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CHAPTER I 

 

INTRODUCTION* 

 

 Preterm birth (PTB) is defined as live birth before 37 complete weeks 

gestation. Parturition in humans, typically occurs between 37-42 weeks gestation, 

with 40 weeks gestation being the most common (Figure 1.1). The rate of preterm 

birth has risen over the past two decades worldwide and in 2010 was 12.0% in 

the United States, which is a 15% increase from 1990.1 PTB is responsible for 75% 

of perinatal mortality and greater than 50% of long-term morbidity.2 The lungs3 

and brain4 are particularly susceptible to insult.  Studies have estimated that PTB 

is responsible for half of all pediatric neurodevelopmental disabilities.5 The 

severity and incidence of these associated comorbidities increases with decreased 

gestational length.6 When one considers the constellation of health conditions 

and disabilities prematurity creates, it is the leading cause of disability in the 

United States and worldwide.7 In addition to the disabilities and medical 

comorbidities that PTB causes, its cost to society and families is devastating.8,9 A 

2006 report from the Institute of Medicine estimates the cost to care for preterm 

infants and the associated comorbidities at greater than $26 billion per year.10 

Clearly, PTB is a major public health concern.  

  
                                                        
*Adapted from: Jude J. McElroy’s thesis proposal, Defining the Genetics of Spontaneous 
Idiopathic Preterm Birth 
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Figure 1.1: Birth timing in Missouri (1978-1997). From Plunkett et al. 2008 
 
 
 
Classification of Preterm birth 

There are two main categories of PTB: spontaneous and medically 

indicated. PTB can almost equally be divided between these two groups.11 

Medically indicated PTB can be grouped by indication, the most common of 

which include preeclampsia, placental abruption, and maternal or fetal distress. 

Similarly, spontaneous PTB can be divided into two groups: idiopathic and 

accompanied by preterm premature rupture of the membranes (PPROM).  Racial 

disparity is seen in the most common causes and rates of spontaneous PTB.  In 

Caucasian women, preterm labor is the most common cause while PPROM is 

responsible for the majority in African American women.5 Spontaneous PTB is 

almost twice as common in African American women compared to Caucasian 
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women when all other risk factors are equal (Figure 1.2).12 The cause of this large 

discrepancy remains unknown and represents one of the largest in medicine. 

 

 

Figure 1.2: Singleton preterm birth rates in the US 1990-2006. Data from the 
National Center for Health Statistics by ethnicity. From Muglia & Katz 2010  
 

 

Pathways hypothesized to be involved in preterm birth 

Currently there are four main pathways hypothesized to be involved in 

the etiology of PTB: 1) activation of the maternal or fetal hypothalamic-pituitary-

adrenal (HPA) axis, 2) infection and inflammation, 3) decidual hemorrhage, and 

4) uterine distention (Figure 1.3).13 These pathways are not mutually exclusive 

and there is much crosstalk between them.  All of these pathways converge on a 

final common pathway that results in PTB. 
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Figure 1.3: Overview of pathways believed to be involved in preterm delivery. 
From Lockwook & Kuczynski 2001 
 

 

An important outstanding question is whether PTB represents 

inappropriate early activation of the normal parturition pathway or is a unique 

mechanism. This question is harder to answer than one might expect because 

human parturition is not well understood.  Studies in sheep during the 1970s are 

the basis for the progesterone withdrawal theory of labor.14,15 Briefly, levels of 

progesterone rise during pregnancy which is critical for maintenance of uterine 

quiescence, but abruptly decline prior to labor. The decline in progesterone is 

believed to be the precipitating event leading to labor. This abrupt decline is seen 

in mouse, rat, hamster, cow, goat, and sheep; however, it is absent in humans 

and great apes.16,17 While there is not a systemic decline in progesterone 

concentration in humans prior to labor, there is some evidence that there may be 

a more localized decrease in progesterone or changes in the receptor isoform, co-
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activators, and co-repressors resulting in a “functional withdrawal”.15,18,19 

Additionally, there is evidence that the human progesterone receptor has been 

the target of adaptive evolution.20 Because of the difference in labor initiation and 

evolution of the human progesterone receptor, studying the etiology and 

pathophysiology of human PTB is best performed in humans.   

 

Epidemiological risk factors  

Epidemiological studies have identified a number of risk factors that are 

associated with an increased risk of PTB.  As previously mentioned race has been 

shown to play a significant role.21-26 Other well recognized risk factors for PTB 

are low socioeconomic status and education, low and high maternal age, and 

single marital status.27-29 Multiple gestations almost always deliver prior to term 

with nearly 60% of twins delivering preterm.2 While only 2-3% of pregnancies 

are multiple-gestations they make up 15-20% of all PTBs.2 Infection has long been 

recognized as a risk factor for PTB especially early (22-24 weeks) PTB.30 Studies 

have shown that bacterial vaginosis,31 trichomoniasis,32 and periodontal 

infection33 are more common in women who deliver preterm.  Unfortunately, 

prophylactic treatment of gravid women with antibiotics has been unsuccessful 

at decreasing the rate of PTB even though it decreased the rate of positive 

cultures.34,35 Both extremes of body mass index (BMI) have been shown to be risk 

factors for PTB. Women with low BMI36 prior to pregnancy are more likely to 

have a spontaneous preterm delivery while obese2 women are more likely to 
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develop complications that require a medically indicated PTB. However, some 

studies have seen a protective effect for obesity.36 Low serum concentration of 

iron, folate, and zinc associate with delivering preterm.37-39 Studies have also 

shown that high levels of psychological or social stress increase the risk of PTB 

even after correcting for sociodemographic, medical, and behavioral risk 

factors.40,41 In the United States, 12-15% of pregnant women smoke throughout 

their pregnancy and smoking has been shown to increase the risk of PTB.42-44 

Heavy alcohol consumption and the use of cocaine and heroin have been 

associated with increased risk of PTB.2 The interpregnancy interval has been 

shown to be a significant variable in PTB.45 When this interval is less than six 

months, the rate of PTB is more than double after adjusting for other 

confounders.46   

 

Evidence of a genetic component 

A number of lines of evidence support the role of genetics in PTB, and 

birth timing in general.  One of the most significant risk factors of having a 

preterm delivery is a positive family history.47-49 The risk of preterm birth in 

females whose sister has had a preterm delivery is 80% higher themselves.50 A 

number of twin and family studies investigating birth timing have been 

performed and report heritability (h2) ranging between 30-40%.51-53 These family 

studies have also illustrated that birth timing (both pre and post term) is stable 

across generations and sibships. The most common time or recurrence is during 
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the same week of gestation (Figure 1.4).54-56 Segregation analysis has shown that 

the maternal genome plays the largest role in preterm birth.53 Another line of 

evidence supporting a genetic component of PTB was a study by Ward et al. 

(2005), which found a significantly higher coefficient of kinship in PTB cases 

compared to controls in a Utah population.57 However, even with this wealth of 

evidence that preterm birth has a large genetic component we are still currently 

unable to identify the variation responsible for the vast majority of cases.  

Due to the known risk factors of PTB and four hypothesized pathways, 

the majority of previous candidate gene studies have focused on genes involved 

in the immune response, inflammation, drug metabolism, and connective tissue  

 

 

Figure 1.4: A histogram illustrating the difference in gestational age 
between consecutive preterm pregnancies to an individual mother in 
Missouri, 1989-1997. From Chaudhari et al. 2008  
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remodeling.58-60 There have been a handful of positive associations between 

common variants and PTB many of which have not replicated due to a number 

of reasons one of which is lack of power due to small sample sizes.  For a 

complete list of genes associated with PTB please see Appendix A. 

While the genetic causes of the vast majority of PTBs are idiopathic, the 

Mendelian disorder Ehlers-Danlos Syndrome (EDS) serves as a proof-of-

principle that a genetic disorder can increase the risk of PTB. EDS are a group of 

Mendelian disorders inherited in both an autosomal dominant and autosomal 

recessive manner in which the connective tissue is affected. Individuals with 

vascular (Type IV) EDS are at an increased risk of PTB primarily due to 

PPROM.61  

Because PPROM involves rupture of the fetal membranes this raises the 

unresolved question of who should be considered the proband when 

investigating PTB, the infant or the mother (Figure 1.5)? Additionally, the 

placenta is fetal tissue and placental insufficiency and/or abruption are common 

causes of medically indicated PTB. While genetic modeling and segregation 

analysis have shown that the maternal genome plays the largest role in the 

genetic component of PTB risk, all children born to mothers who have had a 

preterm delivery are not born preterm. This raises the possibility that the fetus’s 

genome individually or through an interaction with the maternal genome or the 

environment might be playing a partial role in etiology of PTB. 
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Figure 1.5: The same pedigree illustrating the infant (A) and mother (B) as the 
affected proband. The affected individuals (<37 weeks) are filled in with black 
and their gestational age is the number in the symbol. Individuals with a 
question mark have unknown gestational ages. Multiple gestation offspring were 
excluded due to the possibility of alternative mechanisms being involved 
compared to singleton preterm birth.  From Plunkett et al. 2009 
 

 

Summary and objectives of dissertation 

Previous genetic research into PTB has had limited success at discovering 

novel insight into the mechanism of birth timing and parturition. The primary 

objective of this dissertation was to identify unidentified or unappreciated 

genetic variants responsible for the predisposition or pathogenesis of PTB. In 

order to investigate this hypothesis, we performed studies using a number of 

complementary approaches, which included genome-wide association studies 
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(GWAS), exome array association, whole-exome sequence and pathway analysis. 

In addition to using a group of complementary methods, we also interrogated 

both maternal and fetal genomes for their potential role in the etiology or 

pathogenesis of PTB. The ultimate goal of this research is to help prevent PTB 

and improve public health.  
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CHAPTER II 

 

MATERNAL GENOME-WIDE ASSOCIATION FOR PRETERM BIRTH RISK 
AND GESTATION LENGTH†  

 
 

Introduction 

Preterm birth (PTB) is defined by the World Health Organization (WHO) 

as live birth before 37 weeks’ completed gestation and occurs in 12.0% of 

pregnancies in the United States.62 Despite this major public health concern,6,63 

little is known about the pathogenesis of PTB. The limited insight into PTB is 

contributed to by the fact that the mechanism for normal parturition in general is 

not well understood in humans.64  

A number of lines of evidence suggests that PTB has a genetic component 

such as PTB aggregating in families, segregation analysis and genetic 

modeling.16,51,53 Primarily through candidate gene studies, there have been a 

number of SNPs associated with PTB; however, contradictory evidence from 

replication studies exists, and none of these have large effect sizes or have 

implicated new mechanisms in parturition control.60 

Prior genetic model and segregation analysis have illustrated that the 

maternal genome plays an important role in the genetic contribution to PTB 

risk.53 However, this does not mean that the fetal genome or paternally inherited 

                                                        
† Adapted from McElroy et al. In Preparation 
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genes in the fetus are not also potentially important, but only that the maternal 

genome plays the most significant role and models indicating a maternal genome 

contribution are the best fitting.  

Due to this and the minimal success of candidate gene/pathway studies’ 

ability to explain only a small percentage of cases of PTB, we decided to take a 

different approach and performed a genome-wide association study (GWAS) in a 

Finnish dataset of mothers form Helsinki and Oulu. This is conceptually different 

than a candidate/gene pathway study, which is limited by prior understanding 

or hypothesized mechanisms and is “hypothesis free”.  

The only “hypothesis” is that common alleles i.e. those with ≥ 5% minor 

allele frequency (MAF) are involved with the phenotype and have smaller effect 

sizes e.g. odds ratios (OR) generally ≤ 1.3.65 GWAS are not without their own 

limitations, while candidate gene/pathway studies are limited by prior biology 

GWAS studies are limited by SNPs that are known at the time of the genotyping 

array design and also by the linkage disequilibrium (LD) in the population being 

studied. Additionally, “genome-wide” is somewhat of a misnomer and there are 

many genes/regions of the genome that are not covered at all or where the 

majority of the variation is not captured. However, even with these caveats 

GWAS have the ability to transform our understanding of the genetic 

underpinnings of disease and open up new avenues of research.66   
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Here we report the first GWAS investigating PTB and gestational age in a 

dataset of mothers from Helsinki and Oulu Finland that were genotyped using 

the Affymetrix Genome-Wide Human SNP Array 6.0. We chose to examine the 

more traditional dichotomous PTB phenotype as well as the transformed 

quantitative trait, gestational age, which increased our statistical power and the 

results should be somewhat complementary.67 While we did not identify any 

associations that surpassed the genome-wide significance threshold of p-value = 

5e-8, we were able to discover a number of strong associations that could help 

elucidate new biology and better understand the basic mechanism of parturition.  

Due to the lack of an independent dataset to replicate/generalize our most 

significant associations from this GWAS should be considered tentative until 

replicated in a large independent dataset. We present these results with the 

hopes that others will attempt to generalize our strongest associations in their 

datasets.  

Results 

Study population characteristics 

The Finish mother dataset consisted of 539 total individuals of which 252 

were cases and the remaining 287 samples were controls. These samples were a 

collection of mothers from Helsinki and Oulu Finland.  Out of the 539 total 

samples, 152 were from Oulu and the remaining from Helsinki.  
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For the samples collected in Helsinki, we have access to dense 

demographic information some of which included maternal age, body mass 

index (BMI), gravidity, parity, smoking and alcohol use; however, unfortunately 

this information was not available for the Oulu mothers. If we had decided to 

adjust for variables, which were found to differ significantly between cases and 

controls in the Helsinki samples, we would be excluding all of the Oulu samples 

(~28% of the total number) from our analysis. Due to our small sample size, we 

could not afford the loss of that many samples; therefore all association analysis 

described below is unadjusted for any covariates.  

 

Finnish mothers preterm birth chi-square association  

 The first analysis we performed was a standard allelic chi-squared 

genome-wide association study (GWAS) examining an association with PTB. In 

evaluating the quantile-quantile plot (QQ), we observed fewer than expected 

significant associations at the higher levels of significance (Figure 2.1). Our most 

significant SNP was rs871476 (p-value = 6.22e-6; OR = 0.484). This is an 

intergenic SNP which is ~114kb 5’ upstream of solute carrier family 34 (sodium 

phosphate), member 2 (SLC34A2) and  ~123 kb 3’ downstream of anaphase 

promoting complex subunit 4 (ANAPC4). How this SNP is protective against 

PTB is currently unclear and will require further functional studies. For a 

complete list of SNPs with p-value < 10-4 please see Appendix B. 
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Figure 2.1: QQ plot for chi-square allelic association analysis in our Finnish 
mothers genotyped on the Affymetrix 6.0 SNP array. 

 

 

Box-Cox transformation of gestational ages 

 Due to the smaller size of our Finnish mother dataset (539 total samples 

252 born in the preterm range (< 37 weeks) and 287 term or (37-41 weeks)), we 

re-analyzed our Affymetrix 6.0 SNP arrays using the quantitative trait gestational 

age (in days), which increased our power to detect an association.67 However, 

one of the main assumptions of linear regression is that the dependent variable is 

normally distributed.  While linear regression is robust to deviations from 

normality we wanted to formally test whether our dependent variable i.e. 

gestational ages were normally distributed. To do so we performed a one-sample 
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Kolmogorov-Smirnov test which revealed that our gestational ages were very 

skewed, p-value = 1.49e-85 (Figure 2.2).  

 In order to normalize this distribution, we performed a Box-Cox power 

transformation. The lambda was determined using the Stata software package 

“boxcox” function with the rs6534679 genotypes coded recessively and was 

determined to be ~4.2. The gestational age was transformed using the original 

gestational age^4.2 and the distribution was graphed again and appeared more 

normally distributed (Figure 2.3). We chose to use rs6534679 coded recessively to 

determine the best lambda because this was the SNP and model that had the 

most significant p-value for the untransformed gestational age linear regression 

when we examined the additive, dominant and recessive models (data not 

shown).   

 

Box-Cox transformed gestational age unadjusted linear regression association analysis of 
Finnish mothers genotyped on the Affymetrix 6.0 SNP array 

 

 The unadjusted linear regression was performed using the Box-Cox 

transformed gestational age as our dependent variable. When the additive model 

was performed we observed three SNPs with p-values at the 10-6 level of 

significance with the most significant SNP being rs10874644 which is ~185kb 3’ 

downstream of collagen, type XI, alpha 1 (COL11A1), p-value = 5.26e-6 and is 

protective i.e. promotes longer gestational age (Table 2.1). For a complete  
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Figure 2.2: Distribution of Finnish mother gestational ages in days with a 
normal curve overlaid. The gestational ages are not normal (one-sample 
Kolmogorov-Smirnov test p-value = 1.49e-85). In order to try to normalize our 
gestational ages we performed a Box-Cox power transformation and used that 
variable in the linear regression  
 

 

Figure 2.3: Distribution of Finnish mother Box-Cox transformed gestational 
age with a normal curve overlaid. Using the Stata software package the optimal 
lambda for the Box-Cox power transformation was determined to be ~4.2.  The 
transformed variable was then graphed and a normal curve was overlaid.   
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list of SNPs with p-values < 10-4 please see Appendix C.  

 Because there is no a priori evidence to require gestational age to follow 

an allelic model, we also examined the genotypic 2-degree of freedom Box-Cox 

transformed gestational age linear regression for our Finnish mothers. We 

identified four SNPs with p-values ≤ 10-7 with the SNP 5’ upstream of TACC1 

rs10104530 (p-value = 7.09e-8) having the strongest genotypic association. When 

these four SNPs were tested using a dominant and recessive model rs10104530 

had the most significant p-value, p-value = 9.45e-7, under the recessive model 

(Table 2.2). 

 

Discussion 

 To our knowledge, this is the first reported GWAS investigating preterm 

birth and gestational age in mothers. Due to this fact alone, we believe that this 

report is with merit.  

 When investigating PTB our most significant association was observed for 

rs871476, p-value = 6.22e-6, OR = 0.48, which is an intergenic SNP that is ~114kb 

5’ upstream of SLC34A2 and  ~123 kb 3’ downstream of ANAPC4.  

SLC34A2, or the solute carrier family 34 (sodium phosphate), member 2, is 

involved in the active transport of phosphate into cells and maybe involved in 

surfactant production in type II alveolar cells in the lungs.68,69 While SLC34A2 is 
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expressed in all tissues not surprisingly, it is most highly expressed in human 

lungs and trachea.70,71 Interestingly, surfactant production and increased 

surfactant levels in amniotic fluid has been shown to be a trigger for human 

parturition.72,73 While this is a possible mechanistic explanation how perturbation 

is SLC34A2 could be involved in PTB, surfactant is produced by the fetus and the 

association was observed in the mothers. One could argue that this variant is 

being over-transmitted and/or preferentially transmitted to affected fetuses; 

however, this will require fetal genotyping and should be considered a future 

direction. 

The gene most 5’ to rs871476 is the anaphase promoting complex subunit 

4, ANAPC4. ANAPC4 is involved in the control of progression through mitosis 

and the G1 phase of the cell cycle. How perturbation in this gene could be 

involved in PTB is unclear, but a GWAS from 2010 found an intronic SNP in 

ANAPC4 to be the strongest associated with weight (p-value = 1.44e-6) in a 

population of Filipino women.74 The Illumina Human Body Map 2.0 

(http://www.ensembl.info/blog/2011/05/24/human-bodymap-2-0-data-from-

illumina/), identified expression of ANAPC4 in human cervix. While level of 

expression in the cervix was not higher than the other tissues investigated, 

perturbation of this protein in the cervix could be a potential mechanism for how 

this gene could be involved in PTB.  
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Table 2.1: All SNPs with 10-6 level of significance for the unadjusted additive linear regression for the Box-Cox 
transformed gestational age in Finnish mothers genotyped on the Affymetrix 6.0 SNP array. Base pair (BP) positions 
refer to NCBI36 (hg18, March 2006 assembly) build of the human genome. 
 

 
 
 
 
Table 2.2: All SNPs with a genotypic p-values ≤ 10-7 level of significance for Box-Cox gestational age and the 
subsequent dominant and recessive model p-values. The SNPs are sorted by GENO p-value. Base pair (BP) positions 
refer to NCBI36 (hg18, March 2006 assembly) build of the human genome. 
 

 
  

CHR SNP BP GENE LOCATION
MINOR0
ALLELE BETA L95 U95 P

1 rs10874644 102931572 COL11A1 3'downstream/intergenic G 2.34E+09 1.34E+09 3.34E+09 5.26E>06
2 rs7583085 42876472 HAAO 5'?upstream G 1.78E+09 1.02E+09 2.54E+09 5.77E>06
2 rs7569325 42978493 HAAO 5'?upstream G 1.81E+09 1.02E+09 2.59E+09 7.54E>06

CHR SNP BP GENE LOCATION GENO/P DOM/P REC/P
8 rs10104530 38682002 TACC1 5',upstream 7.09E708 0.2987 9.45E707
10 rs7094463 114701973 TCF7L2 intron 4.88E707 6.37E704 1.10E703
15 rs1568209 90382294 SLCO3A1 intron 4.90E707 1.82E704 0.0199
15 rs11074035 90381355 SLCO3A1 intron 9.18E707 2.49E704 0.0208
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 Additionally, it is overly simplistic to believe that rs871476 is regulating 

genes that are over 100kb away or only these genes. To investigate this we 

interrogated the web expression quantitative trait loci (eQTLs) database, SCAN,75 

searching for rs871476 and found that this SNP is an eQTL controlling expression 

of ACCS (p-value = 7e-5) in the HapMap Northern and Western European 

ancestry (CEU) population. Unfortunately this gene, 1-aminocyclopropane-1-

carboxylate synthase homolog (Arabidopsis), is believed to be non-functional 

and therefore is unlikely to be involved in the etiology of PTB.  

 In an attempt to increase statistical power, we performed linear regression 

using gestational age as the phenotype.67 After we utilized a Box-Cox power 

transformation to transform our gestational ages and analyzed our data using an 

additive linear regression the most significant SNP was found to be rs10874644 

(p-value = 5.26e-6), which is ~185kb 3’ downstream of collagen, type XI, alpha 1 

(COL11A1). This is one of the two alpha chains of type XI collagen, a minor 

collagen. This gene is ubiquitously expressed in all tissues examined via mRNA 

microarray.70,71 While this gene has not previously been implicated in preterm 

birth or gestational age control, mutations in COL11A1 have previously been 

associated with type II Stickler syndrome,76-79 Marshall syndrome79-82 and an 

increased risk for lumbar disc herniation.83 None of these previously associated 

diseases have pregnancy/fertility phenotypes or at increased risk for PTB.   

Once again additionally, this SNP is a far distance from the closest gene so 

it may very well exert its functional effect or be in LD with the causative variant 
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which could have its functional effect on a completely different gene possibly 

even on a different chromosome.   

Examining the genotypic, dominant and recessive models after the Box-

Cox transformation we observed that the same gene, TACC1, has the most 

significant genotypic, p-value = 7.09e-8. We also observe transforming, acidic 

coiled-coil containing protein 1 (TACC1) under the recessive model change from 

the third most significant to the most significant SNP with a p-value of 9.45e-7. 

How TACC1 is involved in the etiology of PTB or control of gestational 

age is currently unknown. TACC1 is believed to be involved in the process that 

promotes cell division prior to tissue differentiation. Microarray expression 

analysis has found this gene to be expressed in all tissue types interrogated; 

however, one of the tissues with the highest expression was human uterus.70,71 

The fact that one of the tissues with the highest expression was the uterus could 

help bolster the argument that it is involved in PTB or gestational age control. 

TACC1 has currently been shown to be dysregulated in breast,84-86 ovarian87 and 

gastric88 carcinomas.   

More interesting however, was the gene with the second most significant 

recessive model Box-Cox transformed gestational age, TCF7L2 (p-value = 1.10e-

3). Transcription factor 7-like 2 (TCF7L2), as the name implies is a transcription 

factor that plays a role in the Wnt signaling pathway.89 Expression analysis has 
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found TCF7L2 mRNA expression in all tissues examined, but one of the organ 

systems with higher expression is the female reproductive system.70,71  

This gene has been previously been associated with type 2 diabetes risk,90-

106 glucose control,107,108 metabolic syndrome,109 coronary heart disease110 and 

most importantly for us birth weight.111 While SNPs in this gene have not yet 

been associated with gestational age if a carrier of a SNP which has been shown 

to alter birth weight that could indirectly control gestational age due to the 

uterine stretch response.18,112  

The SNP that we observed the strongest association in TCF7L2 in this 

study, rs7094463, which promoted longer gestational ages, was not the same 

SNP, which was associated with increased birth, weight (rs7903146) and in our 

dataset these two SNPs were not in LD (r2 = 0.038).  

In conclusion, we present our preliminary results for our Finnish mothers 

GWAS investigating preterm birth and gestational age. Due to our lack of an 

independent dataset to replicate/generalize our most significant result all 

associations presented should be considered tentative. Our study actually creates 

more questions than it answers, but we present it with the hope that it will 

motivate others to interrogate their datasets for associations with our top-hits 

with the ultimate goal of understanding preterm birth etiology and the control of 

gestational age.  
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Materials and methods 

Sample collection 

Mothers from preterm or term deliveries were enrolled for genetic 

analysis by methods approved by the Institutional Review Boards/Ethics 

Committees of University Central Hospital, Helsinki and the University of Oulu. 

DNA was extracted from whole blood or Oragene® saliva kits. Standard 

manufacturer protocols were followed. All families filled out a detailed 

questionnaire, which included questions about their current pregnancy, past 

pregnancies and family histories.  

 

Sample inclusion and exclusion criteria  

For the Affymetrix Genome-Wide Human SNP Array 6.0 the inclusion 

and exclusion criteria are as described below. Case mothers were required to 

have been delivered spontaneously preterm between 22-36 weeks gestation and 

additionally either the child or mother had to have a first degree relative with a 

history of PTB, or a spontaneous idiopathic preterm delivery less than 35 weeks 

of gestation. Mothers were excluded if they had any medical indication for a 

preterm delivery, where part of a multiple gestation pregnancy, or other 

identified risk from preterm delivery such as recent trauma or clinical evidence 

of infection.  
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Finnish mothers Affymetrix Genome-Wide Human SNP Array 6.0 

750ng of genomic DNA was sent to the Vanderbilt DNA microarray core 

or Washington University in St. Louis School of Medicine Genome Sciences 

Center where they performed QC and processed the Affymetrix arrays per the 

manufacture’s protocol. Affymetrix® Genotyping ConsoleTM software (GTC) 

version 4.0 was used to perform initial quality control (QC) and to make 

genotype calls.  Briefly, all CEL files, both Washington University and Vanderbilt 

samples, were imported into GTC and initial QC determined which arrays are 

acceptable for genotype calling.  Next, the Birdseed V2 genotype-calling 

algorithm that is embedded in GTC was used to call genotypes from the passing 

CEL files creating a Chp file containing all of the genotypes. The genotypes were 

exported as plain text files using a Perl script written by one of our collaborators 

at Washington University, Dr. Justin Fay, was used to create PLINK formatted 

MAP and PED files from the GTC output.  PLINK v1.07 was used to perform QC 

using the following filters: 1.) Exclude SNPs with < 95% genotype efficiency, 2.) 

Remove samples with < 95% genotypes, 3.) Filter with minor allele frequency 

(MAF) < 0.05, 4.) Hardy Weinberg Equilibrium (HWE) < 0.0001 in controls. After 

data cleaning, our Finnish mother dataset consisted of 539 individuals of which 

252 were cases and the remaining 287 were controls. The Affymetrix Genome-

Wide Human SNP Array 6.0 consists of ~906,600 single nucleotide 
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polymorphisms (SNPs) and after standard quality control (QC) filters there were 

561,598 SNPs remaining in our Finnish mothers dataset for interrogation. 

 

Statistical analysis 

All association analysis was performed using the software package PLINK 

v1.07. SPSS18 was used to perform one-sample Kolmogorov-Smirnov tests and 

plot histograms of gestational ages. Stata 11.1 and its “boxcox” function was used 

to determine the ideal lambda for the Box-Cox power transformation of 

gestational ages. The R software package was used to create QQ plots. All p-

values are two-tailed unless noted otherwise.  
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CHAPTER III 

 

FETAL VARIANTS IN THE INF2 REGION ARE ASSOCIATED WITH 
GESTATIONAL AGE AND PRETERM BIRTH‡  

 
 

Introduction 

While there is growing evidence that genetics are involved in the etiology 

of preterm birth (PTB), we can currently ascribe a role to the genome in a small 

percentage of cases.16,60 Traditionally, PTB genetic studies focus on candidate 

gene and pathways studies, and while there have been some significant 

associations found many of these have failed to replicate.60 Besides not 

replicating, another weakness of prior candidate gene/pathway studies is that 

they are limited by our current biological understanding.  

Segregation analysis and genetic modeling found that models where PTB 

risk was conferred by the maternal genome to be the most parsimonious and best 

fitting.16,51,53 However, all offspring of mothers’ who have experienced a preterm 

delivery are not delivered preterm, though, so there is almost certainly a fetal 

genome effect.53  

There have been a handful number of studies examining the role of fetal 

candidate genes and pathways for PTB risk;58,113-120 in this study we utilized an 

agnostic approach and report to our knowledge the first fetal genome-wide 

                                                        
‡ Adapted from McElroy et al. In Preparation 
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association study (GWAS) in examining two phenotypes: dichotomous PTB 

(case/control) and the quantitative trait gestational age. Here we report a SNP 

located within an intron of the Ensembl gene, ENSG0256050, and 5’ upstream to 

INF2, rs7153053, to be significantly and reproducibly associated with PTB and 

gestational age. This association may elucidate new biology and possibly medical 

interventions for prevention of PTB.  

Results 

Study population characteristics 

 

The Helsinki infant sample consisted of a total of 471 individuals (159 

cases/312 controls) of which 236 were male and the remaining 235 were female. 

The software package SPSS Statistics V.20, was used to test for differences in 

demographic data between the case and control infants. The variables that were 

tested for differences include maternal age, body mass index (BMI), parity, 

gravidity, birth weight, birth length, alcohol use and smoking use. Besides the 

expected significant differences in birth weight and birth length between cases 

and controls, BMI (p-value = 0.015), gravidity (p-value = 0.016) and tobacco use 

(p-value = 0.003) differed significantly between groups and will be adjusted for 

in our analysis (Table 3.1).  P-values were determined using a one-way ANOVA.  
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Table 3.1: Demographic information for Helsinki infants genotyped on the 
Illumina Omni2.5 BeadChip. Numbers in the table are mean (standard 
deviation) except for dichotomous variables where percentages were used. P-
values were determined using a one-way analysis of variance (ANOVA). 

 

Variable 
Preterm 
(n=159) 

Term 
(n=312) 

P-value 

Maternal age (yr) 31.3 (5.0) 31.4 (4.1) 0.767 
Body Mass Index (kg/m2) 23.6 (4.6) 22.7 (3.3) 0.015 
Parity (n) 1.6 (0.093) 1.5 (0.71) 0.080 
Gravidity (n) 2.1 (1.4) 1.9 (1.0) 0.016 
Birth weight (g) 2389.9 (480.9) 3577.1 (417.6) <0.0001 
Birth length (cm) 45.3 (2.6) 50.3 (1.9) <0.0001 
Alcohol use (%) 3.9% 1.6% 0.123 
Tobacco use (%) 9.2% 2.9% 0.003 

 

 

Preterm birth additive logistic regression adjusted for BMI, gravidity and smoking status 
association analysis in Helsinki infants on the Illumina Omni2.5 BeadChip  

 

After quality control (QC) of the Illumina Omni2.5 BeadChips, there were 

1,695,052 single nucleotide polymorphism (SNPs) remaining for interrogation. 

The initial analysis we preformed was an adjusted additive logistic 

regression for PTB adjusting for three factors, which were shown to differ 

significantly. A quantile-quantile plot (QQ) showed almost no deviation from the 

expected distribution (Figure 3.1). There is one SNP with an adjusted additive 

logistic regression p-value at the 10-7 level of significance. The strongest 

associated SNP, rs7153053, was located in an intron of an Ensembl gene, 
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ENSG0256050, and 5’ upstream of inverted formin, FH2 and WH2 domain 

containing (INF2) (p-value = 5.72e-7; OR = 2.11). For a complete list of all SNPs 

with p-values < 10-4 please see Appendix D. For comparison purposes, please see 

Appendix E for all SNPs with p-values < 10-4 for the unadjusted additive logistic 

regression. 

 

Figure 3.1: QQ plot of additive logistic regression adjusted for body mass 
index, gravidity and smoking status association analysis for dichotomous 
preterm birth phenotype in our Helsinki infants Omni2.5 dataset 

 

Preterm birth genotypic logistic regression adjusted for BMI, gravidity and smoking 
status association analysis in Helsinki infants on the Illumina Omni2.5 BeadChip 

  

 Because there is no a priori evidence to conclude that PTB follows an 

allelic model, we re-analyzed our Helsinki infant dataset under a genotypic 
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model. We once again adjusted for the three covariates; BMI, gravidity and 

smoking that were identified to differ significantly between cases and controls.  

 Our most significantly associated SNP, and only one with a single SNP at 

the 10-7 level of significance is rs7153053, genotypic p-value = 7.40e-7. This is the 

same SNP as observed under the additive model, but p-value is slightly less 

significant, 5.72e-7 vs. 7.40e-7, almost certainly not statistically different. 

However, because the p-values were so similar we concluded that the additive 

adjusted logistic regression was the model to use because it had very similar p-

values and also saved us a degree of freedom. For a complete list of all SNPs 

with p-values < 10-4 please see Appendix F. For comparison purposes, please see 

Appendix G for all SNPs with p-values < 10-4 for the unadjusted genotypic 

logistic regression. 

 

Box-Cox transformation of gestational age in Helsinki infants 

Since our dataset is considered small for a GWAS, to gain additional 

statistical power,67 we also analyzed the Helsinki infant dataset, 471 total 

samples 159 born in the preterm range (<37 weeks) and 312 term or (37-41 

weeks) using the quantitative trait gestational age (in days).  

One of the main assumptions of linear regression is that the dependent 

variable, in this case gestational age, is normally distributed. To test this we 

performed a one-sample Kolmogorov-Smirnov test on the gestational ages and 
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discovered that our gestational ages were very skewed, p-value = 1.07e-67 

(Figure 3.2).  

In order to normalize this distribution, we performed a Box-Cox power 

transformation.121 The lambda was determined using the Stata software package 

“boxcox” function with the rs7153053 genotypes coded additively and was 

determined to be 7.639 The gestational age was transformed using the original 

gestational age^7.639 and the distribution was graphed again and appeared 

more normally distributed (Figure 3.3). 

 

 
Figure 3.2: Distribution of Helsinki infant gestational age in days with a 
normal curve overlaid. The gestational ages are not normal which (one-sample 
Kolmogorov-Smirnov Test p-value = 1.07e-67). In order to try to normalize our 
gestational ages we performed a Box-Cox power transformation and used that 
variable in the linear regression. 
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Figure 3.3: Distribution of Helsinki infant Box-Cox transformed gestational 
age with a normal curve overlaid. Using the Stata 12.1 software package the 
optimal lambda for the Box-Cox power transformation was determined to be 
7.639.  The transformed variable was then graphed and a normal curve was 
overlaid 
 
 
 
Box-Cox transformed gestational age adjusted for BMI, gravidity and smoking status 
linear regression in Helsinki infants  

 

The first regression that we performed was an adjusted additive model 

linear regression in which we adjusted for the three variables found to differ 

significantly between cases and controls: BMI, gravidity and smoking. We 

observed only a single SNP at the 10-8 level of significance. The strongest 

association was once again observed for rs7153053, which was also the SNP with 

the strongest association observed for the dichotomous PTB analysis, p-value = 

6.28e-8, and was risk promoting i.e. earlier gestational age. For the complete list 

of SNPs with p-values < 10-4 please see Appendix H. The QQ plot illustrates that 
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the results do not deviate from the expected until we observe a slight 

underrepresentation in more highly significant associations and then there is the 

single SNP, rs7153053, which lies above the expected line (Figure 3.4).  

