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CHAPTER I

INTRODUCTION

Introduction

The term ‘treatment effect’ refers to the causal effect of a variable (treatment) on

an outcome variable of interest. It originates in the medical literature concerned with the

causal effects of a treatment, such as an experimental drug or a new surgical procedure.

Concepts and tools in the treatment effect study can be used to analyze economic data.

We can view any economic factor or policy on an individual or organization as a treatment,

and many interesting or important empirical questions in economics can be viewed as ques-

tions about some types of treatment effects. Examples include the effects of government

programmes and policies, such as those that subsidize training for disadvantaged workers,

and the effects of individual choices like college attendance.

The notion of a causal effect can be made more precise using a conceptual frame-

work that postulates a set of potential outcomes that could be observed in alternative states

of the world. Originally introduced by statisticians in the 1920s as a way to discuss treat-

ment effects in randomized experiments, the potential outcomes framework has become the

conceptual workhouse for non-experimental (observational) as well as experimental stud-

ies in many fields (see Holland, 1986, for a survey and Rubin, 1974, 1977, for influential

early contributions). In this dissertation, we focus on a binary treatment and there are

two potential outcomes: with and without the treatment. The difference of two potential

outcomes is considered as treatment effect, which is only caused by the change of treatment

status. A standard setting in the treatment effect study requires two groups of individuals, a
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treatment group with individuals taking the treatment and a control group with individuals

not taking the treatment, to learn about marginal distributions of two potential outcomes

and average treatment effects. Selection of the two groups becomes an essential issue in

the treatment effect study. We distinguish two types of selections, selection on observables

and selection on unobservables. Selection on observables means the selection of individuals

into either the treatment group or the control group is randomized or randomized after

controlling for observable factors that affect both the selection and the outcome. Selection

on unobservables means that there are factors affecting the outcome in the selection that

we can not observe or control for. These uncontrolled factors in the selection are also called

private information. Efforts are made by statisticians and econometricians to develop mod-

els to deal with data involving selection on observables or/and selection on unobservables.

The models that can deal with both selection issues are also called sample-selection models

or self-selection models and they are distinct from models that are only able to deal with

selection on observables. Most data in economics are observational data involving self selec-

tion or individual choice. The private information in self selection might also have impact

on the outcome. Treatment effect study without accounting for the impact of private in-

formation will lead to misleading conclusions. Thus our main focus in this dissertation is

on self-selection models. Specifically, we use switching regimes models (SRMs) to address

the self-selection, in which there are two outcome equations corresponding to two potential

states and a selection equation to decide which state can be observed.

One of the earlier econometric models to address self-selection is the Roy model

(1951). The income maximizing Roy model was developed to explain occupational choice

and its consequences for the distribution of earnings when individuals differ in their endow-

ments of occupation-specific skills. Switching regimes models (SRMs) extend the Roy model
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of self-selection by allowing a more general decision rule for selecting into different states.

By allowing a more general decision/selection rule, SRMs enjoy a much wider scope of ap-

plications than the Roy model. Recently, SRMs have been used to evaluate average effects

of a policy intervention using choice data. Heckman, Tobias, and Vytlacil (2003) derived

expressions for four average treatment effect parameters for a Gaussian copula SRM and

a Student’s t copula SRM with normal outcome errors and non-normal selection errors1.

The four average treatment effect parameters are the average treatment effect (ATE), the

treatment effect for the treated (TT), the local average treatment effect (LATE, Imbens

and Angrist, 1994), and the marginal treatment effect (MTE, Bjorklund and Moffitt, 1987;

Heckman, 1997; Heckman and Vytlacil, 1999, 2000a, 2000b).

One of the most commonly used SRMs in empirical work is the Gaussian SRM

in which the error vector (consisting of two outcome errors and one selection error) follows

a trivariate normal distribution. This is partly due to the simplicity of Heckman’s two-

step estimation procedure for Gaussian SRM introduced in Heckman (1976). The Gaussian

SRM has been extended to allow for non-normal marginal distributions in the errors in Lee

(1982, 1983), Heckman, Tobias, and Vytlacil (2003), and Li, Poirier, and Tobias (2004).

The models in Heckman, Tobias, and Vytlacil (2003) essentially assume that the trivariate

error vector follows a distribution with either the Gaussian copula or a trivariate Student’s

t copula. When the outcome errors are normal or Student’s t and the selection error has an

arbitrary distribution, Lee (1982, 1983), Heckman, Tobias, and Vytlacil (2003) show that

the model parameters can be consistently estimated by a two-step estimation procedure

extending Heckman’s two-step procedure for Gaussian SRM. By extending Heckman’s two-

step procedure to Student’s t outcome error(s), fat tailed outcome error(s) can be accounted

1They didn’t use the concept of copulas, but their models can be interpreted this way.

3



for in the two-step procedure of Lee (1982, 1983), Heckman, Tobias, and Vytlacil (2003).

Indeed simulation results in Heckman, Tobias, and Vytlacil (2003) show that their two-

step estimation procedure works well for fat-tailed distributions when used to estimate

ATE, TT, and LATE and that for ATE, TT, even Heckman’s two-step procedure based

on Gaussian SRM yields minor biases. Although not reported in their paper, Heckman,

Tobias, and Vytlacil (2003) mention in their Footnote 7 that ‘When generating data from

highly asymmetric distributions, such as a χ2 (3), we do see larger biases’ (in the estimates

of ATE and TT). Although the SRM with Student’s t outcome errors in Heckman, Tobias,

and Vytlacil (2003) allow for fat tails, it does not allow for skewness in the outcome errors

and existing two-step estimation procedures do not account for skewness in the outcome

errors either. The purpose of Chapter II is to bridge this gap in the existing literature.

Although average treatment effects are identifiable in SRMs, they are also limited

in their ability to address a wide range of interesting economic/policy questions because of

the non-identifiability2 of the joint distribution of potential outcomes in SRMs. Even in

the ‘textbook’ Gaussian SRM, the correlation coefficient between the potential outcomes or

equivalently the joint distribution of the potential outcomes is not identifiable. In a study of

a sectoral labor market using the Gaussian SRM, Vijverberg (1993) showed that a number

of interesting economic questions including the share of ‘productive’ workers employed in a

sector can not be answered without knowledge of the joint distribution of the two potential

outcomes. When used to study treatment effect defined as the difference between the two

potential outcomes, important distributional aspects of the treatment effect other than its

mean are not identified in SRMs. This partly explains why the current literature has mainly

focussed on various measures of average treatment effects.

2In this dissertation, we use identification and point identification interchangeably. We say a parameter
is not identified if it is not point identified.
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Recently two approaches have been proposed to deal with the non-identifiability

problem of the joint distribution of potential outcomes in the ‘textbook’ Gaussian SRM

and some of its extensions. By employing the positive semidefiniteness of the covariance

matrix of the outcome errors and the selection error, Vijverberg (1993) showed that in the

‘textbook’ Gaussian SRM, although unidentified, useful bounds can be placed on the cor-

relation coefficient between the potential outcomes, that is, it is partially identified. Koop

and Poirier (1997), Poirier (1998), and Poirier and Tobias (2003) demonstrated via Bayesian

approach that these bounds often provide informative information on the unidentified cor-

relation coefficient. Since the joint distribution of the potential outcomes in the ‘textbook’

Gaussian SRM depends on the unidentified correlation coefficient only (besides the iden-

tified marginal parameters), it is possible to place bounds on the joint distribution of the

potential outcomes and on the distribution of the difference between the potential outcomes.

In the second approach, restrictions are imposed on the dependence structure between the

potential outcomes such that their joint distribution and the distribution of treatment effects

are identified, see, e.g., Heckman, Smith, and Clements (1997), Biddle, Boden, and Reville

(2003), Carneiro, Hansen, and Heckman (2003), Aakvik, Heckman, and Vytlacil (2005),

Cunha and Heckman (2007), among others. Among other things, they demonstrated that

knowledge of the joint distribution of potential outcomes and the distribution of treatment

effects allows a much richer analysis of policy effects than average treatment effects. Ques-

tions that can be addressed include the proportion of people participating in the program

who benefit from it in terms of having positive treatment effects; the proportion of the total

population that benefits from the program; and which groups in an initial position benefit

or lose from the program.

We take the first approach in Chapter III and extend the partial identification
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results in Vijverberg (1993), Koop and Poirier (1997), Poirier (1998), Poirier and Tobias

(2003), and Li, Poirier, and Tobias (2004) to a general class of SRMs in which the joint

distribution of the outcome errors and the selection error is assumed to follow a trivariate

NMVM distribution referred to as NMVM-SRMs. The ‘textbook’ Gaussian and Student’s t

SRMs are members of NMVM-SRMs. For NMVM-SRMs, we provide sharp bounds or par-

tial identification results on the correlation coefficient of the potential outcomes, their joint

distribution, and the distribution of treatment effects. The distribution bounds established

in NMVM-SRMs rely on two special properties of NMVM-SRMs: (i) the only unidentified

parameter in a NMVM-SRM is the correlation coefficient between the two potential out-

comes and (ii) the joint distribution of the two potential outcomes in a NMVM-SRM is

also NMVM. The fact that the joint distribution of the potential outcomes in a SRM is not

identifiable raises two issues: (i) is it possible to test the NMVM specification of the joint

distribution of the potential outcomes? and (ii) are the results for NMVM-SRMs robust to

the implied joint distribution of the potential outcomes? To address these issues, we estab-

lish sharp bounds on the joint distribution of potential outcomes and the distribution of

treatment effects in the general class of semiparametric SRMs in Heckman (1990) in which

the joint distribution of the trio of errors is completely unspecified. Our results rely on and

supplement the point identification results in Heckman (1990).

Methodologically, the approach we use to bound the joint distribution of the po-

tential outcomes and the distribution of treatment effects in semiparametric SRMs differs

from that in NMVM-SRMs. Without specifying the joint distribution of the outcome er-

rors and the selection error, the approach used to bound the distribution of the potential

outcomes and the distribution of treatment effects in NMVM-SRMs breaks down. The new

tool that we employ in Chapter III to establish bounds on the joint distribution of poten-
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tial outcomes is the Fréchet-Hoeffding inequality on copulas. A straightforward application

of this inequality allows us to bound the joint distribution of potential outcomes using

the bivariate distributions of each outcome error and the selection error, where the latter

distributions are known to be identified under general conditions, see Heckman (1990). To

bound the distribution of treatment effects, we make use of existing results on sharp bounds

on the distributions of functions of two random variables including the four simple arith-

metic operations, see Williamson and Downs (1990). For a sum of two random variables,

Makarov (1981), Rüschendorf (1982), and Frank, Nelsen, and Schweizer (1987) establish

sharp bounds on its distribution, see also Nelsen (1999). These results have been used in

Fan and Park (2006, 2008) to bound the distribution of treatment effects and the quantile

function of treatment effects in the context of ideal social experiments where selection is ran-

dom. Other applications of the Fréchet-Hoeffding inequality include Heckman, Smith, and

Clements (1997) in which they bound the variance of treatment effects under the assump-

tion of random selection; Manski (1997b) in which he established bounds on the mixture

of two potential outcomes when the distribution of each outcome is known; Lee (2002) in

which he presented bounds on the correlation coefficient between the potential outcomes

in SRMS, and Fan (2005) in which she provided a systematic study on the estimation and

inference on the sharp bounds on the correlation bounds.

The partial identification results established in Chapter III can be used to develop

inference procedures for the joint distribution of potential outcomes and the distribution

of treatment effects. There is a recent, but rapidly growing literature on inference for

partially identified parameters, including Imbens and Manski (2004), Bugni (2007), Canay

(2007), Chernozhukov, Hong, and Tamer (2007), Fan and Park (2007), Romano and Shaikh

(2006), Stoye (2007), Andrews and Guggenberger (2007), and Andrews and Soares (2007),
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among others. We refer the reader to Fan and Park (2007) for more references. A com-

plete treatment of this important issue is beyond the scope of this dissertation. However,

we demonstrate the feasibility of inference by constructing an asymptotically uniformly

valid and non-conservative confidence set (CS) for the distribution of treatment effects in a

semiparametric SRM.

In Chapter IV, we focus on an application of the models developed in Chapter

II and Chapter III in corporate finance. One very interesting phenomenon in corporate fi-

nance is the global rise of accelerated equity offers (Bortolotti, Megginson and Smart, 2008)

in recent years. Autore, Hutton and Kovacs (2009) find that shelf registered firms with

accelerated underwriting underperform those with non-accelerated underwriting. They hy-

pothesize that the choice of flotation methods can be served as a signal of issuer quality and

lower quality firms intend to use accelerated underwriting. However, their hypothesis can

not explain the increasing popularity of accelerated underwriting among seasoned equity

offerings (SEOs) in recent years. In addition, we notice that shelf registered firms are re-

quired by security and exchange commission (SEC) to be large and financially sound (Eckbo,

Masulis, Norli, 2007). For those shelf registered firms, they can either choose accelerated

underwriting or traditional non-accelerated underwriting. There is private information in-

volved in their decision to choose a flotation method of their SEOs. In Chapter IV, we use

our models to study the impact of a firm’s accelerated underwriting on its performance one

year after the equity issuance.
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CHAPTER II

SIMPLE ESTIMATORS OF AVERAGE TREATMENT EFFECTS IN SWITCHING
REGIMES MODELS WITH NORMALMEAN-VARIANCEMIXTURE COPULAS

Introduction

Consider the following switching regimes model1 (SRM):

Y1i = X 0
iβ1 + U1i,

Y0i = X 0
iβ0 + U0i, (II.1)

Di = I{W 0
iγ+ i>0}, i = 1, . . . , n,

where Di is a binary variable taking the value 1 if individual i participates in the program

and taking the value zero if he chooses not to participate in the program, Y1i is the outcome

of individual i we observe if he participates in the program, and Y0i is his outcome if

he chooses not to participate in the program. The errors {U1i, U0i, i} are assumed to

be independent of the covariates {Xi,Wi}. We also assume the existence of an exclusion

restriction, i.e., there exists at least one element of Wi which is not contained in Xi.

Switching regimes models (SRMs) extend the Roy model of self-selection by allow-

ing a more general decision rule for selecting into different states. The income maximizing

Roy model of self-selection was developed to explain occupational choice and its conse-

quences for the distribution of earnings when individuals differ in their endowments of

occupation-specific skills, see Heckman and Honore (1990). By allowing a more general de-

cision/selection rule, SRMs enjoy a much wider scope of applications than the Roy model.

1Switching regimes models are also referred to as generalized sample selection models or generalized Roy
models.
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Recently, SRMs have been used to evaluate average effects of a policy intervention using

choice data. Heckman, Tobias, and Vytlacil (2003) derived expressions for four average

treatment effect parameters for a Gaussian copula SRM and a Student’s t copula SRM with

normal outcome errors and non-normal selection errors. The four average treatment effect

parameters are the average treatment effect (ATE), the treatment effect for the treated

(TT), the local average treatment effect (LATE, Imbens and Angrist, 1994), and the mar-

ginal treatment effect (MTE, Bjorklund and Moffitt, 1987; Heckman, 1997; Heckman and

Vytlacil, 1999, 2000a, 2000b).

One of the most commonly used SRMs in empirical work is the Gaussian SRM

in which {U1i, U0i, i} follows a trivariate normal distribution. This is partly due to the

simplicity of Heckman’s two-step estimation procedure for Gaussian SRM introduced in

Heckman (1976). The Gaussian SRM has been extended to allow for non-normal marginal

distributions in the errors in Lee (1982, 1983), Heckman, Tobias, and Vytlacil (2003),

and Li, Poirier, and Tobias (2004). The models in Heckman, Tobias, and Vytlacil (2003)

essentially assume that the trivariate error vector {U1i, U0i, i} follows a distribution with

either the Gaussian copula or a trivariate Student’s t copula. When the outcome errors are

normal or Student’s t and the selection error has an arbitrary distribution, Lee (1982, 1983),

Heckman, Tobias, and Vytlacil (2003) show that the model parameters can be consistently

estimated by a two-step estimation procedure extending Heckman’s two-step procedure

for Gaussian SRM. By extending Heckman’s two-step procedure to Student’s t outcome

error(s), fat tailed outcome error(s) can be accounted for in the two-step procedure of Lee

(1982, 1983), Heckman, Tobias, and Vytlacil (2003). Indeed simulation results in Heckman,

Tobias, and Vytlacil (2003) show that their two-step estimation procedure works well for

fat-tailed distributions when used to estimate ATE, TT, and LATE and that for ATE, TT,
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even Heckman’s two-step procedure based on Gaussian SRM yields minor biases. Although

not reported in their paper, Heckman, Tobias, and Vytlacil (2003) mention in their Footnote

7 that ‘When generating data from highly asymmetric distributions, such as a χ2 (3), we

do see larger biases’ (in the estimates of ATE and TT). Although the SRM with Student’s

t outcome errors in Heckman, Tobias, and Vytlacil (2003) allow for fat tailes, it does not

allow for skewness in the outcome errors and existing two-step estimation procedures do not

account for skewness in the outcome errors either. The purpose of Chapter II is to bridge

this gap in the existing literature.

First we propose a new class of SRMs, referred to as the Normal Mean-Variance

Mixture Copula SRMs (NMVMC-SRMs) in which the bivariate distributions of {U1i, i}

and {U0i, i} are constructed via the copula approach with NMVM copulas and arbitrary

marginal distributions. The Gaussian copula and Student’s t copula SRMs in Heckman,

Tobias, and Vytlacil (2003) are members of this class.2 In addition, the class of NMVM

copulas includes asymmetric copulas as well allowing for asymmetric dependence between

each outcome error and the selection error. An important subclass of NMVMC-SRMs is the

class of NMVM-SRMs given by (II.1) with each pair of errors (Uji, i) following a bivariate

NMVM distribution. The class of NMVM distributions includes Gaussian and Student’s t

distributions as special cases. In addition, it includes multi-modal and skewed distributions,

see McNeil, Frey and Embrechts (2005). Thus, the class of NMVM-SRMs includes Gaussian

and Student’s t SRMs in Chib (2005) as special cases.

The second contribution of Chapter II is to develop a simple two-step estima-

tion procedure for the class of NMVM-SRMs extending Heckman’s two-step procedure

for Gaussian SRM. Using the two-step procedure, we construct estimators of ATE, TT,
2In fact, Heckman, Tobias, and Vytlacil (2003) impose a trivariate Gaussian or Student’s t copula struc-

ture on the error vector (U1i, U0i, i) as opposed to bivariate Gaussian or Student’s t copula structure on
(U1i, i) and (U0i, i) separately.
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LATE, and MTE in NMVM-SRMs and establish their asymptotic properties. In contrast

to Heckman’s two-step procedure, there are two correction terms in the second step for

NMVM-SRMs; one for the dependence between each outcome error and the selection error

as in the second step for Gaussian SRM and the other for skewness in each outcome error

distribution. As a result, applying Heckman’s two-step procedure to SRMs with skewed out-

come distributions in general leads to inconsistent estimators of parameters in the potential

outcomes equations and of the four average treatment effect parameters. This provides a

theoretical explanation for the large biases in the estimates of ATE and TT mentioned in

Footnote 7 in Heckman, Tobias, and Vytlacil (2003). Our simulation results using asym-

metric distributions also reveal significant biases in the estimates of parameters in SRMs

and/or of ATE and TT if skewness in the distribution of the error terms is not accounted

for in the estimation procedure. More importantly, we find that our two-step procedure

correcting for both skewness and dependence performs very well. We also extend our two-

step estimation procedure for NMVM-SRMs to the subclass of NMVMC-SRMs in which

the outcome errors follow univariate NMVM distributions and the selection error follows an

arbitrary distribution. In general, the second step for the subclass of NMVMC-SRMs may

involve a nonlinear regression, but for certain members of NMVM copulas such as Gaussian

copula or Student’s t copula with a known degree of freedom in Lee (1982, 1983), Heckman,

Tobias, and Vytlacil (2003), the second step regression is linear.

The rest of Chapter II is organized as follows. In Section 2, we introduce the

class of NMVMC-SRMs and some special cases. In Section 3, we propose a simple two-step

estimation procedure for parameters in the potential outcomes equations for NMVM-SRMs

and NMVMC-SRMs when the outcome errors follow NMVM distributions. In Section 4, we

use our two-step estimation procedure to construct simple estimators of ATE, TT, LATE,
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and MTE, extending the estimators of Heckman, Tobias, and Vytlacil (2003) to a much

wider class of SRMs. We present results from a small Monte Carlo simulation study in

Section 5. Section 6 concludes. Techncial proofs are relegated to the Appendix.

NMVMC-SRMs

In this section, we introduce a general class of SRMs via the copula approach. Let

i ∼ F ( ;α) for some α ∈ A ⊂ Rp, where {F ( ;α) : α ∈ A} is any family of parametric

distribution functions with zero mean and variance 1. Let Uji ∼ Fj(u;αj) for some αj ∈

Aj ⊂ Rpj , where {Fj(u;αj) : αj ∈ Aj} is any family of parametric distribution functions

with zero mean and variance σ2j , j = 1, 0. By Sklar’s theorem (1959), for any copula

function Cj(u, v): 0 ≤ u, v ≤ 1, the function Cj(F ( ;α), Fj(u;αj)) is a bivariate distribution

function with marginal distributions F ( ;α) and Fj(u;αj) and copula function Cj(u, v).

This motivates us to assume

( i, Uji) ∼ Cj(F ( ;α), Fj(u;αj); θj), j = 1, 0, (II.2)

where {Cj(u, v; θj) : θj ∈ ×j} is a parametric family of copula functions. We refer the reader

to Joe (1997) and Nelsen (1999) for excellent discussions of copulas and their properties.

Instead of modeling the trivariate distribution of U1i, U0i, i via the copula approach as

in Heckman, Tobias, and Vytlacil (2003), we model the bivariate distributions of U1i, i

and of U0i, i, as either Y1i or Y0i is observed for any given individual i but never both,

so the joint distribution of the trio of errors {U1i, U0i, i} is not identified. In addition to

the Gaussian and Student’s t copulas used in Lee (1982, 1983) and Heckman, Tobias, and

Vytlacil (2003), Smith (2003, 2005) and Prieger (2002) respectively used Archimedean and

Farlie-Gumbel-Morgenstern copulas.
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The class of NMVMC-SRMs we propose in Chapter II is given by (II.1) and (II.2)

with {Cj(u, v; θj) : θj ∈ ×j} specified as the class of NMVM copulas. This section contains

two subsections. In the first subsection, we introduce the general class of NMVM distribu-

tions and their copulas. In the second subsection, we introduce the class of NMVMC-SRMs

and the class of NMVM-SRMs.

NMVM Distribution and its Copula

We first present a definition of a d-dimensional normal mean variance mixture

(NMVM) distribution. It can be found in McNeil, Frey, and Embrechts (2005).

Definition 1 We say V ∼ NMVMd (ξ, μ,Σ, ζ) with Σ = AA0 if V has the same distrib-
ution as μ + Sζ +

√
SAZ, where μ, ζ, A are respectively d × 1, d × 1, and d × k constant

matrices, Z ∼ Nk (0, Ik) , and S ≥ 0 is independent of Z and follows a distribution with a
parametric density function or probability function fS (·; ξ).

We use NMVMd (·; ξ, μ,Σ, ζ) and nmvmd (·; ξ, μ,Σ, ζ) to denote respectively the

distribution function and density function of the NMVM distribution introduced in Def-

inition 2.1. Based on Definition 2.1, we can put the parameters in NMVMd (ξ, μ,Σ, ζ)

into two groups: those in the distribution of the mixing variable S denoted as ξ and the

remaining parameters (μ,Σ, ζ). When ζ = 0, the NMVM distribution or the distribution

of V belongs to the class of symmetric NMVM distributions. A non-zero value of ζ in-

troduces asymmetry into the distribution of V . It follows from the above definition that

V |S = s ∼ Nd (μ+ sζ, sΣ) . Thus, μ and Σ play the roles of the location vector and the

dispersion matrix respectively.

The class of NMVM distributions includes two important subclasses. When the

mixing variable S is a discrete random variable taking a finite number of values, we obtain

the class of finite normal mixture distributions. When S follows the generalized inverse
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Gaussian (GIG) distribution, denoted as N−1 (λ, χ, ψ), with density function:

fS (s; ξ) =
(ψ/χ)λ/2

2Kλ

¡√
χψ
¢sλ−1 expµ−χs−1 + ψs

2

¶
, ξ = (λ, χ, ψ)0 , (II.3)

we obtain the class of generalized hyperbolic (GH) distributions denoted asGHd (λ, χ, ψ, μ,Σ, ζ).

