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Chapter 1

Introduction

1.1 The Theory of Innovation Diffusion

One of the most fundamental questions in the field of marketing is to understand why

and how products or services are adopted by consumers. At a higher level, any new prod-

uct or service can be thought of as an innovation. Empirical studies of innovations, such

as, new product, new technology, new practice and ideas had a long history even before

1962, when Everett M. Rogers published his book Diffusion of Innovations. Notably, the

similarity of various kinds of innovations, for example, S-curve adoption, was not paid

enough attention, until he conducted the meta-review of these case studies and invented a

comprehensive theory of innovation diffusion [1]. He summarizes that there are five factors

determining how fast an innovation is adopted, which are relative advantage, compatibil-

ity, complexity, trialability, and observability. His theory also emphasizes the impact from

social peers on one’s decision making with respect to network structure, social norms and

leadership. One major theoretical contribution is the categorization of adopters, which

posits that the population of adopters can be divided into five categories by innovativeness

(measured by the time when the product was adopted): innovators, early adopters, early

majority, late majority and laggards. Moreover, adopters in different categories can be

differentiated by their social, economic, psychological characteristics. The theory has in-

fluenced marketing research that followed and been used in wide applications. In particular,

the categorization of adopters motivates the use of targeted marketing (that takes consumer

heterogeneity into account) and serves as the underlying framework for numerous studies

that either conduct empirical analysis or construct computational models [2].
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1.2 Modeling the Diffusion of Innovations

While qualitative insight into how an innovation is diffused within a social system is

important, quantitative models that can characterize the diffusion process are extremely

useful in marketing science [3, 4]. Although there are numerous and various types of

mathematical models for product diffusion in literature, the Bass model is probably the

most influential due to its wide application and impact on many other diffusion models [5,

6]. Basically, the model assumes that the likelihood for a consumer to adopt a new product

given he/she has yet purchased is a linear function of the fraction of previous adopters. At

any given time t, the temporal relationship can be described as follows

f (t)
1−F(t)

= p+qF(t)

where f (t) is the probabilty of adoption at time t, F(t) is the accumulative probabilty as

well as the fraction of adopters upto time t; p (coefficient of innovation) is often interpreted

as external influence, e.g., advertising and other communications initiated by firms, and

q (coefficient of imitation) refers to internal influence, e.g. interactions among adopters

and potential adopters in the social systems [6]. Moreover, based on the assumption, the

volume of sales as a function of time can be derived. Then, the time and volume of peak

sale can be estimated, which are often interested by sales managers.

The Bass model is simple but remains a widely-used forecast tool in today’s marketing

industry. Particularly, once the model is calibrated by aggregate data of a sales time-series,

it can replicate the common S-curved adoption trajectories for many consumer durables.

However, it has a number of limitations. First, it assumes consumers are homogeneous with

the same probability density functions and implicitly influence each other in a complete

graph, which seems too ideal to explain any real diffusion process. Second, some important

managerial variables, such as price and advertising cost, are in fact not explicitly modeled.

Third, the predictive power of the model is often questioned due to the fact that to fit

2



the S-shaped adoption curve one needs data about several critical points that are often more

interesting to predict. If an aggregate diffusion model, like the Bass model, is not ideal, then

it begs the question: what kind of models are suitable for modeling innovation diffusion?

Next, we introduce an innovative approach, namely, agent-based modeling.

1.3 Agent-based Modeling

Agent-based modeling (ABM) is a computational technique that simulates a system’s

behaviors by simulating the behaviors of individuals that compose the system. The tech-

nique is developed to study complex system properties emergent from interactions among

agents [7, 8], but it has gained popularity in many scientific areas over the past decade [9,

10, 11]. As a bottom-up modeling method, modelers have to first specify rules that gov-

ern an agent’s actions and decision making, then the system dynamics can be generated

by simulating the interactions among agents. This distinguishes it from many other sim-

ulation techniques, for example, the Bass model, since heterogeneity, partial rationality

and network-based interactions are generally easier to integrate into the system. Interest-

ingly, traditional agent-based models often utilize simple rules [12, 13]. By controlling the

complexity of the model, it is easier to interpret and understand, which seems to be an im-

portant design decision as the primary purpose of using agent-based models is to learn the

causal relations between model’s input (initial conditions, parameters) and output (“what-

if” analysis). Traditionally simple agent-based models are used as learning tools to either

test a modeler’s hypotheses or uncover new insights about how an individual behaves and

a system works.

Understanding how individual behaviors could induce the changes at the market level

is, in fact, a preliminary step towards the design of effective marketing strategies. Market-

ing activities, such as, advertising and promotion, are common intervention policies that

aim to increase either sales or brand awareness (outcomes at the system level) by influ-

encing individual behaviors. To support the design of effective marketing strategies, the
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agent-based models armed with simple rules seem very limited. On one hand, as the con-

sumer decisions and their social interactions are complex, these simple models need to be

extended so that they can capture more meaningful and important features. On the other

hand, the ultimate goal, supporting decision making requires the agent-based model to be

empirically grounded. There is growing body of work that calibrates agent-based models

on real data and draws insight via what-if analysis [14]. Unfortunately, these models are

often validated qualitatively by replicating stylish facts without evaluating the predictive

power in a rigorous manner [2]. An agent-based model with lower prediction accuracy

is a less valid representation of the modeled phenomenon and, therefore, less qualified to

support any meaningful decisions by policy makers. Interestingly, few agent-based models

have been developed explicitly for prediction and are validated rigorously. Surrounded by

massive diffusion data, machine learning and data mining seemly provide us with efficient

tools and algorithms to build high-predictive consumer behavioral models. If we could

integrate these statistically-learned behavior models into multi-agent simulations, and vali-

date them using empirical data, the qualification of agent-based models as decision support

tools could be greatly enhanced.

1.4 Influence Maximization

The ultimate goal of any marketing activity is to promote the influence and adoption

of products or services. A general marketing problem studied in the field of information

diffusion is called influence maximization [15, 16], in which the “influence” can represent

the aggregate adoption of ideas, beliefs or products. The influence is evaluated by two

simple social contagion models: the Independent Cascading (IC) model [17] and the Linear

Threshold (LT) model [18]. Both models are defined on a directed graph where activation

is assumed to be monotonic: once a node is active (e.g., adopted, received information), it

cannot become inactive.

Starting from a set of initial adopters, the diffusion process in the two models is as-
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sumed to progress iteratively in a synchronous way along a discrete time-horizon, until

no transmission is possible. IC is often considered sender-centric, while LT is receiver-

centric. Particularly, in each iteration, a new active node in the IC model is given a single

chance to activate its inactive neighbors independently with an exogenously specified prob-

ability (usually represented by the weight of the corresponding edge). In the LT model, in

contrast, an inactive node will become active only if the sum of weights of its activated

neighbors exceeds a predefined node-specific threshold, which is typically randomly as-

signed between 0 and 1 for each network node. Note that in both models a newly activated

node becomes active immediately in the next iteration.

In either IC or LT model, influence is defined as the number of active nodes at the fi-

nal stage, which depends on the initially seeded nodes S, denoted as σ(S). The influence

function σ(S) has been proved to be monotone and sub-modular, i.e., diminishing returns

to scale. The influence maximization problem in its simplest version asks: which are the

best k nodes to seed so that to maximize σ(S). It turns out that a straightforward greedy al-

gorithm, i.e., iteratively add the a node with the largest marginal gain to the selected set, is

guaranteed to obtain a solution that achieves an approximation, that is greater than 1−1/e

(≈ 0.63) from the optimal. Notice that the algorithmic result relies on the assumption that

either the IC or the LT model is used for influence function, which are unfortunately not

guaranteed to be monotone and submodular [16]. In fact, the early stage of innovation

diffusion is better characterized by a process showing increasing returns to scale. Consider

the well-known logit function to define the adoption probability as a function of the number

of previous adopters. When the probability is lower than 0.5 (evident for renewable tech-

nologies as seen in [19]), the likelihood of adoption grows faster as the number/fraction of

adopters increases. This raises the question: how should we optimize marketing actions

(who and when to target) in such a distinct setting, as opposed to the submodular influence

maximization?
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1.5 Submodular Optimization

Above we briefly mentioned that the influence function defined in either IC or LT

model is submodular. Now we provide a formal definition of submodularity. Intuitively,

a submodular function is a mathematical set function that exhibits the natural property

of increasing returns scale. Let V be a collection of elements and f : 2V → R≥0 a func-

tion over subsets of V , and assume that f is monotone increasing. For any set X ⊆ V ,

define f ( j|X) = f (X ∪ { j})− f (X), that is, the marginal improvement in f if element

j ∈ V is added to a set X ⊆ V . We say f is a submodular function if for all S ⊆ T ⊆ V ,

f ( j|S)≥ f ( j|T ). Submodular optimization is aimed to maximize the submodular function

f (X) given some constrains on X by selecting the optimal set X∗. The problem has re-

ceived much attention due to its broad applications, such as viral marketing, information

gathering, image segmentation, and document summarization [16, 20, 21].

Submodular optimization, particularly under cardinality or cost constraints, has re-

ceived considerable attention in a variety of applications from sensor placement [22] to

targeted marketing [16]. However, the constraints faced in many real domains are more

complex. For instance, for the door-to-door marketing in a group of socially connected

customers, a salesman would like to target a set of nodes subject to a budget constraint.

To apply the seeding the salesman must pay the transportation cost and a node-based visit

cost. In other words, the final cost with respect to a set of seeds can not be simply attributed

to each node. If the cost function is additive, some cost discounted greedy algorithm with

lower bound can find us a suboptimal solution [23, 24]. But, in the case of more general

routing cost constraint, does there exist some approximation algorithm that guarantees a

lower bound?
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1.6 Multi-channel Marketing

Marketing operations are experiencing steady transformation from a single channel to

multiple channels. The emergence of digital media, such as the World Wide Web, search

engines, and online social networks, has opened up tremendous opportunities for today’s

marketers to look for prospects and engage existing customers. A mix of these innovative

channels with traditional ones, such as TV, direct mailing, and door-to-door marketing, has

been widely adopted by many companies to generate more sales, maintain stronger cus-

tomer relationships, and achieve a higher customer retention rate [25]. Despite its benefits,

this practice has also significantly increased operational complexity, making marketing one

of the key managerial challenges [26, 27].

A critical decision faced by a multi-channel marketer is to determine the optimal bud-

get allocation among the marketing channels 1. To do so, the marketer needs a way to

evaluate the effectiveness of alternative budget splits. This is often done by advanced sim-

ulation models, for example, some highly sophisticated agent-based models calibrated by

and run with real data. The use of simulations, as compared to analytic objective functions

(such as concave and continuous utility being maximized), introduces an important techni-

cal challenge: simulations are often slow, and computing parsimony is, therefore, crucial in

query-based black-box optimization methods. A second technical challenge arises from the

fact that the response function for each channel (e.g., the number of individuals who buy

the product) commonly exhibits budget complementarities, requiring a non-trivial added

expense on a channel to make a significant impact on the response function. In fact, if

the effect of budget is given or is a continuous (concave) function of the budget, the prob-

lem can be solved with standard utility maximization techniques [29]. To the best of our

knowledge, few existing budget optimization techniques take the simulation-related com-

putational cost and budget complementarities into account.

1Lately, in marketing literature, extensive efforts on attribution modeling were made to quantify the im-
portance of advertising impressions and channels [28]. Their results seem insightful but fail to provide a
direct solution to the optimal allocation of a single budget over a mix of marketing channels.
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1.7 Organization of the Thesis

The dissertation provides a novel computational method that leverages massive diffu-

sion data and efficient algorithms to optimize marketing operations. The general framework

is illustrated by Figure 1.1. The algorithmic marketing system is composed of two subsys-

tems: models and algorithms. Models are mathematical systems that characterize either ag-

gregate or individual adoption behaviors of innovations. Typical aggregate models include

variations of the Bass model. Agent-based models are individual-based, but can also gen-

erate aggregate dynamics. Notably, models are learned from the diffusion data. By taking

advantage of state-of-the-art machine learning techniques, the learning (training) process

can be done quite efficiently when applying to large-scale data. Once a model is learned

and validated (a step to ensure the model is representative and predictive using empirical

data), it interacts with algorithms by evaluating effects of marketing actions. Algorithms

utilize the computational model to solve for the optimal or near-optimal marketing plans,

which can either assist decision making or be automatically executed. Since the nature

of modeled phenomena (diffusion of innovations) could change over time, the computa-

tional models need to be updated accordingly, which is reflected by the cycle-wised system

structure.

The thesis starts with a critical review of empirically-grounded agent-based models of

innovation diffusion, followed by a proposal of an innovative data-driven agent-based mod-

eling framework to attack the modeling challenge faced by marketing researchers and prac-

titioners, and develops several efficient algorithms targeting realistic marketing problems

and finally presents a novel optimization framework that addresses computing challenges

arising from the interactions between simulation models and algorithms. We conclude that

the ongoing efforts of algorithmic marketing with data-driven simulations will lead to the

ultimate goal of automated marketing. Figure 1.1 illustrates how each chapter fits into our

algorithmic marketing framework. A brief description of each chapter also follows.

In Chapter 2, we present a critical review of empirically grounded agent-based models
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Figure 1.1: System Architecture of Algorithmic Marketing

of innovation diffusion, developing a categorization of this research based on types of agent

models as well as applications. By connecting the modeling methodologies in the fields of

information and innovation diffusion, we suggest that the maximum likelihood estimation

framework widely used in the former is a promising paradigm for calibration of agent-based

models for innovation diffusion. Although many advances have been made to standardize

ABM methodology, we identify four major issues in model calibration and validation, and

suggest potential solutions. This work is currently under journal review.

In Chapter 3, we present a novel data-driven agent-based modeling framework, in which

individual behavior model is learned by machine learning techniques, deployed in multi-

agent systems and validated using a holdout sequence of collective adoption decisions.

We apply the framework to forecasting individual and aggregate residential rooftop so-

lar adoption in San Diego county and demonstrate that the resulting agent-based model

successfully forecasts solar adoption trends and provides a meaningful quantification of

uncertainty about its predictions. Meanwhile, we construct a second agent-based model,

with its parameters calibrated based on the mean square error of its fitted aggregate adop-
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tion to the ground truth. Our result suggests that our data-driven agent-based approach

based on maximum likelihood estimation substantially outperforms the calibrated agent-

based model. Given the advantages over the state-of-the-art modeling methodology, we

utilize our agent-based model to aid in the search for potentially better incentive structures

aimed at spurring more solar adoption. Although the impact of solar subsidies is rather

limited in our case, our study still reveals that a simple heuristic search algorithm can lead

to more effective incentive plans than the current solar subsidies in San Diego County and

a previously explored structure. Finally, we examine an exclusive class of policies that

gives away free systems to low-income households, which are shown to be significantly

more efficacious than any incentive-based policies we have analyzed to date. This work

was published in the following journal:

• Haifeng Zhang, Yevgeniy Vorobeychik, Joshua Letchford, and Kiran Lakkaraju. Data-

driven agent-based modeling, with application to rooftop solar adoption. Autonomous

Agents and Multi-Agent Systems, 30(6):1023–1049, 2016

An earlier work appeared in the following conference:

• Haifeng Zhang, Yevgeniy Vorobeychik, Joshua Letchford, and Kiran Lakkaraju. Data-

driven agent-based modeling, with application to rooftop solar adoption. In Interna-

tional Conference on Autonomous Agents and Multiagent Systems, pages 513–521,

2015

In Chapter 4, we formulate a dynamic influence maximization problem under increas-

ing returns to scale over a finite time horizon, in which the decision maker faces a budget

constraint. We propose a simple algorithm in this model which chooses the best time period

to use up the entire budget (called Best-Stage) and prove that this policy is optimal in a very

general setting. We also propose a heuristic algorithm for this problem of which Best-Stage

decision is a special case. Additionally, we experimentally verify that the proposed ”best-

time” algorithm remains quite effective, even as we relax the assumptions under which op-
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timality can be proved. However, we find that when we add a “learning-by-doing” effect, in

which the adoption costs decrease as a function of aggregate adoption, the “best-time” pol-

icy becomes suboptimal, and is significantly outperformed by our more general heuristic.

This work was published in the following conference:

• Haifeng Zhang, Ariel D Procaccia, and Yevgeniy Vorobeychik. Dynamic influence

maximization under increasing returns to scale. In International Conference on Au-

tonomous Agents and Multiagent Systems, pages 949–957, 2015

In Chapter 5, we investigate an important and very general class of problems of max-

imizing a submodular function subject to general cost constraints, especially focusing on

costs coming from route planning. Canonical problems that motivate our framework in-

clude mobile robotic sensing and door-to-door marketing. We propose a generalized cost-

benefit (GCB) greedy algorithm for a fundamental problem with only one actor, and use it

to construct another algorithm based on sequential planning to solve a natural multi-actor

extension. In both cases, we prove approximation guarantees under significantly weaker

assumptions than those in prior literature. Experimental evaluation on realistic mobile sens-

ing and door-to-door marketing problems, as well as using simulated networks, shows that

our algorithm achieves significantly higher utility than state-of-the-art alternatives, and has

either lower or competitive running time. This work has been submitted to a journal and

preliminary results were published in the following conference:

• Haifeng Zhang and Yevgeniy Vorobeychik. Submodular optimization with routing

constraints. In AAAI Conference on Artificial Intelligence, pages 819–825, 2016

In Chapter 6, we study the classical budget-constrained utility maximization problem

but in a state-of-the-art multi-channel marketing context. Instead of assuming that the

utility is a “nice” known analytic function, e.g., continuous and concave, we rely on a

more reasonable assumption that the impact of allocating a fixed budget among alternatives

(e.g., marketing channels) on outcomes is evaluated by sophisticated data-driven simula-
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tions. While simulations enable high resolution evaluation of alternative budget allocation

strategies, they significantly complicate the associated budget optimization problem. In

particular, simulation runs are time consuming, significantly limiting the space of options

that can be explored. An important second challenge is the common presence of budget

complementarities, where non-negligible budget increments are required for an appreciable

marginal impact from a channel. This introduces a combinatorial structure on the decision

space. We propose to address these challenges by first converting the problem into a multi-

choice knapsack optimization problem with unknown weights. We show that if the weights

(corresponding to marginal impact thresholds for each channel) are well approximated, we

can achieve a solution within a factor of 2 of the optimal, and that this bound is tight. We

then develop several parsimonious query algorithms for achieving this approximation in an

online fashion. Experimental evaluation demonstrates the effectiveness of our approach.

This work will be published in the following conference:

• Haifeng Zhang, Yevgeniy Vorobeychik, and Ariel D Procaccia. Multi-channel mar-

keting with budget complementarities. In International Conference on Autonomous

Agents and Multiagent Systems, 2017, to appear
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Chapter 2

Empirically Grounded Agent-Based Models of Innovation Diffusion: A Critical Review

Innovation diffusion has been studied extensively in a variety of disciplines, includ-

ing sociology, economics, marketing, ecology, and computer science. Although aggregate

models once dominated the diffusion literature, agent-based models are gaining popular-

ity as it can easily incorporate heterogeneity and interactions among individuals. While

most ABM work on innovation diffusion is theoretical, empirically grounded models are

increasingly important, particularly in guiding policy decisions. The algorithmic market-

ing architecture proposed in Chapter 1 (Figure 1.1) is indeed empirically grounded. This

chapter provides a critical review on calibration and validation of the empirically grounded

agent-based models developed to represent the diffusion of a variety of innovations.

2.1 Introduction

2.1.1 Innovation Diffusion: Theoretical Foundations

Diffusion refers to the process by which an innovation is adopted over time by mem-

bers of a social system [34, 35]. Commonly, an innovation refers to a new technology, but

the conceptual notion can be applied far more broadly to consider the spread of ideas and

practices. Rogers [34] laid down the theoretical foundations of innovation diffusion in his

book, Diffusion of Innovations, in which he synthesizes studies in anthropology, sociology,

and education, and proposes a generic theory to explain the diffusion of innovations among

individuals and organizations. In addition to the five characteristics that determine the rate

of adoption as mentioned in Chapter 1, he considers adoption decision of an innovation as

a multi-stage process, involving five stages: knowledge, persuasion, decision, implementa-

tion, and confirmation. Most importantly, according to his theory, adopters can be classified

into five categories: innovators, early adopters, early majority, late majority, and laggards.
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In addition to these high-level considerations, much attention has been on the significance

of social relationships and influence in innovation diffusion (in contrast with, or comple-

mentary to, economic considerations). Starting with early groundwork [36], there has now

been extensive research on how social network structure, group norm, opinion leadership,

weak ties, and critical mass impact the diffusion of innovations [37, 38].

2.1.2 Mathematical Models of Innovation Diffusion

Traditional mathematical models of innovation diffusion aim to model aggregate trends,

rather than individual decisions. Numerous such models follow the framework of Bass

model, which is one of the most influential models in marketing [39, 40]. The Bass model

was originally designed for forecasting sales of new consumer durables. It can be calibrated

with aggregate sales data, and Bass showed that it can qualitatively capture the S-shaped

pattern of aggregate adoption over time [6].

The Bass model has a number of limitations. First, it does not capture individual inter-

actions. Indeed, the model explicitly assumes a fully connected and homogeneous network.

For innovation diffusion, this is an important drawback, as individual interdependence and

communications are among the most significant aspects to understand innovation diffu-

sion [35, 34]. The second criticism of the Bass model is that it does not include any deci-

sion variables that are of interest from a managerial perspective. In fact, Bass late extended

his original model to incorporate marketing mix variables, price and advertising [41]. For

an extensive review of research in this direction, we refer readers to [5, 42]. Nevertheless,

these marketing mix variables are mostly designated to the entire market without a con-

sideration of individual heterogeneity. Lastly, the predictability of the Bass model is often

questioned. For example, [43] argue, that the model needs considerable data around the

critical point at which diffusion accelerates to be effective, but once such data is available

the value of the Bass model becomes limited.
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2.1.3 Agent-Based Modeling for Innovation Diffusion

Agent-based modeling (ABM) has emerged as another natural approach to study inno-

vation diffusion. Agent-based models are typically simulation models that capture dynamic

interactions among a (usually large) collection of individuals. They were originally devel-

oped as a tool for complexity theory research [7, 8] and have gained popularity in many

scientific areas over the past decade [9, 10, 11]. The ABM paradigm offers two advantages

for the study of innovation diffusion: first, it facilitates the modeling of agent heterogeneity,

and second, it enables fine-grained modeling of interactions mediated by social networks.

Indeed, agent-based modeling has been applied in study of innovation diffusion to aid in-

tuition, theoretical exploration, and to provide policy decision support [14].

Traditional agent-based models are largely conceptual [12, 13]. This use of ABMs as

primarily conceptual tools is partly because they are commonly considered as ideal learn-

ing tools for scientists to understand a system under a variety of conditions by simulating

the interactions among agents. As a consequence, the simplicity of agent rules is commonly

a crucial consideration in the design of agent-based models. Such simplicity, however, has

given rise to criticism of the ABM methodology as being “toy models” that do not reflect

reality [11]. Moreover, an increasingly important criticism is that if ABMs are used in

any policy decision support, the predictive validity of the model becomes paramount, and

models that are primarily conceptual may be inadequate for such tasks.

It is this increasing use of agent-based modeling to obtain policy guidance that has

motivated increasing use of empirically grounded agent-based models. Empirical agent-

based models have recently experienced significant growth [14]. In these studies, empirical

data are used to initialize simulation, parameterize agent-based models, and to evaluate

model validity. The explosion of high-resolution data sets, coupled with advances in data

analytics and machine learning have given rise to increased opportunities for empirically

grounding agent-based models, and this trend is likely to continue. Our goal is to provide

an overview of these empirically grounded agent-based models developed with the goal of
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studying innovation diffusion. Through a careful examination of these studies, we also aim

to identify potential methodological issues that arise, and suggest ways to address these.

2.1.4 Contributions

The diffusion of new products has been an important topic for decades [44, 5, 42, 43, 6].

The prevalence of the ABM approach can be glimpsed from a number of review papers

from disciplines like sociology [45], ecology [46], and marketing [47, 4, 48]. For exam-

ple, [47] describes potential uses of ABM in market research associated with innovations,

exploring benefits and challenges of modeling complex dynamical systems in this fash-

ion. [49] surveys agent-based models of innovation diffusion within a computational

economics context. [6] reviews diffusion models in the context of a single market and

cross-markets and brands. To the best of our knowledge, the closest work to ours is a

review of agent-based simulations of innovation diffusion by [14], who survey both theo-

retical and empirical work. In comparison with these past reviews, we make the following

novel contributions:

1. We provide a systematic review of the empirical agent-based models of innovation

diffusion. This is in contrast to the narrative review of the applied work as provided

in [14]. In particular, we offer a novel classification of agent adoption models as

employed in the reviewed papers. By highlighting the adoption models and their pa-

rameterization methods, we aim to bridge methodological gaps among domains and

applications. We identified the papers to include in a rigorous and systematic manner.

In terms of scope, any work presenting an agent-based model using empirical data

to simulate the diffusion of innovations was included. Our selection process com-

bined results from multiple databases, including Google Scholar and ScienceDirect,

with extensive search for relevant keywords, and back-tracking and forward-tracking

reference lists, while carefully screening out non-candidates.
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2. Our review is comprehensive and updated. The collection of reviewed papers spans

a superset of the applications as covered in [14] and, indeed, a number of significant

efforts have emerged after 2012. Notably, we also include a selection of papers

from the literature on information diffusion, a fast-growing area. These models rely

on principled machine learning techniques for model calibration based on empirical

observations of diffusion traces. In addition, we exclude two (out of 15) papers

from [14] which are not empirically grounded. In the end, we reviewed 43 papers, of

which 30 (23 from years after 2011) were not included by [14].

3. We provide a critical review, assessing the strengths and weaknesses of the surveyed

research. Almost all surveyed papers followed standard modeling steps and pre-

sented their results systematically. However, we conclude that the current literature

commonly exhibits several major shortcomings in model calibration and validation1.

Addressing these issues would significantly increase the credibility of agent-based

models. We, therefore, devote a section to an overview of existing validation meth-

ods in the literature and an in-depth discussion of these issues and potential solutions.

2.2 Categorization of Empirically Grounded ABMs of Innovation Diffusion

We review the burst of recent developments of empirically grounded agent-based mod-

els, which are examined through two dimensions: models and applications. First, to facil-

itate methodological comparison, we group the papers into six categories which represent

the specific approaches taken to model individual agent decision processes: mathematical

optimization based models, economic models, cognitive agent models, heuristic models,

statistics-based models and social influence models. Second, as we observe that modeling

efforts span several domains, the next section offers an application-focused categorization.

The categorization in this section is aimed at qualitatively clustering the existing agent-

based models with respect to their modeling methods, which can be further characterized

1The concepts of calibration and validation are explained in Section 2.5.1 below.
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from several dimensions, such as behavioral assumption, data granularity, internal struc-

ture, calibration, and validation. The six categories we identified present a comprehensive

picture and structured patterns of the different methods used to model individual agent

decision processes seen in a variety of applications.

We review each paper in sequence and in some detail, providing sufficient depth in

the review for a reader to understand the nature of each surveyed work. In particular, we

focus on how data was used in the modeling process, and in particular, in initialization,

calibration and validation steps. We attempt to draw connections among the papers using

our categorization structure (i.e., by grouping them into the six categories based on the

methodology used to model individual agent behavior). Table 2.1 shows how these sur-

vey articles are distributed across the categories and publication years2. Notice that this

approach is different from the synthesis-based approach followed by other review papers,

such as, [50], and [51], which generally draws conclusion for a collection of papers but

does not provide sufficient detail to assess how data is used in these efforts.

Table 2.1: Distribution of surveyed papers over categories and years

Category by modeling methods Distribution in year Total Published
mathematical optimization based model 01,07(2),09,10,13 6

economic model 10, 11(2), 12, 13, 14(2), 15 8
cognitive agent model 02, 06, 09(2), 12, 13(2), 15(2), 16(2) 11

heuristic model 10, 11(2) 3
statistics-based model 07(2), 08, 09, 11, 12, 13, 14, 15, 16 10
social influence model 13(2), 14, 16, 17 5

Total 43

2.2.1 Mathematical Optimization (MO) Based Models

The MO-based models posit that agents (e.g., farmer households) are deliberate decision-

makers who use sophisticated mathematical planning tools to assess the possible conse-

2For simplicity, we omit “20” and use the last two digits to denote a year. For example, “07(2)” stands for
2 publications in year 2007.

18



quence of actions. While agents may encounter uncertainty, incomplete information, and

constraints, their final decisions to adopt innovations are determined by concrete optimiza-

tion objectives. The use of complex mathematical programs is commonly justified by the

fact that farmer agents often consider their farming decisions in terms of economic returns.

In a seminal paper, Berger [52] developed a spatial multi-agent mathematical program-

ming (MP) model of diffusion of farming innovations in Chile. Production, consumption,

investment, and marketing decisions of individual households are modeled using linear pro-

gramming with the goal of maximizing expected family income subject to limited land and

water assets. Moreover, in accordance with the literature on innovation diffusion, the model

incorporates the effects of past experience, as well as observed experience by peers. This

is done by imposing a precondition for the MP procedure that the net benefit is only calcu-

lated if peer adoption level reaches the predefined threshold. In addition to such contagion

effects, agent interactions are also reflected by the feedback effects of land and water re-

sources and return-flows of irrigation water, implemented by coupling the economic agent

decision model with hydrological components. In simulation models, agents are cellular

automata with each cell associated with biophysical and economic attributes, such as soil

quality, water supply, land cover/land use, ownership, internal transport costs, and marginal

productivity. These agent properties are initialized using empirical data derived from var-

ious data sources, including a survey that captures both agronomic and socio-economic

features, and a spatial data set with information about land and water use. Parameters were

calibrated in terms of closeness of simulation experiments and farm data at both macro

and micro levels. Validation was then performed by regressing land use results based on

the model on actual land use in the data. Although values of the slope of this regression are

reported for both macro and micro levels, validation is incomplete. For instance, micro-

validation is only conducted for the year when the simulation starts due to data availability.

Finally, the fact that validation was not conducted on data independent from calibration is

another important weakness. Later, Berger et al. [53] applied his MP-based agent-based
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modeling approach to study the complexity of water usage in Chile. Unfortunately, that

work still had the same issue on validation.

Schreinemachers et al. [54] adopted the MP-based approach to simulate soil fertility

and poverty dynamics in Uganda, and analyze the impact on these of access to short-term

credit and alternative technologies. At the heart of the model is a simulation of a farmer’s

decision process, crop yields, and soil fertility dynamics. The decision model is comprised

of three parts: 1) a set of possible decisions related to agriculture, such as growing crops,

raising livestock, and selling and purchasing agricultural products; 2) a utility function

that determines how much the decisions contribute to the farmer’s objectives; and 3) links

among decision variables represented by a set of equations. Following Berger [52], a three-

stage decision flow is defined that separates agent decisions into investment, production,

and consumption. Moreover, the portion of the model capturing consumption includes

econometrically-specified allocation of farm and non-farm income to saving, food, and

other expenditures. Properties of the household agent, such as, quantity and quality of

land, labor, livestock, permanent crops, and knowledge of innovation, are sampled from

empirical distributions based on limited samples. Additional features include models of

animal and tree growth, technology diffusion, demographics, and price changes. In tech-

nology diffusion, peer influence is captured in the same manner as Berger [52], but notably,

each agent is assigned a threshold based on household survey data. The model was system-

atically validated in three steps: first, econometric models were validated for accuracy, then

each component was validated independently, and finally the system as a whole. Similar

to Berger [52], validation used the same data as calibration.

Schreinemachers et al. [55] studied diffusion of greenhouse agriculture, using bell pep-

per in a watershed in the northern uplands of Thailand as a case study. The work largely

follows the MP-MAS (mathematical programing-based multi-agent systems) approach due

to [52]. Notably, the author proposes calibrating the diffusion thresholds as described

in [52] by using a binary adoption model (e.g., logistic regression), which is estimated from
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farmer survey data. To obtain threshold values for individuals, the author first computes

adoption probability for each agent based on a set of observable independent variables, and

then ranks these, dividing them into the five categories of innovators due to Rogers [56].

Validation was carried by checking the value of R2 associated with a regression of observed

land use on its predicted value. The proposed validation method suffers from the same lim-

itation as other related research in using the same data for calibration and validation.

Schreinemachers et al. [57] applied the MP-based approach to study the impact of sev-

eral agricultural innovations on increasing profitability of litchi orchards in Northern Thai-

land. Unlike Schreinemachers et al. [55] that estimated a logistic regression model to assign

agents to threshold groups, they assigned thresholds randomly due to the lack of relevant

data. The model was validated using regression method as described in Schreinemachers

et al. [55], and validation suggests that the model reasonably represents aggregate agent

behavior, even while individual-level behavior is not well captured. As in prior work, cali-

bration and validation used the same data.

Alexander et al. [58] developed an agent-based model of the UK perennial energy crop

market to analyze spatial and temporal dynamics of energy crop adoption. The model

includes the interaction of supply and demand between two agent groups: farmers and

biomass power plant investors. The farmer agents have fixed spatial locations which de-

termine the land quality and climate that in turn impact crop yields, and decide on the

selection of crops via a two-stage approach similar to Berger [52], with peer influence

again modeled through a threshold function. A farmer agent considers adoption only if the

proportion of neighbors within a given radius with a positive adoption experience exceeds

a threshold. When adoption is considered, a farm scale mathematical program is used to

determine the optimal selection of crops that maximizes utility as described in Alexander

et al. [59]. Calibration of the farm scale model is either informed by empirical data or in

reference to previous studies. Validation involved checking model behaviors on simplified

configurations, unit-testing of model components, and comparing simulation results against

21



empirical data. However, validation did not use independent data from calibration.

2.2.2 Economic Models

Unlike the MO based models in Section 2.2.1, the economic models use simpler rules

with fewer constraints and decision variables. Particularly, agents commonly simply mini-

mize cost, maximize profit, or, more generally, maximize personal utility.

2.2.2.1 Cost Minimization

Faber et al. [60] develop an agent-based simulation model for energy technologies,

micro-CHP (combined heat and power) and incumbent condensing boilers, in competition

for consumer demand. Consumer agents are classified by housing type, which is viewed

as the most important factor in determining natural gas requirements for heating units. At

each time step a consumer considers purchasing a new heating unit, and follows a three-

step decision algorithm: 1) assess if a new unit is needed, 2) scan the market for “visible”

heating units, where “technology awareness” is formulated as a function of the level of ad-

vertising, market share, and bandwagon effect, and 3) each consumer chooses the cheapest

technology of those that are visible. The cost, which depends on the consumer’s class, is

comprised of purchase costs, subsidies, and use costs over the expected life of the technol-

ogy. Some of the parameters are calibrated using empirical data, while others are set in an

ad hoc fashion. Some validation was performed through the use of a sensitivity analysis

of the variables such as market size, progress rate, and technology lifetime. However, no

explicit model validation using empirical data was undertaken.

2.2.2.2 Profit Maximization

Sorda et al. [61] develop an agent-based simulation model to investigate electricity

generation from combined heat and power (CHP) biogas plants in Germany. Instead of

simulating farmer’s individual decision whether to invest in a biogas plant, the model solves
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a system-wide optimization problem from the perspective of a global planner. The model

includes two types of agents: information agents, including federal government, bank,

electric utility, and plant manufacturer, and agents making investment decisions, including

the substrate supplier, district, decision-maker, and heat consumer. The core decision-

making agent acts as a representative for investors in each community. The agent chooses

to invest in a biogas facility whenever sufficient resources are available and the investment

yields positive net present value. This work used multiple data sources to construct the

simulation model. For example, plant operator guidelines and manufacturer specifications

were used to obtain data about the characteristics of biogas plants. Although the model is

thus informed by real data, it is not quantitatively validated.

