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Figure V. 5: Conventional morphometric assessment methods for determining local control with estimated 

parameter value distributions for (a) T2/T1 ratio and (b) percent change in length. (c) ROC curve for the 

morphometric assessment methods. The dotted line represents the line of identity. .................................. 73 

 

Figure VI. 1: This is an illustration of cavity collapse during tumor resection for Patient 1. The opaque 

shape in panels (a) and (b) is a visualization of the segmented tumor. In panel (a), the post-craniotomy, 

cranial surface can be visualized with the laser range scan obtained intra-operatively. The cranial surface 

was scanned again after the tumor was resected, and this laser range scan is shown in panel (b). The tissue 

movement was quantified using these scans, and the measured displacement vectors (pre- to intra–

operative) are indicated by the blue arrows in panel (b). ............................................................................ 81 

Figure VI. 2: This is an exemplar illustration of cavity collapse during tumor resection. The two T1 

weighted MRI scans were taken preoperatively (a) and intraoperatively (b). Both panels are an image of 

the same slice of the scan after the complete MRI volumes were registered. In panel (a) the total tumor can 

be visualized. In panel (b), the collapse in the tumor’s original cavity can be perceived in this intraoperative, 

post-resection MRI. ..................................................................................................................................... 82 

Figure VI. 3: This flow chart illustrates the general debulking brain shift prediction methods. The right 

hand side illustrates where the atlas of debulking deformations is introduced into the brain shift correction 

method. The left hand side is the flow chart of the physics of debulking as described in this manuscript. 

The dashed line around calculating pressure from the tumor edema illustrates that it is an optional step in 

calculating the physics of debulking. .......................................................................................................... 86 

Figure VI. 4: This illustrates the differences in the center of the tumor seeds used for Patient 4. The black 

dots in both panels correspond with the segmented tumor boundary. The red line represents the longest axis 

in the tumor which passes closest to the centroid. The magenta ‘x’ in both panels marks the center of the 

longest axis. Panel (a) marks the relative positions of the three centers of the seeds for tumor growth for the 

central debulking and Gaussian debulking atlases with the magenta 'x' and the two cyan circles. Panel (b) 

marks the five centers of the seeds for tumor growth determined using k-means clustering with the five 

circles. Those five centers in addition to the magenta cross mark the six centers of tumor seeding used in 

the k-means debulking atlas. ....................................................................................................................... 89 

Figure VI. 5: These are the box plots representing sorting the patients into debulking or not debulking cases 

using the four methods described in Materials and Methods-Retrospective Patient Selection. In all of the 

panels the y-axis is the value obtained using each method. The box on the left hand side of each panel is 

the distribution of values below or equal to the threshold of the method (not debulking), and the right hand 

side is the distribution of values above the threshold (debulking). In all plots, the central red mark designates 
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the median, and the bottom and top of the boxes are the 25th and 75th percentile respectively. Panels (a), (b), 

(c), and (d) are the results of methods one, two, three, and four respectively. (* indicates p<0.001) ........ 92 

Figure VI. 6: This illustrates the brain shift categories used to reconstruct the patients’ measured 

displacements based on atlas type. The four general shift categories are gravity, hyperosmotic, swelling, 

and debulking. In all six panels, ‘without’ refers to the atlas without debulking solutions present. ‘Central’ 

refers to the atlas with the central debulking solutions present. ‘Gaussian’ refers to the atlas with the 

Gaussian debulking solutions present, and ‘K-Means’ refers to the atlas with the k-means debulking 

solutions present. It is enforced that the sum of the weighting coefficients of the solutions is equal to 1, so 

the percent of the four categories in every reconstruction sums to 100%. Panels (a)-(f) contain the 

distributions of Patients 1-6 respectively. ................................................................................................... 95 

Figure VI. 7: Both panels demonstrate the results of Patient 3. The opaque area in both panels is the tumor 

in Patient 3. In Panel (a) the black arrows are the measured deformations, the red arrows are the estimated 

deformations when no debulking was included in the atlas, and the cyan arrows are the estimated 

deformations when the central debulking solutions are included in the atlas of solutions for reconstruction. 

In Panel (b), the cyan arrows once again are the estimated deformations when the central debulking 

solutions are included. The green arrows are the estimated deformations when the Gaussian debulking 

solutions are included. The magenta arrows are the estimated deformations when the k-means debulking 

solutions are included. ................................................................................................................................ 99 

Figure VI. 8: In Panel (a), the brain mesh of Patient 3 can be seen in grey, and the tumor can be seen in 

blue. Patient 3 had the largest tumor by volume. In Panel (b), the brain mesh of Patient 6 can be seen in 

grey, and the tumor can be seen in blue. Patient 6 had the smallest tumor by volume. ............................ 101 

 

Figure VII. 1: For the validation of the model, two meshes were generated. Panel A represents the 

dimensions of the 2D mesh used to validate the 2D FEM solution. Panel B represents the dimensions of the 

3D, rectangular prism mesh to validate the 3D FEM solution. F1 and F2 indicate face 1 and face 2 

respectively. The arrows indicate the axes for x, y, and z in Cartesian coordinates. The origin is in the 

bottom left corner for both meshes. .......................................................................................................... 108 

Figure VII. 2: This figure displays the three models being tested on a brain mesh. (A) represents the 

deployment of pressure in the central evacuation representation of ICH evacuation. (B) represents the 

deployment of pressure in both superposition evacuation representations of ICH evacuation. The outermost 

boundary of the mesh represents the skull. The two asymmetric, internal boundaries represent the brain's 

ventricles. The circular portion of the mesh, which is also displayed in the details, represents the ICH. 110 
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Figure VII. 3: Comparison of the 2D finite element model solution in a rectangular mesh to a 1D analytical 

solution. Panel A represents the displacement along the primary axis, and panel B represents the pressure 

at the corresponding locations. The error bars represent the standard deviation at each point. The relative 

average displacement and relative pressure error are both less than 1%. ................................................. 114 

Figure VII. 4: Comparison of the 3D finite element model solution in a rectangular prism to a 1D analytical 

solution. Panel A represents the displacement in the primary axis, and panel B represents the pressure at 

the corresponding locations. The error bars represent the standard deviation at each point. The relative 

average displacement and relative pressure error are both less than 1%. ................................................. 115 

Figure VII. 5: Comparison of the three representations ICH evacuation in the same finite element mesh. 

The top row (A-C) is the central evacuation model solution after the completion of three iterations. The 

middle row (D-F) is the superposition model (1) solution after adding the solutions of the three iterations 

together. The bottom row (G-I) is the superposition model (2) solution after a single iteration containing 

three applied pressure sources. A, D, and G represent the pressure distribution throughout the mesh, where 

cooler colors indicate larger negative pressures, warmer colors indicate less negative pressures, and maroon 

indicates deleted elements. B. E, and H represent the von Mises stress distribution, where warmer colors 

indicate higher positive von Mises stresses, cooler colors indicate smaller von Mises stresses, and dark blue 

indicates zero stresses and evacuated elements. C, F, and I show the change in mesh structure from its initial 

configuration point (blue) to its final deformed state (black). On the bottom right of C, F, and I is an enlarged 

view of the ICH. ........................................................................................................................................ 117 

Figure VII. 6: For these simulations, a pressure of -1333 Pa was placed within the ICH. Panel A is a slice 

through the 3D brain mesh, representing the displacement solution. Panel B is a slice through the 3D brain 

mesh, representing the pressure solution. ................................................................................................. 118 

Figure VII. 7: This is an MRI of a block of brain tissue, where the Sylvian fissure is apparent (dark pixels). 

The blue points represent the theorized movement of the fluid within the tissue. It is around the fissure, 

rather than through it. ................................................................................................................................ 121 

Figure VII. 8: These are the pressure and displacement solutions when 100 Pa was applied to the left hand 

side of the column, and it was specified that the pressure and displacement on the right hand side of the 

column is 0. This rectangular mesh was unsplit. Warm colors represent higher pressure and displacement 

values, while cooler colors represent lower pressure and displacement values. ....................................... 122 

Figure VII. 9:  These are the pressure and displacement solutions when 100 Pa was applied to the left hand 

side of the column, and it was specified that the pressure and displacement on the right hand side of the 

column is 0. This rectangular mesh was split, with no boundary conditions enforced at the split within the 

mesh. Warm colors represent higher pressure and displacement values, while cooler colors represent lower 

pressure and displacement values. ............................................................................................................ 123 
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Figure VII. 10: These are the pressure and displacement solutions when 100 Pa is applied to the left hand 

side of the column, and it was specified that the pressure and displacement on the right hand side of the 

column is 0. This rectangular mesh was split, and the split is fixed in displacement. Warm colors represent 

higher pressure and displacement values, while cooler colors represent lower pressure and displacement 

values. ....................................................................................................................................................... 124 

Figure VII. 11: These are the pressure and displacement solutions when 100 Pa is applied to the left hand 

side of the column, and it is specified that the pressure and displacement on the right hand side of the 

column is 0. This rectangular mesh is split, and the split is treated as a fissure. Strain can communicate 

across the split, but fluid cannot flow through it. Warm colors represent higher pressure and displacement 

values, while cooler colors represent lower pressure and displacement values. ....................................... 125 

Figure VII. 12: The mesh in Detail (a) shows the brain treated as a homogenous material. The mesh in 

Detail (b) illustrates the brain as homogenous tissue with the dural septa. The mesh in Detail (c) represents 

the brain as homogenous tissue with the dural septa, Sylvian fissure, and central sulcus. ....................... 126 

Figure VII. 13: This is an image of the displacement solution (mm) on the surface of the meshes. Detail 

(a) is the results of the mesh, which treats the brain as a completely homogenous material. Detail (b) is the 

result of the mesh with the dural septa incorporated. Detail (c) is the result of the mesh with the dural septa, 

Sylvian fissure, and central sulcus incorporated. ...................................................................................... 127 

Figure VII. 14: This is an image of the pressure solution (Pa) at the same cross section. Detail (a) is the 

results of the mesh, which treats the brain as a completely homogenous material. Detail (b) is the result of 

the mesh with the dural septa incorporated. Detail (c) is the result of the mesh with the dural septa, Sylvian 

fissure, and central sulcus incorporated. ................................................................................................... 128 

Figure VII. 15: This is visualization of the gradients in pressure calculated from the pressure solution (Pa). 

In all three details, the blue sphere represents the pressure infusion source. The white plane is one of the 

fissure boundaries. Detail (a) is the results of the mesh, which treats the brain as a completely homogenous 

material. Detail (b) is the result of the mesh with the dural septa incorporated. Detail (c) is the result of the 

mesh with the dural septa, Sylvian fissure, and central sulcus incorporated. ........................................... 129 

 

Figure A. 1: This is a visualization of the geometry used to generate the analytical solution. On the left-

hand side of the rectangle, a pressure of p0 is enforced. On the right-hand side of the rectangle, a pressure 

of p5 is enforced. ....................................................................................................................................... 132 

Figure A. 2: This is a visualization of the geometry used to generate the analytical solution. There is a 9 to 

1 ratio between the outer and inner radii of the concentric circle. On the outer boundary of the circle, the 

displacement is fixed and pressure is set to 0. On the inner boundary of the circle, it is stress free and a 

pressure of p0 is prescribed. ....................................................................................................................... 135
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CHAPTER I 

 

I.      Specific Aims 

 

In a study of the global disease burden of cancer in 2018, an estimated 296,851 new cases of brain and 

nervous system cancer were diagnosed with 241,037 of these cases resulting in death [1].  Approximately 

one third of diagnosed brain and other nervous system tumors are malignant [2], [3]. The US population 

greater than 65 years of age is anticipated to double by 2030, and the amount of individuals diagnosed with 

cancer is expected to increase correspondingly; consequently the demand for effective cancer treatment will 

increase proportionately [3]. This reflects an increase not only in primary brain tumors, but also in 

metastatic brain cancer. Glioblastomas are the most common form of malignant primary brain tumors [2], 

[3]. In a study performed by M.D. Anderson Cancer Center on patients with glioblastoma multiforme, they 

found that it was necessary to resect a minimum of 89% of the tumor volume in order to improve the 

patients’ survival after index surgery [4]. Additionally, they found that resection of a minimum of 98% of 

the tumor volume is associated with a significant survival advantage [4]. Generally, this thesis 

retrospectively investigates if the integration of computational modeling approaches can increase surgical 

fidelity through enhancing localization of cancerous tissue while simultaneously preserving healthy brain. 

      There has been extensive research into biomechanical modeling of the brain with the goal of improving 

various aspects of neurosurgery. These have not been translated into clinical workflow. Currently there has 

not been consensus on what model is appropriate to use to simulate brain tissue [5]. There have been 

investigations into elastic, poroelastic, viscoelastic, and hyper-elastic representations of brain tissue. Given 

the poroelastic model’s ability to account for both the solid and liquid components of brain tissue, it is the 

intuitive choice. Additionally, despite preliminary work into anatomical specificity, there is also no 

consensus on what features within the brain are required to accurately capture its behavior. Biomechanical 

models have the potential to improve a variety of neurosurgical procedures.  

     Beyond common anatomical features, patient brains can also contain tumor(s). Modeling of the diseased 

tissue differs from modeling of healthy brain tissue. There is a rich history of mathematical modeling of the 

biomechanical effects of brain tumor growth [6], [7], [8]. Rather than investigating intracranial tumors in 

isolation, this thesis explores treating an intracranial tumor as a brain structure itself. One patient population 

that may benefit from studying biomechanical tumor growth effects are those who have undergone 

stereotactic radiosurgery (SRS). An adverse effect of SRS is radiation-induced necrosis, which occurs in 

up to 20% of patients [9].  Since radiation-induced necrosis and tumor recurrence often appear similarly on 

imaging, these patients are often monitored with serial scans and are diagnosed with brain biopsies [9]. 
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Studying this patient population can aid in refining a model of tumor growth to assess intracranial lesion 

influence. By calibrating a tumor growth model in those who have undergone SRS, the model could be 

used to differentiate radiation-induced necrosis from recurrence, which is currently an important, but unmet 

clinical need in surgical planning [9], [10]. 

     The developed enhanced structure and disease modeling can be tested in multiple applications. One such 

application is image-guided neurosurgery for tumor resection. Current image-guidance systems are static 

and do not account for brain shift during tumor resection. The research into biomechanical models to correct 

for brain shift has shown promise to actively update intra-operative guidance [11], [12], [13], [14], [15]. 

Existing shift correction procedures, however, do not account for the mechanics of brain shift resulting 

from tumor cavity collapse due to tumor resection. We will refer to this type of shift as ‘debulking.’ Surgical 

practice certainly reflects the complex mechanical behavior with tumor resection as the release of tissue 

tension in resection can result in tissue collapse. Characterizing both the normal brain anatomy and the 

impact of diseased tissue on surgical localization could improve image-guidance. As evident from studies 

of tumor volume resection [4], further improvements in image-guidance using a model-based method can 

have a significant impact on patient outcomes by improving resection accuracy. This research 

hypothesizes that enhancing anatomical brain models with the addition of effects from space-

occupying lesions will improve the predictive fidelity of biomechanical models of the brain for use in 

neurosurgical and interventional applications. 

 

Specific Aim 1: Enhance modeling of a normal brain by incorporating realistic anatomical 

constraints and reconstructing material properties. Previous modeling studies have attempted to 

enhance deformation models of the brain by accounting for the dural septa and interstitial pressure dynamics 

[14], [16]. This aim hypothesizes that enhanced modeling of the brain will enable in vivo interstitial pressure 

gradients and compartmentalization to be captured. To account for these, boundary conditions and 

anatomically based mesh specifications will be tested along with novel tissue material properties reflective 

of tissue compressibility. Using an in vivo study of interstitial pressure in a porcine brain subject to surgical 

loads, the material properties of grey and white matter will be reconstructed. It is expected that accounting 

for the main structures of the brain and its material properties will enhance the modeling of interstitial 

pressure compartmentalization, pressure gradients, and intra-operative brain deformation. 

 

Specific Aim 2: Enhance brain modeling by developing tumor growth behaviors for the purpose of 

determining biomechanical effects. Previous studies have used mechanically coupled reaction-diffusion 

models to model intracranial tumors [17], [10]. In this aim, the underlying hypothesis is that a 

biomechanically coupled tumor growth model can be used to noninvasively determine the etiology of 
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enhancing intracranial lesions. Using serial imaging in patients with intracranial metastases who have 

previously undergone SRS, the biophysical tumor growth model will be fit and compared to recurrent 

tumors and cases of radiation-induced necrosis. To determine the accuracy of the model classification, the 

predicted diagnoses will be compared to the known clinical diagnoses. At the conclusion of this aim, a 

means of modeling intracranial tumor growth and approximating the effect of space-occupying lesions will 

have been developed. This aim can develop a noninvasive, patient specific surgical classification tool using 

standard-of-care clinical imaging for radiosurgery. 

Specific Aim 3: Evaluate the influence of quantifying tumor growth for application in image-guided 

neurosurgery by predicting intra-operative brain shifts from tumor debulking. Incorporating 

enhanced anatomical modeling (Aim 1) and estimations of displacement and pressure due to the patient's 

tumor (Aim 2), the effects of tumor debulking during resection will be approximated with a novel model 

based atlas. This aim hypothesizes that accounting for the mechanics of tumor debulking will improve intra-

operative brain shift predictions. This aim involves using pre-operative data (Magnetic Resonance (MR)) 

and collected intra-operative data (laser range scan, intra-operative MR (iMR), or Ultrasound) collected 

during tumor resection. The intraoperative brain shift predictions accounting for tumor debulking will be 

assessed. The deformation prediction improvement will be assessed relative to the three intra-operative 

modalities. At the completion of this aim, improvements due to the incorporation of the effects from space-

occupying lesions will be assessed. Development in this aim can indicate the significance of accounting for 

tumor debulking in image-guided neurosurgery and improve brain shift predictions. 
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CHAPTER II 

 

II     Background and Significance 

 

II.1     Clinical Significance 

 

II.1.1     Disease Burden 

Intracranial tumors, including primary and metastatic cancers, affect all portions of the population and can 

cause significant morbidity and mortality. Metastatic intracranial tumors can arise from various primary 

cancers. One study suggested up to 40% of patients with certain cancers may develop intracranial 

metastases [18]. Some of the most common metastatic intracranial tumors include lung, renal, and breast 

cancer [19]. Primary brain tumors also have multiple types including glioblastomas, pituitary tumors, 

meningiomas, and oligodendrogliomas [20]. In a report of brain and other nervous system primary tumors, 

between 2011 and 2015, there were approximately 121,277 primary brain and other nervous system tumors 

diagnosed in the United States of America [21]. In a separate statistical report, the average annual age-

adjusted rate of incidence for primary brain and central nervous system tumors was 21.97 per every 100,000 

people [2]. For malignant brain and central nervous system tumors, the approximate five and ten year 

survival rates were approximately 35.0% and 29.3% respectively [21].  

     Not only do intracranial tumors carry a poor prognosis, but they also affect a significant portion of the 

population. The median diagnosis age of patients with primary and central nervous system tumors was 60 

years of age in a survey of patients between 2011 and 2015 [21]. These tumors represented the 8th most 

common type of cancer in adults over 40 years of age [21]. Intracranial tumors not only affect the elderly, 

but in reality have a bimodal distribution, affecting the young and the aged. Between 2011 and 2015, brain 

and central nervous system tumors were the most common cancers in people between the age of 0 and 14 

[21]. This bimodal distribution has been observed for some time now. Over the survey of patients between 

2004 and 2007, nonmalignant tumors represented approximately two-thirds and one-thirds of adult and 

childhood brain tumors respectively [3]. Given the prevalence and significant morbidity of these tumors 

multiple modalities of treatments have been developed including chemotherapy, radiotherapy, and surgical 

resection [22], [20]. Unfortunately, despite a plethora of research toward improving these treatments there 

remain certain challenges limiting the efficacy of each of these. Within the scope of this thesis, issues 

concerning the implementation of radiotherapy and surgical resection will be addressed. 
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II.1.2     Diagnosis 

 

II.1.2.1     Detection of Tumor/ Clinical Presentation 

Accurate diagnosis of brain tumors is central to developing an effective treatment plan, however, diagnosis 

is complicated by the fact that clinical presentation of intracranial tumors is extremely varied [23, 24]. 

Symptoms of intracranial tumors can include focal neurologic deficits, confusion, memory loss, and 

changes in personality; however, headaches and seizures are the most common symptoms of brain tumors 

[23]. Intracranial tumors cause diverse clinical symptoms through multiple mechanisms such as brain 

invasion, compression of nearby regions, and/or increased intracranial pressure. Furthermore, the signs and 

symptoms produced by a tumor also depends on the location of tumor and the function of the brain regions 

affected. Given the nonspecific presentation of intracranial tumors, clinical signs and symptoms may 

provide little guidance for treatment. Therefore, patients with suspected either primary or metastatic brain 

tumor typically undergo neuroimaging. 

 

II.1.2.2     Initial Imaging 

Central nervous system imaging plays a vital role in both diagnosis and treatment planning for intracranial 

tumors. Except in cases of emergency, magnetic resonance imaging (MRI) with contrast is the best study 

for brain tumors [25]. Different tumors may have certain appearances on MRI that may aid in diagnosis. 

For example, common radiographic features of metastatic lesions include presence of multiple intracranial 

tumors and location of tumor at gray-white junction [26]. High-grade gliomas typically appear hypointense 

on T1 weighted MRI and enhance with contrast. Additionally, GBM typically display rim enhancement 

with a central clearing due to necrosis. Features that may be indicative of infiltrative tumors include T2 

hyperintense signals in the cortex and adjacent white matter [25]. These radiographic features may suggest 

the etiology of intracranial lesions, however, appearance on MRI alone is not diagnostic of any particular 

tumor. 

     Newer imaging techniques, such as magnetic resonance spectroscopy (MRS) and diffusion weighted 

imaging, have attempted to improve upon specificity of diagnosis achievable by neuroimaging. For 

example, MRS has shown some promise in improving diagnosis of intracranial tumors by analyzing 

presence of metabolites which may assist in distinguishing a tumor from necrosis or benign lesions [24]. 

However, high quality studies of MRS are still needed to determine the utility of this technique [27]. 

Diffusion weighted provides information that may help differentiate between pyogenic abscesses and 

necrotic intracranial tumors that may appear similar on imaging [25]. Despite the promise of new imaging 

techniques and the information garnered from classical imaging, neuroimaging currently provides 
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insufficient detail to arrive at a final diagnosis. The gold standard for diagnosis of a brain tumor remains 

invasive intracranial tissue sampling, by stereotactic biopsy or open surgery, for histopathologic and 

molecular studies [24]. However, this thesis proposes that in certain instances clinical imaging for diagnosis 

and surgical intervention may be augmented through biomechanical modeling.   

 

II.1.3     Treatment 

 

II.1.3.1     General Treatment Strategy 

Complete treatment of patients with intracranial tumors is often an interdisciplinary process including 

medical oncologists, radiologists, neurosurgeons and other providers [24]. General medical therapy for this 

patient population includes treatment of seizures, peritumoral edema, venous thromboembolism, fatigue, 

and neurocognitive difficulties. Standard tumor specific therapy for patients with intracranial tumors 

currently involves a combination of a primary therapy, for example surgical resection or radiosurgery, and 

adjuvant therapies, such as chemotherapy. Adjuvant therapies are defined as those given after primary 

treatment to lower risk of tumor recurrence and are often an integral part of the treatment plan. A complete 

discussion of adjuvant therapies for intracranial tumors is beyond the scope of this work. However, adjuvant 

therapies play a crucial part in modern treatment paradigms therefore we will highlight some examples of 

adjuvant therapies here. For example, high-grade gliomas are best managed through a combination of 

treatment modalities including surgical resection, adjuvant postoperative radiotherapy, and adjuvant 

chemotherapy. Likewise, in one study, patients with a solitary intracranial metastasis treated by surgical 

resection alone may have up to 50-60% risk of local recurrence over a period of 6-12 months [28],[29],[30]. 

In fact, there are level 1 recommendations that surgical resection followed by adjuvant whole brain radiation 

therapy represent improved local tumor control compared to surgical resection alone [31]. Adjuvant 

therapies have been shown to be efficacious in radiotherapy as well. A review on the role of SRS in patients 

with brain metastases provided level 1 evidence that a combination of single-dose SRS with whole brain 

radiation therapy led to significantly longer patient survival as compared to whole brain radiation therapy 

alone [32]. As evidenced by these examples, adjuvant therapy often augments the efficacy of primary 

treatments, such as radiotherapy or surgical resection and are central to treatment of intracranial tumors. 

 

II.1.3.2     Radiation Therapy 

     Radiotherapy can be used to treat both primary and metastatic disease, and may be used alone or in 

combination with chemotherapy and surgery [33]; while there are a variety of radiotherapy options for 

intracranial tumors, this work specifically concerns stereotactic radiosurgery (SRS). The goal of SRS is to 

destroy tumor cells while limiting harm to adjacent healthy brain. SRS is a noninvasive radiation therapy 
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that delivers precisely focused beams of radiation to treat tumors by distorting or destroying DNA of tumor 

cells. SRS helps establish local control of intracranial metastases, but is complicated by radiation-induced 

necrosis. Radiation-induced necrosis occurs typically three months or later after SRS treatment and is an 

adverse reaction of the brain tissue to the radiation treatment [9, 34]. Following SRS, up to 20% of patients 

exhibit radiation-induced necrosis [9, 35], which often appears as an enhancing lesion in MR T1-weighted 

contrast-enhanced imaging with accompanying T2-weighted and Fluid-Attenuated Inversion Recovery 

(FLAIR) abnormalities [9, 36, 37]. For patients with intracranial metastases that are treated solely by SRS, 

local recurrent disease may arise in some patients [38]. The not insignificant incidence of local recurrence 

complicates diagnosis of radiation-induced necrosis. To monitor for recurrence after SRS patients undergo 

serial imaging however, this may lead to the detection of new lesions of unknown significance at the site 

of treatment.  

     Diagnosis of the lesion etiology presents enormous clinical challenges since recurrence and radiation-

induced necrosis often appear radiographically similar. Treatments for radiation-induced necrosis include 

observation and corticosteroids, with symptoms sometimes resolving without further treatment [39]. 

Unfortunately, these treatments could delay treatment of recurrence, or even worse, accelerate tumor 

progression. As in primary brain tumor diagnosis, biopsy is the current gold standard for diagnosis but 

introduces considerable risk. There have been studies into alternative noninvasive methods of reaching a 

diagnosis such as using perfusion imaging [9, 40-43], positron emission tomography [44], and magnetic 

resonance spectroscopy [9, 45-47], but these have only had limited success. Patients that undergo SRS for 

intracranial lesions would benefit greatly from a noninvasive method to determine the nature of these 

enhancing lesions. 

 

II.1.3.3     Surgical Intervention 

     The other treatment of intracranial tumors evaluated within the scope of this thesis is surgical resection. 

The most common type of malignant primary tumor is glioblastoma, which is particularly infiltrative and 

aggressive [21], [48]. In patients with primary brain tumor amenable to surgical resection, maximal safe 

surgical resection is the primary approach to diagnosis and management. In an investigation of patients 

with glioblastomas, 416 individuals, who had undergone tumor resection were studied to identify predictors 

of survival outcomes [4]. The median survival time in patients, who received a resection of 98% or more 

of the tumor volume, was 13 months. This is in contrast to the median survival time of 8.8 months in other 

patients, who had less tumor volume resected [4].  

     The resection of tumors is also related to tumor recurrence; 80% of recurrent glioblastomas occur within 

a 2 cm margin of the original resection [49]. The significance of accurate tumor resection is also seen in 

lower grade intracranial tumors. For instance, in low-grade gliomas, extent of resection serves as a predictor 
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of overall patient survival [50]. From these investigations, and numerous others, it is evident that the optimal 

resection of intracranial tumors, regardless of etiology, is vital to successful treatment and this work 

suggests that resection of tumor could be enhanced by improving accuracy of intraoperative localization of 

diseased brain tissue.  

     Image-Guided Neurosurgical Systems (IGNS) are common intraoperative assistive devices that help 

surgeons localize the diseased tissue [51], [52], [53]. Briefly, in IGNS the patient’s preoperative imaging is 

registered into the physical, intraoperative space providing surgeons knowledge of where they are within 

the brain. A shortcoming of this technology, however, is that it treats the preoperative image as static. This 

is not reflective of intraoperative changes during neurosurgery due to brain shift [51], [52], [53]. There are 

a variety of causes of brain shift, including hyperosmotic drugs, gravity, removal of the tumor, loss of 

cerebrospinal fluid, edema, and the craniotomy [51], [52], [14], [13]. Improving the fidelity of IGNS by 

updating the preoperative imaging to reflect the intraoperative configuration of the brain could improve 

patient outcomes. This work proposes one approach to improving the fidelity of IGNS would be to employ 

biomechanical models incorporating anatomical features of the brain to predict intraoperative brain shift.  

  

II.2     Relevant Brain Anatomy 

The brain is a complex organ with a variety of physical structures which increases the difficulty for surgeons 

and those developing assistive tools for use in neurosurgical procedures and planning. Historically, the 

Monro-Kellie doctrine has attempted to describe the complexity of brain biomechanics by stating that the 

cranial cavity is a fixed volume that is the sum of the volumes of brain tissue, intracranial blood, and 

cerebrospinal fluid (CSF) [54]. It naturally follows that with an increase in one of the three components, 

there must be a decrease in one of or both of the other components [54]. Treating the brain as only a solid 

tissue (often the case in brain models) negates the inherently biphasic nature of the brain within the cranial 

environment.  

     The anatomical geometric configuration of the brain is distinct from other organs. The brain is 

encapsulated by the dura, which is a fibrous membrane [55]. The dura extends into folds of the brain 

forming the dural septa, which consist of the falx cerebri and the tentorium cerebelli. As a part of its 

function, the dural septa reduces brain displacements during motion [55] and divides regions of the brain. 

The falx cerebri partially separates the cerebral hemispheres, and the tentorium cerebelli separates the 

occipital lobe and the cerebellum [55]. The pattern on the surface of the brain consists of sulci and gyri. 

The sulci are the groves in the brain, and the gyri are the plateaus formed by the boundary ridges of sulci 

pairs [55]. In addition to these structures, there are also the four connected ventricular cavities present 

within the brain to consider. These cavities, which are filled with CSF,  are connected to the central canal 
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within the spinal cord and the space around the brain [55]. Beyond these physical structures contained 

within it, the brain parenchyma is a heterogeneous material, consisting of grey and white matters. Grey 

matter consists predominantly of cell bodies, and white matter is mainly nerve fibers [55]. 

     Intracranial clinical measurements and observations reflect the influence of these anatomical features. 

An example of this is intracranial pressure. Intracranial pressure is the pressure measured within the cranial 

vault [56]. Experimental evidence suggests that intracranial pressure can vary spatially within the brain, 

which is possibly the result of the brain’s anatomy. This was previously suggested in a porcine study in 

which an extradural temporal mass lesion was simulated with an epidural balloon [57]. Similar experiments 

with an expanding frontal mass also reported analogous findings [58]. These findings also indicate the 

influence of a space-occupying lesions in the cranial cavity.  

     A more dramatic demonstration of intracranial compartmentalization and its significance is brain 

herniation which can be fatal [59], [60]. Herniation is the displacement of swollen parenchyma [61]. There 

are four forms of herniation: cingulate herniation, uncal or tentorial herniation, tonsillar or cerebellar 

herniation, and herniation through the craniotomy [61]. A cause of herniation is cerebral edema that results 

in elevated intracranial pressure [59]. This edema can be the result of an intracranial tumor [59]. 

     When considering how to appropriately model both a normal and brain with a space-occupying lesion 

(tumor), we believe that enhancing the computational description of these anatomical features can lead to 

the more accurate representation of effects such as pressure compartmentalization and brain shift. 

 

II.3     Computational Modeling 

 

II.3.1     Soft Tissue Modeling and Structure 

There is a rich history of using computational models of the brain in clinical settings, such as neurosurgery 

[62], [11], [63], [64]. Despite the ample research done on biomechanical modeling of the brain, there is still 

not a general consensus on what mechanical description of the organ should be used [52], [5], [65], [66]. 

Model types, are discussed below, include viscoelastic [67], [68], poroelastic [69], [70], elastic [71], [72], 

and hyper-elastic [73], [66] biomechanical models. Evidence for all of these representations of the brain in 

clinical settings such as IGNS has been provided, but they have yet to achieve fidelity which can be 

translated to improvements in patient outcomes. The various mechanical descriptions capture different 

characteristics of the brain tissue.  
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II.3.1.1     Elastic Mechanical Description 

The elastic description of the brain prescribes that the stress state depends on strain alone [5]. This 

mechanical description is sometimes used since there is evidence for soft tissue deformations being 

accurately represented with linear elasticity, given that it is undergoing small strains [74]. An example of a 

clinical application of the elastic model is registration. A study utilizing the elastic model tracked brain 

deformations, with the goal of updating preoperative images was performed [72].  

      This study accomplished this by acquiring intraoperative magnetic resonance (MR) images during 

intracranial surgery [72]. Then key features (ventricles, cortical surface, and tumor) were segmented from 

the intraoperative MR images, and the boundary surfaces of these key features in the model were deformed 

to the new target boundaries sequentially. During this investigation, both the resection of the tumor and the 

CSF volume loss from the ventricles were accounted for [72]. The conclusion of that investigation was that 

the inclusion of the ventricular surface deformation was necessary to obtain accurate results. This 

application of an elastic model reflects a patient-specific application of a biomechanical model of the brain 

towards registration, while accounting for structural features deemed significant by the investigators. 

Despite the use of the elastic model, which neglects the fluid components within the cranium, the 

conclusions of this study indicate the importance of incorporating anatomical features in order to improve 

the fidelity of intracranial modeling results. The importance of anatomical features has also been observed 

in other biomechanical descriptions. 

 

II.3.1.2     Poroelastic Mechanical Description 

     The poroelastic description of the brain depends on multiple phases. More specifically, it describes brain 

tissue as consisting of a fluid component and an elastic solid [5]. Poroelastic models are used typically to 

model quasi-static and long term processes, since they are able to capture interstitial fluid movement [5]. 

Due to its agreement with the Monro-Kellie Doctrine, through its ability to capture both solid and liquid 

components, we use a poroelastic description of the brain in the scope of this thesis. Potential applications 

of poroelastic models include modeling tissue retraction [69], hydrocephalus [75], and image-guided 

neurosurgery (IGNS) [53]. During neurosurgery, the brain shifts due to a variety of intraprocedural factors 

such as swelling, hyperosmotic drugs and changes in cerebrospinal fluid levels [64]. As a result, the 

preoperative imaging used for guidance is no longer aligned with the patient’s brain. An accurate prediction 

of intraoperative brain deformation could enhance IGNS by actively compensating for brain shift 

throughout the surgical procedure and reestablishing alignment fidelity with the patient’s preoperative 

imaging [76], [13]. 

     One investigation into the use of the poroelastic model for this application involved the generation of an 

atlas of possible deformations associated with gravity and mannitol’s influence during tumor resection [14]. 
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The novelty of this study stemmed from its inclusion of the dural septa in the finite element mesh and 

quantifying its influence. The average shift correction without the inclusion of the dural septa was 68±17%, 

while the inclusion of this features resulted in an average shift correction of 75±12% [14]. Even though this 

finding was not statistically significant, it does speak towards the importance of anatomical specificity in 

modeling. It is worth noting that this investigation did not account for brain shift from all possible causes. 

This was observed in the discrepancy in their predicted deformation solutions relative to the measured 

deformations. These discrepancies were related to the influences around the resection cavity [14]. Tumor 

cavity collapse has been observed in multiple other investigations [15], [77]. Based on these conclusions 

and those of other groups, we included the dural septa as a part of our enhanced anatomical description of 

the brain. Furthermore, as a part of this thesis, we sought to address how to capture the influence of the 

tumor itself on the surrounding normal brain tissue. This was done for diagnostics and for IGNS correction. 

 

II.3.1.3     Viscoelastic Mechanical Description   

Another type of mechanical description of the brain is the viscoelastic model. It prescribes that the stress 

state depends on the strain history and the strain [5]. These mechanical descriptions can be functions of 

stress rates, strain rates, and higher order derivatives. One investigation using a viscoelastic description 

compared the results of a finite element representation of a viscoelastic model to analytic solutions [68]. 

They developed a linear, finite element representation to capture conditions representative of neurosurgical 

procedures. In the study, the viscoelastic models used were used to capture the stress-strain rate dependence 

[68].  

     Another group used a viscoelastic mechanical description in order capture the behavior of a bovine brain 

undergoing uniaxial compression [78]. They used fresh, cylindrical brain tissue samples undergoing step-

and-hold tests between two plates which quantified the compressive forces being applied during the 

dynamic experiment. For their study, the tissue samples were exposed to engineering compressive strains 

between 5 and 25% [78]. They were able to validate their model viscoelastic model for up to strains levels 

of 35%. Generally, viscoelastic models can be used to describe short term process, including impact [5]. 

 

II.3.1.4     Hyper-Elastic Mechanical Description 

Finally, hyper-elastic descriptions of the brain prescribes that the material can undergo large strains and 

recover elastically [73]. It ability to undergo large strains and recover results in its use to describe soft 

tissues. One group used a hyper-elastic description of the brain tissue in order to characterize the response 

of brain tissue that is undergoing large deformations. As an additional source of anatomical complexity in 

their model, they captured the anisotropic behavior resulting from the presence of axonal bundles 



12 

 

throughout the tissue [73]. For their experiments, they used this mechanical description in order to model 

white matter tissue that had anisotropic characteristics undergoing shear and axial loading. While 

preliminary in nature, due to limited experimental data, this investigation looked into applying a hyper-

elastic model to a microscale representation of brain tissue [73]. 

     The hyper-elastic description has also been used in the context of computing brain deformations during 

image-guided surgery [66]. This biomechanical description was used assuming the strain rates during 

surgical procedures are negligible, and as a consequence the strain rate history is not significant [66]. They 

used this description in order to model craniotomy induced shift during neurosurgery. While this study 

concluded that the level of complexity present in hyper-elastic was not necessary to capture craniotomy 

induced shift, this investigation demonstrates this mechanical description in the context of neurosurgical 

applications [66]. 

 

II.3.1.5     Anatomical Features in Mechanical Descriptions 

     While all of the mechanical descriptions capture different behaviors of the brain and other soft tissues, 

it is evident that the types of anatomical features included in the descriptions influenced the results, 

regardless of mechanical description. The importance of incorporating the influence anatomical features 

within the brain is illustrated in the modeling of intracranial drug delivery. One specific application that has 

been investigated is convection-enhanced delivery (CED), which is a treatment mechanism where 

macromolecular therapeutic agents are delivered to the brain tissue through direct infusion [79]. In an 

investigation a computational transport model was developed in order to predict tracer distributions and 

infusion flow fields based on diffusion tensor imaging MR with the intent of improving targeted delivery 

[79]. They performed simulations to elucidate the influence of cerebrospinal fluid and hippocampal fissures 

on the targeted delivery of the tracer. Their model also enabled the diffusion and hydraulic conductivity 

properties to be different between the cerebrospinal fluid, grey matter, and white matter which allowed for 

isotropy and anisotropy to be captured accordingly [79]. The results of their simulations captured the 

apparent influence of CSF spaces and fissures [79]. The evidence from this investigation indicates the need 

to account for the evacuation of intra-sulci/intra-fissure fluid into subarachnoid spaces. This concept is 

explored in Chapter IV. 

     The investigations described are only a small sample of the breadth of literature involving using 

biomechanics to represent the brain in a variety of surgical and interventional applications. There are 

countless others, not presented here, which reflect the various opinions on what appropriate biomechanical 

modeling of the brain entails. From a physiological perspective, we hypothesize that the poroelastic 

description of the brain is the most appropriate due to its ability to account for both the solid and fluid 

components within the cranial cavity. This is congruent with the Monro-Kellie Doctrine. Additionally, from 
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the literature it is evident that enhanced anatomical modeling influences the results of computational 

models, regardless of the parenchyma’s mechanical definition. In this thesis, we propose that to address 

limitations of prior biomechanical brain models, identifying the boundary conditions and mesh 

specifications representative of anatomical features of the brain is necessary to appropriately capture the 

brain’s behavior.  

 

II.3.2     Tumor Growth Modeling and Structure 

The computational models above account for normal brain geometry, however, they do not specifically 

model diseased intracranial tissue. The clinical application for this thesis involves interventional 

applications and surgery for patients who suffer from both primary and metastatic brain cancer. The 

intention behind this dissertation was to use brain cancer models in conjunction with enhanced anatomical 

modeling of a normal brain. By incorporating both the brain parenchyma and diseased tissue, this research 

aims to influence surgery and treatment planning in this patient population. There has been development of 

models of glioma growth and behavior, and in this dissertation we build upon these for primary and 

metastatic tumor modeling [80], [6]. Gliomas are a group of primary brain tumors that account for close to 

half of all primary brain tumors [80]. They are both diffusive and proliferative in nature [80], [6]. Below 

we will explore historical uses of tumor growth modeling of gliomas, including predicting growth dynamics 

for diagnoses, response to chemotherapy, and surgical resection [80], [6]. Building upon this existing 

precedent for modeling tumor growth, this dissertation applies a mechanically coupled reaction-diffusion 

tumor model of tumor growth for surgical planning and IGNS respectively.  

