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CHAPTER I 

 

INTRODUCTION 

 

Topic Overview 

The innate immune system comprises the cells and mechanisms that defend the 

host from infection by other organisms in a non-specific manner. Upon detection of 

infection, the first lines of host defense are quickly initiated. Cellular mediators of innate 

immunity migrate toward the source of the infection to produce high levels of cytokines 

and chemokines that send “danger signals” alerting the host to the infection (Figure 1). 

Cells of the innate immune system generically respond to pathogens, but unlike the 

adaptive immune system, it does not confer long lasting, protective immunity to the host. 

The cells of the innate immune system mediate the initial host-pathogen interaction 

through binding of pattern recognition receptors (PRRs) and opsins on the pathogen 

surface. Immediate changes at the site of infection include increased vascular 

permeability, increased expression of adhesion markers, and recruitment of leukocytes.  

Innate immune cells can, in general, be divided into two groups, phagocytes and 

granulocytes. The phagocytes i.e., macrophages, neutrophils and dendritic cells, engulf 

and kill the invading pathogen by fusing the pathogen-containing endosome with an 

acidified lysosome containing strong oxidizing agents. Following phagocytosis, the cells 

process peptides for presentation on major histocompatability complex (MHC) II for 

recognition by CD4 T cells. The granulocytes of the innate immune system are basophils, 

eosinophils, mast cells as well as neutrophils. These cells respond to pathogen by 
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releasing mediators that are stored in their granules such as histamine, growth factors, 

and cytokines.  

Production of cytokines and chemokines is a highly coordinated and important 

feature of the innate immune response. Acute phase production of TNF-α, IL-1β, IL-6, 

and IL-12 result in changes in temperature, blood flow, cell trafficking, and serum protein 

levels that are critical for survival. However, exacerbation of the acute phase response, 

characterized by hypotension, vascular collapse, and multiorgan dysfunction, is the cause 

of host injury during Gram-negative septic shock. Awareness of the pathogen and 

direction of innate immune cells toward the source of infection is a critical process in 

limiting infection. It is well known that the nature of the pathogen determines the type of 

cell that respond to the site of infection. Generally, bacterial infection causes infiltration 

of neutrophils, viral infections result in mononuclear leukocyte recruitment and helminth 

infections induce eosinophils and mast cell recruitment. This suggests that resident cells 

within the environment exposed to the pathogen dictate the specific responses to 

infections.  

Although the innate immune system cannot respond in an antigen specific manner 

to a pathogen, PRRs allow innate immune cells to make general responses to a pathogen. 

PRRs recognize molecules that are unique to groups of related microorganisms and are 

not found on host cells. There are several categories of PPRs that function to recognize 

and respond to foreign molecules. Endocytic PPRs are found on the surface of 
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Figure 1. Cells of the immune system. The cells of the innate and adaptive immune 
response coordinate in order to clear pathogens. 
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phagocytes and promote attachment and subsequent engulfment of pathogens. Opsin 

receptors bind the soluble opsin molecules that coat pathogens and prepare them for 

phagocytosis. The toll-like receptor (TLR) family and CD14 are PPRs induce activation 

of downstream activation pathways resulting in production of cytokines. In addition to 

pattern recognition receptors, many pathogens have evolved to utilize host cell receptors, 

such as integrins to interact with and gain entry into cells.  

 

Integrins 

Integrins are heterodimers consisting of non- covalently associated α- and β- 

subunits. They mediate both cell-extracellular matrix (ECM) and cell-cell adhesion (1). 

In higher vertebrates, the integrin family is composed of 18 α subunits and 8 β subunits 

(1). Although, theoretically, they could heterodimerize to form over 100 integrins, only 

24 integrins have been identified (2). At least one member of the integrin family has been 

found on every cell or tissue studied, and most cells express several different integrins(1). 

Although integrins are often segregated based on their ligand recognition, it should be 

noted that individual integrins can often bind to more than one ligand (2). Additionally, 

ligands are often recognized by more than one integrin (2). Nevertheless, distinct integrin 

families were defined based on ligand specificity, including the integrin collagen receptor 

family (2-4). 

Integrins have been implicated in normal development as well as in many diseases 

from cancer and atherosclerosis to inflammation and innate immunity. Genetic deletion 

of some integrin receptor subunits, including the α4, α5 and αv subunits resulted in early 

embryonic lethality due to vascular and cardiac defects (5-8). Deletion of the α3 and α8 
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subunit genes results in perinatal lethality due to defects in organogenesis (9, 10). The 

β1-null animals that lack multiple αβ integrin receptor heterodimers demonstrated peri-

implantation lethality (11). This embryonic lethality was predictable based on the 

expression of the integrin subunit during embryonic development. In other cases, the null 

phenotype revealed an unexpected role for the integrin, such as the roles of the collagen 

receptor integrins in innate immunity and inflammation (12, 13).  

 

Integrins as Pathogen Receptors 

The expression of at least one integrin receptor on nearly every cell has provided 

pathogens with an ideal target to hijack and gain entry into target cells and confers 

pathogen-specific tissue tropism (Table 1). A number of viruses use the β1 integrin 

family to gain entry into cells (14-20). In some incidences the viral receptor recognition 

motif mimics the amino acid sequence used for ligand recognition. For instance, the VP1 

protein of murine polyomavirus contains a surface loop, DE with an LDV (Leu-Asp-Val) 

motif (20). This motif is the recognition sequence in fibronectin that allows for adhesion 

to the α4β1 and α4β7 integrins. Similarly, the Ross River virus E2 sequence may fold to 

mimic collagen and allow for binding to α1β1 integrin (19). Binding of West Nile virus 

to αvβ3 integrin is in part mediated by the peptide sequence RGD (Arg-Gly-Asp) since 

this peptide inhibited infectivity by 30-40% (21). However, elimination the αvβ3 integrin 

by gene silencing reduced infectivity by ~60% indicating that the αvβ3 integrin may 

recognize the viral receptor through another site in addition to the RGD motif (21).  

 Several bacterial receptors also use β1 integrins to invade host cells (22-25). The 

Scl1 and Scl2 proteins of group A Streptococcus, S. pyogenes form a collagen-like triple 
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helix and bind the α2β1 integrin (25). Staphylococcus aureus requires the fibronectin 

binding protein (FnBP) to bind heat shock protein 60, the β1 integrin and fibronectin for 

maximal infectivity (22, 24). The integrin not only serves as an inactive conduit for 

bacterial entry into cells but also is involved in pathogenicity (25, 26). FimH from type-1 

piliated Escherichia coli utilizes α3β1 integrin to enter the cell and to activate Src and 

FAK (23). In fact, loss of signaling of Src and FAK diminishes the ability of E. coli to 

enter the cell indicating a role for integrin signaling in pathogen invasion (23).  

The hijacking of integrins demonstrates that pathogens have evolved to access cells 

through this pathway. In most cases this is detrimental to the host. By mimicking host 

motifs, intracellular pathogens can gain entry into host cells. This may represent a 

selective evolution of pathogen molecules to bind integrins in order to promote immune 

evasion. Although pathogen recognition by integrins may lead to immune evasion, 

integrins also play important roles in mediating host protective responses to invading 

pathogens. 

 

Leukocyte Integrins 

Since immune cells are the most motile cells in the body, the regulation of 

adhesive interactions is integrated into the immunological process. Integrin receptors play 

pivotal roles in this process. The leukocyte integrins share the common β2 subunit, which 

is normally expressed exclusively on leukocytes and dimerizes with either the αL, αM, 

αX, or αD subunit to form LFA-1, Mac-1, p150/95 and αDβ2, respectively (27, 28). 

piliated Escherichia coli utilizes α3β1 integrin to enter the cell and to activate Src and 
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FAK (23). In fact, loss of signaling of Src and FAK diminishes the ability of E. coli to 

enter the cell indicating a role for integrin signaling in pathogen invasion (23).  

The hijacking of integrins demonstrates that pathogens have evolved to access cells 

through this pathway. In most cases this is detrimental to the host. By mimicking host 

motifs, intracellular pathogens can gain entry into host cells. This may represent a 

selective evolution of pathogen molecules to bind integrins in order to promote immune 

evasion. Although pathogen recognition by integrins may lead to immune evasion, 

integrins also play important roles in mediating host protective responses to invading 

pathogens. 

Each of the leukocyte integrin α subunits contains an αI domain which is the 

major site of ligand binding (29). LFA-1 plays important roles in binding to the vascular 

endothelium during leukocyte extravasation, in homing to specific sites of inflammation 

or secondary lymphoid tissues, and in the formation of the immunological synapse 

between T cells and antigen presenting cells (28, 30). The ligands for LFA-1, intracellular 

adhesion molecule-1, -2, -3 and junctional adhesion molecule-A, are expressed on both 

the vascular endothelium and on APCs. The αMβ2 and αXβ2 integrins, also known as 

complement receptor-3 and -4, respectively, bind to complement iC3b opsonized 

particles and mediate phagocytosis (31). Both the αMβ2 and αXβ2 integrins also bind to 

ICAM-1 (31). Vascular cell adhesion molecule-1 serves as the ligand for αDβ2, but also 

for the α4β1 and α4β7 integrins (31). Many other integrins including, but not limited to  
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Table 1. Bacterial and viral pathogens utilize integrins in order to gain entry into host 
cells.  By mimicking natural integrin ligand protein structure or sequence pathogen 
receptors hijack integrin receptors in order to gain entry into cells and stimulate signaling 
pathways that increase cell motility, thereby providing a mechanism for spreading 
infections. 
  

INTEGRIN ORAGNISM PATHOGEN 

LIGAND 

α1β1 Alpha virus E253 

α2β1 Echovirus 

Rotavirus 

Group A Streptococcus 

VP548,51 

Streptococcal 

collagen-like 

proteins59 

α3β1 E. Coli FimH57 

α4β1 Murine Polyomavirus 

Rotavirus 

VP1 or VP254 

VP749 

α5β1 Human parovirus B19 Unknown52 

(P antigen is a 

cellular co-receptor) 

b1-integrins Y. pseudotuberculosis,  

S. Aureus 

Reovirus 

Fibronectin binding 

protein,56 

Invasin58,60 

Invasin62 

Sigma151 

αvβ3 West Nile Virus Unknown55 
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the α1β1, α2β1, α4β1, α6β1, αVβ1 and α5β7 integrins are also expressed on subsets of 

leukocytes and inflammatory cells (31).  

Hereditary defects in the β2 subunit that impair expression or function of 

leukocyte integrins or defects in β2 ligands causes life-threatening immunodeficiency, the 

leukocyte-adhesion deficiency (LAD) syndrome (31, 32). There are three forms of LAD 

which result in persistent and recurrent infections. LAD-I results from the lack of β2 

integrin expression due to missense mutations that prevent localization of β2 integrins to 

the cell surface or heterodimerization with an α subunit (33). Defects in the synthesis of 

the sugars on their selectin partners that are required for integrin binding during 

leukocyte migration results in LAD-II (34). Genetic mutations resulting in the inability of 

integrins to be activated in response to stimuli from endothelial cells results in LAD-III 

(35). In addition to the leukocyte receptors, two collagen receptor integrins, α1β1 and 

α2β1 integrins are expressed on leukocytes and are important in mediating pro-

inflammatory responses. 

 

Collagen Receptor Integrins 

Collagens are the most abundant proteins in mammals. They are a component of 

the ECM that not only support tissues, but are also required for cell adhesion and 

migration during growth, differentiation, morphogenesis, and wound healing. All 

collagens consist of three polypeptide α chains that are characterized by repeating Gly-X-

Y sequences where X is typically occupied by proline and Y is 4-hydroxyproline (36). 

The human genome contains at least 43 distinct α chains that are assembled into 28 

collagen types. Although collagen is abundant, only 4 of the 24 known integrins have 
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been shown to bind collagens. These collagen receptor integrins share the β1 subunit 

which heterodimerizes with either the α1, α2, α10 and α11 subunit (37-39). All of the 

collagen receptor integrins also contain an I domain that is responsible for collagen 

recognition (29). The collagen receptors are differentially expressed in distinct tissue sites 

and bind differentially to separate types of collagen.  

The α1β1 integrin is abundant on smooth muscle cells, endothelial cells, neural 

crest cells and activated T cells. It preferentially binds the monomeric collagens, 

including type IV, type VI and type XII collagen, that in part compose the basement 

membrane (40). The α2β1 integrin is widely expressed on a number of cell types 

including endothelial cells, epithelial cells, as well as immune cells including natural 

killer (NK) cells, T cells and mast cells (12, 41, 42). The α2β1 integrin preferentially 

binds the fibrillar collagens (I-III) (29, 43). Subtle differences in I domain structure 

among the collagen integrin receptors account for their ability to recognize distinct 

collagen subtypes (44). Less is known about the collagen receptors, the α10β1 and 

α11β1 integrins. The α10β1 integrin is a collagen type II-binding integrin on 

chondrocytes (45). The α10 I domain displays similar ligand properties as α1 I domain 

underlining their similarity in ligand recognition of collagen IV and VI (46). Expression 

of α11 subunit was demonstrated by specialized fibroblasts and ectomesenchymally 

derived cells (47). 

 

Structure 

Crystal structures of integrin I domains have been resolved in the active, 

intermediate and inactive states for α1I and α2I (48). All I domains have a classic 
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Rossmann fold in which 6 α-helices surround five parallel and one anti-parallel β-strand 

(29). Metal ion binding sites are present in I domains and divalent cations, Mg2+ and 

Mn2+ are required for high affinity binding to collagen (49). The divalent cation 

mediated ECM adhesion and signaling functions are regulated by large conformational 

changes between the active and inactive conformations (29). The conformation changes 

allow signal transduction from the ECM into the cell. The inactive integrin conformation 

occurs when the α and β subunits are bound in a bent conformation with the head region 

in close proximity to the cell membrane (50). In this conformation, the I-domain is 

inaccessible to the ECM. Following inside-out signaling, the integrin adopts an active 

conformation and the α and β subunits are released exposing the ligand recognition site 

for interaction with the ECM. 

There are structural differences between collagen binding integrins that may 

explain their different biological functions. While the majority of the backbone sequences 

of these integrins are predicted to be quite similar due to high sequence homology, the 

main difference appears to lie in the loops at the edges of highly conserved secondary 

structural elements (29). For instance, the α1 subunit has a large loop inserted in the β-

propeller domain and more potential glycosylation sites compared to other collagen 

receptors (46). Residue R218 in α1I and α10I may confer additional ligand specificity in 

those subunits while D219 plays a role in recognition in the α2I (46). 

 

α1β1 Integrin 

A recurring theme in the study of α1β1 integrin is that expression on the cell 

surface is upregulated following inflammation. NK cells, T cells, monocytes and 
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macrophages all upregulate α1β1 integrin expression following activation by antigen, 

superantigen, cytokines or chemokines (51-53). The α1β1 integrin was originally defined 

as very late antigen-1 (VLA-1) because it becomes expressed on T cells more than 6 days 

following activation (54). Interactions between the α1β1 integrin and collagen modulate 

cytokine secretion and proliferation following stimulation through the T cell receptor 

(TCR) (55). T cells that express α1β1 integrin in the peripheral blood are restricted to a 

small population of CD45RO+ T cells that represent a population of activated T cells 

(56). This population of α1β1+CD45RO+ cells are antigen-specific memory CD4+ T 

cells and largely Th1-type memory cells (56).  

Although resting monocytes have no detectable α1β1 integrin at the protein or 

mRNA levels, α1β1 integrin is expressed on monocytes following stimulation with either 

LPS or IFN-γ (57). Expression is delayed as observed in T cells, but only for 12-16 hours 

following stimulation (57). Similarly, NK cell activation results in expression of the 

α1β1 integrin, increased expression of the α4β1 and α5β1 integrins and downregulation 

of expression of the α6β1 integrin (52). The α1β1 integrin on macrophages is a crucial 

receptor for semaphorin 7A (Sema7A, CD108) on T cells (58). Semaphorins are a highly 

conserved family of receptors that are involved in neuronal development, organogenesis, 

vascularization, angiogenesis, neuronal apoptosis, neoplastic transformation, and more 

recently immune function (59). Binding of α1β1 integrin to Sema7A fused with the Fc 

portion of human IgG results in monocyte and macrophage adhesion and activation 

characterized by IL-6 production by mouse bone-marrow-derived macrophages (58). 

Loss of the α1β1 integrin results in defective cytokine production following Sema7A 

stimulation (58). Sema7A is highly expressed on activated T cells, which are responsible 
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for stimulating macrophage activation. Following T cell-macrophage interaction Sema7A 

induces clustering of the α1β1 in the immunological synapse(58). Thus, the interaction 

between Sema7A expressed on T cells and α1β1 integrin expressed on macrophages 

forms part of the antigen-presenting immunologic synapse and is involved in macrophage 

activation (58). 

 

α2β1 Integrin 

The role of the α2β1 integrin in inflammation has been studied over the past 30 

years. Similar to the nomenclature of α1β1 integrin, the α2β1 integrin was also named 

VLA-2 due to its expression at the late stages of T cell activation (42). Naïve T cells fail 

to express the integrin; however, activated T cells in a number of chronic inflammatory 

settings express the integrin (60). In mice transgenic for a T cell receptor recognizing 

ovalbumin (OVA), activation of T cells with a TCR-specific peptide results in the 

upregulation of α2β1 integrin expression in Th1 but not Th2 cells (61). The integrin is 

functional on Th1 cells and enhances TCR-mediated proliferation and cytokine secretion 

upon α2β1 integrin-dependent adhesion to collagen (61). Additionally, ligand binding of 

α2β1 integrin by T cells inhibits Fas ligand expression and reduces cell death (62). 

Similar to α1β1, it has been demonstrated that inhibitory antibodies recognizing the α2β1 

integrin can inhibit DTH, CHS and collagen-induced arthritis (13, 63, 64). However, it 

was not explicitly proven, that α2β1 integrin expression by T cells is required to mediate 

these responses. 

