interaction 

between the robot and the patient is smooth. The controller improves the robotic assistance 

by automatically adjusting the control gains for each subject which results in smooth 

interaction. We first demonstrate that different control gains are needed for each subject in 

order to perform the task in a smooth manner. Then, the proposed ANN-based PI gain 

scheduling controller is evaluated with experiments conducted on unimpaired subjects to 

verify whether it is possible to automatically determine the control gains for each subject that 

results in smooth interaction. The rate of change of the force applied by the subject that is 

obtained using the ANN-based PI gain scheduling controller is i) always less than the rate of 

change of the force applied by the subject that is obtained when manual tuning of the control 

gains is improper ( 2SII  in Table 7); ii) always less than the SII midpoint  (i.e., success rate 

100%) that indicates that the automated controller results in smooth interaction that are closer 

to the rate of change of the force applied by the subject that is obtained from best manually 

tuned control gains; and iii) less than SII median  for 5 out 6 subjects (i.e., success rate 83%) 

that indicates that the automated controller could produce smooth interaction that are in the 
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lower half of the smooth motion. It has also been shown that the proposed controller was able 

to improve the smoothness of interaction from to the maximum one 2SII  in the range of 

24%-33 %.  

 While the proposed controller shows promise in generating robotic assistance in such 

manner that the interaction between the subject and the robot is smooth, there are several 

issues that need to be explored in the future to improve the performance of the controller. In 

the current work, we use only stiffness as the human arm parameter to train the ANN. It is 

possible that mass and damping coefficient may be needed to better capture the arm 

characteristics of the stroke patients. In addition, the number and the nature of the features 

(e.g., here we used 3 features of the stiffness: the mean Kμ , the standard deviation Kσ  and 

the maximum ) to train the ANN could be explored to investigate the improvement of 

the gain prediction. The presented results are based on the training of the ANN with the data 

of 10 subjects. With the increase in training data set the prediction accuracy of the ANN will 

likely to be increased. As the robot interacts with more number of subjects, the training data 

sets will be increased. The time for neural network (offline) training is less than 1 second - 

0.82 seconds for the P gain and 0.77 seconds for the I gain in Matlab using a 1.2GHz PC. 

Once offline training is completed the ANN is used online in conjunction with the human 

arm parameter estimation module. Another issue that may improve the performance of the 

controller is to determine an optimal gain switching strategy. In this work, we use a fixed 

switching time for the control gains. However, it is possible to design a gain switching 

sequence that switches the predicted gains when a predefined threshold is exceeded.  

Kmax

 The presented controller could provide continuous robotic assistance in the early phases 

of the rehabilitation therapy that could motivate patients to use their impaired arm. Especially 

for low-functioning patient who cannot initiate arm motion, such assistance could help them 

participate in therapies that require extensive use of their impaired arms. For example, the 

Constraint-Induced Movement Therapy (CIMT) [3]-[4] restrains the less affected arm of the 

patient using a sling or a glove and forces them to use their impaired arm to practice shaping.  

Note that the presented controller is not specific to the proposed rehabilitation robotic 

system but can be integrated with other previously proposed rehabilitation robotic systems. 

We are aware that a PUMA 560 robot might not be ideal for rehabilitation applications. 

However the measures we have taken (Section 3) to ensure safety may allow the system to be 

safe and useful for the patients.  
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COORDINATED ROBOTIC ASSISTANCE FOR ACTIVITIES OF DAILY LIVING 

 

Duygun Erol & Nilanjan Sarkar 

 

(Submitted in Proceedings of International Conference on Intelligent Robots and Systems 

(IROS 2007)) 

 

Abstract 

Recent research in rehabilitation indicates that the activities of daily living (ADL) focused 

tasks have shown significant increase in the motor recovery after stroke. This paper presents 

a new control approach to robot assisted rehabilitation for stroke patients that enables them to 

perform ADL. The control architecture is represented in terms of a hybrid system model 

combining a high-level controller for decision-making and two low-level assistive controllers 

(arm and hand controllers) for providing arm and hand motion assistance. Experimental 

results are presented to demonstrate the efficacy of the proposed control architecture.  

Keywords:  robot-assisted rehabilitation for activities of daily living tasks, coordination of 

arm and hand assistive devices, hybrid system model. 

 

1. Introduction 

 Stroke is a highly prevalent condition [1], especially among the elderly that results in high 

costs to the individual and society [2]. According to the American Heart Association (2006), 

in the U.S., approximately 700,000 people suffer a first or recurrent stroke each year [1]. It is 

a leading cause of disability, commonly involving deficits of motor function. Recent 

literature supports the idea of using intense and task oriented stroke rehabilitation [3] which 

assumes that control of movement is organized around goal-directed functional tasks. Task-

oriented approach demonstrated promising results in producing a large transfer of increased 

limb use to the activities of daily living (ADL) [4],[5]. One of the successful examples of 

task-oriented therapies is Constraint-Induced Movement Therapy (CIMT) [6], which has 

shown to reduce learned non-use and increase ADL functioning for stroke patients. The 

availability of such training techniques, however, is limited by the amount of costly 

therapist’s time they involve and the ability of the therapist to provide controlled, quantifiable 
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and repeatable assistance to complex arm movement. Consequently, robot assisted 

rehabilitation that can quantitatively monitor and adapt to patient progress, and ensure 

consistency during rehabilitation may provide a solution to these problems. 

