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chapter i

introduction

Strong selection advantages are provided to any organism with the ability to send,

receive and interpret information from the surrounding environment. In order to

achieve proper development and function, multi-cellular organisms require an elabo-

rate communication network between individual cells. These networks typically rely

on the release and subsequent binding of signaling molecules. The effects of the sig-

nals on the target cells are very broad; responses can include survival, chemotaxis,

proliferation, and even programmed cell death (apoptosis). The process of a signaling

molecule, also called a ligand, binding to a receptor protein and subsequently causing

a response is known as cell signaling.

Cell signaling can be divided into three stages: reception, transduction, and re-

sponse. Reception occurs when a chemical agent from outside the cell binds to a

cellular protein, often at the cell’s surface. This binding of the signal molecule alters

the receptor protein in some way, which initiates the process of transduction. Trans-

duction then converts the signal to a different form in order to elicit a specific cellular

response. Transduction may occur in one step; however it often requires a signal-

transduction pathway involving a complex series of relay molecules. In the third

stage of signaling, the transduced signal triggers the specific cellular response, which

can include catalysis by an enzyme, rearrangement of the cytoskeleton, or activation

of specific genes in the nucleus. The cell-signaling process is a critical component of

cell behavior, playing an important role in normal cell development.

In order to recognize many different signals, cells express a large variety of receptor

proteins that can recognize specific signal molecules. The binding of a signal molecule

occurs due to its complementary shape with a specific site on the receptor, similar

to a key in a lock. Many receptors are found on the cell membrane, also known as
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the plasma membrane. Although the plasma membrane regulates the entry and exit

of both protein constituents and small molecules, these molecules can also influence

cellular activity through the binding to specific sites on receptor proteins embedded

in the cell’s plasma membrane. Such receptors can then transmit the information

to the inside of the cell through allostery (changing shape) or aggregation caused by

the binding of the ligand. Three major classes of receptors are G-protein-coupled

receptors (GPCRs), tyrosine-kinase receptors, and ion-channel receptors.

Not all components of signal-transduction pathways are proteins. Second mes-

sengers, which are small, non-protein molecules or ions generated in response to an

extracellular signaling molecule binding to a cell-surface receptor, play a vital role

in signal transduction by activating other pathway components. Due to their small

size, second messengers can readily spread throughout the cell by diffusion, where

they participate in pathways initiated by both GPCRs and tyrosine-kinase receptors.

Two of the most widely used and studied second messengers are cyclic adenosine

monophosphate and calcium ions (Ca2+). A large variety of relay proteins are sen-

sitive to the cytosolic concentration of one or the other of these second messengers

which can produce hysteretic responses in the target cells, allowing an initial response

to be translated into longer term effects.

Many signaling molecules in animals, including neurotransmitters, growth factors,

and some hormones, use signal transduction pathways which increase the cytosolic

concentration of Ca2+. This increase in Ca2+ is used to produce a wide variety of

tissue dependent responses, which include muscle cell contraction, secretion of various

hormones or enzymes, and cell division. Calcium also functions as a second messen-

ger in plant cell signaling pathways that allow for coping with environmental stresses,

such as drought or cold. Cells use Ca2+ as a second messenger in both G-protein path-

ways and tyrosine-kinase pathways. Although cells contain Ca2+, this ion is able to

function as a second messenger because of the concentration gradient created between

the various compartments within the cell. Calcium ions are actively transported out
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of the cytosol by a variety of protein pumps, which either remove the Ca2+ ions from

the cell or sequester it within various cellular organelles including the endoplasmic

reticulum (ER), mitochondria, or chloroplasts (in plant cells). As a result, the cytoso-

lic concentration is usually much lower than that of the ER and extracellular fluid.

Upon receiving a signal, the cytosolic Ca2+ level may rise, usually by a mechanism

that releases Ca2+ from the cell’s ER. Once a signal molecule binds to a receptor,

the enzyme phospholypase C (PLC) is activated. This enzyme cleaves the plasma-

membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) into two other

second messengers, diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3). IP3,

a small molecule, quickly diffuses through the cytosol and binds to a ligand-gated

calcium channel in the ER membrane, causing it to open. Calcium ions flow out of

the ER (down their gradient, from areas of higher to lower concentration), raising

the Ca2+ level in the cytosol. The Ca2+ ions activate the next protein in one or more

signaling pathways, often by means of calmodulin, a Ca2+-binding protein present at

high levels in eukaryotic cells. The proteins most often regulated by calmodulin are

protein kinases (enzymes that transfer phosphate groups from adenosine triphosphate

(ATP) to a protein) and phosphatases (enzymes that remove phosphate groups from

proteins)-the most common relay proteins in signaling pathways.

Due to the importance of these cellular signaling pathways in cellular function,

much research has been conducted in order to identify the underlying mechanisms.

However, signaling pathways often involve large numbers of molecules and varying

levels of complexity, limiting the amount of information attainable from traditional

experimental methods and thus suggesting the construction and analysis of quantita-

tive models. Such mathematical models enable one to simultaneously study individual

pathway elements and make predictions about the dynamical and interconnected be-

havior of the signaling pathway, such as the effect of pathway perturbations or the

discovery of novel pathway components, and are thus powerful tools for directing

further experimental research.
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Although nucleotides serve as some of the most basic building blocks of ribonu-

cleic acids (RNA) and deoxyribonucleic acid (DNA), they can also act as important

signaling molecules, activating the family of P2 nucleotide receptors [35]. Nucleotides

such as adenosine triphosphate (ATP) and uridine triphosphate (UTP) are known

to regulate an array of diverse biological effects upon their release from cells that

have undergone inflammation due to trauma or have been mechanically stimulated

[7, 23, 36, 87]. Once released into the extracellular fluid, ATP and UTP are de-

graded by enzymes called ecto-nucleotidases into adenosine diphosphate (ADP) and

uridine diphosphate (UDP), respectively [13, 26, 88]. UDP then serves as the primary

agonist, or ligand, for the G protein-coupled receptor known as P2Y6 [51].

This work focuses on modeling the signaling events downstream UDP activation

of the P2Y6 receptor in a macrophage-like cell line. Originating from monocytes

(white blood cells), macrophages move through tissue fibers and engulf and then

digest cellular debris and pathogens. This process of ingesting an invading organism

by certain types of white cells is known as phagocytosis, and tissue macrophages are

the largest phagocytic cells. Because of the difficulty of working with cells taken

directly from an organism, our data are collected from a specific cell line. These cells

are grown and live in a tissue-culture dish, surrounded by appropriate media for cell

survival. They are similar to the primary cell (taken from the organism) but are

essentially “immortal”, in that they will continue to grow and survive for as long as

they are provided with nutrients. The macrophage-like cell line from which all of our

data are derived is called RAW 264.7.

There have been a number of mathematical models developed to study GPCR

signaling pathways in a variety of cell types [21, 39, 45, 73, 80]. Although several

models have helped to uncover complex interactions in the areas of the G-protein

cascade [43, 74, 85] and the intricate details surrounding the above mentioned Ca2+

flux [16, 19, 33, 40, 76], there is no information on modeling DAG changes following

GPCR stimulation. DAGs also serve as second messengers through the activation
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of protein kinase C, an enzyme linked to the regulation of many cellular processes

including cell differentiation, proliferation, carcinogenesis, development, and memory

in multiple mammalian cell types [4, 15, 46, 50, 52]. Increase in intracellular DAG

levels is also believed to contribute to the transduction of mitogenic signals [24, 42,

54, 59, 69] as well as secondary secretion and aggregation [78]. More than 50 different

species of DAG have been identified, depending on acyl chain length (number of

carbons in the two fatty acyl chains of the DAG molecule) and degree of unsaturation

(number of double bonds in the fatty acyl chains). With evidence for differential

roles of these species in cellular processes [14, 55], determining the species-specific

regulation of DAG in the signaling process is crucial to obtaining a comprehensive

understanding of how the cell responds to its stimulus. The work presented here

therefore places a major emphasis on the study of species-specific DAG dynamics.

Though the mechanisms of DAG production and degradation downstream agonist

stimulation of P2Y receptors is still relatively unclear, our modeling efforts are leading

to new insights and novel pathway propositions.

In this dissertation, we describe a system of ten nonlinear ordinary differential

equations (ODEs) which we have constructed to model the UDP signaling pathway in

RAW 264.7 cells. In Chapter II, we describe in detail the interactions and correspond-

ing ODEs involved in this signaling pathway, including the introduction of a novel

branch of the signaling pathway involving DAG kinetics as suggested by the model. In

Chapter III, we rigorously analyze the existence and uniqueness of solutions of the full

model as well as the positivity, boundedness, and stability behavior of steady states

for an altered model whereby the Ca2+ interactions have been simplified. In Chapter

IV, we provide methods and descriptions of the numerical analysis performed, includ-

ing parameter estimation techniques used to obtain best fits to experimental data and

sensitivity analysis to determine which rate parameters are responsible for the most

model output uncertainty. Then in Chapter V, we discuss results from data analysis

of experiments performed to test the newly proposed signaling pathway introduced
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in Chapter II. Chapter VI is devoted to the development of a novel method of simul-

taneous quantification of multiple species of DAG, a method which has enhanced the

modeling efforts by enabling the modeling of species-specific DAG dynamics. This

method has been previously published in Analytical Chemistry (Callender, et al.). In

Chapter VII, we draw the final conclusions of our mathematical modeling efforts and

propose future areas of research, both biological and mathematical. Finally, Chapters

VII.3 and VII.3 are devoted to Appendices A and B, respectively, where we include

further explanation of the numerical methods of analysis used, including code written

to generate numerical simulations to the system of ODEs.
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chapter ii

model construction

Our model utilizes the the law of mass action which is based on diffusion of species

(in the membrane or cytosol), collisional interaction, and binding (or unbinding),

such that the effective rates (of production or degradation) are proportional to the

number of molecules (or concentration) of each species that contributes to a given re-

action. The model consists of a system of ten nonlinear ordinary differential equations

and is separated into four modules: Receptor Dynamics, G-protein Cascade, DAG

Production and Degradation, and Cytosolic Calcium Dynamics. Where appropriate,

number of molecules of species X will be denoted by NX , while [X] will denote the

concentration of X in µM.

II.1 Module 1: Receptor Dynamics

Our representation of P2Y6 receptor dynamics is based on previous work by Lemon et

al. [39], which provides a detailed account of receptor regulation for the P2Y2 receptor

in response to its primary agonist UTP [51]. In the case of the P2Y6 receptor, the

mechanisms are assumed to be similar to those of P2Y2, only Brinson and Harden

[6] observed a much slower rate of desensitization for the P2Y6 receptor in response

to its primary agonist UDP. To account for this slower rate of desensitization, the

receptor phosphorylation rate, kp, is modified to fit the P2Y6 observations of Brinson

and Harden.

The activity of a GPCR is regulated by several processes. GPCRs may undergo

phosphorylation and subsequent uncoupling from G-proteins or internalization. The

phosphorylated receptors can then be dephosphorylated, returning to the surface of

the plasma membrane. In our model, we assume that the ligand is not depleted

by binding to the receptors and therefore has a fixed concentration. The reactions
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involved for receptor dynamics are therefore given by the following:

L + R
k+
1−−⇀↽−−

k−1

LR
kp−→ LRp

k−2−−⇀↽−−
k+
2

L + Rp (1)

LRp
ke−→ RI

kr−→ R. (2)

As seen in equations (1) and (2), cell surface receptors are allowed to bind extracellu-

lar ligand reversibly, with forward rate constant k+
1 and backward rate constant k−1 .

Ligand-bound receptors, LR, can be phosphorylated and therefore inactivated irre-

versibly at a rate kp, forming LRp, while phosphorylated receptors, Rp are still able

to interact with ligand but with possibly different rates of binding and unbinding,

given by k±2 [60]. Since phosphorylation of LR causes desensitization of these recep-

tors, G-protein is only activated by unphosphorylated receptors, R and LR. Although

Lemon’s model is similar to the cubic ternary complex model [77] in that G-proteins

are allowed to bind to both R and LR, upon further analysis Lemon showed that un-

der certain assumptions receptor/ligand and G-protein systems largely decouple and

the only receptors that need to be included in the G-protein cascade are the activated

surface receptors, LR. Upon phosphorylation, receptors are internalized at a rate that

depends on agonist occupancy. This is incorporated into the model by having the

phosphorylated receptors, LRp, internalized at the rate ke. Internalized receptors, RI ,

are then recycled back to the surface at a rate kr. The ordinary differential equations

corresponding to the reactions from equations (1) and (2) are

dNR(t)

dt
= −k+

1 [L]NR + k−1 NLR + krNRI
, (3)

dNLR(t)

dt
= k+

1 [L]NR − (k−1 + kp)NLR, (4)

dNLRp(t)

dt
= k+

2 [L]NRp − (k−2 + ke)NLRp + kpNLR, (5)

dNRp(t)

dt
= −k+

2 [L]NRp + k−2 NLRp , (6)

dNRI
(t)

dt
= −krNRI

+ keNLRp , (7)
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where [L] denotes the ligand concentration, NR and NLR represent number of unbound

and bound receptors, NRp and NLRp represent number of phosphorylated unbound

and phosphorylated bound receptors, and NRI
is the number of internalized receptors.

Since this is a closed system (the sum of equations (3)-(7) is zero), we have that the

total number of receptors in the cell, NRT
, is given by

NR + NLR + NLRp + NRp + NRI
= NRT

. (8)

The kinetics of ligand binding are considered to be fast relative to the other processes

in the model, so that we may combine equations (3)-(7) to leave only the slow kinetics

given by

dNRS(t)

dt
= −krNRI

− kpNLR, (9)

dNRS
p
(t)

dt
= −keNLRp + kpNLR, (10)

where NRS = NR +NLR represents the total number of unphosphorylated, and there-

fore “active”, surface receptors, and NRS
p

= NRp + NLRp represents the total number

of phosphorylated, and therefore “inactive”, surface receptors. Ligand binding occurs

through the following reactions:

L + R
k+
1−−⇀↽−−

k−1

LR and L + Rp

k+
2−−⇀↽−−

k−2

LRp,

where k±1 and k±2 are the forward and backward rate constants for ligand binding

to unphosphorylated and phosphorylated receptor, respectively. Therefore, the rapid

ligand binding kinetics assumption [76], which is equivalent to assuming instantaneous

equilibrium in the two above reactions, along with mass action kinetics gives

9



dNR(t)

dt
=−k+

1 [L]NR + k−1 NLR = 0, (11)

dNLR(t)

dt
= k+

1 [L]NR − k−1 NLR = 0, (12)

dNLRp(t)

dt
= k+

2 [L]NRp − k−2 NLRp = 0, (13)

dNRp(t)

dt
=−k+

2 [L]NRp + k−2 NLRp = 0. (14)

Simplifying equations (11) through (14) and using NRS = NR + NLR and NRS
p

=

NRp + NLRp from above, we have the following relations:

NR =
K1NRS

K1 + [L]
, (15)

NLR =
[L]NRS

K1 + [L]
, (16)

NLRp =
[L]NRS

p

K2 + [L]
, (17)

NRp =
K2NRS

p

K2 + [L]
, (18)

where K1 = k−1 /k+
1 is the unphosphorylated receptor dissociation constant and

K2 = k−2 /k+
2 is the phosphorylated receptor dissociation constant. Substituting equa-

tions (15)-(18) into equations (9) and (10) and using the conservation equation (8),

receptor regulation is modeled using the following reduced two-variable system:

dNRS(t)

dt
= krNRT

−
(
kr +

kp[L]

K1 + [L]

)
NRS − krNRS

p
(19)

dNRS
p
(t)

dt
= [L]

(
kpNRS

K1 + [L]
−

keNRS
p

K2 + [L]

)
. (20)

II.2 Module 2: G-protein Cascade

A simplified schematic of the canonical signaling pathway downstream receptor acti-

vation by UDP is shown in Figure 1. Once a P2Y6 receptor becomes activated through

ligand binding, it undergoes a conformational change (a change in shape), allowing

10



Figure 1: Simplified schematic of the UDP signaling pathway. UDP binds to the P2Y6

receptor, causing exchange of GDP for GTP on the bound G-protein and release of
Gα·GTP from Gβγ. Activated Gα·GTP and Ca2+ bind to and activate membrane-
bound PLC, which then hydrolyses PIP2 into DAG and IP3. IP3 diffuses through the
cytosol and releases Ca2+ from the ER by binding to the IP3 receptor (IP3-R).

a G-protein to bind to the activated receptor. G-proteins are receptor activated pro-

teins that are bound to the inside surface of the cell membrane. They consist of three

subunits: Gα, and the tightly associated Gβ and Gγ. Once bound to an activated

GPCR, the G-protein releases its bound nucleotide guanine diphosphate (GDP) from

the Gα subunit, binding a new molecule of guanine triphosphate (GTP). This nu-

cleotide exchange causes the dissociation of the GTP-bound Gα subunit, the Gβγ

dimer, and the GPCR. Although both Gα·GTP and Gβγ can then activate different

signaling pathways and effector proteins, we are concerned only with the reactions

downstream Gα·GTP activation. Eventually the Gα subunit will hydrolyze the GTP

to GDP through its inherent enzymatic activity. This allows Gα to reassociate with

Gβγ, starting a new cycle. A simplified model of the time-dependent production and

11



degradation of Gα·GTP, denoted by G∗, is

dNG∗(t)

dt
= ka NRS (NGT

−NG∗)− kd NG∗ , (21)

where, according to mass action kinetics, we have assumed that G∗ are produced at a

rate proportional to the number of activated surface receptors, NRS , and the number

of inactive G-proteins, NGT
−NG∗ , where NGT

is the total number of G-proteins, both

activated and inactivated. The second term in equation (21) represents deactivation

rate of G-proteins from hydrolysis of GTP into GDP and is proportional to the

current number of active G-proteins. As laterally diffusing Gα·GTP subunits bind

the (presumably freely diffusing) inactive cytosolic PLC enzymes on the inner leaflet

of the plasma membrane, Gα·GTP·PLC complexes are formed.

The bound state complex Gα·GTP·PLC is considered fully activated when bound

to Ca2+ where it then hydrolyzes plasma membrane-bound PIP2 molecules into IP3

and DAG. For simplicity, we assume that the number of Gα·GTP·PLC complexes is

directly proportional to the number of G∗, with proportionality constant λ, and PIP2

replenishment occurs through a phenomenological term linear in the difference from

the initial amount, NPIP2(0). Therefore we can write the time dependence of PIP2 as

dNPIP2(t)

dt
= −khyd

(
[Ca2+]

Kc + [Ca2+]

)
λNG∗ NPIP2

+ krep (NPIP2(0)−NPIP2), (22)

where the effective hydrolysis rate is proportional to the number of PIP2 and G∗

molecules, with rate constant khyd, and we assume rapid binding kinetics of cytoso-

lic Ca2+ (in µM) to the activated Gα·GTP·PLC complex. Here KC represents the

dissociation constant for the Ca2+ binding site on the PLC molecule.

The generation of IP3 is determined by the hydrolysis rate of PIP2. As IP3

molecules are known to diffuse through the cytosol, we refer to IP3 production and

degradation in terms of concentration (in µM) instead of number of molecules. We

12



assume that IP3 is degraded at a rate proportional to the current concentration of

IP3, with rate constant kd3. The equation for IP3 is therefore

d[IP3](t)

dt
= khyd

(
[Ca2+]

Kc + [Ca2+]

)
λNG∗

(
106

Nav · v

)
NPIP2 − kd3 [IP3], (23)

where v is the volume of the cell (in L) and Nav is Avogadro’s constant.

II.3 Module 3: Diacylglercol production and degradation

The main focus of this work is on modeling the production and degradation of different

species of DAG. As stated above, it is well-known that early DAG production is a

result of PIP2 hydrolysis at the plasma membrane [30, 81, 82], where it is produced

stoichiometrically with IP3. DAG can then be converted into other molecules via

several pathways. In particular, a diacylglycerol kinase can phosphorylate DAG into

phosphatidic acid (PA). The effects of these pathways are combined into one effective

rate constant, kdp1, so that the rate at which DAG is lost is proportional to its current

concentration. Using this canonical pathway to describe total DAG production and

degradation in the cell results in an equation very similar to that of IP3:

d[DAG](t)

dt
= khyd

(
[Ca2+]

Kc + [Ca2+]

)
λNG∗

(
106

Nav · v

)
NPIP2 − kdp1 [DAG]. (24)

Using a new method of DAG quantification developed by Callender et al. [10], which

allows for the simultaneous quantification of up to 28 different species of DAG, we

found that the responses of many DAG species cannot be modeled via this signaling

pathway alone (see Fig. 5a and 5b). In fact, many mono- and di-unsaturated DAGs

(DAGs with one or two double bonds) such as 34:1 DAG (containing 34 carbons and 1

double bond), shown in Figure 5b, exhibit a biphasic response to a 25µM stimulation

with UDP.

These data suggest the existence of two separate pools of DAG for each DAG

species: DAGp1, originating from PIP2 hydrolysis post agonist stimulation and de-
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graded as described above, and an intracellular pool, DAGp2, present in high con-

centrations in resting cells, that is rapidly converted to PA upon UDP stimulation

via a DAG kinase, therefore creating an initial decrease in DAGp2 levels. Each DAG

species has varying levels of representation in each of these two pools. For instance,

the second pool contains more of the mono- and di-unsaturated DAG species, while

those species produced from early PIP2 hydrolysis are more poly-unsaturated fatty

acid-containing (PUFA-containing) species.

All DAG species measured exhibit a later rise phase, peaking on average around 15

minutes. Although this second rise phase has in some cases been attributed to phos-

pholipase D (PLD) activity [30, 81, 82], RAW 264.7 cells have been shown to exhibit

no PLD activation upon stimulation by UDP (data not shown). Thus a hypothetical

mechanism for the observed response is, in addition to early production from PIP2

hydrolysis, the activation of a known DAG metabolic pathway: agonist stimulated

conversion of an intracellular pool of DAG to PA followed by cytidine diphosphate-

DAG (CDP-DG) production and subsequent converstion to phosphatidylinositol (PI),

resulting in a transformed pool of PIP2 from the original primarily polyunsaturated

form. A schematic of this two-pool DAG model is shown in Figure 2. In this scenario

DAGp2 is replenished by a phosphatidylcholine-specific enzyme while it is simulta-

neously used for PI production and replenishment of the PIP2 pool. The revised

equation for DAG produced from PIP2 hydrolysis based on this two-pool model is

similar to equation (24) but includes an additional term to account for a contribution

from the second pool of DAG. We make note here that our model includes a separate

DAG module for each individual species of DAG. While the form of the modules

(consisting of the two equations (25) and (26) below) for each species is identical,

certain rates of production and degradation are assumed to vary, thus causing differ-

ential responses among species. This change in parameters, which is dependent upon

the DAG species under consideration, is noted in the equations below by parameters

containing the superscript i.
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Figure 2: Proposed two-pool model for DAG kinetics post agonist stimulation with
UDP. Initial production of DAG from the hydrolysis of PIP2 in pool 1 (plasma mem-
brane) is offset by phosphorylation of DAG by a DAG kinase in pool 2 (either in the
ER or the nucleus) to aid in the PI replacement pathway. The second wave of DAG
is a result of resynthesis of PIP2 which is then hydrolyzed to form DAG and IP3.

The equation for DAGp1 of the ith DAG species, denoted DAGi
p1, is therefore given

by

d[DAGi
p1](t)

dt
= khyd

(
[Ca2+]

Kc + [Ca2+]

)
λNG∗

(
106

Nav · v

)
NPIP2

−ki
dp1 [DAGi

p1] + ηiki
dp2 [DAGi

p2], (25)

where ηi denotes the fraction of DAGi
p2 contributing to DAGi

p1, and ki
dp2 is the degra-

dation rate of DAGi
p2 implicitly dependent on ligand concentration such that ki

dp2 = 0

when [L] = 0. To account for the dynamics of the second pool of DAG in the ith

DAG species, denoted DAGi
p2, we also include the equation

d[DAGi
p2](t)

dt
= −ki

dp2[DAGi
p2] + ki

ap2 ([DAGi
p2](0)− [DAGi

p2]), (26)

where DAGs from pool 2 are phosphorylated at a rate proportional to the current con-

centration of DAGp2 for the ith DAG species and are replenished at a rate proportional

to the amount of DAGi
p2 that has been phosphorylated by DAG kinase.
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II.4 Module 4: Cytosolic Calcium dynamics

Upon receptor activation, PIP2-derived IP3 diffuses through the cytosol and binds to

IP3-gated Ca2+ channels (IP3-Rs) on the ER, releasing Ca2+ into the cytosol. In the

development of a model for agonist-induced cytosolic Ca2+ oscillations in a “closed

cell” (i.e., no Ca2+ exchange with the extracellular medium through the plasma mem-

brane), De Young and Keizer [16] assumed that the balance of Ca2+ levels is deter-

mined only by Ca2+ release out of the ER (mediated by the IP3-R) and Ca2+ flow

back into the ER (via a Ca2+-ATPase in the ER membrane). This model utilized

the biophysical theory that the ion current through a channel is proportional to the

channel’s open probability times the ion’s concentration gradient across the ER mem-

brane when the ER membrane potential is zero [32] to develop ordinary differential

equations for the IP3-R channel gating process. Here they assumed that on each of

the four subunits of the IP3-R there exists one IP3 binding site and two Ca2+ binding

sites, one site for channel activation and a separate channel inactivation site. This

model contained a total of nine differential equations: one Ca2+ balance equation,

and eight equations for the channel gating kinetics (three binding sites corresponds

to eight different possibilities of IP3-R states).