Among the parameters in ξ in a GH distribution, ψ is a scale parameter and (λ, χ) allow

for flexible tails in the distribution of V , see Jogensen (1982) and Mencia and Sentana

(2005) for more discussion. Let V denote a d-dimensional random vector following a GH

distribution with parameters λ, χ, ψ, μ,Σ, ζ, where μ and ζ are d × 1 vectors, Σ is a d × d

matrix, and parameters λ, χ, ψ satisfy: χ > 0, ψ ≥ 0 if λ < 0; χ > 0, ψ > 0, if λ = 0;

and χ ≥ 0, ψ > 0, if λ > 0. To simplify exposition, we use GHd (λ, χ, ψ, μ,Σ, ζ) to denote

this distribution and GHd (·;λ, χ, ψ, μ,Σ, ζ), ghd (·;λ, χ, ψ, μ,Σ, ζ) to denote respectively its

distribution function and density function. If Σ is positive definite, then the probability

density function of V has the following closed-form expression (see Mencia and Sentana

(2005)):

ghd (x;λ, χ, ψ, μ,Σ, ζ) = c
Kλ−(d/2)

³q¡
χ+ (x− μ)0Σ−1 (x− μ)

¢ ¡
ψ + ζ 0Σ−1ζ

¢´
e(x−μ)

0Σ−1ζhq¡
χ+ (x− μ)0Σ−1 (x− μ)

¢ ¡
ψ + ζ 0Σ−1ζ

¢i(d/2)−λ ,

(II.4)

where Kv (·) is the modified Bessel function of the third kind and

c =

¡√
χψ
¢−λ

ψλ
¡
ψ + ζ 0Σ−1ζ

¢(d/2)−λ
(2π)d/2 |Σ−1|1/2Kλ

¡√
χψ
¢ .

The class of GH distributions is very general. It includes skewed t distributions obtained

when λ = −12v, χ = v and ψ = 0 (S follows a inverse gamma distribution with parameter

(v/2, v/2)). When ζ = 0, a skewed t distribution becomes a Student’s t distribution with

degree of freedom v.

15



For any NMVMd (ξ, μ,Σ, ζ), let μ = (μ1, ..., μd)
0 , ζ = (ζ1, ..., ζd)

0, and

Σ =

⎛⎜⎜⎜⎜⎜⎜⎝
σ21 · · · ρ1dσ1σd

...
. . .

...

ρd1σ1σd · · · σ2d

⎞⎟⎟⎟⎟⎟⎟⎠ .

It is known that the marginal distributions ofNMVMd (ξ, μ,Σ, ζ) areNMVM1

¡
ξ, μk, σ

2
k, ζk

¢
,

k = 1, ..., d. By the Sklar’s theorem (1959), there is a unique copula function corresponding

to NMVMd (ξ, μ,Σ, ζ). This associated copula is called normal mean variance mixture

copula (NMVMC) denoted as CNMVM (·; ξ, μ,Σ, ζ):

CNMVM (u; ξ, μ,Σ, ζ) = NMVMd(NMVM−1
1 (u1; η1), ...,NMVM−1

1 (ud; ηd); ξ, μ,Σ, ζ),

(II.5)

where u = (u1, ..., ud) and ηk =
£
ξ, μk, σ

2
k, ζk

¤
, k = 1, ..., d.

Like the class of NMVM distributions, the class of NMVM copulas is also very

general including Gaussian, Student’s t, and skewed Student’s t copulas as special cases.

NMVM-SRMs and NMVMC-SRMs

We first introduce the class of NMVM-SRMs and then extend it to the class of

NMVMC-SRMs. For j = 1, 0, let Vji ≡ (Uji, i) ∼ NMVM2

¡
ξ, μj ,Σj , ζj

¢
, where

μj =

⎛⎜⎜⎝ μUj

μ

⎞⎟⎟⎠ , ζj =

⎛⎜⎜⎝ ζUj

ζ

⎞⎟⎟⎠ , Σj =

⎛⎜⎜⎝ σ2j ρjσjσ

ρjσjσ σ2

⎞⎟⎟⎠ .

It follows from Definition 2.1 that Vji has the same distribution as
h
μj + Sζj +

√
SAjZ

i
,

where AjA
0
j = Σj . Since

h
μj + (aS)

¡
ζj/a

¢
+
√
aS (Aj/

√
a)Z

i
has the same distribution
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as
h
μj + Sζj +

√
SAjZ

i
for any a > 0, the parameters ξ, μj ,Σj , ζj are not separately iden-

tifiable without normalization. Following the convention in the literature on SRMs, we

normalize the variance of the selection error i to be 1, so the parameters ξ, μj ,Σj , ζj ,

j = 1, 0, are restricted such that E (Vji) = 0 and V ar ( i) = 1. To ensure E (Vji) = 0, we

let

μj = −ζjE (S) . (II.6)

Note that in general Σj is not the variance-covariance matrix of the error vector Vji, as

V ar (Vji) = E (S)Σj + V ar (S) ζjζ
0
j . (II.7)

It follows that V ar ( i) = E (S)σ2 + ζ2V ar (S). Restricting V ar ( i) = 1 leads to

σ2 =
£
1− ζ2V ar (S)

¤
/E (S) . (II.8)

The class of NMVM-SRMs is characterized by (II.1) with (Uji, i) ∼ NMVM2

¡
ξ, μj ,Σj , ζj

¢
,

where ξ, μj ,Σj , ζj satisfy (II.6) and (II.8). This class of models is very general. It includes

the class of SRMs with finite normal mixture error distributions and SRMs with GH error

distributions. We denote the latter as GH-SRMs. The class of GH-SRMs includes the

commonly used Gaussian and Student’s t SRMs as special cases. Furthermore, it allows the

errors (Uji, i)
0 to have skewed and kurtotic distributions. For GH-SRMs, we have

E (S) =

µ
χ

ψ

¶1/2 Kλ+1

¡√
χψ
¢

Kλ

¡√
χψ
¢ , (II.9)

and

V ar (S) =

µ
χ

ψ

¶Ã
Kλ+2

¡√
χψ
¢
Kλ

¡√
χψ
¢
−K2

λ+1

¡√
χψ
¢

K2
λ

¡√
χψ
¢ !

. (II.10)

The fact that the marginal distributions of a multivariate NMVM distribution are
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univariate NMVM distributions implies that all three errors U1i, U0i, i must have univariate

NMVM distributions. To allow for arbitrary marginal distributions and more flexibility in

the dependence structures between Uji and i, we now introduce the class of NMVMC-

SRMs. Specifically, for j = 1, 0, let

(Uji, i) ∼ CNMVM(Fj(u;αj), F ( ;α); ξj , μj ,Σj , ζj). (II.11)

Then the class of NMVMC-SRMs is given by (II.1) and (II.11). A special class of NMVMC-

SRMs is obtained when the outcomes errors follow univariate NMVM distributions, but

the selection error follows an arbitrary distribution. This includes the models in Lee (1982,

1983) and Heckman, Tobias, and Vytlacil (2003) with Gaussian and Student’s t outcome

errors. By allowing the outcome errors to follow general NMVM distributions, we can

accommodate both asymmetric and fat tailed outcome errors. An alternative construction

of this class of models follows Lee (1982, 1983). Suppose Uji ∼ NMVM1

³
ξj , μj1, σ

2
j1, ζj1

´
for j = 1, 0, where μj1 = −ζj1E (Sj) , in which Sj is the mixing variable with a known

distribution characterized by parameter ξj . For j = 1, 0, let Γj =
£
ξj , 0, 1, 0

¤
. We assume:

¡
Uji, NMVM−1

1 (F ( i;α);Γj)
¢
∼ NMVM2

¡
ξj , μj ,Σj , ζj

¢
, j = 0, 1,

where μj =
¡
μj1, 0

¢0
, ζj =

¡
ζj1, 0

¢0
, and

Σj =

⎛⎜⎜⎝ σ2j1 ρjσj1

ρjσj1 1

⎞⎟⎟⎠ .

Compared with the Gaussian and Student’s t copula SRMs in Heckman, Tobias, and Vyt-

lacil (2003), we allow the outcome errors to have different parametric distributions such as

Gaussian for U1i and skewed Student’s t for U0i.
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Two-Step Estimation of NMVMC-SRMs

In general, SRMs with the distribution specification in (II.2) including NMVMC-

SRMs can be efficiently estimated by MLE. Let θ = (β01, β
0
0, γ

0, α0, α01, α
0
0, θ

0
1, θ

0
0)
0. The

contribution of the i-th observation to the likelihood function is either

p(Y1i,Di = 1) = f1(Y1i −X 0
iβ1, α1)

Z ∞

−W 0
iγ,α

f |1( |Y1i −X 0
iβ1)d

= f1(Y1i −X 0
iβ1, α1)

Z 1

F (−W 0
iγ,α)

c1(F1(Y1i −X 0
iβ1, α1), u, θ1)du,

or

p(Y0i,Di = 0) = f0(Y0i −X 0
iβ0, α0)

Z −W 0
iγ

−∞
f |0( |Y0i −X 0

iβ0)d

= f0(Y0i −X 0
iβ0, α0)

Z F (−W 0
iγ,α)

0
c0(F0(Y0i −X 0

iβ0, α0), u, θ0)du.

Hence the log-likelihood function is given by

L(θ) =
nX
i=1

[Di ln f1(Y1i −Xi0β1, α1) + (1−Di) ln f0(Y0i −Xi0β0, α0)]

+
nX
i=1

[Di ln

Z 1

F (−W 0
iγ,α)

c1(F1(Y1i −X 0
iβ1, α1), u, θ1)du

+(1−Di) ln

Z F (−W 0
iγ,α)

0
c0(F0(Y0i −X 0

iβ0, α0), u, θ0)du]. (II.12)

Noting that in general the log-likelihood function in (II.12) is a complicated non-

linear function of the unknown parameter θ, the MLE may be computationally difficult.

Heckman (1976) first proposed a two-step estimator for the Gaussian SRM in which para-

meters in the selection equation are estimated by MLE in the first step and parameters in

the potential outcomes equations are estimated by OLS with inverse mill’s ratio added as

an addition regressor in each regression in the second step. Heckman, Tobias, and Vytlacil

(2003) extended Heckman’s two-step estimator to SRMs characterized by Gaussian copula
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with normal outcomes errors or Student’s t copula with Student’s t outcomes errors when

the degree of freedom is known (the selection error in both cases can have an arbitrary mar-

ginal distribution). They show that parameters in the potential outcomes equations can

be consistently estimated by OLS with an extension of the inverse mill’s ratio for Gaussian

SRM added as an addition regressor in each regression in the second step.

In this section, we first construct a two-step estimation procedure for the class of

NMVM-SRMs and then extend it to the sub-class of NMVMC-SRMs in which the outcomes

errors follow NMVM distributions when the distributions of the mixing variables are known

and the selection error follows an arbitrary distribution. In sharp contrast to existing two-

step procedures, we find that for skewed outcomes errors, an additional correction term is

needed in each regression in the second step besides extensions of the inverse mill’s ratio.

Ignoring it will in general lead to inconsistent estimators.

The first step in the two-step procedures for both NMVM-SRMs and NMVMC-

SRMs involves the estimation of (γ, α) in the selection model. Note that

P (Di = 1|Wi) = P
¡

i > −W 0
iγ|Wi

¢
= 1− F (−W 0

iγ;α),

P (Di = 0|Wi) = P
¡

i ≤ −W 0
iγ|Wi

¢
= F (−W 0

iγ;α).

The log-likelihood function for (γ, α) can be written as

L (α, γ) =
nX
i=1

Di ln
¡
1− F

¡
−W 0

iγ;α
¢¢
+ (1−Di) ln

¡
F
¡
−W 0

iγ;α
¢¢
. (II.13)

Let (bγ, bα) denote the MLE of (γ, α) from maximizing L (α, γ). Let θ/ [γ, α] denote parame-

ters in θ excluding γ and α. The second step involves estimation of θ/ [γ, α].
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Two-Step Estimation of NMVM-SRMs

In a NMVM-SRM, (Uji, i) ∼ NMVM2

£
ξ, μj ,Σj , ζj

¤
, j = 0, 1, where

μj =

⎡⎢⎢⎣ −E (S) ζUj
−E (S) ζ

⎤⎥⎥⎦ , (II.14)

Σj =

⎡⎢⎢⎣ σ2j ρjσjσ

ρjσjσ σ2

⎤⎥⎥⎦ , (II.15)

ζj =

⎡⎢⎢⎣ ζUj

ζ

⎤⎥⎥⎦ . (II.16)

Thus, F ( ;α) = NMVM1

¡
; ξ, μ , σ2, ζ

¢
in which α =

¡
ξ, μ , σ2, ζ

¢
. To estimate θ/ [γ, α],

we note that

E (Y1i|Di = 1,Xi,Wi) = X 0
iβ1 +E

¡
U1i| i > −W 0

iγ,Wi

¢
= X 0

iβ1 +

∞Z
−W 0

iγ

E (U1i| i = ) dF ( ;α) ,

E (Y0i|Di = 1,Xi,Wi) = X 0
iβ0 +E

¡
U0i| i ≤ −W 0

iγ,Wi

¢
= X 0

iβ0 +

−W 0
iγZ

−∞

E (U0i| i = ) dF ( ;α) .

Wewill employ the following theorem to find simple expressions for
Z ∞

−W 0
iγ
E (U1i| i = ) dF ( ;α)

and
Z −W 0

iγ

−∞
E (U0i| i = ) dF ( ;α) in terms of θ/ [γ, α].

Theorem 1 Suppose (U, ) ∼ NMVM2 [ξ, μ,Σ, ζ] , where

μ =

∙
−E (S) ζU
−E (S) ζ

¸
, Σ =

∙
σ2U ρσUσ

ρσUσ σ2

¸
, ζ =

∙
ζU
ζ

¸
,

in which S is a non-negative random variable with distribution function FS (s) ≡ FS (s; ξ).
Let f (·) and F (·) denote respectively the density and distribution functions of . Then we
have:

E (U | = −x) = ζUH (x) + ρσUG (x) , (II.17)

E (U | ≥ −x) = ζUλ1a (x) + ρσUλ1b (x) , (II.18)

E (U | < −x) = ζUλ0a (x) + ρσUλ0b (x) , (II.19)
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where the function λja (x) , λjb (x), j = 1, 0, H (x), and G (x) are defined as

λ1a (x) =
λa (x)

1− F (−x) , λ1b (x) =
λb (x)

1− F (−x) ,

λ0a (x) = − λa (x)

F (−x) , λ0b (x) = −
λb (x)

F (−x) ,

λa (x) = ES

µ
(S −E (S))Φ

µ
x+ ζ (S −E (S))√

Sσ

¶¶
,

λb (x) = ES

µ√
Sφ

µ
x+ ζ (S −E (S))√

Sσ

¶¶
,

H (x) =

Z
(s−E (S)) dFS| =x (s) ,

G (x) =
1

σ

Z
(x− (s−E (S)) ξ ) dFS| =x (s) ,

in which

FS| =x (s) =

Z s

0

1

f (x)
p
2πtσ2

exp

(
−(x− ((t−E (S)) ζ ))2

2tσ2

)
dFS (t) .

From Theorem 3.1, we obtain:

∞Z
−W 0

iγ

E (U1i| i = ) dF ( ;α) = ζU1λ1a
¡
W 0

iγ
¢
+ ρ1σ1λ1b

¡
W 0

iγ
¢
,

−W 0
iγZ

−∞

E (U0i| i = ) dF ( ;α) = ζU0λ0a
¡
W 0

iγ
¢
+ ρ0σ0λ0b

¡
W 0

iγ
¢
,

where λja (W
0
iγ) , λjb (W

0
iγ), j = 1, 0, are functions of α and γ only. For the treatment

group and the control group, we have the following estimating equations:

E (Y1i|Xi,Wi,Di = 1) = X 0
iβ1 + a1λ1a

¡
W 0

iγ
¢
+ b1λ1b

¡
W 0

iγ
¢
, (II.20)

E (Y0i|Xi,Wi,Di = 0) = X 0
iβ0 + a0λ0a

¡
W 0

iγ
¢
+ b0λ0b

¡
W 0

iγ
¢
, (II.21)

where aj = ζUj , bj = ρjσj , j = 1, 0. We note that in each estimating equation, there are two

correction terms: λja (W 0
iγ) and λjb (W

0
iγ), j = 1, 0. The correction term λjb (W

0
iγ) is the

extension of the inverse mill’s ration in Heckman’s two-step procedure for Gaussian SRM

and the correction term λja (W
0
iγ) is new and it is present only when ζUj 6= 0, i.e., when
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the outcome error Uji has an asymmetric distribution. In general, ignoring the presence

of skewness in outcome errors would lead to inconsistent estimators of parameters in the

potential outcome equations. With both correction terms added as additional regressors in

(II.20) and (II.21), simple ordinary least squares (OLS) method can be applied to estimating

β1, a1, b1, β0, a0, b0 in the second step.

Extension of Heckman’s two-step procedure to NMVM-SRMs:

Step 1. Estimate (α, γ) by (bα, bγ). Then estimate λja (W 0
iγ) , λjb (W

0
iγ) , j = 1, 0

by replacing (α, γ) with (bα, bγ) in their expressions and let bλja (W 0
ibγ) , bλjb (W 0

ibγ) , j = 1, 0

denote the resulting estimators;

Step 2. Estimate
¡
βj , aj , bj

¢
by OLS regression of Yji onXi, bλja (W 0

ibγ) , bλjb (W 0
ibγ) ,

j = 1, 0.

Example 3.1 Suppose (Uji, i) ∼ GH2

¡
λ, χ, ψ, μj ,Σj , ζj

¢
, j = 0, 1, with μj ,Σj , ζj

defined in (II.14), (II.15), and (II.16). In the Appendix, we show that the correction terms

are:

λ1a
¡
w0γ

¢
=

(GH1 (−w0γ; η0)−GH1 (−w0γ; η1))
1−GH1 (−w0γ; η0)

E (S) ,

λ1b
¡
w0γ

¢
=

gh1 (−w0γ; η1)
1−GH1 (−w0γ; η0)

(E (S)σ ) ,

λ0a
¡
w0γ

¢
= −(GH1 (−w0γ; η0)−GH1 (−w0γ; η1))

GH1 (−w0γ; η0)
E (S) ,

λ0b
¡
w0γ

¢
= − gh1 (−w0γ; η1)

GH1 (−w0γ; η0)
(E (S)σ ) ,

where

η0 = [λ, χ, ψ,−E (S) ζ , σ , ζ ] , η1 = [λ+ 1, χ, ψ,−E (S) ζ , σ , ζ ] .

(i) If λ = −v/2, χ = v, ψ → 0, and ζj = 0, then generalized hyperbolic distrib-

utions become Student’s t distributions. In this case, the correction terms λ1a and λ0a for
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skewness disappear in the second step since ζj = 0. The correction terms for dependence

between the selection error and the outcomes errors are:

λ1b
¡
w0γ

¢
=

Ã
v + (w0γ)2

v − 1

!
t[v] (w

0γ)

T[v] (w0γ)
,

λ0b
¡
w0γ

¢
= −

Ã
v + (w0γ)2

v − 1

!
t[v] (w

0γ)

1− T[v] (w0γ)
.

(ii) Let v → +∞ in (i). The Student’s t distributions become normal distribu-

tions and λ1b and λ0b reduce to the well known inverse mills ratio in Heckman’s two-step

procedure:

λ1b
¡
w0γ

¢
=

φ (w0γ)

Φ (w0γ)
, λ0b

¡
w0γ

¢
= − φ (w0γ)

1−Φ (w0γ) .

Example 3.2 Suppose S follows a discrete distribution, then the corresponding

NMVM distribution becomes a finite normal mixture distribution. Let S have the following

distribution:

P (S = si) = pi, i = 1, ...m,
mX
i=1

pi = 1.

Then we have

λ1a
¡
w0γ

¢
=

1

1− F (−w0γ)

mX
i=1

pi (si −E (S))Φ

µ
w0γ + ζ (si −E (S))√

siσ

¶
,

λ1b
¡
w0γ

¢
=

1

1− F (−w0γ)

mX
i=1

pi
√
siφ

µ
w0γ + ζ (si −E (S))√

siσ

¶
,

λ0a
¡
w0γ

¢
= − 1

F (−w0γ)

mX
i=1

pi (si −E (S))Φ

µ
w0γ + ζ (si −E (S))√

siσ

¶
,

λ0b
¡
w0γ

¢
= − 1

F (−w0γ)

mX
i=1

pi
√
siφ

µ
w0γ + ζ (si −E (S))√

siσ

¶
,

F
¡
−w0γ

¢
=

mX
i=1

piΦ

µ
−w0γ − ζ (si −E (S))√

siσ

¶
.
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Two-Step Estimation of NMVMC-SRMs

We now extend the two-step estimation procedure for NMVM-SRMs to a sub-

class of NMVMC-SRMs in which Uji ∼ NMVM1

³
ξj , μj1, σ

2
j1, ζj1

´
for j = 1, 0, where

μj1 = −ζj1E (Sj) and Sj is the mixing variable with a known distribution characterized by

parameter ξj . For j = 1, 0, let Γj =
£
ξj , 0, 1, 0

¤
and

¡
Uji, NMVM−1

1 (F ( i;α);Γj)
¢
∼ NMVM2

¡
ξj , μj ,Σj , ζj

¢
, j = 0, 1,

where μj =
¡
μj1, 0

¢0
, ζj =

¡
ζj1, 0

¢0
,

Σj =

⎛⎜⎜⎝ σ2j1 ρjσj1

ρjσj1 1

⎞⎟⎟⎠ .

For notational convenience, let

Q−1Γj (F (−W
0
iγ;α)) = NMVM−1

1 (F (−W 0
iγ;α);Γj).

Then we have

E (U1i|Di = 1,Wi) = ζ11λ1a

³
Q−1Γj (F (−W

0
iγ;α))

´
+ ρ1σ11λ1b

³
Q−1Γj (F (−W

0
iγ;α))

´
,

E (U0i|Di = 0,Wi) = ζ01λ0a

³
Q−1Γj (F (−W

0
iγ;α))

´
+ ρ0σ01λ0b

³
Q−1Γj (F (−W

0
iγ;α))

´
,
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where

λ1a (x) =
λ1a (x)

1− F (−x) , λ1b (x) =
λ1b (x)

1− F (−x) ,

λ0a (x) = − λ0a (x)

F (−x) , λ0b (x) = −
λ0b (x)

F (−x) ,

λja (x) = ESj

Ã
(Sj −E (Sj))Φ

Ã
xp
Sj

!!
, j = 1, 0,

λjb (x) = ESj

Ãp
Sjφ

Ã
xp
Sj

!!
, j = 1, 0.

Thus, the two estimating equations are:

E (Y1i|Xi,Wi,Di = 1) = X 0
iβ1 + ζ11λ1a

³
Q−1Γ1 (F (−W

0
iγ;α))

´
+ ρ1σ11λ1b

³
Q−1Γ1 (F (−W

0
iγ;α))

´
,

E (Y0i|Xi,Wi,Di = 0) = X 0
iβ0 + ζ01λ0a

³
Q−1Γ0 (F (−W

0
iγ;α))

´
+ ρ0σ01λ0b

³
Q−1Γ0 (F (−W

0
iγ;α))

´
.

Extension of Heckman’s two-step procedure to NMVMC-SRMs:

Step 1. Estimate (α, γ) by (bα, bγ);
Step 2. (i) If ξj is known, then estimate the above equations by OLS regression of

Yji onXi, λja

³
Q−1Γj (F (−W

0
ibγ; bα))´ , λjb ³Q−1Γj (F (−W 0

ibγ; bα))´ , j = 1, 0; (ii) If ξj is unknown,
then estimate the above equations by NLS regressions.

For Gaussian and Student’s t outcome errors, the above procedure with Step 2.(i)

reduces to that in Lee (1982, 1983), and Heckman, Tobias, and Vytlacil (2003). For skewed

outcome errors, the extra correction terms λja
³
Q−1Γ1 (F (−W

0
iγ;α))

´
are essential to the con-

sistent estimation of parameters in the second step.

Asymptotic Properties of the Two-Step Estimator in NMVMC-SRMs

Suppose we have a random sample {Yi,Xi,Wi,Di}ni=1, where Yi = DiY1i+(1−Di)Y0i.

For notational compactness, we let Zi = (Yi,Xi,Wi,Di). The asymptotic properties of two-
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step estimators in NMVMC-SRMs can be established by applying general properties of

GMM estimators for the stacked moment conditions with the identity matrix as the weight-

ing matrix, see Newey and Mcfadden (1994), Heckman, Tobias and Vytiacil (2003). To

illustrate, consider the two-step estimators in NMVM-SRMs. Define the moment functions

as follows:

g1

³
Zi; β̃1, γ, α

´
= Di

⎡⎢⎢⎢⎢⎢⎢⎣
Xi

λ1a (W
0
iγ)

λ1b (W
0
iγ)

⎤⎥⎥⎥⎥⎥⎥⎦
£
Yi −X 0

iβ1 − a1λ1a
¡
W 0

iγ
¢
− b1λ1b

¡
W 0

iγ
¢¤
,

g0

³
Zi; β̃0, γ, α

´
= (1−Di)

⎡⎢⎢⎢⎢⎢⎢⎣
Xi

λ0a (W
0
iγ)

λ0b (W
0
iγ)

⎤⎥⎥⎥⎥⎥⎥⎦
£
Yi −X 0

iβ0 − a0λ0a
¡
W 0

iγ
¢
− b0λ0b

¡
W 0

iγ
¢¤
,

m (Wi; γ, α) =
∂L (γ, α)

∂ (γ0, α0)
,

where β̃1 =
¡
β01, a1, b1

¢0, β̃0 = ¡
β00, a0, b0

¢0, and L (γ, α) is the log-likelihood function in

(II.13). Further, let

g (Zi; θ) =

⎛⎜⎜⎜⎜⎜⎜⎝
g1

³
Zi; β̃1, γ, α

´
g0

³
Zi; β̃0, γ, α

´
m (Wi; γ, α)

⎞⎟⎟⎟⎟⎟⎟⎠ .