Expression of α2β1 integrin is not limited to activated T cells. In fact, through 

studies in our lab, we have expanded the expression of α2β1 integrin to subsets of T cells 
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(CD3+, CD4+, or CD8+), B cells (B220+), NK cells (CD122+), neutrophils (Gr1+), and 

monocytes/macrophages (F4/80+) (unpublished data) and mast cells (c-kit+) (12). 

Although the α2β1 integrin is expressed on a number of hematopoietic cells, α2β1 

integrin-null mouse showed no change in the relative percentage and absolute number of 

any cell type (unpublished data). The pan-NK cell monoclonal antibody, DX5 was 

demonstrated to recognize α2β1 integrin (41). The role for α2β1 integrin on monocytes 

and neutrophils may serve as a regulator of leukocyte adhesion and extravastation from 

the vasculature into peripheral tissues. 

Many of the studies examining the role of α2β1 integrin in inflammation have 

utilized inhibitory antibodies to the integrin (13, 61, 62). In some cases, antibody binding 

of integrins, may actually result in activation of the integrin due to clustering rather than 

inhibition. To distinguish the specific effects resulting from a lack of α2β1 integrin and 

its signaling, the α2-null mouse was generated. The α2 integrin subunit knock-out mouse 

was created by two laboratories, including our own (65). The α2-null mice are viable, 

fertile and developed normally. It was hypothesized that α2β1 integrin was a critical 

mediator of platelet adhesion to collagen within the vessel wall after vascular injury. No 

defects in tail vein bleeding times were initially reported, however, these animals 

demonstrate profound prolongation in thrombus formation following carotid artery injury 

(66-68). In addition, defects in the mammary gland branching morphogenesis and wound 

healing in the α2-null mouse were reported (65). Although there was no overt phenotype 

in the hematopoetic compartment of α2-null mice, the expression of the α2β1 integrin on 

a number of immune cells suggested that it may play a role in the immune response to 

bacterial challenge. To test the role of the α2β1innate immunity, wild-type (WT) and α2-
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null mice were challenged with Listeria monocytogenes, a Gram-positive intracellular 

bacterium, and assessed the ability to mount effective immune response following 

infection (12).  

 

Listeria monocytogenes 

Listeria monocytogenes is a Gram-positive bacterium responsible for human 

listeriosis, a disease characterized by gastroenteritis, meningitis, encephalitis and 

materno-fetal infection (69). Humans are exposed to Listeria by ingesting contaminated 

food, such as unpasteurized diary products and incompletely cooked meats (70). 

Immunocompromised individuals are particularly vulnerable to infection and can develop 

septicaemia and meningitis (71, 72). Women who are pregnant can develop infection of 

the fetus, leading to septic abortion (73). The incidence of listeriosis varies between 0.1 

and 11.3/105 in different countries (74). Infection can spread to the cerebralspinal fluid 

resulting in meningitis with a devastating mortality rate of 25% (75). Although Listeria is 

not a highly pathogenic organism for most individuals, it is a well characterized tool for 

the study of the mammalian immune system. 

 The murine model of listeriosis has been pivotal in the understanding the immune 

response to Listeria. Innate immune responses are essential for early control of Listeria 

infection by inhibiting bacterial growth and dissemination, preventing the spread into 

systemic, lethal infection (76). In studies using severe combined immunodeficient (SCID) 

mice and nude mice that lack both T-cell and humoral immunity, mice were able to 

control Listeria infection (77, 78). One of the first cells involved in the innate immune 

response to Listeria is the neutrophil that engulfs and kill bacteria by generation of 
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reactive oxygen intermediates (79, 80). Macrophages are infected by Listeria where the 

organism is exposed to lysosomal enzymes and degraded. In response to infection, 

macrophages secrete TNF-α and IL-12, which induce NK cells to produce INF-γ, leading 

to increased activation of the macrophages and increased bactericidal activity (81)  

 Cytokines also play a significant role in controlling Listeria infection and mice 

deficient in cytokines or their receptors are highly susceptible to Listeria infection. Mice 

deficient in IFN-γ, CCR2 or the TNF-α receptor p55 display early lethality following 

Listeria infection (82-84). IL-6 deficient mice display decreased resistance to Listeria as 

a result of decreased systemic neutrophilia (85). Type I interferons, usually associated 

with anti-viral immune responses are also induced following Listeria infection. However, 

interferon-α and -β promote bacterial infection by dampening the immune response by 

inducing T cell apoptosis and secretion of the immune suppressive cytokine, IL-10 (86). 

Mice that lack the interferon-α/β receptor display increased resistance to bacterial 

infection demonstrating that regulation of type I interferons is important in the 

pathogenesis of Listeria (86). 

 Recognition of Listeria by the members of the innate immune response occurs 

through interaction with TLRs. The most important TLR for Listeria recognition appears 

to be TLR2 (87). Macrophages deficient in TLR2 display decreased production of 

cytokines, TNF-α, INF-γ, IL-1β and IL-12 following in vitro infection with Listeria (87). 

However, Listeria infection in mice deficient in TLR2 does not result in a drastic 

impairment of the immune response, indicating that other receptors may be important in 

controlling infection (88). Mice deficient in the key adaptor molecule, MyD88, which is 

important for signaling from several TLRs, are highly susceptible to Listeria infection 
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(88). Several other TLRs may contribute to innate immune recognition of Listeria such 

as, TLR9 which recognizes CpG motifs found within bacterial DNA and TLR5 which 

recognizes flagellin (89, 90). The role of these TLRs in Listeria infection in vivo remains 

to be demonstrated. 

 Listeria interacts with host cells using a variety of receptors that hijack host cell 

machinery to gain entry into cells and cross host barriers (e.g. intestinal, blood-brain and 

maternofetal). Internalin (InlA) and InlB were the first surface proteins of Listeria 

identified to promote host cell invasion (Figure 2) (91). InlA is responsible for the entry 

of Listeria into human epithelial cells through interaction with the host receptor E-

cadherin (92). The recognition of InlA by E-cadherin is specific for humans and guinea 

pigs (93). A single point mutation at residue 16 (proline to glutamic acid) of mouse and 

rat E-cadherin prevents recognition of InlA (93). This lack of interaction between InlA 

and E-cadherin prevents the organism from crossing the intestinal epithelial barrier and is 

responsible for the lack of infection by oral inoculation in mice and rats (93). Oral 

infection of guinea pigs with Listeria induces gastroenteritis (93). Listeria crosses the 

intestinal barrier and induces dissemination and lethality in an InlA-dependent manner 

(93). Entry of Listeria into most other cell types requires InlB which binds to c-met 

and/or gC1qR/p32 ubiquitously expressed proteins that confer wide spread tropism (94, 

95).  

Two other virulence factors, ActA and listeriolysin O (LLO), act in the host cell 

compartment and are important in early stages of bacterial internalization (96, 97). ActA 

is a bacterial surface protein that enables bacterial propulsion in the cytosol leading to the 
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invasion of uninfected neighboring cells in a process called cell-to-cell spreading (98). 

However, in addition to its role in bacterial spreading, Listeria defective in ActA are also 

significantly impaired in cellular attachment and entry (98). The host cell receptor 

mediating this interaction has yet to be identified. LLO is a toxin that allows Listeria to 

escape from endocytic vacuoles following phagocytosis (99). In the absence of LLO 

Listeria remain trapped in the endocytic vacuoles and are, therefore, non-pathogenic (99). 

Listeria has proven to be an excellent system for in vivo analysis of the immune response. 

Several molecular mechanisms governing the development of innate and adaptive 

immunity have been uncovered using Listeria monocytogenes as a model. However, there 

are still many questions that can be answered using Listeria infections as a model of 

immunity to intracellular bacteria.  These responses include, understanding the signals 

mediating leukocyte migration to infectious foci and defining the interaction of Listeria 

with host cells. The expression of the α2β1 integrin on many immune cells as well as the 

previous defined roles of the integrin in immunity suggested that the α2-null mice may 

display a defect in innate immune responses.   Therefore, Listeria was used to determine 

the role of the α2β1 integrin in host defense. 

Interperitoneal infection of WT mice with Listeria results in rapid IL-6 production 

at 1 hour post infection and subsequent neutrophil recruitment at 6 hours post infection 

(12). The α2-null mice were incapable of recruiting neutrophils to the site of infection 

(peritoneal cavity) at 6 hours following infection, a hallmark of the initial responses to 

bacterial challenge in the WT mice (12). Although the integrin is expressed on 

neutrophils, it was not expressed on infiltrating neutrophils in the wild-type mice (WT) 

(63). One of the earliest steps in the inflammatory process is recruitment of neutrophils to 



19 
 

the site of inflammation. The α2β1 integrin is not expressed on circulating blood PMNs. 

However, in one study the integrin was shown to be expressed on extravasated 

neutrophils (63).  

In a model of inflammatory colitis, inhibitory antibodies directed against the 

α2β1 integrin prevented neutrophil accumulation in the colon (100). Using a broad 

spectrum inflammatory stimulant, thioglycolate, both WT and α2-null mice were capable 

of recruiting neutrophils, indicating that there is not a defect in neutrophil recruitment or 

migration in the α2-null animals (12).  Although α2β1 integrin is not required for 

neutrophil recruitment in response to Listeria infection, Ridger et al. showed that 

inhibitory anti-α2β1 integrin antibodies decreased KC- (a CXC chemokine) but not LPS- 

induced neutrophil migration into mouse lungs, indicating a role for the α2β1 integrin in 

neutrophil migration in some inflammatory circumstances (101). In addition to the defect 

in peritonitis in the α2-null mouse at 6 hours post infection, decreased production of the 

pro-inflammatory cytokine, IL-6, occurred 1 hour following infection (12). 

The peritoneum contains a number of innate immune cells poised to respond to 

incoming challenge. Of all cells in the peritoneal fluid, the c-kitpos mast cell expressed the 

highest levels of the α2β1 integrin, suggesting that α2β1 integrin expression on the mast 

cell may play a role in the innate immune response to Listeria (12). The role of mast cells 

in the innate immune response to Listeria was confirmed by infecting the mast cell 

deficient mouse model, W/Wv with Listeria and assaying for cytokine production and 

neutrophil recruitment. Reconstitution with α2β1 integrin-expressing PMCs rescued 

neutrophil recruitment and IL-6 release, while reconstitution with α2-null PMCs did not 

(12).
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Figure 2. Listeria receptors involved in cell entry. Internalin A (InlA) and B (InlB) 
bind to their host receptors for entry into cells. The interaction between InlA and mouse 
E-cadherin does not occur due to a single point mutation. 
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Therefore, α2β1 integrin expression on mast cells and not on other inflammatory cells 

was responsible for the defect in the early innate immune response to Listeria observed in 

the α2−null mouse (Figure 3) (12). Mast cells are traditionally thought of in terms of IgE-

mediated allergic responses and immunity to helmenths, however, mast cells may have a 

role in immune responses to bacterial and viral pathogens. 

 

Mast Cells 

Mast cells are multifunctional, hematopoietic, tissue-resident cells that are ubiquitously 

expressed throughout the body. They were originally described by Paul Ehrlich in 1879 

as “mastzellen”, meaning “well-fed cells.”  Mast cells reside in the connective tissue 

(skin and peritoneal cavity) and mucosal areas (gastrointestinal and respiratory tracts) 

that are exposed the external environment.  Mast cells were originally thought to 

primarily serve as mediators of IgE-mediated immediate hypersensitivity known in 

general as allergy. However, in the past 20 years there has been an increase in the study 

of mast cells in the pathogenesis of a variety of IgE-independent clinical disease 

processes including cancer, ulcerative colitis, innate immunity and neuronal disease.  

 

Mast Cell Deficient Mouse Models 

An understanding of the in vivo molecular basis of mast cell development and function 

has come mainly from use of mast cell deficient mice. Genetically mast cell-deficient c-

kit mutant mice are a powerful tool for identifying and quantifying contributions of mast 

cells in many biological responses. Mice carrying spontaneous loss-of-function mutations 

at both alleles of the dominant white spotting (W) locus (i.e., c-kit), exhibit a marked 
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reduction in c-kit tyrosine kinase-dependent signaling, resulting in disrupted normal mast 

cell development, survival, and function, as well as many other phenotypic abnormalities 

that are unrelated to the mast cell deficiency (102). The KBB6F-KitW/W-v (W/Wv) mouse 

arises from mutations affecting the c-kit tyrosine kinase receptor resulting in few (<1% of 

normal levels) detectable mast cells in the peritoneal cavity, respiratory system, heart, 

brain, skeletal muscle and spleen (102). However, they also have other defects not related 

to their mast cell phenotype including macrocytic anemia, impaired melanogenesis. The 

C57BL/6-KitW-sh/W-sh model has an inversion mutation in the transcriptional regulatory 

elements upstream of the c-kit transcription start site (103). These mice are beneficial 

because they have fewer developmental abnormalities and are fertile, allowing for 

additional genetic crosses into the mast cell deficient phenotype (103).  

These mice have been useful due to the ability to generate what Dr. Steven Galli has 

termed “mast cell knock-in mice” where the mast cell population is selectively 

reconstituted with normal mast cells or those containing genetic mutations. Intravenous, 

intraperitoneal, and subdermal injections of ex vivo cultured mast cells results in varied 

levels of reconstitution of mature mast cells into the mast cell compartments (102, 104). 

For instance, intravenous injection does not result in reconstitution into the peritoneum 

and skin of KitW-sh mice (103). Direct injection into the specific site is required for full 

reconstitution, indicating that certain chemokines may be required for migration and 

homing to specific sites (103, 104). This model has allowed many investigators to 

determine the specific contributions of mast cell specific expression of various cytokines 

and receptors. 
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Figure 3. The inflammatory response to Listeria infection is both mast cell– and 
2 1 integrin–dependent. (A-C) WBB6F1-+/+ mast cell–sufficient (+/+) and WBB6F1-

W/Wv mast cell–deficient (W/Wv) mice were infected with 5 x 104 Listeria 
intraperitoneally. At indicated times after infection, the percentage of PMN, the absolute 
PMN number, and the IL-6 concentration in peritoneal fluid were determined. Shown is 
the combination of 2 experiments (mean ± SEM), with each point representing 5-6 mice 
(time 0 hours, 2 mice). (D-F) Wild-type (WT) and 2 integrin–deficient (KO) mice were 
infected with 5 x 104 Listeria intraperitoneally. At indicated times after infection, the 
percentage of PMN, the absolute PMN number, and the IL-6 concentration in peritoneal 
fluid were determined. Shown is the combination of 2 experiments (mean ± SEM), with 
each point representing 4-5 mice (time 0 hours, 2 mice). Originally published in Edelson 
et al 2004 ©American Society for Hematology 
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Mast Cells in Host Defense 

 Mast cells have been implicated in host defense against a large number of 

parasites and, for many years, the role of mast cells in host defense was thought to be 

limited to parasitic infections. However, over the past 15 years there have been a large 

number of studies demonstrating the role of mast cells in host defense against bacterial 

and viral pathogens. The mast cell deficient mouse models have been excellent tools to 

study the mast cell specific roles in these infection models. Using W/Wv mice, it has 

been demonstrated that lack of mast cells results in decreased survival following infection 

with Citrobacter rodentium, Klebsiella pneumoniae, Fimbrated E. coli (105, 106). A 

model of sepsis, ceacal ligation and puncture (CLP), can be overcome by adoptive 

transfer of mast cells into the mast cell deficient animals (105). These studies 

demonstrated that mast cells initiate the recruitment of neutrophils through release of 

TNF-α and LTB4 or LTC4. One study showed that increasing local mast cell numbers by 

injection of SCF results in enhanced survival of WT mice following CLP (107).  

 Although there have been fewer studies in this area, mast cell may have a role in 

host defense against viral pathogens. Mast cells or their precursors can be infected with 

human immunodeficiency virus (HIV), dengue virus, cytomegalovirus and adenovirus 

(108, 109).  Infection of mast cell deficient mice with Sindbis virus has demonstrated 

that, in large part, the inflammatory response in the brain is mast cell dependent (110). In 

animal models of infection with respiratory syncytial virus or Sendai virus, local 

increases of mast cell numbers concomitant with lymphocytic infiltrates may be 

indicative of pathogen-induced mast cell activation (111). Many of the cytokines released 

from stimulation of mast cells with viral components leads to responses that are 
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consistent with a role in selective recruitment of T cells and NK cells to the site of 

infection.  

 

Mast Cell Ontogeny and Homing 

Mast cells originate in the bone marrow and differentiate into mature cells once 

they reach their destination. In the context of inflammation, mast cells are recruited in 

even greater numbers indicating that mast cells must arise from a progenitor cell that can 

differentiate into a mature mast cell under specific stimuli. Mast cell maturation only 

occurs following exit from the circulation and homing to the peripheral site. Significant 

heterogeneity in mast cell maturation is based on location. In rodents, mature, tissue-

resident mast cells are subdivided into two classes: connective tissue mast cells (CTMCs) 

present in the skin, stomach and peritoneal cavity or mucosal mast cells (MMC) present 

in the lamina propria or the gastrointestinal mucosa, respiratory tract and nasal mucosa 

(112, 113). In humans, mast cells are characterized by their protease content. Mast cells 

containing tryptase (MCT) are found in the mucosa and mast cells containing both 

tryptase and chymase (MCTC) are found in the connective tissue. Although the 

nomenclature differs between rodent and human mast cells, the characteristics of the 

CTMC/MCTC and MMC/MCT populations are similar.  

Despite differences in surface markers and granule contents, there is plasticity 

between the mast cell subsets. In fact, transfer of cultured bone marrow derived mast 

cells (BMMC) (which are characteristically similar to MMCs) or peritoneal cavity 

derived mast cell colonies (which are CTMCs) into mast cell deficient animals allows for 

maturation and dissemination of mast cells into the host animal. In the same animal, 



26 
 

CTMCs were identified in the peritoneal cavity, spleen, skin and muscularis propria of 

the stomach and MMCs were identified in the stomach mucosa (114, 115). The ability of 

mast cells to reach their target sites and differentiate into distinct subsets indicates that 

there are differential chemokine migration signals and adhesion molecules that are 

involved in mast cell trafficking and homing. 

