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CHAPTER I

INTRODUCTION

The work in this dissertation is about modeling the spread of an infectious disease

in a closed community with two basic public health interventions: (i) identifying and

isolating symptomatic cases, and (ii) tracing and quarantine of the contacts of identified

infectives. Our aim is to evaluate the efficacy of tracing and quarantine strategies which

are believed to be an important aspect of controlling an outbreak of emerging or re-

emerging infectious diseases. The model is applicable in both emerging epidemics that

require isolation, tracing, and quarantine, such as H1N1, SARS (severe acute respiratory

syndrome), and influenzas, and re-emerging epidemics that requires isolation and certain

vaccination strategies, such as a smallpox bioterrorist attack. Moreover, our model can

be applied as a rational basis for decision makers to guide interventions and deploy public

health resources in future epidemics.

I.1 Terminologies

There are two alternatives for epidemic controls, namely targeted control and mass con-

trol. Isolation of symptomatic cases is important in controlling infectious diseases, but

also important is the vaccination and quarantine of traced contacts of known infectives.

Contact tracing is especially important when there is a lack of rapid diagnostic methods,

as was in the case of SARS Glasser et al (2011).

We next clarify the definitions of the three intervention strategies considered in the
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model1:

1. Isolation is the process by which infected people (all of whom are symptomatic) are

prevented from infecting susceptible ones.

2. Contact tracing is the process of identifying people who may have been infected by

exposure to (or contact with) an infectious person.

3. Quarantine is the process of isolating these people, called contacts (none of whom

is yet symptomatic, and many not even be infected).

Quarantine can be divided into two types: (i) quarantine of close contacts of identified

cases, and (ii) quarantine of large groups of people (such as residents in residential com-

plexes, workers in a workplace, students in schools, etc). Our model focuses on the (i)

type quarantine, which is conducted as a consequence of tracing close contacts of infected

individuals.

I.2 Background

There are two practical applications of our model being presented in this dissertation:

(1) we assess public health guidelines about emergency preparedness and response in the

event of a smallpox bioterrorist attack; (2) we simulate the 2003 SARS outbreak in Taiwan

and estimate the number of cases avoided by contact tracing.

I.2.1 Smallpox

Smallpox was eradicated in 1979, but fears of bioterrorist attacks by deliberately releasing

the variola virus have been taken into consideration according to federal and academic

1Definitions are provided by J. Glasser at Centers for Disease Control and Prevention.
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observations ever since the terrorist attacks of September 11, 2001. Although the two gov-

ernment laboratories in the United States and Russia are the only known places that keep

the viral samples, the possibility of other sources cannot be ruled out CIDRAP (2002).

Public health authorities have detailed plans for emergency preparedness and response to

a smallpox outbreak CDC (2003); on the other hand, the proper amount of vaccine and

treatment medicine that should be stockpiled is still controversial NewYorkTimes (2013).

Due to the undesirable side-effects of the vaccine, the routine vaccination for the vari-

ola virus has been discontinued ever since 1972, and currently the vaccination is only given

to selected military personnel and laboratory workers who handle the virus. Moreover,

because of the waning immunity of the vaccine, the proportion of Americans who are both

over age 40 and still immune to smallpox might be too small to achieve herd immunity.

As a result, based on these concerns, public health authorities, such as Centers for Dis-

ease Control and Prevention (CDC), suggest intensive surveillance and identification of

infected cases, isolation of smallpox patients, and vaccination of close contacts of infected

individuals.

I.2.2 SARS

Distinct from smallpox, the conduct of surveillance and control strategies of modern

influenzas (such as H1N1 and SARS) is less efficient due to the lack of timely vaccines, non-

compliance of the public with quarantine, and the period of asymptomatic infectiousness.

It is widely believed that SARS was eradicated because of limited transmission occurring

before symptom onset, but the effectiveness of contact tracing is still controversial even

in the regions where high levels of contact tracing were conducted, such as Taiwan and

mainland China. So we apply our model to simulate the SARS outbreak in Taiwan with

real data to assess the contact tracing and quarantine efficacy in avoiding infections.
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I.3 Related Studies

We apply our model to assess the ring vaccination strategy in the control of smallpox,

and compare the effectiveness between ring vaccination strategy and mass vaccination

strategy. Various methods have been developed to evaluate public health control strategies

for smallpox. Müller et al. investigate contact tracing by an individual based stochastic

model Müller et al (2000). Meltzer et al. develop a Markov chain model to estimate

in what levels that a combined vaccination and quarantine campaign should be taken

to reduce smallpox transmission, and suggest a number of adequate vaccine doses for

stockpiling Meltzer et al (2001). Halloran et al. construct a stochastic model to compare

the effectiveness of mass vaccination versus targeted vaccination in a population of 2,000,

and they conclude that targeted vaccination can prevent more cases per dose Halloran

et al (2002). Eichner performs stochastic computer simulations to examine how case

isolation and contact tracing prevent the spread of smallpox Eichner (2003). Kretzschmar

et al. present a branching process stochastic model to estimate the size and duration

of outbreaks contained by ring vaccination Kretzschmar et al (2004). Vidondo et al.

approach a novel containment strategy which vaccinates “super contacts”by an individual-

network based simulation Vidondo et al (2012).

There are also several ordinary differential equation (ODE) models which focus on

different aspects of controlling a smallpox outbreak. Kaplan et al. assume a high infectivity

in the prodromal period in their model with a focus on public health logistical constraints.

They conclude that mass vaccination is more efficient than ring vaccination, when a

congestion in the vaccination queue occurs Kaplan et al (2003), Kaplan et al (2002).

Castillo-Chavez et al. take the behavioral changes of the community into consideration,

and demonstrate that even gradual and mild changes of people’s daily contact activity
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can slow an epidemic Valle et al (2005). Hsieh et al. propose a differential equation model

that includes intervention measures implemented in the control of 2003 SARS, and analyze

how quarantine measures change the basic dynamics of the model Hsu and Hsieh (2006).

ODE models were used in modeling SARS as well, and in particular to investigate

the impact of quarantining asymptomatic infectives Hethcote et al (2002), Wang and

Ruan (2003), Hsieh et al (2004), Gumel et al (2004), Nishiura et al (2004), Fraser et al

(2004), Day et al (2006), Hsu and Hsieh (2006), Arino et al (2006), Feng et al (2007),

Feng et al (2009), Feng et al (2011). A thorough review of many of these works has been

provided in Bauch et al (2005). The article points out that the nonlinearity of the rate of

quarantining undiagnosed cases is required to be taken into account. In our work, we use

a partial differential equation (PDE) model with a variable of disease age (or age since

infection), with nonlinear rates of contact tracing infectives and quarantining susceptibles

dependent on the rate of identifying symptomatic cases.

Although some of the previous work includes the varying levels of transmission ability

and symptom scores in different disease stages, there is less work about smallpox control

that takes continuous disease age into consideration. Webb et al. apply age structured

epidemic models to investigate isolation strategy and school closings in the spread of

H1N1 Webb et al (2010). Inaba et al. develop a series of multistate class age structured

epidemic systems with isolation rate as the only intervention Inaba and Nishiura (2008).

Fraser et al. establish an infection age-structured model that estimates the effectiveness

of isolation and contact tracing in the control of epidemic diseases with a formulation

different from ours Fraser et al (2004). Our model is aimed to take into consideration

several key features about disease transmission and public health interventions at the

same time:

(i) Continuous infection age.
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(ii) Infection-age-dependent case isolation rate.

(iii) Contact tracing/quarantine/vaccination rates that depend on diagnosis rate of symp-

tomatic cases.

(iv) Variation of susceptible population due to infection and contact tracing, quarantine,

or vaccination.
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CHAPTER II

PRELIMINARY: THE ODE MODEL

Before we introduce our age-structured partial differential equations model, in this

chapter, we review the fundamental theory of modeling epidemic infectious disease with

ordinary differential equations models. This review aims to interpret important parame-

ters of the ODE model, as well as provide accurate understanding of the parameters in

the main PDE model.

Epidemic models with ODE form a typical category of compartmental models, which

divide the population into disjoint groups (compartments) based on disease status, age,

or other factors. The so-called SIR model labels three compartments: S stands for the

susceptible population, I is for the infected population, and R represents the recovered

population. In the ODE model, the compartments are single-variable functions with

respect to time. ODE and PDE models are deterministic models, in which the future

states are determined by the knowledge of the present state of the system Bauch et al

(2005). ? gives a time line for the development of deterministic modeling in epidemic

diseases ever since the beginning of the 20th century: Hamer (1906) formulated a discrete

time model to understand the recurrence of measles epidemics, which is also the first model

with the infection rate proportional to the product of the susceptible population and the

infected population. Later Ross, Hudson, Martini, and Lotka developed other models to

study diseases such as malaria. In 1911, Kermack and McKendrick published papers of

theoretical results and formulations in epidemic models, and their models incorporated

the important feature of disease age related transmission and removal rates.
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II.1 Basic SIR Compartmental Model

As mentioned before, we denote S(t) as the population of people who are not infected

and are susceptible to the disease at time t, I(t) as the population of people who are

infected and infectious at time t, and R(t) as the population of recovered people, who will

neither infect others nor be reinfected at time t. We ignore the natural birth and death

rates because the outbreak of an epidemic moves faster than the demographic rates in the

population. So we have the following dynamics:

dS

dt
= −λIS, S (0) = S0 ≥ 0

dI

dt
= λIS − rI, I (0) = I0 ≥ 0

dR

dt
= rI, R (0) = R0 ≥ 0

(II.1)

where r is the recover rate if there is no control, and if there is a control of isolating

symptomatic individuals, r can be regarded as the combination of two rates: the rate of

naturally recovery without showing symptoms or being isolated, and the rate of being

isolated due to showing symptoms.

