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CHAPTER I

INTRODUCTION

The problem of determining N points on a d-dimensional manifold that are in some sense uni-

formly distributed over its surface (or have a prescribed non-uniform distribution) has applications

to such diverse fields as crystallography, electrostatics, nanomanufacture, viral morphology, molec-

ular modelling, global positioning and others. There also are a variety of mathematical needs

for the discretization of manifolds such as statistical sampling, quadrature rules, starting points

for Newton’s method, computer-aided geometric design, interpolation schemes, and finite element

tesselations.

Various criteria used for generation of such points include best-packing, minimization of energy

(e.g. Coulomb potential), and, in particular, for the sphere, t-designs (cubature) and maximization

of volume of convex polyhedra with N vertices on the sphere.

In this work we consider two related problems - minimization of energy and best-packing. They

are connected to potential theory, real analysis, measure theory, discrete geometry, coding theory.

The minimum energy problem studied in this thesis concerns the generalization of the Thomson

problem of finding ground state configurations of N classical electrons that can move freely along

the surface of a sphere, but cannot leave it (see [46]). Research into this problem has revived during

the last decade in connection with the discovery of the third stable state of carbon (after diamond

and graphite), fullerenes, molecules C60, C70 and others. The study of these large carbon molecules

is expected to find applications such areas as nanomanufacture and self-assembling materials.

It is known that the potential energy of a system of two classical electrons in the space is

proportional to the reciprocal of the distance between them. The potential energy of a system of

N electrons e1, . . . , eN is proportional to the quantity

∑
1≤i6=j≤N

1
dist(ei, ej)

. (1)

The Thomson problem asks for configurations of N electrons on a sphere that attain the absolute

minimum in (1).
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In our considerations the Coulomb potential is replaced by the Riesz potential which is pro-

portional to the reciprocal of the power s > 0 of the distance, and the particles are restricted to

a rectifiable compact set in Euclidean space Rd′ (we reserve the symbol d for the dimension of the

conductor).

The rigorous setting of the discrete minimal s-energy problem is as follows. For a collection

ωN := {x1, . . . , xN} of points in Rd′ and s > 0 we let

Es(ωN ) :=
∑

1≤i6=j≤N

1
|xi − xj |s

=
N∑

j=1

N∑
i=1
i6=j

1
|xi − xj |s

,

where |·| stands for the Euclidean distance. The minimal discrete N -point Riesz s-energy of a

compact set A ⊂ Rd′ is defined as

Es(A,N) := min{Es(ωN ) : ωN ⊂ A, #ωN = N}, (2)

where #W denotes the cardinality of W . Our considerations are restricted to compact sets A since

the quantity (2) vanishes for unbounded sets and is the same for A and its closure (in the general

case we would need to replace ”min” with ”inf”).

For the case s = 0 which is known as the logarithmic case, the Riesz potential |x− y|−s is

replaced with ln(|x− y|−1). When A = S2 (unit sphere in R3), the polynomial time generation of

“nearly optimal” points for the logarithmic energy is the focus of one of S. Smale’s “problems for

the next century”; see [45].

The other problem considered in the thesis is the best-packing problem. Given a positive integer

N , it is required to find the largest radius r(N) such that there exist N non-overlapping balls with

this radius centered at points of the set A. This problem can also be stated in the following way.

For a collection ωN = {x1, . . . , xN} of points in Rd′ , let

δ(ωN ) := min
1≤i6=j≤N

|xi − xj |.

The best-packing distance of N point collections on a compact set A is defined as

δN (A) := max{δ(ωN ) : ωN ⊂ A, #ωN = N}.
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When A = S2, this problem is called the Tammes problem. In the limit as s gets large, the minimum

s-energy problem tends to the best-packing problem; namely, for a fixed N and any compact set A

Es(A,N)1/s → 1
δN (A)

, s→∞,

and if ωs
N is an s-energy minimizing N point collection on A, s > 0, then

δ(ωs
N )→ δN (A), s→∞.

In view of this connection, the best-packing problem is referred to as the case s =∞ of the minimal

energy problem. It is known [3] that best-packing configurations on Jordan measurable planar sets

and sphere S2 (as N gets large) give nodes for asymptotically optimal cubature formulas on classes

of functions with a given majorant for the modulus of continuity.

We also show in Chapter III that if one raises asymptotic results on the minimal s-energy

problem to the power 1/s and lets s→∞, reciprocals of asymptotic results on best-packing will be

obtained. This allows to both obtain asymptotics for best-packing from the asymptotics for minimal

energy, and having some information on best-packing problem, get immediately information on

minimal s-energy problem for sufficiently large values of s.

The exact solution to the best-packing and minimal energy problems are known only in some

special cases. When A = S1 (unit circumference), N equally spaced points will provide an optimal

configuration for every s ∈ [0,∞]. On S2 optimal configurations are known for s = 0, 1 and

N = 2− 4, 6, 12 (cf. [50, 31, 1]) and for s = 0 and N = 5 [15]; when s =∞ the solution is known

for N = 2 − 12 and N = 24 (see [6] for references). The solution is also known in three concrete

cases on the sphere in higher dimensions [32, 2].

Obtaining a precise solution to the problems mentioned above for every N is an intractable

problem even when A is a sphere. Moreover, numerical computations become very complicated,

since the number of local minima appears to increase exponentially, at least for subsequences of

cardinalities of configurations.

However, it is possible to find out the asymptotic behavior of both problems on certain classes

of compact sets as N gets large. This case is sometimes referred to as “N =∞”. The asymptotic

behavior of the minimal s-energy depends on the value of s. If s is less than dimHA (the Hausdorff

dimension of the set A), then Es(A,N) ∼ C(s)N2, N → ∞, where C(s) is the minimum of the

3



continuous s-energy ∫
A

∫
A

1
|x− y|s

dµ(x)dµ(y) (3)

taken over all Borel probability measures µ supported on A (see e.g. [36]). In the limit as N

gets large the optimal configurations will be distributed according to the probability measure that

delivers the minimum in (3), namely the so-called equlibrium measure.

Our dissertation will concern the case s ≥ dimHA. In this case, the following results are known.

Theorem A (Martinez-Finkelshtein et al. [39]). Let Γ ⊂ Rd′ be a finite union of rectifiable

Jordan arcs such that the total arclength measure of their pairwise intersections is zero. Then for

s > 1

Es(Γ, N) ∼ 2ζ(s) |Γ|−sN s+1, N →∞,

where ζ(s) =
∑∞

k=1 k
−s is the classical Riemann zeta-function and |Γ| is the total length of the arcs

constituting Γ. When s = 1 we also have

E1(Γ, N) ∼ 2 |Γ|−1N2 lnN, N →∞.

Moreover, for any s ≥ 1, every sequence {ω∗N}∞N=2 of s-energy minimizing configurations on Γ such

that #ω∗N = N , N ≥ 2, is asymptotically uniformly distributed on Γ with respect to the arclength

measure.

Remark. Here and below the limit distribution of optimal configurations is understood in the

sense of the weak* convergence of the normalized counting measure supported at points of optimal

configurations (see Chapter II for the precise definition).

Consider a set in Rd′ which is a bi-Lipschitz homotopy of an open set from Rd. We say that

a compact set A is a d-dimensional rectifiable manifold if it is contained in a finite union of such

sets. By Hd(A) we will denote the d-dimensional Hausdorff measure in Rd′ normalized so that

the isometric copy of the cube [0, 1]d has measure 1. The following result was obtained earlier by

Hardin and Saff [28, 27].

Theorem B. Let s > d ≥ 1 and A be a compact set in Rd or a d-dimensional rectifiable

manifold in Rd′. Then

lim
N→∞

Es(A,N)
N1+s/d

=
Cs,d

Hd(A)s/d
, (4)
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where Cs,d > 0 is a constant independent of A. If A is a compact set in Rd or a compact subset of

a d-dimensional C1 manifold in Rd′, then

lim
N→∞

Ed(A,N)
N2 lnN

=
βd

Hd(A)
, (5)

where βd is the Lebesgue measure of the unit ball in Rd.

Moreover, if Hd(A) > 0, any sequence {ω∗N}∞N=2 of s-energy minimizing configurations on A

(s ≥ d) such that #ω∗N = N , N ≥ 2, is asymptotically uniformly distributed on A with respect to

Hd.

It follows from Theorem A that Cs,1 = 2ζ(s), s > 1. However, for s > d > 1, the fundamental

energy constant Cs,d is unknown. Finding Cs,d is, in fact, a very difficult problem. Even the value

of the limit as s gets large of C1/s
s,d is still unknown for d > 3, because it is expressed through the

largest sphere packing density in Rd, which has been found only for d ≤ 3.

For a ball in 3D, it is shown in [37] that N particles repelling each other via the Riesz potential

with 0 < s ≤ 1 will be forced to go to the surface of the ball, while for s > 1 and N sufficiently large,

it will be more energy efficient for at least some of them to go inside the ball. The results from

potential theory mentioned above and Theorem B imply that for s ≥ 2 and large N the particles will

uniformly distribute themselves along the ball to achieve the ground state configuration. According

to Theorem B, this will also happen for a 3D conductor of any shape, as long as it has a finite and

positive volume and its surface has a finite area.

Paper [29] considers the Riesz energy problem on the surface of a torus. It proves that the

ground state configurations of a large number of particles interacting via the logarithmic potential

(s = 0) will be forced out of a certain stripe on the inner part of the torus’ surface. This phenomenon

is also predicted by computations (by R. Womersley and in [29]) for 0 < s < 1 with the stripe

vanishing as s approaches 1. For 1 < s < 2 the particles are predicted to distribute (non-uniformly)

along the whole surface. Theorem B guarantees for s ≥ 2 that large ground state configurations

will have a uniform distribution.

In Chapter II (see Theorem II.1.1) we extend Theorem B to the case when A ⊂ Rd′ is an image

of a compact set from Rd with respect to a Lipschitz mapping (or which is the same, a finite union

of such sets). Sets A constructed in this way are called d-rectifiable sets. Thus, we replace the

”bi-Lipschitz” with ”Lipshitz” in the assumption about the set A in Theorem B. This result also
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extends Theorem A to the case of an arbitrary finite union of rectifiable curves in Rd′ , since every

rectifiable curve is known to be a Lipschitz image of [0, 1] (cf. e.g. [18]). A crucial property for

the proof of this theorem is the equality between Hd(A) and the d-dimensional Minkowski content

Md(A) (see (13) for the precise definition) on every closed d-rectifiable set [19, Theorem 3.2.29].

For the case when compact set A is a countable but not a finite union of d-rectifiable sets, we

prove the following. If Md(A) = Hd(A), then (4) still holds. When Md(A) 6= Hd(A) or Md(A) is

undefined, for sufficiently large values of s relation (4) fails (for an example of a countable union

of d-rectifiable sets withMd(A) 6= Hd(A) see [19, p. 276]).

For the whole Euclidean space Rd, the best-packing problem is stated as the problem of finding

the largest density ∆d of packing equal non-overlapping balls in Rd (see (37) for the definition). It

follows from the definiton of ∆d that

C∞,d := lim
N→∞

δN ([0, 1]d) ·N1/d = 2
(

∆d

βd

)1/d

.

The constant ∆d, and hence, the constant C∞,d, is not known for d > 3 (it was shown in [47],

[21] that ∆2 = π/
√

12 and it was recently proved in [26] that ∆3 = π/
√

18. See [11] for more

references). We show in this dissertation that lims→∞C
1/s
s,d = 1/C∞,d for any integer d ≥ 1 (see

Theorem III.1.2).

Concerning the case when A = S2, the papers [25], [48] prove that limN→∞ δN (S2)N1/2 =(
8π/
√

3
)1/2

. Furthermore, the results of [26] imply that for the unit sphere S3 ⊂ R4 we have

limN→∞ δN (S3)N1/3 =
√

2π2/3.

If A is a d-dimensional compact smooth manifold in Rd′ , it can be approximated by a tangent

plane in the neighborhood of every point, and it is not difficult to see that

lim
N→∞

δN (A) ·N1/d = C∞,d · Hd(A)1/d. (6)

In Chapter III, for compact sets A ⊂ Rd′ representable as at most countable unions of d-rectifiable

sets, we show that relation (6) still holds if Md(A) = Hd(A), and fails if Md(A) 6= Hd(A) or

Md(A) is undefined. In particular, we show that for every closed d-rectifiable set, relation (6)

holds and every sequence of best-packing configurations {ωN}∞N=2 such that #ωN = N , N ≥ 2,

will be asymptotically uniformly distributed on A with respect to Hd. Results similar to (6) for

compact sets in Rd (with d′ = d) that concern the covering radius, were obtained in [24].

6



The condition of countable rectifiability in our results is crucial, since in Section III.3 we provide

examples of unrectifiable compact sets of integer Hausdorff dimension d with 0 < Hd(A) <∞ such

that the limit

lim
N→∞

δN (A) ·N1/d

and the limit

lim
N→∞

Es(A,N)
N1+s/d

for s sufficiently large do not exist.

If we fix any s > d′, using the highest and the lowest order of minimal s-energy among all

subsequences of cardinalities of configurations on an arbitrary set in Rd′ , we can define its upper

and lower dimension. We prove that the upper and the lower dimension of any set A ⊂ Rd′ defined

in this way coincides with the upper and the lower Minkowski dimension of A, respectively. We

also prove that the upper and the lower Minkowski dimensions coincide with the upper and the

lower dimensions of a set defined via the asymptotics of the best-packing distance (see Proposition

III.2.1).

Minimum s-energy configurations do not, in general, coincide with best-packing configurations.

However, on certain classes of sets they turn out to have the same order of the separation distance.

Since minimal energy points are easier to compute than best-packing ones, they are suitable for

the applications requiring uniform distribution of points on a surface with a “good” separation.

The following estimates of the separation distance of minimal energy points are known. When

A is the unit sphere Sd in Rd+1, for every s > d−2, s 6= d, there is a constant C = C(s,A) > 0 such

that for any sequence {ω∗N}∞N=2 of s-energy minimizing collections on A with #ω∗N = N , N ≥ 2,

there holds

δ(ω∗N ) ≥ C
d
√
N
, N ≥ 2, (7)

(see [12, 41, 17, 22, 14, 35, 16] for the proof of (7) for different ranges of values of s). The estimate

(7) is also proved in [28] for s > d and A being a bi-Lipschitz homotopy in Rd′ of a compact set

from Rd. Earlier, the estimate (7) for d = 1 was proved for s > 1 on Carleson’s curves (cf. [39]).

In Section II.3 (the proof is given in Section IV.5 for the more general weighted case) we extend

estimate (7) for any s > d > 0 to an arbitrary compact set A with Hd(A) > 0 (not requiring d

to be an integer). Independently, in [13] estimate (7) was obtained for d-dimensional rectifiable

7



manifolds.

Papers mentioned above, which prove (7) for s > d, also show on the corresponding classes of

sets that for s = d we have

δ(ω∗N ) ≥ C
d
√
N lnN

, N ≥ 2.

Better separation estimates for s = d are not known on compact sets A 6= S1. In Section II.3, we

also extend this estimate to any compact set with Hd(A) > 0.

Some applications may require placing a large number of points on a surface according to

a prescribed non-uniform distribution. For example, for modelling a surface in computer aided

geometric design more points are generally required on regions with higher curvature. In Chapter

IV we consider the problem of minimizng the weighted s-energy for s greater than or equal to the

dimension of the surface, as a method for generating non-uniformly distributed points.

Let w : A × A → [0,∞) be a bounded function such that w(x, y) is continuous and strictly

positive at every point (x, y) ∈ A × A with x = y. For s > 0 and a collection of points ωN =

{x1, . . . , xN} ⊂ A, let

Ew
s (ωN ) :=

∑
1≤i6=j≤N

w(xi, xj)
|xi − xj |s

and define the weighted N -point s-energy of a compact set A to be

Ew
s (A,N) := inf{Ew

s (ωN ) : ωN ⊂ A, #ωN = N}.

When w(x, y) ≡ 1, we get the non-weighted minimal energy problem described above. If w(x, y) ≡/ 1,

the particles are still assumed to have the same charge, but the potential through which they interact

depends on the positions of the particles on the set A. This problem is different from another

generalization of the Thomson problem where particles are allowed to have different charges. In

general, instead of a sequence of energy minimizing collections, we study asymptotically energy

minimizing sequences of configurations, that is sequences {ω̃N}∞N=2 with #ω̃N = N , N ≥ 2, such

that

lim
N→∞

Ew
s (ω̃N )

Ew
s (A,N)

= 1. (8)

8



Theorem IV.1.1 in Chapter IV establishes relation (4) with Hd(A) replaced by

Hs,w
d (A) :=

∫
A

w(x, x)−d/sdHd(x)

for s > d and any closed d-rectifiable set A ⊂ Rd′ . Analogous modifications of relation (5) for the

case when s = d and A is a compact subset of a d-dimensional C1 manifold are proved in Theorem

IV.1.2. Moreover, in these cases the limit distribution of any asymptotically energy minimizing

sequence of configurations on A will have density

1
Hs,w

d (A)
· w(x, x)−d/sdHd, x ∈ A.

Thus, if we set for example w(x, y) = (ρ(x)ρ(y))−
s
2d , where the continuous function ρ(x) is the

density of the prescribed distribution on A, then the limit distribution of optimal points will have

density ρ(x), x ∈ A.

In Chapter V, we investigate the next order term of the minimal s-energy on curves. As

Theorem A shows, the main term of Es(Γ, N) on a Jordan curve Γ is determined by its length for

every s ≥ 1. For a closed, simple and regular C3 curve in Rd we show that the next order term

of minimal s-energy as N → ∞ has the form CsN
s−1, s > 3, or C3N

2 lnN for s = 3, where the

constant Cs is positive and depends on the length of Γ and on the mean square of its curvature.