2.2.2.3 Utility Maximization

Broekhuizen et al. [62] develop an agent-based model of movie goer behavior which

incorporates social influence in movie selection decisions. Their study investigates two

types of social influence: the influence of past behavior by others, and influence stemming

from preferences of an individual’s friends, such as group pressure to join others in seeing

a movie. The main purpose of this work is to determine the degree to which different

types of social influence impact inequality. In their model, an agent’s decision-making

is probabilistic and utility-driven. An agent first observes which movies are being shown

in the marketplace with some probability. Next, with a specified probability, an agent

is selected to consider seeing a movie. If selected, it goes to the movie that maximizes

expected utility among all those it is aware of. Otherwise, it does not see any movie.

Utility in this setting is a weighted sum of individual utility, which represents the alignment

between individual’s preferences and movie characteristics, and social utility which is a

combination of the two types of social influence above. Some of the model parameters are

either theoretically determined or empirically calibrated, while the variability of the rest

is investigated by sensitivity analysis. Validation involved a cross-national survey, using
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cross-cultural differences due to Hofstede’s collectivism-individualism index to measure

social influence. While the validation is based on an independent survey study, it is largely

qualitative.

Günther et al. [63] introduce an agent-based simulation approach to support marketing

activities. The proposed model was applied to the study of a new biomass-based fuel that

would likely be introduced in Austria. Consumer agents are embedded in a social network,

where nodes represent agents and edge weights determine the probability with which the

connected agents communicate. The authors tested several network structures, including

random (Erdos-Renyi) networks, small-world networks, and so-called “preferences-based”

networks, where connections between agents are based on geographical and cognitive prox-

imity as well as opinion leadership. Each agent is characterized by preferences, geograph-

ical position, tanking behavior, how informed they are about the product, and their level of

social influence. Agents have preferences for several product attributes: price, quality, and

expected environmental friendliness, which are initialized differently based on consumer

type. Agents are geographically distributed in virtual space based on the spatial distribu-

tion of Austrian population, and their tanking behavior is a function of fuel tank capacity,

travel behavior, and habits. Individual information level on the innovation at hand captures

the knowledge about a product, which increases as a function of interpersonal communica-

tion and exposure to marketing activities. Influence level, on the other hand, represents an

agent’s expertise with the innovation and determines the amount of information received

through communication. Upon interaction, an agent with lower information level learns

from a more informed agent. Most importantly, the utility function for agent i at time t is

given by ui,t = (1−Pricet)×wi,1 +Pricet×wi,2 + ppqi,t×wi,3 +wi,4, where 0≤ wi,k ≤ 1

and ∑
4
k=1 wi,k = 1, and the first and second weights pertain to price, while the last two repre-

sent how strongly agents prefer quality and how willing they are to seek renewable energy

sources for fuel, respectively. An agent is assumed to adopt if utility exceeds a specified

individual threshold drawn for each agent from the uniform distribution. Moreover, the
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perceived product quality, ppqi is assumed to gradually converge the true product quality

for adopters. The author briefly mentions these model parameters are set in reference to

a prior case study. Apart from this, no detailed information is provided about how model

parameters are actually calibrated in the setting. Moreover, the model was only validated

qualitatively with subjective expert knowledge.

Holtz and Pahl-Wostl [64] develop a utility-based agent-based model to study how

farmer characteristics affect land-use changes in a region of Spain. As relevant data are

scarce, their model cannot be quantitatively calibrated and validated. Empirical data are

used to initialize the model, deriving the initial crop distribution, and to assess the validity

of the model qualitatively. In this model, an agent’s utility is formulated as a Cobb-Douglas

function by multiplying four influences: gross margin, risk, labor load, and regulatory con-

straints. Parameters associated with these influences differ with the types of farmers, for

example, part-time, family, and business-oriented farmers would have distinct utility pa-

rameters. In the decision process, an agent chooses a land use pattern that maximizes its

utility, where land use patterns involve a combination of crop and irrigation technology,

constrained by policies. The diffusion of irrigation technology is simulated based on the

concept that the more widely used a technology is, the more likely it is to be considered by

individual farmers. Their experiments explore the importance of each influence variable in

the utility function, as well as of farmer types, by qualitatively comparing the simulation

results with empirical data.

Plötz et al. [65] propose a model for the diffusion of electric vehicles (EVs) to evalu-

ate EV-related policies based driving data in Germany. The model determines the market

shares of different technologies by simulating each driving profile as both EV and con-

ventional vehicle, choosing the option which maximizes the driver’s utility, and then ex-

trapolating these agent-level choices to aggregate market shares. In modeling individual

decisions, utility is defined as a function of total cost of ownership (TCO), choice of EV

brands, and individual willingness-to-pay-more (WTPM). The authors combined survey re-
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sults with driving profiles to derive four categories of agents (adopters), and assigned each

driving profiles to one of these categories. Through simulating the plug-in hybrid elec-

tric vehicle (PHEV) share of the market as a function of annual average vehicle kilometers

traveled (VKT) for medium-sized vehicles, the model was validated by comparing origi-

nal group assignment with simulated outcomes and by examining simulated diesel market

shares relative to actual values within different branches of industry. While validation is

quantitative and rigorous, it does not use independent data. Moreover, the model does not

capture social influence which is often a key aspect of innovation diffusion modeling.

McCoy and Lyons [66] develop an agent-based model of diffusion of electric vehicles

among Irish households. Agents representing households are located at a regular lattice

space. They are heterogeneous as suggested by their characteristics. Agents have two static

attributes, Income Utility (IU) and Environmental Utility (EU), drawn independently from

empirical distributions derived from a survey. In particular, IU is based on an agents social

class, tenure type, and age, which are assumed to be highly correlated with income, whereas

EU is based on the agent’s past adoption of energy efficiency technologies and their attitude

toward the environment. Each agent i has a unique threshold, θi, drawn from a distribution

that is negatively correlated to IU, and adopts if Ui(t)≥ θi and t×crit ≥ rand(0,1), where,

crit is decimal value that is used to account for inertia that exists in early stage of tech-

nology adoption, while utility Ui(t) is defined as Ui(t) = αiIUi +βiEUi + γiGi(t)+δiS(t),

where, IU represents individual’s preferences, G is social influence, and S is social norms,

and αi + βi + γi + δi = 1. To allow these parameters to vary by agent, the authors spec-

ify four distinct consumer groups with different preferential weighting schemes. Although

the agents in the simulation are initialized using empirical distributions, key parameters in

the decision model are not derived empirically but are based on the authors’ assumptions.

Additionally, no rigorous validation is provided.

Palmer et al. [67] developed an agent-based model of diffusion of solar photovoltaic

(PV) systems in the residential sector in Italy. The utility of agent j is defined as the
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sum of four weighted partial utilities, i.e., U( j) = wpp(sm j) ·upp( j)+wenv(sm j) ·uenv( j)+

winc(sm j)·uinc( j)+wcom(sm j)·ucom( j), where ∑k wk(sm j)= 1 for k∈K : {pp,env, inc,com}

and wk(sm j),U( j) ∈ [0,1]. From left to right the partial utilities are: (1) payback period

of the investment, (2) environmental benefits, (3) household income, and (4) social influ-

ence. An agent chooses to invest in PV if its total utility exceeds an exogenously specified

threshold. Thresholds above vary by agent’s demographic and behavioral characteristics,

sm j. The four partial utilities are derived from empirical data. Specifically, the payback

period is estimated based on investment costs, local irradiation levels, government subsi-

dies, net earnings from generating electricity from the system vs. buying it from the grid,

administrative fees, and maintenance costs. The environmental benefit is based on an esti-

mate of reduced CO2 emissions saved. Household income is estimated based on household

demographics, such as age, the level of education, and household type. Finally, social in-

fluence is captured by the number of neighbors of a household within its social network

who have previously adopted PV. The social network among agents is generated according

to the small-world model [68], modified to account for socio-economic factors. The model

parameters are calibrated by trying to match simulated adoption with the actual aggregate

residential PV adoption in Italy over the 2006-2011 period. The model is then applied

to study solar PV diffusion in Italy over the 2012-2026 period. However, no quantitative

validation is offered.

2.2.3 Cognitive Agent Models

While both MO-based (Section 2.2.1) and economic (Section 2.2.2) models elaborate

economic aspects of the decision process and integrate simple threshold effects, cognitive

agent models aim to explicitly model how individuals affect one another in cognitive and

psychological terms, such as opinion, attitude, subjective norm, and emotion. This category

includes the Relative Agreement Model, the Theory of Planned Behavior, the Theory of

Emotional Coherence, and the Consumat Model.

27



2.2.3.1 Relative Agreement Model

The Relative Agreement Model belongs to a class of opinion dynamics models [69] and

addresses how opinion and uncertainty are affected by interpersonal interactions. Seminal

work is due to Deffuant et al. [70], who investigate how the magnitude of thresholds, with

respect to attitude difference, leads to group opinion convergence and extremeness. The

relative agreement model is often known as “Deffuant model” in the literature.

Deffuant et al. [71] design an agent-based model to simulate organic farming conver-

sion in France. To model impact of interactions on individual decision, they relied on the

Deffuant model in which both opinion and uncertainty are continuous variables. In the dif-

fusion model, farmer agent has an “interest” state with three possible values: not-interested,

uncertain, and interested. The actual value is based on the agent’s opinion (represented

as a mean value and confidence) and economic consideration. The value of the interest

state depends on the position of the global opinion segment compared to a threshold value.

Agent changes opinion after discussing with peers using a variant of the Relative Agree-

ment algorithm [72]. The farmers send messages containing their opinions and information,

following a two-stage diffusion model of Valente [37], mediated by a network generated

according to the Watts and Strogatz [68] model. These impact opinions of the recipients as

a function of opinion similarity, as well as the confidence of the sender, with more confident

opinions having greater influence. In addition, if the farmer agent is “interested” or “un-

certain”, he performs an evaluation of the economic criterion, and if he remains interested,

he requests a visit from a technician. After this visit, the economic criterion is evaluated

again under reduced uncertainty. Finally, the adoption decision is made when the farmer

has been visited by a technician and remains “interested” for a given duration.

Many model parameters governing the decision and communication process are not in-

formed by empirical data. The authors tested the sensitivity of the model by varying these

variables, including the main parameters of the dynamics, the parameters of the initial opin-

ion distribution average number of neighborhood and professional links, and variations of
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the institutional scenario. Within this parametric space, they aimed to identify parameter

zones that are compatible with empirical data. For each parameter configuration, the au-

thors defined two error measures: the adoption error and the error of proximity of adopters

to the initial organic farmers. A decision tree algorithm was then used to find the parameter

zones where the simulated diffusion has an acceptable performance. While this sensitivity

analysis step can be viewed as model calibration, it is distinct from classical calibration

which aims at finding a single best parameter configuration. The model was not validated

using independent data.

2.2.3.2 Theory of Planned Behavior

The Theory of Planned Behavior (TPB) postulates that an individual’s intention about

a behavior is an important predictor of whether they will engage in this behavior [73].

As a result, the theory identifies three attributes that jointly determine intention: attitudes,

subjective norms, and perceived behavioral control. The relative contribution for each

predictor is represented by a weight which is often derived empirically using regression

analysis based on survey data.

Kaufmann et al. [74] build an agent-based simulation model on TPB to study the dif-

fusion of organic farming practices in two New European Union Member States. Follow-

ing the TPB methodology, each agent is characterized by three attributes: the attitude ai,

subjective norm si, and perceived behavioral control pi, each ranging from -1 (extremely

negative) to +1 (extremely positive). The intention Ii is defined as Ii = wa
i ai +ws

i si +wp
i pi,

where wa
i ,w

s
i ,w

p
i are relative contribution toward intention. The weights for non-adopters

and adopters are derived separately using linear regressions based on the survey data. If

an agent’s intention exceeds a threshold t it adopts, and does not adopt otherwise. The

threshold is obtained from survey data as the average intention of non-adopters who have

expressed a desire to adopt. In the simulation model, social influence is transmitted among

network neighbors in each time step in a random order. Specifically, when one node speaks
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to another, the receiver shifts its subjective norm closer to the sender’s intention, following

the relative agreement framework. Social networks are generated to reflect small-world

properties [68] and a left-skewed degree distribution [75], with specifics determined by a

set of parameters, which are set based on survey data (such as the average degree). While

empirical data is thus used to calibrate parameters of the model, no quantitative validation

was provided.

Schwarz and Ernst [76] propose an agent-based model of diffusion of water-saving in-

novations, and applied the model to a geographic area in Germany. Agents are households

with certain lifestyles, represented by demographic and behavioral characteristics. They

use two different decision rules to determine adoption: a cognitively demanding decision

rule representing a deliberate decision and a simple decision heuristic. The particular de-

cision rule to use is selected based on the agent’s type and technology category. The de-

liberate decision-making algorithm is based on multi-attribute subjective utility maximiza-

tion that integrates attitude, social norm, and perceived behavioral control. The heuristic

decision rule makes decisions in greedy order of evaluation criteria based on innovation

characteristics and social norms. Finally, if no clear decision can be made, agents imi-

tate their peers, who are defined through a variation of a small-world network [68] which

captures spatial proximity and lifestyle affinity in determining links among agents. The

model was calibrated using data from a survey according to the framework of the The-

ory of Planned Behavior [73], with the importance of different decision factors derived by

structural equation models or linear regressions for lifestyle groups. The model was val-

idated using independent market research data at the household level. In addition, due to

the lack of independent aggregated diffusion data, results of the empirical survey were used

for validation.

Sopha et al. [77] present an agent-based model for simulating heating system adop-

tion in Norway. Their model extends TPB to consider several contributing factors, such as

household groups, intention, attitudes, perceived behavioral control, norms, and perceived
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heating system attributes. Households are grouped using cluster analysis based on income

level and basic values available in the survey data to approximate the influence of lifestyle

on attitudes towards a technology. Attribute parameters are then estimated using regres-

sions for each household cluster based on the household survey. Moreover, motived by

the meta-theory of consumer behavior [78], the model assumes that a household agent ran-

domly follows one of four decision strategies: repetition, deliberation, imitation, and social

comparison, in accordance with empirical distribution based on survey data. Notably, this

model is validated using independent data that is not used for calibration, examining how

well simulation reproduces actual system behavior at both macro and micro level.

Rai and Robinson [79] develop an empirically grounded agent-based model of resi-

dential solar photovoltaic (PV) diffusion to study the design of PV rebate programs. The

model is motived by TPB and assumes that two key elements determine adoption decision:

attitude and (perceived) control. The authors calibrate population-wide agent attitudes us-

ing survey data and spatial regression. Following the opinion dynamics model in Deffuant

et al. [72], at each time-step, agents’ attitudes about the technology and their uncertainties

are adjusted through interactions with their social network neighbors following the relative

agreement protocol. Social influence is captured by households situated in small-world

networks, with most connections governed by geographic and demographic proximity. In

the “control” module, an agent i compares its perceived behavioral control pbci with the

observed payback at the current time period PPit . Then, if the agent exceeds its attitude

threshold, it adopts when PPit < pbci. pbci for each agent i, is calculated as a linear sum of

financial resources, the amount of sunlight received, and the amount of roof that is shaded,

while PPit is calculated based on electricity expenses offset through the use of the solar sys-

tem, the price of the system, utility rebates, federal investment tax credit, and annual system

electricity generation. The six model parameters used to specify the social network, opin-

ion convergence, the distribution of the behavioral control variable, and the global attitude

threshold value, were calibrated by an iterative fitting procedure using historical adoption
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data. The model was first validated in terms of predictive accuracy, comparing predicted

adoption with empirical adoption level for the time period starting after the last date for

the calibration dataset. Moreover, temporal, spatial, and demographic validation were con-

ducted. However, validation was focused on aggregate (macro), rather than individual

(micro) behavior.

Jensen et al. [80] develop an agent-based model to assess energy-efficiency impacts of

an air-quality feedback device in a German city. A household agent makes two decisions:

whether to adopt a feedback device and whether to practice a specific energy-saving be-

havior. The model involves simulating both the adoption of the feedback device and the

heating behavior respectively. Two diffusion processes are connected based on the obser-

vation that the feedback device changes an agent’s heating behavior, and eventually will

form a habit. In the simulations, household agents are generated based on marketing data

on lifestyle, and initial adopters of the heating behavior are selected based on a survey.

The adoption of an energy-efficient heating behavior is triggered by external events, whose

rate is estimated by historical data using Google search queries. Their survey reveals that

both information and social influence drive behavior adoption. This insight is integrated

into a decision-making model following the theory of planned behavior (TPB), in which

information impacts the agent’s attitude in each simulation step. On the other hand, the

diffusion model of the feedback device is an adaptation of an earlier model also based on

TPB. An adopter of the device is assumed to adopt the desired heating behavior with a fixed

probability, which is informed by an empirical study. The space of model parameters is re-

duced by applying a strategy called “pattern-oriented modeling”, which refines the model

by matching simulation runs with multiple patterns observed from empirical data [81]. In

their experiments, the authors calibrated several different models using empirical data and

aimed to quantify the effect of feedback devices by comparing results generated by these

models. However, no rigorous model validation is presented.
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2.2.3.3 Theory of Emotional Coherence

When it comes to explaining and predicting human decisions in a social context, some

computational psychology models also take emotional factors into account, which are often

neglected by TPB-based models. Wolf et al. [82] propose an agent-based model of adoption

of electric vehicles by consumers in Berlin, Germany, based on the Theory of Emotional

Coherence (TEC). The parameters of the model were derived based on empirical data from

focus groups and a representative survey of Berlin’s population. In particular, the focus

group provided a detailed picture of people’s needs and goals regarding transportation; the

survey was designed to generate quantitative estimates of the beliefs and emotions people

associate with specific means of transportation. The attributes of the agents include age,

gender, income, education, residential location, lifestyle, and a so-called social radius, and

are obtained based on the survey data. The social network structure is generated by similar-

ities between these characteristics following the theory of homophily [83]; specifically, the

likelihood of two individuals communicating with one other is a function of their similarity

in terms of demographic factors. To validate the predictions made by the model, the authors

regressed empirical data related to actual transportation-related decisions (e.g., weekly car

usage) from the survey on the activation parameters resulting from simulations. However,

validation did not use independent data.

2.2.3.4 Consumat Model

The Consumat Model is a social psychological framework, in which consumer agents

switch among several cognitive strategies—commonly, comparison, repetition, imitation,

and deliberation—as determined by need satisfaction and their degree of uncertainty [84].

Schwoon [85] uses an agent-based model (ABM) to simulate possible diffusion paths of

fuel cell vehicles (FCVs), capturing complex dynamics among consumers, car producers,

and filling station owners. In their model, the producers offer heterogeneous but similar

cars, deciding in each period whether to change production to FCVs. Consumers have vary-
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ing preferences for car attributes, refueling needs, and social influence factors. Although

in a typical consumat approach [86], consumers follow one of four cognitive strategies on

the basis of their level of need satisfaction and uncertainty, the author rules out repetition

and imitation and argues that need satisfaction is rather low in their case. The consumer is

assumed to maximize total expected utility, which is expressed as a function of car price,

tax, the closeness between preferences and car characteristics, social need, as determined

by the fraction of neighbors adopting each product type, and availability of hydrogen. In

the model, individual preferences may evolve with time to be more congruent with the “av-

erage car”, as determined by a weighted average of attributes of cars sold in the previous

period, where weights correspond to market shares. The model is calibrated by trying to

match main features of the German auto market. The network structure governing social

influence is assumed to form a torus. The model does not attempt quantitative validation.

2.2.3.5 The LARA Model

LARA is the short for Lightweight Architecture for boundedly Rational Agents, a sim-

plified cognitive agent architecture designed for large-scale policy simulations [87]. Com-

paring with existing complex psychological agent frameworks, LARA is more general-

izable and easier to implement. We review two recent efforts motivated by the LARA

architecture and grounded in empirical data.

Krebs et al. [88] develop an agent-based model to simulate individual’s provision of

neighborhood support in climate change adaptation. In their model, agents are assigned

to lifestyle groups and initialized using spatial and societal data. Motivated by LARA, an

agent makes decision in one of three modes: deliberation, habits, and exploration. In de-

liberation, an agent compares and ranks available options in terms of utility, which is the

weighted sum of four goals: striving for effective neighborhood support, being egoistic,

being altruistic, and achieving social conformity. The goal weights, which are different

among lifestyle groups, are set based on expert ratings and the authors’ prior work. A
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probability choice model is used to choose the final option when multiple better options are

available. An agent acts in deliberation mode if no experience is available (habitual behav-

ior is not possible) and shifts to the exploratory mode with a predefined small probability.

The network in which the agents are embedded is generated using lifestyle information.

Simulation runs for an initial period from 2001 to 2010 provide plausible results on be-

havioral patterns in cases of weather changes. From 2011 to 2020, the authors examine

the effects of two intervention strategies that mobilize individuals to provide neighborhood

support. Some model parameters remain uncalibrated, and the entire model is not validated

due to a lack of empirical data at the macro level.

Krebs and Ernst [89] develop an agent-based spatial simulation of adoption of green

electricity in Germany. Each agent represents a household deciding to select between

“green” and “gray” energy providers. Every agent is characterized by its geographical lo-

cation and lifestyle group. Agents are initialized and parameterized by empirical data from

surveys, psychological experiments, and other publicly available data. Following LARA,

agents are assumed to make decisions either in a deliberative or habitual mode. Default

agent behavior is habitual, and the agent transitions to a deliberative mode when triggered

by internal and external events, such as a price change, personal communication, cogni-

tive dissonance, need for cognition, and media events. An agent chooses an action that

maximizes utility, which is a weighted sum of four goals: ecological orientation, economic

orientation, social conformity, and reliability of provision. The goal weights depend on the

lifestyle group and are derived from a survey and expert rating [90]. An artificial network

that connects the agents is generated based on lifestyle and physical distance [90]. Once an

agent decides to adopt green electricity, it chooses a service brand that is already known.

The diffusion of the awareness of the brand is characterized by a simple word-of-mouth

process. Validation focuses on two state variables of agent behavior: selected electricity

provider and awareness of the brand, which involves comparing simulation results with

historical data both temporally and spatially starting from aggregate to the individual level.

35



Unfortunately, validation was not conducted using independent data.

2.2.4 Heuristic Models

Heuristic adoption models are often used when modelers are not aware of any estab-

lished theories for agent decision-making in the studied application. These models tend to

give us an impression of being “ad-hoc”, since they are not built on any grounded theories.

More importantly, unlike the cognitive agent models such as the theory of planned behav-

ior, there is no established or principled means to estimate model parameters. Therefore,

model parameters are often selected in order to match simulated output against a realistic

adoption level. Although heuristic-based model appears to be an inaccurate representation

of agent decision-making, they are easy to implement and interpret.

Van Vliet et al. [91] make use of a take-the-best heuristic to model a fuel transportation

system to investigate behavior of fuel producers and motorists in the context of diffusion

of alternative fuels. In the model, producers’ plant investment decision is determined by

simple rules, and the same plant can produce multiple fuel types. Motorists are divided into

several subgroups, each having distinct preferences. Each motorist is assumed to choose

a single fuel type in a given year. Each fuel is assigned four attributes: driving cost, envi-

ronment, performance, and reputation. Motorist preferences in the model are represented

by two factors: 1) priorities, or the order of perceived importance of fuel attributes, and

2) tolerance levels, which determine how much worse a particular attribute of the corre-

sponding fuel can be compared to the best available alternative to maintain this fuel type

under consideration. The decision heuristic then successively removes the worst fuel one

at a time in the order of attribute priorities. Due to the difficulty of obtaining actual pref-

erences of motorists, the authors used the Dutch consumer value dispositions from another

published model in literature as a proxy to parametrize the model. However, the model was

not rigorously calibrated or validated using empirical data.
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Zhao et al. [92] propose a two-level agent-based simulation modeling framework to

analyze the effectiveness of policies such as subsidies and regulation in promoting solar

photovoltaic (PV) adoption. The lower-level model calculates payback period based on PV

system electricity generation and household consumption, subsidies, PV module price, and

electricity price. The higher-level model determines adoption choices as determined by

attributes which include payback period, household income, social influence, and advertis-

ing. A pivotal aspect of the model is the desire for the technology (PV), which is formulated

as a linear function of these four factors, and an agent adopts if the desire exceeds a spec-

ified threshold. Survey results from a prior study were used to derive a distribution for

each factor, as well as the membership function in a fuzzy set formulation. The agents in

the model were initialized using demographic data, along with realistic population growth

dynamics based on census data. Moreover, calibration of threshold value was conducted to

match simulated annual rate of PV adoption with historical data. However, the model was

not quantitatively validated using independent data.

A more complex TOPSIS (Technique for Order Preference by Similarity to Ideal Solu-

tion) model is a decision heuristic which selects an option from several alternatives that is

the closest to the ideal option and the farthest from the worst possible option. Kim et al.

[93] present agent-based automobile diffusion model using a TOPSIS approach to simulate

market dynamics upon introduction of a new car in the market. The model integrates three

determinants of purchasing behavior: (1) information offered by mass media, (2) relative

importance of attributes to consumers, and (3) social influence. Individual agents rank

products by considering multiple product attributes and choosing a product closest to an

ideal. A survey was conducted to estimate consumers’ weights on the car attributes and the

impact of social influence. In the simulations, diffusion begins with innovators who try out

new products before others; once they adopt, their social network neighbors become aware

of these decisions, with some deciding to adopt, and so on. A small-world network struc-

ture was assumed for this virtual market, and choices of rewiring and connectivity were
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determined by the model calibration step through comparing simulated results with his-

torical monthly sales volumes of three car models. However, the model was not validated

using independent data.

2.2.5 Statistics-Based Models

Statistics-based models rely on statistical methods to infer relative contribution of ob-

servable features towards one’s decision whether to adopt. The estimated model is then

integrated into an ABM. We review three subcategories of statistics-based methods for

agent-based models of innovation diffusion: conjoint analysis, discrete choice models, and

machine learning.

2.2.5.1 Conjoint Analysis

Conjoint analysis is a statistical technique used in market research to determine how

much each attribute of a product contributes to consumer’s overall preference. This contri-

bution is called the partworth of the attribute. Combining with feature values of innovation

obtained from the field study, one can construct a utility function accordingly.

Garcia et al. [94] utilize conjoint analysis to instantiate and calibrate an agent-based

marketing model using a case study of diffusion of Stelvin wine bottle screw caps in New

Zealand. With a particular emphasis on validation, the overall work follows Carley [95]’s

four validation steps: grounding, calibration, verification, and harmonizing (the latter not

performed, but listed as future work) to properly evaluate the model at both micro and

macro levels. The model includes two agent types: wineries and consumers. In each

period the wineries set the price, production level, and attributes of screw caps as a func-

tion of consumer demand. Consumers, in turn, make purchase decisions following their

preferences. The model is calibrated using conjoint analysis, inferring partworths which

determine consumer preferences in the model. Aggregate stylized facts were then repli-

cated in the verification step. The work emphasizes the value of calibration, but pays less

38



attention to validation, which is merely performed at a face level rather than quantitatively.

Vag [96] presents a dynamic conjoint method that enables forecasts of future prod-

uct preferences. The consumer behavior model considers many factors, including social

influence, communication, and economic motivations. The author surveys behavior of in-

dividuals, such as their communication habits, and uses conjoint analysis to initialize pref-

erences in the ABM. Notably, in this model agent priorities depend on one another, and

the resulting social influence interactions may lead to large-scale aggregate shifts in indi-

vidual priorities. To demonstrate the usability of their model, the study utilized empirical

data on product preferences (in this case, preferences for mobile phones), consumer habits,

and communication characteristics in a city in Hungary. Calibration of this model was only

based on expert opinion and comparative analysis, rather than quantitative comparison with

real data, and no quantitative validation was performed.

Zhang et al. [97] develop an agent-based model to study the diffusion of eco-innovations,

which in their context are alternative fuel vehicles (AFVs). The model considers interde-

pendence among the manufacturers, consumers, and governmental agencies in the automo-

tive industry. The agents representing manufacturers choose engine type, fuel economy,

vehicle type, and price, following a simulated annealing algorithm, to maximize profit in

a competitive environment until a Nash equilibrium is reached [98]. The consumer agents

choose which products to purchase. The partworth information in the utility function was

derived by choice-based conjoint analysis using an empirical survey from Garcia et al.

[94]. In particular, the probability of a consumer choosing a vehicle is formulated as a logit

function of vehicle attributes, word-of-month, and domain-specific knowledge. The utility

is modeled as a weighted sum of attributes, and parameters/partworth are estimated using

hierarchical Bayes methods. The agent acting as “government” chooses policies aimed

at influencing the behavior of both manufacturers and consumers. Model calibration in-

volved conjoint analysis. However, the authors found that the ABM tended to overestimate

the market shares of alternative fuel vehicles, which motivated them to adjust model pa-
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rameters and to linearize the price parthworth in order to ensure that aggregate demand

decreases with price. Like Garcia et al. [94], the authors follow the four steps of valida-

tion [95]. However, validation does not use data independent from calibration.

Lee et al. [99] introduce an agent-based model of energy consumption by individual

homeowners to analyze energy policies in the U.K. The model utilizes historical survey

data and choice-based conjoint analysis to estimate the weight of a hypothetical utility

function, defined as the weighted sum of attributes. In the simulation, moving and boiler

break-down events are assumed to trigger a decision by the household agent. In this case, a

particular alternative is selected if its utility is higher than all other alternative as well as the

status quo option. The model was populated with initial data based on a survey conducted

in the U.K., and each agent was matched to a household type which can be further mapped

to energy demand using energy consumption estimates. The authors then combined energy

demand with fuel carbon intensity to determine annual household emissions. The model

was calibrated by adjusting the weights in the decision model to match historic installation

rates from 1996 to 2008 for loft insulation and cavity wall insulation. The model was not

validated using independent data.

Stummer et al. [100] devise an agent-based model to study the diffusion of multiple

products. Each product is characterized by a number of attributes determined by expert

focus group discussion. True performance of each product attribute is unknown to con-

sumers, and each agent, therefore, keeps track of the distribution of attribute values based

on information previously received. This information is updated based on interactions with

peers, advertising, or direct experience. Consumer agent behavior is governed by a set

of parameters that capture heterogeneous preferences and mobility behavior. Agents have

additive multi-attribute utilities, the weights of which were obtained from survey data us-

ing conjoint analysis. The authors adapt the preferential attachment algorithm introduced

by [101] to generate networks in which the attachment probability depends on both node

degree and geographic distance between nodes. Network parameters were determined by

40



taking into account additional information revealed in the consumer survey, such as the

number of social contacts and communication frequency. An agent decides to purchase a

product which maximizes utility. The model defines each advertising event to communi-

cate a set of product attributes, which either increase product awareness or impact customer

preferences. The model was validated extensively following [102], including conceptual

validity, internal validity, micro-level external validity, macro-level external validity, and

cross-model validity. The weakness of validation, however, is that it is only performed as

an in-sample exercise without using independent data.

2.2.5.2 Discrete Choice Models

The discrete choice modeling framework, which originates in econometrics, is used

to describe, explain, and predict agent choices between two or more discrete alterna-

tives [103]. The approach has a wide range of applications, and we review several efforts

targeted specifically at innovation diffusion.

Galán et al. [104] design an agent-based model to analyze water demand in a metropoli-

tan area. This model is an integration of several sub-models, including models of urban

dynamics, water consumption, and technological and opinion diffusion. The opinion diffu-

sion model assumes that an agent’s attitude towards the environment determines its water

consumption, i.e., a non-environmentalist would use more water than an environmentalist.

Accordingly, it is assumed that each agent can be in two states: environmentalist (E) or

non-environmentalist (NE). The choice of a state depends on the agent’s current state, the

relative proportion of E and NE neighbors, and an exogenous term measuring the pressure

towards E behavior. Transition probabilities between states E and NE are given in form

of logistic functions. However, rather than using empirical data to estimate parameters

of these functions, the authors parameterized the behavior diffusion model with reference

to models in prior literature for other European cities. To determine adoption of water-

saving technology, the opinion diffusion model is coupled with the technological diffusion
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model, which is implemented by a simple agent-based adaptation of the Bass model fol-

lowing [105]. The model was validated qualitatively by domain experts, quantitatively

calibrated based on the first quarter of 2006, and validated by comparing the model with

actual adoption in the following two quarters. The authors demonstrate that simulation re-

sults successfully replicate the consequence of a water-saving campaign on domestic water

consumption.

Dugundji and Gulyás [106] propose a computational model that combines economet-

ric estimation with agent-based modeling to study the adoption of transportation options

for households in a city in Netherlands. The presented discrete choice modeling frame-

work aims to address interactions within different social and spatial network structures.

Specifically, agent decision is captured using a nested logit model, which enables one to

capture observed and unobserved behavior heterogeneity. Feedback effects among agents

are introduced by adding a linear term (a so-called field variable) that captures proportions

of an agent’s neighbors making each decision to each agent’s utility function. Because

survey data on interactions between identifiable individuals was unavailable, this term only

captured aggregate interactions among socioeconomic peers. The authors investigated sim-

ulated transition dynamics for the full model with two reference models: the first a nested

logit model with a global field variable only and a fully connected network, and the sec-

ond a multinomial logit model which is a special case to the full model. They found that

simulated dynamics differ dramatically between the models. Given this lack of modeling

robustness, no further validation was undertaken.

Tran [107] develops an agent-based model to investigate energy innovation diffusion.

Agent behavior in this model is determined by the relative importance of technology at-

tributes to the agents, and social influence. Social influence, in turn, takes two forms: indi-

rect influence coming from the general population, and direct influence of social network

neighbors. The author drew on ABM studies in the marketing literature, and formulated the

adoption model as Prob(t) = 1− (1−Pi j)(1−Qi j)
Ki j , where Pi j captures individual choice
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using a discrete choice model of consumer decision-making, in which an agent’s utility is

defined as an inner product of coefficients and attributes. Coefficients are a random vec-

tor, with distribution different for different agents, capturing preference heterogeneity. Qi j

and Ki j is the indirect and direct network influence, respectively, captured as a function of

the number of adopters at decision time. While the model was evaluated using simulation

experiments, and the nature of the model makes it well suited for empirically grounded

parameter calibration, it was not in actuality quantitatively calibrated or validated using

empirical data.

2.2.5.3 Machine Learning Models

Machine learning (ML) is a sub-area of computer science that aims to develop algo-

rithms that uncover relationships in data. Within a supervised learning paradigm which

is of greatest relevance here, the goal is further to develop models that accurately predict

the value of an outcome variable for unseen instances. To do so, a computer program is

expected to recognize patterns from a large set of observations, referred to as a training

process that is grounded in statistical principles and governed by intelligent algorithms,

and make predictions on new, unseen, instances. This category of methods has recently

drawn much attention in academia and industry due to tremendous advances in predic-

tive efficacy on important problems, such as image processing and autonomous driving.

Combining machine learning with agent-based modeling seems promising in the study of

innovation diffusion since the two can complement each other. The former is specialized in

building a high-fidelity predictive models, while the latter captures dynamics and complex

interdependencies. Of particular relevance to combining ML and ABM is the application

of machine learning to model and predict human behavior. Interestingly, relatively few at-

tempts have been made to date to incorporate ML-based models of human behavior within

ABM simulations.
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Sun and Müller [108] develop an agent-based model that features Bayesian belief net-

works (BBNs) and opinion dynamics models (ODMs) to model land-use dynamics as they

relate to payments for ecosystem services (PES). The decision model of each household is

represented using a BBN, which were calibrated using survey data and based on discussions

with relevant stakeholders, and incorporate factors such as income and land quality. So-

cial interactions in decision-making are captured by ODM. The modeling framework was

applied to evaluate China’s Sloping Land Conversion Program (SLCP), considered among

the largest PES programs. SLCP was designed to incentivize reforestation of land through

monetary compensation. In their model, farmers make land-use decisions whether or not

to participate in the SLCP program based on internal beliefs and external influences. Ex-

ternal influences adjust internal beliefs cumulatively using a modified Deffuant model [72]

within a community-based small-world social network. Initial model structures were ob-

tained using a structural learning algorithm, with results augmented using qualitative expert

knowledge, resulting in a pseudo tree-augmented naive Bayesian (TAN) network. The final

BBN model was validated by using a sensitivity analysis, and measuring prediction accu-

racy and area under the curve (AUC) of the receiver operating characteristics (ROC) curve

on a holdout test data set at both household and plot level. A crucial limitation of this work

is that only the BBN model was carefully validated; the authors did not validate the full

simulation model at either the micro or macro levels.