Then the true value of the parameter θ satisfies the moment condition: E [g (Zi; θ)] = 0. It

follows from the arguments in Newey and McFadden (1994, Theorem 6.1) that under some

regularity conditions, the two-step estimator bθ satisfies:
√
n
³
θ̂ − θ

´
→ N (0, V ) ,
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where V = G−1ΩG−10 in which Ω = E
¡
g (Zi; θ) g (Zi; θ)

0¢ and
G = E

µ
∂g (Zi; θ)

∂θ

¶
,

Noting that E
³
gj

³
Zi; β̃j , γ, α

´
|Xi,Wi,Di

´
= 0, j = 1, 0, and Di (1−Di) = 0, we have

Ω = E

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
g1 (Zi) g1 (Zi)

0 0 0

0 g0 (Zi) g0 (Zi)
0 0

0 0 m (Wi)m (Wi)
0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where gj (Zi) denotes gj
³
Zi; β̃1, γ, α

´
, j = 0, 1, and m (Wi) denotes m (Wi; γ, α).

Simple Estimators of Four Treatment Parameters

In this section, we provide expressions and estimators of ATE, TT, LATE, and

MTE in the class of NMVMC-SRMs. These extend the corresponding results for Gaussian

and Student’s t copula SRMs in Heckman, Tobias, and Vytlacil (2003). We’ll use the same

notation as Heckman, Tobias, and Vytlacil (2003).

Expressions for ATE, TT, LATE, and MTE

Let ∆i = Y1i − Y0i denote individual i’s treatment effect. Then the conditional

ATE on Xi = x can be written as:

ATE (x) = E (∆i|Xi = x) = x0 (β1 − β0) (II.22)

and the unconditional ATE is given by

ATE ≡ E (ATE (Xi)) = (E (Xi))
0 (β1 − β0) .
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LetD (Wi) = Di denote individual i’s observed decision, i.e.,D (Wi) = I{W 0
iγ+ i>0}.

Then TT is the expected treatment effect for those actually received the treatment:.

TT (x,w,D (w) = 1) = E (∆i|Xi = x,Wi = w,D (w) = 1)

= x0 (β1 − β0) +E
¡
U1i − U0i| i ≥ −w0γ

¢
. (II.23)

The unconditional TT can be calculated by integrating the above equation over the joint

distribution of X and W for those who actually received the treatment:

TT = E (∆i|Di = 1) = E (TT (Xi,Wi,Di = 1) |Di = 1) .

LATE is defined as the expected treatment effect for those induced to receive

treatment through a change in the instrument from Wk = wk to Wk = w̃k, where Wk is

W ’s kth coordinate assumed to affect the treatment decision, but not to affect the potential

outcomes Y1i and Y0i. Let w and ew be identical except for their kth coordinates. LATE

can be defined as

LATE (D (w) = 0,D (w̃) = 1,Xi = x)

= E (∆i|D (w) = 0,D (w̃) = 1,Xi = x)

= x0 (β1 − β0) +E
¡
U1i − U0i|− w̃0γ ≤ i ≤ −w0γ

¢
(II.24)

and the unconditional LATE can be calculated as follows:

E (∆i|D (w) = 0,D ( ew) = 1,Xi = x) = E (LATE (D (w) = 0,D (w̃) = 1,Xi)) .

The unconditional LATE corresponds to the treatment effect for individuals who would

decide not to receive the treatment if their vector W were set to w, but would decide to

have the treatment if W were set to w̃.
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Finally, MTE is defined as the treatment effect for individuals with a given value

of ,

MTE (x, ) = E (∆i|Xi = x, i = )

= x0 (β1 − β0) +E (U1i − U0i| i = ) (II.25)

and the unconditional MTE can be calculated as

MTE ( ) = E (MTE (Xi, ) | i = ) .

It follows from (II.23), (II.24), and (II.25) that we need to provide expressions for

E (U1i − U0i| i = ). Given the general distribution specification for (Uji, i) in (II.2), we

get:

E (U1i − U0i| i = ) = E (U1i| i = )−E (U0i| i = )

=

∞Z
−∞

c1 (F ( ;α), F1(u;α1); θ1) f1 (u;α1)udu

−
∞Z
−∞

c0 (F ( ;α), F1(u;α0); θ0) f0 (u;α0)udu,

where cj (u, v; θj) is the copula density function of Cj (u, v; θj) and fj (u;αj) is the density

function of Fj(u;αj), j = 1, 0. In addition, we have:

E
¡
U1i − U0i| i ≥ −w0γ

¢
=

∞Z
−w0γ

E (U1i − U0i| i = ) dF ( ;α),

E
¡
U1i − U0i|− w̃0γ ≤ i ≤ −w0γ

¢
=

−w0γZ
−w̃0γ

E (U1i − U0i| i = ) dF ( ;α).

As a result, the four treatment parameters of interest (ATE, TT, LATE, MTE) can be

estimated once the parameters in the SRM are estimated.
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Estimators and Their Asymptotic Properties

For NMVMC-SRMs, expressions for E (U1i − U0i| i = ) are provided in Section 3.

Based on these expressions, we can construct simple plug-in estimators of ATE, TT, LATE,

and MTE using the two-step estimation procedure for NMVMC-SRMs proposed in the

previous section. To illustrate, let α̂, γ̂, β̂1, â1, b̂1, β̂0, â0, b̂0 denote the two-step estimators

of parameters α, γ and β1, a1, b1, β0, a0, b0 in a NMVM-SRM respectively. Then the four

treatment parameters of interest can be estimated by

[ATE (x) = x0
³
β̂1 − β̂0

´
,

dTT (x,w,D (w) = 1) = x0
³
β̂1 − β̂0

´
+ (â1 − â0)λ1a

¡
w0γ̂

¢
+
³
b̂1 − b̂0

´
λ1b

¡
w0γ̂

¢
,

\LATE (x,D (w̃) = 1,D (w) = 0) = x0
³
β̂1 − β̂0

´
+ (â1 − â0)

µ
λa (w̃

0γ̂)− λa (w
0γ̂)

F (−w0γ̂)− F (−w̃0γ̂)

¶
+
³
b̂1 − b̂0

´µ λb (w̃
0γ̂)− λb (w

0γ̂)

F (−w0γ̂)− F (−w̃0γ̂)

¶
,

\MTE
¡
x,−w0γ

¢
= x0

³
β̂1 − β̂0

´
+ (â1 − â0) Ĥ

¡
w0γ̂

¢
+
³
b̂1 − b̂0

´
Ĝ
¡
w0γ̂

¢
,

where Ĥ (·) and Ĝ (·) are estimators of H (·) and G (·) in (II.17) from parameters estimated

in the first step. The expressions for estimators of TT, LATE, and MTE reveal two effects

of skewness in the outcome errors. First, ignoring skewness in outcome errors would in

general lead to inconsistent estimators of α, γ and β1, a1, b1, β0, a0, b0; Second, there is

an extra term in estimators of TT, LATE, and MTE accounting for skewness in outcome

errors. For ATE, there is only the indirect effect through estimation of β1, β0.

Asymptotic properties of estimators of ATE, TT, LATE, and MTE can be es-

tablished by the Delta method. We provide results for NMVM-SRMs using the two-step

estimation procedure. Let ιi be a selection matrix which means ι0iθ will equal to ith com-

ponent of θ and β01, a1, b1, β
0
0, a0, b0, γ

0, α0 are eight components in θ. Define Vij = ι0iV ιj .

31



We thus have

√
n
³
[ATE (x)−ATE (x)

´
→ N

¡
0, x0 (V11 − 2V14 + V44)x

¢
.

For TT, we get:

√
n
³dTT (x,w,D (w) = 1)− TT (x,w,D (w) = 1)

´
→ N

¡
0, S1V S

0
1

¢
,

where

S1 =
∂TT (x,w,D (w) = 1)

∂
³
β̃
0
1, β̃

0
0, γ

0, α0
´ .

Similarly, for LATE, we get:

√
n
³
\LATE (x,D (w̃) = 1,D (w) = 0)− LATE (x,D (w̃) = 1,D (w) = 0)

´
→ N

¡
0, S2V S

0
2

¢
,

where

S2 =
∂LATE (x,D (w̃) = 1,D (w) = 0)

∂
³
β̃
0
1, β̃

0
0, γ

0, α0
´ .

Finally, the estimator for MTE conditional on Xi = x, i = is

\MTE (x, ) = x0
³
β̂1 − β̂0

´
+ (â1 − â0) Ĥ (− ) +

³
b̂1 − b̂0

´
Ĝ (− ) ,

satisfying

√
n
³
\MTE (x, )−MTE (x, )

´
→ N

¡
0, S3V S

0
3

¢
,

where

S3 =
∂MTE (x, )

∂
³
β̃
0
1, β̃

0
0, γ

0, α0
´ .
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Monte Carlo Simulation

In this section, we provide simulation results to supplement those reported in

Heckman, Tobias, and Vytlacil (2003). Their main finding is that Heckman’s two-step

procedure for Gaussian SRM and its extensions to Gaussian and Student’s t copula SRMs

work well in terms of estimating ATE and TT for symmetric error distributions, but do not

work well for estimating LATE. In their Footnote 7, they stated that when the distributions

are asymmetric, neither Heckman’s two-step procedure nor its extensions to Gaussian and

Student’s t copula SRMs work well.

The purpose of our simulation study is two-fold. First, we provide additional

evidence on the significant biases of estimates of ATE and TT when skewness in the distri-

butions is not accounted for; Second, we confirm our theoretical finding that when skewness

is accounted for in the two-step estimation procedure, the estimates of ATE and TT are

much improved. Throughout the experiment, we used the same basic model as Heckman,

Tobias, and Vytlacil (2003) below:

Y1i = β1 + U1i, (II.26)

Y0i = β0 + U0i, (II.27)

Di = I{γ0+γ1Wi+ >0}, i = 1, ..., n, (II.28)

where β1 = 2, β0 = 1, γ0 = 0, γ1 = 1, and Wi ∼ N (0, 1). Different from Heckman,

Tobias, and Vytlacil (2003), we assume (U1i, U0i, i) follows a skewed t distribution3 with

3We also used skewed finite mixture distributions and obtained the same qualitative results as reported
in this section.
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degree of freedom v = 5 and skewness parameter ζ = (ζU1, ζU0, ζ ). We set V ar (U1i) =

V ar (U0i) = V ar ( i) = 1, ρ1 = 0.9, and ρ0 = 0.1. The sample size is n = 1500 and the

number of replications is 1000. The skewness parameter for each error term takes the values:

−0.3721, 0, or 0.3721, corresponding to left skewed, symmetric or right skewed distributions.

For notational convenience, we use code −1, 0, 1 to denote the left skewed, symmetric

and right skewed distributions respectively, i.e., a code (1,−1, 0) for ζ corresponds to ζ =

[0.3721,−0.3721, 0]. The non-zero values for the skewness parameter were chosen such that

σk = |ζk|, k = U1, U0, , and from (II.8), we have σ = |ζ | = 0.3721.

To gauge the separate effects of skewness in the selection error and each outcome

error, we generated data from four classes of SRMs categorized according to the value of

their skewness parameter. In category 1, only the selection error is skewed (ζ 6= 0), while

in category 2, only one of the outcome errors is skewed (ζU1 6= 0 or ζU0 6= 0 ). Category

3 includes cases where both outcome errors are skewed but the selection error is not, and

category 4 includes cases that all three errors are skewed. For each generated data, we

first use the two-step method to estimate parameters in the SRM under correctly specified

model (skewed t model) and misspecified model (Gaussian model) respectively. Then we

use the resulting parameter estimates to estimate ATE and TT, where ATE and TT are

computed as unconditional values by integrating the conditional estimates for ATE and

TT. In Tables 1 and 2, we report respectively the percentage bias of estimates of ATE,

TT and bias of estimates of the parameters in the model. For comparison purposes, in

Table 1, we also report estimates of ATE by OLS without any correction in the second

step. Several interesting findings emerge from Tables 1 and 2. First, simple OLS without

any correction in the second step leads to severely biased estimates of ATE. Second, our

two-step procedure based on the correctly specified model, skewed t model, performs well
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in all four categories, for all parameters including model parameters and ATE, TT. Third,

the bias of the two-step estimates using Gaussian specification varies with the value of the

skewness parameter. We provide a detailed discussion on this below.

In category 1, we find that ignoring skewness in the selection error leads to sig-

nificant biases in the estimates of parameters in the selection equation, but does not incur

serious bias in the estimates of ATE, TT, and parameters in the potential outcomes equa-

tions. To see why the bias in the first step estimation of the selection equation does not

cause significant bias in the second step estimation of parameters in the potential outcomes

equations and of ATE, TT, in Figure 1, we plot the correction terms for Student’s t and

Gaussian distributions respectively as functions of w0γ and the corresponding density func-

tions when ζ takes values −0.3721, 0, 0.3721. As we see from the third panel in Figure

1, the density function of skewed t distribution is in general more concentrated around the

mean than that of the Gaussian case. Thus using a misspecified Gaussian model to esti-

mate a skewed t model will cause the estimate of the scaling coefficient γ1 inflated and the

estimate of the location coefficient γ0 having a bias with the same sign as ζ . The combined

effects make the estimate w0γ̂ biased upward (w0γ̂ À 0) or downward (w0γ̂ ¿ 0). However,

the correction term of the Gaussian model is biased downward (the correction term for the

treated) or upward (the correction term for the control) with respect to the corresponding

correction term λbj (j = 1, 0) for skewed t. The correction term λaj does not have a role in

category 1 since ζU1 = ζU0 = 0. These opposite effects cancel each other out in the second

step estimation, leading to negligible biases in the estimates of parameters in the potential

outcomes equations and ATE, TT. We also note that when ζ = 0, using the misspecified

Gaussian model to estimate β1, β0, and ATE, TT in a fat-tailed Student’s t SRM does

not yield significant biases. This finding is consistent with Heckman, Tobias, and Vytlacil
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(2003). However, we observe that the bias in the estimate of the scaling coefficient γ1 in

the selection error is relatively large.

In category 2, we find that ignoring skewness in the outcome errors yields signif-

icant biases in the estimates of ATE and TT. The magnitudes of the biases of ATE are

similar among all four cases in this category, but the direction of the bias depends on the

sign of the skewness parameter in the outcome error. In contrast, the effect of ignoring

skewness on the estimate of TT depends on whether there is skewness in the treated or in

the untreated group. If skewness only appears in the outcome error for the treated group,

the bias is minimal; otherwise the bias is significant. To understand the different effects

of ignoring skewness in the outcome error on ATE and TT, we recall that when there is

skewness in the outcome errors, there are additional terms, λaj , (j = 1, 0) , in the second

step regression. Further, λa1 has the same sign as λb1, while λa0 has the opposite sign as

λb0. Note that individuals who self-select into the treated state have higher values of w0γ,

and individuals who self-select into the untreated state have lower values of w0γ. When

we use a Gaussian model to estimate skewed data, the omitted λaj will be projected onto

the outcome coefficient and the correction term λbj . For the treated group, λa1 is more

concave than λb1, thus causes downward bias in the estimate of β1 and upward bias in

the coefficient of λb1 if ζU1 > 0. This will cause bias in the estimation of ATE and the

impact on the estimation of TT will be minimized. However, for the untreated group, λa0

has the opposite sign as λb0, thus it causes downward bias in the estimate of β0 and of the

coefficient of λb1if ζU0 > 0. So the bias remains in the estimates of both ATE and TT if

the outcome error in the untreated state is skewed.

In category 3, both outcome errors are skewed. If the skewness parameters have the

same sign, then the bias in the estimate of ATE due to model misspecification is minimal,
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otherwise the bias is significant. The reason for this is that the sign of the skewness para-

meter determines the direction of bias in the estimate of the coefficient in the corresponding

potential outcome equation. When skewness parameters in both outcome equations have

the same sign, the estimates of β1 and β0 are biased in the direction and thus the bias in

the estimate of ATE will be minimized. As discussed for category 2, only the skewness in

the untreated group will significantly bias the estimate of TT, so the bias of TT remains

significant in all cases in category 3.

In category 4, as we discussed for the cases in category 1 and category 3, ignoring

skewness in the selection error will not cause significant biases in the estimates of ATE and

TT. Thus the impact of model misspecification on the estimates of ATE and TT remains

similar to the cases in category 3.

Conclusion

Chapter II makes two contributions to the literature on specification and estima-

tion of SRMs. First, we propose a general class of SRMs allowing for asymmetric and

fat-tailed error distributions and general dependence structure between each outcome error

and the selection error. Second, we extend Heckman’s two-step estimation procedure for

Gaussian SRM to a much wider class of SRMs allowing for asymmetric and fat-tailed error

distributions. Our two-step estimation procedure for asymmetric distributions incorporates

an additional correction term besides the well-known inverse mill’s ration in Heckman’s

two-step procedure. This additional correction term accounts for skewness in the outcome

error distribution. Igoring it would in general lead to inconsistent estimators of model pa-

rameters and of average treatment effect parameters. Our simulation results confirm this

and also show that our two-step procedure accounting for skewness works well.
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CHAPTER III

PARTIAL IDENTIFICATION OF THE DISTRIBUTION OF TREATMENT EFFECTS
IN SWITCHING REGIMES MODELS AND ITS CONFIDENCE SETS

Introduction

The class of switching regimes models (SRMs) or generalized sample selection

models extends the Roy model of self-selection by allowing a more general decision rule

for selecting into different states. The income maximizing Roy model of self-selection was

developed to explain occupational choice and its consequences for the distribution of earn-

ings when individuals differ in their endowments of occupation-specific skills. Heckman and

Honore (1990) demonstrated that the identification of the joint distribution of potential

outcomes is essential to the empirical content of the Roy model.

By allowing a more general decision/selection rule, SRMs enjoy a much wider scope

of applications than the Roy model, but in any particular application, they are also limited

in their ability to address a wide range of interesting economic/policy questions because of

the non-identifiability1 of the joint distribution of potential outcomes in SRMs. Even in

the ‘textbook’ Gaussian SRM, the correlation coefficient between the potential outcomes or

equivalently the joint distribution of the potential outcomes is not identifiable. In a study of

a sectoral labor market using the Gaussian SRM, Vijverberg (1993) showed that a number

of interesting economic questions including the share of ‘productive’ workers employed in a

sector can not be answered without knowledge of the joint distribution of the two potential

outcomes. When used to study treatment effect defined as the difference between the two

1In this paper, we use identification and point identification interchangeably. We say a parameter is not
identified if it is not point identified.
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potential outcomes, important distributional aspects of the treatment effect other than its

mean are not identified in SRMs. This partly explains why the current literature has mainly

focussed on various measures of average treatment effect including the average treatment

effect (ATE), the treatment effect for the treated (TT), the local average treatment effect

(LATE), and the marginal treatment effect (MTE). Heckman, Tobias, and Vytlacil (2003)

derived expressions for these four average treatment effect parameters for a Gaussian copula

SRM and a Student’s t copula SRM with normal outcome errors and non-normal selection

errors2. Heckman and Vytlacil (2005), among other things, showed that in a latent variable

framework, ATE, TT, and LATE can be expressed in terms of MTE.

Recently two approaches have been proposed to deal with the non-identifiability

problem of the joint distribution of potential outcomes in the ‘textbook’ Gaussian SRM

and some of its extensions. By employing the positive semidefiniteness of the covariance

matrix of the outcome errors and the selection error, Vijverberg (1993) showed that in the

‘textbook’ Gaussian SRM, although unidentified, useful bounds can be placed on the cor-

relation coefficient between the potential outcomes, that is, it is partially identified. Koop

and Poirier (1997), Poirier (1998), and Poirier and Tobias (2003) demonstrated via Bayesian

approach that these bounds often provide informative information on the unidentified cor-

relation coefficient. Since the joint distribution of the potential outcomes in the ‘textbook’

Gaussian SRM depends on the unidentified correlation coefficient only (besides the iden-

tified marginal parameters), it is possible to place bounds on the joint distribution of the

potential outcomes and on the distribution of the difference between the potential outcomes.

In the second approach, restrictions are imposed on the dependence structure between the

potential outcomes such that their joint distribution and the distribution of treatment effects

2They didn’t use the concept of copulas, but their models can be interpreted this way.
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are identified, see, e.g., Heckman, Smith, and Clements (1997), Biddle, Boden, and Reville

(2003), Carneiro, Hansen, and Heckman (2003), Aakvik, Heckman, and Vytlacil (2005),

Cunha and Heckman (2007), among others. Among other things, they demonstrated that

knowledge of the joint distribution of potential outcomes and the distribution of treatment

effects allows a much richer analysis of policy effects than average treatment effects. Ques-

tions that can be addressed include the proportion of people participating in the program

who benefit from it in terms of having positive treatment effects; the proportion of the total

population that benefits from the program; and which groups in an initial position benefit

or lose from the program.

Chapter III takes the first approach and makes several contributions to the current

literature. First, we extend the partial identification results in Vijverberg (1993), Koop and

Poirier (1997), Poirier (1998), Poirier and Tobias (2003), and Li, Poirier, and Tobias (2004)

to a general class of SRMs in which the joint distribution of the outcome errors and the

selection error is assumed to follow a trivariate Normal Mean-Variance Mixture (NMVM)

distribution referred to as NMVM-SRMs. The ‘textbook’ Gaussian and Student’s t SRMs

are members of NMVM-SRMs. In addition, NMVM-SRMs also allow the errors to follow

asymmetric distributions. For NMVM-SRMs, we provide sharp bounds or partial identifica-

tion results on the correlation coefficient of the potential outcomes, their joint distribution,

and the distribution of treatment effects. The distribution bounds established in NMVM-

SRMs rely on two special properties of NMVM-SRMs: (i) the only unidentified parameter

in a NMVM-SRM is the correlation coefficient between the two potential outcomes and (ii)

the joint distribution of the two potential outcomes in a NMVM-SRM is also NMVM. The

fact that the joint distribution of the potential outcomes in a SRM is not identifiable raises

two issues: (i) is it possible to test the NMVM specification of the joint distribution of the
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potential outcomes? and (ii) are the results for NMVM-SRMs robust to the implied joint

distribution of the potential outcomes? To address these issues, we establish sharp bounds

on the joint distribution of potential outcomes and the distribution of treatment effects in

the general class of semiparametric SRMs in Heckman (1990) in which the joint distribution

of the trio of errors is completely unspecified. Our results rely on and supplement the point

identification results in Heckman (1990). This is the second contribution of Chapter III.

Two interesting conclusions emerge from our results. First, in NMVM-SRMs with

symmetric outcome errors, we find that the sharp bounds on the joint distribution of poten-

tial outcomes are robust to the implied joint distribution of the potential outcomes in the

sense that these bounds remain valid for any distribution of the trio of errors as long as the

implied bivariate distributions for each outcome error and the selection error are NMVM

with symmetric outcome errors. In contrast, the sharp bounds on the treatment effect

distribution in NMVM-SRMs are not robust to the implied joint distribution of the poten-

tial outcomes. We provide a detailed numerical comparison between sharp bounds on the

treatment effect distribution relying on the trivariate Gaussian and Student’s t distributions

with those that do not specify the joint distribution of potential outcomes. Our numerical

results show that bounds relying on the trivariate Gaussian or Student’s t assumption can

be misleading. Second, we find that in general information on individual’s selection decision

can help improve sharp bounds on the joint distribution of the potential outcomes and the

distribution of treatment effects. When the conditional distribution of one of the potential

outcome errors given the selection error is degenerate at a finite value, our sharp bounds

point identify the joint distribution of potential outcomes and the distribution of treatment

effects.

The partial identification results established in Chapter III can be used to develop

41



inference procedures for the joint distribution of potential outcomes and the distribution of

treatment effects. There is a recent, but rapidly growing literature on inference for partially

identified parameters, including Imbens and Manski (2004), Bugni (2007), Canay (2007),

Chernozhukov, Hong, and Tamer (2007), Fan and Park (2007), Romano and Shaikh (2006),

Stoye (2007), Andrews and Guggenberger (2007), and Andrews and Soares (2007), among

others. We refer the reader to Fan and Park (2007) for more references. A complete treat-

ment of this important issue is beyond the scope of Chapter III. However, we demonstrate

this feasibility by constructing an asymptotically uniformly valid and non-conservative con-

fidence set (CS) for the distribution of treatment effects in a semiparametric SRM.

Methodologically, the approach we use to bound the joint distribution of the po-

tential outcomes and the distribution of treatment effects in semiparametric SRMs differs

from that in NMVM-SRMs. Without specifying the joint distribution of the outcome er-

rors and the selection error, the approach used to bound the distribution of the potential

outcomes and the distribution of treatment effects in NMVM-SRMs breaks down. The new

tool that we employ in Chapter III to establish bounds on the joint distribution of poten-

tial outcomes is the Fréchet-Hoeffding inequality on copulas. A straightforward application

of this inequality allows us to bound the joint distribution of potential outcomes using

the bivariate distributions of each outcome error and the selection error, where the latter

distributions are known to be identified under general conditions, see Heckman (1990). To

bound the distribution of treatment effects, we make use of existing results on sharp bounds

on the distributions of functions of two random variables including the four simple arith-

metic operations, see Williamson and Downs (1990). For a sum of two random variables,

Makarov (1981), Rüschendorf (1982), and Frank, Nelsen, and Schweizer (1987) establish

sharp bounds on its distribution, see also Nelsen (1999). These results have been used in
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Fan and Park (2006, 2008) to bound the distribution of treatment effects and the quantile

function of treatment effects in the context of ideal social experiments where selection is ran-

dom. Other applications of the Fréchet-Hoeffding inequality include Heckman, Smith, and

Clements (1997) in which they bound the variance of treatment effects under the assump-

tion of random selection; Manski (1997b) in which he established bounds on the mixture

of two potential outcomes when the distribution of each outcome is known; Lee (2002) in

which he presented bounds on the correlation coefficient between the potential outcomes

in SRMS, and Fan (2005) in which she provided a systematic study on the estimation and

inference on the sharp bounds on the correlation bounds.

