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Chapter I 

 

INTRODUCTION 

 

 Genetic information is transmitted through the use of a primary DNA structure 

composed of four canonical bases: thymine, cytosine, guanine, and adenine.  A chemical 

modification to cytosine to create 5-methylcytosine (5mC) is an example of a more 

complex transmission of genetic information called epigenetics.  Epigenetics refers to 

heritable changes to DNA and histones that affect gene expression but do not modify the 

DNA sequence. Cytosine methylation is essential for gene expression, cell 

differentiation, development, genomic imprinting, X chromosome inactivation, and 

regulation of disease states. Although 5mC is referred to as the fifth base, it is not 

synthesized into DNA like the other four bases, which are made into a polymer by DNA 

polymerases.  Instead, other enzymes, such as DNA methyltransferases, are responsible 

for establishing the methylation patterns that lead to epigenetic control of genes.  

Although the process of DNA methylation has been well studied, the enzymes 

responsible for DNA demethylation are less well understood.  

 

5mC is an Epigenetic Mark 

In the 1970s, it was proposed that DNA methylation is responsible for 

maintaining gene expression patterns through mitotic cell division (Holliday and Pugh 

1975; Riggs 1975). Today it is well accepted that DNA methylation patterns contribute to 

gene expression states by silencing genes through interaction with proteins that modify 
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nucleosomes (Wolffe and Matzke 1999; Urnov and Wolffe 2001).  DNA methylation is 

found in most plant, animal, and fungal models and has a great impact on genome 

stability, gene expression, and development (Jaenisch and Bird 2003; Law and Jacobsen 

2010; Smith and Meissner 2013). 

Although 5mC constitutes only one percent of human DNA, seventy to eighty 

percent of CpG dinucleotides are methylated, while the majority of CpG islands are not 

methylated (Ehrlich and Wang 1981; Ehrlich, Gama-Sosa et al. 1982; Weber, Davies et 

al. 2005).  However, CpG islands are often hypermethylated during tumorigenesis or 

ageing (See Dysregulation of Methylation Leads to Disease below) (Meissner, Mikkelsen 

et al. 2008). In addition, there exists a small amount of non-CG methylation in embryonic 

stem (ES) cells (Ramsahoye, Biniszkiewicz et al. 2000; Bird 2002; Lister, Pelizzola et al. 

2009).  The spectrum of DNA methylation in other animals is very broad: the nematode 

worm Caenorhabditis elegans has no detectable 5mC, while vertebrates have very high 

levels of 5mC (Colot and Rossignol 1999; Hung, Karthikeyan et al. 1999; Tweedie, Ng et 

al. 1999; Bird 2002). In plants, methylation occurs in all cytosine sequence contexts 

(Henderson and Jacobsen 2007). Specifically in Arabidopsis thaliana, twenty-four 

percent of CpG sites, seven percent of CpNpG, and two percent of CpNpN sites are 

methylated, where N is any nucleotide (Cokus, Feng et al. 2008).  DNA methylation 

predominantly occurs on transposons and other repetitive elements (Zhang, Yazaki et al. 

2006).  It has been suggested that DNA methylation may have evolved as a defense 

against transposable elements (TEs) (Goll and Bestor 2005).  Because transposons may 

cause mutagenesis and threaten genomic integrity by potentially causing antisense 

transcripts that activate RNAi pathways or by promoting improper gene expression, most 
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genomic methylation is on transposons, in order to regulate and inactivate them (Chang-

Yeh, Mold et al. 1991; Takahara, Ohsumi et al. 1996; Yoder, Walsh et al. 1997).  

Evidence for this hypothesis exists in plants, as in cases of genome demethylation, the 

rate of transposon insertion increases (Hirochika, Okamoto et al. 2000; Miura, 

Yonebayashi et al. 2001; Singer, Yordan et al. 2001; Kato, Miura et al. 2003).  

Transposons can be permanently inactivated when the methylated cytosines are 

deaminated, leading to C  T transition mutations (Schorderet and Gartler 1992). 

Epigenetic modifications can be inherited during development of an organism 

(during mitosis) or across generations (reviewed in Danchin, Charmantier et al. 2011). 

The transmission of epigenetic marks, such as cytosine methylation (see DNA 

Methyltransferases below) results in transgenerational epigenetic inheritance or mitotic 

epigenetic inheritance, which allows for cell differentiation.  Transgenerational 

epigenetic inheritance can occur through germline epigenetic inheritance or experience-

dependent epigenetic inheritance.  In germline epigenetic inheritance, the epigenetic state 

of the DNA is present in germline cells and is transmitted over many generations. One of 

the first examples of this inheritance due to environmental changes was observed through 

the prenatal exposure of the pesticide vinclozolin.  Resulting changes in DNA 

methylation were inherited to the F4 generation and beyond (Anway, Cupp et al. 2005). 

On the other hand, experience-dependent epigenetic inheritance occurs when an 

epigenetic state in a parent induces behavior that generates the same epigenetic state in 

the offspring.  For example, low levels of licking/grooming due to early weaning of 

female mouse pups results in methylation of the estrogen receptor alpha (ERα) promoter, 

thereby reducing the amount of ERα expressed in the medial preoptic area (MPOA) of 
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the brain. The MPOA has been found to be necessary for post-partum maternal 

interactions with offspring; thus, the pups that are weaned early exhibit reduced maternal 

care as adults (Gonzalez, Lovic et al. 2001; Lovic, Gonzalez et al. 2001; Kikusui, Isaka et 

al. 2005; reviewed in Champagne and Meaney 2007). 

Transgenerational epigenetic inheritance includes parent-of-origin expression 

patterns established through gene imprinting.  Imprinted genes are expressed from the 

allele of one parent, while the other is silenced.  This control of gene expression occurs in 

insects, mammals, and flowering plants (Jurkowska and Jeltsch 2013).  In humans, 

approximately one hundred genes are effected by gene imprinting, which allow for 

proper growth and development (Jurkowska and Jeltsch 2013). The first evidence for 

gene imprinting was observed in 1984, when it was determined that a copy of both the 

maternal and paternal genomes were necessary for embryogenesis in mice.  A bimaternal 

zygote, in which the paternal pronucleus was replaced with a maternal pronucleus, was 

not able to complete embryogenesis; a bipaternal zygote suffered the same problem 

(Barton, Surani et al. 1984; McGrath and Solter 1984; Surani, Barton et al. 1984).  

Examples of specific imprinted genes followed a few years later, when insulin-like 

growth factor 2 (Igf2), which expresses from the paternal allele, and insulin-like growth 

factor type-2 receptor (Igf2r) and H19 noncoding RNA, which express from the maternal 

allele, were identified in mice (Barlow, Stoger et al. 1991; Bartolomei, Zemel et al. 1991; 

DeChiara, Robertson et al. 1991; Ferguson-Smith, Cattanach et al. 1991).  It is now 

known that DNA methylation, combined with additional histone modifications, is 

responsible for the differential expression of maternal or paternal alleles (Bartolomei, 

Webber et al. 1993; Ferguson-Smith, Sasaki et al. 1993; Stoger, Kubicka et al. 1993).  
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Gene imprinting affects growth regulation in the embryo and affects metabolism and 

behavior (Jurkowska and Jeltsch 2013).  

 

Mechanism of Transcriptional Repression 

 DNA methylation may function to prevent transcription by disrupting the binding 

of a protein to the DNA sequence (Bird 2002). Some factors that are known to bind CpG 

sequences are not able to bind the DNA when the CpG is methylated.  For example, the 

transcription factor CTCF, which is involved in imprinting the H19/Igf2 locus in mice, is 

not able to bind the promoter of the paternal allele due to the methylation at CpG sites.  

This allows for the downstream enhancer to activate Igf2 expression of the paternal allele, 

while the maternal allele is silenced as a result of CTCF binding to the maternal promoter 

and downstream enhancer (Bell, West et al. 1999; Bell and Felsenfeld 2000; Hark, 

Schoenherr et al. 2000; Szabo, Tang et al. 2000; Holmgren, Kanduri et al. 2001).  

Alternatively, the sites of methylation may recruit proteins that preferentially bind 5mC 

over C, functioning to repress transcription (Bird 2002).  Five methyl-CpG-binding 

proteins have been characterized that are related to the methyl-CpG-binding domain 

(MBD) of methyl CpG binding protein 2 (MeCP2) (Nan, Meehan et al. 1993; Cross, 

Meehan et al. 1997; Nan, Campoy et al. 1997; Hendrich and Bird 1998).  MBD1, MBD2, 

MBD3, and MeCP2 have been shown to repress transcription in a methylation-dependent 

manner (reviewed in Bird and Wolffe 1999).   

 The mechanism of gene imprinting functions through a cluster of genes that 

contains some imprinted genes and other non-imprinted genes.  Imprinting control 

regions (ICRs) contain a region with parent-specific methylation patterns, called a 
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differentially methylated region (DMR).  Usually each cluster is associated with one ICR 

that functions to regulate expression (Barlow 2011). For example, the Igf2r gene, one of 

the first genes implicated as an imprinted gene, is regulated by a large noncoding RNA 

called Airn (antisense Igf2r RNA noncoding), which is expressed from the paternal allele. 

Because Airn is transcribed antisense to Igf2r, the expression of Airn prevents the 

expression of Igf2r from the paternal chromosome (Sleutels, Zwart et al. 2002).  

 

DNA Methyltransferases 

Nearly 40 years ago, two classes of DNA methyltransferases were predicted to be 

responsible for the stable inheritance of DNA methylation across cell cycles and 

generations (Holliday and Pugh 1975; Riggs 1975) (Bestor, Laudano et al. 1988).  Since 

then, the mechanism and functions for the essential DNA methyltransferases have been 

characterized.  DNA methyltransferases, including DNA methyltransferase 1 (DNMT1) 

and DNA methyltransferase 3A and 3B (DNMT3A and DNMT3B) allow for DNA 

methylation patterns to be maintained throughout many cell cycles (Wigler, Levy et al. 