Zhang et al. [30] propose a data-driven agent-based modeling (DDABM) framework

for modeling residential rooftop solar photovoltaic (PV) adoption in San Diego county. In

this framework, the first step is to use machine learning to calibrate individual agent be-

havior based on data comprised of individual household characteristics and PV purchase

decisions. These individual behavior models were validated using cross-validation meth-

ods to ensure predictive efficacy on data not used for model calibration, and were then

used to construct an agent-based simulation with the learned model embedded in artificial

agents. In order to ensure validation on independent data, the entire time series data of in-
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dividual adoptions was initially split along a time dimension. Training and cross-validation

for developing the individual-level models were performed only on the first (early) portion

of the dataset, and the aggregate model was validated by comparing its performance with

actual adoptions on the second, independent time series, into the future relative to the cali-

bration data set. The authors thereby rigorously demonstrate that the resulting agent-based

model is effective in forecasting solar adoption both at the micro and macro levels. To our

best knowledge, this work proposed the first generic principled framework that combines

ML and ABM in the study of innovation diffusion. Unlike most ABM studies we have

reviewed, DDABM has the following features: 1) it does not make any assumptions on the

structural features of social network, relying entirely on a data-driven process to integrate

most predictive spatial and social influence features into the individual adoption model; 2)

it does not rely on matching simulated dynamics with the empirical observations to cali-

brate the model, but instead parameterizes the model through a far more efficient statistical

learning method at the level of individual agent behavior; and 3) validation is performed

on independent data to evaluate the predictive effectiveness of the model. Moreover, vali-

dation is not only done at the macro-level by comparison with actual adoption traces, but

also at the micro-level by means of the simulated likelihood ratio relative to a baseline

model. To further justify the usefulness of ML-base approach, Zhang et al. [30] actu-

ally implement and compare their model with another agent-based model of rooftop solar

adoption developed by [67], with parameters calibrated on the same dataset following the

general aggregate-level calibration approach used by them. The result is very revealing, as

it strongly suggests that aggregate-level calibration is prone to overfit the model to data, an

issue largely avoided by calibrating individual agent behavior.

2.2.6 Social Influence Models

Our last methodological category covers several models looking specifically at social

influence. These models are quite simple, abstract, but prevalent in the theoretical study of
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innovation diffusion. Our purpose of discussing these is that there have been several recent

efforts to calibrate these models using empirical data.

After analyzing an adoption dataset of Skype, Karsai et al. [109] develop an agent-

based model to predict diffusion of new online technologies. Specifically, agents in their

model are characterized by three states: susceptible (S), adopter (A), and removed (R).

Susceptible refers to people who may adopt the product later. Adopter agents have already

adopted. Finally, removed are those who will not consider adopting the product in the future

again. The transition from S to A is regulated by spontaneous adoption and peer-pressure,

from A to S by temporary termination, and from A to R by permanent termination, each of

which is parametrized by a constant probability which is identical for all users. While some

parameters, such as average degree and temporary termination probability, are estimated

directly from observations, the remaining parameters are determined by simultaneously

fitting the empirical rates using a bounded nonlinear least-squares method. The model is

fit over a 5-year training period, and validation uses predictions over the last six months of

the observation period. However, validation is somewhat informal, since the predictability

of the model is evaluated on a part of the training data and there is no validation of micro-

behavior. In a later work using the same Skype data, Karsai et al. [110] develop a threshold-

driven social contagion model with only two states: susceptible and adopted. In addition,

the model assumes that some fraction of nodes never adopt. The authors calibrated the

value of this fraction by matching the size of the largest component of adopters given by

the simulations with real data. In addition, the model assumes that susceptible nodes adopt

with a constant probability, which is informed by empirical analysis. In their simulations,

nodes have heterogeneous degrees and thresholds, which follow empirical distributions.

However, validation was not performed using independent data.

Rand et al. [111] present two agent-based models of diffusion dynamics in online social

networks. The first ABM is motivated by the Bass model, but time is discretized and each

agent has two states: unaware and aware. At each time step, an unaware agent changes
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state to aware as a function of two triggers: innovation arising from exogenous sources,

such as advertising, and imitation, which comes from observing decisions by neighbors.

The second model termed the independent cascade model, originating from Goldenberg

et al. [17], has the similar structure to the agent-based Bass model, except that the imitation

effect is formulated as a single probability with which each aware neighbor can indepen-

dently change the state of an agent to aware. The author applied the two models in parallel

to four diffusion data sets from Twitter, and calibrated parameters using actual aggregate

adoption paths. Notably, validation is only performed at macro-level as an in-sample exer-

cise, and shows that the two models behave similarly.

Using historical diffusion data of Facebook apps, Trusov et al. [112] introduce an ap-

proach that applies Bayesian inference to determine a mixture of multiple network struc-

tures. Notice that most ABMs we reviewed so far either assume a single underlying social

network (with parameters determined in model calibration) or generate artificial networks

based on empirical findings or social science theories. They first choose a collection of

feasible networks that represent the unobserved consumer networks. Then, a simple SIR

model (similar to the Bass ABM in [111]) is used to simulate the diffusion of products. The

simulated time series are further transformed to multivariate stochastic functions, which

provide priors to the Bayesian inference model to obtain the posterior weights on the set of

feasible consumer networks. Like [111], the adoption model is calibrated from the aggre-

gate output, rather than from observations of individual decisions.

Chica and Rand [113] propose an agent-based framework to build decision support sys-

tem (DSS) for word-of-mouth programs. They developed a DSS to forecast the purchase of

a freemium app and evaluate marketing policies, such as targeting and reward. The model

captures seasonality of user activities by two probabilities for weekday and weekend re-

spectively. The initial social network is generated by matching the degree distribution of

the real network. Then, for each node, two weights are assigned to in- and out-edges,

respectively, turning the network into a weighted graph that represents the heterogeneous
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social influence among social neighbors. Specifically, two models are used to model the

information diffusion. One is the Bass-ABM ( [114]); the other is a contagion model (a

threshold model but adding external influence). The parameters of the model were cali-

brated by a genetic algorithm [115], in which the fitness is defined based on the difference

of simulated adoption from the historical adoption trajectory. Notably, the model was val-

idated by a hold-out dataset, which is independent of the training data. For example, the

entire 3 month period spanned by the data was divided into two: first 60 days for training,

the last 30 days for validation.

The independent cascade model used by Rand et al. [111] and the threshold model used

by Chica and Rand [113] are significant insofar as these connect to a substantial literature

that has recently emerged within the Computer Science community on information diffu-

sion, whereby information (broadly defined) spreads over a social network. We make this

connection more precisely in Section 2.4 below.

2.3 Categorization of Innovation Diffusion Models by Application

Thus far, we followed a categorization of agent-based models of innovation diffusion

focused on methods by which agent behavior is modeled. First, we observe that methods

range from sophisticated mathematical optimization models (Section 2.2.1), to economic

models (Section 2.2.2), to even simpler models based on heuristics for representing agent

behavior (Section 2.2.4). While economic factors are dominant concerns in some appli-

cations, others emphasize the cognitive aspects of human decision-making (Section 2.2.3)

and are frequently used to model influence over online social networks (Section 2.2.6).

Second, we note that the method chosen to capture agent behavior also impacts the tech-

niques used to calibrate model parameters from data. For example, cognitive models are

often constructed based on detailed behavior data collected from field experiments and sur-

veys, whereas models of agent behavior based on statistical principles rely on established

statistical inference techniques for model calibration based on individual behavior data that
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is either observational or experimental. Other modeling approaches within our six broad

categories often do not use data to calibrate individual agent behavior, opting instead to

tune model parameters in order to match aggregate adoption data.

We now offer an alternative perspective to examine the literature on empirical ABMs

of innovation diffusion by considering applications—that is, what particular innovation is

being modeled. A breakup of existing work using this dimension is given in Table 2.2. As

shown in the first column, we group applications by broad categories: agricultural innova-

tions and farming, sustainable energy and conservation technologies, consumer technolo-

gies and innovations, information technologies and social goods. Interestingly, the first two

categories account for more than half of the publications in literature. This likely reflects

the history of ABM as an interdisciplinary modeling framework for computational model-

ing of issues that are of great interest in social science. A closely related factor could be the

relatively high availability of data in these applications generated by social scientists (e.g.,

through the use of surveys). Another interesting observation that arises is methodological

convergence for given applications: relatively few applications have been modeled within

different methodological frameworks as categorized above. Future research may explore

the use of different methods for same application. Furthermore, comparison of differ-

ent modeling methods is rare within a single work (except in [106, 30]), although such a

methodological cross-validation is of importance as emphasized by some authors [95, 114].

Category Application Method Citation

agricultural innovations

and farming

agricultural innovations mathematical programming Berger [52], Schreinemach-

ers et al. [54], Berger et al.

[53], Schreinemachers et al.

[55, 57], Alexander et al. [58]

economic (utility) Holtz and Pahl-Wostl [64]

organic farming cognitive model (Deffuant) Deffuant et al. [71]

cognitive model (TPB, Deffuant) Kaufmann et al. [74]

biogas plant economic (profit) Sorda et al. [61]

payments for ecosystem services machine learning Sun and Müller [108]

sustainable energy and

conservation technologies

water-saving technology cognitive model (TPB) Schwarz and Ernst [76]

discrete choice model Galán et al. [104]

heating system cognitive model (TPB) Sopha et al. [77]

conjoint analysis Lee et al. [99]
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economic (cost) Faber et al. [60]

solar photovoltaic heuristic Zhao et al. [92]

economic (utility) Palmer et al. [67]

cognitive model (TPB, Deffuant) Rai and Robinson [79]

machine learning Zhang et al. [30]

fuel cell vehicles cognitive model (Consumat) Schwoon [85]

energy innovation discrete choice model Tran [107]

electric vehicles cognitive model (TEC) Wolf et al. [82]

economic (utility) Plötz et al. [65]

economic (utility) McCoy and Lyons [66]

alternative fuel vehicles conjoint analysis Zhang et al. [97]

alternative fuels heuristic Van Vliet et al. [91]

economic (utility) Günther et al. [63]

conjoint analysis Stummer et al. [100]

green electricity cognitive model (LARA) Krebs and Ernst [89], Ernst and

Briegel [90]

air-quality feedback device cognitive model (TPB) Jensen et al. [80]

consumer technologies

and innovations

wine bottle closures conjoint analysis Garcia et al. [94]

mobile phones conjoint analysis Vag [96]

transportation mode discrete choice model Dugundji and Gulyás [106]

new cars Fuzzy TOPSIS (heuristic) Model Kim et al. [93]

movie economic (utility) Broekhuizen et al. [62]

information technologies Skype social contagion model Karsai et al. [109, 110]

Twitter independent cascade model Rand et al. [111]

Facebook app social contagion model Trusov et al. [112]

freemium app social contagion model Chica and Rand [113]

social goods neighborhood support cognitive model (LARA) Krebs et al. [88]

Table 2.2: Categorization of surveyed work by Applications

2.4 Information Diffusion Models

Online social networks have emerged as an crucial medium of communication. It does

not only allow users to produce, exchange, and consume information at an unprecedented

scale and speed, but also speeds the diffusion of novel and diverse ideas [116, 117]. The

emergence of online social networks and advances in data science and machine learning

have nourished a new field: information diffusion. The fundamental problem in information

diffusion is to model and predict how information is propagated through interpersonal con-

nections over social networks using large-scale diffusion data. In fact, several authors have

reviewed the topic of information diffusion over online social networks [118, 116, 119].
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Our aim is not to provide a comprehensive review of this same topic. Instead, we are

interested in building connections between the agent-based modeling approach to innova-

tion diffusion, and the modeling methods in the field of information diffusion. Indeed,

researchers in the ABM community have paid little attention to the existing methods for

modeling information diffusion, and especially in the played by data science in this field,

which has significant implications for ABM model calibration, as we discuss below.

2.4.1 Two Basic Models of Information Diffusion

Compared to agent adoption models in Section 2.2, the decision process in the in-

formation diffusion literature is typically very simple, following predominantly the social

influence models. The two most common models in information diffusion are Indepen-

dent Cascades (IC) [17] and Linear Threshold (LT) models [18]. These models are defined

on a directed graph where activation is assumed to be monotonic: once a node is active

(e.g., adopted, received information), it cannot become inactive. The diffusion process in

both models starts with a few active nodes and progresses iteratively in a discrete and syn-

chronous manner until no new nodes can be infected. Specifically, in each iteration, a new

active node in the IC model is given a single chance to activate its inactive neighbors inde-

pendently with an exogenously specified probability (usually represented by the weight of

the corresponding edge). In the LT model, in contrast, an inactive node will become active

only if the sum of weights of its activated neighbors exceeds a predefined node-specific

threshold, which is typically randomly assigned between 0 and 1 for each network node.

Note that in both models a newly activated node becomes active immediately in the next

iteration. From an agent-based perspective, both IC and LT are generative models which

define two diffusion mechanisms.
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2.4.2 Learning Information Diffusion Models

Several efforts use empirical data to calibrate the parameters of the LT and IC mod-

els. Saito et al. [120] propose an asynchronous IC (AsIC) model, which not only captures

temporal dynamics, but also node attributes. They show how the model parameters can be

estimated from observed diffusion data using maximum likelihood estimation (MLE). The

AsIC model closely follows the IC model, but additionally introduces a time delay before

a newly activated node becomes active. The time delay is assumed to be exponentially

distributed with a parameter that is defined as an exponential function of a feature vector (a

composition of attributes associated with both nodes and edges). The transmission prob-

ability is then defined as a logit function of the feature vector. The data is given in the

format of “diffusion traces”, and each trace is a sequence of tuples which specify activa-

tion time for a subset of nodes. To learn the model using this data, the authors define the

log-likelihood of the data given the model. The authors then demonstrate how to solve the

resulting optimization problem using expectation-maximization (EM). While the proposed

model is promising to be used for prediction, the learning method was only tested using

synthetic data.

Guille and Hacid [121] show how to parameterize the AsIC model using machine learn-

ing methods based on Twitter data. In their model, the diffusion probability for information

at any given time between two users is a function of attributes from three dimensions: so-

cial, semantic, and time, which group features with respect to social network, content and

temporal property respectively. Four different classifiers were trained and compared in

terms of cross-validation error: C4.5 decision tree, linear perceptron, multilayer percep-

tron, and Bayesian logistic regression. The last model mentioned above was finally used

for prediction. Notably, time-delay parameter was determined separately in this work by

comparing simulation results with actual diffusion dynamics, which is the same calibration

method commonly used in ABM of innovation diffusion. Unlike [120], where all model

parameters are inferred by MLE, here only a subset of model parameters are estimated
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through established machine learning techniques, but the rest are calibrated by simulations.

Their evaluation shows that the model accurately predicts diffusion dynamics, but fails to

accurately predict the volume of tweets. In our ABM jargon, the model performs well at

macro-level, but poorly at micro-level validation [95]. Another limitation of this work is

that validation is only performed as an in-sample exercise, rather than using out-of-sample

data.

Galuba et al. [122] propose two diffusion models with temporal features that are used

to predict user re-tweeting behaviors on Twitter. Both models define the probability for a

user to re-tweet a given URL to be a product of two terms: one is time-independent, the

other is time-dependent. Both have the same time-dependent part which follows a log-

normal distribution, but differ in the actual definitions of the time-independent part. In

their first model termed At-Least-One (ALO), the time-independent component is defined

as the likelihood of at least one of the causes: either one is affected by the agent it follows,

or by the user tweets a URL spontaenously. The second, Linear Threshold (LT), model,

posits that a user re-tweets a URL only if the cumulative influence from all the followees

is greater than a threshold. The time-independent component in this model is given by a

sigmoid function. In order to calibrate and validate the model, the data set was split along

the time dimension into two parts. The model was calibrated by choosing parameters that

optimize the estimated F-score using the gradient ascent method on the first (earlier) data

set, and used to predict URL mentions in the second (later) data set. Their results show

that the LT model achieves the highest F-score among all models and correctly predicts

approximately half of URL mentions with lower than 15% false positives.

While all research reviewed so far assumes known network structure, a number of ef-

forts deal with hidden network structures which must also be learned from data. The so-

called network inference problem is to infer the underlying network given a complete acti-

vation sequence [116]. Gomez Rodriguez et al. [123] introduce a variant of the independent

cascade model [124] adding time delay. Their problem is to find a directed graph with at
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most k edges that maximizes the likelihood of a set of cascades for a given transmission

probability and parameters of the incubation distribution, which is solved approximately

using a greedy algorithm. Myers and Leskovec [125] propose a cascade model which is

similar to Gomez Rodriguez et al. [123] but allows distinct transmission probabilities for

different network edges. The goal is to infer the adjacency matrix (referring to the pairwise

transmission probabilities) that maximizes the likelihood given a set of cascades, which

is accomplished by solving a convex optimization problem derived from the problem for-

mulation. Gomez Rodriguez et al. [126] develop a continuous-time diffusion model that

unifies the two-step diffusion process involving both a transmission probability and time

delay from Gomez Rodriguez et al. [123] and Myers and Leskovec [125]. The pivotal value

is the conditional probability for a node i to be infected at time ti given that a neighbor-

ing node j was infected at time t j, which is formulated as a function of the time interval

(ti− t j) and parametrized by a pairwise transmission rate α ji. Survival analysis [127] is

used to derive the maximum likelihood function given a set of cascades, and they aim to

find a configuration of all transmission rates that maximizes the likelihood. While most

network inference algorithms assume static diffusion networks, Gomez Rodriguez et al.

[128] address a network inference problem with a time-varying network. The resulting

inference problem is solved using an online algorithm upon formulating the problem as a

stochastic convex optimization.

2.4.3 Bridging Information Diffusion Models and Agent-Based Modeling of Innovation

Diffusion

The methodological framework of the information diffusion inference problems dis-

cussed above is a natural fit for principled data-driven agent-based modeling. The informa-

tion diffusion models characterized by transmission probabilities and time delay are essen-

tially agent-based models. Given data of diffusion cascades, they can be constructed either

using only the temporal event (adoption) sequence, or using more general node features,

54



social network, content, and any other explanatory or predictive factors. In fact, ABM

researchers have started to apply similar statistical methods to develop empirical models

(see Section 2.2.5). Notably, as shown by Zhang et al. [30], parametric probabilistic mod-

els of agent behavior can be estimated from observation data using maximum likelihood

estimation methods. In addition, the approaches for network inference appear particularly

promising in estimating not only behavior for a known, fixed social influence network, but

for estimating the influence network itself, as well as the potentially heterogeneous influ-

ence characteristics.

A crucial challenge in translating techniques from information diffusion domains to in-

novation diffusion is that the latter only observes a single, partial adoption sequence, rather

than a collection of complete adoption sequences over a specified time interval. As a con-

sequence, the fully heterogeneous agent models cannot be inferred, although the likelihood

maximization can still be effectively formulated by limiting the extent of agent heterogene-

ity (with the limit of homogeneous agents used by Zhang et al. [30]). In addition, the

assumptions generally made in information diffusion models can also pose serious chal-

lenges to the transferability of the approach to agent-based modeling. Recall that informa-

tion cascade models often assume that an adopter has a single chance to affect its inactive

neighbors and a non-adopter is affected by its neighboring adopters independently. These

assumptions simplify the construction of the likelihood function, but further justification is

needed for them, especially when building empirical models that are expected to faithfully

represent realistic social systems and diffusion processes. Note that rules that govern the

interactions in agent-based models are quite flexible and can be very sophisticated, which

is also one of the major advantages of agent-based computing over analytical models. Al-

though one may be able to explicitly derive a parametric likelihood function given diffusion

traces in more complex settings than existing information diffusion models do, this is sure

to be technically challenging. Moreover, solving the resulting MLE can be computationally

intractable. Therefore, to take advantage of MLE approach in information diffusion, ABM
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researchers must make appropriate assumptions on agent interactions so that they can de-

rive tractable likelihood functions without significantly weakening the model’s explanatory

and predictive power.

2.5 Discussion

2.5.1 Validation in Agent-Based Modeling

As agent-based modeling is increasingly called for in service of decision support and

prediction, it is natural to expect them to be empirically grounded. An overarching con-

sideration in empirically grounded agent-based modeling is how data can be used in order

to develop reliable models, where reliability is commonly identified with their ability to

accurately represent or predict the environment being modeled. This property of relia-

bility is commonly confirmed through model validation. In social science, a number of

authors have contributed to the topic of validation, from approaches for general computa-

tional models [95], to those focused on agent-based simulations [129, 130, 94, 131, 114],

to specific types of agent-based models [132]. Outside of social science, validation of sim-

ulation systems has an even longer history of investigation [102, 133, 134, 135]. We now

briefly review these approaches.

As previously mentioned, Carley [95] suggests four levels of validation: grounding,

calibration, verification, and harmonizing. Grounding establishes reasonableness of a com-

putational model, including face validity, parameter validity, and process validity; calibra-

tion establishes model’s feasibility by tuning a model to fit empirical data; verification

demonstrates how well a model’s predictions match data; and harmonization examines the

theoretical adequacy of a verified computational model.

More recently, drawing on formal model verification and validation techniques from

industrial and system engineering for discrete-event system simulations, Xiang et al. [129]

suggest the software implementation of agent-based model has to be verified with respect to
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its conceptual model, and highlight a selection of validation techniques from Banks [133],

such as face validation, internal validation, historical data validation, parameter variability,

predictive validation, and Turing tests. Moreover, they suggest the use of other complemen-

tary techniques, such as model-to-model comparison [136] and statistical tests [134, 135].

For agent-based models in economics, Fagiolo et al. [130] proposed three different

types of calibration methods: the indirect calibration approach, the Werker-Brenner em-

pirical calibration approach, and the history-friendly approach. For example, Garcia et al.

[94] adopt the last approach to an innovation diffusion study in New Zealand winery in-

dustry, using conjoint analysis to instantiate, calibrate, and verify the agent-based model

qualitatively using stylized facts.

For agent-based models in marketing, Rand and Rust [114] suggest verification and

validation as two key processes as guidelines for rigorous agent-based modeling. The

use of term “verification” follows common understanding in system engineering [129].

In particular, the authors identify four steps for validation: micro-face validation, macro-

face validation, empirical input validation, and empirical output validation using stylized

facts, real-world data, and cross-validation. Note that the proposed validation steps echo

the framework by Carley [95]: the first two steps correspond to grounding, the third to

calibration, and the fourth roughly combines verification and harmonization. However,

the cross-validation method mentioned in Rand and Rust [114] appears to suggest vali-

dation across models, whereas Carley [95] suggests validation across multiple data sets.

The latter is consistent with the use of cross-validation in statistical inference and machine

learning [137, 138].

Focusing specifically on empirically grounded ABMs, we suggest two pivotal steps

in ensuring model reliability in a statistical sense: calibration and validation. By cali-

bration, we mean the process of quantitatively fitting a set of model parameters to data,

whereas validation means a quantitative assessment of the predictive efficacy of the model

using independent data, that is, using data which was not utilized during the calibration
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step. Moreover, insofar as a model of innovation diffusion is concerned with predicting

future diffusion of an innovation, we propose to further split the dataset along a temporal

dimension, so that earlier data is used exclusively for model calibration, while later data

exclusively for validation. Starting with this methodological grounding, we now proceed

to identify common issues that arise in prior research on empirically grounded agent-based

models of innovation diffusion.

2.5.2 Issues in Model Calibration and Validation

Agent-based modeling research has often been criticized for lack of accepted method-

ological standard, hindering its acceptance in top journals by mainstream social scientists.

One notable protocol due to Richiardi et al. [139] highlight four potential methodological

pitfalls: link with the literature, structure of the models, analysis, and replicability.

A careful examination of the empirical ABM work on innovation diffusion through

this protocol suggests that most of these issues have been addressed or significantly mit-

igated. For example, nearly all of the reviewed papers present theoretical background,

related work, sufficient description of model structure, sensitivity analysis of parameter

variability, a formal representation (e.g., UML3, OOD4), and public access to source code.

In spite of these improvements, however, there are residual concerns about systematic quan-

titative calibration and validation using empirical data.

We observe that different agent adoption models are calibrated differently. In the case

of cognitive agent models (Section 2.2.3), such as the Theory of Planned Behavior and

theory of emotional coherence, the individual model parameters are often estimated using

survey data. Similarly, statistics-based models (Section 2.2.5) can be parametrized using ei-

ther experimental or observational individual-level data. On the other hand, for conceptual

3The short for the Unified Modeling Language, developed by the Object Management Group:
http://www.omg.org

4A standard to describe agent-based models originally proposed by Grimm et al. [140] for ecological
modeling.
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models, such as heuristic (Section 2.2.4) and economic models (Section 2.2.2), calibra-

tion is commonly done by iteratively adjusting parameters to match simulated diffusion

trajectory to aggregate-level empirical data. Formally, we call the first kind of calibration

“micro-calibration”, as it uses individual data during calibration, whereas the second type

“macro-calibration”, as it uses aggregate-level data. Moreover, in many studies simulation

parameters are determined using both micro- and macro-calibration. For example, since

network structure is often not fully observed, and rules that govern agent interactions are

assumed, parameters of these are commonly macro-calibrated. Our first concern is about

macro-calibration.

Issue I: Potential pitfalls in macro-calibration. When a model has many parameters,

over-fitting the model to data becomes a major concern [137, 138]. As Carley [95] suggests,

“any model with sufficient parameters can always be adjusted so that some combination

of parameters generates the observed data, therefore, large multi-parameter models often

run the risk of having so many parameters that there is no guarantee that the model is

doing anything more than curve fitting.” Interestingly, the issue of over-fitting may even

be a concern in macro-calibration when only a few parameters need to be calibrated. The

reason is that agent-based models are highly non-linear, and even small changes in several

parameters can give rise to substantially different model dynamics. This issue is further

exacerbated by the fact that macro-calibration makes use of aggregate-level data, which is

often insufficient in scale for reliable calibration of any but the simplest models, as many

parameter variations can give rise to similar aggregate dynamics.

Addressing the issue requires greater care and rigor in applying macro-calibration. One

possibility is that instead of choosing only a single parameter configuration, to select a

parameter zone using a classifier such as decision trees [74] or other machine learning

algorithms. Subsequently, the variability of parameters within this zone can be further

investigated using sensitivity analysis. Another potential remedy is that instead of using

only a single target statistic (e.g., average adoption rates) to use multiple indicators. A
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relevant strategy to build agent-based models in the field of ecology is termed “pattern-

oriented modeling”, which utilizes multiple patterns at different scales and hierarchical

levels observed from real systems to determine the model structure and parameters [81].

In addition, there are more advanced and robust techniques that can improve the rigor

of macro-calibration. The modeling framework in [30] and statistical inference methods in-

troduced in Section 2.4 propose methods which integrate micro and macro calibration into

a single maximum likelihood estimation framework. Through well-established methods

in machine learning, such as cross-validation, one can expect to parameterize a highly-

predictive agent-based model and minimize the risk of over-fitting. Indeed, a fundamental

feature of any approach should be to let validation ascertain the effectiveness of macro-

calibration in generalizing beyond the calibration dataset. This brings us to the second

common issue revealed by our review: lack of validation on independent data.

Issue II: Rigorous quantitative validation on independent data is uncommon. A com-

mon issue in the research we reviewed is that validation is often informal, incomplete, and

even missing. The common reason for incomplete data-driven validation is that relevant

data is simply unavailable. However, so long as data is available for calibrating the model,

one can in principle use this data for both calibration and validation steps, for example, fol-

lowing cross-validation methods commonly utilized in machine learning. Several efforts

seek to standardize the validation process for agent-based models, and computational mod-

els in general. However, few papers discussed explicitly follow any formalized validation

approaches in this literature, although important exceptions exist [94, 97, 100].

Issue III: Few conduct validation at both micro-level and macro-level. There has been

some debate about whether validation should be performed at both micro- and macro-

level [95]. While arguments against the dual-verification often emphasize greater impor-

tance of model accuracy at the aggregate level, we argue that robust predictions at the

aggregate level can only emerge when individual behavior is accurately modeled as well,

particularly when policies that the ABM evaluates can be implemented as modifying indi-
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vidual decisions.

Statistics-based models, such as machine learning, have well-established validation

techniques which can be leveraged to validate individual-level models. One widely-used

technique in machine learning and data mining is cross-validation. A common use of cross-

validation is by partitioning the data into k parts, with training performed on k−1 of these

and testing (evaluation) on the kth. The results are then averaged over k independent runs

using each of the parts as test data. Observe that such a cross-validation approach can be

used for models of individual behavior that are not themselves statistically-driven, such

as models based on the theory of planned behaviors. Unfortunately, few of the surveyed

papers, with the exception of statistics-based models, use cross-validation.

Issue IV: Few conduct validation of forecasting effectiveness on independent “future”

data. One limitation of cross-validation techniques as traditionally used is that they provide

an offline assessment of model effectiveness. To assess the predictive power of dynamical

systems, the entire model has to be validated in terms of its ability to predict “future” data

relative to what was used in calibration. We call this notion “forward validation”. In par-

ticular, forward validation must assess simulated behaviors against empirical observations

at both individual and aggregate levels with an independent set of empirical data. This

can be attained, for example, by splitting a time-stamped data set so that calibration is per-

formed on data prior to a split date, and forward validation is done on data after the split

date [104, 30, 79, 113]. In this review, we do observe several approaches that are validated

on independent data, but these either are not looking forward in time relative to the cal-

ibration data, or only focus on macro-level validation. Common argument for the use of

in-sample data for forward validation is that new data is not available while the modeling

task is undertaken. Notice, however, that any data set that spans a sufficiently long period

of time can be split along the time dimension as above to effect rigorous forward validation.
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2.5.3 Recommended Techniques for Model Calibration and Validation

We have identified several issues in calibration and validation which commonly arise

in prior development of empirical agent-based models for innovation diffusion, and briefly

discussed possible techniques that can help address these issues. We now summarize our

recommendations:

Multi-Indicator Calibration. When macro-calibration is needed, the use of multiple

indicators can help address over-fitting, whereby a model which appears to effec-

tively match data in calibration performs poorly in prediction on unseen data. We

suggest that such indicators are developed at different scale and hierarchical levels,

so that models which cannot effectively generalize to unseen data can be efficiently

eliminated.

Maximum Likelihood Estimation. When individual-level data are available, we rec-

ommend constructing probabilistic adoption models for agents, and estimating pa-

rameters of these models by maximizing a global likelihood function (see, for ex-

ample, the modeling framework by Zhang et al. [30], and research discussed in Sec-

tion 2.4.2). Doing so offers a principled means of calibrating agent behavior models

from empirical data.

Cross Validation. This approach is widely used for model selection in the machine

learning literature. Here, we recommend it for both micro-calibration and micro-

validation of ABMs. Note that it does not only apply to statistics-based models, but

can be used for any agent modeling paradigm where model parameters are calibrated

using empirical data. The use of cross-validation in calibration can dramatically

reduce the risk of over-fitting. Moreover, as it inherently uses independent data, such

validation leads to more rigorous ABM methodology.

Forward Validation. This method involves splitting data into two consecutive time
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periods. The modeler calibrates an agent-based model using data from the first pe-

riod, and assesses the predictive efficacy of the model in the second period. More

rigorously, validation of the model should be evaluated at both individual and aggre-

gate levels.

2.6 Conclusions

We provided a systematic, comprehensive, and critical review of existing work on

empirically grounded agent-based models for innovation diffusion. We offered a unique

methodological survey of literature by categorizing agent adoption models along two di-

mensions: methodology and application. We identified six methodological categories:

mathematical optimization based models, economic models, cognitive agent models, heuris-

tic models, statistics-based models and social influence models. They differ not only in

terms of assumptions and elaborations of human decision-making process, but also with

respect to calibration and parameterization techniques. Our critical assessment of each

work focused on using data for calibration and validation, and particularly performing val-

idation with independent data. We briefly reviewed the most important work in the closely

related literature on information diffusion, building connections between the innovation

and information diffusion approaches. One particularly significant observation is that in-

formation diffusion methods rely heavily on machine learning and maximum likelihood

estimation approaches, and the specific methodology used can be naturally ported to inno-

vation diffusion ABMs. Drawing on prior work in validation of computational models, we

discussed four main issues for existing empirically grounded ABM studies in innovation

diffusion, and provided corresponding solutions.

On balance, recent developments of empirical approaches in agent-based modeling for

innovation diffusion are encouraging. Although calibration and validation issues remain in

many studies, a number of natural solutions from data analytics offer promising directions

in this regard. The ultimate goal of empirically grounded ABMs is to provide decision
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support for policy makers and stakeholders across a broad variety of innovations, helping

improve targeted marketing strategies, and reduce costs of successful translation of high-

impact innovative technologies to the marketplace.
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Chapter 3

Data-Driven Agent-Based Modeling, with Application to Rooftop Solar Adoption

Our critical review in Chapter 2 summarized several categories of modeling methods

in building empirically-grounded ABMs and suggested issues on model calibration and

validation as well as their potential solutions. In dealing with large-scale diffusion data, the

machine learning models seems quite efficient and more rigorous in terms of calibration

and validation, which makes them ideal for building high-fidelity agent-based simulations

to support decision making. This chapter takes a deep look into such a representative work

that leverages machine-learning techniques to calibrate and validate agent-based models

based on massive amount of individual adoption data and successfully applies it to forecast

the adoption of renewable solar technology in San Diego county, US.

3.1 Introduction

The rooftop solar market in the US, and especially in California, has experienced explo-

sive growth in last decade. At least in part this growth can be attributed to the government

incentive programs which effectively reduce the system costs. One of the most aggressive

incentive programs is the California Solar Initiative (CSI), a rooftop solar subsidy program

initiated in 2007 with the goal of creating 1940 megawatts of solar capacity by 2016 [141].

The CSI program has been touted as a great success, and it certainly seems so: over 2000

megawatts have been installed to date. However, in a rigorous sense, success would have

to be measured in comparison to some baseline; for example, in comparison to the same

world, but without incentives. Of course, such an experiment is impossible in practice.

However, in principle, insight can be drawn by sensitivity analysis based on hypotheti-

cal solar diffusion model. What is the most appropriate modeling methodology to build a

highly robust solar diffusion model?
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ABM has long been a common framework of choice for studying aggregate, or emer-

gent, properties of complex systems as they arise from microbehaviors of a multitude of

agents in social and economic contexts [142, 143, 114]. ABM appears well-suited to policy

experimentation of just the kind needed for the rooftop solar market. Indeed, there have

been several attempts to develop agent-based models of solar adoption trends [144, 67,

145]. Both traditional ABM, as well as the specific models developed for solar adoption,

use data to calibrate aspects of the models (for example, features of the social network, such

as density, are made to match real networks), but not the entire model. More importantly,

validation is often qualitative, or, if quantitative, using the same data as used for calibration.

The weakness of validation makes those models less eligible as a reliable policy experiment

tool.

The emergence of “Big Data” offers new opportunities to develop agent-based models

in a way that is entirely data-driven, both in terms of model calibration and validation. In

the particular case of rooftop solar adoption, the CSI program, in addition to subsidies,

also provides for a collection of a significant amount of data by the program administra-

tors, such as Center for Sustainable Energy (CSE) in San Diego county, about specific

(individual-level) characteristics of adopters. While by itself insufficient, we combine this

data with property assessment characteristics for all San Diego county residents to yield a

high-fidelity data set that we use to calibrate artificial agent models using machine learn-

ing techniques. However, the increasing availability of data from various sources in all

levels, i.e., micro and macro levels, also poses significant computational challenge to any

researcher who aims to study the phenomenon of solar diffusion. Machine learning and

data mining provide us with efficient and scalable algorithms, well-principled techniques,

such as cross validation, feature selection etc. A data-driven ABM is then constructed using

exclusively such learned agent models, with no additional hand-tuned variables. Moreover,

following standard practice in machine learning, we separate the calibration data from the

data used for validation.