     There has been extensive work into modeling intracranial tumors. One group modeled untreated glioma 

growth in three dimensions (3D) in a spherical coordinate system and assumed symmetric spherical growth 

[81]. The growth of gliomas was modeled by setting the rate of change in tumor cell density to be equal to 

the sum of the tumor cell diffusion and the tumor cell growth [81]. They described the diffusion of tumor 

cells as D, and the proliferation of tumor cells as ρ [81]. The equation representation of glioma growth here 

was 
𝜕𝑐

𝜕𝑡
= ∇ ∙ (𝐷∇𝑐) + 𝜌𝑐, where c is tumor cell density [80]. According to this description, the relationship 

between the diffusion and proliferation of the cells captures the nature of gliomas specifically.  

     This equation can also be understood relative to possible cellular distributions within the tumor [81]. A 

highly diffuse intermediate-grade glioma would have a low proliferation (ρ) and a high diffusion (D). On 

the other hand, a high-grade glioma would have a high proliferation (ρ) and a high rate of diffusion (D) 

[80]. In a simulation study, one group explored the behavior of various intermediate-grade gliomas. From 

this work, they suggested that a highly diffuse intermediate-grade glioma may have a worse survival rate 

versus patients with high grade gliomas [80], [81]. It is important to note that in this investigation, they 
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neglected anatomical features associated with the brain [81]. This is in contrast with numerous other studies 

which have suggested the importance of incorporating features of the brain to varying extents. 

     An example of incorporating brain anatomy was a study modeling the growth of gliomas. The anatomy 

was introduced by modifying the reaction-diffusion model in a way that the diffusion rates in white and 

grey matter are different, reflecting the heterogeneity of the parenchyma [82]. The equation representation 

of this model of tumor growth is  
𝜕𝑐

𝜕𝑡
= ∇ ∙ (𝐷(𝑥)∇𝑐) + 𝜌𝑐 where the diffusion coefficient can spatially vary 

[82]. This enabled the investigators to account for the heterogeneity in diffusion properties of brain tissue. 

This type of specificity may be necessary to appropriately model intracranial disease phenomena in a 

patient-specific manner.   

      Another study, which incorporated the anatomy of the brain, was one which utilized magnetic resonance 

diffusion tensor imaging (MR DTI) [83]. In this investigation, the researchers were simulating the growth 

of low-grade gliomas with 
𝜕𝑐

𝜕𝑡
= ∇ ∙ (𝐷(𝑥)∇𝑐) + 𝜌𝑐 [83]. Using MR DTI, they were able to account for both 

heterogeneity and anisotropy of the parenchyma [83]. This model, coupled with the imaging data, enabled 

them to model the anisotropic growth of the gliomas by relating the cell diffusion tensor to the water 

diffusion tensor obtained from the DTI image [83]. The unique aspect of their model, as compared to other 

reaction-diffusion models of glioma growth, was how they treated the spatially varying diffusion 

coefficient. More specifically, in this representation 𝐷(𝑥) is a tensor [83]. They compared model 

simulations to two patients diagnosed with WHO grade II gliomas [83]. They concluded the best solutions 

were obtained when the cell diffusion tensor was more anisotropic than the water diffusion tensor. They 

also found that anisotropic diffusion was necessary to fit the lesion shapes from the MRI scans [83]. Also, 

the location of tumor’s growth initialization resulted in various behaviors with respect to the final shape 

[83]. It is worth noting the concept of tumor initialization impacting growth patterns was observed and 

utilized in the generation of atlases of tumor cavity collapse in Chapter VI. Similarly to the healthy brain 

models, it is evident that certain levels of anatomical specificity is necessary in order to model tumor 

growth. 

     There have also been models generated to account for treatments that patients may receive. In these 

models of growth and treatment, rather than describing the rate of change of tumor cells as the sum of 

diffusion and proliferation, the rate of change of the tumor cell is equal to the summation of the diffusion 

and proliferation of the tumor cells with a subtraction term representative of the loss of cells due to treatment 

[80].  An illustration of accounting for the effect of chemotherapy on the spatio-temporal growth of a glioma 

is defined by 
𝜕𝑐

𝜕𝑡
= ∇ ∙ (𝐷∇𝑐) + 𝜌𝑐 − 𝐺(𝑡)𝑐 [84]. In this equation, 𝐺(𝑡) = 𝑘 or 𝐺(𝑡) = 0 when 

chemotherapy is being administered or is not being administered respectively [84]. They estimated model 

parameters using optimization techniques, fitting the modeled tumors to computerized tomography (CT) 
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scans of the tumor [84]. Additionally, two distinct cell populations were defined. The cell populations 

diffused at the same rate, but were able to grow at distinct growth rates [84]. The inclusion of multiple 

populations enabled heterogeneity within the tumor and also enabled varied responses to chemotherapy 

within the tumor [84]. The inclusion of treatment effects into models of tumor growth is highly significant 

for clinical translation and effectively capturing both the tumor and its influences.  

     Not only have there been models of chemotherapy, but there have also been modeling efforts towards 

surgical resection [85], [86]. One group modeled the rate of change of glioma cell density in two cell 

populations as the result of the diffusion, increase due to growth, change due to mutation, and losses due to 

treatment [85]. They simulated resection by designating the cell density within the excision diameters (3, 

4, 5 cm) to be zero at the first time step [85]. While the density within the resection diameter was set to 

zero, the cell density outside of the resection diameter was permitted to be non-zero. This permitted residual 

tumor to recur. The results of their investigation indicated that resection alone would not be sufficient to 

cure a patient with a glioma [85]. They also compared the results of their model to clinical data and found 

a strong agreement between their model predicted survival rates and the survival of real patients. Their 

work speaks to the complexity in treating gliomas and more generally the predicative abilities of tumor 

growth models for clinical applications.  

     A separate group performed an investigation to predict in vivo glioma growth using a reaction-diffusion 

model [87]. The equation used to describe the glioma growth in this investigation was 
𝑑𝑁(�̅�,𝑡)

𝑑𝑡
= ∇ ∙

(𝐷(�̅�)∇𝑁(�̅�, 𝑡)) + 𝑘(�̅�)𝑁(�̅�, 𝑡) (1 −
𝑁(�̅�,𝑡)

𝜃
) [87]. 𝑁(�̅�, 𝑡) is the number of tumor cells at a given location 

and point in time, 𝑘(�̅�) is the tumor cell proliferation at a location, 𝐷(�̅�) is tumor cell diffusion coefficient 

at a location, and 𝜃 is the cell carrying capacity [87]. Using initial MRI scans, parameters (D for grey and 

white matter, and k) for the equation were estimated. These estimated parameters were then used to predict 

the tumor’s growth [87]. This in silico study generated accurate results that predicted future tumor growth 

[87]. Within the scope of the same study, they also performed in vivo experiments where they inoculated 

female Wistar rats with C6 glioma cells [87]. The in vivo data was more prone to error, and they concluded 

that the equation used was not sufficient to capture the full nature of C6 glioma [87]. This group attempted 

to account for this missing behavior in a follow up study.  

     They mechanically coupled their reaction-diffusion model [17]. A separate study indicated that the 

growth of tumor spheroids was inhibited if the matrix they were grown in was stiffened [88]. With this 

rational, in addition to the reaction-diffusion equation (
𝑑𝑁(�̅�,𝑡)

𝑑𝑡
= ∇ ∙ (𝐷(�̅�)∇𝑁(�̅�, 𝑡)) + 𝑘(�̅�)𝑁(�̅�, 𝑡) (1 −

𝑁(�̅�,𝑡)

𝜃
)), they modeled the mechanical coupling with 𝐷(�̅�, 𝑡) = 𝐷0𝑒

−𝜆1𝜎𝑉𝑀(�̅�,𝑡) and ∇ ∙ 𝐺∇�⃗� +

∇
𝐺

1−2𝑣
(∇ ∙ �⃗� ) − 𝜆2∇𝑁(�̅�, 𝑡) = 0 [17]. 𝐷0 symbolizes the tumor cell diffusion when no stress is present, 
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𝜎𝑉𝑀(�̅�, 𝑡) is the von Mises stress, and �⃗�  is the tissue displacement [17]. 𝜆1 is an empirically derived coupling 

constant, 𝜆2 is a second coupling constant, 𝐺 is shear modulus, and 𝑣 is the Poisson’s ratio [17]. They also 

accounted for cellular heterogeneity within the tumor by allowing the carrying capacity to vary on a voxel 

to voxel level [17]. They estimated the model parameters from the first three imaging points and used these 

parameters to predict the growth [17]. They concluded that mechanical coupling and cellular heterogeneity 

provided more accurate predictions of in vivo C6 glioma growth in their rat subjects [17]. This mechanically 

coupled reaction-diffusion model was implemented in thesis in Chapter V to represent metastatic disease.  

     There have been many other investigations directed towards computational tumor modeling. These 

include modeling cellular and metabolic processes to optimize chemotherapy administration [89], and 

angiogenesis associated with tumors [90]. The development of these models, both in the context of 

understanding the growth and in treatment, provide a rich history of tumor growth modeling. In the studies 

presented, there are common features including spatial and temporal dependence. There are also varying 

degrees of anatomical specificity ranging from homogenous treatment to accounting for the mechanical 

influence of the surrounding tissue. Similar to healthy brain models, there are no defined rules on the extent 

to which anatomical specificity should be captured in tumor models. Accounting for realistic anatomical 

constraints and the effects from space-occupying lesions (primary and metastatic tumors) can improve the 

fidelity of biomechanical models of the brain. 

 

II.4     Clinical Impact 

The work within the scope of this thesis has the potential to improve outcomes for patients with primary 

and metastatic intracranial tumors. Computational models have shown great promise for applications in 

clinical areas, such as neurosurgery and non-invasive diagnostics. The complexity of the brain itself 

increases the difficulty of generating translatable models capable of capturing the net behavior of the brain 

parenchyma. This is especially true when a disease state, such as a tumor, further increases the level of 

detail necessary to approximate its behavior. This research hypothesizes that enhancing anatomical brain 

models with the addition of effects from space-occupying lesions (tumors) will improve the predictive 

fidelity of biomechanical models of the brain for use in neurosurgical and interventional applications.  
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CHAPTER III 

 

III     Research Methods 

 

This chapter outlines the methods used to investigate the hypothesis that enhancing anatomical brain models 

with the addition of effects from space-occupying lesions will improve the predictive fidelity of 

biomechanical models of the brain for use in neurosurgical and interventional applications. In the scope of 

this thesis, three experiments were performed. While all of these specific investigations looked into 

different aspects of the same hypothesis, they all involved the usage of finite element modeling and 

optimization.  

     This chapter summarizes the methods and techniques used to investigate the aims of this thesis. A 

combination of animal and patient data was collected and used in these aims. Generally, Aim 1 used porcine 

data to study the use of enhanced modeling of the normal brain. Aim 2 developed and assessed the fidelity 

of tumor modeling with respect to classifying tumor recurrence and radiation-induced necrosis within a 

retrospective patient study. Aim 3 combined the model of a normal brain with a model of tumor growth to 

evaluate the influence of quantifying tumor growth for application in image-guided neurosurgery in a 

retrospective patient and simulation study.  

     Section III.1 outlines the experimental procedures used to collect the animal and patient data necessary 

to perform all of these investigations. Section III.2 presents the governing equations, derivations, and finite 

element modeling techniques used. As a means of fitting the finite element models (Section III.2) to the 

experimental data (Section III.1), different methods of optimization were used. The specific optimization 

techniques used depended on the nature of the data and the objective of each aim. These optimization 

methods will be detailed in Section III.3.  

 

III.1     Experimental Procedures 
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III.1.1     Retrospective in Vivo Porcine Experiment of Enhanced Brain Modeling 

The objective of this investigation was to study the impact of enhancing the modeling of a normal, healthy 

brain by accounting for anatomical constraints and reconstructing material properties of the brain. This was 

done in order to establish a model of brain biomechanics before incorporating disease. To investigate this, 

experiments were performed to test if the poroelastic biphasic model equations ((III.1.a) and (III.1.b)) with 

enhanced features could accurately capture in vivo, interstitial, porcine pressure gradients and 

compartmentalization. The finite element implementation of these equations is explained in Section III.2.2. 

The details of this procedure are expanded upon in Chapter IV and [91].  

     The porcine data was collected previously in [16]. In accordance with the Institutional Animal Care and 

Use Committee, a Yorkshire pig had a pressure transducer implanted in the left and right hemispheres of 

its brain along with a grid of stainless steel beads after being anesthetized. Before the implantation, a T1-

weighted magnetic resonance (MR) of the brain was collected. A temporal craniotomy was made on one 

side of the skull, and through this craniotomy, a mock surgical load was induced with a piston-like source 

(Figure III.2). This piston was moved in increments of 2 and 4 mm [16]. A baseline computed tomography 

(CT) scan of the porcine brain was obtained prior to this experiment. CT scans of the brain were 

subsequently obtained after each piston translation. The measured pressure data was gathered continuously 

via the implanted pressure transducers, and using the registered CT scans, brain shift was tracked by 

measuring the movement of the stainless steel beads [16]. The displacement and pressure measured at the 

8 mm, 10 mm, and 12 mm piston translations were used. 

 

Figure III. 1: This is a flowchart illustrating the methods employed to investigate the impact of enhanced anatomical 

modeling of a normal brain undergoing mock surgical loads. In a porcine study, finite element methods combined 

with an inverse model were used to estimate in vivo interstitial pressure measurements.   

 



19 

 

     The influence of three anatomical characteristics were investigated. These three features were the dural 

septa, the ventricle boundary condition, and the saturation parameters, which we hypothesized served as an 

approximation of the influence of the sulci and gyri [91]. In order to investigate the influence of the dural 

septa, using the preoperative MR, two custom finite element meshes of the porcine brain were generated 

(Figure III.1). The first mesh included the dural septa, and the second mesh did not [91]. In total there were 

four model descriptions. These were the full anatomical model description (FACD), which had the dural 

septa present, treated the ventricle boundary as the reference pressure, enabled the brain to be unsaturated, 

and had a total of 6 material properties being estimated from the governing equation (𝑘, 𝛼,
1

𝑆
 for grey and 

white matters). The second model description, condition without dural septa description (CwoDSD), 

differed from FACD by not including the dural septa within the finite element mesh. The third model 

description, condition without ventricle boundary description (CwoVBD), differed from FACD by treating 

the brain stem as the reference pressure instead of the ventricles. The fourth model description, conventional 

fully saturated model (CFSM), used the conventional assumption that the brain is a fully saturated material 

(𝛼 = 1,
1

𝑆
= 0), which reduced the number of material properties being estimated to two [91]. 

     Using an inverse model (Section III.3.2), the material properties (𝑘, 𝛼,
1

𝑆
 for grey and white matters) of 

the biphasic model were estimated in order to best match the model estimated pressures at the transducer 

locations to the interstitial pressure values measured from the transducers (Figure III.1). This was done with 

all four of the model descriptions, for each piston translation, with 20 randomized initial starting property 

guesses, generating a total of 240 runs of the inverse model [91]. At the conclusion of the interstitial pressure 

simulations, estimates for the model parameters for the grey and white matters were generated for each of 

the model descriptions (Figure III.1). Using the best parameter estimations (based on pressure fits), pressure 

and displacement solutions using Equations (III.1.a) and (III.1.b) were generated. The solutions for the 

piston fits of the four model descriptions were then assessed based on how they fit the interstitial pressure 

gradients, predicted brain shift, and captured pressure compartmentalization. The results of this 

investigation are in Chapter IV. 
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III.1.2     Retrospective Tumor Modeling Experiment - Recurrence vs Necrosis 

 The purpose of this study was to develop and assess the fidelity of a model of tumor growth. In order to 

accomplish this, a mechanically coupled reaction-diffusion model (Equations (III.17.a), (III.17.b), and 

(III.17.c)) of intracranial tumors was used to noninvasively differentiate radiation-induced necrosis from 

tumor recurrence in patients who had previously undergone stereotactic radiosurgery (SRS). The hypothesis 

was that differences in the biophysics of the two etiologies would result in differences in the model 

parameters and model-derived measures. The specifics of this procedure are further detailed in Chapter V, 

[92], and [93].  

     Ten de-identified clinical data sets of serial MRI scans were obtained under the Vanderbilt University 

Institutional Review Board as a retrospective study [92]. All of these patients had a metastatic lesion which 

was treated with SRS, and two time points of the patient scans were evaluated. Five of these patients had 

been diagnosed with radiation-induced necrosis, while the other five had been diagnosed with tumor 

recurrence [92]. Two sets of MRI scans were obtained at two time points. One of these sets of MRI scans 

consisted of FLAIR or T2-weighted and T1-weighted collected prior to diagnosis. The other set of MRI 

scans were T1-weighted scans collected prior to these. The timing between the two sets of scans varied 

 

Figure III. 2: This is a flowchart of the methods used to investigate whether a mechanically coupled reaction-diffusion 

model of tumor growth could be used to noninvasively differentiate tumor recurrence from radiation-induced necrosis. 
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among patients depending on the clinicians [92]. The scans for a given patient were registered to one another 

(Figure III.2), and the axial slice with the most volumetric change was selected for evaluation [93]. 

     As a first-order approximation, a Gaussian distribution of tumor cell density was assumed, and the 

‘observed tumor cellularity’ in the segmentations of the T1-weighted scans were estimated (Figure III.2). 

The mechanically coupled tumor growth model’s (Equations (III.17.a), (III.17.b), and (III.17.c)) prediction 

of tumor cellularity was fit to the ‘observed tumor cellularity’ using a Levenberg-Marquardt parameter 

optimization (Section III.3.2). For details on the finite element implementation of the governing equations, 

refer to Section III.2.3. This provided estimates of the model parameters, diffusion (𝐷0) and proliferation 

(𝑘) for each patient (Figure III.2). Using these estimates of the model parameters and the governing 

equations ((III.17.a), (III.17.b), and (III.17.c)), the von Mises stress field was calculated (Figure III.2). The 

regional similarity between this stress field at multiple contours and the segmented edematous region (T2-

weighted or FLAIR), was quantified using the Dice similarity index to estimate the model-derived measures 

(Figure III.2) [92]. Additionally, morphometric analysis methods, including the ratio of lesion size in two 

imaging types and changes in the segmented tumor volumes, were tested on the same set of patients as a 

clinical frame of reference. The estimated model parameters and model-derived measures were then used 

to classify the patients as either having tumor recurrence or radiation-induced necrosis. The results of this 

work are in Chapter V.   
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III.1.3     Retrospective Brain Shift Correction Experiment 

This final investigation combined the enhanced description of brain anatomy and the influence of a space-

occupying lesion. The purpose of this study was to evaluate the influence of quantifying tumor growth for 

brain shift correction in image-guided neurosurgery (IGNS). This was tested by evaluating the influence of 

predicting brain shifts due to debulking in IGNS. In this investigation, ‘debulking’ was defined as the 

process of brain shift specific to tumor cavity collapse due to tumor resection. The details of this experiment 

are expanded on in Chapter VI.  

     The influence of debulking was tested in two simulation studies and retrospectively in six patients who 

had experienced debulking, based on metrics to quantify debulking proposed in the scope of this 

investigation. For all of the cases, preoperative to post-resection brain shifts were quantified (Figure III.3). 

The patient data was collected using laser range scans, intraoperative MR, and intraoperative ultrasound 

[15], [94], [95]. These collections were done in compliance with the Vanderbilt Institutional Review Board 

and the Brigham and Women’s Hospital Institutional Review Board. The simulated brain shifts were 

generated with forward runs of the finite element models in Sections III.2.2 and III.2.4. It was specified 

that the simulated brain shifts were not represented within the atlas solutions. All of the cases had patient 

specific finite element meshes generated (Figure III.3).  

 

Figure III. 3: This is a flowchart of the methods used to investigate the influence of accounting for brain shifts due 

to debulking in image-guided neurosurgery. 
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     Four possible brain shift atlases were investigated (Figure III.3). The baseline atlas (Atlas without 

Debulking) accounted for brain shifts from gravity, hyperosmotic drugs, and swelling. The other three 

atlases had shifts representing debulking incorporated in addition to the aforementioned causes of brain 

shift. The fundamental difference between the three debulking atlases (central debulking atlas, Gaussian 

debulking atlas, and k-means debulking atlas) was the method of calculation of the tumor cell distribution. 

The physics of debulking was shared between all three debulking atlases, and we will briefly summarize it 

here (Figure III.4) (Section III.2.4). First, the tumor cell distribution was calculated, either using a Gaussian 

distribution for the Gaussian atlas or the finite element representation of equation (III.38) for the other two 

debulking atlases. Optionally, the pressure distribution due to edema being present was calculated using the 

finite element representation of equations (III.48.a) and (III.48.b). The displacements with the full tumor 

present and when the tumor had been partially resected were calculated with equation (III.59). Finally, 

using these calculated displacements the atlas of debulking displacements is generated (Figure III.4).  

     The central debulking atlas consisted of a total of 108 solutions which captured three central tumor seed 

locations, three temporal evolutions, three possible craniotomies, and four resection extents. The Gaussian 

debulking atlas consisted of 36 displacement solutions representing three Gaussian cellular distributions, 

three craniotomies, and four resections. The k-means debulking atlas consisted of 72 solutions reflecting 

six possible tumor seed locations (determined with k-means clustering), three craniotomies, and four 

resection extents. Brain shift reconstruction was performed for each case with all four atlases (Figure III.5). 

Using a constrained least-squared minimization (Section III.3.3), the error between model predicted 

displacements and the measured brain shifts was minimized. The solved weighting coefficients were used 

to combine the deformation atlases in order to reconstruct the displacements of the full brain volume. The 

quality of the brain shift reconstructions were assessed and their accuracies assessed. The results of this 

investigation are in Chapter VI.  

 

Figure III. 4: This is a flowchart of illustrating the physics of debulking, which was used to generate the debulking 

atlases. 
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III.2     Finite Element Modeling 

 

III.2.1     Finite Element Method Introduction 

The finite element method (FEM) is a method to calculate an approximate solution to an unknown true 

solution. This is accomplished by sub-dividing a larger problem into finite subdomains or finite elements 

[96]. More specifically, the approximate solution to the problem is defined over the entire problem domain 

in terms of a set of finite basis functions. These mathematical basis functions have properties that are well 

defined. The approximation to the true solution obtained by using FEM is the summation of the product of 

a set of coefficients and these basis functions [96]. The coefficients are the unknowns being solved for in 

the FEM. Generally, a residual (difference between approximate solution and true solution) is defined using 

governing equations and a set of boundary conditions, which capture the problem. This residual is forced 

to be zero over the domain of finite elements [96]. The domain, or mesh, consists of elements and nodes. 

The finite elements used in this thesis are linear triangles in two-dimensional problems and linear tetrahedra 

in three-dimensional problems. 

     A governing partial differential equation, which captures the physics of the problem being solved, is 

identified. The unknown variable(s) can be approximated using a set of scalar functions of position 

(standard 𝐶° local Lagrange polynomial interpolants). This approximation can be used to define the residual 

of the problem [96]. The residual is multiplied by a selected weighting function. In order to obtain the exact 

solution, this product integrated over the finite element domain would equal zero. FEM can be treated as a 

method of weighted residuals [96]. The specific method of weighted residuals used within this thesis is the 

Galerkin Method of Weighted Residuals. In the Galerkin Method of Weighted Residuals, the basis and 

weighting functions are selected to be the same functional description [96]. The weighting function used 

for this work is the Lagrange interpolating function. Lagrange interpolating functions are characterized by 

being one at the expansion node and zero everywhere else.  

     FEM was used to investigate all of the aims within this thesis. Specific Aim 1, which studied enhanced 

modeling of a normal brain, used a poroelastic model of the brain tissue. Specific Aim 2 assessed the fidelity 

of tumor modeling with a mechanically coupled tumor growth model. The last aim, Specific Aim 3, 

evaluated the influence of predicting brain shifts from tumor cavity collapse (debulking). This aim involved 

the use of three distinct models. The governing equations and finite element analysis used are detailed 

below in Sections III.2.2, III.2.3, and III.2.4. 

 



25 

 

III.2.2     Poroelastic Model of Brain Tissue 

The governing equations for the poroelastic model of brain tissue derived from Biot’s description of 

consolidation theory are (III.1.a) and (III.1.b) [97]. In these equations 𝑝 is the interstitial pressure and �⃗�  is 

the displacement vector. 𝐺 is the tissue shear modulus, 𝑡 is time, 𝜈 is Poisson’s ratio, and 𝑘 is hydraulic 

conductivity. The ratio of fluid volume extracted to the volume change of tissue under compression is 

represented by 𝛼, and the void compressibility is represented by 
1

S
 [91]. Equation (III.1.a) relates mechanical 

equilibrium of the matrix and the interstitial pressure gradient [91]. Equation (III.1.b) relates volumetric 

strain and the conservation of fluid within a porous media [91]. 

 ∇ ∙ 𝐺∇�⃗� + ∇
𝐺

1−2𝜈
(∇ ∙ �⃗� ) − α∇𝑝 = 0                                                                                      (III.1.a) 

 𝛼
𝜕

𝜕𝑡
(∇ ∙ �⃗� ) +

1

S

∂𝑝

∂t
− ∇ ∙ 𝑘∇𝑝 = 0                                                                                         (III.1.b) 

Using the Galerkin Method of Weighted Residuals, equations (III.1.a) and (III.1.b) are multiplied with 𝜙𝑖 

(a spatially-continuous weighting function) [96]. The 〈∗〉 represents integration over the problem domain. 

Also, 𝜙𝑖, is the ith member of the standard 𝐶° local Lagrange polynomial interpolants associated with finite 

elements [70]. 

〈∇ ∙ 𝐺∇�⃗� , 𝜙𝑖〉 + 〈∇
𝐺

1−2𝜈
(∇ ∙ �⃗� ), 𝜙𝑖〉 − 〈α∇𝑝, 𝜙𝑖〉 = 0                                                  (III.2.a) 

〈𝛼
𝜕

𝜕𝑡
(∇ ∙ �⃗� ), 𝜙𝑖〉 + 〈

1

S

∂𝑝

∂t
, 𝜙𝑖〉 − 〈∇ ∙ 𝑘∇𝑝, 𝜙𝑖〉 = 0                                                       (III.2.b)  

The divergence and gradient integral identities are (III.3.a), (III.3.b), and (III.3.c). 

〈∇ ∙ (𝐺∇�⃗� 𝜙𝑖)〉 = ∮G�̂� ∙ ∇�⃗� 𝜙𝑖𝑑𝑠 = 〈𝜙𝑖∇ ∙ 𝐺∇�⃗� 〉 + 〈𝐺∇�⃗� ∙ ∇𝜙𝑖〉                                 (III.3.a) 

〈∇
𝐺

1−2𝜈
(∇ ∙ �⃗� )𝜙𝑖〉 = ∮

𝐺

1−2𝜈
�̂�(∇ ∙ �⃗� )𝜙𝑖𝑑𝑠 = 〈𝜙𝑖∇ (

𝐺

1−2𝜈
∇ ∙ �⃗� )〉 + 〈

𝐺

1−2𝜈
(∇ ∙ �⃗� )∇𝜙𝑖〉    (III.3.b) 

〈∇ ∙ (𝑘∇𝑝𝜙𝑖)〉 = ∮k �̂� ∙ ∇𝑝𝜙𝑖𝑑𝑠 = 〈𝜙𝑖∇ ∙ 𝑘∇𝑝〉 + 〈𝑘∇𝑝 ∙ ∇𝜙𝑖〉                                   (III.3.c) 

These equations lead to the weak form of (III.2.a) and (III.2.b). ∮∗ represents the integration over the 

problem domain boundary, and �̂� represents the outward-pointing normal to the boundary. 

−〈𝐺∇�⃗� ∙ ∇𝜙𝑖〉 + ∮G�̂� ∙ ∇�⃗� 𝜙𝑖𝑑𝑠 + − 〈
𝐺

1−2𝜈
(∇ ∙ �⃗� )∇𝜙𝑖〉 +∮

𝐺

1−2𝜈
�̂�(∇ ∙ �⃗� )𝜙𝑖𝑑𝑠 − 〈α∇𝑝, 𝜙𝑖〉 =0      (III.4.a) 

〈𝛼
𝜕

𝜕𝑡
(∇ ∙ �⃗� ), 𝜙𝑖〉 + 〈

1

S

∂p

∂t
, 𝜙𝑖〉 − ∮𝑘 �̂� ∙ ∇𝑝𝜙𝑖𝑑𝑠 + 〈𝑘∇𝑝 ∙ ∇𝜙𝑖〉 = 0                           (III.4.b) 

Rewriting (III.4.a) and (III.4.b) creates (III.5.a) and (III.5.b). 

〈𝐺∇�⃗� ∙ ∇𝜙𝑖〉 + 〈
𝐺

1−2𝜈
(∇ ∙ �⃗� )∇𝜙𝑖〉 + 〈α∇𝑝, 𝜙𝑖〉 = ∮G�̂� ∙ ∇�⃗� 𝜙𝑖𝑑𝑠 + ∮

𝐺

1−2𝜈
�̂�(∇ ∙ �⃗� )𝜙𝑖𝑑𝑠   (III.5.a) 

〈𝛼
𝜕

𝜕𝑡
(∇ ∙ �⃗� ), 𝜙𝑖〉 + 〈

1

S

∂𝑝

∂t
, 𝜙𝑖〉 + 〈𝑘∇𝑝 ∙ ∇𝜙𝑖〉 = ∮ 𝑘 �̂� ∙ ∇𝑝𝜙𝑖𝑑𝑠                                  (III.5.b) 

Equations (III.5.a) and (III.5.b) are integrated in time with two-point weighting. With 𝜃 used as a weighting 

factor between the implicit (at 𝑡𝑛+1) and explicit at (𝑡𝑛) solutions. In this expression 0 ≤ 𝜃 ≤ 1 and ∆𝑡 =

𝑡𝑛+1 − 𝑡𝑛. 
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∫ 𝑓(𝑡)𝑑𝑡 = ∆𝑡 [𝜃𝑓(𝑡𝑛+1
𝑡𝑛+1
𝑡𝑛

) + (1 − 𝜃)𝑓(𝑡𝑛)]                                                                (III.6) 

The system is treated as fully implicit, i.e. 𝜃 = 1. Therefore (III.6) is simplified to (III.7). 

∫ 𝑓(𝑡)𝑑𝑡 = ∆𝑡 [𝑓(𝑡𝑛+1
𝑡𝑛+1
𝑡𝑛

)]                                                                                            (III.7) 

The representation of (III.5.a) and (III.5.b) in the time domain is (III.8.a) and (III.8.b). 

∆𝑡〈𝐺∇�⃗� ∙ ∇𝜙𝑖〉
k+1 + ∆𝑡 〈

𝐺

1−2𝜈
(∇ ∙ �⃗� )∇𝜙𝑖〉

k+1 + ∆𝑡〈α∇p𝜙𝑖〉
k+1 =  

          ∆𝑡[∮Gn̂∇�⃗� 𝜙𝑖𝑑𝑠]
k+1 + ∆𝑡 [∮

𝐺

1−2𝜈
n̂(∇ ∙ �⃗� )𝜙𝑖𝑑𝑠]

k+1
                                                          (III.8.a) 

〈𝛼(∇ ∙ �⃗� )𝜙𝑖〉
𝑘+1 + 〈

1

S
𝑝𝜙𝑖〉

k+1 + ∆𝑡〈𝑘∇𝑝 ∙ ∇𝜙𝑖〉
k+1 = 〈𝛼(∇ ∙ �⃗� )𝜙𝑖〉

𝑘 + 〈
1

S
𝑝𝜙𝑖〉

k + ∆𝑡[∮ k n̂ ∙ ∇𝑝𝜙𝑖𝑑𝑠]
k+1  

             (III.8.b)       

The spatial discretization of (III.8.a) and (III.8.b) is completed by expanding the unknown variables as the 

summation of unknown coefficients, which are functions of time, multiplied by known functions of position 

[96]. 

�⃗� (𝑥, 𝑦, 𝑧, 𝑡) ≈ ∑ 𝑢𝑗⃗⃗  ⃗(𝑡)
𝑁
𝑗=1 𝜙𝑗(𝑥, 𝑦, 𝑧)                                                                           (III.9.a) 

𝑝(𝑥, 𝑦, 𝑧, 𝑡) ≈ ∑ 𝑝𝑗(𝑡)𝜙𝑗(𝑥, 𝑦, 𝑧)
𝑁
𝑗=1                                                                            (III.9.b) 

Substituting (III.9.a) and (III.9.b) into the weak form generates equations (III.10.a) and (III.10.b). 

∆𝑡 ∑ 𝑢𝑗⃗⃗  ⃗
𝑁
𝑗=1 〈𝐺∇𝜙𝑗 ∙ ∇𝜙𝑖〉

k+1 + ∆𝑡∑ 𝑢𝑗⃗⃗  ⃗
𝑁
𝑗=1 〈

𝐺

1−2𝜈
(∇ ∙ 𝜙𝑗)∇𝜙𝑖〉

k+1 + ∆𝑡∑ 𝑝𝑗
𝑁
𝑗=1 〈α∇𝜙𝑗𝜙𝑖〉

k+1 =  

          ∆𝑡[∮𝐺�̂� ∙ ∇�⃗� 𝜙𝑖𝑑𝑠]
k+1 + ∆𝑡 [∮

𝐺

1−2𝜈
�̂�(∇ ∙ �⃗� )𝜙𝑖𝑑𝑠]

k+1
                  (III.10.a)   

∑ 𝑢𝑗⃗⃗  ⃗
𝑁
𝑗=1 〈𝛼(∇ ∙ 𝜙𝑗)𝜙𝑖〉

𝑘+1 + ∑ 𝑝𝑗
𝑁
𝑗=1 〈

1

S
𝜙𝑗𝜙𝑖〉

k+1 + ∆𝑡∑ 𝑝𝑗
𝑁
𝑗=1 〈𝑘∇𝜙𝑗 ∙ ∇𝜙𝑖〉

k+1 =    

          ∑ 𝑢𝑗⃗⃗  ⃗
𝑁
𝑗=1 〈𝛼(∇ ∙ 𝜙𝑗)𝜙𝑖〉

𝑘 + ∑ 𝑝𝑗
𝑁
𝑗=1 〈

1

S
𝜙𝑗𝜙𝑖〉

k + ∆𝑡[∮ 𝑘 �̂� ∙ ∇𝑝𝜙𝑖𝑑𝑠]
k+1                           (III.10.b)   

The discrete system expressed in matrix formulation is (III.11). 

𝐴𝑖𝑗𝑈
𝑛+1 = 𝐵𝑖𝑗𝑈

𝑛 + 𝐶𝑛+𝜃                                                                                             (III.11) 

The system is treated as fully implicit, i.e. 𝜃 = 1. Substituting into (III.11) generates (III.12). 

𝐴𝑈𝑛+1 = 𝐵𝑈𝑛 + 𝐶𝑛+1                                                              (III.12) 

The submatricies which compose 𝐴 and 𝐵 are (III.13) and (III.14).  

𝐴𝑖𝑗 =

[
 
 
 
 
 
 𝐺 〈

2(1−𝑣)

1−2𝑣

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 𝐺 〈

2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑦
〉 …

𝐺 〈
2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑥
〉 𝐺 〈

2(1−𝑣)

1−2𝑣

𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 …

𝐺 〈
2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑧
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑥
〉 𝐺 〈

2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑧
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑦
〉 …

𝛼 〈
𝜕𝜙𝑗

𝜕𝑥
𝜙𝑖〉 𝛼 〈

𝜕𝜙𝑗

𝜕𝑦
𝜙𝑖〉 …
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… 𝐺 〈
2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑧
〉 𝛼 〈

𝜕𝜙𝑗

𝜕𝑥
𝜙𝑖〉

… 𝐺 〈
2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑧
〉 𝛼 〈

𝜕𝜙𝑗

𝜕𝑦
𝜙𝑖〉

… 𝐺 〈
2(1−𝑣)

1−2𝑣

𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
+
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
〉 𝛼 〈

𝜕𝜙𝑗

𝜕𝑧
𝜙𝑖〉

… 𝛼 〈
𝜕𝜙𝑗

𝜕𝑧
𝜙𝑖〉 ∆𝑡𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 +

1

𝑆
〈𝜙𝑗𝜙𝑖〉]

 
 
 
 
 
 

   (III.13) 

𝐵𝑖𝑗 =

[
 
 
 
 

0 0 0 0
0 0 0 0
0 0 0 0

𝛼 〈
𝜕𝜙𝑗

𝜕𝑥
𝜙𝑖〉 𝛼 〈

𝜕𝜙𝑗

𝜕𝑦
𝜙𝑖〉 𝛼 〈

𝜕𝜙𝑗

𝜕𝑧
𝜙𝑖〉

1

𝑆
〈𝜙𝑗𝜙𝑖〉]

 
 
 
 

                 (III.14) 

The subvectors which compose 𝑈 and 𝐶 are (III.15) and (III.16). 

𝑈𝑗
𝑛 =

{
 
 

 
 
𝑢𝑥𝑗(𝑡𝑛)

𝑢𝑦𝑗(𝑡𝑛)

𝑢𝑧𝑗(𝑡𝑛)

𝑝𝑗(𝑡𝑛) }
 
 

 
 

                     (III.15) 

𝐶𝑖
𝑛+𝜃 =

{
 
 

 
 𝑥 ∙ ∮ 𝜎𝑠(𝑡𝑛+𝜃) ∙ �̂�𝜙𝑖𝑑𝑠

�̂� ∙ ∮ 𝜎𝑠(𝑡𝑛+𝜃) ∙ �̂�𝜙𝑖𝑑𝑠

�̂� ∙ ∮ 𝜎𝑠(𝑡𝑛+𝜃) ∙ �̂�𝜙𝑖𝑑𝑠

∆𝑡 ∮ 𝑘∇𝑝(𝑡𝑛+𝜃) ∙ �̂�𝜙𝑖𝑑𝑠}
 
 

 
 

          (III.16) 

 

III.2.3     Mechanically Coupled Tumor Growth Model 

The governing equations (III.17.a-III.17.c) represent a coupled biophysical model of tumor growth. In these 

equations �⃗�  is the displacement vector, and 𝑁 is the cell number which varies spatially and temporally. 𝐷 

is the cellular diffusion coefficient of the tumor cells when mechanical stress is present, while 𝐷0 is the 

cellular diffusion coefficient when there is no stress present [92]. 𝑘 is the tumor cell proliferation rate, 𝜃∗ is 

the tumor cell carrying capacity, and 𝜎𝑉𝑀 is the von Mises stress. The coupling coefficients are 𝛾 and 𝜆. 𝐺 

is the tissue shear modulus, and 𝜈 is the Poisson’s ratio [92]. Equation (III.17.a) defines the rate of tumor 

cell number change in time as the sum of logistic growth and cellular diffusion. Equation (III.17.b) couples 

tumor cell transport to a changing tissue stress state, effectively capturing the mechano-inhibition of cellular 

diffusion. Equation (III.17.c) represents mechanical equilibrium when an external expansive force, a tumor, 

is present [92]. 

𝜕𝑁(�̅�,𝑡)

𝜕𝑡
= ∇ ∙ (𝐷∇𝑁(�̅�, 𝑡)) + 𝑘𝑁(�̅�, 𝑡) (1 −

𝑁(�̅�,𝑡)

𝜃∗
)                                                              (III.17.a) 

𝐷 = 𝐷0𝑒
−𝛾𝜎𝑉𝑀(�̅�,𝑡)                                                                                                                (III.17.b) 

∇ ∙ 𝐺∇�⃗� + ∇
𝐺

1−2𝜈
(∇ ∙ �⃗� ) − 𝜆∇N(�̅�, 𝑡) = 0                                                                          (III.17.c) 
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Reaction-Diffusion Equation (III.17.a) 

To begin the analysis of this set of coupled equations, start with (III.17.a). Rewriting equation (III.17.a) 

generates (III.18). 

𝜕𝑁

𝜕𝑡
= ∇ ∙ (𝐷∇𝑁) + 𝑘𝑁 −

𝑘𝑁2

𝜃∗
                       (III.18) 

Once again, using the Galerkin Method of Weighted Residuals, equations (III.18) is multiplied with 𝜙𝑖 

[96]. Also, the 〈∗〉 represents integration over the problem domain; 𝜙𝑖, is the ith member of the standard 𝐶° 

local Lagrange polynomial interpolants associated with finite elements [70]. 