1981; Schubeler, Lorincz et al. 2000). The function of these enzymes is critical for 

development.  Indeed, null mutations of DNMT1 or DNMT3A/B are embryonic lethal 

(Li, Bestor et al. 1992; Okano, Bell et al. 1999; Chan, Henderson et al. 2005; Goll and 

Bestor 2005). 

DNA methyltransferases catalyze the transfer of a methyl group to the 5 position 

of cytosine residues (Figure 1).  Although the methylation of the base at this location is 

predicted to be chemically improbable, methyltransferases utilize a covalent catalysis 

mechanism to overcome this (Santi, Garrett et al. 1983; Chen, MacMillan et al. 1991). A 
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cysteine residue that is conserved and essential in eukaryotic methyltransferases forms a 

covalent bond to C6 of cytosine (Bestor and Verdine 1994; Hsieh 1999).  Ten conserved 

motifs are utilized by both eukaryotic and bacterial methyltransferases (Lauster, Trautner 

et al. 1989; Posfai, Bhagwat et al. 1989; Kumar, Cheng et al. 1994). The function of each 

motif has been elucidated through crystallographic studies of the enzymes in complex 

with intermediates of the reaction (Trautner, Balganesh et al. 1988; Wilke, Rauhut et al. 

1988; Reinisch, Chen et al. 1995; Dong, Yoder et al. 2001). Sequence specificity for the 

bacterial methyltransferases is determined by a region between motif VIII and IX; 

however, eukaryotic methyltransferases do not have innate sequence specificity 

(Trautner, Balganesh et al. 1988; Wilke, Rauhut et al. 1988). Like DNA glycosylases, 

DNA methyltransferases utilize a base flipping mechanism to access C5 and C6 of the 

base (See Chapter II for DNA glycosylase mechanism) (Horton, Ratner et al. 2004).  

DNA methyltransferases have a well conserved “large domain,” which includes the 

active site motifs and the binding site for SAM (AdoMet). 

DNA methyltransferases are now grouped into four families based on sequence 

homology within the C-terminal catalytic domain (Goll and Bestor 2005). The families 

include DNA methyltransferase 1, 2, and 3 (DNMT1, DNMT2, and DNMT3, 

respectively), and the chromomethylase family, found only in plants. DNMT2 is present 

in all organisms that contain DNMT1 and DNMT3 homologs, but in some organisms, a 

DNMT2 homolog is the only DNA methyltransferase.  Caenorhabditis elegans and 

Saccharomyces cerevisiae do not contain any methyltransferase homologs (Goll and 

Bestor 2005).  
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Figure 1. DNA methyltransferase mechanism. DNA methyltransferases utilize a covalent 
catalysis mechanism in order to transfer a methyl group from S-adenosylmethionine 
(SAM) to position 5 on a cytosine base, creating 5-methylcytosine (5mC). [Adapted from 
(Goll and Bestor 2005).] 

 
DNMT1, the first DNA methyltransferase to be identified on the basis of de novo 

methylase activity, is responsible for maintaining symmetrically methylated CpGs after 

DNA replication during mitosis.  DNMT1 methylates hemimethylated substrates better 

than unmethylated DNA (Bestor, Laudano et al. 1988; Yoder, Soman et al. 1997; Song, 

Rechkoblit et al. 2011).  DNMT1 is expressed in dividing cells and is recruited to DNA 

replication sites through interactions with proliferating cell nuclear antigen (PCNA) and 

ubiquitin-like with PHD and RING finger domains 1 (UHRF1), which specifically directs 

DNMT1 to hemimethylated sites (Chuang, Ian et al. 1997; Kishikawa, Murata et al. 

2003; Bostick, Kim et al. 2007; Sharif, Muto et al. 2007).  The activity of DNMT1 is 

dependent on a larger complex of proteins that regulate its activity through post-

translational modifications, which oppose DNMT1 activity.  The amino-terminal domain 

of DNMT1 and the E3 ubiquitin ligase RING domain of UHRF1 are targets for the 

histone acetyltransferase TIP60 and methyltransferase SET7 (Esteve, Chin et al. 2009; 
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Du, Song et al. 2010). However, when active DNA-bound DNMT1 is in complex with 

histone deacetylase 1 (HDAC1), these modifications are opposed (Fuks, Burgers et al. 

2000; Robertson, Ait-Si-Ali et al. 2000; Wang, Hevi et al. 2009; Du, Song et al. 2010).  

The first plant DNA methyltransferase to be identified was MET1, which belongs to the 

DNMT1 family (Finnegan and Dennis 1993).  MET1 is considered a maintenance 

methyltransferase, functioning to maintain methylation patterns after DNA replication, 

although some data indicate that it has de novo methylation activity as well (Aufsatz, 

Mette et al. 2004).  

DNMT3A and DNMT3B function as de novo methyltransferases in mammals. A 

third homolog, DNMT3L does not have methyltransferase activity but functions as a 

regulatory factor in germ cells (Bourc'his, Xu et al. 2001; Goll and Bestor 2005). 

DNMT3A and DNMT3B are able to methylate both hemi- and unmethylated substrates at 

equal rates (Okano, Xie et al. 1998). These enzymes are expressed in adult tissues, but 

not as robustly as DNMT1 (Goll and Bestor 2005).  DNMT3L is required for maternal 

genomic imprinting, and DNMT3L homozygous null nice are sterile, but viable 

(Bourc'his, Xu et al. 2001). Evidence suggests that DNMT3A and DNMT3L likely 

interact to establish maternal genomic imprinting (Chedin, Lieber et al. 2002; Kaneda, 

Okano et al. 2004).  Repressed CpG island promoters, although usually unmethylated, 

may be silenced through both histone H3 lysine 9 (H3K9) methylation and DNA 

methylation initiated by DNMT3A and DNMT3B (Ayyanathan, Lechner et al. 2003).  In 

plants, the DNMT3 family is referred to as the domains rearranged methyltransferase 

(DRM) family.  A. thaliana encodes DRM1 and DRM2, which establish CpN, CpG, and 

CpNpG methylation through RNA directed DNA methylation (RdDM) (Cao, Springer et 
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al. 2000; Cao and Jacobsen 2002; Cao and Jacobsen 2002).  The generation of short 

RNAs signals the methylation of homologous DNA sequences and is a necessary control 

of DNA methylation (Cao and Jacobsen 2002). Evidence for RdDM has only been found 

in the plant kingdom, and proteins that are necessary for RdDM in A. thaliana, such as an 

RNA-dependent RNA polymerase or SNF2 chromatin-remodeling protein DRD1, are not 

present in mammals (Chan, Zilberman et al. 2004; Freitag, Hickey et al. 2004; Kanno, 

Mette et al. 2004). 

The DNMT2 family is the most well conserved and ubiquitous DNA 

methyltransferase (Yoder and Bestor 1998; Goll and Bestor 2005). However, no DNA 

methyltransferase activity has been detected for DNMT2, although it contains all ten 

conserved motifs in the expected order, and the structure of the large domain is very 

similar to the bacterial methyltransferase M.HhaI (Okano, Xie et al. 1998; Yoder and 

Bestor 1998; Dong, Yoder et al. 2001; Hermann, Schmitt et al. 2003; Tang, Reddy et al. 

2003).  Interestingly, the crystallographic position of an invariant tyrosine residue in the 

DNMT2 family is predicted to make a steric clash with DNA modeled from M.HhaI.  

This residue is a glycine in M.HhaI, and no other residue can be tolerated at this site (Lee, 

Tawfik et al. 2002). Furthermore, deletion of DNMT2 does not affect methylation, nor 

does it cause any phenotypic abnormalities in ES cells (Okano, Xie et al. 1998). 

Therefore, it is unlikely that DNMT2 methylates duplex DNA.   

The chromomethylase family in plants methylates the symmetrical CpNpG, which 

is rarely methylated in vertebrates (Henikoff and Comai 1998).  These enzymes have a 

chromodomain between the conserved methyltransferase motifs II and IV.  

Chromodomains, which were first identified in the Polycomb group proteins, function to 
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target proteins to heterochromatin (Jones, Cowell et al. 2000). A. thaliana contains three 

chromomethylase homologs (CMT1, CMT2, and CMT3), although only CMT3 is 

necessary for CpNpG methylation (Henikoff and Comai 1998; Bartee, Malagnac et al. 

2001; Lindroth, Cao et al. 2001).  However, the loss of CpNpG methylation due to 

mutations in CMT3 does not cause any severe morphological phenotypes (Bartee, 

Malagnac et al. 2001; Lindroth, Cao et al. 2001). CpNpG methylation may have evolved 

as a defense against transposons that evolved CpG-free promoters that were not silenced 

by CpG methylation (Goll and Bestor 2005). 

  

Dysregulation of Methylation Leads to Disease 

The proper establishment and maintenance of DNA methylation is critical for 

development and continued health of an organism.  Dysregulation of cytosine 

methylation may lead to the pathogenesis of disease. In cancer cells, CpG islands that are 

normally unmethylated become hypermethylated, thereby silencing normally expressed 

genes (Gal-Yam, Saito et al. 2008).  In addition, repeat sequences that are usually 

methylated become hypomethylated.  This change in DNA methylation also is associated 

with changes to histone modifications, including reduced H3K4 methylation, increased 

H3K9/K27 methylation, and decreased acetylation (Riggs and Jones 1983; Feinberg and 

Tycko 2004; Liang, Lin et al. 2004; Heintzman, Stuart et al. 2007; Kouzarides 2007).  