Next, we ran an adjusted genotypic model linear regression for the Box-

Cox transformed gestational age in which we were interested in SNPs in which 

the genotypic 2-degree of freedom have highly significant p-values. Just like for 

the PTB analysis, there is no evidence that gestational age needs to follow an 

additive allelic model, which is why we performed this investigation. This 

analysis was adjusted for the same variables as the additive linear regression. We 

utilized a genotypic p-value ≤ 10-7 as highly significant, we observed only a 

single SNP, rs7153053, p-value = 5.96e-8. This SNP, rs7153053, was then tested 

under the more defined dominant and recessive models. The most significant 

association was observed under the recessive model, p-value = 1.56e-7.  
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Figure 3.4: QQ plot of the results of the adjusted additive linear regression 
using Box-Cox transformed gestational age in our Helsinki infants Omni2.5 
dataset. The covariates, which we adjusted for included, body mass index, 
gravidity and smoking. 

 

TaqMan genotyping of rs7153053 in an Oulu infant cohort 

In an attempt to replicate our most significant result, we used Applied 

Biosystems TaqMan to genotype our most significant SNP, rs7153053, in an Oulu 

infant cohort, which consisted of 310 cases (22.7-35.9 weeks) and 180 controls 

(37.3-41.9 weeks) of which 271 were male and the remaining 216 female. 

Unfortunately, unlike for our Helsinki infant cohort we did not have access to as 

extensive demographic information for these samples; therefore, these analyses 

discussed below were not adjusted for any covariates. After discussion, we felt as 
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if it was more appropriate to perform unadjusted analysis than to lose power by 

having to remove samples for which we were missing demographic data and not 

being able to test for significant differences in variables known to be/suggested 

to be involved in PTB or gestational age.  

We investigated both the quantitative trait gestational age (in days) and 

dichotomous preterm birth phenotype. Before running an unadjusted linear 

regression for gestational age, we tested the normality of the gestational ages 

using the one-sample Kolmogorov-Smirnov test and the data was found to be 

skewed with a p-value = 1.43e-8 (Figure 3.5). Using the Stata software packing 

“boxcox” function and rs7153053 coded additively the ideal lambda was 

 
Figure 3.5: Distribution of Oulu infant gestational ages in days with a normal 
curve overlaid. The gestational ages are not normal (one-sample Kolmogorov-
Smirnov Test p-value = 1.43e-8). In order to try to normalize our gestational ages 
we performed a Box-Cox power transformation and used that variable in the 
linear regression 
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Figure 3.6: Distribution of Oulu infant Box-Cox transformed gestational age 
with a normal curve overlaid. Using the Stata 12.1 software package the optimal 
lambda for the Box-Cox power transformation was determined to be 1.577.  The 
transformed variable was then graphed and a normal curve was overlaid.  

 

 

determined to be 1.577 and the transformed variable was computed by raising 

the original gestational age to the 1.577 power. The new Box-Cox gestational age 

was graphed and appeared slightly more normally distributed (Figure 3.6). The 

one-tailed unadjusted additive linear regression was significant with a p-value = 

0.040 with the effect in the same direction as observed in the Helsinki infants. We 

believed that the one-tailed test was appropriate due to the fact that we had a 

priori knowledge that we expected this SNP to be risk promoting i.e. minor allele 

more common in the cases.  
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For PTB, a simple chi-squared association analysis was performed and the 

one-tailed p-value = 0.059; OR = 1.23. While this does not meet the traditional p-

value threshold of ≤ 0.05, the effect is trending in the same direction, risk 

promoting. Taken together, we believe this should be considered a positive 

replication of rs7153053 identified in our Helsinki infant GWAS.  

Discussion 

To our knowledge, this is the fist reported GWAS in preterm birth infants. 

Additionally, it is the first study to observe an association between rs7153053 and 

PTB and gestational age.  

The one SNP, rs7153053, that was consistently the strongest associated is 

located within an intron of the Ensembl gene, ENSG0256050, and ~5.4kb 5’ 

upstream of INF2. While ENSG0256050 is not a traditional protein-coding gene, it 

is predicted to be a long intergenic non-coding RNAs (lincRNA). This class of 

genes is emerging to be involved in a number of key cellular processes and have 

the potential to regulate a number of genes.122 While the exact role of 

ENSG0256050 remains to be elucidated, other lincRNAs have been discovered to 

be involved in X chromosome inactivation,123 imprinting124,125 and 

development.126,127 Most importantly for this investigation, one can make the 

argument ENSG0256050 is important for PTB risk and control of gestational age 

length due to its potential role controlling imprinting and/or fetal development. 

Unfortunately, tissue specific expression of ENSG0256050 remains to be 
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performed therefore it is unknown if this gene is expressed in tissues which we 

believe would be important for PTB risk and/or gestational age control such as 

the fetal membranes or placenta.  

While ENSG0256050 remains somewhat of an enigma, there is more 

known about inverted formin, FH2 and WH2 domain containing (INF2). This 

protein, like all formins, is involved in the regulation of proteins that accelerate 

actin polymerization; however, INF2 is unique it its ability to additionally 

accelerate actin depolymerization in vitro.128,129 Actin is ubiquitously expressed in 

almost all eukaryotic cells including the fetal membranes (amnion and chorion) 

and placenta; therefore any depletion of actin integrity could be important for the 

pathogenesis of PTB and/or controlling gestational age timing. Further 

strengthening its potential role in PTB, INF2 is expressed in the human 

placenta.130 Any perturbation of placental integrity or implantation can be 

devastating.131  

While this is to the best of our knowledge the first report of a SNP near 

INF2 being associated with preterm birth and gestational age, it is not the first 

time this gene has been implicated in human disease pathogenesis. A study by 

Brown et al. in 2009, identified missense variants in INF2 as the cause of 

autosomal dominant focal segmental glomerulosclerosis (FSGS).130 Whether or 

not families with the autosomal dominant form of FSGS caused by INF2 variants 

are at an increased risk of preterm delivery is not known. Because women with 

FSGS are advised not to become pregnant because of increased health risks, it 
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would require women harboring INF2 missense variants who had incomplete 

penetrance to help answer whether the variant in INF2 was playing a role in PTB 

age gestational age determination.  

Our study is not without limitations. Our replication cohort is small and 

to further validate this report our association needs to be replicated/generalized 

in an independent dataset. An additional limitation of our replication cohort is 

the lack of dense demographic data. If these were available we would be able to 

test for significant differences between potential covariates and then adjust for 

any covariate illustrated to differ significantly in our association models. 

Furthermore, our most significantly associated SNP, rs7153053, is almost 

certainly not the causal variant and is acting as a surrogate and “tagging” the 

true causative variant. In order to find the true “causative” variant, DNA 

sequencing of the region around rs7153053 will be required and should be a 

future direction.  

In conclusion, we report the first genome-wide association study in 

preterm birth infants and report an association between a SNP within an intron 

of the Ensembl gene, ENSG0256050, and ~5.4kb 5’ upstream of INF2, rs7153053, 

to be reproducibly associated with PTB and Box-Cox transformed gestational 

age. We believe this SNP may elucidate new biology and possibly medical 

interventions for prevention of PTB; however, further functional studies will be 

required to make this a reality.   
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Materials and methods 

Sample collection 

Infants from preterm or term delivery were enrolled for genetic analysis 

by methods approved by the Institutional Review Boards/Ethics Committees of 

University Central Hospital, Helsinki and the University of Oulu. DNA was 

extracted from whole blood or Oragene® saliva kits. Standard manufacturer 

protocols were followed. 

  

Sample inclusion and exclusion criteria  

For the Illumina Omni2.5 BeadChips and Applied Biosystems TaqMan 

SNP genotyping the inclusion and exclusion criteria are as described below. Case 

infants were required to have been delivered spontaneously preterm between 22-

36 weeks gestation and additionally either the child or mother had to have a first 

degree relative with a history of PTB, or a spontaneous idiopathic preterm 

delivery less than 35 weeks of gestation. Infants were excluded if their mother 

had any medical indication for a preterm delivery, where part of a multiple 

gestation pregnancy, or other identified risk from preterm delivery such as 

recent trauma or clinical evidence of infection.
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Helsinki infant Illumina Omni2.5 BeadChips 

750ng of genomic DNA was sent to the Vanderbilt DNA microarray core 

where they performed QC and processed the Illumina arrays per the 

manufacture’s protocol. The GTC created PLINK ready BED files from the 

processed array genotype calls. QC was performed in PLINK. Monomorphic 

SNPs were removed by using a minor allele frequency filter (MAF) of 0.000001%. 

We chose to not filter by Hardy-Weinberg equilibrium (HWE), but HWE checks 

were performed in order to see if our most significant SNPs were out of HWE in 

controls.  SNPs which were found to have a HWE p < 0.0001 in controls were 

excluded from further analysis. 

 

Applied Biosystems TaqMan genotyping 

Genomic DNA from Oulu was sent to the Cincinnati Children’s Hospital 

Medical Center Genetic Variation and Gene Discovery Core Facility. Standard 

manufacturers protocols were followed and for each assay 10ng of genomic 

DNA was used.  

 

Statistical analysis 

All association analysis, chi-squared, logistic regression and linear 

regression were performed using the software package PLINK v1.07. SPSS18 was 
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used to perform one-sample Kolmogorov-Smirnov tests and plot histograms of 

gestational age and Box-Cox transformed gestational ages. The software package 

SPSS Statistics V.20, was used to test for differences in demographic data 

between the case and control infants and p-values were determined using a one-

way ANOVA.  Stata 12.1 and its “boxcox” function were used to determine the 

ideal lambda for the Box-Cox power transformation of gestational ages. The R 

software package was used to create all of the QQ plots. All p-values are two-

tailed unless noted otherwise.   
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CHAPTER IV 

 

FETAL CODING REGION VARIANTS IN ADAM METALLOPEPTIDASE 
DOMAIN 29 (ADAM29) ARE SIGNIFICANTLY ASSOCIATED WITH 

INCREASED BIRTH WEIGHT Z-SCORES§  
 

 
Introduction 

Birth weight is complex trait that is controlled by a number of factors, the 

strongest, which is gestational age. Other factors known to influence birth weight 

include maternal age, ethnicity, parity, body mass index (BMI), education and 

smoking.132,133 Both extremes of birth weight are at increased risk for perinatal 

morbidity and mortality.134-136 Additionally, low birth weight infants are at an 

increased risk of type 2 diabetes, cardiovascular disease and hypertension in 

adulthood.137,138  

A number of previous twin and family studies have illustrated that birth 

weight has a genetic component.139-142 While the intrauterine environment, 

controlled by the maternal genome and environmental factors, almost certainly 

plays an important role in birth weight, the correlation between paternal height 

or weight and offspring birth weight also illustrates the importance of fetal 

genetics on birth weight.132,143-145 Heritability estimates have been shown to vary 

depending on the gestational age and decreases with increasing gestational age, 

38% at 25 weeks gestation to only 15% at 42 weeks.146  

                                                        
§ Adapted from McElroy et al. In Preparation 
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Prior studies have identified a handful of genes associated with birth 

weight, most of which are also associated with type 2 diabetes, including: 

insulin-like growth factor binding protein 3 (IGFGP3),147 peroxisome proliferator-

activated receptor-γ (PPARG)148 and transcription factor 7-like 2 (TCF7L2).111 

While the overlap between genes associated with type 2 diabetes and birth 

weight may signify important overlap in the underlying 

etiology/pathophysiology and pleiotropic effect of variants in these genes, most 

of these associations have not been replicated in independent datasets.149-152  

In 2010, a genome-wide association study (GWAS) meta-analysis by 

Freathy et al. identified two variants that were associated with decreased fetal 

birth weights.153 One of these variants, rs9883204, was in an intron of adenylate 

cyclase type 5 (ADCY5) and the other, rs900400, located between cyclin-L1 

(CCNL1) and leucine, glutamate and lysine rich 1 (LEKR1).  Further 

strengthening the link between birth weight and type 2 diabetes correlated SNPs 

in ADCY5 have been associated with glucose control and risk for type 2 

diabetes.107 A recent study, found a modest replication of rs900400 in a meta-

analysis of preterm infants.154  

Here we report a GWAS in which we identified a robust association 

between birth weight z-scores and SNPs in the coding region of ADAM 

metallopeptidase domain 29 (ADAM29) in a Finnish infant dataset from Helsinki 

that includes both preterm and term infants. Our study is somewhat different 

from the earlier investigations of birth weight because we used normalized birth 
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weight z-scores instead of the absolute birth weight. Using birth weight z-scores 

allowed us to include infants that were born both term and preterm. To our 

knowledge, this is the first report to show this link between coding region 

ADAM29 SNPs and increased birth weight z-scores. We believe that these 

associations may elucidate new biology.  

Results 

Study population characteristics 

The Helsinki infant sample consisted of a total of 471 individuals (159 

cases/312 controls) of which 236 were male and the remaining 235 were female. 

The software package SPSS Statistics V.20, was used to test for differences in 

demographic data between the case and control infants. The variables that were 

tested for differences include maternal age, body mass index (BMI), parity, 

gravidity, birth weight, birth length, alcohol use and smoking use. Besides the 

expected significant differences in birth weight and birth weight between cases 

and controls, BMI (p-value = 0.015), gravidity (p-value = 0.016) and tobacco use 

(p-value = 0.003) differed significantly between groups and will be adjusted for 

in our analysis (Table 4.1). P-values were determined using a one-way ANOVA.  
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Table 4.1: Demographic information for Helsinki infants genotyped on the 
Illumina Omni2.5 BeadChip. Numbers in the table are mean (standard 
deviation) except for dichotomous variables where percentages were used. P-
values were determined using a one-way analysis of variance (ANOVA). 

 

Variable 
Preterm 
(n=159) 

Term 
(n=312) 

P-value 

Maternal age (yr) 31.3 (5.0) 31.4 (4.1) 0.767 
Body Mass Index (kg/m2) 23.6 (4.6) 22.7 (3.3) 0.015 
Parity (n) 1.6 (0.093) 1.5 (0.71) 0.080 
Gravidity (n) 2.1 (1.4) 1.9 (1.0) 0.016 
Birth weight (g) 2389.9 (480.9) 3577.1 (417.6) <0.0001 
Birth length (cm) 45.3 (2.6) 50.3 (1.9) <0.0001 
Alcohol use (%) 3.9% 1.6% 0.123 
Tobacco use (%) 9.2% 2.9% 0.003 

 

Birth weight z-score linear regression adjusted for BMI, gravidity and smoking status in 
Helsinki infants genotyped on Illumina Omni2.5 BeadChips 

 

Due to the smaller size of our dataset, 471 infants of whom 312 were born 

in the period considered term gestation (37-41 weeks) and 159 preterm infants 

ranging in gestational age from ~28 to ~36 weeks gestation, we chose to use the 

quantitative phenotype birth weight z-scores to increase our power to detect an 

association.67 Linear regression was adjusted for the variables shown to differ 

significantly between infants born in the term and preterm period: body mass 

index (BMI), gravidity and smoking.  

We used birth weight z-scores instead of the absolute birth weights as our 

phenotype/dependent variable because when they are converted to z-scores they 

are normally distributed, a requirement for linear regression. We calculated the 
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birth weight z-scores by comparing the sample birth weights to a population 

sample of around 7,000 Finish births.155 A one-sample Kolmogorov-Smirnov test 

was performed and the normality assumptions of the z-scores was valid, p-value 

= 0.171.  

Under the adjusted additive linear regression, there were 5 SNPs with p-

values at the level of 10-7 (Table 4.2). However, all of these SNPs are in very high 

linkage disequilibrium (LD) (r2 = 0.98-1.0) therefore should conceptually be 

considered a single robust association in ADAM29 which increases birth weight 

z-score, beta = 0.30, most significant p-value = 4.25e-7 (Figure 4.1). Examining the 

quantile-quantile plot (QQ) showed almost no deviation from the expected 

distribution except for the five SNPs discussed above (Figure 4.2). This is also 

illustrated when we examine a “Manhattan” plot and the ADAM29 SNPs are the 

only SNPs, which are highly significant and rise above the background (Figure 

4.3). For a complete list of all SNPs with p-values < 10-4 please see Appendix I. 

In addition to an additive model, we also tested for an association under a 

general 2-degree of freedom genotypic model and the more defined dominant 

and recessive models. The SNPs, which we carried forward and tested under 

more specific genetic models, were the SNPs that had genotypic p-values = 10-7 

(Table 4.3). All of these SNPs with the exception of two, rs1864180 and 

KGP10390109, are the same as under the additive model. The first additional 

SNP (rs1864180) is in a long intergenic non-coding RNA (lincRNA), CTC-

454M9.1 while the later is intergenic.  For all of the SNPs that were significant 
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under both the additive and genotypic model the additive model had the more 

significant p-values.  

 

 

Figure 4.1: A Haploview diagram illustrating the LD (r2) values for the five 
SNPs in ADAM29 for our Helsinki infants genotyped on the Illumina 
Omni2.5. All five of the SNPs reside in the same 28kb LD block on chromosome 
4 
 

 

 



 

 

50 

 

Figure 4.2: QQ plot of the results of adjusted additive linear regression using 
birth weight z-scores in our Helsinki infants Omni2.5 dataset. The variables 
adjusted for include body mass index (BMI), gravidity and smoking 

 

 

TaqMan genotyping of ADAM29 SNPs in Oulu infants 

Because all genetic association is tentative until replicated, in an attempt 

to replicate the results we observed in our Helsinki infants we used Applied 

Biosystems (ABI) TaqMan to genotype three of these SNPs, rs6553849, 

rs12512467 and rs4388065, in a cohort of infants from Oulu Finland. This cohort 

consisted of 310 cases (22.7-35.9 weeks) and 180 controls (37.3-41.9 weeks) of 

which 271 were male and the remaining 216 female. We chose to only run the 

unadjusted additive linear regression for birth weight z-scores. The reason why 

we were unable to perform adjusted linear regression is because of lack of



 

 

51 

 

Figure 4.3: Manhattan plot of Helsinki infants on Omni2.5 BeadChips adjusted additive linear regression for birth 
weight z-scores. The variables adjusted for include body mass index (BMI), gravidity and smoking. The blue line is for p-
value = 1e-5 and the red line is for p-value = 5e-8 which is considered genome-wide significant. The SNPs, which are 
circled, are the five most significant SNPs in ADAM29: KGP7935680, rs6553849, KGP11462362, rs12512467 and rs4388065. 
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demographic data for this Oulu infant dataset. Before regression was performed, 

genotype efficiency was tested using PLINK v1.07 and while both rs4388065 and 

rs6553849 were >97% unfortunately, rs12512467 had only an ~82% genotyping 

efficiency and was excluded from further analysis. Once again, the normality 

assumption of the birth weight z-scores was tested using a one-sample 

 
Table 4.2: Adjusted additive model linear regression for birth weight z-scores 
in our Helsinki infant dataset. The variables adjusted for include body mass 
index (BMI), gravidity and smoking. 

 

 

 

Table 4.3: Adjusted linear regression for birth weight z-scores in Helsinki 
infants under a number of different models. All SNPs that had a genotypic 2DF 
(GENO) p-value ≤ e-7 were tested under a dominant (DOM) and recessive (REC) 
model. The variables adjusted for include body mass index (BMI), gravidity and 
smoking. The base pair positions (BP) refer to GRCh37 (hg19, February 2009 
assembly) build of the human genome. 

 

CHR SNP BP GENO+P,VALUE DOM+P,VALUE REC+P,VALUE
5 rs1864180 88421363 2.28E-07 0.01 2.85E-04
7 rs17156420 102940582 6.46E-07 0.42 9.85E-07
7 KGP3967285 103011509 6.54E-07 0.40 1.08E-06
7 KGP4607969 102980732 6.54E-07 0.40 1.08E-06
7 KGP5238014 103008646 7.51E-07 0.43 1.09E-06
2 KGP10390109 155375235 8.54E-07 5.32E-05 4.18E-05  

CHR SNP GENE LOCATION
MINOR/
ALLELE BETA L95 U95 ADJ/P

4 KGP7935680 ADAM29 Intron/5'3upstream T 0.30 0.18 0.41 4.25E?07
4 rs6553849 ADAM29 Intron/5'3upstream G 0.30 0.18 0.41 4.25E?07
4 KGP11462362 ADAM29 Intron C 0.30 0.18 0.41 4.25E?07
4 rs12512467 ADAM29 Intron G 0.29 0.18 0.41 6.04E?07
4 rs4388065 ADAM29 Intron/5'3upstream C 0.29 0.18 0.40 8.85E?07
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Kolmogorov-Smirnov test and found to be valid, p-value = 0.096. 

For the unadjusted linear regression additive model for birth weight z-

scores the most significant SNP was rs6553849 which had a one-tailed p-value = 

0.096, beta = 0.093 (Table 4.4). Due to the a priori knowledge that we expected 

the minor allele of rs6553849 to increase birth weight z-scores we felt justified 

using one-tailed p-values. While this association does not meet the standard level 

of significance, p-value ≤ 0.05, it does meet the more liberal cutoff of p-value < 

0.1. Additionally, the beta is in the same direction as in the initial Helsinki infant 

dataset i.e. the minor allele is weight promoting. We would consider this a 

tentative replication of our original GWAS association. 

Table 4.4: Unadjusted additive model linear regression for birth weight z-
scores in our Oulu infant cohort. Please note that p-values in this table are one-
tailed. 

 

 

Discussion 

There have been a number of studies investigating birth weight z-scores. 

However, until recently most of these datasets have only included infants born 

during the gestational age range considered term. While there maybe important 

biological rationale to do so such as different mechanisms of weight gain in 

CHR SNP BP GENE* LOCATION
MINOR*
ALLELE BETA L95 U95 UNADJ*P

4 rs6553849 175839066 ADAM29 Intron/5'2upstream G 0.093 :0.047 0.233 0.096
4 rs4388065 175832109 ADAM29 Intron/5'2upstream C 0.087 :0.051 0.224 0.109
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preterm vs. term infants; here we report the first genome-wide association study 

including both term and preterm infants investigating birth weight z-scores.  

All of our strongest associations were observed in ADAM 

metallopeptidase domain 29 (ADAM29). ADAM29 is thought to play an 

important role in spermatogenesis and fertilization. Not surprisingly, the gene is 

strongly expressed in the testicles almost exclusively.156 Explaining how 

ADAM29 is involved in birth weight z-score control is still a mystery and will 

require a number of functional studies to try to illuminate a possible mechanism.  

There have been a number of studies recently investigating the association 

of an intronic ADCY5 SNP, rs9883204, and an intergenic SNP, rs900400, between 

LEKR1 and CCNL1 with birth weight. As in most of human genetics, the 

associations have been inconsistent in their replication/generalizability. Unlike 

the associations we observed with ADAM29 both of these SNPs conferred the 

risk of lower birth weight z-scores. However, much like with ADAM29 how the 

variant between LEKR1 (~35kb) and CCNL1 (~67kb), rs900400, is exactly playing 

a role in birth weight control is unknown. Interestingly however, this same 

variant and specific allele has been associated with decreased birth weight and 

placental weight in two prospective cohorts from The Netherlands and Australia. 

Each copy of the C allele for rs900400 beginning in the second trimester was 

associated with decreased fetal head circumference and femur length and in the 

third trimester in addition to the previously mentioned anthropometric measures 

smaller abdominal circumference and estimated fetal weight.157  Unfortunately, 
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both of these SNPs were not on the Illumina Omni2.5 BeadChip therefore we 

were unable to test for an association in our Helsinki infants.  

On the other hand, the ADCY5 intronic variant, rs9883204, has been 

associated with insulin control in addition to birth weight and joins a number of 

genes (IGFGP3, PPARG and TCF7L2), which have been, associated with birth 

weight and the have pleiotropic effects controlling glucose control and type 2 

diabetes risk. With the modicum of knowledge known about ADAM29, it does 

not seem to be involved in this mechanism/pathophysiology controlling birth 

weight. Thus new opportunity to elucidate a new potential mechanism 

controlling birth weight exists.  

As is with all investigations, this study is not without important 

limitations. Even though our most significantly associated SNPs are located in 

the coding region of ADAM29 it is simplistic to believe that the SNPs are only 

affecting ADAM29.  When we interrogate the web expression quantitative trait 

loci (eQTLs) database, SCAN,75 with our three most significant ADAM29 SNPs 

with rs numbers two of the SNPs (rs6553849 and rs4388065) have no known 

effect on gene expression while rs12512467 has been shown to effect expression 

of two genes, WDR5B (p-value = 7e-5) and ANAPC4 (p-value = 0.0001), in the 

HapMap Yorubian (YRI) population. Further complicating the functional 

consequences of our proposed associated SNPs, WDR5B is not located on the 

same chromosome as ADAM29 (ADAM29 and ANAPC4 chromosome 4 vs. 
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WDR5B chromosome 3) illustrating that SNPs can have functional effects in 

trans..  

Anaphase promoting complex subunit 4 (ANAPC4) was the gene most 5’ 

to the most significantly associated SNP, rs871476, identified in our chi-square 

association analysis between maternal DNA and PTB. For a more extensive 

discussion about ANAPC4 please see Chapter II. The other gene identified as an 

eQTL, WD repeat domain 5B (WDR5B) as the name suggests contains a number 

of WD40 repeats, is ubiquitously expressed,70,71 and hypothesized to be involved 

in protein-protein interactions. These two genes, much like ADAM29, also have 

no obvious mechanistic role controlling birth weight z-scores. 

Additionally, considering the eQTL was only observed in the HapMap 

YRI samples it is unlikely that the eQTL effect of rs12512467 is generalizable to 

the Finnish. Another limitation with this study is that our replication cohort was 

somewhat small and to further validate this report our association needs to be 

replicated/generalized in an independent dataset. Finally, the lack of 

demographic data to adjust for in our Oulu infant dataset was another weakness 

of this study.  

In conclusion, we report the first genome-wide association study 

investigating birth weight z-scores that includes both infants born during the 

gestational age considered preterm and term. Here we found a reproducible 

association with SNPs in ADAM29. Functional work will be required to 
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understand how these SNPs in ADAM29 could be controlling birth weight z-

scores, nevertheless this report will help elucidate new biology and offer 

potential opportunities for intervention. 

Materials and methods 

Sample collection 

Infants from preterm or term delivery were enrolled for genetic analysis 

by methods approved by the Institutional Review Boards/Ethics Committees of 

University Central Hospital, Helsinki and the University of Oulu. DNA was 

extracted from whole blood or Oragene® saliva kits. Standard manufacturer 

protocols were followed. Demographic information was collected by a trained 

study nurse using an approved questionnaire and all variables with the 

exceptions of alcohol and tobacco use were quantitative. 

 

Sample inclusion and exclusion criteria  

For the Illumina Omni2.5 BeadChips and Applied Biosystems TaqMan 

SNP genotyping the inclusion and exclusion criteria are as described below. Case 

infants were required to have been delivered spontaneously preterm between 22-

36 weeks gestation and additionally either the child or mother had to have a first 

degree relative with a history of PTB, or a spontaneous idiopathic preterm 

delivery less than 35 weeks of gestation. Infants were excluded if their mother 
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had any medical indication for a preterm delivery, where part of a multiple 

gestation pregnancy, or other identified risk from preterm delivery such as 

recent trauma or clinical evidence of infection.  

 

Helsinki infant Illumina Omni2.5 BeadChips 

750ng of genomic DNA was sent to the Vanderbilt DNA microarray core 

where they performed QC and processed the Illumina arrays per the 

manufacture’s protocol. The GTC created PLINK ready BED files from the 

processed array genotype calls. QC was performed in PLINK. Monomorphic 

SNPs were removed by using a minor allele frequency filter (MAF) of 0.000001%. 

We chose to not filter by Hardy-Weinberg equilibrium (HWE), but HWE checks 

were performed in order to see if our most significant SNPs were out of HWE in 

controls.  SNPs which were found to have a HWE p < 0.0001 in controls were 

excluded from further analysis. 

 

Applied Biosystems TaqMan genotyping 

Genomic DNA from Oulu was sent to the Cincinnati Children’s Hospital 

Medical Center Genetic Variation and Gene Discovery Core Facility. Standard 

manufacturers protocols were followed and for each assay 10 ng of genomic 

DNA was used.  
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Statistical analysis 

 All association analysis was performed using the software package PLINK 

v1.07. For association tests Fisher’s exact allelic tests were used due to SNPs with 

low MAF. SPSS18 was used to perform one-sample Kolmogorov-Smirnov tests 

and plot histograms of birth weight z-scores. The software package SPSS 

Statistics V.20, was used to test for differences in demographic data between the 

case and control infants and p-values were determined using a one-way 

ANOVA.  The R software package was used to create QQ and Manhattan plots. 

All p-values are two-tailed unless noted otherwise. 
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CHAPTER V 

 

MATERNAL CODING REGION VARIANTS IN COMPLEMENT RECEPTOR 
1 INCREASE RISK FOR SPONTANEOUS IDIOPATHIC PRETERM BIRTH **  

 
 

Introduction 

Preterm birth (PTB), defined as live birth before 37 weeks’ completed 

gestation, is the leading cause of infant mortality worldwide.1 Despite this major 

public health concern, little is known about the pathogenesis of PTB. The limited 

insight into PTB is contributed to by the fact that the mechanism for normal 

parturition in general is not known in humans. There have been a number of 

suggested pathways believed to play a role in PTB pathogenesis, but direct 

evidence for any of these is modest at best.13  

A number of lines of evidence suggest that PTB has a genetic component 

such as PTB aggregating in families, segregation analysis and genetic modeling. 

16,53 Primarily through candidate gene studies, there have been a number of SNPs 

associated with PTB; however, contradictory evidence from replication studies 

exists, and none of these have large effect sizes or have implicated new 

mechanisms in parturition control.60 

With the advent of next-generation sequencing (NGS) and exon capture 

technology the ability to sequence a patient’s exome provides an important new 

approach to disease gene discovery. Whole-exome sequencing has been used to 

                                                        
** Adapted from McElroy et al. In Press at Human Genetics 
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identify the casual variant/gene for a number of Mendelian diseases.158,159 While 

the potential of whole-exome sequencing to identify the cause of complex 

diseases has been discussed,160 this approach has only been used sparingly such 

as in autism spectrum disorders.161 

In this study, we test the hypothesis that rare variants aggregate in specific 

genes and pathways that contribute to PTB risk. In order to test our hypothesis, 

we performed whole-exome sequencing in multiplex families with a history of 

spontaneous idiopathic PTB. We identified predicted deleterious variants 

aggregating in complement/coagulation pathway genes, and extended this 

observation to more common coding region variants to demonstrate a significant 

association of the complement receptor 1 (CR1) gene with spontaneous 

idiopathic preterm birth. 

 

Results 

Analysis of shared variants in mother-daughter pairs 

To identify potential rare variants that contribute to the risk for preterm 

birth, we analyzed two Finnish mother-daughter pairs (families 1168 and 1281) 

each of whom experienced preterm delivery (Figure 5.1). These families were 

selected from more than 100 pedigrees due to high penetrance of preterm birth to 

each mother, more than one affected generation with spontaneous idiopathic 

preterm birth phenotype, and exhibiting a maternal pattern of transmission. 

Variants were called using standard best-practice quality control (QC) thresholds 
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in Genome Analysis Toolkit (GATK).162 Only variants that passed QC filters were 

then input into the Variant Annotation, Analysis and Search Tool (VAAST) 

pipeline.163 Each set of these variants was then individually compared to a 1000 

Genomes background VAAST file that contained data from 1093 individuals. 

In family 1168 there were 202 genes/features, which had the most 

significant VAAST genome-wide permutated p-value (1.67e-06) (Appendix J). 

For family 1281 there were 275 genes with the most significant VAAST genome-

wide permutated p-value (1.67e-06) (Appendix K). Examining the overlap of 

these gene lists reveals 163 genes that are common between the two families. The 

top genome-wide permutation p-value for both families are considered genome-

wide significant due to the fact that it surpasses the Bonferroni corrected p-value 

for 20,000 genes, 2.5e-06. 

 

Figure 5.1: Pedigrees for the two mother-daughter pairs that were whole-
exome sequenced. Family 1168 (A) and family 1281 (B) 
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Pathway analysis of the most significant genes in mother-daughter pairs 

In order to glean insight into PTB pathophysiology we used a pathway 

analysis approach. The most significant genes for our two families were tested 

for pathway enrichment using the Kyoto Encyclopedia of Genes and Genomes 

(KEGG).164  

Overall, for family 1168 genes from the most significant list played a role 

in 102 pathways (Table 5.1). The top three pathways were olfactory transduction, 

metabolic pathways and complement and coagulation cascades with 25, eight, 

and five genes respectively.  In family 1281, there were 86 KEGG pathways with 

at least one gene, which had the most significant VAAST p-value (Table 5.2). The 

top three pathways were olfactory transduction, focal adhesion and metabolic 

pathways with 20, six, and five genes respectively.  The complement and 

coagulation cascades is in the next group of three pathways which each have 

four genes. Table 5.3 lists the genes in each family that were involved in the 

complement and coagulation cascades.    
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Table 5.1: KEGG pathways with more than three genes from the list of most 
significant p-value genes for family 1168. Only pathways with three or greater 
genes are listed. The number of genes for each pathway is the number inside the 
parentheses. For a complete list of KEGG pathways for family 1168 please see 
Appendix L. 

 

 

 

Table 5.2: KEGG pathways with more than three genes from the list of most 
significant p-value genes for family 1281. Only pathways with three or greater 
genes are listed. The number of genes for each pathway is the number inside the 
parentheses. For a complete list of KEGG pathways for family 1168 please see 
Appendix M. 

  

KEGG$Pathways$Top$P/value$Genes$Family$1168
hsa04740'Olfactory'transduction''(25)

hsa01100'Metabolic'pathways'(8)

hsa04610'Complement'and'coagulation'cascades'(5)

hsa04640'Hematopoietic'cell'lineage'(4)

hsa04510'Focal'adhesion'(4)

hsa04972'Pancreatic'secretion'(4)

hsa05164'Influenza'A'(4)

hsa04974'Protein'digestion'and'absorption'(4)

hsa04080'Neuroactive'ligandLreceptor'interaction'(3)

hsa04141'Protein'processing'in'endoplasmic'reticulum'(3)

hsa05144'Malaria'(3)

hsa00520'Amino'sugar'and'nucleotide'sugar'metabolism'(3)

hsa04666'Fc'gamma'RLmediated'phagocytosis'(3)

hsa04360'Axon'guidance'(3)

KEGG$Pathways$Top$P/value$Genes$Family$1281
hsa04740'Olfactory'transduction'(20)
hsa04510'Focal'adhesion'(6)
hsa01100'Metabolic'pathways'(5)
hsa04141'Protein'processing'in'endoplasmic'reticulum'(4)
hsa04610'Complement'and'coagulation'cascades'(4)
hsa04512'ECMEreceptor'interaction'(4)
hsa04972'Pancreatic'secretion'(3)
hsa04650'Natural'killer'cell'mediated'cytotoxicity'(3)
hsa05164'Influenza'A'(3)
hsa04612'Antigen'processing'and'presentation'(3)
hsa04974'Protein'digestion'and'absorption'(3)
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Table 5.3: The complement and coagulation cascade genes from the KEGG analysis of the most significant p-value 
VAAST genes for families 1168 and 1281. The higher the VAAST score the more likely the gene is to be disease causing. 