The rest of Chapter III is organized as follows. In Section 2, we introduce the class

of NMVM-SRMs and discuss the identification/partial identification of the parameters in

NMVM-SRMs. In particular, we extend existing work on correlation bounds in SRMs with

trivariate normal or Student’s t errors to our NMVM-SRMs. In Section 3, we establish

sharp bounds on the joint distribution of potential outcomes and on the distribution of

treatment effects for the whole population and the subpopulation receiving treatment in

NMVM-SRMs. In Section 4, we establish sharp bounds on the joint distribution of poten-

tial outcomes and on the distribution of treatment effects for the whole population and the

subpopulation receiving treatment in semiparametric SRMs in Heckman (1990). In Section

5 we provide a systematic comparison of the two sets of bounds when the two identified

bivariate marginal distributions are NMVM. Section 6 presents an asymptotically uniformly

valid and non-conservative CS for the distribution of treatment effects in a special class of

semiparametric SRMs. The last section concludes. Technical proofs are relegated in the

Appendix.
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Normal Mean Variance Mixture Switching Regimes Models and
Parameter Identification

Parametric SRMs supplement model (II.1) by distributional specifications for the

vector of errors (U1i, U0i, i)
0. Commonly used distributions include the trivariate normal

and Student’s t distributions. We introduce a general flexible class of parametric SRMs

characterized by (II.1) with the trivariate error vector (U1i, U0i, i)
0 following a NMVM dis-

tribution. We discuss identification or partial identification of the parameters in NMVM-

SRMs. For notational compactness, we omit the subscript i in the rest of Section 2 and

Section 3.

Parameter Identification/Partial Identification

It follows from an extention of Proposition 3.13 in McNeil, Frey, and Embrechts

(2005) that

(U1, )
0 ∼ NMVM2 (ξ, μ1 ,Σ1 , ζ1 ) ,

(U0, )
0 ∼ NMVM2 (ξ, μ0 ,Σ0 , ζ0 ) ,

(U1, U0)
0 ∼ NMVM2 (ξ, μ10,Σ10, ζ10) ,

where for i, j = 0, 1, ,

μij =

⎛⎜⎜⎝ μi

μj

⎞⎟⎟⎠ , ζij =

⎛⎜⎜⎝ ζi

ζj

⎞⎟⎟⎠ , Σij =

⎛⎜⎜⎝ σ2i σiσjρij

σiσjρij σ2j

⎞⎟⎟⎠ .

Since either Y1 or Y0 is observed for any given individual but never both, the joint dis-

tribution of U1 and U0 is in general not point identified in NMVM-SRMs. As a result,
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ρ10 is in general not point identified, as it only appears in the joint distribution of U1, U0,

whereas the remaining parameters including ρ1 and ρ0 are point identified. However, since

Σ = V ar
¡
s−1/2V |S = s

¢
is positive semi-definite, we obtain: ρ10 ∈ [ρL, ρU ], where

ρL = ρ1 ρ0 −
q
(1− ρ21 )(1− ρ20 ), ρU = ρ1 ρ0 +

q
(1− ρ21 )(1− ρ20 ).

This result was first established in Vijverberg (1993) for Gaussian SRMs by using the fact

that the variance covariance matrix of the error vector (U1, U0, )
0 is positive semi-definite,

see also Koop and Poirier (1997), Poirier (1998), and Poirier and Tobias (2003).

In Gaussian SRMs, Σ is the variance-covariance matrix of (U1, U0, )
0 and ρ10

is the correlation coefficient between U1 and U0. In general NMVM-SRMs, ρ10 is not the

correlation coefficient between U1 and U0. Let ρ10 denote the correlation coefficient between

U1 and U0. It is related to ρ10 through the following expression:

ρ10 =
E (S) ρ10σ1σ0 + ζ1ζ0V ar (S)q¡

E (S)σ21 + ζ21V ar (S)
¢ ¡
E (S)σ20 + ζ20V ar (S)

¢ . (III.1)

The bounds on ρ10 and (III.1) yield bounds on ρ10: ρL ≤ ρ10 ≤ ρU , where

ρ̄L =
E (S) ρLσ1σ0 + ζ1ζ0V ar (S)q¡

E (S)σ21 + ζ21V ar (S)
¢ ¡
E (S)σ20 + ζ20V ar (S)

¢ ,
ρ̄U =

E (S) ρUσ1σ0 + ζ1ζ0V ar (S)q¡
E (S)σ21 + ζ21V ar (S)

¢ ¡
E (S)σ20 + ζ20V ar (S)

¢ .
Since ρ1 , ρ0 are point identified, the bounds ρL, ρU are point identified and thus ρ̄L, ρ̄U are

point identified. If [ρL, ρU ] 6= [−1, 1], then we say ρ10 is partially identified with identified

interval (set) given by [ρL, ρU ]. We point out that the bounds ρL, ρU are sharp, as ρL and

ρU are sharp for ρ10. The following theorem shows that the identified interval for ρ10 may

identify its sign and may even point identify ρ10.

Theorem 2 Let ρ̄1 = Corr (U1, ) and ρ̄0 = Corr (U0, ). (i) Suppose V ar (S) > 0. Then
[ρL, ρU ] = [−1, 1] if and only if ρ̄1 = ρ̄0 = 0 and ζ1 = ζ0 = 0. Suppose V ar (S) = 0. Then
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[ρL, ρU ] = [−1, 1] if and only if ρ̄1 = ρ̄0 = 0; (ii) If ρ
2
1 +ρ20 > 1 and ρ1 , ρ0 have the same

sign, then ρL > 0; (iii) If ρ21 + ρ20 > 1 and ρ1 , ρ0 have the opposite sign, then ρU < 0;
(iv) If ρ21 = 1 or ρ

2
0 = 1, then ρ̄L = ρ̄U implying that ρ10 is point identified and

ρ10 =
E (S) ρ1 ρ0 σ1σ0 + ζ1ζ0V ar (S)q¡

E (S)σ21 + ζ21V ar (S)
¢ ¡
E (S)σ20 + ζ20V ar (S)

¢ .
Theorem 2.1 (i) implies that when (U1, U0)

0 follows a symmetric NMVM distribu-

tion, the bounds ρL, ρU are informative or ρ10 is partially identified as long as at least one

of the potential outcomes is correlated with the selection error. In addition, Theorem 2.1

(ii) and (iii) imply that it is possible to identify the sign of ρ10. The conditions in (ii) and

(iii) require that the selection error must be correlated with both outcome errors. If the

selection error is perfectly correlated with at least one of the outcomes errors, then Theorem

2.1 (iv) implies that ρ10 is point identified. The inequality: ρ̄L ≤ ρ10 ≤ ρ̄U characterizes

the class of NMVM-SRMs consistent with the sample information; any NMVM-SRM with

ρ10 violating it is inconsistent with the sample information.

Distribution Bounds in NMVM-SRMs

Let ∆ = Y1 − Y0 denote the individual treatment effect. Heckman, Tobias, and

Vytlacil (2003) derived expressions for four treatment parameters of interest for a Gaussian

copula model and a Student’s t copula model with normal outcome errors and non-normal

selection errors. They are respectively ATE, TT, LATE, and MTE. Let ATE denote the

average treatment effect conditional on X,W : ATE ≡ E (∆|X,W ) = X 0(β1 − β0). Note

that

∆ = ATE + (U1 − U0).

The individual treatment effect ∆ may differ across individuals with the same observable
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covariates because of the unobserved heterogeneity (U1 − U0). This motivates the study of

the distribution of treatment effect ∆ conditional on the observed covariates. Throughout

the rest of Chapter III, we focus on establishing sharp bounds on distributions conditional on

the observed covariates without explicitly mentioning it. We emphasize that sharp bounds

on the corresponding unconditional distributions are given by the respective expectations

of sharp bounds on the conditional distributions with respect to the observable covariates.

The distribution of ∆ depends on ρ10 or ρ10 and hence is not point identified in

general. In this section, we establish partial identification results for the joint distribution

of potential outcomes and the distribution of ∆ for a randomly chosen individual from the

whole population and from the population participating in the treatment.

Sharp Bounds on the Joint Distribution of Potential Outcomes

Let FY
10 denote the joint distribution of potential outcomes Y1, Y0 conditional on

X = x, W = w. Let α10 = (ξ, μ10,Σ10, ζ10) and α
−
10 denote all the parameters in α10 except

ρ10.

In a NMVM-SRM, FY
10(y1, y0) = NMVM2 (y1 − x0β1, y0 − x0β0;α10) ,where

NMVM2 (u1, u0;α10) =

∞Z
0

fS (s)Φρ10

µ
u1 − (ζ1s− ζ1E (S))

σ1
√
s

,
u0 − (ζ0s− ζ0E (S))

σ0
√
s

¶
ds,

in which Φρ(·, ·) is the distribution function of a bivariate normal variable with zero means,

unit variances, and correlation coefficient ρ. We now show that the bounds on ρ10 place

bounds on the joint distribution FY
10(y1, y0). Let C

Gau denote the Gaussian copula given by

CGau(u, v, ρ) = Φρ
¡
Φ−1 (u) ,Φ−1 (v)

¢
, (u, v) ∈ [0, 1]2.
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Then we can write

NMVM2 (u1, u0;α10)

=

∞Z
0

fS (s)C
Gau

µ
Φ

µ
u1 − (ζ1s− ζ1E (S))

σ1
√
s

¶
,Φ

µ
u0 − (ζ0s− ζ0E (S))

σ0
√
s

¶
, ρ10

¶
ds.

Since the Gaussian copula is increasing in concordance in ρ10 (see Joe (1997)), we obtain

the following sharp bounds on the joint distribution of Y1, Y0:

NMVM2

¡
y1 − x0β1, y0 − x0β0;

£
α−10, ρL

¤¢
≤ FY

10(y1, y0)

≤ NMVM2

¡
y1 − x0β1, y0 − x0β0;

£
α−10, ρU

¤¢
. (III.2)

For any fixed x and y1, y0, the bounds above are informative for FY
10(y1, y0) as long

as

NMVM2

¡
y1 − x0β1, y0 − x0β0;

£
α−10, ρL

¤¢
6= 0 or NMVM2

¡
y1 − x0β1, y0 − x0β0;

£
α−10, ρU

¤¢
6= 1.

Moreover, if either ρ21 = 1 or ρ
2
0 = 1, Theorem 2.1 (iv) implies that ρ̄L = ρ̄U or equivalently

ρL = ρU and thus (III.2) point identifies F
Y
10(y1, y0).

Theorem 3 Let CL(s, t) = max(s + t − 1, 0) denote the Fréchet lower bound copula and
CU (s, t) = min(s, t) denote the Fréchet upper bound copula. Suppose ζ1 = ζ0 = 0 and
ρ̄1 = ρ̄0 = 0. Then

NMVM2

¡
y1 − x0β1, y0 − x0β0;

£
α−10, ρL

¤¢
= CL

¡
NMVM1

¡
y1 − x0β1; θ1

¢
, NMVM1

¡
y0 − x0β0; θ0

¢¢
,

NMVM2

¡
y1 − x0β1, y0 − x0β0;

£
α−10, ρU

¤¢
= CU

¡
NMVM1

¡
y1 − x0β1; θ1

¢
, NMVM1

¡
y0 − x0β0; θ0

¢¢
,

where θ1 =
¡
ξ, μ1, σ

2
1, ζ1

¢
and θ0 =

¡
ξ, μ0, σ

2
0, ζ0

¢
.

It is interesting to observe from (III.2) and Theorem 3.1 that in NMVM-SRMs,

two sources of information contribute to the partial identification of FY
10(y1, y0): (i) the

partial identification of ρ10 or ρ10; (ii) the point identification of the marginal distributions

of the potential outcomes. When selection is random, i.e., the selection error is independent
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of the outcome errors, we have

CL

¡
NMVM1

¡
y1 − x0β1; θ1

¢
,NMVM1

¡
y0 − x0β0; θ0

¢¢
≤ F Y

10(y1, y0)

≤ CU

¡
NMVM1

¡
y1 − x0β1; θ1

¢
, NMVM1

¡
y0 − x0β0; θ0

¢¢
. (III.3)

This is a straightforward applicationof the Fréchet-Hoeffding inequality:

CL(s, t) ≤ C(s, t) ≤ CU (s, t), for all (s, t) ∈ [0, 1]2, (III.4)

where C(·, ·) is any copula function, as Yj ∼ NMVM1

¡
·− x0βj ; θj

¢
, j = 1, 0. Theorem

3.1 shows that when the outcome errors follow symmetric NMVM distributions and are

uncorrelated with the selection error, the bounds in (III.2) are the same as those in (III.3).

In general, the bounds in (III.2) are sharper than those in (III.3). Thus, taking into account

self-selection tightens the bounds on the joint distribution of potential outcomes.

Similar conclusions hold for the joint distribution of the potential outcomes for

participants. To simplify the notation for sharp bounds on FY
10(y1, y0|D = 1), we let

F ∗10|D=1

³
u1, u0; ρ10|

´
denote the conditional distribution function of (U1, U0) given D = 1

when ρ21 6= 1 and ρ20 6= 1, where

ρ10| =
ρ10−ρ1 ρ0q¡

1− ρ21
¢ ¡
1− ρ20

¢ .
It is easy to show that

F ∗10|D=1

³
u1, u0; ρ10|

´

=

Z +∞

−(w,xc)0γ

Z
fS(s)
σ
√
s
φ
³
−μ (s)
σ
√
s

´
Φρ10|

Ã
u1−μ̄1(s)
(1−ρ21 )σ21s

, u0−μ̄0(s)
(1−ρ20 )σ20s

!
dsdF ( )

1− F (−(w, xc)0γ)
,
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where

μj (s) = ζj (s−E (S)) , j = 0, 1, ,

μ̄j (s) = μj (s) + ρj
σj
σ

, j = 0, 1.

When ρ10 reaches ρL (ρU ), ρ10| will reach −1 (1), so the sharp bounds on FY
10(y1, y0|D = 1)

are given by FL
10(y1, y0|D = 1) and FU

10(y1, y0|D = 1) respectively, where

F Y
10(y1, y0|D = 1) = F ∗10|D=1

³
y1 − x0β1, y0 − x0β0; ρ10|

´
,

FL
10(y1, y0|D = 1) = F ∗10|D=1

¡
y1 − x0β1, y0 − x0β0;−1

¢
,

FU
10(y1, y0|D = 1) = F ∗10|D=1

¡
y1 − x0β1, y0 − x0β0; 1

¢
.

When ρ21 = 1 or ρ
2
0 = 1, we have ρ10 = ρ1 ρ0 and thus F

Y
10(y1, y0|D = 1) = FL

10(y1, y0|D =

1) = FU
10(y1, y0|D = 1). For example, when ρ21 = 1 and ρ20 6= 1, we have

FY
10(y1, y0|D = 1)

=

Z +∞

−(w,xc)0γ

Z
fS(s)
σ
√
s
φ
³
−μ (s)
σ
√
s

´
CL

Ã
I (y1 − x0β1 − μ̄1 (s) ≥ 0) ,Φ

Ã
y0−x0β0−μ̄0(s)
(1−ρ20 )σ20s

!!
dsdF ( )

1− F (−(w, xc)0γ)
,

where I (•) is a indicator function. If ρ21 = 1 and ρ20 = 1, then

FY
10(y1, y0|D = 1)

=

Z +∞

−(w,xc)0γ

Z
fS(s)
σ
√
s
φ
³
−μ (s)
σ
√
s

´
CL (I (y1 − x0β1 − μ̄1 (s) ≥ 0) , I (y0 − x0β0 − μ̄0 (s) ≥ 0)) dsdF ( )

1− F (−(w, xc)0γ)
.
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Sharp Bounds on the Distribution of Treatment Effects

In NMVM-SRMs, the individual treatment effect when X = x is given by

∆ = x0 (β1 − β0) + U1 − U0.

Define γ1 = σ1ρ1 − σ0ρ0 and γ22 = σ21 + σ20 − 2σ1σ0ρ10. Then γ22 satisfies σ
2
L ≤ γ22 ≤ σ2U ,

where

σ2U = σ21 + σ20 − 2ρLσ1σ0, σ2L = σ21 + σ20 − 2ρUσ1σ0.

Since (U1, U0, )
0 ∼ NMVM3 (ξ, μ,Σ, ζ) and (∆− x0 (β1 − β0) , U0, )

0 = B (U1, U0, )
0, where

B =

⎛⎜⎜⎜⎜⎜⎜⎝
1 −1 0

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

An extention of Proposition 3.13 in McNeil, Frey, and Embrechts (2005) implies that

¡
∆− x0 (β1 − β0) , U0,

¢0 ∼ NMVM3

¡
ξ,Bμ,BΣB0, Bζ

¢
,

where

Bμ =

⎛⎜⎜⎜⎜⎜⎜⎝
μ1 − μ0

μ0

μ

⎞⎟⎟⎟⎟⎟⎟⎠ , Bζ =

⎛⎜⎜⎜⎜⎜⎜⎝
ζ1 − ζ0

ζ0

ζ

⎞⎟⎟⎟⎟⎟⎟⎠ , and

BΣB0 =

⎛⎜⎜⎜⎜⎜⎜⎝
γ22 σ1σ0ρ10 − σ20 γ1σ

σ1σ0ρ10 − σ20 σ20 σ0σ ρ0

γ1σ σ0σ ρ0 σ2

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Applying an extention of Proposition 3.13 in McNeil, Frey, and Embrechts (2005) again, we

get

¡
∆− x0 (β1 − β0) ,

¢0 ∼ NMVM2

¡
ξ, (Bμ)1 ,

¡
BΣB0

¢
1
, (Bζ)1

¢
,

∆− x0 (β1 − β0) ∼ NMVM1

¡
ξ, μ1 − μ0, γ

2
2, ζ1 − ζ0

¢
, (III.5)

∼ NMVM1

¡
ξ, μ , σ2, ζ

¢
,

where

(Bμ)1 =

⎛⎜⎜⎝ μ1 − μ0

μ

⎞⎟⎟⎠ ,
¡
BΣB0

¢
1
=

⎛⎜⎜⎝ γ22 γ1σ

γ1σ σ2

⎞⎟⎟⎠ , (Bζ)1 =

⎛⎜⎜⎝ ζ1 − ζ0

ζ

⎞⎟⎟⎠ .

Let F∆ (δ) and F∆ (δ|D = 1) denote respectively the distribution of ∆ conditional

on X = x, W = w and the distribution of ∆ conditional on X = x, W = w, and D = 1.

The Theorem below provides sharp bounds on F∆ (δ) and F∆ (δ|D = 1).

Theorem 4 (i) It holds that FL
∆ (δ) ≤ F∆ (δ) ≤ FU

∆ (δ), where

FU
∆ (δ) = max

σ2L≤γ22≤σ2U
NMVM1

¡
δ − x0 (β1 − β0) ; ξ, μ1 − μ0, γ

2
2, ζ1 − ζ0

¢
,

FL
∆ (δ) = min

σ2L≤γ22≤σ2U
NMVM1

¡
δ − x0 (β1 − β0) ; ξ, μ1 − μ0, γ

2
2, ζ1 − ζ0

¢
.

If ζ1 = ζ0, then

FL
∆(δ) =

½
NMVM1

¡
δ − x0 (β1 − β0) ; ξ, μ1 − μ0, σ

2
U , 0

¢
if δ ≥ ATE

NMVM1

¡
δ − x0 (β1 − β0) ; ξ, μ1 − μ0, σ

2
L, 0

¢
if δ < ATE

;

FU
∆ (δ) =

½
NMVM1

¡
δ − x0 (β1 − β0) ; ξ, μ1 − μ0, σ

2
L, 0

¢
if δ ≥ ATE

NMVM1

¡
δ − x0 (β1 − β0) ; ξ, μ1 − μ0, σ

2
U , 0

¢
if δ < ATE

.

(ii) It holds that FL
∆ (δ|D = 1) ≤ F∆ (δ|D = 1) ≤ FU

∆ (δ|D = 1), where

FU
∆ (δ|D = 1)

= max
σ2L≤γ22≤σ2U

δZ
−∞

∞Z
−w0γ

nmvm2 (u− x0 (β1 − β0) , ; ξ, (Bμ)1 , (BΣB0)1 , (Bζ)1 )

1−NMVM1 (−w0γ; ξ, μ , σ2, ζ )
dud ,

FL
∆ (δ|D = 1)

= min
σ2L≤γ22≤σ2U

δZ
−∞

∞Z
−w0γ

nmvm2 (u− x0 (β1 − β0) , ; ξ, (Bμ)1 , (BΣB0)1 , (Bζ)1 )

1−NMVM1 (−w0γ; ξ, μ , σ2, ζ )
dud .
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For any fixed x and fixed δ, the bounds on F∆(δ) are informative as long as

FL
∆(δ) 6= 0 or FU

∆ (δ) 6= 1. When either ρ21 = 1 or ρ20 = 1, we have ρL = ρU and

thus σ2L = σ2U . Theorem 3.1 (i) implies that in this case, F∆(·) is point identified. In

general, F∆(δ) is partially identified. However, consider the case that ζ1 = ζ0. In this

case, the distribution of ∆ is symmetric. Theorem 3.2 (i) implies that when δ = ATE,

FL
∆(δ) = FU

∆ (δ) = 0.5. Hence F∆(ATE) = 0.5, implying that the value of the distribution

of ∆ at the ATE is identified and that the median of the distribution of the outcome gain

is the same as ATE.

We note that the same two sources of information contributing to the partial

identification of the joint distribution also contribute to the partial identification of the

distribution of ∆. Suppose ζ1 = ζ0 = 0 and ρ̄1 = ρ̄0 = 0. Theorem 2.1 (i) implies that

[ρL, ρU ] = [−1, 1]. In this case, σ2L = (σ1 − σ0)
2 and σ2U = (σ1 + σ0)

2. In general, (σ1 −

σ0)
2 ≤ σ2L ≤ σ2U ≤ (σ1+σ0)2. Theorem 3.2 (i) implies that taking into account self-selection

tightens the bounds on F∆ (δ). Moreover, the following simple algebra demonstrates that

the stronger the self-selection is, the tighter the bounds. For any δ, the width of the

distribution bounds depends on σU and σL. Noting that

σ2U − σ2L = 4σ1σ0

q
(1− ρ21 )(1− ρ20 ),

we conclude that the width of the distribution bounds on F∆ (δ) becomes narrower as the

correlation between the selection error and the outcome errors become stronger.

Example 2.1. (Cont.) For SRMs with trivariate Gaussian errors, Theorem 3.2
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(i) implies that FL
∆(δ) ≤ F∆(δ) ≤ FU

∆ (δ), where

FL
∆(δ) =

⎧⎪⎪⎨⎪⎪⎩
Φ
³
δ−ATE
σU

´
if δ ≥ ATE

Φ
³
δ−ATE

σL

´
if δ < ATE

;

FU
∆ (δ) =

⎧⎪⎪⎨⎪⎪⎩
Φ
³
δ−ATE

σL

´
if δ ≥ ATE

Φ
³
δ−ATE
σU

´
if δ < ATE

. (III.6)

Example 2.2. (Cont.) Let T[v] (·) denote the distribution function of the Stu-

dent’s t distribution with v degrees of freedom. For SRMs with trivariate Student’s t errors,

Theorem 3.2 (i) implies that FL
∆(δ) ≤ F∆(δ) ≤ FU

∆ (δ), where

FL
∆(δ) =

⎧⎪⎪⎨⎪⎪⎩
T[v]

³
δ−ATE
σU

q
v

v−2

´
if δ ≥ ATE

T[v]

³
δ−ATE

σL

q
v

v−2

´
if δ < ATE

;

FU
∆ (δ) =

⎧⎪⎪⎨⎪⎪⎩
T[v]

³
δ−ATE

σL

q
v

v−2

´
if δ ≥ ATE

T[v]

³
δ−ATE
σU

q
v

v−2

´
if δ < ATE

.

Distribution Bounds in Semiparametric SRMs

The bounds for NMVM-SRMs established in Section 3 depend crucially on the

parametric distribution assumption, especially the implied joint NMVM distribution of the

potential outcomes. In this section, we dispense with the parametric distribution assump-

tion on (U1i, U0i, i)
0. In particular, we consider the semiparametric SRM in Heckman
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(1990):

Y1i = g1(X1i,Xci) + U1i,

Y0i = g0(X0i,Xci) + U0i,

Di = I{(Wi,Xci)0γ+ i>0}, i = 1, . . . , n, (III.7)

where both g1(x1, xc), g0(x0, xc) and the distribution of (U1i, U0i, i)
0 are completely un-

known. Heckman (1990) provided conditions under which the distributions of (U1i, i)
0 and

(U0i, i)
0, g1(x1, xc), g0(x0, xc), and γ are point identified from the sample information alone.