66



This chapter makes the following contributions:

1. a framework for data-driven agent-based modeling;

2. methods for learning individual-agent models of solar adoption, addressing chal-

lenges posed by the market structure and the nature of the data;

3. an adaptation of a recent agent-based model of rooftop solar adoption, used as a base-

line, with an improved means for systematic calibration (systemitizing the approach

proposed by Palmer et al. [67] (entirely new addition compared to our preliminary

work [19]);

4. a data-driven agent-based model of solar adoption in (a portion of) San Diego county,

with forecasting efficacy evaluated on data not used for model learning;

5. a comparison of the data-driven approach to the baseline adoption model (a new

addition compared to our preliminary work [19]);

6. a quantitative evaluation of the California Solar Initiative subsidy program (includ-

ing a significantly improved and extended approach to optimizing the solar discount

policy relative to our preliminary work [19]), a broad class of incentive policies, and

a broad class of solar system “seeding” policies.

3.2 Related Work

ABM methodology has a substantial, active, literature [142, 143, 114], ranging from

methodological to applied. Somewhat simplistically, the approach is characterized by the

development of models of agent behavior, which are integrated within a simulation environ-

ment. The common approach is to make use of relatively simple agent models (for example,

based on qualitative knowledge of the domain, qualitative understanding of human behav-

ior, etc.), so that complexity arises primarily from agent interactions among themselves and

with the environment. For example, Thiele et al. [146] document that only 14% of articles
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published in the Journal of Artificial Societies and Social Simulation include parameter

fitting. Our key methodological contribution is a departure from developing simple agent

models based on relevant qualitative insights to learning such models entirely on data.

Due to its reliance on data about individual agent behavior, our approach is not universally

applicable. However, we contend that such data is becoming increasingly prevalent, as in-

dividual behavior is now continuously captured in the plethora of virtual environments, as

well as through the use of mobile devices. As such, we are not concerned about simplicity

of agent models per se; rather, it is “bounded” by the amount of data available (the more

data we have, the more complex models we can reliably calibrate on it).

Thiele et al. [146], as well as Dancik et al. [147] propose methods for calibrating model

parameters to data. However, unlike our work, neither offers methodology for validation,

and both operate at model-level, requiring either extremely costly simulations (making cal-

ibration of many parameters intractable), or, in the case of Dancik et al., a multi-variate

Normal distribution as a proxy, losing any guarantees about the quality of the original

model in the process. Our proposal of calibration at the agent level, in contrast, enables

us to leverage state-of-the-art machine learning techniques, as well as obtain more reli-

able, and interpretable, models at the individual agent level. Recently, in field of ecology

and sociology, there is rising interest to combine agent-based model with empirical meth-

ods [148]. Biophysical measurements, i.e., soil properties and socioeconomic surveys are

used by Berger and Schreinemachers [149] to generate a landscape and agent populations

which are consistent with empirical observation by Monte Carlo techniques. Notice that

this is quite different application from ours, since we do not need to generate an agent

population; rather we instantiate our multi-agent simulation with learned agents. Huigen et

al. [150] visually calibrate a special agent-based model using ethnographic histories of farm

households to understand linkage between land-use system dynamics and demographic dy-

namics. Happe et al. [151] instantiate an agent-based agricultural policy simulator with

empirical data and investigate the impact of a regime switch in agricultural policy on struc-

68



tural change under various framework conditions. However, the model is not statistically

validated. By populating ABM with a population of residential preferences drawn from the

survey results, Brown and Robinson [152] explore the effects of heterogeneity in residential

preferences on an agent-based model of urban sprawl, performing sensitivity analysis as a

means of validation. In settings of public-goods games, Janssen and Ahn [153] compare the

empirical performance of a variety of learning models with parameters estimated by maxi-

mum likelihood estimation and theories of social preferences. However, no systematic and

rigorous validation is applied.

A number of ABM efforts are specifically targeted at the rooftop solar adoption do-

main [154, 144, 67, 145, 79, 155, 92]. Denholm et al. [144] and Boghesi et al. [154] follow

a relatively traditional methodological approach (i.e., simple rule-based behavior model),

and their focus is largely on financial considerations in rooftop solar adoption. Palmer et

al. [67] and Zhao et al. [92], likewise use a traditional approach, but consider several poten-

tially influential behavioral factors, such as social influence and household income. Palmer

et al. calibrate their model using total adoption data in Italy (unlike our approach, they do

not separate calibration from validation). Zhao et al. set model parameters based on a com-

bination of census and survey data, but without performing higher-level model calibration

with actual adoption trends. None of these past approaches makes use of machine learning

to develop agent models (indeed, none except Palmer et al. calibrate the model using actual

adoption data, and even they do not seem to do so in a systematic way, using instead “trial

and error”). Much of this previous work on agent-based models of rooftop solar adoption

attempts to use the models to investigate alternative policies. Unlike us, however, none (to

our knowledge) consider the dynamic optimization problem faced by policy makers (i.e.,

how much of the budget to spend at each time period), nor compare alternative incentive

schemes with “seeding” policies (i.e., giving systems away, subject to a budget constraint).

There have also been a number of models of innovation diffusion in general, as well

as rooftop solar adoption in particular, that are not agent-based in nature, but instead as-
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pire only to anticipate aggregate-level trends. Bass [39] introduce the classic “S-curve”

quantitative model, building on the qualitative insights offered by Rogers [1] and others. In

the context of rooftop solar, noteworthy efforts include Lobel and Perakis [156], Bollinger

and Gillingham [157], and van Benthem et al. [158]. Lobel and Perakis calibrate a simple

model of aggregate solar adoption in Germany on total adoption data; their model, like

ours, includes both economics (based on the feed-in tariff as well as learning-by-doing

effects on solar system costs) and peer effects. We therefore use their model, adapted to

individual agent behavior, as our “baseline”. Bollinger and Gillingham demonstrate causal

influence of peer effects on adoption decisions, and van Benthem et al. focus on identifying

and quantifying learning-by-doing effects.

Several related efforts are somewhat closer in spirit to our work. Kearns and Wort-

man [159] developed a theoretical model of learning from collective behavior, making the

connection between learning individual agent models and models of aggregate behavior.

However, this effort does not address the general problem of learning from a single ob-

served sequence of collective behavior which is of key interest to us. Judd et al. [160] use

machine learning to predict behavior of participants in social network coordination exper-

iments, but are only able to match the behavior qualitatively. Duong et al. [161] propose

history-dependent graphical multiagent models to compactly represent agent joint behavior

based on empirical data from experimental cooperation games. However, scalability of this

approach is quite limited. Another effort in a similar vein uses machine learning to calibrate

walking models from real and synthetic data, which are then aggregated in an agent-based

simulation [162]. Aside from the fundamental differences in application domains from our

setting, Torrens et al. [162] largely eschew model validation, and do not consider the sub-

sequent problem of policy evaluation and optimization, both among our key contributions.

Most recently, Wunder et al. [163] fit a series of deterministic and stochastic models to data

collected from on-line experimental public goods games. Like our approach, they make use

of machine learning to learn agent behavior, and validate the model using out-of-sample
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prediction. However, this work does not validate the model ability to forecast individual

and aggregate-level behavior, since training and validation data sets are chosen randomly,

rather than split across the time dimension (so that in many cases future behavior is used

to learn and model is validated on “past” behavior). Moreover, the models are very simple

and specific to the public goods game scenario, taking advantage of the tightly controlled

source of data.

Finally, there has been substantial literature that considers the problem of marketing on

social networks [16, 164]. Almost universally, however, the associated approaches rely on

the structure of specific, very simple, influence models, without specific context or attempt-

ing to learn the individual behavior from data (indeed, we find that simple baseline models

are not sufficiently reliable to be a basis for policy optimization in our setting). Moreover,

most such approaches are static (do not consider the dynamic marketing problem, as we

do), although an important exception is the work by Golovin and Krause [165], in which a

simple greedy adaptive algorithm is proven to be competitive with the optimal sequential

decision for a stochastic optimization problem that satisfies adaptive submodularity.

3.3 Data-Driven Agent-Based Modeling

The overwhelming majority of agent-based modeling efforts in general, as well as in

the context of innovation/solar adoption modeling in particular, involve: a) manual devel-

opment of an agent model, which is usually rule-based (follows simple behavior rules),

b) ad hoc tuning of a large number of parameters, pertaining to both the agent behaviors,

as well as the overall model (environment characteristics, agent interactions, etc), and c)

validation usually takes the form of qualitative expert assessment, or is in terms of overall

fit of aggregate behavior (e.g., total number of rooftop solar adoptions) to ground truth,

using the data on which the model was calibrated [142, 143, 114, 154, 144, 67, 145, 92].

We break with this tradition, offering instead a framework for data-driven agent-based

modeling (DDABM), where agent models are learned from data about individual (typi-
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cally, human) behavior, and the agent-based model is thereby fully data-driven, with no

additional parameters to govern its behavior. We now present our general framework for

data-driven agent-based modeling (DDABM), which we subsequently apply to the problem

of modeling residential rooftop solar diffusion in San Diego county, California. The key

features of this framework are: a) explicit division of data into “calibration” and “valida-

tion” to ensure sound and reliable model validation and b) automated agent model training

and cross-validation.

In this framework, we make three assumptions. The first is that time is discrete. While

this assumption is not of fundamental importance, it will help in presenting the concepts,

and is the assumption made in our application. The second assumption is that agents are

homogeneous. This may seem a strong assumption, but in fact it is without loss of gen-

erality. To see this, suppose that h(x) is our model of agent behavior, where x is state,

or all information that conditions the agent’s decision. Heterogeneity can be embedded in

h by considering individual characteristics in state x, such as personality traits and socio-

economic status, or, as in our application domain, housing characteristics. Indeed, arbitrary

heterogeneity can be added by having a unique identifier for each agent be a part of state,

so that the behavior of each agent is unique. Our third assumption is that each individual

makes independent decisions at each time t, conditional on state x. Again, if x includes all

features relevant to an agent’s decision, this assumption is relatively innocuous.

Given these assumptions, DDABM proceeds as follows. We start with a data set of

individual agent behavior over time, D = {(xit ,yit)}i,t=0,...,T , where i indexes agents, t time

through some horizon T and yit indicates agent i’s decision, i.e., 1 for “adopted” and 0 for

“did not adopt” at time t.

1. Split the data D into calibration Dc and validation Dv parts along the time dimension:

Dc = {(xit ,yit)}i,t≤Tc and Dv = {(xit ,yit)}i,t>Tc where Tc is a time threshold.

2. Learn a model of agent behavior h on Dc. Use cross-validation on Dc for model (e.g.,

feature) selection.
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3. Instantiate agents in the ABM using h learned in step 2.

4. Initialize the ABM to state x jTc for all artificial agents j.

5. Validate the ABM by running it from xTc using Dv.

One may wonder how to choose the initial state x jTc for the artificial agents. This is direct

if the artificial agents in the ABM correspond to actual agents in the data. For example, in

rooftop solar adoption we know which agents have adopted solar at time Tc, and their actual

housing characteristics, etc. Alternatively, one can run the ABM from the initial state, and

start validation upon reaching time Tc +1.

Armed with the underlying framework for DDABM, we now proceed to apply it in the

context of spatial-temporal solar adoption dynamics in San Diego county.

3.4 DDABM for Solar Adoption

3.4.1 Data

In order to construct the DDABM for rooftop solar adoption, we made use of three data

sets provided by the Center for Sustainable Energy: individual-level adoption characteris-

tics of residential solar projects installed in San Diego county as a part of the California So-

lar Initiative (CSI), property assessment data for the entire San Diego county, and electricity

utilization data for most of the San Diego county CSI participants spanning twelve months

prior to solar system installation. Our CSI data, covering projects completed between May

2007 and April 2013 (about 6 years and 8,500 adopters), contains detailed information

about the rooftop solar projects, including system size, reported cost, incentive (subsidy)

amount, whether the system was purchased or leased, the date of incentive reservation, and

the date of actual system installation, among others. The assessment data includes compre-

hensive housing characteristics of San Diego county residents (about 440,000 households),

including square footage, acreage, number of bedrooms and bathrooms, and whether or
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not the property has a pool. The CSI and assessment data were merged so that we could

associate all property characteristics with adoption decisions.

3.4.2 Modeling Individual Agent Behavior

Our DDABM framework presupposes a discrete-time data set of individual adoption

decisions. At face value, this is not what we have: rather, our data only appears to identify

static characteristics of individuals, and their adoption timing. This is, of course, not the

full story. Much previous literature on innovation diffusion in general [39, 166, 167, 1],

and solar adoption in particular [157, 156, 168, 169], identifies two important factors that

influence an individual’s decision to adopt: economic benefits and peer effects. We quantify

economic benefits using net present value (NPV), or discounted net of benefits less costs

of adoption: NPV = ∑t δ t(bt − ct), where bt correspond to benefits (net savings) in month

t, and ct are costs incurred in month t; we used a δ = 0.95 discount factor. Peer, or social,

effects in adoption decisions arise from social influence, which can take many forms. Most

pertinent in the solar market is geographic influence, or the number/density of adopters

that are geographically close to an individual making a decision. Both economic benefits

and peer effects are dynamic: the former changes as system costs change over time, while

the latter changes directly in response to adoption decision by others. In addition, peer

effects create interdependencies among agent decisions, so that aggregate adoption trends

are not simply averages of individual decisions, but evolve through a highly non-linear

process. Consequently, even if we succeed in learning individual agent models, this by no

means guarantees success when they are jointly instantiated in simulation, especially in the

context of a forecasting task. Next, we describe in detail how we quantify economic and

peer effect variables in our model.
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3.4.2.1 Quantifying Peer Effects

We start with the simpler issue of quantifying peer effects. The main challenge is that

there are many ways to measure these: for example, total number of adopters in a zip

code (a measure used previously [157]), fraction of adopters in the entire area of interest

(used by [156]), which is San Diego county in our case, as well as the number/density of

adopters within a given radius of the individual making a decision. Because we ultimately

utilize feature selection methods such as regularization, our models consider a rather large

collection of these features, including both the number and density of adoptions in San

Diego county, the decision maker’s zip code, as well as within a given radius of the decision

maker for several radii. Because we are ultimately interested in policy evaluation, we

need to make sure that policy-relevant features can be viewed as causal. While we can

never fully guarantee this, our approach for computing peer effect variables follows the

methodology of Bollinger and Gillingam [157], who tease out causality from the fact that

there is significant spatial separation between the adoption decision, which is indicated by

the incentive reservation action, and installation, which is used in measuring peer effects.

3.4.2.2 Quantifying Net Present Value

To compute NPV in our DDABM framework we need to know costs and benefits that

would have been perceived by an individual i adopting a system at time t. Of course,

our data does not actually offer such counterfactuals, but only provides information for

adopters at the time of adoption. The structure of solar adoption markets introduces another

complication: there are two principal means of adoption, buying and leasing. In the former,

the customer pays the costs up-front (we ignore any financing issues), while in the latter, the

household pays an up-front cost and a monthly cost to the installer. Moreover, CSI program

incentives are only offered to system buyers, who, in the case of leased systems, are the

installers. Consequently, incentives directly offset the cost to those buying the system

outright, but at best do so indirectly for leased systems. In the case of leased systems, there
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is also an additional data challenge: the system costs reported in the CSI data do not reflect

actual leasing expenses, but the estimated market value, and are therefore largely useless

for our purposes. Finally, both costs and benefits depend on the capacity (in watts) of the

installed system, and this information is only available for individuals who have previously

adopted.

Our first step is to estimate system capacity using property assessment features. We do

so using step-wise linear regression [170], arriving at a relatively compact model, shown

in Table 3.1. The adjusted R2 of this model is about 0.27, which is acceptable for our

Table 3.1: Linear model of solar system capacity (size). All coefficients are significant at
the p = 0.05 level.

Predictor Estimate
(Intercept) 1.59

Owner Occupied (binary) -0.25
Has a Pool (binary) 0.63

Livable Square Footage 7.58e-04
Acreage 1.32

Average Electricity Utilization in Zipcode 8.25e-04

purposes.

Next, we use the system size variable to estimate system costs separately for the pur-

chased and leased systems. For the purchased systems, the cost at the time of purchase is

available and reasonably reliable in the CSI data, but only during the actual purchase time.

However, costs of solar systems decrease significantly over time. A principal theory for

this phenomenon is learning-by-doing [171, 172, 173, 156, 158], in which costs are a de-

creasing function of aggregate technology adoption (representing, essentially, economies

of scale). In line with the learning-by-doing theory, we model the cost of a purchased sys-

tem as a function of property assessment characteristics, predicted system size, and peer

effect features, including total adoption in San Diego county. We considered a number of

models for ownership cost and ultimately found that the linear model is most effective.

In all cases, we used l1 regularization for feature selection [137]. The resulting model is
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shown in Table 3.2.

Table 3.2: Ownership cost linear model.

Predictor Coefficient
(Intercept) 1.14e+04

Property Value 7.38e-04
Livable Square Footage 0.15

System Capacity 6.21e+03
Total Adoption in SD County -1.06

In order to estimate total discounted lease costs, we extracted cost details from 227

lease contracts, and used this data to estimate the total discounted leasing costs Cl = ∑t δ tct

through the duration of the lease contract in a manner similar to our estimation of ownership

costs. One interesting finding in our estimation of lease costs is that they appear to be

largely insensitive to the economic subsidies; more specifically, system capacity turned out

to be the only feature with a non-zero coefficient (the coefficient value was 1658, with the

intercept value of 10447). In particular, this implies that solar installers do not pass down

their savings to customers of leased systems.

Having tackled estimation of costs, we now turn to the other side of NPV calculation:

benefits. In the context of solar panel installation, economic benefits are monthly savings,

which are the total electricity costs offset by solar system production. These depend on

two factors: the size of the system, which we estimate as described above, and the electric-

ity rate. The latter seems simple in principle, but the rate structure used by SDG&E (San

Diego Gas and Electric company) makes this a challenge. The SDG&E rates have over the

relevant time period a four-tier structure, with each tier depending on monthly electricity

utilization relative to a baseline. Tiers 1 and 2 have similar low rates, while tiers 3 and 4

have significantly higher rates. Tier rates are marginal: for example, tier-3 rates are only

paid for electricity use above the tier-3 threshold. The upshot is that we need to know

electricity utilization of an individual in order to estimate marginal electricity costs offset

by the installed solar system. For this purpose, we use the electricity utilization data for
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the adopters. Here, we run into a technical problem: after running a regression model, we

found that average predicted electricity rates for San Diego zip codes significantly exceed

observed zip code averages—in other words, our data is biased. To reduce this bias, we

modified the linear model as follows. Let (X ,y) represent the feature matrix and corre-

sponding vector of energy utilizations for a given month for adopters, and let (X̄ , ȳ) be the

matrix of average feature values and average energy use for all San Diego county zip codes.

A typical linear model chooses a weight vector w to minimize (Xw− y)T (Xw− y). In our

model, we extend this to solve

min
w

(Xw− y)T (Xw− y)+λ (X̄w− ȳ)T (X̄w− ȳ),

which is equivalent to a linear regression with the augmented data set (Z,z), where

Z =

 X
√

λ X̄

 and z =

 y
√

λ ȳ

 .

When λ is small, our model is better able to capture fidelity of individual-level data, but

exhibits greater bias. We used deviance ratio to choose a value of λ in the context of the

overall individual-agent model.

Now that we can predict both system size and electricity utilization, we can corre-

spondingly predict, for an arbitrary individual, their monthly savings from having installed

rooftop solar. Along with the predicted costs, this gives us a complete evaluation of NPV

for each potential adopter.

3.4.2.3 Learning the Individual-Agent Model

In putting everything together to learn an individual-agent model, we recognize that

there is an important difference between the decision to buy and the decision to lease, as

described above. In particular, we have to compute net present value differently in the
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two models. Consequently, we actually learn two models: one to predict the decision to

lease, and another for the decision to buy, each using its respective NPV feature, along

with all of the other features, including peer effects and property assessment, which are

shared between the models. For each decision model, we used l1-regularized logistic re-

gression. Taking xl and xo to be the feature vectors and pl(xl) and po(xo) the corresponding

logistic regression models of the lease and own decision respectively, we then compute the

probability of adoption

p(x) = pl(xl)+ po(xo)− pl(xl)po(xo),

where x includes the NPV values for lease and own decisions.

To train the two logistic regression models, we can construct the data set (xit ,yit), where

i correspond to the households in San Diego county and t to months, with xit the feature

vector of the relevant model and yit the lease (own) decision, encoded as a 1 if the system

is leased (owned) and 0 otherwise. To separate calibration and validation we used only the

data through 04/2011 for calibration, and the rest (through 04/2013) for ABM validation

below. The training set was comprised of nearly 7,000,000 data points, of which we ran-

domly chose 30% for calibration (due to scalability issues of standard logistic regression

implementation in R).1 All model selection was performed using 10-fold cross-validation.

Since leases only became available in 2008, we introduced a dummy variable that was 1

if the lease option was available at the time and 0 otherwise. We also introduced seasonal

dummy variables (Winter, Spring, Summer) to account for seasonal variations in the adop-

tion patterns. The final model for the propensity to purchase a solar system is shown in

Table 3.3, and a model for leasing is shown in Table 3.4.

1In fact, we have sampled the process multiple times, and can confirm that there is little variance in the
model or final results.
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Table 3.3: Ownership Logistic Regression Model

Predictor Coefficient
(Intercept) -10.19

Owner Occupied (binary) 0.94
# Installations Within 2 Mile Radius -3.05e-04
# Installations Within 1 Mile Radius 2.60e-03
# Installations Within 1

4 Mile Radius 6.78e-03
Lease Option Available (binary) 0.69

Winter (binary) -0.59
Spring (binary) -0.19

Summer (binary) -0.28
Installation Density in Zipcode 100.11

NPV (Purchase) 7.58e-06

Table 3.4: Lease Logistic Regression Model

Predictor Coefficient
(Intercept) -13.22

Owner Occupied (binary) 0.73
# Installations Within 2 Mile Radius 2.21e-03
# Installations Within 1

4 Mile Radius 7.87e-03
Lease Option Available (binary) 1.65

Winter (binary) -0.39
Spring (binary) 0.29

Summer (binary) -0.20
Installation Density in Zipcode 85.69

NPV (Lease) 7.07e-06

3.4.3 Agent-Based Model

The models developed above were implemented in the Repast ABM simulation toolkit [174].

3.4.3.1 Agents

The primary agent type in the model represents residential households (implemented as

a Java class in Repast [174]). In the ABM we do not make the distinction between leasing

and buying solar systems, so that each agent acts according the the stochastic model p(xit)

derived as described in the previous section, where xit is the system state relevant to agent
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i’s at time (iteration) t. In addition, in order to flexibly control the execution of simulation,

we defined a special updater agent type which is responsible for updating state attributes

of household agents xit at each time step t.

3.4.3.2 Time Step

Time steps of the simulation correspond to months. The execution diagram for a single

simulation run is presented in Figure 3.1. Initially, the simulation is populated by residential

household agents that are characterized by GIS locations, home properties, and adoption

states. At each tick of the simulation, updater agent first updates features xit for all agents,

such as purchase and lease costs, incentive (which may depend on time), NPVs, and peer

effects, for all agents based on the state of world (e.g., the set of agents having adopted

thus far in the simulation). Lease and ownership cost are computed using the lease and

ownership cost models as described above, while the incentives may follow an arbitrary

subsidy scheme, and in particular can mirror the CSI rate schedule. Next, each non-adopter

household is asked to make a decision. When a household agent i is called upon to make

the adoption decision at time t, this agent adopts with probability p(xit)
2. If an agent

chooses to adopt, this agent switches from being a non-adopter to becoming an adopter

in the simulation environment. Moreover, when we thereby create a new adopter, we also

assign an installation period of the solar system. Specifically, just as in reality, adoption de-

cision only involves the reservation of the incentive, while actual installation of the system

takes place several months later. Since peer effect variables are only affected by completed

installations, it is important to capture this lag time. We capture the delay between adoption

and installation using a random variable distributed uniformly in the interval [1,6], which is

the typical lag time range in the training data. The simulation terminates in a user-specified

number of steps.

2An agent decides to adopt solar panels if a system-generated random number is less than the adoption
probability p(xit).
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Initialize simulation with agents 
characterized by GIS locations, home 

properties and adoption states
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Update decisional variables, i.e., 
purchase and lease costs, incentive, 
NPVs, and peer effects, for all agents

Create an adopter agent with the time 
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(with the probability 

given by the adoption 
model)

Next non-
adopter?

Last step?

YES
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NO

NO

Updater Agent

Nonadopter Agent

Figure 3.1: Execution diagram for a single simulation run.
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3.4.3.3 Computing Peer Effect Variables

In order to compute geography-based peer effects, we need information about geo-

graphic location of the households. To this end we use a Repast GIS package. A naive way

to compute peer effect variables would update these for each non-adopter agent in each

iteration. However, this approach is very inefficient and scales poorly, as there are vastly

more non-adopters than adopters in typical simulations. Therefore, we instead let adopter

agents update peer effect variables for their neighbors at the time of system installation,

dramatically reducing the corresponding overhead.

3.5 A State-of-the-Art Alternative Solar Adoption Model

Our model differs from most agent-based modeling approaches in the context of rooftop

solar adoption on the following three principal dimensions: first, all features used for mod-

eling agent behavior are carefully derived from available data, second, calibration is per-

formed using the individual agent behavior, and third, the model is validated using data that

is the “future” relative to the data used for model calibration.

In order to offer a principled baseline comparison of our model to “state-of-the-art”,

we implement a recent agent-based model that was also proposed in the context of rooftop

solar adoption [67]. Our choice of the model was driven by the following considerations:

a) the model was sufficiently well described for us to be able to independently replicate it,

b) the model included an explicit section about parameter calibration, and c) it was possible

for us to instantiate this baseline model, albeit somewhat imperfectly, using data available

to us. Still, we faced several limitations, the most important of which being the difference

between the targeted population (Palmer et al. model targeted Italy, whereas our model

and data is for California) and available data (Palmer et al. utilized data not available to us,

such as household income, as well as proprietary categorization of individuals into adoption

classes).

83



In this section, we describe in detail our adaptation of the model by Palmer et al. [67],

staying as close as possible to the original model. In addition, we describe a means of

model calibration which was more systematic than the approach (trial-and-error) used by

Palmer et al., but also uses as a calibration target aggregate adoption levels over time.

3.5.1 Consumer Utility Model

Strongly influenced by classical consumer theory, the agent in the Palmer et al. model

makes adoption decision based on utility, i.e., to what extent the investment of solar would

satisfy one’s needs. The utility for an agent to install solar PV system i is defined as a

weighted sum of four factors, or partial utilities:

U i = wecoui
eco +wenvui

env +wincui
inc +wcomui

com (3.1)

where

∑
f

w f = 1 for f ∈ F : {eco,env, inc,com} and w f ∈ [0,1]

The four partial utilities are the economic benefit of the solar investment (ueco), the en-

vironmental benefit of installing in a PV system (uenv), the utilities of household income

(uinc) and the influence of communication with other agents (ucom). Simply, agent decides

to invest a PV system when one’s utility surpasses a certain threshold. Notice also that

the four weights in the model are identical for all agents, which along with the decision

threshold are calibrated by matching the fitted aggregate adoption to the ground truth. 3

3In the model developed by Palmer et al. [67], the weighs differ by agent’s socio-economic group, derived
using proprietary means. Since this categorization is not available in our case, and also to reduce the number
of parameters necessary to calibrate (and, consequently, to reduce the amount of over-fitting), we use identical
weights for all agents.
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3.5.1.1 Economic Utility

Economic utility captures economic benefit/cost associated with solar installation. We

use net present value of buying solar PV system to calculate the economic utility, which we

normalize to have zero mean and unit variance:

ueco =
NPV i

buy−NPVbuy

S(NPVbuy)
(3.2)

where NPVbuy and S(NPVbuy) are the sample mean and standard deviation of net present

value of all potential adopters respectively.

3.5.1.2 Environmental Utility

The environmental utility ideally measures amount of CO2 solar installation could save.

Due to difficulty of obtaining this information, following Palmer et al.[67], we instead use

expected solar electricity production to compute environmental utility.

uenv =
E i

PV −EPV

S(EPV )
(3.3)

where E i
PV = Ri

CSI ∗HRsun ∗30(days)∗12(months)∗20(years), or the total electricity pro-

duction in 20 years. EPV and S(EPV ) are sample mean and standard deviation of solar

electricity generation for all potential adopters.

3.5.1.3 Income Utility

Income utility in agent model of Palmer et al. [67] is originally calculated by household

income. Unfortunately, household income is not available in our current study, and we

instead use home value that can be treated as a relatively reliable estimate of a household’s

income. Unfortunately, the home value in our original dataset are prices last time the

home was sold, which can be significantly out of date. To compute home value more

85



accurately, we extract historical median home sale prices (merged both sold and list price

in dollar/ f t2) of San Diego County from Zillow’s on-line real estate database. Finally, the

home value is recovered by multiplying the per-unit price with livable square feet. Similar

to other utilities, the income utility of each agent is just the normalized home value, that is

uinc =
V i

home−Vhome

S(Vhome)
(3.4)

where, Vhome and S(Vhome) denote sample mean and standard deviation of home value of all

potential solar adopters.

3.5.1.4 Communication Utility

In Palmer et al. [67] work, the communication utility is calculated based on social

economic status of each agent. Because the relevant information is unavailable, we turn

to a simple variation, preserving the essence of their approach. Since, density of installa-

tion within 1-mile radius of a household is the most significant among all geology-based

peer effect measures, we use it to derive the communication utility. In other sense, this is

equivalent to assume that all agents within 1-mile radius of a household are in the same

socio-economic group, which is a reasonable assumption since individuals with similar

socio-economic status often live nearby. The communication utility is thus computed as

follows.

ucom =
F i

1−mile−F1−mile

S(F1−mile)
(3.5)

where, F1−mile and S(F1−mile) denote sample mean and standard deviation of solar installa-

tion density within 1-mile radius for all potential adopters.

3.5.2 Calibration

Palmer et al. calibrated the parameters of their model using trial-and-error to explore

the parameter space, and making use largely of a visual qualitative match between predicted
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and observed adoption levels. We make use, instead, a more systematic calibration method,

formulating as the problem of minimizing mean-squared error between predicted and actual

adoption:

θ
∗ = argmin

θ

1
T

T

∑
t=1

(Ŷ t−Y t)2 (3.6)

where θ = (weco,wenv,winc,wcom, theshold), Ŷ t and Y t are fitted and actual aggregate adop-

tion at time t, which we take to be at monthly granularity.

To search for the optimal parameter, we implemented our adaptation of the Palmer et

al. agent-based model in R. Specifically, at each tick, we compute utility of each agent

and an agent will choose to install solar PV as long as its utility gets above the threshold.

Because calibration of the entire dataset is computationally infeasible, we instead calibrate

the model based on a random sample of 10% (about 44,000) of the households. Rather

finding an ideal parameter by “trial and error”, we here propose a more systematic way to

search the parameter space. It is done through multiple iterations. In first iteration, it scans

every possible parameters based on a relatively coarse discretization of parameter space

and finds the optimal parameter with the minimum MSE. In the next iteration, it probes

only a subspace of previous iteration around the best solution found so far, meanwhile, a

more fine-grained discretization is applied. For example, Figure 3.2, one can see the most

promising range of wenv is from 0 to 0.25, which is further examined in the next iteration.

The process will terminate if no further improvement can be achieved by successive refine-

ment. Notice, the approach involves checking a large number of candidate parameters. To

tackle this, we run the calibration in parallel, each run instance examining a segment of

entire search space. Table 3.5 shows parameter space, MSE, fitted percentage and number

of parameters for each iteration. The final model (round 7) has the following parameters,

θ
∗ = (w∗eco,w

∗
env,w

∗
inc,w

∗
com, theshold∗) = (0,0.08,0,0.92,0.9924)

achieving 82% of the observed aggregate adoption level. The model to some extent in-
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Figure 3.2: Utilities (MSE) of Parameters in 1st Iteration

Table 3.5: Iterative Localized Search

Round wenv Threshold MSE Fitted % # of parameters
1 [0, 1] [0.5, 1] 69.79 63 33000
2 [0, 0.25] [0.98, 0.99] 82.64 78 6930
3 [0, 0.25] [0.99, 1] 75.60 85 6930
4 [0.05, 0.11] [0.991, 0.992] 67.21 88 7700
5 [0.05, 0.11] [0.992, 0.993] 58.71 81 7700
6 [0.05, 0.11] [0.9922, 0.9923] 51.96 84 7700
7 [0.05, 0.11] [0.9923, 0.9924] 48.48 82 7700

dicates only environmental utility and communication utility are significant. Notably, the

calibration process is extremely costly, i.e., each iteration takes about 6-7 hours with 70

processes running simultaneously. In contrast, the training procedure of our proposed

DDABM only takes about 3 hours running on a sample of 30% entire data in a single

process. For the calibrated model, the comparison between the fitted adoption and ac-

tual adoption are illustrated in Figure 3.3. The key takeaway is that the calibrated model

achieves good performance with respect to the training (calibration) data. What remains to

be seen is how it performs in the validation context, which is the subject of the next section.
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Figure 3.3: Cumulative adoption: Palmer et al. predicted vs. observed on calibration data.

3.6 ABM Validation

We have now reached Step 5 of the DDABM framework: validation. Our starting

point is quantitative validation, using data that is the “future” relative to the data used for

model learning (calibration). Given that our agent model and, consequently, the ABM are

stochastic, we validate the model by comparing its performance to a baseline in terms of

log-likelihood of observed adoption sequence in validation data. Specifically, suppose that

Dv = {(xit ,yit)} is the sequence of adoption decisions by individuals in the validation data,

where xit evolves in part as a function of past adoption decisions, {yi,t−k, . . . ,yi,t−1} (where

k is the installation lag time). Letting all aspects relevant to the current decision be a part of

the current state xit , we can compute the likelihood of the adoption sequence given a model

p as:

L(Dv; p) = ∏
i,t∈Dv

p(xit)
yit (1− p(xit))

(1−yit).

Quality of a model p relative to a baseline b can then be measured using likelihood ratio,

R = L(Dv;p)
L(Dv;b) . If R > 1, the model p outperforms the baseline. As this discussion implies, we

need a baseline. We consider two baseline models: a NULL model, which estimates the
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probability of adoption as the overall fraction of adopters, and a model using only the NPV

and zip code adoption density features for the purchase and lease decisions (referred to

as baseline below). The latter baseline is somewhat analogous to the model used by Lobel

and Perakis [156], although it is adapted to our setting, with all its associated complications

discussed above. As we found the NULL model to be substantially worse, we only present

the comparison with the more sophisticated baseline.

To enable us to execute many runs within a reasonable time frame, we restricted the

ABM to a representative zip code in San Diego county (approximately 13000 households).

We initialized the simulation with the assessors features, GIS locations, and adoption states

(that is, identifies of adopters) in this zip code. To account for stochasticity of our model,

we executed 1000 sample runs for all models.

Figure 3.4 shows the likelihood ratio of our model (namely lasso) to the baseline. From

this figure, it is clear that our model significantly outperforms the baseline in its ability

to forecast rooftop solar adoption: the models are relatively similar in their quality for a

number of months as the adoption trend is relatively predictable, but diverge significantly

after 9/12, with our model ultimately outperforming the baseline by an order of magnitude.4

In other words, both models predict near-future (from the model perspective) relatively

well, but our model significantly outperforms the baseline in forecasting the more distance

future.

Thus, quantitative validation already strongly suggests that the DDABM model we de-

veloped performs quite well in terms of forecasting the probability distribution of individual

decisions.

In addition, we assess model performance in terms of aggregate behavior in more qual-

itative terms. Specifically we can consider Figure 3.5 , which shows stochastic realizations

of our model (recall that agent behavior is stochastic), where heavier regions correspond to

greater density, in comparison with the actual average adoption path. First, we can observe

49/12 is where the aggregate adoption becomes highly non-linear, so that the added value of the extra
features used by our model sharply increases.
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Figure 3.5: Spread of sample runs of our model, with heavier colored regions correspond-
ing to higher density, and the observed average adoption trend.

that the actual adoption path is in the “high-likelihood” region of our model realizations.

