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CHAPTER I

INTRODUCTION

The Eukaryotic cell cycle

The foundation of scientific enquiry into biological questions of cells can be traced back

to the late 1500’s and early 1600’s with the invention of the microscope.  The microscope

allowed early scientists to look for answers to the fundamental question ‘what are all living

organisms made of?’ The turning point in biological research came with advent of the ‘cell

theory’ –that suggested that all living organisms are composed of cells- the basic structural and

functional unit of life. All multi-cellular organisms regardless of how complex once arose from a

single cell. An understanding of how life forms grow and develop can be found in answering the

basic question: What mechanisms regulate cell growth and division? Insights into understanding

the regulation of cell cycle also has numerous implications for medicine and diseases such as

cancer in which cells multiply unchecked.

A cell undergoing growth and division displays distinct and defined phases during which

critical processes occur.  These critical processes include DNA replication - where a copy of the

genetic blueprint is created, mitosis- where the genetic material is faithfully segregated, and

cytokinesis that results in the physical separation of daughter cells. In a eukaryotic cell these

events are temporally organized in a cyclical fashion with S-phase being a period of DNA

synthesis and replication and mitosis, or M-phase, during which the DNA is segregated to

daughter cells.  The S and M-phases are separated by two growth or gap phases G1 and G2

(Figure 1). Executing these various processes involves careful co-ordination with previous cell

cycle events. The cell also has installed surveillance mechanisms or checkpoints that monitor the

accurate completion of each stage and prevent cell-cycle transitions if any errors or damage is

detected.  A failure to temporally and spatially regulate these events is catastrophic for the cell

usually resulting in aneuploidy, cell death, or cancer.

 A great deal is already known about how the cell enters mitosis as well as of the

checkpoints in place to ensure fidelity of early cell- cycle events (Figure 1). A variety of model

organisms have been useful in dissecting out the molecular mechanisms involved in cell cycle

regulation mentioned above. In particular, early genetic screens performed in fission yeast
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 Figure 1. The eukaryotic cell cycle. The eukaryotic cell cycle is divided into distinct phases, M,G1, S 
 and G2. M phase is usually followed by cytokinesis. S phase is the period were DNA replication
 occurs. The cell grows in size throughout interphase (G1,S and G2 combined). Checkpoints moniter and 
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9A).  Loss of function was not due to degradation of unstable protein at 360C, since protein

levels of HA-Cdc7(360-518) were comparable to those of HA-Cdc7 (Figure 9B)

In order to test whether Cdc7 could oligomerize in vivo, I created a diploid strain in

which one allele of cdc7 was tagged with the Myc13 epitope and the other tagged with the HA3

epitope. Anti- HA immunoprecipitates from the dually tagged diploid strain, but not single

tagged strains, contained Cdc7-Myc13 and vice versa (Figure 9C).  These results indicated that

Cdc7 did indeed exist as an oligomer in vivo.  To estimate what oligomeric state Cdc7 was in,

lysates from asynchronously growing Cdc7-Myc13 and control untagged strains were prepared

under native conditions and sedimented on sucrose gradients. After sedimentation fractions were

collected and Cdc7-Myc13 was immunoprecipitated using an antibody against the myc epitope

from each fraction. Immunoprecipitates were then analyzed by immunoblotting for myc.

Molecular size standards were run in parallel on an identical sucrose gradient.  We found that the

majority of Cdc7-Myc, co-sedimented in fractions 10 and 11 with the molecular weight marker,

Phosphorylase B, which forms a trimer of 292.8 kDa.

Since the predicted molecular weight of a Cdc7-Myc13 dimer is approximately 285 kDa,

this suggests that Cdc7 exists primarily as a dimer. Some Cdc7-Myc13 sediments lower in the

gradient and this could represent Cdc7 in complex with other proteins (such as Spg1) and/or in

higher order complexes with itself. We also investigated whether Spg1 was able to associate with

itself. The results of the yeast two-hybrid and co-immunoprecipitation from spg1-HA3/ spg1-

myc13 diploid strain showed that Spg1 is not associated with itself (Figure 10A). This suggests

that either Spg1 is not present in Cdc7 complexes or that a Cdc7 dimer binds to one molecule of

Spg1. Consistent with the latter hypothesis overexpression of Spg1 failed to disrupt Cdc7 self

association (Figure 10B). These data taken together with the observation that Cdc7-Myc13 was

not observed in any fraction that would be consistent with a monomeric form  (140 kDa) suggest

that Cdc7 exists predominantly as a dimer in vivo and associates with Spg1 as a dimer.
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Schizosaccharomyces pombe identified the cdc2 gene product, the founding member of cyclin-

dependent kinase (CDK) family (Fantes 1977; Fantes and Nurse 1978; Thuriaux, Nurse et al.

1978; Nurse and Thuriaux 1980; Carr, MacNeill et al. 1989; MacNeill and Nurse 1989). Cdc2

functions as a master regulator of the cell cycle in all eukaryotic organisms examined to date

(Beach, Durkacz et al. 1982; Simanis and Nurse 1986; Lee and Nurse 1987; Lee and Nurse 1988;

Lee, Norbury et al. 1988; Jimenez, Alphey et al. 1990). In vivo, in all systems studied, the kinase

activity of Cdc2 peaks at the G2/M boundary while Cdc2 protein levels remain constant through

the cell cycle  (Booher and Beach 1986; Simanis and Nurse 1986; Draetta and Beach 1988;

Dunphy, Brizuela et al. 1988; Labbe, Lee et al. 1988; Felix, Pines et al. 1989; Gautier,

Matsukawa et al. 1989; Moreno, Hayles et al. 1989). The key means of regulating Cdc2 activity

is through periodic association with its cyclin subunit. As indicated by the name cyclins are only

expressed at specific times during the cell cycle.

Cdk in complex with cyclin leads to its activation and subsequent phosphorylation of

downstream targets. Positive and negative regulatory phosphorylations, cyclin-dependent

inhibitors (CKI) and ubiquitin-mediated proteolysis of cyclin subunits all contribute in regulating

the activity of CDKs. In contrast to S.pombe and S.cerevisiae, in which Cdc2/Cdc28 alone drives

the cell cycle, higher eukaryotes utilize multiple different CDKs, each of which associate with

their specific cyclin regulatory partners and are specialized to promote specific cell cycle

transitions.

Fission yeast, Schizosaccharomyces pombe, as a model organism

 As described above, a number of seminal discoveries pertaining to cell cycle regulation

were identified using model organisms like fission yeast, S.pombe. Because of the remarkable

conservation of cell cycle control mechanisms from yeasts to humans, studies performed in

S.pombe have held true for and complement analyses of cell cycle control performed in higher

eukaryotes. S.pombe cells spend a majority of their time (approximately 70%) in G2. Hence

S.pombe has classically served as an excellent model organism for studying G2/M regulation.

Additionally, fission yeast is highly amenable to molecular genetic, physiological and biological

analyses. S.pombe cells are cylindrical in shape, grow by tip elongation and divide by medial

fission at a constant cell size. This feature has been extremely useful in screening for mutants in
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components of the cell cycle machinery, for cells which continue to grow but fail to divide

become highly elongated; or cells which divide at a reduced cell size display a “wee” phenotype.

Until recently a less studied aspect of cell division had been the process of cytokinesis.

S.pombe cells divide in a manner similar to higher eukaryotes and utilize a number of conserved

molecules that function in assembling the cleavage apparatus and regulating constriction. Hence,

S.pombe has served as an invaluable model organism to elucidate the mechanics of cytokinesis

and its temporal regulation (discussed in greater detail below).

Cytokinesis in eukaryotes

Cytokinesis, the physical separation of two new daughter cells, marks the end of cell

division. This process like all the prior events of the cell cycle must be temporally and spatially

regulated such that cytokinesis takes place at the right time and in the correct place. Only in the

last decade or so are molecular mechanisms involved in this complex process beginning to be

unraveled. Work done in several model organisms and recently through genome-wide RNA

interference (RNAi) screens has identified many proteins essential for cytokinesis (Somma,

Fasulo et al. 2002; Goshima and Vale 2003; Echard, Hickson et al. 2004; Eggert, Kiger et al.

2004). Not surprisingly, proteins required for the completion of cytokinesis have a diverse range

of functions, such as cytoskeletal remodeling, vesicular trafficking and membrane fusion. The

precise molecular events involved in cytokinesis may vary in degrees of complexity and

organization based on where on the evolutionary scale they fall (Bi 2001). However, the

emerging theme is that the basic components remain conserved from yeast to humans, with

adaptations for the type of cell or mode of division. All dividing cells need to a) determine a site

of division, b) establish the division apparatus, often called the cleavage furrow or cytokinetic

actin ring (CAR) and c) constrict the division apparatus coupled with new membrane addition

that leads to the creation of two daughter cells.

Determining the site of division

In animal cells anaphase onset triggers the formation of the central spindle between the

segregating chromosomes. The central spindle is believed to be the marker for assembly of the

division apparatus (Adams, Tavares et al. 1998; Giansanti, Bonaccorsi et al. 1998). However in

certain cells, such as C.elegans embryos, the astral microtubules determine cleavage furrow
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formation (Dechant and Glotzer 2003). How the central spindle or astral microtubules signal to

actively promote furrow ingression is not known.  In contrast to animal cells, budding yeast

establish their division site early in the cell cycle, and it is marked by the location of the previous

division site. A small GTPase signaling module recognizes the site of division and initiates the

formation of the new bud (reviewed in Casamayor and Snyder 2002). Additionally, the

activation of another small GTPase Cdc42 results in the formation of a filamentous ring made of

septins (GTP binding proteins) at the bud neck or site of division. The septin ring marks the site

of division and plays an essential role in the formation of the cytokinetic actin ring. Fission yeast,

like metazoans divide symmetrically. However the position of the division site is determined by

the position of the nucleus in the cell. In wild type cells the nucleus is maintained in the middle

through opposing forces generated by microtubules (Tran, Doye et al. 2000; Tran, Marsh et al.

2001).  Mid1, an anillin family protein, and Plo1 kinase play a role in establishment of CAR

position by linking the interphase nucleus to the cell division site. Mid1 is a nuclear protein that

upon entry into mitosis relocates to form a cortical band overlying the nucleus and promotes the

recruitment of actomyosin ring components to a band like structure overlying it (Motegi, Mishra

et al. 2004). This localization pattern is dependent on the function of Plo1 kinase (Chang,

Woollard et al. 1996; Sohrmann, Fankhauser et al. 1996; Bahler, Steever et al. 1998). Plo1 may

have additional functions in determining actomyosin ring placement that is independent of its

role in controlling Mid1 localization (Paoletti and Chang 2000). Other proteins such as the

protein kinase, Pom1 and pos genes are involved in signaling for ring placement although their

precise roles haven’t been clearly elucidated (Bahler and Nurse 2001).

Actomyosin ring assembly and constriction

Once the division site is established the contractile apparatus assembles at the cell cortex.

Both yeasts and animal cells divide with the help of a contractile ring that is made of actin and

myosin amongst several other proteins. The mechanical force for furrow ingression is most likely

provided by myosin II. At the end of anaphase the ring constricts and brings about the division of

the cytoplasm. This is usually accompanied by the formation of new membrane and/or cell wall

material. The basic components of the ring are the same in all eukaryotic organisms although

there are differences in the timing and order of addition of various components.
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In animal cells the activation of another small GTP binding protein RhoA leads to actin

polymerization and myosin II activation (Kimura, Tsuji et al. 2000; Kosako, Yoshida et al. 2000;

Maddox and Oegema 2003; Yoshizaki, Ohba et al. 2004). The disassembly of the actomyosin

ring likewise is promoted by the down regulation of Rho activity at the cleavage furrow. GTPase

activating protein MgcRacGAP localizes to the spindle midzone during cytokinesis and it’s GAP

activity has been implicated as being important for cytokinesis (Hirose, Kawashima et al. 2001;

Kitamura, Kawashima et al. 2001; Lee, Kamijo et al. 2004). It is still unclear what the exact

function or the GTPase target of MgcRacGAP is in vivo, with Rho, Rac and Cdc42 being implied

as potential candidates.

The final step of cytokinesis, membrane fusion, requires delivery of membrane vesicles

that fills into the space remaining after full ingression of the contractile ring (Low, Li et al.

2003). The machinery involved in membrane insertion during cytokinesis includes syntaxins,

syntaxin associated proteins, coatomer complex members, rab family GTPases, and subunits of

the exocyst complex (Reviewed in (Schweitzer and D'Souza-Schorey 2004; Albertson, Riggs et

al. 2005)). Unlike animal cells, fission yeast cells begin to assemble their CAR early in M-phase.

In fact, as mentioned earlier, a number of ring components accumulate in a broad cortical band

around the nucleus in a Mid1 dependent manner. By live cell imaging of GFP-tagged ring

components a sequence of events leading to the formation of the CAR can be described. The

earliest proteins to arrive at the cell division site include type II myosin heavy chain Myo2,

IQGAP related protein Rng2, PCH domain protein Cdc15 and formin Cdc12. Cdc15 interacts

directly with both the Arp2/3 complex activation machinery and the formin Cdc12 to orchestrate

early events in CAR formation (Fankhauser, Reymond et al. 1995; Carnahan and Gould 2003).

In the final stages, F-actin, tropomyosin Cdc8, and a number of other actin cross-linking proteins

together form a structured actomyosin ring.

Unlike animal cells, fission yeast also synthesizes a septum that is placed between the

two cells. Deposition of septal material occurs concurrently with actomyosin ring constriction

and membrane synthesis. Once the primary septum is laid, two secondary septa are synthesized

flanking the primary septum. Cell separation is accomplished upon the dissolution of the primary

septum. The process of septum deposition directly regulates the process of ring constriction.

Much like animal cells exocyst components, syntaxins and Rab GTPases are important for

cytokinesis in S.pombe (Liu, Wang et al. 1999; Cortes, Ishiguro et al. 2002; Wang, Tang et al.
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Figure 2.  Steps in fission yeast cytokinesis.  During interphase, F-actin is observed in cortical patches at the tip of
the cell. During early mitosis the patches relocalize to the middle of the cell to form the medial ring over the
nucleus. During anaphase, the actomyosin ring constricts and the primary septum forms. Digestion of the septum
liberates the newly formed cells. The cartoons represent the expected phenotypes of mutants defective at a particular
stage.

8



2002; Wang, Tang et al. 2003). One of the main unanswered questions has been how all of these

processes are coupled at the molecular level. How is the mitotic and nuclear division cycle co-

ordinated with cytokinesis?

Temporal regulation of cytokinesis

The cells are ready to physically divide once mitosis is complete and genetic

material has been segregated. Therefore there must be regulatory coupling between the exit of

mitosis and the onset of cytokinesis. In a variety of eukaryotic organisms inactivation of mitotic

CDKs is a prerequisite for cells to exit mitosis and undergo cytokinesis (Guertin and McCollum

2001; McCollum and Gould 2001; Echard and O'Farrell 2003).  Inactivation of mitotic CDKs is

achieved largely through ubiquitin-dependent proteolysis of the mitotic cyclins via the APC/C

(reviewed in (Zachariae and Nasmyth 1999)). Studies on the mechanisms that coordinate exit

from mitosis with cytokinesis have revealed the presence of a conserved GTPase-driven

signaling pathway in both the fission yeast S. pombe and the budding yeast S. cerevisiae. Coined

the SIN (Septation Initiation Network) in fission yeast and MEN (Mitotic Exit Network) in

budding yeast both pathways, although differing in certain details, primarily serve to coordinate

mitotic exit with cytokinesis. Interestingly both SIN and MEN components localize to the

spindle pole body (SPB), the centrosome equivalent in yeast, either constitutively or at some

stage in the cell cycle. The SPB has emerged as an important signaling and organizing center for

the assembly of SIN and MEN components.