 Robotic devices are general-purpose aids used to assist, enhance and quantify 

rehabilitation therapy, which has been an active research area for the last few years. The 

robotic assistive devices used for arm rehabilitation are the MIT Manus [7], Mirror Image 

Movement Enabler (MIME) [8], Assisted Rehabilitation and Measurement (ARM) Guide [9] 

and GENTLE/s [10]. New rehabilitation therapy environments are under development to 

permit training of real-life functional tasks involving reaching, grasping [11].  Rutgers Master 

II-ND [12], a hand exoskeleton [13], the CyberGrasp [14], a pneumatically controlled glove 

[15] and a robotic device (HWARD) [16] are also being developed to facilitate the hand 

movement of stroke patients. 

 Even though existing arm and hand rehabilitation systems have shown promise of clinical 

utility, they are limited by their inability to simultaneously assist both arm and hand 

movements. This limitation is critical because in general, rehabilitation involving task-

oriented training requires movement of the whole arm of the patient including hand 

movement, especially since the great majority of ADL carried out by the upper extremity 

requires participation of the hand and fingers. Robots that cannot simultaneously assist both 

arm and hand movements are of limited value in the task-oriented approach. In order to 

achieve the desired coordinated motion between arm and hand, we propose a control 

framework that consists of a high-level controller and two low-level device controllers (e.g., 

arm and hand controllers). Note that the presented control architecture is not specific to a 

given arm and hand assistive devices but can be integrated with any previously proposed 

assistive systems. 

 This paper is organized as follows. It first presents the overall control architecture in 

Section II. Then the rehabilitation robotic system is presented in Section III. The low-level 

assistive controllers and the high-level controller of the overall control architecture have been 

described in Section IV and Section V, respectively. Results of the experiment are presented 

in Section VI to demonstrate the efficacy of the control architecture.  Section VII discusses 

potential contributions of this work and presents the conclusion.    
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2. Control Architecture 

  Let us first present the proposed control architecture in the context of generic ADL tasks 

that require coordination of both arm and hand movement (e.g., eating, drinking, combing, 

dressing etc.). However, the stroke patients may not be able to complete the ADL tasks 

because of their motor impairments in their arms and hands. Thus, low-level assistive 

controllers could be used to provide assistance to subjects’ arm and hand movement and a 

high-level controller could be used for the coordination of these low-level assistive 

controllers. The nature of assistance given to the patients and coordination of the assistive 

devices, however, could be impacted by various events during the ADL task. Some examples 

of event could be: i) if the patient has reached the object, then the coordination must initiate 

grasping activity, ii) if the patient feels uncomfortable, then the execution of the task should 

be paused till the patient feels better, iii) if the assistive devices develop any fault, then the 

control actions needs to be adjusted for the safety of the patients. These set of information 

may require some adjustments of the planning of the task. As a result, both the arm and hand 

low-level assistive controllers need to be aware of these adjustments of the task to accomplish 

the therapy requirements. The high-level controller could be used to allocate task 

responsibility between the arm low-level assistive controller and the hand low-level assistive 

controller based on the task requirements and specific events that may arise during the task 

performance. The high-level controller in here plays the role of a human supervisor 

(therapist) who would otherwise monitor the task, assess whether the task needs to be 

updated and determine the activation of the assistive devices. However, in general, the high-

level controller and the low-level assistive controllers cannot communicate directly because 

each may require different types of inputs and outputs. For example, a high-level controller 

may operate in the discrete domain whereas low-level assistive controllers may operate in the 

continuous domain. Thus an interface is required which can convert continuous-time signals 

to sequences of discrete values and vice versa. Hybrid system theory provides mathematical 

tools that can accommodate both continuous and discrete system in a unified manner. As a 

result, in this work, we take the advantage of using a hybrid system model to design our 

control architecture. A hybrid system model has three parts, a “Plant”, a “Controller” 

(supervisor) and an Interface [17]. In order to avoid confusion about terminology, we call the 

“Controller” in hybrid system model a high-level controller in this paper. The continuous 

part, identified as the “Plant” represents both the arm low-level assistive controller and the 

hand low-level assistive controller. The Interface consists of a generator and an actuator, 
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which functions as analog-to-digital/digital-to-analog (AD/DA) adaptor, respectively. The 

interface accepts symbolic inputs via the actuator (control symbols) and produces symbolic 

outputs (plant symbols) via the generator. Note that actuator is not representing the actuator 

of the assistive devices.  

 In this paper, we propose a new control architecture that exploits hybrid system modeling 

techniques to provide robotic assistance for ADL tasks (Fig. 1). Hybrid control framework 

has been effectively used in other fields, such as industrial robotics, medicine, and 

manufacturing [18], however, it is applicability for rehabilitation purposes is new. We argue 

that the proposed control architecture based on hybrid system framework could be useful in 

coordinating the assistive device controllers in a safe and complex manner to satisfy a variety 

of ADL task requirements. As discussed in Section I that there is no existing controller that 

can coordinate multiple assistive devices needed for ADL tasks. The proposed controller is 

expected to address this need in the field of rehabilitation robotics.  