In (II.1), λI is the rate of new infections (the force of infection). We denote N as

the total number of people in the community, which is a constant, α as the average

number of contacts one might have per unit time (per day), and β as the probability

of an infected individual to transmit the disease to a susceptible person when they have

contacts. For each infected individual at time t, there is a probability S (t)/N to meet

a susceptible person, amd there is a probability β for an infection to happen during this

contact. Then each infected individual will infect β · S (t)/N susceptibles per contact,

and infect α · β · S (t)/N susceptibles per unit time. So there will be α · β · S (t) · I (t)/N

susceptibles infected per unit time, which gives the disease infection rate.
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According to the calculation above, the parameter λ in (II.1) cannot be simply under-

stood as the disease transmission rate, it is actually a product of parameters with practical

meanings: λ = α · β/N . Although a single character β has often been used to represent

the infection transmission coefficient, correct understanding of the incidence rate is very

important in the application.

II.2 SIR Model with Mass Control

Mass control strategies, for which a good example is the mass vaccination strategy in

controlling smallpox, is a process that prevents people (both susceptible and infected)

from random disease transmission, by interventions such as quarantine and vaccination.

We provide the ODE model for mass control as follows (the age-structured model and

background discussions are elaborated in V.2.1):

dS

dt
= −λIS −mS, S (0) = S0 ≥ 0

dI

dt
= λIS − rI −mI, I (0) = I0 ≥ 0

dR

dt
= rI, R (0) = R0 ≥ 0

(II.2)

where the interpretations of λ and r are the same with those in (II.1), and m = M/N ,

where M is the number of people removed due to mass control per unit time and N is

the total population number. So the removal rate of susceptible population due to mass

control m is interpreted as the total number of people removed by mass control per unit

time, times the probability for one person being susceptible (S (t)/N).
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II.3 SIR Model with Targeted Contact Tracing

According to targeted tracing strategies, such as contact tracing in SARS and ring vacci-

nation in smallpox, it is reasonable to assume that the targeted tracing rate is related to

the isolation rate of symptomatic individuals. In the practical control of an epidemic dis-

ease, an identified symptomatic individual will be asked to provide a list of close contacts

to be traced as soon as possible. If we ignore the delay of the tracing process, then the

number of people removed due to tracing will be proportionate to the number of identified

cases. With this idea in mind, we have the corresponding ODE model:

dS

dt
= −λIS − κsSI, S (0) = S0 ≥ 0

dI

dt
= λIS − rI − µI − κiI2, I (0) = I0 ≥ 0

dR

dt
= rI, R (0) = R0 ≥ 0

(II.3)

where in this case, λ and N are as in (II.1), r is the natural recover rate, and µ is the

isolation rate of symptomatic individuals. We now interpret: κs = ηs · µ · C/N , where ηs

is the probability for a contact, provided by a symptomatic infective, to be susceptible,

which depends on the contact tracing efficiency. C is the average number of contacts that

can be effectively provided and traced per identified infective. The probability for each

susceptible individual to be a contact of an identified infective is µ · I (t)/N . Hence the

probability to be named as a traced contact is ηs · C. So we have the contact tracing rates

for all susceptibles as κsI in (II.3). Similar interpretation applies for the contact tracing

rate of infected individuals.

10



CHAPTER III

MAIN MODEL: AGE-STRUCTURED PDE MODEL

III.1 Notations

Before introducing the main model, we introduce the notations as follows:

(N.1) For 0 < M 6 ∞, let L1 := L1 ([0,M] ;R), L1
+ := L1 ([0,M] ;R+) which is the

positive cone in L1. M denotes the maximum disease age in the model.

(N.2) For 0 < T 6 ∞, denote CT := C ([0, T ] ;L1) with the supremum norm: ‖l‖CT :=

sup
06t6T

‖l (t)‖L1 , for l ∈ CT . Let CT,+ := C
(
[0, T ] ;L1

+

)
which is the positive cone in

CT .

The basic assumptions are as follows:

(A.1) Let T ∈ (L1)
∗

with norm ‖T ‖∞, and we assume T
(
L1

+

)
⊆ R+.

(A.2) B,Q : L1 → R be globally Lipschitz continuous functions with Lipschitz constants

|B| and |Q|. Moreover, we assume B
(
L1

+

)
⊆ R+ and Q

(
L1

+

)
⊆ R+.

(A.3) B (0) = 0, Q (0) = 0.

III.2 Model

For t > 0, a ∈ [0,M], the formal model is:

11



∂

∂t
i (a, t) +

∂

∂a
i (a, t) = −µ (a) i (a, t)︸ ︷︷ ︸

isolation of symptomatic
individuals with infection

age a

−T (i (·, t)) i (a, t)︸ ︷︷ ︸
tracing of contacts
with infection age a

d

dt
S (t) = −B (i (·, t))S (t)︸ ︷︷ ︸

infection of susceptibles

−Q (i (·, t))S (t)︸ ︷︷ ︸
quarantine of contacts

that are susceptible

i (0, t)︸ ︷︷ ︸
infectives with
infection age 0

= B (i (·, t))S (t)︸ ︷︷ ︸
rate of new infections

i(a, 0) = i0(a) ∈ L1 [0,M]

S(0) = S0 ∈ R+

(III.1)

where i(a, t) is the infected population density at infection age a at time t, and S(t) is the

susceptible population at time t, µ(a) is the rate of isolating symptomatic cases those are at

disease age a. If we denote i (·, t) as the infected population density function at time t, then

B (i (·, t)) represents the infection transmission rate, T (i (·, t)) represents the isolation

rate of infected individuals due to contact tracing at time t, and Q (i (·, t)) represents the

quarantine rate of susceptible contacts as the consequence of contact tracing.

III.3 Problem Formulation

Solving for S (t) from the second equation in (III.1), we can simplify the problem into an

age-dependent population dynamics model for i (a, t):

∂

∂t
i (a, t) +

∂

∂a
i (a, t) = −µ (a) i (a, t)− T (i (·, t)) i (a, t)

i (0, t) = S0B (i (·, t)) e−
∫ t
0 B(i(·,s))+Q(i(·,s))ds

i(a, 0) = i0(a)

(III.2)

12



In the following context, we denote i (t)(a) := i (a, t); then i ∈ CT means i(t) ∈ L1, for

t ∈ [0, T ]. We also refer the solutions of the age-dependent problem as l (t)(a) := i (a, t),

where l ∈ CT . Next we will generalize the problem to a formulation of age-dependent

population dynamics. We introduce the aging and birth functions:

(1) Let G : L1 → L1 be the aging function.

(2) For 0 < T 6∞, let F : CT = C ([0, T ] ;L1)→ C ([0, T ] ;R) be the birth function.

Let 0 < T 6 ∞, let t ∈ [0, T ] and l ∈ CT , the general age-dependent problem is as

follows:

∂

∂t
l (t)(a) +

∂

∂a
l (t)(a) = G(l (t))(a) , a.e. a ∈ [0,M]

l (t)(0) = (F (l))(t)

l (0)(a) = φ (a) , a.e. a ∈ [0,M]

(III.3)

However, the equation system in (III.3) is not well defined for solutions that are not

continuously differentiable with respect to both variables. We are thus led to the following

formulation of age-dependent population dynamics as in Webb (1985): let 0 < T 6 ∞,

and let l ∈ CT satisfy:

lim
h→0+

∫ M

0

∣∣h−1 [l (t+ h)(a+ h)− l (t)(a)]−G(l (t))(a)
∣∣ da = 0

lim
h→0+

∫ h

0

|l (t+ h)(a)− (F (l))(t)| da = 0

l (0)(a) = φ (a) , a.e. a ∈ [0,M]

(III.4)

where we let l (t+ h)(a+ h) = 0 if a+ h > M.
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III.4 Preliminary Results

In this section, we will present results about local existence and uniqueness of the solutions

to the age-dependent problem (III.4) with the following assumptions on the aging and

birth functions:

(H.1) G : L1 → L1, there is an increasing function c1 : [0,∞) → [0,∞) such that

‖G (φ1)−G (φ2)‖L1 ≤ c1 (r) ‖φ1 − φ2‖L1 for all φ1, φ2 ∈ L1 such that ‖φ1‖L1 , ‖φ2‖L1 ≤

r.

(H.2) There is a function c2 : [0,∞)× [0,∞)→ [0,∞), which is increasing and continuous

w.r.t. both variables. Then for all T > 0, F : CT → C ([0, T ] ;R), for any 0 ≤ t ≤ T

and r > 0, we have

|(F (φ1))(t)− (F (φ2))(t)| 6 c2 (r, t) sup
06s6t

‖φ1 (s)− φ2 (s)‖L1

for all φ1, φ2 ∈ CT such that ‖φ1‖CT , ‖φ2‖CT ≤ r.

We state theorems about local existence and uniqueness of the solutions below. The proofs

(they can be found in the Appendix) are different from those in Webb (1985), since our

assumption of the birth function F is different.

III.4.1 Theorem III.4.1

Theorem III.4.1. Let (H.1) and (H.2) hold and let φ ∈ L1. There exists T > 0 and

l ∈ CT such that l is a solution of (III.4) on [0, T ]. Furthermore, there is a unique solution

of (III.4) on [0, T ].

We introduce the definition of maximal interval of existence as in Webb (1985):
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III.4.2 Definition III.4.2

Definition III.4.2. Let φ ∈ L1. Denote [0, Tφ) as the maximal interval of existence of

the solution of (III.4), is the maximal interval with the property that if 0 < T < Tφ, there

exist l ∈ CT such that l is a solution of (III.4) on [0, T ].

With additional assumptions as stated below, we will prove the positivity of the solu-

tions.

(H.3) F (CT,+) ⊆ C ([0, T ] ;R+)

(H.4) There is an increasing function c3 : [0,∞)→ [0,∞) such that if r > 0 and φ ∈ L1
+

with ‖φ‖L1 ≤ r, then G (φ) + c3 (r)φ ∈ L1
+.

III.4.3 Theorem III.4.3

Theorem III.4.3. Let (H.1)-(H.4) hold and let φ ∈ L1
+. The solution l of (III.4) on

[0, Tφ), has the property that l (t) ∈ L1
+ for 0 6 t < Tφ.

Furthermore, with one more restriction on the aging and birth functions, the positive

solution exists globally.