The Septation Initiation Network, SIN

The ability to visually score S.pombe cells for specific defects in various aspects of the

cell division process enabled the identification of mutants that are specifically defective in one

aspect of the cell division process but not another (Figure 2). A group of mutant genes,

collectively referred to as sid (septation initiation defective) genes, were identified as being

defective in actomyosin ring constriction and septum deposition (Marks, Fankhauser et al. 1992;

Balasubramanian, McCollum et al. 1998). Loss of function mutations in sid genes result in long

multinucleate cells due to the continuation of nuclear division and cell growth but a failure to

deposit septal material. Through the cloning of all the genes involved and biochemical analyses

of their protein products led to the identification of the Septation Initiation Network. The SIN
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          Figure 3. Current model for the septation initiation network (SIN) in S. pombe. (A) The interphase
          SPB is occupied by the scaffold proteins Cdc11-Sid4 and the GAP  complex Byr4-Cdc16. Spg1 is 
          maintained in its inactive GDP bound state to prevent inappropriate septum formation. (B) Upon entry into 
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          GAP complex. The asymmetric localizations of the SIN components to the SPBs or the location of other 
          regulators have not been shown.
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includes a GTPase Spg1 (Schmidt, Sohrmann et al. 1997), a two-component GAP for Spg1p

composed of Byr4 and Cdc16 (Furge, Wong et al. 1998) and 4 protein kinases: Plo1 (Ohkura,

Hagan et al. 1995), Cdc7 (Fankhauser and Simanis 1994), Sid1 and its regulatory subunit Cdc14

(Guertin, Chang et al. 2000) and Sid2 and its regulatory subunit Mob1 (Sparks, Morphew et al.

1999; Hou, Salek et al. 2000; Hou, Guertin et al. 2004). Additionally a number of structural

components have been identified that influence SIN signaling in various ways (Figure 3) (Chang

and Gould 2000; Krapp, Schmidt et al. 2001; Tomlin, Morrell et al. 2002).

The SIN Components

Cdc11-Sid4 scaffold

All known SIN proteins reside on the SPB at some point during the cell cycle. Their

localization requires Sid4 function and thus, Sid4 is considered to be a SPB anchor for the SIN

(Chang and Gould 2000). Sid4 links to downstream SIN components through another protein

called Cdc11 (Chang and Gould 2000; Krapp, Schmidt et al. 2001; Tomlin, Morrell et al. 2002).

Cdc11 is the S. pombe homolog of the S. cerevisiae SPB component Nud1 (Gruneberg,

Campbell et al. 2000). Cdc11 physically associates with Sid4 via its C-terminus, while its N-

terminus makes a wide variety of direct protein–protein interactions with SIN components

including Spg1, Sid2, and Cdc16. Interestingly Cdc11 also associates with the mitotic CDK

Cdk1-Cdc13 (Morrell, Tomlin et al. 2004). FRAP (Flourescence Recovery After

Photobleaching) experiments show that Sid4 and Cdc11 are extremely stable at the SPB, a

property ideal for proteins that function as a platform to assemble and organize signaling

components.  Not surprisingly, the signaling components of the SIN dynamically associate with

the SPB. The Cdc11-Sid4 scaffold associates with at least two other regulators of the SIN, Dma1

and Plo1.  Thus, all the components of the SIN are ideally positioned in close proximity to one

another to allow rapid signaling and tight co-ordination of late mitotic events (Morrell, Tomlin et

al. 2004).

 The GTPase cycle and its regulation

Central to the activation of the SIN pathway is the GTPase Spg1. Spg1 was originally

identified as a multicopy suppressor of a dominant negative mutant of the Cdc7 kinase (Schmidt,

Sohrmann et al. 1997).  A temperature sensitive allele of Spg1 was also isolated in a genetic
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screen that identified genes involved in cytokinesis (Balasubramanian, McCollum et al. 1998).

The closest relative of Spg1 is its S. cerevisiae homolog Tem1. Spg1 also shares limited

sequence conservation with N-Ras (Schmidt, Sohrmann et al. 1997).  Spg1 was subsequently

shown to have GTPase activity in vitro (Furge, Wong et al. 1998). Underscoring the key role of

Spg1 in SIN signaling was the observation that increased production of Spg1 leads to the

formation of septa from any point in the cell cycle (Schmidt, Sohrmann et al. 1997).

The Cdc7 kinase functions as an effector for Spg1 and is therefore an activator of SIN

signaling (Schmidt, Sohrmann et al. 1997; Sohrmann, Schmidt et al. 1998).

Interestingly, Cdc7 kinase activity remains constant throughout the cell cycle and its kinase

activity is not dependent on Spg1 function (Sohrmann, Schmidt et al. 1998). Spg1 and Cdc7

localize to the SPB. Hence although the kinase activity appears to be constant throughout the cell

cycle, it may only target its downstream substrates when localized to the pole. Spg1 localizes to

the SPB throughout the cell cycle (Sohrmann, Schmidt et al. 1998). However during interphase it

is inactive and exists in a GDP-bound state at the single SPB. During metaphase, Spg1 becomes

‘activated’ or GTP-bound at both SPBs. It is then inactivated at one of the poles during anaphase

B, giving rise to an asymmetric state. Cdc7 is only recruited to the pole that is occupied by the

GTP-bound Spg1p; hence it also exists at both poles during metaphase, and then is

asymmetrically localized to one pole during anaphase. The asymmetric localization of SIN

components appears to be important for proper SIN regulation since Cdc7 is associated with both

SPBs during anaphase in cells with deregulated septum formation (Mulvihill, Petersen et al.

1999; Tanaka, Petersen et al. 2001). While the apparent need for asymmetry in a symmetrical

organism is puzzling, the mechanisms involved in SIN asymmetry are beginning to surface. The

red fluorescent protein dsRed takes several hours to fold into an actively fluorescing molecule

and hence is a useful tool to differentiate between an old SPB versus and a newly formed SPB.

The S. pombe SPB component Pcp1-RFP was used to track the SPB after starvation. Pcp1-RFP

is asymmetrically localized, associating with the ‘old’ SPB but not the ‘new’ (Grallert, Krapp et

al. 2004). Using a dually labeled strain, Pcp1-RFP Cdc7-GFP, it was determined that the active

SIN is housed on the new SPB (Grallert, Krapp et al. 2004). This finding begs the question- how

does the SIN get activated at only the ‘new’ and not the ‘old’ SPB? Additionally are there

components of the SPB that get specifically recruited to the old versus the new SPB and

influence SIN activity?

12



Since Spg1 activation is critical in establishing the onset of cytokinesis, regulating the

timing of Spg1 activation is key.  The balance of maintaining a GTPase in an active or inactive

state is typically regulated by GAPs (GTPase Activating Protein) and GEFs (GTP Exchange

Factor) To date however no GEF for Spg1 has been identified. A unique two component GAP,

comprised of Byr4 and Cdc16 has been identified that functions to keep Spg1 inactive during

interphase and hence prevent septum formation at an inappropriate time (Minet, Nurse et al.

1979; Fankhauser, Marks et al. 1993; Song, Mach et al. 1996; Furge, Wong et al. 1998; Jwa and

Song 1998). Inactivating either GAP component leads to the formation of multiple septa.  The

Cdc16 component bears structural similarity to proteins known to have GAP activity, most

closely resembling the Ypt-GAP family (Fankhauser, Marks et al. 1993; Will and Gallwitz

2001).  However, Cdc16 is unable to hydrolyze GTP bound to Spg1 in an in vitro assay in the

absence of Byr4 (Furge, Wong et al. 1998; Furge, Cheng et al. 1999). Byr4 associates directly

with both Spg1 and Cdc16 and one function predicted for Byr4 is to position Cdc16 in proximity

to its cognate GTPase (Furge, Cheng et al. 1999). Byr4 was also shown to interact with NIMA

related kinase Fin1, and Fin1 requires Byr4 for its recruitment to the SPB (Grallert, Krapp et al.

2004).

As would be expected, the Byr4-Cdc16 GAP complex also localizes to the SPB (Cerutti

and Simanis 1999; Li, Furge et al. 2000). During interphase it is present on the single SPB,

keeping Spg1 inactive. During anaphase Cdc16-Byr4 localizes to only one SPB, the one without

Cdc7. In fact the asymmetric localization of Cdc16-Byr4 appears to occur prior to that of Cdc7

suggesting that the complex may prevent the recruitment of Cdc7 to that SPB (Cerutti and

Simanis 1999; Li, Furge et al. 2000). It is interesting to note that in one-half of the population of

cells Fin1 is associated with both SPBs until septation is completed (Grallert, Krapp et al. 2004).

However, Fin1 association with the SPB requires Byr4 suggesting that - contrary to previous

observations- Byr4 persists on both SPBs until septation (Cerutti and Simanis 1999; Li, Furge et

al. 2000). Since the localization of Byr4 was not examined simultaneously with that of Fin1 we

do not know if the latter holds true. It is likely that Fin1 requires additional components besides

Byr4 for retainment at the SPB.
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The kinases and a link to the site of division

Two protein kinase complexes function downstream of Cdc7 in the SIN. During

anaphase the Sid1 kinase in a complex with Cdc14 gets recruited to the pole housing active Spg1

and Cdc7 (Guertin, Chang et al. 2000). sid1+ encodes  an essential kinase that belongs to the

PAK/GC  family, specifically to group II GCKs (Guertin, Chang et al. 2000; Guertin and

McCollum 2001). The kinase activity of Sid1 appears to be cell cycle regulated, peaking in late

anaphase (Guertin, Chang et al. 2000). However, neither the protein levels of Sid1 nor its

interaction with Cdc14 changes during the cell cycle. Cdc14 is essential for Sid1 localization to

the SPB and for full Sid1 catalytic activity (Guertin and McCollum 2001). Interestingly,

recruitment of Sid1-Cdc14 to the SPB depends on the inactivation of Cdc2 (Guertin, Chang et al.

2000). Hence in creating this dependency between mitotic CDK inactivation and SIN signaling a

system is in place to ensure that septum formation does not take place during mitosis, when CDK

activity is high.

The recruitment of Sid1-Cdc14 to the SPB triggers the accumulation of another protein

kinase complex Sid2–Mob1 at the medial ring.  The Sid2-Mob1 complex is present

constitutively at SPBs and is the only known component of the SIN to also localize at the site of

division. The exact mechanism by which Sid2-Mob1 arrives at the division site is still a mystery,

although the localization does require the microtubule network (Sparks, Morphew et al. 1999).

At the division site, Sid2-Mob1 likely transmits signals originating from the SPB to downstream

targets.  Consistent with a role for Sid2 downstream in the SIN is the observation that Sid2

kinase activity depends on all the other SIN components and peaks at the time of cytokinesis

(Sparks, Morphew et al. 1999; Hou, Salek et al. 2000). Sid2 is predicted to phosphorylate a

substrate(s) that would lead to medial ring constriction and septation. Interestingly Sid2

localization to the ring depends on the ring component Cdc15, a known phosphoprotein

(Fankhauser, Reymond et al. 1995; Sparks, Morphew et al. 1999). Hence, it is tempting to

speculate that Cdc15 might be a target of Sid2.

Sid2-Mob1 is subject to multiple modes of regulation. Sid2 phosphorylation on two

conserved residues and its physical association with Mob1 are important for its activity (Hou,

Guertin et al. 2004). Additionally, Sid2 homodimerizes and is inactive in that state (Hou, Guertin

et al. 2004). The regions of Sid2 implicated to be important for self- association are also required

for Mob1 binding. The presence of excess Mob1 in the cell results in disruption of Sid2 dimers
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(Hou, Guertin et al. 2004). The above observations lead to a model in which Sid2 exists in two

complexes, one with Mob1 and one without. Both complexes would be inactive in interphase.

During mitosis the Sid2 component of an inactive Mob1-Sid2 complex at the SPB gets

phosphorylated in a SIN dependent manner. The phosphorylation event alters Mob1 binding to

Sid2 such that it allows for Sid2 kinase activation (Hou, Guertin et al. 2004).

 Other regulators of the SIN

 Genetic epistasis analysis places all of the SIN components mentioned above in a linear

pathway. While demonstrating the linearity of the pathway awaits more biochemical

characterization there is increasing evidence that a number of other players influence SIN

signaling at some stage.

Plo1 kinase of S. pombe belongs to the POLO family of protein kinases. As documented

in various eukaryotic organisms, Plo1 is involved in multiple aspects of mitosis and cytokinesis

(Ohkura, Hagan et al. 1995; Golsteyn, Lane et al. 1996; Tanaka, Petersen et al. 2001; Mulvihill

and Hyams 2002). Given the multiple roles of Plo1, trying to ascertain a direct and precise role

for Plo1 in the SIN has proven to be difficult. The evidence that Plo1 does indeed influence the

SIN comes from the observation that Plo1 overproduction results in transient recruitment of

Cdc7 to the SPB and subsequent production of multiple septa.  Plo1 itself associates with the

SPB during mitosis where it interacts with the scaffold protein and SIN component Sid4

(Mulvihill, Petersen et al. 1999; Tanaka, Petersen et al. 2001; Mulvihill and Hyams 2002;

Morrell, Tomlin et al. 2004). Furthermore, in a screen for mutants designed to identify Plo1

substrates, a number of SIN component alleles were identified; these mutants depend on high

Plo1 activity for viability (Cullen, May et al. 2000).

In higher eukaryotes the activation of CDK leads to the activation of a number of

downstream kinases such as the polo-family and the NIMA-related kinases. The S.pombe NIMA

kinase Fin1 plays an important role in mitotic spindle formation and spindle pole body

maturation (Krien, Bugg et al. 1998; Grallert and Hagan 2002). Although Fin1 associates with

the SIN inhibitor Byr4, Fin1 also localizes to the new SPB that hosts the active SIN, and thus

Fin1 must have another binding partner at the SPB.  Loss of Fin1 function leads to recruitment of

Cdc7 to both SPBs and promotes septation suggesting that Fin1 plays a role in attenuating SIN

signaling at the old SPB (Grallert, Krapp et al. 2004).
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Another protein, Dma1, prevents septation by hindering the binding of Plo1 to the SPB.

Dma1 itself also localizes to the SPBs through association with Sid4 (Murone and Simanis 1996;

Guertin, Venkatram et al. 2002).  One prediction is that Dma1 may directly compete with Plo1

for a SPB binding partner and thus prevent Plo1 from localizing to the SPB (Guertin, Venkatram

et al. 2002).

Two other putative negative regulators of SIN signaling have been identified -  zfs1 (a

zing-finger containing protein) and scw1 (a RNA-binding protein). Their exact mode of action is

unclear.  Mutations in scw1 may play a role in stabilizing microtubules and therefore indirectly

affect the SIN (Beltraminelli, Murone et al. 1999; Jin and McCollum 2003).

 Mutations in B’ regulatory subunits of protein phosphatase 2A, Par1 and Par2 can rescue

certain SIN mutants. This observation and other genetic interactions suggest that Par1 and Par2

may be involved at various levels in the SIN (Jiang and Hallberg 2000; Jiang and Hallberg 2001;

Le Goff, Buvelot et al. 2001). Consistent with some association with SIN components, Par1

localizes to the SPB and then to the ring during mitosis (Le Goff, Buvelot et al. 2001).

Regulating SIN activity

A number of proteins are involved in SIN signaling. An important unanswered question

is what are the signals that are ultimately responsible for delivering the ‘time to turn SIN on / off’

message. Mitotic CDK inactivation is a prerequisite for SIN to be ‘on’. Coupling SIN activation

to mitotic CDK inactivation serves to prevent septum formation prior to mitosis. The Sid1-Cdc14

complex appears to be a sensor for the state of mitotic CDK activity because only when Cdc2

activity has dropped below a certain threshold does the complex localize to the SPB. Consistent

with the idea of entraining the SIN with the level of CDK activity is the observation that

hyperactivation of the SIN via inactivation of Cdc16 leads to ectopic formation of septa only

during interphase or late stages of mitosis—each a stage when the mitotic CDK activity is low

(Fankhauser, Marks et al. 1993).