 

 

 

 

Gene Gene$Name VAAST$Score$
Family$1168

VAAST$Score$
Family$1281

VAAST$Rank$
Family$1168

VAAST$Rank$
Family$1281

Total$Missense$SNPs$for$
the$other$6$exomes

CR1 Complement)component)(3b/4b))receptor)1)(Knops)blood)group) 174.31 71.81 12 74 60*Ф
F5 Coagulation)factor)V)(proaccelerin,)labile)factor) 91.08 53.38 45 130 44*
F13B Coagulation)factor)XIII,)B)polypeptide 57.60 57.60 64 86 6
CR2 Complement)component)(3d/Epstein)Barr)virus))receptor)2 56.76 39.38 70 162 30*
C4BPA Complement)component)4)binding)protein,)alpha 23.64 38.25 182 170 7
CFH Complement)factor)H n/a 76.52 n/a 65 10*

*)Contains)variants)predicted)to)be)probably)damaging
Ф)Contains)variants)predicted)to)be)possibly)damaging
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Examination of complement and coagulation cascades in our other PTB exomes 

We chose to focus our analysis on the KEGG complement and coagulation 

cascade instead of the two others that they shared, olfactory transduction and 

metabolic pathways, for three main reasons. First, whole-genome sequencing has 

shown that olfactory transduction genes harbor more predicted loss-of-function 

variants than expected when interrogating 1000 Genomes Project data;165 

therefore we believed that these shared variants in the mother-daughter pairs 

were unlikely to be involved in PTB.  Second, coagulation and immune 

activation (complement system) are two of the proposed pathways previously 

hypothesized to contribute to PTB.13,166 Third, prior modest associations exist 

between coagulation pathway genes, F5,167,168 F7,168,169 F13A1,169 and PLAT168 and 

PTB.  

Using our two mother-daughter pairs as a “discovery” cohort we 

examined the six genes from the KEGG complement and coagulation cascades 

identified by VAAST in six other PTB exomes (5 Finnish, 1 European American). 

Because of the higher probability of being damaging, we focused on novel 

variants. Of the six exomes, three harbored novel variants. There were 19 total 

novel variants: 14 were unique, and half were missense SNPs. Using the in silico 

tool PolyPhen-2, we assessed the novel missense variants for potential to be 

deleterious using the HumDiv algorithm.170 The only variant predicted to be 

“probably damaging” was a complement factor H (CFH) Thr956Met variant seen 
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in a single family. All of the other novel missense variants were predicted to be 

“benign” (Table 5.4).  

We also analyzed all missense variants in these genes. All of the six genes 

harbored between 6 and 60 missense variants for a total of 157, and 36 were 

unique. We once again tested the potential for these variants to be deleterious 

using the PolyPhen-2 in silico tool’s HumDiv algorithm. Only half of the genes, 

CR1, CR2, and F5, contained missense variants that were predicted to be 

“probably damaging” and CR1 was the sole gene that contained missense 

variants predicted to be “possibly damaging” by PolyPhen-2 (Table 5.5). 

 

Table 5.4: All novel missense variants in our six other exomes in the six 
complement and coagulation cascade genes identified by VAAST. For the 
PolyPhen-2 prediction the HumDiv algorithm was used. 

 

 

 

 

Individual Gene Variant PolyPhen22
Family'150 F5 GLU1390GLN Benign6
Family'150 F5 LEU1370PHE Benign6
Family'150 F5 PRO1361LEU Benign6
Family'150 F5 LEU1357ILE Benign6
Family'1165 F5 LEU1370PHE Benign6
Family'1165 F5 PRO1361LEU Benign6
Family'1165 F5 LEU1357ILE Benign6
Family'1165 F5 PHE1334LEU Benign6
Family'1165 F5 ARG1220THR Benign6
Family'14w CFH THR956MET Probably6Damaging
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Table 5.5: Counts of missense SNPs in our six proband mother exomes. The 
numbers are for counts of missense variants in the six exomes, and not unique 
variants, except when in parentheses or if there is a single variant.  

 

 

Interrogation of the complement and coagulation cascade in nuclear PTB mothers  

 

Based upon the exome sequencing findings, we next tested the hypothesis 

that coding-region variants in the complement/coagulation cascade genes 

identified in the Finnish families contributed more broadly to the pathogenesis of 

preterm birth.  We conducted an association study in 237 case and 328 control 

Finnish mothers. We performed additive logistic regression adjusting for the 

variables shown to differ significantly between the preterm and term mothers: 

body mass index (BMI), gravidity, ethanol use and smoking use (Table 5.6). Our 

examination was focused on the six complement and coagulation cascade genes 

identified by VAAST in our two whole-exome families. In total, 67 coding region 

SNPs from the six gene regions were analyzed (Appendix N). The most 

significantly associated SNP was an exonic missense SNP, rs6691117, unadjusted 

GENE TOTAL MISSENSE NOVEL MISSENSE
POLYPHEN-2 
PROBABLY 

DAMAGING

POLYPHEN-2 
POSSIBLY 

DAMAGING
CR1 60 4 9 (2) 3 (2)
F5 44 14 2 (1) 0
CR2 30 0 12 (2) 0
CFH 10 1 1 0
C4BPA 7 0 0 0
F13B 6 0 0 0
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p-value = 6.93e-5, OR = 1.74 (1.33, 2.29 95% CI); adjusted additive logistic 

regression p-value  = 1.07e-4, OR = 1.73 (1.31, 2.29 95% CI) in CR1. This 

association withstands a conservative Bonferroni corrected p-value of 7.64e-4.  

Depending on the transcript, this SNP changes an isoleucine to a valine at amino 

acid position 1615 or 2065. Both of these substitutions are predicted to be 

“benign” by the HumDiv algorithm in PolyPhen-2. 

 

Table 5.6: Demographic information for Helsinki mothers genotyped on the 
Illumina exome BeadChip. Numbers in the table are mean (standard deviation) 
except for dichotomous variables where percentages were used. P-values were 
determined using a one-way analysis of variance (ANOVA). 

 

Variable 
Preterm 
(n=237) 

Term 
(n=328) 

P-value 

Maternal age (yr) 31.1 (5.0) 31.5 (4.2) 0.334 
Body Mass Index (kg/m2) 23.5 (4.5) 22.7 (3.1) 0.012 
Parity (n) 1.6 (0.89) 1.5 (0.73) 0.062 
Gravidity (n) 2.1 (1.3) 1.9 (1.0) 0.050 
Birth weight (g) 2337.0 (500.1) 3578.7 (421.3) <0.0001 
Birth length (cm) 45.0 (2.8) 50.3 (1.9) <0.0001 
Alcohol use (%) 5.2% 1.5% 0.012 
Tobacco use (%) 8.7% 2.7% 0.002 

 

 

Due to the robust association of the CR1 coding region SNP we applied a 

similar analysis to our Finnish mothers (252 cases/287 controls), which were 

previously genotyped on the Affymetrix 6.0 SNP arrays.171 We provide this 

additional analysis to explore whether our coding SNP, rs6691117, on the exome 
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array may be tagging another variant elsewhere in the CR1 gene or its regulatory 

regions which would be detected with this more densely sampled, largely 

noncoding variant array. We identified 103 SNPs in the region spanning 10 kb 5’ 

through 10 kb 3’ of the CR1 gene boundary (Appendix O). The most significantly 

associated SNP, rs10429953, was located in an intron of CR1 unadjusted additive 

logistic regression p-value = 1.31e-4, OR = 1.93. This p-value surpasses the 

Bonferroni corrected p-value of 4.85e-4 for 103 SNPs tested. In addition to the 

most significantly associated SNPs surpassing Bonferroni, the second highest 

associated SNP, rs10429943, also in a CR1 intron p-value = 3.74e-4 OR = 1.84 

clears the threshold. However, these two SNPs are in strong linkage 

disequilibrium (r2 = 0.96) so this should be considered a single strong association 

in CR1 (Figure 5.2). 
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Figure 5.2: A Haploview view LD diagram showing D’ values for our 
Affymetrix 6.0 SNP array samples for the CR1 gene region with the addition of 
10Kb 5’ and 3’. The two intronic SNPs on the Affymetrix array are marked with 
an asterisk. The intronic SNP on the Illumina exome beadchip resides in the same 
126Kb LD block.  

 

 

Discussion 

 

To our knowledge, this is the first report using whole-exome sequencing 

to interrogate for rare variants that aggregate in specific genes and pathways in 

the complex disease of PTB. We used our results from the exome sequencing of 

mother-daughter pairs in highly affected families to expand to candidate 

gene/pathway association studies using genotyping arrays. This more focused 
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analysis enhances the power to detect significant variants in smaller nuclear 

datasets, and should accelerate gene discovery.  We believe that this approach 

can be effectively applied to other complex disorders.  

CR1, and the complement/coagulation factor pathway, as revealed by our 

exome sequencing and follow-up analysis, provides a biologically plausible 

pathway related to adverse pregnancy outcomes. There is a growing body of 

literature describing activation of the complement system and adverse 

pregnancy outcomes, including PTB.172,173 There have been a number of reports 

illustrating that an increased level of fragment Bb (FBb) early in pregnancy is 

associated with an increased risk of PTB < 34 weeks.174 FBb is a marker of 

alternative pathway complement activation. In addition to increased FBb, 

increased maternal plasma levels of complement C3a during the first trimester 

have been associated with an increased risk of a number of adverse pregnancy 

outcomes including PTB.175  It has also been shown that erythrocyte membrane 

complement receptor 1 (CR1) levels are reduced during pregnancy and reach 

their nadir during the third trimester.176 In this study, we found a significant 

association between three SNPs in CR1 and an increased risk of PTB. However, 

when we examine linkage disequilibrium all three of the SNPs are in a large 126 

kb linkage block (Figure 5.2). The strongest association residing in the coding 

region variant suggests that the other non-coding SNPs are detected based on 

tagging this variant. 
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While predicted to be “benign” the isoleucine to valine exonic SNP in our 

exome arrays may be functional; such a subtle substitution would be 

misclassified by in silico tools such as PolyPhen-2170 and SIFT.177 Evidence for 

functional consequences of the SNP leading to the isoleucine to valine change in 

CR1 we identified in our exome arrays is its association with alteration in 

erythrocyte sedimentation rate (ESR), as detected in a large genome-wide 

association study.178 Our SNP (rs6691117) is associated with a decreased ESR. As 

CR1 on erythrocytes leads to increased clearance of immune complexes to limit 

their deposition in vessel walls, we would predict greater systemic inflammation 

or coagulability resulting from our risk-promoting allele. ESR normally increases 

in pregnancy due to increased fibrinogen levels and the need for clearance of 

immune complexes;179 attenuating this process by less functional CR1 variants 

would be predicted to increase risk for adverse pregnancy outcomes such as 

preterm birth.  Alternatively, this SNP may be tagging a different causative 

variant in the gene. It should be noted that the predicted damaging SNP 

rs2274567, resulting in a histidine to arginine change, is in linkage disequilibrium 

with rs6691117, and is associated with similar changes in ESR.178 

In conclusion, this is the first report of using whole-exome sequencing to 

interrogate for rare variants that aggregate in specific genes and pathways in the 

complex disease of PTB. We believe that our results strengthen the argument that 

the complement and coagulation cascade are involved in the pathophysiology of 

PTB, and suggest potential screening and intervention approaches to prevent 
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prematurity, which target this pathway.180 Possible interventions include the use 

of soluble CR1181 or monoclonal antibodies to C5182 to limit complement 

activation and inflammation or enhance clearance, which our risk allele may 

compromise. While there are FDA approved anti-C5 antibodies, eculizumab,183 

soluble CR1 is still in the clinical trial stage. Future functional studies will be 

essential to determine the specific mechanisms by which these pathways increase 

prematurity risk. 

 

Materials and Methods 

Sample collection 

Mothers of preterm or term infants were enrolled for genetic analysis by 

methods approved by Institutional Review Boards/Ethics Committees of 

University Central Hospital, Helsinki, University of Oulu, Cincinnati Children’s 

Hospital Medical Center and Vanderbilt University. DNA was extracted from 

whole blood or Oragene® saliva kits. Standard manufacturer protocols were 

followed.  

 

Sample inclusion and exclusion criteria  

Samples were selected for whole-exome sequencing based on a number of 

features, which we termed, “preterm birth load”.  What we took into account 
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was the shortest gestation in a pedigree, number of preterm children and 

whether the mother herself was born preterm. For this study we only sequenced 

case mothers.  

For the Illumina and Affymetrix SNP genotyping arrays the inclusion and 

exclusion criteria are as described below. Case mothers were required to have a 

spontaneous preterm birth between 22-36 weeks gestation and additionally 

either the child or mother had to have a first degree relative with a history of 

PTB, or spontaneous idiopathic preterm birth less than 35 weeks of gestation.  

Families for whole exome sequencing were selected by more than one generation 

of the pedigree affected with an apparent maternal mode of transmission. 

Mothers were excluded if they had any medical indication for a preterm 

delivery, a multiple gestation pregnancy, or other identified risk from preterm 

birth such as recent trauma or clinical evidence of infection.  

 

Exome capture 

A total of 3µg of genomic DNA was submitted to the Vanderbilt Genome 

Technology Core (GTC) for whole-exome capture. The Agilent Technologies 

50Mb SureSelect Human All Exome Kit was used to capture and amplify the 

submitted samples.  Per the manufacturer’s website, the kit interrogates 1.22% of 

the human genomic regions corresponding to the NCBI Consensus CDS database 

(CCDS).  
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Whole-exome sequencing 

The GTC performed the sequencing using an Illumina HiSeq and 100bp 

paired-end reads. This resulted in an average of 76x read-depth for all of our 

exome with a range between ~60-104x.  

 

Sequencing quality control  

The Genome Analysis Toolkit (GATK) using current best practices was 

used to trim, align and call variants in our exome sequence data against the Hg19 

genome build.  

 

VAAST analysis 

Only variants, which passed GATK QC were annotated against the Hg19 

genome build using the Variant Annotation Tool (VAT). Once annotated the 

Variant Selection Tool (VST) was used to select variants that were shared 

between the mother-daughter pairs in family 1168 and 1281. Each set of these 

shared variants were then individually compared to a 1000 Genomes 

background VAAST background file that contained data from 1093 individuals 

using the Variant Analysis Tool (VAT). When VAT was ran the codon-bias 
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option and default additive genetic model were used. VAAST p-values were 

calculated using the fast genome-permutation option with 1e5 permutations.   

 

KEGG pathway analysis of VAAST most significant p-value genes 

All of the genes with the top p-value for each mother-daughter pair were 

searched against the KEGG Homo Sapiens pathways to test for pathway 

enrichment in the top p-value genes.  

 

Finnish mothers Illumina HumanExome beadchips 

750ng of genomic DNA was sent to the Vanderbilt DNA microarray core 

where they performed QC and processed the Illumina arrays per the 

manufacture’s protocol. The GTC created PLINK ready BED files form the 

processed array genotype calls. QC was performed in PLINK. Monomorphic 

SNPs were removed by using a minor allele frequency filter (MAF) of 0.000001%. 

We chose to not filter by Hardy-Weinberg equilibrium (HWE), but HWE checks 

were performed in order to see if our most significant SNPs were out of HWE in 

controls.   
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Finnish mothers Affymetrix Genome-Wide Human SNP Array 6.0 

750ng of genomic DNA were genotyped in the Vanderbilt microarray 

core. All samples, which passed the core’s QC thresholds, were processed using 

the manufacturer's protocol for the Affymetrix 6.0 arrays. The PLINK ready BED 

files were processed for QC using PLINK. The QC steps were as follows and 

performed in the following order: remove SNPs with genotype frequency <95%, 

remove samples with <95% SNP calls, remove SNPs with MAF <5%, and remove 

SNPs with HWE p-values in controls <0.0001.  

 

Statistical analysis 

All SNP statistical analysis was performed using the software package 

PLINK v1.07. Demographic data was analyzed using SPSS Statistics V.20 and 

means were tested for a significant difference using a one-way analysis of 

variance (ANOVA). For association tests of complement/coagulation factor 

cascade SNPs, we used additive logistic regression adjusting for the factors 

shown to differ significantly between cases and controls (Table 5.6). Associations 

were considered statistically significant if they survived a Bonferroni correction 

for the number of SNPs tested.  
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CHAPTER VI 

 

CONCLUSION 
 

 
Summary 

Preterm birth (PTB) and parturition in general are controlled by a complex 

interaction of genetic and environmental factors. While we have known that 

gestational age is a heritable trait, we can currently only explain a small 

proportion of this heritability.16,51-53,60 While this so-called “missing 

heritability”184 is not unique to PTB, it is accentuated because compared to most 

complex disease or phenotypes studied, PTB genetics is very verdant. In Chapter 

I, I discuss some of the genetic variants associated with PTB and also some of the 

reasons why the majority of associations have not replicated and/or 

generalized.60 Additionally, since PTB genetics is still in its infancy, access to 

appropriate datasets to replicate associations is often lacking.   

Genome-wide association studies (GWAS) have been used successfully as 

an agnostic approach to identify SNPs associated with other complex diseases 

such as type 2 diabetes and cardiovascular disease reviewed by Manolio.66 As of 

August 16, 2012, the National Human Genome Research Institute (NHGRI) 

GWAS catalog of published GWAS includes 1353 publications and 7039 SNPs. 

While this catalog includes more than 700 phenotypes/traits there has yet to be a 

published GWAS investigating PTB, gestational age or birth weight z-scores. To 

complete this dissertation, I have interrogated both the maternal and fetal 
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genome in an attempt to explain the etiology of PTB or the associated traits, 

gestational age or birth weight z-scores.  

In Chapter II, I utilized a GWAS in Finnish mothers to investigate PTB 

and the quantitative trait gestational age. When we used PTB as the phenotype, 

we identified only a single SNP at the 10-6 level of significance, rs871476, p-value 

= 6.22e-6, odds ratio (OR) = 0.484. This is an intergenic SNP that is more than 

100kb away from the two closest genes SLC34A2 and ANAPC4. Unfortunately, 

this SNP is unlikely to be a true causative SNP for PTB. Due to our smaller 

sample size of 539 mothers, especially for a GWAS, the “real” SNP which is 

tagging the causative variant is probably still somewhere lower down in 

significance, in the noise. We will only be able to answer this question more 

definitively when we increase our dataset by adding new samples, which our 

colleagues in Finland send to us every 6-8 months. Larger sample sizes in the 

future will allow us to re-investigate these and other genetic associations with 

PTB. 

After transforming the gestational ages using Box-Cox power 

transformation in order to make the dependent variable more Gaussian our 

results were more encouraging. We observed three SNPs with p-values at the 10-6 

level of significance. The strongest association, p-value = 5.26e-6, for a SNP 3’ 

downstream of COL11A1. While COL11A1 has not been associated with preterm 

birth or gestational age previously, it has been associated with Marshall 
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syndrome,79-82 type II Stickler syndrome76-79 and an increased risk for lumbar disc 

herniation.83   

For the Box-Cox transformed gestational age linear regression using 

genotypic, dominant and recessive linear regression our strongest association is 

observed for rs10104530, which is 5’ upstream of TACC1, for both the genotypic 

and recessive model, 7.09e-8 and 9.45e-7 respectively. TACC1 has not been 

previously associated with PTB or gestational age control, but has previously 

been shown to be dysregulated in breast,84-86 ovarian87  and gastric88 carcinoma. 

While this association with Box-Cox transformed gestational ages could be a 

false positive, alternatively it could be illustrating pleiotropy, an area of human 

genetics that is currently garnering substantial interest.185,186  

Also of note, and further strengthening the element of pleiotropy the 

second most significant SNP under an additive model is in TCF7L2 (p-value 

1.10e-3). Variants within this gene have been associated with a number of 

phenotypes such as type 2 diabetes risk, glucose control,90-102,187 coronary heart 

disease,	
  110 metabolic syndrome109 and absolute birth weight;109 however, this is 

the first report of a variant within this gene being associated with gestational age.   

While GWAS are an ideal agnostic approach to discover common variants 

with minor allele frequency (MAF) > 5% and smaller effect sizes, they are unable 

to discover/test rare variants with larger effect sizes.65,66 To remedy this, we used 

complementary approaches such as whole-exome sequencing, Illumina 

HumanExome BeadChip association and pathway analysis to investigate rare and 
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lower (MAF < 5%) variants in the maternal genome.  These results are presented 

and discussed in Chapter V of this dissertation. These experiments added 

evidence to the growing theory of involvement of the complement and 

coagulation system systems in the pathogenesis of PTB.172-175 By selecting 

mothers to sequence form highly effected families and using two mother-

daughter pairs as a “discovery” cohort then following up with exome beadchips 

in a larger dataset of mothers, we discovered a robust association with coding 

SNPs in complement receptor 1 (CR1). We hope that this finding will allow for 

screening of gravid women and targets for potential therapeutic intervention.   

Chapters III and IV of this dissertation, take a different tact and instead of 

investigating the maternal genome we switched our focus to the fetal genome. 

We first utilized a GWAS testing for associations with preterm birth risk and 

Box-Cox transformed gestational age. The strongest association is observed for 

rs7153053 when we explore both phenotypes. This SNP is located within an 

intron of the Ensembl gene, ENSG0256050, and 5’ upstream of INF2. Neither of 

these two genes has previously been associated with PTB or gestation length 

control; however, missense variants in INF2 have previously been discovered to 

be a cause of autosomal dominant focal segmental glomerulosclerosis (FSGS).130 

Additionally, ENSG0256050, is predicted to be a long intergenic non-coding 

RNAs (lincRNA) which can control a number of genes and been shown to be 

involved in development.126,127   
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We once again alter our analysis and in Chapter IV interrogate the fetal 

genome for SNPs that associate with birth weight z-scores. Unlike earlier GWAS 

of birth weight, we chose to use the normalized birth weight z-scores instead of 

the absolute birth weight because this allowed us to have the largest dataset 

possible and include both infants born in the preterm and term range. This 

investigation discovered a number of highly significant associations with SNPs 

in the coding region of ADAM29. When we examine the associations closer for 

the adjusted additive linear regression we observed five SNPs in the coding 

region of ADAM29, but they are all in very high linkage disequilibrium (LD); 

therefore it is best to consider this one very robust association with three SNP 

(rs6553849, KGP11462362 and KGP7935680) having the identical p-value and 

beta, p-value = 4.25e-7 and beta = 0.33. These three SNPs as well as the next most 

significant, rs12512467, p-value = 6.04e-7 and beta = 0.29, all while not reaching 

the threshold of “genome-wide” significance p-value < 5e-8 were close. Like all 

of the other GWAS analysis, we also tested birth weight z-scores under a general 

genotypic and dominant and recessive models. The most significant SNPs for 

each analysis were the same five SNPs from the additive model and for each SNP 

the additive model produced the most significant p-values.  

Following up the most significant birth weight z-score associations in an 

independent Oulu infant cohort we observed a one-tailed p-value = 0.096 for 

rs6553849. While this does not surpass the traditional p-value ≤ 0.05 level of 

significance I would still consider it a positive replication especially since the 
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beta is in the same direction. Unfortunately, we do not have access to 

demographic data for the infants born during the term period (37-41weeks) 

therefore we were unable to adjust our linear association in the Oulu infant birth 

weight z-score analysis.  

Overall, in this dissertation I present a comprehensive interrogation of the 

maternal and fetal genome investigating a number of phenotypes: preterm birth, 

gestational age and birth weight z-scores. Not unexpectedly, the top “hits” for all 

of these analyses were not always the same SNP or within the same gene/region. 

Also based on current biological understanding the most significantly associated 

SNPs would not have been identified using the more traditional candidate gene 

or candidate pathway approach because the majority of the top SNPs do not 

have an obvious connection to any of the hypothesized pathways involved in 

preterm birth and parturition.13,64 If these associations replicate, they add to the 

growing evidence showing the importance of pleiotropy.185,186 This is the beauty 

of the agnostic GWAS and whole-exome sequencing approaches and these 

results should not be considered the end of the investigation, but only the 

beginning. 
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Future Directions 

 

While in this dissertation, I present a number of interesting results there is 

still much more work to be done in order to achieve the ultimate goal of this 

work: to transform pubic health by helping prevent or delay preterm birth.  

A logical first step for all of the association results discussed in this 

dissertation, and human genetics in general, is to attempt to replicate and/or 

generalize all of the SNPs with the most significant associations. The terms 

“replicate” and “generalize” are often incorrectly used interchangeably. 

Replication is an experiment in which one attempts to find a significant 

association and affect in the same direction, when the alleles are coded the same 

way, for variants of interest in an independent dataset from the same ancestral 

background. On the other hand, generalization is when the most highly 

associated SNPs from an association study are interrogated an independent 

datasets from different ancestral backgrounds i.e. a Caucasian GWAS identified 

SNP is tested for an association in an African American cohort. It is possible for a 

SNP to replicate and not generalize.  

The primary datasets used for this dissertation are Finnish, which due to 

the small population size (~5.4 million) will unfortunately make finding an 

appropriate replication cohort virtually impossible.  Due to this limitation, I 

believe that finding an appropriate generalization cohort to be a key future 

direction and should be undertaken as soon as possible. 
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Because of the lack of appropriate replication cohort availability and the 

fact that Finland is a genetic isolate, I believe that the strongest associations 

discovered in this dissertation may not be generalizable. The two primary 

reasons I believe this is due to possible different genetic architecture of PTB and 

gestational age control in the Finnish due to private mutations or more likely due 

to different patterns of LD. However, while the same actual variant may not 

generalize other variants within a gene/region or SNPs in other genes within a 

particular pathway may be discovered to have robust associations and should be 

considered evidence in support of the results presented here. Due to the low cost 

of ABI TaqMan or Sequenom genotyping I recommend that in addition to the 

most highly significant SNPs additional SNPs in that gene/region and additional 

genes within a pathway (if one is known for a gene) are interrogated when 

completing this future direction.  

In addition to genotyping, with the decreasing costs and throughput of 

next-generation sequencing (NGS) always increasing another future direction is 

to perform deep sequencing of genes and genes within pathways identified in 

the GWAS presented. Because I expect the majority of the discovered putative 

functional variants to be very rare and/or private I believe the best use of funds 

would be to sequence only affected individuals. When interesting variants are 

discovered, ABI TaqMan assays can always be created to explore if any term 

mothers/infants harbor said variant.  
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Finally, computational and statistical analysis can only teach us so much 

about the pathogenesis and/or etiology of preterm birth, gestation length control 

and birth weight z-scores. Functional analysis will be required in order to 

discover if particular SNPs have measurable effects in vitro. While the specific 

functional experiment will be guided by the gene or region a SNP of interest is 

located in mRNA or protein level variation will be examined. Allele expression 

imbalance is another potential consequence one may want to explore.  

As discussed above, preterm birth research is a young field overall and 

this is true for the sphere of human genetics. Before we are able to make large 

advancements in understanding the etiology or pathogenesis with the ultimate 

goal of being able to prevent or delay PTB a number of things must happen. First 

and foremost, what we really require are larger datasets which will have more 

power to identify variants with smaller, more realistic effect size. Currently, the 

two largest PTB datasets are the Danish National Birth Cohort (DNBC) and 

Norwegian Mother and Child Cohort (MoBa) both of which include ~1000 

mother-child pair cases and ~1000 mother-child pair controls.188  

These two larger datasets also illustrate another important aspect, which 

we need to standardize in order to move this field ahead; a more standardized 

phenotype of preterm birth. While PTB is inherently a heterogeneous phenotype, 

if we have a standardized phenotypic definition, which must include 

demographic factors known, to be associated with PTB or speculated to be 

associated some of which include: maternal age, body mass index (BMI), 
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gravidity, parity, preterm premature rupture of the membranes (PPROM), 

infection status (bacterial vaginosis (BV), Group Beta Streptococcus (GBS), etc), 

drug use during and prior to pregnancy, prior pregnancy complications, 

smoking and alcohol use. A more uniform set of variables will allow for more 

efficient and powerful meta-analyses in the future.   

Other areas of research that will be important to interrogate in the future 

to help understand PTB are maternal-fetal interactions, gene-environment (GxE) 

and gene-gene (GxG) in both maternal and fetal samples. These type of analyses 

in genome-wide SNP and whole-exome/whole-genome sequence data are still in 

their infancy and will need to mature in order to be performed in all PTB studies, 

but I believe will be a fruitful area of discovery.  

In conclusion, while the results discussed in this dissertation are 

interesting and have potentially implicated new pathways in the etiology of 

preterm birth, gestational age control and birth weight z-score this should only 

be considered a starting off point. There is much more analysis and functional 

studies needed to untangle how these SNPs and/or genes are involved. 

However, I believe the results presented in this dissertation to be an important 

step in the process of improving public health by understanding preterm birth.  
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Appendix A. Summary of candidate gene association studies’ findings as of August 2012. Modified from Jevon et al. 
 
 

 
Gene 

Symbol 

 
Gene Name 

 

Number 
of 

Studies 

Studies 
reporting 
positive 
findings 

ABCA1 ATP-binding cassette, sub-family A, member 1 1 0 
ACE angiotensin I converting enzyme  1  8 1 
ADD1 adducin 1 (alpha) 2 0 
ADH1B alcohol dehydrogenase 1B  4 0 
ADH1C alcohol dehydrogenase 1c 5 0 
ADRB2 adrenergic, beta-2, receptor, surface  9 3 
AGT angiotensinogen 4 2 
AGTR1 angiotensin II receptor, type 1 3 0 
ALOX5 arachidonate 5-lipoxygenase 1 0 
ALOX5AP arachidonate 5-lipoxygenase-activating 

protein  
2 0 

ANG angiogenin, ribonuclease, RNase A family, 5 1 0 
ANGPT2 angiopoietin 2 1 0 
ANXA5 annexin A5  1 0 
APOA1 apolipoprotein A-I  2 0 
APOA4 apolipoprotein A-4 1 0 
APOA5 apolipoprotein A-5 1 0 
APOB apolipoprotein B 2 0 
APOC2 apolipoprotein C2 1 0 
APOC3 apolipoprotein C3 2 0 
APOE apolipoprotein E 2 0 
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Gene 

Symbol 

 
Gene Name 

 

Number 
of 

Studies 

Studies 
reporting 
positive 
findings 

AQP2 aquaporin 2 (collecting duct) 1 0 
BHMT betaine-homocysteine methyltransferase  1 0 
CBS cystathionine-beta-synthase  5 1 
CCL2 chemokine (C-C motif) ligand 2  5 0 
CCL3 chemokine (C-C motif) ligand 3 4 0 
CCL8 chemokine (C-C motif) ligand 8 4 0 
CCR2 chemokine (C-C motif) receptor 2 1 0 
CD14 monocyte differentiation antigen CD14 6 1 
CD55 CD55 molecule, decay accelerating factor for 

complement 
1 0 

CETP cholesteryl ester transfer protein, plasma 2 0 
COL1A1 collagen, type I, alpha 1  4 0 
COL1A2 collagen, type I, alpha 2 4 0 
COL3A1 collagen, type 3, alpha 1 4 0 
COL4A1 collagen, type IV, alpha 1 1 0 
COL4A2 collagen, type IV, alpha 2 1 0 
COL4A3 collagen, type IV, alpha 3  1 1 
COL4A4 collagen, type IV, alpha 4 1 0 
COL4A5 collagen, type IV, alpha 5 1 0 
COL4A6 collagen, type IV, alpha 6 1 0 
COL5A1 collagen, type V, alpha 1 5 0 
COL5A2 collagen, type V, alpha 2 5 0 
CRH corticotropin releasing hormone  4 0 
CRHBP corticotropin releasing hormone binding 5 1 
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Gene 

Symbol 

 
Gene Name 

 

Number 
of 

Studies 

Studies 
reporting 
positive 
findings 

protein 
CRHR1 corticotropin releasing hormone receptor 1 5 0 
CRHR2 corticotropin releasing hormone receptor 2 5 0 
CRP C-reactive protein, pentraxin-related  4 0 
CSF1 colony stimulating factor 1  1 0 
CSF2 colony stimulating factor 2  1 0 
CSF3 colony stimulating factor 3  2 0 
CSPG2 Chondroitin sulfate proteoglycan core protein 

2 
1 0 

CTGF connective tissue growth factor  1 0 
CTLA4 cytotoxic T-lymphocyte-associated protein 4  4 1 
CYP19A1 cytochrome P450, family 19, subfamily A, 

polypeptide 1  
4 0 

CYP1A1 cytochrome P450, family 1, subfamily A, 
polypeptide 1  

7 2 

CYP2C19 cytochrome P450, family 2, subfamily C, 
polypeptide 19  

1 0 

CYP2D6 cytochrome P450, family 2, subfamily D, 
polypeptide 6 

4 0 

CYP2E1 cytochrome P450, family 2, subfamily E, 
polypeptide 1  

2 0 

CYP3A4 cytochrome P450, family 3, subfamily A, 
polypeptide 4  

1 0 

DEFA5 defensin, alpha 5, Paneth cell-specific 1 0 
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Gene 

Symbol 

 
Gene Name 

 

Number 
of 

Studies 

Studies 
reporting 
positive 
findings 

DEFB1 defensin, beta 1 1 0 
DHCR24 24-dehydrocholesterol reductase  1 0 
DHCR7 7-dehydrocholesterol reductase  1 0 
DHFR dihydrofolate reductase  4 0 
DLAT dihydrolipoamide S-acetyltransferase 1 0 
DRD2 dopamine receptor D2  1 0 
EDN1 endothelin 1 1 0 
EDN2 endothelin 2  4 0 
ELN elastin 1 0 
PROCR protein C receptor, endothelial (EPCR)  1 0 
EPHX1 epoxide hydrolase 1, microsomal (xenobiotic)  5 0 
EPHX2 epoxide hydrolase 2, microsomal (xenobiotic)  4 0 
ESR1 estrogen receptor 1 1 0 
ESR2 estrogen receptor 2 1 0 
F12 coagulation factor XII (Hageman factor) 1 0 
F13A1 coagulation factor XIII, A1 polypeptide  2 0 
F13B coagulation factor XIII, B polypeptide 1 0 
F2 coagulation factor II (thrombin)  10 0 
F3 coagulation factor III (thromboplastin, tissue 

factor) 
1 0 

F5 coagulation factor V  13 4 
F7 coagulation factor VII  8 1 
FABP2 fatty acid binding protein 2, intestina 1 0 
FAS Fas  4 0 
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Gene 

Symbol 

 
Gene Name 

 

Number 
of 

Studies 

Studies 
reporting 
positive 
findings 

FADS1 Fatty acid desaturase 1 1 0 
FADS2 Fatty acid desaturase 2 1 0 
FASLG Fas ligand 4 0 
FGB fibrinogen beta chain  3 0 
FGF1 fibroblast growth factor 1 (acidic) 1 0 
FGF2 fibroblast growth factor 2 (basic) 1 0 
FGF4 fibroblast growth factor 4 1 0 
FIGF c-fos induced growth factor (vascular 

endothelial growth factor D) 
1 0 

FLT1 fms-related tyrosine kinase 1  2 0 
FLT4 fms-related tyrosine kinase 4 1 0 
FN1 fibronectin 1 1 0 
FSHR follicle stimulating hormone receptor 1 1 
GJA4 gap junction protein, alpha 4 1 0 
GJB2 gap junction protein, beta 2, 1 0 
GNB3 guanine nucleotide binding protein, beta 

polypeptide 3  
2 0 

GP1BA glycoprotein Ib (platelet), alpha polypeptide 1 0 
GSTM1 glutathione S-transferase mu 1  4 2 
GSTP1 glutathione S-transferase pi 1  5 0 
GSTT1 glutathione S-transferase theta 1  5 2 
GSTT2 glutathione S-transferase theta 2 4 0 
HLA-E major histocompatibility complex, class I, E 1 0 
HLA-G major histocompatibility complex, class I, G 1 0 
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Gene 

Symbol 

 
Gene Name 

 

Number 
of 

Studies 

Studies 
reporting 
positive 
findings 

HMGCR 3-hydroxy-3-methylglutaryl-Coenzyme A 
reductase  

1 1 

HPGD hydroxyprostaglandin dehydrogenase 15-
(NAD) 