III.4.4 Theorem III.4.4

Theorem III.4.4. Let (H.1)-(H.4) hold and let φ ∈ L1
+, let l be the solution of (III.4) on

[0, Tφ), and let there exist ω ∈ R such that for 0 ≤ t < Tφ, F and G satisfy the following

inequality:

(F (l))(t) +

∫ M

0

G (l (t))(a) da 6 ω

∫ M

0

l (t)(a) da (H.5)

Then Tφ =∞ and ‖l (t)‖L1 ≤ eωt‖φ‖L1.
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CHAPTER IV

BASIC THEORY OF THE EPIDEMIC MODEL

We will continue investigating the solutions of the specific age-dependent problem

(III.2) in the sense of (III.4). First, specify the birth and aging functions:

(P.1) The aging function G : L1 → L1 is, for φ ∈ L1,

G (φ)(a) = −µ (a)φ (a)− T (φ)φ (a).

(P.2) The birth function F : CT → C ([0,∞] ;R) is, for l ∈ CT ,

(F (l))(t) := S0B (l (t)) e−
∫ t
0 B(l(s))+Q(l(s))ds.

where µ and S0 are as in (III.1), T , B, and Q are as in (A.1)-(A.3).

IV.1 Theorem IV.1.1

Theorem IV.1.1. Let (A.1), (A.2) and (A.3) hold, let µ ∈ L∞+ [0,M], S0 > 0, and

φ ∈ L1
+ [0,M]. There is a function l ∈ C

(
[0,∞) ;L1

+

)
such that l is the unique global

solution of (III.4) with the aging function G and birth function F in (P.1) and (P.2).

For computational convenience and the proof of the asymptotic behavior, we introduce

a solution formula in the following two theorems.
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IV.2 Proposition IV.2.1

Proposition IV.2.1. Let (A.1), (A.2) and (A.3) hold, let µ ∈ L∞+ [0,M], S0 > 0, and

φ ∈ L1
+. There exists u ∈ C

(
[0,∞] ;L1

+

)
such that u satisfies:

u(t)(a) =

(H (u))(t− a) e−
∫ a
0 µ(b)db, a < t

φ (a− t) e−
∫ a
a−t µ(b)db, a ≥ t

(IV.1)

where

(H (u))(t) =S0B

(
u (t)

1 +
∫ t

0
T (u (s)) ds

)
×
(

1 +

∫ t

0

T (u (s)) ds

)
×

e
−
∫ t
0 B
(

u(s)

1+
∫ s
0 T (u(τ))dτ

)
+Q

(
u(s)

1+
∫ s
0 T (u(τ))dτ

)
ds

Moreover, u is a solution of (III.4) with birth function H and aging function P : L1 → L1,

where P (l)(a) = −µ (a) l (a) for l ∈ L1.

IV.3 Theorem IV.3.1

Theorem IV.3.1. Let (A.1), (A.2), and (A.3) hold, let µ ∈ L∞+ [0,M], S0 > 0, and

φ ∈ L1
+. Let u ∈ C

(
[0,∞) ;L1

+

)
be the solution to the integral equation (IV.1). Then

l (t)(a) =
u (t)(a)

1 +
t∫

0

T (u(τ))dτ

(IV.2)

gives the unique global solution l ∈ C
(
[0,∞) ;L1

+

)
to problem (III.2).

By formula (IV.2), we will be able to investigate the asymptotic behaviour of the

solution to (III.2) as in the next theorem. Furthermore, (IV.2) also provides a starting
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point for our simulations.

IV.4 Theorem IV.4.1

Theorem IV.4.1. Let (A.1), (A.2) and (A.3) hold, let µ ∈ L∞+ [0,M], S0 > 0, and

φ ∈ L1
+. Assume that there is an a0 ∈ [0,M) such that µ (a) > µ0 > 0 for all a ∈ [a0,M].

Then, for the unique solution of (III.1) in the sense of (III.4), lim
t→∞

S (t) = S∞ > 0,

lim
t→∞

I (t) = lim
t→∞

∫M

0
i (a, t) da = 0.
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CHAPTER V

APPLICATIONS

V.1 Parameter Interpretations

In this section, we take the ring vaccination strategy of smallpox as an example to interpret

the important parameters in our model. Also known as surveillance and containment,

ring vaccination consists of rapid identification, isolation, vaccination of close contacts of

infected persons (primary contacts), and vaccination of contacts of the primary contact

(secondary contacts). We assume that each identified individual will be asked to provide

a list of contacts of an average number (denoted by CT as in the following text). Contacts

that are successfully traced will be vaccinated and put under surveillance for a certain

quarantine period. That is, vaccination and surveillance are follow-up procedures of

tracing, and are applied to both susceptible contacts (who are in the quarantine class)

and infected contacts (who are in the contact tracing class). We divide the population at

time t into seven classes as shown in a flow diagram in Fig. V.1.

In the following context, we denote Ti as the length of the pre infectious period

(infectiousness threshold), Ts as the length of the pre-symptomatic period (symptoms

threshold), and Fi as the length of the infectious period. Hence Ti + Fi represents the

maximum disease age. We consider problem (III.1) with the same notations. Notice that

the dynamics of 4 compartments illustrated in Fig. V.1 depend on S(t) and i (a, t), since
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S(t)
susceptible

E(t)
exposed

I(t)
infectious

RI(t)
isolated due
to symptoms

R(t)
recovered

TS(t)
traced, vaccinated and
under surveillance

TV (t)
traced, vaccinated and
under surveillance

Figure V.1: Susceptible individuals may become infected, immediately enter the exposed class,
E(t), in which they are not yet infectious, and then enter the infectious class, I(t). Symptomatic
infectives in I(t) may exit to the isolated class, RI(t), and they will recover, enter R(t), and
do not return to S(t) because of immunity. Susceptible people may be traced, vaccinated,
put under surveillance, and they do not return to S(t) because of vaccination. Exposed and
infected individuals may be traced, vaccinated, put under surveillance, and then isolated when
they become symptomatic. There is a possibility for infectious individuals who are neither
identified due to symptoms or isolated by contact tracing, to enter class R(t) when they reach
the maximum disease age.

E (t) =
∫ Ti

0
i (a, t) da, I (t) =

∫ Ti+Fi
Ti

i (a, t) da. Moreover, we have

dR(t)

dt
+
dRI(t)

dt
+
dTS(t)

dt
+
dTV (t)

dt
= i (Ti + Fi, t)︸ ︷︷ ︸

recovery rate of
unidentified infectives

+

∫ Ti+Fi

Ts

µ (a)i (a, t)da︸ ︷︷ ︸
isolation rate of

symptomatic cases

+ T (i (·, t))(E(t)+I(t))︸ ︷︷ ︸
tracing and surveillance

rate of infectives

+ Q(i (·, t))S(t)︸ ︷︷ ︸
tracing and vaccination

rate of susceptibles

Since tracing is a consequence of identifying symptomatic cases, the number of contacts

traced should be related to the number of infectious cases identified. Then we assume,

for simplicity, that the tracing (hence vaccinating and surveilling) rate is proportional to
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the isolation (identifying new cases) rate. That is, in model (III.1), we set

T (i (·, t)) = ηI ·
CT

S0

∫ Ti+Fi

Ts

µ (a) i (a, t) da

Q(i (·, t)) = ηS ·
CT

S0

∫ Ti+Fi

Ts

µ (a) i (a, t) da

B(i (·, t)) =

∫ Ti+Fi

Ti

β (a) i (a, t) da

(V.1)

where µ(a) is the isolation removal rate for symptomatic infectives at disease age a as

in (III.1), β(a) is the disease transmission rate of an infectious individual at disease age

a, CT is the average number of contacts provided by each identified infective, S0 is the

initial susceptible population as in (III.1), and ηI and ηS are proportionality constants

for tracing the infected class and the susceptible class, respectively. Discussions about

meanings and estimations of the parameters ηI and ηS are in the following context.

Contacts provided by an identified infective may come from any of the seven classes

in Fig. V.1, but only those who are in the classes S(t), E(t), and I(t) may be successfully

traced, vaccinated, and put under surveillance. We assume that the probability for a

contact being infected (or susceptible) at time t is proportional to the density of the

infected (susceptible) population at time t, and we take ηI(ηS) to be the constants of

proportionality, respectively. Then at time t, the rate of tracing infected individuals is:

ηI
E (t) + I (t)

S0︸ ︷︷ ︸
probability of tracing an infected contact

· CT

︸ ︷︷ ︸
average number of infected contacts

traced per identified symptomatic case

·
(∫ Ti+Fi

Ts

µ (a) i (a, t) da

)
︸ ︷︷ ︸

rate of identifying symptomatic cases

(V.2)
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The rate of tracing susceptible individuals is:

ηS
S (t)

S0︸ ︷︷ ︸
probability of tracing
a susceptible contact

· CT

︸ ︷︷ ︸
average number of susceptible contacts
traced per identified symptomatic case

·
(∫ Ti+Fi

Ts

µ (a) i (a, t) da

)
︸ ︷︷ ︸

rate of identifying symptomatic cases

(V.3)

which are exactly the corresponding terms in (III.1) with the setting (V.1). Moreover,

the probability interpretations in (V.2) and (V.3) imply that for any time t, ηI and ηS

should satisfy:

ηI
E (t) + I (t)

S0

+ ηS
S (t)

S0

6 1 (V.4)

We denote the probability that a traced contact of an identified symptomatic individ-

ual is infected as η, a parameter that describes the tracing efficacy in finding infectives.

Hence ηI and ηS can be obtained when the value of η is given: ηI = η S0

E(t)+I(t)
from (V.2),

and ηS 6 (1− η) S0

S(t)
by (V.3). Since S(t) is mostly unchanged for t in the initial phase of

the outbreak, for simplicity, we take S0

S(t)
≈ 1 and S0

E(t)+I(t)
≈ S0

E(0)+I(0)
for any time t. So ηI

and ηS are estimated by η and the initial conditions, i.e., ηI = η S0

E(0)+I(0)
and ηS 6 1− η.