The cell also needs a mechanism to prevent premature SIN inhibition in situations where

cytokinesis is delayed.  The cytokinesis checkpoint serves to fulfill that requirement by ensuring

that CDK activity is kept low and SIN remains ‘on’ until cytokinesis is completed. The

checkpoint was uncovered through the identification of mutations in the cps1+/drc1+ gene, a

subunit of 1,3 β-glucan synthase.   These mutants arrest with two interphase nuclei that complete
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another round of DNA replication after completing mitosis but fail at septum formation and

cytokinesis (Le Goff, Woollard et al. 1999; Liu, Wang et al. 1999; Liu, Wang et al. 2000). The

block depends on the presence of F-actin structures and a functional SIN (Liu, Wang et al. 2000;

Mishra, Karagiannis et al. 2004). Inactivating the CDK inhibitor Wee1 or Clp1/Flp1, the S.

pombe homolog of the S. cerevisiae Cdc14 phosphatase, also alleviates the block (Trautmann,

Wolfe et al. 2001). Clp1/Flp1 is normally sequestered in the nucleolus during interphase or on

the SPB. It is released from the nucleolus and re-localizes to the spindle, kinetochores and

actomyosin ring when cells enter mitosis. The release from the nucleolus is SIN independent but

SIN signaling must cease for Clp1 to re-localize to the nucleolus at the end of mitosis (Cueille,

Salimova et al. 2001; Trautmann, Wolfe et al. 2001). In cells arrested in G2 by the cytokinesis

checkpoint, activated Clp1 is found in the cytoplasm.  Taken together, these data suggest that the

cytokinesis checkpoint functions to maintain Clp1 in the cytoplasm where it can inhibit Cdc2

activity. One way by which Clp1 phosphatase achieves this inhibition is by dephosphorylating

and thus inactivating the Cdc2 activator -Cdc25 phosphatase (Esteban, Blanco et al. 2004; Wolfe

and Gould 2004). Keeping Cdc2 activity low allows the SIN to remain active until cytokinesis is

complete; the SIN in turn keeps Clp1 out of the nucleolus when cytokinesis is delayed to allow

for cytokinesis to be completed.   While the molecular details of these events remain elusive, this

feedback mechanism ensures that SIN activity is temporally regulated.

Conservation of the SIN

In S. cerevisiae proteins of the MEN network control the inactivation of CDK-Cdc28 to

allow for mitotic exit and cytokinesis. The MEN network is also part of a checkpoint that

monitors spindle position in anaphase  (reviewed in Segal and Bloom 2001; McCollum 2002;

Smeets and Segal 2002). In addition proteins of the MEN network play a direct role in regulating

cytokinesis that is distinct from their role in mitotic exit. The MEN, like the SIN, is a GTPase

regulated protein kinase signaling cascade. It consists of four protein kinases (Cdc5, Cdc15,

Dbf2 and Dbf20), a GTPase (Tem1), a GEF (Lte1), a two- component GAP (Bfa1-Bub2), a

protein phosphatase Cdc14, and a scaffold protein Nud1 (Table1 and Figure 4).

The MEN brings about CDK inactivation by keeping the Cdc14 phosphatase out of the

nucleolus and away from its inhibitor Net1/Cfi1. Like Clp1/Flp1, Cdc14 is normally sequestered

in the nucleolus during interphase (Shou, Seol et al. 1999). It is released from Net1/Cfi1 during
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anaphase where it dephosphorylates CDK substrates. The resulting wave of dephosphorylation

leads to inactivation of Cdc28 activity through a variety of different mechanisms (Reviewed in

Stegmeier and Amon 2004). Although MEN activity is required to keep Cdc14 out of the

nucleolus, mutations in net1 permit Cdc14 release in the absence of MEN function and uncover

another function for the MEN in cytokinesis (Visintin, Hwang et al. 1999; Visintin and Amon

2000).

The GTPase Tem1 appears to act at the top of the MEN pathway in a role analogous to

that of Spg1 in the SIN (Shirayama, Matsui et al. 1994; Asakawa, Yoshida et al. 2001). Tem1

and its cognate GAP Bfa1-Bub2 (analogous to Byr4-Cdc16 in S.pombe) localize preferentially to

the spindle pole body destined for the daughter cell (Fraschini, Formenti et al. 1999; Bardin,

Visintin et al. 2000; Pereira, Hofken et al. 2000). Lte1, the presumed GEF for Tem1 is spatially

restricted to the bud cortex of the daughter cell (Prinz and Amon 1999; Bardin, Visintin et al.

2000; Pereira, Hofken et al. 2000). As the daughter bound SPB moves into the bud it comes into

contact with Lte1 and Tem1 gets activated. Tem1 is held inactive by GAP activity of Bfa1-Bub2

until it encounters Lte1 in the bud (Wang, Hu et al. 2000; Geymonat, Spanos et al. 2002;

Geymonat, Spanos et al. 2003). Tem1 activation clearly requires inactivation of the Bfa1-Bub2

complex that is situated at the same SPB. Bfa1 is phosphorylated in a cell -cycle dependant

manner, by the kinase Cdc5. The phosphorylation inhibits the GAP activity of the complex (Hu,

Wang et al. 2001; Lee, Jensen et al. 2001; Geymonat, Spanos et al. 2002).
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Table 1. Core SIN and MEN components

S.pombe Protein function S.cerevisiae Higher Eukaryotes

Sid4 SPB scaffold protein Unknown Kendrin?

Cdc11 SPB scaffold protein Nud1 Centriolin

Plo1 Kinase Cdc5 Polo kinase family

Spg1 GTPase Tem1 ?

Byr4 Part of GAP complex Bfa1 ?

Cdc16 Part of GAP complex Bub2 GAPCenA

Unknown GEF? Lte1 ?

Cdc7 Kinase Cdc15 ?

Sid1 Kinase Unknown ?

Cdc14 Binds to Sid1 Unknown ?

Sid2 Kinase Dbf2 Warts/LATS1 (human)

Mob1 Sid2/Dbf2 binding partner Mob1 hMob1, mMob1

Phosphorylated forms of Bfa1 cannot interact with Tem1 as demonstrated by a failure of

mitotic Bfa to co-immunoprecipitate with Tem1 (Hu, Wang et al. 2001). Bub2 is also

phosphorylated during mitosis but the effect of the phosphorylation event on Bub2 function is

not clear. Interestingly, Bfa1 also gets dephosphorylated and thus reactivated by Cdc14 in

telophase, keeping the window during which MEN is active limited (Hu, Wang et al. 2001;

Pereira, Manson et al. 2002). Tem1 activation leads to the recruitment and activation of Cdc15,

homologous to S.pombe Cdc7 kinase. Like Cdc7, Cdc15 protein levels and kinase activity

remain constant through the cell cycle. Cdc15 localizes to the SPB during anaphase where it is

presumed to target downstream components of the MEN (Cenamor, Jimenez et al. 1999). The

protein kinase complex of Dbf2-Mob1, equivalents of S.pombe Sid2-Mob1, is downstream of all

MEN components (Lee, Frenz et al. 2001; Mah, Jang et al. 2001). Similar to Sid2 in S. pombe,

Dbf2 protein levels remain constant but its kinase activity is cell cycle regulated peaking in late

mitosis (Toyn and Johnston 1994).
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Figure 4. Current model of MEN regulation of mitotic exit in S.cerevisiae. During anaphase the SPB destined 
for the daughter cell carries with it MEN components that consist of Tem1 GTPase Bub2--Bfa1 GAP and Nud1. 
Lte1 is present in the bud and activates Tem1. The components Cdc15 and Dbf2-Mob1 are recruited to the SPB.
The exact nature and timing of Cdc15 and Dbf2 localization are unclear. The activation of the MEN causes 
complete release of Cdc14 from the nucleolus, which promotes mitotic exit. Upon Cdc28 inactivation the MEN 
module is cleared from the SPB and translocated to the bud neck region where it functions to promote cytokinesis.  
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Mob1 is essential for viability and mob1 temperature sensitive alleles are defective in

Dbf2 binding, suggesting that the interaction with Dbf2 is important for Mob1 function

(Komarnitsky, Chiang et al. 1998; Luca, Mody et al. 2001). Dbf2 is localized to the SPB

throughout most of the cell cycle; however, Mob1 localizes to the SPB only during anaphase

(Frenz, Lee et al. 2000; Luca, Mody et al. 2001; Yoshida and Toh-e 2001). Cdc15 can

phosphorylate and activate Dbf2 in vitro however only in the presence of Mob1 (Mah, Jang et al.

2001). This suggests that Cdc15 can activate Dbf2 only during anaphase, when Mob1 is

associated with it at the SPB. Interestingly, like S. pombe Sid2, Dbf2 and Mob1 re-localize to the

division site in late anaphase. This re-localization event requires the function of MEN and the

septins (Frenz, Lee et al. 2000; Luca, Mody et al. 2001; Yoshida and Toh-e 2001). The exact role

of Dbf2-Mob1 at the bud neck and in cell division is not clear but it is likely that they will serve

to phosphorylate substrates that play roles in cytokinesis.

MEN components are anchored to the SPB via the scaffold protein Nud1. Nud1

associates with Bub2 and Bfa1 in yeast two-hybrid analysis and co-immunoprecipitation

(Gruneberg, Campbell et al. 2000). The MEN seems to be essential for regulating mitotic

inactivation whereas the SIN regulates the formation of the septum after mitotic CDK

inactivation. However, a number of MEN mutants are defective in cytokinesis suggesting the

MEN has additional roles in cytokinesis (Jimenez, Cid et al. 1998; Luca, Mody et al. 2001;

Menssen, Neutzner et al. 2001; Song and Lee 2001). When the mitotic exit defect in tem1-1

allele is alleviated by a mutation in net1, it forms chained cells, an indicator of a cytokinetic

defect (Shou, Seol et al. 1999). The MEN mutant mob1-77 overproducing the CDK inhibitor

Sic1 can bypass the mitotic exit defect but still fails at cytokinesis (Luca, Mody et al. 2001).

These observations imply that the role of MEN in cytokinesis is direct and not a consequence of

delayed mitotic exit.

The MEN proteins Cdc5, Cdc15, Dbf2 and Mob1 localize to the bud-neck in late mitosis

(Frenz, Lee et al. 2000; Song, Grenfell et al. 2000; Xu, Huang et al. 2000). Mitotic CDK

inactivation is required for cytokinesis in S. cerevisiae as it is in S. pombe (Hwa Lim, Yeong et

al. 2003). Untimely inactivation of CDK activity leads to premature translocation of Dbf2/Dbf20

to the bud neck (Hwa Lim, Yeong et al. 2003).  Once at the bud-neck the MEN may play a role

in regulating assembly or contraction of the actomyosin ring.  For instance, Tem1 has been
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shown to be required for proper actomyosin and septin ring dynamics (Lippincott, Shannon et al.

2001).

A growing number of possible mammalian homologs of SIN and MEN components are

being identified (Cuif, Possmayer et al. 1999; Hirota, Morisaki et al. 2000) (Table 1). The human

homolog of Sid2/Dbf2 is the warts/LATS1 kinase, which localizes to the mitotic apparatus and is

phosphorylated specifically during mitosis (Hirota, Morisaki et al. 2000). Cells lacking the

human homolog of Cdc14-hCdc14A have cytokinetic defects. hCdc14A also localizes to the

centrosome (Kaiser, Zimmerman et al. 2002). A mammalian homolog of Nud1 and

Cdc11—Centriolin localizes specifically to the mother centriole and then is found adjacent to the

mid-body. Depletion of centriolin by RNAi leads to cytokinetic failure (Gromley, Jurczyk et al.

2003). The cytokinetic function of centriolin is attributed to a domain within the protein that

bears homology to Nud1 and Cdc11. Interestingly the same domain also binds Bub2 (Gromley,

Jurczyk et al. 2003). Elucidating the functions of known mammalian homologs as well as

identifying other homologs should reveal whether similar mechanisms or pathways exist in

higher eukaryotes.

Summary

Cytokinesis is a complex process that involves careful co-ordination in both space

and time, of a plethora of processes that are as varied as membrane synthesis to ring constriction.

The study of cytokinesis in fission yeast S.pombe has revealed a signaling network that plays a

critical role in controlling actomyosin ring constriction and septum formation. The timing of

cytokinesis and septum formation hinges upon the activation of the GTPase Spg1. Hence

understanding the regulation of Spg1 is critical for elucidating how cytokinesis is temporally

regulated. However, very little is known about how Spg1 is regulated or about its downstream

effector kinase Cdc7. In these studies I have investigated the role of Cdc7 and have identified

numerous functional domains within the SIN kinase that are essential for its function (Chapter

III). Second, I have investigated the regulation of the GAP component Byr4 by phosphorylation

as a means of regulating Spg1activation and further characterized its interaction with Spg1 and

Cdc16 (Chapter IV and V).
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CHAPTER II

MATERIALS AND METHODS

S.pombe strains and media

S.pombe strains (Table 3) used in this study were grown in YE medium or EMM minimal

medium with addition of appropriate nutritional supplements as described in (Moreno, Klar et al.

1991). Yeast transformations were performed by electroporation (Prentice 1992) or a lithium

acetate method (Keeney and Boeke 1994). Expression of constructs under control of the

thiamine- repressible promoter nmt was carried out as previously described (Basi, Schmid et al.

1993; Maundrell 1993). Cell synchrony was achieved by using a cdc25-22 mutant arrest and

release (Fankhauser, Reymond et al. 1995) or by centrifugal elutriation as previously described

(Chang, Morrell et al. 2001).

Molecular biology methods

Standard genetic and recombinant DNA methods were used except where noted. PCR

amplifications from S. pombe genomic DNA or a cDNA library were carried out to obtain

various gene fragments. PCR amplifications were performed using either TaqPlus Precision

polymerase (Stratagene) or Vent polymerase (New England Biolabs) according to manufacturers

instructions. Oligonucleotides were synthesized by Integrated DNA Technologies, Inc.  Site-

specific mutations were created using the Stratagene Chameleon or Quickchange site-directed

mutagenesis kit in accordance with manufacturers instructions. Sequencing was done at the

Vanderbilt Sequencing Facility. All plasmids used in this study are listed in Table 4.

In vivo tagging and gene deletions

Strains expressing carboxy -terminal HA3, Myc13, EGFP, CFP or YFP tagged versions of

proteins were constructed using a PCR-based approach as described by (Bahler, Wu et al. 1998).

Accurate integration and expression of protein was confirmed by PCR and either microscopic or
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immunoblot inspection, as appropriate. All tagged strains were viable at temperatures ranging

from 25 to 36oC.

Gene replacements were accomplished by replacing the coding sequences with the ura4+

gene at the locus of interest by homologous recombination in a diploid strain as described

(Bahler, Wu et al. 1998). Ura+ transformants were confirmed by PCR amplification using

primers within the ura4+ gene and primers outside the disruption cassette. Heterozygous diploid

strains were sporulated followed by tetrad dissection to determine if these genes were essential

for viability.

Yeast two-hybrid analysis

The yeast two-hybrid system used in this study was described previously (James,

Halladay et al. 1996). Various regions of cdc7+, byr4+, cdc16+ and spg1+ cDNAs were amplified

by PCR with primers containing 5’ and 3’ restriction sites and cloned in frame into either the bait

plasmid pGBT9 and/or prey plasmid pGAD424 (Clonetech, Palo Alto, CA). Plasmids were

sequenced to verify the maintenance of the correct reading frame and absence of any PCR-

induced mutations. Protein interactions were tested by co-transforming the bait and prey

plasmids into S.cerevisiae strain PJ69-4A. Leu+ and Trp+ transformants were scored for positive

interactions by plating on synthetic dextrose medium lacking adenine and histidine.  β-

Galactosidase reporter enzyme activity in the two-hybrid strains was measured using the

Galacto-Star TM chemiluminescent reporter assay system according to the manufacturer’s

instructions  (Tropix Inc., Bedford MA), with the exception that cells were lysed by glass bead

disruption. Each sample was measured in triplicate.

Cytology and Microscopy

All strains producing GFP –tagged proteins were visualized live unless otherwise

specified. Microscopy was carried out on an UltraView LCI confocal microscope equipped with

a 488nm argon-ion laser (for GFP and YFP excitation) and a 442nm Helium Cadmium laser (for

CFP excitation). Images were captured on an Orca-ER charge-coupled device (CCD) camera

(Hamamatsu, Japan) using Ultra-View software (PerkinElmer Life Sciences). Images were

processed using Volocity 2.0 software (Improvision, Lexington, MA). Z-series optical sections

were taken at 0.5 µM spacing.
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To visualize cell walls and septa, 1ml of cells from the culture were fixed in ethanol and

resuspended in 1ml of 1:100 dilution of methyl blue stock solution (100mg/ml) (Sigma Aldrich,

St. Louis, MO). The cells were incubated with the dye for 15-30 minutes and subsequently

washed three times with sterile PBS. The cells were resuspended in an appropriate volume of

PBS and mounted on a slide with DAPI to visualize the nuclei. To visualize the nuclei in live

cells, 1 ml of cells was incubated with a 1:1000 dilution (final) of Hoechst 33258 (Sigma

Aldrich, St. Louis, MO) and allowed to incubate for 20-30 seconds.  The cells were washed with

PBS and visualized under the scope.