 

Mast Cell Receptors 

There are a number of receptors expressed on mast cells that are involved in 

allergy, asthma, inflammation and host defense. Among them, the longest known has 

been the high affinity receptor for IgE (FcεR), which is the receptor responsible for 

binding allergen-specific IgE. The FcεR belongs to the family of multi-subunit immune 

response receptors composed of an α, a β and two γ chains (116). The α chain constitutes 

the extracellular component, the β and γ chains contain the receptor activation sites. 

Aggregation of the FcεR by contact of cell bound IgE with a multivalent antigen results 

in stimulation of immunoreceptor tyrosine-based activation motifs (ITAMs) (116). 

Activation of the receptor results in the production and release of a wide variety of 

preformed mediators (including histamine and mast cell proteases), de novo synthesis of 

lipids (leukotrienes and prostaglandins) and many proinflammatory chemokines and 

cytokines such as TNF-α, IL-1, IL-2, IL-3, IL-4, IL-6, IL-9 and IL-13 (117). This array of 

mediators leads to increased vascular permeability, tissue edema, bronchoconstriction, 

massive leukocyte recruitment and inflammation in the mucosa (116). 

Although FcεR stimulation was thought to be the primary function of mast cells, 

they express a wide array of receptors that demonstrate their involvement in direct 
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contact with pathogens and host defense. Mast cells are poised at the interface of the 

internal and external environment and function as the sentinels of host defense (117). 

Direct interactions between pathogens and immune effectors cells are essential for the 

generation of early innate immune responses as well as the generation of appropriate 

acquired immunity (118). The activation of these pathogen receptors results in the 

initiation of “danger signals” that trigger subsequent rapid and selective response.  

One of the most important families of cell-surface receptors in pathogen 

recognition is the TLR family. The highly conserved TLR family of pattern recognition 

receptors has been demonstrated to have a pivotal role in many host defense mechanisms. 

To date, 13 TLR family members have been identified in the human and murine genome 

and mast cells express TLR1, -2, -3, -4, -6, -7 and -9 but not -5 (119-122). The TLR 

complex usually consists of a TLR homodimer or heterodimer, a number of co-receptors, 

and intracellular and extracellular adaptor molecules. Different TLR family member are 

activated by different pathogen-associated or endogenous proteins. A variety of TLR 

activators have been defined, which include proteins from all classes of mammalian 

pathogens, as well as endogenous proteins. TLR9 is an intracellular receptor for CpG 

motifs found within bacterial DNA (123, 124). TLR4 is a homodimeric TLR and has 

been shown to mediate responses to LPS, as well to a number of other gram negative 

pathogen products and to heat shock protein 60. Activation of TLR4 results in 

degranulation-independent release of  TNF-α, IL-1β, IL-6, and IL-13 (125). In contrast, 

TLR2 is a heterodimeric TLR and mediates responses to peptidoglycan from many gram-

positive bacteria and to the yeast cell-wall component, zymosan. Peptidoglycan and 

zymosan utilize the TLR2/TLR6 hetrodimer resulting in production of IL-4, IL-5, GM-
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CSF, IL-1β and LTC4 (125, 126). The synthetic bacterial lipoprotein Pam3CysSerLys4 

utilizes the TLR2/TLR1 heterodimer and results in production of GM-CSF and IL-1β 

without release of LTC4 (126).  

In addition to the TLRs, there are several receptors that are involved in direct 

recognition of specific pathogens. CD48 recognizes FimH which is found of fimbriated 

Escherichia coli resulting in degranulation and TNF-α production (127, 128). Activation 

of mast cell CD48 also results in phagocytosis and superoxide anion-dependent bacterial 

killing, whereas, FimH-negative organisms are less susceptible to mast cell induced 

bacterial killing (129). Another mannose-binding protein from Schistosoma mansoni 

induces mast cell degranulation through an unknown receptor (130). Human mast cells 

can be activated by Staphylococcus aureus derived protein A, which binds IgG or IgE 

antibodies and in turn will bind the high affinity FcγRI (131).  

In a surprising series of studies, it was demonstrated that mast cells bind and serve 

as a reservoir for latent HIV infection (132). HIV-1 gp120, is an immunoglobin 

superantigen family member and binds non-specifically with immunoglobin VH3 gene 

products (133-135). The interaction with mast cells occurs through binding of gp120 with 

IgE which, in turn, stimulates FcεR1 to induce histamine and LTC4 release from mast 

cells (132). Th2 cytokines, IL-4, IL-13 are also released upon FcεR1 stimulation, 

upregulating HIV co-receptors, CXCR4 and CCR3 on mast cells, which already express 

low levels of CD4 (70). HIV-infected mast cells have been resistant to highly active anti-

retroviral therapy and the long lived nature of the mast cells provides a good cellular host 

for latent HIV infection (108). The harboring of virus within the mast cell may serve as a 

reservoir for HIV in individuals who relapse following therapy (108).  
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Mast cell expression of the α2β1 integrin is responsible for the early innate 

immune response to Listeria. The α2β1 integrin is a high affinity receptor for collagen; 

no collagen-like motifs have been described on Listeria and α2β1 does not bind Listeria. 

However, the collectin family of proteins, including mannose-binding lectin (MBL), 

surfactant protein A (SP-A) and D (SP-D), and the ficolins as well as the C1q 

complement protein are all involved in innate immune responses and all contain a triple 

helical collagen-like domain which could potentially serve as the binding site for the 

α2β1 integrin (136-138). Additionally, these proteins function to coat the surfaces of 

microbes.  C1q, MBL and SP-A were identified as novel, divalent-cation dependent 

ligands for the α2β1 integrin (139). Adhesion of the α2β1 integrin to the collectin 

molecules was mediated by the α2I domain. The identification of this novel group of 

ligands suggested a model by which the α2β1 integrin may interface with the innate 

immune response. In vitro activation of WT PMCs, but not α2−null PMCs with Listeria 

required immune complexes containing Listeria, anti-Listeria antibody and an α2β1 

ligand, either C1q or type I collagen (139). Stimulation of WT PMCs with the immune 

complex resulted in IL-6 secretion after one hour, similar to the α2β1 integrin-dependent 

mast cell response observed in vivo (139).  

 

Mast Cell Structure 

Mast cells are characterized by cytoplasmic electron dense granules, dendritic-like 

processes emanating from the plasma membrane, and multi-lobed nuclei. The secretory 

granules are rich with a number of different proteoglycans, depending on the anatomical 

location of the mast cell. CTMCs are rich in heparin proteoglycans which allows them to 
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be stained by safranin or berberine sulfate. MMCs contain less proteoglycan, fail to stain 

with safranin, but react with alcian blue dye. In addition to being useful for identification, 

proteoglycans are required for storage and packaging of mast cell granule mediators. 

Mast cells produce three main classes of mediators: preformed, granule-associated 

products, newly generated lipid mediators, and many chemokines and cytokines (Figure 

4). 

Proteoglycans are thought to provide the major structural base of the mast cell 

granules. In mast cells, serglycin is the major type of proteoglycan core protein to which 

either heparin or chondroitin sulfate glycosaminoglycans is attached. Serglycin 

proteoglycan is required for storage of serotonin and histamine (140). The highly acidic 

proteoglycans form complexes with basically charged proteases, as well as histamine and 

β-hexosaminidase to generate the molecular complexes that form the electron dense 

granules. Upon exocytosis, the complexes are exposed to the extracellular environment at 

neutral pH, and the associated proteins are released from the proteoglycan core into the 

extracellular space.  

The synthesis of eicosanoid inflammatory mediators, leukotriene (LT) C4, LTB4, 

and prostaglandin (PG)D2 from arachidonic acid stores occurs in mast cells following 

various stimuli including crosslinking of the high affinity FcεR and bacterial ligands 

(141-143). These mediators are important in the allergic inflammation that occurs in the 

lung during allergy and asthma reactions. The leukotrienes bind the G-protein coupled 

receptor, Cys-LT-1, resulting in bronchoconstriction, vascular permeability, mucus 

secretion and eosinophil recruitment. LTB4 is also a potent mediator of neutrophil 
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recruitment. PGD2 is a bronchoconstrictor and also results in constriction of coronary 

arteries.  

Mast cells produce both pro-inflammatory mediators tumor necrosis factor- α 

(TNF-α), IL-1β and IL-6 as well as anti-inflammatory mediators IL-10 and TGF-β (144-

147). Mast cells are often thought to be the major producers of (T helper 1) Th1 and Th2  

cytokines, including IL-4, IL-5, IL-13, IFN- γ, IL-12, and IL-18 (148, 149). In addition to 

cytokines, mast cells are also an important source of growth factors, SCF, 

granulocyte/macrophage- colony stimulating factor (GM-CSF), basic-fibroblast growth 

factor, nerve growth factor and VEGF (118, 150, 151). Recently, both human and rodent 

mast cells have also been shown to produce several antimicrobial peptides (152). Given 

this vast array of mediator production, mast cells receptor/ligand interactions are 

important in many biological responses. The mechanism of mast cell response to unique 

to receptor activation is important in understanding the role of mast cells in biologic 

responses. 

The first hundred years of mast cell research, from the discovery of mast cells in 

1879 until the pivotal reports describing the requirement for mast cells in host defense in 

1996, focused on the role of the mast cell in the allergic response. The next hundred will  

likely continue to focus on the role of the mast cell as a sentinel of host defense.  The 

investigations that occurred during the first decade of mast cell-pathogen interactions 

have focused on receptors that are involved in pathogen recognition by the mast cell.  The 

next frontiers in this field will likely focus on the biochemical aspects of mast cell 

activation in response to pathogens and ways to modify these properties for the benefit of 

the host.  
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Figure 4. Mast Cell Mediators.  Mast cells can produce several classes of mediators. (1) 
Newly synthesized cytokines, chemokines and growth factors, (2) newly synthesized 
lipid mediators and (3) granule associated mediators. They are also the source of several 
factors involved in bacterial killing such as nitric oxide and antimicrobial peptides. 
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Statement of Aims 

 The expression of the α2β1 integrin on mast cells is required for the innate 

immune response to Listeria monocytogenes predicted to interact via C1q contained 

within an immune complex.  However, ligation of the integrin is not sufficient to induce 

activation of mast cells, indicating that a co-receptor is required for activation.  In another 

model of α2β1 integrin-mediated activation, platelets utilize glycoprotein VI (GPVI) as a 

co-receptor for activation upon adhesion to collagen. We propose three models for co-

receptor induced mast cell activation in response to immune complex, FcγR-, 

complement- or pathogen-mediated co-receptor activation. Identification of the co-

receptor that synergizes with the α2β1 integrin to activate mast cells is important for 

understanding mechanisms of mast cell interaction with pathogens and immune 

complexes.  Additionally, demonstrating a novel co-receptor synergy with the α2β1 

integrin may give insight into the role of the integrin in different integrin mediated 

responses. 

In vivo and in vitro, α2β1 integrin mediates activation of mast cells to release IL-6 

at 1 hour following infection.  The characteristic feature of mast cells is the presence of 

electron dense granules that contain mediators poised for release.  Mast cells are capable 

of releasing their mediators via compound degranulation, piecemeal degranulation and de 

novo protein synthesis.  Mechanisms underlying IgE-mediated compound degranulation 

and de novo synthesis and release have been well defined. However, the receptor/ligand 

interactions mediating piecemeal degranulation have not been well defined.  We propose 

a mechanism of pre-formed IL-6 release following stimulation by Listeria immune 
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complex that is distinct from IgE-mediated compound degranulation.  Through this aim, 

we will demonstrate the mechanism of α2β1 integrin-dependent IL-6 release. 

The in vivo innate immune response to Listeria has been demonstrated to be α2β1 

integrin-dependent at the initiation phase between 1 and 6 hours following infection.  An 

effective innate immune response is required for the initiation of the adaptive immune 

response.  The immune response to Listeria results in a cytokine milieu that primes an 

effective adaptive immune response.  The goal of this aim is to determine if the defect in 

the innate immune response to Listeria observed in the initiation phase affects additional 

immune responses. Our hypothesis is that initiation of the innate immune response and 

subsequent adaptive immune response is delayed in the α2-null mouse. 

The role of the mast cell as a critical mediator of innate and adaptive immunity is 

rapidly growing. Our laboratory has demonstrated that the α2β1 integrin is able to 

activate mast cells through ligation of C1q in Listeria immune complexes. The 

experiments presented here will contribute to our understanding of how mast cells are 

able to recognize and specifically respond to pathogens in ways that are independent of 

IgE. Additionally, we demonstrate differential mast cell granule components that are 

distinctly released upon specific stimuli. The very early signals following infection is 

crititcal in directing the innate immune response. These studies will aid in defining a 

clear receptor/ligand interaction and cell type that is intricately involved in transmitting 

these early “danger signals” that initiate the adaptive immune response.   
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Mice and Listeria 

α2 integrin-subunit (α2-/-), FcRγ (FcRγ-/-), C1q (C1q-/-)-deficient mice and WT 

littermate controls on a C57BL/6 x 129/Sv background were used at 6-20 weeks of age.  

FcRγ-deficient mice were obtained from Dr. Paul Allen (Washington University School 

of Medicine). C1q-deficent mice, originally generated by Drs. Walport and Botto, were 

obtained on a pure C57BL/6 background from Drs. Michael Diamond (Washington 

University School of Medicine, St. Louis, MO) and Gregory L. Stahl (Harvard University 

School of Medicine, Boston, MA) (153).  Mice were maintained under specific pathogen-

free conditions in the Vanderbilt University School of Medicine (Nashville, TN) mouse 

facilities.  Within individual experiments, mice were age and sex matched.  WT Listeria 

(EGD) and its isogenic mutants, ΔInlA and ΔInlB (provided by Emil Unanue from 

Washington University, St. Louis, MO) were cultured in brain heart infusion broth (BD, 

Sparks, MD) at 37oC.   

 

In vivo Model of Peritonitis 

Listeria strain EGD and its isogenic mutants were stored at mid-log growth as 

glycerol stocks at -80 oC and diluted in pyrogen free saline for injection into mice.  

Bacteria were injected at a dose of 5 x 104 Listeria/mouse intraperitoneally in 500 µL. At 

indicated time points after injection, mice were killed and peritoneal exudates were 
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collected by lavage in 10 mL RPMI. Cell-free supernatants were stored at -20 oC and later 

used for the determination of IL-6, TNF- α, INF-γ and IL-1β by ELISA (BD 

Biosciences). Total peritoneal exudate cell number was determined for each mouse, and 

cells were cytospun onto slides and stained with the Hem 3 staining kit (Fisher Scientific, 

Pittsburgh, PA). The percent PMN was determined by differential cell counting.  In some 

experiments, mice were infected for 7 days and serum was collected at post-infection day 

0, 2 and 4.  Spleens and livers from some mice were harvested at 5 days to determine 

CFUs. Antigen specific T cells were analyzed as previously described (154). 

 

Mast Cell Preparations 

PMCs were isolated from residential peritoneal exudates using percoll gradient 

centrifugation (~85% purity) (12).  Fetal skin-derived mast cells (FSMC) were generated 

as described previously (155).  Single cell suspensions of day 16 fetal trunk skin were 

generated by incubation in 0.25% trypsin in Hanks Balanced Salt Solution (HBSS) for 20 

min at 37oC.   After erythrocyte lysis with lysing buffer (0.15 mM NH4C1, 1.0mM 

KHCO3, 0.1mM Na2EDTA), cells were washed and seeded at 2 x 104 cells/mL in FSMC 

media [RPMI1640, 10% FBS,10 mM NEAA, 10mM sodium pyruvate, 0.01% Penicillin-

Streptomycin, 25 mM HEPES buffer, 50 uM 2-mercaptoethanol, and 10 ng/mL IL-3 and 

SCF (both from Prepro Tech, Rocky Hill, NJ). After 10-14 days, nonadherant cells were 

assessed for the expression of c-kit and expression of the α2β1 integrin.  Cultures of 

FSMCs were used if greater than 85% of the WT cells co-expressed c-kit and the α2β1 

integrin. Expression of c-kit, α2β1 integrin or c-met was carried out by flow cytometric 

analysis using the following antibodies (all from BD Biosciences, San Diego, CA): FITC 
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(fluorescein isothiocyanate)–anti-CD117 (c-kit; 2B8), PE (phycoerythrin)–anti–CD49b ( 

integrin subunit; HMα2).   

 

In vitro Adhesion Assays 

Adhesion assays were performed as previously described (139).  Static adhesion 

assays were performed in 96-well plates (Immulon 2HB; Thermo Labsystems, Franklin, 

MA) (156, 157).  Wells were coated with bovine serum albumin (BSA) (5 µg/mL; Sigma-

Aldrich, St Louis, MO), type 1 collagen (25 µg/mL rat tail; BD Biosciences), human C1q 

(25 µg/mL; Calbiochem, San Diego, CA), a matrix of Listeria monocytogenes, anti-

Listeria antibody, and serum, or a matrix of BSA, anti-BSA, and serum.  The Listeria or 

BSA matrix was formed by allowing Listeria (strain EGD, 1 x 108 organisms/mL in 0.1 

M carbonate buffer, pH 8.5) or BSA (5 µg/mL in PBS) to adhere to wells of a 96-well 

plate overnight. Unattached Listeria or BSA was removed and polyclonal anti-Listeria 

antibody (1:200 dilution in PBS; Difco, Detroit, MI) or anti-BSA antibody (1:1000 

dilution in PBS; Invitrogen Life Technologies, Carlsbad, CA) was added and incubated at 

37°C for 1 hour.  Fresh mouse serum from WT, C1q -/-, C3-/-, C4-/-, C5-/- or Factor B-/- 

mice (sera from C3-/-, C4-/-, C5-/- and Factor B-/- kindly provided by Michael Diamond, 

Washington University, St. Louis, MO) (50%) was added for 1 hour at 37°C.  PMCs 

(2000 cells/well) were allowed to adhere for 1hour at 37oC in the presence of 2 mM 

MgCl2 or 2 mM EDTA. Non-adherent cells were removed and adherent cells were 

quantitated as previously described (157).   
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In vitro Activation Assays 

 For in vitro mast cell activation by Listeria, purified PMCs (5 x 104 cells/well) 

were incubated for 1 hour at 37°C with a washed suspension of Listeria (1 x 107 

organisms), incubated with rabbit anti-Listeria antibody, and 50% serum from either WT, 

C1q -/-, C3-/-, C4-/-, C5-/- or Factor B-/- mice.  For in vitro mast cell activation by BSA 

immune complexes, purified PMCs (5 x 104 cells/well) were incubated with a washed 

suspension of latex beads (Polyscineces, Warrington, PA) coated with BSA (3mg/ml), 

anti-BSA antibody, and serum (50%) alone or in the presence of lipopolysaccharide 

(LPS)  (100ng/ml, Sigma-Aldrich, St. Louis, MO), Pam3Cys-Ser-(Lys)4 x 3HCl 

(Pam3Cys) (100ng/ml, EMC Microcollections, Tuebingen, Germany), Listeria (1 x 108), 

heat-killed Listeria (HKLM) (1 x 108 heated for 30 min at 60°C), or HGF (2 mg/ml, 

R&D Systems Minneapolis, MN).   