However, the joint distribution of (U1i, U0i)
0 is not (point) identified.

In this section, we provide sharp bounds on the joint distribution of U1i, U0i or

Y1i, Y0i and the distribution of ∆i conditional on the observed covariates in (III.7). We as-

sume independence of the errors U1i, U0i, i and the regressors X1i,X0i,Xci,Wi. Again we

emphasize that sharp bounds on the corresponding unconditional distributions are given by

the respective expectations of sharp bounds on the conditional distributions with respect

to the observable covariates. We note that the covariance approach used in Section 3 is

not applicable here, as the distribution of (U1i, U0i, i)
0 is completely unknown. Instead we

make use of the Fréchet-Hoeffding inequality in (III.4) and existing results on bounding

the distribution of a difference of two random variables each having a given distribution

function. Again, we omit the subscript i in the rest of Section 4 and Section 5.

Sharp Bounds on the Distribution of a Difference of Two Random Vari-
ables

Sharp bounds on distributions of functions of random variables Y1 and Y0 including

the four simple arithmetic operations are presented in Williamson and Downs (1990). For a
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sum of two random variables, Makarov (1981), Rüschendorf (1982), and Frank, Nelsen, and

Schweizer (1987) establish sharp bounds on its distribution, see also Nelsen (1999). Frank,

Nelsen, and Schweizer (1987) demonstrate that their proof based on copulas can be extended

to more general functions than the sum. In this subsection, we will present the relevant

results for the difference between two random variables. Specifically, let ∆ = Y1 − Y0 and

F∆(·) denote the distribution function of ∆. The following lemma presents sharp bounds

on F∆(·) when only F1 and F0 are known.

Lemma 1 Let Fmin(δ) = supy1 max(F1(y1)−F0(y1−δ), 0) and Fmax(δ) = 1+infy1 min(F1(y1)−
F0(y1 − δ), 0). Then Fmin(δ) ≤ F∆(δ) ≤ Fmax(δ).

Viewed as an inequality among all possible distribution functions, the sharp bounds

Fmin(δ) and Fmax(δ) cannot be improved, because it is easy to show that if either F1

or F0 is the degenerate distribution at a finite value, then for all δ, we have Fmin(δ) =

F∆(δ) = Fmax(δ). In fact, given any pair of distribution functions F1 and F0, the inequal-

ity: Fmin(δ) ≤ F∆(δ) ≤ Fmax(δ) cannot be improved, that is, the bounds Fmin(δ) and

Fmax(δ) for F∆(δ) are point-wise best-possible, see Frank, Nelsen, and Schweizer (1987) for

a proof of this for a sum of random variables and Williamson and Downs (1990) for a general

operation on two random variables. Unlike the sharp bounds on the correlation coefficient

between Y1, Y0 or the joint distribution of Y1, Y0 which are reached at the Fréchet-Hoeffding

lower and upper bounds for the distribution of Y1, Y0 when Y1 and Y0 are perfectly nega-

tively dependent or perfectly positive dependent (see Fan (2005)), the sharp bounds on the

distribution of ∆ are not reached at the Fréchet-Hoeffding lower and upper bounds for the

distribution of Y1, Y0. Frank, Nelsen, and Schweizer (1987) provided explicit expressions for

copulas that reach the bounds on the distribution of ∆.

Explicit expressions for bounds on the distribution of a sum of two random vari-

ables are available for the case where the distributions of both random variables belong to
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the same family which includes the uniform, the normal, the Cauchy, and the exponential

families, see Alsina (1981), Frank, Nelsen, and Schweizer (1987), and Denuit, Genest, and

Marceau (1999). Below we provide expressions for Fmin (δ) and Fmax (δ) when both Y1 and

Y0 are normal or Student’s t.

Example 4.1. Let Y1 ∼ N
¡
μ1, σ

2
1

¢
and Y0 ∼ N

¡
μ0, σ

2
0

¢
. Fan and Park (2006)

provide the following expressions for the bounds Fmin (δ) and Fmax (δ):

(i) If σ1 = σ0 = σ, then

Fmin (δ) =

⎧⎪⎪⎨⎪⎪⎩
0 if δ < μ1 − μ0,

2Φ
³
δ−(μ1−μ0)

2σ

´
− 1 if δ ≥ μ1 − μ0,

(III.8)

Fmax (δ) =

⎧⎪⎪⎨⎪⎪⎩
2Φ
³
δ−(μ1−μ0)

2σ

´
if δ < μ1 − μ0,

1 if δ ≥ μ1 − μ0,

(III.9)

(ii) If σ1 6= σ0, then

Fmin (δ) = Φ

µ
σ1s− σ0t

σ21 − σ20

¶
+Φ

µ
σ1t− σ0s

σ21 − σ20

¶
− 1,

Fmax (δ) = Φ

µ
σ1s+ σ0t

σ21 − σ20

¶
−Φ

µ
σ1t+ σ0s

σ21 − σ20

¶
+ 1,

where s = δ − (μ1 − μ0) and t =
³
s2 + 2

¡
σ21 − σ20

¢
ln
³
σ1
σ0

´´ 1
2
.

Example 4.2. For j = 0, 1, we assume Yj−μj
σj

q
vj

vj−2 ∼ t[vj ], where vj > 2 , so that

E (Yj) = μj , V ar(Yj) = σ2j and Fj(δ) = T[vj ]

³³
δ−μj
σj

´q
vj

vj−2

´
.

By Lemma 4.1, Fmin(δ) = max(F1(x∗1)−F0(x∗1−δ), 0) and Fmax(δ) = 1+min(F1(x∗2)−

F0(x
∗
2−δ), 0),where x∗1 and x∗2 are the maximizer and minimizer of the function [F1(x)− F0(x− δ)]

respectively, i.e., x∗1, x
∗
2 satisfy the equation:
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1

σ1

r
v1

v1 − 2
t[v1]

µµ
x− μ1
σ1

¶r
v1

v1 − 2

¶
=
1

σ0

r
v0

v0 − 2
t[v0]

µµ
x− μ0 − δ

σ0

¶r
v0

v0 − 2

¶
.

In general, one must solve the above equation and hence evaluate Fmin(δ) and Fmax(δ)

numerically. When v1 = v0 ≡ v (say), we are able to get closed-form expressions for Fmin(δ)

and Fmax(δ) as follows:

(i) If σ1 = σ0 = σ, then

Fmin (δ) =

⎧⎪⎪⎨⎪⎪⎩
0 if δ < μ1 − μ0,

2T[v]

³³
δ−(μ1−μ0)

2σ

´q
v

v−2

´
− 1 if δ ≥ μ1 − μ0,

(III.10)

Fmax (δ) =

⎧⎪⎪⎨⎪⎪⎩
2T[v]

³³
δ−(μ1−μ0)

2σ

´q
v

v−2

´
if δ ≥ μ1 − μ0,

1 if δ ≥ μ1 − μ0.

(III.11)

(ii) If σ1 6= σ0, then

Fmin (δ)

= T[v]

µµ
σ2κ−11 s− σκ0σ

κ−1
1 t

σ2κ1 − σ2κ0

¶r
v

v − 2

¶
+ T[v]

ÃÃ
σκ1σ

κ−1
0 t− σ

(2κ−1)
0 s

σ2κ1 − σ2κ0

!r
v

v − 2

!
− 1,

Fmax (δ)

= T[v]

µµ
σ2κ−11 s+ σκ0σ

κ−1
1 t

σ2κ1 − σ2κ0

¶r
v

v − 2

¶
− T[v]

ÃÃ
σκ1σ

κ−1
0 t+ σ

(2κ−1)
0 s

σ2κ1 − σ2κ0

!r
v

v − 2

!
+ 1,

where s = δ − (μ1 − μ0), κ =
v

v+1 , and

t =
³
s2 +

¡
σ2κ1 − σ2κ0

¢ ³
σ
2(1−κ)
1 − σ

2(1−κ)
0

´
(v − 2)

´ 1
2
.

It is easy to see that in both cases, the expressions for Fmin (δ) and Fmax (δ) reduce

to those in Example 4.1 as v → +∞. For instance, consider the case where σ1 6= σ0. As

v → +∞, we have κ→ 1,
q

v
v−2 → 1, and

³
σ
2(1−κ)
1 − σ

2(1−κ)
0

´
(v − 2)→ 2 log

³
σ1
σ0

´
.
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Semiparametric SRMs

Let F1 (u1, ) and F0 (u0, ) denote respectively the distribution functions of (U1, )
0

and (U0, )
0 in model (III.7). Since F1 (u1, ) and F0 (u0, ) are identified from the sam-

ple information, the joint distribution of U1, U0, belongs to the Fréchet class of trivariate

distributions for which the (1,3) and (2,3) bivariate margins are given or fixed, denoted as

F(F1 , F0 ). Joe (1997) showed that for any F10 ∈ F(F1 , F0 ), it must satisfy

Z
−∞

CL

£
F1| (u1), F0| (u0)

¤
dF ( ) ≤ F10 (u1, u0, ) ≤

Z
−∞

CU

£
F1| (u1), F0| (u0)

¤
dF ( ),

(III.12)

where Fj| (uj) denote the conditional distribution of Uj given , j = 1, 0 and F ( ) the

marginal distribution function of . Inequality (III.12) follows from the Fréchet-Hoeffding

inequality and the expression: F10 (u1, u0, ) =
R
−∞ F10| (u1, u0)dF ( ), where F10| (u1, u0)

is the conditional joint distribution of U1, U0 given .

Theorem 5 In a semiparametric SRM, the following inequalities hold.

(i) ATE: The joint distribution of potential outcomes satisfies

FL
10(y1, y0) ≤ FY

10(y1, y0) ≤ FU
10(y1, y0), (III.13)

where

FL
10(y1, y0) =

Z ∞

−∞
CL

£
F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))

¤
dF ( ),(III.14)

FU
10(y1, y0) =

Z ∞

−∞
CU

£
F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))

¤
dF ( ).(III.15)

(ii) TT: The joint distribution of potential outcomes for the treated satisfies

FL
10(y1, y0|D = 1) ≤ FY

10(y1, y0|D = 1) ≤ FU
10(y1, y0|D = 1),
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where

FL
10(y1, y0|D = 1) =

R∞
−(w,xc)0γ CL

¡
F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))

¢
dF ( )

1− F (−(w, xc)0γ)
,

FU
10(y1, y0|D = 1) =

R∞
−(w,xc)0γ CU

¡
F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))

¢
dF ( )

1− F (−(w,xc)0γ)
.

The result in (i) is presented in Lee (2002). It is an immediate consequence of

(III.12) when =∞. To prove (ii), we note that

FY
10(y1, y0|D = 1) = P (U1i ≤ y1 − g1(x1, xc), U0i ≤ y0 − g0(x0, xc)| i > −(w, xc)0γ)

=
P (U1i ≤ y1 − g1(x1, xc), U0i ≤ y0 − g0(x0, xc), i > −(w, xc)0γ)

P ( i > −(w,xc)0γ)

=

R∞
−(w,xc)0γ F10| (y1 − g1(x1, xc), y0 − g0(x0, xc))dF ( )

1− F (−(w, xc)0γ)
. (III.16)

Now since F10| (y1− g1(x1, xc), g0(x0, xc)) satisfies the Fréchet-Hoeffding inequality, we ob-

tain the inequality in (ii).

The lower or upper bounds in Theorem 4.2 are reached when the two potential

outcomes are conditionally (on ) perfectly negatively or positively dependent on each other.

One example is = U1−U0 in which U1, U0 are perfectly positively dependent conditional

on and the upper bound is reached. These bounds take into account the self-selection

process and are tighter than the bounds obtained under random selection. For instance, if

selection is random, i.e., both U1 and U0 are independent of , then the bounds in Theorem

4.2 (i) become

FLI
10 (y1, y0) = CL [F1(y1 − g1(x1, xc)), F0(y0 − g0(x0, xc))] , (III.17)

FUI
10 (y1, y0) = CU [F1(y1 − g1(x1, xc)), F0(y0 − g0(x0, xc))] . (III.18)

In general, FLI
10 (y1, y0) ≤ FL

10(y1, y0) and FUI
10 (y1, y0) ≥ FU

10(y1, y0) implying that the de-

pendence between the outcome errors and the selection error improves on the bounds on
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FY
10(y1, y0). When the distribution of either U1 or U0 conditional on is degenerate at a

finite value, the lower and upper bounds in Theorem 4.2 (i) coincide and thus point identify

F10(y1, y0) for any y1, y0. For example, if U0 conditional on is degenerate at a finite value,

then

F0| (u0) =

⎧⎪⎪⎨⎪⎪⎩
1 if u0 ≥ E (U0| )

0 if u0 < E (U0| )
,

and

F10(y1, y0)

=

Z ∞

−∞
CU

£
F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))

¤
dF ( )

=

Z ∞

−∞
CL

£
F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))

¤
dF ( )

=

Z ∞

−∞
CL

¡
F1| (y1 − g1(x1, xc)), I(y0 − g0(x0, xc) > E (U0| ))

¢
dF ( ).

We now consider sharp bounds on the distribution of ∆ = Y1 − Y0. Note that

ATE ≡ E(∆|X = x) = g1(x1, xc)− g0(x0, xc)

and F∆(δ) = E [P (U1 − U0 ≤ {δ −ATE}| )] . Applying Lemma 4.1 to P (U1 − U0 ≤ {δ −

ATE}| ), we obtain the sharp bounds on the distribution of the treatment effect in Theorem

4.3 (i) below. Other bounds presented in Theorem 4.3 can be obtained in the same way.

Theorem 6 In a semiparametric SRM, the following inequalities hold.

(i) ATE: FL
∆(δ) ≤ F∆(δ) ≤ FU

∆ (δ), where

FL
∆(δ) =

Z +∞

−∞

∙
sup
u
max

©
F1| (u)− F0| (u− {δ −ATE}), 0

ª¸
dF ( ),

FU
∆ (δ) =

Z +∞

−∞

h
inf
u
min

©
1− F0| (u− {δ −ATE}) + F1| (u), 1

ªi
dF ( ).

(ii) TT: The distribution of ∆ for the treated satisfies

FL
∆(δ|D = 1) ≤ F∆(δ|D = 1) ≤ FU

∆ (δ|D = 1),
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where

FL
∆(δ|D = 1) =

R∞
−(w,xc)0γ

∙
sup
u
max

©
F1| (u)− F0| (u− {δ −ATE}), 0

ª¸
dF ( )

1− F (−(w, xc)0γ)
,

FU
∆ (δ|D = 1) =

R∞
−(w,xc)0γ

h
inf
u
min

©
1− F0| (u− {δ −ATE}) + F1| (u), 1

ªi
dF ( )

1− F (−(w, xc)0γ)
.

In contrast to sharp bounds on the joint distribution of potential outcomes, the

sharp bounds on the distribution of treatment effects are not reached at conditional per-

fect positive or negative dependence. Again, self-selection and the identified marginals of

FY
10(y1, y0) contribute to the partial identification of the distribution of ∆. When the dis-

tribution of either U1 or U0 conditional on is degenerate at a finite value, the lower and

upper bounds in Theorem 4.3 (i) coincide and thus point identify F∆(δ) for any δ. For

example, if U0 conditional on is degenerate at a finite value, then

F∆(δ) =

Z +∞

−∞

∙
sup
u
max

©
F1| (u)− F0| (u− {δ −ATE}), 0

ª¸
dF ( )

=

Z +∞

−∞

h
inf
u
min

©
1− F0| (u− {δ −ATE}) + F1| (u), 1

ªi
dF ( )

=

Z +∞

−∞

£
F1| (δ −ATE +E (U0| ))

¤
dF ( ).

Remark 4.1. When = U1 − U0, the potential outcome errors are perfectly

positively dependent conditional on . Let FR
∆| and F

R
∆ denote respectively the conditional

distribution of ∆ on and the unconditional distribution of ∆ in this case. Fan and Park

(2006) shows that FR
∆| second order stochastically dominates any outcome gain distribu-

tion conditional on , F∆| . Taking expectation with respect to , we conclude that in a

semiparametric SRM, FR
∆ second order stochastically dominates any F∆ consistent with the

sample information.
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Remark 4.2. Unlike the average treatment parameters such as ATE and TT, the

quantile of ∆ is in general not identified. By inverting the distribution bounds in Theorem

4.3, we obtain sharp bounds on the quantile of the treatment effect3 for the whole popula-

tion and the subpopulation receiving treatment.

Some Applications of the Distribution Bounds

By using the distribution bounds established in the previous subsection, we can

provide informative bounds on many interesting effects other than the average treatment

effect. Some illustrative examples are discussed below, see Heckman, Smith, and Clements

(1997) and Vijverberg (1993) for more examples.

1. The proportion of people participating in the program who benefit from it,

P (Y1 > Y0|D = 1) = P (∆ > 0|D = 1) = 1− F∆(0|D = 1).

2. The proportion of the total population that benefits from the program,

P (Y1 > Y0|D = 1)P (D = 1) = {1− F∆(0|D = 1)}P (D = 1).

3. The share of ‘productive’ workers employed in sector 1,

P (D = 1|Y1 > Y0) =
{1− F∆(0|D = 1)}P (D = 1)

1− F∆(0)
.

4. The distribution of the potential outcome Y1 of an individual with an above average

3Recently, F−11 (q)− F−10 (q) has been used to study treatment effect heterogeneity and is referred to as
the quantile treatment effect (QTE), see e.g., Heckman, Smith, and Clements (1997), Abadie, Angrist, and
Imbens (2002), Chen, Hong, and Tarozzi (2004), Chernozhukov and Hansen (2005), Firpo (2007), Imbens
and Newey (2005), among others, for more discussion and references on the estimation of QTE. Manski
(1997a) referred to QTE as ∆D-parameters and the quantile of the treatment effect distribution as D∆-
parameters. Assuming monotone treatment response, Manski (1997a) provided sharp bounds on the quantile
of the treatment effect distribution.
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Y0,

P (Y1 ≤ y1|U0 > 0) =
F1 (y1 − g1(x1, xc))− F10 (y1 − g1(x1, xc), 0)

1− F0(0)
.

5. The variance of the treatment effect for participants (Lee, 2002),

σ2L,D=1 ≤ V ar(∆|D = 1) ≤ σ2U,D=1,

where

σ2U,D=1 = V ar (Y1|D = 1) + V ar (Y0|D = 1)

−2
Z +∞

−∞

Z +∞

−∞

¡
FL
10(y1, y0|D = 1)− F1 (y1|D = 1)F0 (y0|D = 1)

¢
dy1dy0,

σ2L,D=1 = V ar (Y1|D = 1) + V ar (Y0|D = 1)

−2
Z +∞

−∞

Z +∞

−∞

¡
FU
10(y1, y0|D = 1)− F1 (y1|D = 1)F0 (y0|D = 1)

¢
dy1dy0.

Similar techniques used in the previous subsection may help establish bounds on

other parameters of interest. For example, the distribution of the potential outcome Y1 of

an individual with an above average Y0 who selects into the program is given by

P (Y1 ≤ y1|D = 1, U0 > 0) =
P (Y1 ≤ y1, ≥ −(w, xc)0γ)−

R∞
−(w,xc)0γ F10| (y1 − g1(x1, xc), 0)dF ( )

P ( ≥ −(w, xc)0γ, U0 > 0)
,

where the probability in the denominator and the first probability in the numerator are iden-

tified from the sample information and the second term in the numerator can be bounded

by applying the Fréchet-Hoeffding inequality to F10| (y1 − g1(x1, xc), 0).

A Comparison of the two sets of Bounds

The distribution bounds developed in Section 4 depend on the bivariate distribu-

tions of (U1, ) and (U0, ) which can be parametric or nonparametric. In this section, we
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first study these bounds when (Uj , ) , j = 1, 0, follow bivariate NMVM distributions and

then compare them with those established in Section 3 for NMVM-SRMs. The difference

between these two sets of bounds is that the former bounds are valid for any joint distribu-

tion of the errors U1, U0, , provided that the bivariate marginal distributions corresponding

to {U1, } and {U0, } are bivariate NMVM distributions, while the bounds in Section 3

depend crucially on the joint NMVM distribution for the trio of errors {U1, U0, }.

Bounds on F Y
10 in Semiparametric SRMs with Bivariate NMVM Distribu-

tions

For j = 0, 1, assume (Uj , )
0 ∼ NMVM2

¡
ξ, μj ,Σj , ζj

¢
, where

μj =

⎛⎜⎜⎝ μj

μ

⎞⎟⎟⎠ , ζj =

⎛⎜⎜⎝ ζj

ζ

⎞⎟⎟⎠ , Σj =

⎛⎜⎜⎝ σ2j σjσ ρj

σjσ ρj σ2

⎞⎟⎟⎠ .

We show in the Appendix that the following theorem holds.

Theorem 7 In a semiparametric SRM with bivariate NMVM distributions for {Uj , } for
j = 0, 1 with ζ1 = ζ0 = 0, we have:

FL
10(y1, y0) =

Z ∞

−∞
max{F1| (y1 − g1(x1, xc)) + F0| (y0 − g0(x0, xc))− 1, 0}dF ( )

= NMVM2

¡
y1 − g1(x1, xc), y0 − g0(x0, xc);

£
α−10, ρL

¤¢
, (III.19)

FU
10(y1, y0) =

Z ∞

−∞
min{F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))}dF ( )

= NMVM2

¡
y1 − g1(x1, xc), y0 − g0(x0, xc);

£
α−10, ρU

¤¢
. (III.20)

We observe immediately that these bounds are the same as the bounds on the

joint distribution of potential outcomes in NMVM-SRMs presented in Section 3. This is

interesting, because it implies that the NMVM assumption on the joint distribution of the

potential outcomes in NMVM-SRMs with symmetric outcome errors does not improve on

the bounds of this joint distribution. Heuristically, this is because the conditional copula for
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{U1, U0} given implied by the trivariate NMVM distribution assumption in NMVM-SRMs

is still a NMVM copula. Since the partial correlation between U1 and U0 ranges from −1

to 1 when ζ1 = ζ0 = 0, the conditional copula for {U1, U0} given interpolates between

the lower bound copula and the upper bound copula, resulting in the same bounds as if the

conditional copula for {U1, U0} is unrestricted at all.

Bounds on F∆ in Semiparametric SRMs with Bivariate NMVM Distribu-
tions

Theorem 4.3 (i) provides bounds on F∆ for any pair of bivariate distributions for

{Uj , }, j = 0, 1 including NMVM distributions. In this subsection, we use Examples 4.1

and 4.2 to simplify the expressions for bivariate normal marginals and bivariate Student’s

t marginals.

Suppose {Uj , } follows a bivariate normal distribution:⎛⎜⎜⎝ Uj

⎞⎟⎟⎠ ∼ N

⎡⎢⎢⎣
⎛⎜⎜⎝ 0

0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝ σ2j σjρj

σjρj 1

⎞⎟⎟⎠
⎤⎥⎥⎦ .

The distribution of Uj given follows a univariate normal distribution with mean σjρj

and variance σ2j (1 − ρ2j ), j = 1, 0. Example 4.1 provides bounds on the distribution of ∆

given , i.e., expressions for

sup
u
max

©
F1| (u)− F0| (u− {δ −ATE}), 0

ª
and

inf
u
min

©
1− F0| (u− {δ −ATE}) + F1| (u), 1

ª
in Theorem 4.3 (i). Taking their expectations with respect to leads to the following bounds
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on F∆(δ).

Theorem 8 In a semiparametric SRM with bivariate normal distributions for {Uj , } for
j = 0, 1, we have:

(i) Suppose ρ2j 6= 1 for both j = 0, 1. If σ1
p
1− ρ21 = σ0

p
1− ρ20 , then

FL
∆(δ) = 2

Z
A
Φ

Ã
{δ −ATE}− (σ1ρ1 − σ0ρ0 )

2σ1
p
1− ρ21

!
φ( )d − P (A),

FU
∆ (δ) = 2

Z
AC

Φ

Ã
{δ −ATE}− (σ1ρ1 − σ0ρ0 )

2σ1
p
1− ρ21

!
φ( )d + P (A),

where A = { : {δ −ATE} ≥ (σ1ρ1 − σ0ρ0 ) } and AC is the complement of A.When
(σ1ρ1 − σ0ρ0 ) = 0, A is the whole real line if δ ≥ ATE, else A is an empty set;

(ii) Suppose ρ2j 6= 1 for both j = 0, 1. If σ1
p
1− ρ21 6= σ0

p
1− ρ20 , then

FL
∆(δ) =

Z +∞

−∞
Φ

Ã
σ1
p
(1− ρ21 )s− σ0

p
(1− ρ20 )t

σ21(1− ρ21 )− σ20(1− ρ20 )

!
φ( )d

+

Z +∞

−∞
Φ

Ã
σ1
p
(1− ρ21 )t− σ0

p
(1− ρ20 )s

σ21(1− ρ21 )− σ20(1− ρ20 )

!
φ( )d − 1,

FU
∆ (δ) =

Z +∞

−∞
Φ

Ã
σ1
p
(1− ρ21 )s+ σ0

p
(1− ρ20 )t

σ21(1− ρ21 )− σ20(1− ρ20 )

!
φ( )d

−
Z +∞

−∞
Φ

Ã
σ1
p
(1− ρ21 )t+ σ0

p
(1− ρ20 )s

σ21(1− ρ21 )− σ20(1− ρ20 )

!
φ( )d + 1,

where s = {δ −ATE}− (σ1ρ1 − σ0ρ0 ) and

t =

Ã
s2 + 2

£
σ21(1− ρ21 )− σ20(1− ρ20 )

¤
ln

Ã
σ1
p
1− ρ21

σ0
p
1− ρ20

!! 1
2

.