By considering the different time scales of this nine-equation system along with the

assumption that each of the three binding processes are independent of one another,

Li and Rinzel [40] developed a simplified model of cytosolic Ca2+ dynamics which

includes an additional term that allows for Ca2+ exchange between the cell and the

extracellular medium, thus relaxing the “closed cell” constraints of the De Young and

Keizer model. Due to the simpler form of the Li and Rinzel model as well as its ability

to explain various experimental data, we have chosen to utilize this model of Ca2+

dynamics in our system. Thus cytosolic Ca2+ dynamics are modeled by the following

system:
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d[Ca2+](t)

dt
=
[
ν1 m3

∞ (h)3 + ν2

]
× [[c0]− (1 + c1) [Ca2+]]

− ν3 [Ca2+]2

k2
er + [Ca2+]2

+ ε

[
jin −

ν4 [Ca2+]2

k2
pl + [Ca2+]2

]
(27)

m∞ =

(
[IP3]

[IP3] + dIP3

)(
[Ca2+]

dact + [Ca2+]

)
dh(t)

dt
= a ([Ca2+] + dinh)

[(
dinh

[Ca2+] + dinh

)
− h

]
(28)

d[c0]

dt
= ε

[
jin −

ν4 [Ca2+]2

k2
pl + [Ca2+]2

]
. (29)

Here h(t) represents the fraction of IP3 receptors not yet inactivated by Ca2+

binding to the inactivation site of the IP3-R, while m∞ represents the probability of

the IP3-R being in the activated (open) state, with IP3 bound as well as Ca2+ bound

to the activation site. Although the IP3-R contains four subunits, De Young and

Keizer found that a power close to 3 for each of these terms provided the best fit to

experimental data [16]. The c0 term represents total free Ca2+ per cytosolic volume,

and the paramter c1 is the volume ratio between the ER and the cytosol.

The rate parameters ν1, ν2, ν3, and ν4 are effective permeability constants for the

IP3 channels, ER membrane leakage, Ca2+ pumps on the ER, and Ca2+ flux through

the plasma membrane via voltage-sensitive Ca2+ channels, respectively. The receptor

dissociation constant for the IP3 receptor is denoted by dIP3 , while dissociation con-

stants for the Ca2+ activation and deactivation sites on the IP3-R are dact and dinh,

respectively, and a is the IP3-R binding constant for Ca2+-dependent inhibition. The

parameter ker is the Michaelis constant for Ca2+ uptake from cytosol into the ER,

and kpl is the Michaelis constant for Ca2+ flux out of cell across plasma membrane.

The term jin, which represents the flux of Ca2+ through the plasma membrane and

into the cell, is considered to be constant. The parameter ε is the ratio of the total

area of the plasma membrane to the total area of the ER.

Although the modeling of Ca2+ was not a major emphasis of this work, its impor-

tance to the overall signaling pathway necessitates its inclusion in the model. For a
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more detailed account and analysis of the role of Ca2+ in this pathway in RAW 264.7

cells, see Flaherty et al. [19].

II.5 Dimensionless Scaling

Dimensionless forms for the above signaling equations may be written which relate

ratios of species, indicating which parameters are essential for the kinetics. We define

the quantities xi(t) as given in Table 1.

Table 1: Time-dependent nondimensionalized model variables

Original Nondimensionalized Formula
Variable Variable

NRS(t) x1(t) NRS(t)÷NRT

NRS
p
(t) x2(t) NRS

p
(t)÷NRT

NG∗(t) x3(t) NG∗(t)÷NGT

NPIP2(t) x4(t) NPIP2(t)÷NPIP2(t = 0)

[IP3](t) x5(t) [IP3](t)÷
[(

106

Nav · v

)
NPIP2(t = 0)

]

[DAGp1](t) x6(t) [DAGp1](t)÷
[(

106

Nav · v

)
NPIP2(t = 0)

]
[DAGp2](t) x7(t) [DAGp2](t)÷ [DAGp2](t = 0)

[Ca2+] x̂8(t) [Ca2+]÷ [CaT ]

h x̂9(t) h

c0 x̂10(t) c0 ÷ [CaT ]

Note that since IP3 and DAGp1 originate from PIP2 hydrolysis, they are therefore

scaled by the maximum number of PIP2 molecules, given by NPIP2(t = 0). Also,

the Ca2+ module equations are assigned a special notation, x̂i, i = {8, 9, 10}, as we

will perform mathematical analysis with a simplified version of these equations. The

modified parameters resulting from nondimensionalization are given in Table 2.

18



Table 2: Modified rate parameters for nondimensionalized system

Modified Formula Modified Formula
Parameter Parameter

k̃a ka NRT
=

(
k∗a

m2µMa

)
NRT

k̃er
ker

[CaT ]

k̃hyd khyd NGT
λ =

(
k∗hyd

m2µMa

)
NGT

λ j̃in
jin

[CaT ]

ζ
[DAGp2](t = 0)η

(m2µMa)NPIP2(t = 0)
ν̃4

ν4

[CaT ]

K̃c
Kc

[CaT ]
k̃pl

kpl

[CaT ]

d̃IP3

dIP3

(m2µMa)NPIP2(t = 0)
ã a [CaT ]

d̃act
dact

[CaT ]
d̃inh

dinh

[CaT ]

ν̃3
ν3

[CaT ]

am2µM = 106/(Nav · v) is a conversion factor which converts number of molecules to
concentration (in µM); ∗ denotes a rate constant in terms of concentration instead
of number of molecules. (Here Nav is Avogadro’s constant = 6.02252 × 1023, and
v = 5× 10−13 is the volume of one cell in µM.)
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The nondimensionalized model equations in terms of the variables listed in Table

1 and parameters in Table 2 are given in equations (30) - (39):

dx1(t)

dt
= kr −

(
kr +

kp [L]

K1 + [L]

)
x1 − kr x2 (30)

dx2(t)

dt
= [L]

(
kp x1

K1 + [L]
− ke x2

K2 + [L]

)
(31)

dx3(t)

dt
= k̃a x1 (1− x3)− kd x3 (32)

dx4(t)

dt
=−k̃hyd

(
x̂8

K̃c + x̂8

)
x3 x4 + krep (1− x4) (33)

dx5(t)

dt
= k̃hyd

(
x̂8

K̃c + x̂8

)
x3 x4 − kd3 x5 (34)

dx6(t)

dt
= k̃hyd

(
x̂8

K̃c + x̂8

)
x3 x4 − kdp1 x6 + kdp2 ζ x7 (35)

dx7(t)

dt
=−kdp2 x7 + kap2 (1− x7) (36)

dx̂8(t)

dt
=

ν1

(
x5

x5 + d̃IP3

)3 (
x̂8

x̂8 + d̃act

)3

(x̂9)
3 + ν2


× (x̂10 − (1 + c1) x̂8)−

ν̃3 x̂2
8

k̃2
er + x̂2

8

+ ε

j̃in −
ν̃4 x̂2

8

k̃2
pl + x̂2

8

 (37)

dx̂9(t)

dt
= ã (x̂8 + d̃inh)

[(
d̃inh

x̂8 + d̃inh

)
− x̂9

]
(38)

dx̂10(t)

dt
= ε

j̃in −
ν̃4 x̂2

8

k̃2
pl + x̂2

8

 . (39)

II.6 Initial Conditions of the Model

With the exception of the calcium module variables, initial conditions for each model

variable are chosen to reflect the levels of each variable over baseline levels prior to

pathway activation. Since we assume rapid ligand binding, we set RS(0) = RT . Also,

since PIP2 and DAGp2 are initially at their maximum value, we have NPIP2(0) =

NPIP2T
and NDAGp2(0) = NDAGp2T

. Phosphorylated surface receptors, RS
p , activated

G-proteins, IP3, and DAGp1 are all given an initial value of zero since we assume

there is no production of these molecules prior to receptor activation. While the
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initial concentration of calcium, 0.0009 µM, is taken from experimental data, the

initial values of the remaining two calcium module variables, h and c0, are chosen to

reflect values given by Li and Rinzel [40]. Therefore, the initial conditions for the

nondimensionalized system are as follows:

x1(t = 0) = 1

x2(t = 0) = 0

x3(t = 0) = 0

x4(t = 0) = 1

x5(t = 0) = 0

x6(t = 0) = 0

x7(t = 0) = 1

x̂8(t = 0) = 1.34× 10−4

x̂9(t = 0) = 0.8

x̂10(t = 0) = 0.02985.
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chapter iii

theoretical model analysis

III.1 Introduction

As the complexity of our model precludes an analytic solution, we make use of several

known mathematical results to investigate the analytical behavior of our system of

equations. First we want to ensure that our model is well-posed. Using the nondimen-

sionalized form of the mathematical model described in the previous chapter, we thus

perform a rigorous study of the existence and uniqueness of solutions to our model.

Next, we turn our focus toward the asymptotic behavior of the model’s solutions.

The majority of this analysis will be conducted on a simplified version of the

nondimensionalized model, where the contribution of Ca2+ is simplified using the

following fit to the experimental Ca2+ data shown in Section IV.2:

dx8(t)

dt
= α(−βx9 + γx10), (40)

dx9(t)

dt
=−βx9, (41)

dx10(t)

dt
=−γx10,

where α, β, and γ are positive constants, and x8 denotes the simplified Ca2+ equation.

From this system of equations, we can determine an analytic solution for x8(t), x9(t),

and x10(t):

x8(t) = α(x9 − x10) + α(x10(0)− x9(0)) + x8(0)

= α(e−βt − e−γt) + ν,

x9(t) = x9(0)e
−βt, (42)

x10(t) = x10(0)e
−γt,
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where

ν = α(x10(0)− x9(0)) + x8(0).

Solving for x10(t) in the analytic solution (42) gives

x10(t) =
−x8(t) + ν

α
+ x9(t).

Substituting this equation in for x10 in (40) gives

dx8(t)

dt
= α

(
−βx9 + γ

(−x8 + ν

α
+ x9

))
=−γx8 + α(γ − β)x9 + γν. (43)

This also allows us to eliminate the x10(0) term from the analytic solution for x8(t),

so that we have

x8(t) = ν + αx9(0)(e
−βt − e−γt) + x8(0)e

−γt, (44)

where now we set

ν := lim
t→∞

x8(t), (45)

and we require that γ > β to ensure positivity of x8(t) for all t > 0. We also note

that the solution x8(t) remains bounded, with maximum value

M8 :=
ln[γ(αx9(0)− x8(0))]− ln[αβx9(0)]

γ − β
. (46)

We now use equations (41) and (43) for our mathematical analysis of the system,

for a system total of nine ordinary differential equations. Although this Ca2+ module

is a significant simplification to the original Ca2+ equations, it results in little effect
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to the model behavior and will allow for a more thorough and detailed mathematical

analysis of the system.

III.2 Existence and Uniqueness of Solutions

Using the simplified version of the nondimensionalized model, we prove local existence

of solutions using the well-known results (taken from Brauer’s Theorem 3.3 [8] and

shown below) for systems of ordinary differential equations of the type

ẋ = f(t,x) (47)

such that f ∈ C1 is bounded and is Lipschitz continuous on some domain.

Theorem III.2.1. ([8], Theorem 3.3) Let f and ∂f/∂xj (j = 1, . . . , n) be continuous

on the box B = {(t,x)
∣∣∣|t− t0| ≤ a, |x−η| ≤ b}, where a and b are positive numbers,

and satisfying the bounds,

|f(t,x)| ≤ N,

∣∣∣∣∣∂f(t,x)

∂xj

∣∣∣∣∣ ≤ K (j = 1, . . . , n)

for (t,x) in B. Let α be the smaller of the numbers a and b/N and define the succes-

sive approximations


φ0(t) = η

φn(t) = η +
∫ t
t0

f(s,φn−1(s))ds

Then the sequence {φj} of successive approximations converges (uniformly) on the

interval |t − t0| ≤ α to a solution φ(t) of (47), that satisfies the initial condition

φ(t0) = η.

We now show that our system meets all the requirements of Theorem III.2.1 for

η ≥ 0. Although we have shown that we can compute the analytic solutions of x8(t)

and x9(t), we include these in our analysis for the sake of completeness. It is clear
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that all fj (j = 1, . . . , 9) are continuous for xi ≥ 0 (i = 1, . . . , 9). Computing the first

partial derivatives, we have the following:

f1 =
dx1(t)

dt
= kr −

(
kr +

kp [L]

K1 + [L]

)
x1 − kr x2 (48)

⇒ ∂f1

∂x1

= kr +

(
kp [L]

K1 + [L]

)
∂f1

∂x2

= −kr,

f2 =
dx2(t)

dt
= [L]

(
kp x1

K1 + [L]
− ke x2

K2 + [L]

)
(49)

⇒ ∂f2

∂x1

= [L]

(
kp

K1 + [L]

)
∂f2

∂x2

= [L]

(
− ke

K2 + [L]

)
,

f3 =
dx3(t)

dt
= k̃a x1 (1− x3)− kd x3 (50)

⇒ ∂f3

∂x1

= k̃a (1− x3)

∂f3

∂x3

= −k̃a x1 − kd,

f4 =
dx4(t)

dt
= −k̃hyd

(
x8

K̃c + x8

)
x3 x4 + krep (1− x4) (51)

⇒ ∂f4

∂x3

= −k̃hyd

(
x8

K̃c + x8

)
x4

∂f4

∂x4

= −k̃hyd

(
x8

K̃c + x8

)
x3 − krep

∂f4

∂x8

= −k̃hyd

(
K̃c

(K̃c + x8)2

)
x3 x4,
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f5 =
dx5(t)

dt
= k̃hyd

(
x8

K̃c + x8

)
x3 x4 − kd3 x5 (52)

⇒ ∂f5

∂x3

= k̃hyd

(
x8

K̃c + x8

)
x4

∂f5

∂x4

= k̃hyd

(
x8

K̃c + x8

)
x3

∂f5

∂x5

= −kd3

∂f5

∂x8

= k̃hyd

(
K̃c

(K̃c + x8)2

)
x3 x4,

f6 =
dx6(t)

dt
= k̃hyd

(
x8

K̃c + x8

)
x3 x4 − kdp1 x6 + kdp2 ζ x7 (53)

⇒ ∂f6

∂x3

= k̃hyd

(
x8

K̃c + x8

)
x4

∂f6

∂x4

= k̃hyd

(
x8

K̃c + x8

)
x3

∂f6

∂x6

= −kdp1

∂f6

∂x7

= kdp2 ζ

∂f6

∂x8

= k̃hyd

(
K̃c

(K̃c + x8)2

)
x3 x4,

f7 =
dx7(t)

dt
= −kdp2 x7 + kap2 (1− x7) (54)

⇒ ∂f7

∂x7

= −kdp2 − kap2,

f8 =
dx8(t)

dt
= −γx8 + α(γ − β)x9 + γν (55)

⇒ ∂f8

∂x8

= −γ

∂f8

∂x9

= α(γ − β),

f9 =
dx9(t)

dt
= −βx9 (56)

⇒ ∂f9

∂x9

= −β.

26



Although our initial analysis will only use information from f8 and f9, the original

equations for Ca2+ also satisfy the hypotheses of Theorem III.2.1, as shown below:

f̂8 =
dx̂8(t)

dt
=

ν1

(
x5

x5 + d̃IP3

)3 (
x̂8

x̂8 + d̃act

)
(x̂9)

3 + ν2

 (57)

× (x̂10 − (1 + c1) x̂8)−
ν̃3 x̂2

8

k̃2
er + x̂2

8

+ ε

j̃in −
ν̃4 x̂2

8

k̃2
pl + x̂2

8


⇒ ∂f̂8

∂x5

= 3ν1

(
x5

x5 + d̃IP3

)2 ( ˜dIP3

(x5 + d̃IP3)
2

)(
x̂8

x̂8 + d̃act

)
(x̂9)

3

× (x̂10 − (1 + c1) x̂8)

∂f̂8

∂x̂8

= ν1

(
x5

x5 + d̃IP3

)3 (
d̃act

(x̂8 + d̃act)2

)
(x̂9)

3 (x̂10 − (1 + c1) x̂8)

−

ν1

(
x5

x5 + d̃IP3

)3 (
x̂8

x̂8 + d̃act

)
(x̂9)

3 + ν2

 (1 + c1)

− 2ν̃3 k̃2
er x̂8

(k̃2
er + x̂2

8)
2

+
2ε ν̃4 k̃2

pl x̂8

(k̃2
pl + x̂2

8)
2

∂f̂8

∂x̂9

= 3ν1

(
x5

x5 + d̃IP3

)3 (
x̂8

x̂8 + d̃act

)
(x̂9)

2

× (x̂10 − (1 + c1) x̂8)

∂f̂8

∂x̂9

= ν1

(
x5

x5 + d̃IP3

)3 (
x̂8

x̂8 + d̃act

)
(x̂9)

3 + ν2,

f̂9 =
dx̂9(t)

dt
= ã (x̂8 + d̃inh)

[(
d̃inh

x̂8 + d̃inh

)
− x̂9

]
(58)

⇒ ∂f̂9

∂x̂8

= ã

[(
d̃inh

x̂8 + d̃inh

)
− x̂9

]
+ ã (x̂8 + d̃inh)

(
−d̃inh

(x̂8 + d̃inh)2

)
∂f̂9

∂x̂9

= −ã (x̂8 + d̃inh),

f̂10 =
dx̂10(t)

dt
= ε

j̃in −
ν̃4 x̂2

8

k̃2
pl + x̂2

8

 (59)

⇒ ∂f̂10

∂x̂8

=
2ε ν̃4 k̃2

pl x̂8

(k̃2
pl + x̂2

8)
2

.
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All other partial derivatives equal zero. From equations (48) - (56), we see that all

partial derivatives are continuous in all of R9
+, where R9

+ = {x ∈ R9
∣∣∣xi ≥ 0 ∀ i =

1, . . . , 9}, since all rate constants are positive. In particular, each fi and all of its

partial derivatives are continuous on [0,M] such that 1 ≤ Mi < ∞ for i ∈ {1, . . . , 9},

where, as we will show in Propositions III.2.1 and III.2.2, each xi (i = 1, . . . , 9) is

bounded. Therefore, this guarantees the existence of a solution φ(t) of our system

(47) which is defined on the interval |t − t0| ≤ α and satisfies the initial condition

φ(t0) = η. Here α is the smaller of a and b/N as defined in the statement of Theorem

III.2.1.

According to Brauer’s Theorem 3.4 [8] stated below, this solution φ is the unique

solution satisfying the initial condition

φ(t0) = η. (60)

Theorem III.2.2. ([8], Theorem 3.4) Suppose f and ∂f/∂yj (j = 1, . . . , n) are con-

tinuous on the “box”

B = {(t,y)
∣∣∣|t− t0| ≤ a, |y − η| ≤ b}.

Then there exists at most one solution of (47) satisfying the initial condition (60).

Now let D = {(t,x) ∈ R10
∣∣∣ t ≥ 0, 0 ≤ xi ≤ 1 for i ∈ {1, 2, 3, 4, 7}, with x1+x2 ≤ 1,

and 0 ≤ xj ≤ Mj for j ∈ {5, 6, 8, 9} and 0 < Mj < ∞}. We note that from (42) and

(44), we have M9 = x9(0) > 0, and M8 is given by equation (46). Since our system

satisfies the hypotheses of Theorems III.2.1 and III.2.2 on D, we know a local solution

exists for any initial condition vector η in D on some interval [0, t(η)], where, as we

have indicated notationally, this interval is dependent on the initial condition vector

η. We let [0, tmax(η)], where 0 < tmax(η) ≤ ∞, be the maximal interval of existence,

and we will show that in fact tmax(η) = ∞ in Proposition III.2.3.
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In order to find solutions to our system of nondimensionalized equations in the

region of biological interest, we must have that all solutions xi(t), i = (0, . . . , 9), are

positive and remain bounded for all t ∈ (0, tmax(η)). In other words, we want to show

that D is positively invariant, so that all solutions with initial conditions in D remain

in D for all t ∈ [0, tmax(η)]. As we have already shown that x8(t) and x9(t) meet

these criteria, we now verify that the remaining equations in our system satisfy these

requirements. From the receptor conservation equation (8), we are only interested in

solutions for the receptor module on the closed set

D̂ = {x1, x2 ∈ R
∣∣∣ x1, x2 ≥ 0 and x1 + x2 ≤ 1}. (61)

We make use of the following results of Amann [1]:

Theorem III.2.3. ([1], Theorem 16.5) Let D̂ ⊆ R2 be closed. Then D̂ is positively

invariant if and only if for every x ∈ D̂, the subtangent condition

lim inf
h→0+

1

h
dist(x + hF (x); D̂) = 0 (62)

is satisfied.

Therefore, we need to show that the subtangent condition (62) holds for points on

the boundary of D̂ defined in (61) since it is straightforward to show this condition

is met on interior points of D̂. We verify this condition in Proposition III.2.1.

Proposition III.2.1. Let η1, η2 ∈ D̂. If t ∈ (0, tmax(η)), then x1(t), x2(t) ∈ D̂.

Proof. We consider three cases: A: x1 + x2 = 1 and 0 < x2 < 1, B: 0 ≤ x1 ≤ 1 and

x2 = 0, and C: 0 ≤ x2 ≤ 1 and x1 = 0, with

F


x1

x2


 =

kr(1− x1 − x2)− c1 x1

c1 x1 − c2 x2

 ,
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where F is defined as in equations (48) and (49), and we have simplified the right

hand sides of these equations by setting

c1 =
kp[L]

K1 + [L]
and c2 =

ke[L]

K2 + [L]
. (63)

Case A: For x1 + x2 = 1 and 0 < x2 < 1, we have

dist

(I + hF)

x1

x2

 , D̂

= dist


x1

x2

+ h

 −c1 x1

c1 x1 − c2 x2

 , D̂



= dist


 (1− hc1) x1

hc1 x1 + (1− hc2) x2

 , D̂



= dist


 (1− hc1) x1

(1− h(c1 + c2)) x2 + hc1

 , D̂

 .

Now for h sufficiently small, note that

0 < ((I + hF)x)1 = (1− hc1) x1 < 1,

0 < ((I + hF)x)2 = (1− h(c1 + c2)) x2 + hc1 < 1,

and also

((I + hF)x)1 + ((I + hF)x)2 = (1− hc1) x1 + hc1 x1 + (1− hc2) x2

= x1 + x2 − hc2 x2 = 1− hc2 x2 < 1.

Therefore, for h sufficiently small, we have (I + hF)x ∈ D̂, giving the required sub-

tangent condition and thus ensuring that solutions x1(t) and x2(t) remain in D̂.
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Case B: For 0 ≤ x1 ≤ 1 and x2 = 0, we have

dist

(I + hF)

x1

x2

 , D̂

= dist


x1

x2

+ h

kr(1− x1)− c1 x1

c1 x1

 , D̂



= dist


(1− h(kr + c1)) x1 + hkr

hc1 x1

 , D̂

 .

For h sufficiently small, we have

0 < ((I + hF)x)1 = (1− h(kr + c1)) x1 + hkr < 1,

0 ≤ ((I + hF)x)2 = hc1 x1 < 1,

and also

((I + hF)x)1 + ((I + hF)x)2 = (1− h(kr + c1)) x1 + hkr + hc1 x1 < 1

= (1− hkr)x1 + hkr ≤ 1.

For h sufficiently small this gives (I + hF)x ∈ D̂, so that (62) is satisfied.

Case C: For 0 ≤ x2 ≤ 1 and x1 = 0, we have

dist

(I + hF)

x1

x2

 , D̂

= dist


x1

x2

+ h

kr(1− x2)

−c2 x2

 , D̂



= dist


 hkr(1− x2)

(1− hc2) x2

 , D̂

 .

Once again, for h sufficiently small, we have

0 < ((I + hF)x)1 = hkr(1− x2) < 1,

0 ≤ ((I + hF)x)2 = (1− hc2) x2 < 1,
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and also

((I + hF)x)1 + ((I + hF)x)2 = hkr(1− x2) + (1− hc2) x2 < 1.

For such small h we have (I+hF)x ∈ D̂, so that again (62) holds. Therefore, we have

that the subtangent condition from Theorem III.2.3 is satisfied for all three cases A,

B, and C, ensuring that x1(t) and x2(t) remain in D̂ for all t ∈ (0, tmax(η)). �

In Proposition III.2.2, we prove positivity and boundedness for the remaining

equations xi(t) for i ∈ {3, . . . , 7}, and we also extend the result of Proposition III.2.1

to show that 0 < x1(t), x2(t) < 1 and therefore x1(t), x2(t) ∈ int(D̂) for all t ∈

(0, tmax(η)), a result needed for proving global existence of a unique solution.

Proposition III.2.2. Let η ∈ int(D). If t ∈ (0, tmax(η)), then 0 < xi(t) < Mi for

i = {1, . . . , 7}, with M = (1, 1, 1, 1, M5, M6, 1).

Proof. For the sake of contradiction, assume there exists some t∗i ∈ (0, tmax(η)) such

that one of two possibilities occurs for each i ∈ {1, . . . , 7}: xi(t
∗
i ) ≥ Mi or xi(t

∗
i ) ≤ 0.

Suppose xi(t
∗
i ) ≥ Mi for some t∗i ∈ (0, tmax(η)). Define t̂i := inf {t ∈ [0, tmax(η))

∣∣∣
xi(t) ≥ Mi}, and therefore

lim
t→t̂i

xi(t) = Mi.

We wish to verify that for each xi, this gives

lim
t→t̂i

dxi(t)

dt
< 0.

If this inequality holds, using the fact that dxi(t)/dt is continuous on (0, t̂i) and

dxi(t̂i)/dt < 0, we can find a δ > 0 so that

dxi(t)

dt
< 0, for t ∈ (t̂i − δ, t̂i). (64)
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By the Fundamental Theorem of Calculus and equation (64),

xi(t̂i)− xi(τi) =
∫ t̂i

τi

x′i(t) dt < 0.

Therefore, xi(t̂i) < xi(τi) < Mi for τi ∈ (t̂i − δ, t̂i), which contradicts the definition of

t̂i, therefore proving that we must have xi(t) < Mi for t ∈ (0, tmax(η)).

Now to show xi(t) > 0 for t ∈ (0, tmax(η)), we again proceed by method of

contradiction. Suppose xi(t
∗
i ) ≤ 0 for some t∗i ∈ (0, tmax(η)). Define t̃i := inf {t ∈

[0, tmax(η))
∣∣∣ xi(t) ≤ 0}, and therefore

lim
t→t̃i

xi(t) = 0.