For 1 ≤ s < 3 the next order term has the form CsN
2.

For non-closed simple regular rectifiable C2 curves Γ ⊂ Rd we show that the next order term is

negative and has order N s for s > 2 and N2 lnN for s = 2.

Known separation estimates provide only the order of the separation distance in ground state

configurations. For the closed curves described above and s > 2, we show that the separation

distance between N minimal s-energy points asymptotically equals |Γ|/N as N →∞.
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CHAPTER II

ASYMPTOTIC RESULTS FOR MINIMUM ENERGY

In this chapter we study the behavior of the discrete minimal Riesz s-energy and optimal configu-

rations as N gets large on rectifiable compact sets and give remarks for other classes of sets. We

also extend known lower estimates for the minimal pairwise distance between points in optimal

configurations to quite general classes of sets which include sets of arbitrary Hausdorff dimension.

II.1 Minimum energy problem on rectifiable sets.

Notation and definitions. Let d and d′ be positive integers with d ≤ d′. In this section we

obtain the main term as N →∞ of the minimum s-energy on compact d-rectifiable sets in Rd′ for

s > d. We also find the limit distribution of optimal configurations on such sets.

For a collection ωN := {x1, . . . , xN} of points in Rd′ and s > 0 we let

Es(ωN ) :=
∑

1≤i6=j≤N

1
|xi − xj |s

,

where |·| stands for the Euclidean distance. The minimal discrete N -point Riesz s-energy of a

compact set A ⊂ Rd′ is defined as

Es(A,N) := min
ωN⊂A

#ωN =N

Es(ωN ), (9)

where #W denotes the cardinality of a set W .

Recall that a mapping φ : T → Rd′ , T ⊂ Rd, is said to be a Lipschitz mapping on T if there is

some constant λ > 0 such that

|φ(x)− φ(y)| ≤ λ|x− y| for x, y ∈ T , (10)

and that φ is said to be a bi-Lipschitz mapping on T (with constant λ) if

(1/λ)|x− y| ≤ |φ(x)− φ(y)| ≤ λ|x− y| for x, y ∈ T . (11)

10



Following [19] we give the following definitions.

Definition II.1.1. We say that a set A ⊂ Rd′ is d-rectifiable, if it is the image of a bounded set

in Rd under a Lipschitz mapping.

Denote by Hd the d-dimensional Hausdorff measure in Rd′ normalized so that an isometric

image of [0, 1]d has measure 1.

Definition II.1.2. A set A ⊂ Rd′ is called (Hd, d)-rectifiable, if Hd(A) < ∞ and A is a union of

at most a countable collection of d-rectifiable sets and a set of Hd-measure zero.

Let βd be the Lebesgue measure of the unit ball in Rd and β0 = 1. Then,

βd =
πd/2

Γ (1 + d/2)
, d ∈ N. (12)

Denote by Ld′ the Lebesgue measure in Rd′ and let

A(ε) := {x ∈ Rd′ : dist(x,A) < ε}, ε > 0,

be the ε-neighborhood of the set A ⊂ Rd′ .

Definition II.1.3. The lower and the upper d-dimensional Minkowski content of A are defined by

Md(A) := lim inf
ρ→0+

Ld′(A(ρ))
βd′−dρd′−d

and Md(A) := lim sup
ρ→0+

Ld′(A(ρ))
βd′−dρd′−d

, (13)

respectively. If they coincide, then the quantity Md(A) := Md(A) = Md(A) is called the d-

dimensional Minkowski content of the set A.

Noting that βd′−dρ
d′−d is the Lebesgue measure of a ball of radius ρ in Rd′−d, it is not difficult

to see that, say, one-dimensional Minkowski content of a rectifiable arc equals its length. In fact,

the following statement holds.

Lemma II.1.1. (see [19, Theorem 3.2.39]). If W ⊂ Rd′ is a closed d-rectifiable set, then

Md(W ) = Hd(W ). (14)

We shall also need the following fundamental lemma from geometric measure theory.
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Lemma II.1.2. (see [19, Lemma 3.2.18]). A set W ⊂ Rd′ is (Hd, d)-rectifiable, if and only if for

every ε > 0 there exist compact sets K1, K2, K3, . . . ⊂ Rd and bi-Lipschitz mappings ψi : Ki → Rd′

with constant 1 + ε, i = 1, 2, 3, . . ., such that ψ1(K1), ψ2(K2), ψ3(K3), . . . are disjoint subsets of W

with

Hd

(
W \

⋃
i

ψi(Ki)

)
= 0.

Another way to characterize (Hd, d)-rectifiable sets is as follows. A set A ⊂ Rd′ withHd(A) <∞

is (Hd, d)-rectifiable if and only if A is a union of at most a countable family of d-dimensional C1

manifolds and a set of Hd-measure zero (cf. [38, p. 214]).

Definition II.1.4. Let A be compact with Hd(A) > 0 and {ωN}∞N=2 be a sequence of point con-

figurations on A such that #ωN = N , N ≥ 2. We say that {ωN}∞N=2 is asymptotically distributed

on A according to Borel probability measure µ supported on A, if, for every subset B ⊂ A whose

boundary relative to A has µ-measure zero, we have

#(ωN ∩B)
N

→ µ(B), N →∞. (15)

Equivalently (cf. [36, p. 9]), this definition can be stated in terms of the weak* convergence of

normalized counting measures.

If µ and µN , N ∈ N, are Borel probability measures on A, then the sequence {µN}∞N=1 is said

to converge weak* to µ (and we write µN
∗→ µ, N → ∞), if for any function f continuous on A,

we have

lim
N→∞

∫
A

fdµN =
∫
A

fdµ.

Denote by δx the atomic probability measure in Rd′ centered at the point x ∈ Rd′ . Sequence

{ωN}∞N=2, ωN := {xN
1 , . . . , x

N
N}, is said to be asymptotically distributed on A according to Borel

probability measure µ, if

ν(ωN ) :=
1
N

N∑
k=1

δxN
k

∗→ µ, N →∞.

Main result. In this chapter we prove the following statement.

Theorem II.1.1. Let s > d and d′ ≥ d, where d and d′ are positive integers. For every compact

12



(Hd, d)-rectifiable set A in Rd′ with Md(A) = Hd(A) we have

lim
N→∞

Es(A,N)
N1+s/d

=
Cs,d

Hd(A)s/d
. (16)

Moreover, if A is d-rectifiable with Hd(A) > 0, then any sequence {ω∗N}∞N=2 of s-energy minimizing

collections on A such that #ω∗N = N , N ≥ 2, is asymptotically uniformly distributed on A with

respect to Hd, that is

ν(ω∗N )
∗→ Hd|A
Hd(A)

, N →∞. (17)

Remark. In view of (14), equality (16) holds for any closed d-rectifiable set in Rd′ .

All other results of this chapter will be proved later, since they are either a partial case of the

results for the weighted energy from Chapter IV or follow from the best-packing results in Chapter

III.

As we prove in Proposition III.1.3 in Chapter III, relation (16) fails for sufficiently large values

of s if A is a compact (Hd, d)-rectifiable set for which equality Md(A) = Hd(A) does not hold.

As an example of a rectifiable set not satisfying equalityMd(A) = Hd(A), we mention a compact

(H2, 2)-rectifiable set B ⊂ R3 with 0 < H2(B) < ∞ = M2(B) given in [19, p. 276]. Proposition

III.2.1 will imply that Es(B,N) = o(N1+s/d), N →∞, for s > 3.

We also show in Proposition III.3.1 of Chapter III that the condition of (Hd, d)-rectifiability in

Theorem II.1.1 is crucial in the sense that there are non-rectifiable compact sets with 0 < Hd(A) <

∞ such that

0 < lim inf
N→∞

Es(A,N)
N1+s/d

< lim sup
N→∞

Es(A,N)
N1+s/d

<∞

for sufficiently large s. Indeed, we show that this is true for a class of Cantor-type sets described

in Section III.3.

II.2 Remarks for general sets.

Next, we state results on the order of the minimal s-energy for compact sets of arbitrary Hausdorff

dimension without proof. Proposition II.2.1 is a partial case of Corollary IV.5.1 proved in chapter

IV and Proposition II.2.2 is a part of the Proposition III.2.1 proved in Chapter III. Let

H∞α (A) := inf{
∑

i

(diam Gi)
α : A ⊂

⋃
i

Gi}.
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Note that the condition of positivity of the α-dimensional Hausdorff measure Hα(A) is equivalent

to the condition H∞α (A) > 0.

Proposition II.2.1. Suppose that α > 0 and s > α. There is a constant Ms,α > 0 such that for

every compact set A ⊂ Rd′ with Hα(A) > 0

Es(A,N) ≤ Ms,α

H∞α (A)s/α
N1+s/α, N ≥ 2.

For every compact set A with Hd(A) > 0, there also exists a constant Mα > 0 such that

Eα(A,N) ≤MαN
2 logN, N ≥ 2.

For a non-integer α > 0 let

Mα(A) := lim inf
ρ→0+

Ld′(A(ρ))
ρd′−α

and Mα(A) := lim sup
ρ→0+

Ld′(A(ρ))
ρd′−α

denote the lower and the upper α-dimensional Minkowski content of a set A ⊂ Rd′ , respectively

(when our considerations include sets of non-integer dimension we do not look for numerical values

of the constants and therefore, remove in this definition any additional constant factors in the

denominator).

Proposition II.2.2. If 0 < α ≤ d′ < s, there are positive constants c1 = c1(s, α) and c2 = c2(s, α)

such that for any infinite set A ⊂ Rd′ we have

c1Mα(A)−s/α ≤ lim sup
N→∞

Es(A,N)
N1+s/α

≤ c2Mα(A)−s/α,

c1Mα(A)−s/α ≤ lim inf
N→∞

Es(A,N)
N1+s/α

≤ c2Mα(A)−s/α.

Proposition II.2.2 in particular implies that if for some α > 0 we have 0 <Mα(A) <Mα(A) <

∞, then for every s > d′ there holds

Es(A,N) � N1+s/α, N →∞.

Note that the assertion of Proposition II.2.2 is restricted to s > d′ while Proposition II.2.1 gives

some information for s ∈ [α, d′].
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UsingMα andMα one can define the lower and the upper Minkowski dimension, respectively,

in the same way as the Hausdorff dimension. For certain compact sets A, the upper and the lower

Minkowski dimensions do not coincide (cf. [38, p. 77]), which combined with Proposition II.2.2

means that Es(A,N) will have different order as N →∞ for different subsequences of cardinalities

of configurations.

II.3 Separation results

The theorem below is a partial case of results obtained in Section IV.5 for the weighted energy

problem and its proof will be given there. For a configuration ωN = {x1, . . . , xN} ⊂ A let

δ(ωN ) := min
1≤i6=j≤N

|xi − xj | (18)

be its separation distance (or separation radius). We obtain estimates for the separation radius of

optimal configurations on sets of arbitrary Hausdorff dimension α. We remark that the normaliza-

tion for the Hausdorff measure Hα plays no essential role here.

Theorem II.3.1. Let 0 < α ≤ d′ and s > α. There is a constant cs,α > 0 such that for every

compact set A ⊂ Rd′ with Hα(A) > 0 and any s-energy minimizing configuration ω∗N ⊂ A with

N ≥ 2 points, there holds

δ(ω∗N ) ≥ cs,α

(H∞α (A) ·N)1/α
.

For every compact set A ⊂ Rd′ with Hα(A) > 0 there also exists a constant cα > 0 such that for

any α-energy minimizing N -point configuration ω∗N ⊂ A

δ(ω∗N ) ≥ cα(N logN)−1/α, N ≥ 2.

Remark. There exist compact sets with 0 < Hα(A) < ∞ for which best-packing distance

δN (A) will go to zero slower thanN−1/α asN →∞ (see comments to Proposition III.2.1). However,

taking into account this proposition, for any compact set with 0 < Hα(A),Mα(A) <∞ and s > d′,

we will have

δ(ω∗N ) � δN (A) � N−1/α, N →∞.
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II.4 Proof of the results on rectifiable sets.

In this section we prove Theorem II.1.1. First, show (16). To describe the precise rate of growth

of Es(A,N), for s > d define

g
s,d

(A) := lim inf
N→∞

Es(A,N)
N1+s/d

, gs,d(A) := lim sup
N→∞

Es(A,N)
N1+s/d

(19)

and

gs,d(A) := lim
N→∞

Es(A,N)
N1+s/d

, (20)

if this limit exists. We will need the following statements (see Lemmas 3.2 and 3.3 in [28]). Recall

that dist(B,D) := inf {|x− y| : x ∈ B, y ∈ D} denote the distance between sets B,D ⊂ Rd′ .

Lemma II.4.1. Let s ≥ d and suppose that B and D are bounded sets in Rd′ such that dist(B,D) >

0. Then

gs,d(B ∪D)−d/s ≥ gs,d(B)−d/s + gs,d(D)−d/s.

Lemma II.4.2. Let s ≥ d and B,D ⊂ Rd′ be bounded sets. Then

g
s,d

(B ∪D)−d/s ≤ g
s,d

(B)−d/s + g
s,d

(D)−d/s.

Furthermore, if g
s,d

(B), g
s,d

(D) > 0 and at least one of these quantities is finite, then

lim
N3N→∞

#(ω̃N ∩B)
N

=
g

s,d
(D)d/s

g
s,d

(B)d/s + g
s,d

(D)d/s
(21)

holds for any subsequence {ω̃N}N∈N of N -point configurations in B ∪D such that

lim
N3N→∞

Es(ω̃N )
N1+s/d

=
(
g

s,d
(B)−d/s + g

s,d
(D)−d/s

)−s/d
,

where N is some infinite subset of N.

This statement in particular shows sub-additivity of g
s,d

(·)−d/s. We also remark that these

lemmas hold when quantities are 0 or infinite using 0−d/s = 0−s/d =∞ and ∞−d/s =∞−s/d = 0.

Regularity lemma. To get an estimate from below for g
s,d

(A) we will also need the following

result.
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Lemma II.4.3. Let s > d and suppose that A ⊂ Rd′ is a compact set such that Md(A) exists and

is finite. Then for every ε ∈ (0, 1) there is some δ > 0 such that for any compact set K ⊂ A with

Md(K) >Md(A)− δ we have

g
s,d

(A) ≥ (1− ε)g
s,d

(K). (22)

Proof. The assertion of the lemma holds trivially if g
s,d

(A) =∞. Hence, we assume g
s,d

(A) <

∞. Let N ⊂ N be an infinite subset such that

lim
N3N→∞

Es(A,N)
N1+s/d

= g
s,d

(A).

Choose δ ∈
(
0, 1/24d

)
and set

ρ := δ1/(4d) and hN :=
1
3
ρ2N−1/d, N ∈ N . (23)

Suppose K is a compact subset of A such that Md(K) >Md(A)− δ. Then there is some Nδ ∈ N

such that for any N > Nδ, N ∈ N , we have

Ld′ [A(hN )]
βd′−dh

d′−d
N

≤Md(A) + δ and
Ld′ [K(hN )]
βd′−dh

d′−d
N

≥Md(A)− δ. (24)

For N ∈ N with N > Nδ, let ω∗N := {x1,N , . . . , xN,N} be an s-energy minimizing N -point config-

uration on A. For i = 1, . . . , N , let rN
i := min

j:j 6=i
|xj,N − xi,N | denote the distance from xi,N to its

nearest neighbor in ω∗N . Further, we partition ω∗N into a “well-separated” subset

ω1
N := {xi,N ∈ ω∗N : rN

i ≥ ρN−1/d},

and its complement ω̃1
N := ω∗N \ ω1

N . We next show that ω1
N has sufficiently many points. For

N ∈ N , we obtain

Es(A,N) = Es(ω∗N ) =
N∑

i=1

N∑
j=1
j 6=i

1
|xi,N − xj,N |s

≥
N∑

i=1

1
(rN

i )s

≥
∑

xi,N∈eω1
N

1
(rN

i )s
≥

∑
xi,N∈eω1

N

1(
ρN−1/d

)s = #ω̃1
Nρ

−sN s/d.
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Let k0 := g
s,d

(A) + 1. There is N1 ∈ N such that for any N > N1, N ∈ N ,

Es(A,N)
N1+s/d

< k0.

For the rest of the proof of this lemma, let N ∈ N be greater than N2 := max{N1, Nδ}. Then,

#ω̃1
N

ρsN
≤ Es(A,N)

N1+s/d
< k0,

and, hence, we have

#ω̃1
N < k0ρ

sN and #ω1
N > (1− k0ρ

s)N. (25)

Next we consider

ω2
N := ω1

N

⋂
K(3hN ), ω̃2

N := ω1
N \K(3hN ),

and show that the cardinality of ω2
N is sufficiently large. From (24) we get

Ld′ [A(hN )\K(hN )] = Ld′ [A(hN )]− Ld′ [K(hN )] (26)

≤ (Md(A) + δ)βd′−dh
d′−d
N − (Md(A)− δ)βd′−dh

d′−d
N

= 2βd′−dδh
d′−d
N .

Note, that

FN :=
⋃

x∈eω2
N

B(x, hN ) ⊂ A(hN ) \K(hN ), (27)

where B(a, r) is the open ball in Rd′ centered at a point a with radius r > 0.

For any distinct points xi,N , xj,N ∈ ω̃2
N we have

|xi,N − xj,N | ≥ rN
i ≥ ρN−1/d > ρ2N−1/d = 3hN .