To determine the activation by IgE crosslinking, cells (5 x 104) were preloaded for 

18 h with anti-DNP IgE (1 µg/ml, SPE-7, Sigma Aldrich) in Tyrodes buffer (137 mM 

NaCl/11.9 mM NaHCO3/0.4 mM Na2HPO4/2.7 mM KCl/1.1 mM MgCl2/5.6 mM 

glucose, pH 7.3).  The sensitized cells were washed twice in Tyrodes buffer and 

stimulated with 100 ng/ml DNP-HSA (Sigma Aldrich) for the indicated time points.  In 

some experiments cells were inhibited by pre-treating the cells with goat-anti-c-met 

(R&D Systems), actinomycin D (2 μg/ml) cyclohexamide (20 μM), Brefeldin A (1 

μg/ml) or monensin (1 μM) (all from Sigma Aldrich) prior to stimulation of FSMCs. 

Cell-free supernatants were analyzed by ELISA per manufacturer’s instructions for IL-6 

(BD Biosciences, San Diego, CA), Histamine and Serotonin (both from Fitzgerald 

Industries). The degree of degranulation was determined by measuring the release of ß-
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hexosaminidase. The enzymatic activity of ß-hexosaminidase in supernatants and cell 

pellets solubilized with 1% Triton X-100 in Tyrode's buffer was measured with p-

nitrophenyl N-acetyl-ß-D-glucosaminide (Sigma-Aldrich) in 0.1 M sodium citrate (pH 

4.5) for 60 min at 37°C. The reaction was stopped by the addition of 0.2 M glycine (pH 

10.7). The release of the product, 4-p-nitrophenol, was detected by absorbance at 405 nm. 

The extent of degranulation was calculated by dividing the 4-p-nitrophenol absorbance in 

the supernatant by the sum of the absorbance in the supernatant and detergent-solubilized 

cell pellet. 

 

Mast Cell Fractionation 

 Fractionation of mast cells to isolate mast cell granules was performed by using a 

washed preparation of 1x107 mast cells.  The pellet was resuspended in PBS and 

submitted to 3 freeze/thaw cycles. The homogenate was then sonicated at level 4 for 5 

bursts then centrifuged at 3000 rpm for 10 min to pellet nuclei. The post nuclear 

supernatant (PNS) was collected and applied on a two layer Percoll gradient. The Percoll 

was diluted with 10X sucrose and water and gradient densities were 1.05 and 1.12 (2 

ml/layer). The gradient was layered in 5 ml polycarbonate ultracentrifugation tubes 

(Beckman, Fullerton, CA). After applying the PNS on top of the gradient, the samples 

were spun at 40,000 rpm for 50 min in a Sorvall Discovery 90SE ultracentrifuge using 

the AH650 rotor. Fractions of 200 μl were collected starting from the top of the gradient. 

The fractions were divided in half.  100 μl was used to determine IL-6, Histamine and 

Serotonin by ELISA, 100 μl was used for western blot analysis. 
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Immunofluorescence 

 FSMCs were washed with PBS and fixed with 3% paraformaldehyde for 20 mins, 

washed and permiabilized with 0.05% Tween-20/PBS for 15 min. Cells were cytospun 

onto glass slides and blocked with 3% horse serum/PBS for 1 hour at room temperature.  

Primary antibodies rabbit anti-mouse IL-6 (US Biologicals) and mouse anti-5-HT 

serotonin overnight at 4 °C.  Cells were then washed and treated with Goat-anti mouse 

AlexaFlour 488 and Goat-anti-rabbit AlexaFlour 633 (Molecular Probes) for 1 hour at 

room temperature.  Cells were mounted and imaged with an LSM 510 META confocal 

microscope (Carl Zeiss Microimaging, Germany) and the images were processed by 

using LSM ImageBrowser (Carl Zeiss Microimaging) software. 
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CHAPTER III 

 

CROSS-TALK BETWEEN THE α2β1 INTEGRIN AND C-MET/HGF-R REGULATES 
INNATE IMMUNITY 

 
 
 

Introduction 
 

The role of the α2β1 integrin in the innate and acquired immune response is an 

area of active investigation.  We initially reported that the α2β1 integrin–deficient mice 

exhibited markedly diminished inflammatory responses to Listeria monocytogenes due to 

a requirement for α2β1 integrin expression on PMC for mast cell activation and cytokine 

release in vivo (12). Although the α2β1 integrin serves as a receptor for a number of 

matrix and non-matrix ligands, the integrin ligand during the PMC response to infection 

is unknown (158, 159).  We demonstrated that C1q complement protein and collectin 

family members, including mannose-binding lectin (MBL) and surfactant protein A (SP-

A) all served as ligands for the integrin (139). In addition, the α2β1 integrin is required 

for mast cell activation in vitro in response to Listeria. However, ligation of the α2β1 

integrin alone is insufficient to activate cytokine secretion because mast cell adhesion to 

collagen or C1q alone fails to support cytokine secretion (139). 

 We hypothesize that one or more additional signals emanating from an additional 

receptor is required to activate mast cell cytokine secretion in response to immune 

complexes. There are several models by which α2β1 integrin–ligand interactions may 

stimulate mast cell activation and cytokine secretion (Figure 5A). First, ligation of the 

α2β1 integrin simultaneously with a second, co-stimulatory receptor might elicit mast cell 

activation, in a manner reminiscent of the role proposed for the α2β1 integrin and the 



42 
 

GPVI/FcRγ during platelet adhesion to collagen (38, 160). Second, binding of the α2β1 

integrin to an immune complex containing C1q may directly activate the complement 

cascade, resulting in the deposition of C3b or iC3b and generation of complement 

byproducts such as C3a or C5a which would subsequently stimulate mast cell activation 

(118, 161, 162). 

 In this chapter, I describe that neither the FcRγ nor components of the 

complement cascade are required in α2β1 integrin-dependent mast cell activation.  

Instead, we describe a novel co-receptor required for mast cell activation, HGF-R/c-met. 

The Listeria specific molecule, InlB, binds to its host cell receptor, c-met to mediate 

internalization into epithelial and hepatic cells (94). I demonstrate that activation of 

mature PMCs by Listeria plus immune complex requires co-stimulatory signals from 

α2β1 integrin ligation to either type I collagen or C1q and c-met binding to either InlB or 

HGF. The synergistic signals from the two co-receptors result in mast cell activation and 

the release of the pro-inflammatory cytokine IL-6 that induce the early innate immune 

responses to Listeria monocytogenes. 

 

Results 

α2β1 integrin-C1q-immune complex interaction was required, but not sufficient, 

for mast cell activation in response to Listeria monocytogenes (139).  These data 

suggested that one or more additional signals emanating from an additional receptor, such 

as the FcRγ chain, is required to activate cytokine secretion (Figure 5) (12). FcRγ is 

required to initiate the downstream signals from T-cell receptor and B-cell receptor 
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Figure 5. Hypothesized models of mast cell activation by Listeria immune 
complex . (A) A proposed model is a 2-site, 2-receptor model in which concurrent 
activation of the α2β1 integrin and secondary receptor (complement receptor, FcRγ, 
Listeria receptor) stimulates mast cell activation.  Adapted from Edelson et.al. Blood, 
2006 Jan 1;107(1):143-50.   
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signaling through activation of the (immunoregulated tyrosine activation motifs) ITAM 

domains. Additionally, the α2β1 integrin co-receptor for platelet activation in response to 

collagen, GPVI, utilizes the common FcRγ chain to initiate signaling.  To determine if 

the FcRγ chain is required for mast cell activation in response to Listeria immune 

complex stimulation, we compared the ability of purified PMCs from WT or FcRγ-/- 

mice to bind to a matrix of either Listeria-containing immune complexes or type I 

collagen.  PMCs from both, WT and FcRγ-/- mice adhered to collagen and Listeria 

containing immune complexes in an α2β1 integrin-mediated, divalent cation-dependent 

manner (Figure 6A).  These data demonstrate that PMC adhesion to immune complex via 

the α2β1 integrin does not require FcR 

To determine if α2β1 integrin-dependent PMC activation requires signaling 

downstream of the FcRγ, we measured the release of IL-6 from WT and FcRγ-/- PMCs 

after stimulation with a complex of Listeria plus anti-Listeria IgG antibody or an immune 

complex of Listeria plus anti-Listeria IgG antibody plus serum.   Neither WT nor FcRγ-/- 

PMCs were activated in the presence of Listeria and antibody alone.  In contrast, WT and 

FcRγ-/- mice released similarly high levels of IL-6 in response to Listeria plus antibody 

plus serum (Figure 6B).  These results indicate that FcRγ is not required in vitro for the 

α2β1 integrin-dependent activation of PMC by Listeria plus immune complex.  In 

addition, these data suggest that the FcRγ does not serve as a co-receptor for the α2β1 

integrin in immune complex-stimulated mast cell activation.  
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Figure 6. Mast cell activation by Listeria immune complex does not require FcRγ 
(A) Purified PMCs (2 x 104) from either wild-type (WT) mice or from mice lacking 
FcRγ (FcRγ -/-) were assayed for adhesion to a matrix consisting of (1) Listeria plus 
anti-Listeria antibody alone, (2) Listeria, anti-Listeria antibody and 50% murine serum 
or (3) type I collagen in the presence or absence of 1mM EDTA. (B) Purified PMCs (5 
x 104) from WT and FcRγ -/- mice were incubated for 1 hour with a washed suspension 
of Listeria, anti-Listeria antibody and 50% murine serum. Supernatants were collected 
and analyzed for IL-6 production by ELISA. All adhesion and activation experiments 
were carried out in the presence of 2mM MgCl2 All results are represented as mean 
±SEM from triplicate wells of a single experiment and represent 1 of at least 3 
experiments demonstrating similar results.  (C and D) 3 of each, WT and FcRγ -/- mice 
were infected for 1 or 6 hours with 5 x 104 Listeria intraperitoneally. At the indicated 
time points, the percentage PMN and IL-6 in the peritoneal fluid were determined. 
Shown are representative of at least 3 experiments (mean ±SEM), all carried out in 
triplicate. 
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In light of the importance of the FcRγ in the immune response, I sought to determine if 

the FcRγ was required for the early neutrophil recruitment in response to Listeria. To 

determine the role of the FcRγ in vivo in response to Listeria, PMN influx and IL-6 

secretion into the peritoneal cavity was evaluated in WT and FcRγ-/- mice.  Both WT and 

mice deficient in the FcRγ exhibited maximal IL-6 secretion at 1 hour and a robust 

neutrophil response at 6 hours (Figure 6C and D).  These data demonstrate that signals 

downstream of the FcRγ are not required for the early innate immune response to 

Listeria. 

I therefore hypothesized that mast cell binding via the α2β1 integrin to an immune 

complex containing C1q may directly activate the complement cascade, resulting in the 

deposition of C3b or iC3b and the generation of complement byproducts such as C3a or 

C5a. In turn, binding of complement components to their cognate receptors on mast cells 

(complement receptor 1 [CR1], CR3, CR4, C3aR or C5aR) would then stimulate mast 

cell activation, as has previously been shown (118, 161, 162).  

 To determine whether complement activation provided the co-stimulatory signal 

for IL-6 release, I evaluated adhesion and activation of WT PMCs in response to immune 

complex formed from Listeria plus anti-Listeria antibody and murine serum from WT 

mice or mice deficient in classical complement cascade components, C1q, C3, C4 or C5, 

or the alternate cascade component, Factor B.  Listeria plus anti-Listeria antibody plus 

serum from WT mice and mice deficient in C3, C4, C5 and Factor B resulted in 

formation of an adhesive substrate (Figure 7A).  As previously demonstrated, C1q-

deficient serum failed to form an adhesive substrate for the α2β1 integrin (139).  To 

evaluate PMC activation, I measured secretion of IL-6 by PMCs after stimulation with  
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Figure 7. C1q, but not other complement components supplies stimulatory signal for 
mast cell activation by Listeria-immune complex.  (A) Purified PMCs (2 x 104 cells/well) 
isolated from WT (WT) mice were assayed for adhesion to a matrix consisting of Listeria plus 
anti-Listeria antibody, Listeria, anti-Listeria antibody alone and 50% murine serum obtained 
from either WT mice or mice deficient in the complement components, C1q, C3, C4, C5, or 
Factor B (C1q -/-, C3-/-, C4-/-, C5-/-, FB-/-) or type I collagen. (B) Purified PMCs (5 x 104) from 
WT and mice were incubated for 1 hour with a washed suspension of Listeria, anti-Listeria 
antibody and 50% murine serum from either WT or mice deficient in the complement 
components C1q, C3, C4, C5, Factor B. Supernatants were collected and analyzed for IL-6 
production by ELISA. All adhesion and activation experiments were carried out in the 
presence of 2 mM MgCl2. All results are represented as mean ±SEM from triplicate wells of a 
single experiment and represent 1 of at least 3 experiments demonstrating similar results. (C-
D) WT and C1q-/- mice were infected for 1 or 6 hours with 5 x 104 Listeria intraperitoneally. 
At the indicated time points, the percentage PMN and IL-6 in the peritoneal fluid were 
determined.  Shown are representative of at least 3 experiments (mean ±SEM), all carried out 
in triplicate. Statistics were performed using unpaired student’s t-test (***p<0.001) 

*** *** 
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Listeria plus anti-Listeria antibody plus WT serum or serum deficient in C1q, C3, C4, C5 

or Factor B.  WT PMCs secreted high levels of IL-6 in response to immune complexes 

formed with WT serum, as well as with serum deficient in C3, C4, C5 or Factor B. As 

expected from an earlier report, (139) immune complexes from C1q deficient serum 

failed to activate WT PMCs (Figure 7B).  Therefore, C1q, but not other complement 

components, is required for mast cell activation. These results indicate that neither FcRγ 

nor complement components other than C1q act as co-stimulatory signals for PMC 

activation by Listeria immune complexes. 

These studies demonstrated a role for C1q in response to Listeria in vitro.  To 

demonstrate a requirement for C1q in vivo, we infected WT and C1q-/- mice with 

Listeria.  In WT mice, IL-6 was released into the peritoneal cavity at 1 hour post 

infection.  In contrast, C1q-/- mice failed to respond with IL-6 in response to Listeria 

(Figure 7C).  Additionally, there was a significant decrease in the number and percentage 

of PMNs that infiltrated the peritoneal cavity of C1q-/- mice at 6 hours as compared to 

WT mice (Figure 7D).  These results support the hypothesis that C1q is Important in the 

mast cell dependent response to peritoneal Listeria infection.  Furthermore, C1q binding 

to α2β1 integrin provided a signal that could not be duplicated by peritoneal matrix 

components such as collagen.  

WT PMCs adhere to plate-bound immune complexes formed between BSA, anti-

BSA antibody, and serum in an α2β1 integrin-dependent manner (139). To determine if 

binding of WT PMCs to an immune complex alone, without Listeria, was sufficient to 

mediate cytokine secretion, IL-6 secretion by PMCs was analyzed after 1-hour 

stimulation with immune complexes consisting of BSA-coated latex beads plus anti-BSA  
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Figure 8.  HGF-R/c-met is the receptor providing the co-stimulatory signal for mast 
cell activation.  (A) Purified PMCs (5 x104) isolated from WT mice were incubated for 1 
hour with a washed suspension of Listeria and anti-Listeria antibody alone (LA), 
Listeria, anti-Listeria antibody plus 50% serum from WT mice (LAS), latex beads coated 
with bovine serum albumin (BSA) plus anti-BSA antibody alone (BA), BSA plus anti-
BSA antibody and 50% WT murine serum (BAS), BSA plus anti-BSA antibody and 50% 
WT murine serum (BAS) with either LPS (100 ng/ml), Pam3Cys (100 μg/ml), Listeria (1 
x 108), heat-killed Listeria (1 x 108 organisms), or LPS (100 ng/ml), Pam3Cys (100 
μg/ml), Listeria (1 x 108), heat-killed Listeria (1 x 108 organisms) alone. Supernatants 
were collected and analyzed for IL-6 production by ELISA. (B) Representative flow 
cytometric histograms of PMCs stained with c-met PMCs from WT (panel A) and α2β1 
integrin-deficient (KO, panel B) were stained with PE-anti-c-kit and APC-anti c-met and 
assessed by flow cytometry. Mast cells were identified as c-kithigh-staining cells and 
represented 1% - 3% of resident peritoneal cells in both WT and KO mice. (C) Purified 
PMCs isolated from WT mice were pretreated with inhibitory antibodies toward E-
cadherin, c-met or irrelevant control antibody for 1 hour prior to stimulation with a 
washed suspension of Listeria, anti-Listeria antibody alone, or Listeria, anti-Listeria 
antibody and 50% WT murine serum. Supernatants were collected and analyzed for IL-6 
production by ELISA.  
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antibody and serum or immune complexes consisting Listeria plus anti-Listeria antibody 

plus serum.  WT PMCs secreted abundant IL-6 in response to Listeria plus immune 

complex, but failed to secrete IL-6 in response to BSA plus immune complex.  Therefore, 

the immune complex alone was not sufficient to stimulate PMC activation (Figure 8A). 