DAPI, Aniline blue stained cells and Hoechst images were obtained, processed and analyzed

with OpenLab 2.1.3 software (Improvision, Lexington, MA) on a Zeiss microscope (Axioskop

2;Carl Zeiss,Thornwood, NY) equipped with a Plan APOCHROMAT 100 x /1.4 NA objective

lens (Carl Zeiss) and a GFP and DAPI filter set (Chroma technology).

Protein lysates, immunoprecipitations and immunoblotting

Whole cell pombe lysates were prepared in NP-40 buffer (Gould, Moreno et al. 1991),

and immunoprecipitations were carried out using either anti-HA (12CA5), anti-Myc (9E10) or

polyclonal anti-GFP antibodies as described (McDonald, Ohi et al. 1999). Denatured lysates

were prepared as outlined in (Burns, Ohi et al. 2002). Proteins were resolved by either SDS-

PAGE or 4-12% NuPAGE gel in MOPS buffer. Were noted 3-8% or 7% Tris-Acetate gels in

Tris- acetate buffer was also used.  Proteins were transferred by electroblotting to a PVDF

membrane (Immobilon P, Millipore Corp., Bedford MA) Immunoblotting was done with anti-

HA (12CA5; 2 mg/ml), anti-Myc (9E10; 2 mg/ml), anti-Cdc2 (PSTAIRE 1:5000 Sigma, St.

Louis, MO), and rabbit polyclonal antibodies to Byr4 (1:2000 dilution of serum), rabbit

polyclonal to Cdc16 (1:1000 dilution of serum) or anti-GFP (1:1000 dilution of serum)

antibodies. Primary antibodies were detected with horseradish peroxidase–conjugated goat anti-

mouse or goat anti-rabbit secondary antibodies (0.4 mg/ml; Jackson ImmunoResearch

Laboratories, West Grove, PA) at a dilution of 1:50,000, visualized by ECL using SuperSignal

(Pierce, Rockford, IL).
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Immunoprecipitation/Phosphatase assay

Following immunoprecipitation as described above, beads were washed two times with

NP-40 buffer and 3 times with phosphatase buffer (25 mM HEPES-NaOH pH 7.4, 150mM

NaCl, 0.1 mg/ml BSA) (REF). Beads were split into two samples, pelleted washed and

resuspended in 9 µl of 1X phosphatase buffer (New England Biolabs) + 2mM MnCl2 and 1 µl of

either lambda phosphatase (New England Biolabs) or buffer alone (mock). Beads were incubated

at 30oC for 30-45 minutes followed by 2 washed in NP-40 buffer and resuspended in 2X Sample

buffer. Lambda phosphatase or mock treated immunoprecipitates were resolved and

immunoblotted as described above.

Sucrose gradients

A 200 µl volume of clarified protein lysate was layered onto a 5 ml 5-20% sucrose gradient (in

NP-40 buffer) with .25 ml, 50% sucrose plug at the bottom. Gradients were ultracentrifuged at

40,000 rpm and 4oC for 19h in a Beckman SW50.1 rotor (Berkeley, CA). Sedimentation markers

were fractionated on gradients prepared and spun in parallel. 20 x .25 ml fractions were collected

from the bottom of the gradient. Fractions were resolved on a 10% SDS-PAGE gel and

transferred by electroblotting to PVDF membrane as noted above. For immunoprecipitations 1.5

µg of primary antibody was added to each fraction and processed as described above.

In vivo labeling cells with 32P orthophosphate, phospho amino acid analysis and tryptic
peptide mapping

Cells were grown to mid-log phase in minimal media plus any necessary supplements.

They were then washed in phosphate free media and allowed to grow in the same with

supplements and 50 mM NaH2PO4 for around 16-18 hours. Cells were collected resuspended in

10 mls phosphate free media and incubated for another 4 hours in the presence of 32P

orthophosphate label (NEN, New Jersey). Cells were then harvested and lysed to prepare lysates

that are resolved by SDS-PAGE. Proteins were transferred by electroblotting to a PVDF

membrane (Immobilon P, Millipore Corp., Bedford, MA) and detected by autoradiography. For

phospho-amino acid analysis the 32P-labeled protein subjected to partial acid hydrolysis with 6N
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HCl while still bound to the PVDF membrane, and the phospho-amino acids were separated in

two dimensions by thin-layer electrophoresis at pH 1.9 and pH 3.5 along with a mix of phospho-

serine, phospho-threonine and phospho-tyrosine standards. The phosphoamino acid standards

were visualized upon staining with Ninhydrin (0.25% in Acetone) whereas the labeled

phosphoamino acids in the protein were visualized by autoradiography. For tryptic peptide maps

the protein subject to digestion by Trypsin in ammonium bicarbonate buffer while still bound to

PVDF for a total of 6 hours. The peptides were then separated in two dimensions first by thin-

layer electrophoresis in buffer pH1.9 followed by chromatography (Boyle, van der Geer et al.

1991).

Preparation of recombinant proteins and in vitro binding assays

Glutathione-S-transferase (GST), Maltose-Binding Protein (MBP) or His6-fusion

proteins were produced in Escherichia coli BL21-codonplus-RIL cells (Stratagene) from pGEX

(Stratagene), pMAL-2C (New England Biolabs) or pET15b (Novagen) expression vectors,

respectively. The induction of recombinant protein expression was achieved with 0.4mM

isopropyl-β-D-thiogalactopyranoside (IPTG; Fisher Scientific, Pittsburgh, PA) at temperatures

ranging from 32oC to 25oC. The proteins were purified under native conditions on Ni-NTA

agarose (from Qiagen, for His6-fusions), glutathione-agarose beads (for GST) or amylose resin

(for MBP). The proteins were eluted from the beads by incubating in excess amounts of

imidazole (for His), glutathione (for GST) or maltose (for MBP). The eluted fractions were then

dialyzed against binding buffer (20mM Tris-HCl, pH 7.0, 150 mM NaCl, 2 mM EDTA and 0.1%

NP-40). For binding reactions appropriate amounts of two eluted proteins were incubated

together and the volume was made up to 1 ml with binding buffer. The appropriate resin was

added to pull down one of the proteins in the reaction. The beads were washed extensively and

bound proteins were resolved by SDS-PAGE followed by Coomassie blue staining to visualize

bound proteins.

In vitro kinase assays

His6 fusion proteins of Byr4 or MBP-Byr4 were made in E.coli as described above,

except the proteins were left bound to beads. The beads were washed with HB15 Buffer (60 mM

β -glycerophosphate, 25 mM MOPS [pH 7.2], 15 mM p-nitrophenylphosphate, 15 mM EGTA,
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15 mM MgCl2, 1 mM DTT, and 0.1 mM NaVO3) and resuspended in a final volume of 20 µl

HB-15 buffer. 10 µl of HB-15 buffer containing 50 µM ATP, 3 µCi of 32P-γ-ATP, and 100 ng of

insect cell produced Cdk1p-Cdc13p was added to the beads. The beads were then incubated at

30oC for 30 min in an Eppendorf-shaker, which allowed for constant shaking and resuspension

of beads in buffer. 20 µl of 2X Sample buffer was added to terminate the reaction. The samples

were separated by SDS-PAGE and either detected by Coomassie staining or transferred onto

PVDF membrane. Coomassie stained gels were dried with a BioRad 583 Gel-Dryer and exposed

to film to detect the incorporation of the radiolabel. The PVDF membrane was also exposed to

film following which radiolabeled protein was subject to phosphoaminoacid analysis or tryptic

peptide mapping as described above.
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Table 3. Strains used in this study

Strain Genotype 
KGY246 h- ade6-M210 ura4-D18 leu1-32
KGY170 cdc10-129 h+
KGY352 nuc2-663 h-
KGY444 cdc25-22 leu1-32 ura4-D18 ade6-M210 h+
KGY466 cdc25-22 rad1::ura4 leu1-32 h-
KGY516 rad1::ura4 leu1-32 ura4-D18 ade6-M210 h-
KGY702 cdc16-116 leu1-32 ura4-D18 ade6-M210 h+
KGY4071 h- spg1-myc::KanR ade6-M210 ura4-D18 leu1-32
KGY3842 h- cdc7-myc::KanR ade6-M210 ura4-D18 leu1-32
KGY2061 h- cdc7-24 ade6-M21X ura4-D18 leu1-32
KGY2678 h+ spg1-GFP::KanR ade6-M210 ura4-D18 leu1-32
KGY2167 h+spg1-3XHA::ura4 ura4-D18 ade6-M210 leu1-32
KGY1790 h+spg1-3XHA::ura4 ura4-D18
KGY5401 h- cdc7-myc::KanR spg1HA::ura4 ade6-M210 leu1-32 ura4-D18
KGY4426 cdc7-myc::KanR/cdc7-3XHA::ura4 ade6-M210/ade6-M216

ura4-D18/ura4-D18 leu1-32/leu1-32
KGY2628 sid4-GFP::KanR ura4-D18 ade6-M210 leu1-32 h-
KGY2678 spg1-GF::KanR ura4-D18 ade6-M210 leu1-32 h+
KGY2933 cdc7-GFP::KanR ade6-M210 leu1-32 ura4-D18 h-
KGY2945 sid2-GFP::KanR leu1-32 h+
KGY3341 cdc11-GFP::KanR ura4-D18 leu1-32 ade6-M210 h-
KGY4206 mts3-1 rad1::ura4 ura4-D18 leu1-32 ade6-M210 h-
KGY4267 spg1-myc::KanR h-
KGY4430 cdc7-myc::KanR cdc25-22 ade6-M210 ura4-D18 leu1-32 h+
KGY4626 rad1::ura4 cdc16-116 leu1-32 ura4-D18 ade6-M210 h?
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Table 2. Plasmids constructed for this study

Plasmid Number Vector          Insert

pKG16 pREP1      Byr4(aa100-665)
pKG19 pREP1  Byr4(aa400-665)
pKG125 pREP1  Byr4(aa1-600)
pKG144                                     pREP1               Byr4(aa300-665)
pKG2447 pREP1  Byr4(aa600-665)
pKG2620 pREP1  Byr4(aa100-300)
pKG2636      pREP1     Byr4(aa475-595)
pKG30         pREP81-GFP  Byr4(aa100-665)
pKG37          pREP81-GFP               Byr4(aa400-665)
pKG2618           pREP1-GFP  Byr4(aa600-665)
pKG2619         pREP81-GFP            Byr4(aa600-665)
pKG2621           pREP1-GFP  Byr4(aa100-300)
pKG2622         pREP81-GFP  Byr4(aa100-300)
pKG141                                    pREP81-GFP           Byr4(aa1-600)
pKG156                                    pREP81-GFP               Byr4(aa300-665)
pKG2637            pREP1-GFP       Byr4(aa475-595)
pKG2638          pREP81-GFP  Byr4(aa475-595)
pKG2730          pREP81-GFP                  Byr4
pKG722    pET15b  Byr4(aa475-595)
pKG2185 pGAD            Byr4
pKG2186 pGAD  Byr4(aa479-592)
pKG2187    pGAD   Byr4(aa1-479)
pKG2241       pGAD               Byr4(aa479-665)
pKG2242  pGAD  Byr4(aa535-665)
pKG2243 pGAD  Byr4(aa400-665)
pKG2245 pGAD  Byr4(aa660-665)
pKG2246 pGAD  Byr4(aa1-100)
pKG2247 pGAD  Byr4(aa1-300)
pKG2248 pGAD        Byr4(aa100-665)
pKG2249 pGAD  Byr4(aa1-535)
pKG2272 pGAD  Byr4(aa308-665)
pKG2273 pGAD  Byr4(aa1-600)
pKG2612 pGAD  Byr4(aa100-300)
pKG2634 pMAL            Byr4
pKG2679 pGAD  Byr4(aa475-595)
pKG2717               pGEX4T1                         Byr4(aa100-300)
pKG2718           pGEX4T1  Byr4(aa475-595)
pKG3364             pET15b  Byr4(aa100-665)
pKG3369        pREP81-GFP            Byr4S4A
pKG3565             pET15b      Byr4(100-665)S4A
pKG3592             pET15b       Byr4(100-665)S5A
pKG13         pREP81-GFP       Cdc7(aa1-535)
pKG482           pREP81-GFP       Cdc7(aa250-535)
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Table 2, cont.

Plasmid Number     Vector Insert

pKG513           pREP1-GFP      Cdc7(aa250-535)
pKG517           pREP1-GFP      Cdc7(aa300-535)
pKG3031         pREP81-GFP                   Cdc7(aa360-535)
pKG3127         pREP81-GFP      Cdc7
pKG1335                           pREP81-GFP      Cdc7(aa360-518)
pKG3194              pREP81-GFP      Cdc7(aa1-250)
pKG3195         pREP81-GFP      Cdc7(aa1-260)
pKG3196         pREP81-GFP      Cdc7(aa535-1062)
pKG3197                      pREP81-GFP      Cdc7(K38R)
pKG3198          pREP81-GFP      Cdc7(aa1-500)
pKG3281         pREP81-GFP      Cdc7(aa250-1062)
pKG3282         pREP81-GFP      Cdc7(aa360-1062)
pKG3283         pREP81-GFP      Cdc7(aa261-800)
pKG3285         pREP81-GFP      Cdc7(aa261-840)
pKG3295         pREP81-GFP      Cdc7(aa361-800)
pKG3296              pREP81-GFP      Cdc7(aa361-840)
pKG3489         pREP81-GFP      Cdc7(aa1-990)
pKG3490         pREP81-GFP      Cdc7(aa1-920)
pKG3491         pREP81-GFP      Cdc7(aa1-900)
pKG3492           pREP81-GFP      Cdc7(aa360-900)
pKG3494         pREP81-GFP      Cdc7(aa360-870)
pKG1336                      pREP81-GFP      Cdc7(∆360-518)
pKG724              pGAD      Cdc7(aa250-535)
pKG726                           pGAD         Cdc7(aa300-535)
pKG2188              pGAD                   Cdc7(aa535-1062)
pKG2189 pGAD                   Cdc7(aa1-535)
pKG2250              pGAD      Cdc7
pKG2251 pGAD      Cdc7(aa1-250)
pKG2253 pGAD      Cdc7(aa1-500)
pKG2254 pGAD      Cdc7(aa1-634)
pKG2724 pGAD      Cdc7(aa1-350)
pKG2725 pGAD      Cdc7(aa350-535)
pKG1192              pGAD      Cdc7(aa360-518)
pKG1360              pGAD      Cdc7(∆360-518)
pKG1361             pGBT9      Cdc7(∆360-518)
pKG1191             pGBT9      Cdc7(aa360-518)
pKG731             pET15b      Cdc7(aa250-535)
pKG1442             pREP41      Cdc7
pKG1510        pREP41-HA      Cdc7(∆360-518)
pKG1511        pREP41-HA      Cdc7(aa360-518)
pKG1512        pREP41-HA         Cdc7
pKG3541        pREP1-NTAP      Cdc7(aa250-535)
pKG2184 pGAD Spg1
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Table 2, cont.

Plasmid Number     Vector    Insert

pKG2180 pGBT9     Spg1
pKG796              pMAL-2C           Spg1Q69L
pKG803    pGEX Spg1Q69L
pKG813               pMAL-2C Spg1T42A
pKG1096              pGEX4T-1 Spg1T42A
pKG1826              pMAL-2C     none
pKG1699              pGEX4T-1     none
pKG1743  pGAD424     none
pKG1744   pGBT9     none
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CHAPTER III

IDENTIFICATION OF FUNCTIONAL DOMAINS WITHIN SIN KINASE CDC7

Introduction

The Septation Initiation Network (SIN) serves to coordinate cytokinesis with mitotic exit

in the fission yeast Schizosaccharomyces pombe.  SIN components Spg1, a ras-like GTPase and

Cdc7 together play a central role in regulating the onset of septation and cytokinesis. Activation

of the SIN pathway is triggered by activation of Spg1 and increased production of Spg1 leads to

the formation of septa from any point in the cell cycle (Schmidt, Sohrmann et al. 1997).

Interestingly, Spg1 activation at the SPB is asymmetric. It exists in the GDP- bound state during

interphase at the single SPB, during metaphase it is GTP-bound at both SPBs only to be

‘inactivated’ or GDP bound at one SPB during anaphase B (Sohrmann, Schmidt et al. 1998).

Cdc7 is a member of the STE11/MEKK family of kinases

(http://alpha.kinasenet.org/pkr/) (Hanks, Quinn et al. 1988; Smith, Shindyalov et al. 1997; Smith

1999; Petretti and Prigent 2005). Most kinases belonging to the MEKK family share a similar

structure with the kinase domain at the C-terminus and a regulatory domain at the N-terminus

(Hagemann and Blank 2001). They also bind to small G-proteins (Hagemann and Blank 2001).