If we can show

lim
t→t̃i

dxi(t)

dt
> 0,

we again reach a contradiction by using continuity of the derivative along with the

Fundamental Theorem of Calculus, thereby proving that in fact we must have xi(t) >

0 for t ∈ (0, tmax(η)).

Therefore, by considering each xi as a separate case, we need only show that for

each xi

lim
t→t̂i

dxi(t)

dt
< 0 and lim

t→t̃i

dxi(t)

dt
> 0,

where t̂i and t̃i are defined above.

Case A: By continuity, there exists a t0 such that 0 < x1(t), x2(t) < 1 for 0 ≤ t ≤

t0 for η1, η2 ∈ Int(D). Stipulations for η1 and η2 on the boundary of D are discussed

at the end of Case A.
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From equation (31), we have

lim
t→t̂2

dx2(t)

dt
= lim

t→t̂2

[
[L]

(
kp x1

K1 + [L]
− ke

K2 + [L]

)]
< 0

since, from Proposition III.2.1, x1(t) + x2(t) ≤ 1 for all t ∈ [0, tmax(η)], which implies

here that

lim
t→t̂2

x1(t) ≤ 0,

proving, by the comments above, that we must have x2(t) < 1 for t ∈ (0, tmax(η)).

From equation (30), we also have

lim
t→t̃1

dx1(t)

dt
= kr − kr

[
lim
t→t̃1

x2(t)

]
> 0

since, from above, x2(t) < 1 for all t ∈ (0, tmax(η)). This shows that x1(t) > 0 for

t ∈ (0, tmax(η)).

Next, from equation (31), we have

lim
t→t̃2

dx2(t)

dt
= lim

t→t̃2

[
[L]

(
kp x1(t)

K1 + [L]

)]
> 0

since, from above, x1(t) > 0 for all t ∈ (0, tmax(η)). This proves that x2(t) > 0 for

t ∈ (0, tmax(η)).

Finally, from equation (30), we have

lim
t→t̂1

dx1(t)

dt
= kr −

(
kr +

kp [L]

K1 + [L]

)
− kr

[
lim
t→t̂1

x2(t)

]
< 0

since, from above, x2(t) > 0 for all t ∈ (0, tmax(η)). Therefore, we have that x1(t) < 1

for t ∈ (0, tmax(η)).

Note that for η1 = 1 we have that dx1(t)/dt|t=0 < 0 as long as η2 ≥ 0 and for η2 = 0

we have that dx2(t)/dt|t=0 > 0 as long as η1 > 0. Furthermore, for η1 = 0 we have
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that dx1(t)/dt|t=0 > 0 as long as η2 < 1, and for η2 = 1 we have that dx2(t)/dt|t=0 < 0

when η1 = 0. Therefore, by continuity of dx1(t)/dt and dx2(t)/dt, each one of these

initial conditions ensures the existence of a t0 such that 0 < x1(t), x2(t) < 1 for

0 ≤ t ≤ t0. The same arguments as mentioned above can then be used to show that

x1(t) and x2(t) will remain in Int(D) for any of these initial conditions. We do not

consider initial conditions which violate the conservation equation (8).

Case B: There exists a t0 such that 0 < x3(t) < 1 for 0 ≤ t ≤ t0 for the following

initial conditions: η3 ∈ Int(D) by continuity; η3 = 0 with η1 > 0, since this gives

dx3(t)/dt|t=0 > 0; and η3 = 1 since this gives dx3(t)/dt|t=0 < 0 and dx3(t)/dt is

continuous in D. Also, by (32),

lim
t→t̂3

dx3(t)

dt
= −kd < 0 and lim

t→t̃3

dx3(t)

dt
= lim

t→t̃3

[
k̃ax1(t)

]
> 0

since from Case A, x1(t) > 0 for t ∈ (0, tmax(η)). Therefore, we have that 0 < x3(t) <

1 for t ∈ (0, tmax(η)).

Case C: There exists a t0 such that 0 < x4(t) < 1 for 0 ≤ t ≤ t0 for the

following initial conditions: η4 ∈ Int(D) by continuity; η4 = 1 with η3, η8 > 0,

since this gives dx4(t)/dt|t=0 < 0 (in fact, we can also have η4 = 1 and η3 = 0 since

dx3(t)/dt|t=0 > 0 for η3 = 0, which implies the existence of a t0 such that 0 < x3(t) < 1

for 0 ≤ t ≤ t0, and therefore dx4(t)/dt > 0 on this interval); and η4 = 0 since this

gives dx4(t)/dt|t=0 > 0 and dx4(t)/dt is continuous in D. Also, by (33),

lim
t→t̂4

dx4(t)

dt
= lim

t→t̂4

[
−k̃hyd

(
x8(t)

K̃c + x8(t)

)
x3(t)

]
< 0

since 0 < x8(t) < 1 always, and 0 < x3(t) < 1 from Case B. Furthermore,

lim
t→t̃4

dx4(t)

dt
= krep > 0,

so that we have 0 < x4(t) < 1 for t ∈ (0, tmax(η)).
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Case D: There exists a t0 such that 0 < x7(t) < 1 for 0 ≤ t ≤ t0 for the

following initial conditions: η7 ∈ Int(D) by continuity; η7 = 0, since this gives

dx7(t)/dt|t=0 > 0; and η7 = 1 since this gives dx7(t)/dt|t=0 < 0 and dx7(t)/dt is

continuous in D. Also, by (36),

lim
t→t̂1

dx7(t)

dt
= −kdp2 < 0 and lim

t→t̂0

dx7(t)

dt
= k̃ap2 > 0.

Therefore, we have that 0 < x7(t) < 1 for t ∈ (0, tmax(η)).

Case E: There exists a t0 such that 0 < x5(t) < M5 for 0 ≤ t ≤ t0 for the following

initial conditions: η5 ∈ Int(D) by continuity; η5 = 0 with η3, η4, η8 > 0, since this

gives dx5(t)/dt|t=0 > 0 (for the same reason as in Case C, we can also have η5 = 0

with η3 = 0 as well as η4 = 0, where we keep the condition η8 > 0). Now from (34),

lim
t→t̃5

dx5(t)

dt
= lim

t→t̃5

[
k̃hyd

(
x8(t)

K̃c + x8(t)

)
x3(t) x4(t)

]
> 0

since, by definition, 0 < x8(t) < 1 always, and 0 < x3(t), x4(t) < 1 from Cases B and

C, ensuring that x5(t) > 0 for t ∈ (0, tmax(η)). Taking M5 > k̃hyd/kd3, we also have

lim
t→t̂5

dx5(t)

dt
= lim

t→t̂5

[
k̃hyd

(
x8(t)

K̃c + x8(t)

)
x3(t) x4(t)

]
− kd3M5 ≤ k̃hyd − kd3M5 < 0,

which gives a contradiction. Therefore, we now have 0 < x5(t) < M5 for t ∈

(0, tmax(η)).

Case F: This case is very similar to Case E, as x5(t) and x6(t) are produced

stoichiometrically from x4(t). Indeed, there exists a t0 such that 0 < x6(t) < M6 for

0 ≤ t ≤ t0 for the following initial conditions: η6 ∈ Int(D) by continuity; and, for

the same reasons as in Case E, η6 = 0 with η3, η4, η7 ≥ 0 and η8 > 0, since this gives

dx6(t)/dt > 0 on an interval 0 ≤ t ≤ t0. Now from (35),

lim
t→t̃6

dx6(t)

dt
= lim

t→t̃6

[
k̃hyd

(
x8(t)

K̃c + x8(t)

)
x3(t) x4(t) + kdp2ζ x7(t)

]
> 0
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from the remarks given in Case E, and since 0 < x7(t) < 1 from Case D. Thus, we

have x6(t) > 0 for t ∈ (0, tmax(η)). Now taking M6 > (k̃hyd + kdp2ζ)/kdp1, we have

lim
t→t̂6

dx6(t)

dt
= lim

t→t̂6

[
k̃hyd

(
x8(t)

K̃c + x8(t)

)
x3(t) x4(t) + kdp2ζ x7(t)

]
− kdp1M6

≤ k̃hyd + kdp2ζ − kdp1M6 < 0,

which gives a contradiction. Therefore, we now have 0 < x6(t) < M6 for t ∈

(0, tmax(η)). �

We now use Brauer’s Theorem 3.6 stated below to obtain the unique continuation

of our solution.

Theorem III.2.4. ([8], Theorem 3.6) Suppose that f and ∂f/∂xj (j = 1, . . . , n) are

continuous in a given region D and suppose f is bounded on D. Let (t0,η) be a given

point of D. Then the unique solution φ of the system ẋ = f(t,x) passing through the

point (t0,η) can be extended until its graph meets the boundary of D.

Proposition III.2.3. For η ∈ Int(D) and for the special cases of ηi, i ∈ {1, . . . , 7}

discussed in Propositions III.2.1 and III.2.2, tmax(η) = ∞.

Proof. We have established continuity of our system f and ∂f/∂xj (j = 1, . . . , 9) on

D = {(t,x) ∈ R10
∣∣∣ t ≥ 0, 0 ≤ xi ≤ 1 for i ∈ {1, 2, 3, 4, 7}, with x1 + x2 ≤ 1, and

0 ≤ xj ≤ Mj for j ∈ {5, 6, 8, 9} and 0 < Mj < ∞}. Since D is closed, f is also

bounded on D. Therefore, for η satisfying the conditions in Propositions III.2.1 and

III.2.2, by Theorem III.2.4, the unique solution φ of our system ẋ = f(t,x) passing

through the point (t0,η) can be extended until its graph meets the boundary of D.

Since we have established that for these such η, φ remains in Int(D), we must have

tmax(η) = ∞. �

We have thus established the global existence of a unique solution to our system

given by equations (30) - (36), (41), and equation (43).
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III.3 Steady-State Solution

The steady state solutions for our simplified system can be found by setting the right

hand side of the system equal to zero. Therefore, for the receptor module (equations

(30) and (31)), we have

dx1

dt
=

dx2

dt
= 0

implies

kr −
(
kr +

kp [L]

K1 + [L]

)
x1 − kr x2 = 0

and

(
kp x1

K1 + [L]
− ke x2

K2 + [L]

)
= 0. (65)

Solving for x2 in equation (65) we have

kp x1

K1 + [L]
=

ke x2

K2 + [L]

⇒ x2 =
kp

ke

(
K2 + [L]

K1 + [L]

)
x1.

Substituting this value of x2 in for x1 in equation (65) and simplifying gives

kr −
(
kr +

kp [L]

K1 + [L]

)
x1 −

krkp

ke

(
K2 + [L]

K1 + [L]

)
x1 = 0

⇒ krke =

(
krke +

kp [ke [L] + kr(K2 + [L])]

K1 + [L]

)
x1

⇒ x1 =
krke(K1 + [L])

krke(K1 + [L]) + kp [ke [L] + kr(K2 + [L])]
. (66)
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Next we substitute this value of x1 into equation (65) and simplify to obtain

x2 =

[
krkp(K2 + [L])

krke(K1 + [L]) + kp [ke [L] + kr(K2 + [L])]

]
. (67)

These two values can be interpreted as the percentage of phosphorylated (in equation

(67)) and unphosphorylated (in equation (66)) surface receptors remaining after the

ligand concentration has been held fixed for a long period of time. For future refer-

ence, we set ξ1 and ξ2 to be the steady-state values of x1 and x2, respectively. The

steady-state number of molecules for the two groups of surface receptors is found by

multiplying ξ1 and ξ2 by NRT
. We can now determine the equilibrium number of

surface receptors NRS
E

by setting

NRS
E

= lim
t→∞

(NRS + NRS
p
) = (ξ1 + ξ2)NRT

=
krke(K1 + [L]) + krkp(K2 + [L])

krke(K1 + [L]) + kp [ke [L] + kr(K2 + [L])]

=

kr

[
1 +

kp

ke

(
K2 + [L]

K1 + [L]

)]
[
kr +

kp[L]

K1 + [L]
+

kpkr

ke

(
K2 + [L]

K1 + [L]

)] .

Steady states for the remaining equations are also found by setting the right hand

side of the equation equal to zero and solving for ξi, where ξi denotes the steady state

for equation xi(t). The remaining steady states in terms of ξ1 are

ξ3 =
ξ1k̃a

ξ1k̃a + kd

(68)

ξ4 =
krep(K̃c + ν)(kd + k̃aξ1)

kdkrep(K̃c + ν) + k̃a(K̃ckrep + (krep + k̃hyd)ν)ξ1

(69)

ξ5 =
k̃ak̃hydkrepνξ1

kdkd3krep(K̃c + ν) + k̃akd3(K̃ckrep + (krep + k̃hyd)ν)ξ1

(70)
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ξ6 =

krep +
kap2kdp2ζ

kap2 + kdp2

−
k2

rep(K̃c + ν)(kd + k̃aξ)

kdkrep(K̃c + ν) + k̃a(K̃ckrep + (krep + k̃hyd)ν)ξ1)

kdp1

(71)

ξ7 =
kap2

kap2 + kdp2

(72)

ξ8 = ν (73)

ξ9 = 0, (74)

with ν given in equation (45).

III.3.1 Local Stability of Steady States

Due to the fact that our model is a simplification of the actual signaling pathway and

therefore our system of ordinary differential equations as well as the initial condi-

tions are approximations to the actual dynamical response to a stimulus, it becomes

necessary to investigate the qualitative behavior of the model, such as how sensi-

tive our model is to small perturbations or changes of initial conditions and various

model parameters. One important qualitative phenomenon is that of the stability of

a certain state or solution of our system of equations. In particular, we now look

into the stability of the steady states of our simplified model. First we define the

concepts of stability and asymptotic stability of a steady state ξ0 of an autonomous

(not explicitly depending on time) system of the form

ẋ = f(x), (75)

and then of an arbitrary solution to the nonautonomous (explicitly depending on

time) system of the form

ẋ = f(t,x). (76)
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Definitions 1 and 2 are for the autonomous system, and definitions 3 and 4 are for

the nonautonomous system.

Definition 1. ([8], Definition 1) Denote ξ0 to be the equilibrium solution of (75).

This solution is said to be stable if for each number ε > 0 we can find a number δ > 0

(depending on ε) such that if φ(t) is any solution of (75) having ‖φ(t0) − ξ0‖ < δ,

then the solution φ(t) exists for all t ≥ t0 and ‖φ(t)− ξ0‖ < ε for t ≥ t0 (where, for

convenience, ‖ · ‖ may be thought of as the Euclidean norm.)

Definition 2. ([8], Definition 2) The equilibrium solution ξ0 is said to be asymptot-

ically stable if it is stable and if there exists a number δ0 > 0 such that if φ(t) is any

solution of (75) having ‖φ(t0)− ξ0‖ < δ0, then limt→+∞φ(t) = ξ0.

The equilibrium solution ξ0 is said to be unstable if it is not stable.

In equation (76) above, the real vector f with n components is defined and con-

tinuous in some region D = {(t,x)
∣∣∣ 0 ≤ t ≤ ∞, |x| < a} of real (n+1)-dimensional

Euclidean space, and with a ∈ R such that a ≥ 0. For the purposes of Definitions 3

and 4, we let φ(t) be some solution of (76) existing on [0,∞), and ψ(t, t0,x0), t0 ≥ 0,

be a solution of (76) such that ψ(t0, t0,x0) = x0.

Definition 3. ([8], Definition 3) The solution φ(t) of (76) is said to be stable if for

every ε > 0 and every t0 ≥ 0 there exists a δ > 0 (δ now depending on both ε and

possibly t0) such that whenever
∣∣∣φ(t0) − x0

∣∣∣ < δ, the solution ψ(t, t0,x0) exists for

all t > t0 and satisfies
∣∣∣φ(t)−ψ(t, t0,x0)

∣∣∣ < ε for t ≥ t0.

Definition 4. ([8], Definition 4) The solution φ(t) of (76) is said to be asymptotically

stable if it is stable and if there exists a δ0 > 0 such that whenever
∣∣∣φ(t0)− x0

∣∣∣ < δ0,

the solution ψ(t, t0,x0) approaches the solution φ(t) as t → ∞ (in other words,

limt→∞

∣∣∣ψ(t, t0,x0)− φ(t)
∣∣∣ = 0).

We first consider the local stability properties of our steady state solution ξ of the

system ẋ = F(x) with Fi = fi for i ∈ {1, . . . , 9} defined in equations (48) through
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(56). To examine the local stability properties of ξ, we first need the following result

due to Poincare and Perron [8]:

Theorem III.3.1. ([8], Theorem 4.3) Consider the system

ẋ = Ax + f(t,x), (77)

where all eigenvalues of A have negative real parts, f(t,x) and (∂f/∂xj)(t,x) for (j =

1, . . . , n) are continuous in (t,x) for 0 ≤ t < ∞, |x| < k where k > 0 is a constant,

and f is small in the sense that

lim
|x|→0

|f(t,x)|
|x|

= 0 (78)

uniformly with respect to t on 0 ≤ t < ∞. Then the solution x ≡ 0 of (77) is

asymptotically stable.

Using Theorem III.3.1, we show in Proposition III.3.1 that the equilibrium solution

ξ(t) of our system is indeed locally asymptotically stable.

Proposition III.3.1. The equilibrium solution ξ(t) of the system of equations (48)

through (56) is locally asymptotically stable.

Proof. First we consider the linearization of our system F at ξ by defining y = x−ξ(t)

so that

ẏ = F(t,x)− F(t, ξ(t)) = F(t,y + ξ(t))− F(t, ξ(t))

=
∂F

∂x
(t, ξ(t))y + G(t,y), (79)

where G, by construction, satisfies condition (78) of Theorem III.3.1. Furthermore,

by setting A = ∂F
∂x

(t, ξ(t)), which is the Jacobian matrix of our system at the steady

state solution ξ, we simply need to determine the sign of the eigenvalues of this

Jacobian matrix given in Figure 3. Eigenvalues for this Jacobian matrix are found
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using Mathematica and are listed in Table 3. Except in the case of λ5 and λ6 it is

immediately clear that all eigenvalues are real and negative, as all rate parameters

are strictly positive. If the term under the square root in λ5 and λ6 is positive, both

of these eigenvalues have negative real parts, and if the term under the square root

is negative, then λ6 is real and negative. In this second case, λ5 is also real and

negative by the following argument: λ5 can be written as −b+
√

b2−4ac
2a

, so that we have

b2 − 4ac > 0 ⇒ the real part of λ5 is negative ⇐⇒ b >
√

b2 − 4ac ⇐⇒ b2 >

b2 − 4ac ⇐⇒ −4ac < 0, but this is always true since all of the rate constants

contained in the terms a and c are positive. Therefore, we have that all eigenvalues

of the Jacobian matrix ∂F
∂x

(t, ξ(t)) have negative real parts, so that the hypotheses of

Theorem III.3.1 are satisfied for the linearization equation (79).

We can thus conclude that the solution y ≡ 0 of equation (79) is asymptoti-

cally stable, which is equivalent to concluding the (local) asympototic stability of the

solution x = ξ(t). �

III.3.2 Global Stability of Steady States

Here we extend the local stability analysis from the previous section to a global

stability result. We make note that from the analytical equations for x8(t) and x9(t),

we know that the steady states ξ8 = ν and ξ9 = 0 are globally asymptotically stable.

First we simultaneously prove global stability of ξ1 and ξ2, the steady states of x1

and x2, respectively.

Proposition III.3.2. The steady states ξ1 and ξ2 are globally asymptotically stable

within the region of global existence of x1(t) and x2(t) as defined in Proposition III.2.2.

Proof. First we rewrite the differential equations for x1 and x2 as follows:

x′1 = kr(1− x1 − x2)− c1x1

x′2 = c1x1 − c2x2,
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where c1 and c2 are defined in equation (63). Writing this system of equations in

matrix form, we have

x1

x2


′

=

−(kr + c1)−kr

c1 −c2


x1

x2

+

kr

0

 .

Then by the variation of parameters formula, we have that

x(t) = e[tA]x0 +
∫ t

0
e[(t−s)A]

kr

0

 ds

is the solution of this system, where

A =

−(kr + c1)−kr

c1 −c2

 (80)

with eigenvalues

λ1 =
−c1 − c2 − kr +

√
c2
1 + (c2 − kr)2 − 2c1(c2 + kr)

2
(81)

λ2 =
−c1 − c2 − kr −

√
c2
1 + (c2 − kr)2 − 2c1(c2 + kr)

2
. (82)

In general, for an n-by-n matrix A with n distinct eigenvalues, we know that there ex-

ist n linearly independent eigenvectors v1, . . . ,vn, corresponding to these eigenvalues.

We can then define the matrix

T = [v1,v2, . . . ,vn] (83)

having these n linearly independent eigenvectors as columns. As a result of Theorem

III.3.2 stated below (taken from Brauer and Nohel’s Theorem 2.8 on page 76 [8]), we
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can therefore write

T−1AT = D,

where D is the diagonal matrix

D =



λ1 0

λ2

. . .

0 λn


. (84)

Theorem III.3.2. (Diagonal Canonical Form. [8], Theorem 2.9) If the n-by-n con-

stant matrix A has n linearly independent eigenvectors v1, . . . ,vn, corresponding to

the eigenvalues λ1, λ2, . . . , λn, then A is similar to the diagonal matrix D given by

(84), and the matrix T that accomplishes the similarity is given by (83).

So by Theorem III.3.2, since our eigenvalues λ1 and λ2 from equations (81) and

(82) are distinct, we can write

T−1AT = J ⇒ A = TJT−1, (85)

where

T = [v1,v2] and J =

λ1 0

0 λ2

 .

Then by equation (85) and by property of the exponential of a matrix, we have

e[tA] = Te[tJ]T−1. (86)
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Since we have that λ1, λ2 from (81) and (82) have negative real part, equation (86)

gives

lim
t→∞

e[tA] = lim
t→∞

(
Te[tJ]T−1

)
=

0

0

 .

Therefore as t →∞, our solution x(t) = (x1(t), x2(t)) in equation (80) becomes

lim
t→∞

x(t) = lim
t→∞

(
e[tA]x0

)
+ lim

t→∞

∫ t

0
e[(t−s)A]

kr

0

 ds



= lim
t→∞

(
Te[tJ]T−1x0

)
+ lim

t→∞

∫ t

0
Te[(t−s)J]T−1

kr

0

 ds



= 0 + lim
t→∞

T
(∫ t

0
e[(t−s)J]ds

)
T−1

kr

0




= lim
t→∞

T

∫ t

0

e(t−s)λ1 0

0 e(t−s)λ2

 ds

T−1

kr

0




= T

− 1
λ1

0

0 − 1
λ2

T−1

kr

0

 =

ξ1

ξ2

 . (87)

Thus no matter what choice of initial vector x0, we will always attain the steady state

given by (87) and equivalent to the matrix [ξ1, ξ2]
T , where ξ1 and ξ2 are the steady

states found earlier for x1(t) and x2(t), respectively. We have therefore proved the

global stability of this steady state solution. �

As seen in the next proposition, we now turn our focus to determining the global

stability of the model’s remaining steady states given in equations (68) through (74).

Proposition III.3.3. The steady states ξi, i = 3 . . . 7, are globally asymptotically

stable within the region of global existence as defined in Proposition III.2.2.
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Proof. We split the proof into a separate case for each steady state.

Case A: Global stability of ξ3. Since

x′3(t) = k̃ax1(t)− (k̃ax1(t) + kd)x3(t),

by variation of parameters, we have

x3(t) = e−
∫ t

0
(k̃ax1(s)+kd)dsx3(0) +

∫ t

0
e−
∫ t

s
(k̃ax1(r)+kd)drk̃ax1(s) ds. (88)

Note that k̃ax1(s) + kd ≥ kd since x1(s) ≥ 0 for all s ≥ 0 and k̃a, kd > 0 always.

Therefore, we have

lim
t→∞

∫ t

0
kd ds = ∞⇒ lim

t→∞

∫ t

0
(k̃ax1(t) + kd) ds = ∞

⇒ lim
t→∞

e−
∫ t

0
(k̃ax1(s)+kd)dsx3(0) = 0,

so that the asymptotic behavior of x3(t) does not depend on the choice of initial

conditions. We now show that the solution x3(t) converges to its steady state ξ3. By

(88), we have

lim
t→∞

x3(t) = lim
t→∞

(
e−
∫ t

0
(k̃ax1(s)+kd)dsx3(0) +

∫ t

0
e−
∫ t

s
(k̃ax1(r)+kd)drk̃ax1(s) ds

)

if this limit exists.

Now take ε > 0 such that ε < k̃aξ1 + kd, and choose a t1 such that

|k̃ax1(t)− k̃aξ1| < ε for t > t1 > 0. (89)

Such a t1 exists since from (87) we know that limt→∞ x1(t) = ξ1. Note also for t

sufficiently larger than t1, the following conditions hold:
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(i) e−
∫ t

0
(k̃ax1(s)+kd)dsx3(0) <

ε

2

(ii)
k̃a

kd

e−kdt
[
ekdt1 − 1

]
<

ε

2

(iii) e−(k̃aξ1+kd+ε)(t−t1) < ε.

Now from (88), we can write

x3(t) = e−
∫ t

0
(k̃ax1(s)+kd)dsx3(0) +

∫ t1

0
e−
∫ t

s
(k̃ax1(r)+kd)drk̃ax1(s) ds

+
∫ t

t1
e−
∫ t

s
(k̃ax1(r)+kd)drk̃ax1(s) ds.