These changes are epigenetic patterns common to cancer cells.  Hypomethylation in 

cancer cells may lead to overexpression of oncogenic proteins.  For example, the 

activation of the normally silent maternally imprinted gene IGF2, described above, is 

associated with increased risk of colon cancer (Kaneda and Feinberg 2005).  On the other 
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hand, hypermethylation of CpG islands leads to the silencing of tumor suppressors, such 

as the Retinoblastoma gene, which is hypermethylated in retinoblastoma (Greger, 

Passarge et al. 1989).  Additional examples of this phenomenon have been found in renal 

cancer (hypermethylation of von Hippel-Lindau), bladder cancer (hypermethylation of 

the cell cycle regulator DKN2 A/p16), and colon cancer (hypermethylatin of the 

mismatch repair gene hMLH1) (Herman, Latif et al. 1994; Gonzalez-Zulueta, Bender et 

al. 1995; Kane, Loda et al. 1997).  A better understanding of DNA methylation in various 

cancers may help improve diagnosis and prognosis of disease states. 

Aberrant DNA methylation is associated with a number of diseases in addition to 

various cancers. Hypermethylation of certain gene promoters has been reported in 

schizophrenia, while hypomethylation of other promoters is associated with bipolar 

disorder (Kato and Iwamoto, 2014, Wockner, 2014). Aberrant DNA methylation also has 

been associated with other neurologic disorders, such as Rett syndrome, alpha-

thalessemia X-linked retardation (Jakovcevski and Akbarian 2012), Prader-Willi 

syndrome, Angelman syndrome, Beckwith-Weidemann syndrome, congenital 

malformation, aging (Ballestar and Esteller 2005), and neoplasia (Baylin, Esteller et al. 

2001; Esteller and Herman 2002; Esteller 2003; Robertson 2005; Hansen, Timp et al. 

2011).  Environmental factors also contribute to the development of psychiatric disorders 

(Schmitt, Malchow et al. 2014) (See Environmental Epigenetics below). Furthermore, 

differential methylation patterns have been associated with cardiac dysfunction and 

regeneration (Chaturvedi and Tyagi 2014).  As seen in cancer cells, disease states of 

cardiovascular disorders often contain increased methylation at CpG islands in the 

promoters of genes (Baccarelli, Rienstra et al. 2010).  In addition, the hypomethylation of 



13 
 

DNMTs and methylenetetrahydrofolate reductase (MTHFR) has been implicated in 

atherosclerosis and cardiovascular disease (Chen, Karaplis et al. 2001; Lund, Andersson 

et al. 2004).  Irregular DNA methylation and gene imprinting result in many more 

disorders not described here (Paulsen and Ferguson-Smith 2001; Smith and Meissner 

2013). 

Environmental Epigenetics 

 Genetic inheritance is often thought of the transmission of DNA sequence from 

one generation to the next, and species evolution is considered a result of variation in 

DNA sequence yielding phenotypic variations that are subject to natural selection 

(Ellegren and Sheldon 2008).  However, changes to phenotype also result from 

differences in gene expression, which is controlled through epigenetic mechanisms 

(Cubas, Vincent et al. 1999; Richards 2006; Bossdorf, Richards et al. 2008). Although 

environmental changes to DNA are typically associated with various types of DNA 

damage leading to mutations or cell death (see Base Excision Repair section below), an 

organism’s surroundings also can have an effect on the epigenetic level (Danchin, 

Charmantier et al. 2011; Varriale 2014). Factors such as xenobiotics, social behavior, 

metabolism, and nutritional deficiencies can affect epigenetic changes (Anway, Cupp et 

al. 2005; Petronis 2010; Danchin, Charmantier et al. 2011).  Several authors speculate 

that epigenetic changes may arise due to environmental changes, causing the expression 

of normally silenced genes or inducing transposon activity (Jaenisch and Bird 2003; 

Jablonka and Lamb 2007; Bossdorf, Richards et al. 2008; Rebollo, Horard et al. 2010).  

For example, studies in humans have revealed that exposure to certain air pollutants, such 

as benzene or particulate matter with aerodynamic diameter less than 10 µm, is 
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associated with reduced methylation of repetitive elements and gene promoters, which 

may be associated with resulting disease states including cardiorespiratory disease and 

lung cancer (Samet, Dominici et al. 2000; Snyder 2002; Brook, Franklin et al. 2004; 

Peters 2005; Vineis and Husgafvel-Pursiainen 2005; Bollati, Baccarelli et al. 2007; 

Baccarelli, Martinelli et al. 2008; Tarantini, Bonzini et al. 2009).  

 

Base Excision Repair 

 Because DNA is a dynamic, reactive molecule, it participates in chemical 

reactions with endogenous and exogenous reagents.  When the DNA molecule is altered, 

the information encoded is changed and may lead to modification to nucleobases that can 

cause disease or may disrupt DNA replication causing cell death.  Modifications to a 

nucleobase may disrupt base pairing and could cause the misincorporation of the wrong 

nucleotide. Hence, these modifications are called DNA damage.    The base excision 

repair (BER) pathway is one of several pathways to repair damage to DNA.  BER is 

predominantly used to repair small lesions to DNA bases, caused by reactive oxygen 

species (ROS), alkylating agents, or deamination events that produce aberrant 

nucleobases (See Chapter II). BER functions through either short- or long-patch 

pathways, in which a single nucleotide or at least two nucleotides, respectively, are 

removed. This pathway and the enzymes involved are conserved from bacteria to 

mammals (Lindahl 1993; Friedberg, Aguilera et al. 2006).   

 The simple short-patch BER pathway utilizes five enzymes: a DNA glycosylase, 

an AP endonuclease or AP DNA lyase, a DNA polymerase, a dRpase, and a DNA ligase 

(Figure 2).  The DNA glycosylase recognizes the damaged base and cleaves the N-
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glycosidic bond, releasing the base and creating an apurinic or apyrimidinic (AP) site.  

Next, the DNA backbone is cleaved through the use of an AP endonuclease or AP lyase.  

Some glycosylases contain lyase activity.  The AP endonuclease cleaves the backbone, 

resulting in a nick 5ʹ to the AP site, while AP lyase activity creates a nick 3ʹ to the AP 

site.  The AP endonuclease processes the nick to create a single nucleotide gap, with 3ʹ 

hydroxyl and a 5ʹ phosphate, creating a substrate for a DNA polymerase.  The 

polymerase fills the gap with the correct nucleotide, and a DNA ligase seals the nick in 

the DNA to complete the repair process (Lindahl 2000). 

 The enzymes responsible for BER in humans include a number of glycosylases 

specific for various types of lesions (reviewed in Stivers and Jiang 2003).  APEX 

nuclease 1 (APEX1), DNA polymerase β (POLβ), and DNA ligase III (LIG3) have been 

identified as components of short-patch BER (Laval 1977; Matsumoto and Kim 1995; 

Kubota, Nash et al. 1996; Sobol, Horton et al. 1996). Long-patch BER requires the use of 

either POLβ or DNA polymerase δ (POLδ), PCNA, and flap structure-specific 

endonuclease 1 (FEN1) to remove the flap of DNA that is displaced during POLβ 

synthesis of a new strand of DNA (Klungland and Lindahl 1997; Kim, Biade et al. 1998).  

Studies of BER enzymes in plants are less numerous than those in animals. BER 

enzymes in plants again include various DNA glycosylases specific for different base 

modifications (Krishnamurthy, Zhao et al. 2008; Kathe, Barrantes-Reynolds et al. 2009; 

Duclos, Aller et al. 2012).  DNA LIGASE I (LIGI) may participate in the BER pathway 

in plants, but the DNA polymerase necessary for repair in plants is unknown (Andreuzza, 

Li et al. 2010). Plants may use either short- or long-patch BER to fill gaps generated by 

AP endonucleases and AP lyases (Cordoba-Canero, Morales-Ruiz et al. 2009).  A 
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detailed discussion on DNA glycosylase structures and mechanisms can be found in 

Chapter II. 

 

 

 

Figure 2. Base Excision Repair (BER) Pathway. A repair pathway for detrimental 
nucleobase modifications is initiated by damage-specific DNA glycosylases, which are 
either mono-functional (center pathway) or bi-functional (left pathway).  An AP 
endonuclease processes the abasic site product, and a DNA polymerase functions to 
synthesize DNA.  The DNA backbone is restored by a DNA ligase.  In long-patch BER 
(right pathway), a 5′ flap of DNA created by strand displacement synthesis is cleaved by 
a FLAP endonuclease before the final step is performed by a DNA ligase. [Adapted from 
(Scharer and Jiricny 2001)]. 
 
 



17 
 

Passive DNA Demethylation 

 As discussed above, the DNA methyltransferases DNMT3a and 3b are 

responsible for de novo methylation of CpG dinucleotides in vertebrates.  DNMT1 

functions to maintain methylation at newly synthesized daughter strands during 

semiconservative DNA replication.  The interaction of DNMT1 and PCNA targets 

DNMT1 to sites of demethylation. If the activity of DNMT1 is absent, due to inhibition, 

depletion, or nuclear exhaustion of DNMT1, passive demethylation will occur.  Thus, up 

to 50% of DNA methylation will be lost in each round of DNA replication.  This process 

does not occur in terminally differentiated cells (Niehrs 2009). 

 

Active DNA Demethylation 

The enzymatic removal of DNA methylation is critical for developmental 

processes in plants and animals (Zhang and Zhu 2012).  Two genome-wide 

demethylation events occur in developing humans.  First, the paternal pronuclei in the 

zygote undergoes demethylation, while the maternal genome maintains its methylation 

patterns.  However, some portions of the paternal genome, including centromeric and 

pericentromeric heterochromatin, some transposons, and imprinted regions, are not 

demethylated (Olek and Walter 1997; Rougier, Bourc'his et al. 1998; Mayer, Niveleau et 

al. 2000; Oswald, Engemann et al. 2000; Santos, Hendrich et al. 2002; Lane, Dean et al. 

2003). This first demethylation event is followed by passive DNA demethylation in the 

maternal genome as a result of replication.  Then, de novo DNA methyltransferases 

reestablish genomic DNA methylation (Wu and Zhang 2010).  The second demethylation 

event follows in the primordial germ cells (PGCs) and functions to erase much of the 
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newly created DNA methylation (Morgan, Santos et al. 2005; Hajkova, Ancelin et al. 