This is a crucial observation: when behavior is stochastic, it would be unreasonable to ex-

pect a prediction to be “spot-on”: in fact, every particular realization of behavior path has

a minuscule probability. Instead, model correctness is well assessed in terms of how likely

observed adoption path is according to the model; we observe that our model is very likely

to produce an outcome similar to what was actually observed. Second, our model offers

a meaningful quantification of uncertainty, which is low shortly after the observed initial

state, but fans out further into the future. Given that adoption is, for practical purposes, a

stochastic process, it is extremely useful to be able to quantify uncertainty, and we therefore
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view this as a significant feature of our model. Note also that we expect variation in the

actual adoption path as well, so one would not therefore anticipate this to be identical to

the model average path, just as individual sample paths typically deviate from the average.

Finally, we use the model developed in Section 3.5 to forecast adoption in the same

zip code. Figure 3.6 compares the forecasting performance of the Palmer et al. model

calibrated using aggregate-level adoption, and our DDABM model. While initially both

models exhibit reasonable forecasting performance, after only a few months the quality

diverges dramatically: the DDABM model is far more robust, maintaining a high-quality

forecast at the aggregate level, whereas the baseline becomes unusable after only a few

months. We propose that the primary reason for this divergence is over-fitting: when a

model is calibrated to the aggregate adoption data, it is calibrated to a very “low-bandwidth”

signal; in particular, there are many ways that individuals can behave that would give rise

to the same average or aggregate behavior. Individual-level data, on the other hand, allows

us to disentangle the microbehavior in much greater specificity and robustness, increasing

the likelihood of meaningful behavior models that arise thereby, and reducing the chances

of overfitting the parameters to a specific overall adoption trend.
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Figure 3.6: Expected Adoption: DDABM Model (mean squared error = 15.35) vs. Palmer
et al. (mean squared error = 1045.30). Mean squared error measures forecasting error on
evaluation data.
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3.7 Policy Analysis

The model of residential rooftop solar we developed and validated can now be used both

as a means to evaluate the effectiveness of a policy that had been used (in our case, Cali-

fornia Solar Initiative solar subsidy program), and consider the effectiveness of alternative

policies. Our evaluation here is restricted to a single representative zip code in San Diego

county, as discussed above. We begin by considering the problem of designing the incen-

tive (subsidy) program. Financial subsidies have been among the principal tools in solar

policy aimed at promoting solar adoption. One important variable in this policy landscape

is budget: in particular, how much budget should be allocated to the program to achieve a

desired adoption target?

3.7.1 Sensitivity of Incentive Budget

Our first experiment compares the impact of incentive programs based on the California

Solar Initiative, but with varying budget in multiples of the actual CSI program budget.5

Specifically, we consider multiples of 0 (that is, no incentives), 1 (which corresponds to

the CSI program budget), as well as 2,4, and 8, which amplify the original budget. To sig-

nificantly speed up the evaluation (and reduce variance), rather than taking many sample

adoption paths for each policy, we compare policies in terms of expected adoption path.

This is done as follows: the simulation still generates 1000 sample “new” states, i.e., real-

izations of the probabilistic adoption decision, at each time step, but only uses the one with

average number of adopters as initial state for the next time step.

Figure 3.7 shows the effectiveness of a CSI-based subsidy program on expected adop-

tion trends over the full length of the program. As one would expect, increasing the budget

uniformly shifts average adoption up. Remarkably, however, the shift is relatively limited,

5It is important to note that the CSI program has many facets, and promoting solar adoption directly is only
one of its many goals. For example, much of the program is focused on improving marketplace conditions
for solar installers. Our analysis is therefore limited by the closed world assumption of our simulation model,
and focused on only a single aspect of the program.
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even with 8x the original budget level. Even more surprisingly, the difference in adoption

between no subsidies and incentives at the CSI program levels is quite small: only several

more individuals adopt in this zip code, on average.

0
50

10
0

15
0

20
0

A
do

pt
io

n

05
/0

7
09

/0
7

01
/0

8
05

/0
8

09
/0

8
01

/0
9

05
/0

9
09

/0
9

01
/1

0
05

/1
0

09
/1

0
01

/1
1

05
/1

1
09

/1
1

01
/1

2
05

/1
2

09
/1

2
01

/1
3

Month

0X Rebate
1X Rebate
2X Rebate
4X Rebate
8X Rebate

Figure 3.7: Adoption trends for the CSI-based subsidy structure.

3.7.2 Design of Incentive

Since we found that the CSI-like solar system subsidies have rather limited effect, a

natural question is whether we can design a better subsidy scheme.

3.7.2.1 Problem Formulation

The incentive design problem can be formulated as follows. Assume we are given a

fixed budget B, which supposed to subsidize solar adopters in T steps. The amount of

incentive a household can get is simply multiplication of system capacity (kilowatt) and

subsidy rate (dollar/watt). As a step-wise incentive structure, each step is associated with a

fixed rate rt and terminates as an accumulative target in megawatt mt is achieved. Then, the

subsidy program transits to a new step with a new rate and target. This is the exact structure

of CSI program currently implemented in California shown in Figure 3.8.

Given this, the problem is to find an optimal incentive structure, s∗ = {(rt ,mt)}0,...,T ,
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Figure 3.8: CSI Program Structure in California

which maximizes ultimate adoption simulated by ABM developed in Section 3.4,

s∗ = argmax
s

Uabm(s,B,T ) (3.7)

subject to two constraints: 1). budget constraint: ∑
T−1
i=0 rimi ≤ B; and 2) non-increasing

rates: ri ≥ r j,∀i < j ∈ T .

3.7.2.2 Parametric Optimization

We proceed by creating a parametric space of subsidy schemes that are similar in nature

to the CSI incentive program. We restrict the design space by assuming that ri+1 = γri

for all time steps i. In addition, we let each megawatt step mi to be a multiple of the

CSI program megawatt levels in the corresponding step, where the multiplicative factor

corresponds to the budget multiple of the CSI program budget. This particular scheme

gives rise to a set of incentive plans illustrated in Figure 3.9. With these restrictions, our

only decision is about the choice of r0, which then uniquely determines the value of γ

based on the budget constraint. To choose the (approximately) optimal value of r0, we

simply considered a finely discretized space ranging from 1 to 8 $/watt for 1x, 2x, and 4x
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CSI budget. The results, in Figure 3.10 and 3.11 suggest that the impact of subsidies is

quite limited even in this one-dimensional optimization context.
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Figure 3.9: Parametric Incentive Plans
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Figure 3.10: Expected Adoption over Different Initial Rates, where ”kx Bgt” means k times
as large as original CSI budget.

3.7.2.3 A Heuristic Search Algorithm

Given the challenge of finding effective incentive schemes, we now relax the restriction

of the original CSI budget allocation pattern (see Figure 3.8), allowing now the propor-

tion of the budget allocated each step to vary. To this end, we propose a simple heuristic
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search algorithm. The algorithm is a step-wise greedy search method, with each step ap-

plying a heuristic which is learned from the previous step. The algorithm proceeds until no

improvement can be achieved through the following series of steps:

1. Solve a basic one-stage incentive optimization problem, i.e., only one rate and one

step, in other words, this is to uniformly spread the budget in one single term. As

shown in Figure 3.12, for each ri
1 in the discretized space R1 (i.e., equally divided

100 values in (0, 5]), we run our ABM to obtain utility U({(ri
1,m

i
1)}) for each policy

correspondingly, s.t., ri
1mi

1 = B. An optimal one-stage incentive optimization pol-

icy is defined as s∗1 = {(r∗1,m∗1)}, s.t., U({(r∗1,m∗1)})≥U({(ri
1,m

i
1)}),∀{(ri

1,m
i
1)} 6=

{(r∗1,m∗1)}

2. Solve a 2-stage incentive optimization problem. Rather than searching all possi-

bilities in the discretized parameter space, the rate of the first stage for the 2-stage

structure is fixed at r∗1, as shown in Figure 3.13, by which we implicitly conjecture

that r∗1 is superior to any other rates. For any possible proportion of B used in stage

1, say Bi
1, we can derive mi

1 accordingly from r∗1mi
1 = Bi

1; then for each possible dis-

cretized rate ri
2 that is below r∗1, we also determine mi

2 consequently by the budget

constraint. Thus, for any arbitrary policy s = {(r∗1,mi
1),(r

i
2,m

i
2)}, we run ABM and
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obtain its utility U(s). The best policy should be

s∗ = s(m∗1,r
∗
2) = {(r∗1,m∗1),(r∗2,m∗2)}= argmax

s
U(s)

3. Solve a 3-stage incentive optimization problem. Similarly, as illustrated in Figure

3.14, the rate and megawatt target of the stage 1 are set to r∗1 and m∗1 respectively,

and the rate of the 2nd stage is set to r∗2. By the budget constraint, for any portion

of budget Bi
2 used in stage 2, one can derive mi

2. Further, for any rate at stage 3, say

ri
3, which is below r∗2, we can determine mi

3 similarly. Thus, for any 3-stage arbitrary

policy s = {(r∗1,m∗1),(r∗2,mi
2),(r

i
3,m

i
3)}, or simply denote s as s(mi

2,r
i
3), we run ABM

and obtain its utility U(s). The best policy for the 3-stage problem is given by

s∗ = s(m∗2,r
∗
3) = {(r∗1,m∗1),(r∗2,m∗2),(r∗3,m∗3)}= argmax

s
U(s)

4. The algorithm will proceed unless no further utility improvement can be made in

a step. The time complexity is O(NsNbNr), where Ns denotes number of steps in

the worse case, Nb the number of discretized fractions of budget and Nr the number

of discretized rates upper-bounded by the fixed rate in the preceding stage. Notice

that there is also a constant factor involving running time of simulation for each

parameter, but here we save it to highlight the main factors.

A comparison of expected adoption of different incentive structures is shown in Table

3.6, where ”x-Budget” indicates the scale of budget relative to the original CSI subsidies,

”OnePar” stands for incentive plans examined in Section 3.7.2.2 and ”x-Rebate” refers to

incentive structure discussed in 3.7.1. Our heuristic search method is able to find better

alternative incentive plans for all budget levels. Moreover, the result suggests that an in-

centive plan with smaller number of steps, i.e., 1 to 3, may be better than spreading the

whole budget in a large number of steps, say 10, which is currently deployed in California.
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3.7.3 Seeding the Solar Market

Seeing a relatively limited impact of incentives, due to low sensitivity of our model to

the economic variables, we also consider an alternative class of policy, called ”seeding”,

which instead leverages the fact that peer effects have a positive and significantly stronger

impact on adoption rates.

Suppose that we can give away free solar systems. Indeed, there are policies of this
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Table 3.6: A Comparison of Expected Adoption of Different Incentive Structures

x-Budget OnePar x-Rebate 1-Stage 2-Stage 3-Stage 4-Stage
1 159 161.5 163.2 163.9 - -
2 163.8 165 166.7 - - -
4 167.1 170.9 171.9 172.2 172.3 -

kind already deployed, such as the SASH program in California [141], fully or partially

subsidizing systems to low-income households. To mirror such programs, we consider

a fixed budget B, a time horizon T , and consider seeding the market with a collection

of initial systems in increasing order of cost in specific time periods (a reasonable proxy

for low-income households). There is a twofold tension in such a policy: earlier seeding

implies greater peer effect impact, as well as greater impact on costs through learning-by-

doing. Later seeding, however, can have greater direct effect as prices come down (i.e.,

more systems can be seeded later with the same budget). We consider, therefore, a space of

policies where a fraction of the budget α is used at time 0, and the rest at time T −1, and

compute a near-optimal value of α using discretization.6 Our findings, for different budget

levels (as before, as multiples of the original CSI budget), are shown in Figure 3.15. We

6In fact, we optimize over discrete choices of alpha (at 0.1 intervals), and the optimal alpha varies with
budget.
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Figure 3.15: Distribution of final adoptions (n) for optimal split of the seeding budgets.

can make two key observations: first, we can achieve significantly greater adoption using a

seeding policy as compared to the CSI program baseline, and second, this class of policies

is far more responsive to budget increase than the incentive program.

3.8 Conclusion

We introduced a data-driven agent-based modeling framework, and used it to develop

a model of residential rooftop solar adoption in San Diego county. Our model was vali-

dated quantitatively in comparison to a baseline, and qualitatively by considering its pre-

dictions and quantified uncertainty in comparison with the observed adoption trend tem-

porally beyond the data used to calibrate the model. In the meantime, we developed a

second agent-based model motived by state-of-the-art calibration methodology. It turned

out this model severely underestimates solar adoption, poorly-performed compared to our

developed agent-based model that is based on maximum likelihood estimation. We used

our model to analyze the existing solar incentive program in California, as well as a class

of alternative incentive programs, showing that subsidies appear to have little impact on

adoption trends. Moreover, a simple heuristic search algorithm was deployed to identify
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more effective incentive plans among all incentive structures we have explored. Finally, we

considered another class of policies commonly known as “seeding”, showing that adoption

is far more sensitive to such policies than to subsidies.

Looking ahead, there are many ways to improve and extend our model. Better data, for

example, electricity use data by non-adopters, would undoubtedly help. More sophisticated

models of individual behavior are likely to help, though how much is unclear. Additionally,

other sources of data can be included, for example, survey data about adoption character-

istics, as well as results from behavior experiments in this or similar settings. The impor-

tance of promoting renewable energy, such as solar, is now widely recognized. Studies,

such as ours, enable rigorous evaluation of a wide array of policies, improving the associ-

ated decision process and the increasing the chances of successful diffusion of sustainable

technologies.

The DDABM framework is very promising in building high-precision ABMs from his-

torical diffusion data, which was, unfortunately, impossible for traditional ABMs. Recall

that our algorithmic marketing system not only consists of models but more importantly al-

gorithms. Since we have already developed an effective computational approach to address

the modeling challenges in marketing innovations, in the following chapters, our focus will

shift to the design of efficient computer algorithms to solve for optimal or near-optimal

marketing plans.
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Chapter 4

Dynamic Influence Maximization Under Increasing Returns to Scale

While most diffusion models characterize the adoption of innovation as a process that

shows decreasing returns to scale, i.e., the tendency for an individual to adopt is marginally

decreasing as the number of adopters grows, the early stage of innovation is better repre-

sented by a process of increasing returns to scale. This is confirmed by the work presented

in Chapter 3, in which the well-known logit function is used to model individual behav-

iors and the likelihoods are generally below 0.5 (within the convex section). Almost any

marketing action comes with a cost, which is the also the case for seeding (offering free

samples) marketing. Moreover, the cost often decreases over time due to technological

updates and many other reasons. In these setting, this chapter studies an important market-

ing problem in which the marketer needs to decide number of seeds for each period in a

discrete time horizon to maximize the number of adopters projected by simulation models.

4.1 Introduction

One of the important algorithmic questions in marketing on social networks is how one

should leverage network effects in promoting products so as to maximize long-term product

uptake. Indeed, a similar question arises in political science, if framed in terms of maxi-

mizing uptake of beliefs and attitudes, leading to particular voting behavior. Crucial to such

problems is a model of social influence on networks, and a number of such models have

been proposed [175, 18, 176, 16, 15, 164, 177, 178]. Some of the prominent models give

rise to global influence functions (capturing the expected number of adopters as a function

of a subset of initially targeted individuals) that are submodular, that is, possess a natu-

ral diminishing returns property: targeting a greater number of individuals yields a lower

marginal increase in the outcome. Submodularity is a powerful property for algorithm de-
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sign; in particular, a simple greedy heuristic has a provable approximation guarantee, and

is typically very close to optimal in experiments [16, 164, 178, 179]. Submodularity as

typically defined is only helpful in a static setting, that is, when we choose individuals to

target in a single shot. But an extension, termed adaptive submodularity, was proposed to

make use of greedy heuristics in dynamic environments where individuals can be targeted

over time [165].

The diminishing returns feature naturally arises in many settings. However, early adop-

tion trends can exhibit the opposite property of increasing returns to scale. For example,

in the classic Bass model [39] the early portion of the famous “S-curve” is convex, and

if one uses logistic regression to model individual adoption choice—a natural model that

was used in recent work by the authors that learned individual rooftop solar adoption be-

havior [180]—the model is convex when probabilities are small. Arguably, early adoption

settings are most significant for the development of effective product promotion strategies,

since overall uptake is quite critical to the ultimate success of the product line. This is an es-

pecially acute concern in the “green energy” sector, where renewable energy technologies,

such as rooftop solar, are only at a very early stage of overall adoption—indeed, adoption

has been negligible except in a few states, such as California and Arizona.

We consider the problem of influence maximization with network effects by aggregat-

ing a social network into an “aggregate” adoption function which takes as input the number

of adopters at a given time t and outputs the number of adopters at time t+1. Our main the-

oretical result is that when this function is convex and marketing budget can be reinvested

at a fixed interest rate δ (equivalently, marketing or “seeding” costs decrease exponentially

over time), influence over a finite time period can be maximized by using up the entire

targeted marketing budget at a single time point (rather than splitting up the budget among

multiple time periods); we refer to the resulting simple algorithm as the Best-Stage algo-

rithm.

We study the degree to which the theoretical optimality of the best-time algorithm holds
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in practice, using real data of rooftop solar adoption in San Diego county [180]. As a

baseline, we develop a more general heuristic algorithm that splits the budget equally over

a set of consecutive months, with the size of this set and the starting month allowed to

vary. We find that investing the whole budget in a single month is indeed (almost) optimal

under a variety of simplified seeding cost functions (exponential, polynomial, or even linear

with time), despite a number of gaps between the theory and the experimental setup —

suggesting that the theoretical model is somewhat robust.

In contrast, the best-time algorithm becomes suboptimal in an “ideal” model that was

previously validated to confirm its predictive efficacy [180]. Through careful analysis,

we find that this is the result of “learning-by-doing” effects, where marketing costs (for

example, when actual products are given away for free) depend on the total product uptake

in the marketplace.

4.2 Related Work

We build on the extensive literature of economics of diffusion with network effects [181,

182, 183, 184]. Largely, however, this literature is concerned with equilibria that arise,

rather than algorithmic considerations. The latter are extensively studied in the literature

on influence maximization on social networks. A number of models have been proposed

to quantify influence diffusion on a network, perhaps the most prominent of which are lin-

ear threshold and independent cascade models [175, 18, 176, 16, 185, 186]. These and

many related models give rise to a submodular “expected adoption” function. Many past

approaches to “one-shot” influence maximization take advantage of this property in algo-

rithmic development; in particular, a simple greedy algorithm is highly effective in practice,

and offers a constant-factor approximation guarantee relative to a globally optimal solution

to the associated combinatorial optimization problem [16, 178, 185].

While one-shot influence maximization on social networks has received much atten-

tion, significantly less work addresses the problem of dynamic influence maximization,
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where individuals can be seeded in sequence. In an important effort in this vein, Golovin

and Krause show that when dynamics (and uncertainty) satisfy the property of adaptive

submodularity, a natural dynamic greedy heuristic is guaranteed to be only a constant fac-

tor worse than the optimal clairvoyant algorithm [165]. Our problem is distinct from this

effort in several ways. The first, and key, distinction is that we are concerned with increas-

ing returns to scale. The second is that we capture network effects simply in terms of total

numbers of all past adoptions (thus, the social network is completely connected for our

purposes). The third is that we introduce another key element of tension into the problem

by supposing that there is a fixed total budget allocated for seeding, and either this budget

(or any portion of it) can be set aside to collect interest, or the costs of seeding fall over

time (commonly, costs of products are expected to fall over time as a result of learning-

by-doing, or supply-side network effects where better processes and technology reduce

production costs with increasing product uptake and experience in the marketplace). To

our knowledge, we are the first to consider the algorithmic problem of dynamic influence

maximization in such a context.

4.3 The Dynamic Influence Maximization Model

We consider a problem of adoption diffusion with network externalities. Our model

of network externalities is simplified to consider only the aggregate adoption, which we

denote by D. Specifically, we assume that the diffusion takes place in discrete time, and the

aggregate adoption at time t, Dt , is a function only of adoption by the previous time step,

Dt−1: Dt = f (Dt−1). In other words, adoption dynamics are deterministic and first-order

Markovian. We make three assumptions on the nature of the diffusion function f :

1. f is strictly convex (i.e., increasing returns to scale),

2. f is strictly monotonically increasing, and

3. ∀D > 0, f (D)> D.
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Assumptions (2) and (3) ensure that aggregate adoption increases over time (i.e., with every

application of f ); note that they are not redundant. Assumption (1) of increasing returns

to scale captures a common model of early adoption dynamics (the convex portion of the

“S-curve” [39], or the logistic regression model of adoption over a low-probability region

discussed in our experiments below). We suppose that at time 0 (that is, initial decision

time), there is some initial number of adopters in the population, D0 ≥ 0.

As stated, the problem poses no algorithmic tension: if one had a fixed budget for

stimulating adoption, the entire budget should be used up immediately, as it would then

take maximal advantage of network effects. We now introduce the principal source of such

tension: an exponentially increasing budget. Specifically, suppose an agent is initially given

a budget B0 and any remaining budget will accrue by a factor of δ . For example, we can

decide to invest residual budget at an interest rate δ . Alternatively, if we are giving away

a product, its cost may decrease over time as technology matures, a process often referred

to as “learning-by-doing” [171, 173, 158]. Such learning-by-doing effects are paramount

when we consider technology evolution in its early stages, which is arguably the setting

where we would be most interested in promoting the product by giving it away to a subset

of the individuals in a population. Notice that either saving some of the budget at a fixed

interest rate, or costs of seeding decreasing at a constant rate, both give rise to exponentially

increasing purchasing power of the budget over time. This gives rise to a non-trivial tension

between seeding early so as to maximally leverage network effects and seeding later so as

to maximize the number of individuals seeded (as well as subsequent network effects). The

algorithmic question we pose is: how should we use a given budget B over a fixed time

horizon T so as to maximize the total number of adopters at time T ? For simplicity,

we assume unit cost for every seed; in other words, any budget B will create exactly B new

adopters. This assumption will be relaxed in our experiments below.

Given the deterministic T -stage diffusion model and the budget accrual process de-

scribed above, as well as an initial budget B0 and aggregate adoption D0, we can define a
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“seeding” policy π as a sequence of fractions of the budget allocated in each stage, that is

π = (α0,α1, . . . ,αT−1), αt ≥ 0.

The dynamic influence maximization problem aspires to compute a policy π∗ which leads

to the maximum number of adopters based on the diffusion model f starting with initial

adoption D0, an initial budget B0, and a budget growth rate δ . If we define the total number

of adopters at time T as the utility of a policy, the problem can be written as

π
∗ = argmax

π

U( f ,π,D0,B0,δ ).

4.4 Algorithms for Dynamic Influence Maximization

To solve the dynamic maximization problem, it is convenient to view it as a T -stage

decision process illustrated in Figure 4.1.

0 1 2 T −1

(D0,B0) (D1,B1) (D2,B2) (DT−1,BT−1)

< 1 < 1 < 1
1 1 1 1

Figure 4.1: T Stage Decision Process

At any stage t, we consider two types of actions for an agent: spending all of the

remaining budget (α = 1) and fraction (or none) of budget (0 ≤ αt < 1). Particularly,

as long as one chooses αt = 1, the decision process is terminated and the utility can be

obtained in terms of the number of final users. Otherwise, one should proceed until the

budget is exhausted. Note that an agent will always spend whatever budget is left at t =

T −1 (since there is no utility from keeping a fraction of it intact thereafter).

In principle, one can solve the dynamic influence maximization problem using back-

ward induction. For a T -stage decision problem, backward induction starts with consid-

ering optimal decisions at the last stage (i.e. t = T − 1) for all possible realizations of D
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and B, then considers optimal choices at the second-to-last stage (i.e. t = T −2) using the

optimal decisions in the final stage, and so on. The process proceeds until the very first

decision node (i.e. t = 0) is reached, and finally an optimal policy can be returned. How-

ever, such an approach quickly becomes intractable when the evaluation of f is very time

consuming (for example, as in the instance described below, f corresponds to an agent-

based simulation of individual adoption decisions). For example, if we suppose that each

simulation takes only 1 second, our population involves 10,000 individuals, the budget can

seed only 20 individuals, and our time horizon is 20 stages (e.g., 20 months), dynamic

programming would take over 1000 hours, or about 1.5 months. Our primary goal is to

develop algorithmic approaches which are orders of magnitude faster.

4.4.1 Optimal Algorithm

To start, consider Algorithm 1 (called Best-Stage), which simply finds a single best

stage t at which to use up all of the budget accrued by this stage. Our main result in this

section is that the Best-Stage algorithm is optimal.

Data: D0,B0

Result: t
u∗ = 0;
t∗ = 0;
for t=0..T-1 do

u = FindAdoptions(D0,B0δ t , t);
if u > u∗ then

u∗ = u;
t∗ = t;

end
end

Algorithm 1: The Best-Stage algorithm. The function FindAdoptions(D,B, t) computes
the total number of adoptions at time T when there are D adopters at time 0 and the entire
budget B is used for seeding at time t.

Theorem 4.4.1. Let t be the stage returned by the Best-Stage algorithm. Then the policy
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π = (0, . . . ,0,B0δ t , . . .) where the only non-zero entry is at time t, is optimal.1

The proof of this result is rather involved, and we develop it in a series of steps.

Let us consider a general backward induction step from the descendant nodes at stage

t + 1 to their parent node at stage t. Suppose at stage t there are Dt users and Bt budget.

Particularly, if the entire budget is used at t, an agent will have utility

U(αt = 1) = f (T−t)(Dt +Bt) (4.1)

where notation f (m)(·) stands for applying f repeatedly for m stages. If some fraction

0≤ αt < 1 of the budget is used at stage t, there will be

Dt+1 = f (Dt +αtBt) (4.2)

adopters and

Bt+1 = (1+δ )(1−αt)Bt (4.3)

available budget in the next stage t +1. Let π∗ be an optimal policy, and α∗t the fraction of

budget allocated to seeding under π∗ in stage t. Our next series of results characterize the

properties that π∗ (and fractions α∗t ) must have, by virtue of its optimality.

Lemma 4.4.2. Suppose that at some stage t the optimal policy has α∗t = 0. Further, sup-

pose that there is some t∗ > t with α∗t∗ = 1 and α∗t ′ = 0 for all t < t ′ < t∗. Then α∗t−1 = 1

cannot be optimal.

Proof. Let α∗t−1 = a, and let Dt and Bt be the number of adopters and remaining budget

at time t if the optimal policy π∗ is followed. Notice that there are T − t stages remaining

1Note that the nature of the policy after time t is irrelevant.
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when we start at stage t. Thus, the utility in stage t−1 is given by

U(α∗t−1 = a, α
∗
t = 0) =

f (T−t∗)( f (t
∗−t)(Dt)+(1+δ )t∗−tBt),

where Dt = f (Dt−1+aBt−1), Bt = (1+δ )(1−a)Bt−1 and t∗ > t is the stage of the optimal

policy π∗ after t at which the entire budget is used up. The lemma states that if α∗t = 0,

then α∗t−1 = 1 must not be. In formal notation, we can state this as U(α∗t−1 = a,α∗t = 0)>

U(α∗t−1 = 1) for a < 1. By monotonicity of f this is equivalent to

f (t
∗−t)(Dt)+(1+δ )t∗−tBt > f (t

∗−t+1)(Dt−1 +Bt−1). (4.4)

By optimality of α∗t = 0, we further have

f (T−t∗)( f (t
∗−t)(Dt)+(1+δ )t∗−tBt)≥ f (T−t)(Dt +Bt),

which by monotonicity of f is equivalent to

f (t
∗−t)(Dt)+(1+δ )t∗−tBt ≥ f (t

∗−t)(Dt +Bt). (4.5)

If we could show that

f (t
∗−t)(Dt +Bt)> f (t

∗−t+1)(Dt +Bt)

or, equivalently,

Dt +Bt > f (Dt−1 +Bt−1),

then combining this with with (4.5) will imply that (4.4) must hold. Let us rewrite (4.5) as

follows
f (t
∗−t)(Dt +Bt)− f (t

∗−t)(Dt)

Bt ≤ (1+δ )t∗−t , (4.6)
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or, equivalently, as

f (t
∗−t)(Dt +Bt)− f (t

∗−t)(Dt)

f (t∗−t−1)(Dt +Bt)− f (t∗−t−1)(Dt)
× . . . × f (Dt +Bt)− f (Dt)

Bt ≤ (1 + δ )t∗−t

Because f (t
∗−t)(Dt)> .. . > f (Dt) and by strict convexity, it follows that

f (t
∗−t)(Dt +Bt)− f (t

∗−t)(Dt)

f (t∗−t−1)(Dt +Bt)− f (t∗−t−1)(Dt)
> .. . >

f (Dt +Bt)− f (Dt)

Bt ,

which in turn implies that

f (Dt +Bt)− f (Dt)

Bt < 1+δ . (4.7)

Additionally, observe that

Dt = f (Dt +aBt−1)> Dt +aBt−1

and

Bt = (1+δ )(1−a)Bt−1 > (1−a)Bt−1

By strict convexity, it then follows that

f (Dt−1 +Bt−1)− f (Dt−1 +aBt−1)

(1−a)Bt−1 <
f (Dt +Bt)− f (Dt)

Bt

which together with (4.7) implies that

f (Dt−1 +Bt−1)− f (Dt−1 +aBt−1)

(1−a)Bt−1 < 1+δ ,
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which is equivalent to

f (Dt−1 +Bt−1)< f (Dt−1 +aBt−1)+(1+δ )(1−a)Bt−1

= Dt +Bt ,

completing the proof.

The next lemma builds on Lemma 4.4.2 to significantly strengthen its result.

Lemma 4.4.3. Suppose that at some stage t the optimal policy has α∗t = 0. Further, sup-

pose that there is some t∗ > t with α∗t∗ = 1 and α∗t ′ = 0 for all t < t ′ < t∗. Then α∗t−1 = 0.

Proof. In this lemma, we will show that it cannot be the case that α∗t−1 ∈ (0,1). Together

with Lemma 4.4.2, it will imply the desired result.

We prove this lemma by contradiction. Suppose that the optimal choice is α∗t−1 = a

with 0 < a < 1. The optimal utility is then given by

U(α∗t−1 = a,α∗t = 0) = f (T−t∗)( f (t
∗−t)(Dt)+(1+δ )t∗−tBt),

where t∗ is the stage after t at which the entire budget is spent and

Dt = f (Dt−1 +aBt−1),Bt = (1+δ )(1−a)Bt−1.

By optimality of π∗, this policy should be (weakly) better than a policy which spends

nothing at stage t−1 and spends the entire budget in stage t∗ (with the same t∗ as above).

The utility of such a policy is given by

U(α∗t−1 = 0,α∗t = 0) = f (T−t∗)( f (t
∗−t)(D̄t)+(1+δ )t∗−t B̄t),

where

D̄t = f (Dt−1), B̄t = (1+δ )Bt−1.
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Since we assume U(α∗t−1 = 0,α∗t = 0)≤U(α∗t−1 = a,α∗t = 0),

f (t
∗−t)( f (Dt−1))+(1+δ )t∗−t+1Bt−1 ≤

f (t
∗−t)( f (Dt−1 +aBt−1))+(1+δ )t∗−t+1(1−a)Bt−1

or

f (t
∗−t+1)(Dt−1 +aBt−1)− f (t

∗−t+1)(Dt−1)

≥ (1+δ )t∗−t+1aBt−1,

which we can rewrite as

f (t
∗−t+1)(Dt−1 +aBt−1)− f (t

∗−t+1)(Dt−1)

aBt−1 ≥ (1+δ )t∗−t+1.

On the other hand, by strict convexity of f

f (t
∗−t+1)(Dt−1 +aBt−1)− f (t

∗−t+1)(Dt−1)

aBt−1

<
f (t
∗−t+1)(Dt−1 +Bt−1)− f (t

∗−t+1)(Dt−1 +aBt−1)

(1−a)Bt−1 .

Moreover, by the same argument as used in the proof of Lemma 4.4.2 to arrive at (4.6), the

optimal choice a must satisfy

f (t
∗−t+1)(Dt−1 +Bt−1)− f (t

∗−t+1)(Dt−1 +aBt−1)

(1−a)Bt−1

≤ (1+δ )t∗−t+1,

which implies that

f (t
∗−t+1)(Dt−1 +aBt−1)− f (t

∗−t+1)(Dt−1)

aBt−1 < (1+δ )t∗−t+1,
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a contradiction.

Lemma 4.4.4. Suppose that α∗t = 1. Then α∗t−1 ∈ (0,1) cannot be optimal.

Proof. The utility of choosing α∗t−1 = a, where a∈ [0,1) at stage t−1 is given by U(α∗t−1 =

a,α∗t = 1) = f (T−t)(Dt +Bt), where Dt = f (Dt−1 + aBt−1) and Bt = (1+ δ )(1− a)Bt−1.

Suppose that a 6= 1. Then U(a = 1)≤U(0≤ a < 0,α∗t = 1), which means that

f (T−t+1)(Dt−1 +Bt−1)

≤ f (T−t)( f (Dt−1 +aBt−1)+(1+δ )(1−a)Bt−1),

or, by monotonicity,

f (Dt−1 +Bt−1)≤ f (Dt−1 +aBt−1)+(1+δ )(1−a)Bt−1.

Rearranging, we obtain

f (Dt−1 +Bt−1)− f (Dt−1 +aBt−1)

(1−a)Bt−1 ≤ 1+δ . (4.8)

On the other hand, the presumption of optimality of α∗t = 1 implies that αt = 1 is a (weakly)

better choice than αt = 0. In other words, spending all budget at stage t is nevertheless

better than saving it and spending at any other stages after t. This implies that for any

τ > t,

f (T−τ)( f (τ−t)(Dt)+(1+δ )τ−tBt)≤ f (T−t)(Dt +Bt).

By monotonicity this is equivalent to

f (τ−t)(Dt)+(1+δ )τ−tBt ≤ f (τ−t)(Dt +Bt),
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which we can rewrite as

f (τ−t)(Dt +Bt)− f (τ−t)(Dt)

Bt ≥ (1+δ )τ−t .

In particular, if we let τ = t +1, we have

f (Dt +Bt)− f (Dt)

Bt ≥ 1+δ .

By strict convexity and assumption (3) on f , it follows that

f (Dt +Bt)− f (Dt)

Bt >
f (Dt−1 +Bt−1)− f (Dt−1 +aBt−1)

(1−a)Bt−1 .

We now show that if a 6= 1, it must be the case that a = 0. Notice that if U(a = 0,αt = 1)≤

U(0 < a < 1,α∗t = 1), it must be that

f (T−t)( f (Dt−1)+(1+δ )Bt−1)

≤ f (T−t)( f (Dt−1 +aBt−1)+(1+δ )(1−a)Bt−1),

or, equivalently,

f (Dt−1)+(1+δ )Bt−1 ≤ f (Dt−1 +aBt−1)+(1+δ )(1−a)Bt−1,

which can be written as

f (Dt−1 +aBt−1)− f (Dt−1)

aBt−1 ≥ 1+δ . (4.9)

By strict convexity, we have

f (Dt−1 +aBt−1)− f (Dt−1)

aBt−1 <
f (Dt−1 +Bt−1)− f (Dt−1 +aBt−1)

(1−a)Bt−1 ,
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which, together with (4.8) and (4.9) implies that 1+ δ < 1+ δ , a contradiction. Conse-

quently, either a = 0 or a = 1.

Armed with Lemmas 4.4.2-4.4.4, we are now ready to prove our main result.

of Theorem 4.4.1. We prove the theorem by induction.

Base Case: T = 1 For an 1-stage decision problem, it is clearly optimal to spend the entire

budget budget, so the optimal policy is α∗0 = 1.

Inductive Step: Suppose the argument holds for T = K ≥ 1. That is for any K-stage deci-

sion problem, the optimal policy is using all budget at some stage t∗, s.t, t∗ ∈ 0,1, . . . ,K−1.