 In this architecture (Fig. 1), the sensory information from the arm assistive device (robot), 

the hand assistive device and the feedback from the human are monitored by the process-

monitoring module through the interface to trigger the relevant plant events. Each plant event 

is represented as a plant symbol so that the high-level controller can recognize the event. 

Once the high-level controller receives the plant event through a plant symbol, the decision 

making module of the high-level controller generates sequences of control actions using its 

decision rules. The high-level controller is designed considering the requirements of ADL 

tasks and it can be easily modified and extended for new ADL task requirements. The 

decision of the high-level controller is sent to the low-level assistive controllers through the 

interface using the control symbols. Interface converts the control symbols to the plant inputs 

which are used to activate/deactivate the low-level assistive device controllers to complete 

the ADL task. This cycle continues to complete the therapy. The proposed control 

architecture is flexible and extendible in the sense that new events can be included and 

detected by simply monitoring the additional sensory information from the human, the arm 

device (robot), the hand device and accommodated by introducing new decision rules.   
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Figure 1 Control Architecture 

 

3. Rehabilitation Robotic System 

 In order to implement and verify the proposed control architecture, we develop a 

rehabilitation robotic system that consists of a device for assisting arm movement and a 

device for assisting hand movement (Fig. 2A). The primary focus of this paper is to 

demonstrate how these two devices can be coordinated using a high-level controller for a 

given ADL task. In what follows, we first describe the arm assistive device, the hand assistive 

device and their sensory capabilities in this section.  

 

3.1. Arm Assistive Device 

 A PUMA 560 robotic manipulator is used as the main hardware platform to provide 

assistance to the upper arm movement. We design a hand attachment device where the 

subject’s arm is strapped into a splint and the robot is attached to that splint to provide 

assistance to the upper arm movement using the arm low-level assistive controller. Forearm 

padded aluminum splint (from MooreMedical), which ensures the subject’s comfort, is used 

as a splint. We further design a steel plate with proper grooves that hold two small flat-faced 

electromagnets (from Magnetool Inc.) that are screwed on it. An automatic release (AU) 

rectifier controller (Magnetool Inc.) has been used to provide a quick release of these 

electromagnets. Ensuring safety of the subject is an important issue in designing a 

rehabilitation robotic system. Thus, in case of emergency situations, therapist/patient can 

press push button in order to demagnetize the magnets and to quickly release the patient’s 
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arm from the robot to deal with any physical safety related events. More details of the arm 

assistive device could be found in [19].  

 

3.2. Hand Assistive Device 

 A Power Grip Assisted Grasp Wrist-Hand Orthosis (from Broadened Horizons) is used as 

an assistive hand device to provide a functional key-pinch grasp by moving the index and 

middle fingers against a stabilized thumb, closing the grasp (Fig. 2Bi). This device is used to 

provide the ability to pick up, hold, and manipulate objects for a variety of most common 

ADL tasks. A purpose-built linear actuator attached to a JAECO-style durable aluminum 

splint at the metacarpophalangeal (MP) knuckle and wrist joint provides the force to open and 

close the fingers against the thumb. The splint is typically custom-built to the end users hand 

size measurements but can be easily adjusted to achieve an optimal fit. The linear actuator 

contains a micro-motor and matched set of planetary gears to slow the motor down to a 

functional speed and torque. The speed and force applied to open/close hand are variable and 

can be adjusted using the adjustable power supply (Fig. 2Bii) or using the computer software. 

Two 5V discrete logic inputs, splint connection, power and twin manual pushbuttons are 

connected to an orthotic controller (Fig. 2Biii). Two 5V discrete logic inputs act as an 

interface with the Matlab for the hand device. When the logic input is triggered within the 

software the orthosis and correspondingly the hand is opened or closed. Additionally, twin 

manual adaptive pushbuttons are used to provide the user the ability to manually control hand 

opening (extension) and hand closing (flexion) (Fig. 2Biv).  

 

3.3. Contact Detection System 

 The interface forces between the hand device and the object are explicitly measured using 

the force-sensitive resistors (FSR) (Interlink Electronics, Inc.), which are placed on the 

fingertip (one on the thumb and the other one is on the intersection of index and middle 

finger as shown in Fig. 2C) to estimate the forces applied on the object during the grasping 

task. FSR 402 is selected for our application because its size is convenient for mounting on a 

fingertip. The pressure applied normal to the surface of an FSR can be measured as a change 

in the voltage across the FSR resistance which are recorded using National Instruments PCI-

6031E data acquisition card with a sampling time of 0.001 seconds.  
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Figure 2A Rehabilitation Robotic System, Figure 2B Hand Assistive Device, Figure 2C 

Contact Detection System  
 

3.4. Proximity Detection System 

  A proximity detection system (PDS) is designed in order to detect the closeness of the 

hand relative to the object to be grasped. PDS could be useful in providing the information to 

the high-level controller for planning of coordination decisions. PDS contains a 

phototransistor (sensitive to infrared light) and an infrared emitter (RadioShack, Inc). When 

the hand is between the emitter and the phototransistor, then the voltage, which is recorded 

using National Instruments PCI-6031E data acquisition card with a sampling time of 0.001 

seconds, is increased. 