Hence, B(xi,N , hN )
⋂
B(xj,N , hN ) = ∅. Then, using (26) and (27), we get

#ω̃2
N =

(
βd′h

d′
N

)−1 ∑
x∈eω2

N

Ld′ [B(x, hN )] =
(
βd′h

d′
N

)−1
Ld′(FN )

≤
(
βd′h

d′
N

)−1
Ld′ [A(hN ) \K(hN )] ≤ 2βd′−dβ

−1
d′ δh

−d
N .
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Hence, recalling (23), we have

#ω̃2
N ≤ 2 · 3dβd′−dβ

−1
d′ δ

1/2N. (28)

Let χ0 := 2 · 3dβd′−dβ
−1
d′ . Then, using (25) and (28), we have

#ω2
N = #ω1

N −#ω̃2
N ≥

(
1− k0ρ

s − χ0δ
1/2
)
N.

Next, we choose a configuration ωK
N of points in K which is close to ω2

N and has the same

number of points and order of the minimal s-energy as ω2
N . For every xi,N ∈ ω2

N pick a point

yi,N ∈ K such that |xi,N − yi,N | < 3hN = ρ2N−1/d and let ωK
N := {yi,N : xi,N ∈ ω2

N}. Since every

point xi,N ∈ ω2
N lies in ω1

N , we have

|xi,N − yi,N | < ρ2N−1/d ≤ ρrN
i ≤ ρ |xi,N − xj,N | , j 6= i.

Then, if xi,N 6= xj,N are points from ω2
N , we have

|yi,N − yj,N | = |yi,N − xi,N + xi,N − xj,N + xj,N − yj,N |

≥ |xi,N − xj,N | − |xi,N − yi,N | − |xj,N − yj,N |

≥ |xi,N − xj,N | − 2ρ |xi,N − xj,N | = (1− 2ρ) |xi,N − xj,N | .

Since ρ ∈ (0, 1/2), it follows that #ωK
N = #ω2

N and for N ∈ N ,

Es(ω∗N ) =
∑

x 6=y∈ω∗N

1
|x− y|s

≥
∑

x 6=y∈ω2
N

1
|x− y|s

≥ (1− 2ρ)s
∑

x6=y∈ωK
N

1
|x− y|s

= (1− 2ρ)sEs(ωK
N ).

Now suppose ε ∈ (0, 1). We may choose δ > 0 sufficiently small (recall ρ = δ1/(4d)) so that
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(1− 2ρ)s(1− k0ρ
s − χ0δ

1/2)1+s/d ≥ (1− ε). Hence,

g
s,d

(A) = lim
N3N→∞

Es(ω∗N )
N1+s/d

≥ (1− 2ρ)s lim inf
N3N→∞

Es(ωK
N )

N1+s/d

≥ (1− 2ρ)s lim inf
N3N→∞

Es(K,#ω2
N )

(#ω2
N )1+s/d

·
(

#ω2
N

N

)1+s/d

≥ (1− 2ρ)s
(
1− k0ρ

s − χ0δ
1/2
)1+s/d

lim inf
N→∞

Es(K,N)
N1+s/d

≥ (1− ε)g
s,d

(K)

holds for any compact subset K ⊂ A such thatMd(K) >Md(A)− δ. Lemma II.4.3 is proved.

Final part of the proof of (16). We remark that if K ⊂ Rd is compact, then by Theorem

B, for s > d,

gs,d(K) =
Cs,d

Ld(K)s/d
. (29)

Suppose 0 < ε < 1. Since A ⊂ Rd′ is a compact (Hd, d)-rectifiable set, Lemma II.1.2 implies

the existence of compact sets K1, K2, K3, . . . ⊂ Rd and bi-Lipschitz mappings ψi : Ki → Rd′ ,

i = 1, 2, 3, . . ., with constant 1 + ε such that ψ1(K1), ψ2(K2), ψ3(K3), . . . are disjoint subsets of A

whose union covers Hd-almost all of A.

Let n be large enough so that

Hd

(
n⋃

i=1

ψi(Ki)

)
=

n∑
i=1

Hd(ψi(Ki)) ≥ (1 + ε)−dHd(A).

Since each ψi is bi-Lipschitz with constant (1 + ε), we have

gs,d(ψi(Ki)) ≤ (1 + ε)sgs,d(Ki) = Cs,d(1 + ε)sLd(Ki)−s/d (30)

≤ Cs,d(1 + ε)2sHd(ψi(Ki))−s/d.

Applying Lemma II.4.1 and (30) we obtain

gs,d(A) ≤ gs,d

(
n⋃

i=1

ψi(Ki)

)
≤

(
n∑

i=1

gs,d(ψi(Ki))−d/s

)−s/d

(31)

≤ Cs,d(1 + ε)2s

(
n∑

i=1

Hd(ψi(Ki))

)−s/d

≤ Cs,d(1 + ε)3sHd(A)−s/d.
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We next provide a lower bound for g
s,d

(A). By assumptions, Md(A) = Hd(A) < ∞. Let

δ > 0 be as in Lemma II.4.3, i.e., inequality (22) holds for every compact set K ⊂ A such that

Md(K) >Md(A)− δ. Since all sets ψi(Ki) ate d-rectifiable, Lemma II.1.1 holds for each of them.

Let n′ be large enough so that

Md

(
n′⋃

i=1

ψi(Ki)

)
=

n′∑
i=1

Hd[ψi(Ki)] > Hd(A)− δ =Md(A)− δ.

As in (30) we have

g
s,d

(ψi(Ki)) ≥ (1 + ε)−sgs,d(Ki) = Cs,d(1 + ε)−sLd(Ki)−s/d (32)

≥ Cs,d(1 + ε)−2sHd(ψi(Ki))−s/d.

Then Lemmas II.4.2 and II.4.3, and relation (32) give

g
s,d

(A) ≥ (1− ε)g
s,d

(
n′⋃

i=1

ψi(Ki)

)
≥ (1− ε)

(
n′∑

i=1

g
s,d

[ψi(Ki)]−d/s

)−s/d

(33)

≥
(1− ε)Cs,d

(1 + ε)2s

(
n′∑

i=1

Hd[ψi(Ki)]

)−s/d

≥
(1− ε)Cs,d

(1 + ε)2s
Hd(A)−s/d.

Letting ε go to zero in (31) and (33), we obtain (16).

Proof of (17). Now suppose that A is d-rectifiable, Hd(A) > 0 and ω∗N = {xN
1 , . . . , x

N
N},

N ∈ N, is a sequence of s-energy minimizing N -point configurations on A. To show (17), it is

sufficient to prove that {ω∗N}∞N=2 satisfies (15) with µ = Hd|A
Hd(A) . Let B ⊂ A be such that its

boundary relative to A has Hd-measure zero.

Let B be the closure of the set B. Since B and A \B, as subsets of A, are also d-rectifiable, in

view of Lemma II.1.1 they satisfy relaton (16). Hence,

lim
N→∞

Es(ω∗N )
N1+s/d

= Cs,d (Hd(A))−s/d

= Cs,d

(
Hd(B) +Hd(A \B)

)−s/d

=
(
gs,d(B)−d/s + gs,d(A \B)−d/s

)−s/d
.

Since Hd(B) < ∞, and Hd(A \B) < ∞ as for d-rectifiable sets, relation (16) implies that
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g
s,d

(B), g
s,d

(A \B) > 0. One of the quantities g
s,d

(B) or g
s,d

(A \B) will be finite, since Hd(B) or

Hd(A \B) has to be positive. Then using relation (21) in Lemma II.4.2 and relation (16), we get

lim
N→∞

# (ω∗N
⋂
B)

N
=

gs,d(A \B)d/s

gs,d(B)d/s + gs,d(A \B)d/s
=
Hd(B)
Hd(A)

.

showing that (17) holds.
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CHAPTER III

ASYMPTOTIC RESULTS FOR BEST-PACKING

As usually, we will denote by Rd′ the embedding space, reserving the symbol d for the dimension of

the set being considered. As before, for a collection of N distinct points ωN = {y1, . . . , yN} ⊂ Rd′

we set

δ(ωN ) := min
1≤i6=j≤N

|yi − yj |,

and for an infinite set A ⊂ Rd′ , we let

δN (A) := sup{δ(ωN ) : ωN ⊂ A, #ωN = N} (34)

be the best-packing distance of N -point configurations on A, where #X denotes the cardinality of

the set X. Let 0 < α ≤ d′ and set

g∞,α
(A) := lim inf

N→∞
δN (A) ·N1/α, g∞,α(A) := lim sup

N→∞
δN (A) ·N1/α. (35)

We further put

g∞,α(A) := lim
N→∞

δN (A) ·N1/α,

if this limit exists. On relating these quantities to the largest sphere packing density in Rd, which

we denote by ∆d (see (37) below), it can be shown that g∞,d([0, 1]d) exists and is given by

C∞,d := g∞,d([0, 1]d) = 2
(

∆d

βd

)1/d

, (36)

where, as before, βd is the Lebesgue measure (volume) of the unit ball in Rd. It is not difficult

to show that g∞,d(A) exists for d-dimensional smooth manifolds and domains. In this chapter we

shall establish the existence of g∞,d(A) for a class of rectifiable sets and provide a formula for it

in terms of the largest sphere packing density in Rd; we also describe the limiting distribution of

best-packing points (see Theorem III.1.1).

Recall that the definition of ∆d is as follows (cf. [20, Chapter 3] or [42, Chapter 1]). Let Ld
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stand for the Lebesgue measure in Rd. Denote by Λd the set of collections P of non-overlapping

unit balls in Rd for which the density

ρ(P) := lim
r→∞

(2r)−d · Ld

( ⋃
B∈P

B ∩ [−r, r]d
)

exists. Then

∆d := sup
P∈Λd

ρ(P). (37)

Recall that ∆2 = π/
√

12 (cf. [47] or [20]), ∆3 = π/
√

18 [26], and ∆d is unknown for d > 3. On the

plane the highest density is achieved by the hexagonal packing of circles, where each circle touches

six others. In 3D the maximum of the density is attained by packing of balls whose centers form

the face center cubic lattice and by the canonball packing.

For non-integer α ≥ 0 we set βα = 1. Recall that A(ε), ε > 0, is the ε-neighborhood of the set

A ⊂ Rd′ , and the lower and the upper α-dimensional Minkowski content of A are defined by

Mα(A) := lim inf
ρ→0+

Ld′(A(ρ))
βd′−αρd′−α

and Mα(A) := lim sup
ρ→0+

Ld′(A(ρ))
βd′−αρd′−α

, (38)

respectively. If they coincide, then the quantity Mα(A) := Mα(A) = Mα(A) is called the α-

dimensional Minkowski content of the set A.

III.1 Best-packing on rectifiable sets

The main result of this chapter is an analogue of Theorem II.1.1 for best-packing configurations

stated below.

Theorem III.1.1. Let d ≤ d′, where d, d′ are positive integers, and A ⊂ Rd′ be an infinite compact

(Hd, d)-rectifiable set. If Md(A) = Hd(A), then g∞,d(A) exists and is given by

g∞,d(A) = C∞,d · Hd(A)1/d = 2
(

∆d

βd

)1/d

· Hd(A)1/d. (39)

Moreover, if Md(A) > Hd(A), then

g∞,d(A) > C∞,d · Hd(A)1/d. (40)
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If A is d-rectifiable with Hd(A) > 0, then every sequence {ωN}∞N=2 of best-packing configurations

on A such that #ωN = N , N ≥ 2, is asymptotically uniformly distributed on A with respect to Hd,

that is

ν(ωN )
∗→ Hd|A
Hd(A)

, N →∞. (41)

In view of relation (14), and the fact that any (Hd, d)-rectifiable set can be approximated by its

closed d-rectifiable subsets (cf. Lemma II.1.2), we either haveMd(A) = Hd(A) orMd(A) > Hd(A),

so that either (39) or (40) must hold.

As the definition of the minimal energy constant Cs,d which appears in Theorem B and Theorem

II.1.1, one can take equality

Cs,d := lim
N→∞

Es
(
[0, 1]d, N

)
N1+s/d

, s > d, (42)

where quantity Es(A,N) is defined in (9). It follows from Theorem A that Cs,1 = 2ζ(s), s > 1.

However, constants Cs,d are still not known for d > 1.

Below, we relate the constants Cs,d and C∞,d.

Theorem III.1.2. The limit lims→∞C
1/s
s,d exists for each integer d ≥ 1 and

lim
s→∞

C
1/s
s,d =

1
C∞,d

=
1
2

(
βd

∆d

)1/d

.

In particular, results on packing density mentioned above, imply that

lim
s→∞

C
1/s
s,2 =

4
√

3√
2

and

lim
s→∞

C
1/s
s,3 =

1
6
√

2
.

We next show that asymptotic behavior of the minimal energy obtained in Chapter II, relation

(16), can fail for certain (Hd, d)-rectifiable sets.

Proposition III.1.3. Let A ⊂ Rd′ be a compact (Hd, d)-rectifiable set withMd(A) > Hd(A). Then

for s sufficiently large

g
s,d

(A) = lim inf
N→∞

Es(A,N)
N1+s/d

< Cs,dHd(A)−s/d. (43)
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III.2 Remarks for general sets.

For a set A ⊂ Rd′ , let dimHA be the Hausdorff dimension and

dimMA := inf({α > 0 :Mα(A) = 0} ∪ {d′}) =

= sup({α ∈ (0, d′] :Mα(A) =∞} ∪ {0})

and

dimMA := inf({α > 0 :Mα(A) = 0} ∪ {d′}) =

= sup({α ∈ (0, d′] :Mα(A) =∞} ∪ {0})

denote the lower and the upper Minkowski dimension of A, respectively. One can also introduce

the lower and the upper dimension of a set using s-energy or best-packing.

For any 0 < α ≤ d′ and s > α denote

g
s,α

(A) := lim inf
N→∞

Es(A,N)
N1+s/α

, gs,α(A) := lim sup
N→∞

Es(A,N)
N1+s/α

and

gs,α(A) := lim
N→∞

Es(A,N)
N1+s/α

,

if this limit exists. Let

dim∞A := inf({α > 0 : g∞,α
(A) = 0} ∪ {d′}) =

= sup({α ∈ (0, d′] : g∞,α
(A) =∞} ∪ {0})

and for a fixed s > d′ denote

dimsA := inf({α > 0 : gs,α(A) =∞} ∪ {d′}) =

= sup({α ∈ (0, d′] : gs,α(A) = 0} ∪ {0})

with dim∞A and dimsA being defined in an analogous way through g∞,α or g
s,α

. The following
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proposition implies that for any set A ⊂ Rd′ we have

dim sA = dim∞A = dimMA

and

dimsA = dim∞A = dimMA,

provided s > d′.

Proposition III.2.1. If 0 < α ≤ d′ < s, there are positive constants c1 = c1(s, α) and c2 = c2(s, α)

such that for any infinite set A ⊂ Rd′ we have

c1Mα(A)−s/α ≤ gs,α(A) ≤ c2Mα(A)−s/α, (44)

c1Mα(A)−s/α ≤ g
s,α

(A) ≤ c2Mα(A)−s/α. (45)

There are also positive constants c3 = c3(α) and c4 = c4(α) such that for every infinite set A ⊂ Rd′

c3Mα(A)1/α ≤ g∞,α
(A) ≤ c4Mα(A)1/α, (46)

c3Mα(A)1/α ≤ g∞,α(A) ≤ c4Mα(A)1/α. (47)

It is known that dimMA ≥ dimHA with a strict inequality possible for some compact sets (cf.

e.g. [38, p. 77]). Hence, for such sets A and any numbers α ≤ α1 strictly between dimHA and

dimMA, we have Hα(A) = 0, but gs,α1(A) = 0, s > d′, and g∞,α1(A) = ∞. That is δN (A) will

go to zero slower than N−1/dimHA, as N → ∞, and Es(A,N) will have order of growth less than

N1+s/dimHA.

For every s ∈ (d′,∞] and compact sets with sufficiently large gap betweenMα(A) andMα(A)

for some α > 0, we will have g
s,α

(A) < gs,α(A). Moreover, if dimMA < dimMA (cf. e.g. [38, p. 77]

for examples), the order of the best-packing radius and the minimal s-energy for s > d′ will vary

depending on the subsequence of cardinalities of configurations.
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III.3 Divergence results for best-packing distance and minimal energy on certain

Cantor-type sets

We show that the condition of (Hd, d)-rectifiability in Theorems II.1.1 and III.1.1 is crucial in the

sense that there are non-rectifiable compact sets with dimHA = d and 0 < Hd(A) < ∞ such that

g∞,d(A) and gs,d(A) (for sufficiently large s) do not exist. Indeed, we show that this is true for a

class of Cantor-type sets which we will denote by K.

We say that a non-empty compact setK ⊂ Rd′ belongs to the class K, if there are a finite number

of distinct similitudes S1, . . . , Sp : Rd′ → Rd′ with the same contraction coefficient σ ∈ (0, 1) (that

is |Si(x)− Si(y)| = σ |x− y| , x, y ∈ Rd′ , i = 1, . . . , p) such that

p⋃
i=1

Si(K) = K, and Si(K) ∩ Sj(K) = ∅, i 6= j. (48)

According to [30], we have λ := dimHK = − logσ p and 0 < Hλ(K) < ∞. This is a subclass of

the class of self-similar sets constructed in [30] (this construction is also cited in [38, Section 4.13]).

We remark that from a fixed point argument for the Hausdorff metric, for every finite collection

of similitudes S1, . . . , Sp in Rd′ with arbitrary contraction coefficients, there is a unique non-empty

compact set K such that
p⋃

i=1

Si(K) = K.

For our results, we have required additional restrictions on K.

Class K contains the classical Cantor subset of [0, 1]. Parameters p and σ can also be chosen

so that dimHK is any number (in particular, any integer) between 0 and d′. For example, if a1, a2

and a3 are vertices of an equilateral triangle on the plane and Si, i = 1, 2, 3, is the homothety of

the plane with respect to ai and the contraction coefficient 1/3, then K will be a set of Hausdorff

dimension one, known as the Sierpinski gasket [38, p. 75].