Let us now consider a T = K+1-stage decision problem. Assume we are at the final back-

ward induction step from nodes in stage t = 1 the root node (i.e. t = 0). Note that those

different decision nodes at stage t = 1 are results from different values of α0 picked at

t = 0. Generally, for any node (D1, B1) in stage t = 1, by the inductive assumption, an

optimal policy must spend the entire budget at some stage between stage 1 and T − 1; in

other words, starting in stage t = 1, Best-Stage is optimal. Such a policy can only be one

of the following three types:

1. α∗0 = 1: spend the entire budget at t = 0;

2. α∗0 = 0: spend all budget at a single stage t∗ > 0;

3. 0 < α∗0 < 1: spend only a fraction of budget at stage t = 0, and the rest at a single

stage t∗ > 0.

Clearly, we only need to rule out the third type.

Case 1: α∗1 = 0 By Lemma 4.4.3, it must be the case that α∗0 = 0.

Case 2: α∗1 = 1 By Lemma 4.4.4, it must be the case that either α∗0 = 0 or α∗0 = 1. In either

case, the optimal policy has the form of Best-Stage.

The Best-Stage algorithm is clearly far faster than dynamic programming, with running

time O(T ), compared to O(DBT ) for the former, where D is the size of the population, B
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the maximum budget, and T the time horizon. In our example above, it will take only 20

seconds, as compared to 1.5 months!

4.4.2 A Heuristic Search Algorithm

The model we described above is clearly stylized. As with any stylized model, a natural

question is how far its assumptions can be relaxed without losing the guarantees that come

with them—in our case, a very simple and provably optimal algorithm for dynamic influ-

ence maximization. If we are to undertake such an analysis experimentally, it is simply not

feasible to use dynamic programming as a baseline, for reasons made clear earlier. As an

alternative, we propose a heuristic algorithm which generalizes the Best-Stage algorithm,

but does not incur too prohibitive a cost in terms of running time. Rather than choosing a

single best stage, this algorithm, which we term Best-K-Stages (see Algorithm 2) iterates

over integers K between 1 and T − 1, splitting the budget equally among K consecutive

time steps. This algorithm only takes O(T 2), which is still quite manageable (about 200

seconds in our example above).

U ←−∞;
π∗← /0;
for i =1,...,T-1 do

for j = 0,..., T-i-1 do
π ← (α j, . . . ,α j+i−1);
if U(M,π,B0,δ )>U then

U ← max{U,U(M,π,B0,δ )};
π∗← π;

end
end

end
return π∗

Algorithm 2: The Best-K-Stages Algorithm.
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4.5 Experiments

To verify the efficacy of our proposed algorithm, we utilize an agent-based simulation

introduced by [180] which forecasts rooftop solar adoption in a representative zip code in

San Diego county. This simulation has several features of relevance to us. First, it utilizes

agent models which were learned from actual adoption, as well as auxiliary data, using a

logistic regression model. Second, the model includes network effects: aggregate adoption

is one of the variables that has a significant impact on individual adoption decisions. Third,

the solar market is still very much in its developing stages, even in San Diego county, and

consequently the relevant region of the logistic regression model is convex in the network

effects variable. Fourth, while in the policy context of this model the budget remains fixed

over the T -stage time horizon, costs decrease over time. In particular, in the previously

validated version of the model [180], costs actually decrease as a function of “learning-by-

doing”, modeled as aggregate adoption in San Diego county (which in turn increases over

time). Moreover, the costs decrease linearly, rather than exponentially. As a result, the

cost in this simulation does not satisfy the assumptions that guarantee the optimality of the

Best-Stage algorithm.

An additional deviation from the idealized model we consider above is that the system

cost enters the consideration in two ways: first, decreasing cost translates into an effectively

increasing budget, and second, cost enters the adoption model directly as a part of economic

considerations in rooftop solar adoption. A final important imperfection is that the budget

need not be perfectly divisible by cost. In this section, we systematically investigate the

extent to which these deviations from the “ideal” modeled above impact the optimality of

the Best-Stage algorithm.

Throughout, time is discretized in months, and we fix our time horizon at 24 months

(that is, 24 stages). We use the Best-K-Stages as our benchmark, observing in each case be-

low expected adoption at horizon T as a function of K. Thus, when we find K = 1 yields an

optimal or a near-optimal solution, we conclude that the deviation from model assumptions
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is not significant, while optimal K > 1 suggests the converse. We used the budget allo-

cated by the California Solar Initiative (CSI) to the San Diego county incentive program as

our baseline, and consider amplifications of this budget, denoted by “BX”. For example,

50X budget means that 50 times the CSI budget was used in an experiment. Moreover, we

explored the impact of the magnitude of the peer effect variable in the model by consid-

ering as a baseline the network effect coefficient produced by learning the adoption model

from data, as well as its amplifications, denoted by “PX”; for example “2X” network effect

means that we doubled the network effect coefficient.

4.5.1 Exponential Cost

Our hypothesis is that the primary consideration is the nature of the cost model, with

the remaining “imperfections” introduced by the complex considerations of the agent-

based model in question being significantly less important. To investigate, we replace

the cost model in the original model with a much simpler cost function which decreases

exponentially with time t (equivalently, the budget is exponentially increasing over time):

C(t) = C0eωt , or, equivalently, log(C) = log(C0) +ωt. We used the rooftop solar cost

data for San Diego county to estimate the parameters log(C0) and ω in this model (see

Table 4.1). The new cost model was then “injected” into the otherwise unmodified agent-

based model.

Table 4.1: Exponential Cost Model (R2 = 0.020)

Parameter Coefficient
log(C0) 10.55

ω -0.0059

The maximum expected adoption of seeding policies over different lengths (values of

K in Best-K-Stages) is illustrated in Figure 4.2a. The results suggest that seeding in a single

stage tends to be a better policy than splitting the budget over multiple stages. Moreover,

for length-1 policies we find that in this case seeding at very end (i.e., in stage T − 1) is
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Figure 4.2: Exponential Cost: 50X Budget, 1X network effects.
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Figure 4.3: Exponential Cost: 50X Budget, 1.75X network effects.

optimal, as shown in Figure 4.2b, where the horizontal axis is the seeding month. This is

likely because benefit of the exponential cost decay in this variation of the model exceeds

the gains from seeding early due to network effects. As the importance of network effects

increases, we expect that seeding earlier would become more beneficial. To investigate,

we manually varied the coefficient of network effects in the adoption model, multiplying

it by a factor of 1.75 and 2, and comparing the outcomes. Seeding in a single stage is

still quite effective (Figure 4.3a and 4.4a; the jagged nature of the plots is likely due to the

indivisibilities discussed above), but the optimal month to seed shifts earlier, as shown in

Figure 4.3b and 4.4b.
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Figure 4.4: Exponential Cost: 50X Budget, 2X network effects.

4.5.2 Original Agent-Based Model

As shown in the previous section, the Best-Stage algorithm performs impressively de-

spite a number of imperfections in the agent-based model of aggregate rooftop solar adop-

tion. Next, we test its effectiveness in the context of an “ideal” model that was previously

thoroughly validated in forecasting solar adoption. Significantly, the cost function used in

this model includes a number of relevant parameters (such as system size), and in place

of explicit dependence on time, it is a decreasing function of the overall uptake of solar

systems in San Diego county (see Table 4.2). Finally, the cost function is modeled as linear

in its parameters (with a fixed lower bound at zero).

Table 4.2: Cost function in the original agent-based model (R2 = 0.8399).

Predictor Coefficient
(Intercept) 11,400

Home Value 7.38e-04
Living Square Feet 0.15
System Capacity 6,210

San Diego County Adoption -1.06

The results in Figure 4.5a are surprising: the Best-Stage algorithm performs signif-

icantly worse than policies that split budget over a relatively long contiguous series of
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months (K > 5). Figure 4.5b further reveals that we optimally wish to push the initial

month of this contiguous sequence rather late in the period; in other words, network effects

are relatively weak. The key question is: what goes wrong? The observations in the pre-

vious section strongly suggest that it is the form of the cost function that is at the heart of

the issue. We therefore proceed to carefully investigate what, precisely, about the nature of

the cost function in this model is the cause of this qualitative change relative to our stylized

model in Section 4.3. Specifically, we start with a simplified model of solar adoption that

conforms to the assumptions of our main result (i.e., using only time as a variable), and

incrementally relax it to bring it closer to the cost function actually used in the original

simulation environment. In particular, we begin with a polynomial cost function, proceed

to investigate a linear cost model (in time only), and finally consider a linear cost function

that depends on aggregate product uptake (learning-by-doing) rather than time.
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Figure 4.5: Actual Cost Learning-by-doing: 10X Budget,1X network effects.

4.5.3 Polynomial Cost

The exponential cost function, or exponentially increasing budget, seems quite dra-

matic. What if we slow this growth in budget buying power to be polynomial?

We formulate the following simple model of polynomial cost: C(t) = C0tθ , where t

is time variable, and C0 and θ are parameters. This function is equivalent to log(C(t)) =
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log(C0)+θ log(t), which we can fit using linear regression. The resulting coefficients are

given in Table 4.3.

Table 4.3: Polynomial Cost Model (R2 = 0.014)

Parameter Coefficient
log(C0) 10.70
log(t) -0.098
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Figure 4.6: Polynomial Cost: 50X Budget.

Figures 4.6a, 4.6b, and 4.7a suggest that Best-Stage is still a very good policy here,

albeit the jagged nature of the plots (likely due to indivisibilities) makes this observation

somewhat equivocal when network effects are very weak. However, as the magnitude

of network effects increases, the advantage of Best-Stage over alternatives becomes more

pronounced. On balance, it seems clear that the polynomial vs. exponential nature of

the cost function does not give rise to a qualitative difference in the effectiveness of our

underlying model.

4.5.4 Linear Cost

Given that the polynomial cost model did not appear to bring about a substantial differ-

ence, we proceed to relax to a linear cost model, inching even closer to the “ideal” model
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Figure 4.7: Polynomial Cost: 50X Budget, 2X network effects.

used in the simulation. Our linear cost model has linear dependence on time, implying a

slower decay rate than the polynomial cost function: C(t) = a+bt. As before, parameters

a and b are estimated using solar system cost data for San Diego county, with the results

given in Table 4.4. As before, we ran the experiments by “plugging in” this cost model into

Table 4.4: Linear Cost Model (R2 = 0.012)

Parameter Coefficient
Intercept 42,053

t -201

the simulation environment (retraining the individual adoption propensities). Our experi-

ments show that seeding in a single month is, again, more effective than seeding in multiple

consecutive stages (See Figure 4.8a and 4.8b), even as we vary the importance of network

effects.

4.5.5 Linear Cost with Learning-by-Doing

Both “ideal” cost model and linear cost model are linear in their features. The key dif-

ference is that the ideal cost function depends on cumulative adoption, whereas the latter

only depends on time. We now move yet closer to the ideal model, replacing the linear
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Figure 4.8: Linear Cost: 50X Budget.

dependence on time with linear dependence on aggregate solar system uptake in San Diego

county: C(t) = c+dy(t), where y(t) is number of solar adoption up to time t. The param-

eters c and d are estimated via linear regression, and are given in Table 4.5.

Table 4.5: Linear Cost Model with Learning-by-Doing (R2 = 0.013)

Parameter Coefficient
(Intercept) 40,356

y -1.74

Remarkably, the results now echo our observations in the “ideal” model (Figures 4.9a

and 4.9b): Best-Stage is decidedly suboptimal, and policies that split the budget among

K = 5 or more consecutive stages perform significantly better. Additionally, we can see that

the “optimal” number of stages to seed (at least in our heuristic algorithm) increases as the

magnitude of network effects increases (Figure 4.9a and 4.9b). The key distinction from

the idealized model is that learning-by-doing makes the temporal benefit of waiting en-

dogenous: now seeding earlier will directly reduce future seeding costs and, consequently,

the effectiveness of residual budget. As a result, we observe what amounts to an “interior”

optimum in budget allocation, with some of the budget used in seeding in order to make

residual budget more valuable later.
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(b) 2X network effects.

Figure 4.9: Linear Cost with Learning-by-Doing: 10X Budget

4.6 Conclusion

We formulate a novel dynamic influence maximization problem under increasing re-

turns to scale and prove that the optimal policy must use up budget at a single stage, giving

rise to a simple Best-Stage search algorithm. In addition, we propose a heuristic algorithm,

Best-K-Stages, that includes Best-Stage as a special case. We experimentally verify that the

proposed Best-Stage algorithm remains quite effective even as we relax the assumptions

to different time-involved cost dynamics, i.e., polynomial and linear cost. On the other

hand, we find that when we replace the time dependency of the cost function by cumulative

adoption (learning-by-doing), Best-K-Stages significantly outperforms Best-Stage.

Looking forward, there are several possible directions we would like to pursue in the

future. First, it is clear that there must exist even better policies remaining unexplored for

the “ideal” cost model with learning-by-doing. Our heuristic search algorithm only covers

a special subset of policies. Design of more efficient algorithms to find optimal solutions

in such a realistic setting can be a meaningful extension to our current work. Second, the

dynamic influence maximization problem proposed in this work assumes seeding does not

discriminate among individuals. This is a very strong assumption, but enables us to make

significant progress. Seeding in a social network with heterogeneous individuals has been
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shown to be NP-hard even for “one-shot” decisions and a simple submodular diffusion

model [16]. A relaxation to individual heterogeneity is sure to create further algorithmic

challenges.
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Chapter 5

Submodular Optimization with Generalized Cost Constraints

The diffusion model that exhibits increasing returns to scale as presented in Chapter 4

is critical for the design of effective marketing policies to promote innovations at their

early stages. Note that most diffusion models still follow the classic property of decreasing

return to scale, which mathematically has a submodular influence function. While the

cost constraints studied in submodular influence maximization are often simple (cardinality

constraint), in contrast, many real marketing applications need to consider more complex

cost structures. For example, in door-to-door marketing, a salesman does not only incur

a cost while visiting each customer but also expenses while traveling along the physical

routes. To tackle the marketing challenge due to cost complexity, this chapter proposes an

efficient heuristic algorithm and demonstrates its efficacy by extensive experiments.

5.1 Introduction

There has been much work on submoduar maximization with cardinality constraints

[187] and additive/modular constraints [188, 189, 23, 24]. In many applications, however,

cost constraints are significantly more complex. For example, in mobile robotic sensing

domains, the robot must not only choose where to take measurements, but also plan a

route among measurement locations, where cost constraints can reflect battery life. As

another example, door-to-door marketing campaigns involve not only the decision about

which households to target, but also the best route among them, and the constraint reflects

the total time the entire effort takes (coming from work schedule constraints). Unlike the

typical additive cost constraints, such route planning constraints are themselves NP-Hard

to evaluate, necessitating approximation in practice.

We tackle the problem of maximizing a submodular function subject to a general cost
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constraint, c(X) ≤ B, where c(X) is the optimal cost of covering a set X (for example, by

a walk through a graph that passes all nodes in X). We propose a generalized cost-benefit

greedy algorithm, which adds elements in order of marginal benefit per unit marginal cost.

A key challenge is that computing (marginal) cost of adding an element (such as computing

the increased cost of a walk when another node is added to a set) is often itself a hard prob-

lem. We therefore relax the algorithm to use a polynomial-time approximation algorithm

for computing marginal cost. We then show that when the cost function is approximately

submodular, we can achieve an approximation guarantee using this modified algorithm,

which runs in polynomial time. While most work in the literature deals with only one ac-

tor, we show that the algorithm we developed for single-actor optimization can be extended

to solve a multi-actor submodular maximization problem, also with provable approxima-

tion guarantees. To our knowledge, this offers the most generally applicable theoretically

grounded approach in our domain known to date.

Our experiments consider two applications: mobile robotic sensing and door-to-door

marketing.1 In the former, we use sensor data on air quality in Beijing, China collected

from 36 air quality monitoring stations, with a hypothetical tree-structured routing network

among them. The objective in this case is to minimize conditional entropy of unobserved

locations, given a Gaussian Process model of joint sensor measurements, subject to routing

cost constraints (e.g., battery life or time). In the latter, we use rooftop solar adoptions from

San Diego county as an example, considering geographic proximity as a social influence

network and the actual road network as the routing network. The goal is to assign a subset

of individuals on the social network to a single marketer or to a collection of marketers so

as to maximize overall adoption given a fixed budget. In both these domains, for either the

single or multi-actor settings, we show that the proposed algorithm significantly outper-

forms competition, both in terms of achieved utility, and, often, in terms of running time.

Remarkably, this is true even in cases where the assumptions in our theoretical guarantees

1Due to the generality of submodular optimization, we evaluate our algorithms in multiple domains.
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do not meaningfully hold.

In summary, this chapter makes the following contributions, building on work previ-

ously presented at AAAI 2016 [32]:

1. a formulation of submodular maximization under general cost constraints (routing

constraints are of particular interest) including both single-actor and multi-actor sce-

narios (the latter is a natural extension of the fundamental problem studied in Zhang

and Vorobeychik [32]);

2. a novel polynomial-time generalized cost-benefit algorithm with provable approxi-

mation guarantees for single-actor submodular maximization (specifically, we prove

a non-bicriterion approximation guarantee, in contrast to the weaker bicriterion re-

sults in Zhang and Vorobeychik [32]);

3. a combination of a sequential planning algorithm and generalized cost-benefit al-

gorithm to solve the multi-actor submodular maximization problem with provable

approximation guarantees (this problem was not considered in Zhang and Vorobey-

chik [32]);

4. an application of our framework and algorithm to mobile robotic sensing, using real

location and measurement data from air quality sensors in Beijing, China;

5. an application of our framework and algorithm to a novel formalization of a door-to-

door marketing problem with social influence, using real road network and single-

family home location data in San Diego county, CA from which we obtain a routing

and social influence networks, respectively;

6. an evaluation of the performance of our algorithm using two approximate algorithms

for computing a shortest walk: the nearest neighbor algorithm and the Christofides

algorithm (only the nearest neighbor algorithm was used in Zhang and Vorobeychik

[32]).
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5.2 Related Work

Submodular optimization has received much attention due to its breadth of applicability,

with applications including viral marketing, information gathering, image segmentation,

and document summarization [20, 21]. A number of efforts consider submodular optimiza-

tion under cardinality or additive cost constraints [187, 188, 189, 23, 24], demonstrating

the theoretical and practical effectiveness of simple greedy and cost-benefit algorithms in

this context. The problem of minimizing travel cost to cover a set of nodes on a graph,

which gives rise to routing constraints that motivate our work, is a variant of the Travel-

ing Salesman Problem (TSP), although in our variations we allow visiting the same nodes

multiple times (this variation is sometimes called the Steiner TSP, or STPS) [190]. We

adopt two well-known algorithms for approximating the shortest coverage route. The first

is referred to as a nearest-neighbor heuristic [191], and is a log(n)-approximation. The

second is the well-known Christofides algorithm [192], which is slower, but yields a better

3/2 approximation factor. 2 Moreover, it is known that TSP has submodular walk length

on tree-structured graphs [193], which motivates our relaxed submodularity assumption on

the cost function due to Alkalay-Houlihan and Vetta [194].

A variation on the problem we study is the Orienteering Problem (OP), in which the

goal is to maximize a total score collected from visiting vertices on a graph, subject to

a travel time constraint [195, 196]. Chekuri and Pal [197] propose a quasi-polynomial

time approximation algorithm that yields a logarithmic approximation guarantee for a more

general submodular objective function. Singh et al. [198] show how this algorithm can

be scaled up using space decomposition and branch-and-bound algorithms, and present

results on planning informative paths for multiple robotic sensors. Note that nodes in our

routing networks are not directly connected, and therefore traveling cost in each grid (if

we decompose the space) cannot be ignored when the grid size is small. This violates

2We used the implementation of the Christofides algorithm available at https://github.com/faisal22/
Christofides, in which matching is done greedily.
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a key assumption of Singh et al. and poses a serious challenge as we attempt to apply

their approach to our problem. Nevertheless, we utilize a variant of the recursive greedy

algorithm with its running time boosted by a simple heuristic and use it as an alternative

in our experiments. Notably, Singh et al. [198] prove that there exists an approximation

guarantee when applying any approximation algorithm successively, known as sequential-

allocation, to solve a multiple robots informative path planning problem. In this chapter,

we use this result to derive the approximation guarantee for multi-actor optimization based

on the single-actor algorithm we propose.

Perhaps the closest, and most practical, alternative to our algorithm is the framework

proposed by Iyer and Bilmes [199]. Specifically, they consider submodular maximization

under a submodular cost constraint, and propose several algorithms, including a greedy

heuristic (GR) and iterative submodular knapsack (ISK) (their third proposed algorithm,

involving ellipsoidal approximation of the submodular cost, scales poorly and we do not

consider it). Our approach is a significant extension compared to Iyer and Bilmes [199]

and Iyer [200]: we present a new generalized cost-benefit algorithm, and demonstrate

approximation guarantees which relax the submodularity assumption on the cost function

made by Iyer. The approximation guarantee is non-bicriterion in its form that complements

a previous bi-criterion result due to Zhang and Vorobeychik [32]. This generalization is

crucial, as routing costs are in general not submodular [193]. Moreover, we demonstrate

that our algorithm outperforms that of Iyer and Bilmes [199] in experiments.

5.3 Problem Statement

Let V be a collection of elements and f : 2V → R≥0 a function over subsets of V , and

assume that f is monotone increasing. For any set X ⊆ V , define f ( j|X) = f (X ∪{ j})−

f (X), that is, the marginal improvement in f if element j ∈V is added to a set X ⊆V . Our

discussion will concern submodular functions f , which we now define.
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Definition 5.3.1. A function f : 2V → R≥0 is submodular if for all S ⊆ T ⊆ V , f ( j|S) ≥

f ( j|T ).

5.3.0.0.1 Single Actor Suppose there is only one actor, whose goal is to find a set X∗ ⊆

V which solves the following problem:

f (X∗) = max{ f (X) | c(X)≤ B}, (5.1)

where c : 2V → R≥0 is the cost function, which we assume is monotone increasing. As with

f , we define c( j|X) = c(X ∪ j)− c(X), which denotes the marginal increase in cost when

j is added to a set X .

An important motivating setting for this problem is when the cost function represents a

least-cost route through a set of vertices X on a graph. Specifically, suppose that GR(V,E)

is a graph in which V are nodes and E edges, and suppose that traversing an edge e ∈ E

incurs a cost ce, whereas visiting a vertex v ∈ V incurs a cost cv. For a given set of nodes

X ⊆ V , define a cost cR(X ;s, t) as the shortest walk in GR that passes through all nodes in

X at least once, starting at node s and ending at t. The cost function for X then becomes

c(X ;s, t) = cR(X ;s, t)+ ∑
x∈X

cx,

that is, the total coverage cost (by a shortest walk through the graph), together with visit

cost, for nodes in X , where start and end nodes are exogenously specified (for example,

s = t is the robot deployment location).3

5.3.0.0.2 Multiple Actor As a natural extension to the single-actor optimization prob-

lem, we suppose there are K actors, each of which covers a node set Xk, k ∈ 1 . . .K, and is

subject to its own budget constraint: c(Xk)≤ Bk. For simplicity, we hereafter assume all Bk

are equal, that is, ∀k,Bk = B for some B. The optimal set of nodes to be covered X∗ is the

3A node in X may be visited more than once, but the visit cost is calculated only once.
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union of coverage assignments X∗k for each actor k, and solves the following maximization

problem:

f (X∗) = max{ f (X) | c(Xk)≤ B,∀k ∈ 1, . . . ,K;X = X1∪ . . .∪XK}, (5.2)

where c : 2V → R≥0 is the monotonically increasing cost function.

5.4 Generalized Cost-Benefit Algorithm

Maximizing submodular functions in general is NP-hard [188]. Moreover, even com-

puting the cost function c(X) is NP-hard in many settings, such as when it involves com-

puting a shortest walk through a subset of vertices on a graph (a variant of the traveling

salesman problem). Our combination of two hard problems seems hopeless. We now

present a general cost-benefit (GCB) algorithm (Algorithm 3) for computing approximate

solutions to Problem (5.1). In the sections that follow we present theoretical guarantees

for this algorithm under additional assumptions on the cost function, as well as empirical

evidence for the effectiveness of GCB. At the core of the algorithm is the following simple

heuristic: in each iteration i, add to a set G an element xi such that

xi = argmax
x∈V\Gi−1

f (x|Gi−1)

c(x|Gi−1)
, (5.3)

where G0 = /0 and Gi = {x1, . . . ,xi}. In Algorithm 3, f also involves an initially covered set

C (which may be empty), and the cost function c(·) is parametrized with starting location s

and end location t; we omit these complications for ease of exposition.

The greedy algorithm based on Equation (5.3) alone has an unbounded approximation

ratio, which was shown for a modular cost function by Khuller et al. [188]. The key modifi-

cation is to return the better of this solution and the solution produced by a greedy heuristic

that ignores the cost altogether. Next, we observed that c(·) may not be computable in

polynomial time. We therefore make use of an approximate cost function ĉ(·) in its place
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which can be computed in polynomial time. The nature of our results will then depend on

the quality of this approximation.

Data: s, t, B, C, V
Result: Selection X ⊆V
G← /0;
V
′ ←V\C;

x̃← argmax{ f (x|C)|x ∈V ′, ĉs,t({x}|C)≤ B};
while V

′ 6= /0 do
foreach x ∈V ′ do

∆x
f ← f (x|G∪C);

∆x
c← ĉs,t(x|G∪C);

end
x∗← argmax{∆x

f /∆x
c|x ∈V

′};
if ĉs,t(G∪{x∗})≤ B then

G← G∪{x∗};
V
′ ←V

′\{x∗};
else

break;
end
return argmaxX∈{{x̃},G} f (X)

Algorithm 3: Generalized Cost-benefit Algorithm: GCB(s, t,B,C,V ).

Observe that, the greedy solution in Algorithm 3 (i.e., solution ignoring the coverage

cost), {x̃} contains only a single element. A variant of this is to continue adding more

elements in greedy order (again, ignoring costs) until we violate the budget constraint.

Moreover, when the budget constraint in GCB is violated, alternatively, we can continue

adding elements that are not first-best, until no more elements can be added. We show

below that these variations yield the same approximation guarantees. Our implementations,

therefore, use these enhancements.

5.5 Theoretical Analysis

A major limitation of prior work on cost-constrained submodular maximization is that

the cost function itself was assumed to be submodular. In most practical problems where

the cost function is generated by routing problems (such as coverage of nodes on a graph,
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or TSP), the optimal cost is not submodular [193]. On the other hand, TSP has submodular

special cases, such as when the graph is a tree [193]. Motivated by this observation, we

make use of a natural relaxation of cost submodularity, α-submodularity.

Definition 5.5.1. A cost function c over subsets of V is α-submodular if

α = min
x∈V\T

min
S,T :S⊂T

c(x|S)
c(x|T )

.

Clearly, c(·) is submodular iff α ≥ 1. In addition, we introduce a notion for a function

c termed curvature which essentially measures deviations from linearity [201, 202].

Definition 5.5.2. For a submodular function c over subsets of V , curvature kc(X) over a

subset X ⊆V is defined as

kc(X) = 1−min
j∈X

c( j|X\ j)
c( j)

,

where c( j) = c({ j}). We call kc ≡ kc(V ) the total curvature of c.

Below, a related notion of curvature, which we denote by k̂c(X), will also be useful as

a means to streamline the analysis:

k̂c(X) = 1−
∑ j∈V c( j|X\ j)

∑ j∈X c( j)
.

As mentioned earlier, since optimal cost is often infeasible to compute, our GCB al-

gorithm makes use of approximate cost function, ĉ. We now make this notion of approx-

imation formal: we assume that ĉ(X) is a ψ(n)-approximation of the optimal cost c(X),

where n = |V |. In other words, c(X) ≤ ĉ(X) ≤ ψ(n)c(X),∀X ⊆ V . Below we use two

algorithms to approximate coverage cost: nearest neighbor, which is fast and easy to im-

plement, and has a log(n)-approximation ratio, and the Christofides algorithm [192], which

is rather complex but has a 3/2-approximation guarantee. Finally, we introduce another
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useful piece of notation, defining

Kc = max{|X | : X ⊆V,c(X)≤ B},

that is, Kc is the size of the largest set X ⊆V which is feasible for our problem.

Next we prove a novel non-bicriterion approximation guarantee for Algorithm 3, in

contrast to our previous bi-criterion guarantee [32].

5.5.1 Building Blocks

Our first step is to connect k̂c(X), kc(X), and kc. The result is given in Lemma 5.5.1.

Lemma 5.5.1. For any monotone α-submodular function and set X ⊆V ,

k̂c(X)≤ kc(X)≤ kc

Proof.

1− kc(X) = min
j∈X

c( j|X\ j)
c( j)

≤ c( j|X\ j)
c( j)

,∀ j ∈ X
(5.4)

Also we note that

1− k̂c(X) =
∑ j∈X c( j|X\ j)

∑ j∈X c( j)

≥
∑ j∈X(1− kc(X))c( j)

∑ j∈X c( j)

= 1− kc(X)

(5.5)

Thus, k̂c(X)≤ kc(X). By monotonicity, it holds that kc(X)≤ kc, since X ⊆V .

Next, we generalize the fundamental properties of submodular functions [187] to α-
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submodular functions.

Lemma 5.5.2. For any α-submodular function c, the following statements hold.

(i). c( j|S)≥ αc( j|T ),∀S⊆ T ⊆V and j ∈V\T .

(ii). c(T )≤ c(S)+ 1
α ∑ j∈T\S c( j|S)−α ∑ j∈S\T c(S∪T\ j),∀S,T ⊆V .

(iii). c(T )≤ c(S)+ 1
α ∑ j∈T\S c( j|S),∀S⊆ T ⊆V .

(iv). c(T )≤ c(S)−α ∑ j∈S\T c( j|S\ j),∀T ⊆ S⊆V .

Proof. (i) Since α = min j∈V\T minS,T :S⊆T
c( j|S)
c( j|T ) , we have c( j|S)

c( j|T ) ≥ α,∀ j ∈V\T .

(i)⇒(ii). For arbitrary S and T with T − S = { j1, . . . , jr} and S−T = {k1, . . . ,kq} we

have

c(S∪T )− c(S) =
r

∑
t=1

[c(S∪{ j1, . . . , jt}− c(S∪{ j1, . . . , jt−1}))]

=
r

∑
t=1

c( jt |S∪{ j1, . . . , jt−1})

≤ 1
α

r

∑
t=1

c( jt |S)

=
1
α

∑
j∈T\S

c( j|S)

(5.6)

where the inequality holds due to (i). Similarly, we know

c(S∪T )− c(T ) =
q

∑
t=1

[c(T ∪{k1, . . . ,kt}− c(T ∪{k1, . . . ,kt−1}))]

=
q

∑
t=1

c(kt |T ∪{k1, . . . ,kt}\kt)

≥ α

q

∑
t=1

c(kt |T ∪S\kt)

= α ∑
j∈S\T

c( j|S∪T\ j)

(5.7)

By subtracting (5.6) and (5.7), we obtain (ii).
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(ii)⇒ (iii). When S⊆ T,S\T = /0, the last term of (ii) vanishes.

(ii)⇒ (iv). When T ⊆ S,T\S = /0,S∪T = S, the second term of (ii) vanishes.

Finally, based on Lemmas 5.5.1 and 5.5.2, the following holds.

Lemma 5.5.3. Given a monotone α-submodular function c over subsets of X, it holds that

∑
j∈X

c( j)≤ |X |
1+α(|X |−1)(1− kc(X))

c(X)

Moreover, it is also the case that,

∑
j∈X

c( j)≤ |X |
1+α(|X |−1)(1− k̂c(X))

c(X)

Proof. It follows from Lemma 5.5.2 (iii) that

c(X)− c(x)≥ α ∑
j∈X\x

c( j|X\ j),∀x ∈ X
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Summing over all instance of x, we get

|X |c(X)−∑
x∈X

c(x)≥ α ∑
x∈X

∑
j∈X\x

c( j|X\ j)

= α ∑
x∈X

(
∑
j∈X

c( j|X\ j)− c(x|X\x)

)

= α

(
∑
x∈X

∑
j∈X

c( j|X\ j)−∑
x∈X

c(x|X\x)

)

= α

(
|X |∑

j∈X
c( j|X\ j)− ∑

j∈X
c( j|X\ j)

)

= α(|X |−1) ∑
j∈X

c( j|X\ j)

= α(|X |−1)(1− k̂c(X)) ∑
j∈X

c( j)

≥ α(|X |−1)(1− kc(X)) ∑
j∈X

c( j)

where the last equality holds due to definition of curvature k̂c and last inequality follows

from Lemma 5.5.1, as 1− k̂c(X)≥ 1− kc(X)≥ 0. The result follows after rearranging the

terms.

5.5.2 Proof of the Approximation Ratio

Suppose the GCB algorithm starts with an empty set G0 = /0, and keeps adding nodes

the set by the greedy rule (Equation 5.3). It then generates a sequence of intermediate

feasible sets, G1, . . . ,Gl , until it violates the budget constraint in iteration l + 1 with a set

Gl+1.

Lemma 5.5.4. For i=1, . . . , l+1, it holds that

f (Gi)− f (Gi−1)≥
ĉ(Gi)− ĉ(Gi−1)

MB
( f (X∗)− f (Gi−1))

where ĉ is an α-submodular ψ(n)-approximation of the α-submodular function c, X∗ is
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the optimal solution of max{ f (X)|c(X)≤ B} and M = ψ(n)
α

Kc
1+α(Kc−1)(1−kc)

.

Proof. We have

f (X∗)− f (Gi−1)≤ f (X∗∪Gi−1)− f (Gi−1)

= f (X∗\Gi−1∪Gi−1)− f (Gi−1)

Assume that X∗\Gi−1 = {Y1, . . . ,Ym} and let

Z j = f (Gi−1∪{Y1, . . . ,Yj}− f (Gi−1∪{Y1, . . . ,Yj−1},∀ j = 1, . . . ,m

then we have

Z j

ĉ(Gi−1∪Yj)− ĉ(Gi−1)
≤

f (Gi−1∪Yj)− f (Gi−1)

ĉ(Gi−1∪Yj)− ĉ(Gi−1)

≤ f (Gi)− f (Gi−1)

ĉ(Gi)− ĉ(Gi−1)

where first inequality holds due to submodularity and second inequality holds due to the

greedy rule. Further, we know that

f (X∗)− f (Gi−1)≤
m

∑
j=1

Z j ≤
m

∑
j=1

[ĉ(Gi−1∪Y j)− ĉ(Gi−1)]
f (Gi)− f (Gi−1)

ĉ(Gi)− ĉ(Gi−1)

From α-submodularity of ĉ, by Lemma 5.5.2 (i), and the fact that ĉ ψ(n) approximates c,

we have

m

∑
j=1

[ĉ(Gi−1∪Yj)− ĉ(Gi−1)]≤
1
α

m

∑
j=1

[ĉ(Y j)− ĉ( /0)]

≤ 1
α

∑
j∈X∗

ĉ(Yj)

≤ ψ(n)
α

∑
j∈X∗

c(Yj)
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Since c is α-submodular, by Lemma 5.5.3, we know that ∑ j∈X∗ c(Yj)≤ |X∗|
1+α(|X∗|−1)(1−kc(X∗))

c(X∗).

As Kc ≥ |X∗|, kc ≥ kc(X∗) and c(X∗)≤ B, it follows that

f (X∗)− f (Gi−1)≤
ψ(n)

α

|X∗|
1+α(|X∗|−1)(1− kc(X∗))

c(X∗)
f (Gi)− f (Gi−1)

ĉ(Gi)− ĉ(Gi−1)

≤ ψ(n)
α

Kc

1+α(Kc−1)(1− kc)
c(X∗)

f (Gi)− f (Gi−1)

ĉ(Gi)− ĉ(Gi−1)

≤MB
f (Gi)− f (Gi−1)

ĉ(Gi)− ĉ(Gi−1)

where M = ψ(n)
α

Kc
1+α(Kc−1)(1−kc)

≥ 1.

Lemma 5.5.5. For i = 1, . . . , l +1 it holds that

f (Gi)≥

[
1−

i

∏
k=1

(1− ĉ(Gk)− ĉ(Gk−1)

MB
)

]
f (X∗)

where ĉ is an α-submodular ψ(n)-approximation of an α-submodular function c, X∗ is the

optimal solution of max{ f (X)|c(X)≤ B} and M = ψ(n)
α

Kc
1+α(Kc−1)(1−kc)

.