  

4. Low-Level Assistive Controllers 

4.1. Arm Low-Level Assistive Controller  

  The existing robotic rehabilitation systems for arm rehabilitation operate in either in 

robot task-space [7]-[10] or joint-space [20] to provide robotic assistance to the patients to 

follow a desired motion trajectory to complete a rehabilitation task. In this work, a 

proportional-integral-derivative (PID) position control is used as an arm low-level assistive 

controller for providing robotic assistance to a subject to complete the arm movement. The 

subject receives visual feedback of both his/her actual position and the desired position 

trajectories on a computer screen, which is placed in front of them. He/she is asked to pay 

attention to tracking the desired motion trajectory as accurately as possible. If the subject 

deviates from the desired motion, then arm low-level assistive controller provides robotic 

assistance to complement the subject’s effort to complete the task as desired.  
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4.2. Hand Low-Level Assistive Controller 

 The hand assistive device is controlled in two ways, i) manually controlled by pressing 

control switches (Fig. 2Biv), ii) computer controlled by providing discrete values (1/0) to the 

discrete logic input. Subjects could hold on pressing red button to open their hand and black 

button to close their hand (Fig. 2Biv). On the other hand, discrete value 1 could be given to 

the digital output block in Matlab to activate hand device to open or close from the computer. 

The hand device opens or closes the hand with the specified power in the adjustable power 

supply (Fig. 2Bii) or from the computer. The subject is asked to follow the hand device speed 

as much as possible. If the subject could not follow the hand device movement, then the hand 

low-level assistive controller provides assistance to complement the subject’s effort to 

open/close his/her hand. In here, the hand assistive device is controlled by the computer 

controlled way.  

 

5. High-Level Controller 

 The high-level controller is designed to coordinate the arm and the hand devices in a safe 

manner. The decisions of the high-level controller are executed by the low-level assistive 

controllers to provide assistance to the subjects to complete the ADL task. Although the 

design methodology of the high-level controller presented here is general for a large class of 

ADL tasks, we choose one of these ADL tasks (drinking from a bottle (DFB)) to explain the 

design details of the high-level controller.  

 

5.1. Task Description 

 We choose DFB task as an example to illustrate the proposed high-level controller. This 

task is chosen because it requires complex coordination of both arm and hand movement, 

which is common to many ADL tasks. This DFB task consists of several movements such as 

reaching towards the bottle, grasping the bottle, lifting the bottle from the table, drinking 

from the bottle, and placing the bottle back on the table movements [21]. We decompose 

DFB task into phases: i) reach towards the bottle while opening the hand, ii) reach the bottle, 

iii) close the hand to grasp the bottle, iv) move the bottle towards the mouth to drink using a 

straw, v) place the bottle back on the table, vi) open the hand to leave the bottle and vii) go 

back to starting position. At the beginning of the task the subject is asked to move towards 

the bottle with the help of the arm assistive device while he/she is opening his/her hand with 

the help of hand assistive device. The PDS, which has been described in details in section III-
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A is placed in the two-thirds way of the reaching movement because it has been previously 

shown that the grasp component reached its maximum aperture approximately two-thirds 

(60%-80%) of the way through the duration of the reaching movement [22]. The placement 

of the detection system (60%-80% of the reaching movement) could easily be changed based 

on the patient’s movement ability and the therapist choice. For example, low-level 

functioning patients could not be able to reach the maximum aperture by two-thirds of the 

reaching movement because of their movement inability, and thus PDS could be placed 

closer to the target object which provides additional time for the patients to reach their 

maximum aperture. When the subject’s hand is detected by the PDS then the subject is asked 

to move towards the bottle to reach the bottle with the help of the arm assistive device. Later 

the subject is asked to grasp the bottle by closing his/her hand and the voltage value across 

the FSRs (Fig. 2C) is calculated to decide if the grasping is enough to hold the bottle. When 

the subject grasps the bottle, then he/she is asked to move the bottle to his/her mouth and 

drink water using a straw and then place the bottle on the table with the help of the arm 

assistive device. The subject is then required to open his/her hand to leave the bottle on the 

table with the help of hand assistive device. Finally, the subject is asked to go back to the 

starting position with the help of the arm assistive device. The subject performs the DFB few 

times to get familiar with the task. Note that similar task decomposition could be defined for 

any other ADL tasks.  

 

5.2. Design Details of a High-Level Controller 

The hybrid control systems consist of a plant and a discrete event controller (DES) 

connected to the plant via an interface. In hybrid control system, if the plant is taken together 

with the interface, then it is called DES plant model [17]. The DES controller, which is the 

high-level controller in this application, controls the DES plant. Let us first introduce the 

DES plant details and then describe the DES controller.  