The value of η can be easily determined from evolving data during the initial phase of the

epidemic: it is simply the fraction of the traced contacts who turn out to be symptomatic

over all traced contacts.

In particular, when ηI = ηS = 1, then the probability of tracing an infected contact

at time t is η = E(t)+I(t)
S0

and that of tracing a susceptible contact at time t is S(t)
S0

. That

means the probability of tracing an infected (susceptible) contact at time t is exactly the

fraction of infected (susceptible) population at time t, which indicates that the tracing is

random and is not effective.
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V.2 Application I: Smallpox

V.2.1 Model for Mass Vaccination

Mass vaccination, usually conducted at a constant rate, is the strategy of vaccinating large

numbers of people. We assume that there is no residual immunity in the population,

and a post-event mass vaccination, together with a strategy of isolating symptomatic

individuals, start as soon as the first case is identified. We consider the fact that infected

people vaccinated in the first few days of exposure will not transmit smallpox to others

CDC (2004). And we denote Tv as the length of vaccine sensitive period for infectives,

that is, infectives receive vaccination with disease age less than Tv will not be infectious.

This assumption is not relevant in ring vaccination: infected contacts at any disease age

are removed due to vaccination and surveillance, hence Tv is a parameter that only used

in mass vaccination. Fig. V.2 shows the dynamic of the disease transmission with mass

vaccination.

S(t)
susceptible

Ev(t)
exposed

Eu(t)
exposed

I(t)
infectious

RI(t)
isolated due
to symptoms

R(t)
recovered

V (t)
successfully
vaccinated

Figure V.2: Ev(t) denotes the number of infectives in the vaccine sensitive stage, so they will
not transmit the disease to others if vaccinated. Eu(t) denotes the number of infectives in the
vaccine insensitive stage, who will be able to transmit the disease even after vaccination.

Based on the dynamics stated above, we have the corresponding disease age-structured
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model with mass vaccination as the only vaccination strategy that assists case isolation in

(V.5). The model is of a simpler form than (III.1), which can be analyzed by the method

in Webb et al (2010).

∂

∂t
i (a, t) +

∂

∂a
i (a, t) = −µ (a) i (a, t)− ν (a) i (a, t) , 0 6 a 6 Ti + Fi, t > 0

d

dt
S (t) = −

(∫ Ti+Fi

Ti

β (a) i (a, t) da

)
S (t)− ν0S (t) , t > 0

i (0, t) =

(∫ Ti+Fi

Ti

β (a) i (a, t) da

)
S (t) , t > 0

i (a, 0) = i0 (a) , 0 6 a 6 Ti + Fi, S (0) = S0

(V.5)

where ν (a) is the mass vaccination removal rate of infected individuals at disease age a,

ν0 is the mass vaccination rate, and the other notations have the same interpretations

as in the ring vaccination model. We can express different disease stages in Figure V.2

in terms of the infected population density function as: Ev (t) =
∫ Tv

0
i (a, t) da, Eu (t) =∫ Ti

Tv
i (a, t) da, and I (t) =

∫ Ti+Fi
Ti

i (a, t) da.

V.2.2 Model Parameters

Table 1 describes smallpox natural history and Table 2 shows parameter values/ranges

we choose for simulations. We pick the threshold values of Ti, Ts and Fi as recommended

in Eichner (2003) and CDC (2004). Fig. V.3a illustrates the transmission rate function

of disease age, the shape of the function suggested in studies Aldis and Roberts (2005),

Carrat et al (2008), Eichner (2003), CDC (2004), and Valle et al (2005), and we make

a theoretical estimation about the value of the transmission rate. We vary Rsym, the

percentage of symptomatic individuals removed per day, from 50% to 90%, which is an

estimation of an efficient removal process of smallpox due to its identifiable symptoms

after the prodrome.
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We model a deliberate release of smallpox pathogen in a big city as large as New

York, which has a total population of 8× 106. All of the simulations start with an age

distribution of index cases as shown in Fig. V.3b, which corresponds to a scenario when

one or several public places encounter a series of smallpox virus releases.

Table 1. Smallpox durations of the progression stages.
Stage Duration Infectiousness References

Incubation period 7 ∼ 17 days Not infectious CDC (2004)
Initial symptoms(prodrome) 2 ∼ 4 days Sometimes infectious CDC (2004)

Early rash 4 days Most infectious CDC (2004)
Pustular rash and scabs 16 days Infectious CDC (2004)

Scabs resolved Not infectious CDC (2004)

TsTi Ti+Fi
0 10 20 30 40

0

5. ´ 10-8

1. ´ 10-7

1.5 ´ 10-7

2. ´ 10-7

2.5 ´ 10-7
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Β
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(a) Infection transmission rate function β (b) Initial disease-age distribution function i0

Figure V.3: Fig. V.3a is the infection age-dependent transmission rate function with respect
to age since infection. Ti, Ts, and Fi are introduced and estimated as in the context and Table
2. The grey area is the prodromal period with initial symptoms and early contagiousness. Fig.
V.3b is the initial disease distribution function i0.

V.2.3 Simulations of Different Vaccination Strategies: Mass Vaccination

versus Ring Vaccination

There are two ring vaccination scenarios in Fig. V.4: the green curves represent an effec-

tive ring vaccination strategy, and the blue curves represent an ineffective ring vaccination

strategy when ηI = ηS = 1. We observe pulses in the daily number of traced and vacci-

nated contacts in both of the two scenarios. These pulses are caused by the choice of the
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Tale 2. Baseline parameters and initial conditions.
Parameter description Parameter baseline value References
infectiousness threshold Ti = 12 days Eichner

(2003)
symptoms threshold Ts = 14 days CDC

(2004),
Eichner
(2003)

vaccine insensitiveness
threshold†

Tv = 3 days CDC
(2004)

length of infectious period Fi = 28 days CDC
(2004)

infection transmission rate
function

β (a) =


0 , 0 6 a < 12

2.5 · 10−8(a− 12)2e−0.5(a−12),
12 6 a 6 40

Fig. V.3a

removal of symptomatic
cases

Rsym > 50% per day Webb et al
(2010),
Meltzer
et al
(2001)

isolation rate of infectives µ (a) =

{
0.0, a 6 14
− ln (1.0−Rsym) , a > 14

Webb et al
(2010)

mass vaccination removal
rate of infectives†

ν (a) =

{
ν0, 0 6 a 6 3
0, a > 3

CDC
(2004)

mass vaccination rate† 0 6 ν0 6 10000 Kaplan
et al
(2003)

average number of contacts
traced per identified case∗

0 < CT 6 100 Kaplan
et al
(2003)

probability for a traced
contact being infected∗

0 < η 6 1 Text

initial susceptible popula-
tion

S0 = 8× 106 Text

index cases distribution i0 ∈ L1
+ [0, Ti + Fi] Fig. V.3b

∗parameters only used in ring vaccination.
†parameters only used in mass vaccination.
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Figure V.4: There are four different cases included in this figure. The green curves stand
for the case with effective ring vaccination when CT = 50, Rsym = 50%, and η = 0.1. The
blue curves represent the case with ineffective ring vaccination when CT = 50, Rsym = 50%,

and ηI = ηS = 1, so η = I(t)+E(t)
S0

. The red curves are for the case with mass vaccination
when Rsym = 50% and the mass vaccination rate is 4000 individuals per day. The black curves
correspond to the case with an isolation removal rate of Rsym = 50% but no vaccination.

initial infection-age distribution function in Fig. V.3b. The majority of the index cases

are in an early disease age, and thus they will become infectious and symptomatic in the

same time period. As a consequence, symptomatic cases and generations of new cases

will appear as pulses; hence daily traced contacts will appear as pulses, since the tracing

rate depends on the isolation rate of symptomatic cases.

Fig. V.4 also gives comparison between ring and mass vaccination strategies from

different aspects: (1) the effective ring vaccination strategy prevents the most cases from

occurring and requires less personnel and less vaccine stockpiles; (2) the effective ring vac-

cination strategy does not require a large number of people to be traced everyday, and is

more efficient in controlling the outbreak compared to the mass vaccination (red curves),

which requires vaccination of a large number of people everyday; (3) the ineffective ring
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vaccination has similar results in controlling the outbreak as the mass vaccination (red

curves), even though it consumes less vaccine stockpiles in total; it requires extremely

heavy daily contact tracing load at times; (4) compared with the case of no vaccination

(black curves), mass vaccination and ineffective ring vaccination prevent hundreds of cases

from happening; (5) further simulations show that, for higherRsym values, non-vaccination

could control the spread of smallpox as well as mass vaccination and ineffective ring vac-

cination, while in contrast effective ring vaccination attains significant improvement in

reducing total number of cases.

We also take into consideration the fact that tracing, vaccinating, and surveilling a

contact in ring vaccination demands a different level of personnel effort than in mass

vaccination. So in Fig. V.5, we compare an effective ring vaccination of a highest daily

contact tracing rate of 4, 000 contacts per day, with a mass vaccination of a constant daily

vaccination rate of 12, 000 people per day. That is, we assume that tracing, vaccinating,

and surveilling a contact requires three times more effort than the comparable mass vac-

cination effort. As can be seen from the simulation, the effective ring vaccination prevents

more cases, and vaccinates less people than the mass vaccination, which would also help

reduce serious vaccination side effects.

V.2.4 Simulations of Ring Vaccination: Assessing Impacts of Parameters

In order to provide guidance to public health authorities for containment and surveillance

strategies, we vary the three variables, CT , η, and Rsym, to assess different levels of ring

vaccination by evaluating: (1) total number of infected cases, and (2) the percentage of

traced individuals.
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Figure V.5: The green curves stand for the case of an effective ring vaccination when CT = 50,
Rsym = 50%, and η = 0.1. The red curves are for the case of mass vaccination when Rsym = 50%
and the mass vaccination rate is 1, 2000 individuals per day.

total number of cases % of people traced

Figure V.6: The blue surface is the total number of cases as a function of daily removal
percentage of symptomatic cases 50% 6 Rsym 6 90%, and the probability that a traced contact
of an identified symptomatic individual is infected 0 < η 6 0.6. The number of contacts traced
per identified case is CT = 50. The green surface is the percentage of contact traced individuals
as a function of the same variables under the same settings.
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total number of cases % of people traced

Figure V.7: The blue surface is total number of infected cases as a function of daily removal
percentage of symptomatic cases 50% 6 Rsym 6 90%, and the average number of contacts
traced per identified case 10 6 CT 6 100. The probability for tracing an infected contact is
fixed as we take η = 0.1. The green surface is the percentage of contact traced population as a
function of the same variables under the same settings.