(iii) Suppose ρ2j = 1 for at least one j = 0, 1. Then F∆(δ) is point identified. For example,

if ρ21 = 1, then

F∆(δ) = FL
∆(δ) = FU

∆ (δ) = Φ

Ã
δ −ATEp

σ21 + σ20 − 2ρ0 σ1σ0

!
, if ρ1 = 1, (III.21)

F∆(δ) = FL
∆(δ) = FU

∆ (δ) = Φ

Ã
δ −ATEp

σ21 + σ20 + 2ρ0 σ1σ0

!
, if ρ1 = −1.(III.22)
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In contrast to the sharp bounds on the joint distribution of the potential outcomes

in Theorem 5.1, the bounds given above on the distribution of the outcome gain differ from

the corresponding bounds in Gaussian SRMs and are in general wider, because they are

valid for any trivariate distribution with bivariate normal marginals for (U1, ) and (U0, ),

not necessarily the trivariate Normal distribution in Gaussian SRMs. On the one hand,

imposing the trivariate normality assumption narrows the width of the bounds, but on

the other hand, it may lead to misleading conclusions if the implied normality assumption

for the joint distribution of potential outcomes is violated. To see the seriousness of this

problem, remember in Gaussian SRMs, the value of the treatment effect distribution at

its mean is always identified: F∆(ATE) = 0.5. However, if the joint distribution of the

potential outcomes is unknown, then F∆(ATE) is in general not identified and the bounds

on F∆(ATE) depend on the parameters of the identified bivariate distributions.

In Figure 2, we plotted the two sets of bounds on F∆(·) in Gaussian SRMs and

semiparametric SRMs with bivariate normal marginals. We fixed ATE = 0, σ21 = 1 and

σ20 = 1. For ρ1 = 0.5, we chose a range of values for ρ0 . We also plotted the bounds when

ρ1 = ρ0 = 0. Solid curves are bounds in Theorem 5.2 assuming bivariate normality (BN)

for (Uj , ) only, while dashed curves are bounds in (6) assuming trivariate normality (TN)

for (Uj , U0, ). Several general conclusions emerge from Figure 2. First, for any given set of

parameter values, the bounds under bivariate normal marginals are always wider than the

bounds under the trivariate normal assumption; Second, for given δ, the bounds in general

become narrower as the dependence between U0 and as measured by the magnitude of ρ0

increases except when δ = 0 in Gaussian SRMs in which case the lower and upper bounds

coincide and become 0.5. In the extreme cases where either ρ21 = 1 or ρ
2
0 = 1, the two sets

of bounds coincide and both identify the distribution of ∆. Third, the bounds corresponding
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to (ρ1 , ρ0 ) = (0, 0) are wider than the bounds when (ρ1 , ρ0 ) 6= (0, 0), because the former

does not account for the information through self-selection.

To see how these bounds change with the variance parameters. In Figure 3, we

plotted the bounds on F∆(δ) against σ0 at δ = 0, 1, 4 when σ21 = 1, ρ1 = 0.5 and ρ0 =

0.5. One interesting fact we observe is that the distribution bounds under both trivariate

normality and bivariate normality become wider to some point and then narrower as σ0

goes to ∞.

Suppose {Uj , } follows a bivariate Student’s t distribution:

½r
v

v − 2
Uj

σj
,

r
v

v − 2

¾
∼ t[v]

¡
•, •, ρj

¢
, j = 1, 0.

To derive bounds on the distribution of ∆ in this case, we make use of the fact that Uj |

follows the univariate Student’s t distribution with degrees of freedom v+1,mean σjρj , and

variance σ2j (1− ρ2j )
³
(v−2)+ 2

v−1

´
, j = 1, 0. Example 4.2 provides bounds on the distribution

of ∆ given , i.e., expressions for

sup
u
max

©
F1| (u)− F0| (u− {δ −ATE}), 0

ª
and

inf
u
min

©
1− F0| (u− {δ −ATE}) + F1| (u), 1

ª
in Theorem 4.3 (i). Taking their expectations with respect to leads to the bounds on

F∆(δ).

Theorem 9 In a semiparametric SRM with bivariate Student’s t distributions for {Uj , }
for j = 0, 1, we have:

(i) Suppose ρ2j 6= 1 for both j = 0, 1 and σ1
p
1− ρ21 = σ0

p
1− ρ20 ≡ σ. Let σ =
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σ

r³
(v−2)+ 2

v−1

´
. Then

FL
∆(δ) = 2

Z
A
T[v+1]

Ãµ
δ −ATE − (σ1ρ1 − σ0ρ0 )

2σ

¶r
v + 1

v − 1

!
t[v]( )d −P (A),

FU
∆ (δ) = 2

Z
AC

T[v+1]

Ãµ
δ −ATE − (σ1ρ1 − σ0ρ0 )

2σ

¶r
v + 1

v − 1

!
t[v]( )d +P (A),

where A = { : {δ −ATE} ≥ (σ1ρ1 − σ0ρ0 ) } and AC is the complement of A.

(ii) Suppose ρ2j 6= 1 for both j = 0, 1 and σ1
p
1− ρ21 6= σ0

p
1− ρ20 . Let σ1 = σ1

r¡
1− ρ21

¢ ³ (v−2)+ 2

v−1

´
and σ0 = σ0

r¡
1− ρ20

¢ ³ (v−2)+ 2

v−1

´
. Then

FL
∆(δ) =

Z +∞

−∞
T[v+1]

Ãµ
σ2κ−11 s− σκ−10 σκ−11 t

σ2κ1 − σ2κ0

¶r
v + 1

v − 1

!
t[v]( )d

+

Z +∞

−∞
T[v+1]

Ãµ
σκ1σ

κ−1
0 t− σ2κ−10 s

σ2κ1 − σ2κ0

¶r
v + 1

v − 1

!
t[v]( )d − 1,

FU
∆ (δ) =

Z +∞

−∞
T[v+1]

Ãµ
σ2κ−11 s+ σκ0σ

κ−1
1 t

σ2κ1 − σ2κ0

¶r
v + 1

v − 1

!
t[v]( )d

−
Z +∞

−∞
T[v+1]

Ãµ
σκ1σ

κ−1
0 t+ σ2κ−10 s

σ2κ1 − σ2κ0

¶r
v + 1

v − 1

!
t[v]( )d + 1,

where

s = {(δ −ATE)− (σ1ρ1 − σ0ρ0 ) }, κ =
v + 1

v + 2
,

and

t =
³
s2 +

¡
σ2κ1 − σ2κ0

¢ ³³
σ
2(1−κ)
1 − σ

2(1−κ)
0

´
(v − 1)

´´ 1
2
.

(iii) Suppose ρ2j = 1 for at least one j = 0, 1. Then F∆(δ) is point identified. For example,
if ρ21 = 1, then

F∆(δ) = FL
∆(δ) = FU

∆ (δ) = T[v]

Ã
δ −ATEp

σ21 + σ20 − 2ρ0 σ1σ0

!
, if ρ1 = 1,

F∆(δ) = FL
∆(δ) = FU

∆ (δ) = T[v]

Ã
δ −ATEp

σ21 + σ20 + 2ρ0 σ1σ0

!
, if ρ1 = −1.

We evaluated these bounds for the same set of parameters used in the normal case
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for v = 4, see Figure 4. The same general qualitative conclusions hold as in the normal

case. Comparing Figures 1 and 3, we observe that the degree of freedom parameter has

little effect on the bounds at the ATE, but it has large effect on the bounds away from

ATE. This is due to the fact that Student’s t distribution has fatter tails than the normal

distribution.

Bounds on F∆(·|D = 1) and the Propensity Score

In a SRM, the propensity score is given by

P (D = 1|W,Xc) = P ( > − (W,Xc)
0 γ) = 1− F (− (W,Xc)

0 γ).

Hence the smaller the value of (W,Xc)
0 γ, the less likely the individual with the value of

(W,Xc)
0 γ will participate in the program or the smaller the propensity score. Since there is

a one-to-one relation between the propensity score and (W,Xc)
0 γ, we can group individuals

in the population via their propensity score. For a given value of the propensity score,

Theorem 4.3 (ii) provides sharp bounds on the distribution of ∆ for participants with the

given propensity score in semiparametric SRMs. Figure 5 depicts the distribution bounds

for ∆ for participants with (W,Xc)
0 γ = −1.28 or propensity score 0.1. Figures 5 (a) and

5 (b) are based on the normal assumption, while Figures 5 (c) and 5 (d) are based on the

Student’s t assumption with degree of freedom 4. We observe that the distribution bounds

in Student’s t case are generally wider than those in normal case. Moreover, plots with

different values of the propensity score and/or the degree of freedom in the Student’s t case

reveal that the degree of skewness of each bound increases as the propensity score decreases

and the bounds get tighter as the degree of freedom increases.

One important and potentially useful application of the distribution bounds es-

71



tablished in Theorem 4.3 (ii) is to predict or bound the probability that an individual with

a given propensity score will benefit from participating in the program in terms of ∆. Note

that

FL
∆(0|D = 1) ≤ P (∆ ≤ 0|D = 1) ≤ FU

∆ (0|D = 1).

Hence 1−FL
∆ (0|D = 1) is the maximum probability that an individual with a given propen-

sity score will benefit from participating in the program and 1− FU
∆ (0|D = 1) is the mini-

mum probability that an individual with a given propensity score will benefit from partici-

pating in the program. To see how these probabilities change with respect to the propensity

score, we plotted them against the propensity score in SRMs with bivariate normal distribu-

tions in Figures 6(b)-6(b). The expressions4 for FL
∆(δ|D = 1) and FU

∆ (δ|D = 1) are derived

by using Theorem 4.3 (ii) and a similar argument to Theorem 5.2. Using these expressions,

one can show5 that the bounds FL
∆(δ|D = 1) and FU

∆ (δ|D = 1) approach either 0 or 1 as the

propensity score approaches zero. As a result, the bounds are informative for individuals

with low propensity score and once they participate, with high probability, they either get

hurt or benefit from the treatment.

In a SRM with bivariate normal distributions, TT is given by

TT = ATE + (ρ1 σ1 − ρ0 σ0)λ
¡
(W,Xc)

0 γ
¢
,

where λ (·) is the inverse mills ratio. For a given value of (W,Xc)
0 γ or a given value of

the propensity score, TT measures the average treatment effect for the subpopulation of

participants with the given propensity score. It is composed of two terms: the first term

is the average treatment effect for the population with covariates X1,X0,Xc,W and the

4They are tedious and hence not provided here, but they are available upon request.
5The proofs are elementary, but tedious. They are available upon request.
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second term is the effect due to selection on unobservables. Figures 6((a)-11(a) plotted TT

and the second term in TT due to unobservables against the propensity score. Also plotted

in each graph are the bounds on the median of the distribution F∆(·|D = 1).

In Figures 6 and 7, ATE is zero. In Figure 6(, (ρ1 , ρ0 ) = (0.5,−0.5) and TT is

non-negative for all values of the propensity score. However, when the propensity score is

greater than 0.54, there is a positive probability that an individual with the given propensity

score will get hurt by participating in the program. This probability increases as the value

of the propensity score increases. And for all values of the propensity score, there is always

a positive probability that an individual with the given propensity score will benefit from

participating in the program and this probability decreases as the value of the propensity

score increases. Consequently, people with low propensity score would benefit from the

program with high probability once they participate. In Figure 7, (ρ1 , ρ0 ) = (−0.5, 0.5)

and TT is non-positive for all values of the propensity score. However, when the propensity

score is less than 0.54, there is a positive probability that an individual with the given

propensity score will benefit from participating in the program and this probability increases

as the value of the propensity score increases. In addition, for all values of the propensity

score, there is always a positive probability that an individual with the given propensity

score will get hurt from participating in the program and this probability decreases as the

value of the propensity score increases. The seemingly reversal roles of the two probabilities

in Figures 6 and 7 are due to the reversal of the correlation values. Consider Figure 6 with

(ρ1 , ρ0 ) = (0.5,−0.5). Heuristically, for small values of the propensity score, individuals

participating in the program tend to have large selection errors . Given the positive

correlation between Y1 and , Y1 would tend to be large for those participants. By the same

token, the negative correlation between Y0 and imply small Y0. As a result, ∆ tend to
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be large for participants with small propensity score. Figures 6 and 7 demonstrate clearly

that average treatment effect parameters such as ATE and TT do not provide a complete

picture of the effects of treatment when there is selection on unobserved variables, and

the distribution bounds we established in Chapter III provide useful information that are

missed by ATE and TT .

Figures 8 and 9 further support the conclusions we drew from Figures 6 and 7.

They are similar to Figures 6 and 7 except that ATE = −0.5 in Figure 8 and ATE = 0.5

in Figure 9. In both figures, TT is positive for some values of the propensity score and

negative for other values of the propensity score. The patterns of
£
1− FL

∆(0|D = 1)
¤
and£

1− FU
∆ (0|D = 1)

¤
as functions of the propensity score remain the same as in Figures 6

and 7. It is interesting to observe from Figures 8 and 9 that even when the ATE for the

whole population is negative (−0.5) or positive (0.5), some subpopulations (those with the

propensity score less than 0.73) will in general benefit or get hurt from the program if they

join the program. The proportion of people in each subgroup who will benefit or get hurt

from being in the program will also change with the level of ATE.

In Figures 10 and 11, we increased ρ1 to 0.95. Comparing these figures with

Figures 6 -9, we see clearly that the distribution bounds get tighter as ρ1 (ρ0 ) gets larger.

When the magnitudes of ρ1 , ρ0 are the same, the bounds are more informative when ρ1

and ρ0 have different signs than when they have the same sign.

Summarizing Figures 6 -9, we conclude that the unobserved selection error has a

large effect on those with low propensity score. That is, those who are less likely to par-

ticipate in the program will most likely be affected by the program once they participate

in the program. Whether they gain or lose from participating in the program once they

participate depends on the sign of (ρ1 σ1 − ρ0 σ0).
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Confidence Sets for F∆ (δ) in Semiparametric SRMs

Given the sharp bounds established in Chapter III, statistical inference on the

joint distribution of potential outcomes and the distribution of treatment effects falls in the

currently active research area: inference for partially identified parameters. However, due

to the complicated functional dependence of these bounds, especially the bounds on the

distribution of treatment effects, on g1(x1, xc), g0(x0, xc), F1 , and F0 , existing inference

procedures for partially identified parameters are not easily extendable to the general class

of semiparametric SRMs in (III.7). We leave this important issue to future work. In this

section, we demonstrate its feasibility by constructing an asymptotically uniformly valid

and non-conservative confidence set for F∆(δ) in a special class of semiparametric SRMs in

which g1(x1, xc), g0(x0, xc), F1 , and F0 are parametric. This is a semiparametric SRM, as

the joint distribution of U1, U0 is completely unspecified.

Theorem 4.2 (i) implies that FL
∆(δ) ≤ F∆(δ) ≤ FU

∆ (δ), where

FL
∆(δ) =

Z +∞

−∞

½
sup
u

£
F1| (u)− F0| (u− {δ − [g1(x1, xc)− g0(x0, xc)]})

¤¾
+

dF ( ),

FU
∆ (δ) = 1 +

Z +∞

−∞

n
inf
u

£
F1| (u)− F0| (u− {δ − [g1(x1, xc)− g0(x0, xc)]})

¤o
−
dF ( ),

in which (x)+ = max (x, 0) and (x)− = min (x, 0). For notational compactness, we let

θ0 = F∆ (δ), θL = FL
∆ (δ), and θU = FU

∆ (δ).

Let

τ (u) = F1| (u)− F0| (u− {δ − [g1(x1, xc)− g0(x0, xc)]})

and θτ denote the collection of unknown parameters in τ (u) : τ (u) = τ (u; θτ ). Further,

let F ( ) = F ( ; θ ). Let ϑo ∈ Θ be the vector of all the parameters in the model, i.e.,

75



ϑo =
¡
θ0τ , θ

0 ¢0. Then
θL = FL

∆(δ;ϑ) =

Z +∞

−∞

½
sup
u
[τ (u; θτ )]

¾
+

dF ( ; θ ),

θU = FU
∆ (δ;ϑ) = 1 +

Z +∞

−∞

n
inf
u
[τ (u; θτ )]

o
−
dF ( ; θ ).

Let bθτ and bθ denote consistent estimators of θτ and θ respectively and bϑ = ³bθ0τ ,bθ0´0.
Examples of bϑ include the maximum likelihood estimator and the two-step estimator. The

plug-in estimators of θL and θU are given by

bθL = bFL
∆(δ) =

Z +∞

−∞

½
sup
u

h
τ
³
u;bθτ´i¾

+

dF ( ;bθ ),
bθU = bFU

∆ (δ) = 1 +

Z +∞

−∞

n
inf
u

h
τ
³
u;bθτ´io

_
dF ( ;bθ ).

For ε > 0, letBΘ (ε) = {ϑ ∈ Θ : kϑ− ϑok < ε}. LetWi = (Yi,X
0
1i,X

0
0i,X

0
ci,W

0
i ,Di)

0

with Yi = DiY1i+(1−Di)Y0i and P denote the collection of all the potential distributions

of the random sample {Wi}ni=1 such that Assumption 1 below holds.

Assumption 1. (i) For some ε > 0, there exists a function ΓjP (δ) [ϑ− ϑo] of

(ϑ− ϑo), ϑ ∈ BΘ (ε), such that for j = L,U ,

¯̄̄
F j
∆(δ;ϑ)− F j

∆(δ;ϑo)− Γ
j
P (δ) [ϑ− ϑo]

¯̄̄
≤Mδ kϑ− ϑok2 (III.23)

with a constant Mδ that does not depend on P , and for each ε > 0,

lim sup
n≥1

sup
P∈P

P

(¯̄̄̄
¯√nΓjP (δ) hbϑ− ϑo

i
− 1√

n

nX
i=1

ψj
δ (Wi)

¯̄̄̄
¯ > ε

)
= 0, (III.24)

where ψj
δ (Wi) satisfies that there exists η > 0 such thatE

h
ψj
δ (Wi)

i
= 0 and supP∈P

°°°ψj
δ (Wi)

°°°
P,2+η

<

∞. (ii)
°°°bϑ− ϑo

°°° = oP
¡
n−1/4

¢
uniformly in P ∈ P.

The first condition in Assumption 1 (i) is concerned with differentiability of F j
∆(δ;ϑ),

j = L,U , with respect to ϑ ∈ BΘ (ε). This holds under mild differentiability conditions
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on τ (u; θτ ) with respect to θτ and F ( ; θ ) with respect to θ . The second condition in

Assumption 1 (i) imposes an asymptotic linear representation on ΓjP (δ)
hbϑ− ϑo

i
. This can

be established using the asymptotic linear representation of
hbϑ− ϑo

i
. Assumption 1 (ii) can

be established by following the procedure of Theorem 3.2.5 of van der Vaart and Wellner

(1996).

Under Assumption 1, one can show that unformly in P ∈ P, we have

√
n

⎛⎜⎜⎝ bθL − θL

bθU − θU

⎞⎟⎟⎠ =⇒ N (0,Ω) , (III.25)

where Ω is the variance-covariance matrix of
¡
ψL
δ (Wi) , ψ

U
δ (Wi)

¢0
. As a result, CSs de-

veloped in Andrews and Guggenberger (2007), Andrews and Soares (2007), Fan and Park

(2007), and Stoye (2007), among others, are applicable to θ0. To illustrate, we provide a

brief summary of the CS in Fan and Park (2007). Note that θL ≤ θ0 ≤ θU is equivalent to

θ0 = argminθ∈[0,1]
n
(θL − θ)2+ + (θU − θ)2−

o
. We define the sample criterion function as

Tn(θ
0) = n

³bθL − θ0
´2
+
+ n

³bθU − θ0
´2
−
. (III.26)

Then a (1− α) level CS for θ0 can be constructed as

CSn = {θ ∈ [0, 1] : Tn(θ) ≤ c1−α (θ)} (III.27)

for an appropriately chosen critical value c1−α (θ).

Let (ZL, ZU )
0 ∼ N (0,Ω). It follows from (III.25) that

Tn(θ) =⇒
¡
ZL − hL (θ)

¢2
+
+
¡
ZU + hU (θ)

¢2
−

where

hL (θ) = − lim
n→∞

√
n [θL − θ] and hU (θ) = lim

n→∞

√
n [θU − θ] .
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Let b∆S = b∆I nb∆ > bn

o
, where b∆ ≡ bθU − bθL and bn is a pre-specified sequence of positive

numbers satisfying bn → 0 and
√
nbn → ∞. Then an asymptotically uniformly valid and

non-conservative CS for θ0 is given by CSn with

c1−α (θ) = max
n
cv1−α

³
0,
√
nb∆S, bΩ´ , cv1−α ³√nb∆S , 0, bΩ´o ,

where cv1−α
¡
hL, hU ,Ω

¢
is the 1−α quantile of the random variable

¡
ZL − hL

¢2
+
+
¡
ZU + hU

¢2
−

and bΩ is a uniformly consistent estimator of Ω.
Theorem 10 Suppose Assumption 1 holds and 0 < α < 1/2. Then CSn satisfies

lim
n→∞

inf
θ∈[0,1]

inf
P∈P:θ0(P )=θ

Pr
¡
θ0 ∈ CSn

¢
= 1− α.

Remark 6.1. Note that c1−α (θ) = c1−α does not depend on θ. It follows from

Fan and Park (2007) that

CSn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

h
θ̂L −

√
c1−α

1√
n
, θ̂U +

√
c1−α

1√
n

i
if
√
nb∆ ≥ −√c1−αh bA, bBi if −√2c1−α ≤

√
nb∆ < −√c1−α

∅ if
√
nb∆ < −√2c1−α

where

bA ≡ θ̂L + θ̂U
2

− 1

2
√
n

s
c1−α −

nb∆2
2

, bB ≡ θ̂L + θ̂U
2

+
1

2
√
n

s
c1−α −

nb∆2
2

.

Conclusion

In Chapter III we have established sharp bounds on the joint distribution of po-

tential outcomes and the distribution of treatment effects in NMVM-SRMs and in semi-

parametric SRMs of Heckman (1990). The means of the distributions of treatment effects

that we considered correspond to the average treatment effect and the treatment effect for
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the treated respectively. The results we obtain reveal the important role played by self se-

lection, i.e., it helps tighten the bounds on these distributions. The approach that we used

to establish sharp bounds in semiparametric SRMs of Heckman (1990) is general in that it

is applicable to any semiparametric SRMs in which the only unidentified bivariate marginal

distribution of the joint distribution of (U1, U0, )
0 is that of (U1, U0)

0. For example, sharp

bounds on the distribution of potential outcomes and the distribution of treatment effects

in the semiparametric SRMs of Carneiro and Lee (2008) can be established by using our

approach.

As a first step, Chapter III has focused on partial identification. Estimation

of the distribution bounds developed in Chapter III is straightforward in view of the

identification results in Heckman (1990) and existing work on estimation of paramet-

ric/semiparametric sample selection models. Heckman (1990) provides a review of various

nonparametric/semiparametric methods for estimating g1(x1, xc) and g0(x0, xc) without

specifying the bivariate margins for (U1, ) and (U0, ), see also Ai (1997), Andrews and

Schafgans (1998), Schafgans and Zinde-Walsh (2002), Das, Newey, and Vella (2003), Chen

(2006), and Chen and Zhou (2006). Gallant and Nychka (1987) provide estimators of the

unknown bivariate marginal distributions F1 and F0 . It remains to establish a complete

set of inference tools for the joint distribution of potential outcomes and the distribution of

treatment effects in general semiparametric SRMs.
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CHAPTER IV

TREATMENT EFFECT STUDY FOR FIRMS WITH ACCELERATED EQUITY
OFFERINGS

Introduction

Equity offerings are important in the life of a firm. Firms can use equity offer-

ings to raise capital for their capital expenditures, new investment projects, mergers and

acquisitions, and other various motives. For firms decided to have equity offerings, they

also face a variety of flotation methods, which include firm commitment underwriting, shelf

offer, rights offer, standby rights offer, private placement, etc. We refer the reader to Eckbo,

Masulis, Norli (2007) for their excellent survey and discussion of alternative flotation meth-

ods for equity issuance. Firm commitment underwriting is the primary choice of publicly

traded U.S. firms and it has lengthy and complicated processes for both the registration

with the security and exchange commission (SEC) and the bookbuilding to solicit tentative

offers from investors. We refer to it as the "traditional bookbuilding" method. Shelf offer

refers to an issue that has been pre-registered with the SEC under Rule 415, which was

introduced in 1983. Only financially strong firms are allowed to use shelf offers and shelf

registration increases the flexibility and speed of their issues over a two year period.