The DES plant model is a nondeterministic finite automaton, which is represented 

mathematically by G ( P, X ,R, , )ψ λ= . Here  is the set of discrete states;  is the set of 

plant symbols generated based on the event; and 

P X

R  is the set of control 

symbols. P: P R 2ψ × → is the state transition function. For a given DES plant state and a 

given control symbol, the state transition function is defined as the mapping from P R×  to 

the power set , since for a given plant state and a control symbol the next state is not P2
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uniquely defined. The output function, X: P P 2λ × → , maps the previous and current states 

to a set of plant symbols. Plant state, , is based on the set of hypersurfaces realized in the 

interface, which are not unique and decided considering the need of the therapy, and the 

capabilities of the rehabilitation robotic systems. Generally the available sensory information 

from the robotic systems and the input from the therapist and the subject provide the core of 

the set of the hypersurfaces which are given as:  

P
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 where vo  is the voltage recorded in the PDS system. ltage _ ir x  and  are the robot’s 

and object’s actual positions, respectively. vo  is the voltage across the FSRs. If the 

voltage across the FSRs drops below  then the subject should stop closing 

his/her hand. The values of  could be changed based on the grasp 

capabilities of the subject and the object characteristics. Manual hand open/close buttons 

could also be used by the subject’s unimpaired arm or by the therapist which gives ability for 

the subject to get involved in the decision of the grip aperture/closure. The values of 

 and  are binary values, which could be 1 when it is 

pressed and 0 when it is released. 

xtarget

ltage _ fsr

voltage _ threshold

voltage _ threshold

handopen _ button handclose _ button

xstart  is the starting position of the task.  and  are 

the current time and the final time to complete hand opening, respectively.  and 

 represents the set of joint angles upper and lower limits, respectively and 

t thand

lowerθ

upperθ θ  is set of 

the actual joint angles.  and  are the torque applied to the motor of the 

robot and the torque threshold value, respectively. The torque applied to the motor of the 

hand assistive device and its threshold value is defined as  and , 

robotτ rthresholdτ

handτ hthresholdτ

 107



respectively.  There is an emergency button on the controller of the robot and when it is 

pressed or released e  value becomes 1 and 0, respectively. Additionally, a 

pause button is placed in front of the subject so that the subject can manually stop the task 

execution when he/she does not feel comfortable, or feel pain etc. When the pause button is 

pressed or released 

mergency _ button

pause _ button  value becomes 1 and 0, respectively. In this application, 

 and  hypersurfaces are representing same region and all requires 

both arm assistive device and hand assistive device to be idle. Thus, we have 8 plant states 

which leads to 8 different regions and possible 256 (2

h ( x ), h ( x ), h ( x )76 8 h ( x )9

8) transitions. When a hypersurface is 

crossed than a plant event, which is simply an occurrence in the plant, is occurred. A plant 

event only causes a plant symbol to be generated. The following plant symbols are defined: 

x1 : arm approaches to the bottle with the desired grip aperture, 

x2 : arm reaches to the bottle, 

x3 : hand reaches desirable grip closure to grasp the bottle, 

x4 : arm leaves the bottle on the table, 

x5 : hand reaches desirable grip aperture, 

x6 : safety related issues happened such as robot joint angles are out of limits, or robot   

applied torque is above the threshold, or emergency button is pressed,  

x7 : subject presses the pause button,  

x8 : subject releases the pause button,  

 where { }X x ,x , x , x , x , x , x , x4 5 71 2 3 6 8=  is the set of plant symbols. The high-level controller 

needs to know which state was active before the pause button was pressed in order to provide 

the same task parameters to the subject when he/she resumes the task (when plant symbol x8  

is generated). Thus, a secondary plant event, which is called SE1, is defined in here to detect 

the previous state when the subject wants to continue with the task after he/she pauses. For 

example, when the subject presses pause button, a value is assigned to SE1. This value is 

retrieved when the subject resumes the task so that he or she can continue the therapy with 

the same task requirements. The secondary plant event, SE1, is defined as follows: if the 

subject presses pause button when he/she is approaching towards the bottle, then SE1=1 and a 

corresponding plant symbol x81  is assigned. Similarly, if the subject presses pause button 
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when the subject is reaching to the bottle, or moving the bottle to mouth, or leaving the bottle 

on the table, or moving back to starting position (when only performing subtasks related to 

arm movement) then SE1=2, and the plant symbol x82  is assigned. If the subject releases the 

pause button when he/she is closing his/her hand, then SE1=3 and a corresponding plant 

symbol x83  is assigned. Finally, if the subject releases the pause button when he/she is 

opening his/her hand, then SE1=4 and the plant symbol x84  is assigned.  

In this application, the purpose of the DES controller (high-level controller) is to control 

the arm assistive device and the hand assistive device in a coordinated manner so that these 

devices are executed in the desired order without entering critical regions to complete an 

ADL task as required. The high-level controller is modeled as a discrete-event system (DES) 

deterministic finite automaton, which is specified by D ( S , X ,R, , )δ φ= . Here  is the set of 

controller states. Each event is represented as a plant symbol, where  is the set of such 

symbols, for all discrete states. The next discrete state is activated based on the current 

discrete state and the associated plant symbol using the following transition 

function: . In order to notify the low-level assistive controllers the next course of 

action in the new discrete state, the controller generates a set of symbols, called control 

symbols, denoted by 

S

X

: S X Sδ × →

R , using an output function: . The action of the high-level 

controller is described in 

: S Rφ →

(1), where s ,s Si j ∈ , x Xk ∈  and r Rc ∈ .  i  and j  represent the 

index of discrete states.   and  c  represent the index of plant symbols and control symbols, 

respectively.  is the time index that specifies the order of the symbols in the sequence.   