The simulation results in Fig. V.6 are intuitively reasonable: for fixed CT = 50, high

efficacies of both isolation and contact tracing will prevent more cases and save more

personnel engaged in tracing. Increasing η enables us to trace more infected contacts per

identified case, and it in turn saves personnel efforts. When the values of η and Rsym are

relatively small, increasing either one of them is efficient in both controlling the outbreak

and relieving the burden of tracing. If we are already able to maintain the isolation and

contact tracing at a relatively high level, increasing either of the two levels would require

more personnel to be involved, but just improve the results slightly.

We fix η = 0.1 in Fig. V.7, and notice that raising the value of CT does help reduce

the total number of cases, but it also boosts the demand for the number of health care

workers engaged in tracing, vaccinating, and surveilling. For fixed value of η, increasing

CT helps reduce infections in two ways: increasing the number of infected contacts traced

per identified case; and increasing the number of susceptible contacts quarantined which
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total number of cases % of people traced

Figure V.8: The blue surface is attack ratio as a function of the probability that a traced
contact of an identified symptomatic individual is infected 0 < η 6 0.6, and the number of
contacts traced per identified case 10 6 CT 6 100. The daily removal percentage of symptomatic
cases is fixed as Rsym = 60%. The green surface is the percentage of contact traced population
as a function of the same variables under the same settings.

results in lower infection rates. Since large values of CT and Rsym require more public

health resources, it is left to the public health officials to determine appropriate levels of

contact tracing and isolation. In the case when an effective vaccination is absent, we do

not expect to quarantine a great amount of susceptibles, so the decision of increasing CT

should be carefully made.

In Fig. V.8, we assume that the removal percentage of symptomatic cases is fixed as

60%. CT and η represent different aspects of ring vaccination strategy, and this simulation

suggests how to deploy resources assigned in tracing and control the outbreak in a more

economical way. In contrast to Fig. V.7, when contact tracing is of higher efficacy in

finding infected contacts, increasing the average number of contacts provided by each

identified symptomatic case does not boost greatly the demand for personnel and vaccine

stockpiles. So under the assumption that the tracing efficiency η can be maintained while
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CT is increased, tracing more contacts per case will help prevent cases and will not result

in much more tracing work.

V.3 Application II: Influenzas: SARS

In this section, we apply our model to investigate contact tracing effectiveness in control

of modern influenzas and take the outbreak of SARS as an example. First, we use our

model to simulate the SARS outbreak in Taiwan, 2003 by real data. Then we modify the

length of presymptomatic period hypothetically in order to provide suggestions about the

efficacy of contact tracing under different circumstances. We apply our model to simulate

the SARS outbreak in Taiwan, 2003, concentrated in the Taipei-Keelung metropolitan

area (with a population of 6 million in 2003), because of the extensive available data and

the high efficiency of contact tracing in Taiwan.

V.3.1 Parameters

In Table 3, we list the parameters that are obtained from real data MMWR (2003) and

clinical studies of SARS. In MMWR (2003), we count the total number of traced close

contacts as 12, 394. Of those there are only 33 confirmed to be infected. In this way we

set η ≈ 33/12394 and CT ≈ 12394/300, where 300 is approximately the total number

of cases in Taipei-Keelung metropolitan area (which we refer to Taipei area for short in

the following context). The setting of the baseline values has three uncertain aspects: (1)

Ts − Ti determines the length of the incubation period: we set that to be 1.0 day in the

data fitting in subsection 6.2. (2) We make an assumption of the shape of transmission

rate function β based on laboratory diagnosis of SARS Carrat et al (2008), Peiris and

et al. (2003), Chan and et al. (2004), and determine its value by estimating the basic
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reproduction number of SARS in Taiwan as about 4.8 Hsieh et al (2004), Bauch et al

(2005). (3) We estimate the shape of the removal rate function of symptomatic individuals

µ by comparing it to studies Gumel et al (2004), Nishiura et al (2004), Carrat et al (2008).

We estimate the maximal value of µ in Fig. V.9b by fitting data of SARS in the Taipei

area.

Table 3. Baseline Parameters
Parameter description Baseline values References
infectiousness threshold Ti = 5.0 days Meltzer (2004), Hsu

and et al. (2003)
symptoms threshold Ts = 6.0 days Meltzer (2004), Hsu

and et al. (2003)
length of infectious period Fi = 21.0 days Meltzer (2004), Hsu

and et al. (2003)
isolation rate of infectives Fig. V.9b Gumel et al (2004),

Nishiura et al (2004)
infection transmission rate function Fig. V.9a Hsieh et al (2004),

Bauch et al (2005),
Carrat et al (2008),
Peiris and et al. (2003),
Chan and et al. (2004)

average number of contacts traced
per identified case

CT ≈ 12394/300 MMWR (2003)

probability for a traced contact be-
ing infected

η ≈ 33/12394 MMWR (2003)

initial susceptible population S0 = 6× 106 Text
index cases distribution Fig. V.9c Hsieh et al (2004),

MMWR (2003)

V.3.2 Data Fitting

Our simulation results are shown in Fig. V.10. Compared to simply using isolation of

symptomatic cases, enforced contact tracing can help prevent 40 individuals from being

infected. That means contact tracing and quarantine of more than 12, 000 people in the
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(a) Infection transmission rate
function β

(b) Removal rate function µ (c) Initial disease age distribu-
tion i0

Figure V.9: The β, µ, and i0 functions we use to fit the SARS data in Taiwan, 2003.

Taipei area enabled public health officials to discover 33 infected cases, and thus about 7

cases were avoided.

Figure V.10: The blue dots are the real data from the SARS outbreak in Taipei-Keelung
metropolitan area, 2003. The green curves represent our simulation to fit the real data with
parameters in Table 3. The red curves stand for the assumption that there is only isolation of
symptomatic cases but no contact tracing implemented.

V.3.3 Alternative Fitting Parameters

In Fig. V.11, we modify two of the uncertain parameters mentioned before, the length of

presymptomatic period Ts − Ti and the removal rate of symptomatic infectives (which is

the highest value of the removal rate function µ), and fit the data from Taiwan SARS.

34



Figure V.11: The blue curve stands for pairs
of parameters, incubation period length Ts−Ti
and maximum removal rate of symptomatic
infectives, that can be applied in our model in
order to fit the outbreak data of SARS, Taipei
area. The red dot is the pair of parameter we
used in the data fitting Fig. V.10. Further
simulation indicates that the number of cases
that are avoided by contact tracing remains
the same no matter which pair of the param-
eters we take.

As can be inferred from Fig. V.11, longer incubation period requires higher efficiency of

symptomatic case isolation in order to maintain the total number of cases at the same

level. As a consequent result, we observe that the number of cases that are avoided by

contact tracing under all pairs of parameters in Fig. V.11 is as much as 40. Which means,

we can assess the effectiveness of contact tracing in SARS, Taiwan without an accurate

estimation of the incubation period since different assumptions lead to similar results.
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CHAPTER VI

DISCUSSIONS AND FUTURE WORK

We have introduced a general epidemic model that takes age since infection into con-

sideration, to model interventions such as contact tracing, quarantine, and vaccination.

Our model is applicable to different control strategies that can be formulated consistent

with the hypotheses (A.1) − (A.3). The global existence, uniqueness, and asymptotic

behaviour of solutions are proved in the appendix. The theoretical results in Section 3

are true for non-linear age-dependent models with aging and birth functions satisfying

(H.1) and (H.2), where (H.2) applies to different conditions than that in Webb (1985).

Compared to previous models with infection age as a continuous variable, we are able

to incorporate some important aspects of the spread and control of an epidemic disease

in the model, together with practical interpretations of the corresponding parameters.

For example, (i) by considering the simplified fact that the tracing rate varies according

to case identification rate, we will be able to understand one of the reasons for small

fluctuations that usually appear in daily cases in many of the real data; (ii) decrease of

susceptible population due to public health interventions is not negligible when the inter-

ventions successfully protect a considerable amount of people from infection.

In application I, we use our model to assess public health guidelines in the event of

a smallpox bioterrorist attack in a large urban center. Our simulation falls into the sce-

nario that releases of the virus take place in the community with people being unaware of

them. But we can easily modify the initial conditions to simulate other initial scenarios,

such as when index cases are introduced into the community by a smallpox release in
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another area, while the government and the public are getting prepared and in a watchful

state. Our simulation results point out that with a limited amount of vaccine stockpiles

and healthcare workers, ring vaccination is more efficient in preventing the disease from

spreading than mass vaccination. With the initial condition in Fig. V.3b, there are not

many people in the vaccination queue at the beginning of the outbreak. In this case,

ring vaccination allows the early vaccine distribution for selected groups to enhance the

response readiness CDC (2003), and hence allows more efficient utilization of vaccination

capacity.

We also investigate the ring vaccination effectiveness by varying the three key param-

eters: isolation rate, contacts traced per case, and contact tracing efficiency in finding

infectives. Fig. V.6 and Fig. V.7 also confirm the conclusion in Day et al (2006): trac-

ing and quarantine help avert more cases when the isolation of symptomatic cases is

ineffective. Additionally, we show that in the case of smallpox, the effectiveness of ring

vaccination in reducing infections increases at an accelerating rate as the effectiveness of

isolation diminishes1 when the ring vaccination efficacy is of a normal level, but it in-

creases at an almost constant lower rate when the ring vaccination efficacy is of a higher

level.