2008).  These two global demethylation events, combined with subsequent chromatin 

rearrangement, allow for totipotency (Hajkova, Ancelin et al. 2008).  Additional evidence 

for active DNA demethylation was observed in somatic differentiation of the developing 

embryo, allowing for the establishment of tissue-specific expression patterns (Kress, 

Thomassin et al. 2006; Niehrs 2009).  Furthermore, active DNA demethylation has been 

detected during gene activation in adult kidney and brain (Kim, Kondo et al. 2009; Ma, 

Jang et al. 2009). 

  

5mC Oxidation Derivatives 

 The existence and maintenance of DNA methylation has been known for decades, 

as described above. However, only recently has the mechanism of active DNA 

demethylation begun to be understood.  The proteins responsible for recognition of and 

enzymatic removal of 5mC have been identified in plants over the last 15 years (see 

Active DNA Demethylation in Arabidopsis below). However, the mechanism of active 

DNA demethylation in animals is not as clearly defined. In animals, there is mounting 

evidence for methylation removal by the coupling of DNA repair pathways and 

derivatives of 5mC. Although thymine DNA glycosylase (TDG) and methyl binding 

domain 4 (MBD4) are able to remove 5mC, their activities for this substrate are much 

lower than for T/G mismatches (Kress, Thomassin et al. 2001). Thus, it is likely the 

activity for 5mC is a minor side reaction and not physiologically relevant.  To date, there 

is no known mammalian glycosylase with 5mC as the preferred substrate. However, 
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many reports now indicate that DNA glycosylases may participate in DNA demethylation 

by excising derivatives of 5mC. 

The oxidized derivatives of 5mC were first discovered by searching the human 

genome for proteins similar to trypanosome enzymes JBP1 and JBP2 (Tahiliani, Koh et 

al. 2009).  The enzymes are predicted to catalyze the first step of the biosynthesis of base 

J (beta-D-glycosyl hydroxymethyluracil, Figure 3A) (Yu, Genest et al. 2007; Cliffe, 

Kieft et al. 2009).  Base J is a hypermodified thymine that is present in kinetoplastids, 

Diplonema (van Leeuwen, Taylor et al. 1998), and the green algae Euglena (Dooijes, 

Chaves et al. 2000), but has not been found in other protozoa, fungi, or vertebrates (van 

Leeuwen, Taylor et al. 1998). Because the synthesis of base J proceeds through the 

intermediate hydroxymethyldeoxyuridine (HOMe-U), a base that most organisms remove 

using DNA glycosylases, it is unlikely that base J exists in other organisms.  Like 5mC, 

Base J has been associated with gene silencing.  The modification exists at expression 

sites for the variant surface glycoprotein (VSG) gene when it is not expressed; base J is 

absent at these sites when VSG is expressed (van Leeuwen, Wijsman et al. 1997). Base J 

also has been found at telomeric repeats in kinetoplastid flagellates, with at least 13% of 

thymines containing this modification at telomeres, compared to 0.8% in total DNA (van 

Leeuwen, de Kort et al. 1998). When base J is reduced at transcription start sites, 

nucleosome abundance is decreased, histone acetylation is increased, and Pol II is 

recruited to promoter regions (Ekanayake and Sabatini 2011; Ekanayake, Minning et al. 

2011).  These changes are associated with increased transcription initiation (Ekanayake 

and Sabatini 2011).  
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Base J is synthesized through two steps: first, a thymidine hydroxylase oxidizes 

the 5-methyl group of a thymidine residue to create HOMe-U; second, a glucosyl 

transferase adds a glucose group to the hydroxymethyl modification (Gommers-Ampt 

and Borst 1995; van Leeuwen, Kieft et al. 1998; Ulbert, Cross et al. 2002; Borst and 

Sabatini 2008). J binding protein 1 and 2, JBP1 and JBP2, are members of the 2-

oxoglutarate- and Fe(II)-dependent [2OG-Fe(II)] oxygenase superfamily, and they have 

been implicated in vitro and in vivo as the thymidine hydroxylases responsible for the 

first step in base J synthesis (Cross, Kieft et al. 1999; Hausinger 2004; DiPaolo, Kieft et 

al. 2005; Yu, Genest et al. 2007; Cliffe, Kieft et al. 2009; Cliffe, Hirsch et al. 2012).    

 

 

Figure 3. 5mC derivatives. (A) Base J is a cytosine modification present in 
trypanosomes. (B) Tet enzymes successively oxidize 5mC to 5-hydroxymethylcytosine 
(5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC).  

 

Homologs of the oxygenase domains of JBP1 and JBP2 were found by iterative 

sequence profile searches.  Three paralogous human proteins called ten eleven 
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translocation proteins, Tet1, Tet2, and Tet3 were identified as 2OG-Fe(II) oxygenases, in 

addition to homologous domains in metazo, fungi, and algae (Tahiliani, Koh et al. 2009). 

In the same study, it was determined that TET1 produced 5-hydroxymethylcytosine 

(5hmC) in mouse embryonic stem cells (Tahiliani, Koh et al. 2009) (Figure 3B). A 

subsequent study confirmed that mouse Tet1 and Tet2 reduce 5mC levels and result in 

the generation of 5hmC in vivo. Although Tet3 expression did not reduce 5mC levels in 

vivo, 5hmC was generated (Ito, D'Alessio et al. 2010).  Recombinant purified Tet1, Tet2, 

and Tet3 generated 5hmC in vitro as well, while catalytic mutants did not. Tet1 and Tet2 

are expressed in mouse embryonic stem cells, but Tet3 is not. The knockdown of Tet1 

resulted in abnormal mouse morphology and reduced cell growth rate, but the 

knockdown of Tet2 and Tet3 had no effect (Ito, D'Alessio et al. 2010). The Tet1 

knockdown resulted in reduced expression of key stem cell factors, such as Nanog, Oct4, 

and Sox2.  Therefore, Tet1 likely functions in embryonic stem cell self-renewal and 

maintenance (Ito, D'Alessio et al. 2010). Furthermore, chromatin immunoprecipitation 

(ChIP) and methyl-DNA immunoprecipitation (MeDIP) experiments indicated Tet1 

functions to maintain the Nanog promoter in a hypomethylated state.  Combined with 

knockdown experiments in cells lacking DNA methyltransferases, which showed Tet1 

control of Nanog is dependent on DNA methylation, these results indicate that Tet1 

regulates Nanog expression (Ito, D'Alessio et al. 2010).   

The extent to which 5mC is modified in animals was found to include two 

additional oxidized derivatives – 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) – 

in 2011 (Ito, Shen et al. 2011) (Figure 3B).  Through the use of a more sensitive assay, it 

was determined that Tet proteins generate these derivatives, in addition to 5hmC.  In a 
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follow-up study to the 2010 report of Tet activity, it was found that the restriction enzyme 

used to digest the oligonucleotides (MspI) was not able to digest DNA containing 5fC 

and 5caC (Ito, Shen et al. 2011).  Using a different enzyme (TaqI) to digest the DNA in 

conjunction with two-dimensional thin-layer chromatography (2D-TLC), the authors 

were able to detect 5fC and 5caC reaction products from Tet reactions with 5mC DNA.  

Furthermore, when the Tet proteins are overexpressed, the genomic content of these 

derivatives increases.  The authors further quantified the activity of Tet2 by incubating 

the enzyme with 5mC-, 5hmC-, or 5fC-containing DNA and quantifying the products 

using LC-MS. Tet2 was able to convert over 95% of 5mC to 5hmC (60%), 5fC (30%), 

and 5caC (5%) in 10 minutes, but only converted 40% of 5hmC-DNA substrate and 25% 

of 5fC-DNA substrate (Ito, Shen et al. 2011).    

The oxidized derivatives 5hmC, 5fC, and 5caC have all been detected in the 

genomic DNA of mouse embryonic stem cells (Penn, Suwalski et al. 1972; Ito, Shen et 

al. 2011; Pfaffeneder, Hackner et al. 2011).    It was determined that about 1.3 x 103 

5hmC, 20 5fC, and 3 5caC are present in every 106 cytosine bases in mouse embryonic 

stem cells.  5fC was also detected in genomic DNA of major mouse organs, but 5caC was 

not (Ito, Shen et al. 2011).  These derivatives have not been detected in plants (Jang, Shin 

et al. 2014).  These derivatives each have unique steric and electronic properties, 

including alternative tatuomers and differential N-glycosydic bond stabilities (Bennett, 

Rodgers et al. 2006; Williams and Wang 2012; Hashimoto, Zhang et al. 2013; Maiti, 

Michelson et al. 2013). 

The role of TDG in DNA demethylation has long been hypothesized, due to its 

documented involvement in transcriptional regulation and demethylation.  TDG interacts 
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with transcription factors, including retinoic acid receptor (RAR), retinoid X receptor 

(RXR), estrogen receptor α (ERα), thyroid transcripton factor 1 (TTF1), and histone 

acetyl-transferases p300 and CBP (Um, Harbers et al. 1998; Missero, Pirro et al. 2001; 

Tini, Benecke et al. 2002; Chen, Lucey et al. 2003; Leger, Smet-Nocca et al. 2014). 

Furthermore, TDG is required for embryonic development (Cortazar, Kunz et al. 2011; 

Cortellino, Xu et al. 2011). Although it was proposed that TDG may be able to remove 

5mC directly, additional studies have shown that activity for 5mC is very weak, while 

TDG is much more active for excision of mismatched T (Zhu, Zheng et al. 2000; 

Cortazar, Kunz et al. 2007; Cortellino, Xu et al. 2011). However, recent studies have 

illuminated the role of TDG in DNA demethylation: evidence for TDG excision of 5fC 

and 5caC, two of the oxidation derivatives of 5mC generated by Tet proteins, was found 

in 2011 (He, Li et al. 2011; Maiti and Drohat 2011).  Further structural and biochemical 

studies indicate that TDG has a well-organized binding pocket for 5caC that excludes 

binding of 5mC and 5hmC (Zhang, Lu et al. 2012). Additional discussion on TDG 

structures and its substrate specificity can be found in Chapter II. 