k

n

 

s [ n ] ( s [ n 1],x [ n ])j i k
r [ n ] ( s [ n ])c j

δ

φ

= −

=
  (1) 

 Each control state in the high-level controller captures one of the control actions which 

are the activation of only arm assistive device, or the activation of only hand assistive device, 

or the activation of both arm and hand assistive devices. Additionally, a memory state (such 

as a short-term memory [23] in our brain which stores information for a certain amount of 

time) could be used to detect which state was active before the pause button was pressed in 

order to provide the same task parameters when the subject resumes the task. When new 

actions are required for an ADL task, new states can easily be included in the set of the states, 

. The high-level controller has six states S { }S s ,s ,s ,s ,s ,s1 2 3 4 5 6=  which are: 
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s1 : hand device/arm device is active,  

s2 : arm device is active,  

s3 : hand device is active to close the hand,  

s4 : hand device is active to open the hand,  

s5
: arm/hand device is idle, 

 s6 : memory state.  

 The transition function  uses the current state and the plant symbol to 

determine the next action that is required to update the rehabilitation task. For example, when 

the subject is reaching towards the target and a plant event is occurred that requires the arm 

device and the hand device to be stopped, then the transition function is used to transit from 

one active state, which activates the arm device, to another one, which stops both the arm and 

the hand assistive device, based on the plant event. The high-level controller generates a 

control symbol , which is unique for each state 

: P X Pδ × →

rc si  using the output function 

where ( s ) riφ = c { } { }c 1,2 ,3 ,4 ,5 ,i 1,2 ,3 ,4 ,5 ,6∈ ∈ . The control symbols are defined as:  

r1 : drive arm device to the bottle and drive hand device to open the hand,  

r2 : drive arm device to the bottle, or move the bottle towards the mouth, or leave the bottle 

on the table, or go back to starting position,  

r3 : drive hand device to close the hand to grasp the bottle,  

r4 : drive hand device to open the hand to leave the bottle, 

r5 : stop arm and hand device  

 where { }R r ,r ,r ,r ,r1 2 3 4 5= is the set of the control symbols. Inside the DES plant, the 

actuator converts the control symbols into continuous output and sends plant inputs to the 

low-level assistive controllers. The output of the control symbol used in here, which is called 

plant input, are given as: i) if r r then 11= ,ii) if r r then 22= , iii) if r r then 33= , 

iv) if r r then 44=  and v) if r r then 05= . The control mechanism of the high-level 

controller is given in Fig. 3. The design of the elements of the DES plant and the DES 

controller is not unique and is dependent on the task, and the sensory information available 

from the rehabilitation robotic system.  
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Figure 3 Control Mechanism for the High-Level Controller 

 

6. Results 

 The subject is asked to wear the hand orthosis and then asked to place his forearm on the 

hand attachment device as shown in Fig. 2A. We have conducted experiments to demonstrate 

the efficacy of the control architecture when the task executed as planned and when an 

unplanned event happened during the execution of the ADL task. We had asked the subject to 

perform the DFB task which is described in details in Section V-A. Some of the subtasks of 

the DFB are shown in Fig. 4. The stateflow is used to implement the proposed high-level 

controller [24], where  { }S s ,s ,s ,s ,s ,s1 2 3 4 5 6=  is described as ArmHand, Arm, HandClose, 

HandOpen, Idle and Memory respectively. 

 
 Figure 4 Subtasks of drinking from a bottle ADL task 

 

 In the first experiment the DFB task proceeded as planned. ArmHand ( )s1  became active 

and the control symbol r  was generated and the interface converted  to  and both arm 

and hand assistive device were activated. The desired motion trajectories were given to the 

arm low-level assistive controller from A to B (Fig. 5-solid line). The discrete value 1 for 

1 r1 r 1=
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hand open (HO) (Fig. 6A-solid line) and 0 for hand close (HC) (Fig. 6B-solid line) was given 

to the hand low-level assistive controller from A to B. When vo  became bigger than 

or equal to 1.85 Volts that means subject reached two-thirds of the way of the reaching 

movement, and then 

ltage _ ir

x1  was generated from the interface. Arm ( )s2  state became active, the 

control symbol  was generated and the interface converted r  to  and only arm 

assistive device was activated (from B to C in Fig. 5-solid line and the discrete value 0 for 

both HO in Fig. 6A-solid line and HC in Fig. 6B-solid line). When the subject’s position,

r2 2 r 2=

x , is 

equal to the bottle position, x , then target x2  was generated, HandClose ( )s3  state became 

active, and the control symbol  was generated and r3 r 3=  was given to activate the hand 

assistive device for grasping the bottle (from C to D in Fig. 5-solid line and the discrete value 

0 for HO in Fig. 6A-solid line and 1 for HC in Fig. 6B-solid line). The subject closed his 

fingers to grasp the bottle and when (vsfr) dropped below the , 

which was selected as 4 Volts after few tests, 

voltage _ fsr voltage _ threshold

x3  was generated, then Arm ( )s2  state became 

active. When Arm ( )s2  state became active the control symbol  was generated and then the 

interface converted r  to  which activated the arm assistive device again to assist the 

subject to move the bottle to his mouth, and drink water using a straw and then leave the 

bottle on the table (from D to E in Fig. 5-solid line and the discrete value 0 for both HO in 