Cdc7 differs from typical members of the family in that the kinase domain of Cdc7 resides at its

N-terminus. However, like other family members, it binds to and is an effector for a GTPase, in

this case Spg1 (Schmidt, Sohrmann et al. 1997; Sohrmann, Schmidt et al. 1998). Cdc7 is only

recruited to the pole that is occupied by GTP-bound Spg1; hence it also is asymmetrically

localized to one pole during anaphase. The asymmetric localization of SIN components appears

to be important for proper SIN regulation since Cdc7 is associated with both SPBs during

anaphase in cells with deregulated septum formation (Mulvihill, Petersen et al. 1999; Tanaka,

Petersen et al. 2001).

 Cdc7 kinase plays a crucial role in propagation of the SIN as it serves to relay the

activation signal from Spg1-GTP to its downstream effectors. In order to understand how Cdc7

is regulated we have carried out a detailed structure/ function analysis of Cdc7. We find that a

region adjacent to the kinase domain is responsible for Spg1 association and have identified an
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overlapping but distinct SPB localization domain. Cdc7 self-associates and we provide evidence

that this association is critical for Cdc7 function.

Results

Cdc7 associates with Spg1 only during mitosis

Cdc7 only associates with GTP-bound Spg1 and presumed to function as its effector.

Most G-protein effector kinases are activated upon induction or binding to their cognate G-

protein (Coso, Chiariello et al. 1995; Zhao, Leung et al. 1995).  Despite the observation that

Spg1 is in its GTP bound form at the SPB only during mitosis, the kinase activity of Cdc7 has

remains constant throughout the cell cycle (Sohrmann, Schmidt et al. 1998). Given this anomaly

I decided to address whether Cdc7 was always associated with Spg1.  We generated a

synchronous population of cells by centrifugal elutriation that contained endogenously tagged

Cdc7-Myc13 and Spg1-HA3.  Samples were collected at regular intervals and examined for

septation and nuclear division as indicators of the cell-cycle stage (Figure 5A). Protein lysates

were prepared and Spg1 was immunoprecipitated by anti-HA antibodies and assessed for the

presence of Cdc7-Myc13 by immunoblotting (Figure 5B, bottom panel). Control spg1-ha3 strain

lacking endogenously tagged Cdc7 and wild type (WT) untagged strain were used as controls.

Cdc7-Myc13 was present in Spg1-HA3 immunoprecipitates prepared from mitotic but not

interphase cells. This is also the stage at which Spg1 is in its GTP bound form (Sohrmann,

Schmidt et al. 1998).  In uninucleate cells that have exited from mitosis (at minutes 90, 105 and

120), no Cdc7-myc13 was detectable. Lack of association was not due to lower amounts of Spg1-

HA3 in the immunoprecipitate or overall protein levels (Figure 5B, top and middle panels). These

results indicate that unlike other G-protein associated kinases the binding to Spg1 does not

influence Cdc7 kinase activity.

The N-terminus of Cdc7 contains an Spg1 binding site

Given that Cdc7 association with Spg1 is the likely regulatory step in SIN activation we

first addressed what regions of Cdc7 are responsible for binding to Spg1. I analyzed a series of

cdc7 fragments in the two-hybrid assay. Residues 250-535 were found to contain a strong

interaction domain (Figure 6A).  Since Cdc7 only associates with Spg1 in its GTP bound form
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Figure 5. Cdc7 associates with Spg1 only during mitosis. cdc7-myc13 spg1-ha3 strain (KGY5401) was grown
to mid-log phase and synchronized in G2 by centrifugal elutriation. Samples were taken at regular time intervals 
and processed for DAPI staining (Binucleates) and Septation index as a measure of cell cycle progression (A).
(B) Protein lysates were prepared from each sample and Spg1 was immunoprecipitated using anti-HA antibodies 
from lysates that were normalized to contain equal amount of protein as determined by immunoblotting lysates 
for Cdc2 with anti-PSTAIR antibodies (top panel). The amount of Spg1-HA3 immunoprecipitated was detected
by immunoblotting with 12CA5 antibodies (middle panel, * indicates a background band that is present in 246 
control, arrow points to Spg1-HA3 band). Cdc7-Myc13 (indicated by the arrow) in Spg1-HA3 
immunoprecipitates was detected by immunoblotting with 9E10 antibodies (bottom panel, * indicates
background band that is present in Spg1-HA3 and wild-type KGY246 controls). 
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Figure 6. Amino acids 250-535 of Cdc7 are sufficient to bind Spg1 (A) spg1 bait plasmid was co-transformed 
with various cdc7 or control prey plasmids. Transformants were grown on medium lacking histidine and adenine
 to score for positive interactions.  cdc7 constructs and their ability to grow with the spg1 construct are indicated.
 (B) Wild-type cells (KGY246) expressing GFP-Cdc7(250-535) were grown to mid log phase in the absence of
 thiamine at 32oC for 18 hours. Cells were fixed in methanol and stained with DAPI to visualize the nuclei 
(left panel). To visualize GFP-Cdc7(250-535) images of live cells were captured (right panel). (C) The 
spg1-myc13 strain (KGY4071) was transformed with pREP1 vectors producing GFP-Cdc7(250-535). 
Transformants were grown in the presence (lane1) and absence of thiamine (lane2) and protein lysates were 
subject to immunoprecipitation with polyclonal anti-GFP serum as were lysates from control untransformed 
wild type (KGY246) cells. Immunoprecipitates were run on a 4-12% Bis-Tris Gel and immunoblotted with 
9E10 monoclonal anti-myc antibody or polyclonal anti-GFP antibody (D) Approximately equal amounts of 
fusion proteins GST-Spg1Q69L and GST-Spg1T42A were incubated with recombinant His6-Cdc7(250-535) or
control protein His6-Prp19(1-73). His6-Cdc7 (250-535) associated with GST-Spg1Q69Land not GST or 
GST-Spg1T42A when pulled down with glutathione agarose beads, as visualized by coomassie staining.  
His6-Prp19(1-73) did not associate with either. (E) Spg1-GFP cells (KGY2678) expressing 
NTAP-Cdc7(250-535) under the control of the nmt1promoter in pREP1 were grown as in B above. 
Images of live cells were captured to visualize GFP (bottom panel) as well as DIC (top panel).
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(Sohrmann, Schmidt et al. 1998), I tested if His6-Cdc7 (250-535) bound Spg1 in a nucleotide

dependent manner. For this I examined the ability of bacterially produced His6-Cdc7 (250-535)

to interact with recombinant Spg1 mutants in vitro. His6-Cdc7 (250-535) was able to bind GST-

Spg1Q69L, a constitutively active mutant (Schmidt, Sohrmann et al. 1997), but not GST-

Spg1T42A an effector domain mutant (Schmidt, Sohrmann et al. 1997) (Figure 6D). We also

tested whether Cdc7(250-535) and Spg1-Myc13 could co-immunoprecipitate from S. pombe

protein lysates. To this end, GFP tagged Cdc7(250-535) was overproduced in an spg1-myc13

strain. Anti-GFP immunoprecipitates contained Spg1-Myc13 (Figure 6C), confirming the ability

of these proteins to associate in vivo.

We noticed that when GFP-Cdc7 (250-535) was overproduced, it generated a SIN

phenotype (Figure 6B).  This could be because it prevented endogenous Cdc7 from localizing to

the poles and thus from binding Spg1 or because it titrated Spg1 from the SPBs. To distinguish

between these two possibilities, I first examined the localization of GFP-Cdc7(250-535) when it

was overproduced.  Inconsistent with the first possibility, GFP-Cdc7(250-535) localized to the

cytosol (Figure  6B). Furthermore overproduction of Cdc7(250-535) displaced endogenous

Spg1-GFP from the SPB (Figure  6E). These data taken together indicate that amino acids 250-

535 of Cdc7 are sufficient for binding to Spg1 in vitro and in vivo, and when present in sufficient

quantity, to sequester Spg1 away from SPBs.  Further, these results indicate that Cdc7 residues

outside of its Spg1 binding domain are required for Cdc7 to localize to the SPB.

Identification of SPB localization domain within Cdc7

To determine which regions of Cdc7 are required to target it to the SPB, I expressed N

and C-terminal truncations of Cdc7 fused to GFP.  Since Cdc7 is an essential gene I tested these

truncations in cells that also contained endogenous Cdc7. Full-length GFP-Cdc7 localized to the

SPB in a cell cycle dependent manner, however unlike endogenous Cdc7 it localizes to the SPB

symmetrically during anaphase as has been noted previously when Cdc7 is overexpressed

(Sohrmann, Schmidt et al. 1998).

A kinase dead mutant of Cdc7, GFP-Cdc7K38R, also localized to the SPB symmetrically

during anaphase. GFP-Cdc7 (260-1062) and GFP-Cdc7 (360-1062) constructs lacking the kinase

domain (Figure 7A, 7B) also were capable of localizing to the SPB. Hence neither the kinase
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Figure 7. SPB localization localization domain of Cdc7. (A) Characterization of Cdc7 truncation 
mutants. To test for rescue of the growth defect of cdc7-24 mutants, cells carrying vector alone or
pREP41HACdc7 truncations were  grown on selective plates without thiamine at permissive temperature
(25oC) and then shifted to restrictive temperature 36oC. Colony formation at restrictive temperature was 
indicative of rescue. Deletion mutants of Cdc7 were tagged with GFP and expressed from the low- 
strength nmt81 promoter of pRE81GFP vector. Cells containing these plasmids were grown in the 
presence of thiamine overnight, washed in media without thiamine and allowed to grow to mid log phase
in the absence of thiamine at 32oC for 18 hours. GFP-Cdc7 localization was observed in live cells. 
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domain nor kinase activity is required for Cdc7 SPB localization. I then tested C-terminal

deletions to narrow the region responsible for Cdc7 SPB localization. While GFP-Cdc7 (360-

870) could localize to the SPB, further loss of N or C-terminal residues resulted in abrogation of

SPB localization (Figure 7A). Hence the region that is responsible for SPB association is larger

than that required for Spg1 binding and resides within residues 360-870 (Figure 10C).

To correlate the ability of Cdc7 constructs to localize and bind Spg1 with overall Cdc7

function, N-terminal GFP Cdc7 fusion proteins were tested for the ability to rescue the growth

defect of cdc7-24 cells (Figure 7A). I found that the full length and C-terminal truncations (Cdc7

1-535, Cdc7 1-900) were able to rescue (Figure 7A), and as expected, all Cdc7 fragments lacking

the kinase domain did not. The minimal rescuing fragment (Cdc7 1-900) contains both the SPB

localization and Spg1 association domains and hence includes all the necessary elements that are

critical for Cdc7 function. These results indicate that C-terminal residues 900-1062 are

dispensable for Cdc7 function.

Cdc7 self associates in vivo

In the course of our yeast two- hybrid analysis to define Spg1 binding regions within

Cdc7, we discovered that Cdc7 interacts with itself in the two-hybrid assay (Figure 8A). The

minimal domain required for this interaction was narrowed to aa360-518 (Figure 8A). This

region is embedded within the identified minimal Spg1 binding domain (residues 250-535,

Figure 10C) and also contains a coiled-coil motif, a common protein –protein interaction

domain.  Residues 360-518 did not interact with Spg1, however deleting these residues from the

protein abolished both Cdc7 self –interaction (Figure 8A) and interaction with Spg1 in the yeast

two hybrid assay (Figure 8C). This suggests that Cdc7 interacts with itself via this domain and

this self-interaction might be required for Spg1 binding. As expected, then, deletion of this

domain affected Cdc7 function; pREP41HA-Cdc7(∆360-518) was unable to rescue the

temperature sensitive lethality of cdc7-24 allele even under low-level of expression (+T) (Figure

9A).  Loss of function was not due to degradation of unstable protein at 360C, since protein

levels of HA-Cdc7(360-518) were comparable to those of HA-Cdc7 (Figure 9B)

In order to test whether Cdc7 could oligomerize in vivo, I created a diploid strain in

which one allele of cdc7 was tagged with the Myc13 epitope and the other tagged with the HA3

epitope. Anti- HA immunoprecipitates from the dually tagged diploid strain, but not single
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Figure 8. Cdc7 interacts with itself.  A) cdc7 or control bait plasmids were co-transformed with various cdc7 or
control prey plasmids.  Transformants were grown on medium lacking histidine and adenine to score for positive
interactions. Transformants were assayed for β-galactosidase assays and their interactions are indicated in relative
light units. (B) Same as in A, except spg1 or control bait plasmids were co-transformed with various cdc7 prey
plasmids. Asterix indicates loss of self-interaction as well as interaction with Spg1 upon deletion of residues 360-
518.
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tagged strains, contained Cdc7-Myc13 and vice versa (Figure 9C).  These results indicated that

Cdc7 did indeed exist as an oligomer in vivo.  To estimate what oligomeric state Cdc7 was in,

lysates from asynchronously growing Cdc7-Myc13 and control untagged strains were prepared

under native conditions and sedimented on sucrose gradients. After sedimentation fractions were

collected and Cdc7-Myc13 was immunoprecipitated using an antibody against the myc epitope

from each fraction. Immunoprecipitates were then analyzed by immunoblotting for myc.

Molecular size standards were run in parallel on an identical sucrose gradient.  We found that the

majority of Cdc7-Myc, co-sedimented in fractions 10 and 11 with the molecular weight marker,

Phosphorylase B, which forms a trimer of 292.8 kDa.

Since the predicted molecular weight of a Cdc7-Myc13 dimer is approximately 285 kDa,

this suggests that Cdc7 exists primarily as a dimer. Some Cdc7-Myc13 sediments lower in the

gradient and this could represent Cdc7 in complex with other proteins (such as Spg1) and/or in

higher order complexes with itself. We also investigated whether Spg1 was able to associate with

itself. The results of the yeast two-hybrid and co-immunoprecipitation from spg1-HA3/ spg1-

myc13 diploid strain showed that Spg1 is not associated with itself (Figure 10A). This suggests

that either Spg1 is not present in Cdc7 complexes or that a Cdc7 dimer binds to one molecule of

Spg1. Consistent with the latter hypothesis overexpression of Spg1 failed to disrupt Cdc7 self

association (Figure 10B). These data taken together with the observation that Cdc7-Myc13 was

not observed in any fraction that would be consistent with a monomeric form  (140 kDa) suggest

that Cdc7 exists predominantly as a dimer in vivo and associates with Spg1 as a dimer.
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Figure 9. Cdc7 self associates in vivo.  (A) cdc7-24 mutant cells carrying vector alone or pREP41HACdc7
truncations were grown on selective plates with thiamine at permissive temperature (25oC). Cells were then patched
to single colonies on plates with and without thiamine and shifted to restrictive temperature of 36oC. (B) cdc7-24
mutant cells carrying vector alone (1), pREP41HACdc7(∆360-518) (2) or pREP41HACdc7(3) were grown as in (A)
except in liquid media. Protein lysates were prepared from cells shifted to restrictive temperature and run on an
SDS-PAGE gel. Lysates were immunoblotted with anti-HA antibodies. (C) anti-Myc (right) and anti-HA (left)
immunoprecipitates from the indicated strains were blotted with anti-Myc (upper panels) and
anti-HA (lower panel) antibodies. (D) Native lysates were prepared from cdc7-myc13 (KGY 3842) cells and
fractionated over a sucrose gradient. Cdc7-Myc13 was immunoprecipitated from gradient fractions using anti-Myc
mAB 9E10 and analyzed by SDS-PAGE. Molecular size standards were run in parallel on an identical sucrose
gradient.
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(C) Organization of various functional domains within Cdc7.
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Conclusions

Cdc7 is a protein kinase essential for cytokinesis in fission yeast. Prior to this work very

little functional information about Cdc7 was known. It was predicted to be an effector kinase for

Spg1 and shown to bind only active or GTP bound Spg1. Cdc7 kinase activity however remains

constant throughout the cell cycle.  I show that, as predicted, Cdc7 only binds to Spg1 during

mitosis and hence its kinase activity is most likely unaffected by binding to Spg1. In order to

elucidate Cdc7 regulation I have identified various functional domains within Cdc7. I show that

a region adjacent to the kinase domain is responsible for association with Spg1 but insufficient

for SPB localization.

In addition I find that Cdc7 self associates which is required for binding to Spg1. Our

findings indicate that there are potentially multiple modes of regulating Cdc7 function and hence

the SIN.