〈
𝜕𝑁

𝜕𝑡
, 𝜙𝑖〉 = 〈∇ ∙ (𝐷∇𝑁), 𝜙𝑖〉 + 〈𝑘𝑁, 𝜙𝑖〉 − 〈

𝑘𝑁2

𝜃∗
, 𝜙𝑖〉         (III.19) 

The divergence and gradient integral identity for the second derivative term is (III.20). 

〈∇ ∙ (𝐷∇𝑁), 𝜙𝑖〉 = ∮𝐷�̂� ∙ 𝛻𝑁𝜙𝑖𝑑𝑠 = 〈𝜙𝑖∇ ∙ 𝐷∇𝑁〉 + 〈𝐷∇𝑁 ∙ ∇𝜙𝑖〉        (III.20) 

This leads to the weak form of (III.19). Recall, ∮∗ represents the integration over the problem domain 

boundary, and �̂� represents the outward-pointing normal to the boundary. 

〈
𝜕𝑁

𝜕𝑡
, 𝜙𝑖〉 = −〈𝐷∇𝑁 ∙ ∇𝜙𝑖〉 + ∮𝐷�̂� ∙ 𝛻𝑁𝜙𝑖𝑑𝑠 + 〈𝑘𝑁,𝜙𝑖〉 − 〈

𝑘𝑁2

𝜃∗
, 𝜙𝑖〉                               (III.21) 

Rewriting (III.21) generates (III.22). 

〈
𝜕𝑁

𝜕𝑡
, 𝜙𝑖〉 + 〈𝐷∇𝑁 ∙ ∇𝜙𝑖〉 − 〈𝑘𝑁, 𝜙𝑖〉 + 〈

𝑘𝑁2

𝜃∗
, 𝜙𝑖〉 = ∮𝐷�̂� ∙ 𝛻𝑁𝜙𝑖𝑑𝑠              (III.22) 

Equations (III.22) is integrated in time with two-point weighting. In this expression 0 ≤ 𝜃 ≤ 1 and ∆𝑡 =

𝑡𝑛+1 − 𝑡𝑛. 

∫ 𝑓(𝑡)𝑑𝑡 = ∆𝑡 [𝜃𝑓(𝑡𝑛+1
𝑡𝑛+1
𝑡𝑛

) + (1 − 𝜃)𝑓(𝑡𝑛)]             (III.6) 

Unlike previously, here the system is treated as fully explicit, i.e. 𝜃 = 0. Therefore (III.6) is simplified to 

(III.23). 

∫ 𝑓(𝑡)𝑑𝑡 = ∆𝑡 [
𝑡𝑛+1
𝑡𝑛

𝑓(𝑡𝑛)]           (III.23) 

The fully explicit representation of (III.22) is (III.24). 

〈𝑁𝜙𝑖〉
𝑘+1 − 〈𝑁𝜙𝑖〉

𝑘 + ∆𝑡〈𝐷∇𝑁 ∙ ∇𝜙𝑖〉
𝑘 − ∆𝑡〈𝑘𝑁𝜙𝑖〉

𝑘 + ∆𝑡 〈
𝑘𝑁2

𝜃∗
𝜙𝑖〉

𝑘 = ∆𝑡[∮𝐷�̂� ∙ 𝛻𝑁𝜙𝑖𝑑𝑠]
k  (III.24) 

The spatial discretization of (III.24) is completed by expanding the unknown variable as the summation of 

unknown coefficients, which are time-varying, multiplied by known functions of position [96]. 

𝑁(𝑥, 𝑦, 𝑧, 𝑡) ≈ �̂�(𝑥, 𝑦, 𝑧, 𝑡) = ∑ 𝑁𝑗(𝑡)𝜙𝑗(𝑥, 𝑦, 𝑧)
𝑀
𝑗=1                            (III.25.a) 

𝜕�̂�

𝜕𝑥
= ∑ 𝑁𝑗

𝜕𝜙𝑗

𝜕𝑥
𝑁
𝑗=1                                        (III.25.b) 

𝜕�̂�

𝜕𝑦
= ∑ 𝑁𝑗

𝜕𝜙𝑗

𝜕𝑦
𝑁
𝑗=1                                        (III.25.c) 

𝜕�̂�

𝜕𝑧
= ∑ 𝑁𝑗

𝜕𝜙𝑗

𝜕𝑧
𝑁
𝑗=1                                        (III.25.d) 
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Plugging in these discretized representations into (III.24) generates (III.26). 

∑ 𝑁𝑗〈𝜙𝑗𝜙𝑖〉
𝑘+1𝑁

𝑗=1 = ∑ 𝑁𝑗〈𝜙𝑗𝜙𝑖〉
𝑘𝑁

𝑗=1 − ∆𝑡∑ 𝑁𝑗〈𝐷∇𝜙𝑗 ∙ ∇𝜙𝑖〉
𝑘𝑁

𝑗=1 + ∆𝑡∑ 𝑁𝑗〈𝑘𝜙𝑗𝜙𝑖〉
𝑘𝑁

𝑗=1 −  

         ∆𝑡 ∑ 𝑁𝑗
2 〈

𝑘

𝜃∗
𝜙𝑗𝜙𝑖〉

𝑘𝑁
𝑗=1 + ∆𝑡[∮𝐷�̂� ∙ ∇𝑁𝜙𝑖𝑑𝑠]

𝑘        (III.26) 

For simplification, these terms can be condensed in matrix notation. In order to do this, matrix terms are 

defined in (III.27.a) through (III.27.d).  

𝑀𝑖𝑗 = 〈𝜙𝑗𝜙𝑖〉                                (III.27.a) 

𝐿𝑖𝑗 = 〈𝐷∇𝜙𝑗 ∙ ∇𝜙𝑖〉 − 𝑘𝑀𝑖𝑗                              (III.27.b) 

𝐻𝑖𝑗 =
𝑘

𝜃∗
𝑀𝑖𝑗                                  (III.27.c) 

{𝑟} = 𝑟𝑖𝑔ℎ𝑡 ℎ𝑎𝑛𝑑 𝑠𝑖𝑑𝑒 𝑡𝑒𝑟𝑚                              (III.27.d) 

Rewriting (III.26) with matrix terms yields (III.28). 

[𝑀]{𝑁𝑘+1} = [𝑀 − ∆𝑡𝐿]{𝑁𝑘} − [∆𝑡𝐻]{𝑁𝑘}2 + {𝑟}         (III.28) 

This can be further regrouped and condensed to obtain (III.29). 

[𝐴𝑁]{𝑁
𝑘+1} = {𝑏𝑁

𝑘}                         (III.29) 

 

Mechanical Coupling Equation (III.17.c) 

Next, analysis is started on the third governing equation. Using the Galerkin Method of Weighted Residuals, 

equation (III.17.c) is multiplied with 𝜙𝑖  [96].  

〈∇ ∙ 𝐺∇�⃗� , 𝜙𝑖〉 + 〈∇
𝐺

1−2𝜈
(∇ ∙ �⃗� ), 𝜙𝑖〉 − 〈λ∇𝑁,𝜙𝑖〉 = 0         (III.30) 

Using the divergence and gradient integral identities, (III.3.a) and (III.3.b), the weak form of (III.30) is 

(III.31). 

〈𝐺∇�⃗� ∙ ∇𝜙𝑖〉 + 〈
𝐺

1−2𝜈
(∇ ∙ �⃗� )∇𝜙𝑖〉 + 〈λ∇𝑁𝜙𝑖〉 = ∮G�̂� ∙ ∇�⃗� 𝜙𝑖𝑑𝑠 + ∮

𝐺

1−2𝜈
�̂�(∇ ∙ �⃗� )𝜙𝑖𝑑𝑠   (III.31) 

The spatial discretization of (III.32) is completed by expanding the unknown variables as the summation 

of unknown coefficients multiplied by known functions of position [96]. 

�⃗� (𝑥, 𝑦, 𝑧) ≈ ∑ 𝑢𝑗⃗⃗  ⃗
𝑁
𝑗=1 𝜙𝑗(𝑥, 𝑦, 𝑧)                                      (III.32.a) 

𝑁(𝑥, 𝑦, 𝑧) ≈ ∑ 𝑁𝑗𝜙𝑗(𝑥, 𝑦, 𝑧)
𝑁
𝑗=1                                                 (III.32.b) 

Plugging in (III.32.a) and (III.32.b) into (III.31) generates the discretized form, (III.33). 

∑ 𝑢𝑗⃗⃗  ⃗
𝑁
𝑗=1 〈𝐺∇𝜙𝑗 ∙ ∇𝜙𝑖〉 + ∑ 𝑢𝑗⃗⃗  ⃗

𝑁
𝑗=1 〈

𝐺

1−2𝜈
(∇ ∙ 𝜙𝑗)∇𝜙𝑖〉 + ∑ 𝑁𝑗

𝑁
𝑗=1 〈λ∇𝜙𝑗𝜙𝑖〉 =  

          ∮
𝐺

1−2𝜈
�̂�(∇ ∙ �⃗� )𝜙𝑖𝑑𝑠 + ∮G�̂� ∙ ∇�⃗� 𝜙𝑖𝑑𝑠         (III.33) 

 

Total Governing Equation Representation 
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Combining the cellular and linear elastic relationships generates the final representation of this finite 

element problem. The fully explicit forward Euler representation is (III.34) [98]. 

[𝐴]{�̅�}𝑡+∆𝑡 = {𝑏(�̅�)}𝑡             (III.34) 

The Coupled Solution Vector represented by �̅� is (III.35) [98]. 

{�̅�} = {

𝑢
𝑣
𝑤
𝑁

}              (III.35) 

The local stiffness matrix, 𝐴, from (III.34) is (III.36). 

𝐴𝑖𝑗 =

[
 
 
 
 
 𝐺 〈

2(1−𝑣)

1−2𝑣

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 𝐺 〈

2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑦
〉 …

𝐺 〈
2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑥
〉 𝐺 〈

2(1−𝑣)

1−2𝑣

𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 …

𝐺 〈
2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑧
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑥
〉 𝐺 〈

2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑧
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑦
〉 …

0 0 …

  

          

… 𝐺 〈
2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑧
〉 λ 〈

𝜕𝜙𝑗

𝜕𝑥
𝜙𝑖〉

… 𝐺 〈
2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑧
〉 λ 〈

𝜕𝜙𝑗

𝜕𝑦
𝜙𝑖〉

… 𝐺 〈
2(1−𝑣)

1−2𝑣

𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
+
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
〉 λ 〈

𝜕𝜙𝑗

𝜕𝑧
𝜙𝑖〉

… 0 𝐴𝑁 ]
 
 
 
 
 

       (III.36) 

The subvector which composes 𝑏 from (III.34) is (III.37). 

𝑏𝑖 =

{
 
 

 
 𝑥 ∙ ∮𝜎(𝑡 + ∆𝑡) ∙ �̂�𝜙𝑖𝑑𝑠

�̂� ∙ ∮ 𝜎(𝑡 + ∆𝑡) ∙ �̂�𝜙𝑖𝑑𝑠

�̂� ∙ ∮ 𝜎(𝑡 + ∆𝑡) ∙ �̂�𝜙𝑖𝑑𝑠

𝑏𝑁 + ∆𝑡 ∮𝐷∇𝑁(𝑡 + ∆𝑡) ∙ �̂�𝜙𝑖𝑑𝑠}
 
 

 
 

         (III.37) 

 

III.2.4     Model of Tumor Cavity Collapse from Resection  

The modeling of brain shift from cavity collapse caused by tumor resection (debulking) involves three 

distinct finite element models. The first of which is a reaction-diffusion model of tumor growth. The second 

is a model which enables the pressure associated with edema from the grown tumor to be calculated. This 

edema calculation is not necessary for cavity collapse to occur, but permits an additional aspect of tumor 

growth to be accounted for in this description of cavity collapse. Finally, the displacements associated with 

the full tumor present or with the tumor resected are calculated two separate times using the same finite 

element model. The first calculation is solving for the displacements of the brain parenchyma, treated like 

a linear elastic material, when the tumor is still present. The second calculation is solving for the 

displacements of the brain parenchyma after a portion of the tumor has been resected. The displacement 
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profile associated with resection cavity collapse, referred to as debulking, is equal to the difference between 

the displacement solution calculated when the tumor is present and when the tumor has been resected.   

 

Reaction-Diffusion Model of Tumor Growth 

The governing equation, which describes tumor growth, is (III.38). In Equation (III.38), C is the tumor cell 

concentration, t is time, k is the tumor cell proliferation rate, D is the tumor cell diffusion rate, and 𝜃∗ is the 

cellular carrying capacity [98]. 

𝜕𝐶

𝜕𝑡
= ∇ ∙ (𝐷∇𝐶) + 𝑘𝐶 (1 −

𝐶

𝜃∗
)            (III.38) 

In a method analogous to the steps outlined in equations (III.18) through (III.22), Equation (III.38) can be 

rewritten, weighted, and transformed into its weak form shown below in equation (III.39).  

〈
𝜕𝐶

𝜕𝑡
, 𝜙𝑖〉 + 〈𝐷∇𝐶 ∙ ∇𝜙𝑖〉 − 〈𝑘𝐶, 𝜙𝑖〉 + 〈

𝑘𝐶2

𝜃∗
, 𝜙𝑖〉 = ∮𝐷�̂� ∙ 𝛻𝐶𝜙𝑖𝑑𝑠                   (III.39) 

The spatial discretization of (III.39) is completed by expanding the unknown variable as the summation of 

unknown coefficients, which are time-varying, multiplied by known functions of position [96]. 

𝐶(𝑥, 𝑦, 𝑧, 𝑡) ≈ �̂�(𝑥, 𝑦, 𝑧, 𝑡) = ∑ 𝐶𝑗(𝑡)𝜙𝑗(𝑥, 𝑦, 𝑧)
𝑀
𝑗=1          (III.40) 

Rewriting (III.39) results in (III.41) [96]. 

[𝑀] {
𝜕𝐶

𝜕𝑡
} = [𝐾𝐿]{𝐶𝑗} + [𝐾𝑁]{𝐶𝑗}

2
+ {𝑟}          (III.41) 

In (III.41), [𝑀], [𝐾𝐿], and [𝐾𝑁] are (III.42.a), (III.42.b), and (III.42.c) respectively. 

𝑀𝑖𝑗 = 〈𝜙𝑗𝜙𝑖〉                                    (III.42.a) 

𝐾𝐿𝑖𝑗 = −〈𝐷∇𝜙𝑗 ∙ ∇𝜙𝑖〉 + 〈𝑘𝜙𝑗𝜙𝑖〉                                           (III.42.b) 

𝐾𝑁𝑖𝑗 = 〈
𝑘

𝜃∗
𝜙𝑗𝜙𝑖〉                                              (III.42.c) 

Integrating (III.41) in time with two point weighting, and treating it as fully explicit (𝜃 = 0), (III.43) is 

obtained. 

[𝑀]{𝐶𝑘+1} = [𝑀]{𝐶𝑘} + ∆𝑡[𝐾𝐿]{𝐶𝑗
𝑘} − ∆𝑡[𝐾𝑁]{𝐶𝑗

𝑘}
2
+ {𝑟}       (III.43) 

In (III.43), the local vector for 𝑟 is (III.44). 

𝑟𝑖 = [∮𝐷�̂� ∙ ∇𝐶𝜙𝑖𝑑𝑠]             (III.44) 

The local matrices for 𝑀𝑖𝑗 , 𝐾𝑁𝑖𝑗,and 𝐾𝐿𝑖𝑗 are (III.45), (III.46), and (III.47) respectively. 𝑀𝑖𝑗 is the 

expression of 〈𝜙𝑗𝜙𝑖〉, and the lumped treatment of the mass matrix is (III.45). 𝐾𝑁𝑖𝑗 is the nonlinear term, 

〈
𝑘

𝜃∗
𝜙𝑗𝜙𝑖〉. 𝐾𝐿𝑖𝑗 is the linear term, −〈𝐷∇𝜙𝑗 ∙ ∇𝜙𝑖〉 + 〈𝑘𝜙𝑗𝜙𝑖〉. 

𝑀𝑖𝑗 = [

𝑉/4 0 0 0
0 𝑉/4 0 0
0 0 𝑉/4 0
0 0 0 𝑉/4

]          (III.45) 
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𝐾𝑁𝑖𝑗  =
𝑘

𝜃∗
[

𝑉/10 𝑉/20 𝑉/20 𝑉/20
𝑉/20 𝑉/10 𝑉/20 𝑉/20
𝑉/20 𝑉/20 𝑉/10 𝑉/20
𝑉/20 𝑉/20 𝑉/20 𝑉/10

]          (III.46) 

𝐾𝐿𝑖𝑗 =

[
 
 
 
 
 
 −𝐷 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘

𝑉

10
−𝐷 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘

𝑉

20
…

−𝐷 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘

𝑉

20
−𝐷 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘

𝑉

10
…

−𝐷 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘

𝑉

20
−𝐷 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘

𝑉

20
…

−𝐷 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘

𝑉

20
−𝐷 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘

𝑉

20
…

  

          

… −𝐷 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘

𝑉

20
−𝐷 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘

𝑉

20

… −𝐷 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘

𝑉

20
−𝐷 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘

𝑉

20

… −𝐷 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘

𝑉

10
−𝐷 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘

𝑉

20

… −𝐷 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘

𝑉

20
−𝐷 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘

𝑉

10]
 
 
 
 
 
 

  (III.47) 

 

Model of Pressure Based on the Tumor’s Edema 

This finite element model accounts for two scenarios: when there is edema present and when there is not 

edema present. Depending on the nature of the element in the mesh (edema or not), one of the two governing 

equations is used to characterize the specific element. This enables edema to be enforced locally, congruent 

with tumors having local areas of edema versus widespread edema. The governing equation used to model 

pressure when edema from the tumor is present is (III.48.a). In equations (III.48.a) and (III.48.b), p is 

pressure, k is hydraulic conductivity, kc is capillary permeability, and pc is intracapillary pressure [64]. 

−∇ ∙ 𝑘∇𝑝 + 𝑘𝑐(𝑝 − 𝑝𝑐) = 0                              (III.48.a) 

The governing equation when edema is not present is (III.48.b).  

−∇ ∙ 𝑘∇𝑝 = 0                                (III.48.b) 

Again, using the Galerkin Method of Weighted Residuals, equations (III.48.a) and (III.48.b) are multiplied 

with 𝜙𝑖 [96]. Recall 〈∗〉 represents integration over the problem domain. Also, 𝜙𝑖 is the ith member of the 

standard 𝐶° local Lagrange polynomial interpolants [70]. 

〈−∇ ∙ 𝑘∇𝑝, 𝜙𝑖〉 + 〈𝑘𝑐(𝑝 − 𝑝𝑐), 𝜙𝑖〉 = 0                             (III.49.a) 

〈−∇ ∙ 𝑘∇𝑝, 𝜙𝑖〉 = 0                                          (III.49.b) 

The divergence and integral identity for the second derivative term is (III.50). 

〈∇ ∙ (𝑘∇𝑝𝜙𝑖)〉 = ∮k �̂� ∙ ∇𝑝𝜙𝑖𝑑𝑠 = 〈𝜙𝑖∇ ∙ 𝑘∇𝑝〉 + 〈𝑘∇𝑝 ∙ ∇𝜙𝑖〉        (III.50) 
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This leads to the weak form of (III.49.a) and (III.49.b). Recall, ∮∗ represents the integration over the 

problem domain boundary, and �̂� represents the outward-pointing normal to the boundary. The weak form 

of (III.49.a) is (III.51.a). 

〈𝑘∇𝑝 ∙ ∇𝜙𝑖〉 + 〈𝑘𝑐(𝑝 − 𝑝𝑐), 𝜙𝑖〉 = ∮𝑘 �̂� ∙ ∇𝑝𝜙𝑖𝑑𝑠                            (III.51.a) 

The weak form of (III.49.b) is (III.51.b). 

〈𝑘∇𝑝 ∙ ∇𝜙𝑖〉 = ∮ 𝑘 �̂� ∙ ∇𝑝𝜙𝑖𝑑𝑠                                        (III.51.b) 

The spatial discretization of (III.51.a) and (III.51.b) is completed by expanding the unknown variable as 

the summation of unknown coefficients multiplied by known functions of position [96]. 

𝑝(𝑥, 𝑦, 𝑧) ≈ ∑ 𝑝𝑗𝜙𝑗(𝑥, 𝑦, 𝑧)
𝑁
𝑗=1             (III.52) 

Plugging (III.52) into (III.51.a) and (III.51.b) generates (III.53.a) and (III.53.b). 

∑ 𝑝𝑗〈𝑘∇𝜙𝑗 ∙ ∇𝜙𝑖〉
𝑁
𝑗=1 + ∑ 𝑝𝑗〈𝑘𝑐(𝜙𝑗 − 𝑝𝑐), 𝜙𝑖〉

𝑁
𝑗=1 = ∮𝑘 �̂� ∙ ∇𝑝𝜙𝑖𝑑𝑠                          (III.53.a) 

∑ 𝑝𝑗〈𝑘∇𝜙𝑗 ∙ ∇𝜙𝑖〉
𝑁
𝑗=1 = ∮𝑘 �̂� ∙ ∇𝑝𝜙𝑖𝑑𝑠                             (III.53.b) 

For simplification in a matrix representation of this model, (III.54.a) through (III.54.d) represent the 

matrices and vectors associated with this problem. 

𝐴𝑖𝑗𝑎 = 〈𝑘∇𝜙𝑗 ∙ ∇𝜙𝑖〉 + 〈𝑘𝑐𝜙𝑗𝜙𝑖〉                             (III.54.a) 

𝐴𝑖𝑗𝑏 = 〈𝑘∇𝜙𝑗 ∙ ∇𝜙𝑖〉                                          (III.54.b) 

𝑏𝑖𝑎 = 〈𝑘𝑐𝑝𝑐𝜙𝑖〉 + ∮𝑘 �̂� ∙ ∇𝑝𝜙𝑖𝑑𝑠                                        (III.54.c) 

𝑏𝑖𝑏 = ∮𝑘 �̂� ∙ ∇𝑝𝜙𝑖𝑑𝑠                                         (III.54.d) 

Using this notation (III.53.a) and (III.53.b) can be rewritten in matrix notation as (III.55.a) and (III.55.b). 

𝐴𝑖𝑗𝑎{𝑝𝑗} = {𝑏𝑖𝑎}                                 (III.55.a) 

𝐴𝑖𝑗𝑏{𝑝𝑗} = {𝑏𝑖𝑏}                                 (III.55.b) 

The local matrices for 𝐴𝑖𝑗𝑎  and 𝐴𝑖𝑗𝑏 are (III.56.a) and (III.56.b) respectively. 

𝐴𝑖𝑗𝑎 =

[
 
 
 
 
 
 𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘𝑐

𝑉

10
𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘𝑐

𝑉

20
…

𝑘 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘𝑐

𝑉

20
𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘𝑐

𝑉

10
…

𝑘 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘𝑐

𝑉

20
𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘𝑐

𝑉

20
…

𝑘 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘𝑐

𝑉

20
𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘𝑐

𝑉

20
…

   

          

… 𝑘 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘𝑐

𝑉

20
𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘𝑐

𝑉

20

… 𝑘 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘𝑐

𝑉

20
𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘𝑐

𝑉

20

… 𝑘 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘𝑐

𝑉

10
𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘𝑐

𝑉

20

… 𝑘 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘𝑐

𝑉

20
𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 + 𝑘𝑐

𝑉

10]
 
 
 
 
 
 

           (III.56.a) 
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𝐴𝑖𝑗𝑏 =

[
 
 
 
 
 
 𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 …

𝑘 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 …

𝑘 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 …

𝑘 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 …

  

          

… 𝑘 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉

… 𝑘 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉

… 𝑘 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉

… 𝑘 〈
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 𝑘 〈

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉]
 
 
 
 
 
 

                        (III.56.b) 

The local vectors for 𝑏𝑖𝑎 and 𝑏𝑖𝑏 are (III.57.a) and (III.57.b) respectively. 

𝑏𝑖𝑎 = {〈𝑘𝑐𝑝𝑐𝜙𝑖〉 + ∮ 𝑘 �̂� ∙ ∇𝑝𝜙𝑖𝑑𝑠}                              (III.57.a) 

𝑏𝑖𝑏 = {∮𝑘 �̂� ∙ ∇𝑝𝜙𝑖𝑑𝑠}                                                       (III.57.b) 

 

Displacements with and without the Tumor Present 

The governing equation to calculate the parenchyma displacements when a tumor is or is not present is 

(III.58). An isotropic Hookean linear elastic constitutive model is assumed. The constant coefficients 𝛼 and 

𝛽 are empirically derived constants which dictate the amount of influence the tumor cells and edema have 

respectively [91]. 𝐺 is the tissue shear modulus, and 𝜈 is the Poisson’s ratio [92]. 

∇ ∙ 𝜎 = 𝛼∇𝐶 + 𝛽∇𝑝             (III.58) 

Equation (III.58) can be rewritten as (III.59). 

∇ ∙ 𝐺∇�⃗� + ∇
𝐺

1−2𝜈
(∇ ∙ �⃗� ) = 𝛼∇𝐶 + 𝛽∇𝑝           (III.59) 

With the Galerkin Method of Weighted Residuals, equations (III.59) is multiplied with 𝜙𝑖 (a spatially-

continuous weighting function) [96]. Recall 〈∗〉 represents integration over the problem domain. Once 

again, 𝜙𝑖 is the ith member of the standard 𝐶° local Lagrange polynomial interpolants associated with finite 

elements [70]. 

〈∇ ∙ 𝐺∇�⃗� , 𝜙𝑖〉 + 〈∇
𝐺

1−2𝜈
(∇ ∙ �⃗� ), 𝜙𝑖〉 = 〈α∇𝐶, 𝜙𝑖〉 + 〈β∇𝑝, 𝜙𝑖〉        (III.60) 

Use the divergence and gradient integral identities (III.3.a) and (III.3.b). The weak form of (III.60) is 

(III.61). 

〈𝐺∇�⃗� ∙ ∇𝜙𝑖〉 + 〈
𝐺

1−2𝜈
(∇ ∙ �⃗� )∇𝜙𝑖〉 = ∮

𝐺

1−2𝜈
�̂�(∇ ∙ �⃗� )𝜙𝑖𝑑𝑠 + ∮G�̂� ∙ ∇�⃗� 𝜙𝑖𝑑𝑠 − 〈α∇𝐶, 𝜙𝑖〉 − 〈β∇𝑝, 𝜙𝑖〉  

             (III.61) 
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The spatial discretization of (III.61) is completed by expanding the unknown variable as the summation of 

unknown coefficients multiplied by known functions of position [96]. 

�⃗� (𝑥, 𝑦, 𝑧) ≈ ∑ 𝑢𝑗⃗⃗  ⃗
𝑁
𝑗=1 𝜙𝑗(𝑥, 𝑦, 𝑧)           (III.62) 

Plugging (III.62) into (III.61), generates (III.63). 

∑ 𝑢𝑗⃗⃗  ⃗
𝑁
𝑗=1 〈𝐺∇𝜙𝑗 ∙ ∇𝜙𝑖〉 + ∑ 𝑢𝑗⃗⃗  ⃗

𝑁
𝑗=1 〈

𝐺

1−2𝜈
(∇ ∙ 𝜙𝑗)∇𝜙𝑖〉 =  

          ∮
𝐺

1−2𝜈
�̂�(∇ ∙ �⃗� )𝜙𝑖𝑑𝑠 + ∮G�̂� ∙ ∇�⃗� 𝜙𝑖𝑑𝑠 − 〈α∇𝐶, 𝜙𝑖〉 − 〈β∇𝑝, 𝜙𝑖〉       (III.63) 

The matrix representation of this problem is (III.64). 

𝐴𝑖𝑗𝑈 = 𝑏𝑖              (III.64) 

The local submatrix that composes 𝐴𝑖𝑗 is (III.65). 

𝐴𝑖𝑗 =

[
 
 
 
 𝐺 〈

2(1−𝑣)

1−2𝑣

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 𝐺 〈

2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑦
〉 …

𝐺 〈
2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑥
〉 𝐺 〈

2(1−𝑣)

1−2𝑣

𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
〉 …

𝐺 〈
2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑧
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑥
〉 𝐺 〈

2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑧
+
𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑦
〉 …

    

          

… 𝐺 〈
2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑧
〉

… 𝐺 〈
2𝑣

1−2𝑣

𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑦
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑧
〉

… 𝐺 〈
2(1−𝑣)

1−2𝑣

𝜕𝜙𝑗

𝜕𝑧

𝜕𝜙𝑖

𝜕𝑧
+
𝜕𝜙𝑗

𝜕𝑥

𝜕𝜙𝑖

𝜕𝑥
+
𝜕𝜙𝑗

𝜕𝑦

𝜕𝜙𝑖

𝜕𝑦
〉]
 
 
 
 

           (III.65) 

The local subvector that composes 𝑏𝑖 is (III.66). 

𝑏𝑖 = {

𝑥 ∙ ∮ 𝜎𝑠(𝑡𝑛+𝜃) ∙ �̂�𝜙𝑖𝑑𝑠 − 𝛼∇𝐶〈𝜙𝑖〉 − 𝛽∇𝑝〈𝜙𝑖〉

�̂� ∙ ∮ 𝜎𝑠(𝑡𝑛+𝜃) ∙ �̂�𝜙𝑖𝑑𝑠 − 𝛼∇𝐶〈𝜙𝑖〉 − 𝛽∇𝑝〈𝜙𝑖〉

�̂� ∙ ∮ 𝜎𝑠(𝑡𝑛+𝜃) ∙ �̂�𝜙𝑖𝑑𝑠 − 𝛼∇𝐶〈𝜙𝑖〉 − 𝛽∇𝑝〈𝜙𝑖〉

}         (III.66) 

 

Cavity Collapse 

The cavity collapse, or debulking phenomenon, is calculated by subtracting the displacement solution when 

the tumor is present (𝑇𝑥𝑦𝑧) from the displacement solution when the tumor has been resected (𝑇𝑥𝑦𝑧𝑟). Since 

there are nodes in the mesh that exist in the non-resected solution, which are decoupled from the mesh in 

the resection solution, those nodes are decoupled in the displacement debulking solution (𝑇𝑥𝑦𝑧𝑑𝑒𝑏𝑢𝑙𝑘) as 

well. 

𝑇𝑥𝑦𝑧𝑑𝑒𝑏𝑢𝑙𝑘 = 𝑇𝑥𝑦𝑧 − 𝑇𝑥𝑦𝑧𝑟           (III.67) 

 

III.3     Optimization Methods 
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III.3.1     Optimization Introduction 

Optimization is defined as either the maximization of or minimization of a given function based on a defined 

problem [99]. This can be represented by equation (III.68). In (III.68), 𝑥 is the vector of unknowns, 𝑔 is the 

objective function being minimized, and 𝑎𝑖 are the constraint functions that 𝑥 must satisfy. 𝜀 is a set of 

indices for the equality constraints, and 𝜉 is a set of indices for the inequality constraints [99]. 

min
𝑥∈𝑅𝑛

𝑔(𝑥)      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      
𝑎𝑖(𝑥) = 0,    𝑖 ∈ 𝜀 

𝑎𝑖(𝑥) ≥ 0,    𝑖 ∈ 𝜉
          (III.68) 

     There are numerous types of optimization including Newton’s method, the Golden section method, 

conjugate gradient method, and Nelder-Mead simplex method to name a few. Generally, the algorithm of 

optimization methods is as follows. An initial guess of the solution of the unknown variable (𝑥) is used to 

start the iterative optimization method. The given optimization method iterates as it generates improved 

estimates of 𝑥. Based on the method selected and/or user defined criteria the iterative process should 

terminate at the best solution possible. Usually the outputs of the objective function at each iteration are 

used in some manner to determine the next estimate [99]. The selection of the method type is dependent on 

the nature of the problem being optimized. For all three aims of this thesis, optimization was employed as 

a part of the methodology.  

     Aims 1 and 2 used two related methods, the trust region and Levenberg-Marquardt methods. In Aim 1, 

the trust region method was used. The material properties of the poroelastic model of the brain (Equations 

(III.1.a) and (III.1.b)) were estimated to minimize the difference between measured interstitial pressure and 

the simulated pressure [91]. The objective function in Aim 1 was a relative sum-squared error metric 

between the experimentally measured pressure transients and the model calculated pressure transients [91]. 

In Aim 2, the Levenberg-Marquardt optimization method was used [92]. The tumor cell diffusion 

coefficient and tumor cell proliferation rate in Equations (III.17.a) and (III.17.b) were estimated to minimize 

the difference between the observed tumor cellularity and the model estimated tumor cellularity [92]. The 

objective function, which was minimized, was the sum-squared error between the observed and model 

calculated cellularity [92]. Both of these methods were selected because they combine the speed benefits 

of Newton-like methods, with the reliability benefits of steepest descent methods. This proved important 

given the in vivo and patient data used to drive both aims. These related methods are robust and converged 

without stagnation in both aims.  

     The optimization method used in Aim 3 was distinct; Aim 3 used a constrained least-squared 

minimization method. The purpose of optimization in this aim was to use the deformation atlas to generate 

a combinatory solution correcting for the measured brain shift [94]. The least-squared error between the 

measured brain shift and model estimated brain shift is minimized. The objective function of this problem 

is shown in Equation (III.69). In (III.69) 𝑎 are the non-negative regression coefficients being solved for, 
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𝑢𝑠𝑝𝑎𝑟𝑠𝑒 are the measured brain shifts, and 𝑀 is a matrix containing the model generated deformation atlas 

[94]. The inverse problem was constrained such that the 𝑎 coefficients must be non-negative and their sum 

must be less than or equal to one. This was done to ensure the directionality of the calculated displacements 

are not inverted, which would change their physical meanings, and prevent extrapolation of a single solution 

[94]. Essentially, these constraints on the regression coefficients being solved for prevent unreasonable 

model-predicted deformations from being selected as the solution to the optimization problem. 

𝑚𝑖𝑛‖𝑀𝑎 − 𝑢𝑠𝑝𝑎𝑟𝑠𝑒‖
2
∃𝑎𝑖 ≥ 0 𝑎𝑛𝑑 ∑ 𝑎𝑖 ≤ 1 

𝑚
𝑖=1                      (III.69) 

 Overall, the optimization method selections were made based on the nature of the data and what was being 

solved for (property values or weighting coefficients) in each aim. Detailed specifics of the trust region and 

Levenberg-Marquardt optimization method and the constrained least-squared minimization are in sections 

(III.3.2) and (III.3.3) respectively.  

 

III.3.2     Trust Region and Levenberg – Marquardt 

The trust region method is a combination of the Newton method and the steepest descent method [100]. 

When a region is not trustworthy, the algorithm behaves like a steepest descent method. On the other hand, 

when the region is trusted, the algorithm behaves like a Newton method. This behavior makes the method 

extremely robust. For a defined model, 𝑚𝑘 , near a given point, 𝑥𝑘, there exists a trust region, 𝐷𝑘, with a 

trust radius of ∆𝑘 (Figure III. 5 Panel (a)). Also let 𝑝 = 𝑥 − 𝑥𝑘. The trust region method is solving equation 

(III.70). One of three general step sizes can be taken (Figure III. 5 Panel (b)) during the iterative process to 

locate the minimizer of a given function. A small ∆𝑘 is similar to a steepest descent direction, a large ∆𝑘 is 

similar to a Newton step, and a moderate ∆𝑘 is between these two step types [100]. For each step, the actual 

 

 

Figure III. 5: This reflects features of trust region methods. Panel (a) illustrates a trust region (Dk), with a trust radius 

of Δk in the neighborhood of xk. Panel (b) demonstrates the possible trust radius selections (small, moderate, large) in 

order to find the minimizer of a function mk(x). 
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reduction in function value is computed using the previous and current estimate of the minimizer. This 

reduction is compared to the reduction predicted by the model. The size of the trust radius, ∆𝑘, is iteratively 

contracted or expanded based on how well the model (𝑚𝑘) of the function predicted a decrease in function 

value [100]. 

min  𝑚𝑘(𝑥
𝑘 + 𝑝),          ‖𝑝‖ ≤ ∆𝑘           (III.70) 

     The Levenberg-Marquardt method is another perspective of the trust region method, as it operates on 

the same general principle [99]. In this algorithm, 𝜆∗ is called the Levenberg-Marquardt parameter or the 

Lagrange multiplier. Rather than operating on ∆𝑘, like in trust region, Levenberg-Marquardt operates on 

𝜆∗. These values are related. A small trust radius corresponds to a large Lagrange multiplier [99]. Both of 

these related nonlinear optimization techniques are robust. 

 

III.3.3     Constrained Least-Squared Minimization 

Constrained optimization techniques are used when a pre-existing limitation about the problem is known 

and must be enforced. Generally, least-squared minimization is the minimization of the residual between 

the measured values and the model predicted values [99]. In the specific optimization performed for Aim 

3, this residual is the difference between predicted brain shifts, which are a linear combination of a 

precomputed atlas of deformations, and the measured brain shifts. The complexity arises from enforcing 

the constraint that the estimated coefficients must be non-negative and sum to less than or equal to one.  

     The fundamental principle of constrained optimization is that if there is a local minimizer (𝑥∗) of a 

function (𝑓) within a feasible set (𝑆), which is defined by the constraints, as you move away from the local 

minimizer within the feasible set, the function value does not decrease [99]. Enforcing that some point (𝑥) 

is a member of the feasible set, a cone of attainable directions for 𝑆 at 𝑥 can be defined [99]. The constraint 

type being enforced here is an inequality constraint, which specifies a minimum of a function that satisfies 

inequality (≥) constraints that define the feasible set, 𝑆.   

     The Karush-Kuhn-Tucker Conditions (KKTC) for inequality constraints are as follows. In order for 𝑥∗ 

to be a local minimizer of a function, 𝑓, within the feasible set four conditions must be met. These tests can 

only be performed given that the function and any of the constraints enforced are continuous in their first 

derivative in the neighborhood being checked and the linear independence constraint qualification, or 

Kuhn-Tucker Constraint Qualification is met. The first condition is that 𝑥∗ is member of the feasible set 

and there are real Lagrange multipliers (𝜆1
∗ , … , 𝜆𝑚

∗ ) which satisfy the second, third, and fourth KKTC. The 

second condition is that the gradient of the function at 𝑥∗ is equal to the summation of the product of the 

Lagrange multipliers and the gradients of the constraints at 𝑥∗. The third condition is that the Lagrange 

multipliers must be greater than or equal to zero. The fourth condition is that the product of a given Lagrange 
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multiplier and its associated inequality constraint at 𝑥∗ must be equal to zero [99]. A simple example of this 

in practice is below.  

     Define function (Equation (III.71)) which is subject to the constraints specified. The problem is to find 

the minimum of this function subject to these constraints.  

𝑓(𝑥) = (𝑥1 − 7)
2 + (𝑥2 − 3)

2          𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥1 + 𝑥2 ≤ 9                              (III.71) 

The inequality can be expressed as 𝑔1(𝑥) = 9 − 𝑥1 − 𝑥2 ≥ 0. First, check that the linear independence 

constraint qualification is met. Since ∇𝑔1(𝑥) = (−1,−1)
𝑇 which is nonzero everywhere, the linear 

independence constraint qualification holds everywhere. In this problem, test the second condition of 

KKTC. This testing is visualized in equation (III.72). 

∇𝑓 = 𝜆1∇𝑔1 : [
2(𝑥1 − 7)
2(𝑥2 − 3)

] = 𝜆1 [
−1
−1
]                      (III.72) 

In order for the fourth condition of KKTC to hold true, either 𝜆1 = 0 or 𝑔1 = 0. First testing 𝜆1 = 0 in 

(III.72), the solution for the point is 𝑥1 = 7 and 𝑥2 = 3. This point needs to be checked with the first 

condition, 𝑔𝑖(𝑥
∗) ≥ 0. Substituting into 𝑔1(𝑥) = 9 − 𝑥1 − 𝑥2 ≥ 0, it is evident that 𝑔𝑖(𝑥

∗) is not greater 

than or equal to zero. Next, testing the 𝑔1 = 0 condition, a system of equations can be generated, shown in 

(III.73).  

2(𝑥1 − 7) + 𝜆1 = 0                               (III.73.a) 

2(𝑥2 − 3) + 𝜆1 = 0                               (III.73.b) 

𝑥1 + 𝑥2 = 9                                           (III.73.c) 

Solving the system of equations gives 𝑥1 =
13

2
, 𝑥2 =

5

2
, and 𝜆1 = 1. Checking this solution versus the third 

KKTC, since 𝜆1 ≥ 0, the condition is satisfied. Next, checking the solution versus the first KKTC, 𝑔1(𝑥) =

9 −
13

2
−
5

2
≥ 0, so it is satisfied. Therefore (

13

2
,
5

2
) is the only candidate for the constrained local minimizer. 

     The problem being solved in Aim 3 is more complex than the example presented, but since it is a 

constrained optimization, the same principles apply. Specifically, a constraint is being enforced on a least-

squared optimization method to ensure the quality of the solution within reason. 