Fig. 6A-solid line and HC in Fig. 6B-solid line).  When the subject’s position 

r2

2 r 2=

x  is equal to 

, which was selected as 0.29m in this application, that means the subject left the bottle 

back on the table, 

xtarget

x4  was generated, HandOpen ( )s4  state became active and control symbol 

  was given and the interface generated r4 r 4=  to activate the hand assistive device to open 

his hand (from E to F in Fig. 5-solid line and the discrete value 1 for HO in Fig. 6A-solid line 

and 0 for HC in Fig. 6B-solid line). When the subject reached desirable grip aperture 

( )t thand== , where  was chosen as 5s (this could be changed based on the therapist 

choice), then 

thand

x5  was generated and Arm ( )s2  state became active. When Arm ( )s2  state 

became active the control symbol r  was generated and the interface converted  to r 22 r2 =  

which activated the arm assistive device to go back to starting position (from F to G in Fig. 5-

solid line and the discrete value 0 for both HO in Fig. 6A-solid line and HC in Fig. 6B-solid 

line).  
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 In the second experiment, at some point of time (t’) during the task execution an 

unplanned event takes place. In this case, the subject wanted to pause for a while in the 

middle of the task and then reset the pause button (at tt’) when he was ready to complete the 

rest of the task. This scenario might represent when a stroke patient want to pause for a while 

due to some discomfort. The high-level controller dynamically and automatically generated 

the desired motion trajectories given in Fig. 5 and Fig. 6 as dashed lines by considering the 

subject’s intention to pause the task. As it could be seen the subject’s position at the time of 

the triggering (tt’ in Fig. 5-dashed line) was automatically detected and taken as an initial 

position to continue the task where it was resumed with zero initial velocity. In such a case, if 

the high-level controller did not modify the desired trajectories to register the intention of the 

subject to pause the task, then the desired motion trajectories would start at point tt’ with a 

different starting position and a non-zero velocity (Fig. 5-solid line), which could create 

unsafe operating conditions. Note that the subject was required to open his hand when the 

task restarted at tt’, however, the hand device would not have been activated at time tt’ (as 

shown in Fig. 6A-solid line) if the high-level controller did not modify the desired trajectory. 

Additionally, it could also cause the subject to close his hand before reaching to target object 

at ttt’ (from C to D in Fig. 6B-solid line). It is conceivable that one could pre-program all 

types of desired trajectories beforehand such that they could address all types of unplanned 

events, and retrieve them as needed. However, for non-trivial tasks, designing such a 

mechanism might be too difficult to manage and extend as needed. The presented high-level 

controller provides a systematic mechanism to tackle such issues. It could also be seen that 

the necessary desired trajectories and discrete values to activate/deactivate the arm and hand 

assistive devices could be created dynamically using the high-level controller. High-level 

controller monitored the progress of the task and made decision on the activation/deactivation 

of the assistive devices to complete the ADL task as required. 
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Figure 5 Desired Motion Trajectories Given to the Arm Low-Level Assistive Controller  
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Figure 6 Desired Discrete Value (1/0) Given to the Hand Low-Level Assistive Controller 

 The desired trajectories given in Fig. 5 and Fig. 6 when the task executed as planned and 

when an unplanned event happened were generated and given to the arm low-level assistive 

controller and hand low-level assistive controller by the high-level controller so that these 

low-level assistive controllers provide assistance to the subject to complete the ADL task in 

the desired manner. 

 7. Discussion and Conclusion  

  In this paper we present a new control architecture that can coordinate both arm and hand 

assistive devices to help the subjects complete ADL tasks. The control architecture presented 

here is an example of a hybrid control system. There has been no work to our knowledge on 

designing similar type of control architecture for rehabilitation purposes. We briefly present 

the design of an arm low-level assistive controller and a hand low-level assistive controller 

which are used to provide assistance for the arm and the hand movement, respectively. Then 
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the high-level controller is presented which is used to coordinate these low-level assistive 

controllers in a safe manner to complete ADL tasks. We expect the proposed control 

architecture will give an opportunity for stroke patients to practice ADL tasks.  

 In this work the design of a high-level controller for the DFB task, which incorporates 

both the arm movement and the hand movement, is presented. Note that the proposed control 

mechanism described in Section 5.2 could be easily modified for the other ADL tasks such as 

eating using spoon, combing hair using a comb etc. Subjects are required to first reach the 

object, then grasp the object, move the object to his/her mouth or his/her hair, leave the object 

on the table and then move back to starting position. The task execution order for these ADL 

tasks is the same as drinking from a bottle ADL task. Thus, minor modifications such as i) 

the  value for the grasping spoon or comb could be changed to adjust the 

amount of grasping for various object sizes and properties, ii) t  value could be changed 

to vary the amount of time needed to release different objects. Additionally, task parameters 

could be adjusted not only for other ADL tasks but also for each patient for the same ADL 

task. For example, some patients may feel pain/uncomfortable when they grasp an object too 

much, thus v  could be adjusted based on the patient’s comfort and abilities. 