Our model is able to provide guidance to public health decisions to adjust current

contact tracing strategies either before or during an outbreak with updated data. All

the parameters in our model have good epidemiological interpretations and are easy to

estimate with data from historical epidemic outbreaks. Unlike many other studies, we

take into consideration susceptible population variation due to quarantine and vaccina-

1Quote from Day et al (2006)
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tion, which usually leads to community herd immunity. So when vaccines are available,

our model can be applied to provide guidelines for vaccination strategies to create herd

immunity2.

In application II, we show that our simulation of SARS in Taiwan fits well with the

observed data, and we are able to answer the question about how many cases are avoided

by implementing contact tracing and quarantine in the control of the outbreak. With

more precise data about each identified case, we would be able to estimate the case isola-

tion rate accurately, and our model would enable us to determine the length of incubation

period by data fitting. Therefore, our model would also be helpful in estimating important

parameters and predicting transmission dynamics with evolving data during an outbreak.

A great difference between the two applications we present in the paper is, contact tracing

applied to control SARS in Taiwan, 2003 is not as effective as ring vaccination strategy in

eradicating smallpox. The theoretical reason is that we have different settings of contact

tracing parameters CT , ηI , and ηS in the two applications. In reality, our settings are

quite reasonable due to facts such as the severity of symptoms, availability of vaccines

(since vaccination is an important way to create herd immunity), and readiness of the

public health officials with the preparedness and containment plans.

Our simulations can guide public health officials in adjusting levels of different strate-

gies to control the outbreak and deploy resources efficiently. With theoretical sugges-

tions, realistic adjustments about how to deploy limited resources (such as vaccine stock-

piles, healthcare workers, surveillance stations, etc.) to meet the theoretical levels would

strongly depend on the decisions of public health authorities. Furthermore, with cost-

2A historical example is the ”ring” vaccination strategy used to eliminate smallpox
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effectiveness data, we can apply optimal control methods to quantitatively determine the

best control strategies.

Furthermore, the age-structured model possesses great potential in modeling the vac-

cination strategy of HIV (although the HIV vaccine does not exist so far, several en-

couraging studies such as Hansen and et al. (2013) suggest that there is a significant

hope in the future). The HIV infection has an extremely long asymptomatic period and

many HIV-positive people are unaware of their infection with the virus. Thus, an active

infected individual would spread the disease without even being aware of the infection,

which makes the control and detection of HIV very difficult. Even though we might have

an HIV vaccine available in the future, with possible serious side-effects, it might be too

limited and costly to be available to everyone at the beginning. So the deployment of a

limited amount of vaccine will be a serious issue. Then, because of the prolonged asymp-

tomatic stage of HIV infection, the effects of certain intervention strategies would depend

even more on the age of infection. Our model will be an advantageous starting point for

such investigation.
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CHAPTER VII

PROOFS OF THE THEORETICAL RESULTS

VII.1 Theorem III.4.1

Theorem III.4.1 can be proved by the following three propositions:

Proposition VII.1.1. Let (H.1), (H.2) hold, let T > 0, let φ ∈ L1, and let l ∈ CT . If l

is a solution of the integral equation:

l (t) (a) =

(F (l)) (t− a) +
∫ t
t−aG (l (s)) (s+ a− t) ds, 0 < a < t

φ (a− t) +
∫ t

0
G (l (s)) (s+ a− t) ds, t ≤ a ≤ M

(VII.1)

on [0, T ], then l is a solution of (III.4) on [0, T ].

Proof. The proof is similar to that of Proposition 2.1 in Webb (1985), except that we

can use the uniform continuity of the function t 7→ (F (l)) (t) from [0, T ] to R for l ∈ CT

instead in this proof.

Proposition VII.1.2. Let (H.1), (H.2) hold and let r > 0. There exists T > 0 such that

if φ ∈ L1 and ‖φ‖L1 ≤ r, then there is a unique function l ∈ CT such that l is a solution

of (VII.1) on [0, T ].

Proof. We will prove it by contraction mapping theorem. We fix r > ‖φ‖L1 > 0 and

choose T > 0 such that

T ·

c1 (2r) + c2 (2r, T ) +

sup
0≤t≤T

|(F (0)) (t)|+ ‖G (0)‖L1

2r

 ≤ 1

2
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Then define S as a closed subset of CT :

S :=
{
l ∈ CT : l (0) = φ, ‖l‖CT ≤ 2r

}
We define a mapping K on S as following and prove that K is a strict contraction from

S into S.

(K (l)) (t) (a) =

(F (l)) (t− a) +
∫ t
t−aG (l (s)) (s+ a− t) ds, a.e. a ∈ (0, t)

φ (a− t) +
∫ t

0
G (l (s)) (s+ a− t) ds, a.e. a ∈ [t,M]

we need to verify that the following conditions hold:

(i) Let l ∈ S, t ∈ [0, T ], then ‖(K (l)) (t)‖L1 6 2r.

(ii) Let l ∈ S and let 0 ≤ t < t̂ ≤ T , then
∥∥(K (l)) (t)− (K (l))

(
t̂
)∥∥

L1 → 0 as
∣∣t̂− t∣∣→

0.

(iii) Let l1, l2 ∈ S, then ‖K (l1)−K (l2)‖CT ≤
1
2
‖l1 − l2‖CT .

For (i), we will only consider the case when 0 ≤ t ≤ min{M, T}. (Otherwise, we have
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t > M > a, then we just need to consider the expression of (K (l)) (t) (a) for a ∈ (0, t).)

‖(K (l)) (t)‖L1 =

∫ M

0

|(K (l)) (t) (a)| da

6
∫ t

0

∣∣∣∣(F (l)) (t− a) +

∫ t

t−a
G (l (s)) (s+ a− t) ds

∣∣∣∣ da
+

∫ M

t

∣∣∣∣φ (a− t) +

∫ t

0

G (l (s)) (s+ a− t) ds
∣∣∣∣ da

6
∫ t

0

|(F (l)) (s)| ds+

∫ M−t

0

|φ (s)| ds+

∫ t

0

∫ M

t−s
|G (l (s)) (s+ a− t)| dads

6
∫ t

0

|(F (l)) (s)− (F (0)) (s)| ds+

∫ t

0

|(F (0)) (s)| ds+

∫ M

0

|φ (s)| ds

+

∫ t

0

‖G (l (s))−G (0)‖L1ds+

∫ t

0

‖G (0)‖L1ds

6c2 (2r, t)

∫ t

0

sup
06τ6s

‖l (τ)‖L1ds+ t · sup
06s6t

|(F (0)) (s)|+ ‖φ‖L1

+ c1 (2r)

∫ t

0

‖l (s)‖L1ds+ t · ‖G (0)‖L1

≤2rT

c1 (2r) + c2 (2r, T ) +

sup
0≤t≤T

|(F (0)) (t)|+ ‖G (0)‖L1

2r

+ r ≤ 2r

For (ii), we can just follow the same estimation in the proof of Proposition 2.2 in Webb

(1985), except that we need to use the uniform continuity of the function t 7→ (F (l)) (t)

from [0, T ] to R for l ∈ CT . (i) and (ii) imply that K maps S into S, (iii) shows that K

is a contraction.
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To prove (iii), given any l1, l2 ∈ S, we consider 0 ≤ t ≤ min{M, T}. Similarly we have:

∫ M

0

|(K (l1)) (t) (a)− (K (l2)) (t) (a)| da

≤
∫ t

0

|(F (l1)) (s)− (F (l2)) (s)| ds+

∫ t

0

‖G (l1 (s))−G (l2 (s))‖L1ds

≤
∫ t

0

c2 (2r, s) sup
06τ6s

‖l1 (τ)− l2 (τ)‖L1ds+ c1 (2r)

∫ t

0

‖l1 (s)− l2 (s)‖L1ds

≤T · [c1 (2r) + c2 (2r, T )] ‖l1 − l2‖CT ≤
1

2
‖l1 − l2‖CT

Proposition VII.1.3. Let (H.1), (H.2) hold, let φ, φ̂ ∈ L1, let T > 0, and let l, l̂ ∈ CT

such that l, l̂ is the solution of (III.4) on [0, T ] for φ, φ̂, respectively. Let r > 0 such that

‖l‖CT ,
∥∥∥l̂∥∥∥

CT
≤ r. Then for 0 ≤ t ≤ T ,

∥∥∥l (t)− l̂ (t)∥∥∥
L1

6 e[c1(r)+c2(r,T )]t
∥∥∥φ− φ̂∥∥∥

L1

Hence we have the uniqueness of the local solution of (III.4).

Proof. For each t ∈ [0, T ] we define two continuous functions:

(1) V (t) :=
∥∥∥l (t)− l̂ (t)∥∥∥

L1
=
∫ M−t
−t

∣∣∣l (t) (t+ c)− l̂ (t) (t+ c)
∣∣∣ dc

(2) W (t) := sup
06s6t

∥∥∥l (s)− l̂ (s)∥∥∥
L1

= sup
06s6t

V (s)

Next, we estimate lim sup
h→0+

h−1 [W (t+ h)−W (t)] for each fixed t ∈ [0, T ] separately under

the following two situations:

(i) V (t) < W (t) (as shown in Fig. VII.1), i.e., ∃t0 < t such that W (t) = V (t0) > V (t).

Since the mapping s 7→ V (s) is continuous, we can choose sufficiently small h > 0
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such that V (t+ δ) 6 V (t0) for 0 6 δ 6 h, hence W (t+ δ) = W (t) for 0 6 δ 6 h.

Then lim sup
h→0+

h−1 [W (t+ h)−W (t)] = 0.