 

III.4     Method Conclusions 

Overall the combined methods presented in this chapter reflect how the hypothesis of this thesis was 

investigated. As a whole, these clinically driven methodologies look into how enhanced anatomical brain 

models that account for tumors (primary and metastatic), improve the fidelity of biomechanical models of 

the brain. The data used was a combination of patient and animal cases, along with some simulation work. 

All of these individual aims shared the use of FEM and optimization techniques in order to evaluate the 

data in a patient and case specific manner.   
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CHAPTER IV 

 

IV     Enhanced Modeling of a Healthy Brain 

 

IV.1     Summary and Contributions 

The intent of this chapter was to enhance the modeling of normal brain biomechanics by incorporating 

realistic anatomical constraints and reconstructing material properties to more accurately represent 

compartmentalization within the brain. With interstitial pressure data from a porcine study, an inverse 

model was used to reconstruct material properties to capture in vivo brain tissue dynamics. The influence 

of three anatomical characteristics (the dural septa, the ventricles, and the treatment of the brain as a 

saturated media) of the brain were tested. To incrementally test these characteristics, four models were 

developed: the full anatomical condition description (FACD), the condition without dural septa description 

(CwoDSD), the condition without ventricle boundary description (CwoVBD), and the conventional fully 

saturated model description (CFSM).  

     The results of this investigation provided strong evidence for the ability of a biomechanical model with 

the proposed boundary conditions and material properties to accurately model in vivo interstitial pressures 

measured in a brain undergoing mock surgical loads. These results provided evidence that the poroelastic 

description of the parenchyma is uniquely appropriate for capturing the behavior of the brain under quasi-

static surgical conditions. The work presented in Section IV.2 also represents a novel, systematic 

investigation of anatomical mesh specifications and boundary conditions required to capture the 

compartmentalization of intracranial pressure. Furthermore, material property values necessary to describe 

the poroelastic model of the brain were estimated using an inverse problem formulation. This was 

necessary, since these material property values are not established in the literature. 

     The work in Section IV.2 highlights the importance of incorporating features, such as tissue 

heterogeneity, the ventricles, and the dural septa in biomechanical models of the brain. It also challenges 

conventional assumptions regarding poroelastic theory applied to brain biomechanics. The evacuation of 

intra-sulci/intra-fissure fluid into subarachnoid spaces, though not explicitly modelled, may have been 

better captured in our model through the addition of fluid-compliance. Though this conclusion cannot be 

definitively drawn from this work, our results make it evident that their inclusion resulted in the accurate 

capturing of interstitial pressure magnitudes, transient behavior, and importantly the pressure spatial 

gradients which has not been accomplished previously. Overall, this study demonstrated the use of finite 

element modeling with patient-specific meshing, material properties, and boundary conditions as a method 

to capture intracranial pressure compartmentalization and gradients in response to space-occupying 
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deformations. To the best of our knowledge the quality reconstructions accomplished in the full anatomical 

condition description have not been accomplished in other investigations of in vivo modeling of the brain. 
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IV.2     In Vivo Modeling of Interstitial Pressure in a Porcine Model: Approximation of 

Poroelastic Properties and Effects of Enhanced Anatomical Structure Modeling 

The work in this section appears in: 

Narasimhan, S., Weis, J. A., González, H. F. J., Thompson, R. C., Miga, M. I. (2018). “In Vivo modeling 

of interstitial pressure in a porcine model: approximation of poroelastic properties and effects of enhanced 

anatomical structure modeling”, Journal of Medical Imaging, 5(4), 045002. 

 

Abstract 

The purpose of this investigation is to test whether a poroelastic model with enhanced structure could 

capture in vivo interstitial pressure dynamics in a brain undergoing mock surgical loads. Using interstitial 

pressure data from a porcine study, we use an inverse model to reconstruct material properties in an effort 

to capture these in vivo brain tissue dynamics. Four distinct models for the reconstruction of parameters are 

investigated (full anatomical condition description, condition without dural septa description, condition 

without ventricle boundary description, and the conventional fully saturated model). These models are 

systematic in their development to isolate the influence of three model characteristics: the dural septa, the 

treatment of the ventricles, and the treatment of the brain as a saturated media. This study demonstrates that 

to capture appropriate pressure compartmentalization, interstitial pressure gradients, pressure transient 

effects, and deformations within the brain, the proposed boundary conditions and structural enhancement 

coupled with a heterogeneous description invoking partial saturation was needed in a biphasic poroelastic 

model. These new findings suggest that with enhanced anatomical modeling and appropriate model 

assumptions, poroelastic models can be used to capture quite complex brain deformations and interstitial 

pressure dynamics. 

 

IV.2.1     Introduction 

Elevated intracranial pressure (ICP) can result from a variety of factors including cerebral edema, tumors, 

intracranial hemorrhages, accumulation of cerebrospinal fluid (CSF), and venous obstructions [55]. As a 

part of patient care in these disorders, ICP is sometimes monitored. Further, accurately monitoring elevated 

ICP is of real clinical relevance. In several studies of traumatic brain injury, it was indicated that patients 

who had their ICP monitored had a decrease in mortality [101]. There are multiple methods to monitor ICP 

including intraparenchymal and intraventricular techniques, which provide statistically similar 

measurements [102]. Experimental evidence suggests that ICP can vary spatially within the brain. This was 

suggested in a porcine study where an extradural temporal mass lesion was simulated with an epidural 

balloon [57]. A similar porcine experiment with an expanding frontal mass reported similar pressure 
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gradient findings [58]. In a clinical study, four patients with unilateral mass lesions had bilateral 

subarachnoid pressure bolts inserted to measure ICP [103]. In all four cases, differential ICP’s were found. 

The current standard of care is to measure ICP at one point in the brain and as a result of these findings the 

authors suggested modifying how ICP is monitored in this patient population [103]. Interhemispheric ICP 

gradients were also observed in a nonhuman primate study of reperfused hemispheric strokes [104]. It also 

was suggested that multiple ICP monitoring sites should be used in patients with midline shift and/or mass 

lesions larger than 25 ml to account for interhemispheric supratentorial ICP gradients [105]. With these 

pressure gradients in mind, the placement of ICP monitoring devices is important. However, multiple 

monitors can increase the risk of infection in patients. A noninvasive means of estimating pressure gradients 

could improve accurate measurement of ICP across the brain without increasing risk to the patient. 

     One method to noninvasively estimate pressure gradients would be through the development of patient 

specific computational models. There is an extensive history of using computational models in a patient 

specific manner [106], [63], [64]. Appropriate modeling of brain biomechanics for interventional 

applications has significant clinical implications, with the potential to provide noninvasive prediction of 

therapy delivery [79], reduce intraprocedural imaging requirements [14], and reduce unnecessary 

procedures [65, 93]. The brain’s anatomy and mechanical behavior is complex, and in this paper we suggest 

that without careful modeling consideration, predictions can be confounded. Brain tissue exhibits 

mechanical heterogeneity and anisotropy. The Monro-Kellie doctrine has been a central working 

description of brain biomechanics which states that the cranial cavity is a fixed volume that is the sum of 

the volumes of brain tissue, intracranial blood, and CSF [54]. Treating the brain as only a solid tissue (often 

the case in models) negates the brain’s biphasic nature. With respect to the exchange with interstitial fluid 

spaces within brain tissue, grey matter is not easily distorted and typically changes fluid content by 

approximately 1.5%, whereas, white matter has a more compliant structure and can increase as much as 

10% [107]. Another important feature of the brain is that it is encapsulated by the dura [55]. The dura 

extends into folds of the brain forming the dural septa, consisting of the falx cerebri and the tentorium 

cerebelli. The dural septa  serve the purpose of reducing displacements during motion [55]. The sulci are 

the groves in the brain, and the gyri are the plateaus formed by boundary ridges of sulci pairs [55]. Also, 

the ventricular cavities are filled with CSF and are connected to the central canal within the spinal cord and 

the space around the brain [55]. The brain tissue also consists of grey and white matters [55].  

     In order to accurately model brain biomechanics, quantifying the material properties of grey and white 

matters is necessary. There have been attempts to quantify the brain’s material properties [108], [109], yet 

no consensus has been reached. One approach is to quantify these properties using magnetic resonance 

elastography [108]. Other approaches have been performed that correlated properties of grey and white 

matters in rectangular tissue samples undergoing shear testing under conditions of large strain [109]. These 
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types of studies, which range from in vitro to in vivo testing, vary in protocols and in results [110].  The 

inconsistent property values obtained in these studies have led to variability within existing biomechanical 

modeling applications.  

     Moreover, despite extensive research done on biomechanical modeling of the brain, there is no 

consensus on what representation should be used [52], [65].  Model types include viscoelastic [67], 

poroelastic [69], elastic [71], and hyperelastic [73] models. From a physiological perspective, we suggest 

that the poroelastic description of the brain is most appropriate due to its ability to account for both solid 

and fluid components within the cranial cavity. In this work, we continue to investigate a poroelastic model 

which treats the brain as a material consisting of both an elastic solid matrix and a fluid component. We 

further suggest this biphasic representation is in better intuitive agreement with the Monro-Kellie Doctrine 

as well. 

     With respect to enhanced anatomical modeling of the brain, some work has already been accomplished 

[111]. One group used an inhomogeneous patient-specific model of the brain [111]. In another 

investigation, improved deformation behavior was found in seven clinical cases by accounting for the dural 

septa [14]. These investigations, among others, point towards the significance of accounting for brain 

geometry in modeling approaches. Ultimately, the predominant reason for variations in representation, both 

constitutive and geometric, arises from common investigational approaches that attempt to study soft-tissue 

in isolation rather than generating systems for in vivo observation. Unfortunately, this is a product of the 

extremely challenging nature of in vivo work and the deployment of instrumentation within that domain. In 

this study, we test whether a poroelastic biphasic model with enhanced anatomical features could can 

capture in vivo interstitial pressures under mock surgical loading. 

     We report on three important contributions in this investigation. First, we demonstrate the ability to 

accurately model in vivo interstitial pressures in a porcine experiment using a poroelastic model, including 

measured pressure gradients. While this does not validate the use of the poroelastic model for the brain 

under all loading conditions, it does provide meaningful evidence for its appropriateness in the 

biomechanical modeling of the brain under quasi-static surgical conditions. The second contribution is a 

systematic investigation of boundary conditions and anatomically-based mesh specifications, necessary to 

recapitulate the compartmentalization of intracranial pressure often seen with intracranial space occupying 

deformations. Finally, a set of approximate values describing brain tissue material properties in poroelastic 

biomechanical models is provided as an initial approach towards the generation of more accurate brain 

biomechanical models. As a whole, this work demonstrates the use of computational models as a means to 

investigate the complex interplay of boundary conditions, anatomical constraints, and material properties 

needed to capture ICP gradients and compartmentalization in the brain in response to acute space-occupying 

deformations. 
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IV.2.2     Materials and Methods 

 

IV.2.2.1     In Vivo Porcine Data 

The in vivo data used for this investigation was collected in a previous study [112]. The data reflects a 

porcine study, approved by the Institutional Animal Care and Use Committee, on a series of Yorkshire pigs 

(Parson’s Farm, Hadley, M.A.) [112]. Once anesthetized, the porcine subject had pressure transducers 

(Johnson & Johnson Codman Microsensor ICP Transducer ~ Raynham, M.A., Part No. 82-6631) implanted 

in the midbrain/frontal region of both hemispheres [112]. One transducer was placed in the hemisphere 

ipsilateral to the mock surgical load, explained below, while the other transducer was placed in the 

contralateral hemisphere. These sensors measured interstitial pressures throughout the experiment. Before 

any procedure was performed, a T1-weighted magnetic resonance (MR) image of the neuroanatomy was 

acquired [112]. After MR imaging stainless steel beads (1 mm diameter) were surgically implanted to 

monitor tissue movement [112]. A temporal craniotomy was performed, and a lateral compression was 

applied to create a mock surgical load against the intact dura using a piston-like source. This piston was 

attached to a stereotactic frame and translated in increments of 2 and 4 mm [112]. A baseline computed 

tomography (CT) scan of the head was obtained. A CT scan was performed after each piston translation, 

enabling the measurement of the bead displacements at the conclusion of each translation. The interstitial 

pressure was measured continuously in both hemispheres. A complete description of the protocols are in 

the original study [112]. For our investigation, the pressure and displacement data from three piston 

translations (8 mm, 10 mm, 12 mm) were used. 

 

IV.2.2.2     Biphasic Poroelastic Model 

With respect to our representation of brain biomechanics, we use a poroelastic model derived from Biot’s 

description of consolidation theory [97] and adapted for use in surgical loading [113]. The governing 

equations are: 

∇ ∙ 𝐺∇𝒖 + ∇
𝐺

1−2𝑣
(∇ ∙ 𝒖) − 𝛼∇𝑝 = 0                                                                        (IV.1), 

𝛼
𝜕

𝜕𝑡
(∇ ∙ 𝒖) +

1

𝑆

𝜕𝑝

𝜕𝑡
− ∇ ∙ 𝑘∇𝑝 = 0                                                (IV.2). 
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The variables in Equations (IV.1) and (IV.2) are identified in Table IV.1. Equation (IV.1) relates 

mechanical equilibrium to the interstitial pressure gradient. Equation (IV.2) relates volumetric strain to the 

conservation of fluid in a porous media. 

     The governing equations are solved using the Galerkin finite element method in 3-dimensions [96]. The 

finite element representation of Equations (IV.1) and (IV.2) have been previously described [70, 114]. A 

fully-implicit time stepping routine is used with a time step of 90 seconds. Both are based on a previous 

stability analysis of Equations (IV.1) and (IV.2) [114]. The total time varies based on the length of the 

experimental piston push. The first calculated pressure value from the solution occurs 90 seconds after our 

designated start time, which represents the peak pressure that occurs at each piston translation. 

     We generate two finite element meshes, representing the same porcine subject. The linear tetrahedral 

element meshes, visualized by the outer boundary of Fig. IV.1 are generated from manual segmentation of 

the MR volume [115]. The CT and MR spaces are coregistered using ANALYZE Version 7.5 – Biomedical 

Imaging Resource (Mayo Foundation, Rochester, M.N.) ensuring that the transducer and bead positions 

determined in measurement space (CT) are all located in computational model space (MR) [112]. To 

represent heterogeneity, the tetrahedral elements are classified according to the corresponding white and 

grey matters within an element from  MR intensity [112],,[116]. This is visualized in Fig. IV.1 in the axial 

slice. Ventricles were treated as a separate structure and serve as an internal boundary. The ventricular 

boundary surface is illustrated by the black points within Fig. IV.1. 

Table IV. 1: Equation Variables 

Symbol Meaning Units 

𝑝 Interstitial pressure Pa 

𝒖 Displacement vector m 

𝐺 Tissue shear modulus (𝐺 = 𝐸/2(1 + 𝑣)) Pa 

𝐸 Young’s modulus Pa 

𝑣 Poisson’s ratio (unitless 

quantity) 

𝛼 Ratio of fluid volume extracted to volume change of 

tissue under compression 

(unitless 

quantity) 

1

𝑆
 

Void compressibility constant (amount of fluid 

capable of being forced into a tissue constant in 

volume) 

Pa-1 

𝑘 Hydraulic conductivity (m3s)/kg  
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     Of the two meshes generated, one captures grey matter, white matter, and ventricles, but not the dural 

septa. The dural septa, visualized within Fig. IV.1, are incorporated using manual segmentation and a 

custom mesh splitting code which splits the mesh at specified planes. The second mesh generated contains 

this dural septa operation to study the dural septa’s anatomical influence. 

     The values for both grey and white matters are designated with Young’s modulus of 2,100 Pa and 

Poisson’s ratio of 0.45. We elected to use values previously determined [117] with respect to a 

homogeneous model, reducing the degrees of freedom. Material properties of hydraulic conductivity (𝑘) 

and the saturation constants (𝛼, 
1

𝑆
), are the subject of material property determination for both matters. These 

six material properties (𝑘, 𝛼, and 
1

𝑆
 for both grey and white matters) are fit using an inverse problem 

approach. 

     Our geometric description of the mesh does not account for gyri and sulci. We hypothesize that the lack 

of resolution of these fine anatomical features leads to an effective source of bulk compliance, so we 

allowed for variability in the saturation constants to accommodate for this. These parameters have been 

historically prescribed as 𝛼=1 and 
1

𝑆
= 0 indicating a fully saturated media [14], [112]. Similar to what 

others have observed experimentally [57, 58], the propagation of pressure spatial distributions for this 

experiment, in response to a space occupying deformation at the macroscopic tissue scale level, seems to 

contradict this saturation assumption at the more coarse scale (meaning 𝛼 ≠ 1, 
1

𝑆
≠ 0). This led to our 

approach suggesting that some of the finer fissure systems are acting as a source of compliance, much like 

the ventricular system does for space occupying lesions [118], [119]. 

 

Figure IV. 1: Finite element mesh representation of the porcine brain. The dural septa splits are discernible within 

the mesh. The black points within the mesh visualize the nodes of the boundary between the brain parenchyma and 

the ventricles. The slice through the mesh visualizes the distinction between grey and white matters within the 

parenchyma. There is an additional distinction, which is not enforced in this study, between the tissues in either 

hemisphere.  



48 

 

 

IV.2.2.3     Model Sensitivity to Boundary Condition 

The boundary conditions, meshes, and the material properties being estimated were systematically varied 

to isolate the influence of three features (dural septa, ventricle boundary condition, and saturation 

parameters) which reflect the creation of three model conditions that allowed for variations in the 

anatomical and saturation assumption: 1) the full anatomical model description, 2) the full anatomical 

description without dural septa, and 3) the full anatomical description without the ventricle boundary 

description. For completeness, we also included a more conventional model: 4) the full anatomical 

description with full saturation (𝛼=1, 
1

𝑆
= 0). The boundary conditions of each model are explained in detail 

below, and a summary of these boundary conditions are in Table IV.2. In Table IV.2, each ‘*’ indicates the 

boundary is active. 

 

IV.2.2.3.1     Full Anatomical Condition Description (FACD) 

The FACD represents the model containing the full realization of the dural septa, ventricles, saturation 

constants, and heterogeneity. In FACD, the inverse model identifies the 6 model parameters associated with 

Table IV. 2: Summary of model conditions 

 Dural Septa 

Present 

Ventricle 

Treated as 

Reference 

Pressure 

Unsaturated 

Effects 

Allowed  

(𝛼 ≠ 1, 
1

𝑆
≠

0) 

Number of Fit 

Material 

Properties 

Full Anatomical Condition 

Description (FACD) 
* * * 6 

Condition without Dural Septa 

Description (CwoDSD) 
 * * 6 

Condition without Ventricle 

Boundary Description 

(CwoVBD) 

*  * 6 

Conventional Fully Saturated 

Model (CFSM) 
* *  2 
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the material properties that best fit the measured interstitial pressure dynamics. These six properties are 

𝑘𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 (𝑘𝑔), 𝑘𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟 (𝑘𝑤), 𝛼𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 (𝛼𝑔), 𝛼𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟 (𝛼𝑤), 1 𝑆⁄ 𝑔𝑟𝑒𝑦 𝑚𝑎𝑡𝑡𝑒𝑟
 (1 𝑆⁄ 𝑔

), and 

1
𝑆⁄ 𝑤ℎ𝑖𝑡𝑒 𝑚𝑎𝑡𝑡𝑒𝑟

 (1 𝑆⁄ 𝑤
). Hydraulic conductivity and saturation parameters are represented by 𝑘 and 𝛼, 1 𝑆⁄   

respectively. Variable saturation parameters allow for compliance in the fluid component. The far-field 

cortical surfaces are fixed in displacement and experience no fluid drainage [112]. This decision is 

supported by the intact dura. The brain stem is stress-free and does not permit fluid drainage. Locations at 

the piston application are designated displacements associated with 8 mm, 10 mm, and 12 mm [112], and 

no drainage. The displacements of consecutive piston pushes do not rely on the previous loading as an 

initial condition. The region surrounding the piston area is stress-free and does not allow fluid drainage 

[112]. Consistent with the dural septa’s role, the associated nodes are fixed in displacement and do not 

permit fluid drainage. Clinically, the ICP reference point is defined at the level of the foramen of Monro 

[56]. Additionally, the ventricular system is continuous with the central spinal canal [55]. We hypothesize 

that this permits the ventricles, when the dura is not compromised, to act as a reference pressure for the 

brain. As the ventricles represent a compliant internal boundary that can drain upon loading, they are 

allowed to deform, and the boundary pressure is zero, serving as a reference pressure. The solution of FACD 

incorporates the influence of the dural septa, ventricles, and sulci and gyri. To isolate the influence of these 

individual features, they are systematically removed within the 3 model conditions below. 

 

IV.2.2.3.2     Condition without Dural Septa Description (CwoDSD) 

To study dural septa influence, a model condition is created that eliminated the dural septa and its associated 

boundary condition from the FACD. Similar to FACD, this model fits the same six material properties. 

 

IV.2.2.3.3     Condition without Ventricle Boundary Description (CwoVBD) 

This model condition defines the influence of the ventricle boundary condition. The mesh includes the dural 

septa split and boundary conditions. However, the ventricles are considered non-draining surfaces. It is 

necessary to designate a reference pressure to be able to solve the system of equations. We use a previously 

used representation [112] whereby the brain stem surface is a constant reference pressure of zero. Similar 

to FACD and CwoDSD, the same six material properties are fit. 

 

IV.2.2.3.4     Conventional Fully Saturated Model (CFSM) 

The last model formulation is the traditional use of Biot’s consolidation theory to represent the brain. More 

specifically, in this case, the brain is treated as a fully saturated media (
1

𝑆
= 0 and 𝛼 = 1 for grey and white 
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matters) [14], [112]. This reduces our parameterization to 𝑘𝑔 and 𝑘𝑤. In the former conditions, we allow 

for unsaturated effects to accommodate missing structural compliance associated with sulci and gyri. In 

CFSM, we terminate that in favor of the more common assumptions. 

IV.2.2.4     Inverse Model 

The inverse model analysis in this work estimates the material properties to best fit measured interstitial 

pressure values from the transducers, given varying structural and material representations described above. 

This procedure is shown in Fig. IV.2. For all, except for the CFSM traditional framework, the parameters 

𝑘𝑔, 𝑘𝑤, 𝛼𝑔, 𝛼𝑤, 1 𝑆⁄ 𝑔
, and 1 𝑆⁄ 𝑤

 are estimated with this approach. With respect to the CFSM, only the two 

hydraulic conductivity parameters are estimated. The material properties for each condition are 

independently estimated for each translation. To ensure repeatability, 20 randomized initial starting 

property guesses are performed for each piston translation for each inverse reconstruction. Therefore, there 

are 240 distinct executions of the inverse model (4 model conditions, 3 piston translations, 20 initial guesses 

 

Figure IV. 2: Schematic illustrating the inverse model used to fit the model calculated intracranial pressure to the 

experimentally measured intracranial pressure while estimating the material properties.  
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each). The 20 initial guesses are generated by randomly perturbing each property value by +/- 25%. We 

should note, similar to many self-starting optimizations within the context of real experimental noise, our 

problem does require a good initial guess to avoid local minima and regularization to improve optimization 

behavior. To review, each inverse problem is driven by the objective function based on the acquired bilateral 

interstitial pressure data and to establish some sense of repeatability 20 initial guesses were used and 

allowed to converge to a minimum. We should note, prior to the 20 randomized initial guesses, the baseline 

initial guesses were determined empirically to ensure the values were reasonable for use in the inverse 

model; the +/- 25% noise was added subsequent to these guess determinations to ensure a more robust 

determination of properties. 

     These randomized initial guesses are input into the poroelastic, finite element model, with the 

appropriate boundary conditions, time step, and mesh. The interstitial pressure transient is simulated with 

the model based on a current guess at the material property distribution and an inverse problem approach 

is used to fit the material properties such that the difference between measured interstitial pressure at the 

two transducers and its simulated counterpart is minimized using a nonlinear least-squares constrained 

optimization in MATLAB (MathWorks Inc., Natick, M.A.). The objective function is a relative sum-

squared error metric between experimentally measured pressure transients and its model-calculated 

counterpart and is calculated as: 

𝑆𝑆𝐸 = ∑ (
(𝑃𝑒−𝑃𝑚)

𝑃𝑒
)
𝑖

2
𝑖=𝑁
𝑖=1                                                               (IV.3). 

Pe and Pm are the experimentally measured and model determined pressures respectively. i represents 

pressure value at the ith time point in the transient.  

     With respect to Equation (IV.3), the experimental data consists of 200 data points (100 per transducer) 

evenly sampled along in time. Since the number of model calculated points is substantially less, due to the 

90 second time step, the intra-time point values are linearly interpolated to fully utilize the experimental 

data. Using a customized trust region reflective optimization in MATLAB (MathWorks Inc., Natick M.A.), 

property values are iteratively estimated to minimize the SSE. The selection of the trust region method was 

based on its ability to combine the benefits of steepest descent and Newton-like methods. When tested, the 

trust region method was able to converge without stagnation, despite estimating parameters of very different 

orders of magnitude. This is important given the nature of the data and property values being fit. We use a 

custom convergence criteria based on the convergence of the SSE calculated at every iteration tested in 

work not shown. The SSE in Equation (IV.3) is used to measure quality of model fit. 

     Following parameter estimation of the 240 runs, we perform forward solves of the poroelastic model 

using the estimated parameters, generating pressure and displacement solutions. We designate two result 

types: 1) the ‘best fit’ is the parameter set that achieves the smallest SSE for a specific piston translation in 
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a given model condition; 2) we denote the ‘average pressure result’ as an average given initial guess 

variability, as 20 parameter estimations for each piston translation and model condition are performed. 

     The inverse model is fit to the measured interstitial pressure, so the bead displacements serve as a source 

of validation. The percent shift correction is calculated using (IV.4). 

%𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 100% ∗ (1 −
𝑚𝑒𝑎𝑛(‖𝑑𝑒⃗⃗ ⃗⃗  −𝑑𝑚⃗⃗ ⃗⃗ ⃗⃗  ‖)

𝑚𝑒𝑎𝑛(‖𝑑𝑒⃗⃗ ⃗⃗  ‖)
)                                                              (IV.4) 

𝑑𝑒⃗⃗⃗⃗  and 𝑑𝑚⃗⃗ ⃗⃗  ⃗ are the experimentally measured and model determined displacement vectors respectively. 

 

IV.2.3     Results 
 

IV.2.3.1     Optimization Performance 

The convergence performance associated with our inverse problem model-fitting can be seen in Fig. IV.3 

which reflects the percent SSE change relative to the median initial SSE in each set of 20 runs. We see a 

marked similarity with a substantive change in the objective function error with FACD and CwoDSD. With 

descriptions CwoVBD and CFSM, we see overall poor fit performance with very little reduction of the 

objective function.  

  

Figure IV. 3: Percent change in the median SSE at convergence relative to the median initial SSE over the set of 20 

runs for each model representation of the brain. It shows a greater reduction in SSE and thus a better model fit for 

FACD and CwoDSD relative to CwoVBD and CFSM.  
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IV.2.3.2     Interstitial Pressure 

We qualitatively and quantitatively assess the calculated interstitial pressures. In Fig. IV.4, observing the 

measured in vivo interstitial pressure, there is a sustained interhemispheric gradient and distinct transient 

behavior. The shaded regions represent the average model reconstructed pressure +/- two standard 

deviations with respect to the variable initial guesses. In all Fig. IV.4 panels, it is evident the methods 

provide repeatable fits within the initial guess range. The pressure fits shown in Fig. IV.4 are obtained from 

forward runs of the biphasic model using the optimized parameter values obtained during the 240 runs Fig. 

IV.4a representing FACD, shows that the enforced anatomical specificity captures the interhemispheric 

pressure amplitude and gradient, and transient. Fig. IV.4b represents CwoDSD and shows the quality of the 

 

Figure IV. 4: Experimental and model-estimated pressure for each boundary condition. The solid black lines represent 

experimental pressure data measured with the transducers. The solid cyan and red lines are the average pressure results 

in the near hemisphere transducer and far hemisphere transducer, respectively. The translucent red and cyan areas are 

+/- two standard deviations of the average pressure result calculated at each time point. The pressure fits are the model 

estimated pressure obtained by the solution of the inverse problem for (a) the full anatomical condition (FACD), (b) 

the dural septa not included (CwoDSD), (c) the ventricle boundary condition not included (CwoVBD), and (d) the 

brain tissue treated as fully saturated (CFSM). 
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estimated trend of pressure obtained by the solution of the inverse problem is comparable to FACD’s fits, 

which is illustrated in statistical testing below.  Fig. IV.4c represents CwoVBD, and not only does it result 

in inaccurate pressure magnitudes, but it also does not maintain the sustained interhemispheric pressure 

gradient. Fig. IV.4d represents CFSM, and while initially there is a pressure gradient, it is not sustained 

over time. Additionally, the pressure is poorly estimated throughout the duration for CFSM.  

     Using the Kruskal-Wallis test, we compare the SSE’s of the final solution per model type to one another. 

The result of this indicated that the solutions, shown in Fig. IV.4, came from statistically different 

distributions. Based on test statistics from this group comparison, we also perform a pairwise comparison 

between the groups which indicated that the solutions of FACD and CwoDSD are not significantly different 

from each other, but are both significantly different than the other two conditions. Additionally, using the 

Wilcoxon rank sum test, we compare the SSE’s of the final solution for each model type to one another to 

determine if statistically significant differences exist between model conditions. This shows that the 

pressure solutions of FACD, CwoDSD, CwoVBD, and CFSM are all statistically significantly different 

looking over all of the piston pushes. Based on the difference between measured and model estimated 

 

Figure IV. 5: Differences in pressure compartmentalization are seen based on the model conditions. For 

representation, the pressure values are scaled to the minimum and maximum of the specific solutions shown above. 

The solutions represent the best fits from each model condition from the first time step of the 10 mm piston translation 

for (a) all anatomical conditions (FACD) enforced,  (b) the dural septa not included (CwoDSD), (c) the ventricle 

boundary condition not enforced (CwoVBD), and (d) the brain tissue treated as fully saturated (CFSM). 
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pressures, the best pressure fit is associated with CwoDSD, however, FACD is statistically comparable in 

the 12 mm piston translation using the Wilcoxon rank sum test. CwoVBD produces a dramatic decrease in 

the quality of fit, and CFSM results in the worst fit, with respect to average SSE. 

     Qualitatively, the compartmentalization of the interstitial pressure can be visualized in Fig. IV.5. The 

images were individually scaled to capture the relative pressure distribution in each model condition. In 

Fig. IV.5a, which represents FACD, there are higher pressures in the hemisphere ipsilateral to the piston. 

There is also a distinction between the pressure within the ipsilateral hemisphere relative to the contralateral 

hemisphere and cerebellum. In CwoDSD, there was no interhemispheric compartmentalization, shown in 

Fig. IV.5b. In CwoVBD, compartmentalization between the hemispheres and the cerebrum and cerebellum 

is evident, shown Fig. IV.5c, however the extent of the interhemispheric difference is less distinct than in 

FACD. In Fig. IV.5d, which represents CFSM, there is a compartmentalization effect between the ipsilateral 

Table IV. 3: Percent shift correction 

PERCENT SHIFT CORRECTION 

Piston 

Translation 

8 

mm 

10 

mm 

12 

mm 

Condition 

Full Anatomical Condition 

(FACD) 
60.0 57.6 53.7 

Condition without Dural 

Septa Description (CwoDSD) 
64.5 70.3 73.8 

Condition without Ventricle 

Boundary Description 

(CwoVBD) 

58.1 60.2 64.8 

Conventional Fully Saturated 

Model (CFSM) 
60.0 65.0 67.4 
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and contralateral hemispheres with the area of elevated pressure more pervasive. Additionally, there are 

higher pressures present in the cerebellum and brain stem regions. 

 

IV.2.3.3     Shift Correction 

Since the inverse model is fit to the experimental interstitial pressure, the bead displacements provide an 

internal source of validation. They also quantify the quality of the fits for the solid tissue component. To 

compare displacements, we calculated the percent shift correction using Equation (IV.4) at the conclusion 

of the piston translations per model condition performed (Table IV.3). The runs evaluated were the best fits 

for each of the piston translations and conditions respectively. Table IV.3 shows the best shift correction is 

consistently accomplished in CwoDSD. 

 

Figure IV. 6:  Displacement calculations from the best fits runs from the 10 mm piston translation quantify the model 

calculated (Calc.) bead displacements at the conclusion of the simulated piston translation and compare them to the 

experimentally (Exp.) measured displacements. In each panel, the top left, top right, and bottom left subfigures 

represent the displacement calculations in the x, y, and z axis respectively, while the subfigure on the bottom right 

represents the total displacement. 
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     Looking at individual bead displacements at the 10 mm piston translation, which reflects the general 

behavior, the same trend was observed (Fig. IV.6). Comparing all panels, it is evident that all model 

conditions were able to calculate shift corrections comparably. 

     Evaluating the same set of piston translations shown in Table IV.3, we use the Wilcoxon rank sum test 

to determine if the quality of displacement fits is statistically different between conditions. For each model 

condition type and piston translation, ‖𝑑𝑒⃗⃗⃗⃗ − 𝑑𝑚⃗⃗ ⃗⃗  ⃗‖ for the 18 beads is calculated for the run with the smallest 

SSE. Then the conditions are compared with respect to these sets of measurements (18 beads at every piston 

translation). Although some piston specific comparisons revealed statistical significance, these differences 

were not present in every comparison. Therefore, shift corrections between conditions were considered not 

statistically significantly different. 

IV.2.3.4     Property Reconstruction 

With respect to Fig. IV.3, it seems clear that the ventricular boundary and the fully compliant material 

parameter description are necessary for pressure distribution matching. This is more readily apparent in 

Fig. IV.4 which demonstrates that gradients are not captured by these descriptions. As a result, Table IV.4 

shows the properties found in the best fits for FACD and CwoDSD. The property values estimated for grey 

and white matters are consistently different in all best fit properties across all piston translations and model 

conditions. This suggests heterogeneous material property descriptions are appropriate. Observing the 

changes in the best fits of 𝑘𝑔 and 𝑘𝑤, there is a change in magnitude with translation changes with 𝑘𝑤 

consistently greater than 𝑘𝑔 which is consistent with the literature. Although not always true, 𝛼𝑤 trends 

closer to the historical value of 1 in contrast to 𝛼𝑔, which trends lower. The reconstructions of 1 𝑆⁄ 𝑔
 and 

1
𝑆⁄ 𝑤

 were all non-zero indicating a need for compliance for appropriate matching.   
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IV.2.4     Discussion 

The error reduction results in Fig. IV.3 and pressure results shown in Fig. IV.4a and IV.4b reflect that 

interstitial pressure can be appropriately modeled using both FACD and CwoDSD conditions.  The 

mismatch between the experimental pressure data and the model estimated pressure obtained by the solution 

of the inverse problem for CwoVBD and CFSM (Fig. IV.4c and IV.4d) is likely due to the necessary 

contributions of anatomic structure (i.e. inclusion of ventricular boundary) and compliance in material 

property description (i.e. relaxation of the saturation assumption). Despite the same optimization algorithm 

being used, in the CwoVBD and CFSM conditions, the parameters found with the solution of the inverse 

problem could not match the experimental pressure (Fig. IV.4). This is also indicated by the illustration of 

the inverse problem’s convergence shown with SSE in Fig. IV.3. Incorrectly describing the anatomy of the 

brain in these model conditions likely caused these discrepancies. This is further evidence for our FACD 

being most appropriate for accurate estimation of ICP. 

Table IV. 4:  Estimated properties summary (grey shaded columns represent monotonic behavior with piston 

translation) 

Condition 
Piston 

Translation 

kg Best 

Fit 

kw Best 

Fit 

αg Best 

Fit 

αw Best 

Fit 

1/Sg 

Best Fit 

1/Sw 

Best Fit 

Full 

Anatomical 

Condition 

(FACD) 

8 mm 2.7E-13 1.9E-11 4.3E-01 8.7E-01 3.3E-06 4.3E-05 

 10 mm 3.2E-13 1.1E-11 4.5E-01 5.8E-01 2.6E-06 3.0E-05 

 12 mm 1.8E-12 9.8E-12 4.8E-01 1.0E+00 2.3E-06 4.4E-05 

AVERAGE  8.0E-13 1.3E-11 4.5E-01 8.2E-01 2.7E-06 3.9E-05 

Condition 

without Dural 

Septa 

Description 

(CwoDSD) 

8 mm 2.2E-14 8.0E-12 3.9E-03 8.8E-01 5.5E-10 2.2E-05 

 10 mm 2.5E-14 2.8E-12 4.9E-03 4.2E-01 1.1E-13 9.1E-06 

 12 mm 4.2E-14 9.0E-13 5.9E-03 1.8E-01 2.8E-11 4.7E-06 

AVERAGE  3.03-14 3.9E-12 4.9E-03 4.9E-01 1.9E-10 1.2E-05 
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     Comparing the pressure distributions of Fig. IV.5b, it is evident that the dural septa boundary defines 

the compartmentalization of pressure between hemispheres and between the cerebrum and cerebellum, 

however further investigation with multiple pressure transducers is needed to more fully capture the 

compartmentalization effect. The percent shift correction in CwoDSD is consistently better than other 

conditions (Table IV.3 and Fig. IV.6). To some degree, this was expected as all other material properties 

(namely, the elastic modulus and Poisson’s ratio) were optimized under conditions that used a homogenous 

mesh without dural septa in previous work (quite similar to CwoDSD conditions which likely explains the 

monotonic increase in accuracy) [117]. With respect to FACD, with progressively larger deformations the 

displacement predicting fidelity behaves monotonically with displacement prediction performance 

decreasing with increased deformation. This performance difference is likely due to FACD being over 

constrained due to the enforcement of the dural septa boundary conditions.  However, we should note that 

the model calculated shift corrections were not statistically significantly different from one another at every 

piston translation among these two models.  To more appropriately address, a combined objective function 

(pressure and displacement) would be a viable direction to investigate more accurately capturing both 

displacement and pressure dynamics, however, in such an endeavor, more interstitial pressure 

measurements are likely needed as well as temporally-coupled measurements of bead displacements, a 

challenging experiment. 

     Excluding the ventricle boundary condition resulted in a substantially worse result, reflected by 

inaccurate interstitial pressures. The results of Fig. IV.4c and Fig. IV.5c indicate that the pressures in both 

hemispheres were similar in magnitude. This indicates that the appropriate treatment of the ventricle 

boundary has significant impact on brain models. Our decision to treat the boundary as a reference was 

motivated from clinical practice, which treats the level of the foramen of Monro as the ICP zero point [56].  

     Treating the brain as a fully saturated tissue (Fig. IV.4d) is the current convention in the literature when 

biphasic models are used [14], [112]. Our results indicate this may not be appropriate at the macroscopic 

surgical scale. The magnitudes of the experimental data were not matched, and the interhemispheric 

gradient was not sustained. The differences between Fig. IV.4a and IV.4d reflect that enabling the tissue to 

be unsaturated yields a substantial improvement in quality of fit. The results of the percent shift correction 

are also comparable to FACD (Table IV.3 and Fig. IV.6). In a previous study of volume regulation, the 

results led to a hypothesis that brain interstitial space could experience volume variations based on stresses 

present [107]. It is not definite what phenomena the saturation terms are capturing, but we hypothesize that 

the evacuation of fluid from fissures and sulci spaces into subarachnoid spaces during compression is the 

phenomenon that is introducing a net compliance in the macroscopic tissue descriptions. 

     The necessary goal of this work was to match the pressure gradients in the tissue and given the level of 

fit from Fig. IV.3, only FACD and CwoDSD are appropriate and, as such, reported in Table IV.4. The 
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properties estimated in the two models are discernibly different which speaks to the variability depending 

on model sophistication. One interesting observation is that in many of the material parameters of Table 

IV.4, we see monotonicity with degree of piston translation (all grey columns of Table IV.4). This would 

indicate a need for a material nonlinearity to better capture the entire performance of the system over 

varying surgical loading.  

     We should note however, one shortcoming of this work is in regards to instrumentation. Our inverse 

model is driven by two transducers’ pressure transients in only two locations within the brain taken over a 

finite length of time. While the reason for this was the natural experimental constraints of brain volume, 

this certainly limits fidelity of the property reconstructions. 

     However, our full anatomical condition in conjunction with the poroelastic model under modified 

saturation assumptions demonstrates an ability to capture in vivo interstitial pressures and tissue 

deformation. It also reflects the compartmentalization of interstitial pressure, agreeing with clinical 

observations [103, 120]. With respect to anatomical constraints, the presence of the dural septa is less 

critical than the ventricular structure with respect to cross-hemisphere pressure gradient development; 

however, there are modest differences in distribution amplitude with the septa. Based on the results of 

FACD, we infer that our incorporation of heterogeneity with grey and white matters is appropriate. Lastly, 

in Fig. IV.4 the relaxation of the saturation assumption leads to considerably better matching and sustaining 

of pressure gradients over the transient (i.e. Fig. IV.4d with CFSM shows early gradient but non-sustained, 

a noted limitation in the original study [112]).  