Proof. We prove this by induction. When i = 1, from Lemma 5.5.4, we know that

f (G1)≥
ĉ(G1)− ĉ(G0)

MB
f (X∗)
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For i > 1, we have

f (Gi) = f (Gi−1)+ [ f (Gi)− f (Gi−1)]

≥ f (Gi−1)+
ĉ(Gi)− ĉ(Gi−1)

MB
( f (X∗)− f (Gi−1))

=

(
1− ĉ(Gi)− ĉ(Gi−1)

MB

)
f (Gi−1)+

ĉ(Gi)− ĉ(Gi−1)

MB
f (X∗)

≥
(

1− ĉ(Gi)− ĉ(Gi−1)

MB

)[(
1−

i−1

∏
k=1

(1− ĉ(Gk)− ĉ(Gk−1)

MB
)

)
f (X∗)

]

+
ĉ(Gi)− ĉ(Gi−1)

MB
f (X∗)

=

(
1−

i

∏
k=1

(1− ĉ(Gk)− ĉ(Gk−1)

MB
)

)
f (X∗)

Theorem 5.5.6. The GCB algorithm obtains a set X such that

f (X)≥ 1
2
(1− e−

1
M ) f (X∗),

where X∗ is the optimal solution of max{ f (X)|c(X) ≤ B}, ĉ is an α-submodular ψ(n)-

approximation of an α-submodular function c, and M = ψ(n)
α

Kc
1+α(Kc−1)(1−kc)

.

Proof. It follows from Lemma 5.5.5 that

f (Gl+1)≥

[
1−

l+1

∏
k=1

(
1− ĉ(Gk)− ĉ(Gk−1)

MB

)]
f (X∗)

≥

[
1−

l+1

∏
k=1

e−
ĉ(Gk)−ĉ(Gk−1)

MB

]
f (X∗)

=
[
1− e−

1
MB ∑

l+1
k=1 ĉ(Gk)−ĉ(Gk−1)

]
f (X∗)

=

[
1− e−

ĉ(Gl+1)
MB

]
f (X∗)

≥
[
1− e−

1
M

]
f (X∗)
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where the second inequality is due to the fact that 1−x≤ e−x, and the last inequality holds

as ĉ(Gl+1)> B (notice that Gl+1 violates budget constraint). Moreover, by submodularity,

we note that f (Gl+1)− f (Gl)≤ f ({xl+1})≤ f ({x̃}), where x̃= argmaxx∈V{ f ({x})|ĉ({x})≤

B}. Therefore,

f (Gl)+ f ({x̃})≥ f (Gl+1)≥ (1− e−
1
M ) f (X∗)

and

max{ f (Gl), f ({x̃})} ≥ 1
2
(1− e−

1
M ) f (X∗)

Having established a general approximation ratio for GCB, note that an exactly sub-

modular cost function emerges as a special case with α = 1, as does exact cost function

when ψ(n) = 1, with the bound becoming tighter in both instances. Moreover, the bound

becomes tighter as we approach modularity.

5.5.3 Multi-Actor Optimization

Multi-actor submodular maximization (Problem (5.2)) is a natural and important gen-

eralization of the single-actor optimization (Problem (5.1)). Previous work on orienteering

and sensor placement shows that by sequentially applying an approximation algorithm for

a single actor, for either modular/additive [203] or submodular [198] objective function,

an approximation guarantee can be obtained. This provides us with a convenient way to

construct an effective solution based on our GCB algorithm to tackle the multi-actor opti-

mization problem.

5.5.3.1 Sequential Planning

The sequential planning algorithm successively applies a single actor submodular opti-

mization algorithm multiple times, where each actor optimizes its actions given an initially-

covered set resulting from all previous actors. Algorithm 4 demonstrates this using GCB
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(Algorithm 3) for each single-actor subproblem, although any single-actor algorithm can

be used.

Data: Number of actors K, pairs of starting and ending nodes {(si, ti)}i=1,...,K ,
budget B, initial covered set C, set of all nodes V

Result: Selection X ⊆V
X0←C;
foreach 1≤ i≤ k do

Xi← GCB(si, ti,B,Xi−1,V );
Xi← Xi−1∪Xi;

end
return Xi

Algorithm 4: Sequential planning algorithm using GCB as the single-actor optimization
subroutine.

5.5.3.2 Approximation Guarantee

A general result that establishes the approximation guarantee of multi-actor optimiza-

tion problem is due to Singh et al.:

Theorem 5.5.7. [198] The sequential planning strategy will achieves an approximation

guarantee of (1+η) for the multi-actor submodular optimization problem, where η is the

approximation ratio of the single-actor algorithm. Particularly, when all actor have same

start nodes, i.e., si = s j, ∀i, j and end nodes, i.e., ti = t j, ∀i, j, the approximation guarantee

improves to 1/(1− exp(−1/η))≤ 1+η .

In particular, when we sequentially apply GCB algorithm, the approximation ratio η

becomes 2
1−exp(−1/M) . The next result then follows directly:

Corollary 5.5.8. The sequential planning strategy with GCB algorithm will achieve an ap-

proximation guarantee of 3−exp(−1/M)
1−exp(−1/M) for the multi-actor submodular optimization prob-

lem. In the special case when all actors have the same start and end nodes, the approxima-

tion guarantee improves to 1/(1− exp(−1−exp(−1/M)
2 )).
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5.6 Applications

We apply the GCB algorithm to two important problems: mobile robotic sensing and

door-to-door solar marketing, using both real and simulated networks. We show that the

proposed GCB algorithm typically outperforms state-of-the-art alternatives, particularly

when routing problems do not yield a submodular optimal cost function. Since both ap-

plications involve cost constraints arising from routing decisions, our GCB algorithm uses

two polynomial-time algorithms for approximating the least-cost walk: the nearest neigh-

bor heuristic [191] (GCB-nn) and the Christofides algorithm [192] (GCB-ct). We compare

the two resulting GCB implementations to three state-of-the-art algorithms: the modified

recursive greedy (RG) (see Algorithm 5 in Appendix 5.7), simple greedy (GR) [188], and

iterative submodular knapsack (ISK) [199].4

All experiments were performed on an Ubuntu Linux 64-bit PC with 32 GB RAM and

an 8-core Intel Xeon 2.1 GHz CPU. Each experiment used a single thread.

5.6.1 Case Study 1: Mobile Robotic Sensing

5.6.1.0.1 Single Robot We start with the following single-robot sensing problem. A

mobile robot equipped with sensors and aims to optimally choose a subset of locations in

2-D space to make measurements so as to minimize the uncertainty about the unmeasured

locations. Equivalently, the objective is to maximize entropy of selected locations [22]. We

suppose that the robot faces two kinds of costs (e.g., reflecting battery life or time): costs

of moving between a pair of neighboring locations, and costs of making measurements at a

particular location, and must begin and end a walk at an exogenously specified location s.

To reflect movement costs, we generated a hypothetical tree-structure routing network for

the mobile robot (Figure 5.1), which corresponds to a minimum spanning tree based on the

distance matrix of the original sensor locations.

4RG is not included in door-to-door marketing experiments because it does not scale to these problem
instances.
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Figure 5.1: Mobile Robot Routing Network

Let A be the set of selected locations to be visited, and H(A) =−
∫

p(xA) log p(xA)dxA

be the corresponding entropy, where xA is the vector of random variables corresponding

to A. H is known to be monotone increasing and submodular [22]. For any order of

the elements in A, denote by Ai the set of locations that contains the first i elements, i.e.,

Ai = {x1, . . . ,xi}. Then, by the chain-rule of entropies, H(Ai) can be computed by

H(Ai) = H(xi|Ai−1)+ . . .+H(x2|A1)+H(x1|A0),

where the marginal benefit of adding x to Ai is H(x|Ai) =
1
2 log(2πeσ2

x|Ai
), with σ2

x|Ai
=

σ2
x −ΣxAiΣ

−1
AiAi

ΣAix. In this expression, σ2
x is the variance at location x, ΣxAi is a vector of

covariances Cov(x,u),∀u ∈ Ai, ΣAiAi the covariance submatrix corresponding to measure-

ments Ai, and ΣAix is the transpose of ΣxAi . The routing cost of the mobile robot for a set of

locations A to be visited is c(A) = cR(A)+∑i∈A ci, where ci is the cost of making a mea-

surement at location i, and cR(A) is the cost of the shortest walk covering all locations in

A. Formally, our single-robot mobile sensing problem solves for an optimal A∗, such that
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H(A∗) = max{H(A) | c(A)≤ B},

To evaluate performance of GCB in this application, we use sensor data representing air

quality measurements for 36 air quality monitoring stations in Beijing, China [204], where

we limit attention to temperature. We estimate the covariance matrix Σ used in computing

entropy by fitting a multivariate Gaussian distribution to this data. As discussed above, we

approximate the cost of the shortest walk cR(A) in two ways: using the nearest neighbor

heuristic (GCB-nn) and using the Christofides algorithm (GCB-ct).
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Figure 5.2: Entropy (a)-(c) & run time (d)-(f) comparison among algorithms for single
robot mobile sensing scenario. (a), (d) As a function of visit (sensing) cost, fixing budget at
200. (b), (e) As a function of budget, fixing visit cost = 0. (c), (f) As a function of budget,
fixing visit cost = 10.

Figure 5.2 shows the results of entropy (performance) and running time comparisons

of GCB-nn and GCB-ct with three previous approaches (RG, GR and ISK). (In this figure,

GCB-nn lines overlap with GCB-ct and are therefore not directly visible; the same issue

obtains in Figure 5.3 below.) GCB-nn and GCB-ct achieve almost the same entropy, and

while GCB-ct is slower than GCB-nn, it is considerably faster than other alternatives. GCB-

nn and GCB-ct both nearly always outperform the other three in terms of entropy, often by
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a large margin; GR is particularly weak in most comparisons. Moreover, the two GCB

implementations have competitive running time with GR, and scale far better than ISK and

RG. In some cases (see Figure 5.2(b)), RG yields higher entropy than GCB. However, its

significantly higher running time (see Figure 5.2(e)), which is several orders of magnitude

slower than all other algorithms, makes it impractical.

5.6.1.0.2 Multiple Robots As an extension of the single robot sensing problem, the

multi-robot sensing problem solves H(A∗) = max{H(A) | c(Ak) ≤ B,∀k ∈ 1, . . . ,K;A =

A1 ∪ . . .∪AK}, where each robot is subject to a budget B, and the goal is to assign a set

of locations to each robot so that the entropy of the collective locations are maximized,

subject to individual robot constraints on routing and measurement costs.

All algorithms in the single robot experiments are combined with the sequential plan-

ning strategy to solve multi-robot mobile sensor placement problem. Figure 5.3 shows the

results of entropy and run time of multi-robot sensing optimization for three robots (i.e.,

K = 3). The GCB-based algorithms achieve the highest entropy in almost all cases. Both

have nearly the same entropy, but GCB-nn is faster, and both scale better than ISK and RG.

ISK seems the weakest one in terms of entropy, although it is several orders of magnitude

faster than RG. RG can achieve comparable entropy to GCBs but is orders of magnitude

slower.

5.6.2 Case Study 2: Door-to-door Marketing of Rooftop Solar Photovoltaic Systems

Our second application is to the door-to-door marketing problem, which we cast as

social influence maximization [124] with routing constraints. We formalize this problem by

considering two interdependent networks: the social influence network, which captures the

influence adopters (of a product) have on the likelihood that others adopt, and the routing

network, which represents routes taken by a marketer to visit households of choice. To

our knowledge, ours is the first formal treatment of door-to-door marketing problem in a
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Figure 5.3: Entropy (a)-(c) & run time (d)-(f) comparison among algorithms for multiple
robots sensing scenario. (a), (d) As a function of visit (sensing) cost, fixing budget at 100
for each robot. (b), (e) As a function of budget, fixing visit cost = 0. (c), (f) As a function
of budget, fixing visit cost = 10.

constrained submodular optimization framework.

5.6.2.0.3 Single Marketer In the single-marketer problem, the goal is to choose a sub-

set of individuals to maximize total adoption of the marketed product in a population as

mediated by social influence. We model social influence as a diffusion process on a social

influence network GS = (N,E), where N is the set of households (potential adopters) and

E a directed graph with each edge (i, j) ∈ E representing influence of node i on node j.

We model diffusion of social influence using the well-known independent cascade (IC)

model [124]. In the IC model, each neighbor j of an adopter i (corresponding to an edge

(i, j) ∈ E) is independently influenced to adopt with probability pi j. The diffusion process

begins with a subset of nodes A initially visited by the marketing agent, and this adop-

tion process iteratively repeats until no new nodes adopt. The expected final number of

adopters after this process terminates is denoted by I(A); we term this quantity influence
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(of households A). Kempe et al. [124] showed that the function I(A) is monotone increas-

ing and submodular. In our experiments below, we used pi j = 0.1 for all network edges

(i, j). Since the IC model is stochastic in nature, we run it 1000 times and use a sample

average to estimate I(A).

Unique to a door-to-door marketing problem is the nature of costs which constrain

which subsets of households A can be feasibly visited by the marketer. Specifically, we

posit the existence of a routing network GR of which household nodes N are a subset, and

edges correspond to feasible routes, with costs ci j of traversing an edge (i, j) corresponding,

for example, to time it takes to use the associated route. We assume that the marketer faces

a budget constraint B on the total routing and visit costs, stemming, for example, from

constraints on normal working hours. Thus, the costs of a walk which visits all nodes in

A is c(A) = cR(A)+∑i∈A ci, where ci is the cost of visiting a household i, and cR(A) is the

cost of the shortest walk covering all households in A. Formally, then, the marketer aims to

choose a subset of households A∗ solving

I(A∗) = max{I(A) | c(A)≤ B}.

5.6.2.0.4 Multiple Marketers In the case of K marketers, we aim to maximize the total

number of adopters induced by the union of households visited by all marketers. Formally,

we solve

I(X∗) = max{I(A) | c(Ak)≤ B,∀k ∈ 1 . . .K;A = A1∪ . . .∪AK},

where each marketer k is subject to an identical budget constraint B.

5.6.2.1 Adoption of Visible Technology

We instantiate the door-to-door marketing problem in the context of marketing rooftop

solar photovoltaics (PV). For solar PV, an important medium for social influence is its
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visibility: specifically, Bollinger and Gillingham [157] showed that the number of solar

systems installed in a neighborhood (more specifically, zip code) significantly impacts a

household’s likelihood to adopt it. Similarly, Zhang et al. [19] confirmed the significance

of geographic proximity in determining the probability of solar PV adoption. Using these

insights, we generate a social influence network based on a household location dataset for

San Diego county, CA, inducing this network based on proximity as measured by a 165 foot

radius, giving rise to the influence network shown in Figure 5.4 (top). Figure 5.4 (bottom)

Figure 5.4: Top: social influence network arising from geographic proximity. Bottom:
corresponding routing network.

shows the corresponding routing network obtained from OpenStreetMap website, where

red dots are way points or intersections in the road networks. Each house is connected to

its nearest way point, which finally gives rise to the routing network. The costs of edges in

the routing network correspond to physical distance.

5.6.2.1.1 Single Marketer Figure 5.5 shows the results of comparing our GCB algo-

rithms to GR and ISK, both in terms of achieved average influence and running time. In
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Figure 5.5: Influence σ (a)-(c) & run time (d)-(f) comparison among algorithms for single
marketer door-to-door marketing scenario with visible technology. (a), (d) As a function of
visit (sensing) cost, fixing budget at 3. (b), (e) As a function of budget, fixing visit cost =
0. (c), (f) As a function of budget, fixing visit cost = 0.1.

all cases, we can observe that GCBs outperforms the others on both measures, often by a

substantial margin. Particularly striking is the running time comparison with ISK, where

the difference can be several orders of magnitude. In addition, different from our finding

in the mobile robotic sensing application, where both GCB algorithms achieve nearly the

same objective value, here GCB-ct achieves significantly higher influence than GCB-nn,

especially when the budget constraints allow for a coverage of a large set of nodes, for

example, a small visit cost for a fixed budget in Figure 5.5 (a), or a large budget for a fixed

visit cost, as in Figures 5.5 (b) and (c).

5.6.2.1.2 Multiple Marketers Figure 5.6 shows achieved average influence and run

time comparison of GCB algorithms to GR and ISK solving multi-marketer influence max-

imization for three marketers (K = 3). GCB algorithms remain the most efficient among

all candidates, achieving the highest influence and scaling better than the state-of-art ISK.
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Similarly, we observe that GCB-ct outperforms GCB-nn in terms of average influence in

cases of lower visit cost and larger budget, although it is slower than GCB-nn.
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Figure 5.6: Influence σ (a)-(c) & run time (d)-(f) comparison among algorithms for multi-
marketer door-to-door marketing scenario with visible technology. (a), (d) As a function of
visit (sensing) cost, fixing budget at 3 for each marketer. (b), (e) As a function of budget,
fixing visit cost = 0. (c), (f) As a function of budget, fixing visit cost = 0.1.

5.6.2.2 Experiments on Random Graph

Our second experimental investigation in the context of door-to-door marketing prob-

lems involves random graph models for both social influence propagation and routing. In

particular, we use the well-known Barabasi-Albert (BA) model [205] to generate a random

social network (a natural choice, since the BA model has been shown to exhibit a scale-free

degree distribution, which is a commonly observed feature of real social networks), and

the Erdos-Renyi (ER) model to generate the routing network [206]. The BA model is an

iterative generative model which starts with a small seeded network (e.g., a triangle), and

adds a node one at a time, connecting it to m vertices, with each edge using the new node as

a source generated with probability proportional to the target node’s degree. The ER model
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is the simplest generative model of networks, where each edge is added to the network with

a fixed probability p.
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Figure 5.7: Entropy (a)-(b) & run time (c)-(d) comparison among algorithms for door-to-
door marketing scenario over different sizes of random graph (p=0.17 in the ER model).
(a), (c) As a function of graph size, fixing budget at 10 and visit cost at 0. (b), (d) As a
function of budget, fixing budget at 10 and visit cost = 0.2.

Our first set of experiments investigates the scalability of all candidate algorithms. In

the implementation, we generated BA models with size of 10, 20, 30 and 50, each adding

m = 2 edges in every iteration. We only consider an ER model with p = 0.17.5 Figure 5.7

shows the comparison of achieved influence and run time for the single actor influence

maximization problem. The major takeaway is that RG is not a scalable solution as graph

size increases, running roughly 100 times slower than the others.

Our second set of experiment compares two GCB algorithms with GR and ISK, ex-

cluding the non-scalable RG algorithm. In our implementation, we generated a BA social

network of over 200 nodes, adding m = 2 edges in each iteration. Here, we considered

ER models with p ∈ {0.01,0.02,0.03}. To generate routing costs, we randomly assigned

5Our experiments show that ER graph with this probability typically yields networks which are mostly
connected, with only occasional isolated nodes.
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coordinates for the 200 nodes in 2-D space, and use the Euclidean distance between nodes

as a proximity measure.
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Figure 5.8: Influence σ comparison among algorithms for single marketer door-to-door
marketing scenario on random graphs. Top row: p = 0.01 in the ER model. Middle row:
p = 0.02. Bottom row: p = 0.03. (a) As a function of visit (sensing) cost, fixing budget
at 10. (b) As a function of budget, fixing visit cost = 0. (c) As a function of budget, fixing
visit cost = 0.5.

5.6.2.2.1 Single Marketer Figures 5.8 and 5.9 show the results for the random graph

experiments of a single marketer, which are consistent with the observations so far: GCB-

nn and GCB-ct tend to outperform alternative algorithmic approaches both in terms of

objective value (influence, in this case), and in terms of running time (they are comparable

to GR, and much faster than ISK). In all cases, varying either visit costs with a fixed budget,

or varying the budget for a fixed visit cost, ISK turns out to be the worst in terms of achieved
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Figure 5.9: Run time comparison among algorithms for single marketer door-to-door mar-
keting scenario on random graphs. Top row: p = 0.01 in the ER model. Middle row:
p = 0.02. Bottom row: p = 0.03. (a) As a function of visit (sensing) cost, fixing budget
at 10. (b) As a function of budget, fixing visit cost = 0. (c) As a function of budget, fixing
visit cost = 0.5.

influence. Interestingly, we do not observe significant difference between GCB-nn and

GCB-ct on both measures. We can also note that as p increases (and the routing network

becomes denser), the running time of ISK increases rather dramatically, whereas both GCB

and GR remain quite scalable.

5.6.2.2.2 Multiple Marketers Figures 5.10 and 5.11 show results on multi-marketer

influence maximization on random graphs. Clearly, the two GCB algorithms both out-

perform all other alternatives on both achieved influence and run time, although GCB-nn

and GCB-ct perform similarly. Again, ISK tends to be significantly outperformed on both
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Figure 5.10: Influence σ comparison among algorithms for multi-marketer door-to-door
marketing scenario on random graphs. Top row: p = 0.01 in the ER model. Middle row:
p = 0.02. Bottom row: p = 0.03. (a) As a function of visit (sensing) cost, fixing budget at
10 for each agent. (b) As a function of budget, fixing visit cost = 0. (c) As a function of
budget, fixing visit cost = 0.5.

measures.

5.7 Conclusion

We considered a very general class of problems in which a monotone increasing sub-

modular function is maximized subject to a general cost constraint for both single-actor and

multi-actor scenarios. This problem is motivated by two very different applications: one is

mobile robotic sensing, in which a robot moves through an environment with the goal of

making select sensor measurements in order to maximize the entropy of selected measure-
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Figure 5.11: Run time comparison among algorithms for multi-marketer door-to-door mar-
keting scenario on random graphs. Top row: p = 0.01 in the ER model. Middle row:
p = 0.02. Bottom row: p = 0.03. (a) As a function of visit (sensing) cost, fixing budget at
10 for each agent. (b) As a function of budget, fixing visit cost = 0. (c) As a function of
budget, fixing visit cost = 0.5.

ment sites, and another in door-to-door marketing. In both of these applications, the cost

constraints arise from routing costs, as well as costs to visit nodes (e.g., to make sensor

measurements or to make a marketing pitch). Our algorithmic contribution was a novel

generalized cost-benefit algorithm, for which we showed approximation guarantees with a

relaxed notion of cost submodularity as well as allowing optimal cost to be only approx-

imately computed. Furthermore, this algorithm can be used to construct another efficient

algorithm with provable approximation guarantees, making use of a sequential planning

approach, to solve the multi-actor optimization problem. Through an extensive experimen-

tal evaluation on both real and synthetic graphs we showed that our approach, implemented
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with two different cost approximation methods, significantly outperforms state-of-the-art

alternatives in terms of objective value achieved, running time, or both.

APPENDIX: Recursive Greedy Algorithm

In the related literature investigating the so-called Orienteering Problem, a recursive

greedy algorithm has been proposed for the single-actor submodular maximization prob-

lem (Problem in 5.1) [197]. Singh et al. [198] subsequently adapted this algorithm to solve

the multiple-robot informative path planning problem. While somewhat older than some of

the other state-of-the-art approaches, we make it one of the baselines for our experimental

evaluation. However, the original algorithm does not account for visit cost, making it inap-

plicable to our target applications as is. Specifically, if we decompose the routing space like

they do, nodes in some grids may not be locally connected, which violates their assumption

that the coverage cost within a grid can be ignored when the grid is small. To address these

challenges as well as provide a reasonable baseline for our GCB algorithm, we propose a

modified recursive greedy algorithm (see Algorithm 5), which not only handles visit cost

but also embodies a few novel ideas that allow us to improve its running time.

Like the original recursive greedy algorithm, Algorithm 5 recursively divides the path

into two sub-paths, P1 and P2, and utilizes P1 in a greedy fashion. It includes the following

new features:

1. c(s, t) = l(s, t) + c(t): the original recursive greedy algorithm considers only the

length of the path s− t (from s to t), l(s, t), which we extend by including the visit

cost of the end node c(t).

2. Ṽ : the original recursive greedy algorithm examines all nodes in V on the graph,

which is inefficient, since many middle nodes might not be beneficial (since they

have lower marginal utilities). Our strategy (denoted by topKnodes(V,s, t)) is to

choose a node from only the top-k most beneficial nodes determined by the GCB
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Data: s, t, B, C, V , i
Result: Path P
if c(s, t)> B then return infeasible;
P← s− t;
if i = 0 then return P;
m← f (V (P)|C);
Ṽ ← topKnodes(V,s, t);
foreach v ∈ Ṽ do

B̃← expSplit(B);
foreach B1 ∈ B̃ do

P1← RG(s,v,B1,C, i−1);
P2← RG(v, t,B−B1,C∪V (P1), i−1);
if f (V (P1 ·P2)|C)> m then

P← P1 ·P2;
m← f (V (P)|C);

end
end

end
return P

Algorithm 5: Modified Recursive Greedy Algorithm: RG(s, t,B,C,V, i)

heuristic (in Section 5.4).

3. B̃: The original recursive greedy algorithm uses a linear scan of integers from 0 to B,

which scales poorly for large budgets. Motivated by the method in [198], we utilize

an exponential budget split, i.e., 0,1,2,4, . . . ,B, which is denoted by expSplit(·).

In Algorithm 5, V (P) refers to the set of nodes covered by a path P, P1 ·P2 is the concate-

nation of path P1 and path P2. As the budget is assumed to be an integer, like the original

recursive greedy algorithm, the modified recursive greedy algorithm also requires rescal-

ing the real-valued budget and costs. Moreover, the number of iterations i is often set to a

value of dlog2(B)e [198]. It is not difficult to see that the running time of the algorithm is

O(|Ṽ ||B̃|O(log2 |Ṽ |)). In particular, when Ṽ =V and B̃ = B, i.e., without sub-approximation,

the approximation guarantee of the modified algorithm remains the same as the original

algorithm, as stated in the following corollary:

Corollary 5.7.1. Let P∗ ∈ P(s, t,B) such that P∗ = (s = v0,v1, . . . ,vk = t) be an optimal s-
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t path solution. Let P be the path returned by the modified recursive greedy algorithm

RG(s, t,B,C,V, i), such that, Ṽ = V and B̃ = B. If i ≥ d1 + logke, then f (V (P)|C) ≥

f (V (P∗)|C)/d1+ logke.

Proof. Proof. The result directly follows from the original proof where visit cost is zero

due to Chekuri and Pal [197].
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Chapter 6

Multi-Channel Marketing with Budget Complementarities

Having specialized algorithms that solve for optimal or near-optimal marketing strate-

gies in specific settings like in Chapter 4 and Chapter 5 are not sufficient to build the

algorithmic marketing system (see Figure 1.1). In fact, there remain other challenges that

need to be addressed. First, even if we are able to optimize our actions in each marketing

setting (or channel) for given budget, at a higher managerial level, it is not clear how to

split budget among multiple marketing channels. Second, as the effect of each channel is

generally evaluated by simulation models, any budget optimization algorithm that ignores

the variability in running time of these simulations would fail to provide efficient market-

ing plans. Third, the effect of marketing actions does not follow the commonly-assumed

smooth or continuous patterns instead highly discrete, which also challenges the existing

convex optimization techniques. This chapter aims to address these challenges by introduc-

ing a powerful discrete budget optimization framework designed to interact with simulation

models in an efficient manner providing satisfying marketing plans.

6.1 Introduction

The emergence of digital media, such as the world wide web, search engines, and on-

line social networks, has opened up tremendous opportunities for today’s marketers to look

for prospects and engage existing customers. A mix of these innovative channels with

traditional ones, such as TV, direct mailing, and door-to-door marketing, has been widely

adopted by many companies to generate more sales, maintain stronger customer relation-

ships, and achieve a higher customer retention rate [25]. Despite its benefits, this practice

has also significantly increased operational complexity, making marketing one of the key

managerial challenges [26, 27]. The demand for effective budget allocation solutions in
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multi-channel marketing campaigns has in turn given rise to major software products aimed

towards this goal, including those developed by SAS and IBM, among others.

In order to determine the optimal budget allocation among the marketing channels,

the marketer needs a way to evaluate the effectiveness of alternative budget splits. Ad-

vanced simulation models, and abundant data that can be used to calibrate them, allow

doing just that. The use of simulations, as compared to analytic objective functions (such

as concave and continuous utility being maximized), introduces an important technical

challenge: simulations are often slow, and parsimony is therefore crucial in query-based

black-box optimization methods. A second technical challenge arises from the fact that the

response function for each channel (such as the number of individuals who buy the prod-

uct) commonly exhibits budget complementarities, requiring a non-trivial added expense

on a channel to make a significant impact on the response function. For example, in door-

to-door marketing, a budget increment needs to be sufficient to hire another salesman, or

increase their working hours by a discrete amount. Similarly, in keyword auctions, moving

up a slot requires a discrete added investment, the amount of which depends on specific

pricing strategies and competition among bidders.

To address these challenges, we present a novel and powerful discrete budget optimiza-

tion framework to generate near-optimal budgeting strategies when the budget allocation

response is a step function represented by a simulator. We first show that the budget op-

timization problem can be readily cast into a multi-choice knapsack problem (MCKP),

which admits effective state-of-the-art algorithms. Since the step-wise response function is

represented using a simulator, the thresholds which identify the discrete jumps (serving as

weights in the MCKP) are unknown, and a finite number of simulator queries can at best

isolate these to small intervals. Consequently, the MCKP can at best be solved approx-

imately. We show that under mild conditions, for sufficiently small bounds on weights,

solving the MCKP with weight upper bounds yields a 2-approximation, and this bound

is tight. Surprisingly, this bound holds even when the thresholds are not fully explored.
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Next, we develop two efficient query algorithms that allow us to obtain tight intervals

around MCKP weights (as well as associated response values). The first, Generalized

Binary Query (GBQ) is a generalization of the classic binary search applied to the case of

multiple thresholds, which we show to be more efficient than simple linear search. The sec-

ond approach, namely, Heuristic Binary Query (HBQ), is designed to reduce the number

of queries needed per iteration, with the help of the solution of an auxiliary optimization

problem that corresponds to the best possible payoff in the next round.

Our framework is implemented in a simulated marketing environment that mimics a

real-world multi-channel campaign in a targeted geographical area. We use this simulator

to conduct extensive experiments to demonstrate the usability of the proposed framework

and compare the performance of two query algorithms as well as a Simulated Annealing

(SA) algorithm, which is a well-known stochastic local search method typically used for

problems with highly non-linear objectives. Our results show that HBQ achieves payoffs

only slightly lower than GBQ, but using significantly less time. Moreover, both HBQ and

GBQ outperform SA in all experiments, reaching competitive payoff levels significantly

faster.

In summary, we make the following contributions:

1. A novel discrete budget optimization problem with an application to multi-channel

marketing, transformed into a multi-choice knapsack problem;

2. A theoretical analysis of the resulting problem in which weights (corresponding to

steps in the response function) can only be bounded, showing that solving the ap-

proximate MCKP with upper bounds on weights yields a tight 2-approximation;

3. Two novel simulation query strategies for obtaining upper and lower bounds on

MCKP weights: Generalized Binary Query and Heuristic Binary Query;

4. A simulation platform to evaluate the multi-channel marketing algorithms;
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5. Extensive experiments across different marketing situations and a variety of bud-

gets demonstrating the usability of the proposed framework and efficacy of proposed

query methods, compared to a simulated annealing algorithm.

6.2 Related Work

Budget optimization is a classical problem in economics, operations research, and man-

agement science. The problem is traditionally tackled by maximizing specific objectives,

e.g., sales, profit, or customer equity, based on a set of pre-specified constraints [26]. In

practice, the real-world markets involve considerable complexity, for example, as a con-

sequence of social interactions and influence [124]. Consequently, simulation-based op-

timization methods, such as system dynamic models, are often used to aid decision mak-

ing [207]. Interestingly, most previous work assumes a continuous objective and solves

the problem by smooth techniques which rely on computing a gradient or Hessian of the

objective. In contrast, we present a novel combinatorial optimization framework in a set-

ting where channel payoff exhibits strong budget complementarities which we model by

considering a stepwise response function. Note that the non-smooth optimization tech-

niques [208] such as the sub-gradient methods fail in our setting since the sub-gradient is

not informative in step functions.

Recently, extensive work focused on budget optimization for a single marketing chan-

nel. For example, Yang et al. propose a hierarchical budget allocation framework for online

advertising that links decisions at different decision levels, such as system, campaign, and

keyword [209]. Using individual data, several authors model user responses to marketing

actions as a Markov Chain and solve the budget optimization problem using a constrained

Markov Decision Process (MDP). For instance, Abe et al. develop an MDP framework

with reinforcement learning for direct mailing campaigns [210]. Under the assumption of

positive carryover effects, Archak et al. propose an optimal greedy algorithm for online

adverting in an MDP framework [211]. Boutilier and Lu address the allocation of a bud-
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get among multiple MDPs representing different types of users or groups [212]. Zhang

and Vorobeychik develop a route planner for door-to-door marketing based on submodular

optimization [213]. These specialized budget optimizers based on empirical data are quite

effective for targeted marketing, but are still specialized sub-problems of the overall prob-

lem of optimally allocating a budget among a collection of marketing channels, which we

address.

The multi-choice knapsack problem (MCKP) is a variant of the simple knapsack prob-

lem in which a class can have multiple items but only one can be chosen, and has been

extensively explored in the literature [214, 215, 216]. Our theoretical analysis of approxi-

mation bounds is related to sensitivity analysis in operations research [217], which exam-

ines the sensitivity of the optimal solution to changes in the coefficient matrix, cost, price,

and budget. Hifi et al. provide sensitivity intervals for the 0-1 knapsack problem subject to

changes of item weights [218]. In contrast, we address the question about the worst-case

performance of the MCKP in which weights are tightly bounded, as a means to a broader

end of multi-channel marketing budget allocation. Finally, our work is related to, but dis-

tinct from robust optimization [219, 220, 221, 222]. This line of work usually imposes a

limit for the number of uncertain parameters (e.g., weights) to avoid overly conservative

solutions, while we use the upper-bounds for all weights to secure a feasible solution. Go-

erigk et al. study query strategies for a robust knapsack problem, rather than a general

MCKP as in our case [222]. They assume that a single query returns “true” weight; by

contrast, we design a sequence of queries to efficiently approximate weight bounds, but

cannot in general obtain true weights, as is commonly the case when marketing response is

simulated.

6.3 Problem Statement

Suppose that a marketer is given a fixed budget B to advertise a new product over n

marketing channels. Let x = (x1, . . . ,xn) represent a budget split with xi the amount of the
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budget allocated to channel i. Let r(x) be the net reward to the marketer (e.g., in terms of

overall product uptake) given a budget split x. Our goal is to solve the following multi-

channel marketing optimization (MCMO) problem:

max
x

r(x) (6.1a)

s.t. :
n

∑
i=1

xi ≤ B, (6.1b)

that is, we aim to optimally split the budget B across the n channels to maximize the total

net payoff. If r(x) are concave and known and the budget divisible, as is commonly as-

sumed in numerous related formulations, Problem 6.1 is straightforward to solve with the

standard convex optimization methods (indeed, this is just the standard budget-constrained

utility maximization problem in consumer theory [29]). What has not received much atten-

tion, and is of interest to us, is this problem in which (a) r(x) exhibits strong, but imperfect,

complementarities, and (b) r(x) is not a priori known, but specified by a time consuming

simulation model. For example, r(x) may capture a complex social influence diffusion

process which cannot be analytically characterized and is evaluated in simulations, as is

the case for many important social influence models in the literature [124, 186]. More-

over, making a non-negligible impact on a given agent’s decision (e.g., in seeding them by

providing this agent a product at a low cost) incurs a non-zero cost which may be a com-

plex function of contextual factors also embedded in a simulation, and therefore unknown

a priori. As another example, online auction-based advertising channels (such as keyword

auctions) require a sufficiently high investment to move into a higher priority slot, which

makes a discontinuous impact on the expected number of clicks and, thus, conversions, and

the precise amount of this investment is a complex function of bidding behavior by a col-

lection of agents which can be captured in a simulation environment, but could be difficult

to characterize in closed form.