Notice for the above choice of t1 in (89) and for t >> t1 such that conditions (i)−(iii)

hold, we have

e−
∫ t

0
(k̃ax1(s)+kd)dsx3(0) +

∫ t1

0
e−
∫ t

s
(k̃ax1(r)+kd)drk̃ax1(s) ds

≤ ε

2
+ k̃a

∫ t1

0
e−
∫ t

s
(k̃ax1(r)+kd)dr ds

≤ ε

2
+ k̃a

∫ t1

0
e−
∫ t

s
(kd)dr ds

=
ε

2
+ k̃ae

−kdt
∫ t1

0
ekds ds

=
ε

2
+

k̃a

kd

e−kdt
[
ekdt1 − 1

]
<

ε

2
+

ε

2
= ε. (90)

Then for the same choice of t1 and t >> t1, we also have

∫ t

t1
e−
∫ t

s
(k̃ax1(r)+kd)drk̃ax1(s) ds

=
∫ t

t1
e−
∫ t

s
[(k̃ax1(r)−k̃aξ1)+(k̃aξ1+kd)]dr

[
(k̃ax1(s)− k̃aξ1) + k̃aξ1

]
ds

≤
∫ t

t1
e−
∫ t

s
[(k̃aξ1+kd)−ε]dr(ε + k̃aξ1) ds

= (ε + k̃aξ1)
∫ t

t1
e−(k̃aξ1+kd−ε)te(k̃aξ1+kd−ε)s ds

=

(
ε + k̃aξ1

k̃aξ1 + kd − ε

)
e−(k̃aξ1+kd−ε)t

[
e(k̃aξ1+kd−ε)t − e(k̃aξ1+kd−ε)t1

]

=

(
ε + k̃aξ1

k̃aξ1 + kd − ε

) [
1− e−(k̃aξ1+kd−ε)(t−t1)

]
≤
(

ε + k̃aξ1

k̃aξ1 + kd − ε

)
. (91)
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Thus (90) and (91) together give

x3(t) ≤ ε +

(
ε + k̃aξ1

k̃aξ1 + kd − ε

)
∀ t >> t1. (92)

Now we need to find a lower bound for x3(t). For the above choice of t1 and t >> t1,

we have

x3(t) = e−
∫ t

0
(k̃ax1(s)+kd)dsx3(0) +

∫ t

0
e−
∫ t

s
(k̃ax1(r)+kd)drk̃ax1(s) ds

≥
∫ t1

0
e−
∫ t

s
(k̃ax1(r)+kd)drk̃ax1(s) ds +

∫ t

t1
e−
∫ t

s
(k̃ax1(r)+kd)drk̃ax1(s) ds

≥
∫ t

t1
e−
∫ t

s
(k̃ax1(r)+kd)drk̃ax1(s) ds

=
∫ t

t1
e−
∫ t

s
[(k̃ax1(r)−k̃aξ1)+(k̃aξ1+kd)]dr

[
(k̃ax1(s)− k̃aξ1) + k̃aξ1

]
ds

≥
∫ t

t1
e−
∫ t

s
[(k̃aξ1+kd)+ε]dr(k̃aξ1 − ε) ds

=

(
k̃aξ1 − ε

k̃aξ1 + kd + ε

)
e−(k̃aξ1+kd+ε)t

[
e(k̃aξ1+kd+ε)t − e(k̃aξ1+kd+ε)t1

]

=

(
k̃aξ1 − ε

k̃aξ1 + kd + ε

) [
1− e−(k̃aξ1+kd−ε)(t−t1)

]

≥
(

k̃aξ1 − ε

k̃aξ1 + kd + ε

)
[1− ε] .

Together with (92), this gives

(
k̃aξ1 − ε

k̃aξ1 + kd + ε

)
[1− ε] ≤ x3(t) ≤ ε +

(
ε + k̃aξ1

k̃aξ1 + kd − ε

)
∀ t >> t1.

Taking ε → 0 forces t →∞, giving the desired result:

lim
t→∞

x3(t) =
k̃aξ1

k̃aξ1 + kd

= ξ3.

We proceed in a similar fashion for the remaining model equations.
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Case B: Global stability of ξ4. Since

x′4(t) =

[
−k̃hyd

x8(t)

K̃c + x8(t)
x3(t)− krep

]
x4(t) + krep,

by variation of parameters, we have

x4(t) = e
−
∫ t

0

(
k̃hyd

x8(s)

K̃c+x8(s)
x3(s)+krep

)
ds

x4(0)

+
∫ t

0
e
−
∫ t

s

(
k̃hyd

x8(s)

K̃c+x8(s)
x3(s)+krep

)
ds

krep ds. (93)

Recalling that ξ8 = ν, now we take ε > 0 such that ε < k̃hyd
ν

K̃c+ν
ξ3 + krep. We

can choose a t1 > 0 such that

∣∣∣∣∣
(
k̃hyd

x8(s)

K̃c + x8(s)
x3(s)

)
−
(
k̃hyd

ν

K̃c + ν
ξ3

)∣∣∣∣∣ < ε for t > t1 > 0. (94)

Such a t1 exists since from (45) and (93). Note also for t sufficiently larger than t1,

the following conditions hold:

(i) e
−
∫ t

0

(
k̃hyd

x8(s)

K̃c+x8(s)
x3(s)+krep

)
ds

x4(0) <
ε

2

(ii) e−krept
[
ekrept1 − 1

]
<

ε

2

(iii) e
−(k̃hyd

ν
K̃c+ν

ξ3+krep+ε)(t−t1)
< ε.

Now from (93), we can write

x4(t) = e
−
∫ t

0

(
k̃hyd

x8(s)

K̃c+x8(s)
x3(s)+krep

)
ds

x4(0)

+
∫ t1

0
e
−
∫ t

s

(
k̃hyd

x8(s)

K̃c+x8(s)
x3(s)+krep

)
ds

krep ds

+
∫ t

t1
e
−
∫ t

s

(
k̃hyd

x8(s)

K̃c+x8(s)
x3(s)+krep

)
ds

krep ds.
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Notice for the above choice of t1 in (94) and for t >> t1 such that conditions (i)−(iii)

hold, we have

e
−
∫ t

0

(
k̃hyd

x8(s)

K̃c+x8(s)
x3(s)+krep

)
ds

x4(0) +
∫ t1

0
e
−
∫ t

s

(
k̃hyd

x8(s)

K̃c+x8(s)
x3(s)+krep

)
ds

krep ds

≤ ε

2
+ e−krept

[
ekrept1 − 1

]
<

ε

2
+

ε

2
= ε. (95)

Then for the same choice of t1 and t >> t1,

∫ t

t1
e
−
∫ t

s

(
k̃hyd

x8(s)

K̃c+x8(s)
x3(s)+krep

)
ds

krep ds

=
∫ t

t1
e
−
∫ t

s

([
k̃hyd

x8(s)

K̃c+x8(s)
x3(s)−k̃hyd

ν
K̃c+ν

ξ3

]
+k̃hyd

ν
K̃c+ν

ξ3+krep

)
ds

krep ds

≤
∫ t

t1
e
−
∫ t

s
[k̃hyd

ν
K̃c+ν

ξ3+krep−ε]dr
krep ds

=
krep

k̃hyd
ν

K̃c+ν
ξ3 + krep − ε

[
1− e

−(k̃hyd
ν

K̃c+ν
ξ3+krep−ε)(t−t1)

]

≤ krep

k̃hyd
ν

K̃c+ν
ξ3 + krep − ε

. (96)

Combining (95) and (96), we have

x4(t) ≤ ε +
krep

k̃hyd
ν

K̃c+ν
ξ3 + krep − ε

∀ t >> t1. (97)

For the above choice of t1 and t >> t1,

x4(t) = e
−
∫ t

0

(
k̃hyd

x8(s)

K̃c+x8(s)
x3(s)+krep

)
ds

x4(0) +
∫ t

0
e
−
∫ t

s

(
k̃hyd

x8(s)

K̃c+x8(s)
x3(s)+krep

)
ds

krep ds

≥
∫ t1

0
e
−
∫ t

s

(
k̃hyd

x8(s)

K̃c+x8(s)
x3(s)+krep

)
ds

krep ds

+
∫ t

t1
e
−
∫ t

s

(
k̃hyd

x8(s)

K̃c+x8(s)
x3(s)+krep

)
ds

krep ds

≥
∫ t

t1
e
−
∫ t

s

(
k̃hyd

x8(s)

K̃c+x8(s)
x3(s)+krep

)
ds

krep ds

≥ krep

k̃hyd
ν

K̃c+ν
ξ3 + krep + ε

[
1− e

−(k̃hyd
ν

K̃c+ν
ξ3+krep+ε)(t−t1)

]

≥ krep

k̃hyd
ν

K̃c+ν
ξ3 + krep + ε

[1− ε] .
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Together with (97), this gives

krep

k̃hyd
ν

K̃c+ν
ξ3 + krep + ε

[1− ε] ≤ x4(t) ≤ ε +
krep

k̃hyd
ν

K̃c+ν
ξ3 + krep − ε

∀ t >> t1.

Taking ε → 0 forces t →∞, giving the desired result:

lim
t→∞

x4(t) =
krep

k̃hyd
ν

K̃c+ν
ξ3 + krep

= ξ4.

(98)

Case C: Global stability of ξ5. The derivative for x5(t) is given by

x′5(t) = k̃hyd
x8(t)

K̃c + x8(t)
x3(t)x4(t)− kd3x5(t), (99)

so by the variation of parameters formula we can write

x5(t) = e−
∫ t

0
kd3dsx5(0) +

∫ t

0
e−
∫ t

s
kd3dsk̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t) ds. (100)

Here we take any ε > 0 and choose a t1 > 0 such that

∣∣∣∣∣
(
k̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t)

)
−
(
k̃hyd

ν

K̃c + ν
ξ3ξ4

)∣∣∣∣∣ < ε for t > t1 > 0. (101)

Such a t1 exists by (45), (93), and (98).

Note also for t sufficiently larger than t1, the following conditions hold:

(i) e−
∫ t

0
kd3dsx5(0) <

ε

2

(ii)
k̃hyd

kd3

e−kd3t
[
ekd3t1 − 1

]
<

ε

2

(iii) e−kd3(t−t1) < ε.
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From (100), we can write

x5(t) = e−
∫ t

0
kd3dsx5(0) +

∫ t1

0
e−
∫ t

s
kd3dsk̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t) ds

+
∫ t

t1
e−
∫ t

s
kd3dsk̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t) ds.

Notice for the above choice of t1 in (101) and for t >> t1 such that conditions

(i)− (iii) hold, we have

e−
∫ t

0
kd3dsx5(0) +

∫ t1

0
e−
∫ t

s
kd3dsk̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t) ds

≤ ε

2
+

k̃hyd

kd3

e−kd3t
[
ekd3t1 − 1

]
(102)

<
ε

2
+

ε

2
= ε.

Then for the same choice of t1 and t >> t1,

∫ t

t1
e−
∫ t

s
kd3dsk̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t) ds

=
∫ t

t1
e−
∫ t

s
kd3ds

[(
k̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t)− k̃hyd

ν

K̃c + ν
ξ3ξ4

)
+ k̃hyd

ν

K̃c + ν
ξ3ξ4

]
ds

≤
∫ t

t1
e−
∫ t

s
kd3ds

(
ε + k̃hyd

ν

K̃c + ν
ξ3ξ4

)
ds

=
ε + k̃hyd

ν
K̃c+ν

ξ3ξ4

kd3

[
1− e−kd3(t−t1)

]

≤
ε + k̃hyd

ν
K̃c+ν

ξ3ξ4

kd3

. (103)

Therefore (102) and (103) give

x5(t) ≤ ε +
ε + k̃hyd

ν
K̃c+ν

ξ3ξ4

kd3

∀ t >> t1. (104)
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For the above choice of t1 and t >> t1,

x5(t) = e−
∫ t

0
kd3dsx5(0) +

∫ t1

0
e−
∫ t

s
kd3dsk̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t) ds

+
∫ t

t1
e−
∫ t

s
kd3dsk̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t) ds

≥
∫ t

t1
e−
∫ t

s
kd3dsk̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t) ds

≥
k̃hyd

ν
K̃c+ν

ξ3ξ4 − ε

kd3

[
1− e−kd3(t−t1)

]

≥
k̃hyd

ν
K̃c+ν

ξ3ξ4 − ε

kd3

[1− ε] .

In combination with (104), this gives

k̃hyd
ν

K̃c+ν
ξ3ξ4 − ε

kd3

[1− ε] ≤ x5(t) ≤ ε +
ε + k̃hyd

ν
K̃c+ν

ξ3ξ4

kd3

∀ t >> t1.

Sending ε → 0 forces t →∞, giving the desired result:

lim
t→∞

x5(t) =
k̃hyd

ν
K̃c+ν

ξ3ξ4

kd3

= ξ5.

In order to study the global stability of ξ6, we first need to investigate the stability

properties of ξ7.

Case D: Global stability of ξ7. From

x′7(t) = −kdp2x7(t) + kap2(1− x7(t)),

variation of parameters gives

x7(t) = e−
∫ t

0
(kap1+kap2)dsx7(0) +

∫ t

0
e−
∫ t

s
(kap1+kap2)dskap2 ds.
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Thus

lim
t→∞

x7(t) = lim
t→∞

(
e−
∫ t

0
(kap1+kap2)dsx7(0) +

∫ t

0
e−
∫ t

s
(kap1+kap2)dskap2 ds

)
= lim

t→∞

∫ t

0
e−
∫ t

s
(kap1+kap2)dskap2 ds

= lim
t→∞

(
kap2

kap1 + kap2

)
e−(kap1+kap2)t

[
e(kap1+kap2)t − 1

]
= lim

t→∞

(
kap2

kap1 + kap2

) [
1− e−(kap1+kap2)t

]
=

kap2

kap1 + kap2

= ξ7.

Therefore ξ7 is globally asympototically stable. Now we can investigate the stability

of ξ6.

Case E: Global stability of ξ6. Since

x′6(t) = k̃hyd
x8(t)

K̃c + x8(t)
x3(t)x4(t) + kdp2ζx7(t)− kdp1x6(t), (105)

variation of parameters gives

x6(t) = e−
∫ t

0
kdp1dsx6(0)

+
∫ t

0
e−
∫ t

s
kdp1ds

(
k̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t) + kdp2ζx7(t)

)
ds. (106)

Given ε > 0, we choose a t1 > 0 such that for all t > t1 > 0,

∣∣∣∣∣
(

k̃hyd
x8(t)

K̃c + x8(t)
x3(t)x4(t) + kdp2ζx7(t)

)
−
(

k̃hyd
ν

K̃c + ν
ξ3ξ4 + kdp2ζξ7

)∣∣∣∣∣ < ε. (107)

Such a t1 exists by (45), (93), (98), and (105). Note also for t sufficiently larger

than t1, the following conditions hold:

(i) e−
∫ t

0
kdp1dsx6(0) <

ε

2

(ii)
k̃hyd + kdp2

kdp1

e−kdp1t
[
ekdp1t1 − 1

]
<

ε

2

(iii) e−kdp1(t−t1) < ε.
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From (106), we can write

x6(t) = e−
∫ t

0
kdp1dsx6(0) +

∫ t1

0
e−
∫ t

s
kdp1ds

(
k̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t) + kdp2ζx7(t)

)
ds

+
∫ t

t1
e−
∫ t

s
kdp1ds

(
k̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t) + kdp2ζx7(t)

)
ds.

Notice for the above choice of t1 in (107) and for t >> t1 such that conditions

(i)− (iii) hold, we have

e−
∫ t

0
kdp1dsx6(0) +

∫ t1

0
e−
∫ t

s
kdp1ds

(
k̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t) + kdp2ζx7(t)

)
ds

≤ ε

2
+

k̃hyd + kdp2

kdp1

e−kdp1t
[
ekdp1t1 − 1

]
<

ε

2
+

ε

2
= ε. (108)

Then for the same choice of t1 and t >> t1,

∫ t

t1
e−
∫ t

s
kdp1ds

(
k̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t) + kdp2ζx7(t)

)
ds

=
∫ t

t1
e−
∫ t

s
kdp1ds

(k̃hyd
x8(t)

K̃c + x8(t)
x3(t)x4(t) + kdp2ζx7(t)

−k̃hyd
ν

K̃c + ν
ξ3ξ4 − kdp2ζξ7

)
+ k̃hyd

ν

K̃c + ν
ξ3ξ4 + kdp2ζξ7

 ds

≤
∫ t

t1
e−
∫ t

s
kdp1ds

(
ε + k̃hyd

ν

K̃c + ν
ξ3ξ4 + kdp2ζξ7

)
ds

=
ε + k̃hyd

ν
K̃c+ν

ξ3ξ4 + kdp2ζξ7

kdp1

[
1− e−kdp1(t−t1)

]

≤
ε + k̃hyd

ν
K̃c+ν

ξ3ξ4 + kdp2ζξ7

kdp1

. (109)

Hence (108) and (109) together give

x6(t) ≤ ε +
ε + k̃hyd

ν
K̃c+ν

ξ3ξ4 + kdp2ζξ7

kdp1

∀ t >> t1. (110)
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For the above choice of t1 and t >> t1,

x6(t) = e−
∫ t

0
kdp1dsx6(0) +

∫ t1

0
e−
∫ t

s
kdp1ds

(
k̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t) + kdp2ζx7(t)

)
ds

+
∫ t

t1
e−
∫ t

s
kdp1ds

(
k̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t) + kdp2ζx7(t)

)
ds

≥
∫ t

t1
e−
∫ t

s
kdp1ds

(
k̃hyd

x8(t)

K̃c + x8(t)
x3(t)x4(t) + kdp2ζx7(t)

)
ds

≥
k̃hyd

ν
K̃c+ν

ξ3ξ4 + kdp2ζξ7 − ε

kdp1

[
1− e−kdp1(t−t1)

]

≥
k̃hyd

ν
K̃c+ν

ξ3ξ4 + kdp2ζξ7 − ε

kdp1

[1− ε] .

Together with (110), this gives

k̃hyd
ν

K̃c+ν
ξ3ξ4 + kdp2ζξ7 − ε

kdp1

[1− ε]≤ x6(t)

≤ ε +
ε + k̃hyd

ν
K̃c+ν

ξ3ξ4 + kdp2ζξ7

kdp1

∀ t >> t1.

Once again, taking ε → 0 forces t →∞, giving the desired result:

lim
t→∞

x6(t) =
k̃hyd

ν
K̃c+ν

ξ3ξ4 + kdp2ζξ7

kdp1

= ξ6.

�

We have therefore concluded global asymptotic stability of the unique steady state

solution ξ within the region defined in Propositions III.2.1 and III.2.2.
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chapter iv

numerical model analysis

IV.1 Introduction

We now turn our focus to the numerical analysis of our model. The first half of

this chapter is devoted to the techniques of nonlinear parameter estimation used

to estimate unknown rate parameters from experimental data. We then provide

a comparison of model simulations with empirical data followed by a discussion of

which parameters were used to fit which aspects of the experimental data.

In the second half of this chapter we focus on the sensitivity of our model output

to the rate parameters, which here we will refer to as input variables. Sensitivity

analysis techniques are valuable tools designed to answer questions regarding which

of the uncertain input variables is more important in determining the uncertainty

in the model output. Likewise, sensitivity analysis can provide insight into which

parameters should be studied in more detail in order to reduce the most variance

in the model output [65]. The ability to answer these types of questions could lead

to important insight into the design of new experiments and in determining which

experiments would give us the most valuable information.

The most frequently used sensitivity analysis techniques consist of local measures

of the effect of a given input variable on a particular output of the model [66]. This

type of analysis is usually obtained by either directly or indirectly computing system

derivatives Sj = ∂Y/∂Mj, where Y is the output of interest and Mj, j = 1, . . . , k,

is an input variable [38, 75]. This technique provides the effect of varying one input

variable while all other variables remain fixed, thus falling under the class of the one-

factor-at-a-time (OAT) methods. These methods are only effective if the model is

linear in all of its input variables and therefore have limited use and can often provide

misleading information for nonlinear models. Therefore, we have instead chosen to use
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the Standardized Regression Coefficients (SRCs) obtained by performing regression

analysis as a means of sensitivity analysis, since the use of SRCs is considered to be

more of a global technique, offering a measure of sensitivity that is multi-dimensionally

averaged over the entire space of parameter values. Indeed, SRCs are preferable over

the normal derivatives, Sj, as they give insight into the degree of nonlinearity in the

model and also provide a measure of the effect of a particular input variable, Mj,

averaged over a range of possible values for Mj, instead of being computed at a single

fixed value of Mj, as is the case for the Sj.

This technique of calculating SRCs first requires the generation of a sample matrix

of dimension n × k, where n is the user-defined number of samples to be taken

from the sample space (the space consisting of the probability distributions of each

parameter value), and k is the total number of input variables considered in the

sensitivity analysis. We first discuss our choice of sample generation, followed by

the methodology behind regression analysis as a means of calculating sensitivity. We

conclude with an explanation of our particular implementation of these methods and

a discussion of the results from our analysis.

IV.2 Estimation of Unknown Rate Parameters from Experimental Data

IV.2.1 Numerical Methods

Our system of ordinary differential equations was integrated using the MATLAB solver

ode15s, which is a variable order solver based on the numerical differentiation for-

mulas (NDFs) [71]. Once an exhaustive search through the literature for known rate

parameters was performed, unknown rates were estimated using SIMULINK, which esti-

mates the parameters by minimizing a user-specified cost function via a user-specified

optimization method [44]. We chose the nonlinear least squares optimization method

of Levenberg-Marquardt to minimize a sum of squared errors cost function of the

empirical observations and model predictions for IP3, Ca2+, and multiple species of

DAG.
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In order to perform the nonlinear parameter estimation in SIMULINK, we first cre-

ated the SIMULINK model shown in Figure 4 to recreate our original (dimensionalized)

system of nonlinear ordinary differential equations.

Figure 4: SIMULINK model used in the estimation of unknown rate parameters to
simultaneously fit IP3, Ca2+, and DAG data.

Each “subsystem” in the SIMULINK model represents an ODE for each variable

in the original model. Interactions within each subsytsem are shown in Appendix A,

Figures 32 through 41. Each block joined by connectors performs a specific function

on the value fed into the block an outputs the result from the specific operation. A
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list of blocks used in our SIMULINK model along with the function of each is shown

in Figure 42 of Appendix A.

IV.2.2 Experimental Methods

In this section we provide a detailed explanation of the experimental methods used

to obtain the time-based data for DAG, IP3, and Ca2+.

For the diacylglycerol assay, RAW 264.7 cells used by the Alliance for Cellular

Signaling (AfCS) were obtained from the American Type Culture Collection (ATCC

catalog number TIB-71, lot number 2263775). For ligand stimulation, 4× 106 RAW

264.7 cells were plated in 4 ml RAW Growth Medium 1 (DMEM supplemented with

10% FBS, 2 mM L-glutamine, and 20 mM NaHEPES, pH 7.4) per 60 mm TC-treated

dish (Falcon). Cells were grown overnight in 5% C02 and the medium replaced with

3.6 ml serum-free assay medium (DMEM containing 2 mM L-glutamine, 20 mM

NaHEPES, pH 7.4, and 0.1 mg/ml bovine serum albumin) for 1 hr. After 1 hr

serum-starvation, cells were stimulated with 0.4 ml serum-free medium (control) or

10x ligand (25 µM UDP) in a 37◦C glove box for the indicated times. The medium

was aspirated on ice, cells were washed with 2 ml ice-cold PBS, aspirated again and

resuspended in 0.8 ml ice-cold PBS by scraping. The cell suspension was transferred

to a cold 1.5 ml PCR tube (Laboratory Products) and centrifuged for 5 min at 1000

x g, 4◦C. The PBS was aspirated and the pellets were frozen and stored in dry ice.

Phospholipids were extracted using a modified Bligh/Dyer procedure [5]. Ice-cold 1:1

0.1N HCl:CH3OH (800 µL) was added to each cell pellet, and the suspensions were

transferred to individual cold 12 × 75 mm borosilicate glass test tubes. 24:0 DAG

(10 µL, 10 µg/mL, Avanti Polar Lipids) was added to all samples as an internal stan-

dard. After addition of 400 µL ice-cold CHCl3 and thorough mixing, phospholipids

were collected from the lower (organic) phase after layer separation by centrifugation.

Diacylglycerol isolation from phospholipid extracts and species-specific diacylglycerol
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quantification using electrospray ionization mass spectrometry was achieved accord-

ing to the procedures described in Callender et al. [10].

Next, for the IP3 binding assay, lysates from RAW 264.7 cells were assayed using

the [3H] Biotrak assay kit from GE Healthcare, based on a competitive radioreceptor

assay [53]. RAW 264.7 cells were grown in 60 mm dishes and stimulated as described

in Callender et al. [10]. Cells were washed with 2 ml ice-cold PBS, aspirated and

lysed by scraping in 250 µl 5.4% perchloric acid on ice. Cell lysates were transferred

to 1.5 ml microfuge tubes and assayed according to the manufacturer’s instructions.

[IP3] is calculated as pmols/100 µl lysate.

Finally, for the intracellular free calcium assay, data were obtained by mea-

suring the fluorescent emission at 538 nM of RAW 264.7 cells loaded with fluo-3

acetoxymethyl (Molecular Probes). Fluorescence measurements were performed us-

ing a Fluoroskan Ascent microplate fluorometer with the Ascent software (Thermo-

Labsystems), according to AfCS Procedure Protocol PP00000176, described in detail

on the AfCS website: http://www.signaling-gateway.org. Intracellular free calcium

data for RAW 264.7 cells stimulated with 25 µM UDP were obtained from the AfCS

single ligand screen [49], and are also available on the AfCS website.

All IP3 and Ca2+ data were collected by the AfCS cell laboratory at the University

of Texas Southwestern.