44



CHAPTER IV

IDENTIFICATION OF FUNCTIONAL DOMAINS WITHIN GAP COMPONENT BYR4

Introduction

The onset of cytokinesis and septum formation in S. pombe is regulated via the

Septation Initiation Network (SIN) signaling pathway. The key to controlling the onset of

septation lies in the activity of Spg1, a small Ras -superfamily GTPase that is present at the SPB

throughout the cell cycle (Schmidt, Sohrmann et al. 1997; Sohrmann, Schmidt et al. 1998). Spg1

alternates between its inactive GDP-bound form (during interphase) and its active GTP-bound

form (during metaphase).  Later in anaphase it becomes inactivated at one pole to generate a

poorly understood asymmetric state. The effector for Spg1, Cdc7 kinase, also localizes

asymmetrically to the SPB associating only with the active form of Spg1 (Sohrmann, Schmidt et

al. 1998). Acting to prevent Spg1 activation and septation during interphase is a two-component

GAP comprised of Byr4 and Cdc16 (Furge, Wong et al. 1998). During anaphase Cdc16-Byr4

localizes to only one SPB, the one without Cdc7. In fact the asymmetric localization of Cdc16-

Byr4 appears to occur prior to that of Cdc7 suggesting that the complex may prevent the

recruitment of Cdc7 to that SPB (Cerutti and Simanis 1999; Li, Furge et al. 2000). Cdc16 is

related to Ypt/Rab specific GAPs but despite this homology, Cdc16 requires its partner Byr4 for

this activity in vitro   (Neuwald 1997; Furge, Wong et al. 1998). While Byr4 does not appear to

contain motifs of known function, Byr4 may function in part to tether Cdc16 near Spg1 since it,

but not Cdc16, binds stably to Spg1 through several independent domains.

Although Byr4 functions with Cdc16 to reduce Spg1-GTP levels, overproduction of Byr4

generates a SIN phenotype that is eventually lethal (Song, Mach et al. 1996; Jwa and Song

1998). In this study, we have pursued an explanation to this apparent paradox.  Since co-

production of Spg1 can suppress the lethal effects of Byr4 overproduction it is possible that high

levels of Byr4 inhibit the ability of Spg1-GTP to bind its effector, the Cdc7 kinase. Here, I have

examined the consequence of Byr4 overproduction phenotype on SIN component localization.  I
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have also carried out an analysis of Spg1and Cdc16 binding domains within Byr4 and

demonstrate that the association with Cdc16 is required for SPB localization of Byr4.

Results

Byr4 overproduction interferes with SIN component localization

To determine if excess Byr4 interfered with the SPB localization of any of the SIN

components, their localization patterns were examined in Byr4-overproducing cells. We first

examined the localization of Sid4-GFP and Cdc11-GFP, the SPB scaffolds for the SIN, and

found that they were maintained at the poles when Byr4 was overproduced (Figure 11A, B). The

next component of the pathway we examined was Spg1-GFP.  Spg1 is normally present at SPBs

throughout the cell cycle and this localization is dependent on the integrity of the Cdc11-Sid4

scaffold.  We observed that Spg1 is still maintained at the poles in Byr4-overproducing cells

(Figure 11C). This finding is contrary to what has previously been published (Li, Furge et al.

2000).

Cdc7 kinase is a known effector for Spg1 and is recruited to the SPB by active Spg1

(Sohrmann, Schmidt et al. 1998; Li, Furge et al. 2000). At low levels of byr4 expression, about

9% of the cells (87/989) were binucleate.  Of these, 85% had Cdc7 on either one or both SPBs.

As Byr4 levels increased due to de-repression of the nmt41 promoter, the number of cells with

two or more nuclei increased.  When 35% of the cells were bi- or multi-nucleate only 2% of cells

had detectable Cdc7-GFP signal at a SPB (Table in Figure 11). These data indicate that Byr4

overproduction displaces Cdc7 from the SPB.

We also examined the localization of Sid2, a SIN component that is present constitutively

at SPBs and transiently recruited to the medial ring during anaphase if the SIN pathway is

functioning (Sparks, Morphew et al. 1999). We found that Sid2 remained at SPBs overproducing

Byr4, but was never detected at rings (Figure 11D).  Hence Byr4 overproduction seems to

specifically displace Cdc7 from SPBs leading to a block in SIN signaling.

To determine whether Byr4 itself could localize to SPBs when overproduced, Byr4p was

fused to GFP and placed under control of the low-strength nmt81 promoter. Under inducing

conditions, GFP-Byr4 localized to SPBs and generated a SIN phenotype (Figure 11E).
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Figure 11. Overproduction of Byr4 interferes with SPB localization of Cdc7. The (A) sid 4-GFP
(KGY2628), (B) cdc11-GFP (KGY3341), (C) spg1-GFP (KGY2678), and (D) sid2-GFP strain (KGY2945)
strains expressing pREP41Byr4 were grown in the absence of thiamine at 29oC for 18 hours. 
(E)Wild-type cells (KGY246) expressing GFP-Byr4 under the control of nmt81 promoter in pREP81 were 
grown to mid log phase in the absence of thiamine at 29oC for 18 hours. Images of live cells were captured.
Table. Number of binucleate cells displaying Cdc7-GFP in SPBs upon Byr4 overproduction. 

Byr4 Expression
Level s

% Binucleates  

Low level (+T) 9% (87/879) 85% (strong)
High level (-T) 35% (bi and multinucleate) 2% (weak but detectable)

%Binucleates with Cdc7-GFP
staining at one or 2 SPBs
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N-terminus of Byr4 contains 2 binding sites for Spg1

The domains of Byr4 that bind Spg1 were broadly characterized using an in vitro binding

assay (Furge, Cheng et al. 1999). These were found to lie in 4 different regions that spanned the

entire length of the protein (Furge, Cheng et al. 1999). We decided to accurately determine what

regions of Byr4 were required for interacting with Spg1 by using the yeast two- hybrid system.

By testing a series of byr4 fragments in the two-hybrid assay, at least two independent regions

were identified that interacted well with Spg1 (Figure 12A).  By further deletion analysis, the

best interaction in the amino terminus was observed with a Byr4 fragment that spanned amino

acids 100-300 (Figure 12A and B).  Because amino acids 1-200 also interact with Spg1, it is

possible that an Spg1 interaction domain is present within Byr4 amino acids 100-200 (Figure

12A and B).  The second strong interaction domain contained the two imperfect direct repeats of

Byr4, amino acids 475-595 (Figure 12A and B).

To extend our analysis of these domains, I overproduced them in cells to observe their

effect on Spg1 localization and also tested their ability to interact with Spg1 in vitro.

Overproduction of Byr4 fragments 100-300 or 475-595 in vivo (Figure 13A) generated a SIN

phenotype similar to full length Byr4 (Figure 13B). Unlike full-length Byr4, however, these

fragments prevented SPB localization of Spg1 (Figure 13B, top panel). They did not interfere

with the SPB localization of Sid4, Cdc11, or Sid2 (Figure 13B, lower three panels).  These

results are consistent with the possibility that these fragments either saturate the SPB binding site

for Spg1 or titrate Spg1 from the spindle poles. Consistent with the latter possibility, GFP tagged

versions of these fragments localize to the cytosol and are not detected at SPBs (Figure 13C). I

also tested whether these fragments and Spg1-myc could co-immunoprecipitate from S. pombe

protein lysates. To this end, GFP tagged Byr4(100-300) and Byr4(475-595) were overproduced

in a spg1-myc strain. Anti-GFP immunoprecipitates contained Spg1-myc (Figure 13D),

confirming the ability of these proteins to associate in vivo.
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Figure 12. Delineation of Spg1 interaction domains within Byr4.  spg1 or control bait plasmids were co-
transformed with various byr4 or control prey plasmids.  A) Transformants were grown on medium lacking histidine
and adenine to score for positive interactions. byr4 constructs and their ability to grow well with spg1 constructs are
indicated. (B) Transformants were also assayed for β-galactosidase assays and their interactions are indicated in
relative light units.
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Figure 13. Overproduction of Byr4 domains that interact with Spg1 displace Spg1 from SPBs. 
(A) Protein lysates prepared from wild type cells producing Byr4(100-300) (lanes 1 and 2) and 
Byr4 (475-595) (lanes 3 and 4) in the presence (lanes 2 and 4) and absence (lanes 1 and 3) of thiamine 
were run on a 4-12% Bis-Tris gel and blotted with anti-Byr4 serum. (B) Live images of spg1-GFP, 
sid4-GFP, cdc11-GFP and sid2-GFP strains overproducing Byr4(100-300) or Byr4(475-595). GFP has 
been false colored red and cells in the top three panels were also stained with Hoechst that is in blue. 
(C) Wild-type cells (KGY246) expressing GFP-Byr4(100-300) under the control of nmt1promoter
in pREP1 (upper panel) or GFP-Byr4(475-595) under the control of nmt81 promoter in  pREP81 
(lower panel) were grown to mid log phase in the absence of thiamine at 32oC for 14hours and 18 
hours respectively. Images of live cells were captured. (D) The spg1-myc13 strain (KGY4071) was 
transformed with pREP1 vectors producing GFP-Byr4(100-300) (upper panel) or GFP-Byr4(475-595) 
(lower panel). Transformants were grown in the absence of thiamine and protein lysates were subject to 
immunoprecipitation with polyclonal anti-GFP serum as were lysates from control untransformed wild 
type (KGY246) cells. Immunoprecipitates were run on a 4-12% Bis-Tris Gel and immunoblotted with
 9E10 monoclonal anti-myc antibody.
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C-terminus of Byr4 binds Cdc16

In addition to binding Spg1, Byr4 forms a complex with Cdc16 (Furge, Wong et al.

1998). The Byr4 domain responsible for this interaction was mapped previously using purified

proteins and found to reside at the very C-terminus of Byr4, residues 595-665 (Furge, Cheng et

al. 1999). We also found that Byr4 amino acids 600-665 interacted with Cdc16 but not Spg1 in

the yeast two-hybrid system (Figure 14A).  Because Byr4 localization to the SPB requires Cdc16

function (Furge, Wong et al. 1998), I tested whether this fragment alone contained an SPB-

binding domain. Consistent with this domain being the SPB targeting region in Byr4, this
fragment alone was sufficient to localize GFP to the SPB although cytoplasmic flourescence was
also observed (Figure 14B, middle panel). A Byr4 fragment lacking this domain was unable to

localize to the SPB, whereas all N-terminal deletions of Byr4 containing the Cdc16 binding

domain localized to the SPB (Figure 14B left and right panels). Thus Byr4 association with the
SPB is strictly dependant on its association with Cdc16, despite containing two Spg1 binding

sites. Overproduction of Cdc16-binding fragment of Byr4 in vivo results in multiseptate cells

suggesting it prevents full length Byr4 from accessing Cdc16 (Figure 14B). To confirm that this

fragment can interact with Cdc16 in vivo, GFP-Byr4(600-665) was overproduced and

immunoprecipitated using anti-GFP immune or pre-immune sera. Anti-GFP (but not pre-

immune) immunoprecipitates contained Cdc16 as detected by Cdc16 specific polyclonal anti-

sera (Figure 14C).

Conclusions

Byr4 – Cdc16 is a unique two-component GAP system that maintains Spg1 in an inactive

state during interphase. In order to understand how Byr4 may contribute to SIN regulation I have

identified different functional domains within Byr4 and addressed their roles in cytokinesis by

overexpression studies.  I show that Byr4 has two regions that are responsible for binding to

Spg1. Further the C-terminal 65 amino acids are required for binding to Cdc16.
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Figure 14. Characterization of Cdc16 binding domain. A) cdc16 or control bait plasmids were co-
transformed with various byr4 or control prey plasmids. Transformants were assayed for β-galactosidase 
assays and their interactions are indicated in relative light units. (B) Wild type cells (KGY246) expressing
the indicated GFP-Byr4 fusion proteins from the nmt81 promoter were grown to mid log phase in medium
lacking thiamine at 32oC for 18 hours and live images of cells were captured to visualize GFP. (C) Wild 
type cells (KGY 246) expressing the GFP-Byr4(600-665) fusion proteins from the nmt1 promoter were 
grown as in B, except protein lysates were prepared and subject to immunoprecipitation with either 
polyclonal anti-GFP serum or pre-immune serum. Immunoprecipitates were resolved on a 4-12% Bis-Tris 
Gel and immunoblotted with anti-Cdc16 serum or anti-GFP serum.
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CHAPTER V

ROLE OF PHOSPHORYLATION IN BYR4 REGULATION

Introduction

Spg1 activation is critical in establishing the onset of cytokinesis. Therefore,

regulating the timing of Spg1 activation is key.  The balance of maintaining a GTPase in an

active or inactive state is typically regulated by GAPs (GTPase Activating Protein) and GEFs

(GTP Exchange Factor) To date however no GEF for Spg1 has been identified. A unique two

component GAP, comprised of Byr4 and Cdc16 has been identified that functions to keep Spg1

inactive during interphase and hence prevent septum formation at an inappropriate time (Minet,

Nurse et al. 1979; Fankhauser, Marks et al. 1993; Song, Mach et al. 1996; Furge, Wong et al.

1998; Jwa and Song 1998). Inactivating either GAP component leads to the formation of

multiple septa.  The Cdc16 component bears structural similarity to proteins known to have GAP

activity, most closely resembling the Ypt-GAP family (Fankhauser, Marks et al. 1993; Will and

Gallwitz 2001).  However, Cdc16 is unable to hydrolyze GTP bound to Spg1 in an in vitro assay

in the absence of Byr4 (Furge, Wong et al. 1998; Furge, Cheng et al. 1999). Byr4 associates

directly with both Spg1 and Cdc16 and one function predicted for Byr4 is to position Cdc16 in

proximity to its cognate GTPase (Furge, Cheng et al. 1999).

Spg1 has a high intrinsic rate of GDP release when compared to standard rates found for

Ras or other small G-proteins studied previously (Self and Hall 1995; Furge, Cheng et al. 1999).

That coupled with the fact that no GEF for Spg1 has been identified to date, it seems likely that

Spg1 activity is controlled solely by its GAP.  Thus, cell cycle cues are likely to control GAP

activity, and Byr4 is a likely target of such regulation.  In S. cerevisiae-Bfa1 (homolog of Byr4)

is phosphorylated in a cell-cycle dependent manner and phosphorylation influence’s its GAP

activity in vitro (Hu, Wang et al. 2001; Geymonat, Spanos et al. 2003). Here I examined the role

of phosphorylation in regulating Byr4 function. I find that Byr4 is a phosphoprotein and is

phosphorylated on S and T residues. Byr4 is hyperphosphorylated during mitosis just prior to

septation. Byr4 phosphorylation in vivo requires association with the SPB. Because its
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phosphorylation peaks in mitosis, I examined the role of Cdc2 in Byr4 phosphorylation. I find

that it is indeed a Cdc2 substrate in vitro. Through tryptic peptide mapping of Byr4 deletion

mutants I have identified 4 Serine residues that are phosphorylated on Byr4 in vivo, however

mutational analysis suggests that these sites are not likely to be regulatory phosphorylation sites.

Results

Byr4 is hyperphosphorylated in mitotic cells

Byr4 was predicted to be a phosphoprotein since its mobility on a SDS -PAGE gel was

slower (approximately 97kD) than its predicted size of 78kD (Song, Mach et al. 1996). We

generated polyclonal rabbit antibodies against the protein. These antibodies, but not pre-immune

precipitated Byr4 from a protein lysate of S. pombe cells labeled with [32P] orthophosphate,

producing a single band of the expected size (Figure 15A). Phosphoamino acid analysis of 32P-

labeled Byr4 revealed that it is phosphorylated on both serine and threonine residues with serine
being the major residue utilized for phosphorylation (Figure 15B). We then analyzed Byr4

phosphorylation status in denatured cell lysates from wild-type cells, which had been
synchronized in early G2 by centrifugal elutriation (Figure 15C).  We observed that the protein

appeared maximally phosphorylated in late mitosis, just prior to septation. Byr4 phosphorylation

was also examined in a panel of cell cycle mutants. Byr4 was immunoprecipitated from cdc10-

129, cdc25-22, nda3-km311 and mts3-1, that arrest in G1, G2/M, mitosis and metaphase -

anaphase transition respectively, at restrictive temperature. It was also immunoprecipitated from
cells arrested in S phase by treatment with hydroxyurea (HU). Immunoprecipitates were treated

with λ phosphatase or mock treated with buffer alone. Although Byr4 appeared to be

phosphorylated at all stages of the cell cycle (as detected by a downward mobility shift on

treatment with λ phosphatase), it appeared hyperphosphorylated in mitotic mutants (Figure 15D).