In addition to the oxidation of 5mC by Tet proteins, 5mC also may be removed by 

DNA glycosylases as a result of deamination of the base to thymine. Demethylation 

events have been linked to the genome stability protein GADD45α (growth arrest and 

DNA damage-inducible protein 45 α) in Xenopus (Barreto 2007). However, the role of 

GADD45a in mammals has been disputed (Barreto 2007, Schmitz, 2009, Jin, 2008).  In 

zebrafish embryos, it was found that 5mC demethylation to thymine may be catalyzed by 

activation-induced deaminase (AID) or apolipoprotein B RNA-editing catalytic 

component 2b and 2a (APOBEC2B, 2A) (Rai, Huggins et al. 2008).  The removal of the 
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resulting mismatched thymine by the thymine DNA glycosylase MBD4 was suspected 

due to increased methylation as a result of MBD4 knockdown.  Furthermore, the non-

enzymatic GADD45a was found to promote interactions between AID and MBD4 (Rai, 

Huggins et al. 2008). However, some reports have challenged the role of GADD45a in 

DNA demethylation (Jin, Guo et al. 2008). In addition, there are no developmental 

effects due to AID/APOBEC deficiency (Nabel, Manning et al. 2012).  Therefore, it is 

unlikely that the removal of 5mC after deamination and subsequent repair by MBD4 or 

TDG is the mechanism of active DNA demethylation in mammals. 

 

Active DNA Demethylation in Plants 

 One of the first indications that the base excision repair pathway is used to 

remove cytosine methylation was found in Arabidopsis thaliana. Control of gene 

transcription is necessary for the female gametophyte to develop properly into embryo 

and endosperm once fertilized.  The endosperm is formed from fertilization of the central 

cell, which exists as a diploid nucleus resulting from the fusion of two haploid nuclei 

within the ovule. A separate fertilization of the adjacent egg cell forms the embryo, 

thereby forming a seed containing a triploid endosperm and diploid embryo.  While the 

embryo develops organs and tissues, the endosperm functions to transfer nutrients from 

maternal tissues to the developing embryo, similar to the placenta in mammals (Brown, 

Lemmon et al. 1999).  Some maternal alleles have been discovered to be necessary for 

proper seed development.  In particular, the Polycomb group proteins, such as Medea 

(MEA), Fertilization Independent Endosperm (FIE), and Fertilization Independent Seed2 

(FIS2), are SET-domain, WD domain, and zinc-finger containing proteins that function to 
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repress gene transcription (Grossniklaus, Vielle-Calzada et al. 1998; Kiyosue, Ohad et al. 

1999; Luo, Bilodeau et al. 1999; Ohad, Yadegari et al. 1999; Birve, Sengupta et al. 2001).  

These proteins are necessary to control central cell proliferation and endosperm 

development.  In particular, the MEDEA gene is imprinted, and only the maternal allele is 

expressed during endosperm development, while the paternal allele is silenced (Kiyosue, 

Ohad et al. 1999; Vinkenoog, Spielman et al. 2000).   

 In 2002, a mutation in the maternal DEMETER allele was found to cause 

abnormal seed development in A. thaliana (Choi, Gehring et al. 2002).  The maternal 

DME allele is necessary for maternal MEA expression in the central cell and endosperm, 

and only the maternal DME allele is necessary for seed viability.  The Fisher lab found 

that DME prevents developmental abnormalities, such as reduced or increased petal and 

sepal number that appeared in dme-1 plants.  Additional abnormalities in leaf and stem 

morphology also were observed. Therefore, DME is necessary for proper floral and 

vegetative development, in addition to seed viability in A. thaliana (Choi, Gehring et al. 

2002).   Using semiquantitative reverse transcriptase-polymerase chain reaction (RT-

PCR), it was determined that DME is expressed in maternal reproductive structures, 

including immature flower buds and ovules, prior to fertilization events.  The expression 

of DME during female gametophyte development was confirmed through the use of the 

reporter gene β-glucuronidase (GUS) and Green Fluorescent Protein (GFP) labeling, 

which were detected in the central cell until fertilization. It was further found that DME is 

necessary for MEA and FWA gene expression in the central cell and in the endosperm 

after fertilization, thereby controlling A. thaliana development (Choi, Gehring et al. 

2002) (Kinoshita, Miura et al. 2004).   
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In the same report, it was determined that DME encodes a DNA glycosylase of 

1729 amino acids, including a 200 residue domain that is related to the helix-hairpin-

helix (HhH) structural superfamily of DNA glycosylases. (See Chapter II, HhH 

Superfamily for more details).  The glycosylase domain of DME also contains four 

conserved cysteine residues that comprise a [4Fe-4S] cluster, which is found in other 

glycosylases as well (Choi, Gehring et al. 2002).  The role of the iron sulfur cluster has 

not been determined, though some speculate it is necessary for DNA binding and/or 

lesion recognition (see Chapter IV for discussion).  These results indicated that DME 

functions to excise 5mC (Choi, Gehring et al. 2002). DME contains an aspartic acid 

residue (Asp1304) that aligns with conserved HhH catalytic aspartate residues necessary 

for glycosylase function.  When this residue is mutated to asparagine (Asp1304Asn), 

DME is no longer able to rescue seed abortion due to mutation in the endogenous DME 

gene (Choi, Harada et al. 2004). The Fisher lab demonstrated that DME causes 

hypomethylation in the maternal endosperm compared to the paternal endosperm, while 

the dme mutant does not show this difference (Gehring, Huh et al. 2006).  Although 

initially thought to be a monofunctional glycosylase, it was later determined that DME 

utilizes a bifunctional mechanism to excise 5mC (Gehring, Huh et al. 2006).  Repressor 

of Silencing 1 (ROS1), along with two DME-like paralogs, DML2 and DML3, are also 

expressed in A. thaliana. ROS1, DML2, and DML3 function as genome-wide 

demethylases to counteract DNA methylation established by RdDM (Gong, Morales-

Ruiz et al. 2002; He, Hsu et al. 2009; Hsieh, Ibarra et al. 2009; Zhu 2009; Gao, Liu et al. 

2010).  Additional discussion on the biochemical mechanisms of DME/ROS1/DML 

family continues in Chapter II, and an in depth analysis of predicted DME structure, 
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essential residues, and excision of 5mC and its oxidation derivatives can be found in 

Chapter III. 

 Recent reports of DME activities in many plant systems indicate that the control 

of DNA methylation can be utilized agriculturally to benefit crop production. For 

example, a study of a DME homolog from barley (HvDME) indicates that DME is 

upregulated during drought and confirms DME function in endosperm and seed 

development (Kapazoglou, Drosou et al. 2013). Results from studies of important cereal 

crops can be extended to develop therapies for patients suffering from celiac disease 

(Osorio, Wen et al. 2012). The expression levels of gliadins and low-molecular-weight 

glutenins (LMWgs), two proteins that are the source of immunogenic epitopes in celiac 

disease, are maintained by the methylation status of their promoters (Qi, Wei et al. 2009; 

Mitea, Salentijn et al. 2010). Wen, et al. determined that DME can be suppressed using 

RNA interference, which prevents DME from functioning to activate expression of 

gliadins and glutenins, thereby reducing the amount of these proteins in the endosperm of 

wheat (Wen, Wen et al. 2012). 

 

Scope of this Work 

 The central topic of this work is to determine the role of a DNA glycosylase, 

DEMETER, in the regulation of gene transcription via excision of 5mC.  This connection 

between DNA repair and gene regulation is unique, since the usual role of DNA 

glycosylases is to recognize and initiate the repair of damage.  The study of DNA 

glycosylases is intriguing given their ability to locate a single damaged base among a 

large excess of unmodified DNA.  Chapter II begins a discussion on the structural 
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mechanisms of DNA glycosylases, as the 3-dimensional structures of these enzymes have 

yielded significant insight into substrate specificity and function within the BER 

pathway.  The biochemistry and predicted structure of DME is investigated in Chapter 

III.  The ability of DME and its paralog DML3 to remove 5mC and its oxidation 

derivatives yields valuable information on the active site of these enzymes.  Finally, in 

Chapter IV, the implications of this work are discussed, in addition to plans for future 

experiments.  
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Chapter II 

 

STRUCTURAL MECHANISMS OF DNA GLYCOSYLASES* 

 

Introduction 

 

The integrity of the chemical structure of DNA and its interactions with 

replication and transcription machinery is important for the faithful transmission and 

interpretation of genetic information. Oxidation, alkylation, and deamination of the 

nucleobases by a number of endogenous and exogenous agents create aberrant 

nucleobases (Figure 4) that alter normal cell progression, cause mutations and genomic 

instability, and can lead to a number of diseases including cancer (reviewed in Friedberg, 

Aguilera et al. 2006). Many of these lesions are removed by the base excision repair 

(BER) pathway (Lindahl 2000), which is initiated by a DNA glycosylase specialized for a 

particular type of chemical damage. Upon locating its particular lesion within the DNA, 

glycosylases catalyze the excision of the nucleobase from the phosphoribose backbone by 

cleaving the N-glycosidic bond, generating an apurinic/apyrimidinic (AP) site (Figure 5). 

Monofunctional glycosylases catalyze only base excision, whereas bifunctional 

glycosylases also contain a lyase activity that cleaves the backbone immediately 3′ to the  

 

 
*Part of the work presented in this chapter was published in Brooks, S. B., Adhikary, S., 
Rubinson, E. H., and Eichman, B.F. (2013) Recent advances in structural mechanisms of DNA 
glycosylases. Biochimica et Biophysica Acta 1834, 247–271. 
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AP site. The resulting single-stranded and nicked AP sites are processed by AP 

endonuclease 1 (APE1), which hydrolyzes the phosphodiester bond 5′ to the AP site. This 

generates a 3′ hydroxyl substrate for replacement synthesis by DNA polymerase β, 

followed by sealing of the resulting nick by DNA ligase.  