Proposition III.3.1. Let K be a compact set from the class K with λ = dimHK. Then, for s <∞

sufficiently large and for s =∞ we have

0 < g
s,λ

(K) < gs,λ(K) <∞.

In this statement, we cannot replace condition Si(K)∩Sj(K) = ∅, i 6= j, with a less restrictive
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condition Hλ(Si(K)∩Sj(K)) = 0, i 6= j, from the definition of a self-similar set, since for example,

if Si, i = 1, 2, 3, 4, are homotheties of the plane with respect to the vertices of some square K0 and

the same σ = 1/2, then λ = 2 and K will coincide with K0. But by Theorem B, gs,2(K0) exists for

any s > 2.

III.4 Relation between asymptotic behavior of minimal s-energy and best-packing

distance.

To prove relation (39) we will need Theorem II.1.1 and the following statement. (With regard to

the extended real number limits in [0,∞], we agree that 1/0 = 0−s = ∞s = ∞, 1/∞ = ∞−s = 0,

s > 0.)

Proposition III.4.1. For every infinite set A ⊂ Rd′ and 0 < α ≤ d′ we have

lim
s→∞

(
gs,α(A)

)1/s =
1

g∞,α
(A)

and lim
s→∞

(
g

s,α
(A)
)1/s

=
1

g∞,α(A)
. (49)

Proposition III.4.1 immediately yields the following statements.

Proposition III.4.2. Let A ⊂ Rd′ be an infinite set and 0 < α ≤ d′. If for every s sufficiently

large g
s,α

(A) = gs,α(A), then g∞,α(A) exists and

lim
s→∞

(gs,α(A))1/s =
1

g∞,α(A)
.

Proposition III.4.3. Let A ⊂ Rd′ be an infinite set such that g∞,α
(A) < g∞,α(A) for some

0 < α ≤ d′. Then for sufficiently large s we have g
s,α

(A) < gs,α(A).

Proof of Proposition III.4.1. Lower estimates. We can assume A ⊂ Rd′ to be compact,

since on unbounded sets gs,α(A) = 0 and g∞,α(A) = ∞ and the minimal s-energy (as well as the

best-packing radius) is the same for A and its closure.

Choose an arbitrary ε ∈ (0, 1) and let s > α. Let N be sufficiently large and ω∗N :=

{x1,N , . . . , xN,N} be an s-energy minimizing N -point collection on A. Set Nε := b(1− ε)Nc, where

btc is the floor function of t, and

ri,N := min
j:j 6=i
|xi,N − xj,N |.
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Pick a point xi1,N ∈ ω∗N with ri1,N ≤ δN (A). In ω∗N \ {xi1,N} pick a point xi2,N so that ri2,N ≤

δN−1(A). Continue this process until we pick a point xibεNc+1,N ∈ ω∗N \ {xi1,N , . . . , xibεNc,N} such

that ribεNc+1,N ≤ δN−bεNc(A). Then

Es(A,N) = Es(ω∗N )≥
bεNc+1∑

k=1

1
(rik,N )s

≥
bεNc+1∑

k=1

1
(δN−k+1(A))s

≥ εN

(δNε(A))s .

Hence,

gs,α(A) ≥ lim sup
N→∞

ε

(δNε(A))sN s/α
=

ε(1− ε)s/α(
lim inf
N→∞

δNε(A) ·N1/α
ε

)s =
ε(1− ε)s/α(
g∞,α

(A)
)s , (50)

since Nε passes through all natural numbers. Similarly,

g
s,α

(A) ≥ ε(1− ε)s/α(
g∞,α(A)

)s . (51)

Then, letting first s→∞ and then ε→ 0, we get

lim inf
s→∞

(
gs,α(A)

)1/s ≥ 1
g∞,α

(A)
and lim inf

s→∞

(
g

s,α
(A)
)1/s

≥ 1
g∞,α(A)

. (52)

Upper estimates. Let, for every N(≥ 2) fixed, XN = {x, x1, . . . , xN−1} ⊂ Rd′ be such that

a := δ(XN ) > 0 and for every k ∈ N let Mk be the set of points from XN contained in B(x, a(k+1))

but not in B(x, ak), where B(x, r) is the open ball in Rd′ centered at x with radius r. Then, from

a volume argument,

#Mk · Ld′ [B (0, a/2)] ≤ Ld′ [B (x, a(k + 3/2)) \B (x, a(k − 1/2))] ,

and so #Mk ≤ (2k + 3)d′ − (2k − 1)d′ ≤ 4d′(2k + 3)d′−1. Hence,

Ps(x,XN ) :=
N−1∑
i=1

1
|x− xi|s

=
∞∑

k=1

∑
xi∈Mk

1
|x− xi|s

≤
∞∑

k=1

#Mk

asks
≤ 4d′

as

∞∑
k=1

(2k + 3)d′−1

ks
≤ ηs

as
, s > d′,

where ηs := 4d′5d′−1ζ(s− d′ + 1).
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Now let ωN := {x1,N , . . . , xN,N} be a best-packing N -point configuration on A; that is, δ(ωN ) =

δN (A). Then, using the above estimate, for s > d′ we get

Es(A,N) ≤ Es(ωN ) =
N∑

i=1

Ps(xi,N , ωN ) ≤ ηsN

(δN (A))s .

Hence, for s > d′ we have

gs,α(A) ≤ lim sup
N→∞

ηs(
δN (A) ·N1/α

)s =
ηs(

g∞,α
(A)
)s , g

s,α
(A) ≤ ηs(

g∞,α(A)
)s . (53)

Then, since η1/s
s → 1 as s→∞, we have

lim sup
s→∞

(
gs,α(A)

)1/s ≤ 1
g∞,α

(A)
, lim sup

s→∞

(
g

s,α
(A)
)1/s

≤ 1
g∞,α(A)

. (54)

Inequalities (52) and (54) yield relations (49). Propositions III.4.1—III.4.3 are proved.

III.5 Proofs for rectifiable sets

In this section we prove Theorems III.1.1 and III.1.2. Using (42) and Proposition III.4.2 we get

Theorem III.1.2:

lim
s→∞

C
1/s
s,d = lim

s→∞
gs,d([0, 1]d)1/s =

1
g∞,d([0, 1]d)

=
1

C∞,d
.

Taking into account Theorem II.1.1, Proposition III.4.2 and Theorem III.1.2, we get equation

(39):

g∞,d(A) =
1

lim
s→∞

(gs,d(A))1/s
= lim

s→∞

Hd(A)1/d

C
1/s
s,d

= C∞,dHd(A)1/d.

Now suppose that A is d-rectifiable with Hd(A) > 0, and {ωN}∞N=2 is a sequence of best-packing

configurations on A such that #ωN = N , N ≥ 2. To show that {ωN}∞N=2 is asymptotically

uniformly distributed on A, choose any subset B ⊂ A whose boundary relative to A has Hd-

measure zero. As before, B stands for the closure of the set B. Set pN := #(ωN ∩ B) and let

N ⊂ N be any infinite subset such that the limit

p(N ) := lim
N3N→∞

pN

N
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exists. If p(N ) > 0, then for sufficiently large N ∈ N we get

δN (A) = δ(ωN ) ≤ δ(ωN ∩B) ≤ δpN (B) ≤ δpN (B).

Since B, as a subset of A, is a closed d-rectifiable set and Hd(B) = Hd(B), using (39), we have

p(N ) ≤ lim
N3N→∞

δpN (B)d · pN

δN (A)d ·N
=
(
g∞,d(B)
g∞,d(A)

)d

=
Hd(B)
Hd(A)

. (55)

If p(N ) = 0, then the inequality p(N ) ≤ Hd(B)/Hd(A) is trivial. Thus,

lim sup
N→∞

pN

N
≤ Hd(B)
Hd(A)

.

Next, let qN := # (ωN ∩ (A \B)). Since the boundary of A \B relative to A also has Hd-measure

zero, using the same argument we can write

lim sup
N→∞

qN
N
≤ Hd(A \B)

Hd(A)
,

which implies that

lim inf
N→∞

pN

N
≥ Hd(B)
Hd(A)

.

This shows that

lim
N→∞

#(ωN ∩B)
N

=
Hd(B)
Hd(A)

.

Hence, (41) holds.

To prove (40) we will need the following lemma. Denote µd′ := Ld′(B(0, 2)) and recall that

G(r) is the r-neighborhood of a set G in Rd′ .

Lemma III.5.1. Let 0 < α ≤ d′, G and F be two sets in Rd′ and assume that for some positive

numbers c, γ and ρ < (γ/µd′)1/α there holds

Ld′ [G(ρ) \ F ((c+ 1)ρ)] > γρd′−α.

Then for N = bγ/(µd′ρ
α)c+ 1 we have δN (G \ F (cρ)) ≥ ρ.

Proof. Let k ∈ N ∪ {0} be the largest number of pairwise disjoint balls of radius ρ/2 centered
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at points of G \ F (cρ). We just need to show that k > γ/(µd′ρ
α). Assume the contrary. Choose

points x1, . . . , xk ∈ G \ F (cρ) such that |xi − xj | ≥ ρ, 1 ≤ i 6= j ≤ k. Then

Ld′

(
k⋃

i=1

B(xi, 2ρ)

)
≤ kµd′ρ

d′ ≤ γρd′−α < Ld′ [G(ρ) \ F ((c+ 1)ρ)] .

This means that there is a point y ∈ G(ρ) \ F ((c + 1)ρ) such that |y − xi| ≥ 2ρ, i = 1, . . . , k.

Also, there exists a point xk+1 ∈ G such that |y − xk+1| < ρ. Hence, dist (xk+1, F ) ≥ cρ. Thus,

xk+1 ∈ G \ F (cρ) and |xk+1 − xi| > ρ, i = 1, . . . , k, and so we have k + 1 pairwise disjoint balls of

radius ρ/2 centered at points of G\F (cρ) which contradicts to the maximality of k. Lemma III.5.1

is proved.

Another fact needed to show (40) is the left inequality in (47). We can assume thatMα(A) > 0.

Choose any 0 < M <Mα(A). Then there is a sequence {rm}∞m=1, rm ↘ 0, m→∞, such that

Ld′ (A(rm)) > Mβd′−αr
d′−α
m , m ∈ N.

By Lemma III.5.1 (with F = ∅) for the sequence Nm := bMβd′−α/(µd′r
α
m)c+ 1, m ∈ N, we have

δNm(A) ≥ rm ≥
(
Mβd′−α

µd′Nm

)1/α

for sufficiently large m. Hence, g∞,α(A) ≥ (Mβd′−α/µd′)1/α. Letting M →Mα(A), gives the lower

estimate in (47).

Proof of inequality (40). In the case Hd(A) = 0 we have Md(A) > 0 and by the left

inequality in (47) there holds g∞,d(A) > 0 = C∞,dHd(A)1/d. Assume that Hd(A) > 0 and set

d′′ = d′ − d. Let c0 ∈ (0, 1) be such that

(c0 + 1)d′′ Hd(A) <Md(A)

and M1,M2 > 0 be such numbers that

(c0 + 1)d′′ Hd(A) < (c0 + 1)d′′M1 < M2 <Md(A).

Choose any ε ∈ (0, 1). By definition of (Hd, d)-rectifiability (or by Lemmas II.1.1 and II.1.2), there

is a d-rectifiable compact subset Kε ⊂ A such that Hd(Kε) > Hd(A)(1 − ε). By definition (38)

33



there is a sequence of positive numbers {rm}∞m=1, rm ↘ 0, m→∞, such that

Ld′ (A(rm)) > M2βd′′ · rd′′
m , m ∈ N.

By (14) we have Md(Kε) = Hd(Kε) < M1. Then, for sufficiently large m

Ld′ [Kε((c0 + 1)rm)] < M1βd′′ · (c0 + 1)d′′rd′′
m

and hence,

Ld′ [A(rm) \Kε((c0 + 1)rm)] >
(
M2 − (c0 + 1)d′′M1

)
βd′′ · rd′′

m .

By Lemma III.5.1 with α = d, there is a constant ν1 > 0 independent of m and ε, such that for

km = bν1/r
d
mc+ 1 and m sufficiently large we have

δkm(A \Kε(c0rm)) ≥ rm.

Let Xm ⊂ A \Kε(c0rm) be a best-packing collection of km points.

Set ν := C∞,dHd(A)1/d. By (39) and the choice of Kε, for sufficiently large N , we have

δN (Kε) > ν(1− ε)1/dN−1/d.

For every m sufficiently large, choose Nm to be the largest integer such that

δNm(Kε) ≥ ν(1− ε)1/dN−1/d
m ≥ c0rm

and denote by Ym the best-packing collection of Nm points on Kε. Since dist(Xm,Kε) ≥ c0rm, we

have that δ(Xm ∪ Ym) ≥ c0rm for m sufficiently large. Hence,

g∞,d(A) ≥ lim sup
m→∞

δkm+Nm(A)(km +Nm)1/d ≥

≥ lim sup
m→∞

c0rm

(
ν1

rd
m

+
νd(1− ε)
cd0r

d
m

− 1
)1/d

=
(
cd0ν1 + νd(1− ε)

)1/d
.
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Letting ε→ 0, we get

g∞,d(A) ≥
(
cd0ν1 + νd

)1/d
> ν = C∞,dHd(A)1/d.

This completes the proof of Theorem III.1.1.

III.6 Proof of Proposition III.1.3 and remarks for general sets.

Using Proposition III.4.1, Theorem III.1.2, and inequality (40), for every (Hd, d)-rectifiable compact

set A withMd(A) > Hd(A), we have

lim
s→∞

(
g

s,d
(A)

Cs,dHd(A)−s/d

)1/s

=
C∞,dHd(A)1/d

g∞,d(A)
< 1,

and inequality (43) follows for sufficiently large s. Proposition III.1.3 is proved.

We only need to prove (46) and (47) in proposition III.2.1 since the upper estimates in (44)

and (45) will follow from (53) and the lower estimates in (46) and (47). Analogously, the lower

estimates in (44) and (45) are obtained from the upper estimates in (46) and (47), using (50) or

(51) with ε equal, say 1/2. We remark that (50), (51) and (53) hold for any infinite set A.

Since we do not look for sharp constants, redefine

Mα(A) := lim inf
r→0+

Ld′(A(r))
rd′−α

and Mα(A) := lim sup
r→0+

Ld′(A(r))
rd′−α

for all 0 < α ≤ d′. To show the lower estimate in (46), assume that Mα(A) > 0 (otherwise it is

trivial). Pick any 0 < M <Mα(A) and set

rN :=
(

M

µd′N

)1/α

.

Then, for N sufficiently large Ld′(A(rN )) > Mrd′−α
N . By Lemma III.5.1 (with F = ∅), for kN =

bM/(µd′r
α
N )c+ 1 (kN will be greater that N) we have

δN (A) ≥ δkN
(A) ≥ rN = (M/(µd′N))1/α

for sufficiently large N . Hence, g∞,α
(A) ≥ µ

−1/α
d′ M1/α. Letting M → Mα(A), we get the lower
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estimate in (46). We need the following lemma for the upper estimate.

Lemma III.6.1. Let 0 < α ≤ d′, A 6= ∅ be a set in Rd′, and for some positive numbers γ and

ρ < (γ/βd′)1/α, assume that there holds

Ld′(A(ρ)) < γρd′−α.

Then for any N > γ/(βd′ρ
α) we have δN (A) ≤ 2ρ.

Proof. Suppose k ≥ 2 is an integer such that δk(A) > 2ρ, and let x1, . . . , xk ∈ A be a collection

of distinct points with separation at least 2ρ. Then

Ld′

(
k⋃

i=1

B(xi, ρ)

)
= kβd′ρ

d′ ≤ Ld′(A(ρ)) < γρd′−α.

Hence, k ≤ γ/(βd′ρ
α), and so for any N > γ/(βd′ρ

α) we have δN (A) ≤ 2ρ, which proves the lemma.

To get the upper estimate in (46), we can assume thatMα(A) <∞. Choose any M >Mα(A).

There is a sequence of positive numbers {rm}∞m=1, rm ↘ 0, m→∞, such that

Ld′(A(rm)) < Mrd′−α
m , m ∈ N.

Set Nm := bM/(βd′r
α
m)c + 1. By Lemma III.6.1 we have δNm(A) ≤ 2rm for sufficiently large m.

Consequently,

g∞,α
(A) ≤ lim inf

m→∞
δNm(A)N1/α

m ≤ lim inf
m→∞

2rmN1/α
m = 2β−1/α

d′ M1/α.

Letting M →Mα(A) completes the proof of (46).

The left inequality in (47) was shown before the proof of inequality (40). Thus, it remains to

prove the right inequality in (47) for the case Mα(A) <∞. Pick any M >Mα(A) and let

rN :=
(

M

βd′(N − 1)

)1/α

, N ≥ 2.

Then Ld′ (A (rN )) < Mrd′−α
N for N sufficiently large. Since, N > M/(βd′r

α
N ), by Lemma III.6.1 we

get

δN (A) ≤ 2rN = 2(M/(βd′(N − 1)))1/α.
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Hence, g∞,α(A) ≤ 2β−1/α
d′ M1/α. Letting M →Mα(A) completes the proof of (47) and Proposition

III.2.1.

III.7 Proof of the divergence results.

In this section we show Proposition III.3.1. It was shown in [30] (see also [38, Theorem 4.14]) that

for any set K ∈ K there are constants c1, c2 > 0 such that

c1r
λ ≤ Hλ (K ∩B(x, r)) ≤ c2rλ, x ∈ K, 0 < r < 1, (56)

(we will call λ-regular every set satisfying (56)). Using an argument analogous to the proof of

Lemma III.6.1, one can show that g∞,λ(K) <∞. Since for any set K ∈ K we have

Mλ(K) ≥ CHλ(K) > 0

with C > 0 being independent of K (cf. e.g. [38, p. 79]), by (46) we have g∞,λ
(K) > 0.