1 0 

HSD11B1 hydroxysteroid (11-beta) dehydrogenase 1  4 0 
HSD17B7 hydroxysteroid (17-beta) dehydrogenase 7  4 0 
HSPA14 heat shock 70kDa protein 14  4 0 
HSPA1A heat shock 70kDa protein 1A  4 0 
HSPA1B heat shock 70kDa protein 1B 4 0 
HSPA1L heat shock 70kDa protein 1-like  4 1 
HSPA4 heat shock 70kDa protein 4  4 0 
HSPA6 heat shock 70kDa protein 6  4 0 
HSPG2 heparan sulfate proteoglycan 2 1 0 
HTR2A serotonin receptor 2A 1 0 
ICAM1 intercellular adhesion molecule 1 2 1 
ICAM3 intercellular adhesion molecule 3  1 0 
IFNG interferon, gamma  6 2 
IFNGR1 interferon, gamma receptor 1 2 0 
IFNGR2 interferon, gamma receptor 2 1 0 
IGF1 insulin-like growth factor 1 5 0 
IGF1R insulin-like growth factor 1 receptor 1 0 
IGF2 insulin-like growth factor 2 1 1 
IGF2R insulin-like growth factor 2 receptor 1 0 
IGFBP3 insulin-like growth factor binding protein 3  4 0 



 

 

95 

 
Gene 

Symbol 

 
Gene Name 

 

Number 
of 

Studies 

Studies 
reporting 
positive 
findings 

IL10 interleukin 10  11 2 
IL10RA interleukin 10 receptor, alpha  6 1 
IL10RB interleukin 10 receptor, beta 4 0 
IL11 interleukin 11  1 0 
IL12A interleukin 12A 2 0 
IL12B interleukin 12B 1 0 
IL12RB1 interleukin 12 receptor, beta 1 1 0 
IL12RB2 interleukin 12 receptor, beta 2 1 0 
IL13 interleukin 13  5 1 
IL13RA2 interleukin 13 receptor, alpha 2 1 0 
IL15 interleukin 15  4 1 
IL18 interleukin 18 6 0 
IL18BP interleukin 18 binding protein 1 0 
IL1A interleukin 1, alpha  10 2 
IL1B interleukin 1, beta 11 2 
IL1R1 interleukin 1 receptor, type I  6 0 
IL1R2 interleukin 1 receptor, type 2 6 1 
IL1RAP interleukin 1 receptor accessory protein  4 0 
IL1RAPL1 interleukin 1 receptor accessory protein-like 1 1 0 
IL1RN interleukin 1 receptor antagonist  11 4 
IL2 interleukin 2 7 1 
IL2RA interleukin 2 receptor, alpha  5 1 
IL2RB interleukin 2 receptor, beta 4 1 
IL3 interleukin 3 1 0 
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Gene 

Symbol 

 
Gene Name 

 

Number 
of 

Studies 

Studies 
reporting 
positive 
findings 

IL3RA interleukin 3 receptor, alpha 1 0 
IL4 interleukin 4 9 3 
IL4R interleukin 4 receptor 5 0 
IL5 interleukin 5 5 1 
IL5RA interleukin 5 receptor, alpha 1 0 
IL6 interleukin 6 16 5 
IL6R interleukin 6 receptor 8 4 
IL8 interleukin 8 8 0 
IL8RA interleukin 8 receptor alpha 5 0 
IL8RB interleukin 8 receptor beta 1 0 
IL9 interleukin 9 1 0 
IL9R interleukin 9 receptor 1 0 
IRS1 insulin receptor substrate 1 1 0 
ITGA2 integrin, alpha 2 1 0 
ITGB3 integrin, beta 3 2 0 
KL Klotho 4 1 
LCAT lecithin-cholesterol acyltransferase  1 0 
LDLR LDL receptor 1 0 
LEP leptin 1 0 
LIPC lipase, hepatic  2 0 
LNPEP leucyl/cystinyl aminopeptidase  1 0 
LOXL1 lysyl oxidase-like 1  1 0 
LPA lipoprotein 1 0 
LPL lipoprotein lipase  2 0 
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Gene 

Symbol 

 
Gene Name 

 

Number 
of 

Studies 

Studies 
reporting 
positive 
findings 

LST1 leukocyte specific transcript 1  4 0 
LTA lymphotoxin alpha  6 1 
LTF lactotransferrin 1 0 
LYZ lysozyme 1 0 
MASP2 mannan-binding lectin serine peptidase 2  1 0 
MBL2 mannose-binding lectin 2, soluble 11 6 
MGP matrix Gla protein 1 0 
MIF macrophage migration inhibitory factor 1 0 
MMP1 matrix metallopeptidase 1  6 1 
MMP10 matrix metallopeptidase 10 1 0 
MMP11 matrix metallopeptidase 11 1 0 
MMP12 matrix metallopeptidase 12 1 0 
MMP13 matrix metallopeptidase 13 1 0 
MMP14 matrix metallopeptidase 14 1 0 
MMP15 matrix metallopeptidase 15 1 0 
MMP16 matrix metallopeptidase 16 1 0 
MMP17 matrix metallopeptidase 17 1 0 
MMP19 matrix metallopeptidase 19 1 0 
MMP2 matrix metallopeptidase 2 5 1 
MMP3 matrix metallopeptidase 3 6 0 
MMP7 matrix metallopeptidase 7  1 0 
MMP8 matrix metallopeptidase 8 5 0 
MMP9 matrix metallopeptidase 9 6 2 
MTHFD1 methylenetetrahydrofolate dehydrogenase 4 0 
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Gene 

Symbol 

 
Gene Name 

 

Number 
of 

Studies 

Studies 
reporting 
positive 
findings 

MTHFR 5,10-methylenetetrahydrofolate reductase 12 0 
MTR 5-methyltetrahydrofolate-homocysteine 

methyltransferase  
1 0 

MTRR 5-methyltetrahydrofolate-homocysteine 
methyltransferase reductase  

2 1 

NAT1 N-acetyltransferase 1 5 0 
NAT2 N-acetyltransferase 2 6 0 
NFKB1 nuclear factor of kappa light polypeptide gene 

enhancer in B-cells 1 
5 0 

NFKB2 nuclear factor of kappa light polypeptide gene 
enhancer in B-cells 2 

4 0 

NFKBIA nuclear factor of kappa light polypeptide gene 
enhancer in B-cells inhibitor, alpha  

4 0 

NFKBIB nuclear factor of kappa light polypeptide gene 
enhancer in B-cells inhibitor, beta 

4 0 

NFKBIE nuclear factor of kappa light polypeptide gene 
enhancer in B-cells inhibitor, epsilon 

4 0 

NOD2 nucleotide-binding oligomerization domain 
containing 2  

2 1 

NOD2/CARD
15 

nucleotide-binding oligomerization domain 
containing 2  

5 0 

NOS2A nitric oxide synthase 2, inducible  3 2 
NOS3 nucleotide-binding oligomerization domain 

containing 3 
8 1 

NPPA natriuretic peptide precursor A  2 0 
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Gene 

Symbol 

 
Gene Name 

 

Number 
of 

Studies 

Studies 
reporting 
positive 
findings 

NPR1 natriuretic peptide receptor A 1 0 
NPY neuropeptide Y 1 0 
NQO1 NAD(P)H dehydrogenase, quinone 1  1 0 
NR3C1 glucocorticoid receptor 4 0 
OPRM1 opioid receptor, mu 1  1 1 
OXT oxytocin 1 0 
OXTR oxytocin receptor 2 1 
PAFAH1B1 platelet-activating factor acetylhydrolase, 

isoform Ib, subunit 1  
5 0 

PAFAH1B2 platelet-activating factor acetylhydrolase, 
isoform Ib, subunit 2 

4 0 

PDE4D phosphodiesterase 4D, cAMP-specific  1 0 
PDGFB platelet-derived growth factor beta 

polypeptide 
1 0 

PDGFC platelet derived growth factor C 1 0 
PECAM1 platelet/endothelial cell adhesion molecule 1 1 0 
PGEA1 chibby homolog 1  4 0 
PGF placental growth factor 1 0 
PIGF phosphatidylinositol glycan anchor 

biosynthesis, class F 
1 0 

PLA2G4C phospholipase A2, group IVC (cytosolic, 
calcium-independent) 

1 1 

PGR progesterone receptor 9 1 
PGRMC1 progesterone receptor membrane component 4 0 
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Gene 

Symbol 

 
Gene Name 

 

Number 
of 

Studies 

Studies 
reporting 
positive 
findings 

1  
PGRMC2 progesterone receptor membrane component 

2  
4 0 

PLA2G4A phospholipase A2, group IVA 4 0 
PLAT plasminogen activator, tissue  7 2 
PLAU plasminogen activator, urokinase 1 0 
PLAUR plasminogen activator, urokinase receptor 1 0 
POMC proopiomelanocortin  4 0 
PON1 paraoxonase 1  8 3 
PON2 paraoxonase 2 6 2 
PPARA peroxisome proliferator-activated receptor 

alpha 
1 0 

PPARG peroxisome proliferator-activated receptor 
gamma  

2 1 

PRKCA protein kinase C, alpha 1 1 
PROC protein C 2 0 
PROS1 protein S (alpha) 1 0 
PTCRA pre T-cell antigen receptor alpha  4 0 
PTGER1 prostaglandin E receptor 1 1 0 
PTGER2 prostaglandin E receptor 2 5 1 
PTGER3 prostaglandin E receptor 3 4 2 
PTGER4 prostaglandin E receptor 4 1 0 
PTGES prostaglandin E synthase 6 0 
PTGES2 prostaglandin E synthase 2 2 1 
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Gene 

Symbol 

 
Gene Name 

 

Number 
of 

Studies 

Studies 
reporting 
positive 
findings 

PTGES3 prostaglandin E synthase 3 2 0 
PTGFR prostaglandin F receptor 5 0 
PTGS1 prostaglandin G/H synthase 

(cyclooxygenase)  
6 0 

PTGS2 prostaglandin-endoperoxide synthase 2 6 0 
PTPN22 protein tyrosine phosphatase, non-receptor 

type 22 
4 0 

REN renin  2 0 
RFC1 replication factor C (activator 1) 1 1 0 
RLN1 Relaxin 1 1 0 
RLN2 Relaxin 2 1 0 
RLN3 Relaxin 3 1 0 
SCGB1A1 secretoglobin, family 1A, member 1 

(uteroglobin)  
4 0 

SCNN1A sodium channel, nonvoltage-gated 1 alpha  1 0 
SELE selectin E  3 0 
SELP selectin P 1 0 
SERPINB2 serpin peptidase inhibitor, clade B 

(ovalbumin), member 2  
1 0 

SERPINC1 serpin peptidase inhibitor, clade C, member 1  1 0 
SERPINE1 serpin peptidase inhibitor, clade E, member 1  7 1 
SERPINH1 serpin peptidase inhibitor, clade H, member 1 

(collagen binding protein 1)  
6 2 

SFTPA1 surfactant protein A1 1 0 
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Gene 

Symbol 

 
Gene Name 

 

Number 
of 

Studies 

Studies 
reporting 
positive 
findings 

SFTPA2 surfactant protein A2 1 0 
SFTPC Surfactant protein C 2 0 
SFTPD Surfactant protein D 2 1 
SHMT1 serine hydroxymethyltransferase 1 1 1 
SLC23A1 solute carrier family 23 (nucleobase 

transporters), member 1  
5 0 

SLC23A2 solute carrier family 23, member 2  1 1 
SLC6A4 solute carrier family 6, member 4  4 0 
SOD3 superoxide dismutase 3, extracellular 1 0 
SPARC secreted protein, acidic, cysteine-rich 1 0 
TAP1 transporter 1, ATP-binding cassette, sub-

family B 
1 0 

TBXAS1 thromboxane A synthase 1 (platelet) 1 0 
TCN2 transcobalamin II 4 0 
TFPI tissue factor pathway inhibitor 1 0 
TGFA transforming growth factor, alpha  1 0 
TGFB transforming growth factor, beta 1 0 
TGFB1 transforming growth factor, beta 1 7 0 
THBD thrombomodulin  2 1 
THBS1 thrombospondin 1 1 0 
THBS2 thrombospondin 2 1 0 
THPO thrombopoietin 1 0 
TIMP1 TIMP metallopeptidase inhibitor 1 1 0 
TIMP2 TIMP metallopeptidase inhibitor 2 1 1 
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Gene 

Symbol 

 
Gene Name 

 

Number 
of 

Studies 

Studies 
reporting 
positive 
findings 

TIMP3 TIMP metallopeptidase inhibitor 3  4 0 
TIMP4 TIMP metallopeptidase inhibitor 4  4 0 
TLR1 toll-like receptor 1 1 0 
TLR10 toll-like receptor 10  1 1 
TLR2 toll-like receptor 2 7 1 
TLR3 toll-like receptor 3 5 0 
TLR4 toll-like receptor 4  11 2 
TLR5 toll-like receptor 5  1 0 
TLR6 toll-like receptor 6  1 0 
TLR7 toll-like receptor 7 4 0 
TLR8 toll-like receptor 8 4 0 
TLR9 toll-like receptor 9 5 0 
TNF tumor necrosis factor 27 12 
TNFR1 tumor necrosis factor receptor 1 7 4 
TNFR2 tumor necrosis factor receptor 2 3 2 
TNFRSF1A tumor necrosis factor receptor superfamily, 

member 1A  
5 0 

TNFRSF1B tumor necrosis factor receptor superfamily, 
member 1B 

5 0 

TNFRSF6 tumor necrosis factor receptor superfamily, 
member 6b, decoy  

2 1 

TNR tenascin R 1 0 
TRAF2 TNF receptor-associated factor 2  4 0 
TREM1 triggering receptor expressed on myeloid cells 4 1 
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Gene 

Symbol 

 
Gene Name 

 

Number 
of 

Studies 

Studies 
reporting 
positive 
findings 

1  
TSHR thyroid stimulating hormone receptor  4 0 
UGT1A1 UDP glucuronosyltransferase 1 family, 

polypeptide A1  
4 0 

VEGF vascular endothelial growth factor A  7 1 
VEGFB vascular endothelial growth factor B 1 0 
VEGFC vascular endothelial growth factor C 1 0 
VWF von Willebrand factor 1 0 
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Appendix B. All SNPs with p-value < 10-4 for chi-square PTB association in Finnish mothers genotyped on the 
Affymetrix 6.0 array. Base pair (BP) positions refer to NCBI36 (hg18, March 2006 assembly) build of the human genome. 

CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
  

FREQ	
  
CASE	
  

FREQ	
  
CONTROL	
  

MAJOR	
  
ALLELE	
   P	
   OR	
   L95	
   U95	
  

4	
   rs871476	
   25152250	
   G	
   0.137	
   0.247	
   A	
   6.22E-­‐06	
   0.48	
   0.35	
   0.67	
  
6	
   rs732496	
   152995144	
   C	
   0.362	
   0.496	
   A	
   1.15E-­‐05	
   0.58	
   0.45	
   0.74	
  
17	
   rs222745	
   3435620	
   T	
   0.155	
   0.071	
   C	
   1.17E-­‐05	
   2.41	
   1.61	
   3.60	
  
4	
   rs904132	
   55496865	
   G	
   0.093	
   0.030	
   A	
   1.72E-­‐05	
   3.30	
   1.86	
   5.84	
  
13	
   rs17337271	
   23250220	
   C	
   0.036	
   0.103	
   G	
   2.00E-­‐05	
   0.32	
   0.19	
   0.56	
  
14	
   rs767757	
   60944127	
   G	
   0.318	
   0.204	
   T	
   2.04E-­‐05	
   1.82	
   1.38	
   2.40	
  
10	
   rs11193681	
   84068972	
   T	
   0.155	
   0.073	
   C	
   2.14E-­‐05	
   2.32	
   1.56	
   3.45	
  
12	
   rs2302728	
   2644929	
   C	
   0.205	
   0.320	
   A	
   2.29E-­‐05	
   0.55	
   0.41	
   0.73	
  
6	
   rs1110227	
   153003973	
   A	
   0.365	
   0.493	
   G	
   2.51E-­‐05	
   0.59	
   0.46	
   0.76	
  
4	
   rs12648485	
   55499294	
   C	
   0.089	
   0.029	
   T	
   2.52E-­‐05	
   3.31	
   1.84	
   5.95	
  
10	
   rs3908834	
   84068197	
   T	
   0.153	
   0.073	
   C	
   2.85E-­‐05	
   2.30	
   1.54	
   3.41	
  
2	
   rs332867	
   117602473	
   G	
   0.273	
   0.167	
   A	
   2.85E-­‐05	
   1.87	
   1.39	
   2.51	
  
6	
   rs9384026	
   153035435	
   C	
   0.370	
   0.497	
   G	
   3.27E-­‐05	
   0.60	
   0.47	
   0.76	
  
3	
   rs4682892	
   43558769	
   G	
   0.262	
   0.159	
   T	
   3.30E-­‐05	
   1.88	
   1.39	
   2.53	
  
22	
   rs9605923	
   15445079	
   T	
   0.208	
   0.320	
   A	
   3.52E-­‐05	
   0.56	
   0.42	
   0.74	
  
3	
   rs7428158	
   43558323	
   C	
   0.262	
   0.160	
   T	
   4.07E-­‐05	
   1.86	
   1.38	
   2.51	
  
1	
   rs1890844	
   208973862	
   T	
   0.516	
   0.391	
   G	
   4.48E-­‐05	
   1.66	
   1.30	
   2.12	
  
12	
   rs4765701	
   2641152	
   T	
   0.153	
   0.255	
   C	
   4.64E-­‐05	
   0.53	
   0.39	
   0.72	
  
5	
   rs17463165	
   39140675	
   A	
   0.337	
   0.459	
   G	
   4.80E-­‐05	
   0.60	
   0.47	
   0.77	
  
2	
   rs12464127	
   19949783	
   C	
   0.193	
   0.300	
   T	
   4.95E-­‐05	
   0.56	
   0.42	
   0.74	
  
18	
   rs4798834	
   9714549	
   A	
   0.242	
   0.356	
   G	
   5.19E-­‐05	
   0.58	
   0.44	
   0.75	
  
3	
   rs17407870	
   43471145	
   G	
   0.262	
   0.161	
   A	
   5.22E-­‐05	
   1.84	
   1.37	
   2.49	
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CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
  

FREQ	
  
CASE	
  

FREQ	
  
CONTROL	
  

MAJOR	
  
ALLELE	
   P	
   OR	
   L95	
   U95	
  

10	
   rs3904726	
   84081058	
   G	
   0.153	
   0.075	
   A	
   5.45E-­‐05	
   2.22	
   1.50	
   3.29	
  
16	
   rs344357	
   1776256	
   G	
   0.223	
   0.335	
   C	
   5.59E-­‐05	
   0.57	
   0.43	
   0.75	
  
3	
   rs3755602	
   43594314	
   A	
   0.262	
   0.162	
   G	
   5.67E-­‐05	
   1.84	
   1.36	
   2.47	
  
3	
   rs6809134	
   43559114	
   T	
   0.263	
   0.163	
   C	
   6.24E-­‐05	
   1.83	
   1.36	
   2.47	
  
6	
   rs9479367	
   153014823	
   T	
   0.363	
   0.484	
   C	
   6.36E-­‐05	
   0.61	
   0.48	
   0.78	
  
6	
   rs12200492	
   47646089	
   C	
   0.472	
   0.352	
   T	
   6.48E-­‐05	
   1.65	
   1.29	
   2.10	
  
9	
   rs7045593	
   1530499	
   T	
   0.145	
   0.070	
   C	
   6.50E-­‐05	
   2.26	
   1.50	
   3.41	
  
2	
   rs11676603	
   209969736	
   G	
   0.300	
   0.193	
   C	
   6.60E-­‐05	
   1.79	
   1.34	
   2.38	
  
4	
   rs2051428	
   100342209	
   C	
   0.239	
   0.144	
   T	
   6.99E-­‐05	
   1.87	
   1.37	
   2.55	
  
2	
   rs7602876	
   117576259	
   T	
   0.276	
   0.175	
   C	
   7.00E-­‐05	
   1.80	
   1.34	
   2.41	
  
2	
   rs13396426	
   42965448	
   C	
   0.407	
   0.528	
   T	
   7.03E-­‐05	
   0.61	
   0.48	
   0.78	
  
14	
   rs9944098	
   90557351	
   T	
   0.460	
   0.342	
   C	
   7.31E-­‐05	
   1.64	
   1.29	
   2.10	
  
15	
   rs1868243	
   55667810	
   C	
   0.344	
   0.234	
   T	
   7.42E-­‐05	
   1.72	
   1.31	
   2.25	
  
2	
   rs12986437	
   20068171	
   G	
   0.213	
   0.323	
   T	
   7.54E-­‐05	
   0.57	
   0.43	
   0.75	
  
16	
   rs169844	
   16162267	
   C	
   0.468	
   0.350	
   T	
   7.67E-­‐05	
   1.64	
   1.28	
   2.09	
  
3	
   rs2372433	
   43473252	
   C	
   0.260	
   0.162	
   T	
   7.72E-­‐05	
   1.82	
   1.35	
   2.45	
  
3	
   rs17407912	
   43471255	
   G	
   0.262	
   0.164	
   A	
   7.83E-­‐05	
   1.81	
   1.35	
   2.44	
  
6	
   rs1744397	
   152962545	
   G	
   0.387	
   0.509	
   C	
   8.23E-­‐05	
   0.61	
   0.48	
   0.78	
  
8	
   rs9918898	
   94373271	
   A	
   0.028	
   0.084	
   G	
   8.52E-­‐05	
   0.31	
   0.17	
   0.58	
  
12	
   rs961445	
   73790333	
   C	
   0.175	
   0.093	
   T	
   8.67E-­‐05	
   2.06	
   1.43	
   2.96	
  
3	
   rs13063227	
   172429742	
   A	
   0.184	
   0.100	
   G	
   9.29E-­‐05	
   2.01	
   1.41	
   2.88	
  
6	
   rs9395272	
   47603093	
   G	
   0.480	
   0.362	
   A	
   9.66E-­‐05	
   1.63	
   1.27	
   2.08	
  
21	
   rs243693	
   28127529	
   T	
   0.366	
   0.484	
   C	
   9.70E-­‐05	
   0.61	
   0.48	
   0.79	
  
5	
   rs28050	
   96171180	
   G	
   0.280	
   0.180	
   A	
   9.74E-­‐05	
   1.77	
   1.33	
   2.36	
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CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
  

FREQ	
  
CASE	
  

FREQ	
  
CONTROL	
  

MAJOR	
  
ALLELE	
   P	
   OR	
   L95	
   U95	
  

6	
   rs873889	
   153033302	
   G	
   0.364	
   0.482	
   A	
   9.76E-­‐05	
   0.61	
   0.48	
   0.78	
  
4	
   rs7663862	
   55454959	
   G	
   0.089	
   0.033	
   A	
   9.83E-­‐05	
   2.86	
   1.65	
   4.97	
  
2	
   rs4665765	
   25216019	
   T	
   0.355	
   0.473	
   C	
   9.91E-­‐05	
   0.61	
   0.48	
   0.78	
  
16	
   rs2247696	
   1792776	
   T	
   0.209	
   0.315	
   C	
   9.92E-­‐05	
   0.58	
   0.44	
   0.76	
  
2	
   rs332868	
   117602387	
   C	
   0.286	
   0.185	
   T	
   9.97E-­‐05	
   1.76	
   1.32	
   2.34	
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Appendix	
  C.	
  A complete list of all SNPs with p-value < 10-4 from the unadjusted additive linear regression for the Box-
Cox transformed gestational ages for Finnish mothers genotyped on the Affymetrix 6.0 SNP array. Base pair (BP) 
positions refer to NCBI36 (hg18, March 2006 assembly) build of the human genome. 

CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
   BETA	
   L95	
   U95	
   P	
  

1	
   rs10874644	
   102931572	
   G	
   2.34E+09	
   1.34E+09	
   3.34E+09	
   5.26E-­‐06	
  
2	
   rs7583085	
   42876472	
   G	
   1.78E+09	
   1.02E+09	
   2.54E+09	
   5.77E-­‐06	
  
2	
   rs7569325	
   42978493	
   G	
   1.81E+09	
   1.02E+09	
   2.59E+09	
   7.54E-­‐06	
  
2	
   rs12464127	
   19949783	
   C	
   1.77E+09	
   9.92E+08	
   2.55E+09	
   1.04E-­‐05	
  
6	
   rs4714551	
   42098919	
   A	
   -­‐1.65E+09	
   -­‐2.37E+09	
   -­‐9.18E+08	
   1.13E-­‐05	
  
5	
   rs10070878	
   28220077	
   T	
   -­‐2.42E+09	
   -­‐3.49E+09	
   -­‐1.35E+09	
   1.14E-­‐05	
  
6	
   rs12208368	
   76474506	
   T	
   -­‐2.12E+09	
   -­‐3.06E+09	
   -­‐1.18E+09	
   1.21E-­‐05	
  
12	
   rs12827976	
   65560052	
   T	
   1.70E+09	
   9.46E+08	
   2.46E+09	
   1.22E-­‐05	
  
4	
   rs41389750	
   11370357	
   C	
   2.40E+09	
   1.33E+09	
   3.46E+09	
   1.30E-­‐05	
  
2	
   rs920391	
   42872851	
   C	
   1.73E+09	
   9.56E+08	
   2.49E+09	
   1.34E-­‐05	
  
2	
   rs7582883	
   42876508	
   C	
   1.70E+09	
   9.37E+08	
   2.46E+09	
   1.42E-­‐05	
  
6	
   rs4711698	
   42095429	
   G	
   -­‐1.63E+09	
   -­‐2.36E+09	
   -­‐8.99E+08	
   1.51E-­‐05	
  
13	
   rs17337271	
   23250220	
   C	
   2.78E+09	
   1.53E+09	
   4.03E+09	
   1.55E-­‐05	
  
4	
   rs871476	
   25152250	
   G	
   1.80E+09	
   9.90E+08	
   2.62E+09	
   1.65E-­‐05	
  
6	
   rs732496	
   152995144	
   C	
   1.51E+09	
   8.30E+08	
   2.19E+09	
   1.66E-­‐05	
  
2	
   rs6736894	
   42995273	
   A	
   1.67E+09	
   9.14E+08	
   2.43E+09	
   1.82E-­‐05	
  
23	
   rs1172046	
   103629907	
   T	
   1.60E+09	
   8.75E+08	
   2.33E+09	
   1.89E-­‐05	
  
10	
   rs1904693	
   52585849	
   G	
   1.49E+09	
   8.10E+08	
   2.16E+09	
   1.92E-­‐05	
  
6	
   rs12210386	
   76610556	
   A	
   -­‐2.17E+09	
   -­‐3.16E+09	
   -­‐1.18E+09	
   2.05E-­‐05	
  
6	
   rs6901077	
   42097696	
   A	
   -­‐1.61E+09	
   -­‐2.34E+09	
   -­‐8.70E+08	
   2.24E-­‐05	
  
14	
   rs767757	
   60944127	
   G	
   -­‐1.61E+09	
   -­‐2.35E+09	
   -­‐8.70E+08	
   2.34E-­‐05	
  
12	
   rs2302728	
   2644929	
   C	
   1.64E+09	
   8.87E+08	
   2.39E+09	
   2.35E-­‐05	
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CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
   BETA	
   L95	
   U95	
   P	
  

2	
   rs332867	
   117602473	
   G	
   -­‐1.74E+09	
   -­‐2.54E+09	
   -­‐9.40E+08	
   2.38E-­‐05	
  
12	
   rs12820694	
   65550268	
   T	
   1.59E+09	
   8.60E+08	
   2.32E+09	
   2.39E-­‐05	
  
14	
   rs17127816	
   54264954	
   C	
   -­‐1.41E+09	
   -­‐2.06E+09	
   -­‐7.60E+08	
   2.43E-­‐05	
  
12	
   rs7310441	
   65540438	
   T	
   1.63E+09	
   8.80E+08	
   2.38E+09	
   2.46E-­‐05	
  
7	
   rs10225158	
   76939468	
   C	
   -­‐1.53E+09	
   -­‐2.24E+09	
   -­‐8.27E+08	
   2.49E-­‐05	
  
2	
   rs4350800	
   42966710	
   G	
   1.72E+09	
   9.30E+08	
   2.52E+09	
   2.49E-­‐05	
  
12	
   rs17182681	
   65560266	
   A	
   1.63E+09	
   8.76E+08	
   2.38E+09	
   2.59E-­‐05	
  
23	
   rs5916847	
   104101048	
   A	
   1.44E+09	
   7.74E+08	
   2.11E+09	
   2.82E-­‐05	
  
6	
   rs9352244	
   76628350	
   A	
   -­‐2.12E+09	
   -­‐3.10E+09	
   -­‐1.14E+09	
   2.82E-­‐05	
  
6	
   rs9360946	
   76629692	
   A	
   -­‐2.12E+09	
   -­‐3.10E+09	
   -­‐1.14E+09	
   2.82E-­‐05	
  
6	
   rs2208798	
   76640363	
   T	
   -­‐2.12E+09	
   -­‐3.10E+09	
   -­‐1.14E+09	
   2.82E-­‐05	
  
6	
   rs12196105	
   76575424	
   T	
   -­‐2.12E+09	
   -­‐3.10E+09	
   -­‐1.14E+09	
   2.82E-­‐05	
  
16	
   rs344357	
   1776256	
   G	
   1.57E+09	
   8.43E+08	
   2.30E+09	
   2.85E-­‐05	
  
13	
   rs7999686	
   109785738	
   A	
   1.44E+09	
   7.72E+08	
   2.11E+09	
   2.90E-­‐05	
  
6	
   rs12200169	
   76293841	
   T	
   -­‐1.98E+09	
   -­‐2.91E+09	
   -­‐1.06E+09	
   2.94E-­‐05	
  
16	
   rs4781675	
   9708081	
   T	
   1.48E+09	
   7.91E+08	
   2.17E+09	
   3.07E-­‐05	
  
2	
   rs4953664	
   42878180	
   C	
   1.67E+09	
   8.93E+08	
   2.45E+09	
   3.09E-­‐05	
  
5	
   rs52252	
   141944700	
   G	
   1.85E+09	
   9.88E+08	
   2.72E+09	
   3.13E-­‐05	
  
12	
   rs2098414	
   95798431	
   C	
   1.77E+09	
   9.39E+08	
   2.60E+09	
   3.35E-­‐05	
  
11	
   rs7945752	
   33916012	
   A	
   -­‐1.58E+09	
   -­‐2.32E+09	
   -­‐8.39E+08	
   3.37E-­‐05	
  
11	
   rs16908162	
   10655488	
   C	
   -­‐1.53E+09	
   -­‐2.25E+09	
   -­‐8.12E+08	
   3.42E-­‐05	
  
6	
   rs13216921	
   76640907	
   A	
   -­‐2.12E+09	
   -­‐3.11E+09	
   -­‐1.12E+09	
   3.62E-­‐05	
  
18	
   rs1945148	
   20387524	
   G	
   -­‐1.50E+09	
   -­‐2.20E+09	
   -­‐7.93E+08	
   3.67E-­‐05	
  
2	
   rs4594497	
   42959781	
   A	
   1.65E+09	
   8.71E+08	
   2.42E+09	
   3.73E-­‐05	
  
7	
   rs16219	
   24224133	
   C	
   1.48E+09	
   7.80E+08	
   2.18E+09	
   4.11E-­‐05	
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CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
   BETA	
   L95	
   U95	
   P	
  

9	
   rs7045593	
   1530499	
   T	
   -­‐2.24E+09	
   -­‐3.30E+09	
   -­‐1.17E+09	
   4.43E-­‐05	
  
10	
   rs1904692	
   52585942	
   T	
   1.45E+09	
   7.58E+08	
   2.14E+09	
   4.67E-­‐05	
  
5	
   rs4702798	
   11377554	
   C	
   1.57E+09	
   8.18E+08	
   2.31E+09	
   4.71E-­‐05	
  
12	
   rs4765701	
   2641152	
   T	
   1.73E+09	
   9.01E+08	
   2.55E+09	
   4.72E-­‐05	
  
8	
   rs4633077	
   6059848	
   G	
   -­‐1.48E+09	
   -­‐2.18E+09	
   -­‐7.70E+08	
   4.77E-­‐05	
  
8	
   rs2320562	
   24782519	
   T	
   1.37E+09	
   7.15E+08	
   2.03E+09	
   4.82E-­‐05	
  
12	
   rs7967486	
   3780172	
   T	
   -­‐1.59E+09	
   -­‐2.35E+09	
   -­‐8.26E+08	
   5.00E-­‐05	
  
16	
   rs1420050	
   9719224	
   T	
   1.38E+09	
   7.17E+08	
   2.04E+09	
   5.00E-­‐05	
  
2	
   rs12986437	
   20068171	
   G	
   1.62E+09	
   8.40E+08	
   2.39E+09	
   5.15E-­‐05	
  
2	
   rs3816184	
   42869261	
   G	
   1.58E+09	
   8.20E+08	
   2.34E+09	
   5.23E-­‐05	
  
8	
   rs2632839	
   18718981	
   G	
   -­‐2.21E+09	
   -­‐3.27E+09	
   -­‐1.15E+09	
   5.23E-­‐05	
  
2	
   rs7602876	
   117576259	
   T	
   -­‐1.62E+09	
   -­‐2.40E+09	
   -­‐8.40E+08	
   5.27E-­‐05	
  
6	
   rs1110227	
   153003973	
   A	
   1.38E+09	
   7.13E+08	
   2.04E+09	
   5.66E-­‐05	
  
13	
   rs10507333	
   23267776	
   A	
   2.70E+09	
   1.40E+09	
   4.00E+09	
   5.68E-­‐05	
  
6	
   rs9350591	
   76298247	
   T	
   -­‐1.89E+09	
   -­‐2.80E+09	
   -­‐9.77E+08	
   5.69E-­‐05	
  
4	
   rs16841283	
   7844571	
   A	
   -­‐2.17E+09	
   -­‐3.22E+09	
   -­‐1.12E+09	
   5.74E-­‐05	
  
11	
   rs1120306	
   21719669	
   C	
   2.18E+09	
   1.12E+09	
   3.23E+09	
   6.10E-­‐05	
  
22	
   rs5768864	
   45284762	
   C	
   1.74E+09	
   8.93E+08	
   2.58E+09	
   6.15E-­‐05	
  
3	
   rs4682892	
   43558769	
   G	
   -­‐1.67E+09	
   -­‐2.48E+09	
   -­‐8.59E+08	
   6.21E-­‐05	
  
8	
   rs2638610	
   18719115	
   G	
   -­‐2.20E+09	
   -­‐3.26E+09	
   -­‐1.13E+09	
   6.30E-­‐05	
  
6	
   rs12207159	
   76609496	
   A	
   -­‐2.41E+09	
   -­‐3.59E+09	
   -­‐1.24E+09	
   6.35E-­‐05	
  
23	
   rs3135207	
   122776922	
   C	
   -­‐1.46E+09	
   -­‐2.17E+09	
   -­‐7.47E+08	
   6.50E-­‐05	
  
20	
   rs4813182	
   15424232	
   G	
   -­‐2.66E+09	
   -­‐3.96E+09	
   -­‐1.37E+09	
   6.58E-­‐05	
  
6	
   rs3798430	
   76660572	
   C	
   -­‐2.05E+09	
   -­‐3.05E+09	
   -­‐1.05E+09	
   6.60E-­‐05	
  
2	
   rs9917172	
   42963980	
   C	
   1.57E+09	
   8.06E+08	
   2.34E+09	
   6.63E-­‐05	
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CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
   BETA	
   L95	
   U95	
   P	
  

2	
   rs11883440	
   42976693	
   A	
   1.62E+09	
   8.29E+08	
   2.41E+09	
   6.89E-­‐05	
  
3	
   rs7428158	
   43558323	
   C	
   -­‐1.66E+09	
   -­‐2.47E+09	
   -­‐8.46E+08	
   6.97E-­‐05	
  
10	
   rs11193681	
   84068972	
   T	
   -­‐2.15E+09	
   -­‐3.20E+09	
   -­‐1.10E+09	
   7.05E-­‐05	
  
8	
   rs11786728	
   24801098	
   G	
   1.35E+09	
   6.87E+08	
   2.01E+09	
   7.34E-­‐05	
  
6	
   rs12202443	
   76295334	
   T	
   -­‐1.89E+09	
   -­‐2.81E+09	
   -­‐9.61E+08	
   7.35E-­‐05	
  
3	
   rs978485	
   64298841	
   T	
   1.66E+09	
   8.45E+08	
   2.47E+09	
   7.37E-­‐05	
  
22	
   rs9605923	
   15445079	
   T	
   1.46E+09	
   7.43E+08	
   2.18E+09	
   7.73E-­‐05	
  
6	
   rs9384026	
   153035435	
   C	
   1.38E+09	
   7.00E+08	
   2.06E+09	
   7.84E-­‐05	
  
2	
   rs1861459	
   51547229	
   C	
   1.59E+09	
   8.06E+08	
   2.37E+09	
   7.93E-­‐05	
  
5	
   rs258833	
   11377531	
   A	
   1.55E+09	
   7.85E+08	
   2.31E+09	
   8.08E-­‐05	
  
2	
   rs437866	
   126864929	
   A	
   -­‐1.35E+09	
   -­‐2.01E+09	
   -­‐6.81E+08	
   8.28E-­‐05	
  
10	
   rs3908834	
   84068197	
   T	
   -­‐2.13E+09	
   -­‐3.18E+09	
   -­‐1.07E+09	
   8.61E-­‐05	
  
16	
   rs11645147	
   9709958	
   A	
   1.33E+09	
   6.69E+08	
   1.99E+09	
   8.69E-­‐05	
  
2	
   rs4953687	
   43002989	
   A	
   1.51E+09	
   7.60E+08	
   2.26E+09	
   8.88E-­‐05	
  
9	
   rs12683498	
   84671083	
   G	
   -­‐1.37E+09	
   -­‐2.05E+09	
   -­‐6.90E+08	
   8.93E-­‐05	
  
20	
   rs1412977	
   56142696	
   T	
   -­‐1.38E+09	
   -­‐2.07E+09	
   -­‐6.95E+08	
   8.97E-­‐05	
  
3	
   rs17407870	
   43471145	
   G	
   -­‐1.62E+09	
   -­‐2.43E+09	
   -­‐8.15E+08	
   9.19E-­‐05	
  
6	
   rs9447540	
   76512109	
   G	
   -­‐1.92E+09	
   -­‐2.87E+09	
   -­‐9.64E+08	
   9.23E-­‐05	
  
3	
   rs3755602	
   43594314	
   A	
   -­‐1.62E+09	
   -­‐2.42E+09	
   -­‐8.12E+08	
   9.30E-­‐05	
  
14	
   rs17094971	
   58252951	
   A	
   2.27E+09	
   1.14E+09	
   3.40E+09	
   9.34E-­‐05	
  
20	
   rs16980283	
   54765104	
   A	
   1.66E+09	
   8.31E+08	
   2.48E+09	
   9.35E-­‐05	
  
11	
   rs10767349	
   3597975	
   G	
   -­‐2.02E+09	
   -­‐3.03E+09	
   -­‐1.01E+09	
   9.55E-­‐05	
  
18	
   rs4798834	
   9714549	
   A	
   1.41E+09	
   7.05E+08	
   2.11E+09	
   9.62E-­‐05	
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Appendix D. All SNPs with p-value < 10-4 from PTB additive logistic 
regression adjusted for body mass index (BMI), gravidity and smoking status 
association analysis for the Helsinki infants genotyped on the Illumina 
Omni2.5 BeadChip. Base pair (BP) positions refer to GRCh37 (hg19, February 
2009 assembly) build of the human genome. 