 Since the glycosylases are the first line of defense against a vast array of DNA 

damage, they have been the subject of a large body of work to understand their 

 

Figure 4. Common DNA lesions. (A) Oxidized nucleobases. 8-OHG, 7,8-dihydro-8-
hydroxyguanine; 8-OxoG, 7,8-dihydro-8-oxoguanine; FapyG, 2,6-diamino-4-hydroxy-5-
formamidopyrimidine; mFapyG, N7-methylFapyG; Tg, thymine glycol; Sp, 
spiroiminodihydantoin; Gh, guanidinohydantoin; Ia, iminoallantoin; 5-OHU, 5-
hydroxyuracil; DHU, dihydrouracil; 5-OHC, 5-hydroxycytosine; DHT, dihydrothymine. 
(B) Alkylated nucleobases. εA, 1,N6-ethenoadenine; εC, 3,N4-ethenocytosine; 3mA, N3-
methyladenine; 3mG, N3-methylguanine; 7mG, N7-methylguanine; Hx, hypoxanthine. 
(C) Nucleobases repaired by the UDG/TDG family of DNA glycosylases. U, uracil; T, 
thymine; 5mC, 5-methylcytosine; 5hmC, 5-hydroxymethylcytosine; 5fC, 5-
formylcytosine; 5caC, 5-carboxylcytosine. 
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mechanism of action (Scharer and Jiricny 2001; Stivers and Jiang 2003; Fromme, 

Banerjee et al. 2004; Huffman, Sundheim et al. 2005; David, O'Shea et al. 2007; Dalhus, 

Laerdahl et al. 2009; Friedman and Stivers 2010; Li 2010; Zharkov, Mechetin et al. 2010; 

Rubinson and Eichman 2012). The first crystal structures of DNA glycosylases were 

reported in 1992 for bacteriophage T4 Endonuclease V (EndoV) and Escherichia coli (E. 

coli) Endonuclease III (EndoIII), which remove pyrimidine dimers and oxidized 

pyrimidines, respectively (Kuo, McRee et al. 1992; Morikawa, Matsumoto et al. 1992). 

Soon thereafter, DNA or inhibitor-bound structures of EndoV and uracil DNA 

glycosylase (UDG) established that these enzymes use a base-flipping mechanism to gain 

access to modified nucleobases in DNA (Mol, Kuo et al. 1995; Savva, McAuley-Hecht et 

al. 1995; Vassylyev, Kashiwagi et al. 1995; Slupphaug, Mol et al. 1996).  

 

 
Figure 5. Chemical reaction catalyzed by DNA glycosylases. (A,B) Monofunctional 
glycosylases cleave the N-glycosidic bond to liberate free nucleobase (N) from the 
phosphoribose backbone through either associative (A) or dissociative (B) mechanisms. 
(C) Bifunctional mechanism, in which both the N-glycosidic bond and the DNA 
backbone are cleaved.   
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Subsequent studies established that glycosylases fall into one of six structural 

superfamilies (Figure 6). Despite their divergent architectures, these proteins, with the 

exception of the ALK family (Rubinson and Eichman 2012), have evolved the base 

flipping strategy to correctly identify and orient their substrates for catalysis. Recognition 

of the target modification likely proceeds in several steps, in which the protein probes the 

stability of the base pairs through processive interrogation of the DNA duplex, followed 

by extrusion of the aberrant nucleobase into a specific active site pocket on the enzyme 

(Stivers and Jiang 2003; Banerjee, Santos et al. 2006). The enzyme-substrate complex is 

stabilized by nucleobase contacts within the active site and a pair of side chains that plug 

the gap in the DNA left by the extrahelical nucleotide and wedge into the DNA base 

stack on the opposite strand (Scharer and Jiricny 2001; Stivers and Jiang 2003; Fromme, 

Banerjee et al. 2004; Huffman, Sundheim et al. 2005; David, O'Shea et al. 2007; Dalhus, 

Laerdahl et al. 2009; Friedman and Stivers 2010; Li 2010; Zharkov, Mechetin et al. 2010; 

Rubinson and Eichman 2012).  
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Figure 6. DNA glycosylase structural superfamilies. Representative crystal structures 
from each class shown are: EndoV, T4 pyrimidine dimer DNA glycosylase EndoV (PDB 
ID 1VAS); UDG, human uracil-DNA glycosylase UDG (1EMH); Helix-hairpin-Helix 
(HhH), human 8-oxoguanine DNA glycosylase OGG1 (1YQK); Helix-two turn-helix 
(H2TH), Bacillus stearothermophilus 8-oxoguanine DNA glycosylase MutM (1L1T); 
AAG, human alkyladenine DNA glycosylase AAG/MPG (1EWN); ALK, Bacillus cereus 
alkylpurine DNA glycosylase AlkD (3JXZ).  Proteins are colored according to secondary 
structure with the HhH and H2TH domains magenta. DNA is shown as gray sticks. 
 

Oxidative Damage 

DNA bases undergo oxidative damage from chemical oxidants, free radicals and 

reactive oxygen species (ROS) produced from cellular respiration, inflammatory 

responses, and ionizing radiation (Klaunig and Kamendulis 2004; Valko, Rhodes et al. 
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2006; van Loon, Markkanen et al. 2010). Oxidized bases are often used as biomarkers for 

oxidative stress and cancer (Klaunig and Kamendulis 2004; Kryston, Georgiev et al. 

2011). Guanines are especially susceptible to oxidation, leading to a number of lesions 

that are substrates for BER (Figure 4A) (Neeley and Essigmann 2006). Attack of a 

hydroxyl radical at the C8 position of guanine produces a guanyl radical, which can be 

reduced to 7,8-dihydro-8-hydroxyguanine (8-OHG). Ring-opening of 8-OHG results in 

2,6-diamino-5-formamido-4-hydroxy-pyrimidine (FapyG).  Alternatively, the guanyl 

radical may be oxidized to 8-oxo-7,8-dihydroguanine (8-OxoG). 8-OxoG and FapyG are 

two of the most abundant oxidative DNA adducts (Burrows and Muller 1998; Evans, 

Dizdaroglu et al. 2004). 8-OxoG is a particularly insidious lesion because of its dual 

coding potential by replicative polymerases, leading to G→ T transversion mutations 

likely as a result of its ability to form both 8-OxoG(syn)•A(anti) and 8-

OxoG(anti)•C(anti) base pairs (Cheng, Cahill et al. 1992; Brieba, Eichman et al. 2004; 

Hsu, Ober et al. 2004; Klaunig and Kamendulis 2004; van Loon, Markkanen et al. 2010). 

Oxidation of guanine and 8-OxoG also produces a variety of ring-opened purines in 

addition to FapyG, including hydantoin lesions, spiroiminodihydantoin (Sp), 

guanidinohydantoin (Gh), and its isomer iminoallantoin (Ia) (Figure 4A) (Luo, Muller et 

al. 2001; Burrows, Muller et al. 2002; Henderson, Delaney et al. 2003). Fapy lesions 

inhibit DNA polymerases and are potentially mutagenic (Tudek 2003). Hydantoin lesions 

have been suggested to lead to an increase in G→T and G→C transversions and stall the 

replication machinery (Leipold, Muller et al. 2000; Burrows, Muller et al. 2002; 

Henderson, Delaney et al. 2003; Delaney, Neeley et al. 2007). In addition to purines, 

reaction of hydroxyl radicals at positions 5 or 6 of thymine produces 5,6-dihydroxy-5,6-
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dihydrothymine (thymine glycol, Tg), a cytotoxic lesion that distorts the DNA duplex and 

can inhibit replication (Evans, Dizdaroglu et al. 2004; Aller, Rould et al. 2007). Other 

potentially harmful pyrimidines include dihydrothymine (DHT), dihydrouracil (DHU), 5-

hydroxyuracil (5-OHU), 5-hydroxycytosine (5-OHC), 5-hydroxymethyluracil (5hmU), 

and 5-formyluracil (5fU) (Boorstein and Teebor 1988; Purmal, Kow et al. 1994; Yoshida, 

Makino et al. 1997; Kreutzer and Essigmann 1998; Liu and Doetsch 1998; Shikazono, 

Pearson et al. 2006).  

 

Alkylation Damage 

A diverse array of alkylated DNA adducts are produced by environmental 

mutagens, cellular metabolites, and chemotherapeutic agents (Figure 4B) (Lawley and 

Brookes 1963; Sedgwick 2004; Friedberg, Aguilera et al. 2006; Gates 2009). The major 

and minor groove-exposed N7 and N3 positions of purines make them susceptible to 

reaction with electrophiles, with guanine N7 being the most nucleophilic (Gates, Nooner 

et al. 2004). Whereas N7-methylguanine (7mG) is relatively innocuous compared to 

larger N7-alkyl substituents, the positive charge generated from N7-substitution 

destabilizes the base and leads to spontaneous depurination and ring decomposition to 

produce, for example, 5-N-Methyl-2,6-diamino-4-hydroxyformamidopyrimidine 

(mFapyG). The glycosidic linkage of N3-methyladenine (3mA) is especially unstable, 

with a half-life for 3mA depurination as short as 24 h at 37°C (Margison and O'Connor 

1973). Reactive aldehydes and epoxides generated from lipid peroxidation produce a 

number of ethenoadducts with A, G, and C, including 1,N6-ethenoadenine (εA), 1,N2- and 

N2,3-ethenoguanine, and 3,N4-ethenocytosine (εC) (Nair, Barbin et al. 1999; Barbin 2000; 
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Friedberg, Aguilera et al. 2006). In general, these lesions cause genomic instability 

through mutations and strand breaks (Friedberg, Aguilera et al. 2006). 3mA is cytotoxic, 

likely as a result of inhibition of DNA synthesis by disruption of DNA polymerase 

contacts to the N3 position in the minor groove (Boiteux, Huisman et al. 1984; Larson, 

Sahm et al. 1985; Fronza and Gold 2004; Plosky, Frank et al. 2008).  