 

IV.2.5     Conclusions 

The purposes of this investigation are to accurately model in vivo interstitial pressures, determine the 

anatomical specificity necessary to capture interstitial pressures and their cross-parenchymal gradients 

accurately, and to estimate brain material property values. The results provide strong evidence for the utility 

of a poroelastic representation and the pivotal role that certain anatomical features play in accurately 

modeling pressure and deformation. To the best of our knowledge, the model reconstructions in the full 

anatomical condition description have not been accomplished in other studies of in vivo modeling. This 

work highlights the importance of incorporating features, such as tissue heterogeneity, the ventricles, and 

the dural septa in future biomechanical models. It also challenges conventional assumptions regarding 

poroelastic theory applied to brain biomechanics at the macroscopic level and postulates that sulci and gyri 

may be an apparent source of compliance in measurements. While we cannot conclusively say that adding 

fluid-compliance is explained by the evacuation of intra-sulci/intra-fissure fluid into subarachnoid spaces 

without further model development, it is evident that its incorporation results in better capturing of 

interstitial pressure magnitudes, transient behavior, and importantly the spatial gradient – effects that were 
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very challenging and elusive to capture in past modeling efforts. While preliminary in nature, the work 

presented could have applications in modeling elevated ICP in order to predict potential in vivo pressure 

gradients which could be used to inform patient care or influence deployment of convection-enhanced 

delivery of therapeutics. 
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CHAPTER V 

 

V     Tumor Modeling Fidelity 

 

V.1     Summary and Contributions 

The intent of this chapter was to enhance brain modeling by developing tumor growth behaviors for the 

purpose of determining biomechanical effects. Patients with intracranial metastases often are treated with 

stereotactic radiosurgery (SRS). A side effect, which occurs in up to 20% of patients, is radiation-induced 

necrosis. Symptoms associated with radiation-induced necrosis can resolve independent of treatment, or 

the physician can treat it with corticosteroids. Radiation-induced necrosis and tumor recurrence both appear 

as indistinguishable radiographic changes in multiple MR imaging sequences. This poses a significant 

clinical challenge as current clinical practice definitively determines the etiology of these radiographic 

changes either by serial imaging observation resulting in delayed patient therapy or invasive intracranial 

lesion biopsy with histological diagnosis.  

     This investigation, detailed in Section V.2, used serial MR scans obtained during standard of care 

imaging. Five patients with tumor recurrence and five patients with radiation-induced necrosis were 

retrospectively processed using a patient-specific biomechanically coupled tumor growth model. This 

model was used to estimate model-derived measures and patient-specific model parameters to 

noninvasively differentiate the two etiologies. Using the estimated parameterized biophysics of lesion 

growth with this framework, this study was able to differentiate lesion etiology with up to 100% accuracy 

in the group of patients studied. Furthermore, when compared with conventional morphometric analysis 

methods the performance of the proposed framework was consistently superior to the morphometric 

analyses.  

     The work in Section V.2 generates a novel framework for noninvasively differentiating radiation-

induced necrosis and tumor recurrence. The results of this study indicate that the image-data-driven 

biophysical model-based analysis framework for estimating model-derived measurements and patient-

specific model parameters can noninvasively differentiate between tumor recurrence and radiation-induced 

necrosis. While this investigation was limited to patients with metastatic disease, it could easily be applied 

to patients with primary intracranial tumors who have undergone SRS. Radiation-induced necrosis is also 

observed in these patients. If the work presented here is equally accurate in a larger patient cohort, it has 

large implications for patients who have undergone SRS and experience radiographic changes after their 

treatment. A noninvasive diagnostic technique would be a significant improvement upon the current clinical 

gold-standards and would obviate the need for invasive intracranial biopsy.   
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V.2    Biophysical Model-Based Parameters to Classify Tumor Recurrence from Radiation-

Induced Necrosis for Brain Metastases 

The work in this section appears in: 

Narasimhan, S., Johnson, H.B., Nickles, T.M., Miga, M. I., Rana, N., Attia, A., Weis, J. A. (2019). 

“Biophysical model-based parameters to classify tumor recurrence from radiation-induced necrosis for 

brain metastases”, Journal of Medical Physics and Biology, 46(5), 2487-2496. 

 

Abstract 

Purpose: Stereotactic radiosurgery (SRS) is used for local control treatment of patients with intracranial 

metastases. As a result of SRS, some patients develop radiation-induced necrosis. Radiographically, 

radiation-induced necrosis can appear similar to tumor recurrence in magnetic resonance (MR) T1-weighted 

contrast-enhanced imaging, T2-weighted MR imaging, and Fluid-Attenuated Inversion Recovery (FLAIR) 

MR imaging. Radiographic ambiguities often necessitate invasive brain biopsies to determine lesion 

etiology or cause delayed subsequent therapy initiation. We use a biomechanically-coupled tumor growth 

model to estimate patient-specific model parameters and model-derived measures to noninvasively classify 

etiology of enhancing lesions in this patient population. Methods: In this initial, preliminary retrospective 

study, we evaluated five patients with tumor recurrence and five with radiation-induced necrosis. 

Longitudinal patient-specific MR imaging data was used in conjunction with the model to parameterize 

tumor cell proliferation rate and tumor cell diffusion coefficient, and Dice correlation coefficients were 

used to quantify degree of correlation between model estimated mechanical stress fields and edema 

visualized from MR imaging. Results: Results found four statistically relevant parameters which can 

differentiate tumor recurrence and radiation-induced necrosis. Conclusions: This preliminary investigation 

suggests potential of this framework to noninvasively determine the etiology of enhancing lesions in 

patients who previously underwent SRS for intracranial metastases. 

 

V.2.1     Introduction 

A common treatment option for intracranial metastases is stereotactic radiosurgery (SRS). SRS helps 

establish local control, but complications may arise; potential post-radiation treatment effects include 

pseudoprogression and radiation-induced necrosis [121, 122]. Pseudoprogression occurs within 3 months 

of SRS, versus radiation-induced necrosis which usually appears around 3 months and later [121, 122]. 

Radiation-induced necrosis is an adverse reaction to radiation treatment [9, 34]. Following SRS, up to 20% 

of patients exhibit radiation-induced necrosis [9, 35], which often appears as an enhancing lesion in MR 

T1-weighted contrast-enhanced imaging with accompanying T2-weighted and Fluid-Attenuated Inversion 
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Recovery (FLAIR) abnormalities [9, 36, 37]. Accurate diagnosis presents enormous clinical challenges as 

symptoms and radiographic findings for recurrence and radiation-induced necrosis are often 

indistinguishable.  

     Misidentification can have adverse clinical outcomes since treatment and prognosis of radiation-induced 

necrosis and tumor progression are different. Treatments for radiation-induced necrosis include observation 

and corticosteroids, with symptoms sometimes resolving independently [39]. These treatments could 

accelerate tumor progression. Repeat SRS can treat recurrence, but would exacerbate radiation-induced 

necrosis and expose patients to unnecessary radiation. Brain biopsies are the diagnostic gold standard, but 

introduce risk and are often not possible due to patient condition or lesion location. Indeterminate lesions 

are often followed with costly follow-up imaging that can cause deleterious outcomes for recurrent tumors 

with delayed subsequent therapy [9]. Serial examinations usually include conventional MR with T1-

weighted contrast-enhanced imaging and FLAIR imaging, but are diagnostically confounded. Patients that 

undergo SRS for intracranial metastases would benefit greatly from noninvasive diagnosis. 

     There is a history of studies attempting to employ quantitative imaging modalities to noninvasively 

distinguish the etiologies [123], with reproducible results proving challenging. Conventional MRI 

(magnetic resonance imaging) has been studied with mixed interpretations [36, 37]. There have been studies 

into mean fractional anisotropy [124, 125], perfusion imaging [9, 43], positron emission tomography [44], 

magnetic resonance spectroscopy [9, 46], and diffusion weighted imaging [125, 126]. As an overall 

observation, there remains a lack of consensus in quantitative imaging for diagnosis. Here, a novel 

framework is introduced that utilizes medical imaging data combined with biophysical models of tumor 

growth dynamics to noninvasively distinguish between tumor recurrence and radiation-induced necrosis in 

a binary classification of enhancing lesion etiology. Congruent with clinical practice, we will not sub-

differentiate pseudoprogression and radiation-induced necrosis, referring to both as radiation-induced 

necrosis. 

     There is support for patient-specific tumor growth modeling in clinical settings [8, 127]. Development 

and use of tumor growth models within the brain have been investigated [7, 17, 128-130], with work often 

related to either accurate model development, or its use to assess a potential clinical aspect [129-131]. While 

these are concerned with tumor progression, other work focused on the surrounding environment and its 

influence. There have been studies investigating the influence of surrounding mechanical environment on 

tumor growth [88, 132] and using modeling to predict radiotherapy effect [7]. In related work by our group, 

a mechanically-coupled reaction-diffusion model was used to develop a predictive framework of breast 

cancer treated with neoadjuvant chemotherapy [98, 133, 134]. This demonstrated an ability to predict 

patients’ responsiveness using early cycle treatment changes [98]. Building upon these, we use an image-
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data-driven biophysical model of tumor growth as a tool to classify space-occupying enhancing lesions in 

the brain following SRS.  

     In this investigation, we evaluate patient-specific model parameters by fitting a biomechanically-

coupled tumor growth model to longitudinal lesion changes observed from MRI data following SRS for 

brain metastasis and calculate model-derived measures. We hypothesize the biophysics of the etiologies 

will result in differences in patient-specific model parameters and model-derived measures allowing for 

non-invasive classification. 

 

V.2.2     Materials and Methods 

 

V.2.2.1     Patient Data 

Ten de-identified clinical data sets were obtained under the Vanderbilt University Institutional Review 

Board approved study to analyze retrospective MR imaging data. Data sets were collected after patients 

were treated with SRS, ensuring we are modeling effects of recurrent enhancing lesions following SRS. 

The datasets represent 5 patients with tumor recurrence and 5 with radiation-induced necrosis. Diagnoses 

were pathologically confirmed or retrospectively determined through long-term clinical follow-up, with 

 

Figure V. 1: Framework to estimate different patient-specific model parameters and model-derived measures for 

differentiating tumor recurrence and radiation-induced necrosis. 
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incidence of all recurrence and 3 of 5 radiation-induced necrosis lesions biopsy confirmed. Data consists 

of serial MR imaging with standard-of-care T1-weighted contrast-enhanced and FLAIR imaging sequences 

acquired following SRS, prior to diagnosis. To assess longitudinal changes, two time points of T1-weighted 

MR scans obtained immediately prior to diagnosis are used (Figure V.1). Time between scans varied 

according to the clinician from under 1 month to approximately 9 months, with an average of 3.5 months. 

Use of sparse MR imaging data from two time points has three purposes: (1) demonstrates use of standard-

of-care serial imaging data, (2) potentially shows a pathway to replace inconclusive serial imaging, and (3) 

if it allows earlier detection, it could reduce time between detected changes and clinical action. Note 

radiographic similarities in T1-weighted MR images (Figure V.2a, Figure V.3a). T2-weighted or FLAIR MR 

images obtained immediately prior to diagnosis were also used (Figure V.1). Due to this retrospective study, 

T2-weighted and FLAIR MR images are used interchangeably to segment edema based on availability. 

 

V.2.2.2     Biophysical Model of Tumor Growth 

The realistic biomechanically-coupled biophysical tumor growth model was adapted from previous work 

from our group [98, 132-134]. A complete description is in previous publications [98, 133, 134]. The 

governing equations are: 

𝜕𝑁(�̅�,𝑡)

𝜕𝑡
= ∇ ∙ (𝐷(𝜎𝑉𝑀, �̅�, 𝑡)∇𝑁(�̅�, 𝑡)) + 𝑘𝑁(�̅�, 𝑡) (1 −

𝑁(�̅�,𝑡)

𝜃
)                                                        (V.1) 

𝐷(𝜎𝑉𝑀, �̅�, 𝑡) = 𝐷0𝑒
−𝛾𝜎𝑉𝑀(�̅�,𝑡)                                                                                                      (V.2) 

∇ ∙ 𝐺∇�⃗� + ∇
𝐺

1−2𝑣
(∇ ∙ �⃗� ) − 𝜆∇𝑁(�̅�, 𝑡) = 0                                                                                   (V.3) 

     Equation (V.1) describes rate of tumor cell number change at a given time and location as the sum of 

random cell diffusion and logistic growth. Equation (V.2) represents mechano-inhibition of cellular 

diffusion coefficient, coupling tumor cell transport to evolving tissue stress state. As tissue distorts due to 

mass effects, tumor diffusive transport is inhibited. Equation (V.3) models linear elastic, isotropic 

mechanical equilibrium in the presence of an external expansive force [98, 133, 134]. In (V.1), (V.2), and 

(V.3) �⃗�  is the displacement vector; 𝑁 is the spatiotemporal varying cell number. 𝐷 is the local cellular 

diffusion coefficient of tumor cells in the presence of mechanical stress; 𝐷0 (mm2/day) is the cellular 

diffusion coefficient without mechanical stress present. Tumor cell proliferation rate is represented by 𝑘 

(day-1), which reflects how proliferative lesion cells are. Von Mises stress is represented by 𝜎𝑉𝑀 (Pa).  𝑣 

(0.45) is Poisson’s ratio; 𝐺 (689.66 Pa) represents shear modulus. 𝛾 (0.0050) and λ (0.010) are empirically 

derived coupling coefficients. We solve Equations (V.1-V.3) using the Galerkin method of weighted 
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residuals on triangular finite elements described by standard linear Lagrange basis functions [135]. 

Temporal resolution employs a fully explicit forward Euler method. The time step is 1 day, and in work not 

shown here, stability analysis was performed. Representing the dural surface, the displacement boundary 

conditions on the mesh outer surface permits surface tangential displacement, but do not allow normal 

 

Figure V. 2: Patient diagnosed with tumor recurrence at starting time point (a,c,e), and final time point taken before 

diagnosis of lesion etiology (b,d,f,g). Post-contrast T1-weighted MR images (a,b) are used to estimate observed tumor 

cellularity (c,d) and the model is fit to estimate tumor cellularity (e,f). FLAIR imaging at the time point prior to 

diagnosis (g) is compared to estimated mechanical stress field (h) at the final time point. 
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displacement. The cortical surface is treated with a boundary condition of no flux of tumor cells across the 

boundary. Meshes have a nominal element edge length of 2.5 mm, an average of 7182 elements, and an 

average of 3700 nodes. We treat the parenchyma as homogenous. The biophysical model is based on a 

central slice taken through the region-of-interest (ROI), and two-dimensional (2D) plane strain 

approximation is employed. 

     As a first-order approximation for tumor cellular density, we assume the enhancing lesion has a Gaussian 

distribution of tumor cell density. Maximal cellular carrying capacity, 𝜃, occurs at the enhancing lesion’s 

center. This density decreases outward to a minimum density of 0.25 ∗ 𝜃 at the lesion’s maximal long axis 

dimension. 

 

V.2.2.3     Patient-Specific Model Parameters 

For each patient, two time points of T1-weighted contrast-enhanced image volumes are selected (scan 

immediately prior to diagnosis and an earlier scan). Central axial slices with the most radiographic 

volumetric change with respect to the enhancing portion of the T1-weighted MR image were selected. Image 

volumes are longitudinally rigidly co-registered to the most recent time point (Figure V.1) [136]. Enhancing 

lesions in both T1-weighed images are manually segmented. Using the segmentations, the tumor cell number 

in both T1-weighted images are estimated using the Gaussian description and denoted as ‘observed tumor 

cellularity’ (Figure V.2c-d, Figure V.3c-d). We fit our tumor growth model to the ‘observed tumor 

cellularity’, with the first distribution as the starting point and final distribution as the desired outcome 

using a custom Levenberg-Marquardt parameter optimization algorithm in MATLAB (MathWorks Inc., 

Natick, MA) to estimate designated patient-specific model parameters: tumor cell diffusion coefficient (𝐷0) 

and tumor cell proliferation rate (𝑘). The objective function that was minimized is the sum-squared error 

between observed and model-estimated tumor cellularity. Convergence occurs if one of the following 
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criteria are met. These criteria include: (1) if the absolute objective function value is less than 1e-4, (2) the 

relative change in the objective function between iterations is less than 1e-4, (3) a maximum of 500 

 

Figure V. 3: Patient diagnosed with radiation-induced necrosis at starting time point (a,c,e), and final time point taken 

before diagnosis of lesion etiology (b,d,f,g). Post-contrast T1-weighted MR images (a,b) are used to estimate observed 

tumor cellularity (c,d) and the model is fit to estimate tumor cellularity (e,f). T2-weighted imaging at the time point 

prior to diagnosis (g) is compared to estimated mechanical stress field (h) at the final time point. 
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iterations occur, or (4) a maximum of 1000 function evaluations occur. In analysis not shown, these proved 

robust. These are appropriate since we treat all lesions as recurrent tumors (Equations (V.1-3)) with 

estimated parameter set differences guiding diagnosis. We assume model parameters are homogenous over 

the lesion. 

 

V.2.2.4     Model-Derived Measures 

Based on estimates of patient-specific model parameters, von Mises stress field due to tumor growth at the 

final time point is estimated by our mechanically-coupled reaction-diffusion model (Figure V.1). Model-

derived measures were calculated to compare observed edema to model-estimated stress field. This 

originates from our previous work, coupling mechanical effects from the surrounding tissue extracellular 

matrix to tumor growth models [98]. Here, von Mises stress is used to describe tissue loading due to lesion 

growth [98]. We hypothesize tissue loading represents an edema-causative event due to restricted 

diffusivity in areas with higher stress similar to previous work [76]. We investigate the relationship between 

observed edema and model-calculated von Mises stress fields as a model-derived measurement. We 

quantify edema using T2-weighted or FLAIR images (based on availability) from the last time point prior 

to diagnosis. The T2-weighted or FLAIR scan is rigidly registered to T1-weighted contrast-enhanced images. 

Then the enhancing region, associated with edema, is manually segmented. The choice to use manual 

segmentation in our methodology was based on the heterogeneous nature of clinically-acquired imaging 

data as well as the patient lesions and edema. Therefore, manual segmentation provided the most robust 

representation of the regions of interest. We quantify regional similarity between edema location and 

model-estimated stress field using the Dice similarity index. We designate five isocontours from low stress 

to high stress at 100, 200, 300, 400, and 500 Pa of the model-estimated stress field and calculated the Dice 

index of the segmented edematous region and each mechanical stress isocontour, denoted as Dice100, 

Dice200, Dice300, Dice400, and Dice500, respectively. 

 

V.2.2.5     Morphometric Analysis Methods 

We evaluated other diagnostic radiologic metrics based on image morphometric analysis, including some 

used in clinical treatment, to compare our methodology to conventional radiologic assessments. We 

evaluated the ratio of lesion size in T2 imaging to lesion size in T1 imaging [137]. We performed this by 

taking the ratio of the edema area (T2-weighted or FLAIR MR imaging) to the lesion area (T1-weighted MR 

imaging). As proposed by the Response Assessment in Neuro-Oncology Brain Metastasis working group, 

we evaluated the change in the lesion’s longest diameter [138]. We calculated longitudinal change in 

maximum lesion length from outlined lesions of T1-weighted images at both time points as percent change 
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from baseline. We performed morphometric analysis evaluating the segmented lesion area and lesion 

perimeter using the same central axial slice that was used to perform modeling analysis. Finally, we 

manually segmented the full three-dimensional (3D) lesion ROI in each image for full volume and surface 

area morphometric analysis. Full 3D morphometric analysis represents additional data not analyzed under 

our current 2D framework, extracting additional information from the images. While our work herein 

compares our analysis to conventional morphometric metrics, it is important to note that this is a limited 

comparison. These selected conventional analysis metrics represent a good initial evaluation comparison, 

but other geometric and texture-based metrics are certainly possible. More extensive comparisons to other 

types of analysis metrics are warranted in future studies with larger cohorts. Morphometric analysis was 

performed for both T1-weighted and FLAIR images, with T1-weighted lesions evaluated as the percent 

change between the two time points. These measurements are designated as T1 Surface Area, T1 Volume, 

FLAIR Surface Area, and FLAIR Volume. 

 

Figure V. 4: Distribution plots for (a) cell diffusion coefficient (D0, mm2/day), (b) cell proliferation rate (k, day-1), (c) 

low stress isocontour Dice coefficient (Dice100), and (d) high stress isocontour Dice coefficient (Dice400) for patients 

with tumor recurrence and radiation-induced necrosis. The middle horizontal line in both represents the mean value; 

the outer two lines represent the standard deviations. The ROC curve for (e) cell diffusion coefficient (D0) and cell 

proliferation rate (k) and (f) ROC curve for the Dice correlation coefficients. In both, the dotted line represents the 

line of identity. 
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V.2.3     Results 

Patient-specific model parameters and model-derived measures are calculated using our biomechanically-

coupled tumor growth model fit to serial patient-specific imaging data. 𝐷0 and 𝑘 are obtained by fitting the 

tumor growth model to the pairs of longitudinal T1-weighted post contrast images. Dice100, Dice200, Dice300, 

Dice400, and Dice500 are the Dice indices between isocontours of model-estimated stress-field and the 

segmented edematous region. Examples of the framework execution are in Figure V.2 and Figure V.3. 

 

     Distribution of patient-specific model parameters are in Figure V.4a and Figure V.4b, reflecting an 

evident distinction in proliferation rate. Examples of low and high Dice values, in Figure V.4c and Figure 

Table V. 1: Statistical tests of patient-specific model parameters, model-derived measures, and morphometric 

analysis. (*) denotes statistical significance of p<0.05. 

Metric 
Statistical Tests 

Mann – Whitney U Test 

P Values 
ROC Area Under Curve 

(AUC) 

D
0
 0.4603 0.66 

k 0.0159* 0.96 

Dice
100

 0.3095 0.72 

Dice
200

 0.0556 0.88 

Dice
300

 0.0079* 1.00 

Dice
400

 0.0079* 1.00 

Dice
500

 0.0159* 0.96 

T1 Area 0.3095 0.72 

T1 Perimeter 0.0952 0.84 

T1 Surface Area 0.6905 0.60 

T1 Volume 0.4206 0.68 

FLAIR Area 0.2222 0.76 

FLAIR Surface Area 0.8413 0.56 

FLAIR Volume 0.8413 0.56 

T2/T1 Ratio 0.4206 0.68 

% Change Length 0.4206 0.68 
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V.4d, respectively, indicate a distribution difference in the high Dice value. Using the Mann-Whitney U 

Test, we obtained the results in Table V.1. In agreement with Figure V.4a-d, 𝑘, Dice300, Dice400, and Dice500 

are statistically significantly different with P values of 0.0159, 0.0079, 0.0079, and 0.0159, respectively. 

We plotted a receiver operating characteristic curve (ROC curve) for model parameters in Figure V.4e and 

model-derived measures in Figure V.4f. From Figure V.4e-f, we see 𝑘 and multiple high Dice indexes can 

classify etiologies. This is verified by observing areas under the ROC curves (Table V.1). 

     Conventional metrics of T2/T1 ratio and percent change in length are in Figure V.5a-c. We found a lack 

of diagnostic performance in differentiating etiologies using conventional morphometric analysis, with 

ROC AUC for T2/T1 ratio and percent change in length of 0.68 and 0.68, respectively, and no statistical 

significance between etiologies. Shown in Table V.1, we further assessed input imaging data by analyzing 

morphometric data in both 2D central slice analysis and 3D full volumetric analysis from segmented 

lesions. We assessed 2D change in lesion area and perimeter between T1-weighted scans as well as the 

lesion area in FLAIR. We assessed 3D change in lesion volume and surface area between T1-weighted scans 

as well as lesion volume and surface area in FLAIR. The poor performance of conventional image analysis 

metrics is highlighted by no statistically significant metrics being found. 

 

Figure V. 5: Conventional morphometric assessment methods for determining local control with estimated parameter 

value distributions for (a) T2/T1 ratio and (b) percent change in length. (c) ROC curve for the morphometric assessment 

methods. The dotted line represents the line of identity. 
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V.2.4     Discussion 

We present a framework to estimate patient-specific model parameters and model-derived measures based 

on non-invasive MRI data from patients with brain metastasis treated with SRS. Parameterizing the 

biophysics of lesion growth could accurately differentiate lesions based on differences in estimated 

parameters with up to 100% accuracy in our preliminary, initial patient cohort. We compared our modeling 

results to conventional analysis methods. Our methodology outperformed conventional methods using the 

same input data, or less input data in the case of 3D image morphometry. It is evident that 𝑘 and Dice 

indexes associated with higher stress von Mises isocontours can differentiate etiologies (Table V.1). The 

Dice metrics (Figure V.4c-d) are not independent observations. When estimating 𝐷0 and 𝑘, our model is fit 

to ‘observed tumor cellularity’. Based on these fit parameters, the von Mises stress distribution was 

calculated and compared to observed edema. Therefore our Dice metrics represent linked discriminators 

permitting mechanistic statistical comparison to additional data. As the von Mises stress isocontour is 

changed, the statistical relationship with edema is changed, which is why a range of isocontours were 

compared. Our biophysical model enables proliferative differences to be compared in novel ways capable 

of accurately differentiating the etiologies. 

     Speaking to limitations, we used T2-weighted and FLAIR imaging interchangeably to indicate edema. 

Visual confirmation in Figure V.2g and Figure V.3g, as well as the Dice indexes differentiating the 

etiologies, indicate our use of imaging data is reasonable. Next, the brain’s heterogeneity has been 

incorporated into other tumor growth models [17]. We treated the brain as homogeneous isotropic tissue. 

In future studies, we intend to increase model specificity by incorporating heterogeneity and anisotropy. 

Mechanical heterogeneity will result in a spatially varying distribution of mechanical properties throughout 

tissue types (shear modulus and Poisson’s ratio in Equation (V.3)). Anisotropy will increase the number of 

material parameters used to describe the mechanical constitutive behavior in Equation (V.3). Since 

biomechanical coupling enables the surrounding brain tissue to impact the tumor’s growth, including 

heterogeneity and anisotropy will manifest in changes to diffusion via the von Mises stress term in Equation 

(V.2) [91]. We treated patient-specific model parameters as homogeneous within the lesion. Our current 

imaging data constrains us to a global estimate of lesion properties, restricting our classification as entirely 

tumor recurrence or radiation-induced necrosis. Biopsies can consist of both recurrence and necrosis [126]. 

We will address this with additional sources of quantitative imaging to increase specificity. Previously, in 

other related research we used diffusion weighted MRI (DW-MRI) to estimate tumor cell density [98, 133, 

134]. In future work, we will acquire DW-MRI data that would provide improved estimates of tumor cell 

density from patient scans. Using DW-MRI, which is a studied surrogate used for estimating tumor 

cellularity, will result in more accurate estimates of cellular distribution within the patients’ lesion. This 

will not change the mathematical expression (Equations V.1-3), but rather specifically change the spatial 
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variation of 𝑁(�̅�, 𝑡) defined at imaging times. This will result in the inverse problem being driven by more 

accurate estimations of ‘observed tumor cellularity’ measurements, but will not change the number of 

parameters being estimated. Despite this, the standard-of-care clinical treatment is a binary diagnosis: no 

tumor recurrence or partial recurrence. Our framework accomplishes a similar binary classification, making 

this clinically-relevant and amenable to current clinical diagnostic workflows. Given the heterogeneous 

nature of clinically-acquired scans, manual segmentation was used rather than automated segmentation to 

prevent inaccuracy due to non-uniform intensities across patients and scan time points. In work not shown 

here, a separate blinded observer performed the same experimental analysis methods on the same patient 

imaging data (Table V.2). Comparing the Mann Whitney P Values and ROC AUC values for the patient-

specific model parameters and model-derived measures reflected the same trends obtained in this 

manuscript with average difference in ROC areas under the curve for all metrics of 5% and largest 

difference of 13% (Table V.2). This investigation was performed in 2D; moving forward we will investigate 

these biophysical model-based parameters in 3D to capture volumetric changes, similar to our previous 

work [98]. The transition from 2D to 3D is nontrivial but tractable. The results of this 2D investigation 

indicate a 3D formulation of this framework has the potential to further enhance the noninvasive 

differentiation between the two etiologies. Furthermore, this preliminary investigation involved a total of 

10 patients. For validation, the framework will need to be tested in a larger patient cohort. Finally, the use 

of edema from T2-weighted and FLAIR imaging was incorporated as an external model-derived feature 

comparison. It would be interesting to include this data by extending our biomechanical model to include 

biphasic components that explicitly model the generation of edema from elevated intracranial pressure 

during tumor expansion, similar to modeling of capillary exchange in other work [76]. 

     We identified a biophysical model-based approach to differentiate between the etiologies, whereas 

traditional image morphometric assessment of the same data was not capable of accurate identification. 

Patient-specific geometries varied depending on lesion location (Figure V.2, Figure V.3). Despite this, our 

framework accurately predicted etiology. There is an intuitive aspect to the parameters which differentiate 

the etiologies. There was no statistical difference between diffusion coefficients, suggesting diffusion is 

conserved between etiologies. There is a statistical difference in tumor proliferation rates. This is consistent 

with radiation-induced necrosis not being expected to proliferate. Recurrent tumors have model-estimated 

mechanical stress fields with significant correlation with the measured edema. We hypothesize this is the 

result of mechanical stress having a causative edema generation effect associated with recurrent tumor. The 

success of using patient-specific image-data-driven biophysical modeling to differentiate between both 

etiologies in patients with brain metastasis treated with SRS shows substantial promise. This is a limited 

sample size analysis and a larger cohort study is required. The temporal sampling was chosen just prior to 

diagnosis, but studying the framework’s performance at earlier time points is desirable. 
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V.2.5     Conclusions 

Results of this study indicate our image-data-driven biophysical model-based analysis framework for 

estimating patient-specific model parameters and model-derived measures has potential to noninvasively 

differentiate between radiation-induced necrosis and tumor recurrence. We only used standard-of-care 

imaging scans from the patients’ clinical care, furthering the work’s impact. If confirmed, our framework 

could be used in current clinical workflows to improve diagnosis. It is important to note that results of this 

investigation are preliminary given the limited number of patients used in this initial investigation. 

Confirmation of this framework will be needed with a larger patient cohort and further patient statistics. 

Furthermore, we restricted analysis to metastatic disease, but radiation-induced necrosis is also found in 

patients with primary intracranial disease who have undergone SRS [41], making this methodology 

applicable in patients with primary brain tumors. Our investigation demonstrates the potential of 

noninvasive differentiation of lesions of unknown etiology in patients who have undergone SRS by means 

of image-data-driven biophysical modeling. 
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V.2.6     Supplemental Material: Sensitivity to Manual Segmentation 

Given the highly heterogeneous nature of the clinically-acquired scans, manual segmentation was utilized 

versus an automated segmentation method that may be biased by non-uniform intensities across patients 

and scan time points. To assess the influence of manual segmentation, another observer associated with this 

manuscript performed the same analysis, blinded to both the segmentations and results from the initial 

observer’s analysis. This second observer was provided with the same set of patient imaging data and 

performed the analysis from start to finish, independently of the original observer on a separate computer. 

The table below contains the results of both observers. On the left-hand side of the table are the results 

corresponding with Table V.1 of the manuscript. On the right-hand side are the results of the second 

observer who performed the analysis independently. Although the values are not identical, they are within 

close range and reflect similar trends in data with average difference in ROC areas under the curve for all 
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metrics of 5% and largest difference at 13% (0.96 vs 0.84 for k). This segmentation sensitivity test indicates 

that manual segmentation did not significantly alter the results. 

 

  

Table V. 2: Sensitivity to Manual Segmentation 

 

Mann Whitney P 

Values 

(Observer 1) 

ROC Area Under Curve 

(AUC) (Observer 1) 

Mann Whitney P 

Values 

(Observer 2) 

ROC Area Under Curve 

(AUC) (Observer 2) 

D0 0.4603 0.66 0.5476 0.64 

k 0.0159 0.96 0.0952 0.84 

Dice100 0.3095 0.72 0.2222 0.76 

Dice200 0.0556 0.88 0.0556 0.88 

Dice300 0.0079 1 0.317 0.92 

Dice400 0.0079 1 0.0079 1 

Dice500 0.0159 0.96 0.0079 1 
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CHAPTER VI 

 

VI     Quantifying Influence of Tumor Growth 

 

VI.1     Summary and Contributions 

The intent of this chapter was to evaluate the influence of quantifying tumor growth for application in 

image-guided neurosurgery by predicting intra-operative brain shifts that have resulted from the cavity 

collapse during tumor resection. Image-Guided Neurosurgical Systems (IGNS) are used during 

neurosurgical procedures in order to aid in tumor localization. IGNS treat patients’ preoperative imaging 

as a static image which does not evolve as the surgery occurs. An established phenomenon which occurs 

during neurosurgery is brain shift, which can cause IGNS to become inaccurate. Brain shift can occur due 

to gravity, hyperosmotic drugs, cerebrospinal fluid loss, craniotomy extent, edema, and the resection of the 

tumor itself. While there has been extensive research into the mechanisms behind most of these causes of 

brain shift, to the best of our knowledge, no groups have developed a finite element model of tumor cavity 

collapse during tumor resection. 

     Building upon the works in Section IV.2 and V.2, the work in Section VI.2 investigates the influence of 

accounting for a space-occupying lesion within a brain. More specifically, the influence of using the 

developed model of tumor cavity collapse during resection was assessed with respect to predicting 

intraoperative brain shift. Three debulking atlases (central debulking, Gaussian debulking, and k-means 

debulking) were used to test this effect in a multimodal study of six patients that underwent intracranial 

tumor resection and in two simulations of intracranial tumor resections.  While these atlases differed from 

one another in how the cellular distribution of the tumor was calculated, the physics dictating brain shift 

from tumor cavity collapse was common to all of the atlases.  

     To the best of our knowledge, this is a novel study accounting for influence of cavity collapse during 

tumor resection in brain shift predictions. It is also a novel description of cavity collapse during tumor 

resection. The central debulking atlas captured the global mass-effects from the tumor and its associated 

edema. The other two debulking atlases also accomplished improved brain shift predictions as compared to 

standard brain shift models that do not account for debulking. Section VI.2 presents the developed 

mathematical representation of intraoperative tumor cavity collapse. Both the patient and simulation studies 

indicated that the proposed mathematical representation could estimate and correct for brain shift due to 

cavity collapse from resection. These displacements have been extremely challenging to capture in previous 

finite element studies for brain shift correction. Moreover, this mechanism was corrected with patient data 
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collected at multiple sites with multiple modalities (laser range scanner, intraoperative MR, and 

intraoperative ultrasound), speaking to the robustness of the proposed method.  
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VI.2    Accounting for Intraoperative Brain Shift Ascribable to Cavity Collapse during 

Intracranial Tumor Resection 

 

Abstract 

For many patients with intracranial tumors accurate surgical resection is a mainstay of their treatment 

paradigm. During surgical resection, image-guidance is used to aid in localization and resection. Brain shift, 

which occurs intraoperatively, can invalidate these guidance systems. One cause of intraoperative brain 

shift is cavity collapse due to tumor resection, which will be referred to as debulking within this manuscript. 

In this study, we develop a finite element model of debulking and evaluate the influence of predicting brain 

shift due to debulking for application in image-guided neurosurgery. We hypothesized that accounting for 

tumor debulking in an atlas framework would improve brain shift predictions. This was tested in two 

simulated intracranial tumor resections and six patient intracranial tumor resection intraoperative data sets. 

Three distinct atlases (central debulking, Gaussian debulking, and k-means debulking atlas) of debulking 

were constructed and employed to test the hypothesis. These atlases were compared to each other in their 

ability to account for brain shift and compared using statistical measures. Though all three proposed models 

of debulking were able to predict some aspects of debulking displacements, the central debulking method 

best captured global mass-effects resulting from the resected tumor and typically was often statistically the 

most appropriate model. These findings suggest brain shift predictions for use in image-guided 

neurosurgery could be improved by incorporating a finite element model of debulking, such as those 

developed in this work. 
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VI.2.1     Introduction 

Between 2011 and 2015, approximately 121,277 malignant brain and other central nervous system tumors 

were diagnosed in the United States with a five year survival rate of 35.0% [21]. Initial treatment of 

accessible intracranial tumors is surgical resection. In a meta-analysis studying the extent of resection with 

patient survival in glioblastoma, the authors’ concluded gross total resection of the tumor engendered the 

reduction of one and two year mortality [48]. Others have found that greater than 98% of a glioma’s volume 

must be resected to provide maximal increased life expectancy [139], [4]. Accurate resection is also tied 

closely to tumor recurrence; 80% of recurrent glioblastomas recur within 2 cm of the original resection[49]. 

In low-grade gliomas, extent of resection is also a predictor of improved overall patient survival [50]. 

Therefore, optimal resection of intracranial tumors, regardless of etiology, requires the accurate 

intraoperative localization of diseased brain tissue.  

     Image-Guided Neurosurgical Systems (IGNS) are used during neurosurgery to aid in tumor localization 

and resection while minimally disturbing the surrounding healthy tissue [51], [52], [53]. Neuro-navigation 

involves registering preoperative imaging into intraoperative physical space to provide neurosurgeons 

guidance [53]. Unfortunately, IGNS is not always accurate. IGNS treat the patient’s preoperative image as 

static and non-evolving with the events of surgery, which is not necessarily reflective of intraoperative 

changes to the neuroanatomy due to sources of error associated with brain shift [51], [52], [53]. 

     Intraoperative brain shift can cause IGNS to inaccurately localize the patient’s tumor by violating the 

assumed static relationship between image and physical space [52], [140]. When one considers that brain 

shifts up to 24 mm have been measured during tumor resection [141], the potential impact to the accuracy 

of IGNS is alarming. There are numerous causes of brain shift, including gravity, hyperosmotic drugs, loss 

Figure VI. 1: This is an illustration of cavity collapse during tumor resection for Patient 1. The opaque shape in panels 

(a) and (b) is a visualization of the segmented tumor. In panel (a), the post-craniotomy, cranial surface can be 

visualized with the laser range scan obtained intra-operatively. The cranial surface was scanned again after the tumor 

was resected, and this laser range scan is shown in panel (b). The tissue movement was quantified using these scans, 

and the measured displacement vectors (pre- to intra–operative) are indicated by the blue arrows in panel (b). 
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of cerebrospinal fluid, removal of the tumor, edema, and extent of craniotomy [51], [52], [14], [13]. 

Multiple methods to compensate for brain shift intraoperatively have been researched including 

intraoperative magnetic resonance imaging (iMR), a finite element model (FEM) coupled with 

intraoperative measurements like laser range scanners (LRS) or stereo vision, and intraoperative ultrasound 

(iUS) [51], [139], [52], [142]. This manuscript focuses on brain shift correction using a FEM atlas based 

method that incorporates the effects of intraoperative cavity collapse [141], [76]. Extensive work has been 

done into modeling brain shift due to hyperosmotic drugs, swelling, gravity, retraction, and resection [64], 

[143], [144], [69]. However, to the best of our knowledge, no groups have developed a FEM of tumor cavity 

collapse during resection, despite evidence supporting its prominent impact on brain shift. 

      Tumor cavity collapse has been observed and quantified by multiple groups [15], [77]. Intraoperative 

cavity collapsing was observed using iMR to quantify surface and subsurface brain shift that involved the 

resection cavity [145]. Comparing 41 patients’ preoperative MRIs with their postoperative MRIs, the mean 

preoperative tumor volume was 14.23 cm3 while the mean postoperative cavity volume was 8.53 cm3 [146]. 

Another group compared preoperative and postoperative MRIs of 68 lesions and noted a decrease in 

postoperative cavity size related to the original tumor volume [147]. Additionally, several studies of 

intraoperative brain shift compensation using FEM have noted that measured displacements did have vector 

components toward the center of the tumor cavity, i.e. cavity collapse. Current methodologies are 

considerably limited in accommodating for this confounding factor in brain shift correction [14], [94], [11]. 

 

Figure VI. 2: This is an exemplar illustration of cavity collapse during tumor resection. The two T1 weighted MRI 

scans were taken preoperatively (a) and intraoperatively (b). Both panels are an image of the same slice of the scan 

after the complete MRI volumes were registered. In panel (a) the total tumor can be visualized. In panel (b), the 

collapse in the tumor’s original cavity can be perceived in this intraoperative, post-resection MRI. 
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     For the purposes of this manuscript, we will define ‘debulking’ as the process of brain shift specific to 

tumor cavity collapse due to the resection of the diseased tissue. The debulking mechanism can be seen in 

Figure VI.1 using LRS and Figure VI.2 using iMR. In Figure VI.1, the opaque region is the meshed patient 

tumor. The LRS surface immediately after the dura was opened is shown in Panel (a), and the LRS surface 

taken post resection is shown in Panel (b). The blue arrows are the displacement vectors measured using 

corresponding features in the LRS scans, and they demonstrate tumor cavity collapse. In Figure VI.2, the 

preoperative patient MR and iMR were registered to one another, and Panels (a) and (b) are corresponding 

slices. The boundary of the tumor can be visualized in Figure VI.2 Panel (a), and it qualitatively decreases 

in size during tumor resection, illustrating debulking, as shown in Figure VI.2 Panel (b). 