 

CHR SNP BP 
MINOR 
ALLELE 

ADJ  
P-value 

OR L95 U95 

14 rs7153053 105150273 T 5.72E-07 2.11 1.58 2.83 
2 rs651418 4495174 T 4.61E-06 0.47 0.34 0.65 

13 KGP1703195 23467854 C 6.65E-06 0.44 0.31 0.63 
4 KGP8375539 56993480 G 6.75E-06 0.49 0.36 0.67 

12 KGP2468001 123572794 G 7.01E-06 4.51 2.34 8.70 
13 rs9510404 23462530 G 8.20E-06 0.44 0.31 0.63 
22 KGP11155947 19226260 A 9.16E-06 4.05 2.18 7.52 
22 rs712950 19204210 C 9.55E-06 4.04 2.18 7.49 
18 KGP10756992 55899135 C 9.68E-06 2.56 1.69 3.87 
12 KGP6141129 31496481 A 1.07E-05 0.47 0.34 0.66 
11 rs4757417 16615280 C 1.13E-05 2.00 1.47 2.73 
4 KGP4968386 27091299 C 1.31E-05 0.37 0.23 0.58 

11 KGP9466771 16637583 T 1.36E-05 1.99 1.46 2.71 
3 KGP2829197 59893355 A 1.46E-05 2.12 1.51 2.98 

10 KGP5967610 117393184 C 1.56E-05 2.14 1.52 3.03 
10 rs17724010 117273552 C 1.76E-05 2.12 1.51 2.99 
23 rs17215777 14045928 A 1.90E-05 2.82 1.75 4.54 
19 rs3745751 48519241 C 2.09E-05 2.84 1.76 4.59 
22 rs1633399 19183787 G 2.09E-05 3.92 2.09 7.34 
22 KGP3688261 19195680 C 2.09E-05 3.92 2.09 7.34 
22 rs712952 19197949 A 2.09E-05 3.92 2.09 7.34 
22 rs807459 19223352 C 2.09E-05 3.92 2.09 7.34 
22 KGP4024090 19280168 G 2.09E-05 3.92 2.09 7.34 
22 KGP2366391 19283478 G 2.09E-05 3.92 2.09 7.34 
9 KGP535977 73076516 A 2.14E-05 0.45 0.31 0.65 

19 rs16982100 48511888 G 2.36E-05 3.38 1.92 5.94 
9 rs10780947 73165078 T 2.40E-05 0.51 0.37 0.70 

13 rs9571702 67532237 A 2.41E-05 0.46 0.32 0.66 
10 KGP10886825 117230790 C 2.43E-05 2.10 1.49 2.97 
8 rs900213 3454880 T 2.57E-05 1.89 1.41 2.55 

10 KGP349528 131918109 G 2.65E-05 2.17 1.51 3.11 
10 KGP22784786 116847333 T 2.81E-05 1.93 1.42 2.63 



 

 

113 

CHR SNP BP 
MINOR 
ALLELE 

ADJ  
P-value 

OR L95 U95 

13 rs1028730 67527244 C 2.86E-05 0.48 0.34 0.68 
10 rs1171727 131908016 G 3.04E-05 2.14 1.50 3.05 
10 rs1264794 116902943 C 3.23E-05 1.94 1.42 2.65 
2 rs662510 4491654 T 3.32E-05 0.50 0.36 0.69 

10 KGP6938912 116941272 G 3.36E-05 1.93 1.41 2.63 
18 rs1529905 73077313 T 3.52E-05 0.33 0.20 0.56 
14 rs11160817 105168414 T 3.57E-05 1.81 1.37 2.40 
5 rs2270822 60459040 A 3.65E-05 0.27 0.15 0.50 
5 KGP10062212 60367377 C 3.67E-05 0.27 0.15 0.50 
5 KGP9219331 60457627 T 3.67E-05 0.27 0.15 0.50 
3 rs1864427 5626851 A 3.69E-05 0.52 0.38 0.71 
9 KGP3932024 127536726 A 3.71E-05 1.88 1.39 2.53 
9 KGP1766722 73095674 T 3.98E-05 0.46 0.32 0.67 

13 KGP7715737 67553342 T 4.10E-05 0.47 0.33 0.68 
15 rs11855354 78443631 G 4.12E-05 0.55 0.41 0.73 
15 rs2304824 78466127 A 4.12E-05 0.55 0.41 0.73 
2 KGP11014586 187487160 G 4.62E-05 1.90 1.40 2.60 
2 rs2197138 187493841 A 4.62E-05 1.90 1.40 2.60 
2 rs7596996 187494427 G 4.62E-05 1.90 1.40 2.60 

10 rs1899721 116965037 T 4.86E-05 1.90 1.39 2.59 
13 KGP9920102 67545692 G 4.96E-05 0.48 0.34 0.69 
7 KGP11556052 22141292 A 5.13E-05 2.00 1.43 2.79 

19 KGP11012186 48517676 T 5.15E-05 3.22 1.83 5.66 
19 KGP3429713 48522480 A 5.15E-05 3.22 1.83 5.66 
19 KGP12010912 48522553 C 5.15E-05 3.22 1.83 5.66 
23 rs5965496 67319094 C 5.15E-05 0.45 0.30 0.66 
3 KGP5507304 47649998 C 5.20E-05 1.95 1.41 2.70 
3 rs1014228 47652639 C 5.20E-05 1.95 1.41 2.70 
1 KGP4299054 243602390 A 5.24E-05 1.90 1.39 2.60 
5 rs2071239 149755421 G 5.36E-05 2.31 1.54 3.47 
9 KGP1996626 434222 A 5.38E-05 2.00 1.43 2.80 

19 KGP1072697 48522746 A 5.42E-05 3.21 1.82 5.64 
1 rs3842895 180596196 C 5.44E-05 0.53 0.39 0.72 
5 KGP12461110 60199201 C 5.44E-05 0.21 0.10 0.44 
5 rs976080 60217651 T 5.44E-05 0.21 0.10 0.44 
2 KGP22789102 187483472 C 5.45E-05 1.89 1.39 2.58 
5 rs7713638 149759096 C 5.48E-05 2.30 1.53 3.44 

19 KGP1220612 48517387 A 5.60E-05 3.26 1.83 5.79 
4 KGP11607606 91912899 A 5.67E-05 2.26 1.52 3.37 
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CHR SNP BP 
MINOR 
ALLELE 

ADJ  
P-value 

OR L95 U95 

10 rs1414632 117244968 G 5.70E-05 2.02 1.43 2.84 
17 KGP3405370 9719103 C 5.77E-05 1.79 1.35 2.38 
12 rs12300476 31514886 C 5.79E-05 2.01 1.43 2.82 
2 rs2370693 187475104 G 5.81E-05 1.89 1.39 2.57 
3 rs3732530 47618953 C 5.94E-05 1.95 1.41 2.70 
5 rs1559050 134470030 T 5.95E-05 1.92 1.40 2.65 
2 rs4233788 187462581 A 6.12E-05 1.89 1.38 2.58 
5 KGP4818545 149763305 G 6.14E-05 2.28 1.52 3.41 

10 rs589508 117171076 C 6.14E-05 1.89 1.38 2.58 
10 rs10885649 116843474 A 6.40E-05 1.88 1.38 2.56 
10 KGP6011600 117148182 A 6.56E-05 1.88 1.38 2.57 
10 rs1170884 117173622 T 6.56E-05 1.88 1.38 2.57 
2 rs3911084 187475357 G 6.61E-05 1.88 1.38 2.56 

23 KGP22809830 67338660 T 6.65E-05 0.45 0.31 0.67 
9 KGP11168890 8402449 A 6.67E-05 0.52 0.37 0.72 
7 KGP3934027 36087216 C 6.76E-05 4.05 2.04 8.06 
5 KGP12517799 60180474 T 7.01E-05 0.21 0.10 0.45 

17 KGP1296647 12534475 T 7.08E-05 2.15 1.48 3.14 
1 rs28456011 1567206 A 7.09E-05 3.02 1.75 5.20 

23 KGP22806909 67347391 G 7.17E-05 0.46 0.31 0.67 
13 rs9562406 43097559 A 7.24E-05 2.51 1.59 3.94 
5 rs13173226 134786259 C 7.25E-05 1.95 1.40 2.71 

16 KGP46650 6028700 T 7.26E-05 0.54 0.39 0.73 
9 KGP22833554 127410515 A 7.31E-05 1.86 1.37 2.52 

19 rs1423056 33780444 T 7.33E-05 0.53 0.38 0.72 
2 rs6758285 19029816 G 7.50E-05 2.04 1.43 2.90 
5 KGP12328891 134486618 A 8.05E-05 1.91 1.38 2.63 
9 KGP5987914 433708 C 8.12E-05 1.95 1.40 2.72 
9 KGP4579224 433978 A 8.12E-05 1.95 1.40 2.72 
3 KGP5265567 147371594 T 8.32E-05 2.37 1.54 3.65 
6 KGP12324497 11292289 A 8.36E-05 0.52 0.37 0.72 
1 rs13375369 197007229 A 8.42E-05 6.81 2.62 17.73 
1 KGP15746110 197020510 T 8.42E-05 6.81 2.62 17.73 

13 rs1323903 67591078 C 8.50E-05 0.55 0.41 0.74 
13 KGP10648476 67608580 T 8.50E-05 0.55 0.41 0.74 
13 rs260156 67613729 C 8.50E-05 0.55 0.41 0.74 
5 KGP11421325 134780494 A 8.52E-05 2.10 1.45 3.03 
5 rs744247 134781400 T 8.52E-05 2.10 1.45 3.03 
5 rs12519481 134784086 A 8.52E-05 2.10 1.45 3.03 
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CHR SNP BP 
MINOR 
ALLELE 

ADJ  
P-value 

OR L95 U95 

3 rs1973780 59904539 T 8.73E-05 1.82 1.35 2.46 
13 KGP9582727 23502042 T 8.80E-05 0.53 0.38 0.72 
5 KGP11882290 60219480 A 8.85E-05 0.22 0.10 0.47 

10 rs11595630 117277009 C 8.91E-05 1.99 1.41 2.80 
10 rs12781613 117302717 C 8.91E-05 1.99 1.41 2.80 
3 KGP1917465 47642726 G 8.94E-05 1.87 1.37 2.56 

11 rs1950008 8058910 T 8.96E-05 3.10 1.76 5.46 
1 KGP4449990 1567206 A 9.08E-05 2.93 1.71 5.02 
3 rs2888432 45292244 G 9.15E-05 0.30 0.16 0.55 
1 rs6660568 48082491 G 9.21E-05 2.22 1.49 3.30 
2 KGP5053590 187467750 A 9.34E-05 1.87 1.37 2.56 
9 KGP2727660 73053196 G 9.42E-05 0.48 0.33 0.69 

10 KGP4162559 116939803 C 9.43E-05 1.82 1.35 2.46 
12 KGP5357931 123519112 A 9.44E-05 5.02 2.23 11.29 
9 rs7040842 433347 C 9.51E-05 1.90 1.38 2.61 

11 KGP12037102 8031000 T 9.52E-05 2.31 1.52 3.52 
16 KGP6524413 80280761 T 9.66E-05 1.98 1.41 2.80 
16 rs16977041 23203690 T 9.69E-05 5.54 2.34 13.12 
11 KGP208171 8030988 T 9.82E-05 2.33 1.52 3.55 
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Appendix E. All SNPs with p-value < 10-4 from PTB unadjusted additive 
logistic regression association analysis for the Helsinki infants genotyped on 
the Illumina Omni2.5 BeadChip. Base pair (BP) positions refer to GRCh37 
(hg19, February 2009 assembly) build of the human genome. 

CHR SNP BP 
MINOR 
ALLELE 

UNADJ   
P-value 

OR L95 U95 

14 rs7153053 105150273 T 9.36E-07 2.05 1.54 2.73 
4 KGP8375539 56993480 G 5.04E-06 0.50 0.37 0.67 
9 KGP535977 73076516 A 7.37E-06 0.44 0.31 0.63 
1 rs28456011 1567206 A 8.68E-06 3.36 1.97 5.72 

13 KGP1703195 23467854 C 9.27E-06 0.45 0.32 0.64 
13 rs9510404 23462530 G 1.13E-05 0.45 0.32 0.65 
1 KGP4449990 1567206 A 1.20E-05 3.25 1.92 5.50 

10 KGP349528 131918109 G 1.22E-05 2.20 1.55 3.13 
2 rs651418 4495174 T 1.24E-05 0.50 0.37 0.68 

12 KGP2468001 123572794 G 1.26E-05 4.21 2.21 8.04 
15 rs11855354 78443631 G 1.43E-05 0.54 0.41 0.71 
15 rs2304824 78466127 A 1.43E-05 0.54 0.41 0.71 
9 KGP1766722 73095674 T 1.50E-05 0.45 0.31 0.65 
3 KGP2829197 59893355 A 1.51E-05 2.09 1.50 2.91 
3 rs1864427 5626851 A 1.52E-05 0.51 0.38 0.69 
9 rs10780947 73165078 T 1.57E-05 0.51 0.38 0.69 

22 KGP11155947 19226260 A 1.67E-05 3.77 2.06 6.91 
10 rs1171727 131908016 G 1.70E-05 2.15 1.52 3.05 
22 rs712950 19204210 C 1.76E-05 3.76 2.05 6.88 
4 KGP4968386 27091299 C 1.93E-05 0.38 0.25 0.60 

11 rs4757417 16615280 C 2.55E-05 1.92 1.42 2.60 
5 rs2270822 60459040 A 2.66E-05 0.27 0.15 0.50 

12 rs12300476 31514886 C 2.68E-05 2.05 1.47 2.86 
5 KGP10062212 60367377 C 2.70E-05 0.27 0.15 0.50 
5 KGP9219331 60457627 T 2.70E-05 0.27 0.15 0.50 

19 rs1423056 33780444 T 2.77E-05 0.51 0.38 0.70 
16 KGP6524413 80280761 T 3.03E-05 2.06 1.47 2.89 
11 KGP9466771 16637583 T 3.14E-05 1.90 1.41 2.58 
9 KGP1996626 434222 A 3.24E-05 2.02 1.45 2.81 
9 KGP2727660 73053196 G 3.27E-05 0.46 0.32 0.67 

18 rs1529905 73077313 T 3.40E-05 0.33 0.20 0.56 
22 rs1633399 19183787 G 3.72E-05 3.65 1.97 6.75 
22 KGP3688261 19195680 C 3.72E-05 3.65 1.97 6.75 
22 rs712952 19197949 A 3.72E-05 3.65 1.97 6.75 
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CHR SNP BP 
MINOR 
ALLELE 

UNADJ   
P-value 

OR L95 U95 

22 rs807459 19223352 C 3.72E-05 3.65 1.97 6.75 
22 KGP4024090 19280168 G 3.72E-05 3.65 1.97 6.75 
22 KGP2366391 19283478 G 3.72E-05 3.65 1.97 6.75 
17 KGP3405370 9719103 C 3.74E-05 1.79 1.36 2.37 
23 rs17215777 14045928 A 3.75E-05 2.67 1.67 4.25 
10 KGP5967610 117393184 C 3.76E-05 2.03 1.45 2.84 
13 rs9562406 43097559 A 3.96E-05 2.56 1.63 4.00 
5 KGP12461110 60199201 C 4.15E-05 0.20 0.10 0.44 
5 rs976080 60217651 T 4.15E-05 0.20 0.10 0.44 
7 KGP11556052 22141292 A 4.28E-05 1.99 1.43 2.76 

17 KGP1296647 12534475 T 4.29E-05 2.16 1.50 3.13 
2 KGP11014586 187487160 G 4.44E-05 1.88 1.39 2.55 
2 rs2197138 187493841 A 4.44E-05 1.88 1.39 2.55 
2 rs7596996 187494427 G 4.44E-05 1.88 1.39 2.55 

19 KGP1577871 41550317 T 4.47E-05 1.80 1.36 2.38 
1 KGP4299054 243602390 A 4.53E-05 1.89 1.39 2.56 
4 KGP4441723 92890696 A 4.66E-05 3.13 1.81 5.43 

10 KGP22784786 116847333 T 4.74E-05 1.88 1.39 2.54 
15 KGP11866130 78470310 A 4.87E-05 0.56 0.42 0.74 
9 KGP11168890 8402449 A 4.91E-05 0.52 0.38 0.71 

10 rs1264794 116902943 C 4.94E-05 1.89 1.39 2.56 
5 KGP11882290 60219480 A 4.98E-05 0.21 0.10 0.44 
4 rs2343115 109111726 C 5.02E-05 0.55 0.41 0.73 
5 KGP12517799 60180474 T 5.20E-05 0.21 0.10 0.45 
2 KGP22789102 187483472 C 5.22E-05 1.87 1.38 2.54 

15 KGP824359 39012965 G 5.25E-05 6.95 2.72 17.78 
9 rs7040842 433347 C 5.27E-05 1.92 1.40 2.63 
4 KGP3024940 109104841 T 5.27E-05 0.55 0.41 0.73 
9 KGP5987914 433708 C 5.33E-05 1.97 1.42 2.73 
9 KGP4579224 433978 A 5.33E-05 1.97 1.42 2.73 

12 KGP6141129 31496481 A 5.37E-05 0.52 0.38 0.71 
5 rs13173226 134786259 C 5.42E-05 1.95 1.41 2.70 
2 rs2370693 187475104 G 5.45E-05 1.87 1.38 2.53 

11 rs1950008 8058910 T 5.58E-05 3.15 1.80 5.50 
15 rs3816253 78458485 G 5.58E-05 1.79 1.35 2.38 
10 rs17724010 117273552 C 5.59E-05 1.98 1.42 2.77 
4 KGP11607606 91912899 A 5.75E-05 2.22 1.50 3.27 
2 rs4233788 187462581 A 5.78E-05 1.87 1.38 2.53 
1 rs4839478 116295007 G 5.92E-05 3.93 2.02 7.66 
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CHR SNP BP 
MINOR 
ALLELE 

UNADJ   
P-value 

OR L95 U95 

10 KGP6938912 116941272 G 6.04E-05 1.87 1.38 2.53 
11 rs10832869 2910621 C 6.07E-05 1.89 1.38 2.58 
2 rs3911084 187475357 G 6.10E-05 1.86 1.37 2.52 

17 KGP1449113 9720357 C 6.10E-05 1.76 1.33 2.31 
17 rs4791876 9722150 C 6.10E-05 1.76 1.33 2.31 
4 KGP1392454 109105287 A 6.37E-05 0.55 0.41 0.74 
2 KGP9614636 33440045 G 6.40E-05 1.81 1.35 2.41 
1 rs7554304 116284997 G 6.48E-05 3.90 2.00 7.60 
1 KGP6147061 116291094 A 6.48E-05 3.90 2.00 7.60 

16 KGP46650 6028700 T 6.59E-05 0.54 0.40 0.73 
13 rs1028730 67527244 C 6.81E-05 0.51 0.36 0.71 
10 KGP10886825 117230790 C 7.12E-05 1.97 1.41 2.76 
2 KGP5053590 187467750 A 7.18E-05 1.87 1.37 2.54 

18 KGP10756992 55899135 C 7.20E-05 2.27 1.52 3.40 
20 rs458332 53425217 A 7.26E-05 1.72 1.31 2.24 
19 KGP7273430 48524294 G 7.46E-05 1.77 1.33 2.34 
15 KGP10073062 78435527 T 7.95E-05 1.74 1.32 2.30 
7 rs7357254 135466740 C 8.08E-05 0.46 0.32 0.68 

10 rs1899721 116965037 T 8.18E-05 1.84 1.36 2.50 
9 rs1329376 431860 T 8.48E-05 1.93 1.39 2.67 

17 KGP3023594 9722104 C 8.51E-05 1.74 1.32 2.29 
7 KGP6023091 135466550 A 8.76E-05 0.46 0.31 0.68 
9 KGP3932024 127536726 A 8.76E-05 1.79 1.34 2.40 

14 rs11160817 105168414 T 8.80E-05 1.73 1.32 2.28 
16 rs7204357 80252871 T 8.90E-05 1.97 1.40 2.76 
16 KGP383502 57112865 A 8.91E-05 0.33 0.19 0.57 
13 rs9571702 67532237 A 8.97E-05 0.50 0.35 0.71 
19 rs3745751 48519241 C 8.99E-05 2.56 1.60 4.09 
8 rs900213 3454880 T 9.45E-05 1.78 1.33 2.37 

11 KGP12037102 8031000 T 9.52E-05 2.27 1.50 3.43 
1 rs13375369 197007229 A 9.66E-05 6.56 2.55 16.88 
1 KGP15746110 197020510 T 9.66E-05 6.56 2.55 16.88 
5 KGP11421325 134780494 A 9.75E-05 2.05 1.43 2.95 
5 rs744247 134781400 T 9.75E-05 2.05 1.43 2.95 
5 rs12519481 134784086 A 9.75E-05 2.05 1.43 2.95 
5 rs11742346 45003293 T 9.88E-05 2.14 1.46 3.13 
2 rs6758285 19029816 G 9.96E-05 1.99 1.41 2.80 

10 rs10885649 116843474 A 9.99E-05 1.83 1.35 2.48 
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Appendix F. All SNPs with p-value < 10-4 from PTB genotypic logistic 
regression adjusted for body mass index (BMI), gravidity and smoking status 
association analysis for the Helsinki infants genotyped on the Illumina 
Omni2.5 BeadChip. Base pair (BP) positions refer to GRCh37 (hg19, February 
2009 assembly) build of the human genome 

CHR	
   SNP	
   BP	
   Minor	
  
Allele	
  

Adjusted	
  
Genotypic	
  	
  P-­‐value	
  

14	
   rs7153053	
   105150273	
   T	
   7.40E-­‐07	
  
20	
   rs3865536	
   2362961	
   A	
   3.90E-­‐06	
  
8	
   rs900213	
   3454880	
   T	
   8.44E-­‐06	
  
16	
   rs6497441	
   9829848	
   T	
   9.93E-­‐06	
  
3	
   rs6800348	
   67010311	
   A	
   1.30E-­‐05	
  
10	
   KGP349528	
   131918109	
   G	
   1.49E-­‐05	
  
18	
   KGP10756992	
   55899135	
   C	
   1.71E-­‐05	
  
15	
   KGP2297008	
   37151356	
   A	
   2.20E-­‐05	
  
3	
   KGP7628141	
   15701184	
   G	
   2.37E-­‐05	
  
11	
   rs12364666	
   81395174	
   A	
   2.41E-­‐05	
  
2	
   KGP9077006	
   50268228	
   T	
   2.49E-­‐05	
  
2	
   rs651418	
   4495174	
   T	
   2.84E-­‐05	
  
2	
   rs1819972	
   50268228	
   T	
   2.90E-­‐05	
  
4	
   KGP8375539	
   56993480	
   G	
   3.14E-­‐05	
  
22	
   KGP10885912	
   46017699	
   G	
   3.73E-­‐05	
  
5	
   rs10072136	
   174470775	
   T	
   3.95E-­‐05	
  
5	
   KGP11777967	
   174472781	
   C	
   4.17E-­‐05	
  
5	
   rs10053511	
   174472998	
   A	
   4.17E-­‐05	
  
10	
   KGP22784786	
   116847333	
   T	
   4.20E-­‐05	
  
10	
   rs1264794	
   116902943	
   C	
   4.29E-­‐05	
  
15	
   rs8025854	
   37165249	
   G	
   4.33E-­‐05	
  
1	
   KGP4299054	
   243602390	
   A	
   4.59E-­‐05	
  
3	
   KGP9937064	
   15699347	
   G	
   4.86E-­‐05	
  
11	
   rs4757417	
   16615280	
   C	
   5.30E-­‐05	
  
5	
   KGP5909768	
   174473277	
   A	
   5.48E-­‐05	
  
15	
   rs11855354	
   78443631	
   G	
   5.61E-­‐05	
  
15	
   rs2304824	
   78466127	
   A	
   5.61E-­‐05	
  
12	
   rs12300476	
   31514886	
   C	
   5.70E-­‐05	
  
11	
   KGP9466771	
   16637583	
   T	
   6.12E-­‐05	
  
15	
   KGP10073062	
   78435527	
   T	
   6.13E-­‐05	
  
2	
   rs716335	
   169402127	
   T	
   6.17E-­‐05	
  
10	
   rs1171727	
   131908016	
   G	
   6.29E-­‐05	
  
10	
   KGP6938912	
   116941272	
   G	
   6.82E-­‐05	
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CHR	
   SNP	
   BP	
   Minor	
  
Allele	
  

Adjusted	
  
Genotypic	
  	
  P-­‐value	
  

22	
   KGP9592633	
   46016136	
   G	
   6.99E-­‐05	
  
15	
   rs1450418	
   37166878	
   C	
   7.04E-­‐05	
  
20	
   rs458332	
   53425217	
   A	
   7.35E-­‐05	
  
11	
   rs10832869	
   2910621	
   C	
   7.47E-­‐05	
  
4	
   KGP1592798	
   127266480	
   G	
   7.51E-­‐05	
  
14	
   KGP6461089	
   22103779	
   C	
   7.57E-­‐05	
  
10	
   rs10885649	
   116843474	
   A	
   7.57E-­‐05	
  
1	
   rs1129590	
   161953015	
   T	
   7.61E-­‐05	
  
14	
   rs4982475	
   22101945	
   A	
   7.70E-­‐05	
  
10	
   KGP5967610	
   117393184	
   C	
   7.81E-­‐05	
  
9	
   KGP535977	
   73076516	
   A	
   7.86E-­‐05	
  
19	
   rs16982100	
   48511888	
   G	
   7.90E-­‐05	
  
10	
   rs17093770	
   92830260	
   A	
   7.96E-­‐05	
  
3	
   KGP2829197	
   59893355	
   A	
   8.33E-­‐05	
  
10	
   rs11253689	
   6668830	
   G	
   8.43E-­‐05	
  
10	
   rs7915166	
   6409502	
   C	
   8.74E-­‐05	
  
4	
   rs17384008	
   122580875	
   A	
   9.15E-­‐05	
  
14	
   KGP3600601	
   92582472	
   A	
   9.32E-­‐05	
  
14	
   rs3814833	
   92583579	
   C	
   9.32E-­‐05	
  
14	
   rs3818263	
   92588002	
   C	
   9.32E-­‐05	
  
11	
   KGP208171	
   8030988	
   T	
   9.44E-­‐05	
  
6	
   KGP1255072	
   130351313	
   T	
   9.44E-­‐05	
  
1	
   rs12726227	
   161954448	
   C	
   9.74E-­‐05	
  
5	
   KGP2263756	
   140570974	
   G	
   9.77E-­‐05	
  
5	
   rs4912742	
   140571526	
   C	
   9.77E-­‐05	
  
10	
   rs17724010	
   117273552	
   C	
   9.82E-­‐05	
  
11	
   KGP12037102	
   8031000	
   T	
   9.85E-­‐05	
  
4	
   KGP4142511	
   16136484	
   G	
   9.90E-­‐05	
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Appendix G. All SNPs with p-value < 10-4 from PTB genotypic logistic 
regression unadjusted association analysis for the Helsinki infants genotyped 
on the Illumina Omni2.5 BeadChip. Base pair (BP) positions refer to GRCh37 
(hg19, February 2009 assembly) build of the human genome 

CHR	
   SNP	
   BP	
   Minor	
  
allele	
  

Unadjusted	
  Genotypic	
  
P-­‐value	
  

14	
   rs7153053	
   105150273	
   T	
   7.88E-­‐07	
  
20	
   rs3865536	
   2362961	
   A	
   2.25E-­‐06	
  
16	
   rs6497441	
   9829848	
   T	
   7.56E-­‐06	
  
10	
   KGP349528	
   131918109	
   G	
   9.40E-­‐06	
  
2	
   KGP9077006	
   50268228	
   T	
   1.21E-­‐05	
  
2	
   rs1819972	
   50268228	
   T	
   1.41E-­‐05	
  
12	
   rs12300476	
   31514886	
   C	
   2.04E-­‐05	
  
20	
   rs458332	
   53425217	
   A	
   2.21E-­‐05	
  
15	
   rs11855354	
   78443631	
   G	
   2.59E-­‐05	
  
15	
   rs2304824	
   78466127	
   A	
   2.59E-­‐05	
  
8	
   rs900213	
   3454880	
   T	
   2.60E-­‐05	
  
4	
   KGP8375539	
   56993480	
   G	
   2.64E-­‐05	
  
11	
   rs12364666	
   81395174	
   A	
   2.67E-­‐05	
  
4	
   KGP1592798	
   127266480	
   G	
   2.83E-­‐05	
  
9	
   KGP535977	
   73076516	
   A	
   2.95E-­‐05	
  
5	
   rs10072136	
   174470775	
   T	
   3.35E-­‐05	
  
10	
   rs1264794	
   116902943	
   C	
   3.79E-­‐05	
  
10	
   KGP22784786	
   116847333	
   T	
   3.81E-­‐05	
  
22	
   KGP10885912	
   46017699	
   G	
   3.83E-­‐05	
  
1	
   KGP4299054	
   243602390	
   A	
   3.96E-­‐05	
  
10	
   rs1171727	
   131908016	
   G	
   4.01E-­‐05	
  
3	
   rs6800348	
   67010311	
   A	
   4.03E-­‐05	
  
2	
   rs4281904	
   107151134	
   G	
   4.09E-­‐05	
  
23	
   rs9699237	
   123461240	
   C	
   4.11E-­‐05	
  
15	
   KGP2297008	
   37151356	
   A	
   4.13E-­‐05	
  
9	
   KGP720068	
   16012195	
   T	
   4.46E-­‐05	
  
11	
   rs10832869	
   2910621	
   C	
   4.61E-­‐05	
  
15	
   KGP10073062	
   78435527	
   T	
   4.83E-­‐05	
  
9	
   KGP1766722	
   73095674	
   T	
   5.43E-­‐05	
  
9	
   rs10962251	
   16012225	
   A	
   5.56E-­‐05	
  
8	
   rs7818882	
   88803575	
   G	
   5.92E-­‐05	
  
14	
   KGP6461089	
   22103779	
   C	
   6.22E-­‐05	
  
14	
   rs4982475	
   22101945	
   A	
   6.36E-­‐05	
  
6	
   rs3828886	
   31440552	
   G	
   6.41E-­‐05	
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CHR	
   SNP	
   BP	
   Minor	
  
allele	
  

Unadjusted	
  Genotypic	
  
P-­‐value	
  

10	
   rs10885649	
   116843474	
   A	
   6.42E-­‐05	
  
2	
   rs651418	
   4495174	
   T	
   6.69E-­‐05	
  
18	
   rs7228791	
   71341426	
   A	
   6.77E-­‐05	
  
22	
   KGP9592633	
   46016136	
   G	
   7.04E-­‐05	
  
2	
   rs6729848	
   107154331	
   G	
   7.29E-­‐05	
  
14	
   KGP3600601	
   92582472	
   A	
   7.34E-­‐05	
  
14	
   rs3814833	
   92583579	
   C	
   7.34E-­‐05	
  
14	
   rs3818263	
   92588002	
   C	
   7.34E-­‐05	
  
10	
   KGP6938912	
   116941272	
   G	
   7.49E-­‐05	
  
15	
   rs8025854	
   37165249	
   G	
   7.57E-­‐05	
  
5	
   KGP11777967	
   174472781	
   C	
   7.71E-­‐05	
  
5	
   rs10053511	
   174472998	
   A	
   7.71E-­‐05	
  
10	
   rs17093770	
   92830260	
   A	
   7.78E-­‐05	
  
18	
   rs1529905	
   73077313	
   T	
   8.13E-­‐05	
  
14	
   KGP9989748	
   92584025	
   T	
   8.25E-­‐05	
  
3	
   KGP7628141	
   15701184	
   G	
   8.66E-­‐05	
  
23	
   KGP22772552	
   78565662	
   G	
   9.08E-­‐05	
  
1	
   KGP12448491	
   243558785	
   G	
   9.08E-­‐05	
  
3	
   KGP2829197	
   59893355	
   A	
   9.09E-­‐05	
  
18	
   KGP10576230	
   71347120	
   T	
   9.09E-­‐05	
  
16	
   KGP9902020	
   9866186	
   A	
   9.48E-­‐05	
  
6	
   KGP1999769	
   88421485	
   C	
   9.73E-­‐05	
  
2	
   rs716335	
   169402127	
   T	
   9.95E-­‐05	
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Appendix H. A complete list of all SNPs with p-value < 10-4 from the additive 
linear regression for Box-Cox transformed gestational age adjusted for BMI, 
gravidity and smoking status for the Helsinki infants genotyped on the 
Illumina Omni2.5 BeadChip. Base pair (BP) positions refer to GRCh37 (hg19, 
February 2009 assembly) build of the human genome. 

CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
  

ADJ	
  Box	
  
Cox	
  P-­‐value	
  

14	
   rs7153053	
   105150273	
   T	
   6.28E-­‐08	
  
18	
   KGP10756992	
   55899135	
   C	
   1.20E-­‐06	
  
4	
   KGP8375539	
   56993480	
   G	
   1.80E-­‐06	
  
23	
   rs17215777	
   14045928	
   A	
   3.35E-­‐06	
  
20	
   rs6079395	
   14327899	
   G	
   3.85E-­‐06	
  
18	
   KGP1841629	
   24195715	
   A	
   4.32E-­‐06	
  
22	
   KGP1327745	
   27571605	
   T	
   4.35E-­‐06	
  
19	
   rs3745751	
   48519241	
   C	
   4.73E-­‐06	
  
18	
   rs1529905	
   73077313	
   T	
   5.60E-­‐06	
  
18	
   KGP12553043	
   24194562	
   G	
   6.02E-­‐06	
  
1	
   KGP2324307	
   161955804	
   C	
   6.39E-­‐06	
  
4	
   KGP10363154	
   92027017	
   A	
   7.91E-­‐06	
  
14	
   rs11160817	
   105168414	
   T	
   8.02E-­‐06	
  
1	
   rs12726227	
   161954448	
   C	
   9.38E-­‐06	
  
1	
   rs1129590	
   161953015	
   T	
   1.04E-­‐05	
  
12	
   KGP2468001	
   123572794	
   G	
   1.08E-­‐05	
  
19	
   rs16982100	
   48511888	
   G	
   1.10E-­‐05	
  
13	
   KGP1703195	
   23467854	
   C	
   1.21E-­‐05	
  
10	
   KGP1429545	
   116400883	
   C	
   1.32E-­‐05	
  
5	
   rs11242497	
   102926108	
   A	
   1.35E-­‐05	
  
23	
   KGP22783547	
   66980923	
   T	
   1.41E-­‐05	
  
23	
   KGP22820383	
   66339984	
   C	
   1.42E-­‐05	
  
13	
   rs9510404	
   23462530	
   G	
   1.50E-­‐05	
  
13	
   KGP2028096	
   100549885	
   G	
   1.57E-­‐05	
  
3	
   rs1864427	
   5626851	
   A	
   1.59E-­‐05	
  
6	
   KGP17157059	
   118340886	
   T	
   1.66E-­‐05	
  
6	
   KGP2973353	
   118378899	
   A	
   1.66E-­‐05	
  
6	
   KGP8877966	
   118384078	
   G	
   1.66E-­‐05	
  
6	
   KGP9462937	
   118397112	
   A	
   1.66E-­‐05	
  
1	
   rs4839478	
   116295007	
   G	
   1.88E-­‐05	
  
1	
   rs7554304	
   116284997	
   G	
   2.00E-­‐05	
  
1	
   KGP6147061	
   116291094	
   A	
   2.00E-­‐05	
  
23	
   rs11095194	
   30975402	
   C	
   2.15E-­‐05	
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CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
  

ADJ	
  Box	
  
Cox	
  P-­‐value	
  

20	
   rs6079391	
   14306953	
   G	
   2.21E-­‐05	
  
9	
   KGP11955310	
   36213849	
   A	
   2.25E-­‐05	
  
10	
   rs10903443	
   1454864	
   T	
   2.27E-­‐05	
  
16	
   rs7187030	
   65922323	
   A	
   2.30E-­‐05	
  
23	
   KGP22820496	
   30973949	
   C	
   2.30E-­‐05	
  
19	
   KGP11012186	
   48517676	
   T	
   2.39E-­‐05	
  
19	
   KGP3429713	
   48522480	
   A	
   2.39E-­‐05	
  
19	
   KGP12010912	
   48522553	
   C	
   2.39E-­‐05	
  
19	
   KGP1072697	
   48522746	
   A	
   2.39E-­‐05	
  
6	
   rs11756591	
   14088091	
   G	
   2.47E-­‐05	
  
23	
   KGP22789476	
   66783343	
   T	
   2.48E-­‐05	
  
20	
   rs4640454	
   14337539	
   G	
   2.50E-­‐05	
  
14	
   KGP2938981	
   24910076	
   T	
   2.50E-­‐05	
  
18	
   KGP4741739	
   24181001	
   A	
   2.55E-­‐05	
  
11	
   rs4757417	
   16615280	
   C	
   2.59E-­‐05	
  
14	
   KGP4248600	
   85507035	
   G	
   2.71E-­‐05	
  
19	
   KGP1220612	
   48517387	
   A	
   2.80E-­‐05	
  
9	
   KGP2866004	
   78159780	
   A	
   3.02E-­‐05	
  
11	
   KGP9466771	
   16637583	
   T	
   3.19E-­‐05	
  
23	
   KGP22802116	
   30958392	
   T	
   3.22E-­‐05	
  
16	
   rs17494421	
   64819806	
   T	
   3.35E-­‐05	
  
5	
   rs1559050	
   134470030	
   T	
   3.38E-­‐05	
  
6	
   rs2013807	
   14088302	
   A	
   3.41E-­‐05	
  
6	
   rs12660382	
   31443323	
   T	
   3.43E-­‐05	
  
7	
   KGP3934027	
   36087216	
   C	
   3.54E-­‐05	
  
5	
   KGP10407767	
   134493981	
   G	
   3.56E-­‐05	
  
1	
   rs6660568	
   48082491	
   G	
   3.57E-­‐05	
  
5	
   KGP12328891	
   134486618	
   A	
   3.59E-­‐05	
  
12	
   KGP9155397	
   86114882	
   T	
   3.66E-­‐05	
  
5	
   rs6874368	
   102921968	
   C	
   3.67E-­‐05	
  
3	
   KGP2829197	
   59893355	
   A	
   3.79E-­‐05	
  
16	
   KGP6524413	
   80280761	
   T	
   3.88E-­‐05	
  
7	
   KGP6023091	
   135466550	
   A	
   3.94E-­‐05	
  
14	
   KGP1568287	
   85884768	
   A	
   3.99E-­‐05	
  
14	
   KGP22760935	
   85892075	
   C	
   4.18E-­‐05	
  
20	
   rs6074716	
   14293522	
   T	
   4.18E-­‐05	
  
4	
   KGP4968386	
   27091299	
   C	
   4.20E-­‐05	
  
2	
   rs4270372	
   71717062	
   C	
   4.20E-­‐05	
  
12	
   KGP5098575	
   71380074	
   C	
   4.37E-­‐05	
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CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
  

ADJ	
  Box	
  
Cox	
  P-­‐value	
  

10	
   KGP22784786	
   116847333	
   T	
   4.50E-­‐05	
  
4	
   KGP12486975	
   91937972	
   G	
   4.52E-­‐05	
  
4	
   KGP9305680	
   92113737	
   C	
   4.52E-­‐05	
  
3	
   KGP11570798	
   41493591	
   A	
   4.60E-­‐05	
  
2	
   KGP9171376	
   27611454	
   T	
   4.72E-­‐05	
  
19	
   KGP12296823	
   35670808	
   A	
   4.81E-­‐05	
  
23	
   rs7885415	
   30975885	
   A	
   4.84E-­‐05	
  
23	
   rs12838662	
   30976242	
   G	
   4.95E-­‐05	
  
23	
   KGP22742897	
   30977301	
   T	
   4.95E-­‐05	
  
23	
   KGP22729818	
   30978353	
   C	
   4.95E-­‐05	
  
1	
   KGP480502	
   169623594	
   T	
   5.05E-­‐05	
  
9	
   rs4879961	
   36231483	
   T	
   5.10E-­‐05	
  
1	
   KGP1517463	
   94569447	
   G	
   5.12E-­‐05	
  
10	
   KGP10902145	
   116567094	
   C	
   5.13E-­‐05	
  
9	
   KGP398693	
   36298820	
   T	
   5.35E-­‐05	
  
1	
   rs13375369	
   197007229	
   A	
   5.39E-­‐05	
  
1	
   KGP15746110	
   197020510	
   T	
   5.39E-­‐05	
  
23	
   KGP22754915	
   66198870	
   G	
   5.67E-­‐05	
  
1	
   rs17524161	
   169622927	
   C	
   5.78E-­‐05	
  
10	
   KGP349528	
   131918109	
   G	
   6.02E-­‐05	
  
10	
   rs1264794	
   116902943	
   C	
   6.29E-­‐05	
  
10	
   rs4749049	
   25864482	
   A	
   6.33E-­‐05	
  
14	
   rs11621863	
   85918380	
   A	
   6.36E-­‐05	
  
20	
   rs3747927	
   14230505	
   C	
   6.38E-­‐05	
  
13	
   rs1028730	
   67527244	
   C	
   6.40E-­‐05	
  
16	
   KGP10540547	
   6024123	
   G	
   6.49E-­‐05	
  
2	
   KGP437725	
   213991770	
   C	
   6.49E-­‐05	
  
11	
   rs7128152	
   40859924	
   C	
   6.51E-­‐05	
  
2	
   KGP11659142	
   38925610	
   G	
   6.96E-­‐05	
  
10	
   rs11259736	
   15595361	
   A	
   7.10E-­‐05	
  
19	
   KGP12256054	
   35673896	
   T	
   7.10E-­‐05	
  
22	
   KGP11155947	
   19226260	
   A	
   7.11E-­‐05	
  
10	
   KGP6938912	
   116941272	
   G	
   7.14E-­‐05	
  
22	
   rs712950	
   19204210	
   C	
   7.15E-­‐05	
  
10	
   KGP1874043	
   134540672	
   A	
   7.21E-­‐05	
  
10	
   rs1171727	
   131908016	
   G	
   7.24E-­‐05	
  
14	
   rs4900406	
   99056323	
   A	
   7.24E-­‐05	
  
5	
   rs2071239	
   149755421	
   G	
   7.31E-­‐05	
  
1	
   rs6691548	
   161967287	
   C	
   7.41E-­‐05	
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CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
  

ADJ	
  Box	
  
Cox	
  P-­‐value	
  

4	
   KGP12445244	
   55094467	
   A	
   7.44E-­‐05	
  
16	
   KGP46650	
   6028700	
   T	
   7.55E-­‐05	
  
13	
   rs9571702	
   67532237	
   A	
   7.61E-­‐05	
  
10	
   rs11196905	
   116528294	
   C	
   7.62E-­‐05	
  
2	
   KGP8418824	
   115621917	
   A	
   7.64E-­‐05	
  
4	
   KGP11607606	
   91912899	
   A	
   7.79E-­‐05	
  
19	
   rs9807905	
   35685456	
   C	
   7.80E-­‐05	
  
17	
   rs2343202	
   70222600	
   A	
   7.89E-­‐05	
  
11	
   rs12804793	
   122643283	
   T	
   8.11E-­‐05	
  
19	
   KGP4180994	
   35658188	
   A	
   8.21E-­‐05	
  
19	
   rs12110	
   35660508	
   G	
   8.21E-­‐05	
  
10	
   KGP10799699	
   25867396	
   T	
   8.32E-­‐05	
  
16	
   KGP383502	
   57112865	
   A	
   8.44E-­‐05	
  
17	
   KGP9084790	
   21296416	
   A	
   8.45E-­‐05	
  
13	
   KGP7715737	
   67553342	
   T	
   8.60E-­‐05	
  
13	
   KGP9920102	
   67545692	
   G	
   8.62E-­‐05	
  
1	
   rs3842895	
   180596196	
   C	
   8.70E-­‐05	
  
2	
   rs4536672	
   71714223	
   A	
   8.77E-­‐05	
  
5	
   rs7713638	
   149759096	
   C	
   8.82E-­‐05	
  
1	
   rs12756866	
   161968297	
   T	
   8.83E-­‐05	
  
5	
   rs11745068	
   134475494	
   T	
   8.84E-­‐05	
  
10	
   rs10885649	
   116843474	
   A	
   8.91E-­‐05	
  
15	
   rs8034908	
   98124026	
   A	
   8.98E-­‐05	
  
5	
   rs2270822	
   60459040	
   A	
   9.08E-­‐05	
  
1	
   KGP5269992	
   169580510	
   T	
   9.14E-­‐05	
  
1	
   KGP10559043	
   169580717	
   C	
   9.14E-­‐05	
  
16	
   KGP5557476	
   65932588	
   A	
   9.25E-­‐05	
  
2	
   rs3739028	
   135907846	
   G	
   9.39E-­‐05	
  
2	
   KGP3867438	
   135988235	
   T	
   9.39E-­‐05	
  
15	
   rs12591876	
   98115684	
   C	
   9.45E-­‐05	
  
20	
   rs6071381	
   59434798	
   G	
   9.48E-­‐05	
  
5	
   KGP1480373	
   174609264	
   C	
   9.56E-­‐05	
  
5	
   KGP4818545	
   149763305	
   G	
   9.56E-­‐05	
  
10	
   KGP7663783	
   9028946	
   T	
   9.61E-­‐05	
  
19	
   rs11084724	
   33781008	
   T	
   9.65E-­‐05	
  
9	
   rs1043313	
   36214971	
   C	
   9.72E-­‐05	
  
4	
   KGP7789951	
   38370504	
   A	
   9.72E-­‐05	
  
10	
   rs1899721	
   116965037	
   T	
   9.73E-­‐05	
  
1	
   KGP11853718	
   169643176	
   A	
   9.79E-­‐05	
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CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
  

ADJ	
  Box	
  
Cox	
  P-­‐value	
  

4	
   KGP4062013	
   186578529	
   A	
   9.81E-­‐05	
  
17	
   KGP1290608	
   72047939	
   T	
   9.90E-­‐05	
  
3	
   rs1500005	
   46102620	
   A	
   9.97E-­‐05	
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Appendix I. A complete list of all SNPs with p-value ≤ 10-4 from the additive birth weight z-score linear regression 
adjusted for BMI, gravidity and smoking status for Helsinki infants genotyped on the Illumina Omni2.5 BeadChip. 
Base pair (BP) positions refer to GRCh37 (hg19, February 2009 assembly) build of the human genome. 

CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
   BETA	
   L95	
   U95	
   ADJ	
  P-­‐

value	
  
4	
   KGP7935680	
   175820536	
   T	
   0.296	
   0.183	
   0.409	
   4.25E-­‐07	
  
4	
   rs6553849	
   175838816	
   G	
   0.296	
   0.183	
   0.409	
   4.25E-­‐07	
  
4	
   KGP11462362	
   175848583	
   C	
   0.296	
   0.183	
   0.409	
   4.25E-­‐07	
  
4	
   rs12512467	
   175842230	
   G	
   0.294	
   0.180	
   0.408	
   6.04E-­‐07	
  
4	
   rs4388065	
   175831859	
   C	
   0.289	
   0.175	
   0.402	
   8.85E-­‐07	
  
11	
   KGP5677965	
   128764571	
   A	
   0.486	
   0.293	
   0.678	
   1.09E-­‐06	
  
17	
   KGP10605353	
   47459646	
   C	
   -­‐0.367	
   -­‐0.514	
   -­‐0.221	
   1.24E-­‐06	
  
2	
   KGP10390109	
   155375235	
   G	
   0.446	
   0.264	
   0.628	
   2.13E-­‐06	
  
11	
   KGP12295813	
   128769010	
   T	
   0.472	
   0.278	
   0.666	
   2.40E-­‐06	
  
11	
   KGP10855022	
   128769387	
   A	
   0.472	
   0.278	
   0.666	
   2.40E-­‐06	
  
18	
   KGP216041	
   44526798	
   A	
   0.276	
   0.163	
   0.390	
   2.52E-­‐06	
  
7	
   KGP7565682	
   119519894	
   T	
   2.412	
   1.418	
   3.405	
   2.63E-­‐06	
  
17	
   rs6917	
   47481543	
   T	
   -­‐0.329	
   -­‐0.465	
   -­‐0.193	
   2.68E-­‐06	
  
18	
   rs2010834	
   44560875	
   T	
   0.273	
   0.160	
   0.386	
   2.97E-­‐06	
  
2	
   KGP411313	
   155370926	
   A	
   0.444	
   0.259	
   0.629	
   3.29E-­‐06	
  
2	
   rs16837788	
   155371557	
   C	
   0.433	
   0.252	
   0.615	
   3.82E-­‐06	
  
5	
   rs967489	
   107325759	
   T	
   -­‐0.277	
   -­‐0.393	
   -­‐0.161	
   3.93E-­‐06	
  
13	
   KGP5600928	
   104714446	
   C	
   -­‐0.362	
   -­‐0.515	
   -­‐0.209	
   4.45E-­‐06	
  
13	
   KGP6718572	
   104716555	
   C	
   -­‐0.362	
   -­‐0.515	
   -­‐0.209	
   4.45E-­‐06	
  
14	
   KGP4386312	
   75701221	
   T	
   0.374	
   0.216	
   0.532	
   4.71E-­‐06	
  
18	
   rs7244778	
   44541915	
   T	
   0.266	
   0.153	
   0.379	
   4.92E-­‐06	
  
17	
   KGP12240597	
   47244412	
   T	
   -­‐0.287	
   -­‐0.410	
   -­‐0.164	
   6.09E-­‐06	
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CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
   BETA	
   L95	
   U95	
   ADJ	
  P-­‐

value	
  
17	
   KGP6975802	
   47293848	
   T	
   -­‐0.280	
   -­‐0.402	
   -­‐0.159	
   7.37E-­‐06	
  
17	
   rs2233362	
   47287067	
   G	
   -­‐0.282	
   -­‐0.404	
   -­‐0.160	
   7.43E-­‐06	
  
18	
   KGP12164454	
   44537102	
   T	
   0.261	
   0.148	
   0.374	
   7.64E-­‐06	
  
13	
   rs7998621	
   104647290	
   T	
   -­‐0.348	
   -­‐0.499	
   -­‐0.197	
   7.69E-­‐06	
  
3	
   KGP9945238	
   118281147	
   A	
   -­‐2.892	
   -­‐4.149	
   -­‐1.636	
   8.13E-­‐06	
  
3	
   rs12486534	
   101816344	
   C	
   -­‐0.254	
   -­‐0.366	
   -­‐0.143	
   1.02E-­‐05	
  
4	
   KGP5822115	
   30338739	
   T	
   0.762	
   0.427	
   1.096	
   1.03E-­‐05	
  
5	
   KGP1886224	
   28998113	
   G	
   0.411	
   0.230	
   0.592	
   1.08E-­‐05	
  
13	
   KGP3791399	
   104652517	
   A	
   -­‐0.343	
   -­‐0.494	
   -­‐0.192	
   1.12E-­‐05	
  
14	
   KGP10544388	
   75705656	
   A	
   0.377	
   0.211	
   0.544	
   1.13E-­‐05	
  
14	
   KGP6657936	
   75705863	
   T	
   0.376	
   0.210	
   0.542	
   1.19E-­‐05	
  
1	
   KGP10162962	
   201260642	
   A	
   0.353	
   0.197	
   0.510	
   1.25E-­‐05	
  
18	
   rs509647	
   44383675	
   C	
   0.257	
   0.143	
   0.371	
   1.28E-­‐05	
  
18	
   rs642897	
   44396917	
   T	
   0.257	
   0.143	
   0.371	
   1.28E-­‐05	
  
16	
   KGP11936906	
   65193896	
   C	
   -­‐1.953	
   -­‐2.825	
   -­‐1.082	
   1.39E-­‐05	
  
9	
   KGP643692	
   93597588	
   A	
   0.404	
   0.223	
   0.584	
   1.46E-­‐05	
  
3	
   rs12488237	
   56114861	
   C	
   -­‐0.674	
   -­‐0.976	
   -­‐0.371	
   1.57E-­‐05	
  
17	
   KGP11999849	
   38133922	
   G	
   0.306	
   0.169	
   0.444	
   1.57E-­‐05	
  
17	
   KGP4921252	
   38133545	
   C	
   0.307	
   0.169	
   0.446	
   1.69E-­‐05	
  
13	
   KGP16741843	
   104646537	
   A	
   -­‐0.340	
   -­‐0.494	
   -­‐0.186	
   1.87E-­‐05	
  
12	
   KGP2332927	
   7596747	
   T	
   -­‐2.700	
   -­‐3.928	
   -­‐1.473	
   1.98E-­‐05	
  
12	
   rs16906797	
   30955572	
   C	
   -­‐0.586	
   -­‐0.853	
   -­‐0.320	
   1.99E-­‐05	
  
3	
   rs6774331	
   101823824	
   G	
   -­‐0.247	
   -­‐0.359	
   -­‐0.134	
   2.02E-­‐05	
  
5	
   rs1436969	
   30689900	
   G	
   0.245	
   0.133	
   0.356	
   2.08E-­‐05	
  
3	
   rs6804221	
   56207448	
   C	
   -­‐0.618	
   -­‐0.899	
   -­‐0.336	
   2.09E-­‐05	
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CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
   BETA	
   L95	
   U95	
   ADJ	
  P-­‐

value	
  
3	
   rs6764295	
   56207634	
   A	
   -­‐0.618	
   -­‐0.899	
   -­‐0.336	
   2.09E-­‐05	
  
3	
   rs4974120	
   56220993	
   C	
   -­‐0.618	
   -­‐0.899	
   -­‐0.336	
   2.09E-­‐05	
  
3	
   KGP3087267	
   56230867	
   T	
   -­‐0.618	
   -­‐0.899	
   -­‐0.336	
   2.09E-­‐05	
  
3	
   KGP9981812	
   56288321	
   T	
   -­‐0.618	
   -­‐0.899	
   -­‐0.336	
   2.09E-­‐05	
  
3	
   KGP10188926	
   56303321	
   C	
   -­‐0.618	
   -­‐0.899	
   -­‐0.336	
   2.09E-­‐05	
  
15	
   rs12916632	
   55118942	
   T	
   -­‐0.290	
   -­‐0.423	
   -­‐0.158	
   2.14E-­‐05	
  
18	
   rs9304337	
   44493094	
   G	
   0.249	
   0.135	
   0.362	
   2.26E-­‐05	
  
18	
   KGP2783710	
   44488514	
   A	
   0.247	
   0.134	
   0.360	
   2.29E-­‐05	
  
11	
   rs7110240	
   116343848	
   C	
   -­‐0.258	
   -­‐0.377	
   -­‐0.139	
   2.48E-­‐05	
  
3	
   rs4974196	
   56357553	
   A	
   -­‐0.599	
   -­‐0.875	
   -­‐0.323	
   2.51E-­‐05	
  
18	
   rs10853545	
   44475220	
   A	
   0.249	
   0.134	
   0.364	
   2.69E-­‐05	
  
11	
   KGP12477693	
   62434740	
   A	
   -­‐2.648	
   -­‐3.872	
   -­‐1.424	
   2.69E-­‐05	
  
17	
   rs2177309	
   47262672	
   C	
   -­‐0.266	
   -­‐0.389	
   -­‐0.143	
   2.73E-­‐05	
  
22	
   KGP11418130	
   39551628	
   T	
   -­‐0.243	
   -­‐0.355	
   -­‐0.131	
   2.74E-­‐05	
  
1	
   KGP12121704	
   237836880	
   C	
   -­‐0.245	
   -­‐0.358	
   -­‐0.131	
   2.81E-­‐05	
  
3	
   rs12053903	
   38593393	
   C	
   0.246	
   0.132	
   0.361	
   2.82E-­‐05	
  
3	
   KGP5143211	
   6363787	
   T	
   0.943	
   0.505	
   1.381	
   2.95E-­‐05	
  
6	
   rs7768059	
   103775306	
   G	
   -­‐0.532	
   -­‐0.779	
   -­‐0.284	
   3.01E-­‐05	
  
6	
   rs9404359	
   103788127	
   T	
   -­‐0.532	
   -­‐0.779	
   -­‐0.284	
   3.01E-­‐05	
  
20	
   KGP19186526	
   50555325	
   C	
   0.873	
   0.467	
   1.279	
   3.06E-­‐05	
  
1	
   rs11811484	
   53775436	
   G	
   0.974	
   0.520	
   1.428	
   3.12E-­‐05	
  
20	
   KGP19243097	
   50578768	
   G	
   0.871	
   0.465	
   1.277	
   3.17E-­‐05	
  
4	
   rs2611209	
   166578236	
   A	
   -­‐0.240	
   -­‐0.352	
   -­‐0.128	
   3.23E-­‐05	
  
20	
   KGP4604730	
   50573234	
   G	
   0.892	
   0.475	
   1.310	
   3.34E-­‐05	
  
3	
   KGP2675136	
   101813131	
   C	
   -­‐0.239	
   -­‐0.351	
   -­‐0.127	
   3.35E-­‐05	
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CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
   BETA	
   L95	
   U95	
   ADJ	
  P-­‐

value	
  
2	
   KGP6370333	
   1982376	
   C	
   0.269	
   0.143	
   0.394	
   3.47E-­‐05	
  
10	
   KGP10748275	
   131699951	
   A	
   0.295	
   0.157	
   0.434	
   3.47E-­‐05	
  
13	
   rs2806768	
   104724443	
   T	
   -­‐0.316	
   -­‐0.464	
   -­‐0.168	
   3.54E-­‐05	
  
13	
   KGP12344613	
   104724623	
   A	
   -­‐0.316	
   -­‐0.464	
   -­‐0.168	
   3.54E-­‐05	
  
7	
   KGP6839477	
   84338112	
   A	
   -­‐0.379	
   -­‐0.558	
   -­‐0.201	
   3.77E-­‐05	
  
8	
   KGP20187005	
   4100582	
   A	
   -­‐1.667	
   -­‐2.453	
   -­‐0.882	
   3.79E-­‐05	
  
9	
   rs10821325	
   97018657	
   T	
   -­‐0.266	
   -­‐0.391	
   -­‐0.141	
   3.80E-­‐05	
  
2	
   rs7561518	
   1983619	
   C	
   0.268	
   0.142	
   0.395	
   3.86E-­‐05	
  
6	
   KGP3656064	
   107650309	
   G	
   -­‐0.308	
   -­‐0.454	
   -­‐0.163	
   3.97E-­‐05	
  
6	
   rs2430464	
   107639414	
   T	
   -­‐0.308	
   -­‐0.454	
   -­‐0.162	
   4.11E-­‐05	
  
3	
   KGP3425928	
   127913954	
   A	
   0.576	
   0.303	
   0.848	
   4.15E-­‐05	
  
7	
   KGP2678353	
   84594661	
   A	
   -­‐0.369	
   -­‐0.544	
   -­‐0.194	
   4.18E-­‐05	
  
1	
   KGP9894193	
   53902833	
   A	
   0.900	
   0.474	
   1.327	
   4.19E-­‐05	
  
2	
   KGP11300174	
   155370862	
   A	
   0.431	
   0.227	
   0.635	
   4.19E-­‐05	
  
8	
   rs7017102	
   145118648	
   G	
   0.434	
   0.228	
   0.640	
   4.24E-­‐05	
  
15	
   KGP9865938	
   65809642	
   A	
   1.495	
   0.785	
   2.204	
   4.29E-­‐05	
  
15	
   KGP2935410	
   65871017	
   T	
   1.495	
   0.785	
   2.204	
   4.29E-­‐05	
  
1	
   KGP5615287	
   10807369	
   A	
   0.287	
   0.151	
   0.423	
   4.32E-­‐05	
  
13	
   KGP3146424	
   39647492	
   T	
   -­‐0.476	
   -­‐0.702	
   -­‐0.250	
   4.32E-­‐05	
  
13	
   KGP11565338	
   104731202	
   G	
   -­‐0.307	
   -­‐0.453	
   -­‐0.161	
   4.35E-­‐05	
  
13	
   KGP16832172	
   43520205	
   C	
   1.112	
   0.584	
   1.641	
   4.38E-­‐05	
  
1	
   KGP7415512	
   53917385	
   A	
   0.899	
   0.472	
   1.326	
   4.42E-­‐05	
  
1	
   KGP22758040	
   205390079	
   A	
   2.576	
   1.352	
   3.801	
   4.43E-­‐05	
  
2	
   rs1896831	
   155381331	
   A	
   0.429	
   0.225	
   0.633	
   4.48E-­‐05	
  
9	
   KGP3331281	
   97021624	
   T	
   -­‐0.262	
   -­‐0.386	
   -­‐0.137	
   4.49E-­‐05	
  



 

 

132 

CHR	
   SNP	
   BP	
   MINOR	
  
ALLELE	
   BETA	
   L95	
   U95	
   ADJ	
  P-­‐

value	
  
13	
   KGP1596046	
   43531085	
   A	
   1.106	
   0.580	
   1.633	
   4.52E-­‐05	
  
3	
   KGP9532024	
   38599886	
   C	
   0.240	
   0.126	
   0.355	
   4.55E-­‐05	
  
8	
   KGP2375841	
   81922820	
   T	
   -­‐2.579	
   -­‐3.808	
   -­‐1.351	
   4.56E-­‐05	
  
6	
   rs495335	
   49701523	
   A	
   -­‐0.251	
   -­‐0.371	
   -­‐0.131	
   4.63E-­‐05	
  
6	
   rs509699	
   49704546	
   A	
   -­‐0.251	
   -­‐0.371	
   -­‐0.131	
   4.63E-­‐05	
  
15	
   KGP3967604	
   55134440	
   G	
   -­‐0.342	
   -­‐0.505	
   -­‐0.179	
   4.75E-­‐05	
  
5	
   KGP2332271	
   30802243	
   C	
   0.269	
   0.140	
   0.397	
   4.77E-­‐05	
  
7	
   rs11532826	
   53967836	
   A	
   -­‐0.244	
   -­‐0.360	
   -­‐0.127	
   4.77E-­‐05	
  
8	
   KGP6731082	
   20985530	
   A	
   -­‐1.813	
   -­‐2.680	
   -­‐0.946	
   4.90E-­‐05	
  
1	
   rs2268147	
   201252866	
   T	
   0.371	
   0.194	
   0.548	
   4.91E-­‐05	
  
17	
   rs9972882	
   37807698	
   A	
   -­‐0.273	
   -­‐0.404	
   -­‐0.143	
   4.94E-­‐05	
  
20	
   KGP22832251	
   38839231	
   G	
   -­‐0.305	
   -­‐0.451	
   -­‐0.159	
   5.01E-­‐05	
  
5	
   KGP4721260	
   143219584	
   C	
   -­‐0.280	
   -­‐0.415	
   -­‐0.146	
   5.13E-­‐05	
  
17	
   rs12948798	
   47275360	
   A	
   -­‐0.255	
   -­‐0.377	
   -­‐0.133	
   5.17E-­‐05	
  
4	
   rs17028431	
   152949686	
   A	
   0.336	
   0.175	
   0.497	
   5.21E-­‐05	
  
8	
   rs7004867	
   145114844	
   T	
   0.430	
   0.224	
   0.637	
   5.27E-­‐05	
  
10	
   KGP4567182	
   99497671	
   T	
   0.380	
   0.197	
   0.562	
   5.28E-­‐05	
  
10	
   rs17108375	
   99498123	
   G	
   0.380	
   0.197	
   0.562	
   5.28E-­‐05	
  
1	
   KGP1786634	
   53847964	
   T	
   0.890	
   0.463	
   1.317	
   5.28E-­‐05	
  
4	
   KGP8409301	
   152966262	
   T	
   0.336	
   0.175	
   0.498	
   5.29E-­‐05	
  
13	
   rs6491817	
   104736365	
   G	
   -­‐0.305	
   -­‐0.452	
   -­‐0.159	
   5.34E-­‐05	
  
4	
   rs12511908	
   152957388	
   A	
   0.334	
   0.174	
   0.495	
   5.34E-­‐05	
  
4	
   KGP8058190	
   152969838	
   C	
   0.334	
   0.174	
   0.495	
   5.34E-­‐05	
  
4	
   KGP10209584	
   152971850	
   A	
   0.334	
   0.174	
   0.495	
   5.34E-­‐05	
  
23	
   KGP22766765	
   77086257	
   T	
   1.282	
   0.665	
   1.898	
   5.38E-­‐05	
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1	
   rs205478	
   10811672	
   C	
   0.281	
   0.146	
   0.416	
   5.51E-­‐05	
  
3	
   KGP7144741	
   43385905	
   T	
   -­‐2.083	
   -­‐3.086	
   -­‐1.080	
   5.54E-­‐05	
  
12	
   KGP6908040	
   128021163	
   T	
   -­‐0.235	
   -­‐0.349	
   -­‐0.122	
   5.54E-­‐05	
  
14	
   KGP10753036	
   57781048	
   C	
   1.149	
   0.595	
   1.702	
   5.55E-­‐05	
  
11	
   rs1508098	
   116338899	
   C	
   -­‐0.239	
   -­‐0.354	
   -­‐0.124	
   5.66E-­‐05	
  
8	
   rs6558293	
   145118501	
   G	
   0.419	
   0.217	
   0.621	
   5.72E-­‐05	
  
1	
   rs620281	
   100359333	
   A	
   -­‐0.275	
   -­‐0.408	
   -­‐0.142	
   5.74E-­‐05	
  
14	
   rs17097726	
   21338824	
   C	
   0.336	
   0.174	
   0.499	
   5.76E-­‐05	
  
17	
   KGP2193194	
   5864270	
   T	
   -­‐0.411	
   -­‐0.609	
   -­‐0.212	
   5.82E-­‐05	
  
5	
   KGP2886748	
   30797764	
   C	
   0.264	
   0.137	
   0.392	
   5.87E-­‐05	
  
17	
   KGP4356413	
   47322264	
   G	
   -­‐0.238	
   -­‐0.352	
   -­‐0.123	
   5.90E-­‐05	
  
3	
   rs6793245	
   38599037	
   A	
   0.239	
   0.123	
   0.354	
   5.91E-­‐05	
  
2	
   rs2215944	
   103308109	
   A	
   0.283	
   0.146	
   0.420	
   5.93E-­‐05	
  
1	
   rs3015315	
   59271489	
   G	
   -­‐0.259	
   -­‐0.385	
   -­‐0.134	
   5.97E-­‐05	
  
12	
   KGP10449250	
   16997890	
   C	
   0.243	
   0.125	
   0.361	
   6.01E-­‐05	
  
1	
   rs185580	
   182519861	
   T	
   0.433	
   0.224	
   0.643	
   6.05E-­‐05	
  
11	
   KGP11936758	
   46695365	
   T	
   3.523	
   1.816	
   5.230	
   6.17E-­‐05	
  
5	
   rs1553238	
   30805404	
   T	
   0.268	
   0.138	
   0.397	
   6.22E-­‐05	
  
9	
   KGP6347718	
   80933424	
   A	
   0.242	
   0.124	
   0.359	
   6.23E-­‐05	
  
16	
   KGP22775411	
   27303201	
   T	
   3.516	
   1.810	
   5.222	
   6.27E-­‐05	
  
8	
   KGP7605529	
   124688861	
   A	
   -­‐0.332	
   -­‐0.493	
   -­‐0.171	
   6.29E-­‐05	
  
21	
   KGP6049103	
   24879624	
   T	
   0.703	
   0.362	
   1.044	
   6.35E-­‐05	
  
7	
   KGP4058397	
   117484407	
   T	
   3.513	
   1.807	
   5.220	
   6.38E-­‐05	
  
2	
   KGP10541057	
   202578735	
   C	
   -­‐0.398	
   -­‐0.591	
   -­‐0.204	
   6.46E-­‐05	
  
1	
   KGP7574149	
   53757935	
   A	
   0.933	
   0.479	
   1.387	
   6.51E-­‐05	
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12	
   KGP11305355	
   126878310	
   C	
   -­‐0.282	
   -­‐0.419	
   -­‐0.145	
   6.52E-­‐05	
  