In order to model such complementarities, we begin by assuming that r(x) = ∑i ri(xi),
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with ri(xi) increasing and ri(0) = 0. For each channel i, we suppose that there is a collection

of thresholds wi j so that crossing a threshold results in a jump in ri(xi). Formally, we

assume that ri(xi) is a step function of the following form:

ri(xi) =



0, xi < wi1

ri1, wi1 ≤ xi < wi2

. . . , . . .

riJi, xi ≥ wiJi

where there are Ji(≥ 1) thresholds {wi j} j=1,...,Ji and non-zero payoff levels {ri j} j=1,...,Ji .

As the first step, we transform Problem 6.1 with the structure just described into an

equivalent multi-choice knapsack problem (MCKP). Since in our model any investment

level not corresponding to a threshold is wasteful, the decision problem is to determine at

which threshold level j we should allocate the budget for each channel i. We encode this

decision as a binary variable yi j, which is 1 whenever we allocate budget at threshold level

j for channel i. The MCKP is then

max
yi j∈{0,1}

n

∑
i=1

Ji

∑
j=1

ri jyi j (6.2a)

s.t. :
n

∑
i=1

Ji

∑
j=1

wi jyi j ≤ B (6.2b)

∀i ∈ {1, . . . ,n},
Ji

∑
j=1

yi j ≤ 1, (6.2c)

where the first inequality is the budget constraint, and the second implies that at most one

budget level can be picked for any channel. Note that Problem 6.1 with known thresholds

is harder than the MCKP, as a polynomial oracle for it can solve an arbitrary instance of

MCKP. Throughout, it will be useful to denote the above MCKP as MCKP(Ji,wi j), with a

specified set of Ji weights for each i; the corresponding ri j will be clear from context.
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Armed with the MCKP formulation, we can now identify the key technical challenges:

(1) wi j can only be approximately determined from a finite number of queries, since these

lie on a continuous interval, and (2) the problem parameters wi j and ri j must be obtained

using time consuming simulations. We address these challenges below.

6.4 Approximate Multi-Choice Knapsack

We begin by addressing the first challenge above: the threshold values wi j cannot be

identified exactly. Surprisingly, despite considerable prior work on approximate and robust

knapsack problems, this particular problem remains open, to the best of our knowledge.

Our analysis of approximate MCKP may thus be of independent interest, but for us it is

just an important piece of the puzzle. We subsequently take up the complementary piece:

efficient query strategies for achieving good MCKP approximations.

Formally, suppose that wi j are not known, but we have lower and upper bounds so

that wi j ∈ [wi j,wi j], and let ε := maxi j{wi j −wi j} > 0, which implies that wi j −wi j ≤

ε for all i, j. Since wi j are unknown, we propose to approximate the associated MCKP

with MCKP(Ji,wi j). Next, we demonstrate that under a set of conditions which can be

guaranteed with sufficiently many simulation queries, we can obtain a 2-approximation of

MCKP(Ji,wi j), and this approximation is tight unless the weights are known exactly.

First, notice that we have thus far implicitly assumed that every interval contains ex-

actly one threshold wi j. This is a significant challenge: even if we can guarantee that for a

particular fixed ε all thresholds are bounded within intervals of length at most ε , we would

still be unable to distinguish thresholds that all cluster within some such interval. Fortu-

nately, even in such a case we do know that all such thresholds are in one of the intervals

we have identified. This turns out to be sufficient to obtain the approximation guarantees.

Formally, suppose that there are J′i ≤ Ji thresholds for channel i, and we solve MCKP(J′i ,wi j).

For ease of exposition, let us denote the optimal value of Problem 6.2 as OPT (Ji,wi j),

while the optimal value of MCKP(J′i ,wi j) will be denoted by OPT (J′i ,wi j). Finally, let
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OPT (J′i ,wi j) be the optimal value of the problem MCKP(J′i ,wi j), which uses lower-bound

weights {wi j} but upper-bound payoffs {ri(wi j)} of J′i intervals. The following is our key

result:

Theorem 6.4.1. Assume that wi j≤B,∀i∈ 1, . . . ,n, ∀ j∈ 1, . . . ,J′i and denote wmin =min{wi j}i=1,...,n; j=1,...,J′i
.

If ε ≤ wmin/n, then, 1) OPT (J′i ,wi j)≥ 1
2OPT (Ji,wi j); and 2) the bound is tight.

We prove this theorem in a series of steps.

Lemma 6.4.2. OPT (Ji,wi j)≤ OPT (J′i ,wi j),∀J′i ≤ Ji.

Proof. Since payoff increases with respect to weight, for channel i, any unexplored thresh-

old h must be in one of the intervals we already discovered. Suppose it is in the inter-

val [wi j,wi j], where, r(wi j) < r(wi j). Clearly, option h (wih,r(wih)) (corresponding to

threshold h) is dominated by option (wi j,r(wi j)), as the latter has lower cost but higher

payoff. As to multiple channels, this suggests that OPT (Ji,wi j) is always upper-bounded

by OPT (J′i ,wi j), although the number of intervals we identified is at most the number of

thresholds: J′i ≤ Ji.

Lemma 6.4.3. Assume that wi j ≤ B,∀i ∈ 1, . . . ,n, ∀ j ∈ 1, . . . ,J′i and denote

wmin = min{wi j}i=1,...,n; j=1,...,J′i
. If ε ≤ wmin/n, then, OPT (J′i ,wi j)≤ 2OPT (J′i ,wi j),∀J′i ≤

Ji.

Proof. Let Ẏ = {ẏi j} and Ŷ = {ŷi j} be the optimal solution that corresponds to OPT (J′i ,wi j)

and OPT (J′i ,wi j) respectively. Note that ε ≥ wi j−wi j, thus, we have

n

∑
i=1

J′i

∑
j=1

wi jẏi j ≤
n

∑
i=1

J′i

∑
j=1

wi jẏi j + ε

n

∑
i=1

J′i

∑
j=1

ẏi j ≤ B+nε (6.3)

where the last inequality holds due to the fact that Ẏ = {ẏi j} is the optimal solution for

OPT (J′i ,wi j), which satisfies the budget constraint. By the definition of wmin and the as-
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sumption

ε ≤ wmin

n
(6.4)

we have nε ≤ wmin ≤ wi j, ∀i ∈ 1, . . . ,n, ∀ j ∈ 1, . . . ,J′i .

Consider dropping any non-zero item s in Ẏ , the resulting solution must be feasible for

the problem MCKP(J′i ,wi j) according to inequality (6.3), and bounded by OPT (J′i ,wi j).

Thus, we have ∑
n
i=1 ∑

J′i
j=1 ri jẏi j− rs ≤ ∑

n
i=1 ∑

J′i
j=1 ri jŷi j, and by rearranging we get that

n

∑
i=1

J′i

∑
j=1

ri jẏi j−
n

∑
i=1

J′i

∑
j=1

ri jŷi j ≤ rs (6.5)

We have assumed that wi ≤ B, ∀i ∈ 1, . . . ,n, ∀ j ∈ 1, . . . ,J′i , so ws ≤ B, which implies

rs ≤ ∑
n
i=1 ∑

J′i
j=1 ri jŷi j. By inequality (6.5) we know that

n

∑
i=1

J′i

∑
j=1

ri jẏi j−
n

∑
i=1

J′i

∑
j=1

ri jŷi j ≤
n

∑
i=1

J′i

∑
j=1

ri jŷi j

and thus ∑
n
i=1 ∑

J′i
j=1 ri jẏi j ≤ 2∑

n
i=1 ∑

J′i
j=1 ri jŷi j. Hence, OPT (J′i ,wi j) is a 2-approximation of

OPT (J′i ,wi j).

of Theorem 6.4.1. Part 1 of the theorem follows directly from Lemmas 4.2 and 4.3. For

Part 2, we show that the factor-2 bound is tight. Consider a simple example, in which

we are given a budget of 1 to advertise in only two channels, such that, w1 = 1/2− δ ,

w2 = 1/2+ δ , and, r1 = r2 = 1, and 0 < δ < 1/2. Recall that in our setting, both w1 and

w2 are unknown, but instead we use their upper bounds w1 and w2. If the upper bounds

are not identical to the actual weights, we can only choose one of the channels. Therefore,

the approximate problem gives us at most a payoff of 1, whereas we can get a payoff of

2 when exact weights are known by choosing both channels. Moreover, the example also

suggests that one will never be able to get a better than 2-approximation no matter how

small ε is.
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Note that MCKP(J′i ,wi j) is also an NP-hard problem. Suppose that we use a c-approximation

algorithm to solve MCKP(J′i ,wi j), then the statement below naturally follows from Theo-

rem 6.4.1.

Corollary 6.4.4. Assume that wi j ≤ B,∀i ∈ 1, . . . ,n, ∀ j ∈ 1, . . . ,J′i and denote wmin =

min{wi j}i=1,...,n; j=1,...,J′i
. If ε ≤ wmin/n, a c-approximation algorithm for MCKP(J′i ,wi j)

achieves at least 1/2c of the optimal value of MCKP(Ji,wi j).

Proof. Let G be the near-optimal solution value given by the c-approximation algorithm for

MCKP(J′i ,wi j), then G≥ 1
c OPT (J′i ,wi j). From Theorem 6.4.1, we know that OPT (J′i ,wi j)≥

1
2OPT (Ji,wi j). Thus, it must be the case that G≥ 1

2cOPT (Ji,wi j).

6.5 Query Strategies for Budget Allocation

Our analysis so far assumed that we have been given a set of intervals for MCKP

weights wi j (that is, thresholds at which the response function jumps in value) which are

sufficiently tight, in the sense of Condition (6.4), to ensure a 2-approximation using just the

interval upper bounds in an MCKP. The key next question, which we now address, is how

to obtain such intervals efficiently using a sequence of simulation queries. First, observe

that there is a straightforward query mechanism which can produce intervals of arbitrary

width in linear time: finely discretize each channel in the interval [0,B], and query each

discrete value for each channel independently. However, this approach can be extremely

wasteful: for example, one channel can yield a small response and require a minimal invest-

ment of B; in most cases, we can quickly discover this and ignore this channel altogether.

We will propose a more intelligent query algorithm which interleaves MCKP computa-

tion with queries. This allows more efficient exploration of the allocation space, and early

termination once a near-optimal allocation is found.
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Data: maximum iteration K, total budget B, parameter θ

Result: budgeting plan Pb = {bi}i=1,...,n
Ii← /0,∀i = 1, . . . ,n;
bi← 0,∀i = 1, . . . ,n;
k← 0;
foreach channel i ∈ 1, . . . ,n do

v0← (0,0);
vB← (B,ri(B));
Ii←Ii∪ (v0,vB);

end
while k < K do
{wi j}←Ubs(Ii), ∀i ∈ 1, . . . ,n;
{wi j}← Lbs(Ii), ∀i ∈ 1, . . . ,n;

¯
y←MCKP(J′i ,wi j);
ȳ←MCKP(J′i ,wi j);
Pb←

¯
y◦ w̄;

if ȳ · r−
¯
y · r ≤ θ then

break;
end
foreach channel i ∈ 1, . . . ,n do

updateIntervals(Ii);
end
k← k+1;

end
return Pb

Algorithm 6: Iterative Budgeting Algorithm.
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6.5.1 Iterative Budgeting Algorithm

Now we present our primary algorithm, termed Iterative Budgeting (IB); it is given as

Algorithm 6. In Algorithm 6, Ii stands for the set of intervals for channel i. Moreover, an

interval is represented as a tuple (vl,vu), consisting of a lower bound vl = (wl,r(wl)) and an

upper bound vu = (wu,r(wu)). ri(·) is the step-wise payoff function for channel i evaluated

by simulation. For any Ii, Ubs(·) and Lbs(·) are simply functions that return a set of upper-

bound and lower-bound weights respectively.
¯
y and ȳ are the solutions for MCKP(J′i ,wi j)

and MCKP(J′i ,wi j) respectively (e.g., using CPLEX). Each round, a new budget allocation

plan Pb =
¯
y ◦ w̄ = {bi = ∑ j

¯
yi jw̄i j} is computed. The method updateIntervals(·) updates

the set of intervals by sending more queries to the specified channel simulator, which will

be described in more details in the next section.

The algorithm starts with one interval per channel and uses the upper-bound weights

and payoffs to compute an initial solution. Next, in each iteration, it sends more queries

to each channel and updates Ii with returned payoffs, and computes a new solution. As it

runs more iterations, and the set of intervals is further refined, generally, the solved payoff

(
¯
y · r) will approach its upper-bound of the optimum (ȳ · r), where the notation a · b is the

dot product of two vectors. θ is a parameter that controls the solution quality. Specif-

ically, Lemma 6.4.2 shows that OPT (J′i ,wi j) is an online upper bound for OPT (Ji,wi j).

This bound is very useful, since OPT (Ji,wi j) is unknown; we can compute OPT (J′i ,wi j)

(suppose this is computationally feasible) and use

∆OPT = OPT (J′i ,wi j)−OPT (J′i ,wi j)

to assess the quality of the approximate solution. In particular, when ∆OPT ≤OPT (J′i ,wi j),

we are guaranteed to have a 2-approximation. This is because: OPT (J′i ,wi j)−OPT (J′i ,wi j)≤

OPT (J′i ,wi j) and thus OPT (J′i ,wi j)≤ 2OPT (J′i ,wi j). As OPT (Ji,wi j)≤OPT (J′i ,wi j), we

have OPT (Ji,wi j)≤ 2OPT (J′i ,wi j). Consequently, we are guaranteed to get a 2-approximation
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if we set θ = ȳ · r = OPT (J′i ,wi j). In practice, we set a much smaller θ to obtain a better

solution.

6.5.2 Query Strategies

Now we discuss how Algorithm 6 updates intervals by queries. We first notice that in

the case of a single threshold per channel, binary search is more efficient than linear search.

Given budget B, using binary search to obtain an interval width ε , one has to send at most

blog(B/ε)c+ 1 queries (1 initial query for ri(B) and ri(0) = 0). In particular, if ∃i ∈ Z+,

such that ε = B(1
2)

i, then we need exactly i+1 queries to guarantee ε , where i = log(B/ε).

In contrast, using linear search, we need B/ε queries to achieve an interval width of ε ,

which is clearly less efficient than the binary search. The task is to extend binary search to

handle the case that a channel could have a finite number of thresholds.

6.5.2.1 Generalized Binary Query Algorithm

We propose a Generalized Binary Query (GBQ) Algorithm (see Algorithm 7) to imple-

ment updateIntervals(·), which extends the binary search method to the case of multiple

thresholds.

The algorithm scans each interval and creates a new query using a weight that is halfway

between the lower and upper bound weights. In other words, it takes one binary search

action within each interval available at an iteration. If the queried payoff equals to the

lower (upper) bound payoff, then it updates the lower (upper) bound weight accordingly.

Otherwise, a new interval is added to the current set of intervals Ii. Therefore, the query

action has two effects: 1) narrowing existing intervals, and 2) identifying new intervals

(thresholds).

Note that, to obtain an interval width of ε , we could also send B/ε queries using a

simple linear search. Suppose a channel has J thresholds, {wi}i=1,··· ,J , such that, w1 <

w2 <, · · · ,< wJ . Define dmin = min j{w j−w j−1}, which is the minimum distance between
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Data: a set of intervals Ii
Result: updated Ii
I ′i ← /0
foreach interval (vl,vu) in Ii do

w′← (wl +wu)/2;
r′← (w′);
if r′ = rl then

vl ← (w′,rl);
else if r′ = ru then

vu← (w′,ru);
else

v′← (w′,r′);
I ′i ←I ′i ∪ (vl,v′);
I ′i ←I ′i ∪ (v′,vu);
Ii←Ii\(vl,vu);

end
return I ′i ∪Ii
Algorithm 7: Generalized Binary Query (GBQ) Algorithm: updateIntervals(Ii).

two adjacent thresholds. Theorem 6.5.1 states that GBQ is more efficient than linear search.

Theorem 6.5.1. Assume ε = B(1
2)

i, where i ∈ Z+. If ε ≥ dmin, in the worst case, GBQ uses

the same number of queries as linear search; however, if ε < dmin, GBQ always uses fewer

queries.

Proof. First, we notice that for a given ε that satisfies ε = B(1
2)

i, the linear search with B/ε

queries can be reimplemented as a naive binary search as follows: first, we query r(B);

next, r(B/2); then, r(B/4) and r(3B/4), and so on. In total, we need i+ 1 iterations to

achieve ε . In terms of queries, we need: 1+1+2+ . . .+2(i−1) = 2i, which is exactly B/ε .

When ε ≥ dmin, it is possible that each query will find a new interval, and thus 2i queries

may be required to obtain intervals of width ε in the worst case. However, when ε < dmin,

we are guaranteed that GBQ has captured all thresholds at some iteration î + 1 before

the iteration i+ 1. Otherwise, there must be two thresholds that are in the same interval,

therefore, dmin < ε , which is a contradiction. First, we compare total number of queries

used by GBQ and the naive binary search up to iteration i+ 1. Among these iterations,

we are not guaranteed to capture all thresholds, so GBQ will need the same number of (2î)
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queries as the naive binary search in the worst case. Second, we compare the two algorithms

for iterations after î+1. Starting from iteration (î+2), GBQ only sends a fixed number of

queries (equal to the actual number of thresholds, denoted by J), as the generalized binary

search will skip intervals that do not have thresholds. The total number of queries used

by GBQ after (î+ 1) is J(i− î). By contrast, the naive binary search (equivalent to linear

search as we have shown) has to explore all intervals available for each iteration. After

iteration î+1, it will send (2i−2î) queries, which is strictly larger than J(i− î). Notice that

the number of queries used at iteration î+1 by the naive binary search satisfies: 2î−1 ≥ J,

when all threshold are captured. In addition, the number of queries used by the naive

binary search at iteration (î+ 2) is 2î(> 2î−1), which implies that 2î > J. Thus, we have

2i−2î = 2î(2i−î−1)≥ 2î(i− î)> J(i− î). Therefore, if ε < dmin, GBQ always uses fewer

queries.

Notice that as the IB algorithm iterates using the GBQ strategy, in each iteration it main-

tains several intervals for each channel with uniform length (ε in Section 6.4). We would

expect that in some iteration, it will satisfy Condition (6.4) and ensure the 2-approximation

in Theorem 6.4.1. Formally, we show this to be the case in Corollary 6.5.2, where k is the

number of iterations of IB.

Corollary 6.5.2. When k≥ log Bn
wmin

, IB algorithm with GBQ strategy achieves a 2-approximation

of MCKP(Ji,wi j), where k is the number of iteration.

Proof. Based on GBQ, we know that ε , the width of any interval satisfies: ε = B/2k. As

Condition 6.4 requires that: ε ≤wmin/n, we have B/2k ≤wmin/n, which is k≥ log Bn
wmin

.

6.5.2.2 Heuristic Binary Query Algorithm

Notice that using the query Algorithm 7, Algorithm 6 needs to send an increasing num-

ber of queries for each channel in each iteration. Although the number of queries required

for an iteration will eventually be bounded by the actual number of thresholds, most queries
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are wasteful, especially when the solution approaches its optimum. To improve efficiency

of the query search we propose a Heuristic Binary Query Algorithm (HBQ), described

in Algorithm 8. Notably, as distinct from GBQ, HBQ only sends one query per channel

to the “most profitable” interval in each iteration, where this channel is determined by ŷ,

computed as:

ŷ←MCKP(J′i ,(wi j +wi j)/2).

That is, ŷ is the solution of MCKP which uses the average of lower-bound and upper-bound

weights, but the upper-bound payoffs of all intervals. Intuitively, ŷ gives the highest payoff

we would obtain in the next iteration if we query all current available intervals in a binary

manner. Notably, if IB is to use HBQ, it is modified by using ŷ in place of ȳ.

Data: a set of intervals Ii, solution of best payoff in next iteration ŷ
Result: updated Ii
I ′i ← /0
foreach interval (vl,vu) in Ii do

if item l is not selected in ŷ then
continue;

end
w′← (wl +wu)/2;
r′← (w′);
if r′ = rl then

vl ← (w′,rl);
else if r′ = ru then

vu← (w′,ru);
else

v′← (w′,r′);
I ′i ←I ′i ∪ (vl,v′);
I ′i ←I ′i ∪ (v′,vu);
Ii←Ii\(vl,vu);

end
return I ′i ∪Ii
Algorithm 8: Heuristic Binary Query (HBQ) Algorithm: updateIntervals(Ii, ŝ).
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6.6 Experiments

In order to evaluate our approach we developed a multi-channel marketing simulator.

In this simulator, a fixed budget is allocated to advertise a technology over four channels:

door-to-door, keyword auction, direct mailing, and broadcast, where the payoff for each

channel is modeled by a step function of the allocated budget and corresponds to the total

number of adopters of the technology. One of the sources of complexity is that response is

a function not merely of those reached by marketing directly, but also by those indirectly

affected through social influence. Below we describe the details of the simulator.

The target population was comprised of 536 households in San Diego county, CA which

is shared among the marketing channels.1 The full marketing campaign was restricted to

3 months. As our baseline we implemented the well-known simulated annealing (SA)

algorithm which was tuned to our problem domain [223]. Our algorithm used CPLEX

12.6.1 through a Java API to solve MCKP, and experiments were run on an Ubuntu Linux

64-bit PC with 32 GB RAM and four 8-core Intel Xeon 2.1 GHz CPUs.2

6.6.1 Marketing Simulator

6.6.1.0.1 Door-to-Door Marketing In door-to-door marketing, a sales agent knocks

on a customer’s door and attempts to initiate a discussion that could eventually lead to a

sale. To simulate relevant marketing decisions, we adopt the door-to-door marketing route

planner developed by [32], which uses an independent cascades (IC) model of social influ-

ence [124] to model the spread of successful adoptions by individuals to their geographic

neighbors. The key parameter in the IC model is the transmission probability p represent-

ing the likelihood of a newly adopted customer affecting its socially-connected neighbors.

For a fixed budget allocated to this channel, we follow Zhang and Vorobeychik in approxi-

1Population was restricted primarily to restrict the time for each simulation run to enable a sufficient
number of total runs for meaningful comparisons.

2Implementation of the marketing simulator and algorithms is available at: https://github.com/haffwin/
mcmo.git.
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mately computing the optimal routes for sales people to maximize influence using a greedy

algorithm [213]. The step-function nature of the channel response arises from the fixed cost

needed to add a sales person with sufficient allocated time to cover at least one household

which has not already been covered by others.

6.6.1.0.2 Keyword Auction The keyword auction simulator mimics bidding decisions

in a search engine keywords auction, analogous to Google AdWords. In the simulation, a

marketer is given a fixed budget b to bid on k predefined keywords (relevant to the promoted

product). A higher bid may help secure a higher position for one’s advertised content in

the search results page, and thus a higher click-through rate. However, the bid needs to

be increased sufficiently to jump to a higher slot—hence the step-function nature of the

response.

A keyword i is represented by a tuple (ci, fi), where ci is its cost-per-click and fi the

fraction of users in the targeted region who click on the ads each day. ci and fi are de-

termined as follows: ci = i+ e1
i and fi = α(i+ e2

i ) for all i, where, α is a pre-defined

coefficient, and e1
i and e2

i are random variables drawn from the uniform distribution on

[0,1] i.i.d. for each i. In expectation, ci is approximately proportional to fi. Finally, let Road

be the conversion rate, or fraction of clicks on an ad that result in a purchase.

We assume that for a given budget b, the marketer splits it equally over the 3-month

period, and solves the following fractional knapsack problem every day to maximize the

total number of clicks (since conversion rate is constant):

max
x

k

∑
i=1

xi fi (6.6a)

M
k

∑
i=1

xici fi ≤ b/d ∀ i, (6.6b)

where x is the vector corresponding to the budget split, M is the total population size, and

b/d the daily budget.
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6.6.1.0.3 Direct Mailing A direct mailing marketer typically starts with a dataset of

customer demographic information and purchase records, builds statistical models to pre-

dict response rate, and then ranks customers in descending order of response rate to send

solicitations [224]. Our direct mailing simulator uses this strategy after randomly assign-

ing a response rate to each customer from a uniform distribution on [0,2r̄], where r̄ is the

pre-defined average response rate. In the simulation, an advertiser runs a direct mailing

campaign weekly using an identical budget (i.e., the total budget is split equally among

the 13 weeks comprising 3 months). In addition, we use a channel-specific conversion rate

Rdml (probability of response to the ad).

6.6.1.0.4 Broadcast Marketing Simulator A marketer can also choose to advertise a

product over a broadcast channel, such as TV or radio. In the simulation, we assume the

marketer is facing Jb broadcast advertising options. Each option is represented by a tuple

(c j,r j), with cost c j = e jB̄ and response rate r j =
1−e−βc j

1+e−βc j
for each advertising option j,

where, e j is a random number drawn from a uniform distribution from 0 to 1, and B̄ is

the maximum budget allowed in the system. The distribution of r j follows a tanh function

with respect to c j (essentially, a rescaled logistic function to ensure output is within [0,1] for

positive values of cost c j), with an exogenously specified coefficient β . The final parameter,

conversion rate, is denoted by Rbrc.

Similar to the other simulators, an advertiser divides the budget b equally into w ≤ 13

weeks. Each week, with a budget b/w, the marketer chooses the best option (in terms of

r j). The expected response each week is the response rate multiplied by the market size.

Finally, the marketer decides on an optimal duration of the marketing campaign in weeks,

w∗.
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6.6.2 Results

This section presents experimental results for 7 simulation configurations reflecting

variability of relative channel efficacy for two channels, door-to-door marketing and key-

word auctions. The parameter values are the transmission probability p in the former and

conversion rate Road for the latter. The values of these for each configuration are given in

Table 6.1.3 Throughout, the conversion rates of direct mailing and broadcast marketing are

0.05 and 0.1 respectively.

configuration (ID) door to door (p) online ads (Road)

0 0.1 0.05

1 0.08 0.05

2 0.12 0.05

3 0.12 0.03

4 0.12 0.07

5 0.12 0.01

6 0.14 0.05

Table 6.1: Parameter configurations.

Figure 6.1 shows the simulated payoffs as a function of budget for each channel for

configuration 0, where thresholds correspond to the “steps”, and each step-wise line is con-

sists of the simulated payoffs for the corresponding budget. The step-wise output suggests

the strong combinatorial nature of our optimized objective.

Figures 6.2 and 6.3 compare utility (overall rewards of the four channels) and running

time of GBQ, HBQ and SA for different budgets, varying channel parameters of door-

to-door marketing and keyword auction channels respectively. In all experiments, GBQ

achieves the highest payoffs, but at a significant computational cost. Notably, HBQ is

typically by far the most efficient in terms of computation time, and achieves utility that is

3Experimental results regarding other parameters are provided in Appendix.
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Figure 6.1: Simulated payoffs for Configuration 0 of four channels: door-to-door, online
ads, direct mail and broadcast.

always nearly optimal. In addition, GBQ is typically significantly more time efficient than

SA, which does eventually achieve a near-optimal utility as well, but after considerable

computing time.

6.7 Conclusion

We presented a novel discrete optimization framework to address the budget allocation

challenge faced in multi-channel marketing, where channel-wise payoffs exhibit strong

budget complementarities. We showed that the budget optimization problem in our setting

can be transformed into a well-known multi-choice knapsack problem, which can be solved

effectively using state-of-the-art MILP solvers. We then introduced effective approxima-

tion and query schemes (GBQ and HBQ) when the response function of multi-channel

marketing is represented using a simulation model, where weights of knapsack items can

only be bounded through queries. We showed that the transformed (multi-choice) knapsack

problem using the upper-bound knapsack weights is a tight 2-approximation to the opti-

mum with exact thresholds, when the weights satisfy mild conditions. We implemented

our framework in a simulated marketing platform motivated by real-world multi-channel

marketing campaigns in a real geographical area. We conducted extensive experiments on
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Figure 6.2: Payoff (a)-(d) & run time (e)-(h) comparison among algorithms over different
budgets for different door-to-door marketing parameters. (a), (e) p = 0.08. (b), (f) p = 0.1.
(c), (g) p = 0.12. (d), (h) p = 0.14.
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Figure 6.3: Payoff (a)-(d) & run time (e)-(h) comparison among algorithms over different
budgets for different online ads marketing parameters. (a), (e) Road = 0.01. (b), (f) Road =
0.03. (c), (g) Road = 0.05. (d), (h) Road = 0.07.
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different marketing configurations and showed that the proposed query algorithms signifi-

cantly outperform a simulated annealing baseline.

APPENDIX

Additional Experiments

Apart from the experimental results presented in Section 6.2, we also conducted a series

of experiments regarding other parameters of the marketing simulator. Particularly, we set

the default configuration to Configuration 0 (see Table 1) with a fixed budget 6000, vary

one parameter a time and then compare the performance of GBQ, HBQ and SA in terms of

utility and running time.

Figure 6.4 compares utility and running time of GBQ, HBQ and SA over different

factors of α , which is a parameter defined in the keyword auction simulator. Note that

when the factor of α equals to 1, it corresponds to default value of α in Configuration

0, whereas, factor of α equals to 0.5 and 1.5 are 0.5 times and 1.5 times of the default

α respectively. Figure 6.5 compares utility and running time of all three algorithms over

different factors of r̄ for the direct mailing simulator. Similarly, factor of r̄ = 1 is the default

setting. Figure 6.6 shows comparison among GBQ, HBQ and SA over different factors of

β as defined in the broadcast marketing simulator, with factor of β = 1 the default value.

Figure 6.7 displays comparison among GBQ, HBQ and SA over different options of Rdml

for the direct mailing simulator. Figure 6.8 compares GBQ, HBQ and SA over different

choices of Rbrc for the broadcast marketing simulator.

Clearly, in all experimented cases, HBQ is the most efficient achieving competitive util-

ities significantly faster than GBQ, and both algorithms outperform the simulated annealing

baseline.
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Figure 6.4: Comparison among algorithms over different factors of α for online ads mar-
keting.
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Figure 6.5: Comparison among algorithms over different factors of r̄ for direct mail mar-
keting.
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Figure 6.6: Comparison among algorithms over different factors of β for broadcast mar-
keting.
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Figure 6.7: Comparison among algorithms over different Rdml for direct mail marketing.
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Figure 6.8: Comparison among algorithms over different Rbrc for broadcast marketing.
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Chapter 7

Conclusions and Future Work

The general theory of innovation diffusion has been established for decades, however,

modeling and simulating the diffusion process remains notoriously challenging. Lately,

agent-based models (ABMs) have dominated traditional aggregate diffusion models, due

to the remarkable advantage to capture individual heterogeneity and social and spatial in-

teractions: the key to understanding complex systems. As for the study of innovation diffu-

sion, empirical ABMs are particularly important to guide policy decisions. However, most

work appears analytical and non-empirical. Our critical review of the empirically-grounded

ABMs of innovation diffusion revealed that few such ABMs are calibrated properly, val-

idated rigorously, and developed explicitly for prediction. This clearly limits their use

in supporting decision-making in practice. The thesis contributed a rigorous data-driven

agent-based modeling method to address the calibration and validation on massive, rich

individual adoption data.

Generally, ABMs are used to answer “what-if” questions and draw insights on the effi-

cacy of different policies, but, rarely provides executable and quantitative decisions. Math-

ematical optimization has been widely used to provide numerical solutions in many other

domains. Interestingly, little work has coupled it with state-of-the-art ABMs. By solving

marketing problems in several important settings, e.g., early adoption with increasing re-

turns to scale, targeted marketing with routing constraints, multi-channel marketing with

budget complementarities, the thesis demonstrated how efficient algorithms can help the

design of intervention policies based on data-driven simulations, such as ABMs, providing

optimal or near-optimal actionable plans for marketers.

Algorithmic marketing with data-driven simulations is a cutting-edge computational

technique to model the common but highly complex diffusion process of innovations and
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aid the design of effective marketing intervention policies. However, many challenges

remain unresolved in order to build more credible and intelligent agent-based social simu-

lations with application to innovation diffusion. In particular, credible data-driven ABMs

require high accuracy, transparency, and efficiency; intelligent data-driven ABMs are ex-

pected to situate in the realistic marketing environment, actively learn from continuing new

observations and adaptively update internal models. Thanks to the ever-expanding data

availability and advances in data science, especially machine learning, now we are able

to attack dynamics of innovation diffusion in a significantly more effective and novel way

than our predecessors decades ago.

The optimization techniques combined with high-fidelity data-driven ABMs will also

lead to the development of the next-generation marketing decision support systems. They

are expected to be more usable by providing users with accurate predictions, meaningful

insights, and actionable plans, and importantly more intelligent being able to automatically

optimize marketing operations acting as agents (or delegates) for human marketers. Al-

though our approach was originally proposed for marketing optimization, in the future, we

plan to apply it to modeling and intervention design of innovations in other domains, such

as medical and health-care, online communities.
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[109] Márton Karsai, Gerardo Iñiguez, Kimmo Kaski, and János Kertész. Complex conta-

gion process in spreading of online innovation. Journal of The Royal Society Inter-

face, 11(101):20140694, 2014.
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[201] Michele Conforti and Gérard Cornuéjols. Submodular set functions, matroids and

the greedy algorithm: tight worst-case bounds and some generalizations of the rado-

edmonds theorem. Discrete applied mathematics, 7(3):251–274, 1984.

[202] Rishabh K Iyer, Stefanie Jegelka, and Jeff A Bilmes. Curvature and optimal algo-

rithms for learning and minimizing submodular functions. In Advances in Neural

Information Processing Systems, pages 2742–2750, 2013.

[203] Avrim Blum, Shuchi Chawla, David R Karger, Terran Lane, Adam Meyerson, and

Maria Minkoff. Approximation algorithms for orienteering and discounted-reward

tsp. In Annual IEEE Symposium on Foundations of Computer Science, pages 46–55.

IEEE, 2003.

[204] Yu Zheng, Furui Liu, and Hsun-Ping Hsieh. U-air: When urban air quality inference

meets big data. In ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pages 1436–1444. ACM, 2013.

215
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Optimization: theory, practice and software. Springer, 2014.

[209] Yanwu Yang, Jie Zhang, Rui Qin, Juanjuan Li, Fei-Yue Wang, and Wei Qi. A budget

optimization framework for search advertisements across markets. IEEE Transac-

tions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 42(5):1141–

1151, 2012.

[210] Naoki Abe, Naval Verma, Chid Apte, and Robert Schroko. Cross channel optimized

marketing by reinforcement learning. In ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, pages 767–772. ACM, 2004.

[211] Nikolay Archak, Vahab Mirrokni, and S Muthukrishnan. Budget optimization for

online advertising campaigns with carryover effects. In Ad Auctions Workshop,

2010.

[212] Craig Boutilier and Tyler Lu. Budget allocation using weakly coupled, constrained

Markov decision processes. In Conference on Uncertainty in Artificial Intelligence,

2016.

[213] Haifeng Zhang and Yevgeniy Vorobeychik. Submodular optimization with routing

constraints. In AAAI Conference on Artificial Intelligence, pages 819–825, 2016.

216



[214] Prabhakant Sinha and Andris A Zoltners. The multiple-choice knapsack problem.

Operations Research, 27(3):503–515, 1979.

[215] David Pisinger. A minimal algorithm for the multiple-choice knapsack problem.

European Journal of Operational Research, 83(2):394–410, 1995.

[216] M.E. Dyer, W.O. Riha, and J. Walker. A hybrid dynamic programming/branch-and-

bound algorithm for the multiple-choice knapsack problem. Journal of Computa-

tional and Applied Mathematics, 58(1):43–54, 1995.

[217] Dimitris Bertsimas and John Tsitsiklis. Introduction to Linear Optimization. Athena

Scientific, 1997.

[218] Mhand Hifi, Hedi Mhalla, and Slim Sadfi. Sensitivity of the optimum to perturba-

tions of the profit or weight of an item in the binary knapsack problem. Journal of

Combinatorial Optimization, 10(3):239–260, 2005.

[219] Dimitris Bertsimas and Melvyn Sim. The price of robustness. Operations research,

52(1):35–53, 2004.
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