Figure VII.1

(ii) V (t) = W (t), i.e., the function V attains the supremum value in [0, t] at t. Then

we have

h−1 [W (t+ h)−W (t)] = h−1

[
sup

06s6t+h
V (s)− V (t)

]
=h−1

[
max

{
V (t) , sup

t≤s≤t+h
V (s)

}
− V (t)

]
≤ h−1

∣∣∣∣ sup
t≤s≤t+h

V (s)− V (t)

∣∣∣∣
≤h−1 sup

t6s6t+h
|V (s)− V (t)| = sup

06h06h

h0

h
h−1

0 |V (t+ h0)− V (t)|

6 sup
06h06h

h−1
0 |V (t+ h0)− V (t)|
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For each h0 ∈ [0, h], we estimate

h−1
0 [V (t+ h0)− V (t)]

=h−1
0

∫ −t
−t−h0

∣∣∣l (t+ h0) (t+ h0 + c)− l̂ (t+ h0) (t+ h0 + c)
∣∣∣ dc

+ h−1
0

∫ M−t−h0

−t

∣∣∣l (t+ h0) (t+ h0 + c)− l̂ (t+ h0) (t+ h0 + c)
∣∣∣ dc

− h−1
0

∫ M−t

−t

∣∣∣l (t) (t+ c)− l̂ (t) (t+ c)
∣∣∣ dc

6h−1
0

∫ h0

0

|l (t+ h0) (a)− (F (l)) (t)| da

+ h−1
0

∫ h0

0

∣∣∣(F (l)) (t)−
(
F
(
l̂
))

(t)
∣∣∣ da

+ h−1
0

∫ h0

0

∣∣∣(F (l̂)) (t)− l̂ (t+ h0) (a)
∣∣∣ da

+

∫ M

0

∣∣h−1
0 [l (t+ h0) (a+ h0)− l (t) (a)]−G (l (t)) (a)

∣∣ da
+

∫ M

0

∣∣∣G (l (t)) (a)−G
(
l̂ (t)

)
(a)
∣∣∣ da

+

∫ M

0

∣∣∣h−1
0

[
l̂ (t+ h0) (a+ h0)− l̂ (t) (a)

]
−G

(
l̂ (t)

)
(a)
∣∣∣ da

So for both of the above situations, notice that both l and l̂ are solutions of problem

(III.4), we can estimate as the following:

lim sup
h→0+

h−1 [W (t+ h)−W (t)] 6 lim sup
h→0+

sup
06h06h

h−1
0 |V (t+ h0)− V (t)|

6
∣∣∣(F (l)) (t)−

(
F
(
l̂
))

(t)
∣∣∣+
∥∥∥G (l (t))−G

(
l̂ (t)

)∥∥∥
L1

6c2 (r, t) sup
06s6t

∥∥∥l (s)− l̂ (s)∥∥∥
L1

+ c1 (r)
∥∥∥l (t)− l̂ (t)∥∥∥

L1

6 [c1 (r) + c2 (r, T )]W (t)
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So we have W (t) 6 e[c1(r)+c2(r,T )]tW (0) (Lakshmikantham and Leela (1969), Theorem

1.4.1). Hence,

V (t) 6 W (t) 6 e[c1(r)+c2(r,T )]tW (0) = e[c1(r)+c2(r,T )]t
∥∥∥φ− φ̂∥∥∥

L1

That is, ∥∥∥l (t)− l̂ (t)∥∥∥
L1

6 e[c1(r)+c2(r,T )]t
∥∥∥φ− φ̂∥∥∥

L1

VII.2 Theorem III.4.3 and Theorem III.4.4

Proof of Theorem III.4.3 and Theorem III.4.4. The proof of Theorem III.4.3 and Theo-

rem III.4.4 are similar to that of the corresponding theorems in Sections 2.3−2.4 in Webb

(1985). We only need to switch the statement of Proposition 2.4 in Webb (1985) to the

following Proposition VII.2.1.

Proposition VII.2.1. Let (H.1), (H.2) hold, let φ ∈ L1, let T > 0, and let l ∈ CT such

that l is a solution of (VII.1) on [0, T ]. Let T̂ > 0 and let l̂ ∈ CT+T such that l̂ (t) = l (t)

for t ∈ [0, T ], and for t ∈
(
T, T + T̂

]
, l̂ satisfies the following integral equation:

l̂ (t) (a) =


(
F
(
l̂
))

(t− a) +
∫ t
t−aG

(
l̂ (s)

)
(s+ a− t) ds, 0 < a < t− T

l (T ) (a− t+ T ) +
∫ t
T
G
(
l̂ (s)

)
(s+ a− t) ds, t− T 6 a 6 M

Then l̂ is a solution of (VII.1) on
[
0, T + T̂

]
.

Proof. First of all, we notice that if (H.2) holds, then (F (l)) (t) =
(
F
(
l̂
))

(t) for t ∈
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[0, T ]. Because for any t ∈ [0, T ], by (H.2), ∃C > 0 such that

∣∣∣(F (l)) (t)−
(
F
(
l̂
))

(t)
∣∣∣ 6 C sup

06s6t

∥∥∥l (s)− l̂ (s)∥∥∥
L1

= 0

Then it is easy to verify that l̂ is a solution to (VII.1) for t ∈ [0, T ]. Next, we verify that

l̂ is a solution to (VII.1) for t ∈
(
T, T + T̂

]
.

For t− T 6 a 6 M:

1. If a > t,

l̂ (t) (a) = l (T ) (a− t+ T ) +

∫ t

T

G
(
l̂ (s)

)
(s+ a− t) ds

= (F (l)) (t− a) +

∫ T

t−a
G (l (s)) (s+ a− t) ds+

∫ t

T

G
(
l̂ (s)

)
(s+ a− t) ds

=
(
F
(
l̂
))

(t− a) +

∫ t

t−a
G
(
l̂ (s)

)
(s+ a− t) ds

2. If a < t,

l̂ (t) (a) = l (T ) (a− t+ T ) +

∫ t

T

G
(
l̂ (s)

)
(s+ a− t) ds

= φ (a− t) +

∫ T

0

G (l (s)) (s+ a− t) ds+

∫ t

T

G
(
l̂ (s)

)
(s+ a− t) ds

= φ (a− t) +

∫ t

0

G
(
l̂ (s)

)
(s+ a− t) ds

For 0 6 a 6 t− T , the verification is straightforward.

VII.3 Theorem IV.1.1

Proof of Theorem IV.1.1. By Theorem III.4.3 and Theorem III.4.4, We only need to show

that the aging function G in (P.1) and the birth function F in (P.2) satisfy the hypotheses
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(H.1) − (H.5). (H.3) and (H.4) are obvious from (P.1) and (P.2), we will justify (H.1)

and (H.2) as follows. First denote µ̄ := ‖µ‖L∞ . Let r > 0, for any φ1, φ2 ∈ L1 such that

‖φ1‖L1 , ‖φ2‖L1 ≤ r, we have

‖G (φ1)−G (φ2)‖L1

6
∫ M

0

µ (a) |φ1 (a)− φ2 (a)| da+ T (φ1)

∫ M

0

|φ1 (a)− φ2 (a)| da

+ |T (φ1)− T (φ2)|
∫ M

0

|φ2 (a)| da

6 (µ̄+ 2r‖T ‖∞) ‖φ1 − φ2‖L1

so we have (H.1). In order to prove (H.2), first we notice that t 7→ (F (φ)) (t) is continuous

in [0,∞) for any φ ∈ CT . So F : CT → C ([0, T ] ;R).

Next, for any φ1, φ2 ∈ CT such that ‖φ1‖CT , ‖φ2‖CT ≤ r, we have ∀t ∈ [0, T ],

|(F (φ1)) (t)− (F (φ2)) (t)|

≤S0 |B (φ1 (t))− B (φ2 (t))| e−
∫ t
0 B(φ1(s))+Q(φ1(s))ds

+ S0B (φ2 (t))
∣∣∣e− ∫ t0 B(φ1(s))+Q(φ1(s))ds − e−

∫ t
0 B(φ2(s))+Q(φ2(s))ds

∣∣∣
= : I1 + I2

Obviously, I1 ≤ S0|B|‖φ1 (t)− φ2 (t)‖L1ert(|Q|+|B|).

In order to consider I2, notice that
∣∣eX − eY ∣∣ ≤ eM |X − Y | for |X|, |Y | ≤ M. Then we

have

I2 6 S0|B|rert(|Q|+|B|)
∫ t

0

|B (φ1 (s)) +Q (φ1 (s))− B (φ2 (s))−Q (φ2 (s))| ds

≤S0|B|rert(|Q|+|B|) (|B|+ |Q|)
∫ t

0

‖φ1 (s)− φ2 (s)‖L1ds
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Hence,

|(F (φ1)) (t)− (F (φ2)) (t)|

≤S0 |B| ert(|Q|+|B|) [1 + rt (|B|+ |Q|)] sup
06s6t

‖φ1 (s)− φ2 (s)‖L1

Now we let l ∈ C
(
[0, Tφ) ;L1

+

)
be the positive solution of (III.4), then for any t ∈ [0, Tφ),

(H.5) is easy to verify:

(F (l)) (t) +

∫ M

0

G (l (t)) (a) da 6 S0 |B|
∫ M

0

l (t) (a) da

So by Theorem III.4.4, there is a positive global solution of (III.4).

VII.4 Proposition IV.2.1

Proof of Proposition IV.2.1. Proof of the existence of the global positive solution is based

on the following four lemmas. An easy computation can be done to testify that a solution

of (IV.1) is also a solution in the sense of (III.4) with aging function P and birth function

H.

Lemma VII.4.1. Let the assumptions in Proposition IV.2.1 hold, and let r > 0. There

exists T > 0 such that if ‖φ‖L1 6 r, then there is a unique function u ∈ CT,+ such that u

is a solution of (IV.1) on [0, T ].

Proof. We can choose a sufficiently small T > 0 and define

S :=
{
u ∈ CT,+ : u (t) = φ, ‖u‖CT 6 2r

}
An argument which is similar to that of Proposition VII.1.2 can be used to show that a
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mapping defined by (IV.1) from S into S is a strict contraction. Thus, the unique fixed

point is a positive solution of (IV.1) in CT,+.

Lemma VII.4.2. Let the assumptions in Proposition IV.2.1 hold, let T > 0, and let

u ∈ CT,+ such that u is a solution of (IV.1) on [0, T ]. Let T̂ > 0 and let û ∈ CT+T̂ ,+ such

that û (t) = u (t) for t ∈ [0, T ], and for t ∈
(
T, T + T̂

]
, û satisfies the integral equation:

û(t)(a) =

(H (û))(t− a) e−
∫ a
0 µ(b)db, 0 < a < t− T

u (T )(a− t+ T ) e−
∫ a
a−t+T µ(b)db, t− T ≤ a ≤ M

where H is as stated in Proposition IV.2.1. Then û is a solution of (IV.1) on
[
0, T + T̂

]
.