IV.2.3 Parameter Estimation

Experimental observations of P2Y6 receptor dynamics from Brinson and Harden in

1321N1 astrocytoma cells [6] and IP3, Ca2+, and species-specific DAG measurements

of the response to 25 µM UDP in RAW 264.7 cells are all used to compare with the

simulations obtained from the system of ten nonlinear ordinary differential equations

described in Chapter II (using equations (25) and (26) for the DAG module) and to

aid in the estimation of unknown rate parameters. Table 4 includes a list of all model

parameters, their values, and a reference for those taken from the literature.
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Table 4: Time-independent model variables

Parameter Value Reference

[L] 25 µM
NRT

20000 [21, 43]
K1 5 µM [39, 41]
K2 100 µM [39]
kr 1.75× 10−4s−1 [39]
kp 1.75× 10−3s−1 see text
ke 6× 10−3s−1 [39]
NGT

3× 105 [19]
ka 0.137 µM−1s−1 [19]
kd 0.02 s−1 [43]
NPIP2T

9× 106 see text

v 5× 10−13L [68]
Kc 0.4 µM [19, 39]

k̂hyd 1× 10−5 #mol−1s−1 see text
krep 0.014 s−1 see text
kd3 6× 10−3 s−1 see text
NDAGp2T

480 (500) µM see text

kdp1 7.37× 10−3s−1 see text
(1.2× 10−3s−1)a

kdp2 5.4× 10−3s−1 see text
(1.71× 10−3s−1)a

kap2 1.08× 10−2s−1 see text
(1.96× 10−3s−1)a

η 0.66 (0.45)a see text
ε 0.01 [16, 40]
dIP3 0.2 µM [40]
dact 0.4 µM [40]
dinh 0.02 µM [39]
a 3.1 s−1 see text
ν1 40 s−1 [40]
ν2 5.08× 10−3s−1 see text
ν3 0.24 µM s−1 [40]
ν4 1.4 µM s−1 see text
ker 0.4 µM [39]
kpl 1.56× 10−2 µM see text
jin 0.447 µM s−1 see text
c1 0.185 [16]

aParameter values not in parentheses correspond to 38:4 DAG,
while those in parentheses are for 34:1 DAG.
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Of these 34 parameters, 18 are taken from the literature, 2 are directly measured,

and 14 are estimated from experimental data.

The primary focus of this work is on the differential mechanisms of species-specific

DAG production and degradation. Time-series data for the 38:4 DAG and 34:1 DAG

responses to 25 µM UDP are shown in Figures 5a and 5b, respectively. Solid grey

Figure 5: Timecourse of stimulation with 25 µM UDP in RAW 264.7 cells. Solid
black lines represent model simulations for the system of equations using the two-pool
model (with equations (25) and (26)), while gray lines represent simulations using the
canonical pathway for DAG (equation (24)). (a) 38:4 DAG response (representative
of the response of most poly unsaturated fatty acid-containing DAG species). (b)
34:1 DAG response (representative of the response of most mono- and di-unsaturated
fatty acid-containing DAG species). Data points in (a) and (b) contain nine replicates
performed on three different experimental days, with error bars = 1 SEM. Units are
total change in ng over baseline levels in ∼ 8×106 cells. (c) IP3 response in pmols
per ∼ 3.5×105 cells. Points represent the average of four experiments, and error bars
are 1 SEM. (d) Ca2+ response in µM. Red curve is a representative Ca2+ trace taken
from the UDP experiments within the AfCS single ligand screen as described in the
“Intracellular free calcium assay” portion of Section IV.2.2.
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lines are derived from numerical simulations of our initial DAG model (using equation

(24)), while solid black lines are derived from numerical simulations of the combined

effect of DAG from pools 1 and 2, as described in Section II.3. As the method used for

quantification of DAG species measures change in total cellular DAG over baseline

levels, DAG response is simulated by adding the outputs from equations (25) and

(26). Data points and error bars correspond to experimental values obtained using

the DAG assay as described in Section IV.2.2. Although the second and larger rise

phase is observed in most of the DAG species, the early kinetic behavior, within the

first three minutes of stimulation, varies quite drastically between PUFA-containing

DAGs and mono- and di-unsaturated DAGs. PUFA-containing DAGs, such as 38:4

DAG, are consistently seen as increasing immediately upon stimulation, while mono-

and di-unsaturated species, such as 34:1 DAG, display an immediate and small peak

(∼43 ng for 34:1 DAG) two minutes after stimulation and then exhibit a brief yet

almost full recovery by 3 minutes which is followed by a larger production (∼104

ng for 34:1 DAG) at 15 minutes. All DAG species have begun to recover by the 30

minute time point.

We make note here that in approximately 30% of the experimental cases, total

DAG levels in many of the mono- and di-unsaturated species are seen to actually

decrease significantly below baselines levels within the first 3 minutes of stimulation

(data not shown). Although the reason for this variation in response could not be

determined, according to the two-pool model structure, this would suggest a more

rapid phosphorylation of DAGp2 such that initial production of DAGp1 is more than

offset by early conversion of DAGp2 resulting in a net loss of total DAG until enough

DAGp2 has been converted to aid in PIP2 replenishment. By increasing the value of

kdp2, our model can accurately reproduce this kinetic behavior.

As seen in Figure 5, different species of DAG have been shown to respond dif-

ferently to P2Y6 stimulation, suggesting different rates of conversion or degradation

from both pools as well as different initial values and rates of production of DAG
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from the second pool. The rate of degradation of DAGi
p2, ki

dp2 (where, as mentioned

earlier in Section II.3, the superscript i refers to a particular species of DAG), was

estimated to fit the early behavior of different DAG species. In particular, for species

showing an early rise phase followed by a recovery to baseline by ∼ 3 minutes, such as

34:1 DAG (Fig. 5b), ki
dp2 sets the level and time of recovery. The degradation rate of

DAGi
p1, ki

dp1, and production rate of DAGi
p2, ki

ap2, were then used to set the size and

time of the peak observed at later time points. As ηi represents the fraction of DAGi
p2

contributing to the resynthesis of DAGi
p1 through the two-pool model (Fig. 2), this

parameter was chosen to fit the overall magnitude of DAG response throughout the

timecourse. The initial concentration of resting DAGi
p2 levels in the RAW 264.7 cell,

NDAGi
p2

, was estimated from the methods developed in Callender et al. [10].

Figure 5c displays the total synthesis of IP3 over baseline levels in response to

25µM UDP over a timecourse of 30 minutes. The solid line represents the solution to

equation (23) with initial condition NIP3(t) = 0, as we assume no change in number

of IP3 molecules for times t ≤ 0 (i.e., before ligand addition). Data points with

error bars are experimental values obtained from the IP3 assay described in Section

IV.2.2. Results show that IP3 peaks within the first 3-4 minutes (∼9 pmoles) and

remains above baseline levels throughout the tested timecourse, suggesting prolonged

stimulation of receptors and hydrolysis of PIP2 molecules.

Total PIP2 per cell, NPIP2T
, was determined by direct infusion mass spec using a

16:0 PIP2 standard. The rate of IP3 degradation, kd3, was used to fit the IP3 peak

time and height observed from the experimental data, while the rates of receptor

phosphorylation, kp, effective PIP2 hydrolysis, k̂hyd (= khydλ), and PIP2 replenish-

ment, krep, were all used to simultaneously fit the experimental observations of IP3

and multiple species of DAG. The parameter kp was chosen to match the height of

recovery at later time points in both IP3 and DAG. The overall magnitude of DAG

throughout the timecourse and the shape of the IP3 response were fit with k̂hyd, while

krep was taken to match the size of the DAG response after the initial peak and the
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peak height of IP3.

Parameters for the Ca2+ module were either taken from Li and Rinzel [40] or

Lemon [39], or they were estimated to obtain a best fit to the experimental data in

Figure 5d. Three of the five estimated Ca2+ parameters were chosen to lie within

ranges of parameters chosen by Li and Rinzel [40]. These include the following: the

receptor binding constant for Ca2+-dependent inhibition, a, which sets the size of

Ca2+ peak; the maximum Ca2+ flux out of the cell across the plasma membrane, ν4,

which helps to determine peak height and width; and Ca2+ flux through the plasma

membrane, jin, which controls overall magnitude of the Ca2+ response. The remaining

two parameters are the maximum Ca2+ leak flux through the ER, ν2, used to help

fit the peak height and shape, and the Michaelis constant for Ca2+ flux out of the

cell across the plasma membrane, kpl, which affects the peak height as well as the

sustained level of Ca2+.

Predictions for the remaining model variables, including activated and inactivated

P2Y6, activated G-proteins, and available PIP2, are obtained by solving equations

(19) through (22). Figure 6 shows model simulations for these four remaining vari-

ables, all in response to 25 µM UDP.

69



Figure 6: Model simulations for timecourse of stimulation with 25 µM UDP in a
single RAW 264.7 cell for remaining model variables. (a) Activated (solid line) and
inactivated (dashed line) P2Y6 surface receptors. (b) Total number of activated
Gα·GTP. (c) Total number of PIP2 available for hydrolysis.
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IV.3 Sensitivity Analysis

IV.3.1 Sampling Method and Sensitivity Technique

As mentioned in the previous section, several of the rate parameters could not be

obtained from the literature and therefore had to be estimated. Thus, we now examine

which parameters in the model are most responsible for model output uncertainty.

This can then guide us in determining the parameters for which we may need to

obtain better measurements in order to reduce output uncertainty.

In order to perform such a sensitivity analysis, we first generate a random sample

of our space of input variables over a ten percent variation from each parameter’s

nominal value using the Latin Hypercube Sampling (LHS) method. LHS may be

considered to be a particular case of stratified sampling, whose main goal is to achieve

a better coverage of the sample space of the input variables [28, 47]. In LHS the range

of each input variable, denoted Mj, j = 1, 2, . . . , k, is divided into n subintervals

of equal marginal probability, 1/n, and one observation of each input variable is

taken from each interval using random sampling within that interval. This technique

results in n non-overlapping realizations for each of the k input variables. To obtain

the first sample, denoted m1, one of the realizations on M1 is randomly selected

(each observation is equally likely to be selected), paired with a randomly selected

realization of M2, and so on all the way out to Mk. For the next sample, m2, one

of the remaining realizations of M1 is paired at random with one of the remaining

observations of M2, and so on. Continuing this procedure, we obtain the remaining

samples m3, . . . ,mn, which exhausts the observations and results in a latin hypercube

sample m = (mij), where i = 1, . . . , n and j = 1, . . . , k.

One of the advantages of this sampling method is that it ensures each input

variable has all portions of its distribution (which in our case is a uniform distribu-

tion) represented by input values. LHS performs better than random (Monte Carlo)

sampling when the output is dominated by a few components of the input factors.

The method ensures that each of these components is represented in a fully strati-
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fied manner, no matter which components might turn out to be important. LHS is

also designed to accurately recreate the input distribution through sampling in fewer

iterations when compared with the Monte Carlo method.

Once the sample m is created, propagation of the sample through the model

creates a mapping from analysis inputs to analysis results of the form

[yi, mi1, mi2, . . . ,mik] i = 1, . . . , n, (111)

where k is the number of input variables (rate parameters), n is the sample size, and

yi is the model output corresponding to sample mi. Once this mapping is generated

and stored, it can be explored in many ways to determine the sensitivity of model

predictions to individual input variables.

One of the most common and simplest of sensitivity analysis techniques is the

generation of scatter plots, where a plot is generated of the points (mij, yi), i =

1, . . . , n, for each independent input variable Mj. Although this technique can provide

important information regarding the relationships between model input and model

predictions, one disadvantage is that it requires the generation and inspection of a

large number of plots. Indeed, one needs at least one plot per input variable, and in

our case this needs to be multiplied by the number of time points since our model

output is time-dependent. Furthermore, scatterplots offer only a qualitative measure

of the sensitivity, as the relative importance of each variable cannot be quantified.

In order to obtain a more quantitative global sensitivity analysis, we have chosen

the measure of standardized regression coefficients (SRCs) determined from multiple

regression analysis. Here the multivariate samplem of the input variables is generated

by the LHS sampling strategy (dimension n× k), and the corresponding sequence of

n output values is computed using our model equations, resulting in the mapping
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discussed above (111). We then seek a linear regression model of the form

yi = b0 +
∑
j

bjmij + εi

where yi, i = 1, . . . , n, are the output values of the model, bj, j = 1, . . . , k, are

coefficients to be determined and εi is the error, or residual, due to the approximation.

A common way of determining the coefficients bj is to use the method of least squares,

where the coefficients bj are determined so as to minimize the function

F (b) =
∑

i

ε2
i .

After the bj, j = 1, . . . , k, are computed, they can be used to indicate the importance

of individual input variables Mj with respect to the uncertainty in the output y. Since

the bj are dimensionalized coefficients, it is common practice to rewrite the regression

model in its nondimensionalized form:

(ŷ − ȳ)

ŝ
=
∑
j

(
bj ŝj

ŝ

)(
mj − m̄j

ŝj

)
,

where

ȳ =
∑

i

yi

n
, m̄j =

∑
i

mij

n

ŝ =

[∑
i

(yi − ȳ)2

n− 1

]1/2

ŝj =

[∑
i

(mij − m̄j)
2

n− 1

]1/2

,

and where ŷ is the vector of regression model predictions, and mj is the jth column

vector in the LHS sample matrix. The coefficients bj ŝj/ŝ are the SRCs that we will

use for sensitivity analysis. The SRCs enable us to quantify the effect of varying each

input variable away from its mean by a fixed fraction of its variance while maintaining

all other variables at their expected values.
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We make note here that in order to use the SRCs as a measure of sensitivity, it is

also important to consider the model coefficient of determination, R2
y, given by

R2
y =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

where ŷi is the estimate of yi obtained from the regression model. R2
y gives a way

of determining how close the linear regression model based on the SRCs comes to

reproducing the actual model output y. It represents the fraction of the variance

of the output explained by the regression, and the closer it is to one, the better

is the regression model’s performance and the more valid SRCs are in determining

sensitivity of input variables. Therefore, in order to be able to use SRCs as a measure

of sensitivity, one must first determine the R2
y values, for if any of the R2

y (one is

computed for each time point in time-dependent models) are less than some threshold

value, typically 0.7, the SRCs are not accurate indicators of sensitivity. In this case,

model-free methods can be used. Examples of such methods include but are not

limited to the following methods described in detail in [65, 67]: the method of Morris,

the FAST method, the importance measure, and the method of Sobol’.

IV.3.2 Implementation of the Sensitivity Methods

An LHS sample matrix was found using the coding environment SIMLAB 3.0.x, which

consists of a MATLAB m-file that, when called, will create a sample matrix based on

a user-specified sampling method. We therefore created an m-file which loaded pa-

rameters and their probability distributions (uniform distribution with 10% variation

from nominal value) and subsequently called the Latin Hypercube sampling code,

thus generating the LHS sample matrix. The m-file for this sample creation can be

found in Appendix B.

Another m-file was created to take as input each row, mi, i = 1, . . . , n of the

sample matrix and output the corresponding outputs, y
(l)
i , l = 1, . . . , 10, for each

of the original ten variables in the dimensionalized form of the model equations. R2
y
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values and SRCs were then computed using the MATLAB regress function. R2
y values for

all model outputs and all time points from 0 to 30 minutes were greater than 0.8 and in

most cases were very close to one (see, for example, the insets in Figures 8 and 7, which

show graphs of the time-dependent R2
y values for DAG and IP3, respectively), ensuring

that the SRCs are good measures of sensitivity. The most sensitive parameters are

therefore those whose SRCs, in absolute value, are the largest. As different input

variables affect the model output differently at different times, certain parameters

are seen to be more senstive at early time points, while others are more sensitive

at later time points. The time-dependent SRCs corresponding to the most sensitive

parameters for IP3 and DAG = DAGp1 + DAGp2 are shown in Figures 7 and 8,

respectively.

Figure 7: Standardized Regression Coefficients (SRCs) corresponding to most sensi-
tive parameters for IP3. Most sensitive parameters are as follows: receptor rate of
phosphorylation, kp ( ), receptor recycling rate, kr ( ), PIP2 replenishment rate,
krep ( ), and IP3 degradation rate, kd3 ( ). Inset: R2

y values for all time points are
≥ 0.8, enusuring that the SRCs for IP3 are good measures of sensitivity.

Figure 7 reveals that early IP3 output is most sensitive to changes in the rate

of degradation of IP3, kd3, which has a negative effect, and the PIP2 replenishment
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Figure 8: Standardized Regression Coefficients (SRCs) corresponding to most sensi-
tive parameters for DAG. Most sensitive parameters are as follows: degradation rate
of DAGp1, kdp1 ( ), production rate of DAGp2, kap2 ( ), degradation rate of DAGp2,
kdp2 ( ), receptor rate of phosphorylation, kp ( ), and receptor recycling rate, kr

( ). Inset: Since R2
y values for all time points are ≥ 0.95, the SRCs for DAG are

good measures of sensitivity.

rate, krep, which has a positive effect. At early time points (0 to 650 seconds) the

receptor recycling rate, kr, shows a slight negative effect; however, from 850 to 1800

seconds, kr becomes the parameter with the strongest positive influence on IP3. The

parameter most negatively affecting IP3 production at later time points is the rate of

receptor phosphorylation, kp.

As shown in Figure 8, the dynamics of DAG are mostly driven by the DAG kinetic

paramters of activation and degradation. For the first∼ 400 seconds after stimulation,

output of DAG is most sensitive to the rate of degradation of DAGp2, kdp2, with this

parameter having a negative influence on DAG production. Although the receptor

phosphorylation rate, kp, shows a small yet significant negative effect at later time

points, the most sensitive parameter with negative effects from 400 to 1800 seconds

is the DAGp1 degradation rate, kdp1. Those parameters with the strongest positive

influence are the DAGp2 production rate, kap2, and to a lesser extent the receptor

recycling rate, kr.
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Since from the sensitivity analysis kdp2, kap2, and kdp1 were determined to be the

most sensitive parameters for DAG output, Figures 9, 10, and 11 were generated

to better visualize the effects of varying each of these parameters about its nominal

value given in Table 4. Each figure displays the change in 34:1 DAG response to a

50% fluctuation in one of these three parameters. From Figure 9, we see that the

rate of phosphorylation in the second pool of DAG, kdp2, greatly affects the level of

early decrease in DAG levels over baseline. Further, while the effects of the rates

of pool 2 DAG replenishment and pool 1 DAG degradation resemble one another,

their effects are negatives of one another, as reflected by the SRC graph from Figure

8. Indeed, a rise in the activation rate kap2 causes an overall increase in DAG and

a slower recovery to baseline at later time points, where a similar DAG increase is

found by a decrease in the degradation parameter kdp1.

Figure 9: Changes in 34:1 DAG response to 50% variations in kdp2, the rate of degra-
dation of pool 2 DAG, from its nominal value of 1.71× 10−3.
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Figure 10: Changes in 34:1 DAG response to 50% variations in kap2, the rate of
degradation of pool 2 DAG, from its nominal value of 1.96×10−3. Note here that the
axis for kap2 is in reverse order from the axes for kdp2 and kdp1 as shown in Figures 9
and 11, respectively.

Figure 11: Changes in 34:1 DAG response to 50% variations in kdp1, the rate of
degradation of pool 2 DAG, from its nominal value of 1.2× 10−3.
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chapter v

diacylglycerol pathway analysis

V.1 Introduction

In this chapter we present experimental evidence that supports the two-pool DAG

model shown in Figure 2 and described in Section II.3. The data were obtained

from experiments performed on RAW 264.7 macrophages in collaboration with Paul

Sternweis and Dianne DeCamp at the University of Texas Southwestern. The data

discussed in Section V.2 include a comparison of the DAG response from two doses

of UDP (250 nM and 25 µM). The second data set, covered in Section V.3, includes

results from our investigation of the role of DAG kinase (DAGk) in DAG produc-

tion over the timecourse of 30 minutes, through inhibition of this enzyme with the

DAGk inhibitor II, also called R59949. In Section V.4 we discuss the third data

set containing results from a multiple inhibitors study, where we have tested several

different inhibitors of DAG metabolism, including U73122 (inhibits phosphoinositol

(PI)-specific PLC activity), U73433 (inactive analog of U73122), Propranolol (most

widely known as a beta-adrenergic receptor antagonist, but also inhibits conversion

of PA to DAG via lipid phosphate phosphatase (LPP)), R59949 (DAGk inhibitor II),

and Thimerosal (inhibits conversion of monoacylglycerol (MAG) to DAG via monoa-

clyglycerol acyltransferase (MGAT) as well as CoA-independent and CoA-dependent

acyl transferases [64]). The results of the experiments from Section V.4 suggested

further studies on the effects of Propranolol, which are discussed in Section V.5. For

these experiments we ran the same time course as for R59949 in Section V.3, with

and without 25 µM UDP, with and without 150 µM Propranolol.
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V.2 Two-Dose UDP Experiments

The graphs of several DAG species in response to UDP stimulation are shown in

Figure 12. Each graph shows the total change in DAG (in ng) over baseline levels, for

two concentrations of UDP: 250 nM (in green squares) and 25 µM (in red triangles).

The cells were stimulated for 30s, 2min, 3min, 15min, and 30min. This timecourse

was chosen after preliminary experiments revealed these times to display the most

significant aspects of the cellular DAG response (e.g., the DAG response from 3 to 15

minutes was essentially linear). Each data point is the average of nine experimental

repeats performed on three different experimental days. Error bars represent 1 SEM.

For all 29 DAG species measured, the fold changes and p-values for all time points

and for both doses of UDP are given in Figures 13 and 14.

In this data set, no species was found to be significantly decreasing over baseline

levels at any point in the tested timecourse. The most notable difference in the two

doses is at the 15 minute time point, where the higher dose produces a larger increase

in most of the responding DAG species. Furthermore, for the higher dose of UDP,

the response peaks at 15 minutes and begins to recover by 30 minutes. For the lower

dose, however, many species are either still increasing or not decreasing as rapidly

by 30 minutes. This suggests that with the lower dose the cells are responding more

slowly than with the higher dose.

V.3 DAG Kinase Inhibitor II (R59949) Experiments

In order to further investigate the origin of DAG responses to UDP, we collected data

on the DAG response to UDP with and without pretreatment of the DAG kinase

inhibitor II (R59949). Purkiss and Boarder [58] suggest the existence of two pathways

by which purinergic-receptor-mediated stimulation (in endothelial cells) may give rise

to PA: sequential activation of PLC and DAGk, or directly via PLD. They then have

evidence showing that PA derived from both routes is readily metabolized to DAG.

This could explain why we are seeing DAG levels rising at later time points than the
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Figure 12: Total change in DAG (in ng) over baseline levels, for two concentrations
of UDP: 250 nM (in green squares) and 25 µM (in red triangles). The cells were
stimulated for 30s, 2min, 3min, 15min, and 30min. Each data point is the average
of nine experimental repeats performed on three different experimental days. Error
bars represent 1 SEM.
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Figure 13: Fold changes and p-values for the response of 29 different DAG species to
250 nM UDP vs basal. Cells highlighted in pink show a fold increase with p-value <
0.01, and cells highlighted in red show a fold increase with p-value < 0.001.

Figure 14: Fold changes and p-values for the response of 29 different DAG species to
250 µM UDP vs basal. Cells highlighted in pink show a fold increase with p-value <
0.01, and cells highlighted in red show a fold increase with p-value < 0.001.
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timeframe for PIP2 hydrolysis. If these are the only two (or the major two) pathways

for PA production upon stimulation with UDP in the RAW 264.7 cells, since we do

not see PLD activity in the RAW 264.7 cells upon stimulation by UDP, inhibition of

DAGk would presumably decrease the DAG response of all DAGs coming from PA

production.

For these experiments, cells were pretreated with either 0.05% DMSO or 10 µM

R59949 (in DMSO) for 1 hour, and were stimulated with 25 µM UDP for 30s, 3min,

15min, and 30min, each in triplicate. The graphs of some of the DAG species showing

responses representative of a certain population of DAGs are shown in Figure 15. The

graphs on the left show total ng DAG produced for the following: UDP over basal (in

green squares), UDP + R59949 over basal (in red triangles), and R59949 over basal

(in cyan x’s). Each graph on the right represents the total change in DAG levels over

baseline for one of two conditions: UDP stimulation without inhibitor compared to

basal without inhibitor (shown in green) and UDP stimulation with R59949 compared

to basal with R59949 (shown in red).

For many of the DAG species, the DAGk inhibitor R59949, lowered the basal levels

of DAG at all time points. The differences between basal levels and R59949 levels

of DAG are shown in Figure 16. Due to the decrease in basal DAGs with R59949,

DAGk appears to play an important role in the level of resting DAGs in the RAW

264.7 cell.

Figure 17 includes the differences between DAG produced from UDP alone (over

basal) and DAG produced from UDP with R59949 (over DAG levels with R59949

alone). The cells in Figure 17 are highlighted according to the following conditions:

pink shows an increase over baseline with p-value less than 0.05; red shows an increase

over baseline with p-value less than 0.01; light blue shows a decrease over baseline

with pvalue less than 0.05; and dark blue shows a decrease over baseline with p-value

less than 0.01.
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Figure 15: Results from stimulation of RAW 264.7 cells +/- 25 µM UDP and +/- 10
µM R59949. Graphs on the left show total ng DAG produced for the following: UDP
over basal (green squares), UDP + R59949 over basal (red triangles), and R59949
over basal (cyan squares). Graphs on the right represent the total change in DAG
levels over baseline for one of two conditions: UDP stimulation without inhibitor
compared to basal without inhibitor (green squares) and UDP stimulation with 10
µM R59949 compared to basal with 10 µM R59949 (red triangles).
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Figure 16: DAG levels (in ng) and corresponding p-values for differences between cells
pretreated with and without 10 µM R59949 throughout the tested timecourse. Cells
highlighted in light blue show a decrease with p-value < 0.05, and cells highlighted
in dark blue show a decrease with p-value < 0.01. Cells highlighted in pink show an
increase with p-value < 0.05.

This figure includes two panels. The left panel shows the fold changes and p-

values for UDP stimulation versus basal levels. Species are grouped according to

their response to 25 µM UDP. There were three basic trends observed from these data:

1) species did not produce a significant change from baseline levels throughout the

tested timecourse, 2) species remained near baseline initially and then by 3 minutes

were increasing over baseline levels and continued to increase until 15 minutes, where

the response peaked and therefore levels dropped slightly by 30 minutes but were

still significantly above baseline, and 3) species responded similarly as in case two,

except the initial response was a significant decrease over baseline levels. Most of the
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higher-carbon PUFA-containing DAGs fell into the second category, while most of

the mono- and di-unsaturated DAGs fell into the third category. The saturated DAG

species either gave no significant change or produced small changes at one or two of

the four time points.