12	
   rs7972835	
   126881318	
   T	
   -­‐0.282	
   -­‐0.419	
   -­‐0.145	
   6.52E-­‐05	
  
7	
   KGP22777208	
   67384864	
   C	
   3.537	
   1.816	
   5.259	
   6.61E-­‐05	
  
20	
   rs16996025	
   50061314	
   T	
   0.552	
   0.283	
   0.820	
   6.67E-­‐05	
  
17	
   rs9913468	
   8987850	
   A	
   3.537	
   1.814	
   5.260	
   6.68E-­‐05	
  
8	
   KGP4424636	
   4263108	
   C	
   -­‐0.246	
   -­‐0.365	
   -­‐0.126	
   6.81E-­‐05	
  
7	
   KGP5625284	
   116680062	
   A	
   3.539	
   1.812	
   5.266	
   6.88E-­‐05	
  
23	
   KGP22754315	
   38921384	
   A	
   0.287	
   0.147	
   0.427	
   6.88E-­‐05	
  
2	
   KGP724647	
   202593280	
   A	
   -­‐0.386	
   -­‐0.574	
   -­‐0.197	
   6.88E-­‐05	
  
12	
   KGP19017736	
   7981180	
   G	
   3.534	
   1.808	
   5.259	
   6.99E-­‐05	
  
4	
   KGP10278399	
   83506328	
   T	
   -­‐0.378	
   -­‐0.563	
   -­‐0.193	
   7.04E-­‐05	
  
3	
   KGP17690561	
   141642493	
   G	
   3.539	
   1.809	
   5.270	
   7.11E-­‐05	
  
15	
   rs7182589	
   55121068	
   A	
   -­‐0.274	
   -­‐0.407	
   -­‐0.140	
   7.17E-­‐05	
  
2	
   KGP14352045	
   28078741	
   A	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
2	
   KGP14630788	
   39417280	
   C	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
2	
   KGP4441825	
   67206868	
   A	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
2	
   rs9678580	
   67911392	
   T	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
2	
   KGP5719345	
   77595289	
   T	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
3	
   KGP17790171	
   58260764	
   T	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
4	
   KGP20914043	
   43210788	
   A	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
7	
   KGP8187902	
   68466002	
   T	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
7	
   KGP10217381	
   68469575	
   C	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
8	
   KGP5758399	
   80102186	
   T	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
9	
   KGP11502707	
   9878200	
   G	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
9	
   KGP18685884	
   23017950	
   C	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
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9	
   KGP18500611	
   87043507	
   G	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
10	
   KGP22030309	
   122576439	
   A	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
11	
   KGP12773346	
   46784448	
   T	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
11	
   KGP12659342	
   63342699	
   T	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
12	
   KGP18905928	
   8188744	
   A	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
12	
   KGP18726703	
   8202273	
   T	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
12	
   KGP18911582	
   8284164	
   A	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
12	
   KGP19124898	
   8290881	
   C	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
12	
   KGP18807926	
   40940381	
   A	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
16	
   KGP1402542	
   6498791	
   T	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
16	
   rs9282774	
   11647532	
   A	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
17	
   KGP3621758	
   8978285	
   G	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
18	
   KGP16029087	
   40550514	
   T	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
18	
   KGP7261933	
   76950069	
   A	
   3.535	
   1.806	
   5.265	
   7.18E-­‐05	
  
5	
   KGP7070362	
   30789521	
   A	
   0.261	
   0.133	
   0.389	
   7.18E-­‐05	
  
16	
   KGP1320860	
   61998278	
   T	
   0.240	
   0.122	
   0.357	
   7.19E-­‐05	
  
11	
   rs6485688	
   46762142	
   C	
   3.538	
   1.806	
   5.269	
   7.22E-­‐05	
  
13	
   KGP1341706	
   82856926	
   C	
   3.533	
   1.804	
   5.263	
   7.25E-­‐05	
  
11	
   KGP2548532	
   46926246	
   A	
   3.536	
   1.806	
   5.267	
   7.25E-­‐05	
  
7	
   KGP22829342	
   71404269	
   A	
   3.536	
   1.805	
   5.267	
   7.26E-­‐05	
  
5	
   rs2616314	
   99243418	
   T	
   3.534	
   1.804	
   5.265	
   7.28E-­‐05	
  
4	
   KGP9086245	
   107715244	
   T	
   3.534	
   1.804	
   5.265	
   7.29E-­‐05	
  
12	
   rs10848031	
   130676091	
   A	
   -­‐0.228	
   -­‐0.340	
   -­‐0.116	
   7.41E-­‐05	
  
16	
   KGP4010190	
   61998405	
   A	
   0.238	
   0.121	
   0.355	
   7.50E-­‐05	
  
8	
   KGP8492828	
   55199771	
   A	
   1.260	
   0.642	
   1.878	
   7.54E-­‐05	
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8	
   KGP22764564	
   55211121	
   A	
   1.260	
   0.642	
   1.878	
   7.54E-­‐05	
  
6	
   rs2500585	
   107637582	
   C	
   -­‐0.280	
   -­‐0.417	
   -­‐0.142	
   7.59E-­‐05	
  
3	
   KGP2510828	
   101821068	
   C	
   -­‐0.229	
   -­‐0.341	
   -­‐0.116	
   7.60E-­‐05	
  
9	
   KGP9181314	
   97050935	
   A	
   0.293	
   0.149	
   0.437	
   7.77E-­‐05	
  
9	
   rs1536690	
   97055310	
   A	
   0.293	
   0.149	
   0.437	
   7.77E-­‐05	
  
5	
   rs17623890	
   29151261	
   A	
   0.406	
   0.207	
   0.606	
   7.77E-­‐05	
  
9	
   rs17373603	
   98493505	
   T	
   0.408	
   0.208	
   0.609	
   7.78E-­‐05	
  
12	
   KGP2171465	
   128015666	
   T	
   0.230	
   0.117	
   0.343	
   7.82E-­‐05	
  
12	
   rs16912235	
   16963281	
   T	
   0.241	
   0.123	
   0.360	
   7.83E-­‐05	
  
20	
   KGP5722281	
   38827848	
   T	
   -­‐0.300	
   -­‐0.447	
   -­‐0.152	
   7.86E-­‐05	
  
3	
   rs1399272	
   101811776	
   G	
   -­‐0.227	
   -­‐0.339	
   -­‐0.115	
   7.88E-­‐05	
  
3	
   KGP4822429	
   101811776	
   C	
   -­‐0.227	
   -­‐0.339	
   -­‐0.115	
   7.88E-­‐05	
  
14	
   KGP19526628	
   33086732	
   A	
   -­‐0.825	
   -­‐1.231	
   -­‐0.419	
   7.90E-­‐05	
  
4	
   KGP3751996	
   175827177	
   A	
   -­‐0.224	
   -­‐0.335	
   -­‐0.114	
   7.90E-­‐05	
  
4	
   rs6553847	
   175836048	
   G	
   -­‐0.224	
   -­‐0.335	
   -­‐0.114	
   7.90E-­‐05	
  
8	
   rs7838113	
   4264676	
   G	
   -­‐0.289	
   -­‐0.431	
   -­‐0.147	
   7.98E-­‐05	
  
14	
   rs2281677	
   23284572	
   T	
   0.224	
   0.114	
   0.335	
   7.99E-­‐05	
  
1	
   KGP38486	
   216899635	
   G	
   0.349	
   0.177	
   0.521	
   8.02E-­‐05	
  
6	
   KGP4132992	
   103866352	
   A	
   -­‐0.492	
   -­‐0.735	
   -­‐0.250	
   8.04E-­‐05	
  
4	
   rs4691212	
   166585445	
   G	
   -­‐0.232	
   -­‐0.346	
   -­‐0.118	
   8.16E-­‐05	
  
1	
   KGP2685985	
   102204932	
   G	
   1.775	
   0.900	
   2.651	
   8.16E-­‐05	
  
17	
   KGP11116724	
   38125891	
   C	
   0.261	
   0.132	
   0.390	
   8.20E-­‐05	
  
3	
   rs17216007	
   6475608	
   C	
   0.431	
   0.218	
   0.643	
   8.20E-­‐05	
  
1	
   rs6694800	
   40551745	
   T	
   0.521	
   0.264	
   0.777	
   8.25E-­‐05	
  
20	
   rs3787207	
   50056419	
   A	
   0.691	
   0.350	
   1.033	
   8.38E-­‐05	
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2	
   KGP1852138	
   2004564	
   G	
   0.256	
   0.130	
   0.383	
   8.54E-­‐05	
  
7	
   KGP11111926	
   57343139	
   A	
   -­‐0.672	
   -­‐1.004	
   -­‐0.340	
   8.55E-­‐05	
  
4	
   rs17028403	
   152943626	
   A	
   0.300	
   0.152	
   0.449	
   8.58E-­‐05	
  
3	
   KGP7730892	
   38598606	
   T	
   0.276	
   0.140	
   0.413	
   8.65E-­‐05	
  
20	
   KGP11474206	
   2376920	
   T	
   0.242	
   0.122	
   0.361	
   8.69E-­‐05	
  
8	
   rs1430449	
   4258195	
   T	
   -­‐0.298	
   -­‐0.445	
   -­‐0.150	
   8.76E-­‐05	
  
17	
   KGP22820022	
   77463529	
   C	
   0.554	
   0.279	
   0.828	
   8.80E-­‐05	
  
14	
   KGP3068459	
   29845225	
   A	
   0.237	
   0.119	
   0.354	
   8.91E-­‐05	
  
8	
   KGP20314184	
   55208974	
   T	
   1.175	
   0.592	
   1.758	
   8.98E-­‐05	
  
1	
   rs10864742	
   230463537	
   A	
   0.316	
   0.159	
   0.472	
   9.00E-­‐05	
  
11	
   rs17119743	
   116344404	
   G	
   -­‐0.248	
   -­‐0.371	
   -­‐0.125	
   9.07E-­‐05	
  
10	
   KGP4897218	
   99503021	
   T	
   0.383	
   0.193	
   0.573	
   9.14E-­‐05	
  
11	
   rs10893871	
   128325507	
   T	
   0.247	
   0.124	
   0.370	
   9.22E-­‐05	
  
20	
   KGP7935258	
   798547	
   G	
   0.534	
   0.269	
   0.800	
   9.31E-­‐05	
  
13	
   rs12100138	
   23770808	
   T	
   -­‐0.575	
   -­‐0.860	
   -­‐0.289	
   9.38E-­‐05	
  
14	
   rs11161052	
   29836773	
   T	
   0.234	
   0.118	
   0.351	
   9.38E-­‐05	
  
13	
   KGP6651515	
   85865655	
   G	
   -­‐0.343	
   -­‐0.513	
   -­‐0.172	
   9.40E-­‐05	
  
1	
   rs266549	
   182528269	
   A	
   0.420	
   0.211	
   0.629	
   9.50E-­‐05	
  
1	
   rs1257394	
   201254116	
   C	
   0.295	
   0.148	
   0.442	
   9.52E-­‐05	
  
7	
   KGP1446355	
   57363286	
   T	
   -­‐0.667	
   -­‐0.999	
   -­‐0.335	
   9.63E-­‐05	
  
1	
   rs2984908	
   59304719	
   T	
   -­‐0.249	
   -­‐0.373	
   -­‐0.125	
   9.70E-­‐05	
  
1	
   KGP6439718	
   59306823	
   A	
   -­‐0.249	
   -­‐0.373	
   -­‐0.125	
   9.70E-­‐05	
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Appendix J. VAAST genes with most significant p-values in family 1168 
sorted by rank. P-values were calculated using the fast genome-permutation 
option with 1e5 permutations. 
 
 

Rank Gene P-value Score 

1 PDE4DIP 1.67E-06 512.63 
2 HEATR1 1.67E-06 337.39 
3 HRNR 1.67E-06 310.50 
4 OR6N1 1.67E-06 247.08 
5 USH2A 1.67E-06 235.23 
6 OR2L8 1.67E-06 234.92 
7 OR11L1 1.67E-06 231.18 
8 OR2M7 1.67E-06 192.86 
9 EXO1 1.67E-06 189.52 
10 OR2W3 1.67E-06 184.78 
11 KIR3DL1 1.67E-06 178.51 
12 CR1 1.67E-06 174.31 
13 LGALS8 1.67E-06 173.87 
14 SPTA1 1.67E-06 170.29 
15 NES 1.67E-06 169.47 
16 OR14I1 1.67E-06 167.38 
17 OR4C3 1.67E-06 158.42 
18 KIAA1614 1.67E-06 151.24 
19 KIAA1324 1.67E-06 148.60 
20 PEAR1 1.67E-06 145.22 
21 TCHH 1.67E-06 135.75 
22 CENPF 1.67E-06 121.82 
23 OR2G2 1.67E-06 119.26 
24 FCRL5 1.67E-06 119.03 
25 IFI16 1.67E-06 118.95 
26 CHIA 1.67E-06 117.83 
27 PGLYRP4 1.67E-06 115.09 
28 TOR1AIP1 1.67E-06 113.73 
29 TLR5 1.67E-06 113.51 
30 DTL 1.67E-06 112.78 
31 CCDC76 1.67E-06 112.56 
32 FAM71A 1.67E-06 112.36 
33 OR2T11 1.67E-06 111.33 
34 LAMC1 1.67E-06 111.24 
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Rank Gene P-value Score 
35 OR2C3 1.67E-06 109.80 
36 CDC27 1.67E-06 105.25 
37 OR9G9 1.67E-06 104.26 
38 OR2T6 1.67E-06 98.89 
39 OR2B11 1.67E-06 97.80 
40 THEM5 1.67E-06 95.04 
41 IQGAP3 1.67E-06 93.68 
42 OR10J1 1.67E-06 93.46 
43 ADAR 1.67E-06 92.91 
44 MRPL9 1.67E-06 91.19 
45 F5 1.67E-06 91.08 
46 PTGFRN 1.67E-06 87.94 
47 ZNF805 1.67E-06 83.06 
48 OR2T12 1.67E-06 82.08 
49 IGSF3 1.67E-06 81.48 
50 OR14C36 1.67E-06 79.06 
51 ADAM15 1.67E-06 77.87 
52 AKNAD1 1.67E-06 77.61 
53 ASTN1 1.67E-06 76.82 
54 KIR2DL4_DUP_01 1.67E-06 75.51 
55 CR1L 1.67E-06 75.22 
56 ARHGEF11 1.67E-06 74.39 
57 MUC6 1.67E-06 74.29 
58 ZNF695 1.67E-06 73.25 
59 FAM104B_DUP_01 1.67E-06 72.30 
60 HYDIN 1.67E-06 68.67 
61 EPS8L3 1.67E-06 65.99 
62 CTBP2 1.67E-06 60.41 
63 GPR37L1 1.67E-06 58.49 
64 F13B 1.67E-06 57.60 
65 RRNAD1 1.67E-06 57.52 
66 MYBPHL 1.67E-06 57.30 
67 BCL2L15 1.67E-06 57.30 
68 TMEM81 1.67E-06 57.09 
69 PRODH 1.67E-06 57.09 
70 CR2 1.67E-06 56.76 
71 CSF1 1.67E-06 56.54 
72 PRG4 1.67E-06 56.54 
73 ASPM 1.67E-06 56.32 
74 ACP6 1.67E-06 56.07 
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Rank Gene P-value Score 
75 DSTYK 1.67E-06 55.95 
76 ITPKB 1.67E-06 55.70 
77 XKR3 1.67E-06 55.66 
78 PTPN22 1.67E-06 55.65 
79 TRIM33 1.67E-06 55.63 
80 OR14A16 1.67E-06 55.63 
81 MIA3 1.67E-06 55.61 
82 C1orf111 1.67E-06 55.43 
83 CDC42BPA 1.67E-06 55.43 
84 CEP350 1.67E-06 55.38 
85 ANKRD35 1.67E-06 55.38 
86 PPP1R15B 1.67E-06 55.36 
87 AHCTF1 1.67E-06 55.36 
88 FAM63A 1.67E-06 55.25 
89 C1orf116 1.67E-06 54.92 
90 C1orf204 1.67E-06 54.76 
91 RGS16 1.67E-06 54.66 
92 LYPLAL1 1.67E-06 54.64 
93 OR2T27 1.67E-06 54.61 
94 CD101 1.67E-06 54.46 
95 PRSS38 1.67E-06 54.46 
96 SYT11 1.67E-06 54.42 
97 S100A7 1.67E-06 54.32 
98 RXFP4 1.67E-06 54.10 
99 CNST 1.67E-06 54.10 
100 EPRS 1.67E-06 53.81 
101 FNDC7 1.67E-06 52.92 
102 TSHB 1.67E-06 52.52 
103 ASH1L 1.67E-06 52.52 
104 PRSS3 1.67E-06 52.52 
105 DBT 1.67E-06 52.49 
106 PPM1J 1.67E-06 52.36 
107 PM20D1 1.67E-06 52.30 
108 APOBEC4 1.67E-06 50.18 
109 SETD8 1.67E-06 50.13 
110 HMCN1 1.67E-06 49.47 
111 COL11A1 1.67E-06 49.22 
112 RNASEL 1.67E-06 48.93 
113 BGLAP 1.67E-06 47.00 
114 LRRC71 1.67E-06 46.59 
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Rank Gene P-value Score 
115 OR10T2 1.67E-06 45.59 
116 ITLN1 1.67E-06 41.03 
117 OR6K3 1.67E-06 40.72 
118 FMN2 1.67E-06 40.22 
119 ITLN2 1.67E-06 40.22 
120 SMYD2 1.67E-06 39.95 
121 URB2 1.67E-06 39.75 
122 ST7L 1.67E-06 39.71 
123 EDEM3 1.67E-06 39.62 
124 LEFTY1 1.67E-06 38.83 
125 OR10R2 1.67E-06 38.44 
126 CHI3L1 1.67E-06 38.30 
127 GPRIN2 1.67E-06 38.30 
128 TTF2 1.67E-06 38.23 
129 ZNF845 1.67E-06 38.00 
130 CHD1L 1.67E-06 37.84 
131 SLC6A17 1.67E-06 37.76 
132 OR10Z1 1.67E-06 37.74 
133 POTEF 1.67E-06 37.56 
134 SEMA6C 1.67E-06 37.55 
135 HSD3B1 1.67E-06 37.51 
136 AGT 1.67E-06 37.48 
137 FCGR2A 1.67E-06 37.28 
138 SEC16B 1.67E-06 37.28 
139 SHISA4_DUP_01 1.67E-06 37.26 
140 ARHGAP30 1.67E-06 37.23 
141 AXDND1 1.67E-06 37.09 
142 SLAMF9 1.67E-06 37.09 
143 NSL1 1.67E-06 37.09 
144 MTMR11 1.67E-06 37.09 
145 ATF6 1.67E-06 37.09 
146 ACBD3 1.67E-06 36.94 
147 SLC16A1 1.67E-06 36.44 
148 SCYL3 1.67E-06 36.00 
149 C1orf105 1.67E-06 35.79 
150 LBR 1.67E-06 35.79 
151 HBXIP 1.67E-06 35.79 
152 PLA2G4A 1.67E-06 35.71 
153 LGR6 1.67E-06 35.54 
154 MOSC1 1.67E-06 35.14 
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Rank Gene P-value Score 
155 GSTM3 1.67E-06 34.98 
156 PROK1 1.67E-06 34.98 
157 PLEKHA6 1.67E-06 34.98 
158 OR13G1 1.67E-06 34.92 
159 OR2G3 1.67E-06 34.92 
160 VAV3 1.67E-06 34.67 
161 MTX1 1.67E-06 34.67 
162 EFNA1 1.67E-06 27.65 
163 ATP1A4 1.67E-06 26.50 
164 DARC 1.67E-06 26.50 
165 PBXIP1 1.67E-06 26.50 
166 SCCPDH 1.67E-06 26.11 
167 SELP 1.67E-06 25.31 
168 DENND2C 1.67E-06 25.21 
169 LIPK 1.67E-06 24.94 
170 IBA57 1.67E-06 24.79 
171 FLG2 1.67E-06 24.55 
172 CELSR2 1.67E-06 24.34 
173 UAP1 1.67E-06 24.34 
174 HDGF 1.67E-06 24.29 
175 C1orf124 1.67E-06 24.29 
176 ADAMTSL4 1.67E-06 24.23 
177 CLDN16 1.67E-06 24.23 
178 CLCC1 1.67E-06 24.00 
179 TCEB3CL_DUP_02 1.67E-06 24.00 
180 RPTN 1.67E-06 23.83 
181 PLXNA2 1.67E-06 23.83 
182 C4BPA 1.67E-06 23.64 
183 CAPN2 1.67E-06 23.62 
184 EDARADD 1.67E-06 23.61 
185 CEP170 1.67E-06 23.54 
186 C1orf129 1.67E-06 23.37 
187 LHX4 1.67E-06 23.37 
188 OR2T4 1.67E-06 23.29 
189 PIGC 1.67E-06 23.29 
190 BCL9 1.67E-06 23.29 
191 PCMTD1 1.67E-06 23.13 
192 OR2T1 1.67E-06 22.67 
193 METTL13 1.67E-06 22.48 
194 LY9 1.67E-06 22.48 
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Rank Gene P-value Score 
195 KCNJ12 1.67E-06 22.44 
196 SIPA1L2 1.67E-06 22.33 
197 CBWD6 1.67E-06 21.83 
198 CD1E 1.67E-06 21.40 
199 ADAMTS4 1.67E-06 21.40 
200 KDM4DL 1.67E-06 21.40 
201 PRSS1 1.67E-06 21.19 
202 ADCY10 1.67E-06 20.31 
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Appendix K. VAAST genes with most significant p-values in family 1281 
sorted by rank. P-values were calculated using the fast genome-permutation 
option with 1e5 permutations. 
 

Rank Gene P-value Score 
1 HRNR 1.67E-06 537.33 
2 PDE4DIP 1.67E-06 529.39 
3 USH2A 1.67E-06 297.29 
4 OR2L8 1.67E-06 234.92 
5 SPTA1 1.67E-06 234.17 
6 OR11L1 1.67E-06 231.18 
7 OR6N1 1.67E-06 228.36 
8 OR2W3 1.67E-06 215.57 
9 IFI16 1.67E-06 190.83 
10 EXO1 1.67E-06 177.37 
11 FCRL5 1.67E-06 171.17 
12 HEATR1 1.67E-06 171.12 
13 KIAA1324 1.67E-06 168.17 
14 OVGP1 1.67E-06 157.97 
15 KIR3DL1 1.67E-06 146.41 
16 IGSF3 1.67E-06 134.53 
17 OR10R2 1.67E-06 134.26 
18 LGR6 1.67E-06 133.68 
19 OR14I1 1.67E-06 131.01 
20 ASPM 1.67E-06 130.25 
21 OR2C3 1.67E-06 130.03 
22 CHIA 1.67E-06 126.56 
23 OR13G1 1.67E-06 123.55 
24 OR10X1 1.67E-06 120.47 
25 PGLYRP4 1.67E-06 115.09 
26 ECM1 1.67E-06 114.95 
27 TCHH 1.67E-06 114.52 
28 DUSP27 1.67E-06 114.13 
29 THEM5 1.67E-06 113.80 
30 TLR5 1.67E-06 113.51 
31 COL11A1 1.67E-06 113.19 
32 KIAA1614 1.67E-06 113.13 
33 DTL 1.67E-06 112.78 
34 FAM71A 1.67E-06 112.36 
35 ASTN1 1.67E-06 111.57 
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Rank Gene P-value Score 
36 OR2T11 1.67E-06 111.33 
37 TNR 1.67E-06 107.39 
38 IQGAP3 1.67E-06 105.92 
39 CDC27 1.67E-06 105.25 
40 OR2G2 1.67E-06 104.18 
41 CENPF 1.67E-06 103.83 
42 OR4C3 1.67E-06 102.50 
43 OR2M7 1.67E-06 102.45 
44 HMCN1 1.67E-06 101.61 
45 DNAH14 1.67E-06 100.87 
46 MUC6 1.67E-06 100.82 
47 VAV3 1.67E-06 98.54 
48 CR1L 1.67E-06 97.06 
49 CAPN9 1.67E-06 94.83 
50 CHD1L 1.67E-06 94.43 
51 OR10J1 1.67E-06 93.46 
52 ITPKB 1.67E-06 89.90 
53 KCNJ12 1.67E-06 87.50 
54 CSF1 1.67E-06 80.73 
55 TOR1AIP1 1.67E-06 78.97 
56 KIR3DL2 1.67E-06 78.30 
57 OR9G9 1.67E-06 78.17 
58 RNASEL 1.67E-06 78.15 
59 LGALS8 1.67E-06 77.91 
60 GPRIN2 1.67E-06 77.85 
61 CD101 1.67E-06 77.70 
62 FAM177B 1.67E-06 77.63 
63 ADAR 1.67E-06 76.92 
64 CAPN2 1.67E-06 76.67 
65 CFH 1.67E-06 76.52 
66 LAMC1 1.67E-06 76.49 
67 CDC42BPA 1.67E-06 75.03 
68 OR10T2 1.67E-06 74.80 
69 C1orf68 1.67E-06 74.52 
70 NSL1 1.67E-06 74.00 
71 MAGEC1 1.67E-06 72.63 
72 FAM104B_DUP_01 1.67E-06 72.30 
73 PTGFRN 1.67E-06 71.94 
74 CR1 1.67E-06 71.81 
75 SWT1 1.67E-06 69.18 
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Rank Gene P-value Score 
76 HYDIN 1.67E-06 68.67 
77 TNN 1.67E-06 63.40 
78 FNDC7 1.67E-06 63.34 
79 ATF6 1.67E-06 62.19 
80 KIR3DL3 1.67E-06 61.58 
81 PM20D1 1.67E-06 60.22 
82 EFNA1 1.67E-06 59.63 
83 ATP1A4 1.67E-06 58.49 
84 GPR37L1 1.67E-06 58.49 
85 LCE5A 1.67E-06 57.65 
86 F13B 1.67E-06 57.60 
87 RRNAD1 1.67E-06 57.52 
88 SMYD2 1.67E-06 57.33 
89 MYBPHL 1.67E-06 57.30 
90 BCL2L15 1.67E-06 57.30 
91 PRODH 1.67E-06 57.09 
92 EPS8L3 1.67E-06 56.93 
93 PRG4 1.67E-06 56.54 
94 ADAMTSL4 1.67E-06 56.22 
95 FLVCR1 1.67E-06 56.18 
96 ACP6 1.67E-06 56.07 
97 OR2B11 1.67E-06 56.07 
98 OR14C36 1.67E-06 55.66 
99 C1orf227 1.67E-06 55.63 
100 TRIM33 1.67E-06 55.63 
101 OR14A16 1.67E-06 55.63 
102 TTF2 1.67E-06 55.61 
103 MIA3 1.67E-06 55.61 
104 C1orf111 1.67E-06 55.43 
105 JMJD4 1.67E-06 55.43 
106 SH2D2A 1.67E-06 55.36 
107 PPP1R15B 1.67E-06 55.36 
108 ADAM15 1.67E-06 55.35 
109 FAM63A 1.67E-06 55.25 
110 SEMA6C 1.67E-06 54.93 
111 PEAR1 1.67E-06 54.92 
112 C1orf116 1.67E-06 54.92 
113 APOA1BP 1.67E-06 54.77 
114 DIEXF 1.67E-06 54.76 
115 C1orf204 1.67E-06 54.76 
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Rank Gene P-value Score 
116 SEC16B 1.67E-06 54.66 
117 UBQLN4 1.67E-06 54.64 
118 LYPLAL1 1.67E-06 54.64 
119 OR2T27 1.67E-06 54.61 
120 SLAMF9 1.67E-06 54.47 
121 PRSS38 1.67E-06 54.46 
122 SYT11 1.67E-06 54.42 
123 S100A7 1.67E-06 54.32 
124 RXFP4 1.67E-06 54.10 
125 CNST 1.67E-06 54.10 
126 ZNF805 1.67E-06 53.85 
127 SLC16A1 1.67E-06 53.81 
128 EPRS 1.67E-06 53.81 
129 SCYL3 1.67E-06 53.38 
130 F5 1.67E-06 53.38 
131 LBR 1.67E-06 53.17 
132 PLA2G4A 1.67E-06 53.09 
133 ERO1LB 1.67E-06 52.58 
134 TSHB 1.67E-06 52.52 
135 ASH1L 1.67E-06 52.52 
136 PRSS3 1.67E-06 52.52 
137 DBT 1.67E-06 52.49 
138 PPM1J 1.67E-06 52.36 
139 AQP10 1.67E-06 52.05 
140 BCLAF1 1.67E-06 50.52 
141 SELP 1.67E-06 50.25 
142 APOBEC4 1.67E-06 50.18 
143 SETD8 1.67E-06 50.13 
144 POTED 1.67E-06 49.26 
145 CEP89 1.67E-06 47.61 
146 NES 1.67E-06 46.66 
147 SAA2-SAA4 1.67E-06 46.38 
148 C1orf85 1.67E-06 45.60 
149 SPRR1A 1.67E-06 45.30 
150 ARHGEF11 1.67E-06 45.17 
151 PDE10A 1.67E-06 44.20 
152 ZNF695 1.67E-06 44.04 
153 FCRLB 1.67E-06 41.11 
154 OR6K3 1.67E-06 40.72 
155 KIR2DL1 1.67E-06 40.14 
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Rank Gene P-value Score 
156 DENND2C 1.67E-06 39.82 
157 URB2 1.67E-06 39.75 
158 TMEM81 1.67E-06 39.71 
159 NUF2 1.67E-06 39.69 
160 C1orf162 1.67E-06 39.39 
161 PIGR 1.67E-06 39.39 
162 CR2 1.67E-06 39.38 
163 IL19 1.67E-06 39.16 
164 KPRP 1.67E-06 39.16 
165 CLDN16 1.67E-06 38.84 
166 OR2AK2 1.67E-06 38.69 
167 DSTYK 1.67E-06 38.57 
168 TBX15 1.67E-06 38.28 
169 PTPN22 1.67E-06 38.27 
170 C4BPA 1.67E-06 38.25 
171 DDX20 1.67E-06 38.25 
172 CEP350 1.67E-06 38.00 
173 ANKRD35 1.67E-06 38.00 
174 LHX4 1.67E-06 37.98 
175 FAM46C 1.67E-06 37.54 
176 TRAF3IP3 1.67E-06 37.38 
177 AXDND1 1.67E-06 37.38 
178 RGS16 1.67E-06 37.28 
179 SHISA4_DUP_01 1.67E-06 37.26 
180 METTL13 1.67E-06 37.09 
181 LY9 1.67E-06 37.09 
182 SDCCAG8 1.67E-06 36.94 
183 CD1E 1.67E-06 36.00 
184 BGLAP 1.67E-06 36.00 
185 HBXIP 1.67E-06 35.79 
186 MOSC1 1.67E-06 35.14 
187 LCE1E 1.67E-06 35.11 
188 PLEKHA6 1.67E-06 34.98 
189 TARBP1 1.67E-06 34.97 
190 ADCY10 1.67E-06 34.92 
191 BBS9 1.67E-06 32.71 
192 CHI3L2 1.67E-06 27.07 
193 PAPPA2 1.67E-06 27.07 
194 CACNA1S 1.67E-06 26.70 
195 KMO 1.67E-06 26.70 
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Rank Gene P-value Score 
196 DCST1 1.67E-06 26.70 
197 PIP 1.67E-06 26.67 
198 FMO3 1.67E-06 26.18 
199 BCAN 1.67E-06 26.18 
200 OR2T12 1.67E-06 26.13 
201 KIAA1671 1.67E-06 26.13 
202 VSIG4 1.67E-06 26.11 
203 FMN2 1.67E-06 25.61 
204 FRG1 1.67E-06 25.35 
205 NUDT22 1.67E-06 25.22 
206 FCRL4 1.67E-06 25.11 
207 SHMT2_DUP_01 1.67E-06 25.11 
208 YIF1B 1.67E-06 25.05 
209 TPTE 1.67E-06 25.05 
210 C1orf88 1.67E-06 24.73 
211 ZNF337 1.67E-06 24.69 
212 TDRD5 1.67E-06 24.53 
213 C1orf110 1.67E-06 24.53 
214 IL24 1.67E-06 24.34 
215 C1orf129 1.67E-06 24.34 
216 TEDDM1 1.67E-06 24.34 
217 COL4A5 1.67E-06 24.29 
218 INSRR 1.67E-06 24.29 
219 C1orf124 1.67E-06 24.29 
220 KIR2DL4_DUP_01 1.67E-06 24.29 
221 TMEM79_DUP_01 1.67E-06 24.09 
222 EFNA3 1.67E-06 24.09 
223 HHIPL2 1.67E-06 24.03 
224 KIF14 1.67E-06 24.00 
225 CLCC1 1.67E-06 24.00 
226 TCEB3CL_DUP_02 1.67E-06 24.00 
227 DISC1 1.67E-06 23.70 
228 NAIF1 1.67E-06 23.70 
229 OR2M2 1.67E-06 23.69 
230 CGB1 1.67E-06 23.69 
231 EDARADD 1.67E-06 23.61 
232 SLAMF1 1.67E-06 23.58 
233 NOTCH2NL 1.67E-06 23.54 
234 AHCTF1 1.67E-06 23.37 
235 CREB3L4 1.67E-06 23.29 
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Rank Gene P-value Score 
236 NLRP3 1.67E-06 23.19 
237 OR10Z1 1.67E-06 23.13 
238 PCMTD1 1.67E-06 23.13 
239 METTL11B 1.67E-06 22.93 
240 HSD3B1 1.67E-06 22.91 
241 AGT 1.67E-06 22.88 
242 CD244 1.67E-06 22.80 
243 MFSD4 1.67E-06 22.80 
244 MR1 1.67E-06 22.67 
245 FCGR2A 1.67E-06 22.67 
246 FCRL2 1.67E-06 22.63 
247 ARHGAP30 1.67E-06 22.62 
248 SPRR3 1.67E-06 22.62 
249 LAMC2 1.67E-06 22.59 
250 RASA2 1.67E-06 22.59 
251 CFHR4 1.67E-06 22.49 
252 MTMR11 1.67E-06 22.48 
253 CRTC2 1.67E-06 22.48 
254 RTBDN 1.67E-06 22.36 
255 ACBD3 1.67E-06 22.34 
256 METTL18 1.67E-06 22.34 
257 ATP8B2 1.67E-06 22.02 
258 NCF2 1.67E-06 22.02 
259 CBWD6 1.67E-06 21.83 
260 NAP1L2 1.67E-06 21.83 
261 KISS1 1.67E-06 21.40 
262 AKNAD1 1.67E-06 21.19 
263 AMY2B 1.67E-06 20.93 
264 PARP1 1.67E-06 20.93 
265 BEND3 1.67E-06 20.93 
266 IVL 1.67E-06 20.53 
267 CASQ2 1.67E-06 20.53 
268 OR6Y1 1.67E-06 20.37 
269 GSTM3 1.67E-06 20.37 
270 NUP210L 1.67E-06 20.37 
271 ILDR2 1.67E-06 20.37 
272 XPR1 1.67E-06 20.31 
273 ABL2 1.67E-06 20.07 
274 NUP98 1.67E-06 19.56 
275 NKRF 1.67E-06 18.20 
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Appendix L. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis of most significant p-value VAAST genes for family 1168. The table 
includes KEGG pathway ID, pathway name and number of genes in parentheses.  
 