Proof. The proof is similar to that of Proposition VII.2.1.

Lemma VII.4.3. Let the assumptions in Proposition IV.2.1 hold, let φ ∈ L1
+, and let u

be the solution of (IV.1) on its maximal interval of existence [0, Tφ). If Tφ < ∞, then

lim sup
t→Tφ−

‖u (t)‖L1 =∞.

Proof. The proof is similar to that of Theorem 2.3 in Webb (1985).

Lemma VII.4.4. Let the assumptions in Proposition IV.2.1 hold, let φ ∈ L1
+, and let

u be the positive solution of (IV.1) on its maximal interval of existence [0, Tφ). Then

∃ω ∈ R, and for t ∈ [0, Tφ), ‖u (t)‖L1 6 ‖φ‖L1eωt. So Tφ = ∞, there is a global positive

solution of (IV.1).

Proof. For t ∈ [0, Tφ), we estimate as follows (here we assume t 6 M, then t > M leads
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to a simpler case):

‖u (t)‖L1 =

∫ M

0

u (t)(a) da 6
∫ t

0

(H (u)) (t− a) da+

∫ M

t

φ (a− t) da

6
∫ t

0

S0 |B| ‖u (t− a)‖L1da+

∫ M

t

φ (a− t) da

6S0 |B|
∫ t

0

‖u (s)‖L1ds+

∫ M−t

0

φ (s) ds

6S0 |B|
∫ t

0

‖u (s)‖L1ds+ ‖φ‖L1

Then by Gronwall’s Inequality, we have ‖u (t)‖L1 6 ‖φ‖L1eS0|B|t. Then by Lemma VII.4.3,

Tφ =∞, hence there is a positive global solution to (IV.1).

VII.5 Theorem IV.3.1

Proof of Theorem IV.3.1. Let T > 0, we assume that u ∈ C
(
[0, T ] ;L1

+

)
satisfies (IV.1)

for t ∈ [0, T ], then u satisfies the following conditions:

lim
h→0+

∫ M

0

∣∣h−1 [u (t+ h) (a+ h)− u (t) (a)] + µ (a)u (t) (a)
∣∣ da = 0

lim
h→0+

h−1

∫ h

0

|u (t+ h) (a)− (H (u)) (t)| da = 0

u (0) = φ

(VII.2)

We will show that l ∈ C
(
[0, T ] ;L1

+

)
as obtained from (IV.2), satisfies (III.4) with the

aging function G in (P.1) and the birth function F in (P.2). For the first condition in
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(III.4), we have the following estimation:

h−1 [l (t+ h) (a+ h)− l (t) (a)] + µ (a) l (t) (a) + T (l (t)) l (t) (a)

=
h−1 [u (t+ h) (a+ h)− u (t) (a)] + µ (a)u (t) (a)

1 +
∫ t+h

0
T (u (s)) ds

+

[
µ (a)u (t) (a)

1 +
∫ t

0
T (u (s)) ds

− µ (a)u (t) (a)

1 +
∫ t+h

0
T (u (s)) ds

]

+h−1

[
u (t) (a)

1 +
∫ t+h

0
T (u (s)) ds

− u (t) (a)

1 +
∫ t

0
T (u (s)) ds

]
+

T (u (t))u (t) (a)(
1 +

∫ t
0
T (u (s)) ds

)2

:=I1 + I2 + I3

By (VII.2), I1 → 0 as h → 0. I2 → 0 as h → 0 because of the absolute continuity of

Lebesgue integral. If we compute the derivative of function f (t) := 1

1+
∫ t
0 T (u(s))ds

, we get

I3 → 0 as h → 0. Hence the first limit in the solution definition (III.4) is satisfied. For

the second condition in (III.4), we have

∫ h

0

|l (t+ h) (a)− (F (l)) (t)|da

=

∫ h

0

∣∣∣l (t+ h) (a)− S0B (l (t)) e−
∫ t
0 B(l(s))+Q(l(s))ds

∣∣∣ da
=

∫ h

0

∣∣∣∣∣u (t+ h) (a)− (H (u)) (t)

1 +
∫ t

0
T (u (s)) ds

∣∣∣∣∣da→ 0,
(
h→ 0+

)
The third condition in (III.4) is straightforward. Then by Proposition IV.2.1, we can find

a u ∈ C
(
[0,∞) ;L1

+

)
that satisfies (IV.1). Then a positive global solution to problem

(III.4) can be obtained by (IV.2), which is exactly the unique positive global solution to

(III.4).
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VII.6 Theorem IV.4.1

Proof of Theorem IV.4.1. Let u ∈ C
(
[0,∞) ;L1

+

)
be the solution to (IV.1), and let i ∈

C
(
[0,∞) ;L1

+

)
as defined in (IV.2), which is a solution to problem (III.1) in the sense

of (III.4). For convenience in this proof, we use the notation i (a, t) := i (t)(a) and

u (a, t) := u (t)(a), for a ∈ [0,M] , t ∈ [0,∞). Firstly, by (III.1) we have

S (t) = S0e
−
∫ t
0 B(i(·,s))+Q(i(·,s))ds

which is a positive non-increasing continuous function of t ∈ [0,∞). So lim
t→∞

S (t) exists,

and we denote it as lim
t→∞

S (t) = S∞ > 0. Next we estimate the following:

∫ ∞
0

B (i (·, t)) +Q (i (·, t)) dt 6
∫ ∞

0

(|B|+ |Q|) ‖i (·, t)‖L1dt

= (|B|+ |Q|)
∫ ∞

0

∫ M

0

u (a, t)

1 +
∫ t

0
T (u (·, s)) ds

dadt

= (|B|+ |Q|)
∫ M

0

∫ a

0

φ (a− t) e−
∫ a
a−t µ(b)db

1 +
∫ t

0
T (u (·, s)) ds

dtda

+ (|B|+ |Q|)
∫ M

0

∫ ∞
a

u (0, t− a) e−
∫ a
0 µ(b)db

1 +
∫ t

0
T (u (·, s)) ds

dtda

:= (|B|+ |Q|) (I1 + I2)
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Estimate I1 and I2 separately:

I1 6
∫ M

0

∫ a

0

φ (a− t) e−
∫ a
a−t µ(b)dbdtda =

∫ M

0

∫ a

0

φ (s) e−
∫ a
s µ(b)dbdsda

=

∫ a0

0

∫ a

0

φ (s) e−
∫ a
s µ(b)dbdsda+

∫ M

a0

∫ a

0

φ (s) e−
∫ a
s µ(b)dbdsda

6
∫ a0

0

∫ a

0

φ (s) dsda+

∫ M

a0

∫ a

0

φ (s) e−µ0(a−s)dsda

6a0‖φ‖L1 +

∫ M

0

∫ a

0

φ (s) e−µ0(a−s)dsda

=a0‖φ‖L1 +

∫ M

0

∫ M

s

φ (s) e−µ0(a−s)dads

=a0‖φ‖L1 +

∫ M

0

∫ M−s

0

φ (s) e−µ0τdτds

6a0‖φ‖L1 +

∫ M

0

∫ M

0

φ (s) e−µ0τdτds

=a0‖φ‖L1 +

(∫ M

0

e−µ0τdτ

)
‖φ‖L1 <∞

I2 =

∫ M

0

∫ ∞
a

u (0, t− a) e−
∫ a
0 µ(b)db

1 +
∫ t

0
T (u (·, s)) ds

dtda

6
∫ M

0

∫ ∞
0

u (0, τ) e−
∫ a
0 µ(b)db

1 +
∫ a+τ

0
T (u (·, s)) ds

dτda

6
∫ M

0

∫ ∞
0

u (0, τ) e−
∫ a
0 µ(b)db

1 +
∫ τ

0
T (u (·, s)) ds

dτda

=

(∫ ∞
0

i (0, τ) dτ

)(∫ M

0

e−
∫ a
0 µ(b)dbda

)
6

(∫ ∞
0

i (0, τ) dτ

)(
a0 +

∫ M

a0

e−aµ0da

)

With the assumption on function µ, we can find constants C1, C2 > 0 such that:

∫ ∞
0

B (i (·, t)) +Q (i (·, t)) dt 6 C1 + C2

∫ ∞
0

i (0, t) dt
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Since i is obtained from (IV.2), we have:

i (0, t) =
u (0, t)

1 +
∫ t

0
T (u (·, s)) ds

= S (t)B (i (·, t))

Then by the differential equation of S(t) in (III.1), we have:

i (0, t) = −dS (t)

dt
−Q (i (·, t))S (t) 6 −dS (t)

dt

Integrate on both sides with respect to t of the above inequality,

∫ ∞
0

i (0, t) dt 6 S0 − S∞ <∞

Hence one of the conclusion is proved:

lim
t→∞

S (t) = S0e
−
∫∞
0 B(i(·,s))+Q(i(·,s))ds > S0e

−C1−C2

∫∞
0 i(0,t)dt > 0

Moreover, it can be derived from the differential equation system (III.1) that:

S (t) + I (t) +

∫ t

0

Q (i (·, s)) I (s) ds+

∫ t

0

T (i (·, s)) I (s) ds+

∫ t

0

i (M, s) ds

+

∫ t

0

∫ M

0

µ (a) i (a, s) dads = S0 + I (0)

(VII.3)

where the four integrals in (VII.3) are non-decreasing with respect to the variable t

and have S0 + I (0) as an upper bound. So the four integrals all have finite limit as

t→∞. Then the fact that lim
t→∞

S (t) exists implies that lim
t→∞

I (t) exists. We can estimate∫∞
0
I (t) dt =

∫∞
0
‖i (t)‖L1dt similarly as we did in the beginning of this proof and get∫∞

0
I (t) dt <∞, which implies the conclusion lim

t→∞
I (t) = 0.
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