The right panel shows the total difference, in ng, between the amount of DAG

produced with UDP + R59949 (over amount from cells pretreated with R59949) and

the amount produced from UDP alone (over the amount from basal cells). The species

are listed in the same order as the panel on the left in order to compare the effects

of R59949 on the UDP response with the type of response each species exhibited

from UDP alone. For the species in category 1, the inhibitor produced slightly higher

levels of DAG, predominantly at the 15 minute time point. However, for the species

in categories 2 and 3, the cells pretreated with R59949 produced a much higher level

of DAG at 30 seconds than the cells with UDP alone (where for these species of DAG,

levels either remained near baseline or dropped below baseline, which is a behavior

we have seen previously but has not been very reproducible). This suggests a heavy

dependence on DAGk activity in the UDP pathway for high-carbon PUFAs and mono-

and di-unsaturated DAGs, especially at the early time points. If PIP2 hydrolysis is

the only other means of DAG production at early time points, the immediate increase

in DAG levels from categories 2 and 3 observed in the presence of R59949 is a result

of PIP2 hydrolysis, and the reason we are not seeing this rise in DAGs without the

inhibitor is a result of rapid phosphorylation of resting DAGs (in categories 2 and 3)

via DAGk activity. For most of the species which gave robust increases at later time

points, the overall shape of the curve with UDP + R59949 was also subdued slightly,

where we did not observe as robust an increase from the 3 minute to 15 minute time

point as we see with UDP alone, suggesting a combined role for DAGk and LPP at

the later time points.
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V.4 Multiple DAG Inhibitors Experiments

In order to further investigate the origin of both resting DAG and DAG produced post

UDP stimulation in the RAW 264.7 cells, we tested several different pharmacological

inhibitors and their affect on the UDP response at 15 minutes, the time point where

we see most DAG production in most DAG species. The inhibitors included in this

study and the concentrations used are as follows: 10 µM U73122 (inhibits PI-PLC

activity), 10 µM U73433 (inactive analog of U73122), 150 µM Propranolol (inhibits

conversion of PA to DAG via LPP), 10 µM R59949 (DAGk inhibitor II), and 50 µM

Thimerosal (inhibits conversion of MAG to DAG via MGAT). Figures 18 - 22 show

the results from three experimental repeats, each with three replicates.

Figure 18: Fold changes of DAG in response to a 15 minute stimulation of 25 uµM
UDP +/- 30min pretreatment with 150 µM Propranolol.
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Figure 19: Fold changes of DAG in response to a 15 minute stimulation of 25 uµM
UDP +/- 10min pretreatment with 50 µM Thimerosal.

Figure 20: Fold changes of DAG in response to a 15 minute stimulation of 25 uµM
UDP +/- 10min pretreatment with 10 µM U73122.
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Figure 21: Fold changes of DAG in response to a 15 minute stimulation of 25 uµM
UDP +/- 10min pretreatment with 10 µM U73433.

Figure 22: Fold changes of DAG in response to a 15 minute stimulation of 25 uµM
UDP +/- 60min pretreatment with 50 µM R59949.
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Propranolol is perhaps the most interesting as far as differential effects are con-

cerned, as it is enhancing UDPs ability to produce 38:3, 38:4, and 38:5 DAGs, slightly

inhibiting the UDP response for the 36 carbon-containing DAG series, and is almost

eliminating the UDP response in the lower carbon chain DAGs. Thimerosal and

U73122 appear to have a similar effect as they are significantly inhibiting the UDP

response across the board. Aside from a few obscure DAGs, U73433 does not have

a significant effect on the UDP response, which is what one would hope to see, as

U73433 is the inactive analog of U73122. Finally, R59949 gives the same effect as we

had seen before with the timecourse experiments, where the response at 15 minutes

is slightly inhibited for most DAGs. Although the results of these multiple inhibitor

experiments do not seem to point to one source of DAG production, this does reem-

phasize the complexity of this signaling pathway and the need for further study.

V.5 Propranolol Experiments

Next we tested a timecourse of the DAG response to 25 µM UDP with and without

pretreatment of 150 µM Propranolol, since out of all the tested inhibitors it was

providing us with the most interesting differential responses. These data include

four experiments performed in triplicate. Cells were pretreated with either 0.05%

DMSO or 150 µM Propranolol (in DMSO) for 1 hour, and were stimulated with 25

µM UDP for 30s, 3min, 15min, and 30min, each in triplicate. The graphs of four of

the DAG species showing responses representative of a certain population of DAGs

are shown in Figure 23. As in the R59949 experiments, the graphs on the left show

total ng DAG produced for the following: UDP over basal (in green squares), UDP

+ Propranolol over basal (in red triangles), and Propranolol over basal (in cyan x’s).

Each graph on the right represents the total change in DAG levels over baseline for

one of two conditions: UDP stimulation without inhibitor compared to basal without

inhibitor (shown in green) and UDP stimulation with Propranolol compared to basal

with Propranolol (shown in red).
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Figure 23: Results from stimulation of RAW 264.7 cells +/- 25 µM UDP and +/- 150
µM Propranolol. Graphs on the left show total ng DAG produced for the following:
UDP over basal (in green squares), UDP + Propranolol over basal (in red triangles),
and Propranolol over basal (in cyan x’s). Graphs on the right represent the total
change in DAG levels over baseline for one of two conditions: UDP stimulation with-
out inhibitor compared to basal without inhibitor (shown in green squares) and UDP
stimulation with 150 µM Propranolol compared to basal with 150 µM Propranolol
(shown in red triangles).
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Propranolol had little or no effect on the PUFA-containing DAG response to

UDP throughout the tested timecourse, with the least effect on 38:4 DAG. We make

note that this result is slightly different than what we saw in the multiple inhibitor

experiment, where 38:4 DAG levels with Propranolol + UDP were significantly higher

than with UDP alone. In most other species, Propranolol greatly reduced or even

completely eliminated the DAG response to UDP throughout the tested timecourse.

One trend that appeared in a few species was a decrease in DAG levels over baseline

with Propranolol at the 30 minute time point. For these species, we also observed an

increase in the Propranolol only (no UDP) samples (see the left graphs, cyan data

points for 34:1 DAG, 36:0 DAG and 32:1 DAG). This data suggests that 38:4 DAG

and, to a lesser extent, most PUFA-containing DAGs are not coming from PA via

LPP. For most other DAGs, however, under the assumption that Propranolol is only

inhibiting LPP and not activation other enzymes, one could propose that these DAGs

are directly or indirectly coming from LPP activity.

To compliment our studies of the Propranolol effect on the DAG response, we

also completed a set of three experiments testing the effects of Propranolol on the

UDP response of PA over the same timecourse as above. Each experimental condition

was performed in triplicate. The ratiomic analysis of these experiments is shown in

Figure 24. Each cell in this figure displays the number of times a certain condition

was seen to be significantly above or below the basal condition (or, in some cases, a

specific condition noted in the figure). For example, in the 0.5 minute time block, a

number of 3 for 34:1 DAG in the first column reveals that in all three experimental

repeats, the triplicate average of DAG levels in the cells pretreated with propranolol

was shown to be significantly increasing over the triplicate average for basal cells (no

propranolol).

The results were in direct agreement with the two-pool DAG model. Propranolol

had little effect on the PUFA-containing PAs, but had a profound effect on the mono-

and di-unsaturated and saturated PAs. For this latter group of PAs, Propranolol
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Figure 24: Lipid array for PA response to 25 µM UDP +/− 150µM Propranolol at
30s, 3min, 15min, and 30min. Cells highlighted in red (blue) show a significant in-
crease (decrease) in that PA species for a particular condition in all three data sets.
The first column lists the PA species along with any other species sharing the same
m/z (mass to charge) ratio. The second column lists the m/z values. The first three
columns of each time point block represent Propranolol, UDP, and UDP + Propra-
nolol, respectively, each vs control. The forth column in the block represents UDP +
Propranolol vs UDP, and the fifth and final column represents UDP + Propranolol
vs Propranolol.
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caused a large increase in unstimulated cells, suggesting that these PAs were com-

ing from mono- and di-unsaturated and saturated DAGs via a constitutively active

DAGk. Since the DAG assays with Propranolol revealed that Propranolol completely

eliminated the UDP response (for mono- and di-unsaturated and saturated DAGs),

this suggests that Propranolol may be affecting part of the pathway of the two-pool

DAG model, where PA generated from an intracellular pool of DAG is not allowed

to participate in the resynthesis of PIP2.
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chapter vi

quantification of molecular species of
diacylglycerol

VI.1 Introduction

In this chapter we discuss the method of DAG quantification used to collect all data

on species-specific DAG changes in response to UDP. As stated in Chapter I, dia-

cylglycerols are important cellular second messengers which play a significant role in

initiating changes in cell behavior. DAGs differ from other well characterized second

messengers (such as IP3) as they are a heterologous population, with over 50 different

species of DAG identified based on their varying acyl chain lengths and degrees of

unsaturation. With evidence of differential roles for these species in cellular processes

[14, 55], the need arises for a sensitive method for quantification of individual species

of DAG in order to elucidate both the function and source of these second messengers

in the complex background of several thousand cellular lipids.

Traditional methods for quantitative analysis of DAGs include radiolabeling as-

says where E. coli DAG kinase is used to convert DAG in neutral lipid fractions of

various cell types to [32P]-labeled phosphatidic acid [56, 57, 78]. Disadvantages of

this method include the low resolution analytical techniques such as thin layer chro-

matography [14, 17] and the inability to identify acyl chain composition of DAGs.

The identification of the molecular species of agonist-stimulated DAG production has

also been studied using component fatty acid analysis [9, 22], as well as argentation

(silver ion) chromatography [61]. Although both of these approaches provide interest-

ing information, neither determines the exact molecular species that are present. To

address the issue of detecting individual molecular species, capillary gas chromatog-

raphy has also been used [54]. Unfortunately, all these strategies are time-consuming

due to the process of derivatization via chemical reactions and involve larger amounts
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of sample which makes them unsuitable for high throughput analyses. DAG is a key

component of glycerophospholipid intermediate metabolism and serves as a cellular

second messenger, hence a new analytical method was needed to achieve comprehen-

sive molecular species analysis.

Mass spectrometry is the most sensitive and specific method for lipid analysis to

date [48]. The combination of gas chromatographynegative ion chemical ionization

mass spectrometry has been applied to a single species of DAG analysis from biological

samples, but this method has a limitation in the number of detected molecular species

and requires a multi-step derivatization prior to analysis [27]. As little as 30 fmol of

1-stearoyl-2-arachidonoyl-sn-3-glycerol can be analyzed in a sample.

New ionization techniques such as electrospray ionization mass spectrometry (ESI-

MS) or matrix-assisted laser desorption/ionization (MALDI) enable the detection and

identification of lipids with minimal fragmentation and direct data collection. With

MALDI, which has been previously applied to the analysis of DAGs [3], the sample

preparation is easy and fast and no derivatization is required. Despite its advantages,

however, MALDI is more suitable for high molecular weight biomolecules (peptides

and proteins). Due to their low molecular weight, lipids require special matrices and

considerations such as compatibility between matrix and analyte to achieve high

homogeneity between sample and matrix crystals; matrix ions are also detected and

might interfere with the interpretation of the spectra.

Here we describe a method that overcomes some of these challenges and is based on

soft ESI-MS. Introducing Na+ to the sample results in the formation of charged Na+-

DAG adducts rendering detection by ESI-MS possible. Separation of DAG species

from the more polar phospholipids results in higher sensitivity which makes this

method suitable for analysis of complex lipid mixtures and adaptable to medium- to

high-throughput assays. A multiple linear regression model for the construction of

calibration curves for specific DAG species based on their molecular characteristics is

also shown. As a result, we offer the first method for the simultaneous detection and
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quantification of up to 28 individual molecular species of DAG from the extract of a

macrophage-derived cell.

VI.2 Experimental Materials and Methods

VI.2.1 Materials

The materials used in this method of DAG quantification are listed in Table VI.2.1

below. RAW 264.7 cells, which are a macrophage-like, Abelson leukemia virus-

Table 5: Materials used in the method of quantification of multiple species of DAG.

Material Source

1,2-dilauroyl-sn-glycerol (24:0 DAG) Avanti Polar Lipids (Alabaster, AL)
1,2-dimyristoyl-sn-glycerol (28:0 DAG) Avanti Polar Lipids (Alabaster, AL)
1,2-dipalmitoyl-sn-glycerol (32:0 DAG) Avanti Polar Lipids (Alabaster, AL)
1-octadecanoyl-2-hexadecanoyl-rac-glycerol (34:0 DAG) Avanti Polar Lipids (Alabaster, AL)
1-palmitoyl-2-oleoyl-sn-glycerol (34:1 DAG) Avanti Polar Lipids (Alabaster, AL)
1,2-dioctadecanoyl-rac-glycerol (36:0 DAG) Avanti Polar Lipids (Alabaster, AL)
1,2-dioleoyl-sn-glycerol (36:2 DAG) Avanti Polar Lipids (Alabaster, AL)
1-eicosanoyl-2-octadecanoyl-rac-glycerol (38:0 DAG) Avanti Polar Lipids (Alabaster, AL)
1-stearoyl-2-arachidonoyl-sn-glycerol (38:4 DAG) Avanti Polar Lipids (Alabaster, AL)
1-O-hexadecyl-2-acetoyl-sn-glycero-3-phosphocholine (C16 PAF) Avanti Polar Lipids (Alabaster, AL)
Silica gel 60 (230-400 mesh) EMD Chemicals Inc. (Gibbstown,NJ)
methanol (MeOH) EMD Chemicals Inc. (Gibbstown,NJ)
chloroform (CHCl3) EMD Chemicals Inc. (Gibbstown,NJ)
Sodium acetate Sigma-Aldrich (St. Louis, MO)

transformed cell line derived from BALB/c mice, were obtained from the American

Type Culture Collection (ATCC catalog number TIB-71, lot number 2263775), ex-

panded, and stored in aliquots for use by the Alliance for Cellular Signaling (AfCS)

laboratories (http://www.signaling-gateway.org). Stock vials of frozen AfCS cells

were thawed and maintained in DMEM supplemented with 10% heat-inactivated fe-

tal bovine serum, 20 mM HEPES, and 2 mM L-glutamine at 37 ◦C in a humidified

atmosphere with 5% CO2. For routine maintenance in culture (passage), cells were

seeded at a confluence of approximately 10% (1 × 106 and 36 cells on 100 and 150

mm plates, respectively) and grown to a confluence of approximately 50%.
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VI.2.2 Extraction of glycerophospholipids from stimulated cells

Cells were seeded at 4×106 cells on 60 mm-diameter dishes and incubated for 24 hours

in 10% serum. Before stimulation the medium was changed to DMEM supplemented

with 20 mM HEPES, 2 mM L-glutamine, and 0.1 mg/mL BSA. Platelet-activating

factor (PAF, dissolved in ethanol) was added to the medium at a final concentration

of 100 nM, and cells were incubated at 37 ◦C for the indicated times. After treatment

plates were placed on ice, medium was aspirated and cells were washed with 2 mL

of ice-cold PBS, pelleted, and PBS aspirated. Phospholipids were extracted by a

modified Bligh/Dyer procedure [5]. Ice-cold 1:1 0.1N HCl:CH3OH (800 µL) was

added to each cell pellet, and the suspensions were transferred to individual cold 12

× 75 mm borosilicate glass test tubes. 24:0 DAG (10 µL, 10 µg/mL) was added to

all samples as an internal standard. After addition of 400 µL ice-cold CHCl3 and

thorough mixing, phospholipids were collected from the lower (organic) phase after

layer separation by centrifugation.

VI.2.3 Diacylglycerol isolation and recovery

Diacylglycerol isolation from total phospholipids extracts was achieved by separation

using silica gel column chromatography by means of an isocratic elution with 65:35:0.7

CHCl3:CH3OH:H2O. Each sample was applied to a glass Pasteur pipette column

plugged with glass wool and packed with a 6 cm bed of silica gel 60Å equilibrated with

10 mL of eluent. DAG molecular species were recovered in the first 3 mL of eluent, and

solvents were evaporated in a vacuum centrifuge (Labconco Centrivap Concentrator,

Kansas City, MO). Samples were dissolved in 105 µL of 9:1 CH3OH:CHCl3 containing

5 µL of 100 mM CH3COONa and analyzed by mass spectrometry.

To evaluate the accuracy of the method and the recovery of DAG during extraction

and separation procedures, cell extracts were spiked with known amount of 2 DAGs

(200ng each of 36:0 and 36:2) and 100ng of the internal standard 24:0 DAG. For

RAW 264.7 cell extracts the recovery was 98-103%. The basal level of total DAG (all
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detected species) in RAW 264.7 cells was 1.69±0.08 nmol/mg protein, calculated by

using a conversion factor of 1.27 mg protein / 107cells [62]. The reported abundance

of DAG in other cell types was of similar value (1.47±0.33 nmol/mg protein in SK-

N-SH neuroblastoma cells [37] and about 1.5 nmol/mg protein in pheochromocytoma

PC12 cells [2]).

VI.2.4 Mass spectrometric analysis of DAG extracts

Mass spectral analysis was performed on a Finnigan TSQ Quantum triple quadrupole

mass spectrometer (ThermoFinnigan, San Jose, CA) equipped with a Harvard Ap-

paratus syringe pump and an Ion Max electrospray ionization source. Samples were

analyzed at an infusion rate of 10 µL/min in positive ionization mode over the range

of m/z 400 to 900. Since DAGs ionize poorly under normal electrospray conditions,

Na+ adducts were utilized to better detect the individual DAG species. Peaks cor-

responding to known DAG species were fragmented to confirm the identity of the

species (Fig.25, A and B). Data were collected with the Xcalibur software package

(ThermoFinnigan).

VI.3 Results and Discussion

VI.3.1 Isotopic correction

Figure 26 shows a typical spectrum of the DAG species isolated from a RAW 264.7

cell extract. The ESI-MS analysis provides peaks corresponding to the molecular

ion of the sodiated adduct of each DAG. We recall here that the various species are

distinguished by the total number of carbons in the acyl chains and their degree

of unsaturation. Consequently, the DAGs are conveniently assigned a two-number

system xx:y (i.e., 38:4 DAG) in which xx designates the total number of carbons in

the acyl chains and y specifies the total number of double bonds.

The signals occur in clusters of peaks representing multiple species of DAGs having

the same total number of carbons and different degrees of saturation separated by two
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Figure 25: Identification of DAG sodium adducts. Identification of DAG lipid species
was accomplished by MS/MS analysis of biological samples and synthetic standards
when possible. As an example, the MS/MS fragmentation pattern for synthetic 36:2
DAG (A) compares favorably to that of naturally occurring 36:2 DAG (B).
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Figure 26: Positive ESI mass spectrum from a RAW 264.7 cell extract after chro-
matographic separation on a silica gel column to remove the polar phospholipids.
The peaks for various DAG series appear in the center of the spectrum and the in-
ternal standard (24:0 DAG) is shown (m/z 479). The series numbers indicate the
total number of carbons in the acyl chains on the DAG molecule. The PE and PC
peaks, which usually dominate the spectrum in positive mode, have been functionally
decreased as a result of chromatographic separation.

mass units. Spectra are complicated by the naturally occurring molecules containing

known fractions of heavy isotopes, e.g. 1.10% 13C and 0.2% 18O (Fig. 27). Thus,

each individual DAG produces two or more peaks for each of the molecular ions. One

peak is at the exact molecular mass and the others are one or more mass units higher

reflecting the natural abundance of 13C, 18O etc. In the case of DAG, contributions

to the mass distribution are made from carbon, hydrogen and oxygen atoms. These

multiple peaks lead to errors particularly for the peak that is two mass units higher,

due to interference with the species that has one less double bond. To correct for

this isotopic signal on neighboring peaks, the relative distribution of mass for each

DAG molecule is computed. For example, 38:4 DAG has the formula C41H72O5 which

produces the distribution of mass for 38:4 DAG displayed in Table 6. Data in Table
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Figure 27: Example of isotopic correction for the m/z range of 611 to 620. This
region contains several species of DAG containing 34 carbons in their acyl chains.
Solid lines represent the uncorrected signals while the dashed lines are the corrected
signals. Isotopic corrections are made from left-to-right, beginning with the species
having the second lowest m/z value within the particular group (here, the group of
DAGs containing 34 carbons), by subtracting the appropriate proportion of the signal
occurring two mass units to the left as explained in Section VI.3.1. Once this signal
has been adjusted, it is then used in the same manner to correct the signal for the
DAG species having m/z value two units higher. This iterative process continues
until the remaining members within the group are corrected.

Table 6: % Total abundance of masses of naturally occurring 38:4 DAG derived from
the distributions of isotopes of the constituting elements (carbon, hydrogen, and
oxygen).

% total abundance MW m/z [M+Na+]+

0.6211 644.536 667.524
0.2900 645.539 668.527
0.0735 646.542 669.530
0.0132 647.545 670.533
0.0018 648.548 671.536
0.0002 649.551 672.539

103



6 shows that 62.11% of the total signal generated by sodium adducts of this molecule

is observed at m/z 667.52, while 7.35% of the signal appears at m/z 669.53. This

is the same m/z value where the primary signal (62.09%) for the 38:3 DAG sodium

adduct appears, thus complicating the quantification of these peaks.

Isotopic corrections are made from left-to-right (lower to higher m/z) to the signals

within a group of DAG molecules containing the same number of carbons. Begin-

ning with the signal for the DAG species having the second lowest m/z value within

a group, the intensity is corrected by subtracting a correction factor based on the

signal for the DAG species having m/z value two units less than this species. Figure

27 displays the centroid output for the m/z range 611 to 621; this region contains

five species of DAG: 34:4, 34:3, 34:2, 34:1, and 34:0. In the case of 34:3 DAG, the

correction factor is calculated by multiplying the intensity at m/z 611.47 (34:4 DAG)

by the fraction .0639/.6500 representing the ratio of the [M+Na++2]+ to [M+Na+]+

portion of the 34:4 DAG signal. This factor is subtracted from the intensity at m/z

613.48 (34:3 DAG). This process is then repeated from left-to-right on the remaining

members of the 34:X DAG species. The results of these corrections are displayed as

dashed lines to the left of each signal line in Figure 27.

VI.3.2 Chromatographic separation and DAG detection

The importance of DAG species in the signaling pathways of cellular networks re-

quires a sensitive method for their efficient detection and quantification. Lipids that

do not possess a head group and therefore no electric charge (such as DAGs and tria-

cylglycerols) cannot be detected under normal ESI-MS conditions [25, 29] unless there

is a presence of a cation to provide sufficient dipole potential for ionization through

complexation. The addition of CH3COONa (5 mM final concentration) ensures the

formation of predominantly Na+ adducts.

In order to improve detection of DAGs, normal phase chromatography was utilized

to separate the DAGs from polar phospholipids (such as phosphatidylcholine (PC)
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and phosphatidylethanolamine (PE)), which would otherwise dominate the spectra.

Another possible obstacle in DAG quantification is the fact that other products of

ligand stimulation could produce peaks at the same m/z as some of the DAG species,

thereby obscuring the quantitative results. For that reason the separation technique

was also designed to reduce the presence of such products, leaving mainly cellular

DAG in the sample. The effectiveness of this technique is illustrated in Figure 26.

The m/z range where most PC and PE peaks appear is essentially void of detectable

peaks. Because of the high level of sensitivity of the methods for analysis (ESI-MS)

and the low levels of DAGs present in the samples, many contaminant peaks were

detected at the same or close m/z values as the peaks of interest. With the use of

glassware throughout the process of isolation and separation of DAGs and the addition

of CH3COONa, impurity peaks are eliminated, and predominantly [M+Na]+ adduct

peaks are observed.

VI.3.3 Mathematical analysis of data and development of standard curves

From the analysis of a mixture of DAG standards in the cellular (RAW 264.7) extract

background (Fig. 28) in positive ionization ESI-MS, the sensitivity for each DAG

species varies greatly between the tested species. This indicates a variable ionization

efficiency of individual DAG species. Therefore, the need for normalization of each

individual species toward an internal standard was evident since it is well known

that peak intensities are dependent on acyl chain and degree of unsaturation [34].

Thus, all samples included 100 ng of 24:0 DAG as an internal standard. This lipid

is present in negligible amounts in resting RAW 264.7 cells and was not detected in

response to several ligands tested including PAF (data not shown). The intensities

for all observed species of DAG in the cellular extracts are expressed in terms of this

fixed internal standard. Consequently, the intensity of each species is replaced with

the ratio (intensity/24:0 DAG intensity) for modeling purposes.
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Figure 28: Positive ESI mass spectrum after adding a mixture of 9 diacylglycerol
standards to a RAW 264.7 cell background, extracting the phospholipids and then
performing a chromatographic separation on a silica gel column to remove the polar
phospholipids. 100 ng of each of the following standards was added: 24:0 DAG (M +
Na+ = 479), 28:0 DAG (M + Na+ = 535), 32:0 DAG (M + Na+ = 591), 34:1 DAG
(M + Na+ = 617)*, 34:0 DAG (M + Na+ = 619), 36:2 DAG (M + Na+ = 643),
36:0 DAG (M + Na+ = 647), 38:4 DAG (M + Na+ = 667), and 38:0 DAG (M +
Na+ = 675). *For example, for 34:1 DAG, this corresponds to a concentration of 1.6
pmol/µL.

For the development of standard curves, 8 synthetic DAG standards with chem-

ically defined acyl chains were used. The standards included 38:4, 38:0, 36:2, 36:0,

34:1, 34:0, 32:0, and 28:0 DAG, representing a broad range of acyl chain length and

degree of unsaturation. To determine the working curves for the 8 DAG species in the

presence of a RAW 264.7 cell background, titrations of these compounds were added

to cellular preparations. Three separate experiments each with twelve samples con-

taining approximately 3×106 RAW 264.7 cells were generated, and these samples were

spiked with varying amounts of the 8 DAG standards at 4 different levels in triplicate.