This is consistent with the observations from the elutriation data. The timing of Byr4
hyperphosphorylation suggests that the role of phosphorylation is most likely inhibitory to Byr4

function.
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Figure 15. Byr4 is hyperphosphorylated during mitosis. A) Wild-type 246 cells were labeled with [32P] 
Orthophosphate and lysed in SDS lysis buffer. Anti-Byr4 serum was added to one half, and pre-immune 
serum was added to the other half of the lysate. The immunoprecipitate were resolved by SDS-PAGE and 
transferred to a PVDF membrane. Labeled proteins were detected autoradiography. (B) The PVDF 
membrane containing Byr4 was analyzed for its phosphoamino acid content (T), (Y)  and (S) stand for 
phosphothreonine, phosphotyrosine and  phosphoserine standards.(C) Wild type cells were grown to mid-log 
phase and synchronized in G2 by centrifugal elutriation. Samples were taken at regular time intervals and
processed Septation index as a measure of cell cycle progression.Protein lysates were prepared from each 
sample and run on an 3-8% Tris Acetate gel and immunoblotted for Byr4 and Cdc2 using anti-Byr4 and
anti-PSTAIR antibodies. (D) Protein lysates were prepared from the indicated strains grown at restrictive 
temperature. Byr4 was immunoprecipitated from lysates and half of the immunoprecipitate was treated with 
λ ppase (+) while other half was mock-treated(-). Immunprecipitated were run on an SDS-PAGE gel and
immunblotted for Byr4 using anti-Byr4 antibodies.
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Byr4 phosphorylation in vivo requires association with the spindle pole body
To investigate whether phosphorylation of Byr4 in vivo required association with the

spindle pole body (SPB), Byr4 was immunoprecipitated from exponentially growing cdc16-116

cells that had been shifted to restrictive temperature for 4 hours.   Previous studies had
demonstrated that Byr4 localization to the SPB requires Cdc16 function (Figure 16A and (Furge,

Wong et al. 1998)). Byr4 ran with a faster mobility on SDS-PAGE gels when compared to Byr4

immunoprecipated from mitotic cells (Figure 16B). The same was true for Byr4
immunoprecipitated from sid4-SA1 mutant cells in which all the SIN components fail to localize

to the SPB (Chang and Gould 2000).  Furthermore, 32P was incorporated into Byr4 that was
immunoprecipitated from mitotically arrested S.pombe cell lysates but not from cdc16-116 cell

lysates (Figure 16C). These results suggest that binding to the SPB is required for Byr4

phosphorylation and/or the kinase responsible is present only at the SPB.

Byr4 is a Cdc2 substrate
Since Byr4 phosphorylation peaks just prior to septation, it was possible that it was a

target of either Plo1 or Cdc2 kinases. The S.cerevisiae homolog of Byr4, Bfa1 is phosphorylated

by polo-like kinase Cdc5 (Hu, Wang et al. 2001; Lee, Jensen et al. 2001; Geymonat, Spanos et
al. 2003). To test this possibility, recombinant kinase active (KA) and kinase inactive (KD)

versions of Plo1 and Cdc2/Cdc13 purified from insect cells was used to phosphorylate various

N-terminal deletions of Byr4 purified from bacteria. While Byr4 served as an excellent substrate
for Cdc2 in vitro, Plo1 kinase was unable to phosphorylate Byr4 (Figure 17A, data not shown).

To address whether the in vitro phosphorylated sites corresponded to bonafide in vivo

phosphorylation sites, we compared tryptic peptide maps of in vitro phosphorylated Byr4 with a

map generated from metabolically labeled Byr4 in vivo. Several tryptic peptides of in vitro

phosphorylated Byr4 comigrate with those that are phosphorylated in vivo, demonstrating that
Cdc2 is likely the kinase phosphorylating Byr4 in vivo (Figure 17B). Cdc2 is a proline directed

kinase that targets S/T-P or S/T-P-X-K/R sites. Byr4 has 10 such consensus sites, 5 SP and 5 TP.
Mutation of 4 consensus serine Cdc2 sites to nonphosphorylatable alanine (A) residues resulted

in a significant reduction of in vitro phosphorylation by Cdc2 (Figure 18A, left panel). However

the mutant protein was capable of localizing to the spindle pole body and rescued byr4 null cells.
This was not surprising, as examination of tryptic peptide maps of in vitro phosphorylated
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Figure 16. Byr4 phosphorylation requires association with the SPB. (A) cdc16-116 (KGY 702) and 
wild type (KGY 246) cells expressing GFP-Byr4 under the control of the nmt81 promoter were grown in 
the absence of thiamine at 25oC for 16 hours and shifted to restrictive temperature 36oC for an additional 
4 hours. Images of live cells were captured. (B) Denatured cell lysates prepared from mitotic arrest 
mts3-1 or cdc16-116 mutant strains were immunoprecipitated with anti-Byr4 antibody. Immunoprecipitates
were either mock treated or treated with lambda- phosphatase as described in materials and methods. 
(C) Autoradiogram of denatured cell lysate's prepared from 32P metabolically labeled cells of indicated 
strains resolved by SDS-PAGE and transferred to PVDF membrane.
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Figure 17. Byr4 is a Cdc2 substrate. A) Equal amounts of his-Byr4(100-665), his-Byr4(400-665), 
MBP and MBP-Byr4 was phosphorylated in vitro with baculoviral produced and purified recombinant 
active (KA) or kinase dead (KD) Cdk1p complex. Reactions were separated by SDS–PAGE and 
analyzed by coomassie blue staining (lower panel) and autoradiography(top panel). (B) The PVDF 
membrane containing MBP-Byr4 and Byr4(100-665) above was digested with trypsin and  the peptides 
were separated in two-dimensions first by thin-layer electrophoresis followed by chromatography
(in vitro), wild-type cells carrying pREP1Byr4(100-665) were labeled with [32P] orthophosphate and
lysed in SDS lysis buffer. Byr4 was immunoprecipitated using anti-Byr4 serum. The immunoprecipitate
was resolved by SDS-PAGE and transferred to a PVDF membrane and subject to two-dimensional 
chromatography (in vivo). Bottom panel represents a mix of in vitro (100-665) and in vivo samples.
Numbered spots represent those that co-migrate, circles represent in-vivo phophorylation events not 
represented within in vitro kinase reactions.
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Byr4S4A mutant protein revealed that while 3 of the 4 major co-migrating spots were absent, 2

major spots still remained (Figure 18A, right panel). Phospho-amino acid analysis of the
phosphorylated mutant protein revealed that most of the remaining phosphorylation was now

concentrated on threonine residues (Figure 18B, bottom panel).  Hence it is likely that although
serine residues were identified as the major site of phosphorylation, the critical regulatory

phosphorylations are on threonine residues.

Conclusions
Byr4 is phosphorylated at serine and threonine residues. The peak of phosphorylation

occurs in mitotic cells with high Cdk activity and just prior to septation. Consistent with that

observation Byr4 is phosphorylated by Cdc2 in vitro and several of the in vitro phosphorylation

sites represent relevant in vivo phosphorylation sites. The timing of Byr4 phosphorylation

suggests that Byr4 phosphorylation is most likely inhibitory in function, acting to promote

septation. Byr4 phosphorylation could interfere with Spg1 or Cdc16 association, and SPB

localization. However, Spg1 localizes to the SPB constitutively and Byr4 has been shown to bind

Spg1 independent of GTP binding state. Therefore it is likely that phosphorylation of Byr4

influences GAP activity.
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Figure 18. Byr4 is phosphorylated on atleast 3 serine residues. (A) Recombinant wild-type his-Byr4 and mutant
hisByr4(100-665)S4A was phosphorylated in vitro with baculoviral produced and purified recombinant Cdk1 
complex. Reactions were separated by SDS-PAGE and analyzed by autoradiography. The PVDF membrane 
containing his-Byr(100-665)WT and S4A was digested with trypsin and peptides were separated in two -dimensions 
(Right panel) or B) analysed for phosph-amino acid analysis after acid hydrolysis as described in material and
methods.
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CHAPTER VI

DISCUSSION

The ability to undergo cell division is one of the basic properties of the cell.  The terminal

phase of cell proliferation is cytokinesis. Cytokinesis is a complex event that involves interplay

amongst several varied processes. The study of cytokinesis in simple model organisms through

genetic and biochemical analysis has identified many proteins that are required for cytokinesis.

Small G-proteins of the Ras and Rho family have emerged as important regulatory players in

various aspects of cytokinesis. As is the emerging theme, the Septation Initiation Network (SIN)

that controls the onset of cytokinesis in fission yeast, is triggered by the activation of a single

GTPase, Spg1. Hence, understanding how Spg1 activation is regulated is critical to

understanding the temporal regulation of cytokinesis.

We investigated the role of Cdc7, the crucial downstream effector kinase for Spg1 in the

SIN. We identified several important domains that are required for Cdc7 function in the SIN. We

extended our analysis to identifying functional domains within GAP protein, Byr4, to understand

the molecular basis of interaction between the Byr4-Cdc16-Spg1 ternary complex. Byr4 is

phosphorylated in a cell cycle dependant manner by Cdc2 and most likely serves as the critical

regulatory subunit for the Byr4-Cdc16 GAP complex.

Identification of functional domains in Cdc7

Cdc7 is a protein kinase essential for cytokinesis in fission yeast. It is an effector for the

ras-like GTPase Spg1, the activation of which is central to determining the timing of cytokinesis

and septation in fission yeast. In the current model for SIN activation and signaling, Spg1 gets

converted to its GTP-bound state, which enables association of Cdc7 to the SPB. Hence it had

been suggested that the regulation of Cdc7 kinase activity is mediated by its localization to a

signaling competent SPB. In this study we demonstrate that Cdc7 only associates with Spg1

during mitosis and hence its activity is apparently unaffected by association with Spg1-GTP.

This suggests that the association of Cdc7 with Spg1 provides a means for Cdc7 to access its
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relevant targets at the SPB and consequently regulating that association would be a key step in

regulating SIN signaling.

In order to elucidate Cdc7 regulation I have identified various functional domains within

Cdc7. I find that a region just adjacent to the kinase domain of Cdc7 (amino acids 250-535) acts

as an effector domain and interacts with Spg1, in a nucleotide dependant manner. Cdc7 fails to

localize to SPBs in germinating spg1 null spores or spg1-8 cells at restrictive temperature

(Cerutti and Simanis 1999). While these data suggest that Spg1 is required for association of

Cdc7 to the SPB I find that amino acids 250-535 within Cdc7 are capable of associating with

Spg1 both in vitro and in vivo but fail to localize to the SPB. This suggests that additional

residues and mechanisms exist that promote or maintain Cdc7 SPB localization. Indeed, the

smallest region that could localize to the SPB (amino acids 360-870) is significantly larger than

the Spg1 interacting region although it overlaps it.

In testing various fragments of Cdc7 for Spg1 and SPB interaction, I found that a GFP

fusion of Cdc7 (Cdc71-900) localized efficiently to the SPB when produced at low level (Figure

7A). This result is inconsistent with a previous report suggesting that the C-terminal 162 amino

acids of Cdc7 are essential for SPB targeting (Lu, Sugiura et al. 2002). It is possible that by using

the strong nmt1 promoter to drive expression at high levels, Lu et al (Lu, Sugiura et al. 2002)

were unable to discriminate specific SPB staining from background. Notably the relative

organization of the SPB and Spg1 binding domains, at least in primary amino acid sequence, is

strikingly similar to that found in Cdc15, the S.cerevisiae equivalent of Cdc7 (Bardin, Boselli et

al. 2003).

In the course of our studies, we found that Cdc7 self-associates through a coiled–coil

domain (amino acids 360-518) that is in the middle of the Spg1 binding domain. In fact, this is

also the case for S.cerevisiae Cdc15 (Bardin, Boselli et al. 2003). However, the residues

supporting self-association are not sufficient to support binding to Spg1. Given that removal of

this domain leads to reduced self- and Spg1 association in the yeast two-hybrid system, we

speculate that Cdc7 dimerization is obligate for Spg1 association. Indeed, homodimerization of

kinases plays a critical role in regulating their functions (Schlessinger 2000; Dan, Watanabe et al.

2001; Parrini, Lei et al. 2002). However, thus far our evidence suggests that Cdc7 dimerization is

not regulated. First, a monomeric form of Cdc7 has not been observed in sedimentation analyses.

Second, Spg1 itself does not self-associate and overproduction of Spg1 in a cdc7-HA3/cdc7-
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myc13 diploid strain is not sufficient to disrupt Cdc7 self-association. While this region of the

protein is clearly essential for Cdc7 function due to loss of both self association and Spg1

interaction, it is possible that removal of the domain interferes with yet other aspects of Cdc7

function or regulation. Interestingly this mutant accumulates at the pole when expressed from an

exogenous promoter although it is also seen in several ectopic spots in the cytoplasm of the cell.

Although I do not observe any changes in Cdc7 dimerization at steady state levels there may still

be localized regulation of Cdc7 at the SPB. Given that Cdc7 is a protein kinase with a variety of

modular domains understanding how Cdc7 is regulated through these domains to influence

cytokinesis and septation in fission yeast will be a critical next step. This will require in depth

structural analysis of Cdc7 in complex with Spg1. Such an analysis will help elucidate at the

molecular level how Spg1 interacts with Cdc7, whether changes in Spg1 nucleotide status

influence Cdc7 conformation and association with itself. Furthermore, identifying specific

residues within Cdc7 that are responsible for contacting Spg1 and itself will enable the

generation of specific point mutants of Cdc7 that are defective in Spg1 association but not self-

association and vice versa and will be critical to investigate Cdc7 regulation.

Overproduction of Byr4 specifically displaces Cdc7 from the SPB

Byr4 is part of the two-component GAP that controls Spg1. The function of the Byr4-

Cdc16 GAP complex is inhibitory as it serves to maintain Spg1 in an inactive or GDP bound

state. The localization of the GAP complex to the SPBs during the cell cycle is consistent with its

role in preventing inappropriate septum formation.

 One interesting and as yet unexplained feature about the SIN is the asymmetric

localization of the SIN components. Spg1 activation during mitosis is asymmetric, which is

mirrored by the asymmetric localization of Cdc7-that occupies only the ‘active’ SPB. During

anaphase the GAP complex Cdc16-Byr4 also localizes to only one SPB, the one without Cdc7.

In fact the asymmetric localization of Cdc16-Byr4 appears to occur prior to that of Cdc7

suggesting that the complex may prevent the recruitment of Cdc7 to that SPB (Cerutti and

Simanis 1999; Li, Furge et al. 2000).

Previously published observations demonstrated that overproduction of Byr4 resulted in

titration of Spg1 away from the SPB and hence the inability of Cdc7 to localize to the SPB

(Cerutti and Simanis 1999; Li, Furge et al. 2000). Contrary to these observations I find that
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overproduction of Byr4 specifically displaces Cdc7 from the SPB. These results would be

consistent with the argument that Byr4 and Cdc7 localize to the SPB mutually exclusively. We

are unclear as to why there is this discrepancy between the observations. It has been shown that

G-proteins can interact stoichiometrically or catalytically with their effectors and an active GTP

bound G-protein can interact with multiple effectors during its lifetime. Thus termination of an

interaction or complex formation must therefore require sufficient GAP concentrations to out-

compete effectors (Donovan, Shannon et al. 2002).

Byr4 and Cdc7 do contain a region of sequence similarity. In our analysis of Spg1

binding domains within Byr4 we found the region of homology to be one of the Spg1 binding

domains (aa475-595). However the similar region within Cdc7 was in fact responsible for Cdc7

self-association. Byr4 has 2 independent regions that bind Spg1. A modular binding domain may

be an effective means of regulating Byr4 and its GAP function.

We noted that while Byr4 overproduction resulted in a SIN phenotype (due to the failure

of Cdc7 to localize to the SPB), overproduction of Byr4 lacking its first 300 amino acids resulted

in cells that had multiple septa. This indicates that an important regulatory domain lies within the

first 300 amino acids. In fact, the first Spg1 binding domain lies within amino acids 100-300.