For those shelf-registered firms to issue seasoned equity offerings (SEOs), they are

already entitled to speeding up their underwriting process of SEOs. However, it is still a

choice for them to further speed up the underwriting process through accelerated under-

writing. Here we adopt the same definition for an accelerated underwriting by Bortolotti,

Megginson and Smart (2008). Two of the three forms of the accelerated underwriting

include block trades (BTs) and bought deals (BDs) to sell large blocks of shares, at an
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auction-determined market price, directly to an investment bank by the issuing firm or

selling shareholder, with little need or capacity for information production with respect to

pricing or demand. The winning bank is then responsible for reselling the shares to institu-

tional investors. The third and most popular type of accelerated underwriting, accelerated

bookbuilt offering (ABO), is executed much more rapidly than conventional bookbuilds,

but is similar to traditional underwritings in that banks are responsible for the quality of

the order book, price stabilization, and transparency of the allocation.

SEOs executed through accelerated underwriting have increased global market

share recently, raising over $850 billion since 1998, and now account for over half (two-

thirds) of the value of US SEOs (Bortolotti, Megginson and Smart, 2008). Autore, Hutton

and Kovacs (2009) finds shelf registered firms with accelerated underwriting underperform

those with non-accelerated underwriting. They hypothesize that the choice of flotation

methods can be served as a signal of issuer quality and lower quality firms intend to use

accelerated underwriting. However, their hypothesis can not explain the increasing popu-

larity of accelerated underwriting among SEOs in recent years. In addition, we note that

shelf registered firms are required by the SEC to be large and financially sound. We are

interested in studying the impact of accelerated underwriting on firm’s performance in order

to better understand the global rise of accelerated underwriting.

To correctly evaluate the impact of accelerated underwriting, we need to have

knowledge of a firm’s counterfactual outcome, the outcome of an alternative choice of flota-

tion methods. The difference between a firm’s actual outcome and its counterfactual out-

come is due to the choice of flotation methods. This is a direct application of treatment

effect studies to corporate finance. A comparison between accelerated firms and matched

non-accelerated firms may not be valid due to the fact that corporate finance decisions are
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usually deliberate decisions by firms or their managers to self-select into their preferred

choices. Matching can not account for the impact of private information in firm’s financial

decision. Alternatives that could be appropriate to address the issue are self-selection mod-

els. Self-selection models are not new to corporate finance. Li and Prabhala (2005) survey

econometrics models of self selection and their applications in corporate finance. In Chap-

ter II, we extend existing self-selection models (SRMs) to allow more flexibility in modeling

the relationship between private information and the outcomes, and we are interested in

applying them to study the impact of accelerated underwriting on firm’s performance in

Chapter IV. For firms facing uncertain outcomes in their financial decisions, the ability of

managers to make decisions associated with a higher probability of wealth increasing for

their shareholders is an important question in corporate governance. The partial identifica-

tion results in Chapter III can also help to look into this issue and it will be on my future

research agenda.

We use two types of performance measures in our study: cumulative abnormal

stock returns (CAR) one year after the equity issuance and industry adjusted return on

assets (ROA) one year after the equity issuance. Stock return is a forward looking measure

of performance, while return on assets is a backward looking measure of performance.

Performance measured by ROA is also considered as operating performance. Our initial

findings show that private information in firms’ decisions to choose accelerated underwriting

has a significant positive impact on issuing firm’s ROA one year after its equity issuance.

We also find a significant negative average treatment effect on firm’s ROA for the control

group (with non-accelerated underwriting).

Chapter IV is organized as follows. Section 2 describes the data and issuer char-

acteristics. In section 3 we present the models and main results. We conclude in section 4.
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Data and Issuer Characteristics

Our data is collected from Securities Data Company’s (SDC) Global New Issues

database and consists of shelf-registered equity offers of common shares during the period

1997-2006. All sample issuers are U.S. non-financial and non-real estate firms that are listed

on the NYSE, AMEX, or NASDAQ, and that have the required stock return data available

from the Center for Research in Securities Prices (CRSP) as well as financial data available

from COMPUSTAT.

Table 3 presents the annual frequency of and total proceeds reaped from acceler-

ated and non-accelerated shelf offers. The sample contains 559 bookbuilt and 420 acceler-

ated offerings, and all of them are shelf registered. Although the total number of traditional

offers outnumbers the total number of shelf offers, the annual frequency of traditional offers

has declined over time. The annual frequency of shelf offerings, however, has increased and

even surpassed that of traditional SEOs.

Table 4 provides descriptive statistics for firm and offer characteristics. Variable

definitions are presented in the Appendix. Compared to bookbuilt issuers, accelerated is-

suers are significantly larger based on book assets and market capitalization. Bookbuilt and

accelerated issuers raise similar proceeds, but bookbuilt issuers offer more shares relative to

the number of shares outstanding. There are few differences between bookbuilt and acceler-

ated offerings in terms of the market-to-book ratios and return on assets. By contrast, the

typical traditional SEO issuer is considerably different from either type of shelf issuer across

most dimensions. These characteristics indicate firms in our sample are more homogeneous

with respect to firm and offer characteristics than firms using traditional flotation methods.
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Models and Main Results

Consider each firm in our sample faces a binary choice, accelerated underwriting

or non-accelerated underwriting of shelf registered firms, and each choice associated with an

outcome. Use D as an indicator for the choices, D = 1 indicates the choice of accelerated

underwriting, while D = 0 indicates the choice of non-accelerated underwriting. We assume

firms are independent and we exclude firms who have other equity issuances a year before

and after the equity issuance. The sample size is reduced to 249 accelerated underwriting

and 272 non-accelerated underwriting. We assume each firm has private information, , in

its decision to choose a flotation method. We can not observe , but we can observe their

choice D. D = 1 if W 0γ + > 0 and D = 0 otherwise, where W represents observed firm

and offer characteristics. We have the following switching regimes model as in Chapter II

and Chapter III. :

Y1i = X 0
iβ1 + U1i,

Y0i = X 0
iβ0 + U0i, (IV.1)

Di = I{W 0
iγ+ i>0}, i = 1, . . . , n,

to model firm i’s choice and outcome. Y1i is the outcome of firm i with accelerated under-

writing, and Y0i is its outcome with non-accelerated underwriting.

The outcome variables in this chapter are variables to measure firm’s performance

after its equity issuance. We include two types of performance measure in our study:

cumulative abnormal stock returns (CAR) and industry adjusted return on assets (ROA).

The observed covariates are key variables of firm and offer characteristics, which include

relative offer size, firm’s log value of market capitalization, a dummy variable to indicate
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whether a firm is listed in NASDAQ, average turnover of daily shares between 1 year and

30 days prior to the issuance scaled by the number of shares outstanding, runup of stock

price 90 trading days prior to the issuance, return on assets in the fiscal year of the issuance,

market to book ratio, percentage of secondary shares in the offer and dummy variables to

indicate if a firm has a simultaneous offer for convertible debts, or if it has convertible debt

issued before or after its equity issuance, or if it is in the S&P 500. Cumulative abnormal

stock return is calculated using Fama-French three-factor model and return on assets is

calculated using earnings before interest, taxes, depreciation and amortization (EBITDA)

divided by average total assets. We use industry ( classified by a 2-digit standard industrial

classification code) median ROA to adjust our ROA for each firm in the sample. The relative

offer size and residual volatility might only affect the choice of flotation methods but will

probably not have much effect on firm’s performance. In our analysis, we use relative offer

size and residual volatility as instrument variables in our model.

The errors {U1i, U0i, i} are assumed to be independent of the covariates {Xi,Wi}

and we impose parametric distribution assumptions on the bivariate distribution between

Uji and , j = 0, 1. To address the impact of skewness, we use skewed t model with degree

of freedom v = 5 and compare the results with conventional Heckman’s sample selection

model. In Table 5, we present the results for the choice of flotation methods in the first

step. Results are qualitatively similar between two models and they are also qualitatively

similar to the results by Autore, Hutton and Kovacs (2009). The choice of an accelerated

offer is inversely related to the relative offer size, residual volatility, return on assets and

whether there is convertible debt issued prior to the issuance, and positively related to

average turnover and the percentage of secondary shares in the offer. The log-likelihood of

skewed t model and Heckman’s model are close to each other, while the skewed t model has
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slightly larger log-likelihood value and it shows that the skewness parameter in the select is

also significant at 90 percent level.

In Table 6 and Table 7, we present the results of the outcome equations of ROA.

The sign and magnitude of coefficients in the equations are similar between skewed t model

and Heckman’s model. In skewed t model, correction term 1 is corresponding to inverse

mill’s ratio in Heckman’s model and the coefficient of correction term 2 is the skewness

parameter in the outcome. The results show that log(market capitalization), being a Nasdaq

firm, average turnover, return on assets, a firm’s convertible debt issued after its equity

issuance within a year have a positive impact on firm’s operating performance in the treated

group (with accelerated underwriting) , while a firm’s convertible debt issued prior to its

equity issuance, whether it is a simultaneous offer have a negative impact on firm’s operating

performance in the treated group. In addition, the skewed t model captures a significant

(at 90 percent level) negative skewness parameter in the outcome equation for the treated

group. It also shows that being a S&P 500 firm has a negative impact, while the private

information in firm’s flotation choice and the percentage of secondary in the offer have a

positive impact on a firm’s operating performance. In the control group, return on assets

and a firm’s convertible debt issued prior to its equity issuance have a positive impact and a

firm’s convertible debt issued after its equity issuance has a negative impact on its operating

performance.

In Table 8 and Table 9, we present the results of the outcome equations of cumula-

tive abnormal return one year after a firm’s equity issuance. We do not find any significance

(at 90 percent level) for the skewness parameter in both outcome equations. The sign and

magnitude of most coefficients (except the intercept and the percentage of secondary shares

in the offer) in the equations are similar between skewed t model and Heckman’s model. The
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results show that return on assets, a firm’s convertible debt issued after its equity issuance

within a year have a positive impact and stock runup 90 days prior to the issuance has a

negative impact on firm’s cumulative abnormal return in the treated group. In the control

group, return on assets and a firm’s convertible debt issued prior to its equity issuance have

a positive impact on its stock performance. Two models give similar results in terms of

significance at 90 percent level.

In Table 10, we also present the results for various average treatment effects. The

average effect on the whole population, the effect on the treated and the effect on the control

are insignificant for cumulative abnormal return 1 year, 6 months, 3 months and 3 days

after the equity issuance. However, we document a significant (at 90 percent level) negative

treatment effect on operating performance (ROA) for firms in the control group. From the

estimated outcome equations, we can also calculate the expected gain from choosing accel-

erated underwriting for each firm in our sample based on its observed characteristics. We

plot these expected gains for ROA and CAR one year after the equity issuance in Figure 12

and Figure 13 respectively for both the treated group and the control group with respect

to their propensity score (probability to choose an accelerated underwriting). The skewed

t model captures more difference in the expected gains between the treated group and the

control group than Heckman’s model does.

Conclusion

We document the findings for the impact of accelerated underwriting on a firm’s

performance one year after its equity issuance: industry adjusted return on assets and

cumulative abnormal return. It shows that the skewness is a significant component in the

outcome equations for return on assets. With the ability to account for skewness in the
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outcome equations, our skewed t model is able to capture the impact of private information

involved in a firm’s flotation choice, the impact of being a S&P 500 firm and the impact of the

percentage of secondary shares on its operating performance (ROA). When the skewness

parameter is insignificant, the skewed t model and conventional Heckman’s model yield

similar results.
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Appendix: Technical Proofs

Chapter II

Proof of Theorem 3.1: Let V = (U, ) ∼ NMVM2 [ξ, μ,Σ, ζ] , then by defini-

tion, V has the same distribution as μ+ Sζ +
√
SAZ, where AA0 = Σ. Thus, V |S = s ∼

Nd (μ+ sζ, sΣ) . We have μ = −ζE (S). Let E (U | = x) = m (x) , then

m (x) = E (U | = x)

= E (E (U | = x, S))

= E

µ
ζU (S −E (S)) + ρ

σU
σ
(x− ζ (S −E (S))) | = x

¶
=

Z
ζU (S −E (S)) + ρ

σU
σ
(x− ζ (S −E (S))) dFS| =x (s) ,

where

FS| =x (s) =
¡
2πsσ2

¢−1/2 Z s

0
exp

n
− (x− ζ (s−E (S)))2 /

¡
2sσ2

¢o
/f (x) dFS (s) .

Thus, we get

m (x) = ζU

Z
(s−E (S)) dFS| =x (s) + ρσU

Z
1

σ
(x− (s−E (S)) ξ ) dFS| =x (s)

= ζUH (x) + ρσUG (x) ,

where

H (x) =

Z
(s−E (S)) dFS| =x (s) , G (x) =

Z
1

σ
(x− (s−E (S)) ξ ) dFS| =x (s) .

The expressions for E (U | > −x) and E (U | < −x) can be written as
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E (U | > −x) =

∞Z
−x

m (u)
f (u)

1− F (−x)du

= ζU

∞Z
−x

H (u)
f (u)

1− F (−x)du+ ρσU

∞Z
−x

G (u)
f (u)

1− F (−x)du,

E (U | < −x) =

−xZ
−∞

m (u)
f (u)

F (−x)du

= ζU

−xZ
−∞

H (u)
f (u)

F (−x)du+ ρσU

−xZ
−∞

G (u)
f (u)

F (−x)du.

Let λ1a (x) =
Z ∞

−x
H (u) f (u)

1−F (−x)du. Then we have

λ1a (x) =
1

1− F (−x)

⎧⎨⎩
∞Z
−x

∞Z
0

(s−E (S)) f (u) dFS| =u (s) du

⎫⎬⎭
=

1

1− F (−x)

∞Z
0

(s−E (S))Φ

µ
x+ ξ (s−E (S))√

sσ

¶
dFS(s)

=
1

1− F (−x)E
µ
(S −E (S))Φ

µ
x+ ξ (S −E (S))√

Sσ

¶¶
.

Similarly, let λ1b (x) =
Z ∞

−x
G (u) f (u)

1−F (−x)du, λ0a (x) =
Z −x

−∞
H (u) f (u)

F (−x)du, and

λ0b (x) =

Z −x

−∞
G (u) f (u)

1−F (−x)du. We obtain:

λ1b (x) =
1

1− F (−x)

⎧⎨⎩
∞Z
−x

∞Z
0

1

σ
(u− ξ (s−E (S))) f (u) dFS| =u (s) du

⎫⎬⎭
=

1

1− F (−x)

⎧⎨⎩
∞Z
0

√
sφ

µ
x+ ξ (s−E (S))√

sσ

¶
dFS (s)

⎫⎬⎭
=

1

1− F (−x)E
µ√

Sφ

µ
x+ ξ (S −E (S))√

Sσ

¶¶
,
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λ0a (x) =
1

F (−x)

⎧⎨⎩
−xZ
−∞

∞Z
0

(s−E (S)) f (u) dFS| =u (s) du

⎫⎬⎭
=

1

F (−x)

∞Z
0

(s−E (S))

µ
1−Φ

µ
x+ ξ (s−E (S))√

sσ

¶¶
dFS(s)

= − 1

F (−x)

∞Z
0

(s−E (S))Φ

µ
x+ ξ (s−E (S))√

sσ

¶
dFS(s)

= − 1

F (−x)E
µ
(S −E (S))Φ

µ
x+ ξ (S −E (S))√

Sσ

¶¶
,

and

λ0b (x) =
1

F (−x)

⎧⎨⎩
−xZ
−∞

∞Z
0

1

σ
(u− ξ (s−E (S))) f (u) dFS| =u (s) du

⎫⎬⎭
= − 1

F (−x)

⎧⎨⎩
∞Z
0

√
sφ

µ
x+ ξ (s−E (S))√

sσ

¶
dFS (s)

⎫⎬⎭
= − 1

F (−x)E
µ√

Sφ

µ
x+ ξ (S −E (S))√

Sσ

¶¶
.

For notational convenience, let

λa (x) = E

µ
(S −E (S))Φ

µ
x+ ξ (S −E (S))√

Sσ

¶¶
, λb (x) = E

µ√
Sφ

µ
x+ ξ (S −E (S))√

Sσ

¶¶
.

Then we have:

E (U | = −x) = ζUH (x) + ρσUG (x) ,

E (U | > −x) = ζUλ1a (x) + ρσUλ1b (x) ,

E (U | < −x) = ζUλ0a (x) + ρσUλ0b (x) .

Technical Derivations in Example 3.1: Let fS (s) denote the density function
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of a generalized inverse Gaussian distribution with parameters (λ, χ, ψ). Then we have:

fS (s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

χ−λ

Γ(−λ)2−λ s
λ−1 exp

©
− χ
2s

ª
if λ < 0, χ > 0, ψ = 0;

ψλ

Γ(λ)2λ
sλ−1 exp

n
−ψs

2

o
if λ > 0, χ = 0, ψ > 0;

χ−λ(
√
χψ)

λ

2Kλ(
√
χψ)

sλ−1 exp
n
−ψs

2 −
χ
2s

o
if χ > 0, ψ > 0.

and

E (S) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

χΓ(−λ−1)
2Γ(−λ) if λ+ 1 < 0, χ > 0, ψ = 0;

2Γ(λ+1)
ψΓ(λ) if λ > 0, χ = 0, ψ > 0;

χ1/2Kλ+1(
√
χψ)

(ψ)1/2Kλ(
√
χψ)

if χ > 0, ψ > 0.

So, sfS(s)E(S) is a density function and it is also a generalized inverse Gaussian density function

with parameters (λ+ 1, χ, ψ) .

Let

η0 = [λ, χ, ψ,−E (S) ζ , σ , ζ ] , η1 = [λ+ 1, χ, ψ,−E (S) ζ , σ , ζ ] .

Then we obtain the sample correction terms for generalized hyperbolic distributions given
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below:

λ1a
¡
w0γ

¢
=

1

1− F (−w0γ)

∞Z
0

(s−E (S))Φ

µ
w0γ + ξ (s−E (S))√

sσ

¶
fS(s)ds

=
(GH1 (−w0γ; η0)−GH1 (−w0γ; η1))

1−GH1 (−w0γ; η0)
E (S) ,

λ1b
¡
w0γ

¢
=

1

1− F (−w0γ)

⎧⎨⎩
∞Z
0

√
sφ

µ
w0γ + ξ (s−E (S))√

sσ

¶
fS (s) ds

⎫⎬⎭
=

gh1 (−w0γ; η1)
1−GH1 (−w0γ; η0)

(E (S)σ ) ,

λ0a
¡
w0γ

¢
= − 1

F (−w0γ)

∞Z
0

(s−E (S))Φ

µ
w0γ + ξ (s−E (S))√

sσ

¶
fS(s)ds

=
(GH1 (−w0γ; η1)−GH1 (−w0γ; η0))

GH1 (−w0γ; η0)
E (S) ,

λ0b
¡
w0γ

¢
= − 1

F (−w0γ)

⎧⎨⎩
∞Z
0

√
sφ

µ
w0γ + ξ (s−E (S))√

sσ

¶
fS (s) ds

⎫⎬⎭
= − gh1 (−w0γ; η1)

GH1 (−w0γ; η0)
(E (S)σ ) .

Chapter III

Proof of Theorem 2.1: (i) The ‘if part’ is obvious. Now we prove the ‘only if’

part.

First, we consider the case that V ar (S) > 0. Let aj =
q
E (S)σ2j , bj = sign

¡
ζj
¢q

ζ2jV ar (S),

j = 1, 0, . Then for any ρ, we have

¡
a21 + b21

¢ ¡
a20 + b20

¢
− (a1a0ρ+ b1b0)

2

=
¡
1− ρ2

¢ ¡
a21a

2
0 + a21b

2
0

¢
+ (ρa1b0 − a0b1)

2 . (A.1)
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Note that

ρ̄L =
E (S) ρLσ1σ0 + ζ1ζ0V ar (S)q¡

E (S)σ21 + ζ21V ar (S)
¢ ¡
E (S)σ20 + ζ20V ar (S)

¢
=

a1a0ρL + b1b0q¡
a21 + b21

¢ ¡
a20 + b20

¢ .
If ρ̄L = −1, then the left hand and the right hand side expressions in (A.1) with ρ replaced

by ρL equal to 0, which implies that ρ
2
L = 1 and ρLa1b0 − a0b1 = 0. Similarly, since

ρ̄U =
E (S) ρUσ1σ0 + ζ1ζ0V ar (S)q¡

E (S)σ21 + ζ21V ar (S)
¢ ¡
E (S)σ20 + ζ20V ar (S)

¢
=

a1a0ρU + b1b0q¡
a21 + b21

¢ ¡
a20 + b20

¢ ,
ρ̄U = 1 implies that ρ2U = 1 and ρUa1b0 − a0b1 = 0. Since aj > 0 and V ar (S) > 0, we

must have (ρL − ρU ) b0 = 0 which implies that either ρL = ρU or b0 = 0. Since ρL = ρU

implies ρL = ρU violating the condition, we must have b0 = 0 implying ζ0 = 0. Now since

ρL 6= ρU , it follows from ρ2L = ρ2U = 1 that ρL = −1 and ρU = 1. This in turn implies that

ρL = ρ̄L = −1 and ρU = ρ̄U = 1. ζ1 = 0 follows from a1b0 + a0b1 = 0 and a1b0 − a0b1 = 0.

From the expressions for ρL and ρU , it follows immediately that ρ1 = ρ0 = 0. Since

ρ̄j =
E (S) ρj σ1σ0 + ζ1ζ0V ar (S)q¡

E (S)σ21 + ζ21V ar (S)
¢ ¡
E (S)σ20 + ζ20V ar (S)

¢ , j = 1, 0,
with ζ1 = ζ0 = 0, we get ρ̄j = ρj = 0, j = 1, 0.

It remains to consider the case that V ar (S) = 0. In this case, ρ̄L = ρL and

ρ̄U = ρU . It follows that ρ1 = ρ0 = 0. But when V ar (S) = 0, ρ̄j = ρj = 0.

(ii) and (iii) Since the positive semi-definiteness of Σ implies the positive semi-

definiteness of E (S)Σ+V ar (S) [ζ1, ζ0, ζ ]
0 [ζ1, ζ0, ζ ], which is the variance-covariance ma-

trix of (U1, U0, )
0. The bounds [ρ̄L, ρ̄U ] implied by the positive semi-definiteness of Σ are

in general tighter than the bounds implied by that of the variance-covariance matrix of

94



(U1, U0, )
0. So we have:

ρ̄L ≥ ρ̄1 ρ̄0 −
q¡
1− ρ̄21

¢ ¡
1− ρ̄20

¢
and ρ̄U ≤ ρ̄1 ρ̄0 −

q¡
1− ρ̄21

¢ ¡
1− ρ̄20

¢
.

When ρ̄21 + ρ̄20 > 1 and ρ̄1 , ρ̄0 have the same sign, we have

ρ̄L ≥ ρ̄1 ρ̄0 −
q¡
1− ρ̄21

¢ ¡
1− ρ̄20

¢
= ρ̄1 ρ̄0 −

q
1−

¡
ρ̄21 + ρ̄20

¢
+ ρ̄21 ρ̄

2
0

> ρ̄1 ρ̄0 −
q
ρ̄21 ρ̄

2
0

= 0.

When ρ̄21 + ρ̄20 > 1 and ρ̄1 , ρ̄0 have the opposite sign, we have

ρ̄U ≤ ρ̄1 ρ̄0 +
q¡
1− ρ̄21

¢ ¡
1− ρ̄20

¢
= ρ̄1 ρ̄0 +

q
1−

¡
ρ̄21 + ρ̄20

¢
+ ρ̄21 ρ̄

2
0

< ρ̄1 ρ̄0 +
q
ρ̄21 ρ̄

2
0

= 0.

(iv) Following the notation in (i), we have

ρ̄j =
E (S) ρj σ1σ + ζjζ V ar (S)r³

E (S)σ2j + ζ2jV ar (S)
´ ¡

E (S)σ2 + ζ2V ar (S)
¢

=
aja ρj + bjbr³
a2j + b2j

´
(a2 + b2)

, j = 0, 1.

Similar to (i), we conclude that ρ̄2j = 1 implies ρ2j = 1. If ρ21 = 1 or ρ20 = 1, we have

ρL = ρU which leads to ρ̄L = ρ̄U and the result that ρ̄10 is point identified.

Proof of Theorem 3.1: When ζ1 = ζ0 = 0 and ρ̄1 = ρ̄0 = 0, Theorem 2.1
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implies that ρL = −1 and ρU = 1. So we have:

NMVM2

¡
y1 − x0β1, y0 − x0β0;

£
α−10, ρL

¤¢
=

∞Z
0

fS (s)C
Gau

µ
Φ

µ
y1 − x0β1
σ1
√
s

¶
,Φ

µ
y0 − x0β0
σ0
√
s

¶
,−1

¶
ds

=

∞Z
0

fS (s)max

½
Φ

µ
y1 − x0β1
σ1
√
s

¶
+Φ

µ
y0 − x0β0
σ0
√
s

¶
− 1, 0

¾
ds,

where the second equality follows from the fact that CGau (·, ·,−1) = CL (·, ·), see e.g., Joe

(1997). When y1−x0β1
σ1

≥ (≤)− y0−x0β0
σ0

, we have y1−x0β1
σ1
√
s
≥ (≤)− y0−x0β0

σ1
√
s
and

Φ

µ
y1 − x0β1
σ1
√
s

¶
+Φ

µ
y0 − x0β0
σ0
√
s

¶
− 1 = Φ

µ
y1 − x0β1
σ1
√
s

¶
−Φ

µ
−y0 − x0β0

σ0
√
s

¶
≥ (≤) 0.