     Overall, extensive evidence supporting improved patient survival with improved extent of tumor 

resection [148] highlights the clinical need for accurate resection which could be improved by advanced 

models of brain shift. Compensating for brain shift would improve the fidelity of IGNS and effectively 

improve patient outcomes. In this investigation, we evaluate the influence of predicting brain shifts due to 

debulking for application in IGNS. We hypothesize that accounting for tumor debulking in an atlas 

framework will improve the brain shift predictions.  

 

VI.2.2     Materials and Methods 

 

VI.2.2.1     Retrospective Patient Selection 

There were a total of 18 possible tumor resection cases in 18 distinct patients with intraoperative data 

considered in this study. All tumors were manually segmented and the measured intraoperative 

displacement vectors were registered into the same space. The methods of data collection will be elaborated 

on in the Methods–Data Collection section. Expanding upon prior work [141], [14], we proposed metrics 

to determine if debulking was present within the measured shift data. Additionally, in effort to reduce bias 

incurred by choice of selection criteria, four separate metrics were investigated.  

     For all cases at every intraoperative data measurement the ‘debulk vector’ was calculated. The ‘debulk 

vector’ is the unit vector between the start of the displacement measurement and the tumor centroid. The 

centroid was calculated by taking the average of the three-dimensional (3D) coordinates prescribing the 

outer contour of the segmented tumor per patient. The ‘debulk vector’ estimates the vector of pure tumor-

centroid-cavity collapse. Method one (Equation (VI.1)) quantifies the amount of debulking by taking the 

mean of the normalized dot product of the measured displacement vector for each measurement (n) and the 

‘debulk vector’ at each measurement (n). Method two (Equation (VI.2)) quantifies the amount of debulking 
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by taking the mean of the dot product of the measured displacement vector for each measurement (n) and 

the ‘debulk vector’ at each measurement (n). Both methods one and two weight all measured points equally.  

Methods three and four weight debulking motion closer to the tumor larger than measurements taken 

further away. Therefore, we generated a weighting scheme from 0.1 (to prevent measurement exclusion) to 

1, where 0.1 was assigned to the largest distance to the centroid and 1 was assigned to the smallest distance 

to the centroid for a given patient. The weights of the remaining measurements points were calculated by 

normalizing the weights from 0.1 to 1 based on a given patient. Using this weighting schema, each 

measurement (n) had an associated weight based on its proximity to the tumor. Methods three (Equation 

(VI.3)) and four (Equation (VI.4)) are the weighted versions of methods one and two respectively. For each 

method type, a threshold was empirically selected to determine if the measured displacements per patient 

could be classified as debulking or not. This selection was based on the distribution of the values obtained 

within the sample population. 

𝑀𝑒𝑡ℎ𝑜𝑑 𝑂𝑛𝑒 = 𝑚𝑒𝑎𝑛 (
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗∙𝑑𝑒𝑏𝑢𝑙𝑘 𝑣𝑒𝑐𝑡𝑜𝑟𝑛̂

‖𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
)                                           (VI.1) 

𝑀𝑒𝑡ℎ𝑜𝑑 𝑇𝑤𝑜 = 𝑚𝑒𝑎𝑛(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∙ 𝑑𝑒𝑏𝑢𝑙𝑘 𝑣𝑒𝑐𝑡𝑜𝑟𝑛̂ )                             (VI.2) 

𝑀𝑒𝑡ℎ𝑜𝑑 𝑇ℎ𝑟𝑒𝑒 = 𝑚𝑒𝑎𝑛 ((
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗∙𝑑𝑒𝑏𝑢𝑙𝑘 𝑣𝑒𝑐𝑡𝑜𝑟𝑛̂

‖𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗‖
) (𝑤𝑒𝑖𝑔ℎ𝑡𝑛))             (VI.3) 

𝑀𝑒𝑡ℎ𝑜𝑑 𝐹𝑜𝑢𝑟 = 𝑚𝑒𝑎𝑛 ((𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑛⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∙ 𝑑𝑒𝑏𝑢𝑙𝑘 𝑣𝑒𝑐𝑡𝑜𝑟𝑛̂ )(𝑤𝑒𝑖𝑔ℎ𝑡𝑛))           (VI.4) 

 

VI.2.2.2     Simulation Study 

Two possible instances of brain shift during neurosurgery were simulated and evaluated in the same manner 

as the patient data. The simulated cases were generated to account for brain shift resulting from gravity, 

hyperosmotic drugs, and debulking mechanisms. The two simulated cases were constructed such that the 

shifts in these simulated cases were not included within the atlases of brain shift used to reconstruct the 

brain shifts. The differences from the calculated atlases, elaborated on below, include the size of the 

craniotomy, the direction of gravity, the size of the tumor, the cellular distribution of the tumor, the 

initialization of tumor growth, resection cavity size, and cerebrospinal fluid level. Furthermore, the percent 

of brain shift due to gravity, hyperosmotic drugs, and debulking construction for both of these simulations 

were distinct from one another. The measured brain shifts from both simulations represented a mixture of 

craniotomy surface and subsurface measurements near the boundary of the tumor. 
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VI.2.2.3     Patient Data Collection 

Using the debulking quantification methods described above, six patients were selected for this 

investigation. This will be elaborated on within Results-Retrospective Patient Selection. For the remainder 

of this manuscript, the cases will be referred to as Patients 1 through 6. The method of intraoperative data 

collection for the patients varied and included the use of LRS (Patients 1-3), iMR (Patient 4), and iUS 

(Patients 5-6). Preoperatively, the surgeons provided us with an estimate of the patients’ head orientation 

during surgery and the approximate size and location of the craniotomy they would perform 

intraoperatively.  

     For Patients 1-3, intraoperative data was acquired using LRS. The patients were enrolled in a study at 

Vanderbilt University Medical Center and were consented in accordance with the Vanderbilt Institutional 

Review Board [15]. The preoperative MRI scans were collected as a part of standard clinical care [15]. 

Tracking of measurement instruments was accomplished intraoperatively using an optical tracking system 

(Polaris Spectra, Northern Digital Inc., Waterloo, ON, Canada) [15]. Intraoperatively, an optical tracking 

rigid body (Medtronic, Minneapolis, MN, USA), attached to the patient was used to obtain all of the 

collected data in the same coordinate frame [15]. An optically tracked LRS (Pathfinder Therapeutic Inc., 

Nashville, TN, USA) was used to obtain scans of the region of interest at two intraoperative time points: (i) 

after the initial opening of the dura (e.g. Figure VI.1 Panel a) and (ii) after resection of the tumor (e.g. 

Figure VI.1 Panel b) [15]. The measured brain shift was calculated by tracking homologous points in the 

pre- and post- resection LRS collected data.  

     Patient 4 had their preoperative MR data collected using an Ax T1 MPRAGE sequence [94]. Patient 4 

was consented for imaging in accordance with the Brigham and Women’s Hospital Institutional Review 

Board [94]. The intraoperative iMR scanner was a 3T, wide bore MRI scanner (Siemens Magnetom Verio, 

Erlangen, Germany) [94]. The preoperative MR and iMR scans were rigidly registered to one another. 

Using Analyze 9.0 (AnalyzeDirect, Overland Park, Kansas) and 3D-Slicer [149], homologous surface and 

subsurface points were collected in both scans to quantify the brain shift [94]. 

     Patients 5 and 6 had intraoperative data acquired using 3D iUS. The data was collected under the 

Institutional Review Board protocol at Brigham and Women’s Hospital’s Advanced Multimodality Imaged 

Guided Operating (AMIGO) suite [150]. Preoperatively, patient MRs were obtained in accordance with 

standard clinical care. Intraoperatively, iUS was collected using a 2D BK5000 cranial probe through the 

patients’ craniotomy [95]. To construct the 3D iUS, the collected sequences of 2D ultrasound images were 

registered and combined as described in [150]. The 3D iUS data used in this investigation was collected at 

two time points: (i) after the dura was opened and (ii) after a maximal portion of the tumor had been resected 

[150]. Features were matched in pairs of iUS images manually and using a matched feature extraction 
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method detailed in [151]. The brain shift was quantified using both the automatic and manual iUS data, pre- 

and post- resection automatic and manual iUS data.  

 

VI.2.2.4     Segmentation and FEM Mesh Construction 

All six patients were analyzed in the same manner. The brains and tumors were expertly segmented from 

the preoperative T1 weighted MRI scans using ITK-Snap (www.itksnap.org). For the simulation cases, the 

brains were based on the segmentation of a patient case, while the tumors were specified to be spherical in 

shape. The segmentations for the simulations and patients were registered to an atlas image set using the 

adaptive bases algorithm and the normalized mutual information algorithm [136], [152]. A marching cubes 

algorithm was then used, followed by a custom mesh generator to create a 3D tetrahedral mesh [115]. The 

average number of nodes in the six patient meshes was 26,764, and the average number of elements was 

134,393. This generated 6 patient-specific finite element meshes describing the six patients and their 

tumors, in addition to the simulation meshes.  

 

Figure VI. 3: This flow chart illustrates the general debulking brain shift prediction methods. The right hand side 

illustrates where the atlas of debulking deformations is introduced into the brain shift correction method. The left hand 

side is the flow chart of the physics of debulking as described in this manuscript. The dashed line around calculating 

pressure from the tumor edema illustrates that it is an optional step in calculating the physics of debulking. 
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VI.2.2.5     Brain Shift Atlas without Debulking 

Atlases describing sources of brain shift other than debulking have been developed [64], [143]. In this work, 

we assume measured brain shift consists of debulking plus these previously studied factors. We tested our 

debulking mechanism retrospectively using a framework called model-updated image-guided neurosurgery 

(MUIGNS) [153]. MUIGNS uses sparse measurements of intraoperative brain shift in an inverse problem 

framework using patient-specific FEM solutions. These FEM solutions are calculated preoperatively and 

represent the possible intraoperative brain deformations [15]. The solution of the inverse problem is then 

used to deform the preoperative scans to correct for intraoperative brain shift.  

     In order to assess the influence of our proposed debulking atlas, we first performed brain shift corrections 

with a baseline brain shift FEM atlas, that has been extensively studied, that did not include debulking [64], 

[94]. This atlas accounts for gravity-induced, hyperosmotic drug-induced, and swelling-induced brain shift. 

Controlling variables were perturbed to generate a distribution of possible motion due to each category 

[94]. A poroelastic biomechanical FEM description of brain tissue is used which was based on Biot’s theory 

of consolidation [97]. A detailed description of this biomechanical model can be found in [76] ,[64], [91]. 

A total of 378 possible deformations due to gravity, 378 possible deformations due to hyperosmotic drugs, 

and 9 possible deformations due to swelling of the brain comprise the 765 total possible deformation 

solutions in the brain shift atlas without debulking [94]. Next, we performed brain shift corrections with an 

FEM atlas that included debulking FEM solutions in the same patients and simulations. 

 

VI.2.2.6     Physics of Debulking 

In this investigation, we created three distinct atlases of debulking and hypothesized that our description of 

debulking could capture intraoperative cavity collapse elements of brain shift not captured in previous 

atlases. The principle difference among the three debulking atlases (central debulking atlas, Gaussian 

debulking atlas, and k-means debulking atlas) developed lies in the calculation of tumor cell distribution. 

The general physics used to calculate debulking is shared between the three atlas descriptions. The 

flowchart of our proposed physics is in Figure VI.3. For all patients and atlas reconstructions, the same 

patient-specific finite element meshes were used. To estimate debulking, the tumor cell distributions for the 

tumor is calculated. The seeding of the tumors can be visualized in Figure VI.4. In the central debulking 

atlas and k-means debulking atlas, this was computed using a custom finite element model of Equation 

(VI.5). In Equation (VI.5), C is the tumor cell concentration, t is time, k (0.08 day-1) is the tumor cell 

proliferation rate, D (8×10-9 m2/day) is the tumor cell diffusion rate, and 𝜃∗ (1.7678×108 ) is the cellular 

carrying capacity [98]. The Galerkin Method of Weighted Residuals is used to spatially integrate Equation 

(VI.5) in the 3D domain of tetrahedral elements [96] and temporal evolution is performed using a forward 

Euler explicit formulation. 
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𝜕𝐶

𝜕𝑡
= ∇ ∙ 𝐷∇𝐶 + 𝑘𝐶(1 −

𝐶

𝜃∗
)                           (VI.5) 

     The next step is calculating pressure based on an approximation of the tumor edema (Figure VI.3). This 

step is optional given the focus of our description of debulking centers around the mass-effect of the tumor. 

The edema step was only included in the central debulking atlas which sought to capture the entirety of the 

tumor’s influence. Based on the distribution of tumor cells calculated, the elements associated with edema 

are defined. Since tumors often have leaky vasculature along their outer contours, we assumed that edema 

was present where the cellular concentration is between the contour lines of 0.15 × 𝜃∗ and 0.05 × 𝜃∗. The 

values of pressure were solved using Equation (VI.6). The Galerkin Method of Weighted Residuals was 

once again used in a custom built FEM model of Equation (VI.6) [96]. In Equation (VI.6), p is pressure, k 

(1×10-10 m3s/kg) is hydraulic conductivity, kc (1.15×10-8 m3s/kg) is capillary permeability, and pc (3633 Pa) 

is intracapillary pressure [64]. 

−∇ ∙ 𝑘∇𝑝 + 𝑘𝑐(𝑝 − 𝑝𝑐) = 0                                                                                             (VI.6) 

     Building upon a steady-state formulation of the poroelastic model and a biomechanically coupled model 

of tumor growth, Equation (VI.7) was used to account for the tumor and its edema (Figure VI.3) mechanical 

effects [154], [92]. An isotropic Hookean linear elastic constitutive model was assumed. The constant 

coefficients 𝛼 (1×10-4) and 𝛽 (8.2×10-1 or 0) are empirically derived constants which dictate the amount of 

influence the tumor cells and edema have respectively [91]. Poisson’s ratio is set to 0.45, and the Young’s 

modulus is 2100 Pa based on previous work [91]. The Galerkin Method of Weighted Residuals was used 

to spatially integrate Equation (VI.7) [96], and a custom FEM model was generated to solve the equation. 

The displacements of the brain when the fully grown tumor was present were calculated with Equation 

(VI.7). Then, the displacements of the brain after the tumor was resected at variable extents is calculated 

(Figure VI.3). The resection of the tumor was accomplished by removing the model equation contributions 

associated with the resected tissue elements from the finite element matrix system [69].  

∇ ∙ 𝜎 = 𝛼∇𝐶 + 𝛽∇𝑝                            (VI.7) 

     The atlas of debulking solutions is calculated with Equation (VI.8) (Figure VI.3). In Equation (VI.8), 

𝑇𝑥𝑦𝑧𝑑𝑒𝑏𝑢𝑙𝑘 is the brain shift displacement associated with debulking. 𝑇𝑥𝑦𝑧 is the displacement when the 

entire tumor is present (preoperative state). 𝑇𝑥𝑦𝑧𝑟 is the displacement when the tumor has been resected at 

different extents (intraoperative and postoperative states).  

𝑇𝑥𝑦𝑧𝑑𝑒𝑏𝑢𝑙𝑘 = 𝑇𝑥𝑦𝑧 − 𝑇𝑥𝑦𝑧𝑟                           (VI.8) 
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     This description of debulking physics was applied to all three debulking atlases developed within this 

investigation. The debulking solutions were then incorporated into the atlas without debulking to account 

for this form of brain shift (Figure VI.3). 

 

VI.2.2.7     Brain Shift Atlas with Central Debulking  

The central debulking atlas generates a total of 108 deformation solutions. The tumor is grown from three 

possible spatial locations (Figure VI.4 Panel (a)) and three temporal variations. The longest axis in the 

tumor that passes closest to the mathematical centroid of the tumor is calculated. The three spatial seed 

locations are: at the center of the longest axis, and +/- 10% of the longest axis from the center (Figure VI.4 

Panel (a)). This was done to reflect radiographic practice of measuring the tumor along its longest axis [92]. 

The length of time the tumor grew was unknown, since no serial MRI was available. To calculate the 

unknown time final, while Equation (VI.5) was being solved, every five time steps the distance between 

the closest-point from the 0.05 × 𝜃∗ isocontour of the growing tumor to the segmented tumor contour was 

compared and stored. TimeFinal was the time when the closest point distance is minimized. Once TimeFinal 

was determined, three variants of this growing time were used to populate the temporal component of the 

atlas (1.00 × 𝑇𝑖𝑚𝑒𝐹𝑖𝑛𝑎𝑙, 0.85 × 𝑇𝑖𝑚𝑒𝐹𝑖𝑛𝑎𝑙, 0.70 × 𝑇𝑖𝑚𝑒𝐹𝑖𝑛𝑎𝑙). A total of nine tumor cell distributions 

were grown (3 different seeds grown to 3 different endpoints). With respect to boundary conditions for 

these models, the boundary condition was no flux across the dural septa and skull. Based on the cellular 

 

Figure VI. 4: This illustrates the differences in the center of the tumor seeds used for Patient 4. The black dots in both 

panels correspond with the segmented tumor boundary. The red line represents the longest axis in the tumor which 

passes closest to the centroid. The magenta ‘x’ in both panels marks the center of the longest axis. Panel (a) marks the 

relative positions of the three centers of the seeds for tumor growth for the central debulking and Gaussian debulking 

atlases with the magenta 'x' and the two cyan circles. Panel (b) marks the five centers of the seeds for tumor growth 

determined using k-means clustering with the five circles. Those five centers in addition to the magenta cross mark 

the six centers of tumor seeding used in the k-means debulking atlas. 
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contours, the pressure from the edema was calculated for each of the nine tumors. Pressure values at the 

skull nodes were set to a fixed reference pressure of zero Pa.  

     With respect to the above tumor growth variants, each was considered with respect to three different 

craniotomy sizes, where one size corresponds with the surgeon’s preoperative plan and the other two are 

smaller and larger than the planned size to accommodate variability in intraoperative execution. Of note, 

nodes associated with the craniotomies were considered stress free while the remainder of the skull nodes 

were fixed in displacement. In addition to the above variants, four possible resection extents were allowed 

when estimating the atlas of debulking. This was performed by allowing for elements within four possible 

isocontours (0.05 × max (cell count in solution), 0.2875 × max (cell count in solution), 0.5250 × max 

(cell count in solution), 0.7625 × max (cell count in solution)) of the grown tumors being treated as resected 

tissue. Finally, the preoperative and postoperative displacements were subtracted from one another 

generating debulking atlas solutions. In summary, for the central debulking atlas a total of 108 solutions 

would entail the debulking atlas (3 different seeds x 3 different temporal evolutions x 3 different craniotomy 

spans x 4 different resection extents). 

 

VI.2.2.8     Brain Shift Atlas with Gaussian Debulking 

The Gaussian debulking atlas generates a total of 36 debulking solutions. It differs from the central 

debulking atlas in several significant ways. A Gaussian cellular distribution in the tumor is assumed. Using 

three seeds, three spatial Gaussian distributions of tumor cells are calculated. The seeds are on the longest 

axis in the tumor that passes closest to the centroid of the tumor. The locations are at the center of the axis 

and +/- 15% from the center (Figure VI.4 Panel (a)). It was specified that the tumor cell density decreases 

outwardly from the designated center with a minimum tumor cell density of 0.05 × 𝜃∗ at the maximal long 

dimension [93]. Since the focus of the debulking atlas is the mass effect, no pressure due to edema is 

calculated. The three possible displacements in presence of the three preoperative tumors were calculated 

with the same boundary conditions as the central debulking atlas (assumed 3 different craniotomy spans). 

In addition, similar to the previous atlas, 4 different resection extents are considered. As a result, a total of 

36 solutions would entail the Gaussian debulking atlas (3 different Gaussian based distributions for tumor 

cell concentration x 3 different craniotomy spans x 4 different resection extents). 

 

VI.2.2.9     Brain Shift with K-Means Debulking 

The k-means debulking atlas generates a total of 72 debulking solutions. The tumor is grown from six 

spatial locations (Figure VI.4 Panel (b)). As in the first two debulking atlases, the first seed was centered at 

the center of the longest axis in the tumor that passes closest to the centroid of the tumor. This was done to 
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account for highly asymmetric tumors. The five other seed centers (Figure VI.4 Panel (b)) were determined 

using a k-means clustering algorithm in MATLAB which identified 5 regional clusters within each of the 

segmented tumors (MathWorks Inc., Natick, Massachusetts). This was proposed to capture the asymmetries 

of patient tumors. Six unknown time finals were calculated for each of the six tumor seed centers using the 

same method previously described. Six possible tumors were grown with the same boundary conditions 

used in the central debulking atlas. The pressure due to edema was not included to prioritize the tumor mass 

effects. Six displacement distributions were calculated with boundary conditions similar to the above (nodes 

on the skull to be fixed, with stress free boundary conditions assumed within three different craniotomy 

spans). Again, four possible resection extents were calculated. As a result, a total of 72 solutions would 

entail k-means form of the debulking atlas (6 different distributions for tumor cell concentration based on 

k-means x 3 different craniotomy spans x 4 different resection extents). 

 

VI.2.2.10     Brain Shift Reconstruction and Quantification 

The displacements describing the movement between the preoperative and intraoperative features were 

used to drive the inverse problem for brain shift reconstruction. The reconstruction was performed for each 

patient and simulation using each of the four atlases (one without debulking and baseline with three 

debulking atlases). The optimization problem is a constrained minimization of a least-squared error between 

the model predicted displacements and the measured experimental displacements [14], [155]. The objective 

function is Equation (VI.9).  

 𝑚𝑖𝑛‖𝑀𝑎 − 𝑢𝑠𝑝𝑎𝑟𝑠𝑒‖
2
∃𝑎𝑖 ≥ 0 𝑎𝑛𝑑 ∑ 𝑎𝑖 ≤ 1 

𝑚
𝑖=1                          (VI.9) 
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     In Equation (VI.9), 𝑎 are the non-negative regression coefficients being solved. The inverse problem is 

constrained such that the 𝑎 coefficients must be non-negative and their sum is less than or equal to one. 𝑀 

is a matrix containing the deformation atlas that is the dimensions of the number of measured displacements 

by the number of solutions within the given atlas [94]. In Equation (VI.9), 𝑢𝑠𝑝𝑎𝑟𝑠𝑒 are the sparse measured 

displacements collected. Once the weighting coefficients are solved for they are used to combine the 

deformations of the atlas to reconstruct the displacements of the full patient brain. This brain shift 

reconstruction procedure was applied to all of the experiments performed. 

 

Figure VI. 5: These are the box plots representing sorting the patients into debulking or not debulking cases using the 

four methods described in Materials and Methods-Retrospective Patient Selection. In all of the panels the y-axis is 

the value obtained using each method. The box on the left hand side of each panel is the distribution of values below 

or equal to the threshold of the method (not debulking), and the right hand side is the distribution of values above the 

threshold (debulking). In all plots, the central red mark designates the median, and the bottom and top of the boxes 

are the 25th and 75th percentile respectively. Panels (a), (b), (c), and (d) are the results of methods one, two, three, and 

four respectively. (* indicates p<0.001) 
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     The percent brain shift correction was calculated using Equation (VI.10) where 𝑑𝑚⃗⃗ ⃗⃗  ⃗ and 𝑑𝑒⃗⃗⃗⃗  are the model 

estimated and experimentally measured displacements respectively [91]. For statistical testing, Equation 

(VI.11) was calculated on the ten largest measured displacements for each patient to assess the changes 

correction using the debulking atlases [91]. Since we could not assume normality of the values obtained 

from Equation (VI.11), we used a nonparametric test. Additionally, since the samples were not guaranteed 

to be independent, we used a two-sided Wilcoxon signed rank test to test statistical significance. It is 

important to note a difference in the calculation of percent correction and statistical significance between 

the simulation studies and patient analysis. For the simulation studies the data used to drive the inverse 

problem and the data used for validation were different. Since the shift was simulated, knowledge of the 

entire brain volume was available. For the patient studies, however, the data used to drive the inverse 

problem and the data for validation were the same. This was due to the limited intraoperative data available. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 100% × [1 −
𝑚𝑒𝑎𝑛(‖𝑑𝑒⃗⃗ ⃗⃗  −𝑑𝑚⃗⃗ ⃗⃗ ⃗⃗  ‖)

𝑚𝑒𝑎𝑛(‖𝑑𝑒⃗⃗ ⃗⃗  ‖)
]                      (VI.10) 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 = ‖𝑑𝑒⃗⃗⃗⃗ − 𝑑𝑚⃗⃗ ⃗⃗  ⃗‖        (VI.11) 

Type of Atlas Correction 

Average 

Error 

Mag. 

(mm) 

Standard 

Deviation 

Error Mag. 

(mm) 

Maximum 

Error Mag. 

(mm) 

Percent Shift 

Correction 

(%) 

AIC 

SIMULATION 1  

No Correction 6.6725 4.0516 14.9767 N/A N/A 

Correction without Debulking 3.7738 3.1873 10.2869 32.2825 33.9275 

Correction with Central Debulking 2.7893 2.6637 8.1972 51.4103 20.6757 

Correction with Gaussian Debulking 2.5545 3.0030 10.3376 43.0032 32.7151 

Correction with K-Means Debulking 2.9501 2.8270 9.4272 47.2144 24.0010 

SIMULATION 2  

No Correction 2.1413 0.8011 4.0594 N/A N/A 

Correction without Debulking 0.6575 0.5736 2.1196 54.3190 -41.4662 

Correction with Central Debulking 0.3055 0.2876 1.3354 73.7529 -62.6820 

Correction with Gaussian Debulking 0.5175 0.5611 2.6081 61.1339 -41.6530 

Correction with K-Means Debulking 0.4902 0.4813 1.5867 65.1286 -51.8254 
 

Table VI. 1: This contains a summary of the shift correction of the measured points in the two simulations in the four 

types of atlas corrections performed. Magnitude is abbreviated with mag.. 
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     Since the number of coefficients and observed displacements varied between each patient and atlas type, 

another statistical test was used to test the quality of the results. This test is the Akaike Information Criteria 

(AIC) which reflects the balance between how well a model fits the data and number of coefficients being 

fit [156]. The equation used to calculate AIC is (VI.12). In this equation, RSS is the residual sum of squares, 

n is the number of measured displacements, and k is the number of parameters which is the number of 

solutions in a given atlas [156].  

𝐴𝐼𝐶𝑐 = 2𝑘 + 𝑛𝑙𝑛 (
𝑅𝑆𝑆

𝑛
) +

2𝑘(𝑘+1)

𝑛−𝑘−1
           (VI.12) 

 

VI.2.3     Results 

 

VI.2.3.1     Retrospective Patient Selection 

All four methods to quantify debulking were applied successfully to the 18 patients. The results are 

summarized in Figure VI.5. Cases larger than the selected threshold were considered to be debulking cases. 

Qualitatively, Figure VI.5 reflects that the four methods resulted in the classification of patient cases. The 

values in the two groups generated (debulking and not debulking) were compared to one another using a 

two-sided Wilcoxon rank sum test. All four of the tests indicated that the groups created were different 

from one another (p<0.001, two-sided Wilcoxon rank sum). Furthermore, the same six patients were 

identified as debulking cases using all four sorting methods. The six identified patients were used in this 

investigation to test our proposed physics of debulking.  

Type of Atlas Correction 
Gravity Atlas 

Solutions (%) 

Hyperosmotic 

Drug Atlas 

Solutions (%) 

Swelling Atlas 

Solutions (%) 

Debulking 

Atlas Solutions 

(%) 

SIMULATION 1 

Correction without Debulking 26.9061 51.5351 21.5597 0.0000 

Correction with Central Debulking 0.0000 14.3942 0.0000 85.6079 

Correction with Gaussian Debulking 0.0000 32.5795 0.0000 67.4220 

Correction with K-Means Debulking 0.0000 15.4552 0.0000 84.5475 

SIMULATION 2 

Correction without Debulking 89.7593 4.8914 5.1422 0.0000 

Correction with Central Debulking 72.0720 3.3902 13.1517 11.3862 

Correction with Gaussian Debulking 73.1607 2.9135 2.5871 21.3387 

Correction with K-Means Debulking 33.6301 4.8188 31.6673 29.8839 
 

Table VI. 2: This contains a summary of the brain shift categories used to reconstruct the two simulation measured 

displacements based on atlas type. 
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VI.2.3.2     Brain Shift Atlas with Central Debulking 

The results of the central debulking atlas are in Figure VI.6 and Tables VI.1 through VI.3. Figure VI.6 

visualizes the types of brain shift solutions used in order to reconstruct the six patients’ measurements using 

the four atlases. The types of brain shifts included were shifts from gravity, hyperosmotic drugs, swelling, 

and debulking. Qualitatively, from Figure VI.6, we can see that the central debulking atlas was used in four 

of the six patients. In these four patients (Patients 1, 2, 3, and 5), the inclusion of the central debulking atlas 

 

Figure VI. 6: This illustrates the brain shift categories used to reconstruct the patients’ measured displacements based 

on atlas type. The four general shift categories are gravity, hyperosmotic, swelling, and debulking. In all six panels, 

‘without’ refers to the atlas without debulking solutions present. ‘Central’ refers to the atlas with the central debulking 

solutions present. ‘Gaussian’ refers to the atlas with the Gaussian debulking solutions present, and ‘K-Means’ refers 

to the atlas with the k-means debulking solutions present. It is enforced that the sum of the weighting coefficients of 

the solutions is equal to 1, so the percent of the four categories in every reconstruction sums to 100%. Panels (a)-(f) 

contain the distributions of Patients 1-6 respectively. 
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changed the distribution of the other three shift categories relative to the reconstructions without debulking 

atlas. This behavior is also seen in Table VI.2, which summarizes the distributions for the two simulations, 

where the central debulking atlas was used in both simulations. When observing the percent shift correction 

for the simulations (Table VI.1), there was a marked improvement relative to when the solutions were not 

included. There was also a decrease in the average error magnitude, standard deviation of error, and 

Type of Atlas Correction 

Average 

Error 

Mag. 

(mm) 

Standard 

Deviation 

Error Mag. 

(mm) 

Maximum 

Error 

Mag. 

(mm) 

Percent 

Shift 

Correction 

(%) 

AIC 

PATIENT 1  

No Correction 4.8224 4.5190 14.0973 N/A N/A 

Correction without Debulking 3.1000 2.4309 8.4744 21.5949 11.9961 

Correction with Central Debulking 2.9706 2.3720 8.1758 24.9839 10.6059 

Correction with Gaussian Debulking 2.9793 2.3393 8.3450 24.2852 11.3085 

Correction with K-Means Debulking 2.4699 1.7428 6.5798 31.0743 7.8390 

PATIENT 2  

No Correction 19.9444 4.6933 28.5180 N/A N/A 

Correction without Debulking 0.6942 0.5150 1.7243 88.8478 -3.8821 

Correction with Central Debulking 0.5404 0.4755 1.5240 89.2693 -4.6655 

Correction with Gaussian Debulking 0.4893 0.4272 1.4694 89.5963 -5.7156 

Correction with K-Means Debulking 0.4570 0.4152 1.3963 89.5447 -5.4570 

PATIENT 3  

No Correction 7.6969 4.8462 22.8068 N/A N/A 

Correction without Debulking 1.0839 1.2951 5.2778 71.3358 -3.9421 

Correction with Central Debulking 0.9230 0.8880 3.4921 74.5653 -10.9028 

Correction with Gaussian Debulking 0.9790 1.1361 4.6194 72.9721 -7.4554 

Correction with K-Means Debulking 1.2793 0.9651 4.0994 71.5920 -5.4953 

PATIENT 4  

No Correction 3.7315 1.2455 6.7744 N/A N/A 

Correction without Debulking 1.2321 0.8990 3.8120 46.1244 -12.9672 

Correction with Central Debulking 1.2321 0.8990 3.8120 46.1244 -12.7250 

Correction with Gaussian Debulking 1.2114 0.8368 3.6961 47.0835 -13.6142 

Correction with K-Means Debulking 1.2330 0.8973 3.7870 46.2296 -12.8321 

PATIENT 5  

No Correction 8.4734 3.8903 15.7143 N/A N/A 

Correction without Debulking 6.1961 3.6876 13.5151 16.3892 31.6143 

Correction with Central Debulking 5.1377 3.6994 12.9074 28.3421 28.8014 

Correction with Gaussian Debulking 5.0334 3.9198 13.0338 27.9897 29.2652 

Correction with K-Means Debulking 6.1961 3.6876 13.5151 16.3892 31.6632 

PATIENT 6  

No Correction 3.0291 1.0201 5.1239 N/A N/A 

Correction without Debulking 1.1672 0.9569 3.2302 37.3371 -14.0157 

Correction with Central Debulking 1.1672 0.9569 3.2302 37.3371 -13.8266 

Correction with Gaussian Debulking 1.1672 0.9569 3.2302 37.3371 -13.9468 

Correction with K-Means Debulking 1.1672 0.9569 3.2302 37.3371 -13.8840 
 

Table VI. 3: This contains a summary of the shift correction of the measured points in all six patients in the four types 

of atlas corrections performed. Magnitude is abbreviated with mag.. 
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maximum error magnitude. Table VI.3 shows an improvement in the percent shift correction relative to 

when these solutions are not included along with a decrease in the average error magnitude and the 

magnitude of the maximum error in the four patients.  

     The Wilcoxon signed rank test revealed statistically significant differences between the correction per 

measured displacement (Equation (VI.11)) in the reconstruction without debulking and the reconstruction 

with the central debulking atlas in Patients 2, 3 and 5 (p<0.05, two-sided Wilcoxon signed rank test. The 

AIC values in these instances for the reconstructions with the central debulking atlas were also lower (Table 

VI.3).  This difference in reconstruction without debulking and reconstruction with the central debulking 

atlas was also present in Simulation 1 and 2 (p<0.05, two-sided Wilcoxon signed rank test). The AIC values 

were also lower in the reconstructions with the central debulking atlas (Table VI.1). There were differences 

between the reconstruction with the central debulking atlas and the k-means debulking atlas in Patients 3 

and 5 (p<0.05, Wilcoxon signed rank test). The AIC values in the reconstructions with the central debulking 

atlas in these cases were lower compared to the reconstructions with the k-means debulking atlas (Table 

VI.3).  In Patient 3 there were also differences between the reconstructions using the central debulking atlas 

and the Gaussian debulking atlas (p<0.05, Wilcoxon signed rank test). Once again the AIC value for the 

central debulking atlas reconstruction in this case was less than the Gaussian debulking atlas reconstruction 

in Patient 3. These differences in debulking reconstruction can also be visualized in Figure VI.7 which 

illustrates the results of Patient 3.  

 

VI.2.3.3     Brain Shift Atlas with Gaussian Debulking 

The results of the Gaussian debulking atlas are in Figure VI.6 and Tables VI.1 through VI.3. We can see 

that the Gaussian debulking atlas contributed to the brain shift solution in five of the six patients (Figure 

VI.6) and both of the simulated cases (Table VI.1). Once again, in these five patients (Patients 1, 2, 3, 4, 5) 

the inclusion of the Gaussian debulking atlas changed the distribution of weighting coefficients in the other 

shift categories relative to the reconstruction without debulking solutions, suggesting that the Gaussian 

debulking atlas was more representative of brain shift in these cases. This behavior was also observed in 

both of the simulation cases (Table VI.2). Table VI.3 reflects an increase in the percent shift correction, and 

a decrease in the average error and maximum error relative to when the debulking solutions were included 

for the patient cases. With respect to the two simulation cases, the inclusion of the Gaussian debulking 

solutions resulted in an increase in the percent shift correction, a decrease in the average error magnitude, 

and a decrease in the standard deviation of the error magnitude. In Patients 2 and 3, there were differences 

between reconstructions without debulking and reconstructions with the Gaussian debulking atlas (p<0.05, 

Wilcoxon signed rank test). The AIC values in this comparison were lower for the reconstructions 

performed with the Gaussian debulking atlas (Table VI.3). In Simulation 2, there were differences between 
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the reconstructions with the central debulking method and the Gaussian debulking method (p<0.01, 

Wilcoxon signed rank test). However, the AIC value for the reconstruction with the central debulking 

method was lower (Table VI.1).  

 

VI.2.3.4     Brain Shift Atlas with K-Means Debulking 

The results of the k-means debulking atlas are in Figure VI.6 and Tables VI.1 through VI.3. The k-means 

debulking atlas was used in four of the six patients (Patients 1, 2, 3, 4) and both of the simulations. Once 

again, its inclusion altered the distribution of types of shift solutions used to reconstruct the measured brain 

shifts relative to the reconstructions without the debulking atlas in the patients (Figure VI.6) and the 

simulations (Table VI.2). It is also worth noting that the distribution of solutions pulled from in each patient 

varied between all of four of the atlas reconstructions (Figure VI.6) and the simulations (Table VI.2). For 

the four patients improved, the percent shift correction increased, and the standard deviation of error and 

maximum error decreased (Table VI.3). For the two simulations, the percent shift correction increased, the 

average error magnitude, the standard deviation of error, and the maximum error magnitude decreased. 

There were differences between the correction per measured displacement (Equation (VI.11)) in the 

reconstruction without debulking and the reconstruction with the k-means debulking atlas in Patient 2 

(p<0.05, Wilcoxon signed rank test). The AIC value of the k-means debulking atlas reconstruction was 

lower than the reconstruction without debulking (Table VI.3). This difference was also observed in both of 

the simulations (p<0.05, Wilcoxon signed rank test). Once again, the AIC values of the k-means debulking 

atlas reconstructions were lower than when the reconstructions were performed without debulking (Table 

VI.1). There was a difference between the reconstruction using the Gaussian debulking atlas and the k-

means debulking atlas in Patient 1 (p<0.05, Wilcoxon signed rank test). The AIC value was lower in this 

case in the reconstruction with the k-means debulking atlas (Table VI.3). Also, there was a difference 

between the reconstruction using the central debulking atlas and the k-means debulking atlas in Simulation 

2 (p<0.01, Wilcoxon signed rank test). However, the AIC value of the reconstruction with the k-means 

debulking atlas was higher relative to the reconstruction with the central debulking method (Table VI.1). 
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VI.2.4     Discussion 

We present a mathematical representation of intraoperative tumor cavity collapse, that we propose captures 

physics of brain shift not captured in previous models. By modifying the calculated cellular distribution, 

we generated three distinct atlases that capture brain shift due to debulking. We were able to improve the 

percent brain shift correction in multiple cases with debulking. Our methodology changed the distribution 

of brain shift types included as well as improved the quality of results relative to when debulking solutions 

were not a part of the reconstruction.  

     Despite the common debulking physics, the three atlases captured different directions of tumor cavity 

collapse. Figure VI.7 Panel (a) illustrates the differences in the measured vectors, the vectors from the 

reconstruction without debulking, and the vectors from the reconstruction with debulking. Panel (b) 

illustrates the differences in the vectors from the reconstructions with the three debulking atlases. Despite 

all three debulking atlases sharing common physics, the differences in tumor cell distribution altered, 

sometimes significantly, the vectors reconstructed. Figure VI.6 and Table VI.2 also demonstrate this when 

observing differences in weighting coefficients within a given patient and subject.  

     The strength of the central debulking atlas is its ability to capture global mass effect as well as accurately 

calculate cellular distributions. Also, when statistical differences were found between reconstructions, this 

method consistently had lower AIC values, indicating a better balance between the number of coefficients 

being fit and the quality of the fit relative to its counterparts. However, as illustrated in Patient 4 (Figure 

VI.4) accurately fitting the grown tumors to the patients’ original asymmetric tumors proved challenging. 

This may explain why the atlas was unable improve the percent shift correction in this case. A potential 

 

Figure VI. 7: Both panels demonstrate the results of Patient 3. The opaque area in both panels is the tumor in Patient 

3. In Panel (a) the black arrows are the measured deformations, the red arrows are the estimated deformations when 

no debulking was included in the atlas, and the cyan arrows are the estimated deformations when the central debulking 

solutions are included in the atlas of solutions for reconstruction. In Panel (b), the cyan arrows once again are the 

estimated deformations when the central debulking solutions are included. The green arrows are the estimated 

deformations when the Gaussian debulking solutions are included. The magenta arrows are the estimated deformations 

when the k-means debulking solutions are included. 
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solution to this challenge for future work would be the use of a more sophisticated model of tumor growth, 

the incorporation of tissue heterogeneity, and mechanical coupling [93], [82]. The Gaussian debulking atlas 

improved the percent shift correction in five of the six patients. The success of this atlas highlights the 

importance of accurately capturing the global tumor geometry in our debulking method. The k-means 

debulking atlas improved four of the six cases. The atlas solutions captured localized debulking and more 

tumor specific geometry. In Patient 1, however, the reconstruction using the k-means atlas caused the finite 

element mesh to fold incorrectly. With the limited patient and observation size, it is unclear if this is due to 

the nature of the atlas solutions generated or the distribution of the measured data collected. It is also worth 

noting that the LRS scan of the post-resection surface (Figure VI.1 Panel (b)) captured a very dramatic 

tumor cavity collapse. Regardless, while this method did enable the more distinct geometries of the tumors 

to be captured, it did not capture the global mass effect as well as the other two atlases.  