  DNA glycosylases specific for alkylation damage have been characterized from 

eukaryotes, archaea, and bacteria. These include human AAG/MPG/ANPG (Brent 1979; 

Karran and Lindahl 1980), Saccharomyces cerevisiae MAG and Schizosaccharomyces 

pombe Mag1 (Berdal, Bjørås et al. 1990; Chen, Derfler et al. 1990; Memisoglu and 

Samson 1996), E. coli 3mA DNA glycosylase I (TAG) and II (AlkA) (Riazuddin and 

Lindahl 1978; Thomas, Yang et al. 1982), Archaeoglobus fulgidus AlkA (AfAlkA) 

(Mansfield, Kerins et al. 2003; Leiros, Nabong et al. 2007), Deinococcus radiodurans 

AlkA (DrAlkA) (Moe, Hall et al. 2012), Thermotoga maritima MpgII (Begley, Haas et 

al. 1999), Helicobacter pylori MagIII (O'Rourke, Chevalier et al. 2000), and Bacillus 

cereus AlkC and AlkD (Alseth, Rognes et al. 2006). AAG, AlkA, and MAG/Mag1 excise 

a broad range of alkylated and deaminated bases (McCarthy, Karran et al. 1984; Bjelland, 

Birkeland et al. 1994; Saparbaev, Kleibl et al. 1995; Birkeland, Anensen et al. 2002; 

Mansfield, Kerins et al. 2003; Alseth, Osman et al. 2005; Lingaraju, Kartalou et al. 2008; 

Adhikary and Eichman 2011), TAG is specific for N3-methylpurines 3mA and 3mG 

(Bjelland, Bjørås et al. 1993), and MagIII, MpgII and AlkC/D have an intermediate 

selectivity for positively charged lesions 3mA and 7mG (Begley, Haas et al. 1999; 

O'Rourke, Chevalier et al. 2000; Alseth, Rognes et al. 2006). Interestingly, AfAlkA has 

robust activity toward N1-methyladenine (1mA) and N3-methylcytosine (3mC), which 
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are normally repaired by oxidative demethylation (Birkeland, Anensen et al. 2002; 

Mansfield, Kerins et al. 2003; Leiros, Nabong et al. 2007). The alkylpurine DNA 

glycosylases can be grouped into three structural classes: 1) AAG, defined by the human 

enzyme, 2) ALK, including AlkC and AlkD, and 3) HhH, comprising all others (Figure 

6). AAG and HhH subfamilies have a collection of aromatic, electron-rich active sites 

specialized to accommodate electron-poor alkylpurines despite the divergence in 

architectures (Figure 7) (Labahn, Scharer et al. 1996; Lau, Scharer et al. 1998; Hollis, 

Ichikawa et al. 2000; Rubinson, Gowda et al. 2010). The details of the alkylpurine 

glycosylase structures are the subject of a recent review (Rubinson, Adhikary et al. 2010).  

 
AAG 

 Human AAG, also known as MPG and ANPG, excises a variety of alkylated 

purines, including 3mA, 7mG, and εA, as well as hypoxanthine (Hx), the oxidative 

deamination product of adenine (Figure 4B) (McCullough, Dodson et al. 1999; Wyatt, 

Allan et al. 1999). The exceptional rate enhancement of Hx excision relative to alkylated 

substrates suggests that Hx is the predominant biological substrate (O'Brien and 

Ellenberger 2004). AAG has also been shown to excise 1-methylguanine and 1,N2-εG 

(Saparbaev, Langouet et al. 2002; Lee, Delaney et al. 2009). Crystal structures of a 

catalytic fragment of AAG bound to oligonucleotides containing a pyrrolidine transition-

state analog and an εA base showed that AAG is a single domain protein with a mixed 

α/β structure and a positively charged DNA binding surface unique to DNA glycosylases 

(Lau, Scharer et al. 1998; Lau, Wyatt et al. 2000). Tyr162 on the tip of a β-hairpin plugs 

the gap in the DNA left by the flipped nucleotide, and the flipped εA base is stacked 

between two tyrosine residues (Tyr127 and Tyr159) and His136 inside the active site 
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cavity (Figure 7A). These structures provided a framework for a number of recent kinetic 

and thermodynamic studies aimed at dissecting the mechanism and substrate specificity 

of AAG and its collaboration with other BER enzymes.  

 

 

 
Figure 7. Alkylpurine DNA glycosylases. Overall architectures are shown on the top 
row, with HhH enzymes arranged in order of increasing specificity for 3mA. (A-F) 
Active sites. Protein and nucleic acid atoms are shaded grey and gold, respectively, and 
waters are shown as red spheres. (A) Human AAG/εA-DNA substrate complex (1EWN). 
(B) E. coli AlkA bound to 1-azaribose-DNA (1DIZ). (C) A. fulgidus AlkA (2JHJ) with 
THF-DNA modeled from the S. pombe MagI/DNA complex (3S6I). (D) S. pombe 
MagI/THF-DNA (3S6I). (E) H. pylori MagIII/3,9-dimethyladenine (1PU7). (F) E. coli 
TAG/THF-DNA/3mA product complex (2OFI). 
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1. Mechanism of base flipping and substrate discrimination 

A series of careful biochemical examinations of substrate binding, flipping, and 

excision by AAG has recently been reported. As is typically true for other glycosylases, 

substrates that decrease the stability of the DNA increase the efficiency of excision by 

AAG, with bulged nucleotides excised more efficiently than mismatched base pairs 

(O'Brien and Ellenberger 2004; Lyons and O'Brien 2009). Interestingly, the strength of 

AAG binding to bulges correlates with increased spontaneous frameshift mutations upon 

overexpression of the enzyme, which may be a result of AAG shielding bulged bases 

from mismatch repair (Klapacz, Lingaraju et al. 2010). Discrimination of nucleobases on 

the basis of their stability within the DNA duplex can be rationalized by the barrier to 

base flipping. Kinetic analysis using intrinsic εA fluorescence revealed that εA flipping 

by AAG is highly favorable, which helps to explain discrimination of this lesion from 

undamaged bases (Wolfe and O'Brien 2009). These experiments also generated a two-

step binding regime in which distinct DNA-bound and base flipped complexes form on 

the millisecond to second time scale, whereas N-glycosidic bond cleavage takes place on 

the minute time scale (Wolfe and O'Brien 2009; Hendershot, Wolfe et al. 2011). Thus, 

destabilized base pairing allows AAG to selectively excise DNA lesions. More stringent 

selection takes place inside the active site, in which side chains create steric clashes with 

unmodified A and G bases (Lau, Wyatt et al. 2000; Connor and Wyatt 2002; O'Brien and 

Ellenberger 2004).  

Excision of neutral substrates by AAG has been shown by pH-activity profiles to 

employ both a general acid and general base (O'Brien and Ellenberger 2003). The general 

acid acts to protonate the nucleobase, facilitating its dissociation, and the general base 
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would deprotonate a catalytic water molecule to attack C1′ (O'Brien and Ellenberger 

2003). Although the identity of the general acid has not been determined, the necessity to 

protonate the base explains the specificity of AAG for purines versus pyrimidines, and 

excision of positively charged lesions (e.g., 7mG) does not require the general acid 

(O'Brien and Ellenberger 2003). Quantum mechanical modeling studies indicate that base 

excision by AAG is facilitated by π-π interactions between the enzyme and its substrate 

DNA, and suggest that the nucleobase is not fully protonated but rather hydrogen bond 

donation by a protein-bound water molecule lowers the catalytic barrier (Rutledge and 

Wetmore 2011). 

 

2. Structural Basis of AAG Inhibition by εC 

In addition to εA, AAG has a modest activity toward 1,N2-εG (Saparbaev, 

Langouet et al. 2002). Although AAG binds εC with a 2-fold greater affinity than εA 

(Lingaraju, Davis et al. 2011), AAG is incapable of excising εC, which is normally 

removed by the uracil/thymine DNA glycosylase family of enzymes (Saparbaev and 

Laval 1998; Gros, Ishchenko et al. 2003; Gros, Maksimenko et al. 2004). A recent 

structure of AAG in complex with εC-DNA showed εC to reside in the active site in a 

virtually identical position as εA (Lingaraju, Davis et al. 2011) (Figure 8). The hydrogen 

bond between His136 and εA (N6) is preserved to εC (N4), and as a consequence the εC 

nucleotide is pulled slightly farther into the binding pocket. The enhanced binding to εC 

may be explained by one additional hydrogen bond between the protein (Asn169) and O2 

of εC, which is not present in εA. Regarding inhibition, protonation of substrate purines 

likely occurs at the N7 nitrogen (O'Brien and Ellenberger 2003), and crystal structures 
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suggest that a protonated N7 would be stabilized by a hydrogen bond to the backbone 

oxygen of Ala134 (Figure 8). The AAG/εC-DNA structure proposes that inhibition by 

εC is due to the inability of AAG to protonate εC, which lacks a nitrogen at the position 

corresponding to N7 of εA. In addition, this structure also showed an octahedral 

coordinate Mn2+ ion bound to the guanine opposite the εC that perturbed the guanine 

sugar pucker. This was the first observation of bound divalent ion to AAG and suggested 

that inhibition of the enzyme by divalent ions might be a consequence of impaired base 

flipping or duplex opening to expose the substrate base (Lingaraju, Davis et al. 2011). 

AAG has also been trapped onto εC-DNA in a non-specific orientation, providing a 

structural basis for the ability of the enzyme to bind single-base bulges (Klapacz, 

Lingaraju et al. 2010; Setser, Lingaraju et al. 2011). 

Figure 8. Binding of εA and εC to AAG. The εA complex (PDB ID 1EWN) is colored 
blue (protein) and salmon (DNA), and the εC complex (PDB ID 3QI5) is silver and gold. 
Hydrogen bonds are depicted as dashed lines. A water molecule (red sphere) is in 
position to protonate N7 of εA, and protonated N7 would donate a hydrogen bond to 
Ala134 (green dashed line).  εC does not have an ionizable group at this position.  
 