 

KEGG Pathways Top P-value Genes Family 1168 
hsa04740 Olfactory transduction  (25) 
hsa01100 Metabolic pathways (8) 
hsa04610 Complement and coagulation cascades (5) 
hsa04640 Hematopoietic cell lineage (4) 
hsa04510 Focal adhesion (4) 
hsa04972 Pancreatic secretion (4) 
hsa05164 Influenza A (4) 
hsa04974 Protein digestion and absorption (4) 
hsa04080 Neuroactive ligand-receptor interaction (3) 
hsa04141 Protein processing in endoplasmic reticulum (3) 
hsa05144 Malaria (3) 
hsa00520 Amino sugar and nucleotide sugar metabolism (3) 
hsa04666 Fc gamma R-mediated phagocytosis (3) 
hsa04360 Axon guidance (3) 
hsa04810 Regulation of actin cytoskeleton (2) 
hsa05145 Toxoplasmosis (2) 
hsa05010 Alzheimer's disease (2) 
hsa04530 Tight junction (2) 
hsa04662 B cell receptor signaling pathway (2) 
hsa04664 Fc epsilon RI signaling pathway (2) 
hsa05140 Leishmaniasis (2) 
hsa04514 Cell adhesion molecules (CAMs) (2) 
hsa05134 Legionellosis (2) 
hsa04380 Osteoclast differentiation (2) 
hsa00310 Lysine degradation (2) 
hsa04512 ECM-receptor interaction (2) 
hsa05152 Tuberculosis (2) 
hsa05200 Pathways in cancer (2) 
hsa04650 Natural killer cell mediated cytotoxicity (2) 
hsa05150 Staphylococcus aureus infection (2) 
hsa04270 Vascular smooth muscle contraction (2) 
hsa05146 Amoebiasis (2) 
hsa05160 Hepatitis C (2) 
hsa04670 Leukocyte transendothelial migration (2) 
hsa04614 Renin-angiotensin system (1) 
hsa00592 alpha-Linolenic acid metabolism (1) 
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KEGG Pathways Top P-value Genes Family 1168 
hsa04060 Cytokine-cytokine receptor interaction (1) 
hsa03430 Mismatch repair (1) 
hsa04912 GnRH signaling pathway (1) 
hsa04726 Serotonergic synapse (1) 
hsa04062 Chemokine signaling pathway (1) 
hsa03008 Ribosome biogenesis in eukaryotes (1) 
hsa00590 Arachidonic acid metabolism (1) 
hsa04976 Bile secretion (1) 
hsa04120 Ubiquitin mediated proteolysis (1) 
hsa00740 Riboflavin metabolism (1) 
hsa05162 Measles (1) 
hsa04914 Progesterone-mediated oocyte maturation (1) 
hsa05222 Small cell lung cancer (1) 
hsa04725 Cholinergic synapse (1) 
hsa04970 Salivary secretion (1) 
hsa04070 Phosphatidylinositol signaling system (1) 
hsa04370 VEGF signaling pathway (1) 
hsa05130 Pathogenic Escherichia coli infection (1) 
hsa04964 Proximal tubule bicarbonate reclamation (1) 
hsa00480 Glutathione metabolism (1) 
hsa04975 Fat digestion and absorption (1) 
hsa00591 Linoleic acid metabolism (1) 
hsa04114 Oocyte meiosis (1) 
hsa04310 Wnt signaling pathway (1) 
hsa05132 Salmonella infection (1) 
hsa05322 Systemic lupus erythematosus (1) 
hsa05133 Pertussis (1) 
hsa04973 Carbohydrate digestion and absorption (1) 
hsa00982 Drug metabolism cytochrome P450 (1) 
hsa00562 Inositol phosphate metabolism (1) 
hsa05166 HTLV-I infection (1) 
hsa00280 Valine, leucine and isoleucine degradation (1) 
hsa05020 Prion diseases (1) 
hsa04730 Long-term depression (1) 
hsa00330 Arginine and proline metabolism (1) 
hsa04350 TGF-beta signaling pathway (1) 
hsa05332 Graft-versus-host disease (1) 
hsa04660 T cell receptor signaling pathway (1) 
hsa04620 Toll-like receptor signaling pathway (1) 
hsa04971 Gastric acid secretion (1) 
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KEGG Pathways Top P-value Genes Family 1168 
hsa00565 Ether lipid metabolism (1) 
hsa04978 Mineral absorption (1) 
hsa04110 Cell cycle (1) 
hsa05320 Autoimmune thyroid disease (1) 
hsa04623 Cytosolic DNA-sensing pathway (1) 
hsa00563 Glycosylphosphatidylinositol(GPI)-anchor biosynthesis (1) 
hsa04260 Cardiac muscle contraction (1) 
hsa00140 Steroid hormone biosynthesis (1) 
hsa04145 Phagosome (1) 
hsa05220 Chronic myeloid leukemia (1) 
hsa04210 Apoptosis (1) 
hsa00970 Aminoacyl-tRNA biosynthesis (1) 
hsa04010 MAPK signaling pathway (1) 
hsa00564 Glycerophospholipid metabolism (1) 
hsa04330 Notch signaling pathway (1) 
hsa04612 Antigen processing and presentation (1) 
hsa04320 Dorso-ventral axis formation (1) 
hsa04724 Glutamatergic synapse (1) 
hsa00230 Purine metabolism (1) 
hsa05168 Herpes simplex infection (1) 
hsa04020 Calcium signaling pathway (1) 
hsa00980 Metabolism of xenobiotics by cytochrome P450 (1) 
hsa04960 Aldosterone-regulated sodium reabsorption (1) 
hsa05323 Rheumatoid arthritis (1) 
hsa04961 Endocrine and other factor-regulated calcium reabsorption (1) 
hsa00860 Porphyrin and chlorophyll metabolism (1) 
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Appendix M. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis of most significant p-value VAAST genes for family 1281. The table 
includes KEGG pathway ID, pathway name and number of genes in parentheses.  
 
 

KEGG Pathways Top P-value Genes Family 1281 
hsa04740 Olfactory transduction (20) 
hsa04510 Focal adhesion (6) 
hsa01100 Metabolic pathways (5) 
hsa04141 Protein processing in endoplasmic reticulum (4) 
hsa04610 Complement and coagulation cascades (4) 
hsa04512 ECM-receptor interaction (4) 
hsa04972 Pancreatic secretion (3) 
hsa04650 Natural killer cell mediated cytotoxicity (3) 
hsa05164 Influenza A (3) 
hsa04612 Antigen processing and presentation (3) 
hsa04974 Protein digestion and absorption (3) 
hsa04810 Regulation of actin cytoskeleton (2) 
hsa05145 Toxoplasmosis (2) 
hsa04080 Neuroactive ligand-receptor interaction (2) 
hsa04640 Hematopoietic cell lineage (2) 
hsa05010 Alzheimer's disease (2) 
hsa04370 VEGF signaling pathway (2) 
hsa04664 Fc epsilon RI signaling pathway (2) 
hsa05134 Legionellosis (2) 
hsa05332 Graft-versus-host disease (2) 
hsa04666 Fc gamma R-mediated phagocytosis (2) 
hsa04360 Axon guidance (2) 
hsa05146 Amoebiasis (2) 
hsa00592 alpha-Linolenic acid metabolism (1) 
hsa04060 Cytokine-cytokine receptor interaction (1) 
hsa03430 Mismatch repair (1) 
hsa04912 GnRH signaling pathway (1) 
hsa04726 Serotonergic synapse (1) 
hsa04062 Chemokine signaling pathway (1) 
hsa03008 Ribosome biogenesis in eukaryotes (1) 
hsa00590 Arachidonic acid metabolism (1) 
hsa04976 Bile secretion (1) 
hsa04120 Ubiquitin mediated proteolysis (1) 
hsa00740 Riboflavin metabolism (1) 
hsa05162 Measles (1) 
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KEGG Pathways Top P-value Genes Family 1281 
hsa04530 Tight junction (1) 
hsa04914 Progesterone-mediated oocyte maturation (1) 
hsa05222 Small cell lung cancer (1) 
hsa04725 Cholinergic synapse (1) 
hsa04970 Salivary secretion (1) 
hsa04070 Phosphatidylinositol signaling system (1) 
hsa04662 B cell receptor signaling pathway (1) 
hsa05130 Pathogenic Escherichia coli infection (1) 
hsa04964 Proximal tubule bicarbonate reclamation (1) 
hsa04975 Fat digestion and absorption (1) 
hsa05140 Leishmaniasis (1) 
hsa00591 Linoleic acid metabolism (1) 
hsa04114 Oocyte meiosis (1) 
hsa04380 Osteoclast differentiation (1) 
hsa05132 Salmonella infection (1) 
hsa05144 Malaria (1) 
hsa04973 Carbohydrate digestion and absorption (1) 
hsa00562 Inositol phosphate metabolism (1) 
hsa05166 HTLV-I infection (1) 
hsa00280 Valine, leucine and isoleucine degradation (1) 
hsa05020 Prion diseases (1) 
hsa04730 Long-term depression (1) 
hsa00330 Arginine and proline metabolism (1) 
hsa00310 Lysine degradation (1) 
hsa04660 T cell receptor signaling pathway (1) 
hsa04620 Toll-like receptor signaling pathway (1) 
hsa00520 Amino sugar and nucleotide sugar metabolism (1) 
hsa04971 Gastric acid secretion (1) 
hsa04978 Mineral absorption (1) 
hsa00565 Ether lipid metabolism (1) 
hsa05152 Tuberculosis (1) 
hsa05200 Pathways in cancer (1) 
hsa04110 Cell cycle (1) 
hsa05320 Autoimmune thyroid disease (1) 
hsa04623 Cytosolic DNA-sensing pathway (1) 
hsa04260 Cardiac muscle contraction (1) 
hsa04210 Apoptosis (1) 
hsa00970 Aminoacyl-tRNA biosynthesis (1) 
hsa04010 MAPK signaling pathway (1) 
hsa00564 Glycerophospholipid metabolism (1) 
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KEGG Pathways Top P-value Genes Family 1281 
hsa04270 Vascular smooth muscle contraction (1) 
hsa05150 Staphylococcus aureus infection (1) 
hsa04724 Glutamatergic synapse (1) 
hsa05168 Herpes simplex infection (1) 
hsa04020 Calcium signaling pathway (1) 
hsa05160 Hepatitis C (1) 
hsa04670 Leukocyte transendothelial migration (1) 
hsa04960 Aldosterone-regulated sodium reabsorption (1) 
hsa05323 Rheumatoid arthritis (1) 
hsa04961 Endocrine and other factor-regulated calcium reabsorption (1) 
hsa00860 Porphyrin and chlorophyll metabolism (1) 
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Appendix N. Complete unadjusted and adjusted additive logistic regression association results for Finnish mothers’ 
complement and coagulation factor exome SNPs on Illumina Omni2.5 BeadChips sorted by adjusted p-values. The 
gene listed is that in which the SNP is located and in parentheses is the VAAST gene the SNP was selected to interrogate 
within the 10 kb 5’ and 3’ buffer. Base pair (BP) positions refer to GRCh37 (hg19, February 2009 assembly) build of the 
human genome.  
 

CHR	
   	
  SNP	
   BP	
   GENE	
   MINOR	
  
ALLELE	
  

MAJOR	
  
ALLELE	
  

ADJ	
  	
  
P-­‐VALUE	
   ADJ	
  OR	
   UNADJ	
  

	
  P-­‐VALUE	
   UNADJ	
  OR	
  

1	
   rs6691117	
   207782931	
   CR1	
   G	
   A	
   1.07E-­‐04	
   1.732	
   6.93E-­‐05	
   1.741	
  
1	
   EXM133911	
   197031021	
   F13B	
   C	
   T	
   0.0213	
   0.5327	
   0.04428	
   0.5864	
  
1	
   EXM-­‐RS12034383	
   207803595	
   CR1	
   G	
   A	
   0.0307	
   1.31	
   0.02107	
   1.326	
  
1	
   EXM-­‐RS6656401	
   207692049	
   CR1	
   A	
   G	
   0.0504	
   0.7326	
   0.05833	
   0.7454	
  
1	
   EXM144910	
   207782769	
   CR1	
   A	
   G	
   0.0793	
   1.477	
   0.1053	
   1.423	
  
1	
   EXM-­‐RS3818361	
   207784968	
   CR1	
   T	
   C	
   0.0927	
   0.7726	
   0.09383	
   0.7776	
  
1	
   EXM-­‐RS6701713	
   207786289	
   CR1	
   A	
   G	
   0.0927	
   0.7726	
   0.09383	
   0.7776	
  
1	
   EXM144976	
   207795320	
   CR1	
   A	
   G	
   0.1011	
   0.7782	
   0.104	
   0.784	
  
1	
   EXM-­‐RS3813948	
   207269858	
   C4BPA	
   G	
   A	
   0.1553	
   0.673	
   0.165	
   0.6842	
  
1	
   EXM-­‐RS6677604	
   196686918	
   CFH	
   A	
   G	
   0.1601	
   0.752	
   0.1991	
   0.7769	
  
1	
   EXM144922	
   207782916	
   CR1	
   A	
   T	
   0.1796	
   0.493	
   0.127	
   0.4497	
  
1	
   EXM144743	
   207653395	
   CR2	
   C	
   A	
   0.1905	
   0.7905	
   0.1542	
   0.7775	
  
1	
   EXM-­‐RS1061170	
   196659237	
   CFH	
   C	
   T	
   0.1964	
   0.8492	
   0.1775	
   0.8459	
  
1	
   EXM144486	
   207304980	
   C4BPA	
   C	
   G	
   0.2161	
   2.305	
   0.3081	
   1.987	
  
1	
   EXM121798	
   169510139	
   F5	
   A	
   G	
   0.2205	
   0.7313	
   0.1913	
   0.7219	
  
1	
   EXM121818	
   169510475	
   F5	
   T	
   G	
   0.2523	
   0.8353	
   0.3945	
   0.878	
  
1	
   EXM121977	
   169521853	
   F5	
   G	
   A	
   0.2732	
   0.7969	
   0.5509	
   0.8878	
  
1	
   EXM121943	
   169513583	
   F5	
   T	
   G	
   0.3048	
   0.8082	
   0.6067	
   0.9022	
  
1	
   EXM2250216	
   169513583	
   F5	
   T	
   G	
   0.3048	
   0.8082	
   0.6067	
   0.9022	
  
1	
   EXM-­‐RS1329424	
   196646176	
   CFH	
   A	
   C	
   0.3288	
   0.8869	
   0.2994	
   0.8824	
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CHR	
   	
  SNP	
   BP	
   GENE	
   MINOR	
  
ALLELE	
  

MAJOR	
  
ALLELE	
  

ADJ	
  	
  
P-­‐VALUE	
   ADJ	
  OR	
   UNADJ	
  

	
  P-­‐VALUE	
   UNADJ	
  OR	
  

1	
   EXM133342	
   196642233	
   CFH	
   A	
   G	
   0.3511	
   1.135	
   0.2702	
   1.158	
  
1	
   EXM133469	
   196709816	
   CFH	
   T	
   G	
   0.3593	
   3.091	
   0.4045	
   2.783	
  
1	
   EXM144433	
   207286381	
   C4BPA	
   A	
   C	
   0.4025	
   1.58	
   0.5381	
   1.396	
  
1	
   EXM133467	
   196709774	
   CFH	
   T	
   G	
   0.4383	
   1.142	
   0.6694	
   1.074	
  
1	
   EXM122025	
   169541513	
   F5	
   G	
   C	
   0.4563	
   1.328	
   0.5909	
   1.224	
  
1	
   EXM121797	
   169510118	
   F5	
   A	
   G	
   0.4583	
   0.7704	
   0.4232	
   0.7584	
  
1	
   EXM122022	
   169529974	
   F5	
   A	
   G	
   0.4843	
   0.5536	
   0.4769	
   0.5498	
  
1	
   EXM-­‐RS380390	
   196701051	
   CFH	
   C	
   G	
   0.4857	
   0.9182	
   0.4585	
   0.9149	
  
1	
   EXM144908	
   207782707	
   CR1	
   G	
   A	
   0.5277	
   1.139	
   0.4767	
   1.155	
  
1	
   EXM144887	
   207760772	
   CR1	
   G	
   A	
   0.5394	
   1.304	
   0.5605	
   1.282	
  
1	
   EXM121681	
   169483561	
   F5	
   C	
   T	
   0.5635	
   0.877	
   0.9626	
   1.01	
  
1	
   EXM122058	
   169563951	
   F5	
   G	
   T	
   0.5974	
   0.9059	
   0.5445	
   0.8951	
  
1	
   EXM121903	
   169511878	
   F5	
   G	
   T	
   0.5975	
   0.8857	
   0.9166	
   1.023	
  
1	
   EXM-­‐RS17045328	
   207652176	
   CR2	
   G	
   A	
   0.6030	
   1.183	
   0.5552	
   1.206	
  
1	
   EXM144740	
   207653364	
   CR2	
   G	
   A	
   0.6062	
   0.8743	
   0.4428	
   0.8213	
  
1	
   EXM144473	
   207300070	
   C4BPA	
   A	
   G	
   0.6458	
   0.8845	
   0.5855	
   0.8667	
  
1	
   EXM144961	
   207791434	
   CR1	
   G	
   A	
   0.7044	
   1.218	
   0.887	
   1.075	
  
1	
   EXM121964	
   169519112	
   F5	
   T	
   C	
   0.7311	
   1.115	
   0.9299	
   1.027	
  
1	
   EXM144679	
   207646898	
   CR2	
   C	
   T	
   0.7341	
   0.95	
   0.5762	
   0.9208	
  
1	
   EXM144874	
   207755285	
   CR1	
   A	
   G	
   0.7434	
   0.7922	
   0.8784	
   1.109	
  
1	
   EXM144675	
   207646462	
   CR2	
   A	
   G	
   0.7572	
   0.9545	
   0.5927	
   0.9241	
  
1	
   EXM144681	
   207646923	
   CR2	
   A	
   G	
   0.7579	
   0.9545	
   0.5992	
   0.9254	
  
1	
   EXM133877	
   197026289	
   F13B	
   G	
   A	
   0.8023	
   0.7329	
   0.7631	
   0.6907	
  
1	
   EXM-­‐RS10737680	
   196679455	
   CFH	
   C	
   A	
   0.8453	
   1.025	
   0.6321	
   1.062	
  
1	
   EXM-­‐RS1329428	
   196702810	
   CFH	
   A	
   G	
   0.8453	
   1.025	
   0.6321	
   1.062	
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CHR	
   	
  SNP	
   BP	
   GENE	
   MINOR	
  
ALLELE	
  

MAJOR	
  
ALLELE	
  

ADJ	
  	
  
P-­‐VALUE	
   ADJ	
  OR	
   UNADJ	
  

	
  P-­‐VALUE	
   UNADJ	
  OR	
  

1	
   EXM-­‐RS1410996	
   196696933	
   CFH	
   T	
   C	
   0.8453	
   1.025	
   0.6321	
   1.062	
  
1	
   EXM122075	
   169565346	
   F5	
   A	
   C	
   0.8731	
   0.9642	
   0.9244	
   0.9793	
  
1	
   EXM121879	
   169511555	
   F5	
   C	
   T	
   0.8767	
   1.023	
   0.7438	
   0.9545	
  
1	
   EXM121894	
   169511734	
   F5	
   C	
   T	
   0.8792	
   1.022	
   0.7491	
   0.9556	
  
1	
   EXM121896	
   169511755	
   F5	
   C	
   T	
   0.9022	
   1.018	
   0.7251	
   0.9513	
  
1	
   EXM144655	
   207644786	
   CR2	
   A	
   T	
   0.9062	
   0.8651	
   0.7631	
   0.6907	
  
1	
   EXM121743	
   169498975	
   F5	
   C	
   T	
   0.9359	
   0.9892	
   0.8742	
   0.9793	
  
1	
   EXM133490	
   196712596	
   CFH	
   T	
   A	
   0.9514	
   0.9559	
   0.7977	
   0.8282	
  
1	
   EXM121985	
   169524517	
   F5	
   A	
   G	
   0.9666	
   0.9682	
   0.6435	
   1.391	
  
1	
   EXM144888	
   207760773	
   CR1	
   T	
   C	
   0.9814	
   1.003	
   0.996	
   0.9993	
  
1	
   EXM2259849	
   169527856	
   F5	
   C	
   T	
   0.9866	
   1.002	
   0.8072	
   1.033	
  
1	
   EXM144899	
   207762095	
   CR1	
   T	
   C	
   0.9879	
   0.9815	
   0.7631	
   0.6907	
  
1	
   EXM121732	
   169497306	
   F5	
   A	
   G	
   0.9993	
   9.495E-­‐10	
   0.9993	
   8.541E-­‐10	
  
1	
   EXM121746	
   169499020	
   F5	
   C	
   G	
   0.9993	
   1.006E-­‐09	
   0.9993	
   8.541E-­‐10	
  
1	
   EXM121969	
   169519883	
   F5	
   A	
   G	
   0.9993	
   2.89E+09	
   0.9993	
   2.25E+09	
  
1	
   EXM122036	
   169555582	
   F5	
   T	
   C	
   0.9993	
   7.867E-­‐10	
   0.9993	
   8.515E-­‐10	
  
1	
   EXM133460	
   196706677	
   CFH	
   T	
   G	
   0.9993	
   1.58E+09	
   0.9993	
   2.25E+09	
  
1	
   EXM133479	
   196711067	
   CFH	
   T	
   G	
   0.9993	
   1.58E+09	
   0.9993	
   2.25E+09	
  
1	
   EXM133865	
   197024914	
   F13B	
   G	
   A	
   0.9993	
   2.48E+09	
   0.9993	
   2.25E+09	
  
1	
   EXM144467	
   207297622	
   C4BPA	
   A	
   G	
   0.9993	
   1.67E+09	
   0.9993	
   2.25E+09	
  
1	
   EXM144499	
   207307932	
   C4BPA	
   A	
   G	
   0.9993	
   2.22E+09	
   0.9993	
   2.25E+09	
  
1	
   EXM144639	
   207643432	
   CR2	
   G	
   C	
   0.9993	
   9.624E-­‐10	
   0.9993	
   8.541E-­‐10	
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Appendix O. Complete unadjusted additive logistic association results for Finnish mothers’ Affymetrix 6.0 SNP arrays 
sorted by p-value. The gene listed in the gene column is the gene where the SNP is located. The gene listed is the gene in 
which the SNP is located and in parentheses is the VAAST gene the SNP was selected to interrogate within the 10kb 5’ 
and 3’ buffer. Base pair (BP) positions refer to NCBI36 (hg18, March 2006 assembly) build of the human genome. 
 
 

CHR	
   	
  SNP	
   BP	
   GENE	
   MINOR	
  
ALLELE	
  

MAJOR	
  
ALLELE	
  

UNADJ	
  
	
  P-­‐VALUE	
  

UNADJ	
  
OR	
  

1	
   rs10429953	
   205855201	
   CR1	
  	
   G	
   A	
   1.31E-­‐04	
   1.931	
  
1	
   rs10429943	
   205856094	
   CR1	
  	
   T	
   C	
   3.74E-­‐04	
   1.841	
  
1	
   rs11118166	
   205848618	
   CR1	
  	
   G	
   A	
   5.78E-­‐04	
   1.776	
  
1	
   rs12567990	
   205748308	
   CR1	
  	
   T	
   C	
   5.82E-­‐04	
   1.791	
  
1	
   rs12141045	
   205838777	
   CR1	
  	
   G	
   A	
   6.22E-­‐04	
   1.776	
  
1	
   rs599948	
   205818862	
   CR1	
  	
   C	
   T	
   7.04E-­‐04	
   1.664	
  
1	
   rs677066	
   205840614	
   CR1	
  	
   C	
   T	
   1.70E-­‐03	
   1.591	
  
1	
   rs3753305	
   167820682	
   F5	
  	
   G	
   C	
   5.52E-­‐03	
   1.422	
  
1	
   rs9943077	
   205361921	
   C4BPA	
  	
   T	
   C	
   0.02323	
   0.7266	
  
1	
   rs2491393	
   205366882	
   C4BPA	
  	
   G	
   A	
   0.03275	
   1.335	
  
1	
   rs10489185	
   167815516	
   F5	
  	
   A	
   C	
   0.03766	
   0.757	
  
1	
   rs12080578	
   205887235	
   CR1L	
  (CR1)	
   G	
   A	
   0.04018	
   1.525	
  
1	
   rs17522707	
   167829686	
   SELP	
  (F5)	
  	
   A	
   G	
   0.04466	
   0.5847	
  
1	
   rs4844573	
   205371523	
   C4BPA	
  	
   C	
   T	
   0.05165	
   1.28	
  
1	
   rs2213873	
   167810401	
   F5	
  	
   A	
   G	
   0.05722	
   0.7711	
  
1	
   rs10733086	
   194943558	
   CFH	
  	
   A	
   T	
   0.06023	
   0.7854	
  
1	
   rs2227245	
   167806704	
   F5	
  	
   T	
   C	
   0.06292	
   0.7785	
  
1	
   rs572515	
   194912884	
   CFH	
  	
   A	
   G	
   0.06589	
   0.7914	
  
1	
   rs6691048	
   167808759	
   F5	
  	
   T	
   C	
   0.0678	
   0.7857	
  
1	
   rs4403634	
   205334714	
   C4BPB	
  	
   A	
   C	
   0.06793	
   0.797	
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CHR	
   	
  SNP	
   BP	
   GENE	
   MINOR	
  
ALLELE	
  

MAJOR	
  
ALLELE	
  

UNADJ	
  
	
  P-­‐VALUE	
  

UNADJ	
  
OR	
  

1	
   rs6427195	
   167747800	
   F5	
  	
   T	
   A	
   0.07488	
   1.609	
  
1	
   rs12406092	
   167809755	
   F5	
  	
   T	
   C	
   0.07674	
   0.7934	
  
1	
   rs7551623	
   167740978	
   F5	
  	
   A	
   G	
   0.08331	
   0.6452	
  
1	
   rs2491395	
   205368346	
   C4BPA	
  	
   T	
   A	
   0.08607	
   1.264	
  
1	
   rs12032512	
   205719801	
   CR2	
  	
   C	
   G	
   0.09646	
   0.8065	
  
1	
   rs6695321	
   194942484	
   CFH	
  	
   G	
   A	
   0.1016	
   1.239	
  
1	
   rs9332647	
   167758724	
   F5	
  	
   G	
   A	
   0.1105	
   0.6706	
  
1	
   rs11118242	
   205886936	
   CR1L	
  (CR1)	
   T	
   C	
   0.1129	
   0.8181	
  
1	
   rs2274566	
   205819968	
   CR1	
  	
   G	
   A	
   0.1181	
   1.227	
  
1	
   rs1018827	
   167780630	
   F5	
  	
   T	
   C	
   0.1195	
   1.501	
  
1	
   rs4618971	
   205732684	
   CR1	
  	
   C	
   T	
   0.1263	
   0.8011	
  
1	
   rs6662176	
   167810667	
   F5	
  	
   T	
   A	
   0.1271	
   0.8195	
  
1	
   rs6427197	
   167767214	
   F5	
  	
   G	
   T	
   0.1272	
   1.484	
  
1	
   rs9429781	
   205733845	
   CR1	
  	
   G	
   T	
   0.1343	
   0.7974	
  
1	
   rs7542088	
   167802864	
   F5	
  	
   A	
   C	
   0.1538	
   0.8256	
  
1	
   rs1329423	
   194913010	
   CFH	
  	
   G	
   A	
   0.1547	
   1.258	
  
1	
   rs17044576	
   205701293	
   CR2	
  	
   G	
   A	
   0.1567	
   1.422	
  
1	
   rs10801555	
   194926884	
   CFH	
  	
   A	
   G	
   0.1568	
   0.8273	
  
1	
   rs514943	
   194930536	
   CFH	
  	
   G	
   A	
   0.1569	
   0.836	
  
1	
   rs6428357	
   194942194	
   CFH	
  	
   T	
   C	
   0.1654	
   0.8365	
  
1	
   rs11803956	
   205869644	
   CR1	
  	
   T	
   C	
   0.1693	
   1.187	
  
1	
   rs10779340	
   205883648	
   CR1	
  	
   C	
   T	
   0.1704	
   1.187	
  
1	
   rs1831282	
   194940616	
   CFH	
  	
   A	
   C	
   0.1724	
   0.8445	
  
1	
   rs395544	
   194964895	
   CFH	
  	
   A	
   G	
   0.1894	
   0.8456	
  
1	
   rs2182911	
   205726694	
   CR2	
  	
   G	
   A	
   0.203	
   0.8308	
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CHR	
   	
  SNP	
   BP	
   GENE	
   MINOR	
  
ALLELE	
  

MAJOR	
  
ALLELE	
  

UNADJ	
  
	
  P-­‐VALUE	
  

UNADJ	
  
OR	
  

1	
   rs1759007	
   195294229	
   F13B	
  	
   T	
   C	
   0.2242	
   0.7253	
  
1	
   rs10801556	
   194927087	
   CFH	
  	
   T	
   C	
   0.2281	
   0.8539	
  
1	
   rs17258982	
   205719987	
   CR2	
  	
   C	
   T	
   0.2337	
   0.7363	
  
1	
   rs6690215	
   205722673	
   CR2	
  	
   C	
   T	
   0.2468	
   0.86	
  
1	
   rs4844597	
   205737892	
   CR1	
  	
   C	
   T	
   0.2732	
   0.8503	
  
1	
   rs742855	
   194972143	
   CFH	
  	
   G	
   A	
   0.2843	
   1.212	
  
1	
   rs7518773	
   195278259	
   F13B	
  	
   A	
   G	
   0.2971	
   1.137	
  
1	
   rs10737680	
   194946078	
   CFH	
  	
   G	
   T	
   0.2977	
   1.146	
  
1	
   rs974793	
   167745278	
   F5	
  	
   T	
   C	
   0.2998	
   1.172	
  
1	
   rs203687	
   194940893	
   CFH	
  	
   C	
   T	
   0.3151	
   0.8774	
  
1	
   rs1759008	
   195293518	
   F13B	
  	
   T	
   G	
   0.3161	
   0.7802	
  
1	
   rs3917843	
   167826881	
   SELP	
  (F5)	
  	
   T	
   C	
   0.3344	
   0.8381	
  
1	
   rs9332627	
   167764444	
   F5	
  	
   T	
   C	
   0.3483	
   1.153	
  
1	
   rs3820060	
   167751176	
   F5	
   G	
   T	
   0.3557	
   1.134	
  
1	
   rs403846	
   194963360	
   CFH	
  	
   A	
   G	
   0.3581	
   0.8845	
  
1	
   rs1627765	
   195299666	
   F13B	
  	
   C	
   T	
   0.371	
   0.8008	
  
1	
   rs424535	
   194975846	
   CFH	
  	
   T	
   A	
   0.3888	
   1.124	
  
1	
   rs10754209	
   195278200	
   F13B	
  	
   A	
   T	
   0.3949	
   1.111	
  
1	
   rs4915148	
   195302161	
   F13B	
  	
   T	
   C	
   0.437	
   0.8258	
  
1	
   rs857021	
   195274102	
   F13B	
  	
   A	
   G	
   0.437	
   0.8258	
  
1	
   rs2182913	
   205727001	
   CR2	
  	
   T	
   C	
   0.4498	
   0.9044	
  
1	
   rs3849266	
   205819613	
   CR1	
  	
   T	
   C	
   0.4527	
   1.112	
  
1	
   rs1571344	
   205737551	
   CR1	
  	
   G	
   A	
   0.4535	
   1.185	
  
1	
   rs3917820	
   167831369	
   SELP	
  (F5)	
  	
   T	
   C	
   0.4566	
   1.172	
  
1	
   rs4656685	
   167750468	
   F5	
  	
   A	
   G	
   0.4634	
   1.123	
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CHR	
   	
  SNP	
   BP	
   GENE	
   MINOR	
  
ALLELE	
  

MAJOR	
  
ALLELE	
  

UNADJ	
  
	
  P-­‐VALUE	
  

UNADJ	
  
OR	
  

1	
   rs1759009	
   195293295	
   F13B	
  	
   T	
   C	
   0.5075	
   0.847	
  
1	
   rs3766104	
   167755647	
   F5	
  	
   T	
   A	
   0.5089	
   0.8546	
  
1	
   rs17020993	
   205355015	
   C4BPA	
  	
   G	
   A	
   0.5116	
   1.145	
  
1	
   rs7519408	
   205727912	
   CR2	
  	
   C	
   G	
   0.5476	
   0.9042	
  
1	
   rs3917824	
   167831206	
   SELP	
  (F5)	
  	
   G	
   C	
   0.5669	
   1.13	
  
1	
   rs3917819	
   167831513	
   SELP	
  (F5)	
  	
   G	
   A	
   0.598	
   1.13	
  
1	
   rs9332600	
   167779537	
   F5	
  	
   T	
   C	
   0.6052	
   1.077	
  
1	
   rs8942	
   205336542	
   C4BPB	
  	
   A	
   G	
   0.6097	
   1.113	
  
1	
   rs6128	
   167829528	
   SELP	
  (F5)	
  	
   A	
   G	
   0.6377	
   0.9326	
  
1	
   rs9332619	
   167766972	
   F5	
  	
   T	
   C	
   0.6544	
   1.069	
  
1	
   rs9332661	
   167755827	
   F5	
  	
   C	
   T	
   0.666	
   1.101	
  
1	
   rs6661764	
   205875008	
   CR1	
  	
   C	
   G	
   0.7046	
   1.05	
  
1	
   rs4524	
   167778379	
   F5	
  	
   G	
   A	
   0.7397	
   1.049	
  
1	
   rs7527218	
   205690452	
   CR2	
  	
   C	
   T	
   0.7508	
   1.041	
  
1	
   rs6662593	
   167779218	
   F5	
  	
   T	
   C	
   0.7594	
   1.045	
  
1	
   rs3766110	
   167781807	
   F5	
  	
   C	
   A	
   0.7746	
   0.9597	
  
1	
   rs1986158	
   205737367	
   CR1	
  	
   G	
   A	
   0.7833	
   1.065	
  
1	
   rs6029	
   167796597	
   F5	
  	
   A	
   G	
   0.7891	
   0.9636	
  
1	
   rs12025910	
   167745405	
   F5	
  	
   C	
   T	
   0.797	
   1.059	
  
1	
   rs17615	
   205713085	
   CR2	
  	
   A	
   G	
   0.8337	
   0.9697	
  
1	
   rs9332618	
   167767105	
   F5	
  	
   T	
   C	
   0.8377	
   0.9661	
  
1	
   rs11120211	
   205343002	
   C4BPA	
  	
   A	
   G	
   0.8424	
   1.054	
  
1	
   rs2019727	
   194941337	
   CFH	
  	
   T	
   A	
   0.8471	
   1.037	
  
1	
   rs2940253	
   205712366	
   CR2	
  	
   C	
   G	
   0.8611	
   0.9746	
  
1	
   rs9332595	
   167780979	
   F5	
  	
   C	
   G	
   0.8669	
   0.9767	
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CHR	
   	
  SNP	
   BP	
   GENE	
   MINOR	
  
ALLELE	
  

MAJOR	
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UNADJ	
  
	
  P-­‐VALUE	
  

UNADJ	
  
OR	
  

1	
   rs11120218	
   205345074	
   C4BPA	
  	
   T	
   C	
   0.8718	
   1.032	
  
1	
   rs9332640	
   167760350	
   F5	
  	
   G	
   C	
   0.8719	
   0.9804	
  
1	
   rs511678	
   205711905	
   CR2	
  	
   C	
   G	
   0.8976	
   0.981	
  
1	
   rs1410408	
   205732931	
   CR1	
  	
   T	
   C	
   0.9113	
   0.9738	
  
1	
   rs311311	
   205706318	
   CR2	
  	
   C	
   G	
   0.9124	
   0.984	
  
1	
   rs6015	
   167786518	
   F5	
  	
   T	
   C	
   0.9447	
   1.014	
  
1	
   rs9429774	
   205712518	
   CR2	
  	
   T	
   C	
   0.9519	
   0.9912	
  
1	
   rs916438	
   167766283	
   F5	
  	
   A	
   T	
   0.9561	
   0.993	
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