The addition of Listeria alone to the BSA-immune complex restored IL-6 secretion to 

levels similar to activation with Listeria containing immune complex (Figure 8A). This 

result suggested that interactions of the PMC with Listeria were providing the additional 

activation signal required following α2β1 integrin-ligation to immune complex. 

TLRs induce mast cell activation both in vivo and in vitro. Since Listeria 

monocytogenes is a Gram-positive bacterium, I hypothesized TLR2 may serve as the 

necessary co-receptor required to mediate the α2β1 integrin-dependent mast cell 

activation.  To examine the role of Listeria and TLRs in immune complex mediated mast 

cell activation, IL-6 secretion from PMCs was compared after stimulation with BSA-

immune complexes plus either live Listeria, as shown above, heat-killed Listeria 

monocytogenes  (HKLM), the TLR2 agonists Pam3Cys or the TLR4 agonist, LPS.   The 

addition of heat-killed Listeria, TLR2, or TLR4 agonist to the BSA immune complexes 

failed to result in activation of PMCs (Figure 8A).   These results suggest that a heat-

labile protein serves as the co-receptor for mast cell activation and that TLR2 and 4 do 

not provide co-stimulatory activity.   

Listeria is an intracellular pathogen that infects humans using two bacterial 

surface receptors for bacterial internalization, InlA and InlB that bind to E-cadherin and 

c-met, respectively, on the host cell (91, 94, 163).  Mouse E-cadherin does not bind to 

InlA due to a single point mutation in its binding site on mouse E-cadherin (93).  We 
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evaluated the expression of c-met on mature peritoneal mast cells by flow cytometric 

analysis.  As shown in Figure 8B, WT and α2-null PMCs express high levels of c-met.  

To determine if Listeria-c-met interaction is required, inhibitory anti-c-met or anti-E-

cadherin antibodies were used to block PMC-Listeria interactions.  Preincubation of WT 

PMCs with anti-c-met antibody prior to stimulation with Listeria-containing immune 

complexes significantly diminished the IL-6 release by 40% (p=0.03), suggesting that c-

met serves as a co-receptor.  As expected, the inhibitory anti-E-cadherin did not 

significantly alter IL-6 release (Figure 8C). 

The best defined ligand for c-met is HGF.  We hypothesized that Listeria-

stimulated PMC activation would be mimicked by HGF binding to c-met.   To determine 

whether HGF binding alone was sufficient to activate WT PMCs when the α2β1 integrin 

was ligated, we compared secretion of IL-6 by WT PMCs following stimulation by BSA-

immune complex plus Listeria, BSA-immune complex plus HGF, or Listeria-immune 

complex.  The level of IL-6 produced by WT PMCs stimulated by Listeria-immune 

complex, BSA-immune complex plus Listeria and BSA-immune complex plus HGF was 

equivalent (Figure 9A).  HGF failed to stimulate IL-6 secretion when incubated with 

PMCs in the absence of BSA-immune complex (Figure 9A).   These data suggest that 

stimulation of c-met by either Listeria or HGF mediates WT PMC activation in the 

presence of ligated α2β1 integrin. 

 To determine if coactivation of the α2β1 integrin and c-met is sufficient for PMC 

activation, we stimulated WT PMCs adherent via the α2β1 integrin to either C1q or type I 

collagen with either Listeria or HGF.  α2β1 integrin-dependent adhesion of WT PMCs to  
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Figure 9. Mast cell activation in the absence of immune complex. (A) Purified 
PMCs (5 x104) isolated from WT mice were incubated with Listeria and anti-Listeria 
antibody alone (LA), Listeria, and anti-Listeria antibody plus 50% serum from WT 
mice (LAS), latex beads coated with BSA, plus anti-BSA antibody alone (BA), or 
latex beads coated with BSA, anti-BSA antibody, plus 50% serum (BAS) plus or 
minus the addition of Listeria (1 x 108) or HGF (2 mg/ml), or Listeria (1 x 108) or 
HGF (2 mg/ml) alone. Supernatants were collected and analyzed for the 
concentration of IL-6 by ELISA.   (B) Purified PMCs (5 x104) isolated from WT 
mice were allowed to adhere to a matrix of Listeria and anti-Listeria antibody (LA), 
Listeria, anti-Listeria antibody plus serum (LAS), type I collagen (25 mg/ml), C1q 
(25 mg/ml), or tissue culture plastic (No Matrix) with or without either Listeria (1 x 
108) or HGF (2 mg/ml).  Supernatants were collected and analyzed for IL-6 
production by ELISA.  All experiments were carried out in the presence of 2 mM 
MgCl2. All results are presented as mean ±SEM from triplicate wells of a single 
experiment and represent 1 of at least 3 experiments demonstrating similar results.  
The p-values were determined by unpaired student’s t-test (* p<0.05, **p<0.01) 

** ** 
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either collagen or C1q alone failed to result in IL-6 release, as previously shown (139). c-

met activation of PMCs by Listeria or HGF alone failed to result in IL-6 secretion.  

However, ligation of both the α2β1 integrin and c-met resulted in PMC activation and IL-

6 release (Figure 9B).  These data indicate that co-stimulation of c- met and the α2β1 

integrin is sufficient to induce mast cell activation in the absence of additional stimuli 

such as immune complexes. 

 InlB and InlA promote Listeria internalization into host cells. The c-met receptor 

on the host cell binds to InlB on Listeria; E-cadherin binds to InlA. To determine the role 

of InlB/c-met interaction in PMC activation, we quantitated IL-6 secretion by WT PMCs 

after stimulation with immune complexes formed by WT Listeria or mutant Listeria 

containing mutations in either InlA (ΔInlA) or InlB (ΔInlB).   Activation of WT PMCs 

with ΔInlA Listeria-immune complex resulted in secretion of IL-6 at similar levels to that 

secreted by PMCs stimulated by WT Listeria-immune complex.   In contrast, activation 

of WT PMCs with ΔInIB Listeria-immune complex resulted in significantly reduced 

secretion of IL-6 to baseline levels (Figure 10A). 

  Since the early α2β1-dependent innate immune responses to Listeria mediated by 

PMC secretion of IL-6 resulted in  neutrophil recruitment at 6 hours (12), we 

hypothesized that the c-met-InlB interaction was required not only in vitro but also for 

α2β1 integrin-dependent response in vivo.  WT and α2-null mice were infected 

intraperitoneally with either WT, ΔInlA, or ΔInlB Listeria.  As reported, WT mice but not 

α2-null mice, when infected with WT Listeria demonstrate high levels of IL-6 in the 

peritoneal cavity 1 hour post-infection and robust neutrophil recruitment at 6 hours post-  
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Figure 10. Internalin B is required for mast cell mediated innate and adaptive 
immune responses  Purified PMCs (5 x 104) from WT and α2-null mice were 
incubated for 1 hour with a washed suspension of Listeria and anti-Listeria antibody 
(LA),  or using WT Listeria EGD, (LAS), Listeria ΔInlA (L(ΔA)AS), or Listeria 
(L(ΔB)AS), anti-Listeria antibody and 50% murine serum. Supernatants were 
collected and assayed for IL-6 by ELISA.  (B-C) WT and α2-null mice were infected 
for 1 or 6 hours with 5 x 104 Listeria (EGD), Listeria (ΔInlA), or Listeria (ΔInlB) 
intraperitoneally. At the indicated time points, the percentage PMN and IL-6 in the 
peritoneal fluid were determined. Shown is representative of 2 experiments (mean 
±SEM), with each point representing 5-6 mice. Statistical analysis was performed 
using the Students T test (** p<0.01) 

** **

** **
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infection (12).  WT, but not α2-null mice responded with a rapid cytokine secretion and a 

similar robust neutrophil response to ΔInlA Listeria.  In contrast, ΔInlB Listeria failed to 

elicit IL-6 secretion or neutrophil recruitment in either WT or α2-null mice (Figure 10B 

and C).   These data demonstrate that binding of c-met to InlB cooperates with α2β1 

integrin binding to C1q or collagen in the early mast cell- dependent innate immune 

response to Listeria both in vivo and in vitro. 

 

Conclusions 

I have identified c-met as a novel co-receptor required for α2β1 integrin-

dependent mast cell activation. The synergistic contributions of α2β1 integrin and c-met 

receptor in immune modulation were entirely unexpected.  We initially reported that the 

α2β1 integrin–deficient mouse demonstrated a profound and surprising defect in the 

innate immune response to Listeria monocytogenes (12).  α2β1 integrin expression on the 

PMCs was required for activation and cytokine secretion in vivo (12). Previous studies 

demonstrate a requirement for α2β1 integrin ligation for PMC activation (139).  

However, α2β1 integrin-ligand interactions alone are insufficient for PMC activation 

since α2β1 integrin dependent adhesion to collagen or C1q alone failed to support 

cytokine secretion (139).   I hypothesized that one or more additional signals emanating 

from an additional receptor, similar to that downstream of glycoprotein VI/FcRγ on 

platelets, was required for PMC activation (38, 160).   Alternatively, α2β1 integrin 

binding to C1q may result in activation of the complement cascade.   

I describe a mechanism of innate immune response mediated by interaction with 

α2β1 integrin with a soluble, non-matrix factor, C1q.  We previously demonstrated that 
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the α2β1 integrin is a cellular receptor for C1q, the first component in the complement 

cascade and mediator of innate immune response (139).  Interaction in vitro between 

α2β1 and C1q on mast cells resulted in activation and cytokine secretion.  Here I show, 

through in vivo models, that the C1q/ α2β1 integrin interaction is, in fact, required for 

innate immune response to Listeria.  C1q-deficient mice do not release IL-6 or recruit 

PMNs into the peritoneum following Listeria infections.  Although collagen and other 

ECM components are abundant in the peritoneum, collagen binding either does not occur 

or is not sufficient to mediate mast cell activation following Listeria infection. C1q and 

collagen have very similar sequences and are both capable of providing the α2β1 integrin 

co-stimulatory signal in response to Listeria. However, it appears that in vivo they may 

induce different responses. This may provide further insight into the role of the α2β1 

integrin and its ability to mediate innate immune responses through interaction with C1q. 

These studies indicate, neither complement receptors nor FcRγ provide the 

necessary co-stimulatory signal for α2β1 integrin-dependent IL-6 release in vivo or in 

vitro.   In fact, the FcRγ is not required for the early innate immune response to Listeria 

either in vitro or in vivo. Instead, we identified c-met as a novel α2β1 integrin co-receptor 

that is essential for activation of the innate immune response to Listeria.  In addition, we 

demonstrated cooperation between the α2β1 integrin and HGF-R/c-met in immune 

modulation.  In the innate immune response to Listeria, the surface receptor InlB, a 

ligand for the c-met, provides the co-stimulatory signal.  In our initial in vitro 

observations, mast cell activation required Listeria-generated immune complexes.  Since 

α2β1 integrin-dependent adhesion to either type I collagen or C1q alone was required, but 
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not sufficient for mast cell activation, we suggested that perhaps the correct orientation of 

the immune complex was required for recognition (139).   

We have demonstrated that the orientation of the immune complex is not required 

for activation. Simple co-ligation of the integrin with either type I collagen or C1q and c-

met with either Listeria organisms or c-met's natural ligand HGF is sufficient to induce 

activation. InlB binding to host receptor, c-met is essential for infectivity and 

internalization into epithelial cells and hepatocytes. However, because stimulation with 

HGF and an α2β1 integrin ligand is sufficient for activation we propose that 

internalization is not required for mast cell activation (163). Our data now support a role 

for the α2β1 integrin/c-met interaction for the innate inflammatory response to Listeria.   
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CHAPTER IV 

 

SELECTIVE AND DIFFERENTIAL RELEASE OF MAST CELL PREFORMED IL-6 
IN RESPONSE TO LISTERIA IMMUNE COMPLEX REQUIRES THE α2β1 

INTEGRIN 
 
 
 

Introduction 

 Mast cells are versatile cells of the immune system, contributing to both the innate 

and adaptive defense against external insults.  In response to stimulation, three major 

classes of proinflammatory mediators are released by activated mast cells:  preformed 

granule-associated chemical mediators, newly synthesized arachidonic acid metabolites, 

and proinflammatory cytokines (164).  The release of stored mediators from 

inflammatory cells can occur by compound exocytosis (degranulation) or piecemeal 

degranulation. Mast cells can release newly synthesized mediators by classical 

exocytosis.   Other cells such as neurons, pancreatic beta cells, natural killer cells, 

cytotoxic T lymphocytes, and platelets also undergo degranulation to release their 

granule-associated mediators.   Mast cell secretory granules contain a wide array of 

preformed mediators, the first to be described was histamine (165). Mast cell granules 

have subsequently been demonstrated to contain TNF-α and serotonin (166, 167).  

The best defined mechanism of mast cell degranulation has been the compound 

degranulation observed following crosslinking of the high affinity FcεRI with IgE 

antibodies and specific antigen.   IgE crosslinking is a calcium dependent event that 

initiates a sequence of downstream intracellular signals that result in cytoskeletal 

reorganization allowing several granule-granule fusion events and subsequent docking 
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with the plasma membrane and release of soluble mediators (168, 169).  This mechanism 

of widespread granule release is called compound exocytosis or degranulaton. IgE 

crosslinking is a critical mechanism of mast cell activation. However, mast cells are 

capable of responding to stimuli independent of IgE crosslinking.   

 In Chapter III we reported a novel co-receptor activation system for mast cells 

mediated through crosstalk of the α2β1 integrin and c-met receptors.  Immune complexes 

formed by Listeria bound to antibody and C1q activates mast cells.  This interaction 

occurs via the α2β1 integrin binding to C1q and Internalin B (InlB) expressed by Listeria 

binding to c-met.  The engagement of both receptors was required in vivo for mast cell 

activation and initiation of immune response to Listeria.  This co-receptor engagement 

results in release of interleukin-6 (IL-6) from mast cells following 1 hour of stimulation 

both in vivo and in vitro.  The mechanism/s by which mast cells initiated this rapid 

release of mast cell IL-6 was not known.  

 To understand molecular mechanisms by which α2β1 integrin/c-met binding to 

Listeria immune complex stimulated IL-6 secretion, we compared mast cell activation 

through Listeria-IC and IgE crosslinking.  Surprisingly, there were few similarities in 

terms of mechanism or mediator release.  In fact, mast cells contain distinct subsets of 

granules that can be differentially released, much like platelets, neuronal and pancreatic 

beta cells.  The FcRγ common chain is not required for secretion of IL-6, although 

previous studies have demonstrated that the FcRγ is required for IgE crosslinked 

activation of mast cells. These studies suggest that signals leading to IL-6 secretion are 

distinct from the traditional FcR ITAMs that occur during stimulation of the FcεR.  

Stimulation via the Listeria immune complex results in a unique mechanism of mast cell 
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activation.  These studies demonstrate a mechanism of secretory cell degranulation and 

define a novel role for mast cell mediator release in host defense. 

 

Results 

The study of mechanisms of mast cell degranulation requires a large number of 

cells. Therefore, we generated fetal skin mast cell (FSMCs) cultures which generate large 

numbers of mast cells that are mature and morphologically similar to PMCs and express 

the α2β1 integrin by flow cytometry. Since all of our previous work was carried out using 

PMCs, we compared the response of WT and α2-null PMCs to FSMCs following Listeria 

immune complex activation to determine if there was a difference in the ability of these 

two mast cell model systems in expression of α2β1 integrin and in response to 

stimulation (Figure 11A and B).  WT and α2-null FSMCs and PMCs and respond to 

Listeria immune complex-mediated signaling in an α2-integrin subunit dependent manner 

and released of IL-6 (Figure 11C).  Therefore, FSMCs were used in the remainder of the 

studies to analyze the mechanism mast cell activation and secretion. 

To evaluate the α2β1 integrin/c-met engagement in mast cell activation we 

compared IL-6 secretion and β-hexosaminidase release (a measure of degranulation) 

following the activation of WT and α2-null FSMCs stimulated with either Listeria 

immune complex or IgE cross-linking (Figure 12).  Listeria immune complex stimulated 

IL-6 secretion from WT FSMC, but not α2-null FSMCs, as previously reported (139).  In 

contrast, WT and α2-null FSMCs released similar, low levels of β-hexosaminidase in 

response to Listeria immune complex.  IgE- crosslinking, failed to stimulate IL-6  
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Figure 11. Fetal skin mast cells represent a culture of connective tissue mast cells 
that express the α2β1 integrin.  FSMCs were compared to primary PMCs, connective 
tissue type mast cells. (A) The expression of the α2-integrin subunit (CD49b) and c-kit 
was determined by flow cytometry.  The FSMCs were >85% positive for c-kit-FITC and 
CD49b-PE (B) FSMCs and PMCs show similar morphology.  (D)  WT and α2-null 
FSMCs and PMCs were stimulated with Listeria plus anti-Listeria antibody (LA) or 
Listeria plus anti-Listeria antibody and serum (LAS) for 1 hour at 37 ºC.  The cell-free 
supernatants were analyzed for IL-6 release by ELISA.  IL-6 concentrations are 
expressed as mean ±SEM.  All data are representative of at least 3 similar experiments. 
 

 

*
**
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Figure 12. Listeria immune complex stimulation results in IL-6 release without 
degranulation. WT and α2-null FSMCs (5 x 104 cells/well) were stimulated with 
Listeria plus anti-Listeria antibody and serum (LAS) for 1 hour or anti-DNP IgE 
overnight followed by 1 hour stimulation with DNP-HSA (IgE + DNP). The levels of IL-
6 (white bars) and β-hexosaminidase (black bars) were quantified as described in the 
Methods.  P values were determined using the unpaired students t-test. All experiments 
were performed in duplicate. Data is expressed as mean ±SEM and is representative of at 
least 3 similar experiments. 
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secretion from WT and α2-null FSMCs at one hour, but resulted in similar, robust levels 

of β-hexosaminidase. These results indicate that IL-6 secretion in response to Listeria 

immune complex requires the α2β1 integrin. In contrast, there is no defect in the ability 

of α2-null FSMCs to respond to IgE-crosslinking. 