Assume that g∞,λ(K) exists (it must be positive and finite). Let S1, . . . , Sp : Rd′ → Rd′ be

the similitudes with the same contraction coefficient σ ∈ (0, 1) such that relations (48) hold. Set

h := mini6=j dist (Si(K), Sj(K)) and choose k ∈ N so that δk(K) < h.

Let m ∈ N and for i = (i1, . . . , im) ∈ {1, . . . , p}m =: Zm
p put Fi := Si1 ◦ . . . ◦ Sim . Then

dist (Fi(K), Fj(K)) ≥ hσm−1 > σm−1δk(K), i 6= j, (57)

and
⋃

i∈Zm
p
Fi(K) = K. Let ωk ⊂ K be a collection of k points such that δ(ωk) = δk(K), and

ωm := ∪i∈Zm
p
Fi (ωk) . In view of (57), it is not difficult to see that

δkpm(K) ≥ δ(ωm) = σmδk(K).

On the other hand, from any collection of cm := (k− 1)pm + 1 points on K at least k must belong

to the same Fi(K), and hence, δcm(K) ≤ σmδk(K). Since cm ≤ kpm, we have δkpm(K) = δcm(K)

and

g∞,λ(K) = lim
m→∞

δkpm(K) (kpm)1/λ = lim
m→∞

δcm(K) (kpm)1/λ =
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= g∞,λ(K) lim
m→∞

(
kpm

cm

)1/λ

= g∞,λ(K)
(

k

k − 1

)1/λ

> g∞,λ(K),

since 0 < g∞,λ(K) < ∞. Contradiction. Hence, 0 < g∞,λ
(K) < g∞,λ(K) < ∞. Taking into

account Propositions III.4.1 and III.4.3, we get Proposition III.3.1.
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CHAPTER IV

WEIGHTED ENERGY PROBLEM

As we proved in Chapter II, Theorem B holds, in particular, for closed d-rectifiable sets (see

Definition II.1.1) and s > d. In this chapter we extend this result and relation (5) which holds for

s = d to the case of weighted energy, and obtain separation estimates for minimal weighted energy

configurations when the Hausdorff dimension of the compact set is an arbitrary positive number.

We consider separately the case of a strictly positive weight and a weight with isolated zeros.

IV.1 Asymptotic behavior of the minimlal weighted s-energy. The case of a positive

weight.

Let d ≤ d′ be two positive integers and A be a compact set in Rd′ whose d-dimensional Hausdorff

measure, Hd(A) is finite (recall that we choose such normalization of Hd that Hd|Rd = Ld). For a

collection of N(≥ 2) distinct points ωN := {x1, . . . , xN} ⊂ A, a non-negative weight function w on

A×A (we shall specify additional conditions on w shortly), and s > 0, the weighted Riesz s-energy

of ωN is defined by

Ew
s (ωN ) :=

∑
1≤i6=j≤N

w(xi, xj)
|xi − xj |s

=
N∑

i=1

N∑
j=1
j 6=i

w(xi, xj)
|xi − xj |s

,

while the N -point weighted Riesz s-energy of A is defined by

Ew
s (A,N) := inf{Ew

s (ωN ) : ωN ⊂ A,#ωN = N}, (58)

where as before, #X denotes the cardinality of a set X. Since, for the weight w̃(x, y) := (w(x, y)+

w(y, x))/2, we have

Ew
s (ωN ) = E ew

s (ωN ) = 2
∑

1≤i<j≤N

w̃(xi, xj)
|xi − xj |s

,

we shall assume, without loss of generality, throughout this chapter that w is symmetric, i.e.,

w(x, y) = w(y, x) for x, y ∈ A. We call w : A×A→ [0,∞] a CPD-weight function on A×A if
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(a) w is continuous (as a function on A× A) at Hd-almost every point of the diagonal D(A) :=

{(x, x) : x ∈ A},

(b) there is some neighborhood G of D(A) (relative to A×A) such that infGw > 0, and

(c) w is bounded on any closed subset B ⊂ A×A such that B ∩D(A) = ∅.

Here CPD stands for (almost) continuous and positive on the diagonal. In particular, conditions

(a), (b), and (c) hold if w is bounded on A× A and continuous and positive at every point of the

diagonal D(A) (where continuity at a diagonal point (x0, x0) is meant in the sense of limits taken

on A×A).

If w ≡ 1 on A×A, we get the non-weighted minimal energy problem considered in Chapter II.

For the trivial cases N = 0 or 1 we put Ew
s (ωN ) = Ew

s (A,N) = 0.

If A is a compact set in Rd′ and w is a CPD-weight function on A×A, then for s ≥ d we define

the weighted Hausdorff measure Hs,w
d on Borel sets B ⊂ A by

Hs,w
d (B) :=

∫
B

(w(x, x))−d/sdHd(x), (59)

and its normalized form

hs,w
d (B) :=

Hs,w
d (B)
Hs,w

d (A)
, (60)

if Hd(A) > 0.

We say, that a sequence {ω̃N}∞N=2 of N -point configurations in A is asymptotically (w, s)-energy

minimizing for A if

lim
N→∞

Ew
s (ω̃N )

Ew
s (A,N)

= 1.

The main results of this section are stated below.

Theorem IV.1.1. Let A ⊂ Rd′ be a compact d-rectifiable set. Suppose that s > d and w is a

CPD-weight function on A×A. Then

lim
N→∞

Ew
s (A,N)
N1+s/d

=
Cs,d[

Hs,w
d (A)

]s/d
, (61)

where Cs,d is as in (42).
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Furthermore, if Hd(A) > 0, any asymptotically (w, s)-energy minimizing sequence of configura-

tions ω̃N = {xN
1 , . . . , x

N
N}, N = 2, 3, . . ., for A has limit distribution according to the measure hs,w

d ;

that is,
1
N

N∑
k=1

δxN
k

∗→ hs,w
d , N →∞. (62)

Recall that constant βd was defined in (12).

Theorem IV.1.2. Let A be a compact subset of a d-dimensional C1-manifold in Rd′ with Hd(A) <

∞, and suppose w is a CPD-weight function on A×A. Then

lim
N→∞

Ew
d (A,N)
N2 logN

=
βd

Hd,w
d (A)

. (63)

Furthermore, if Hd(A) > 0, any asymptotically (w, d)-energy minimizing sequence of configu-

rations ω̃N = {xN
1 , . . . , x

N
N}, N = 2, 3, . . ., on A has limit distribution with measure hd,w

d ; that is,

(62) holds with s = d.

Remarks. In the case Hd(A) = 0, the right-hand sides of (61) and (63) are understood to be

infinity.

In order to obtain a finite collection of points distributed with a given density ρ(x) on a closed

d-rectifiable set A, we can take any s > d and the weight

w(x, y) := (ρ(x)ρ(y) + |x− y|)−s/2d, (64)

where the term |x−y| is included to ensure that w is locally bounded off ofD(A). By Theorem IV.1.1

any asymptotically (w, s)-energy minimizing sequence of N -point configurations will converge to

the required distribution as N →∞. We thus obtain

Corollary IV.1.1. Let A ⊂ Rd′ be a compact d-rectifiable set with Hd(A) > 0. Suppose ρ is a

bounded probability density on A (with respect to Hd) that is continuous Hd-almost everywhere on

A. Then, for s > d and w given by (64), the normalized counting measures for any asymptotically

(w, s)-energy minimizing sequence of configurations ωN converge weak∗ (as N →∞) to ρ dHd.

Furthermore, if infA ρ > 0 and ρ is upper semi-continuous, then any (w, s)-energy minimizing

sequence of configurations ωN is well-separated in the sense of Theorem IV.5.1 with α = d.
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Remark: The first part of Corollary IV.1.1 holds for s = d when A is contained in a C1

d-dimensional manifold.

IV.2 Proofs for the case of a positive weight.

In this section we present proofs of Theorems IV.1.1 and IV.1.2. First, we prove several lemmas

which are central to the proofs of our main theorems.

Divide and conquer. In this subsection we provide two lemmas relating the minimal energy

problem on A = B ∪D to the minimal energy problems on B and D, respectively.

In order to unify our computations for the cases s > d and s = d, we define, for integers N > 1,

τs,d(N) :=


N1+s/d, s > d,

N2 logN, s = d

and set τs,d(N) = 1 for N = 0 or 1. For a set A ⊂ Rd′ and s ≥ d, let

gw
s,d

(A) := lim inf
N→∞

Ew
s (A,N)
τs,d(N)

, gw
s,d(A) := lim sup

N→∞

Ew
s (A,N)
τs,d(N)

,

and

gw
s,d(A) := lim

N→∞

Ew
s (A,N)
τs,d(N)

if this limit exists (these quantities are allowed to be infinite). In the case w(x, y) ≡ 1, we use the

notations g
s,d

(A), gs,d(A) and gs,d(A), respectively.

The following two lemmas extend to the weighted case Lemmas II.4.1 and II.4.2 whose proof

is given in [28]. (We remark that the following results hold when quantities are 0 or infinite using

0−d/s = 0−s/d =∞ and ∞−d/s =∞−s/d = 0.)

Lemma IV.2.1. Let s ≥ d and suppose that B and D are sets in Rd′ such that dist(B,D) > 0.

Suppose w : (B ∪D)× (B ∪D)→ [0,∞] is bounded on the subset B ×D. Then

gw
s,d(B ∪D)−d/s ≥ gw

s,d(B)−d/s + gw
s,d(D)−d/s.
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Proof. Assume that 0 < gw
s,d(B), gw

s,d(D) <∞. Denote

α∗ :=
gw

s,d(D)d/s

gw
s,d(B)d/s + gw

s,d(D)d/s
.

For N ∈ N, let NB := bα∗Nc (recall that bxc denotes the greatest integer less than or equal to x),

ND := N −NB and ωB
N ⊂ B and ωD

N ⊂ D be configurations of NB and ND points respectively such

that Ew
s (ωB

N ) < Ew
s (B,NB) + 1 and Ew

s (ωD
N ) < Ew

s (D,ND) + 1. Let γ0 := dist(B,D) > 0. Then

Ew
s (B ∪D,N) ≤ Ew

s (ωB
N ∪ ωD

N )

= Ew
s (ωB

N ) + Ew
s (ωD

N ) + 2
∑

x∈ωB
N , y∈ωD

N

w(x, y)
|x− y|s

≤ Ew
s (B,NB) + Ew

s (D,ND) + 2 + 2γ−s
0 N2‖w‖B×D,

where ‖w‖B×D denotes the supremum of w over B×D. Dividing by τs,d(N) and taking into account

that τs,d(NB)/τs,d(N)→ (α∗)1+s/d as N →∞, we obtain

gw
s,d(B ∪D) ≤ lim sup

N→∞

Ew
s (B,NB)
τs,d(N)

+ lim sup
N→∞

Ew
s (D,ND)
τs,d(N)

= lim sup
N→∞

Ew
s (B,NB)
τs,d(NB)

·
τs,d(NB)
τs,d(N)

+ lim sup
N→∞

Ew
s (D,ND)
τs,d(ND)

·
τs,d(ND)
τs,d(N)

≤ gw
s,d(B) · (α∗)1+s/d + gw

s,d(D) · (1− α∗)1+s/d

=
(
gw

s,d(B)−d/s + gw
s,d(D)−d/s

)−s/d
.

The remaining cases when gw
s,d(B) or gw

s,d(D) are 0 or∞ easily follow from the monotonicity of gw
s,d.

The following statement in particular shows sub-additivity of gw
s,d

(·)−d/s.

Lemma IV.2.2. Let s ≥ d and B,D ⊂ Rd′. Suppose w : (B ∪D)× (B ∪D)→ [0,∞]. Then

gw
s,d

(B ∪D)−d/s ≤ gw
s,d

(B)−d/s + gw
s,d

(D)−d/s. (65)

Furthermore, if gw
s,d

(B), gw
s,d

(D) > 0 and at least one of these quantities is finite, then

lim
N3N→∞

# (ω̃N ∩B)
N

=
gw

s,d
(D)d/s

gw
s,d

(B)d/s + gw
s,d

(D)d/s
(66)
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holds for any sequence {ω̃N}N∈N of N -point configurations in B ∪D such that

lim
N3N→∞

Ew
s (ω̃N )
τs,d(N)

=
(
gw

s,d
(B)−d/s + gw

s,d
(D)−d/s

)−s/d
, (67)

where N is some infinite subset of N.

In the case gw
s,d

(D) =∞ the right-hand side of relation (66) is understood to be 1.

Proof. Assume that gw
s,d

(B), gw
s,d

(D) > 0 and gw
s,d

(B) < ∞. We agree that ∞ · a = ∞ for

any a > 0 and ∞ · 0 = 0. Let an infinite subset N1 ⊂ N and a sequence of point configurations

{ωN}N∈N1 , ωN ⊂ B ∪ D, be such that limN13N→∞# (ωN ∩B)/N = α, where 0 ≤ α ≤ 1. Set

NB := # (ωN ∩B) and ND := # (ωN \B). Then

Ew
s (ωN ) ≥ Ew

s (ωN ∩B) + Ew
s (ωN \B) ≥ Ew

s (B,NB) + Ew
s (D,ND),

and we have

lim inf
N13N→∞

Ew
s (ωN )
τs,d(N)

≥ lim inf
N13N→∞

Ew
s (B,NB)
τs,d(NB)

·
τs,d(NB)
τs,d(N)

+ lim inf
N13N→∞

Ew
s (D,ND)
τs,d(ND)

·
τs,d(ND)
τs,d(N)

≥ F (α) := gw
s,d

(B)α1+s/d + gw
s,d

(D)(1− α)1+s/d. (68)

Let

α̃ :=
gw

s,d
(D)d/s

gw
s,d

(B)d/s + gw
s,d

(D)d/s
,

and {ω̃N}N∈N be any sequence of point sets satisfying (67). If N2 ⊂ N is any infinite subsequence

such that the quantity # (ω̃N ∩B) /N has a limit as N2 3 N →∞ (denote it by α1), then by (67)

and (68) we have

F (α̃) = lim
N23N→∞

Ew
s (ω̃N )
τs,d(N)

≥ F (α1).

It is not difficult to see that α̃ is the only minimum point of F (t) on [0, 1]. Hence α1 = α̃, which

proves (66).

Now let {ωN}N∈N3 be a sequence of N -point configurations in B ∪D such that

gw
s,d

(B ∪D) = lim
N33N→∞

Ew
s (ωN )
τs,d(N)
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(ωN ’s can be chosen for example so that Ew
s (ωN ) < Ew

s (B ∪ D,N) + 1). If N4 ⊂ N3 is such an

infinite set that limN43N→∞# (ωN ∩B) /N exists (denote it by α2), then by (68) we obtain

gw
s,d

(B ∪D) = lim
N43N→∞

Ew
s (ωN )
τs,d(N)

≥ F (α2)

≥ F (α̃) =
(
gw

s,d
(B)−d/s + gw

s,d
(D)−d/s

)−s/d
,

which implies (65).

Proofs of Theorems IV.1.1 and IV.1.2. The following lemma relates the weighted minimal

energy problem (s ≥ d) on a set A ⊂ Rd′ to the unweighted minimal energy problem on compact

subsets of A. Theorems IV.1.1 and IV.1.2 then follow easily from this lemma. For convenience, we

denote

Cd,d := βd, d ∈ N.

and recall that when w(x, y) ≡ 1, we set

g
s,d

(A) = gw
s,d

(A), gs,d(A) = gw
s,d(A), and gs,d(A) = gw

s,d(A).

Lemma IV.2.3. Suppose s ≥ d, A ⊂ Rd′ is compact with Hd(A) <∞, and that w is a CPD-weight

function on A × A. Furthermore, suppose that for any compact subset K ⊂ A, the limit gs,d(K)

exists and is given by

gs,d(K) =
Cs,d

Hd(K)s/d
. (69)

Then

(a) gw
s,d(A) exists and is given by

gw
s,d(A) = Cs,d

(
Hs,w

d (A)
)−s/d

, (70)

and,

(b) if a sequence {ω̃N}∞N=2, where ω̃N = {xN
1 , . . . , x

N
N}, is asymptotically (w, s)-energy minimizing

on the set A and Hd(A) > 0, then

1
N

N∑
k=1

δxN
k

∗→ hs,w
d , N →∞. (71)
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Remark. If Hd(K) = 0, condition (69) is understood as gs,d(K) =∞.

Proof. To prove the first part of this statement, we break A into disjoint “pieces” of small

diameter and estimate the (w, s)-energy of A by replacing w with its supremum or infinum on each

of the “pieces” and applying Lemmas IV.2.1 and IV.2.2.

For δ > 0, suppose that Pδ is a partition of A such that diamP ≤ δ and Hd(P ) = Hd(P ) for

P ∈ Pδ, where B denotes the closure of a set B. For each P ∈ Pδ, choose a closed subset QP ⊂ P

so that Qδ := {QP : P ∈ Pδ} satisfies

∑
P∈Pδ

Hd(QP ) ≥ Hd(A)− δ, (72)

and

dist(QP1 , QP2) > 0, P1 6= P2 ∈ Pδ.