Standard additions included 0, 25, 50, and 100 ng in the first two experiments and

0, 10, 75 and 150 ng in the third experiment. In addition, all samples had 100 ng of

24:0 DAG as an internal standard. Samples were extracted and chromatographically
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separated as described above, redissolved in 9:1 chloroform:methanol and analyzed

by mass spectrometry. After data collection and isotopic correction, the intensities

were scaled using the intensity of the 24:0 DAG internal standard and plotted. For

each of the 8 standards, the following linear model was utilized to analyze the data:

Yi = β0 + β1X1i + β2jX2ji + β3jX1iX2ji + εi, (112)

where

Yi = normalized intensity of sample i;

X1i = amount of standard added to sample i in ng;

X2ji = factor for experiment containing sample i;

εi = error term for sample i.

In equation (112), the index j runs from 1 to 3 representing the three different ex-

periments, while the index i runs from 1 to 36 for the individual samples in these

experiments (i.e., the i indexes 1-12 describe the first experiment, 13-24 the second,

and 25-36 the third.). The variable X2ji is an indicator variable (either a 0 or a 1)

that takes the value 1 if the index i is an element of experiment j and 0 otherwise.

For example, X2,1,11 = 1 since the 11th sample is part of the first experiment while

X2,3,21 = 0 since the 21st sample is not part of the 3rd experiment. This initial model

of the normalized signal intensity fits a total of 8 parameters: β0, which represents a

global constant term, β1 which represents a global slope term, β21, β22, and β23 which

represent corrections to the y-intercept for the individual experiments, and β31, β32,

and β33 which represent corrections to the slope for the individual experiments. The

interaction term X1iX2ji was included to find possible interactions between the ex-

perimental preparation and the slope of the working curve for the internal standard,

therefore allowing an examination of the effects of cell culture conditions and instru-

ment variability on this slope.
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For all examined standards, when this more comprehensive model was compared

to the model where β31 = β32 = β33 = 0 (no interaction between experiment and slope)

using the appropriate F-statistic, there was found to be no significant improvement

in the sum of squared deviations. That is, over the tested ranges, the slope for the

addition of standard over the background level in the RAW 264.7 cells was not affected

by the initial signal level for the tested species, and the simpler linear model with no

interaction term was found to be appropriate for modeling purposes. Thus, the lines

for the standard additions are statistically parallel, regardless of fluctuations in the

initial signal strength. An example of this result is seen in Figure 29.

Figure 29: Effects on normalized signal strength of additions of 34:1 DAG to lipid
extracts from RAW 264.7 cells. Three separate experiments, each with 12 samples,
were performed where RAW 264.7 cells were seeded at 1.5x106 cells per well and
grown to 80% confluence (∼ 3.0 × 106 cells). Prior to addition of chloroform for
extraction, 100 ng (0.2 nmol) of 24:0 DAG and varying amounts (10, 25, 50, 75, 100,
and 150 ng) of 8 other DAG standards (28:0, 32:0, 34:0, 34:1, 36:0, 36:1, 38:0, and
38:4) were added to samples. Results for the normalized signal strength for 34:1 from
experiment 1 (N) and experiment 3 (�) are presented with individual best fit lines.
The lines are essentially parallel but have different intercepts.
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In contrast, the coefficients for the experimental factor representing a correction to the

intercept values, β21, β22, and β23, were significant for several of the standards, and

may represent variation in cell-culture or the initial signaling state of the preparations.

Using the multiple parameter linear model, the slopes for the 8 DAG species

titrated into the RAW 264.7 cell background were computed. These slopes and their

associated standard errors are given in Table 7. Multiple parameter linear modeling

[70] was accomplished using the S-Plus R© Version 3.3 for Windows software suite

(StatSci division of Mathsoft Inc. Seattle, Washington).

Table 7: Slopes (in normalized signal/ng DAG) for the eight DAG standards deter-
mined for the addition to background in a cellular system.

DAG MW m/z [M+Na+]+ Multiple R2 a Slope Std. Errorb

38:0 652.59 675.59 0.9804 0.00464 0.00012
38:4 644.54 667.53 0.9940 0.01168 0.00017
36:0 624.57 647.56 0.9810 0.00594 0.00015
36:2 620.54 643.53 0.9919 0.01044 0.00025
34:0 596.54 619.53 0.9851 0.00592 0.00015
34:1 594.52 617.51 0.9869 0.00657 0.00038
32:0 568.51 591.50 0.9879 0.00610 0.00016
28:0 512.44 535.43 0.9933 0.01016 0.00015

aMultiple R2 for the overall model fit. bStandard error for the slope coefficient.

A single sample of the 36 analyzed was removed from each of these regressions

because it displayed a large Cooks distance for seven of the 8 standard curves. Cooks

distance [12] provides a method for the identification of points with abnormally high

influence in a regression setting. The differences in the slopes for the various DAG

species are likely due to solubility/ionization differences in the delivery and ionization

of the compounds into the mass spectrometer.

To expand this analysis to encompass all the detectable DAG species, we employed

a multiple linear regression model to predict the slope of the working curve for a

specific DAG species based on its molecular characteristics. That is, we used the
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information obtained with the 8 synthetic standards to predict the behavior of the

other DAG species. Specifically, the total number of carbons in the acyl chains and

their degree of unsaturation were utilized as independent variables and the slope of

the working curve was the dependent variable. This model has functional form:

Si =α0 + α1C1i + α2C2i + εi, (113)

where

Si = slope for the ith DAG species observed intensity;

C1i = total number of carbons present in the acyl chains minus 24;

C2i = degree of unsaturation in the acyl chains

(total number of double bonds present);

εi = error term.

Our analysis included DAG species containing at least 24 total carbons in their acyl

chains, since shorter acyl chains are uncommon in mammalian cells, and the variable

C1i is adjusted to reflect this value as 0 (e.g. for a 38 carbon-containing DAG species,

the value of C1i is 38 - 24 = 14). This multiple parameter linear model was based on

the results from the 8 standards, and had a multiple R2-value of .851, indicating that

over 85% of the variation in the slopes for the various DAG species can be accounted

for with these two variables. The coefficients of this model for the assay system are

presented in Table 8.

The predicted slopes for the 8 synthetic standards were calculated for comparison

with those observed empirically (Table 9). Using the model, the predicted slopes

for the other 20 DAG species in our assay panel were computed. For example, the

predicted slope for 34:2 DAG would be calculated as: 0.01103 − 0.00048(34 − 24) +

.00190(2) = .01003. A range of total carbons from 28 to 38 and 0 to 6 double bonds

were considered.
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Table 8: Coefficients for the multiple parameter linear model in equation (113) used
to estimate the slopes of the calibration curves for species of DAG not included in
the titration analysis.

Coefficient Value Std. Error

α0
a 0.01103 0.00157

α1
b -0.00048 0.00016

α2
c .00190 0.00036

aGlobal intercept. bSlope coefficient for the acyl chain length.
cSlope coefficient for degree of unsaturation.

Slopes shown in Table 9 were incorporated into a program written in S-Plus R© for

the rapid quantitative analysis of a total of 28 DAG species. For the 8 species for

which the slopes were directly measured, this value was utilized in the software. The

other 20 species were measured using the estimated slope value from the linear model.

To estimate the level of detection for the method, we employed the Residual Standard

Error (RSE) of the model used in the determination of the slope of the calibration

curve, which estimates the variance around the calibration curve, and the slope of the

curve, from which the detectable amount of each lipid species can be computed. That

is, the detectable limit for a two sample t-test was calculated with equal variances set

to the RSE, and this number was divided by the slope of the calibration curve. This

produces an approximation to the minimum amount of lipid which can be detected

with the method. The results for the 8 internal standards are presented in Table 10.

Approximate limit of detection (LOD) values for the other 20 DAG species were

computed in a similar manner, using the predicted slope from Table 9 and the baseline

variability of each DAG species in place of the RSE. The differences in the detection

limit are likely caused by a variance in the sample preparation, and the larger limits of

detection correlate with the species (e.g. 34:1) present in larger quantities in resting

RAW 264.7 cells.

The method is applicable to other cellular extracts with different lipid composi-

tions and backgrounds (e.g., presence of other neutral lipids in the analyzed fractions)

111



Table 9: Predicted slopes for the 28 species of DAG determined from the linear model
whose coefficients are displayed in Table 8.

DAG Species MW m/z [M+Na+]+ Observed Slopea Predicted slopeb

38:0 652.60 675.59 0.00464 0.00431
38:1 650.58 673.57 N/A 0.00621
38:2 648.57 671.56 N/A 0.00811
38:3 646.55 669.54 N/A 0.01001
38:4 644.54 667.53 0.01168 0.01191
38:5 642.52 665.51 N/A 0.01381
38:6 640.51 663.50 N/A 0.01571
36:0 624.57 647.56 0.00594 0.00527
36:1 622.55 645.54 N/A 0.00717
36:2 620.54 643.53 0.01044 0.00907
36:3 618.52 641.51 N/A 0.01097
36:4 616.51 639.50 N/A 0.01287
36:5 614.49 637.48 N/A 0.01477
34:0 596.54 619.53 0.00592 0.00623
34:1 594.52 617.51 0.00657 0.00813
34:2 592.51 615.50 N/A 0.01003
34:3 590.49 613.48 N/A 0.01193
34:4 588.48 611.47 N/A 0.01383
32:0 568.51 591.50 0.00610 0.00719
32:1 566.49 589.48 N/A 0.00909
32:2 564.48 587.47 N/A 0.01099
32:3 562.46 585.45 N/A 0.01289
30:0 540.48 563.47 N/A 0.00815
30:1 538.46 561.45 N/A 0.01005
30:2 536.44 559.43 N/A 0.01195
30:3 534.43 557.42 N/A 0.01385
28:0 512.44 535.43 0.01016 0.00911
28:1 510.43 533.42 N/A 0.01101

aEmpirically observed slope calculated for the assay conditions.
bSlope estimate calculated from the linear model.
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Table 10: Approximation for the limit of detection (ng) for the 8 internal standards
used in the titration experimentsa.

DAG RSEb slopec LODa

power of test 1-β = .50 1-β = .75
number of replicates 3 6 9 3 6 9

38:0 0.03052 0.00464 11.44d 6.88 5.41 15.43 9.55 7.56
38:4 0.04271 0.01168 6.36 3.66 3.01 8.58 5.3 4.2
36:0 0.03866 0.00594 11.32 6.8 5.35 15.27 9.44 7.47
36:2 0.06476 0.01044 10.79 6.49 5.11 14.55 8.99 7.13
34:0 0.03911 0.00592 11.5 6.91 5.44 15.49 9.58 7.58
34:1 0.09741 0.00657 25.81 15.51 12.21 34.78 21.77 17.03
32:0 0.0403 0.0061 11.49 6.92 5.44 15.49 9.59 7.59
28:0 0.03886 0.01016 6.65 4.01 3.15 8.97 5.55 4.39

aLimit of detection for the method was based on a two-sample t-test for a test with power (1 - probability of a Type II error) of

0.50 and 0.75, with three, six, and nine replicates respectively. The alpha level for all results was 0.05. bResidual Standard Error

for the linear model. cSlope of the calibration curve. dA limit of detection of 11.44 ng for 38:0 DAG corresponds to a concentra-
tion of 167 fmol/µl (or 17.5 pmol/sample).

after recalculating the slopes for the standard curves as described above and then per-

forming the linear regression technique using the newly defined slopes. Figure 30A

illustrates the linear relationship between the spiked and detected amounts of DAGs

in different cell extracts despite differences in the DAG peaks environment in the

mass spectra (Fig. 30B). By contrast a plasma preparation was analyzed by the same

approach. Short carbon chain DAG internal standards demonstrate good linearity,

while significant problems were encountered in accurate quantification of long-chain

polyunsaturated DAG species. Whether this was the result of selective enzymatic

processes that survived typical heat inactivation protocols (data not shown) or more

complex contaminants present in plasma (relative to cell extracts) that contribute to

ion suppression is unknown. This is the focus of ongoing investigation.

VI.3.4 Quantification of DAG species in RAW 264.7 cells after PAF stim-
ulation

To illustrate the method, RAW 264.7 cells were stimulated with 100 nM PAF, for

30 s, 1 min, 2 min, 3 min, and 5 min. PAF is a proinflammatory phospholipid

affecting various processes, including increasing cell permeability of blood vessels

and contracting assorted involuntary muscles. PAF stimulates G-protein coupled

receptors which activate phospholipase C and phospholipase A2 enzymes inducing

the formation of DAG and arachidonic acid, respectively.
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Figure 30: Illustration of differences in standard curves among different cellular ex-
tracts. Three different cellular extracts (RAW 264.7 macrophages, 1321N1 astrocy-
toma cells, and CHO-K ovarian cells) were tested using the method, by adding the
indicated amounts of DAG standards (see panel A) to the extracts. Though the slopes
for the standard curves may be different for each cellular extract, as is the case for
34:1 DAG (A), the relationships remain linear and the method of multiple linear re-
gression may still be applied to determine slopes of the remaining DAG species. The
spectra of the three cellular extracts with addition of 24:0 DAG internal standards
are shown in panel B.
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The graphical results for 4 of the 28 DAG species measured are shown in Figure 31.

Panels 31A and 31B show the kinetic behavior of 32:0 and 34:1 DAG. Both species

depict a slight initial decrease from baseline, followed by an increase at 1 minute,

and a subsequent and sustained decrease to levels below baseline. This response was

observed in most of the saturated and mono- and di-unsaturated fatty acid containing

DAG species.

In contrast, the PUFA-containing 38:4 and 38:5 DAG species in panels 31C and

31D display a drastically different trend, which was representative of all of the PUFA-

containing DAGs. They remain near baseline levels at 30 seconds and then exhibit

a sustained increase over baseline throughout the time course. These results demon-

strate species-dependent differential metabolism of DAGs suggesting specificity in

DAG metabolic pathways determined by acyl chain composition. Clearly, a full un-

derstanding of DAG metabolism requires an analytical method that provides the

detection and quantification of the individual species.

115



Figure 31: Time-based behavior of four DAG species, with varying numbers of car-
bons and double bonds, after addition of 100 nM PAF. The cellular DAG levels were
measured as described in Section VI.3.3, using ESI-MS after chromatographic sepa-
ration. Time points contain a minimum of 9 replicates performed on three different
experimental days. Error bars represent 2 SEM. In panels A and B PAF addition
results in an initial decrease in total cellular DAG content that is followed by a brief
increase and subsequent decrease over baseline levels. In panels C and D, however,
PAF addition results in an immediate increase in total cellular DAG that is main-
tained throughout the tested time course.
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chapter vii

conclusions and future directions

VII.1 Modeling Results

A mathematical model of the UDP signaling pathway in RAW 264.7 macrophages has

been developed to better understand the underlying mechanisms of species-specific

DAG production and degradation. In order to capture the necessary elements and

behaviors of this complex signaling pathway while also maintaining a certain degree

of simplicity, a minimalistic yet realistic approach has been taken, and a successful

quantitative representation of the events downstream activation of the P2Y6 receptor

has been achieved.

The mechanisms of receptor activation and desensitization were modified for the

P2Y6 receptor from a detailed description given by Lemon in P2Y2 receptors [39]

in order to accurately represent the slow receptor internalization of surface P2Y6

receptors seen by Brinson and Harden [6].

There are multiple pathways which could be involved in the production of IP3 and

DAG, as multiple G-protein subunits and isoforms can activate multiple isoforms of

PLC. This often depends on the cell type under consideration as well as the receptor

or receptors undergoing stimulation. Since P2Y6 receptors have been shown to couple

to the Gαq isoform [86], and PLCβ-3 isoforms have been shown to exhibit strongest

sensitivity to Gαq [72], we have assumed a single mechanism for PIP2 hydrolysis:

activation of Gαq and PLCβ-3.

As modeling Ca2+ dynamics was not been a focus of this work, Ca2+ contribution

in the signaling pathway was formed after a model previously developed by Li and

Rinzel [40] and was handled in such a way as to treat Ca2+ more as an input into

the model. Therefore, parameter values for the Ca2+ module were chosen so as to
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most accurately mimic the experimental Ca2+ data in the RAW 264.7 population

data from the Alliance for Cellular Signaling (http://www.signaling-gateway.org).

Initial efforts using the canonical pathway for DAG production and degradation

(via PIP2 hydrolysis only) were unsuccessful, as we were unable to reproduce the be-

havior seen experimentally from different species of DAG. In particular, the biphasic

dynamics of mono- and di-unsaturated DAGs could not be reproduced for any choice

of parameter values. Furthermore, the general theory that later DAG production

originates from PLD activity does not hold true in RAW 264.7 macrophages stimu-

lated with UDP, as we found there to be no PLD activity in these cells post agonist

stimulation with UDP. Instead, upon incorporating into this canonical pathway a

known pathway in DAG metabolism involving a second pool of DAG present in high

concentrations in resting cells, we were able to obtain in silico results comparable

to those seen empirically. Under this two-pool model structure for DAG kinetics

shown in Figure 2, we could reproduce differential kinetics among multiple species

of DAG, holding all parameters fixed except those directly related to the production

and degradation associated with different DAG species. For the same choice of all

remaining rate parameters, we obtained a good fit for the experimental results of IP3

and Ca2+.

Sensitivity analysis of model output to variations in model parameters was per-

formed using a multiple linear regression model. The vast majority of model coeffi-

cients of determination, R2
y, were all sufficiently close to one for all time points and

for all model outputs, with the smallest values being greater than 0.8. Thus, the stan-

dardized regression coefficients were proven to be appropriate measures of parameter

sensitivity. Both IP3 and DAG were shown to be sensitive to the rate of receptor

phosphorylation, kp, and the rate of PIP2 replenishment, krep, suggesting that the

uncertainty in the output of these two variables could be significantly reduced by

obtaining a better estimate of these two rate parameters. DAG was seen to be most

sensitive to the activation and degradation parameters of DAGp2 and the degradation
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rate of DAGp1, which were all directly estimated from the experimental data.

Rigorous analysis of the model behavior proved the local existence and uniqueness

of the full system of nonlinear ODEs, while global existence as well as positivity and

boundedness of solutions was established for the simplified model. Steady states for

the simplified model were also shown to be globally asymptotically stable within the

region of biological interest.

Ongoing work involves investigation of stability behavior for the full model, in-

volving the three-equation system for Ca2+ dynamics. We would also like to relax the

assumption of a well-mixed cell to include the spacial aspects of the UDP signaling

pathway through incorporation of partial differential equations as well as inclusion

of delay terms to better represent what is seen experimentally and known to be true

biologically.

VII.2 Pathway Analysis Results

As the mathematical modeling suggested the addition of another branch in the sig-

naling pathway, we conducted a set of experiments to test this hypothesis. First, the

two-dose UDP data showed that both levels of UDP produce a similar DAG response

out to 15 minutes. For the higher UDP dose, the level of DAGs produced at 15

minutes was slightly higher than in the lower dose. Furthermore, the response from

the higher dose peaked at 15 minutes and was recovering by 30 minutes, whereas the

levels for the lower dose at 30 minutes were either similar to those at 15 minutes or

slightly higher. This suggests that for the higher dose, the cells are responding more

rapidly.

Next, there were two major results from the R59949 study: 1) the inhibitor caused

a decrease in DAG levels over baseline, though not all of these decreases were seen to

be significant, and 2) for most of the PUFA-containing and mono- and di-unsaturated

DAGs, the inhibitor had the greatest effect at the 30 second time point, where levels

were significantly higher with cells pretreated with 10 µM R59949 and stimulated
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with 25 µM UDP compared to non-pretreated cells stimulated with 25 µM UDP.

This data suggests a role for DAG kinase in these DAG species immediately after

UDP stimulation.

Although Propranolol had no effect on the UDP response for 38:4 DAG, it ap-

peared to eliminate the UDP response in many of the mono- and di-unsaturated

DAGs. This together with the R59949 data suggests an interplay between DAG ki-

nase and LPP. We also conducted a global lipid analysis of the effects of Propranolol.

In unstimulated cells pretreated with Propranolol, we observed an increase in levels of

mono- and di-unsaturated and saturated PAs throughout the tested timecourse, sug-

gesting that there exists a constitutively active DAG kinase and lipid phosphate phos-

phatase which are phosphorylating mono- and di-unsaturated and saturated DAGs

and dephosphorylating mono- and di-unsaturated and saturated PAs, respectively,

in resting cells. In stimulated cells pretreated with Propranolol, however, there was

no significant increase in the mono- and di-unsaturated and saturated PAs over the

amount of PA produced from Propranolol alone. For the PUFA-containing DAGs,

especially 38:4 DAG, Propranolol had essentially no effect on the UDP response. For

most of the PUFA containing PAs, Propranolol did not significantly increase levels

in resting cells and had no significant effect on the UDP response. This also agrees

with our two-pool model (Fig. 2), if we assume that Propranolol is affecting the

transfer of PI to the plasma membrane: If there exist resting levels of mono- and

di-unsaturated and saturated DAGs, inhibition of constitutively active LPP would

lead to a depletion of the DAG pool and an increase in PA. If the remaining parts

of the pathway were left intact, upon stimulation we should still see an increase in

these DAG species through PA conversion to CDP-DG to PI, which is shuttled to the

plasma membrane, phosphorylated to phosphatidylinositol monophosphate and again

to PIP2, which is hydrolyzed to form DAG. Since we did not see an increase in mono-

and di-unsaturated and saturated DAGs with Propranolol and UDP, we must assume

Propranolol is somehow affecting this part of the pathway. We still have an increase

120



in PUFA-containing DAGs when cells have been pretreated with Propranolol since

the majority of these DAGs were coming from hydrolysis of existing PIP2. There was

also no increase in PUFA-containing PAs after pretreatment with Propranolol since

there were low basal levels of PUFA-containing DAGs.

The remaining inhibitors tested at the 15 minute time point gave responses in

agreement with the two-pool model for DAG production. Of special mention is the

effect of U73122, which essentially eliminated the UDP response for most of the

DAG species. This behavior would be expected within the two-pool model pathway

structure, as the majority of DAG production from UDP stimulation comes through

hydrolysis of PIP2.

VII.3 DAG Quantification Results

Finally, we demonstrate here that DAG molecular species can be reliably quantified

from a cellular extract by ESI-MS. The newly developed multiple linear regression

model for raw mass spectral data analysis allows adjustment for the differences in

ionization due to the differences in acyl chain composition as well as compensation

for the nature of the lipid extracts (cell type and/or instrumental variability). The

methodology described here also calculates the contributions of individual isotopic

molecular species to each parent ion peak, making it more accurate and useful in the

quantitative determination of a low abundant class of lipids such as diacylglycerols.

The optimized ionization and detection conditions together with the inclusion of an

internal standard permit the quantitative determination of 28 DAG species present

in a RAW 264.7 cell extract after ligand stimulation. The differential kinetic be-

havior of DAG species with different acyl chain composition after PAF stimulation

suggests a differential metabolism. With respect to the individual species detection

and quantification, the proposed analytical method offers a valuable tool for compre-

hensive understanding of DAG metabolism. This work also provides an example of

metabolomic profiling of mammalian cells. Differences between any two states can
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be compared (e.g., with or without a receptor ligand) in a discovery phase approach

[20, 63] which allows identification of changes in the relative abundance of different

lipid classes and even individual lipid species. Subsequent absolute quantification of

these changes require optimized separation approaches with tailored internal stan-

dards, such as those described here. The comprehensive analysis of species level

changes in the cellular lipome is an essential goal in understanding cellular networks

and identification of novel biomarkers.
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appendix

A. Additional SIMULINK Figures

Here we include all SIMULINK subsystems contained in the full SIMULINK model

in Figure 4 as well as a list of all blocks used and their corresponding function.

Figure 32: SIMULINK activated receptor subsystem.

Figure 33: SIMULINK inactivated receptor subsystem.
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Figure 34: SIMULINK activated G-protein subsystem.

Figure 35: SIMULINK PIP2 subsystem.
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Figure 36: SIMULINK IP3 subsystem.
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Figure 37: SIMULINK DAGp1 subsystem.

Figure 38: SIMULINK DAGp2 subsystem.
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Figure 40: SIMULINK h subsystem (from Ca2+ module).

Figure 41: SIMULINK c0 subsystem (from Ca2+ module).
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Figure 42: SIMULINK blocks used in the model from Figure 4.
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B. MATLAB Code for Numerical Simulations

Here we include the MATLAB code used to generate all numerical simulations from

Section IV.2 and to perform sensitivity analysis discussed in Section IV.3.