     None of the debulking atlases were able to achieve shift correction improvements in Patient 6, despite 

all proposed debulking metrics indicating cavity collapse in Patient 6 (Figure VI.5). When comparing tumor 

volumes, it became evident that Patient 6 had a substantially smaller tumor relative to the other patients. 

Figure VI.8 highlights this by visualizing the largest tumor studied (Patient 3) and the smallest tumor 

(Patient 6). Another study into resection cavity dynamics noted that the pre-resection tumor volume was a 

predictor of postoperative cavity volume change [147]. While we cannot conclusively state it, we believe 

the tumor’s small volume caused the discrepancy in correction. 

     Two of the simplifications made in this work are areas of improvement for future work. The first is the 

assumption that edema is present within a set contour around the tumor. This was made due to a lack of 

access to T2 weighted MRI scans. Segmenting the edema from this scan type would provide patient-specific 

edema distributions. Also, we only used the preoperative scan taken immediately prior to surgical resection, 

meaning we had no knowledge of how long the tumor grew. This would influence how diffuse the tumor 

was. In future studies, incorporation of serial imaging and biopsy specimen pathology may lead to more 

accurate calculated tumor cell distributions and higher fidelity brain shift corrections.   
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     A limitation of this investigation is the number of patients studied, the variability of intraoperative 

modalities, and the variability in tumors. Therefore, while the results of this study are encouraging, further 

investigation is necessary to determine the fidelity of the proposed physics of debulking and the 

corresponding atlases. The shift correction being assessed with points outside of those used to drive the 

inverse problem in Simulation 1 and Simulation 2, provide evidence that our patient reconstructions may 

be accurate elsewhere within the patient brain volumes. However, this could not be verified without further 

patient studies. Despite these challenges, our ability to identify and correct for the debulking mechanism 

with patient data collected at multiple sites with multiple modalities (LRS, iMR, and iUS). This suggests 

not only the significant impact of accounting for cavity collapse when correcting for brain shift, but also 

indicates the robustness of our method.  

     Overall, based on the results of this investigation, the central debulking atlas, captured global mass-

effects from the tumor and the influence of tumor edema. In Simulation 1 and Simulation 2, its inclusion 

resulted in the greatest increase in percent shift correction (Table VI.1). It provided statistically significantly 

different results relative to the baseline atlas in Patients 2, 3, and 5, and Simulations 1 and 2 (p<0.05 

Wilcoxon signed rank test) with lower AIC values. It also provided results different than the other atlases 

in Patients 3 and 5 and Simulation 2 (p<0.05 Wilcoxon signed rank test). Its inability to improve shift 

correction in Patient 4 is most likely due to the geometry of the tumor. While it did not necessarily provide 

the most improvement in every patient, it is less susceptible to be biased by sparse intraoperative data 

collection. For example, the k-means atlas could provide less accurate results if the measurements made 

 

Figure VI. 8: In Panel (a), the brain mesh of Patient 3 can be seen in grey, and the tumor can be seen in blue. Patient 

3 had the largest tumor by volume. In Panel (b), the brain mesh of Patient 6 can be seen in grey, and the tumor can be 

seen in blue. Patient 6 had the smallest tumor by volume. 
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are collected in a relatively small area and used to drive the inverse problem. The central debulking atlas is 

less susceptible to such biases in collection, making it more robust. 

     Accurate resection of tumors is critical for patient survival [139], [4]. Knowledge of how the tumor 

cavity is evolving intraoperatively from debulking has the potential to improve the fidelity of tumor 

resections and inform tumor margin planning. While we have focused on applications in IGNS, there are a 

variety of other possible applications for our model of debulking. One of these applications is the prediction 

of the boundaries of the tumor cavity postoperatively to aid in planning stereotactic radiosurgery treatments 

[147]. Knowledge of how the cavity moves could help with patient treatment planning. Despite the noted 

limitations of this investigation, our multimodal study of debulking atlases demonstrates an ability to 

improve brain shift correction relative to a model-based atlas that does not account for debulking. 

 

VI.2.5     Conclusions 

The purpose of this investigation was to develop a method of predicting intraoperative brain shifts due to 

tumor debulking. The patient and simulation results indicate that debulking can be estimated and corrected 

for. Furthermore, the correction gained with debulking atlases is related to the calculated cellular 

distribution. To the best of our knowledge, this is the first model of cavity collapse during tumor resection 

(debulking). While, we cannot conclusively say that our method is ready for clinical implementation 

without further investigation, the results of this study are encouraging. Consistent improvements were 

obtained in the simulation studies, and limitations in the clinical results could be the result of noise within 

the data collection itself. Furthermore, we were able to predict debulking displacements which have been 

very challenging to capture in past FEM studies. The central debulking method captured global mass-effects 

from the tumor and can be refined with additional imaging studies. Furthermore, when statistical differences 

were identified, this method had the best balance between the number of degrees of freedom in the atlas 

and the quality of the brain shift correction. While preliminary in nature, the work presented could improve 

patient outcomes through applications in actively updating IGNS navigation as well as treatment planning 

in stereotactic radiosurgery.  
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CHAPTER VII 

 

VII     Future Directions and Conclusions 

 

VII.1     Evacuation of Other Intracranial Lesions 

 

VII.1.1     Summary and Future Work 

This thesis centers on the evacuation of solid space occupying intracranial lesions, namely tumors. While 

tumors are lesions within the brain, there are a variety of other possible intracranial lesions with varying 

mechanical properties. One such type of lesion is an intracerebral hemorrhage. Intracerebral hemorrhages 

are the result of ruptured blood vessels within the brain, and correspondingly have very different mechanical 

properties and interactions with the surrounding brain tissue. Based on the studies into tumor mechanics as 

they relate to intracranial tissue within the scope of this thesis, it is evident that the interactions between 

pathological and healthy tissue play a significant role in both their development and extraction. As a future 

study based on this work, the relationship between the parenchyma and intracerebral hemorrhages can be 

investigated for surgical planning. This would expand this research into another patient population. In an 

initial, preliminary investigation into the feasibility of this idea, a two-dimensional representation of 

intracerebral hemorrhage evacuation was performed. The results of this study are further evidence that 

studying the evacuation of non-solid space occupying lesions, namely intracerebral hemorrhages, warrants 

future studies.  

 

The work in this section appears in: 

Narasimhan, S., Weis, J. A., Webster, R., Miga, M. I. (2018). “Development of a Mechanics-Based Model 

of Brain Deformations during Intracerebral Hemorrhage Evacuation”, Medical Imaging 2017: Image-

Guided Procedures, Robotic Interventions, and Modeling, Vol. 10135, 101350F, 2017. 

 

VII.1.2     Abstract 

Intracerebral hemorrhages (ICHs) occur in 24 out of 100,000 people annually and have high morbidity and 

mortality rates. The standard treatment is conservative. We hypothesize that a patient-specific, mechanical 

model coupled with a robotic steerable needle, used to aspirate a hematoma, would result in a minimally 

invasive approach to ICH management that will improve outcomes. As a preliminary study, three 

realizations of a tissue aspiration framework are explored within the context of a biphasic finite element 
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model based on Biot's consolidation theory. Short-term transient effects were neglected in favor of steady 

state formulation. The Galerkin Method of Weighted Residuals was used to solve coupled partial 

differential equations using linear basis functions, and assumptions of plane strain and homogeneous 

isotropic properties.  All aspiration models began with the application of aspiration pressure sink(s), 

calculated pressures and displacements, and the use of von Mises stresses within a tissue failure criterion.  

With respect to aspiration strategies, one model employs an element-deletion strategy followed by 

aspiration redeployment on the remaining grid, while the other approaches use principles of superposition 

on a fixed grid.  While the element-deletion approach had some intuitive appeal, without incorporating a 

dynamic grid strategy, it evolved into a less realistic result. The superposition strategy overcame this, but 

would require empirical investigations to determine the optimum distribution of aspiration sinks to match 

material removal.  While each modeling framework demonstrated some promise, the superposition 

method's ease of computation, ability to incorporate the surgical plan, and better similarity to existing 

empirical observational data, makes it favorable. 

 

VII.1.3     Introduction 

Intracerebral hemorrhages (ICH) are the result of blood vessels within the brain rupturing. The incidence 

of ICH is approximately 24 out of 100,000 people a year. The median one-month mortality rate is 40%, and 

there is also a high incidence of morbidity [157]. ICHs make up approximately 10 to 15% of all strokes. 

Some primary causes of ICHs include hypertension, cerebral amyloid angiopathy, sympathomimetic drugs 

of abuse, and coagulopathy [158]. Uncontrolled hypertension is one of the most significant risk factors for 

reoccurring ICHs [159]. Treatment options include blood pressure management, coagulation management, 

and surgery [158]. In the INTERACT2 trial, the mortality and morbidity outcomes of patients with an ICH, 

less than 6 hours old, were similar between patients who underwent traditional management techniques and 

new intensive blood pressure lowering techniques [160]. Surgical approaches for ICH intervention have 

been attempted, but there has not been conclusive data showing that surgical intervention improves patient 

outcomes [158], [161]. Studies have also investigated treating ICHs with decompressive craniectomies.  

These studies revealed improved outcomes, but were limited by a small patient population [162]. Despite 

continuing innovations in the field, satisfactory ICH management remains a significant unsolved medical 

challenge.  

     There are investigational studies into less invasive techniques that seek to more effectively treat ICHs, 

but these techniques are not accepted as a standard method of treatment [163], [164], [165]. One proposed 

minimally invasive technique, which will be the focus of the model presented, is a needle-based robotic 

system for image-guided evacuation of ICHs [165]. The ICH robotic system consists of a sterilizable robotic 

actuation unit, an active cannula driven by the actuation unit, a trajectory guide, which enables the 
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hemorrhage to be targeted using image guidance, an aspirator to evacuate the ICH, and a passive articulated 

arm. The cannula consists of a precurved and superelastic inner tube, and an outer tube which is straight 

and stiff [165], [166]. The proposed surgical workflow of this device is as follows. Preoperative computed 

tomography (CT) images of the patient would be obtained. Using an intraoperative scan of the patient’s 

face, the preoperative CT will be registered into the patient space. Upon completion of the registration, the 

active cannula is then aligned [165]. A burr hole will be made in the skull, then the dura is opened, and the 

trajectory guide will be attached to the skull. Following this, the trajectory stem would then be attached to 

the base, and the alignment probe would then be inserted into the trajectory stem, while using the image 

guidance system for alignment [165]. A locking ring would then be tightened, fixing the trajectory stem 

into place, and once this is complete, the alignment probe would be removed [165]. The robot is then 

brought into the surgical field and attached to the trajectory stem. Finally, the active cannula is then passed 

into the brain through the trajectory stem and navigated through the ICH, based on a preplanned path. As 

the inner cannula is deployed, the ICH is evacuated in a systematic manner [165]. In order to limit the 

number of intraoperative CT scans that would need to be obtained, a mechanics based model of the 

evacuation of the ICH is necessary to ensure safety of the procedure. 

     A previous study analyzed ICH shapes using a two-dimensional (2D), finite element model, representing 

the ICH as six vectors radiating outwards. This study concluded that computational models could improve 

the clinical understanding of ICH patients [167]. Other computational models have been used to represent 

intraoperative events, including retraction and resection [69]. Developing a model that captures the 

deformations and dynamics of the surgical interaction involved with the evacuation of an ICH may be an 

important complement for creating minimally invasive techniques for this patient population. The combined 

development of a biomechanical patient-specific model and robotic platform could be an innovative 

guidance solution for patients suffering from an ICH. In this study, it is hypothesized that a patient specific, 

biomechanical model could augment an active cannula designed to access the intracerebral hemorrhage 

through a minimal path, and be used to guide ICH aspiration process and likely complement intraoperative 

imaging. The purpose of the work presented in this paper is to develop a preliminary, computational, finite 

element model (FEM) to represent ICH aspiration. To the best of our knowledge, this study creates the first, 

preliminary, computational, biomechanical model of ICH evacuation. If this work is fully realized it can 

ultimately be utilized with the ICH robot system described previously and reduce the number of 

intraoperative CT scans to which the patient would be exposed thus significantly reducing ionizing radiation 

exposure. In addition, if possible, reduction of intraoperative CT scans would improve clinical procedural 

work-flow. This work may also be extended by providing additional guidance for other minimally invasive 

ICH evacuation techniques in development. 
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VII.1.4     Methods 

 

VII.1.4.1     Continuum, Finite Element Model of Brain Deformations 

The model treats brain tissue as a fluid saturated poro-elastic medium [64], [70] represented by biphasic 

consolidation theory. The associated partial differential equations were used to calculate pressure, 

displacements, and von Mises stress distributions [64], [70], [97]. The equations for consolidation in soft-

tissue can be written as [64], [70], [97]: 

 ∇ ∙ 𝐺∇�⃗� + ∇
𝐺

1−2𝑣
(∇ ∙ �⃗� ) − 𝛼∇𝑝 = 0                                                                                                 (VII.1.a) 

𝛼
𝜕

𝜕𝑡
(∇ ∙ �⃗� ) +

1

𝑆

𝜕𝑝

𝜕𝑡
− ∇ ∙ 𝑘∇𝑝 = 0                                                                                         (VII.1.b) 

where Equation (VII.1.a) relates the mechanical equilibrium to the pressure gradient, which is treated as a 

body force on the control volume.  Equation (VII.1.b) relates volumetric strain to the conservation of fluid 

in a porous media [64], [70], [97]. The brain is treated as a fully saturated medium, α=1 and1⁄S=0. In this 

study, the equations (VII.1.a and VII.1.b) were simplified into their steady state forms and linear elastic 

mechanical behavior was employed. With these assumptions and simplifications, the governing equations 

of this model can be written as: 

 ∇ ∙ 𝐺∇�⃗� + ∇
𝐺

1−2𝑣
(∇ ∙ �⃗� ) − ∇𝑝 = 0                                                                                       (VII.2.a) 

−∇ ∙ 𝑘∇𝑝 = 0                                                                                                                        (VII.2.b) 

Using the Galerkin Method of Weighted Residuals, the governing equations (VII.2.a and VII.2.b) are 

treated using the standard weighted residual method [16].  

〈𝐺∇�⃗� ∙ ∇𝜙𝑖〉 + ⟨
𝐺

1−2𝑣
(∇ ∙ �⃗� )∇𝜙𝑖⟩ + ⟨𝜙𝑖∇𝑝⟩ = ∮𝐺�̂� ∙ ∇�⃗� 𝜙𝑖 𝑑𝑠 + ∮

𝐺

1−2𝑣
�̂�(∇ ∙ �⃗� )𝜙𝑖 𝑑𝑠                (VII.3.a) 

〈𝑘∇𝑝 ∙ ∇𝜙𝑖〉 = ∮ 𝑘�̂� ∙ ∇𝑝𝜙𝑖 𝑑𝑠                                                                                             (VII.3.b) 

In these expressions, 〈∗〉 represents integration over the domain of the problem. Also, 𝜙𝑖, is the ith member 

of the standard 𝐶° local Lagrange polynomial interpolants associated with finite elements [70]. ∮∗ 

represents integration over the contained boundary and �̂� is the outward-pointing normal to the enclosed 

boundary. The spatial discretization of (VII.3.a) and (VII.3.b) is concluded using the Galerkin method in 

Table VII. 1: Equation Definitions 

𝑮 Shear modulus (Pa) 

�⃗⃗�  Displacement vector (m) 

𝒗 Poisson’s ratio  

𝜶 Ratio of fluid volume extracted to volume change of tissue when compressed  

𝒑 Pore fluid pressure (Pa) 
𝟏
𝑺⁄  Amount of fluid that can be forced into the tissue under a constant volume (1/Pa) 

𝒌 Hydraulic conductivity (m3s/kg). 
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order to expand the unknown fluid pressure, 𝑝, and the unknown displacement vector, �⃗� . These are 

represented as the summation of unknown coefficients, which vary spatially, that are multiplied by known 

functions of position [70], [96].  

�⃗� (𝑥 ) = ∑ �⃗� 𝑗𝜙𝑗(𝑥 )𝑗                                                                                                                 (VII.4.a) 

 𝑝(𝑥 ) = ∑ 𝑝𝑗𝜙𝑗(𝑥 )𝑗                                                                                                               (VII.4.b) 

The spatially discretized, set of ordinary differential equations are: 

 ∑ �⃗� 𝑗𝑗 〈𝐺∇𝜙𝑗 ∙ ∇𝜙𝑖〉 + ∑ �⃗� 𝑗𝑗 ∙ ⟨∇𝜙𝑗
𝐺

1−2𝑣
∇𝜙𝑖⟩ + ∑ 𝑝𝑗𝑗 〈∇𝜙𝑗𝜙𝑖〉 = ∮𝐺�̂� ∙ ∇�⃗� 𝜙𝑖 𝑑𝑠 + ∮

𝐺

1−2𝑣
�̂�(∇ ∙ �⃗� )𝜙𝑖 𝑑𝑠    

                                                                                                       (VII.5.a) 

∑ 𝑝𝑗𝑗 〈𝑘∇𝜙𝑗 ∙ ∇𝜙𝑖〉 = ∮𝑘�̂� ∙ ∇𝑝𝜙𝑖 𝑑𝑠                                                                                   (VII.5.b) 

In Cartesian coordinates, equations (VII.5.a) and (VII.5.b) can be represented in matrix form. 

 [𝐴]{𝑈} = {𝐵}                                                                                                                (VII.6) 

In this matrix expression, (VII.6), [A] consists of submatrices built from element integrations, {𝑈} 

represents the unknown values of displacements and pressure, and {𝐵} consists of known systems forcing 

and boundary conditions. The two-dimensional (2D) representation of the local element contribution to the 

global matrix representation is seen below. [A] is determined for each weighted residual equation and 

concerned coefficient as seen in (VII.7.a), and {𝑈} and {𝐵} are the jth set of coefficients and known forcing 

conditions as defined by (VII.7.b) and (VII.7.c) respectively.  

[𝐴]𝑖𝑗 =

[
 
 
 
 
 𝐺 ⟨

2(1−𝑣)

1−2𝑣
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𝑑𝑦
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           (VII.7.a) 

{𝑈}𝑗 = {

𝑢𝑥𝑗(𝑡𝑛)

𝑢𝑦𝑗(𝑡𝑛)

𝑝𝑗(𝑡𝑛)

}                                                                                                                                    (VII.7.b) 

{𝐵}𝑗 = {

𝑥 ∙ ∮ 𝜎𝑠(𝑡𝑛) ∙ �̂�𝜙𝑖 𝑑𝑠

�̂� ∙ ∮ 𝜎𝑠(𝑡𝑛) ∙ �̂�𝜙𝑖 𝑑𝑠

∮𝑘 ∇𝑝(𝑡𝑛) ∙ �̂�𝜙𝑖 𝑑𝑠

}                                                                                                          (VII.7.c) 

We should note that the expressions shown in Equation (VII.7.a-c) readily extend to three dimensions using 

basis functions associated with tetrahedral elements [96]. These discretized matrix representations were 

used for all ICH evacuation models, namely, the element-deletion model, and superposition approach 

(described in Sections VII.1.4 and VII.1.5, respectively).   
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VII.1.4.2     Analytical Validation of Two and Three Dimensional Models 

To validate the accuracy of the biphasic, poro-elastic model in this work, a 2D and 3D mesh were generated 

and their solutions were compared to a one-dimensional (1D) analytical solution of an equivalent domain, 

with the same boundary conditions (BCs). The dimensions are shown in Figure VII.1. 

With respect to the simulation, the BC on the left side assumes that pressure and displacement is equal to 

zero. On the right hand side (x=0.05 m), it is assumed that the pressure is equal to 1333 Pascals (Pa), and 

the BC associated with solid matrix is stress free. The equations associated with (VII.2.a) and (VII.2.b) can 

be reduced to equations (VII.8.a) and (VII.8.b) in 1D.  Using the BCs provided above, an analytical solution 

for pressure and displacement comparisons can be determined for comparison and is shown in equations 

(VII.9.a) and (VII.9.b), respectively. In these equations E is elastic modulus, and Po is the value of pressure 

applied (1333 Pa).  

𝐸
𝜕2�⃗⃗� 

𝜕𝑥2
−
𝜕𝑝

𝜕𝑥
= 0                                                                                                                       (VII.8.a) 

𝜕2𝑝

𝜕𝑥2
= 0                                                                                                                                  (VII.8.b) 

𝑝(𝑥) = (
𝑃𝑜

0.05
)𝑥                                                                                                                      (VII.9.a) 

 �⃗� (𝑥) = (
𝑃𝑜

2𝐸(0.05)
) 𝑥2 +

−𝑃𝑜

𝐸
𝑥                                                                                             (VII.9.b) 

For the 2D FEM comparison, the rectangular mesh, illustrated in Figure VII.1.a, was governed by the 

equations (VII.5.a) and (VII.5.b). Using Dirichlet BCs, at face 1 (F1), pressures and displacements were set 

to zero. At face 2 (F2), using Dirichlet BCs, the pressure values were set equal to 1333 Pa, while conditions 

on the elastic matrix were stress free. BCs associated with top and bottom of the domain are allowed to 

slide along the wall in the x-axis direction, but are prohibited from displacing in the y-axis direction. BCs 

similar to the 2D framework were used in the 3D simulation. The elastic modulus (E) is 2100 Pa for both 

the 2D and 3D comparisons. In order to make the 2D and 3D approximations similar to the 1D analytical 

 

Figure VII. 1: For the validation of the model, two meshes were generated. Panel A represents the dimensions of the 

2D mesh used to validate the 2D FEM solution. Panel B represents the dimensions of the 3D, rectangular prism mesh 

to validate the 3D FEM solution. F1 and F2 indicate face 1 and face 2 respectively. The arrows indicate the axes for 

x, y, and z in Cartesian coordinates. The origin is in the bottom left corner for both meshes.  
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solution, the Poisson's ratio value is 0. For validation, the displacement and pressure values at a distance 

from the origin are compared.  

 

VII.1.4.3     Common Model Properties for the ICH Evacuation Representations 

There are three representations of ICH evacuation presented in this work. They differ in how evacuation is 

represented with respect to applied boundary conditions, but their core structure is common. For the sake 

of discussion, these are referred to as the central evacuation representation (Section VII.2.4 below) and the 

superposition evacuation representations (1) and (2) (Section VII.2.5 below). They were evaluated in 2D. 

All models were constructed on a FEM, fixed grid, and governed by Equations (VII.2.a) and (VII.2.b). The 

matrices associated with Equations (VII.6), (VII.7.a), (VII.7.b), and (VII.7.c) were constructed based on a 

predefined brain mesh, which is illustrated in Figure 2. The elastic modulus of the brain parenchyma, 

ventricles, and ICH are 2100 Pa, 1Pa, and 1050 Pa respectively. The Poisson's ratio (ν) is 0.45. The 

hydraulic conductivity constant for the brain parenchyma /ICH and ventricles are 1x10-7 m3s/kg and 1x10-

3 m3s/kg respectively. Along the skull boundary, which is the outermost limit of the mesh, Dirichlet BCs 

were used to set the pressure and displacements equal to zero. This represents the skull constraints on the 

brain and defining the pressure at the skull as zero relative to the applied evacuation pressure. The sole 

difference between the representations of ICH evacuation is how the evacuation is applied computationally, 

which is illustrated in Figure VII.2.a and VII.2.b. These will be outlined in Sections VII.4 and VII.5.  
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VII.1.4.4     Two-Dimensional, Central Evacuation Representation 

The behavior of the central ICH evacuation is visualized in Figure VII.2.a. Generally, in this representation, 

the net aspiration of the cannula is treated as a source originated from the center of the ICH, which produces 

an increasingly larger cavity as material is removed. At the completion of consecutive iterations, the final 

evacuated cavity can be estimated. In the central evacuation representation, the pressure of the cannula is 

treated as a Dirichlet BC with magnitude equaling the applied pressure.  In this simulation, the magnitude 

of the pressure was selected to be -1333 Pa. A total of three iterations were completed in this simulation, 

where each iteration represents one complete application of the cannula. During the first iteration, the 

application of the cannula is represented by a single, Dirichlet BC at a single node (red dot in Figure 

VII.2.a). After this, the pressure, displacement, and von Mises stress distribution are calculated. The von 

Mises stress distribution, calculated per element, was used as the failure criterion in order to determine if 

an element, which represents a section of tissue, was flagged for deletion. Due to the lack of experimental 

data, the yield criterions for the three materials are determined empirically during the first iteration of this 

procedure. The yield criterion for the ICH was set to be 0.95 times the maximum von Mises stress calculated 

in the ICH during this first iteration. The yield criterion for the brain and ventricles are set as 10 times the 

 

 

Figure VII. 2: This figure displays the three models being tested on a brain mesh. (A) represents the deployment of 

pressure in the central evacuation representation of ICH evacuation. (B) represents the deployment of pressure in both 

superposition evacuation representations of ICH evacuation. The outermost boundary of the mesh represents the skull. 

The two asymmetric, internal boundaries represent the brain's ventricles. The circular portion of the mesh, which is 

also displayed in the details, represents the ICH.  
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maximum von Mises stress of the brain and ventricles respectively calculated during the first iteration. This 

is representative of the ICH being evacuated more readily than the other tissue types. These yield criterion 

were selected to effectively demonstrate the behavior of this evacuation representation. In order to 

accurately select a yield criterion, an empirical investigation would be needed; but as the purpose of this 

simulation study is to just understand performance differences under similar conditions, it is not needed 

here. If the elements were flagged for deletion (stress higher than criterion), they were removed from the 

solver by not including them in the next construction of the matrices, while leaving the un-evacuated mesh 

intact. Moving into the next iteration, during the matrix assembly, elements which were evacuated during 

the previous iteration were not built, effectively removing their influence from the solution of the iteration. 

The new boundary of the evacuated cavity, represented by the blue circle in Figure VII.2.a is where the 

applied pressure is now redeployed during the second iteration. This represents the remaining tissue 

migrating towards the cannula during the second iteration, and the pressure applied from the cannula now 

deployed over a greater area. This is enforced using Dirichlet boundary conditions. Upon completion of the 

second iteration, the displacement, pressure, and von Mises stress distributions are once again calculated, 

and a new list of deleted elements, representing evacuated tissue, is generated using the previously 

calculated yield criterions. Entering the final iteration, the same process is repeated. The elements which 

were flagged for deletion are not included in the matrix assembly, and the pressure applied by the cannula 

is now deployed over the outer boundary of the new evacuated cavity, as seen by the yellow circle in Figure 

VII.2.a. This method requires the recalculation of the [A] matrix (Equation VII.6) every iteration due to the 

elimination of element contributions and the redeployment of Dirichlet boundary conditions in new regions 

of the mesh.  In this simulation, only three iterations were conducted, but this general process can be 

performed as many times as necessary, capturing the entire evacuation process.  

 

VII.1.4.5     Two-Dimensional, Superposition Evacuation Representation 

The behavior of the superposition evacuation of an ICH is visualized in Figure VII.2.b. The motivation of 

this representation is that during the evacuation procedure, the cannula is moving along a preplanned path. 

Rather than capturing the net evacuation, as done with the central evacuation representation, this method 

follows the cannula along its preplanned path. Each location within its trajectory is treated as one complete 

application of the cannula, and at the completion of one application, the model moves to the next location 

as dictated by the surgical plan. At the completion of the path, the total evacuated cavity can be estimated 

by superimposing the separate evacuation solutions. In this presented simulation, a total of three cannula 

applications are performed at three different cannula locations. Unlike the central evacuation, each suction 

is treated as a volumetric sink with an empirically determined magnitude to engender pressures in the mesh 
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equivalent to -1333 Pa. This representation was approached two ways, superposition representation (1) and 

superposition representation (2).  

     In superposition representation (1), during the first iteration, represented by the red dot in Figure VII.2.b, 

the cannula is deployed on a node as a volumetric sink. Using this, the model was solved for the first 

iteration and pressure, displacement, and von Mises stress distributions were calculated and stored. Using 

von Mises stress as the failure criterion, elements, representative of tissue, are flagged for deletion. Similar 

to the central evacuation representation, the von Mises yield criterion is empirically determined based on 

the stress distribution calculated during the first iteration. In a similar manner to the central evacuation 

method, in order to illustrate the behavior of this evacuation method, the yield criterion for the ICH was 

selected as 0.75 times the maximum von Mises stress of the ICH. The yield criterion of the brain and 

ventricles are selected as 10 times the maximum von Mises stress in both materials respectively. These 

values are stored and used as the yield criterion for all three material types during the simulation. The list 

of elements that were deleted after the first cannula deployment are stored, and the evacuated cavity of this 

suction can be visualized by the dashed red line in Figure VII.2.b. Moving onto the second iteration, the 

cannula location is moved to its second position, and the same volumetric sink is applied on this node. This 

is visualized in Figure VII.2.b as the light blue dot. Then the model is solved to estimate pressures, 

displacements, and von Mises stresses, and these solutions are stored. The tissue evacuated as the result of 

the second iteration is stored, and this evacuation is visualized by the light blue dashed circle in Figure 

VII.2.b. Moving onto the final iteration, the same process is repeated. The cannula is moved to its third 

location and is visualized as the purple dot on Figure VII.2.b. The elements deleted due to this iteration are 

shown by the purple dashed line in Figure VII.2.b. This process can be repeated indefinitely, as required to 

appropriately represent the path of the cannula during the ICH evacuation. The final estimated evacuated 

cavity is formed by determining the outer contours resulting from the superposition of the elements flagged 

for deletion during all three iterations performed. This is done by adding the three results together. This is 

illustrated by the yellow shape in Figure VII.2.b. This method only requires the [A] matrix (Equation VII.6) 

to be factored once, since each iteration is independent of each other and representations of aspiration are 

based on right-hand-side equation adjustments only. 

     In superposition representation (2), rather than solving three iterations of the model for pressure, 

displacement, and von Mises stresses, only one iteration is performed. This further simplification of the 

superposition representation requires the formation and factorization of the [A] matrix once. Then, using a 

series of volumetric sinks, the {𝐵}vector (Equation VII.6) is populated with three conditions representing 

the same three deployments of the cannula. This reflects a path the cannula would travel in the surgical 

procedure. The deployment of these sinks is visualized as the red, blue, and purple dots in Figure 2B. Using 

this, the model was solved for the first iteration and pressure, displacement, and von Mises stress 
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distributions were calculated and stored. The yield criterion for the ICH was selected as 0.75 times the 

maximum von Mises stress of the ICH material during this single iteration. The yield criterion of the brain 

and ventricles are selected as 10 times the maximum von Mises stress in both materials respectively. The 

deleted cavity is solved in a single iteration and is visualized by the yellow shape in Figure VII.2.b. 

Superposition representation (2) can be modified by altering the number of and location of the volumetric 

sinks enforced, thereby representing different cannula trajectories within the surgical plan.  

 

VII.1.4.6     Three-Dimensional, Continuum, Finite Element Model of Brain Deformations 

As a preliminary study into applying the evacuation methods in 3D, an example mesh of a human brain 

with an artificial ICH was made using a custom-built mesh generator and consisted of 21076 nodes and 

113183 linear tetrahedral elements. The material properties selected for this mesh were 2100 Pa for the 

elastic modulus of the brain, 1050 Pa for the elastic modulus of the ICH, and 0.45 for the Poisson’s ratio of 

both materials.  Also, the hydraulic conductivity was set uniformly as 1 m3s/kg for the entire mesh, which 

is appropriate given the nature of the equations. The shear modulus (G) value is defined such that 𝐺 =

𝐸/(2 ∗ (1 + 𝑣)). The governing equations were the same as the 2D case, Equations (VII.2.a) and (VII.2.b). 

The boundary conditions used to solve this 3D representation take into consideration the outermost 

boundary of the brain mesh, which represents the boundary of the brain with the skull. The first condition 

is that there is no displacement at the skull. This is enforced using Dirichlet boundary conditions, setting 

displacements in the normal and tangential directions to be equal to zero. The second condition, is that the 

pressure at this boundary is 0 Pa, and is applied as Dirichlet boundary conditions. To represent the applied 

suction, the magnitude of pressure, -1333 Pa, was applied on the four nodes of one tetrahedral element 

contained within the artificial ICH. This entire simulation is representative of applying a single suction to 

the ICH. At the completion of this simulation, displacements and pressures were estimated for each node.  

 

VII.1.5     Results 
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VII.1.5.1     Analytical Validation Results 

The continuum, finite element model of brain deformations were solved in 2D and 3D and compared to the 

analytical 1D solution. They were simulated using the same material properties, dimensions, and 

constraints. The results of the 2D solution are shown in Figure VII.3. Figure VII.3.a shows the overlay of 

the model solution and the analytical solution for displacement, and reflects that the solutions are in 

agreement. The relative average displacement error is less than 1% over the entire domain. Figure VII.3.b 

overlays the analytical solution and the model solution for pressure, and reflects that the relative pressure 

error is less than 1%.  

The results of the 3D validation are shown in Figure VII.4. In Figure VII.4.a, the 3D displacement FEM 

solution is overlaid with the 1D analytical solution of displacement, with relative average displacement 

error less than 1%. In Figure VII.4.b, the 3D FEM solution for pressure is overlaid with the 1D analytical 

solution, and the relative pressure error is less than 1%.  

 

Figure VII. 3: Comparison of the 2D finite element model solution in a rectangular mesh to a 1D analytical solution. 

Panel A represents the displacement along the primary axis, and panel B represents the pressure at the corresponding 

locations. The error bars represent the standard deviation at each point. The relative average displacement and relative 

pressure error are both less than 1%.   
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VII.1.5.2     Comparison of Evacuation Methods 

A table summarizing the results from the model solutions is below.  

 

As described in Sections VII.2.4 and VII.2.5, the difference between the central evacuation representation, 

superposition evacuation representation (1), and superposition evacuation representation (2) of ICH 

aspiration is how the volumetric sinks create the aspiration condition resulting from the cannula within the 

model. In the simulations of the central evacuation (Figure VII,5, Panels a-c), the superposition evacuation 

(1) (Figure VII.5, Panels d-f), and the superposition evacuation (2) (Figure VII.5, Panels g-i) represented 

in Figure VII.5, three volumetric sinks representing three cannula applications, were applied in all three 

scenarios. All panels are representative of the evacuation after the deployment of three sets of pressure 

boundary conditions, and from a qualitative observation, they exhibit dissimilar behavior. After three 

 

Figure VII. 4: Comparison of the 3D finite element model solution in a rectangular prism to a 1D analytical solution. 

Panel A represents the displacement in the primary axis, and panel B represents the pressure at the corresponding 

locations. The error bars represent the standard deviation at each point. The relative average displacement and relative 

pressure error are both less than 1%. 

 

Table VII. 2: Comparison of the three 2D representations of ICH evacuation in the same finite element mesh. This is 

a summary of how all three representations compare in reference to the percent of ICH evacuated, percent of brain 

parenchyma evacuated, the computational burden associated with the LU factorization, and the computational burden 

associated with the back substitution for the solution. B is bandwidth, and N is the number of unknowns. 

Model Percent 

ICH 

Evacuation 

Percent 

Brain 

Evacuation 

Computational 

Burden - LU 

Factorization 

Back Substitution 

for Solution 

Total 

Cost 

Central 

Evacuation 

100.00% 0.51% ~ 3 ∗ 𝑂(𝐵2 ∙ 𝑁) 3 ∗ 𝑁2 ~ 3𝐵2 ∙ 𝑁 + 3𝑁2 

Superposition 

Evacuation (1) 

14.50% 0.00% 𝑂(𝐵2 ∙ 𝑁) 3 ∗ 𝑁2 ~ 𝐵2 ∙ 𝑁 + 3𝑁2 

Superposition 

Evacuation (2) 

18.90% 0.00% 𝑂(𝐵2 ∙ 𝑁) 𝑁2 𝐵2 ∙ 𝑁 + 𝑁2 
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iterations, the percent of the ICH evacuated in the central evacuation method is 100%, and the percent of 

brain parenchyma evacuated is 0.51% (Table VII.1). After three iterations, in the superposition evacuation 

method (1), the percent of the ICH evacuated is 14.5%, and no brain parenchyma was evacuated (Table 

VII.1). After the single deployment of three pressures in the superposition evacuation method (2), the 

percent of the ICH evacuated is 18.90%, and no brain parenchyma was evacuated (Table VII.1). All three 

methods were able to identify the removal of ICH tissue, calculate pressure (Figure VII.5, Panels a, d, and 

g) and displacements at every node, and estimate the von Mises stress per element (Figure VII.5, Panels b, 

e, and h). Additionally, they capture the bulk deformation of the surrounding tissue towards the area of 

evacuation (Figure VII.5, Panels c, f, and i).  

     A significant difference between the evacuation methods is the computational burden involved with their 

executions (Table VII.1). All three models presented involve approximately the same memory allocation. 

They differ significantly in matrix assembly and the number of operations required. For memory efficiency, 

lower upper (LU) decomposition can be used. The factoring of matrix [A] (Equation VII.6) is the most 

computational expensive step in calculating the solution of the models [96]. The computational burden 

involved in factorization is 𝑂(𝐵2 ∙ 𝑁), where 𝐵 is the bandwidth of the [A]  matrix, and 𝑁 is the number of 

unknowns being solved for [96]. Both 𝐵 and 𝑁 are the same in the three models. The central evacuation 

representation, however, redefines the [A] matrix every iteration. This means that the computational burden 

in factorization is approximately  3 ∗ 𝑂(𝐵2 ∙ 𝑁) . On the other hand, both superposition representations 

only requires the construction of one [A] matrix used for all iterations. Therefore the total computational 

burden of factorization is only 𝑂(𝐵2 ∙ 𝑁). The 3 fold increase in computational burden for the central 

evacuation coupled with the need to rebuild the [A] matrix is a significant limitation versus the other 

methods.  Even in the case where only local regions where evacuations are occurring and only small changes 
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to the global [A] matrix were needed, it would still require storing an addition [A] matrix to accommodate 

this process.  Ultimately, Table VII.1 indicates some strong advantages for superposition methods. 

 

Figure VII. 5: Comparison of the three representations ICH evacuation in the same finite element mesh. The top row 

(A-C) is the central evacuation model solution after the completion of three iterations. The middle row (D-F) is the 

superposition model (1) solution after adding the solutions of the three iterations together. The bottom row (G-I) is 

the superposition model (2) solution after a single iteration containing three applied pressure sources. A, D, and G 

represent the pressure distribution throughout the mesh, where cooler colors indicate larger negative pressures, warmer 

colors indicate less negative pressures, and maroon indicates deleted elements. B. E, and H represent the von Mises 

stress distribution, where warmer colors indicate higher positive von Mises stresses, cooler colors indicate smaller 

von Mises stresses, and dark blue indicates zero stresses and evacuated elements. C, F, and I show the change in mesh 

structure from its initial configuration point (blue) to its final deformed state (black). On the bottom right of C, F, and 

I is an enlarged view of the ICH. 
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VII.1.5.3     Preliminary Three-Dimensional Model 

The results of the 3D FEM model solution are shown in Figure VII.6.  In both panels, the magenta lines 

visualize the brain mesh and artificial ICH used in this simulation. The cannula's pressure was deployed 

within the ICH, and solutions for displacement and pressure were estimated at all nodes within the mesh in 

this 3D simulation. A slice through the brain, near the location of the cannula deployment is shown in 

Figure VII.6. In Figure VII.6.a, it is evident that the bulk of the motion occurs closest to the location of 

pressure deployment. Similarly, in Figure VII.6.b, the highest pressures are at the location of the cannula. 

This is qualitatively the same behavior seen in the 2D model, and is indicative of the 3D model being viable 

for ICH evacuation solutions.  

 

VII.1.6     Discussion 

The overall goal of this study was to develop a model to estimate the aspiration of an ICH using a needle-

based robotic system for image-guided evacuation of ICHs. Interpreting the results of the 2D and 3D 

simulations performed, the relative average errors between the analytical solution and the FEM solution 

were less than 1%. These errors are acceptable, indicating the acceptability of the steady-state model used 

to solve for ICH evacuation in 2D. Minor discrepancies between the model solutions and the analytical 

solutions, seen in Figures VII.3 and VII.4, may be the result of the numerical error due to resolution of the 

mesh used in the solution. The accuracy of the model solutions, both in 2D and 3D, support its use as a 

means to capture steady-state brain deformation and pressure in a model of ICH evacuation. An additional 

 

 

Figure VII. 6: For these simulations, a pressure of -1333 Pa was placed within the ICH. Panel A is a slice through 

the 3D brain mesh, representing the displacement solution. Panel B is a slice through the 3D brain mesh, representing 

the pressure solution. 
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improvement could be obtained through the incorporation of the temporal aspect of the equations for 

consolidation in soft-tissue, shown in Equations (VII.1.a) and (VII.1.b).  