One of the classic features of degranulation in response to IgE crosslinking is the 

requirement of calcium mobilization, which is a crucial second messenger in downstream 

signaling events. We examined the ability of WT and α2-null FSMCs to mobilize 

calcium in response to Listeria immune complex stimulation, IgE crosslinking or the 

calcium ionophore, ionomycin. But the WT and α2-null FSMCs mobilized calcium in a 

similar manner following stimulation with IgE crosslinking or ionomycin (Figure 13A 

and B). In contrast, neither WT nor α2-null FSMCs failed to mobilize calcium following 

Listeria immune complex stimulation (Figure 13B). To further examine the requirement 

of extracellular calcium mobilization we evaluated in calcium-free and calcium-

containing Hanks Balanced Salt Solution (HBSS) stimulation of FSMCs by either IgE-

crosslinking or Listeria immune complex.  Listeria immune complex stimulation resulted 

in IL-6 release regardless of the presence or absence of calcium in the media (Figure 

13C).  However, as previously demonstrated, calcium-free media inhibited histamine 

release via IgE cross-linking (Figure 13C). These results demonstrate that extracellular 

calcium mobilization is not required for the immune complex stimulation of IL-6 

secretion but is required for degranulation in response to IgE crosslinking. To determine 

the effect of intracellular calcium signaling in degranulation,  
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Figure 13. Calcium mobilization is not required for IL-6 release. WT and α2-null 
FSMCs (1 x 106) were treated with (A) anti-DNP IgE overnight and then stimulated with 
DNP-HAS or (B) Listeria plus anti-Listeria antibody and serum (LAS) or ionomycin 
(2µm) over the indicated time course. The results of two independent experiments are 
shown in each graph. (C-F) WT FSMCs were treated with anti-DNP IgE alone or anti-
DNP IgE overnight and then stimulated with either DNP-HSA or cells were treated with 
Listeria plus anti-body (LA), or Listeria plus antibody and serum (LAS) for 1 hour in 
HBSS with Mg2+ in the presence (white bars) or absence of Ca2+ (black bars).  IL-6 (C) 
β-hexosaminidase (D) and histamine (E) were analyzed in cell free supernatants by 
ELISA. (F) WT FSMCs were treated with anti-DNP IgE alone or anti-DNP IgE overnight 
and then stimulated with DNP-HSA or cells were treated with Listeria plus anti-body 
(LA) or Listeria plus antibody and serum (LAS) for 1 hour in the presence or absence of 
the calcium chelator, BAPTA (2.5μM). Cell free supernatants were analyzed for IL-6 and 
β-hexosaminidase release.   Experiments were performed in duplicate and are expressed 
as mean ± SEM. P values were determined by the Students t test (***p<0.001) 
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Figure 13. Continued 
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intracellular calcium signaling was inhibited with the calcium chelator, BAPTA. There 

was no defect in Listeria immune complex induced IL-6 release from WT FSMCs in the 

presence of BAPTA. But IgE cross-linking mediated degranulation is reduced (Figure 

13D).  These results further indicate that calcium mediated signaling events are not 

required for Listeria immune complex stimulation of mast cells but are essential for 

degranulation following IgE crosslinking. 

Mast cell degranulation in response to IgE-crosslinking is known to be very rapid 

(0-10 min).  β-hexosaminidase is a marker of the extent of degranulation. However, 

histamine and serotonin are granule associated mediators that are responsible for the 

physiologic responses following IgE-mediated degranulation. Our studies have evaluated 

IL-6 secretion 1 hour following stimulation To determine whether IL-6 is released at 

earlier time points following stimulation with Listeria immune complex or IgE 

crosslinking, we analyzed the levels of IL-6, histamine, and serotonin at 0, 5, 15, 30, and 

60 min. following stimulation.  WT but not α2-null FSMC stimulation by Listeria 

immune complex resulted in high levels of IL-6 release as early as 30 min post-

stimulation (Figure 14C). IL-6 levels increased until 60 min. Neither histamine nor 

serotonin was detected following stimulation with Listeria immune complex WT or α2-

null FSMCs (Figure 14A and B). However, both WT and α2-null FSMCs released high 

levels of histamine and serotonin within 5-10 min after FcεR stimulation (Figure 14D and 

E). The magnitude and kinetics of release were identical.  IL-6 was not observed over the 

time course following IgE crosslinking (Figure 14F). These results demonstrate that IgE 

crosslinking and Listeria immune complex result in non-overlapping release profiles with 

distinct kinetics and secreted mediators. 
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Mast cells contain a number of preformed mediators that can be rapidly released 

upon stimulation. Although previous reports demonstrated that IL-6 was synthesized de 

novo by mast cells, the rapid nature of IL-6 release in response to Listeria immune 

complex suggests that it may be pre-formed in mast cells. To determine if IL-6 is 

preformed or rapidly synthesized, transcription and translation were inhibited using 

actinomycin D and cyclohexamide, respectively.  Treatment of FSMCs with actinomycin 

D or cyclohexamide failed to inhibit IL-6 release by WT FSMCs after 1 hour of immune 

complex stimulation (Figure 15). The lack of inhibition by actinomycin D and 

cyclohexaminde demonstrates that IL-6 is preformed and not synthesized in the mast cell 

and that α2β1 integrin-mediated mast cell activation results in release of the preformed 

IL-6 granule pool.   

Although IL-6 is not released at 1 hour following IgE crosslinking, IL-6 is 

synthesized and released 12 hours following IgE crosslinking as previously reported 

(170). Therefore, we compared the de novo production of IL-6 mediated by either 

Listeria immune complex activation or IgE crosslinking for 12 hours.  As previously 

demonstrated IL-6 is synthesized following 12 hours of IgE crosslinking but not Listeria 

immune complex.  The de novo synthesis of IL-6 was inhibited by actinomycin D and 

cyclohexamide.  These data suggest mast cell secretion of IL-6 is regulated by two 

distinct pathways.  In one, IL-6 preformed and stored in mast cell granules and ready for 

rapid release in response to specific stimulation. In the other, IL-6 is transcriptionally 

regulated and secreted at later time points in response to IgE crosslinking.  In addition, 

these data define at least two distinct pathways leading to either rapid mast cell secretion 

of distinct granule components in response to Listeria immune complex activation or 
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Figure 14.  Different stimuli result in selective mast cell mediator release over time. 
WT and α2-null FSMCs (5 x104/well) were treated overnight with either anti-DNP IgE 
followed by stimulation with DNP-HSA (IgE + DNP) or with Listeria plus antibody and 
serum (LAS) for the indicated time points. Cell free supernatants were collected and 
analyzed for (A) histamine (B) serotonin or (C) IL-6.  Data represent mean ± SEM and 
are representative of at least 3 similar experiments.  P values were determined by 
performing statistical analysis using the Students t-test (*p<0.05, **p<0.01,***p<0.001) 
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 IgE induced degranulation of mast cells.  IL-6 secretion is released in an α2β1 integrin 

manner via a mechanism different from IgE stimulated degranulation. 

I have now demonstrated that mast cells contain pre-formed IL-6 and are capable 

of calcium-independent, selective release of IL-6 in response to Listeria immune 

complex. IgE-mediated mast cell degranulation is independent of the classical 

mechanisms of protein exocytosis via the trans-Golgi network (170).   To determine the 

mechanism by which mast cells release pre-formed IL-6, we inhibited the trans-Golgi 

network protein transport mechanisms with brefeldin A (BFA) or monensin.  The Listeria 

immune complex stimulated release of IL-6 at 1 hour was inhibited by both BFA and 

monensin (Figure 16A).  In contrast IgE crosslinking mediated release of histamine is not 

significantly inhibited by BFA or monensin (Figure 16B).  These results suggest that IL-6 

and histamine are stored in vesicles that utilize distinct mechanisms for release. Previous 

data demonstrated that histamine granules do not utilize the trans-Golgi network protein 

transport mechanism and are not BFA/monensin sensitive.  However, IL-6 is stored in 

vesicles that are sensitive to BFA and monensin and therefore require ER-Golgi transport 

mechanisms.  

We predict that IL-6 and histamine are preformed and stored in different mast cell 

granule pools.  I collected fractions of mast cell post nuclear supernatant (PNS) isolated 

over a 2 layer Percoll gradient that separated the cellular contents by size.  200ul fractions 

were collected and analyzed them for IL-6 and histamine (Figure 17A and B). In both 

WT and α2-null FSMCs there is a similar distribution of IL-6 and histamine in the 

granule fractions.  IL-6 is exclusively stored in subset of small sized fractions (5-7) with 

only baseline levels of IL-6 in the remaining larger fractions.  The major histamine 
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Figure 15. Pre-formed IL-6 is released following immune complex stimulation.  WT 
FSMCs (5x104/well) were stimulated with Listeria plus antibody (LA), Listeria plus anti-
Listeria antibody and serum (LAS) or anti-DNP IgE overnight (IgE) plus DNP-HSA (IgE 
+ DNP) for 1 or 12 hours at 37 ºC in the presence or absence of  actinomycin D or  
cyclohexamide. Cell free supernatants were collected and analyzed for IL-6 by ELISA.  
Results are represented as mean ± SEM and are representative of one of at least 3 
separate experiments.  P values were determined by the Students t test (*p< 0.05, 
**p<0.01) 
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fraction occurs within the high density fractions (16-19).  These results demonstrate that 

IL-6 and histamine are not only selectively released; they are also differentially stored in 

mast cells. 

Mast cell granules store histamine and serotonin, which can be visualized by 

immunofluorescence.  Using serotonin as a marker of mast cell granules, we employed 

confocal immunofluorescence to determine the subcellular localization of IL-6 and mast 

cell granules.  IL-6 (green) is stored in small granules or vesicles throughout the cell 

(Figure 18). Additionally, there is an aggregation of IL-6 positive small vesicles located 

in proximity to the plasma membrane.  Serotonin (blue), on the other hand, is stored in 

large granules throughout the cell.  In the merged image there is no overlap between the 

IL-6 and serotonin granules (Figure 18).  In addition, smaller, possibly serotonin granules 

are identified.  Serotonin and IL-6 are not co-localized even in small granules further 

indicating that IL-6 is not stored with histamine or serotonin, markers of classic mast cell 

granules.  Taken together, these results demonstrate that mast cells differentially store IL-

6 and histamine and these preformed mediators can be selectively released in response to 

different stimuli. 
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Figure 16.  IL-6 but not histamine release requires functional endosomal trafficking.  
WT FSMCs (5x104/well) were stimulated with Listeria plus antibody (LA), Listeria plus 
anti-Listeria antibody and serum (LAS), or anti-DNP IgE overnight (IgE) plus DNP-HSA 
(IgE + DNP) for 1 or 12 hours at 37 ºC in the presence or absence of  monensin (Mon) or 
brefeldin A (BFA) . Cell free supernatants were collected and analyzed for (A) IL-6 and 
(B) histamine by ELISA.  Results are represented as mean ± SEM and are representative 
of one of at least 3 separate experiments.  P values were determined by the student t test 
(**p<0.01). 



73 
 

 

 

 

Figure 17.  IL-6 and histamine are differentially stored in mast cell granules.  Post-
nuclear supernatants from WT (A) and α2-null (B) FSMCs (1 x 107) were separated over 
a 2-layer Percoll gradient (1.05 g/ml and 1.12 g/ml).  200 µl fractions were collected 
from the top of the gradient.  Each fraction was analyzed by ELISA for IL-6 (solid line) 
and histamine (dashed line).  Data were combined from 4 separate experiments and 
represent mean ± SD.   
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Figure 18. IL-6 is not localized in mast cell granules. Confocal immunoflorescence 
was used to identify (C) IL-6 (green) and (D) serotonin (blue) and (E) the merged image 
localization within mast cell granules. The image is representative of 3 separate 
experiments.  
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Conclusions 

The α2β1 integrin is required for mast cell activation in response to Listeria 

immune complex (139).  To understand differential mechanisms of mast cell activation, 

we compared α2β1 integrin stimulation via Listeria immune complex and FcεRI 

stimulation by IgE crosslinking. Stimulation with Listeria immune complex results in 

release of IL-6 without concomitant release of histamine or serotonin. In response to IgE 

crosslinking, histamine and serotonin are released in the absence of IL-6.  β-

hexosaminidase was released but significantly lower levels than the amount observed 

following IgE crosslinking.  β-hexosaminidase is a lysosomal protein marker that to this 

point does not have known biological function in mast cell responses.  It is used as a 

marker of the extent of degranulation and mast cell activation.  We hypothesize that the 

lower level of β-hexosaminidase observed in response to Listeria immune complex is a 

measure of the less intense activation state of the mast cell.      

IL-6 released in response to Listeria immune complex was insensitive to 

inhibition by actinomycin D or cyclohexamide and therefore preformed and stored within 

the mast cell.  There is no immediate release of IL-6 in response to IgE crosslinking, 

FcεRI is known to induce transcriptionally regulate IL-6 release via NF-κB (171).  

Although IL-6 is not synthesized de novo following α2β1 integrin mediated activation, 

other proinflammatory molecules may be synthesized and subsequently released 

following Listeria immune complex stimulation.  This suggests that in addition to the 

rapid, early events following IgE crosslinking and Listeria immune complex activation, 

there are differences in the later events of activation that regulate the secretion of IL-6 

and possibly other cytokines.  
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α2β1 integrin mediated IL-6, but not FcεRI mediated histamine release is 

sensitive to inhibition by BFA or monensin, two well characterized protein secretion 

inhibitors with defined mechanisms of action on TGN vesicular transport.  BFA inhibits 

vesicle movement through the cis-Golgi network, while monensin inhibits transport 

through the distal compartment of the Golgi apparatus (172).  Confocal microscopy 

demonstrated that IL-6 is not stored in large mast cell granules, but rather is stored in 

smaller granules that are somewhat distributed throughout the cell but are also focused in 

proximity to the plasma membrane.  In contrast, granules containing serotonin are larger 

and localized throughout the cell.  IL-6 and histamine granules are expressed in different 

populations that can be separated on a 2-layer Percoll gradient.  In accordance with our 

observations using confocal microscopy, IL-6 granules separate to the less dense 

fractions, while the larger histamine granules are in the more dense fractions.  We 

hypothesize that in addition to histamine or IL-6, these granule populations likely express 

other molecules that are important in initiating the specific response to these differential 

stimuli.  

 

 

 

 

 

 

 

 



77 
 

CHAPTER V 
 
 
 

α2β1 INTEGRIN MEDIATED REGULATION OF EARLY ADAPTIVE IMMUNE 
RESPONSE TO LISTERIA MONOCYTOGENESE 

 
 
 

Introduction 
 

The adaptive immune response to Listeria is T cell–mediated and required for 

complete resolution of the infection. When infected with Listeria, nearly 80% of SCID 

mice, which lack T and B cells, survive (76). However, sterilizing immunity is not 

reached until weeks or months following infection.  In Listeria infection the innate 

immune response is sufficient to control the infection, but the adaptive immune response 

is important for sterilizing immunity.  Between 7–10 days post-infection the number of 

Listeria-specific effector T cells peaks, eliminating remaining infected cells, and then 

retract, leaving long-lived memory cells. Both CD4+ and CD8+ T cells contribute to 

bacterial clearance through destruction of infected cells and cytokine secretion, which 

directs macrophage activation and granuloma formation (173-175)  

We have demonstrated that expression of α2β1 integrin is required for 1 hr 

production of IL-6 and 6 hour neutrophil recruitment following intraperitoneal Listeria 

infection.  This cytokine contributes to the cytokine milieu that governs the innate 

immune response to Listeria infection. However, other cytokines are also important in 

mediating the inflammatory response to Listeria.  In the α2-null mice, there was a delay 

in bacterial clearance at 2 days post infection, by 7 days there was no difference in 

bacterial load (12). In addition to controlling bacterial load, the innate immune response 

directs the development of an appropriate antigen specific adaptive immune response.  
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Th1 cells develop from naïve T-lymphocytes and produce IFN-γ to activate macrophages.  

CD8+ T cells kill infected cells by secreting their cytolytic proteins, granzyme and 

perforin. Both of these cell types express α2β1 (VLA-2) integrin in their effector stages 

(60).  Therefore, we examined the role of the α2β1 integrin in the innate, adaptive and 

secondary immune response to Listeria infection. 

 

Results 

α2β1 integrin expression on mast cells is required for IL-6 production at 1 hour 

and neutrophil recruitment at 6 hours following infection with Listeria.  However, IL-6 is 

not a chemoattractant.  To define chemoattractants responsible for neutrophil influx 

following Listeria infection, we measured the levels of IL-1β, leukotriene B4 (LTB4), and 

TNF-α  in the peritoneal fluid of WT and α2-null mice. WT mice, but not α2-null mice 

demonstrated a marked increase of IL-1β and IL-6 levels at 1 hour post-infection with 

Listeria that was diminished by 6 hours post infection (Figure 19 A and B) (176).  In 

addition, there was a small increase in the level of TNF-α in the WT, but not α2-null mice 

at 1 and 6 hours (Figure 19C). WT mice, but not α2-null mice manifested a robust influx 

of PMNs into the peritoneal cavity that peaked at 6 hours after infection, as previously 

reported (Figure 19D) (12).  The level of IL-1β that we observe is consistent with several 

reports demonstrating the neutrophil chemotactic properties of IL-1β. Although LTB4 is 

secreted by mast cells and is a potent stimulator of neutrophil migration, I did not observe 

increased LTB4 above baseline at the timepoints tested (data not shown).  Therefore, in  
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Figure 19. WT mice, but not α2β1 integrin-deficient mice display increased levels of 
IL-1β, IL-6, and TNF-α in response to Listeria infection.  WT and α2β1 integrin–
deficient mice were infected with 5x104 Listeria, interperitoneally.  At the indicated time 
points after infection the concentration of IL-1β (A), IL-6 (B), TNF-α (C) and the 
percentage of neutrophils (D) were determined.  Shown is a combination of   experiments 
(mean +/- SEM) with each time point representing 3 mice. Statistical analysis was 
performed using the Students t-test (*p<0.05, **p<0.01) 
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addition to IL-6, several chemoattractants are secreted in an α2β1 integrin-dependent 

manner that may contribute to the acute inflammatory response to Listeria 

monocytogenes. 