Moreover, the different movement abilities of stroke patients may require changes in the 

target object location, . On the other hand some of the ADL tasks might not be in the 

exact order or as complicated as eating from the spoon or drinking from a bottle. New control 

mechanisms could be designed in the high-level controller using available actions (states), 

which were given in Section 5.2 for new ADL tasks. For example, a patient may be asked to 

perform to grasp and release an object for training of a hand movement which requires only 

opening hand to reach desirable grip aperture and closing hand to be able to grasp the object. 

Thus, only HandClose and HandOpen states are required to be coordinated in an order to 

execute the hand opening/closing activities as desired.  

voltage _ threshold

hand

oltage _ threshold

xtarget

 The hand device used in this paper does not allow the control of fingers independently in 

performing various hand rehabilitation tasks. However, this hand device is being used with 

C5 quadriplegic patients to perform their ADL tasks such as picking up bottle, holding things 

etc. The hand device allows opening/closing the hand with the adjustable power supply (fast 

and slow, low or stronger strength) and it is safe to be used if the right amount of pressure 

and speed is given to provide grasp function without damaging hand that lack sensation. We 

are also aware that a PUMA 560 robotic manipulator might not be ideal for rehabilitation 

applications. However the use of the hand attachment device, which has been described in 
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Section 3.1, provided a quick release mechanism to protect the subject’s arm from injuries. 

Note that the presented control architecture is not specific to the presented arm and hand 

assistive devices but can be integrated with any other assistive devices. 
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CHAPTER VI:  

 

CONTRIBUTIONS AND FUTURE WORK  

 

Contributions 

 The contributions of this dissertation are in the area of the intelligent controller design for 

robot-assisted rehabilitation systems. The main theoretical contributions of this dissertation 

are described as follows:  

i) Design of an assistive controller that enhances smooth human-robot interaction 

between the robotic assistive device and the subject. The human arm parameters 

are estimated dynamically to provide robotic assistance in a subject-specific 

manner. The proposed assistive controller combines the benefit of system 

identification technique with the robustness of neural network-based methods 

ii) Design of a new control approach to enable the coordination of both arm and hand 

assistive devices using a hybrid system modeling technique to help the subjects to 

complete their activities of daily living (ADL) tasks. Hybrid control framework 

has been effectively used in other fields, such as industrial robotics, medicine, and 

manufacturing. However, the presented control approach is the first of its kind that 

bring the benefit of hybrid system modeling in the field of the robot-assisted 

rehabilitation.  

 In order to validate the above controllers engineering contributions are made in the 

development of a robotic rehabilitation system. The main engineering contributions of this 

dissertation are given as follows:  

i) Design of a rehabilitation task where the subjects not only make repetitive 

movement but also pay attention to the desired motion trajectory from visual 

feedback. This rehabilitation task was designed in such a manner that it required 

cognitive processing.   

ii) Design of an experimental setup which includes a PUMA 560 robotic manipulator 

to provide assistance to the subject’s arm movement, a hand attachment to attach 

the subject’s hand to the robotic device and a hand assistive device to provide 

assistance to the subject’s hand movement. This experimental setup gives ability 

for the subjects to perform the experiments in real-time by incorporating their 

feedback.  
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 These contributions are expected to address some of the needs in the field of the 

rehabilitation robotics in terms of introducing advanced control methodologies.  

 

Future Work  

 One of the future developments of this research is use of a functional magnetic resonance 

imaging (fMRI) procedure to investigate whether the presented task that included cognitive 

processing result in long-term brain reorganization. In Chapter IV, the artificial neural 

network (ANN) based proportional-integral (PI) gain scheduling controller has been 

evaluated and only the stiffness parameter has been used as the human arm parameter to train 

the ANN. It is also possible that mass and damping coefficients may be needed to better 

capture the arm characteristics of the stroke patients. In addition, the number and the nature 

of the features (e.g., here we used 3 features of the stiffness: the mean Kμ , the standard 

deviation Kσ  and the maximum maxK ) to train the ANN could be explored to investigate the 

improvement of the gain prediction. The presented results in Chapter IV were based on the 

training of the ANN with the data of 10 subjects. With the increase in training data set the 

prediction accuracy of the ANN will likely to be increased. As the robot interacts with more 

number of subjects, the training data sets will be increased. Another issue that may improve 

the performance of the ANN-based PI gain scheduling controller was to determine an optimal 

gain switching strategy. We used a fixed switching time for the control gains. However, it is 

possible to design a gain switching sequence that switches the predicted gains when a 

predefined threshold is exceeded. Additionally, it is possible to detect additional human state 

information to modify the task parameters using the control architecture described in Chapter 

III such as a voice recognition system to examine the patient’s verbal commands or ECG 

signals to monitor the patients’ heart rate to detect their exhaustion. This new state 

information could be used to change the difficulty level of the task and to make the necessary 

task modifications for safety of the patient. The presented control architecture in Chapter V is 

not specific to the presented the arm assistive device and the hand assistive device but can be 

integrated with any other assistive devices. The usability of the proposed control architecture 

can be tested with stroke patients.  
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