     Comparing the 2D models used to estimate the deformations, there are several evident trends. There are 

substantial differences in the representation of the cannula between the central evacuation representation 

and both of the superposition evacuation representations. The amount of ICH removed after three pressure 

deployments was significantly different; however all models were able to capture the removal of an ICH, 

indicate if brain parenchyma was evacuated, and estimate the distribution of pressure and displacements. 

The advantage of the central evacuation representation is that it only relies on knowing the applied 

evacuation and the node approximately in the center of the ICH. However, while intuitive with respect to 

application, it would require special care with respect to failure criterion to maintain stability.  More 

specifically, as elements that violate the von Mises criterion are eliminated, simply just reapplying the 

pressure leads to increasing forces due to increased area exposure. To prevent this, the use of a dynamic 

grid and an alternative failure criterion is likely needed. The superposition evacuation representation, both 

(1) and (2), do not have this problem as they are calculated on a fixed grid.  In addition, they enable 

incorporating knowledge of the cannula's path during ICH aspiration. They are also likely more adaptable 

to other ICH evacuation methods that may have different approaches. Even more importantly, the 

computational burden of superposition evacuation (1) and superposition evacuation (2) is significantly less 

than the central evacuation representation which may be a considerable advantage when translating to the 

intraoperative setting. A limitation of the superposition representation is its inability to accommodate the 

impact of continual removal during the aspiration process. Additionally, all three methods are limited by 

the use of the von Mises stress as a failure criterion for material evacuation.  The method performance is 

dependent on the definition and number of successive cannula applications.  This would undoubtedly 

require tuning to match biological conditions, and the extrapolation to novel brains may not be straight 

forward. This concept of empirical tuning of one of these basic biophysical models acting as a type of 

biophysical filter for ICH aspiration is intriguing and an area for future development.   

     The three-dimensional model solution is a first step towards implementing the approximations of ICH 

evacuation in a patient specific manner. By generating meshes from patient-specific, preoperative scans, 

ICH evacuation can be simulated using knowledge of the patient's physiology and the surgeon's therapeutic 

plan for evacuation. Moving forward, the second superposition representation of evacuation should be 

favored, due to its ability to more realistically reflect the surgical procedure and its decreased computational 

burden. In order to more fully validate the accuracy of the superposition evacuation representation (2), 

phantom studies will be needed. Generally, the results of our simulations indicate the feasibility of modeling 

ICH evacuation using finite element modeling, but further work into its development is needed.  
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VII.1.7     Conclusions 

While the methods presented in this paper show aspects of promise, more work is needed in order to capture 

the complexity of ICH aspiration and its associated material failure criterion. The novelty of the work 

presented in this preliminary study is that to the best of our knowledge, it is the first computational model 

of ICH evacuation. Three methods of representing ICH evacuation were investigated, but the second 

superposition representation better accounts for the surgical environment behavior and is more readily 

incorporated into an intra-operative environment. Moving forward, following realization and validation of 

the 3D patient-specific model this framework research can be applied to the ICH robot system. It would 

enable the reduction of intra-operative CT scans used to ensure healthy tissue would not be aspirated. This 

work can also be applied to other minimally invasive techniques used in the brain for other aspiration based 

mechanisms. 
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VII.2    Modeling of Fissures 

 

VII.2.1     Background 

     The brain is a highly complex organ, with a variety of physical structures. The brain is heterogeneous, 

consisting of grey and white matters. It also contains many structures, including the ventricular cavities, 

dural septa, fissures, and sulci and gyri [5], [168]. Fissures divide the brain into lobes; sulci are the groves 

in the brain, and the gyri are the plateaus formed by the boundary ridges of the sulci pairs [5], [168]. In the 

scope of this thesis, the influence of ventricular cavities and dural septa were investigated in depth using in 

vivo data. The influence the fissures, sulci, and gyri were not investigated as thoroughly. A preliminary 

investigation into modeling their influenced, indicate their potential importance in accurately capturing 

pressure and displacement distributions accurately.  

 

VII.2.2     Treatment of Fissures 

As an initial approximation of the behavior of the fissure, we theorized that while the tissue on either side 

of a fissure can move together, the fluid present in the brain has to move around them (Figure VII.7). We 

hypothesized that at fissure boundaries, strain can communicate across (coupled mechanically), but 

pressure is unable to communicate across. In a preliminary implementation of this methodology, a custom, 

3D, finite element steady state poroelastic model of the brain was generated governed by the following 

equations. 

∇ ∙ 𝐺�⃗� + ∇
𝐺

1−2𝑣
(∇ ∙ �⃗� ) − ∇𝑝 = 0                                                                                           (VII.10) 

−∇ ∙ 𝑘∇𝑝 = 0                                                                                                                          (VII.11) 

     All simulations were constructed on a tetrahedral finite element mesh. Fissure boundaries were 

generated using a custom mesh splitting code. For all nodes, not designated as a fissure boundary or another 

boundary condition, the governing equations are enforced as shown above. At fissure boundary nodes, 

 

Figure VII. 7: This is an MRI of a block of brain tissue, where the Sylvian fissure is apparent (dark pixels). The blue 

points represent the theorized movement of the fluid within the tissue. It is around the fissure, rather than through it.  
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however, while strain is permitted to communicate across the split in the mesh, a no flux boundary is 

enforced, with respect to pressure. Essentially, the tissue can move together at fissures, but fluid cannot 

flow across the fissure. The influence of the fissure boundary was investigated in soil column investigations 

as well as simulated pressure infusion within a brain. 

 

VII.2.3     Soil Column Investigations 

 

VII.2.3.1     Unsplit 

To investigate the influence of the developed fissure boundary condition, initial soil column investigations 

were performed. A 3D, tetrahedral, finite element mesh in the shape of a rectangular prism was generated 

to represent a column of soil. Like the brain, soil is poroelastic. As a baseline, the rectangular column 

remained intact (Figure VII.8). On the left hand side of the column, 100 Pa of pressure was applied. On the 

right hand side of the column, the pressure and displacement was fixed at 0. In this unsplit mesh, the gradient 

in pressure and displacement was communicated across the entire rectangle (Figure VII.8). 

Pressure (Pa) - 0 to 100 Pa 

                    
 

Displacements (mm) - 0 to 17.70 mm 

                     

Figure VII. 8: These are the pressure and displacement solutions when 100 Pa was applied to the left hand side of the 

column, and it was specified that the pressure and displacement on the right hand side of the column is 0. This 

rectangular mesh was unsplit. Warm colors represent higher pressure and displacement values, while cooler colors 

represent lower pressure and displacement values. 
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VII.2.3.2     Split 

To understand the impact of simply splitting the same rectangular mesh partially, the same boundary 

conditions applied to the unsplit mesh are applied to a partially split mesh (Figure VII.9). In this mesh, no 

boundary conditions are enforced at the split within the mesh. The pressure solution differs from the unsplit 

mesh, and compartmentalization was evident. Due to the partial split of the mesh, some pressure was still 

moved from the left hand side of the rectangle to the right hand side. Looking at the deformed solution, it 

was evident that the left hand side of the rectangle folded into the right hand side of the rectangle (Figure 

VII.9). This solution does not make physical sense, which led us to the conclusion that simply splitting the 

mesh was not sufficient to represent a fissure boundary. 

Pressure (Pa) - 0 to 100 Pa 

       
 

Displacements (mm) - 0 to 25.24 mm 

                   

Figure VII. 9:  These are the pressure and displacement solutions when 100 Pa was applied to the left hand side of 

the column, and it was specified that the pressure and displacement on the right hand side of the column is 0. This 

rectangular mesh was split, with no boundary conditions enforced at the split within the mesh. Warm colors represent 

higher pressure and displacement values, while cooler colors represent lower pressure and displacement values. 
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VII.2.3.3     Fixed Split (dural septa) 

In the next iteration of this soil column experiment, the same pressure and displacement boundary 

conditions as the unsplit mesh were applied to the split mesh. However, the split boundary condition was 

fixed in displacement. This is similar to how the dura of the brain is treated in the majority of this thesis. 

The solutions in displacement were more reasonable, since the mesh did not fold in on itself (Figure VII.10). 

However, the boundary condition on the split led to a highly restricted displacement, limiting the majority 

of the deformations to the left hand side of the rectangular mesh. 

 

VII.2.3.4     Fissure 

To understand the influence of the developed fissure boundary condition, the same split mesh had 100 Pa 

applied to the left hand side, and the right hand side of the rectangle was prescribed as 0 Pa and fixed in 

displacement. The split was treated with the fissure boundary condition (Figure VII.11). The nodes on either 

side of the split are coupled mechanically, however fluid is not permitted to flow through it. The pressure 

distribution appears similar in nature to the pressure distributions when the split is unconstrained (Figure 

VII.9) or fixed (Figure VII.10). The displacement solution, when the fissure is treated as a fissure boundary 

condition, how permits displacement to communicate across the divide (Figure VII.11). This behavior was 

Pressure (Pa) - 0 to 100 Pa 

         
 

Displacements (mm) - 0 to 3.15 mm 

          

Figure VII. 10: These are the pressure and displacement solutions when 100 Pa is applied to the left hand side of the 

column, and it was specified that the pressure and displacement on the right hand side of the column is 0. This 

rectangular mesh was split, and the split is fixed in displacement. Warm colors represent higher pressure and 

displacement values, while cooler colors represent lower pressure and displacement values. 
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in line with our hypothesis that fissures within the brain allow strain to communicate, but fluid cannot flow 

through them. Also, the mesh did not fold over itself, indicating the physical validity of the solution.  

 

VII.2.4     Brain Pressure Infusion Simulations 

 

VII.2.4.1     Methods 

Due to the lack of clinical or animal data, several simulation studies of pressure infusion within a brain 

were simulated to understand the impact of including fissure boundary conditions within a model of the 

brain. Once again, all of the simulations were constructed on a tetrahedral finite element mesh. The two 

governing equations were Equations (VII.10) and (VII.11). Three simulations were performed. They all 

represented interstitial fluid flow from a pressure infusion source. The boundary conditions applied to all 

three was a slip condition on the outer surface of all three meshes (Figure VII.12), representing the outer 

dura of the brain. The pressure at the outer surface of all three meshes (Figure VII.12) were prescribed to 

be 0 Pa with a Dirichlet boundary condition. The pressure infusion source, simulating a catheter, visualized 

by the red sphere in all three details of Figure VII.12, was treated as a Dirichlet boundary condition with a 

Pressure (Pa) - 0 to 100 Pa 

      
 

Displacements (mm) - 0 to 12.23 mm 

     

Figure VII. 11: These are the pressure and displacement solutions when 100 Pa is applied to the left hand side of the 

column, and it is specified that the pressure and displacement on the right hand side of the column is 0. This rectangular 

mesh is split, and the split is treated as a fissure. Strain can communicate across the split, but fluid cannot flow through 

it. Warm colors represent higher pressure and displacement values, while cooler colors represent lower pressure and 

displacement values. 
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hydraulic pressure of 1333 Pa. The elastic modulus of the brain was 2100 Pa, and the Poisson ratio value 

was 0.45 for all three simulations. 

     The three simulations differed in what brain anatomy was included. In simulation one, the brain was 

treated as a homogeneous material with no anatomical features (Figure VII.12.a). The second simulation of 

interstitial fluid flow from a catheter, incorporated the dural septa into the mesh (Figure VII.12.b). The 

dural septa consists of the falx, and the left and right tentorium. They were incorporated into the original 

mesh using a custom splitting code, which splits the mesh along the membrane. The dural septa is a rigid 

structure within the brain. In order to capture this within the model, the dural septa nodes were rigidly fixed 

using Dirichlet boundary conditions, prescribing 0 displacement. These nodes also had Neumann boundary 

conditions prescribing no flux in pressure. The third simulation of the interstitial fluid flow from the 

pressure infusion source introduced more structural specificity with the central sulcus and Sylvian fissure 

in addition to the dural septa. This mesh can be visualized in Figure VII.12.c. The boundary conditions used 

to describe the dural septa were kept the same as in the second simulation. The central sulcus and the 

(a)                                                                              (b) 

(c)

 
 

Figure VII. 12: The mesh in Detail (a) shows the brain treated as a homogenous material. The mesh in Detail (b) 

illustrates the brain as homogenous tissue with the dural septa. The mesh in Detail (c) represents the brain as 

homogenous tissue with the dural septa, Sylvian fissure, and central sulcus. 
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Sylvian fissure were incorporated using the splitting code. The fissure and sulcus are physical divisions 

between the lobes of the brain, but the tissue on either side of the features are in physical contact with each 

other. Fluid, however, cannot flow across the fissure because it is a void space. In the model, at the fissure 

and sulcus, it was prescribed that strain could communicate across, but fluid could not flow across the 

fissure and sulcus. 

 

VII.2.4.2     Results 

All three of the simulations were solved, providing displacement and pressure solutions. In simulation one, 

deformations occurred in both hemispheres (Figure VII.13.a), and the pressure gradient radiated 

symmetrically from the catheter (Figure VII.14.a). In simulation two, the deformations were limited to the 

right hemisphere (Figure VII.13.b). There was also an alteration in the pressure solution distribution (Figure 

VII.14.b) due to the presence of the dural septa. In simulation three, the additional presence of the fissure/ 

sulcus, modifies the deformation pattern (Figure VII.13.c), and the movement of the fluid is additionally 

constrained as evident from the pressure solution (Figure VII.14.c). The symmetric pressure gradient is no 

longer present.  

                       
(a)                                               (b)                                                   (c) 

 

Figure VII. 13: This is an image of the displacement solution (mm) on the surface of the meshes. Detail (a) is the 

results of the mesh, which treats the brain as a completely homogenous material. Detail (b) is the result of the mesh 

with the dural septa incorporated. Detail (c) is the result of the mesh with the dural septa, Sylvian fissure, and central 

sulcus incorporated. 
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     As an additional assessment of the influence the fissure boundary played in influencing the results, the 

pressure gradients were calculated in the area around the simulated catheter. Figure VII.15, visualizes these 

calculations. While simulation one and two did not contain the fissure boundary condition, the closest 

fissure boundary was visualized in all three details of Figure VII.15 in order to provide a spatial frame of 

reference and better interpret the change in pressure gradient, based on the boundary conditions. When the 

simulated brain had no features, the pressure moved away from the source in all directions approximately 

evenly; also, the pressure gradients moved through the spatial location of the fissure without any 

interference (Figure VII.15.a). The addition of the dural septa into the mesh changed the pressure gradients, 

relative to the simulation with no features, however there were still gradients through the fissure boundary 

(Figure VII.15.b). Accounting for the fissure boundary condition dramatically changed the pressure 

gradient behavior (Figure VII.15.c). Rather than moving through this feature, there was a clear movement 

of fluid around the fissure, which is in agreement with Figure VII.14. 

     While preliminary in nature, both the soil column studies and brain simulation studies provide evidence 

that our hypothesized treatment of fissure boundary conditions result in changes in poroelastic solutions. 

This fissure boundary treatment allows the tissue, divided by a split, to move together, while preventing 

fluid motion through the divide. 

 

                          
(a)                                                (b)                                                     (c) 

 

Figure VII. 14: This is an image of the pressure solution (Pa) at the same cross section. Detail (a) is the results of the 

mesh, which treats the brain as a completely homogenous material. Detail (b) is the result of the mesh with the dural 

septa incorporated. Detail (c) is the result of the mesh with the dural septa, Sylvian fissure, and central sulcus 

incorporated. 
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VII.2.5     Clinical Applications 

Elevated intracranial pressure (ICP) is a relatively common complication arising from central nervous 

system disorders, stroke, hydrocephalus, space occupying lesions, cerebral edema, and traumatic brain 

injuries [56]. ICP is governed by the Monroe-Kellie Doctrine, which states that the cranial cavity is of a 

fixed volume, consisting of blood, cerebrospinal fluid (CSF), and brain tissue. Therefore an increase in 

volume of one of the three components is compensated for by a decrease in volume of another [54]. When 

tumors grow to a point where CSF and blood can no longer be displaced, ICP elevates. The anatomical 

features in the brain separates it into sections, and some features can serve as a barrier to interstitial fluid 

flow. Incorporating more detailed neuroanatomy, including fissures, within biotransport simulations is 

important for predicting biomechanical reactions to ICP-altering disorders. This can help develop 

diagnostic tools in a wide range of medical situations associated with elevated ICP.  

     One such situation includes determining if a patient is at risk for brain herniation [59]. Herniation is the 

movement of a portion of the brain into another part of the brain, and is dependent on the location of the 

disturbance in pressure [59]. The most common herniation is the uncal herniation, where a portion of the 

temporal lobe gets dislodged [59]. This illustrates the significance of compartmentalization within the brain. 

More accurately representing the behavior of the brain by modeling fissured could aid in treatment planning 

for patients at risk for brain herniation and a wide range of other disorders associated with elevated ICP. 

Another potential direction for this work drug delivery, specifically convection-enhanced drug delivery. 

The blood brain barrier prohibits the motion of chemotherapeutic agents to tumors. As a means to 

circumvent this, a catheter can be placed within the brain, and convection is used to transport the 

chemotherapeutic agents within the brain [169]. This technique is not widely accepted due to how difficult 

 
  (a)                                                       (b)                                                    (c)  

Figure VII. 15: This is visualization of the gradients in pressure calculated from the pressure solution (Pa). In all three 

details, the blue sphere represents the pressure infusion source. The white plane is one of the fissure boundaries. Detail 

(a) is the results of the mesh, which treats the brain as a completely homogenous material. Detail (b) is the result of 

the mesh with the dural septa incorporated. Detail (c) is the result of the mesh with the dural septa, Sylvian fissure, 

and central sulcus incorporated. 
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it is to direct the chemotherapeutic agent to the desired target. Therefore using computational models to 

plan drug delivery is an area of significant clinical impact.  

 

VII.2.6     Future Studies to Investigation Fissure Representation 

The results of the simulation studies into the hypothesized modeling of fissures indicates that their presence 

alters both the solid and fluid movement of poroelastic materials, specifically the brain. This is encouraging, 

however, without either animal or human studies, it was not possible within the scope of this thesis to 

investigate this concept beyond simulation studies. Based on the work within this thesis, it is clear that 

anatomical features, both normal and diseased, play significant roles in brain tissue behavior. The ability to 

account for additional features with greater accuracy could increase the use of computational modeling in 

neurosurgical applications. 

     In order to test the validity of this description of fissures, an animal study is necessary An in vivo porcine 

study where a traceable agent is infused into the brain, in a method similar to convection-enhanced drug 

delivery would be ideal. Before the infusion, obtaining a high resolution T1 weighted MRI scan of the 

animal subject would enable the fissures and other structures to be digitized after the experiment for 

meshing. Serial scans, selected based on the nature of the infused agent, would be needed in short time 

intervals at the time of and for the time following the infusion of the agent. During these times, it will be 

necessary to note the exact time of scan, for temporal information, and ensure the porcine skull can be 

digitized in every image of the agent's transport. Having the skull within frame would permit the scans to 

be rigidly registered to one another, ensuring the data is useable. After the animal experiment is concluded, 

a mesh should be generated based on the anatomical porcine scan. In a follow-up simulation study, similar 

to the one described in the preliminary investigation, the agent transportation should be simulated when no 

features are accounted for, features not including the fissures are accounted for, and when everything, 

including the fissures are included. The results of the simulated agent transport can be directly compared to 

the in vivo imaging of the agent transport obtained during the physical experiment. Based on the results, 

the description of the fissure boundary condition can be refined further. If this experiment is successful, 

additional animal studies and retrospective human studies can be used to assess the importance and validity 

of modeling fissures within the brain.  

     Overall, the preliminary results obtained indicate that incorporating these boundaries change both the 

behavior of poroelastic materials. Based on the conclusions drawn from this thesis as a whole, incorporating 

enhanced anatomical features can improve the fidelity of computational models of the brain. Investigating 

the role of fissures, specifically, can potentially lead to interesting breakthroughs related to elevated ICP 

and drug transport. 
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VII.3     Thesis Conclusions 

An estimated 296,851 new cases of brain and nervous system cancer were diagnosed globally in 2018 with 

241,037 of these cases resulting in the patient’s death [1]. Between 2011 and 2015, the five year survival 

rate of malignant brain and other central nervous system tumors diagnosed in the United States was 

approximately 35.0% [21]. Two clinical challenges that directly influence this survival rate are accurate 

diagnosis and complete resection of the tumor. This research hypothesizes that enhancing anatomical 

models of intracranial biomechanics with the addition of effects from space-occupying lesions will improve 

the predictive fidelity of biomechanical models for use in neurosurgical and interventional applications. 

Modeling of normal brain structures was enhanced using novel anatomical constraints and material property 

reconstructions, resulting in the accurate capturing of intracranial pressure compartmentalization. 

Investigating the effects of space-occupying lesions, a biophysical model-based framework for intracranial 

tumors was developed to estimate biophysical tumor growth properties using standard-of-care imaging and 

was capable of noninvasive discrimination of tumor recurrence from radiation-induced necrosis. 

Accounting for both normal brain structure and the influence of a growing tumor, a model-based atlas of 

tumor cavity collapse was conceived that predicted intra-operative brain shifts from tumor resection. 

Accounting for both patient-specific structure and disease, the models in this work improve the fidelity of 

biomechanical modeling for neurosurgical and interventional applications. 
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APPENDIX 

 

A     Analytic Solutions for Section III.1.4 

 

A.1     Summary and Contributions 

 

The finite element models used to model tumor resection and cavity collapse (section III.1.4) were custom 

built using C++. The reaction-diffusion model of tumor growth was validated by comparing the results of 

the model, at different points in time, versus the solutions generated of the same test problem in COMSOL. 

As a means of validating the model of pressure based on the tumor’s edema and the model of displacement 

with a tumor present, analytic solutions of test problems were generated and compared to the finite element 

model solutions. The finite element models were analytically verified. The analytical solutions which they 

were compared to are contained within this appendix.   

 

A.2     Analytical Solution - Model of Pressure Based on the Tumor’s Edema 

 

A.2.1     Geometry 

The 3D solution generated by the finite element model was compared to an analogous 1D solution in 

Cartesian coordinates. The geometry of the 3D mesh was a rectangular prism. The geometry of the 1D 

problem is a rectangle (Figure A.1), where the movement in pressure was restricted to be along the x-axis.  

 

Figure A. 1: This is a visualization of the geometry used to generate the analytical solution. On the left-hand side of 

the rectangle, a pressure of p0 is enforced. On the right-hand side of the rectangle, a pressure of p5 is enforced.  
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A.2.2     Test Problem 1 – No Edema Everywhere 

The governing equation is (III.49.a). In Equation (III.49.a), p is pressure, k is hydraulic conductivity, kc  is 

capillary permeability, and pc is intracapillary pressure. 

−∇ ∙ 𝑘∇𝑝 + 𝑘𝑐(𝑝 − 𝑝𝑐) = 0                                                                                            (III.49.a) 

In test problem 1, no edema is present, so the governing equation becomes (III.49.b): 

−∇ ∙ 𝑘∇𝑝 = 0                                                                                                                                     (III.49.b) 

Rewriting (III.49.b) in 1-dimension (1D), it becomes (A.1). 

−𝑘
𝜕2𝑝

𝜕𝑥2
= 0                                (A.1) 

The analytic form of the solution to (A.1) is (A.2). 

𝑝(𝑥) = 𝑐2𝑥 + 𝑐1                   (A.2) 

The boundary condition on left hand side of the rectangle (Figure A.1) is a fixed pressure of 𝑝0 (𝑥 = 0, 

𝑝 = 𝑝0). Enforcing the boundary condition in (A.3.a), the constant, 𝑐1, can be solved.  

𝑝(0) = 𝑐2(0) + 𝑐1 = 𝑝0           (A.3.a) 

𝑐1 = 𝑝0              (A.3.b) 

The boundary condition on right hand side of the rectangle (Figure A.1) is a fixed pressure of 𝑝5 (𝑥 = 𝛥𝑥, 

𝑝 = 𝑝5). Enforcing the boundary condition in (A.3.a), 𝑐2 can be solved. 

𝑝(𝛥𝑥) = 𝑐2(𝛥𝑥) + 𝑐1 = 𝑝5            (A.4.a) 

𝑝(𝛥𝑥) = 𝑐2(𝛥𝑥) + 𝑝0 = 𝑝5            (A.4.b) 

𝑐2 =
𝑝5−𝑝0

𝛥𝑥
              (A.4.c) 

Substituting (A.3.b) and (A.4.c) into the analytic form, (A.2), the analytic solution to test problem 1 is (A.5). 

𝑝(𝑥) = 𝑐2𝑥 + 𝑐1                   (A.2) 

𝑝(𝑥) = (
𝑝5−𝑝0

𝛥𝑥
)  𝑥 + 𝑝0                   (A.5) 

 

A.2.3     Test Problem 2 – Edema Everywhere 

The governing equation is (III.49.a). 

−∇ ∙ 𝑘∇𝑝 + 𝑘𝑐(𝑝 − 𝑝𝑐) = 0                               (III.49.a) 

This equation can be rewritten. 

−∇ ∙ 𝑘∇𝑝 + 𝑘𝑐𝑝 = 𝑘𝑐𝑝𝑐                               (III.49.a) 

Rewriting (III.49.a) in 1D, (A.6) is obtained. 

−𝑘
𝜕2𝑝

𝜕𝑥2
+ 𝑘𝑐𝑝 = 𝑘𝑐𝑝𝑐                   (A.6) 

The analytic form of the solution to (A.6) is (A.7).  
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𝑝(𝑥) = 𝑐1𝑒
(√

𝑘𝑐
𝑘
𝑥)
+ 𝑐2𝑒

−(√
𝑘𝑐
𝑘
𝑥)
+ 𝑝𝑐                 (A.7) 

The boundary condition on left hand side of the rectangle (Figure A.1) is a fixed pressure of 𝑝0 (𝑥 = 0, 𝑝 =

𝑝0). Enforcing the boundary condition in (A.7), a representation of 𝑐1 can obtained. 

𝑝(0) = 𝑐1𝑒
(√

𝑘𝑐
𝑘
0)
+ 𝑐2𝑒

−(√
𝑘𝑐
𝑘
0)
+ 𝑝𝑐 = 𝑝0          (A.8.a) 

𝑝(0) = 𝑐1𝑒
(0) + 𝑐2𝑒

−(0) + 𝑝𝑐 = 𝑝0                       (A.8.b) 

𝑐1 = 𝑝0 − 𝑝𝑐 − 𝑐2                         (A.8.c) 

The boundary condition on right hand side of the rectangle (Figure A.1) is a fixed pressure of 𝑝5 (𝑥 = 𝛥𝑥, 

𝑝 = 𝑝5).  

𝑝(𝛥𝑥) = 𝑐1𝑒
(√

𝑘𝑐
𝑘
𝛥𝑥)

+ 𝑐2𝑒
−(√

𝑘𝑐
𝑘
𝛥𝑥)

+ 𝑝𝑐 = 𝑝5          (A.9.a) 

Substituting (A.8.c) into (A.9.a), 𝑐2 can be solved. 

𝑝(𝛥𝑥) = (𝑝0 − 𝑝𝑐 − 𝑐2)𝑒
(√

𝑘𝑐
𝑘
𝛥𝑥)

+ 𝑐2𝑒
−(√

𝑘𝑐
𝑘
𝛥𝑥)

+ 𝑝𝑐 = 𝑝5        (A.9.b) 

(𝑝0 − 𝑝𝑐)𝑒
(√

𝑘𝑐
𝑘
𝛥𝑥)

− 𝑐2𝑒
(√

𝑘𝑐
𝑘
𝛥𝑥)

+ 𝑐2𝑒
−(√

𝑘𝑐
𝑘
𝛥𝑥)

= 𝑝5 − 𝑝𝑐          (A.9.c) 

𝑐2 (𝑒
−(√

𝑘𝑐
𝑘
𝛥𝑥)

− 𝑒
(√

𝑘𝑐
𝑘
𝛥𝑥)
) = 𝑝5 − 𝑝𝑐 − (𝑝0 − 𝑝𝑐)𝑒

(√
𝑘𝑐
𝑘
𝛥𝑥)

        (A.9.d) 

𝑐2 =
𝑝5−𝑝𝑐−(𝑝0−𝑝𝑐)𝑒

(√
𝑘𝑐
𝑘
𝛥𝑥)

𝑒
−(√

𝑘𝑐
𝑘
𝛥𝑥)

−𝑒
(√
𝑘𝑐
𝑘
𝛥𝑥)

            (A.9.e) 

Substituting (A.8.c) and (A.9.e) into the analytic form, (A.7), the analytic solution to test problem 2 is 

(A.10). 

𝑝(𝑥) = 𝑐1𝑒
(√

𝑘𝑐
𝑘
𝑥)
+ 𝑐2𝑒

−(√
𝑘𝑐
𝑘
𝑥)
+ 𝑝𝑐                 (A.7) 

𝑝(𝑥) = (𝑝0 − 𝑝𝑐 −
𝑝5−𝑝𝑐−(𝑝0−𝑝𝑐)𝑒

(√
𝑘𝑐
𝑘
𝛥𝑥)

𝑒
−(√

𝑘𝑐
𝑘
𝛥𝑥)

−𝑒
(√
𝑘𝑐
𝑘
𝛥𝑥)

) 𝑒
(√

𝑘𝑐
𝑘
𝑥)
+ (

𝑝5−𝑝𝑐−(𝑝0−𝑝𝑐)𝑒
(√
𝑘𝑐
𝑘
𝛥𝑥)

𝑒
−(√

𝑘𝑐
𝑘
𝛥𝑥)

−𝑒
(√
𝑘𝑐
𝑘
𝛥𝑥)

)𝑒
−(√

𝑘𝑐
𝑘
𝑥)
+ 𝑝𝑐    (A.10) 

 

A.3     Analytical Solution – Displacements with the Tumor Present 
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A.3.1     Geometry 

The 3D solution generated by the finite element model was compared to an analogous 1D solution in 

spherical coordinates. The geometry of the 3D mesh was a concentric sphere. The geometry of the 1D 

problem is a concentric circle (Figure A.2), where the displacement was restricted to be along the radial 

direction.  

 

A.3.2     Analytic Solution of the Pressure Gradient 

The governing equation is (III.58). In this equation, an isotropic Hookean linear elastic constitutive model 

is assumed. The constant coefficients, 𝛼 and 𝛽, are empirically derived constants which dictate the amount 

of influence the tumor cells and edema have respectively. The analytical solution for this equation is found 

in Sections (A.3.2) and (A.3.3). 

∇ ∙ 𝜎 = 𝛼∇𝐶 + 𝛽∇𝑝             (III.58) 

In the test problem, only edema is present, so (III.58) can be rewritten as (A.11). 

∇ ∙ 𝜎 = 𝛽∇𝑝               (A.11) 

First, the functional form of the gradient of pressure in spherical coordinates needs to be obtained. For the 

purposes of this test problem, it is assumed that pressure only moves in the radial direction. The governing 

equation for pressure, (III.49.b), can be written in spherical coordinates, (A.12.d). 

−∇ ∙ 𝑘∇𝑝 = 0                                (III.49.b) 

−𝑘
𝜕2𝑝

𝜕𝑟2
= 0                                              (A.12.a) 

 

Figure A. 2: This is a visualization of the geometry used to generate the analytical solution. There is a 9 to 1 ratio 

between the outer and inner radii of the concentric circle. On the outer boundary of the circle, the displacement is 

fixed and pressure is set to 0. On the inner boundary of the circle, it is stress free and a pressure of p0 is prescribed.  

 

p=p0

σ = 0 Pa

p=0

u = 0 m

a

9a
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𝜕2𝑝

𝜕𝑟2
= 0                                                                                   (A.12.b) 

𝜕2𝑝

𝜕𝑟2
=

1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑝

𝜕𝑟
) =

1

𝑟2
(𝑟2

𝜕2𝑝

𝜕𝑟2
+
𝜕𝑝

𝜕𝑟
2𝑟) = 0                                                                      (A.12.c) 

𝜕2𝑝

𝜕𝑟2
+
2

𝑟

𝜕𝑝

𝜕𝑟
= 0                                   (A.12.d) 

For simplification, substitute in 𝑦 =
𝜕𝑝

𝜕𝑟
 and 𝑦′ =

𝜕2𝑝

𝜕𝑟2
 into (A.12.d) to get (A.13.a). An analytical form of 

the solution to (A.13.a) can be written as (A.13.e). 

𝑦′ +
2

𝑟
𝑦 = 0                                   (A.13.a) 

𝑦′ = −
2

𝑟
𝑦                                   (A.13.b) 

∫
𝜕𝑦

𝜕𝑟
⁄

𝑦
𝜕𝑟 = ∫−

2

𝑟
𝜕𝑟                                 (A.13.c) 

ln(𝑦(𝑟)) = −2 ln(𝑟) + 𝑐1                                (A.13.d) 

𝑦(𝑟) =
𝑐1

𝑟2
                                   (A.13.e) 

Substitute back in the expressions for 𝑦(𝑟) in (A.13.e), (A.13.f) is obtained. This can be solved to find the 

analytic form (A.13.h) which is the solution to (A.12.d). 

𝜕𝑝

𝜕𝑟
=

𝑐1

𝑟2
                        (A.13.f) 

∫𝜕𝑝 = ∫
𝑐1

𝑟2
𝜕𝑟                                   (A.13.g) 

𝑝 = −
𝑐1

𝑟
+ 𝑐2                                   (A.13.h) 

The first boundary condition is no pressure on the outer radius (Figure A.2) (𝑝(9𝑎) = 0). Plugging in the 

boundary condition information into (A.13.h), 𝑐2 can be solved for.  

𝑝(9𝑎) = 0 = −
𝑐1

9𝑎
+ 𝑐2                                (A.14.a) 

𝑐2 =
𝑐1

9𝑎
                                   (A.14.b) 

The second boundary condition is a constant pressure of 𝑝0on the inner radius (Figure A.2) (𝑝(𝑎) = 𝑝0). 

Plugging in the boundary condition into (A.13.h), 𝑐1 can be solved for. 

𝑝(𝑎) = 𝑝0 = −
𝑐1

𝑎
+ 𝑐2 = −

𝑐1

𝑎
+

𝑐1

9𝑎
= (

−8

9𝑎
) 𝑐1                              (A.15.a) 

𝑐1 =
−9𝑎𝑝0

8
                                 (A.15.b) 

Substitute (A.14.b) and (A.15.b) back into (A.13.h) to obtain the analytic solution of (A.13.h). This solution 

is (A.16). 

𝑝 = −
𝑐1

𝑟
+ 𝑐2                                   (A.13.h) 
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𝑝(𝑟) =
1

𝑟
(
9𝑎𝑝0

8
) −

𝑝𝑜

8
                          (A.16) 

Taking the first derivative of (A.16), the analytic form of the gradient is (A.17). 

𝜕𝑝

𝜕𝑟
= (

−9𝑎𝑝0

8
)
1

𝑟2
             (A.17) 

 

A.3.3     Analytic Solution of Displacement 

Once again, the governing equation is (A.11). 

∇ ∙ 𝜎 = 𝛽∇𝑝                 (A.11) 

Substitute in the analytic solution of the gradient, (A.17), into (A.11), (A.18.a) is obtained. From (A.18.a) 

an expression of radial displacement (𝑢(𝑟)) due to a pressure gradient in spherical coordinates can be 

obtained. This is equation (A.18.g).  

∇ ∙ 𝜎 = 𝛽 (
−9𝑎𝑝0

8
)
1

𝑟2
                                   (A.18.a) 

(2G + λ)
∂

∂r
(
1

𝑟2
∂

∂r
(𝑟2𝑢)) = −𝛽 (

9𝑎𝑝0

8
)
1

𝑟2
                             (A.18.b) 

∂

∂r
(
1

𝑟2
∂

∂r
(𝑟2𝑢)) = −

𝛽

(2G+λ)
(
9𝑎𝑝0

8
)
1

𝑟2
                                (A.18.c) 

∂

∂r
(
1

𝑟2
(r2

𝜕𝑢

𝜕𝑟
+ 𝑢2𝑟)) = −

𝛽

(2G+λ)
(
9𝑎𝑝0

8
)
1

𝑟2
                               (A.18.d) 

∂

∂r
(
𝜕𝑢

𝜕𝑟
+
1

𝑟
2𝑢) = −

𝛽

(2G+λ)
(
9𝑎𝑝0

8
)
1

𝑟2
                                (A.18.e) 

𝜕2𝑢

𝜕𝑟2
+
2

𝑟

𝜕𝑢

𝜕𝑟
−
2𝑢

𝑟2
= −

𝛽

(2G+λ)
(
9𝑎𝑝0

8
)
1

𝑟2
                                 (A.18.f) 

𝑟2
𝜕2𝑢

𝜕𝑟2
+ 2𝑟

𝜕𝑢

𝜕𝑟
− 2𝑢 = −

𝛽

(2G+λ)
(
9𝑎𝑝0

8
)                                (A.18.g) 

Integrating (A.18.g) twice with respect to 𝑟, the analytic form of  𝑢(𝑟) and its derivative are (A.19) and 

(A.20) respectively. 

𝑢(𝑟) =
𝑐2

𝑟2
+ 𝑐1𝑟 +

1

2
(

𝛽

2𝐺+𝜆
) (

9𝑎𝑝0

8
)             (A.19) 

The derivative of 𝑢(𝑟) is (A.20). 

𝜕𝑢

𝜕𝑟
= −2

𝑐2

𝑟3
+ 𝑐1              (A.20) 

The first boundary condition is that the displacement at the outer radius (Figure A.2) is fixed to 0 (𝑢(9𝑎) =

0). Enforcing this boundary condition in (A.19), 𝑐1 can be solved. 

𝑢(9𝑎) =
𝑐2

(9𝑎)2
+ 𝑐19𝑎 +

1

2
(

𝛽

2𝐺+𝜆
) (

9𝑎𝑝0

8
)=0                             (A.21.a) 

𝑐1 = −
𝑐2

729𝑎3
−

𝛽𝑝0

16(2𝐺+𝜆)
                                 (A.21.b) 

The second boundary condition, represented in (A.22.a) is that the inner radius, 𝑎, is stress free. 
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𝜎(𝑎) = 0                                   (A.22.a) 

In spherical coordinates 𝜎 = (2𝐺 + 𝜆)
𝑑𝑢

𝑑𝑟
+
2𝜆

𝑟
𝑢. Substituting this expression into (A.22.a), (A.22.b) is 

generated. 

(2𝐺 + 𝜆)
𝑑𝑢

𝑑𝑟
+
2𝜆

𝑎
𝑢 = 0                                 (A.22.b) 

Plugging in the expressions for 
𝜕𝑢

𝜕𝑟
 (A.20) and 𝑢 (A.19) into (A.22.b), (A.22.c) is generated.  

(2𝐺 + 𝜆) (−2
𝑐2

𝑎3
+ 𝑐1) +

2𝜆

𝑎
(
𝑐2

𝑎2
+ 𝑐1𝑎 +

1

2
(

𝛽

2𝐺+𝜆
) (

9𝑎𝑝0

8
)) = 0                             (A.22.c) 

(2𝐺 + 𝜆) (−2
𝑐2

𝑎3
+ 𝑐1) +

2𝜆

𝑎
(
𝑐2

𝑎2
+ (−

𝑐2

729𝑎3
−

𝛽𝑝0

16(2𝐺+𝜆)
) 𝑎 +

1

2
(

𝛽

2𝐺+𝜆
) (

9𝑎𝑝0

8
)) = 0              (A.22.d) 

Simplifying (A.22.d), 𝑐2 can be solved for. 

𝑐2 = (
729𝑎3

−3𝜆−2918𝐺
) (

𝛽𝑝0(2𝐺−15𝜆)

16(2𝐺+𝜆)
)                               (A.22.e) 

Substituting the expressions for the constants, (A.21.b) and (A.22.e), into the analytic form, (A.19), the 

analytic solution (A.20) for radial displacements with a tumor present can be obtained. 

𝑢(𝑟) =
𝑐2

𝑟2
+ 𝑐1𝑟 +

1

2
(

𝛽

2𝐺+𝜆
) (

9𝑎𝑝0

8
)            (A.19) 

𝑢(𝑟) = [(
729𝑎3

−3𝜆−2918𝐺
) (

𝛽𝑝0(2𝐺−15𝜆)

16(2𝐺+𝜆)
)]

1

𝑟2
+ [−

1

729𝑎3
(

729𝑎3

−3𝜆−2918𝐺
) (

𝛽𝑝0(2𝐺−15𝜆)

16(2𝐺+𝜆)
) −

𝛽𝑝0

16(2𝐺+𝜆)
] 𝑟 +  

           
1

2
(

𝛽

2𝐺+𝜆
) (

9𝑎𝑝0

8
)                            (A.20) 
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