Expression of the α2β1 integrin on mast cells is required for IL-6 production and 

neutrophil recruitment in response to intraperitoneal Listeria infection (12).   To compare 

the cytokine response to Listeria infection, we analyzed serum cytokine levels between 1 

and 4 days after infection in WT and α2-null mice. The production of IL-6 and TNF-α in 

response to Listeria was α2β1 integrin dependent (Figure 20A and B). The levels of IL-6 

in the serum peaked at 1-2 days post infection in WT mice and returned to baseline levels 

by 4 days post infection. No detectable IL-6 was observed in the α2-null mice. The time 

course for release of TNF-α was different from IL-6. Serum TNF-α was not detected until 

4 days post infection in WT mice. No TNF-α was detected in α2-null mice.  In contrast to 

IL-6 and TNF-α, IFN-γ was increased at 2 days post-infection with Listeria in both WT 

and α2-null mice (Figure 20C).  

We previously demonstrated that the α2β1 integrin on mast cells is required for 

the early innate immune response to Listeria. In these studies, mast cell deficient, W/Wv 

mice failed to mount an early innate immune response with IL-6 production and 

neutrophil recruitment.  The defect was identical to that observed in experiments using 

α2-null mice. Both IL-6 secretion and neutrophil recruitment is rescued in the W/Wv 

mice by reconstitution of WT but not α2-null mast cells. To determine if the defect in 

serum cytokine levels in the α2-null mice were due to mast cells, W/Wv mice and 

littermate controls were infected with Listeria and serum cytokine levels were analyzed 

over 4 days. W/Wv mice failed to produce either IL-6 or TNF-α. Littermate control 
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generated peak levels of IL-6 at day 1 and TNF-α at day4 (Figure 20A-C). These results 

suggest that mast cells and the α2β1 integrin contribute to both the early immediate 

innate immune response and to the important cytokine milieu that regulates the immune 

response to Listeria. 

 An effective innate immune response is critical for the development of an 

effective adaptive immune response.  Although Listeria is cleared at 7 days in α2-null 

mice, we chose this model to evaluate the contribution of the α2β1 integrin to adaptive 

immunity. CD4+ Th1 cells are the effector cell of the adaptive immune response required 

for clearance of Listeria infection.  In response to stimulation with specific antigen, Th1 

cells produce INF-γ which enhances the cell-mediated immune response by activating 

marcrophages.  We characterized the antigen-specific CD4+ and CD8+ response in the 

peritoneal cavity, spleen and lymph nodes of mice infected with Listeria for 7 days by 

stimulating T cells with HKLM.  In the spleen, draining lymph node and peritoneal fluid, 

there was a strong antigen specific CD4+/IFN-γ+ Th1 response to HKLM in the WT, but 

this was significantly lower in the α2-null mouse. (Figure 21A-C)  In contrast, the 

antigen-specific CD8+ T cell response was similar in the lymph node, spleen, and 

peritoneal fluid of both the WT and α2-null mouse (Figure 21D- F). These results suggest 

that the α2β1 integrin may be important for development of antigen specific T cells in 

some immune compartments. 

 Although α2-null mice cleared Listeria at 7 days, the role of the integrin in 

developing a memory response was evaluated. Mice primed and then infected with 

Listeria 4 weeks later, there was no defect in the ability of α2-null mice to clear the  
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Figure 20. Cytokine milieu following Listeria infection.  Mice were infection 
interperitoneally with 5 x 104 Listeria for 4 days.  Serum from WT, α2-null, W/Wv or WT 
littermate control mice collected and analyzed for (A) IL-6 (B) TNF-α or (C) IFN-γ (WT 
and α2-null mice only). Each data point represents the mean ± SEM of at least 3 mice and 
is representative of 2 similar experiments. Statistical analysis was performed using the 
Students t-test (**p< 0.01, ***p<0.001). 

***

***

**
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Figure 21. Characterization of Th1 and CTL response to Listeria infection.  3-4 mice 
(WT and α2-null) were infected interperitoneally with 5 x 104 Listeria for 7 days.  Cells 
from spleens, draining lymph nodes or peritoneal fluid were harvested and restimulated 
for 5 hours in the presence of GolgiStop with HKLM.  Cells were analyzed by flow 
cytometry for CD4-FITC, CD8-PerCP, IFN-γ-PE.  Data represents the mean ± SEM of at 
least 3 mice. Statistical analysis was performed using the Students t-test (*p<0.05, 
***p<0.001). 

*** 

* 

* 
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Figure 22.  Memory response to Listeria infection.  Mice (WT and α2-null) were 
infected interperitoneally with 5 x 105 Listeria. 5 mice from each genotype were 
sacrificed at day 3 post-infection, 5 mice were given a second does of 5 x 105 Listeria 14 
days later.  Spleens and livers were harvested for logCFU. Data represents mean ± SEM. 
Results are representative of 2 similar experiments. 
 

  

 

 

 



85 
 

infection from the spleen and liver.  In naïve mice, 3 days post-infection there was a 

bacterial burden of 5-6 log CFU in the spleen and 4-5 log CFU in the liver in both WT 

and α2-null mice (Figure 22A and B).  However, in Listeria primed mice, 3 days 

following challenge, the bacterial burden in the spleen was 2-3 log CFU in the liver and 

spleen in both WT and α2-null mice.  These results suggest that there is no role for the 

α2β1 integrin in the development of the memory response to Listeria infection. 

 

Conclusions 

The α2β1 integrin-dependent immune response to Listeria is characterized by IL-

6, IL-β and low level TNF-α release at 1 hour post-infection, followed by neutrophil 

recruitment at 6 hours. IL-6, IL-1β and TNF-α have roles in response to Listeria infection 

(84, 85, 177-179). In fact, nearly all TNF-αR deficient mice die by day 5 following 

intravenous infection with 5 x 104 organisms and 40-50% of IL-6 deficient animals die by 

day 6 following i.v. infection with 104 organisms (84, 85).  Although IL-1β is not 

required for survival in response to Listeria infection, IL-1β enhances bacterial clearance 

(177, 178, 180). IL-1β is known to have neutrophil chemotactic properties at doses as low 

as 50pg/ml; no such chemotactic abilities are known for IL-6 (176).  However, IL-6 

deficient animals display decreased neutrophilia following Listeria infection, indicating 

that IL-6 may play an indirect role in recruiting neutrophils.  We do not observe TNF-α 

release at the time points tested. However, several reports indicate that TNF-α levels 

appear at 2-4 days following infection, consistent with macrophage activation and 

priming of the adaptive immune response (177, 180). These studies demonstrate a role 
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for the α2β1 integrin to stimulate the generation of specific cytokine milieu for initiation 

the innate immune response. 

The α2β1 integrin and mast cells are important in generating the 2-4 day cytokine 

response against Listeria through production of IL-6 and TNF-α but not IFN-γ.  We also 

observed decreased antigen-specific Th1 cells in the α2-null mouse, indicating that the 

integrin may be important in Th1 cell differentiation or survival.  However, there were no 

differences in the ability of WT or α2-null mice to clear a secondary infection, indicating 

that in the Listeria model, the memory response is intact. 
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CHAPTER VI 

 

SUMMARY AND CONCLUSIONS 

 

Summary 

Mast cells are granulated cells of the immune system that reside in tissues that are 

closely associated with the external environment. Upon stimulation, mast cells can 

release several classes of mediators, de novo synthesized mediators, lipid derived 

mediators, and preformed mediators contained within mast cell granules. Multiple 

cytokines, chemokines, and growth factors can be de novo synthesized by mast cells. 

However, mast cell granules are far more limited in their content. Although mast cells 

were traditionally considered required solely for IgE mediated immune responses to 

allergens and helmenths, in the past 10 years the role of mast cells has expanded to 

include immunity to bacterial and viral pathogens. Previous studies from our laboratory 

demonstrated that infection of mice with Listeria requires mast cells expression of the 

α2β1 integrin for early immune responses.  

Our studies have focused on the role of Listeria immune complex mediated 

activation of mast cells. An immune complex, containing Listeria, anti-Listeria antibody 

and C1q containing serum, results in α2β1 integrin-dependent activation of mast cells.  

This activation requires binding of the co-receptor, c-met, by Listeria InlB. However, this 

activation is not limited to Listeria responses. Co-stimulation of mast cells with an α2β1 

integrin ligand (Type I Collagen or C1q) and a c-met ligand (HGF) results in activation.  

These results indicate that the role for the α2β1 integrin and c-met in mast cell activation 
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can extend past the innate immune response observed in Listeria infections and to several 

different disease models. 

 The co-receptor stimulation of mast cells results in release of preformed IL-6 

from mast cells. The secretory mechanism of IL-6 is distinct from either IgE-crosslinking 

induced release of histamine and serotonin or IgE induced de novo synthesis of IL-6.  In 

contrast to histamine and serotonin release, the release of IL-6 is independent of calcium 

mobilization but is dependent on a functional trans-Golgi network trafficking system. IL-

6 is not stored in a classical mast cell granule containing histamine or serotonin. Rather, it 

is stored in small mast cell vesicles that are expressed throughout the cell and associated 

with the cell membrane.  These studies predict an α2β1 integrin-dependent mechanism of 

piecemeal degranulation for IL-6 release. 

Due to the defect in the innate immune response to Listeria and the fact that α2β1 

integrin is expressed on T cells, it was predicted that the α2β1 integrin would be 

important in the development of the adaptive immune response to Listeria infection. 

Decreases in pro-inflammatory cytokine production and numbers of Th1 cells were 

observed in response to Listeria infection in the α2-null mouse, but this did not result in 

differences in bacterial clearance or secondary immune response.  These results suggest 

that in response to Listeria infection, there is no defect in the adaptive immune response 

in α2-null mice.  However, the α2β1 integrin may play a role in development of adaptive 

immunity to other microorganisms or in other disease models.  
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Figure 23. Predicted model of mast-cell activation through c-met and the 2β1 
integrin. Mast cell stimulation through c-met and the 2β1 integrin results in cross talk 
between the 2 receptors, resulting in the activation of the mast cell leading to release of 
the pro-inflammatory cytokine, IL-6. Originally published in McCall-Culbreath et al 
©American Society for Hematology 
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Implications for α2β1 Integrin/c-met Co-Stimulation 

My studies have focused on the role of Listeria immune complex mediated 

activation of mast cells.  Immune complex, containing Listeria, anti-Listeria antibody and 

C1q containing serum, results in α2β1 integrin-dependent activation of mast cells. This 

activation requires binding of the co-receptor, c-met, by Listeria InlB (Figure 23). 

However, it is not limited to Listeria responses. I demonstrated that co-stimulation of 

mast cells with an α2β1 integrin ligand (Type I Collagen or C1q) and a c-met ligand 

(HGF) results in activation.  

HGF was originally identified as a mitogen for hepatocytes and as a scatter factor 

for a number of cell types (181). Although the role of the HGF/c-met interaction in tumor 

progression and tissue fibrosis has been extensively studied, the role of HGF and c-met in 

immunity is less well-defined. Data from several groups suggest that HGF promotes B 

and T cell migration, (182-184) counters the immunosuppressive effects of TGF-β, (185-

187) suppresses dendritic cell function, (188) and reduces acute and chronic rejection 

(189). In this model, synergistic stimulation of mast cells by HGF or InlB and the α2β1 

integrin results in activation of the innate immune response and the recruitment of 

neutrophils to the site of Listeria infection.  Mast cells also secrete chymases that 

hydrolyze HGF to generate an HGF antagonist (190). This may serve as a negative feed-

back loop to inhibit subsequent immune activation. 

I now describe an example of cooperation between the α2β1 integrin and a 

receptor for either a critical growth factor, HGF, or for a Listeria protein required for 

internalization. This co-stimulation then leads to activation of the mast cell, a cell critical 

to the innate immune system. The cross-talk between integrins and c-met in endothelial 
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and epithelial cells regulates cell migration and invasion downstream of signaling 

pathways that activate FAK which transduces signals to adaptor molecules such as Src 

family kinases, PI3K, Phospholipase C and Grb2 (191). Following HGF or InlB binding, 

c-met is phosphorylated on Y1349 and 1356 which serve as docking sites for multiple 

signal transducers such as Grb2-associated binder1 (Gab1) and multiple Src homology 2 

domains (192-194). Although HGF and InlB are both ligands for c-met, they lack 

sequence and structural similarity (195, 196). In addition, the data illustrate that these two 

ligands bind separate sites on c-met (94, 197, 198). In spite of their differences, both 

HGF and InlB activate the intrinsic phosphorylation activity of met and induce tyrosine 

phosphorylation at Y1349 (94) as well as cellular changes such as scattering and DNA 

synthesis (198). Isolated ligands of α2β1 integrin and c-met can stimulate mast cell 

activation in the absence of immune complex. Therefore, I propose that the 

α2β1integrin/c-met crosstalk occurs via downstream signaling pathways rather than by 

direct interaction at the cell membrane.  

The ability of mast cells to release a pro-inflammatory cytokine in response to 

stimulation through the α2β1 integrin and c-met may give insight into poorly understood 

mechanisms of mast cell contribution to various diseases. Mast cells play both positive 

and negative roles in cancer progression, invasion and angiogenesis (199-203). 

Identification of the receptor/ligand interactions that activate mast cells in these diseases 

has been elusive. Mast cells can be found in the peri-tumoral stroma which is largely 

composed of type I collagen and fibroblasts that can be induced to produce HGF by  

tumor cell by secretion of IL-1β, bFGF, PDGF, prostaglandin E2 and TGF-β (204). A 

combination of HGF release and collagen interaction on the mast cells may result in mast 
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cell activation within the tumor microenvironment to induce tumor growth, 

differentiation or metastasis (Figure 24). To determine if mast cell α2β1 integrin/c-met 

interaction is important in tumor progression, tumor cells could be injected into mast cell 

deficient mice to determine the role of mast cells in tumor development.  To determine 

the role of the α2β1 integrin and c-met, mast cell deficient mice should be reconstituted 

with WT and α2-null mast cells that have reduced levels of c-met using siRNA. Using the 

mast cell knock-in model will demonstrate a precise role for the α2β1 integrin and c-met 

on mast cells in modulating tumor development. 

Several different cell surface receptors for C1q and other collectin family 

members have been reported, including the C1q receptor for phagocytosis enhancement 

(C1qRp), CR1, calreticulin (CRT), and binding protein for the globular head of C1q 

(gC1qbp) (205-218). The precise role of each receptor remains an area of active 

investigation. Although the ability of InlB to interact with the cellular glycoprotein gC1q-

R/p32 (95) raised questions concerning whether gC1q-R was involved in the α2β1 and c-

met-dependent PMC response. The findings presented here suggest that gC1q-R cannot 

replace the α2β1 integrin in initiating the innate immune response. Using isolated 

components in an in vitro system, PMC activation requires α2β1 integrin binding to 

either C1q or type I collagen plus the additional interaction of c-met with either Listeria 

or HGF. Although C1q and Listeria both interact with gC1q-R through either the globular 

head of C1q or InlB of Listeria, neither type I collagen nor HGF interact with gC1q-R. 

IL-6 secretion is similar regardless of whether the α2β1 integrin interacts with C1q or 

type I collagen and whether c-met is bound by Listeria or HGF. These data suggest that 
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although gC1q-R may play a role in Listeria internalization, there is no role for gC1q-R 

in α2β1 integrin/c-met induced mast cell activation. 

I describe an innate immune response mediated by the α2β1 integrin binding C1q, 

a soluble, non-matrix factor. The α2β1 integrin is a cellular receptor for C1q, the first 

component in the complement cascade and mediator of innate immune response (139). In 

vitro interaction between α2β1 and C1q on mast cells resulted in activation and cytokine 

secretion. Using in vivo models, the C1q/α2β1 integrin interaction is required for innate 

immune response to Listeria. C1q-deficient mice do not release IL-6 or recruit PMNs into 

the peritoneum following Listeria infections. Because the homology between C1q and the 

integrin binding site of collagen is high, the importance of the integrin and C1q 

interaction is likely significant given the low amount of genetic drift between these two 

sequences over time. Although collagen and other ECM components are abundant in the 

peritoneum, collagen binding either does not occur, or is not sufficient to mediate mast 

cell activation following Listeria infection.  

The α2β1 integrin in expressed on numerous cells, including cells of the innate 

immune system such as mast cells and NK cells as well as cells of the adaptive immune 

system such as a subset of activated T cells (28, 41, 60). The α2β1 integrin in these cells 

has been thought to act primarily through its ability to bind collagen in the extracellular 

matrix thereby affecting cellular localization. Our work is the first to show that α2β1 

integrin can bind C1q and transduce a signal that is absolutely necessary, but not 

sufficient, to initiate a pro-inflammatory cytokine response. C1q is known to play an 

important role in immune complex diseases such as systemic lupus erythematosus, 
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Figure 24. Proposed model for α2β1 integrin/c-met interaction in tumor models. 
Mast cells are expressed within the stromal space, rich with collagen, a ligand for the 
α2β1 integrin.  Tumor cells induce HGF production by fibroblasts.  The presence of both 
α2β1 integrin and c-met ligands may activate mast cells and induce the release of IL-6 
which can modulate tumor proliferation and recruitment of inflammatory cells. 
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 Arthus reaction, autoantibody-induced arthritis, glomerulonephritis and experimental 

autoimmune encephalitis (153, 219-221). Additionally, mast cells have been associated 

with these diseases (207, 222-225). Our findings provide a molecular mechanism linking 

C1q and activation of these inflammatory cells. Mast cells act as sentinels for the immune 

system at the body's boundaries. C1q binding of the α2β1 integrin is an initiating event of 

mast cell degranulation and, hence, an initial trigger for the subsequent inflammatory 

response.  