An example of such systems Pδ and Qδ can be constructed as follows. Let Gj [t] be the hyper-

plane in Rd′ consisting of all points whose j-th coordinate equals t. If (−a, a)d′ is a cube containing

A, then for i = (i1, . . . , id′) ∈ {1, . . . ,m}d
′
, let

Ri := [t1i1−1, t
1
i1)× · · · × [td

′
id′−1, t

d′
id′

),

where m and partitions −a = tj0 < tj1 < . . . < tjm = a, j = 1, . . . , d′, are chosen so that the

diameter of every Ri, i ∈ {1, . . . ,m}d′ , is less than δ and Hd(Gj [t
j
i ] ∩A) = 0 for all i and j. (Since

Hd(A) <∞, there are at most countably many values of t such that Hd(Gj [t]∩A) > 0.) Then, we

may choose

Pδ = {Ri ∩A : i ∈ {1, . . . ,m}d′}

and γ ∈ (0, 1) sufficiently close to 1 such that (72) holds for Qδ = {Qi : i ∈ {1, . . . ,m}d′}, where

Qi =
(
γ(Ri − ci) + ci

)
∩A and ci denotes the center of Ri.

To continue the proff for B ⊂ A, let

wB = sup
x,y∈B

w(x, y) and wB = inf
x,y∈B

w(x, y)
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and define the simple functions

wδ(x) :=
∑

P∈Pδ

wP · χP (x) and wδ(x) :=
∑

P∈Pδ

wP · χP (x),

where χK denotes the characteristic function of a set K. Since the distance between any two sets

from Qδ is strictly positive, Lemma IV.2.1 and equation (69) imply

gw
s,d(A)−d/s ≥ gwδ

s,d

(⋃
Q∈Qδ

Q
)−d/s

≥
∑

Q∈Qδ
Q 6=∅

(
wQ · gs,d(Q)

)−d/s (73)

= C
−d/s
s,d

∑
Q∈Qδ
Q 6=∅

w
−d/s
Q · Hd(Q) ≥ C−d/s

s,d

∫
S

Q
Q∈Qδ

(wδ(x))−d/sdHd(x).

Applying Lemma IV.2.2 and relation (69), we similarly have

gw
s,d

(A)−d/s ≤
∑

P∈Pδ

(
wP · gs,d

(P )
)−d/s

=
∑

P∈Pδ

(
wP · gs,d

(P )
)−d/s

(74)

= C
−d/s
s,d

∑
P∈Pδ

w
−d/s
P · Hd(P ) = C

−d/s
s,d

∫
A

(wδ(x))−d/sdHd(x).

Since w is a CPD-weight function on A × A, there is some neighborhood G of D(A) such that

η := infGw > 0. For δ > 0 sufficiently small, we have P × P ⊂ G for all P ∈ Pδ, and hence

wδ(x) ≥ w(x, x) ≥ wδ(x) ≥ η

for x ∈ A. Furthermore, w is continuous at (x, x) ∈ D(A) for Hd-almost all x ∈ A and thus, for any

such x, it follows that wδ(x) and wδ(x) converge to w(x, x) as δ → 0. Therefore, by the Lebesgue

Dominated Convergence Theorem, the integrals

∫
S

Q
Q∈Qδ

(wδ(x))
−d/s dHd(x) and

∫
A

(wδ(x))
−d/s dHd(x)

both converge to Hs,w
d (A) as δ → 0. Hence, using (73) and (74), we obtain (70).

Now suppose that Hd(A) > 0 and ω̃N = {xN
1 , . . . , x

N
N}, N ∈ N, is an asymptotically (w, s)-

energy minimizing sequence of N -point configurations on A. As we have noted in Section II.1, the
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weak∗ convergence result given in (71) is equivalent to the assertion that

lim
N→∞

# (ω̃N
⋂
B)

N
= hs,w

d (B) (75)

holds for any subset B ⊂ A, whose boundary with respect to A has Hd-measure zero. For any

such set B ⊂ A, since each of sets B and A \B as compact subsets of A, satisfies the hypotheses

of Lemma IV.2.3, relation (70) implies

lim
N→∞

Ew
s (ω̃N )
τs,d(N)

= Cs,d

(
Hs,w

d (A)
)−s/d

= Cs,d

(
Hs,w

d (B) +Hs,w
d (A \B)

)−s/d

=
(
gw
s,d(B)−d/s + gw

s,d(A \B)−d/s
)−s/d

.

Using relation (66) in Lemma IV.2.2 and (70) for B and A \B, we get

lim
N→∞

# (ω̃N
⋂
B)

N
=

gw
s,d(A \B)d/s

gw
s,d(B)d/s + gw

s,d(A \B)d/s
= hs,w

d (B)

showing that (71) holds.

Theorems IV.1.1 and IV.1.2 then follow from Lemma IV.2.3 and Theorems II.1.1 for closed

d-rectifiable sets and Theorem B for s = d as we now explain. If s > d and A ⊂ Rd′ is a closed d-

rectifiable set, then every compact subset B ⊂ A is also closed and d-rectifiable and Theorem II.1.1

implies that B satisfies condition (69) and so Theorem IV.1.1 then follows from Lemma IV.2.3. If

s = d and A is a compact subset of a d-dimensional C1-manifold in Rd′ , then applying Theorem B

for s = d to every compact subset of A, we get (69). Consequently Theorem IV.1.2 follows from

Lemma IV.2.3 with s = d.

IV.3 The case of a weight with zeros.

Finally, we consider weight functions with isolated zeros. For t > 0, we say that a function

w : A×A→ R has a zero at (a, a) ∈ D(A) of order at most t if there are positive constants C and

δ such that

w(x, y) ≥ C|x− a|t (x, y ∈ A ∩B(a, δ)), (76)
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where as above, B(a, r) denotes the open ball in Rd′ centered at a point a with radius r > 0. If w

has a zero a ∈ A whose order is too large, then a may act as an attractive “sink” with Ew
s (A,N) = 0.

For example, let A be the closed unit ball in Rd, w(x, y) = |x|t + |y|t for x, y ∈ A with t > s > d.

If ωN = {x1, . . . , xN} is a configuration of N distinct points in A, then

Ew
s (γωN ) = γt−sEw

s (ωN )

for any 0 < γ < 1. Taking γ → 0, shows that Ew
s (A,N) = 0.

We say that a closed set A ⊂ Rd′ is α-regular at a ∈ A if there are positive constants C0 and δ

such that

(C0)−1rα ≤ Hα(A ∩B(x, r)) ≤ C0r
α (77)

for all x ∈ A ∩B(a, δ) and 0 < r < δ.

Theorem IV.3.1. Let A ⊂ Rd′ be a compact d-rectifiable set and s > d. Suppose A is αi-

regular with αi ≤ d at ai, i = 1, . . . , n, for a finite collection of points a1, . . . , an in A and that

w : A×A→ [0,∞] is a CPD-weight function on K ×K for any compact K ⊂ A \ {a1, . . . , an}. If

w has a zero of order at most t < s at each (ai, ai), then the conclusions of Theorem IV.1.1 hold.

Remark: The hypotheses of Theorem IV.3.1 imply that

∫
A

(w(x, x))−d/sdHd(x) <∞

(see Section IV.4).

IV.4 Proof for the case of a weight with zeros.

In this section we prove Theorem IV.3.1. The essential ingredient in the proof of Theorem IV.3.1 is

the following lemma which assumes lower regularity. We say that a set K ⊂ Rd′ is lower α-regular

if there are positive constants C0 and r0 so that

(C0)−1rα ≤ Hα(K ∩B(x, r)) (78)

for all x ∈ K and r < r0.
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Lemma IV.4.1. Suppose K ⊂ Rd′ is compact and lower α-regular and a ∈ K. Further suppose

s > α and w : K × K → [0,∞] is a CPD-weight function on K ′ × K ′ for any compact set

K ′ ⊂ K \{a}. If w has a zero of order at most t at (a, a), where 0 < t < s, then there is a constant

C1 > 0 such that

gw
s,α

(K) ≥ C1C
−s/α
0 2−(s+t)

(∫
K

1
|x− a|(tα)/s

dHα(x)
)−s/α

. (79)

Proof. Let ωN = {x1, . . . , xN} be a configuration of N distinct points in K. For i = 1, . . . , N ,

let ρi = |xi − a|, ri = minj:j 6=i |xi − xj |, and choose yi ∈ ωN such that |xi − yi| = ri. Since K is

bounded, there is some finite L (independent of N) such that there are at most L− 1 of the points

xi ∈ ωN with the property that ri ≥ r0 (where r0 is from the definition of lower α-regularity and

r0 ≤ δ, where δ comes from the definition of a zero of order at most t at (a, a)). We order the

points in ωN so that ρN ≤ ρi for i = 1, . . . , N and so that ri < r0 for i = 1, . . . , N − L. It follows

from Cauchy’s and Jensen’s inequality (or see (29) of [28]) that if γ1, . . . , γM are positive numbers,

then
M∑
i=1

γ−s
i ≥M1+s/α

(
M∑
i=1

γα
i

)−s/α

(80)

from which we obtain

Ew
s (ωN ) ≥

N−L∑
i=1

w(xi, yi)
rs
i

≥ C1

N−L∑
i=1

ρt
i

rs
i

= C1

N−L∑
i=1

(
ρ
−t/s
i ri

)−s
(81)

≥ C1(N − L)1+s/α

(
N−L∑
i=1

rα
i

ρ
tα/s
i

)−s/α

.

For i = 1, . . . , N − 1, observe that

ri = min
j:j 6=i
|xi − xj | ≤ |xi − a|+ min

j:j 6=i
|a− xj | ≤ ρi + ρN ≤ 2ρi

and so

|x− a| ≤ |x− xi|+ |xi − a| ≤ ri/2 + ρi ≤ 2ρi, x ∈ B(xi, ri/2). (82)

Using (78) and (82) we have

rα
i

ρ
tα/s
i

≤ C02(t+s)α/s(2ρi)−αt/sHα (K ∩B (xi, ri/2))
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≤ C02(α/s)(s+t)

∫
K∩B(xi,ri/2)

1
|x− a|tα/s

dHα(x)

for i = 1, . . . , N − L. Since B(xi, ri/2) and B(xj , rj/2) are disjoint for i 6= j, it follows that

N−L∑
i=1

rα
i

ρ
tα/s
i

≤ C02(α/s)(s+t)

∫
K

1
|x− a|tα/s

dHα(x).

From (81) we get

Es(ωN ) ≥ C1C
−s/α
0 2−(s+t)(N − L)1+s/α

∫
K

1
|x− a|(tα)/s

dHα(x)

−s/α

.

In view of arbitrariness of ωN , we get the requiured inequality. Lemma IV.4.1 is proved.

Remark: If K is α-regular at a in the above lemma, then the integral

∫
K

1
|x− a|(tα)/s

dHα(x)

appearing in (79) is finite (cf. [38, p. 109]) and thus the Lebesgue Dominated Convergence Theorem

(or absolute continuity of the lebesgue integral) gives

lim
δ→0

∫
K∩B(a,δ)

1
|x− a|(tα)/s

dHα(x) = 0

and so limδ→0 g
w
s,α

(K ∩B(a, δ)) =∞.

Now we are prepared to complete the proof of Theorem IV.3.1. First note that the hypotheses

of Theorem IV.3.1 (namely that A is αi-regular at ai and w has a zero of order of at most t < s at

ai for i = 1, . . . , n) imply that ∫
A

w(x, x)−d/s dHd(x) <∞.

Suppose ε > 0 . By Lemma IV.4.1 and Lemma IV.2.2 we can find δ > 0 such that Bε :=⋃n
i=1(A∩B(ai, δ)) satisfies gw

s,d
(Bε) ≥ ε−1 (note that if α < d and gw

s,α
(K) > 0, then gw

s,d
(K) =∞)

and

Hs,w
d (Aε) =

∫
Aε

w(x, x)−s/d dHd(x) ≥ (1− ε)Hs,w
d (A),

where Aε := A \Bε.
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Since w is a CPD-weight function on Aε × Aε, it follows from Theorem IV.1.1 that gw
s,d(Aε)

exists and equals Cs,dHs,w
d (Aε)−s/d. Lemma IV.2.2 then gives

gw
s,d

(A) ≥ (gw
s,d(Aε)−d/s + gw

s,d
(Bε)−d/s)−s/d (83)

≥ (C−d/s
s,d H

s,w
d (Aε) + εd/s)−s/d

≥ (C−d/s
s,d H

s,w
d (A) + εd/s)−s/d.

Also, we clearly have

gw
s,d(A) ≤ gw

s,d(Aε) = Cs,dHs,w
d (Aε)−s/d ≤ Cs,d(1− ε)−s/dHs,w

d (A)−s/d. (84)

Taking ε→ 0 in (83) and (84) shows that gw
s,d(A) exists and equals Cs,dHs,w

d (A)−s/d.

If Hs,w
d (A) > 0, then, as in the proof of Theorem IV.1.1, Lemma IV.2.2 implies that (62) holds

for any asymptotically (w, s)-energy minimizing sequence of configurations ω̃N = {xN
1 , . . . , x

N
N},

N = 2, 3, . . ., for A which will complete the proof of Theorem IV.3.1. Indeed, choose any subset

B ⊂ A with Hd(∂AB) = 0 (∂A denotes the boundary of a subset of A relative to A). Since each ai

is αi-regular with αi ≤ d and Hd(A) <∞, for almost all δ ∈ (0, δ0), where δ0 is a sufficiently small

number, we can write:

Hd(A ∩ S(ai, δ)) = 0, i = 1, . . . , n, (85)

where S(ai, δ) is the sphere in Rd′ centered at point ai of radius δ, and

Hd (A ∩ (∪n
i=1B(ai, δ))) ≤ Cδd, (86)

for some C > 0. For δ ∈ (0, δ0) such that (85) and (86) hold, denote

Bδ := B ∪ (∪n
i=1B[ai, δ] ∩A),

where B[a, r] is a closed ball in Rd′ centered at a point a of radius r > 0. Then, Hd(∂ABδ) =

Hd(∂A(A \ Bδ)) = 0. Set Bδ satisfies the assumptions of the Theorem IV.3.1 and set A \Bδ

satisfies even assumptions of Theorem IV.1.1. We already proved that they both will satisfy (61).
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Using argument, analogous to the proof of (62) (or (71)), we get that

lim sup
N→∞

#(B ∩ ω̃N )
N

≤ lim
N→∞

#(Bδ ∩ ω̃N )
N

= hs,w
d (Bδ).

On the other hand, let Dδ := B \ (∪n
i=1B(ai, δ)). It is not difficult to see that Hd(∂ADδ) =

Hd(∂A(A \Dδ)) = 0. Both Dδ and A \Dδ satisfy (61). Using again the argument from the proof

of (62), we get that

lim inf
N→∞

#(B ∩ ω̃N )
N

≥ lim
N→∞

#(Dδ ∩ ω̃N )
N

= hs,w
d (Dδ).

Letting δ → 0 so that (85) and (86) hold, we get that Hd(Bδ)→ Hd(B), Hd(Dδ)→ Hd(B), and

lim
N→∞

#(B ∩ ω̃N )
N

= hs,w
d (B).

Theorem IV.3.1 is proved.

IV.5 Separation results

For an N -point configuration ωN = {x1, . . . , xN} ⊂ A let

δ(ωN ) := min
1≤i6=j≤N

|xi − xj | (87)

be its separation distance (or separation radius). We obtain estimates for the separation radius

of minimal weighted energy configurations on a class of sets including sets of arbitrary Hausdorff

dimension α. We remark that the normalization for the Hausdorff measure Hα plays no essential

role here.

Theorem IV.5.1. Let 0 < α ≤ d′. Suppose A ⊂ Rd′ is a compact set with Hα(A) > 0 and let w

be a CPD-weight function that is bounded and lower semi-continuous on A × A. Then, for every

s ≥ α there is a constant cs = cs(A,w, α) > 0 such that any (w, s)-energy minimizing configuration

ω∗N on A, with N points, satisfies the inequality

δ(ω∗N ) ≥


csN

−1/α, s > α,

cα(N logN)−1/α, s = α, N ≥ 2.
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As a consequence of the proof of Theorem IV.5.1 we establish the following estimates. Recall

that

H∞α (A) := inf{
∑

i

(diam Gi)
α : A ⊂

⋃
i

Gi}

and ‖w‖A×A = sup{w(x, y) : x, y ∈ A}.

Corollary IV.5.1. Under the assumptions of Theorem IV.5.1, for N ≥ 2,

Ew
s (A,N) ≤


Ms,α‖w‖A×AH∞α (A)−s/αN1+s/α, s > α,

MαN
2 logN, s = α,

where the constant Ms,α > 0 is independent of A, w and N , and the constant Mα is independent

of N .

Known separation results on curves for s > 1 [39] and on d-rectifiable manifolds for s > d [34],

[28], [13] use the following upper regularity assumption. There are constants M, δ > 0 such that

for every x ∈ A and 0 < r < δ we have

Hd(A ∩B(x, r)) ≤Mrd. (88)

We base the proof of our results on Frostman’s lemma establishing the existence of a non-trivial

measure on a set A with Hd(A) > 0 satisfying a regularity assumption similar to (88).

Lemma IV.5.1. (see e.g. [38, Theorem 8.8]). Let α > 0 and A be a Borel set in Rd′. Then

Hα(A) > 0 if and only if there is a Radon measure µ on Rd′ with compact support contained in A

such that 0 < µ(A) <∞ and

µ [B(x, r)] ≤ rα, x ∈ Rd′ , r > 0. (89)

Moreover, one can find µ so that µ(A) ≥ cd′,αH∞α (A), where cd′,α > 0 is independent of A.

We proceed using the technique developed in [34]. Let ω∗N := {x1, . . . , xN}, N ∈ N, N ≥ 2,

be a (w, s)-energy minimizing configuration on A (for convenience, we dropped the subscript N in
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writing energy minimizing points xk,N ). For i = 1, . . . , N let

Ui(x) :=
∑
j:j 6=i

w(x, xj)
|x− xj |s

, x ∈ A.

From the minimization property we have that Ui(xi) ≤ Ui(x), x ∈ A, i = 1, . . . , N . If µ is a

measure from Lemma IV.5.1, set

r0 :=
(
µ(A)
2N

)1/α

and let

Di := A \
⋃

j:j 6=i

B(xj , r0), i = 1, . . . , N.