Interestingly, we observed that removal of the second Spg1 binding domain did not affect

interaction with Cdc16 or Spg1 in the yeast two-hybrid system and when overproduced was

similar to full length Byr4, in that it also generated cells with a SIN phenotype. Thus, it is likely

that the second Spg1 binding domain is dispensable for Byr4 function, although that remains to

be tested.  However, these results must be interpreted with caution as deletion of amino acids

from the protein may alter its structure and therefore its function. Furthermore we haven’t tested

the ability of these mutant proteins to rescue a Byr4 null strain.

Byr4 association with Cdc16 is required for SPB localization

Byr4 localization to the SPB required Cdc16 function (Furge, Wong et al. 1998). The

domain of Cdc16 association has been mapped to the C-terminal region of Byr4 (Furge, Cheng et

al. 1999). We also find that the C-terminal 65 amino acids of Byr4 interact with Cdc16 in vivo.

Interestingly, we find that this also is the SPB localization domain. All constructs that bear this

domain can localize to the SPB; however, C-terminal deletions do not. This suggests that the

association with Cdc16 is required for SPB localization of Byr4. This finding raises some
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interesting questions with respect to certain observations in the literature.  For example, in early

mitotic cells, Byr4, but not Cdc16 is detected on the SPB and in the absence of Cdc16, Byr4

prevents GTP hydrolysis of Spg1 (Furge, Wong et al. 1998; Cerutti and Simanis 1999). However

if, Byr4 association with Cdc16 is required for SPB localization then Byr4 cannot exist at the

SPB in the absence of Cdc16.  Furthermore, this also calls into question the in vivo relevance of

observations from in vitro assays of Byr4 on Spg1 activity in the absence of Cdc16. Clearly, the

two-component GAP is unique and understanding how it functions to regulate Spg1 activation at

the molecular level will require structural information.

Byr4 is a phosphoprotein

Activation of GTPase, Spg1 determines the timing of cytokinesis. The nucleotide status

of most G-proteins is regulated by GAPs-that inactivate G proteins by stimulating their low

intrinsic GTP-hydrolysis activity and GEFs, which catalyze the exchange of bound GDP for

GTP. Byr4-Cdc16 functions as a two-component GAP that maintains Spg1 in an inactive or

GDP bound state. However no GEF for Spg1 GTPase has been identified. It is likely that Spg1 is

controlled solely at the level of the GAP. While Cdc16 shares homology with GAPs, it has been
demonstrated that Cdc16 cannot function as a GAP in the absence of Byr4 in vitro (Furge, Wong

et al. 1998). In fact over production of Byr4 is lethal resulting in multinucleate cells, where as

over production of Cdc16 has no detectable effect, suggesting that Byr4 plays a critical role in

regulating the GAP (Furge, Wong et al. 1998). Various studies have implicated phosphorylation

in the regulation of GAPs, although the precise mechanism is not well understood in most cases

(Bernards and Settleman 2004). We demonstrate that Byr4 gets hyperphosphorylated in mitotic

cells with high Cdk activity. Consistent with that it is a Cdc2 substrate in vitro. These data lend

further support to the notion that Byr4 serves as the regulatory subunit of the GAP complex.

Byr4 phosphorylation may directly influence GAP enzymatic function, or affect GAP

activity indirectly by regulating its association with Spg1 and/or Cdc16 or subcellular

localization to the SPB. It must be noted that in S.cerevisiae, Bfa1, the Byr4 homolog, remains

associated with Bub2 and Tem1 across the cell cycle; however, there is other evidence

suggesting that phosphorylated Bfa1 affects Tem1 association and promotes Tem1-Cdc15

interactions (Wang, Hu et al. 2000; Lee, Jensen et al. 2001; Pereira, Tanaka et al. 2001; Ro, Song

et al. 2002). Whether phosphorylation affects association with Spg1 or Cdc16 remains to be
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tested. Interestingly, Spg1 resides at the SPB constitutively while GAP localization to the SPB

varies across the cell cycle (Cerutti and Simanis 1999; Li, Furge et al. 2000). It is also entirely

likely that SPB localization of the GAP is regulated by yet another mechanism that is

independent of Byr4 phosphorylation. Additionally, as mentioned above Byr4 phosphorylation

could affect the GAP activity of Cdc16. This is the case in vitro for Bfa1 (Geymonat, Spanos et

al. 2003).

 Bfa1 is a substrate of POLO-like kinase, Cdc5. Interestingly Bfa1 is de-phosphorylated

by Cdc14, a phosphatase that reverses Cdk phosphorylations (Wang, Hu et al. 2000; Hu, Wang

et al. 2001; Pereira, Manson et al. 2002; Park, Song et al. 2003). I demonstrated that Byr4 is in

fact a Cdc2 substrate and a number of in vitro phosphorylation sites are bonafide in vivo

phosphorylation sites. Our phosphorylation analysis is incomplete as after mutating all potential

Cdc2 consensus SP sites, there still remains residual phosphorylation at threonine residues. A

more complete mutational analysis should reveal the exact role of Byr4 phosphorylation,

although as suggested above, several clues are available in the literature and can be easily tested.

Future Directions

In the last decade, efforts toward understanding the spatial and temporal co-ordination of

mitotic exit with cell division has uncovered a novel signaling network, the SIN. It is likely that

most of the SIN components have been identified and to a large part the roles of many

components have been revealed. However, there are several critical unanswered questions.

Crucial amongst them is the identity of the targets of the SIN kinases as well how these kinases

are regulated to affect septum formation. It has been deduced, based on genetic epistasis

analysis, that the SIN functions in a linear module. Cdc7 is the most upstream kinase in this

pathway; however, to date there has been no biochemical evidence demonstrating Cdc7

phosphorylation of any of the downstream components of the SIN pathway. It has been

suggested that Cdc7 kinase activity is required for mitotic hyperphosphorylation of the SIN

scaffold component Cdc11, which correlates with the activation of the SIN (Krapp, Cano et al.

2003). However, this hasn’t been demonstrated in vitro using recombinant Cdc7 or by

immunoprecipitated Cdc7 from S.pombe cells as a source of kinase (Krapp, Cano et al. 2003).

Deconstructing protein kinase signaling pathways using conventional chemical, genetic

and biochemical techniques has been difficult, largely due to the overwhelming number of
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closely related protein kinases. A recent novel approach has been described that modifies a

protein kinase to be specifically inhibited by a cell permeable small molecule inhibitor, that does

not inhibit any wild-type kinases (Bishop, Shah et al. 1998; Bishop, Buzko et al. 2001; Kraybill,

Elkin et al. 2002). The strategy involves the introduction of a functionally silent mutation within

the ATP binding pocket such that it creates a larger space and renders it sensitive to a modified

inhibitor (1 NM_PP1) that can only fit the modified binding pocket. Additionally a special

modified ATP analog, N6-Benzyl ATP has been created and available that can only be utilized

by modified kinase. I have identified a residue in Cdc7 that fulfils the criteria for the space

creating mutation. Amino acid 85 is a leucine, a residue with a bulky side chain. The residue has

been mutated to alanine and glycine. Genomic clones, Cdc7L85A and Cdc7L85G can rescue the

temperature sensitive strain cdc7-24 as well as the Cdc7 null strain (Figure 19). Preliminary

results also suggest that the introduced mutation does render the kinase sensitive to the inhibitor

at low doses but doesn’t affect the wild-type kinase. Hence the stage is set to use this allele as a

tool to answer critical questions about Cdc7 kinase activity. For example, at what point during

the cell cycle does Cdc7 kinase activity becomes essential? Is it required during metaphase when

Cdc7 occupies both poles or during anaphase when it is asymmetrically localized to one pole?

What are the downstream effects of inhibiting Cdc7 kinase activity with respect to SIN

component localization? The ATP-analog will serve as a powerful tool to identify substrates of

Cdc7.

As mentioned in the discussion, structural information will lend great insight into how

Cdc7 is regulated through its modular domains. However an additional mode of regulation could

be through phosphorylation. We have been able to demonstrate that Cdc7 is also a

phosphoprotein by metabolic labeling of cdc7-myc13 cells with radioactive orthophosphate.

Phosphoamino acid analysis revealed that Cdc7 is phosphorylated at serine residues (Figure 20).

Interestingly a bacterially produced Cdc7(aa250-535) fragment that represents the domain

responsible for Spg1 binding as well as self-association are excellent substrates in vitro for

recombinant Cdc2 kinase produced from insect cells. This domain also has three consensus Cdc2

phosphorylation sites. The S.cerevisiae homolog of Cdc7, Cdc15, is a known phosphoprotein and

remains hyper-phosphorylated in cells with high Cdk1 activity, like the APC mutant cdc23-1 and

MEN mutants’ tem1-1, dbf2-2 and cdc14-1 (Jaspersen and Morgan 2000; Xu, Huang et al. 2000;

Menssen, Neutzner et al. 2001). Although the phosphorylation of Cdc15 does not affect Cdc15
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Deconstructing protein kinase signaling pathways using conventional chemical, genetic

and biochemical techniques has been difficult, largely due to the overwhelming number of

closely related protein kinases. A recent novel approach has been described that modifies a

protein kinase to be specifically inhibited by a cell permeable small molecule inhibitor, that does

not inhibit any wild-type kinases (Bishop, Shah et al. 1998; Bishop, Buzko et al. 2001; Kraybill,

Elkin et al. 2002). The strategy involves the introduction of a functionally silent mutation within

the ATP binding pocket such that it creates a larger space and renders it sensitive to a modified

inhibitor (1 NM_PP1) that can only fit the modified binding pocket. Additionally a special

modified ATP analog, N6-Benzyl ATP has been created and available that can only be utilized

by modified kinase. I have identified a residue in Cdc7 that fulfils the criteria for the space

creating mutation. Amino acid 85 is a leucine, a residue with a bulky side chain. The residue has

been mutated to alanine and glycine. Genomic clones, Cdc7L85A and Cdc7L85G can rescue the

temperature sensitive strain cdc7-24 as well as the Cdc7 null strain (Figure 19). Preliminary

results also suggest that the introduced mutation does render the kinase sensitive to the inhibitor

at low doses but doesn’t affect the wild-type kinase. Hence the stage is set to use this allele as a

tool to answer critical questions about Cdc7 kinase activity. For example, at what point during

the cell cycle does Cdc7 kinase activity becomes essential? Is it required during metaphase when

Cdc7 occupies both poles or during anaphase when it is asymmetrically localized to one pole?

What are the downstream effects of inhibiting Cdc7 kinase activity with respect to SIN

component localization? The ATP-analog will serve as a powerful tool to identify substrates of

Cdc7.

As mentioned in the discussion, structural information will lend great insight into how

Cdc7 is regulated through its modular domains. However an additional mode of regulation could

be through phosphorylation. We have been able to demonstrate that Cdc7 is also a

phosphoprotein by metabolic labeling of cdc7-myc13 cells with radioactive orthophosphate.

Phosphoamino acid analysis revealed that Cdc7 is phosphorylated at serine residues (Figure 20).

Interestingly a bacterially produced Cdc7(aa250-535) fragment that represents the domain

responsible for Spg1 binding as well as self-association are excellent substrates in vitro for

recombinant Cdc2 kinase produced from insect cells. This domain also has three consensus Cdc2

phosphorylation sites. The S.cerevisiae homolog of Cdc7, Cdc15, is a known phosphoprotein and

remains hyper-phosphorylated in cells with high Cdk1 activity, like the APC mutant cdc23-1 and
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Figure 20. Cdc7 regulation by phosphorylation. cdc7-myc13  cells were labeled with [32P] 
Orthophosphate and lysed in SDS lysis buffer. Anti-myc antibody was added to the lysate to 
immunoprecipitate Cdc7-Myc13. The immunoprecipitate were resolved by SDS-PAGE and 
transferred to a PVDF membrane. Labeled proteins were detected autoradiography. Right panel, the 
PVDF membrane containing Cdc7-Myc13 was analyzed for its phosphoamino acid content as described 
in Materials and Methods.

Figure 19. Cdc7 L 85 A/G mutation is viable.  Partial sequence of catalytic domain showing the 'gatekeeper' 
position in red  Leucine 85, used to introduce space creating mutations.  cdc7-24 mutant 
cells carrying vector alone, genomic clones of Cdc7- pURCdc7, pURCdc7L85A, pURL85G were grown 
on selective plates with thiamine at permissive temperature (25oC). Cells were then patched to single 
colonies and shifted to restrictive temperature of 36oC
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kinase activity a non-phosphorylatable mutant form of Cdc15 stimulates mitotic exit more than

wild type suggesting that the phosphorylation of Cdc15 inhibits its function in vivo. It will be

interesting to determine whether Cdc7 is similarly regulated by phosphorylation. This endeavor

will clearly require the identification of the phosphorylated residues within Cdc7.

The pivotal regulatory point is the activation of Spg1 and its regulation by the Byr4-

Cdc16 GAP complex. A two-component GAP complex is unique and solving the crystal

structure of the complex will generate tremendous amount of information with respect to how it

is regulated. What are the molecular roles of two independent Spg1 binding domains? How

would phosphorylation events influence GAP enzymatic activity? This is of particular interest

for researchers investigating GAP regulation, as although various studies have indicated

phosphorylation –mediated regulatory mechanism for GAPs the precise mechanism is not

understood in most cases.

Structural information will also be extremely useful in generating temperature sensitive

alleles of Byr4, a resource that has been lacking and limited the genetic analysis of Byr4. Novel

temperature sensitive alleles of Byr4 may uncover roles for Byr4 in checkpoint regulation of

mitotic progression, similar to its S.cerevisiae counterpart.

Another interesting direction would be to determine the phosphatase responsible for de-

phosphorylating Byr4. Byr4 needs to be returned to an active conformation as soon as SIN

signaling is activated such that inappropriate septum formation is prevented. Preliminary

experiments to determine if the S.pombe Cdc14-family phosphatase, Clp1, is responsible for

Byr4 de-phosphorylation have not indicated its involvement. However this interaction may be

transient and need to be examined carefully in a cell-cycle dependent manner. Nevertheless

determining what the phosphatase is will be an important next step in understanding Byr4, and

hence GAP complex regulation.

Given that all known SIN components localize to the SPB, it would be extremely exciting

to obtain high-resolution structures of purified SPB preparations and proteomic analysis to

identify additional components of the S. pombe SPB. Furthermore, solving the 3D structures of

not only two-component complex (Byr4-Cdc16) but also, Sid1-Cdc14, Sid2-Mob1 and the

GTPase Spg1 would enable us to gain more insight into how these proteins function.
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CHAPTER VII

CONCLUDING REMARKS

The cell cycle field has benefited tremendously from the convergence of genetic and

biochemical approaches. Clearly the identification of the Cdc2/cylin complex as the master

regulator of the cell cycle and dissection of the mechanisms of Cdc2 regulation would not have

been achievable without the biochemistry from model systems like frog oocytes; and data from

genetically tractable organisms like budding and fission yeasts. The work done in model systems

is strengthened by the knowledge that the essential biochemistry of the cell cycle remains

conserved across all eukaryotes.

We have certainly entered a new era in cell cycle research.  While early efforts focused

on studying entry into mitosis, the last few years have seen numerous advances in our

understanding of late events in the cell cycle and cytokinesis. Once again, genetic studies in

fission yeast has unraveled a GTPase regulated signaling network, the SIN that serves to co-

ordinate mitotic exit with onset of cytokinesis.  Several components of the SIN are also

conserved in higher eukaryotes, with an analogous pathway the MEN existing in S. cerevisiae.

Given the central role of Spg1 GTPase in regulating this pathway we investigated the role of

Cdc7 its effector, and Byr4 the GAP component that serves to inactivate it. While we have

identified a number of functional domains within these proteins that affect SIN function, a

number of questions still remain pertaining to their regulation. Discovering the physiological

substrates of Cdc7 and other SIN kinases, elucidating the role of Byr4 phosphorylation will add

not only to our understanding of temporal regulation of cytokinesis but also serve to lend some

insights into more basic questions of GAP regulation in general.

The process of cytokinesis is highly complex and we are bound to see numerous

differences between organisms. Although there are no obvious homologs of Byr4 and Cdc7 in

higher eukaryotes to date, the history of cell cycle research has taught us that they often use the

same processes in a manner. Furthermore, with the technologies available today such as RNAi,

live cell imaging, small molecule inhibitors and high throughout genome-wide analyses, study of

cytokinesis in higher eukaryotes should be rapid and rewarding. Only through the simultaneous

study of this process in several organisms will we be able to reveal the similarities that exist.
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