Thus, the sign of
h
Φ
³
y1−x0β1
σ1
√
s

´
+Φ

³
y0−x0β0
σ0
√
s

´
− 1
i
does not depend on s. We obtain:

NMVM2

¡
y1 − x0β1, y0 − x0β0;

£
α−10, ρL

¤¢
=

∞Z
0

fS (s)max

½
Φ

µ
y1 − x0β1
σ1
√
s

¶
+Φ

µ
y0 − x0β0
σ0
√
s

¶
− 1, 0

¾
ds

= max

⎧⎨⎩
∞Z
0

fS (s)

½
Φ

µ
y1 − x0β1
σ1
√
s

¶
+Φ

µ
y0 − x0β0
σ0
√
s

¶
− 1
¾
ds, 0

⎫⎬⎭
= max

©
NMVM1

¡
y1 − x0β1; θ1

¢
+NMVM1

¡
y0 − x0β0; θ0

¢
− 1, 0

ª
= CL

¡
NMVM1

¡
y1 − x0β1; θ1

¢
, NMVM1

¡
y0 − x0β0; θ0

¢¢
,

where θ1 =
¡
ξ, μ1, σ

2
1, ζ1

¢
and θ0 =

¡
ξ, μ0, σ

2
0, ζ0

¢
. Similarly, we can show that

NMVM2

¡
y1 − x0β1, y0 − x0β0;

£
α−10, ρU

¤¢
= CU

¡
NMVM1

¡
y1 − x0β1; θ1

¢
, NMVM1

¡
y0 − x0β0; θ0

¢¢
.

Proof of Theorem 3.2: It follows from (III.5) that

F∆ (δ) = NMVM1

¡
δ − x0 (β1 − β0) ; ξ, μ1 − μ0, γ

2
2, ζ1 − ζ0

¢
, (A.2)
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F∆ (δ|D = 1)

=

δZ
−∞

∞Z
−w0γ

nmvm2 (u− x0 (β1 − β0) , ; ξ, (Bμ)1 , (BΣB0)1 , (Bζ)1 )

1−NMVM1 (−w0γ; ξ, μ , σ2, ζ )
dud .

Since the only unidentified parameter in F∆ (δ) and F∆ (δ|D = 1) is γ22, we get

FL
∆(δ) = min

σ2L≤γ22≤σ2U
NMVM1

¡
δ − x0 (β1 − β0) ; ξ, μ1 − μ0, γ

2
2, ζ1 − ζ0

¢
≤ F∆ (δ)

≤ max
σ2L≤γ22≤σ2U

NMVM1

¡
δ − x0 (β1 − β0) ; ξ, μ1 − μ0, γ

2
2, ζ1 − ζ0

¢
= FU

∆ (δ)

and

FL
∆ (δ|D = 1)

= min
σ2L≤γ22≤σ2U

δZ
−∞

∞Z
−w0γ

nmvm2 (u− x0 (β1 − β0) , ; ξ, (Bμ)1 , (BΣB0)1 , (Bζ)1 )

1−NMVM1 (−w0γ; ξ, μ , σ2, ζ )
dud

≤ F∆ (δ|D = 1)

≤ max
σ2L≤γ22≤σ2U

δZ
−∞

∞Z
−w0γ

nmvm2 (u− x0 (β1 − β0) , ; ξ, (Bμ)1 , (BΣB0)1 , (Bζ)1 )

1−NMVM1 (−w0γ; ξ, μ , σ2, ζ )
dud

= FU
∆ (δ|D = 1) .

If ζ1 = ζ0, then

F∆ (δ) = NMVM1

¡
δ − x0 (β1 − β0) ; ξ, μ1 − μ0, γ

2
2, 0
¢
=

∞Z
0

fS (s)Φ

µ
δ − x0 (β1 − β0)

γ2
√
s

¶
ds.

Thus, F∆ (δ) is an increasing function of γ2 when δ < ATE (= x0 (β1 − β0)) and a decreasing

function of γ2 when δ ≥ ATE. We get the second result in (i).

Proof of Theorem 5.1: Since (Uj , ) ∼ NMVM2

¡
ξ, μj ,Σj , ζj

¢
, it follows that

the conditional distribution function of Uj given is given by

Fj| (uj | ) =

Z
fS(s)
σ
√
s
φ
³
−μ (s)
σ
√
s

´
Φ

Ã
uj−μ̄j(s)

(1−ρ2j )σ2js

!
ds

f ( )
, j = 0, 1,
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where

μj (s) = ζj (s−E (S)) , j = 0, 1, ,

μ̄j (s) = μj (s) + ρj
σj
σ

, j = 0, 1.

Let

m1 (s) =
y1 − g1 (x1, xc)− μ̄1 (s)q¡

1− ρ21
¢
σ21s

and m0 (s) =
y0 − g0 (x0, xc)− μ̄0 (s)q¡

1− ρ20
¢
σ20s

.

If σ0
q¡
1− ρ20

¢
ζ1 = −σ1

q¡
1− ρ21

¢
ζ0, then

m1 (s) +m0 (s)

=
σ0

q¡
1− ρ20

¢ ³
y1 − g1 (x1, xc)− ρ1

σ1
σ

´
+ σ1

q¡
1− ρ21

¢ ³
y0 − g0 (x0, xc)− ρ0

σ0
σ

´
q¡
1− ρ21

¢ ¡
1− ρ20

¢
σ21σ

2
0s

,

which will not change sign with respect to s, so Φ (m1 (s)) +Φ (m0 (s))− 1 (= Φ (m1 (s)) +

Φ (−m0 (s))) will not change sign with respect to s. Thus, we obtain

CL

¡
F1| (y1 − g1 (x1, xc)) , F0| (y0 − g0 (x0, xc))

¢
= max

⎧⎪⎪⎨⎪⎪⎩
Z

fS(s)
σ
√
s
φ
³
−μ (s)
σ
√
s

´
{Φ (m1 (s)) + Φ (m0 (s))− 1} ds

f ( )
, 0

⎫⎪⎪⎬⎪⎪⎭
=

Z
fS(s)
σ
√
s
φ
³
−μ (s)
σ
√
s

´
max {Φ (m1 (s)) +Φ (m0 (s))− 1, 0} ds

f ( )

=

Z
fS(s)
σ
√
s
φ
³
−μ (s)
σ
√
s

´
Φ−1 (m1 (s) ,m0 (s)) ds

f ( )
. (A.3)

Similarly, if σ0
q¡
1− ρ20

¢
ζ1 = σ1

q¡
1− ρ21

¢
ζ0, we have

CU

¡
F1| (y1 − g1 (x1, xc)) , F0| (y0 − g0 (x0, xc))

¢
=

Z
fS(s)

(σ2s)1/2
φ
³
−μ (s)
σ
√
s

´
Φ−1 (m1 (s) ,m0 (s)) ds

f ( )
. (A.4)
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Now suppose Z = (Z1, Z0, Z )
0 ∼ NMVM3 (ξ, μ,Σ, ζ). Then the density function

of Z is the same as that of and the conditional density function of Z1, Z0 given Z = is:

fZ1,Z0|Z =

³
z1, z0; ρ10|

´
=

Z
fS(s)

(2πs)3/2|Σ|1/2
exp

©
− (z − μ (s))0Σ−1 (z − μ (s)) / (2s)

ª
ds

f ( )

=

Z
fS(s)

(s)3/2σ |Σ2|1/2
φ
³
−μ (s)
σ
√
s

´
φρ10|

Ã
z1−μ̄1(s)
(1−ρ21 )σ21s

, z0−μ̄0(s)
(1−ρ20 )σ20s

!
ds

f ( )
,

where

Σ =

⎛⎜⎜⎜⎜⎜⎜⎝
σ21 ρ10σ1σ0 ρ1 σ1σ

ρ10σ1σ0 σ20 ρ0 σ0σ

ρ1 σ1σ ρ0 σ0σ σ2

⎞⎟⎟⎟⎟⎟⎟⎠ , Σ2 =

⎛⎜⎜⎝
¡
1− ρ21

¢
σ21

¡
ρ10−ρ1 ρ0

¢
σ1σ0¡

ρ10−ρ1 ρ0
¢
σ1σ0

¡
1− ρ20

¢
σ20

⎞⎟⎟⎠ ,

ρ10| =
ρ10−ρ1 ρ0q¡

1− ρ21
¢ ¡
1− ρ20

¢ , μ (s) = (μ1 (s) , μ0 (s) , μ (s))0 .

Thus the conditional distribution function of Z1, Z0 given Z = is

FZ1,Z0|Z =

³
z1, z0; ρ10|

´
=

Z
fS(s)
σ
√
s
φ
³
−μ (s)
σ
√
s

´
Φρ10|

Ã
z1−μ̄1(s)
(1−ρ21 )σ21s

, z0−μ̄0(s)
(1−ρ20 )σ20s

!
ds

f ( )
. (A.5)

Comparing (A.3) and (A.4) with (A.5), we obtain: if σ0
q¡
1− ρ20

¢
ζ1 = −σ1

q¡
1− ρ21

¢
ζ0,

then

FL
10 (y1, y0) =

Z
CL

¡
F1| (y1 − g1 (x1, xc)) , F0| (y0 − g0 (x0, xc))

¢
dF ( )

=

Z
FZ1,Z0|Z = (y1 − g1 (x1, xc) , y0 − g0 (x0, xc) ;−1) dF ( )

= FZ1,Z0 (y1 − g1 (x1, xc) , y0 − g0 (x0, xc) ; ρL)

= NMVM2

¡
y1 − g1 (x1, xc) , y0 − g0 (x0, xc) ;

£
α−10, ρL

¤¢
,

where the last equality follows, as (Z1, Z0)
0 ∼ NMVM2

¡£
α−10, ρ10

¤¢
; If σ0

q¡
1− ρ20

¢
ζ1 =
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σ1

q¡
1− ρ21

¢
ζ0, then

FU
10 (y1, y0) =

Z
CU

¡
F1| (y1 − g1 (x1, xc)) , F0| (y0 − g0 (x0, xc))

¢
dF ( )

=

Z
FZ1,Z0|Z = (y1 − g1 (x1, xc) , y0 − g0 (x0, xc) ; 1) dF ( )

= FZ1,Z0 (y1 − g1 (x1, xc) , y0 − g0 (x0, xc) ; ρU )

= NMVM2

¡
y1 − g1 (x1, xc) , y0 − g0 (x0, xc) ;

£
α−10, ρU

¤¢
.

So when ζ1 = ζ0 = 0, we have

FL
10 (y1, y0) = NMVM2

¡
y1 − g1 (x1, xc) , y0 − g0 (x0, xc) ;

£
α−10, ρL

¤¢
,

FU
10 (y1, y0) = NMVM2

¡
y1 − g1 (x1, xc) , y0 − g0 (x0, xc) ;

£
α−10, ρU

¤¢
.

Chapter IV

Variable Definition

Market capitalization: the number of shares outstanding times the price at the

end of the most recent month prior to the issue.

Market-to-book: market capitalization plus total assets minus book value of equity

minus deferred taxes at the end of the most recent fiscal year prior to the issue, divided by

total book assets.

Relative offer size: number of shares issued relative to the number of shares out-

standing prior to the issue.

Runup: buy-and-hold return in the 90 trading days prior to the issue net of the

value-weighted market index.

Average turnover: average daily share volume scaled by the number of shares

outstanding in the [-390, -30] window relative to the offer date.

Return on assets: income before extraordinary items scaled by book assets.
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Table 1. Bias of Estimators of ATE and TT
Data % Bias of ATE % Bias of TT True TT

ζ = (ζU1, ζU0, ζ )
Category 1 Skew t Gaussian No Correction Skew t Gaussian
(0, 0, 0) 0.22807 −1.454 50.228 0.53729 −0.97482 1.4038
(0, 0, 1) 2.2377 0.062898 27.907 3.5022 0.069725 1.2289
(0, 0,−1) 0.67477 −0.54789 26.223 −0.07958 −0.79053 1.207
Category 2
(1, 0, 0) 0.73928 −10.521 27.422 0.36456 0.33516 1.1687
(−1, 0, 0) 0.19997 10.875 27.196 −0.02432 0.076538 1.1672
(0, 1, 0) −0.9086 9.8268 47.241 −0.6891 15.879 1.4292
(0,−1, 0) −1.6763 −12.037 47.766 −2.0352 −15.674 1.4313
Category 3
(1, 1, 0) 0.54094 −0.74301 24.294 0.90689 18.421 1.1944

(−1,−1, 0) 0.75034 −1.3118 24.275 1.422 −19.356 1.1937
(1,−1, 0) 0.64949 −22.218 25.024 1.9992 −17.473 1.1975
(−1, 1, 0) −1.1989 22.219 24.167 −1.4086 20.008 1.1924
Category 4
(1, 1, 1) −0.1968 −1.2218 47.422 0.20834 20.488 1.1099
(1,−1, 1) 1.2981 −22.424 15.928 1.2922 −15.873 1.4778

Table 2. Bias of Parameters in SRM (multiplied by 100)
Data β1 β0 γ0 γ1

(ζ = (ζU1, ζU0, ζ ))
Category 1 Skew t Gaussian Skew t Gaussian Skew t Gaussian Skew t Gaussian
(0, 0, 0) 0.011951 −0.63355 −0.21612 0.82047 0.029441 −0.41827 −2.8651 11.258
(0, 0, 1) 0.21275 0.013267 −2.025 −0.0496 −0.44802 −10.945 0.96954 59.771
(0, 0,−1) 0.83001 0.053632 0.15524 0.60153 0.34164 10.356 −0.02209 58.377
Category 2
(1, 0, 0) 0.46302 −10.763 −0.27626 −0.2418 −0.25278 −0.31216 −3.3182 10.847
(−1, 0, 0) 0.18102 10.799 −0.01895 −0.0758 0.6213 0.39025 −2.8652 11.254
(0, 1, 0) −0.46955 −1.5318 0.43905 −11.359 −0.24259 −0.43806 −4.136 10.944
(0,−1, 0) 0.014604 −0.60671 1.6909 11.43 −0.20528 −0.39002 −3.7125 10.927
Category 3
(1, 1, 0) −0.20199 −11.948 −0.74293 −11.205 0.19988 0.090188 −3.6397 10.993

(−1,−1, 0) −0.1156 10.179 −0.86594 11.491 −0.4089 −0.47814 −2.8559 11.572
(1,−1, 0) −0.30633 −11.519 −0.95582 10.699 0.4359 0.091921 −3.6534 10.588
(−1, 1, 0) −0.38346 10.309 0.81539 −11.91 0.01114 −0.02306 −3.4427 10.994
Category 4
(1, 1, 1) −0.39261 −12.073 −0.19582 −10.851 −0.44793 −10.679 2.5966 60.718
(1,−1, 1) 0.3948 −11.382 −0.90328 11.042 −0.07596 −10.045 0.6578 59.671
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Table 3. The number of offerings and total proceeds
Number of offers Proceeds ($mil)
Shelf Traditional Shelf Traditional

Year Non-Accelerated Accelerated Non-Accelerated Accelerated
1997 25 4 225 3492.5 597.7 18156.6
1998 35 4 138 4426.9 453.2 13880.8
1999 35 8 159 8001.3 4047.7 28656
2000 42 15 175 15007.8 2688.9 34733.3
2001 57 29 124 10535.8 5381.6 21158.5
2002 56 34 121 11546.4 5579.8 15942.2
2003 56 77 133 8162.8 14156.3 14916.9
2004 54 156 119 7948.9 31681 13920
2005 46 115 90 6325.8 19307.4 15415.1
2006 76 79 90 12418.3 14900.5 17160.6
Total 482 521 1,374 87,867 98,794 193,940

Table 4. Firms and offer characteristics (mean)
Shelf Traditional

Non-Accelerated Accelerated
Proceeds 182.3 189.6 141.1

Relative Offer Size 0.149 0.099 0.133
Market capitalization ($mil) 2305.2 3656.4 1452.1

Total Assets ($mil) 3661.5 5899.7 1575.2
Market-to-Book 1.398 1.305 2.398

Residual Volatility 0.029 0.026 0.038
Turnover 0.007 0.008 0.008

Return on Assets 0.039 0.052 0.081
SP500 0.129 0.142 0.044

Percentage of Secondary Shares 0.119 0.239 0.307
Simultaneous Offer 0.039 0.046 0.005

Convertible Debt Issued Prior 0.124 0.587 0.399
Convertible Debt Issued After 0.122 0.201 0.238
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Table 5. Determinants of the choice of flotation (Accelerated=1)
Skewed t Heckman

estimates t-stat estimates t-stat
Intercept 0.520 9.600 0.710 5.070

Relative offer size -0.831 -3.145 -1.348 -4.270
Ln(Market capitalization) 0.016 0.916 0.084 1.780

Nasdaq dummy 0.011 0.286 0.030 0.262
Residual volatility -5.033 -3.282 -13.612 -3.723
Average turnover 5.422 3.366 18.778 2.944

Runup 0.046 1.419 0.179 1.401
Return on assets -0.266 -3.030 -0.873 -3.314
Market to book -0.015 -1.182 -0.058 -1.544

SP500 -0.027 -0.565 -0.087 -0.549
Secondary Percentage 0.175 4.648 0.644 5.162
Simultaneous offer -0.069 -0.987 -0.105 -0.472

Convertible debt issued prior -0.082 -2.519 -0.275 -2.525
Skewness parameter 2.305 2.683

Log-Likelihood 614.620 620.964
Number of obs 521 521

Table 6. Estimates of the ROA equation for the accelerated underwriting
Skewed t Normal

estimates t-stat estimates t-stat
Intercept -0.166 -3.271 -0.076 -2.338

Ln(Market capitalization) 0.030 3.176 0.022 2.392
Nasdaq dummy 0.046 2.517 0.044 2.339

Turnover 2.436 2.095 2.157 1.825
Runup -0.021 -0.866 -0.019 -0.755

Return on assets 0.619 13.190 0.632 12.822
Market to Book -0.006 -1.077 -0.005 -0.873

SP 500 -0.052 -1.897 -0.043 -1.573
Secondary Percentage 0.059 2.136 0.031 1.153
Simultaneous offer -0.083 -2.323 -0.065 -1.853

Convertible debt issued prior -0.046 -2.715 -0.036 -2.034
Convertible debt issued after 0.031 1.965 0.030 1.938

Correction term 1 0.133 2.394 0.051 1.119
Correction term 2 -0.125 -1.829
Number of obs 249 249
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Table 7. Estimates of the ROA equation for the non-accelerated underwriting
Skewed t Normal

estimates t-stat estimates t-stat
Intercept -0.035 -0.360 0.00 -0.07

Ln(Market capitalization) 0.012 1.478 0.01 1.38
Nasdaq dummy -0.023 -1.466 -0.02 -1.40

Turnover -0.247 -0.313 -0.20 -0.24
Runup 0.023 0.889 0.03 0.97

Return on assets 0.479 11.943 0.48 11.03
Market to Book 0.002 0.395 0.00 0.33

SP 500 -0.008 -0.351 -0.01 -0.33
Secondary Percentage -0.006 -0.203 -0.01 -0.24
Simultaneous offer -0.022 -0.621 -0.02 -0.59

Convertible debt issued prior 0.029 1.649 0.03 1.66
Convertible debt issued after -0.028 -1.891 -0.03 -1.86

Correction term 1 0.022 0.636 0.03 0.67
Correction term 2 -0.089 -0.316
Number of obs 272 272

Table 8. Estimates of the CAR equation for the accelerated underwriting
Skewed t Normal

estimates t-stat estimates t-stat
Intercept 0.071 0.431 -0.020 -0.193

Ln(Market capitalization) -0.035 -1.152 -0.029 -0.974
Nasdaq dummy -0.037 -0.612 -0.033 -0.543

Turnover -6.181 -1.629 -5.841 -1.530
Runup -0.269 -3.367 -0.268 -3.365

Return on assets 0.539 3.524 0.528 3.317
Market to Book 0.013 0.647 0.011 0.568

SP 500 0.120 1.350 0.114 1.286
Secondary Percentage -0.003 -0.031 0.023 0.269
Simultaneous offer -0.152 -1.306 -0.164 -1.434

Convertible debt issued prior -0.027 -0.480 -0.036 -0.637
Convertible debt issued after 0.120 2.373 0.122 2.392

Correction term 1 -0.124 -0.682 -0.011 -0.077
Correction term 2 0.159 0.715
Number of obs 249 249
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Table 9. Estimates of the CAR equation for the non-accelerated underwriting
Skewed t Normal

estimates t-stat estimates t-stat
Intercept 0.093 0.261 -0.26 -1.51

Ln(Market capitalization) -0.018 -0.605 -0.01 -0.46
Nasdaq dummy -0.015 -0.267 -0.03 -0.48

Turnover -3.021 -1.060 -2.63 -0.85
Runup 0.043 0.454 0.03 0.31

Return on assets 0.479 3.315 0.46 2.91
Market to Book -0.006 -0.345 -0.01 -0.38

SP 500 0.088 1.029 0.08 0.95
Secondary Percentage -0.009 -0.087 0.03 0.25
Simultaneous offer 0.046 0.350 0.04 0.34

Convertible debt issued prior 0.145 2.324 0.13 2.04
Convertible debt issued after 0.080 1.523 0.08 1.43

Correction term 1 -0.172 -1.354 -0.09 -0.53
Correction term 2 1.108 1.090
Number of obs 272 272

Table 10. Average Treatment Effects
Skewed t Heckman

estimates t-statistics estimates t-statistics
Industry adjusted ROA a year after issuance

Average Treatment Effect -0.129 -1.162 -0.068 -1.294
Treatment Effect for the Treated 0.021 0.111 -0.047 -0.621

Treatment Effect for the non-Treated -0.301 -2.635 -0.090 -1.236
Cumulative abnormal return a year after issuance

Average Treatment Effect -0.181 -0.463 0.089 0.490
Treatment Effect for the Treated -0.560 -0.818 0.155 0.574

Treatment Effect for the non-Treated 0.227 0.608 0.020 0.084
Cumulative abnormal return 6 months after issuance

Average Treatment Effect -0.151 -0.536 0.128 1.005
Treatment Effect for the Treated -0.235 -0.472 0.237 1.209

Treatment Effect for the non-Treated -0.069 -0.280 0.014 0.086
Cumulative abnormal return 3 months after issuance

Average Treatment Effect 0.026 0.143 0.046 0.547
Treatment Effect for the Treated 0.188 0.581 0.205 1.618

Treatment Effect for the non-Treated -0.154 -0.916 -0.121 -1.144
Cumulative abnormal return 3 days after issuance

Average Treatment Effect 0.048 0.709 -0.016 -0.517
Treatment Effect for the Treated 0.085 0.717 -0.032 -0.683

Treatment Effect for the non-Treated 0.011 0.175 0.001 0.019
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Figure 2. Sharp bounds on the distribution of treatment effects, σ1 = σ0 = 1. Solid curves
are bounds assuming bivariate normality for (Uji, i), j = 1, 0, and dashed curves are bounds
under the trivariate normality assumption for (U1i, U0i, i) .
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Figure 4. Sharp bounds on the distribution of treatment effects, σ1 = σ0 = 1. Solid curves
are bounds assuming (Uji, i), j = 0, 1, follows bivariate student’s t distribution with 4
degrees of freedom and dashed curves are bounds assuming (U1i, U0i, i) follows trivariate
student’s t distribution with 4 degrees of freedom.
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Figure 5. Sharp bounds on the distribution of treatment effects for the treated – ATE = 0,
σ1 = σ0 = 1, and the Propensity Score = 0.1. In (a) and (c), ρ1ε = 0.5 and ρ0ε = −0.5,
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Figure 6. Treatment effect for the treated for subpopulations and the probability that
a person in a subpopulation benefits from the treatment, where ATE = 0, ρ1ε = 0.5,
ρ0ε = −0.5, and σ1 = σ0 = 1.
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Figure 7. Treatment effect for the treated for subpopulations and the probability that
a person in a subpopulation benefits from the treatment, where ATE = 0, ρ1ε = −0.5,
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Figure 8. Treatment effect for the treated for subpopulations and the probability that a
person in a subpopulation benefits from the treatment, where ATE = −0.5, ρ1ε = 0.5,
ρ0ε = −0.5, and σ1 = σ0 = 1.
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Figure 9. Treatment effect for the treated for subpopulations and the probability that a
person in a subpopulation benefits from the treatment, where ATE = 0.5, ρ1ε = −0.5,
ρ0ε = 0.5, and σ1 = σ0 = 1.
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Figure 10. Treatment effect for the treated for subpopulations and the probability that
a person in a subpopulation benefits from the treatment, where ATE = 0, ρ1ε = 0.95,
ρ0ε = −0.5, and σ1 = σ0 = 1.
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Figure 11. Treatment effect for the treated for subpopulations and the probability that
a person in a subpopulation benefits from the treatment, where ATE = 0, ρ1ε = 0.95,
ρ0ε = 0.5, and σ1 = σ0 = 1.
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Figure 12. Expected gain from choosing accelerated underwriting in terms of return on
assets one year after the equity issuance
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