Then, by the properties of µ, we have

µ(Di) ≥ µ(A)−
∑
j:j 6=i

µ [B(xj , r0)] ≥ µ(A)− (N − 1)rα
0 >

µ(A)
2

> 0,

i = 1, . . . , N . Consequently,

Ui(xi) ≤
1

µ(Di)

∫
Di

Ui(x)dµ(x) ≤ 2
µ(A)

∑
j:j 6=i

∫
Di

w(x, xj)
|x− xj |s

dµ(x)

≤ 2‖w‖
µ(A)

∑
j:j 6=i

∫
A\B(xj ,r0)

1
|x− xj |s

dµ(x), i = 1, . . . , N,

where ‖w‖ := sup{|w(x, y)| : x, y ∈ A}. Let R := diam A. Then by (89) we have µ(A) ≤ Rα. For

every y ∈ A and r ∈ (0, R], using (89) we also get

Ts(y, r) :=
∫

A\B(y,r)

1
|x− y|s

dµ(x) =

r−s∫
0

µ{x ∈ A :
1

|x− y|s
> t}dt

=
µ(A)
Rs

+

r−s∫
R−s

µ
[
B
(
y, t−1/s

)]
dt ≤ Rα−s +

r−s∫
R−s

t−α/sdt

≤


s

(s−α)r
α−s, s > α,

1 + α ln R
r , s = α.
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Then for i = 1, . . . , N and s > α we have

Ui(xi) ≤
2‖w‖
µ(A)

∑
j 6=i

Ts(xj , r0) ≤
2s(N − 1)‖w‖

(s− α)µ(A)rs−α
0

≤ C1‖w‖
(

N

µ(A)

)s/α

, (90)

where C1 > 0 is a constant independent of A, w and N . Hence,

Ew
s (A,N) = Ew

s (ω∗N ) =
N∑

i=1

Ui(xi) ≤
Ms,α‖w‖
H∞α (A)s/α

N1+s/α,

where Ms,α > 0 is a constant independent of A, w, and N . In particular, when w ≡ 1, we get

Es(A,N) ≤ s2s/αN1+s/α

(s− α)(cd′,α)s/αH∞α (A)s/α
.

Since w is a CPD-weight function, there are η, ρ > 0 such that w(x, y) > η whenever |x− y| < ρ.

If δ(ω∗N ) < ρ, let is and js be such that δ(ω∗N ) = |xis − xjs |. Then with some constant C2 > 0

independent of N and the choice of ω∗N we obtain from (90)

C2N
s/α ≥ Uis(xis) ≥

w(xis , xjs)
|xis − xjs |

s ≥
η

|xis − xjs |
s =

η

δ(ω∗N )s
.

Hence,

δ(ω∗N ) ≥ C0N
−1/α,

where C0 = C0(A,w, α, s) > 0. Thus, in any case,

δ(ω∗N ) ≥ min{ρ,C0N
−1/α} ≥ CsN

−1/α, N ≥ 2,

for a sufficiently small constant Cs > 0 independent of N and ω∗N . In particular, when w ≡ 1, we

have

δ(ω∗N ) ≥ cs,α

(H∞α (A) ·N)1/α
,

where cs,α > 0 does not depend on A and N . This proves Theorem II.3.1. The case s = α is

handled analogously, which completes the proofs of Theorem IV.5.1 and Corollary IV.5.1.

56



CHAPTER V

NEXT ORDER TERMS OF MINIMAL ENERGY ON SMOOTH CURVES.

Theorem A in the Introduction in particular, gives the main (dominant) term in the asymptotics

of minimal s-energy on curves for s ≥ 1.

Restricting our consideration to sufficiently smooth simple closed curves we shall determine the

lower-order term in the asymptotic decomposition of the quantity Es(Γ, N) as N → ∞, for all

s ≥ 1, s 6= s0, where this exceptional value s0 satisfies 1 ≤ s0 < 3. We also get a better estimate of

the separation distance. We also find the order of the next term on non-closed smooth curves for

s ≥ 2.

V.1 Next order term and separation results for closed curves.

Notation and definitions. We say that a curve Γ ⊂ Rd is simple, if it has no self-intersections

(except possibly coincidence of endpoints). We call Γ a Cn curve, if it has a non-zero tangent vector

at every point and admits an n-times continuously differentiable parametrization.

For a rectifiable curve Γ, let L := |Γ| be its length and λΓ be the normalized arclength measure

supported on Γ.

Assume that Γ ⊂ Rd is a simple and closed C3 curve. Let κ(x) be the curvature of Γ at a given

point x and L(x, y) be the length of the smaller arc of Γ, connecting points x and y on it.

Define

gs(x, y) := |x− y|−s − L(x, y)−s. (91)

and

Φs(Γ) :=
∫
Γ

∫
Γ

gs(x, y)dλΓ(x)dλΓ(y). (92)

It is not difficult to see that under the above assumptions on Γ, this integral is convergent iff s < 3.

Denote also

κ(Γ) :=
∫

Γ
κ2(x)dλΓ
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and let

γ := lim
N→∞

(
N∑

k=1

k−1 − lnN

)
.

be the Euler constant, and

ζ(s) :=
∞∑

k=1

k−s, s > 1,

be the Riemann zeta-function.

Results for closed curves. According to Theorem A, on a Jordan curve Γ in Rd we have for

s > 1

Es(Γ, N) ∼ 2ζ(s) |Γ|−sN s+1, N →∞,

and

E1(Γ, N) ∼ 2 |Γ|−1N2 lnN, N →∞.

We obtain the following result.

Theorem V.1.1. Let Γ ⊂ Rd, d ∈ N, be a simple and closed C3 curve. Then, if s > 3, we have

lim
N→∞

Es(Γ, N)− 2ζ(s)L−sN s+1

N s−1
=
sζ(s− 2)
12Ls−2

κ(Γ), (93)

and for s = 3 there holds

lim
N→∞

E3(Γ, N)− 2ζ(3)L−3N4

N2 lnN
=
κ(Γ)
4L

. (94)

If 1 < s < 3, then

lim
N→∞

Es(Γ, N)− 2ζ(s)L−sN s+1

N2
= Φs(Γ)− 2s

(s− 1)Ls
(95)

and when s = 1, there holds

lim
N→∞

Es(Γ, N)− 2L−1N2 lnN
N2

= Φ1(Γ) + 2L−1(γ − ln 2). (96)

Remark. There is a unique s0 ∈ (1, 3) for which the right-hand side of (95) is zero. The value

(95) is negative for 1 < s < s0 and tends to −∞ as s → 1, and is positive for s0 < s < 3, and

goes to ∞ as s→ 3. For the value s = s0 Theorem V.1.1 tells only that the next order term of the

minimal s-energy is o(N2).

Choose an orientation on Γ and denote by l(x, y) the length of the arc from point x to point y
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on Γ in the direction of the orientation of Γ. For an N -point collection ωN = {x1, . . . , xN} ⊂ Γ we

as usually denote

δ(ωN ) := min
1≤i6=j≤N

|xi − xj |

and let

∆(ωN ) := max
i=1,...,N

l(xi, xi+1),

where xN+1 = x1. We will always assume that the index i for xi ∈ ωN grows in the direction of

the orientation of the curve.

Known results provide only the order of the separation radius on different classes of sets. In

the theorem below, we get its asymptotic behavior on smooth closed curves.

Theorem V.1.2. Let s > 2 and Γ ⊂ Rd, d ∈ N, be a simple and closed C3 curve. If {ω∗N}∞N=2 is

a sequence of s-energy minimizing collections on Γ, #ω∗N = N , N ≥ 2, then

lim
N→∞

δ(ω∗N ) ·N = lim
N→∞

∆(ω∗N ) ·N = L. (97)

This theorem implies that for s > 2 the maximal and the minimal arclength between neighboring

points of optimal configurations asymptotically equals L/N , N →∞.

V.2 Remarks for non-closed arcs.

For smooth non-closed curves the second term is negative and has order N s for s > 2.

Proposition V.2.1. Let Γ ⊂ Rd, d ∈ N, be a simple non-closed rectifiable C2 curve. If s > 2,

there exist two negative constants C1, C2 such that, for sufficiently large N ,

C1N
s < Es(Γ, N)− 2ζ(s)L−sN s+1 < C2N

s. (98)

If s = 2, one can find negative constants C1, C2 so that

C1N
2 lnN < E2(Γ, N)− 2ζ(2)L−2N3 < C2N

2 lnN. (99)

Conclusions. The next order term of the minimal s-energy on smooth curves reflects whether

the curve is closed or not. On closed curves for s > 3 the next term is positive with the order N s−1,

59



and has order N2 lnN for s = 3 and N2 for 1 ≤ s < 3. At the same time, on non-closed curves for

s > 2, it is negative and has order N s, or N2 lnN for s = 2, N → ∞. Hence, making a smooth

simple curve into a closed one increases its s-energy for s ≥ 2.

Similar to the break of the order of the main term of s-energy on curves which happens at s = 1

(see Theorem A), the next order term for closed curves changes its order from N2 to N s−1 when

s = 3. On non-closed curves such a transition happens at s = 2.

V.3 Auxiliary definitions and results.

Let Γ be a simple closed curve in Rd. For an N -point collection ωN = {x1, . . . , xN} ⊂ Γ we denote

Fs(ωN ) :=
∑

1≤i6=j≤N

1
L(xi, xj)s

and

Gs(ωN ) := Es(ωN )− Fs(ωN ) =
∑

1≤i6=j≤N

gs(xi, xj),

where gs(x, y) is defined in (91). Denote by ωN = {x1, . . . , xN} a collection of equally spaced points

on Γ, i.e. a collection such that L(xi, xi+1) = L/N , i = 1, . . . , N−1. This collection will be optimal

in the following sense.

Lemma V.3.1. Let Γ ⊂ Rd be a simple closed curve and s > 0. Then,

Fs(ωN ) ≥ Fs(ωN ) (100)

for every N -point configuration ωN = {x1, . . . , xN} ⊂ Γ.

Proof. Denote xi+N := xi and xi−N := xi, i = 1, . . . , N . Then,

Fs(ωN ) =
∑

1≤i6=j≤N

L(xi, xj)−s =
bN/2c∑

j=−b(N−1)/2c
j 6=0

N∑
k=1

L(xk, xk+j)−s ≥

≥ N
bN/2c∑

j=−b(N−1)/2c
j 6=0

(
1
N

N∑
k=1

L(xk, xk+j)

)−s

≥ N
bN/2c∑
j=1

(
1
N

N∑
k=1

j∑
i=1

l(xk+i−1,xk+i)

)−s

+
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+N
b(N−1)/2c∑

j=1

(
1
N

N∑
k=1

j∑
i=1

l(xk−i,xk−i+1)

)−s

= N s+1

bN/2c∑
j=1

(
j∑

i=1

N∑
k=1

l(xk+i−1,xk+i)

)−s

+

+N s+1

b(N−1)/2c∑
j=1

(
j∑

i=1

N∑
k=1

l(xk−i,xk−i+1)

)−s

= N

bN/2c∑
j=−b(N−1)/2c

j 6=0

(
|j|L
N

)−s

=Fs(ωN ).

Lemma V.3.1 is proved.

The following statement shows by how much the distance between two points on Γ and the

length of the shorter arc between them differ as the points get close to each other. For a function

F : Γ×Γ→ R we write F (x, y)−→−→0 as L(x, y)→ 0, if for every ε > 0 there is a number δ > 0 such

that |F (x, y)| < ε, whenever x, y ∈ Γ and 0 < L(x, y) < δ.

Lemma V.3.2. Let s > 0 and Γ ⊂ Rd be a simple closed C3 curve. Then, for any points x, y ∈ Γ,

gs(x, y) =
s · κ(y)2

24
L(x, y)2−s + α(x, y)L(x, y)2−s, (101)

where α(x, y)−→−→0 as L(x, y)→ 0.

In particular, for every s > 0 there are constants Ms > 0 and δs ∈ (0, L/2) such that

gs(x, y) ≤Ms · L(x, y)2−s, x, y ∈ Γ, 0 < L(x, y) < δs. (102)

Our argument does not work if Γ is only two times differentiable, since under such an assumption

the Taylor formula only guarantees that gs(x, y) = o(L(x, y)1−s).

Proof of Lemma V.3.2. Given an interval I and a function f : I × I → Rd, we write

f(t1, t2)−→−→0, as |t1 − t2| → 0, if for every ε > 0 there is δ > 0 such that |f(t1, t2)| < ε whenever

|t1 − t2| < δ.

Let ϕ : R → Rd be a three times continuously differentiable L-periodic arclength parametriza-

tion for Γ. Then,

ϕ(t1)− ϕ(t2) = (t1 − t2)ϕ′(t2) +
(t1 − t2)2

2
ϕ′′(t2)

+
(t1 − t2)3

6
ϕ′′′(t2)+(t1 − t2)3αϕ

3 (t1, t2),

where in view of uniform continuity of ϕ′′′ we have αϕ
3 (t1, t2)−→−→0 as |t1 − t2| → 0. Since |ϕ′| = 1,

we get d
dt |ϕ

′|2 = 2〈ϕ′, ϕ′′〉 = 0 and d
dt〈ϕ

′, ϕ′′〉 = |ϕ′′|2 + 〈ϕ′, ϕ′′′〉=0, that is, |ϕ′′|2 = −〈ϕ′, ϕ′′′〉.

61



Hence,

|ϕ(t1)− ϕ(t2)|2 = (t1 − t2)2 −
(t1 − t2)4

12

∣∣ϕ′′(t2)∣∣2 + (t1 − t2)4β(t1, t2),

where β(t1, t2)−→−→0 as |t1 − t2| → 0. Then,

|ϕ(t1)− ϕ(t2)|−s = |t1 − t2|−s

(
1− (t1 − t2)2

12

∣∣ϕ′′(t2)∣∣2 + (t1 − t2)2β(t1, t2)
)−s/2

=

= |t1 − t2|−s

[
1 +

s(t1 − t2)2

24

∣∣ϕ′′(t2)∣∣2 + (t1 − t2)2γ(t1, t2)
]
, (103)

where γ(t1, t2)−→−→0 as |t1 − t2| → 0, and (101) follows.

As in previous chapters, let δx be the atomic probability measure in Rd centered at point x and

ωN := {x1,N , . . . , xN,N} ⊂ Γ, N ∈ N, be a sequence of N -point sets. Denote by

ν(ωN ) :=
1
N

N∑
k=1

δxk,N

the normalized counting measure supported at points of ωN . We write

ν(ωN )
∗→ λΓ, N →∞, (104)

if for every continuous function f : Γ→ R

1
N

N∑
k=1

f(xk,N )→
∫
Γ

f(x)dλΓ, N →∞.

According to Theorem A the following statement is true.

Lemma V.3.3. Let s ≥ 1 and Γ = ∪m
j=1Γj, where each Γj is a rectifiable Jordan arc, and |Γ| =

m∑
j=1
|Γj |. If {ω∗N}∞N=2 is a sequence of s-energy minimizing configurations on Γ (#ω∗N = N , N ≥ 2),

then

ν(ω∗N )
∗→ λΓ, N →∞.

V.4 Proofs for closed curves.

In this section we prove Theorems V.1.1 and V.1.2. Recall, that ωN denotes a collection of N

equally spaced points on Γ and ω∗N = {x∗1, . . . , x∗N} is an s-energy minimizing N -point collection
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on Γ. To prove Theorem V.1.1 we look for the main term of the difference Es(Γ, N)−Fs(ωN ). For

s ≥ 1 we have

Es(Γ, N)− Fs(ωN ) ≤ Es(ωN )− Fs(ωN ) = Gs(ωN ),

and by Lemma V.3.1

Es(Γ, N)− Fs(ωN ) = Es(ω∗N )− Fs(ωN ) ≥ Es(ω∗N )− Fs(ω∗N ) = Gs(ω∗N ).

Thus,

Gs(ω∗N ) ≤ Es(Γ, N)− Fs(ωN ) ≤ Gs(ωN ). (105)

Case 1 ≤ s < 3. We shall show that

lim
N→∞

Gs(ω∗N )
N2

= lim
N→∞

Gs(ωN )
N2

= Φs(Γ). (106)

Indeed, choose arbitrary ε ∈ (0, δs), where δs is from (102). Let

Uε = {(x, y) ∈ Γ× Γ : L(x, y) ≥ ε}

and

Vε = {(x, y) ∈ Γ× Γ : L(x, y) ≤ ε}.

By Urysohn’s lemma there is a continuous function fε : R2d → [0, 1] such that fε(x, y) = 1,

(x, y) ∈ Uε, and fε(x, y) = 0, (x, y) ∈ Vε/2. Then, since ν(ω∗N ) ∗→ λΓ, N →∞, we obtain

lim inf
N→∞

Gs(ω∗N )
N2

= lim inf
N→∞

1
N2

∑
1≤i6=j≤N

gs(x∗i , x
∗
j )

≥ lim
N→∞

1
N2

∑
1≤i,j≤N

gs(x∗i , x
∗
j )fε(x∗i , x

∗
j )

=
∫

Γ

∫
Γ
gs(x, y)fε(x, y)dλΓdλΓ ≥

∫
Uε

gs(x, y) dλΓ × λΓ.

Hence, in view of arbitrariness of ε, we get

lim inf
N→∞

Gs(ω∗N )
N2

≥ Φs(Γ). (107)
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On the other hand,

Gs(ωN ) =
∑

0<L(xi,xj)<ε

gs(xi, xj) +
∑

L(xi,xj)≥ε

gs(xi, xj). (108)

Since ν(ωN ) ∗→ λΓ, N →∞,

lim sup
N→∞

1
N2

∑
L(xi,xj)≥ε

gs(xi, xj) ≤ lim
N→∞

1
N2

∑
1≤i,j≤N

gs(xi, xj)fε(xi, xj) =

=
∫

Γ

∫
Γ
gs(x, y)fε(x, y)dλΓdλΓ ≤ Φs(Γ).