B.1 M-file to create sample matrix

%---------------------------------------------------------------------

% create_sample_matrix.m

% THIS FILE IS USED TO CREATE A RANDOM SAMPLE MATRIX USING SIMLAB

% AND IS MADE TO RUN ON "hannah_odes.m" and "run_hannah_odes.m"

% THIS FILE IS A DERIVATIVE OF SIMLAB’S "sampleRepLatin.m" FILE

% WHICH CAN BE FOUND ON THE SIMLAB WEBSITE:

% http://simlab.jrc.cec.eu.int/

%---------------------------------------------------------------------

global final_time runstot sample

runstot = 5000; % total number of samples created

% equals total number of rows in sample matrix

gsaBegin %opens SIMLAB

% Below we add each input factor (parameter) using a uniform

% distribution where the left and right endpoints are 10% variations

% from the nominal value

addFacUnif(’p1’,1,[432,528,1],’initial_384_DAG’)

addFacUnif(’p2’,1,[450,550,1],’initial_341_DAG’)
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addFacUnif(’p3’,1,[18000,22000,1],’RT’)

addFacUnif(’p4’,1,[0.0001575,0.0001925,1],’kr_Lemon’)

addFacUnif(’p5’,1,[0.001575,0.001925,1],’kp_Lemon’)

addFacUnif(’p6’,1,[0.0054,0.0066,1],’ke_Lemon’)

addFacUnif(’p7’,1,[4.5,5.5,1],’K1_Lemon’)

addFacUnif(’p8’,1,[90,110,1],’K2_Lemon’)

addFacUnif(’p9’,1,[270000,330000,1],’GT’)

addFacUnif(’p10’,1,[22.5,27.5,1],’L’)

addFacUnif(’p11’,1,[0.1233,0.1507,1],’ka_tilde’)

addFacUnif(’p12’,1,[0.018,0.022,1],’kd’)

addFacUnif(’p13’,1,[0.000009,0.000011,1],’khyd_tilde’)

addFacUnif(’p14’,1,[0.0126,0.0154,1],’krep’)

addFacUnif(’p15’,1,[0.0054,0.0066,1],’kd3’)

addFacUnif(’p16’,1,[8100000,9900000,1],’PIP2T’)

addFacUnif(’p17’,1,[0.001539,0.001881,1],’k_dp2’)

addFacUnif(’p18’,1,[0.001764,0.002156,1],’k_ap2’)

addFacUnif(’p19’,1,[0.00108,0.00132,1],’k_dp1’)

addFacUnif(’p20’,1,[0.36,0.44,1],’Kc’)

addFacUnif(’p21’,1,[0.405,0.495,1],’x7fac’)

setMethodLatin(14237,runstot) % the first number is the seed, and the

% second number is the number of samples I want to generate using the

% Latin Hypercube sampling method

sample = createSample

% generate random sample and store under "sample"
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%sample_42 = [480 500 20000 0.000175 0.00175 0.006 5 100 300000 25

%0.137 0.02 1.00E-05 0.014 0.006 9000000 0.00171 0.00196 0.0012 0.4

%0.45]; %This sets the sample to all of the nominal values

%---------------------------------------------------------------------

B.2 M-file defining system of ODEs

function xdot = hannah_odes(t,x)

%HANNAH_ODES

%xdot = hannah_odes(t,x)

%---------------------------------------------------------------------

% Declaring global variables to be seen by "hannah_odes.m" as well as

% "create_sample_matrix.m" and the m-file to run the numerical

% simulations called "run_hannah_odes"

global Nav v m2uM kr_Lemon kp_Lemon ke_Lemon RT K1_Lemon K2_Lemon GT

global ka_tilde kd lambda khyd_tilde krep kd3 PIP2T PIP2T_conc k_dp2

global k_ap2 k_dp1 Kc CaT Kctilde L

global v1 d_ip3 d_act v2 c1 v3 k_er epsilon j_in v4 k_pl a d_inh

global zeta_341 zeta_384

global initial_384_DAG initial_341_DAG

global P i final_time runstot % global variables for random parameter

% matrix "P"

%---------------------------------------------------------------------

% Temp equations for Calcium module

temp1 = x(5)/(x(5) + d_ip3);
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temp2 = x(8)/(x(8) + d_act);

temp3 = (x(8)*x(8))/(k_er*k_er + x(8)*x(8));

temp4 = (x(8)*x(8))/(k_pl*k_pl + x(8)*x(8));

temp5 = d_inh / (x(8) + d_inh);

%---------------------------------------------------------------------

% XDOT: xdot with the random sample parameter matrix P (built in the

% file "create_sample_matrix.m")

xdot = [P(i,4) * P(i,3) - (P(i,4) + (P(i,5) * P(i,10) / (P(i,7) +

P(i,10))))*x(1) - P(i,4) * x(2); % x(1) = activated receptors

P(i,10)*((P(i,5)*x(1) / (P(i,7) + P(i,10))) - ((P(i,6)*x(2))/

(P(i,8) + P(i,10)))); % x(2) = phosphorylated receptors

P(i,11)*m2uM*x(1)*(P(i,9)-x(3)) - P(i,12)*x(3); % x(3) = GaGTP

-P(i,13) * x(8) / (P(i,20) + x(8)) * x(3) * x(4) + P(i,14) *

(P(i,16) - x(4)); % x(4) = PIP2

P(i,13)* x(8) / (P(i,20) + x(8)) * x(3) * x(4)* m2uM -

P(i,15) * x(5); % x(5) = IP3

P(i,13) * x(8) / (P(i,20) + x(8)) * x(3) * x(4)* m2uM -

P(i,19) * x(6) + P(i,17)*P(i,21)*x(7); % x(6) = DAGp1

-P(i,17) * x(7) + P(i,18) * (P(i,2) - x(7)); %x(7) = DAGp2

(v1*(temp1*temp1*temp1)*(temp2*temp2*temp2)*((x(9))^3) +

v2) * (x(10) - (1 + c1) * x(8)) - v3 * temp3 + epsilon *

(j_in - v4 * temp4); %x(8) = Ca2+

a * (x(8) + d_inh) * (temp5 - x(9)); %x(9) = h

epsilon * (j_in - v4 * temp4)]; %x(10) = c0

%---------------------------------------------------------------------
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B.3 M-file to run simulations and sensitivity analysis

%RUN_Hannah_Odes

%Script file to run hannah_odes and output plot

%---------------------------------------------------------------------

%Clearing statistical variables

clear res1 resint1 src1 srcint1 R2Fpe1

clear res2 resint2 src2 srcint2 R2Fpe2

clear res3 resint3 src3 srcint3 R2Fpe3

clear res4 resint4 src4 srcint4 R2Fpe4

clear res5 resint5 src5 srcint5 R2Fpe5

clear res6 resint6 src6 srcint6 R2Fpe6

clear res_DAG resint_DAG src_DAG srcint_DAG R2Fpe_DAG

clear res7 resint7 src7 srcint7 R2Fpe7

clear res8 resint8 src8 srcint8 R2Fpe8

clear res9 resint9 src9 srcint9 R2Fpe9

clear res10 resint10 src10 srcint10 R2Fpe10

clear b1 bint1 r1 rint1 stats1

clear b2 bint2 r2 rint2 stats2

clear b3 bint3 r3 rint3 stats3

clear b4 bint4 r4 rint4 stats4

clear b5 bint5 r5 rint5 stats5

clear b6 bint6 r6 rint6 stats6

clear b341 bint341 r341 rint341 stats341

clear b7 bint7 r7 rint7 stats7

clear b8 bint8 r8 rint8 stats8

clear b9 bint9 r9 rint9 stats9

clear b10 bint10 r10 rint10 stats10
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clear i j k m q tspan final_time P

%---------------------------------------------------------------------

% Declaring global variables to be seen by "hannah_odes.m" as well as

% "create_sample_matrix.m" and the m-file to run the numerical

% simulations called "run_hannah_odes"

global Nav v m2uM kr_Lemon kp_Lemon ke_Lemon RT K1_Lemon K2_Lemon GT

global ka_tilde kd lambda khyd_tilde krep kd3 PIP2T PIP2T_conc k_dp2

global k_ap2 k_dp1 Kc CaT L

global v1 d_ip3 d_act v2 c1 v3 k_er epsilon j_in v4 k_pl a d_inh

global zeta_341 zeta_384

global initial_384_DAG initial_341_DAG

global P i final_time runstot sample

% global variables for random parameter matrix

%---------------------------------------------------------------------

P = sample; % random sample matrix of model parameters for

% "hannah_odes.m"

final_time = 450; % number of points to plot for each graph

tspan(1) = 0;

for j = 2:final_time + 1

tspan(j) = tspan(j-1)+4;

end

% tspan = [0 1800]; % set time span to integrate over 1800 seconds

% x0 = [1,0,0,1,0,0,1,0.00058,0.8,2]; % sets initial conditions

%---------------------------------------------------------------------
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% Conversion constants

Nav = 6.02252e23; % Avogadro’s constant

v = 5e-13; % Cell volume in L; taken from Sasada 1983, who used

% 395-589 um^3 which is approximately 5e-13L since 1 m^3=1000 L

% (also, 1e15 um^3 = 1 L) (1 um = 1 micron)

m2uM = 1 / (Nav * v * 1e-6); % multiply this by # of molecules to get

% concentration in uM

uM2pmoles = 1e6 * 5e-013; % multiply this by quantity in uM to get

% # of pmoles

uM2ng384 = 1e3 * v * 644; % multiply this by quantity in uM to get

% # ng of 38:4 DAG (since mass of 38:4 is 644)

uM2ng341 = 1e3 * v * 594; % multiply this by quantity in uM to get

% # ng of 34:1 DAG (since mass of 34:1 is 594)

initial_384_DAG = 480; % calculated value

% P(i,1)

initial_341_DAG = 500; % calculated value

% P(i,2)

%---------------------------------------------------------------------

% Parameters for Lemon’s receptor equations

% NOTE: These parameters fit Harden 2001 P2Y6 data as well

RT = 20000; % total number of P2Y2 receptors in 1321N1 cells
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% taken from Garrad et al. (1998)

% P(i,3)

kr_Lemon = 0.000175; % (in /s)

% taken from Lemon

% receptor recycling rate

% P(i,4)

kp_Lemon = 0.00175; % (in /s) receptor phosphorylation rate

% best fit for SIMULINK estimation 070404d

% P(i,5)

ke_Lemon = 0.006; %(in /s) receptor endocytosis rate

% taken from Lemon

%P(i,6)

K1_Lemon = 5; % (in uM)

% unphosphorylated receptor dissociation constant

% taken from Lukas 2004a and Flaherty 2007

% P(i,7)

K2_Lemon = 100; % (in uM)

% phosphorylated receptor dissociation constant

% taken from Lemon

% P(i,8)

%---------------------------------------------------------------------

%% Parameters G-protein cascade and DAG dynamics
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GT = 3e5; % total number of G-protein molecules in the cell

% taken from Flaherty 2007 (measured in RAW)

% P(i,9)

L = 25; % (in uM) % ligand concentration

% P(i,10)

ka_tilde = 0.137 * m2uM * RT; % nondim. G-protein activation rate

% 0.137 /uM /s taken from Flaherty 2007

% P(i,11)

kd = 0.02; % (in /s) % GTP-ase parameter

% Mahama & Lindermann 1994

% P(i,12)

khyd = 1e-005; % (in /#mol /s) % effective hydrolysis rate

% SIMULINK 070404d

khyd_tilde = 1e-005 * GT; % khyd for nondim. system

% P(i,13)

krep = 0.014; % (in /s) % recycling of PIP2 to PM

% SIMULINK 070404d

% P(i,14)

kd3 = 0.006; % (in /s) % IP3 removal rate to IP4 or IP2

% SIMULINK 070404d

% P(i,15)
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PIP2T = 9e6; % initial number of PIP2 molecules

% estimated from mass spec measurements in RAW cells

% P(i,16)

% PIP2T_conc = P(:,16)*m2uM;

% converts number of PIP2T to concentration (uM)

k_dp2 = 0.00171; % (in /s)

% effective phosphorylatoin rate of DAG from pool2

% better fit for SIMULINK 070404d (for 34:1 DAG)

% P(i,17)

% k_dp2 = 0.0050712; value for 38:4 DAG from SIMULINK 070404m

k_ap2 = 0.00196; % (in /s)

% effective production rate of pool 2 DAG

% SIMULINK 070404d (for 34:1 DAG)

% P(i,18)

k_dp1 = 0.0012; % (in /s)

% effective degradation rate of pool 1 DAG (PM)

% SIMULINK 070404d

% P(i,19)

Kc = 0.4; % (in uM)

% Ca2+ dissociation constant from PLC

% taken from Flaherty 2007

% P(i,20)

x7fac = 0.45; % controls the percentage of pool 2 DAG immediately used
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% for pool 1 DAG production (to in effect simulate the delayed response

% SIMULINK 070404d

% P(i,21)

zeta_341 = initial_341_DAG/(m2uM*PIP2T);

zeta_384 = initial_384_DAG/(m2uM*PIP2T);

N = 8e6; % number of cells we are simulating for DAG

%---------------------------------------------------------------------

%Paramters for Ca2+ contribution

v1 = 40; % (in /s)

% taken from Li

d_ip3 = 0.2; %(in uM)

% taken from Li

d_act = 0.4; %(in uM)

% taken from Li

v2 = 0.00508; % (in /s)

% SIMULINK est. on 3/30/07

c1 = 0.185;
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% taken from De Young 1992

v3 = 0.24; % (in uM /s)

% taken from Li

k_er = 0.4; % (in uM)

% taken from Lemon

epsilon = 0.01;

% taken from Li 1994 and De Young 1992

j_in = 0.44715; % (in uM /s)

% SIMULINK est. on 3/30/07

v4 = 1.3958; % (in uM /s)

% SIMULINK est. on 3/30/07

k_pl = 0.015555; % (in uM)

% SIMULINK est. on 3/30/07

a = 3.1; % (in /s)

% SIMULINK est. on 3/30/07

d_inh = 0.02; % (in uM)

% taken from Lemon

%---------------------------------------------------------------------
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% ODE solver that calls "hannah_odes" and integrates the system of

% odes

clear y y1 y2 y3 y4 y5 y6 y7 y8 y9 y10

for i = 1:runstot % "i" goes from 1 to the number of rows in P

% zeta_341 = .1*initial_341_DAG/(m2uM*P(i,16));

x0 = [P(i,3),0,0,P(i,16),0,0,P(i,2),0.0009,0.8,2];

[t,x] = ode15s(@hannah_odes, tspan, x0);

% evaluate ODEs using ode15s solver

y(:,:,i) = x;

% hold on

plot(t,(x(:,6)*uM2ng341*N + (x(:,7)-P(i,2))*uM2ng341*N))

% plot(t,(x(:,6)*PIP2T_conc*uM2ng384*N + (x(:,7)-1)

% *initial_384_DAG*uM2ng384*N))

% plot(t,(x(:,5)*P(i,16)*m2uM*uM2pmoles*3.5e5),’k’)

% plot pmoles of IP3 per 3.5E5 cells

% Note: I can include the plot functions in this loop to see

% what’s happening to the shape of each graph for each of the

% sample matrices.

end

% hold off

% Here I’m getting the y’s in the form that’s easier to input into

% SimLab

for k = 1:final_time+1 % the k’s are time points

for m = 1:runstot % the m’s are sample numbers

y1(m,k) = y(k,1,m);

% e.g. y1(5,10) = the value of y1 at the 10th

% time interval, for the 5 sample in the parameter matrix P
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y2(m,k) = y(k,2,m);

y3(m,k) = y(k,3,m);

y4(m,k) = y(k,4,m);

y5(m,k) = y(k,5,m);

y6(m,k) = y(k,6,m);

y7(m,k) = y(k,7,m);

y8(m,k) = y(k,8,m);

y9(m,k) = y(k,9,m);

y10(m,k) = y(k,10,m);

end

end

%---------------------------------------------------------------------

%%%%%%%%%%%%%%%%%%%%%% PLOT IP3 %%%%%%%%%%%%%%%%%%%%%%%%%

% plot(t,(x(:,5)*uM2pmoles*3.5e5),’k’)

% plots pmoles of IP3 per 3.5E5 cells

% ylabel(’{\bf \Delta IP_3 (in pmoles per 3.5E5 cells)}’)

ip3t = [0 180 240 300 600 900 1200 1800];

ip3_data = [0.00 8.78 8.94 7.46 6.74 5.95 5.15 1.25];

ip3_error = [0.55 1.64 2.83 1.59 0.83 1.08 1.20 2.09];

%used to plot IP3 data points

% hold on

% errorbar(ip3t,ip3_data,ip3_error,’k.’)

% hold off

% axis([-200 2000 -2 18]);
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%%%%%%%%%%%%%%%%%%%%%% PLOT 34:1 DAG %%%%%%%%%%%%%%%%%%%%%%%%%

% plot(t,(y6(1,:)*uM2ng341*N)+ (y7(1,:)-P(2))*uM2ng341*N,’k’)

% plot(t,(x(:,6)*PIP2T_conc*uM2ng341*N)+ (x(:,7)-1)

% *initial_341_DAG*uM2ng341*N,’k’)

% plot ng amount of total 34:1 DAG

% ylabel(’{\bf \Delta 34:1 DAG (in ng per 8E6 cells)}’)

% xlabel(’{\bf time (seconds)}’)

dag341t = [0 30 120 180 900 1800];

dag341_data = [0 11.01 43.20 10.86 103.61 75.01];

dag341_error = [0 18.88 28.57 9.59 13.34 22.90];

% used to plot 34:1 DAG data points

% hold on

% errorbar(dag341t,dag341_data,dag341_error,’k.’)

% hold off

% axis([-200 2000 -10 120]);

%%%%%%%%%%%%%%%%%%%%%% PLOT 38:4 DAG %%%%%%%%%%%%%%%%%%%%%%%%%

% plot(t,(y6(1,:)*PIP2T_conc*uM2ng384*N)+ (y7(1,:)-1)

% *initial_384_DAG*uM2ng384*N,’k’)

% plot(t,(x(:,6)*PIP2T_conc*uM2ng384*N)+ (x(:,7)-1)

% *initial_384_DAG*uM2ng384*N,’k’)

% plot ng amount of total 38:4 DAG

% ylabel(’{\bf \Delta 38:4 DAG (in ng per 4E6 cells)}’)
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% xlabel(’{\bf time (seconds)}’)

dag384t = [0 30 120 180 900 1800];

dag384_data = [0 2.50 14.54 26.20 45.48 25.98];

dag384_error = [0 2.83 3.97 3.58 5.43 4.78];

% used to plot 38:4 DAG data points

% hold on

% errorbar(dag384t,dag384_data,dag384_error,’k.’)

% hold off

% axis([-200 2000 -10 60]);

% plot(t,y8(1,:)) % Ca2+ trace

%%%%%%%%%%%%%%%% STATS FOR Y1 = activated receptors %%%%%%%%%%%%%%%%%%

for q=1:final_time+1

[b1,bint1,r1,rint1,stats1] = regress(y1(:,q),[ones(runstot,1) P]);

src1(:,q) = b1;

% SRC for coefficients at t(q)

srcint1(:,:,q) = bint1;

% SRC interval for coefficients at t(q)

res1(:,q) = r1;

% residuals for coefficients at t(q)

resint1(:,:,q) = rint1;

% residual intervals for coefficients at t(q)

R2Fpe1(q,:) = stats1;

% R^2 value, Fstatistic, p-value for F statistic,

% and error for coefficients at t(q)
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end

% rcoplot(res1(:,43),resint1(:,:,43)) % plots the residuals and their

% error bars for y1 at the 15th time point

%%%%%%%%%%%%%%%% STATS FOR Y2 = phos. receptors %%%%%%%%%%%%%%%%%%%%%

for q=1:final_time+1

[b2,bint2,r2,rint2,stats2] = regress(y2(:,q),[ones(runstot,1) P]);

src2(:,q) = b2;

% SRC for coefficients at t(q)

srcint2(:,:,q) = bint2;

% SRC interval for coefficients at t(q)

res2(:,q) = r2;

% residuals for coefficients at t(q)

resint2(:,:,q) = rint2;

% residual intervals for coefficients at t(q)

R2Fpe2(q,:) = stats2;

% R^2 value, Fstatistic, p-value for F statistic,

% and error for coefficients at t(q)

end

% rcoplot(res2(:,15),resint2(:,:,15)) % plots the residuals and their

% error bars for y2 at the 15th time point

%%%%%%%%%%%%%%%% STATS FOR Y3 = G-proteins %%%%%%%%%%%%%%%%%%%%%%%%%%

for q=1:final_time+1

[b3,bint3,r3,rint3,stats3] = regress(y3(:,q),[ones(runstot,1) P]);

src3(:,q) = b3;

% SRC for coefficients at t(q)

srcint3(:,:,q) = bint3;
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% SRC interval for coefficients at t(q)

res3(:,q) = r3;

% residuals for coefficients at t(q)

resint3(:,:,q) = rint3;

% residual intervals for coefficients at t(q)

R2Fpe3(q,:) = stats3;

% R^2 value, Fstatistic, p-value for F statistic,

% and error for coefficients at t(q)

end

% rcoplot(res3(:,15),resint3(:,:,15)) % plots the residuals and their

% error bars for y3 at the 15th time point

%%%%%%%%%%%%%%%% STATS FOR Y4 = PIP2 molecules %%%%%%%%%%%%%%%%%%%%%%

for q=1:final_time+1

[b4,bint4,r4,rint4,stats4] = regress(y4(:,q),[ones(runstot,1) P]);

src4(:,q) = b4;

% SRC for coefficients at t(q)

srcint4(:,:,q) = bint4;

% SRC interval for coefficients at t(q)

res4(:,q) = r4;

% residuals for coefficients at t(q)

resint4(:,:,q) = rint4;

% residual intervals for coefficients at t(q)

R2Fpe4(q,:) = stats4;

% R^2 value, Fstatistic, p-value for F statistic,

% and error for coefficients at t(q)

end

% rcoplot(res4(:,15),resint4(:,:,15)) % plots the residuals and their
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% error bars for y4 at the 15th time point

%%%%%%%%%%%%%%%% STATS FOR Y5 = IP3 concentration %%%%%%%%%%%%%%%%%%%

for q=1:final_time+1

[b5,bint5,r5,rint5,stats5] = regress(y5(:,q),[ones(runstot,1) P]);

src5(:,q) = b5;

% SRC for coefficients at t(q)

srcint5(:,:,q) = bint5;

% SRC interval for coefficients at t(q)

res5(:,q) = r5;

% residuals for coefficients at t(q)

resint5(:,:,q) = rint5;

% residual intervals for coefficients at t(q)

R2Fpe5(q,:) = stats5;

% R^2 value, Fstatistic, p-value for F statistic,

% and error for coefficients at t(q)

end

% rcoplot(res5(:,15),resint5(:,:,15)) % plots the residuals and their

% error bars for y5 at the 15th time point

%%%%%%%%%%%%%%%% STATS FOR Y6 = DAG p1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for q=1:final_time+1

[b6,bint6,r6,rint6,stats6] = regress(y6(:,q),[ones(runstot,1) P]);

src6(:,q) = b6;

% SRC for coefficients at t(q)

srcint6(:,:,q) = bint6;

% SRC interval for coefficients at t(q)

res6(:,q) = r6;
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% residuals for coefficients at t(q)

resint6(:,:,q) = rint6;

% residual intervals for coefficients at t(q)

R2Fpe6(q,:) = stats6;

% R^2 value, Fstatistic, p-value for F statistic,

% and error for coefficients at t(q)

end

% rcoplot(res6(:,15),resint6(:,:,15)) % plots the residuals and their

% error bars for y6 at the 15th time point

%%%%%%%%%%%%%%%% STATS FOR Y6 + Y7 = DAG p1 + DAG p2%%%%%%%%%%%%%%%%%

for q=1:final_time+1

[b341,bint341,r341,rint341,stats341] =

regress((y6(:,q)+ (y7(:,q))),[ones(runstot,1) P]);

src_DAG(:,q) = b341;

% SRC for coefficients at t(q)

srcint_DAG(:,:,q) = bint341;

% SRC interval for coefficients at t(q)

res_DAG(:,q) = r341;

% residuals for coefficients at t(q)

resint_DAG(:,:,q) = rint341;

% residual intervals for coefficients at t(q)

R2Fpe_DAG(q,:) = stats341;

% R^2 value, Fstatistic, p-value for F statistic,

% and error for coefficients at t(q)

end

% rcoplot(res_DAG(:,15),resint_DAG(:,:,15)) % plots the residuals and

% their error bars for y6+y7 at the 15th time point
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%%%%%%%%%%%%%%%% STATS FOR Y7 = DAG p2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for q=1:final_time+1

[b7,bint7,r7,rint7,stats7] = regress(y7(:,q),[ones(runstot,1) P]);

src7(:,q) = b7;

% SRC for coefficients at t(q)

srcint7(:,:,q) = bint7;

% SRC interval for coefficients at t(q)

res7(:,q) = r7;

% residuals for coefficients at t(q)

resint7(:,:,q) = rint7;

% residual intervals for coefficients at t(q)

R2Fpe7(q,:) = stats7;

% R^2 value, Fstatistic, p-value for F statistic,

% and error for coefficients at t(q)

end

% rcoplot(res7(:,15),resint7(:,:,15)) % plots the residuals and their

% error bars for y7 at the 15th time point

%%%%%%%%%%%%%%%% STATS FOR Y8 = Ca2+ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for q=1:final_time+1

[b8,bint8,r8,rint8,stats8] = regress(y8(:,q),[ones(runstot,1) P]);

src8(:,q) = b8;

% SRC for coefficients at t(q)

srcint8(:,:,q) = bint8;

% SRC interval for coefficients at t(q)

res8(:,q) = r8;

% residuals for coefficients at t(q)
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resint8(:,:,q) = rint8;

% residual intervals for coefficients at t(q)

R2Fpe8(q,:) = stats8;

% R^2 value, Fstatistic, p-value for F statistic,

% and error for coefficients at t(q)

end

% rcoplot(res8(:,15),resint8(:,:,15)) %plots the residuals and their

% error bars for y8 at the 15th time point

%%%%%%%%%%%%%%%% STATS FOR Y9 = h %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for q=1:final_time+1

[b9,bint9,r9,rint9,stats9] = regress(y9(:,q),[ones(runstot,1) P]);

src9(:,q) = b9;

% SRC for coefficients at t(q)

srcint9(:,:,q) = bint9;

% SRC interval for coefficients at t(q)

res9(:,q) = r9;

% residuals for coefficients at t(q)

resint9(:,:,q) = rint9;

% residual intervals for coefficients at t(q)

R2Fpe9(q,:) = stats9;

% R^2 value, Fstatistic, p-value for F statistic,

% and error for coefficients at t(q)

end

% rcoplot(res9(:,15),resint9(:,:,15)) % plots the residuals and their

% error bars for y9 at the 15th time point

%%%%%%%%%%%%%%%% STATS FOR Y10 = c0 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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for q=1:final_time+1

[b10,bint10,r10,rint10,stats10] =

regress(y10(:,q),[ones(runstot,1) P]);

src10(:,q) = b10;

% SRC for coefficients at t(q)

srcint10(:,:,q) = bint10;

% SRC interval for coefficients at t(q)

res10(:,q) = r10;

% residuals for coefficients at t(q)

resint10(:,:,q) = rint10;

% residual intervals for coefficients at t(q)

R2Fpe10(q,:) = stats10;

% R^2 value, Fstatistic, p-value for F statistic,

% and error for coefficients at t(q)

end

% rcoplot(res10(:,15),resint10(:,:,15)) % plots the residuals and their

% error bars for y10 at the 15th time point
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