 There are several models of autoimmune disease that can be used to determine if 

the C1q-α2β1 interaction is important in autoimmune diseases.  NZM2410 mice 

spontaneously develop a lupus like syndrome that is similar to the human disease 

resulting in production of anti-nucleic acid antibodies, proteinuria and glomerulonephritis 

(226). To determine the role of the α2β1 integrin in immune complex disease, the 

NZM2410 mice can be bred to α2-null or C1q-null mice and analyzed for markers of 

disease.  Additionally, to determine the role of mast cells in this lupus model, the 

C57BL/6-KitW-sh/W-sh mast cell deficient mice can be bred to the NZM2410 mice. Lack of 

the α2β1 integrin may prevent the activation of mast cells and release of cytokines that 

would recruit inflammatory cells.   

The role for mast cells in immunity has traditionally been limited to their role in 

IgE mediated allergic responses and immunity to parasites. Mast cells are known to play 

an important role in the early response of the immune system and can be stimulated 

through a range of receptors important in the early immune response such as TLRs 1, 3, 

4, 6, and 9, complement receptors (CR2, 4, 5, C3aR, C5aR), and cytokine/chemokine 

receptors (IL-1R, IL-10R, IL-12R and IFN-gR) (117). I have demonstrated a novel α2β1 
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integrin-dependent and c-met-dependent pathway for mast cell activation that results in 

the rapid release of IL-6 and occurs independently of signals downstream of FcRγ. IgE 

crosslinking is the best described mechanism for mast cell mediator release and requires 

signaling FcRγ resulting in rapid degranulation and release of histamine and β-

hexosamidase (116).  

 

Implications of α2β1 Integrin Mediated IL-6 Release 

There are three ways that mast cells release mediators following stimulation. 

Classical exocytosis is the mechanism which all cells, including mast cells release newly 

synthesized molecules through trafficking of Golgi-derived vesicles to the plasma 

membrane for docking and release. Compound degranulation occurs only in granulated 

cells and characterized by complete granule emptying through multiple intracellular 

granule-granule fusion events that precede their secretion (227). Piecemeal degranulation 

is characterized by partially emptying of single granules that do not fuse to one another or 

the plasma membrane (228). The precise molecular mechanisms and receptors involved 

in classical exocytosis and compound degranulation have been well defined. However, 

only very few studies have examined the molecular mechanisms responsible for 

piecemeal degranulation. 

 Stimulation of mast cells with Listeria immune complex results in release of 

preformed IL-6. The secretory mechanism of IL-6 is distinct from either IgE-crosslinking 

induced release of histamine and serotonin or de novo synthesis of IL-6. In contrast to 

histamine and serotonin release, the release of IL-6 is independent of calcium 

mobilization but is dependent on a functional trans-Golgi network trafficking system. IL-
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6 is not stored in a classical mast cell granule containing histamine or serotonin. Rather, it 

is stored in small mast cell vesicles that are expressed throughout the cell and associated 

with the cell membrane. These studies predict an α2β1 integrin-dependent mechanism of 

piecemeal degranulation for IL-6 release. 

Human mast cell secretory granules range in size 800-1000 nm (229). In a study 

using immature human cord blood mast cells, stimulation with IL-1 induced the 

localization of newly synthesized IL-6 to small 40-80nm vesicles (230). Due to the size 

and sensitivity to Golgi-transport inhibitors, IL-6-containing granules observed in my 

studies may be recently derived from the trans-Golgi network. In a variety of cell types, 

newly synthesized granule contents are preferentially released. Therefore, immature 

granules may be an important pool for granule release in mast cells as well.  Or, similar to 

neurons, IL-6 may be stored in a mature organelle that is differentially regulated for 

release. 

 formation of immature granules occurs at the trans-Golgi network (TGN), and 

subsequent maturation steps occur beyond this compartment (231, 232). Once formed, 

immature secretory granules must be processed and remodeled to form mature secretory 

granules. Fusion of immature secretory granules contributes to the increased size and 

density of mature granules (233). In neuroendocrine cells, immature granules can undergo 

regulated exocytosis through the TGN, however fully mature granules become insensitive 

to this mechanism of release (234). Previous work has shown that rapid IL-6 release in 

response to the non-specific calcium ionophore A23187 was sensitive to the TGN 

inhibitors, BFA and monensin (170). IL-6 containing granules are reminiscent of 

immature granules based on size and sensitivity to TGN inhibitors. However, IL-6 is not 
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observed in fully mature granules suggesting that IL-6 granules represent a novel 

population of mast cell granules.  BMMCs contain immature granules and may be used to 

determine if IL-6 is localized in these immature granules. 

Conventionally, compound degranulation, a full all-or-nothing exocytotic 

response, is considered to be the primary mechanism of mast cell preformed mediator 

release. However, mast cells can undergo ultrastructural alterations of their electron-

dense core indicative of secretion without degranulation which has been termed 

piecemeal degranulation (228, 235, 236). In many cell types (such as neuroendocrine, 

endocrine, and exocrine cells), a large reserve pool exists and only a small portion of the 

granules (~1%) are initially rapidly releasable (233). Unlike mast cells, neuroendocine 

cells, such as pancreatic islet β-cells, chromaffin cells, neurons rarely release the full 

content of their granule pool but rather undergo ultrastructural changes characteristic of 

piecemeal degranulation (234, 237). The granules in these cells exist in a range of states 

from being nonreleasable or in a pool that becomes releasable following a recruitment 

step, thought to be part of a so-called "ready-releasable" pool. (233) 

Signaling events required for degranulation and cytokine secretion are distinct and 

depend on particular regulatory requirements of each pathway. Mast cell granules are 

known to contain histamine and serotonin as well as lysosomal proteins, β-

hexosaminidase and cathepin D. Because of the expression of lysosomal proteins as well 

as specific granule markers, these organelles have also been called “secretory 

lysosomes.” They differ from conventional lysosomes by their electron density and 

expression of membrane markers (238). Conventional mast cell granules express 

VAMP2, 3, 8, and 7 which may govern the trafficking of mast cell granules through the 
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cell (164). It will be important to determine if IL-6 granules contain similar or different 

vesicle markers. These studies may give insight into the granule/vesicle trafficking 

mechanisms that govern mediator release in response to differential stimuli. 

Several cell types, in addition to mast cells, contain secretory granules that are 

rich in preformed mediators and poised for release. Cells of the immune system, platelets, 

NK cells, cytotoxic T cells and neutrophils contain secretory granules that function to kill 

infected cells (NK and cytotoxic T cells) or aid in destroying phagocytosed pathogens 

(neutrophils). In many of these cells, the granules have been divided into subsets that 

have been characterized for their mediator content and stimulation for release (233). In 

contrast, only recently have mast cell granule pools been characterized to determine the 

nature of specific granule populations. Using mass spectrometry the content of the 

different subsets of neutrophil granules has been determined. Based on the subcellular 

fractionation of mast cell granule populations, other mediators contained within the 

distinct granule populations may be identified.  

Mast cells were considered to contain a homogenous population of granules 

mainly comprised of histamine and serotonin. This would group them with pancreatic β-

cells (insulin) and CD8+ T cells (perforin and granzyme) which contain a single granule 

population.  In contrast, other granulated cells express multiple granule populations such 

as neutrophils (azurophil, gelatinase, specific) and platelets (α granules, dense granules) 

(233). I now propose that mast cells contain multiple granule populations that are 

differentially regulated for release. My results identify the α2β1 integrin as the crucial 

regulator of mast cell piecemeal degranulation in response to Listeria immune complex. 

In addition to mast cells, the integrin is expressed on platelets, NK cells and CD8+ T 
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cells, all of which are granulated cells that exhibit varying degrees of degranulation 

following stimulation.  

Platelets are activated upon stimulation with collagen through the α2β1 integrin 

and its co-receptor, GPVI (66).  On CD4+ T cells, adhesion to Type I Collagen via α2β1 

integrin enhances IFN-γ production in response to activation with anti-CD3 antibody 

(239). In a similar manner, the α2β1 integrin may also serve to enhance the release of 

cytotoxic granules in CD8+ T cells and NK cells. The α2β1 integrin is highly expressed 

on NK cells, but its function is currently unknown (41). One function of NK cells is 

antibody dependent cell-mediated cytotoxicity (ADCC) which results in release of 

cytotoxic granules. Fc receptors bind antibody to activate the NK cell. However, there 

may be a role for the α2β1 integrin in NK cell activation and degranulation serving as a 

co-activator of Fc-mediated ADCC activity. Aside from the ADCC, NK cells express 

receptors that serve to either activate or suppress their cytolytic activity. These receptors 

bind to ligands on target cells and have an important role in regulating the NK cytotoxic 

activity. It has been reported that crosslinking of α2β1 integrin on NK cells resulted in 

decreased cell motility and diminished cytotoxicity (240) (Figure 25). To determine the 

role of the α2β1 integrin in these granulocytes functional analysis of platelets, NK cells 

and CD8+ T cells in α2-null mice should be performed. 

Piecemeal degranulation of mast cells was indentified in electron micrographs of 

a number of human diseases and conditions, including contact hypersensitivity, delayed 

hypersensitivity, urticaria pigmentosa, bullous pemphgoid, melanoma, chronic  

 

 



101 
 

 

 

 

Figure 25. Populations of granules in granulocytes. Granulated cells can be grouped 
by the expression of multiple granule pools. 
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glomerulosclerosis, bullous pemphigoid, Crohn’s disease, primary and metastatic tumors, 

skin wound healing and angiogenesis (227, 228). The receptor/ligand interaction in many 

of these responses has not yet been identified. It is interesting to note that in several of 

these disease models the α2β1 integrin (contact and delayed hypersensitivity, tumor 

development and angiogenesis) or immune complex (chronic glomerulosclerosis, bullous 

pemphigoid) has been described (13, 241-243). I hypothesize that immune complexes 

may interact with the α2β1 integrin on mast cells to induce piecemeal degranulation and 

affect disease pathogenesis.  

In the present study I describe differential release of preformed mast cell 

mediators in response to different, biologically relevant stimuli. There are several IgE-

independent disease processes in which mast cells play a vital role. For instance, mast 

cells, which have been demonstrated to be influential in a number of autoimmune and 

inflammatory disorders, are rarely seen to undergo compound degranulation during 

autoimmune or inflammatory processes (235). This suggests that mast cells employ 

selective or differential release of mediators through piecemeal degranulation. In 

response to immune complex, mast cells release α2β1-dependent IL-6 in the absence of 

compound degranulation. These results suggest that the α2β1 may be an important 

molecule in regulating mast cell responses in immune complex disease through 

modulating mediator release from mast cells. 

Mast cells have been considered to be the sentinels of the innate immune 

response. They are poised at the surfaces first exposed to assault by the external 

environment. Activation by different stimuli can result in responses ranging from 

anaphylactic shock to anti-tumor responses. Since mast cells contain a number of stored 
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mediators and numerous other cytokines, chemokines and lipid derived molecules that 

can be de novo synthesized, it is imperative that specific mediator release is a tightly 

coordinated process. Regulation of mediator release ensures that the appropriate response 

to the specific stimuli is initiated. For many years it was thought that mast cells were 

simply on a hair trigger ready to be stimulated for rapid degranulation resulting in 

anaphylaxis. These studies add to the growing body of evidence that in addition to 

compound degranulation, mast cells are capable of selective release of specific mediators, 

without degranulation, in response to different stimuli. 

 

Implications for α2β1 Integrin in Immune Response to Listeria 

The α2β1 integrin-dependent immune response is characterized by IL-6, IL-β and 

low level TNF-α release at 1 hour post-infection, followed by neutrophil recruitment at 6 

hours. IL-6, IL-1β and TNF-α have been described to have roles in response to Listeria 

infection (84, 85, 177-179). In fact, nearly all TNF-αR deficient mice die by day 5 

following intravenous infection with 5 x 104 organisms and 40-50% of IL-6 deficient 

animals die by day 6 following i.v. infection with 104 organisms (84, 85).  Although IL-

1β is not required for survival in response to Listeria infection, IL-1β enhances bacterial 

clearance (177, 178, 180). IL-1β is known to have neutrophil chemotactic properties at 

doses as low as 50pg/ml; no such chemotactic abilities are known for IL-6 (176).  

However, IL-6 deficient animals display decreased neutrophilia following Listeria 

infection, indicating that IL-6 may play an indirect role in recruiting neutrophils.  We do 

not observe TNF-α release at the time points tested, however several reports indicate that 

TNF-α levels appear at 2-4 days following infection, consistent with macrophage 



104 
 

activation and priming of the adaptive immune response (177, 180). These studies 

demonstrate a novel role for the α2β1 integrin to stimulate the generation of specific 

cytokine milieu for initiation the innate immune response. 

Macrophages are considered to be the initiator of the cytokine response following 

Listeria infection (76). Experiments using genetically modified mice have identified a 

cytokine milieu required for innate and adaptive resistance to primary Listeria infection. 

Mice deficient in the TNF-α receptor, TNFRp55, are highly susceptible to Listeria 

infection and have >85% mortality rate while WT mice are resistant to infection (84). 

These mice were unable to clear the bacteria and showed 1000 fold higher titers of 

Listeria in the spleen and liver compared to WT controls.  Deficiency in IL-6 results in 

40-50% mortality in Listeria infections that is likely due to a defect in the ability of 

neutrophils to migrate from the circulation into the site of infection (85).  Mice 

expressing a dominant negative form of the IFN-γ Receptor α chain selectively in 

macrophages displayed 33% mortality and higher CFUs in liver and spleen compared to 

WT mice (82).  In addition to these cytokines, IL-1, IL-10 and IL-12 have significant but 

less potent effects on the innate immune response to Listeria (244, 245).   

The studies presented here suggest that mast cells may actually be the first cell to 

encounter Listeria and, either directly or indirectly, influence the production of the 

cytokines following Listeria infection.  Although macrophages are present in the 

peritoneal cavities of W/Wv mice, they display decreased local and systemic cytokine 

production.  This suggests that mast cell cytokine production may initiate macrophages 

and other cells to produce cytokines (Figure 26). 
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Figure 27. Mast cells induce the cytokine milieu in response to Listeria infection.  
Mast cell α2β1 integrin expression is responsible for the production of the early cytokines 
in response to Listeria infection that mediate further inflammatory responses. 
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There is a defect in serum IL-6 and TNF-α in both α2-null and W/Wv mice. 

However, there is not increased lethality in these mice.  Although there are systemic 

defects in these cytokines, local production of these cytokines may be normal in the α2-

null mouse and sufficient to control infection and prevent death.  Our early reports 

indicated that the expression of the α2β1 integrin on mast cells is required for IL-6 

production and neutrophil recruitment in response to Listeria infection and bacterial loads 

are 10-100 fold higher in spleens and liver in the α2-null mouse at 2 days post-infection 

(12). However, by 5 days post-infection, there is no difference in bacterial load in either 

of these organs.  I hypothesize that in the α2-null mouse, lack of IL-6 and TFN-α may be 

responsible for the delay in bacterial clearance at day 2 that is overcome by IFN-γ 

production by day 5.     

The lack of IL-6 and IFN-γ in the mast cell deficient mouse indicates that mast 

cells are either producing these cytokines or other mast cell mediators are inducing 

cytokine production from other cells. Mast cells have been reported to be critical in 

mediating survival to several Gram-negative bacterial pathogens including K. 

pneumoniae and E. coli (105, 128). However, the role for mast cells in Gram-positive 

infections has been less studied.   Mast cell deficient mice infected with Gram-positive 

Listeria results in a decrease in inflammatory cytokine production but not mortality 

during the course of infection.  Longer infection courses with Listeria or other organisms 

such as S. aureus, to determine if mast cells are required for survival in infections with 

Gram-positive organisms. 

 The innate immune system is required for control of the initial infection however; 

the adaptive immune system must be functional for sterilizing immunity to Listeria.  We 
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demonstrate that in α2-null mice, antigen specific CD4+/IFN-γ+ Th1 cells are decreased at 

7 days post-infection.  This decrease in Th1 cells does not reflect an inability to mount an 

effective memory response. Expression of the α2β1 integrin has been shown on activated 

Th1, but not naïve or Th2 cells.  It will be interesting to examine the role of the α2β1 

integrin in Th1 vs. Th2 driven immune responses. 

 There is decreased Th1 response to Listeria infection in the α2-null mouse.  This 

defect in Th1 response to Listeria may be due to the alterations in the normal cytokine 

milieu that prevents priming of the adaptive immune response.  On the other hand, it has 

been reported that ligation of the α2β1 integrin enhances IFN-γ production by Th1 cells 

and inhibits activation induced cell death (AICD) (246).  In the absence of the α2β1 

integrin, enhanced AICD may account for the decrease in Th1 cells in the α2-null mouse.  

Taken together, our results suggest that the α2β1 integrin may be an important receptor in 

regulating Th1 driven innate to adaptive immune transition. 

 

Conclusion 

The work presented in this dissertation demonstrates a mechanism of IgE-

independent mast cell activation that results in the release of a distinct subset of 

preformed mediators that requires the α2β1 integrin.  Although the α2-null mast cell is 

unable to be stimulated with Listeria immune complex, their response to IgE crosslinking 

remains unaffected.  The α2β1 integrin expression on mast cells plays a role in innate and 

adaptive immune responses to Listeria through regulation of selective release of pre-

formed mast cell mediators and Th1 activity.  We propose a model by which activation of 

mast cells through the α2β1 integrin and c-met may occur independently of Listeria 
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immune complex, thereby expanding the role of the integrin and mast cells beyond 

Listeria infections.  The role of mast cells in autoimmunity, infection and cancer has been 

an area of active study.  We have defined a novel, biologically relevant mechanism of 

mast cell activation that may be involved in these disease models.  These studies 

contribute to the growing body of evidence that mast cells and integrins serve as critical 

mediators of inflammation and disease. 
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