Below, we will write o(·) and O(·) with respect to N →∞. Using (102) and the equality

N∑
k=1

ks =
N s+1(1 + o(1))

s+ 1
, s > −1, (109)

we obtain ∑
0<L(xi,xj)<ε

gs(xi, xj) ≤Ms

∑
0<L(xi,xj)<ε

L(xi, xj)2−s

≤ 2MsL
2−sN s−1

bεN/Lc∑
k=1

1
ks−2

=
2Msε

3−sN2(1 + o(1))
(3− s)L

. (110)

Thus,

lim sup
N→∞

Gs(ωN )
N2

≤ 2Msε
3−s

(3− s)L
+ Φs(Γ).

Letting ε→ 0, we have

lim sup
N→∞

Gs(ωN )
N2

≤ Φs(Γ), (111)

which together with (107) and (105) yields (106). From (105) and (106) it follows that

lim
N→∞

Es(Γ, N)− Fs(ωN )
N2

= Φs(Γ). (112)

Using the representation

N∑
k=1

1
ks

= ζ(s)− 1
s− 1

· 1
N s−1

+ o

(
1

N s−1

)
, s > 1, (113)
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one can show that

Fs(ωN ) = 2L−sN s+1

bN/2c∑
k=1

k−s +O(N) =

= 2L−sN s+1ζ(s)− 2sN2

(s− 1)Ls
+ o(N2), s > 1. (114)

Taking into account the equality

N∑
k=1

1
k

= lnN + γ + o(1), (115)

where γ is the Euler constant, one can also derive that

F1(ωN ) = 2L−1N2 lnN + 2L−1(γ − ln 2)N2 + o(N2). (116)

From (112) with 1 < s < 3 and the representation (114) we get (95). Taking into account (112)

with s = 1 and (116) we deduce (96).

Case s ≥ 3. Upper estimate. Choose again any ε > 0 and let δ ∈ (0, ε) be chosen for this ε

from the definition of α(x, y)−→−→0, L(x, y)→ 0, in Lemma V.3.2. Then,

Gs(ωN ) =
∑

0<L(xi,xj)<δ

gs(xi, xj) +
∑

L(xi,xj)≥δ

gs(xi, xj).

The function gs(x, y) is bounded as a continuous function on a compact set Uδ. Thus,

∑
L(xi,xj)≥δ

gs(xi, xj) = O(N2).

For convenience, set ζ(1) := 1 and

ρs(N) :=


N s−1, s > 3,

N2 lnN, s = 3.

From Lemmas V.3.2 and V.3.3 we have

∑
0<L(xi,xj)<δ

gs(xi, xj) ≤
∑

0<L(xi,xj)<δ

(
ε+

s

24
κ2(xj)

)
L(xi, xj)2−s
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≤ 2
N∑

j=1

(
ε+

s

24
κ2(xj)

) bδN/Lc∑
i=1

(
iL

N

)2−s

≤ 2ζ(s− 2)
Ls−2

∫
Γ

(
ε+

sκ2(x)
24

)
dλΓ · ρs(N)(1 + o(1)).

Letting N →∞ and then letting ε→ 0, we finally have

lim sup
N→∞

Gs(ωN )
ρs(N)

≤ sζ(s− 2)κ(Γ)
12Ls−2

. (117)

Next, we use these inequalities to obtain Theorem V.1.2, which in turn, is used to prove the

lower estimate for s ≥ 3.

Proof of Theorem V.1.2. Let s > 2 and {ω∗N}∞N=2 be a sequence of s-energy minimizing

configurations on Γ, where we redenote ω∗N = {x1,N , . . . , xN,N}, N ∈ N. Set xi−N,N := xi,N ,

xi+N,N := xi,N , i = 1, . . . , N , and let {(xjN ,N , xjN+1,N )}∞N=2 be any sequence of pairs of points

from ω∗N located next to each other on Γ. Denote

CN := l(xjN ,N , xjN+1,N ) ·N.

We shall show that limN→∞CN = L.

Let N ⊂ N be any infinite set such that the limit a := limN3N→∞CN is a finite number or

infinity. For every N ∈ N , using convexity of the function y(t) = t−s, we have

Es(Γ, N) = Es(ω∗N ) ≥
bN/2c∑
k=2

N∑
i=1

l(xi,N , xi+k,N )−s

+
b(N−1)/2c∑

k=1

N∑
i=1

l(xi−k,N , xi,N )−s + l(xjN ,N , xjN+1,N )−s +
N∑

i=1
i6=jN

l(xi,N , xi+1,N )−s

≥ N s+1

bN/2c∑
k=2

(
N∑

i=1

l(xi,N , xi+k,N )

)−s

+N s+1

b(N−1)/2c∑
k=1

(
N∑

i=1

l(xi−k,N , xi,N )

)−s

+

+N sC−s
N + (N − 1)s+1

 N∑
i=1

i6=jN

l(xi,N , xi+1,N )


−s

≥ N s+1

bN/2c∑
k=−b(N−1)/2c

k 6=0,1

(|k|L)−s

+N sC−s
N + (N − 1)s+1

(
L− CN

N

)−s

= Fs(ωN )− L−sN s+1 +N sC−s
N

66



+L−sN s+1

(
1− 1

N

)s+1(
1− CN

LN

)−s

. (118)

It is not difficult to see, that for b ≥ 1 and x ≥ −1/b or for b ≤ 0 and −1 < x < 0 we have

(1 + x)b ≥ 1 + bx ≥ 0. We also have l(xjN ,N , xjN+1,N )→ 0, N →∞. Hence, we can write for large

N ∈ N

Es(Γ, N) ≥ Fs(ωN )− L−sN s+1 +N sC−s
N + L−sN s+1

(
1− s+ 1

N

)(
1 +

sCN

LN

)
≥

≥ Fs(ωN ) +N sC−s
N +

sCNN
s

Ls+1
− (s+ 1)N s

Ls
+ o(N s), N →∞, N ∈ N . (119)

By (105) and (117) for s ≥ 3 or (112) for 2 < s < 3, we have

τs(Γ) := lim sup
N→∞

Es(Γ, N)− Fs(ωN )
N s

≤ lim sup
N→∞

Gs(ωN )
N s

= 0, s > 2. (120)

On the other hand, from the (119), we have

τs(Γ) ≥ a−s +
sa

Ls+1
− s+ 1

Ls
:= f(a).

Function f(a) has a unique global minimum f(L) = 0 on [0,∞]. Then, in view of (120) we can

only have a = L. In view of the arbitrariness of the subsequence {CN}N∈N we have

lim
N→∞

l(xjN ,N , xjN+1,N ) ·N = L. (121)

Taking sequence {jN} so that l(xjN ,N , xjN+1,N ) = ∆(ω∗N ), N ∈ N, we get that the second equality

in (97).

It is not difficult to see that uniformly over x, y ∈ Γ

lim
|x−y|→0

|x− y|
L(x, y)

= 1. (122)

Let sequences of indexes {iN}∞N=2 and {pN}∞N=2 be such that 1 ≤ iN , pN ≤ N be such that

δ(ω∗N ) = |xiN ,N − xpN ,N |, N ∈ N. Choose jN = iN , if l(xiN ,N , xpN ,N ) = L(xiN ,N , xpN ,N ), and

jN = pN , if l(xpN ,N , xiN ,N ) = L(xiN ,N , xpN ,N ), N ∈ N. Since δ(ω∗N ) ≤ ∆(ω∗N ) we also have
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|xiN ,N − xpN ,N | → 0. Then, as N →∞

1←
|xiN ,N − xpN ,N |
L(xiN ,N , xpN ,N )

≤
δ(ω∗N )

l(xjN ,N , xjN+1,N )
≤
|xjN ,N − xjN+1,N |
l(xjN ,N , xjN+1,N )

≤ 1.

Hence,

lim
N→∞

δ(ω∗N )
l(xjN ,N , xjN+1,N )

= 1.

Taking into account (121), we get the first equality in (97). Theorem V.1.2 is proved.

Lower estimate for s ≥ 3. Let {ω∗N}∞N=2 be a sequence of s-energy minimizing configurations

on Γ (ω∗N = {x1,N , . . . , xN,N}, N ∈ N).

Choose any ε > 0 and by this ε take 0 < h < min{ε, L/4} from the definition of the fact that

α(x, y)−→−→0, L(x, y)→ 0 in Lemma V.3.2. Denote r(N) := ∆(ω∗N ) ·N − L. By Theorem V.1.2, we

have r(N)→ 0, N →∞. Then, for N sufficiently large and k ≤ mN := bhN/(2L)c we have

L(xi,N , xi+k,N ) ≤ k∆(ω∗N ) ≤ h(L+ r(N))/2L < h.

Hence, by Lemma V.3.2,

Gs(ω∗N ) ≥ 2
mN∑
k=1

N∑
i=1

gs(xi,N , xi+k,N )

≥
mN∑
k=1

N∑
i=1

( s
12
κ2(xi,N )− 2ε

)
L(xi,N , xi+k,N )

2−s

≥ N s−2

(L+ r(N))s−2

N∑
i=1

( s
12
κ2(xi,N )− 2ε

) mN∑
k=1

k2−s.

Then, using Lemma V.3.3, we have for s ≥ 3 (recall that ζ(1) = 1)

lim inf
N→∞

Gs(ω∗N )
ρs(N)

≥ ζ(s− 2)
Ls−2

lim
N→∞

1
N

N∑
i=1

( s
12
κ2(xi,N )− 2ε

)

=
sζ(s− 2)(κ(Γ)− 24ε/s)

12Ls−2
. (123)

Letting ε→ 0 in (123) and combining it with (117) and (105), we have

lim
N→∞

Es(Γ, N)− Fs(ωN )
ρs(N)

=
sζ(s− 2)κ(Γ)

12Ls−2
.
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Using representation (114) we get (93) and (94).

V.5 Proofs for non-closed curves.

In this section we prove Proposition V.2.1. Under its assumptions, curve Γ allows a C2 arclength

parametrization ϕ : [0, L]→ Rd with L := |Γ| being the length of Γ.

1. Auxiliary statements. Let s ≥ 2. Note, that |ϕ′| = 1 and 〈ϕ′, ϕ′′〉 = 0. By the Taylor

formula

ϕ(t1)− ϕ(t2) = (t1 − t2)ϕ′(t2) +
(t1 − t2)2

2
ϕ′′(t2)

+(t1 − t2)2αϕ
2 (t1, t2),

where in view of uniform continuity of ϕ′′ we have αϕ
2 (t1, t2)−→−→0 as |t1 − t2| → 0. Then, taking

into account that |ϕ′| and |ϕ′′| are bounded, we have

|ϕ(t1)− ϕ(t2)|2 = (t1 − t2)2
∣∣ϕ′(t2)∣∣2 + (t1 − t2)3〈ϕ′(t2), ϕ′′(t2)〉+

+(t1 − t2)3β(t1, t2) = (t1 − t2)2 (1 + (t1 − t2)β(t1, t2)) ,

where β(t1, t2)−→−→0, |t1 − t2| → 0. For t1 6= t2 we have

|ϕ(t1)− ϕ(t2)|−s = |t1 − t2|−s (1 + (t1 − t2)β(t1, t2))
−s/2 =

= |t1 − t2|−s (1 + |t1 − t2| γ(t1, t2)) , (124)

where γ(t1, t2)−→−→0, |t1 − t2| → 0.

For a non-closed curve l(x, y) simply denotes the length of the part of Γ between points x and

y on it. By (122), there exists a number w0 > 0 such that l(x, y) ≤ 2 |x− y| whenever x, y ∈ Γ,

0 < |x− y| < w0.

Take arbitrary ε ∈ (0, 1
2) and choose 0 < δε < min{1

2 , w0} from the definition of the fact,

that γ(t1, t2)−→−→0, |t1 − t2| → 0 in (124). Let Z∗N = {z∗0 , z∗1 , . . . , z∗N} be such that z∗i = ϕ( iL
N ),

i = 0, . . . , N . Then

Es(Γ, N + 1) ≤ Es(Z∗N ) =
∑

0≤i6=j≤N

∣∣z∗i − z∗j ∣∣−s =
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=
∑

0≤i6=j≤N

|z∗i −z∗
j |<δε/2

∣∣z∗i − z∗j ∣∣−s +
∑

0≤i6=j≤N

|z∗i −z∗
j |≥δε/2

∣∣z∗i − z∗j ∣∣−s ≤

≤
∑

0≤i6=j≤N

|z∗i −z∗
j |<δε/2

|ϕ (iL/N)− ϕ (jL/N)|−s + (2/δε)
sN(N + 1).

Since
∣∣∣z∗i − z∗j ∣∣∣ < δε/2 < w0, we have |i− j|L/N < 2

∣∣∣z∗i − z∗j ∣∣∣ < δε. Then, using (124), we obtain

Es(Γ, N + 1) ≤
∑

0≤i6=j≤N

|z∗i −z∗
j |<δε/2

[
(|i− j|L/N)−s + ε (|i− j|L/N)−s+1

]
+O(N2).

Denote

Da(N) :=
∑

0≤i6=j≤N

|i− j|−a, N ∈ N, a ≥ 1.

Then

Es(Γ, N + 1) ≤ (N/L)sDs(N) + ε (N/L)s−1Ds−1(N) +O(N2), N →∞. (125)

Using (113) and (115), it is not difficult to verify the following statement.

Lemma V.5.1. As N →∞, the quantity Da(N) has the following representation

Da(N) = 2ζ(a)N + 2(ζ(a)− ζ(a− 1)) +O(N2−a), a > 2,

D2(N) =
π2

3
N − 2 lnN +O(1),

Da(N) = 2ζ(a)N +O(N2−a), 1 < a < 2,

D1(N) = 2N lnN +O(N).

Using this lemma, for s > 2 we have

Es(Γ, N + 1) ≤ 2ζ(s)L−sN s+1 + 2(ζ(s)− ζ(s− 1))L−sN s+

+2εζ(s− 1)Ls−1N s + o(N s), N →∞.

Since ε > 0 can be taken arbitrarily small, we get

lim sup
N→∞

Es(Γ, N + 1)− 2ζ(s)L−sN s+1

N s
≤ 2(ζ(s)− ζ(s− 1))L−s.
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Hence,

lim sup
N→∞

Es(Γ, N)− 2ζ(s)L−sN s+1

N s
≤ −2(sζ(s) + ζ(s− 1))L−s. (126)

Let s = 2. Then from (125) and Lemma V.5.1 we have

E2(Γ, N) ≤ L−2N2D2(N) + εL−1ND1(N) +O(N2) =

=
π2

3
L−2N3 − 2L−2N2 lnN + 2εL−1N2 lnN +O(N2), N →∞.

Since ε > 0 can be taken arbitrarily small, we get

lim sup
N→∞

E2(Γ, N)− 3−1π2L−2N3

N2 lnN
= lim sup

N→∞

E2(Γ, N + 1)− 3−1π2L−2N3

N2 lnN
≤ −2L−2. (127)

A lower estimate can be obtained from the following inequality [39, relation (4.8)] which is true

for s > 1:

Es(Γ, N) ≥ 2(N − 1)s+1

Ls

N−1∑
k=1

(
1− k − 1

N − 1

)s+1

· 1
ks
.

Let s > 2. For 0 < t < 1, we have (1− t)s+1 > 1− (s+ 1)t. Hence, we have

Es(Γ, N) ≥ 2L−sN s+1

(
1− s+ 1

N

)N−1∑
k=1

(
1− k − 1

N − 1

)s+1

· 1
ks
.

Using (113), for N sufficiently large, we get

Es(Γ, N) ≥ 2L−sN s+1

(
1− s+ 1

N

)N−1∑
k=1

(
1− (s+ 1)k

N − 1

)
· 1
ks

=

= 2L−sN s+1

(
1− s+ 1

N

)(N−1∑
k=1

1
ks
− (s+ 1)
N − 1

N−1∑
k=1

1
ks−1

)
=

= 2L−sN s+1

(
1− s+ 1

N

)(
ζ(s)− (s+ 1)ζ(s− 1)

N
+ o(

1
N

)
)

=

= 2L−sN s+1

(
ζ(s)− (s+ 1)(ζ(s− 1) + ζ(s))

N
+ o(

1
N

)
)
, N →∞.

Then

lim inf
N→∞

Es(Γ, N)− 2ζ(s)L−sN s+1

N s
≥ −2L−s(s+ 1) (ζ(s− 1) + ζ(s)) . (128)
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Combining (126) and (128), we get (98).

Let s = 2. Then,

E2(Γ, N) ≥ 2L−2
N−1∑
k=1

(N − k)3 · 1
k2

=

= 2L−2

(
N3

N−1∑
k=1

1
k2
− 3N2

N−1∑
k=1

1
k

+ 3N(N − 1)−
N−1∑
k=1

k

)
=

= 2L−2
(
ζ(2)N3 − 3N2 lnN +O(N2)

)
, N →∞.

Hence,

lim inf
N→∞

E2(Γ, N)− 2ζ(2)L−2N3

N2 lnN
≥ −6L−2.

Combining this relation with (127), we get (99). Proposition V.2.1 is proved.
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[22] M. Götz, E.B. Saff, Note on d-extremal configurations for the sphere in Rd+1, in: W. Hauss-

man, K. Jetter, M. Reimer (Eds.), Recent Progress in Multivariate Approximation (Witten-

Bommerholtz, 2000) international Series of Numerical Mathematics, Birkhäuser, Basel, 137
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