42 
 

3. Product release and diffusion along DNA 

Single- and multiple-turnover kinetic experiments have shown that the rate-

limiting step of hypoxanthine hydrolysis by AAG is the release of the abasic DNA 

product (Baldwin and O'Brien 2010). In fact, the tight binding of AAG to product DNA 

enables AAG to catalyze the reverse reaction and re-form the N-glycosidic bond 

(Admiraal and O'Brien 2010). Product release is promoted by APE1, the next enzyme in 

the BER pathway (Baldwin and O'Brien 2009). Displacement of the glycosylase by 

APE1 has also been observed for TDG and OGG1 (Waters, Gallinari et al. 1999; 

Sidorenko, Nevinsky et al. 2007; Fitzgerald and Drohat 2008). The nonspecific binding 

of both AAG and APE1 to DNA suggests that these enzymes may bind DNA 

simultaneously and facilitate a handoff of the abasic site from AAG to APE1. Baldwin & 

O’Brien propose that APE1 displaces AAG from the AP site without a direct protein-

protein interaction, and that AAG remains bound to the DNA upon AP dissociation 

(Baldwin and O'Brien 2010). The processivity of AAG along DNA is dependent on ionic 

strength, indicating a reliance on electrostatic interactions with the DNA backbone. 

Furthermore, the amino terminal 80 amino acids, which are not necessary for catalysis by 

AAG, contribute to the enzyme’s ability to diffuse along DNA (Hedglin and O'Brien 

2008). 

 

Helix hairpin Helix Superfamily 

The majority of yeast, archaeal, and bacterial glycosylases adopt the HhH protein 

fold, with the exception of AlkC/AlkD and bacterial orthologs of human AAG (Aamodt, 

Falnes et al. 2004; Rubinson, Metz et al. 2008). The HhH glycosylases contain two α-
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helical domains with the active site cleft located at their interface. The domain containing 

the HhH motif and DNA intercalating residues is formed from an internal region of the 

primary structure and has a relatively conserved tertiary structure. The HhH anchors the 

protein to the DNA through a series of hydrogen bonds between main-chain atoms of the 

hairpin and the phosphoribose backbone downstream of the lesion. At the damage site, 

bulky side chains from neighboring loops fill the void left by the extrahelical nucleobase 

target and wedge into the base stack opposite the flipped out nucleotide. Both plug and 

wedge residues are important for stabilizing the bent conformation of the DNA and have 

been implicated in probing the DNA helix during the search process (Bowman, Lee et al. 

2010). The second domain, formed from the N- and C-termini, is more structurally 

divergent and often contains additional structural elements, such as a zinc ion (TAG), 

iron-sulfur cluster (MpgII), or carbamylated lysine (MagIII) (Rubinson, Gowda et al. 

2010). 

Comparative analysis of the HhH alkylpurine glycosylases has been instrumental 

in deciphering the physical and chemical determinants of substrate recognition 

(Rubinson, Adhikary et al. 2010). On one hand, we have learned that the HhH scaffold 

accommodates a diverse array of nucleobase binding pockets that discriminate between 

lesions on the basis of shape complementarity. For example, the nucleobase binding 

surface of AlkA is a shallow cleft that can accommodate a variety of alkylpurines, 

whereas the active sites of TAG and MagIII are constrained and perfectly shaped for 

3mA. On the other hand, this steric selection is not the only determinant of specificity 

since some active sites can accommodate nucleobases for which they do not excise (e.g., 

Mag1) (Adhikary and Eichman 2011). In addition, the catalytic requirements for excision 



44 
 

of cationic lesions 3mA and 7mG differ from the uncharged alkylpurines (e.g., εA) by 

virtue of their weaker N-glycosidic bonds (Stivers and Jiang 2003). Hence, the inherent 

instability of these lesions render their excision highly dissociative, and recent reports 

suggest that cationic lesions may be removed and even detected within DNA differently 

than neutral lesions (Metz, Hollis et al. 2007; Rubinson, Gowda et al. 2010; Adhikary and 

Eichman 2011).   

 

1. E. coli AlkA 

Crystal structures of unliganded AlkA identified the enzymes as a member of the 

HhH superfamily and revealed a shallow nucleobase binding surface that can 

accommodate a variety of  alkylpurines, a feature that helped to explain its broad 

specificity (Labahn, Scharer et al. 1996; Yamagata, Kato et al. 1996) (Figure 7B). In 

addition to the two-domain HhH architecture, AlkA contains an amino-terminal β-sheet 

domain of unknown function that is also present in OGG1 (Figure 7). A structure of 

AlkA bound to DNA containing 1-azaribose, which mimics the oxocarbenium reaction 

intermediate, has contributed greatly to our understanding of these enzymes (Hollis, 

Ichikawa et al. 2000; Hollis, Lau et al. 2000). The HhH anchors the protein to the DNA 

and does not directly participate in lesion recognition. The DNA is kinked by ~60° 

around the 1-azaribose, is rotated 180° around the phosphoribose backbone, and is 

pointed into the active site cleft (Figure 7B). Leu125 plugs the gap in the DNA. Rotation 

of the 1-azaribose into the active site places the N1′ nitrogen directly adjacent to the 

carboxylate group of the catalytic Asp238, which likely stabilizes the oxocarbenium 

intermediate (Hollis, Ichikawa et al. 2000). In addition to this lesion-specific binding 
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mode, AlkA has the ability to bind to DNA ends (Zhao and O'Brien 2011), which may 

explain why a structure of AlkA bound to a substrate DNA has not been determined. 

Nonetheless, this feature was exploited to develop a host-guest crystallization strategy to 

determine structures of various lesions in DNA (Bowman, Lee et al. 2008).  

High resolution structures of AlkA cross-linked to undamaged DNA bases 

provided insight into how the enzyme detects damage within the context of unmodified 

DNA (Bowman, Lee et al. 2010). Not surprisingly, the most notable differences between 

these undamaged DNA complexes (UDCs) and the 1-azaribose lesion recognition 

complex (LRC) are centered around the lesion. The UDCs do not exhibit the kink present 

in the LRC DNA. The domain containing most of the catalytically important residues, 

including Asp238, is shifted 2.4 Å toward the lesion strand in the LRC compared to the 

UDCs. This movement, combined with a modest 1 Å shift of the Leu125 plug residue 

toward the lesion strand, clamps the lesion between the two domains and creates 

additional protein contacts that stabilize the LRC. In contrast, the HhH motif makes the 

same DNA contacts in LRC and UDC structures, providing additional evidence that the 

HhH motif is a non-specific DNA binding motif and is not involved in distorting the 

DNA for catalysis. Leu125 in the UDCs does not interact with the DNA, although it is 

still present in the minor groove. The phosphate backbone in the LRC is significantly (~9 

Å) closer to the protein, which allows the Leu125 side-chain to intercalate into the DNA 

base stack in that structure. A 3mA base modeled in place of a centrally located cytosine 

indicates that Leu125 likely makes van der Waals contacts to the N3-methyl group of the 

3mA (Bowman, Lee et al. 2010). These observations suggest that AlkA employs a 
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passive scanning mechanism along the minor groove and uses the Leu125 side chain to 

detect abnormal bases and flip them into the active site.  

 

2. Archaeal AlkA 

An AlkA ortholog from the archaeon Archaeoglobus fulgidus (AfAlkA), has been 

shown to excise 1mA and 3mC in addition to 3mA, 7mG, εA and Hx from DNA 

(Birkeland, Anensen et al. 2002; Mansfield, Kerins et al. 2003; Leiros, Nabong et al. 

2007). The crystal structure of this ortholog shows that the nucleobase binding pockets of 

AfAlkA and E. coli AlkA are strikingly different despite the similarity in their overall 

architectures (Leiros, Nabong et al. 2007) (Figure 7B,C). The substrate nucleobase is 

predicted to stack between Phe133 and Phe282, similar to stabilization of 3mA by MagIII 

(Figure 7E). In support of this, substitution of Phe133 or Phe282 with alanine diminishes 

εA and 1mA base excision, and the double mutant abrogates activity. Arg286 is predicted 

to orient εA in the active site through hydrogen bonding, but would potentially repel the 

protonated amine groups of 1mA and 3mC (Leiros, Nabong et al. 2007). Mutation of the 

catalytic Asp240 (Asp238 in EcAlkA) completely eliminates base excision activity in 

AfAlkA.  

 

3. Yeast MAG/Mag1 

S. cerevesiae MAG and S. pombe Mag1 are 42% and 47% similar in sequence to 

E. coli AlkA, respectively, but have a more restricted substrate specificity (Rubinson, 

Adhikary et al. 2010). MAG excises 3mA, 7mG, εA, Hx, and guanine, but not oxidized 

substrates (e.g., O2-methylthymine) from DNA, while Mag1 is more restricted to 3mA, 
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3mG, and 7mG and has only a modest activity toward εA (Saparbaev and Laval 1994; 

Bjørås, Klungland et al. 1995; Saparbaev, Kleibl et al. 1995; Berdal, Johansen et al. 1998; 

Alseth, Osman et al. 2005; Lingaraju, Kartalou et al. 2008; Adhikary and Eichman 2011). 

Differences in substrate preferences are reflected in cells. For example, MAG deletion 

strains are more sensitive to alkylation agents than are S. pombe mag1. In addition, MAG 

expression is induced to higher levels than Mag1 upon exposure to alkylation agents 

(Chen and Samson 1991; Memisoglu and Samson 2000). These phenotypic differences 

suggest that these proteins have different roles in protecting cells against alkylation 

damage (Memisoglu and Samson 2000; Memisoglu and Samson 2000). 

Figure 9. Yeast 3-methyladenine DNA glycosylases MAG and Mag1. In all panels, the 
unbound Saccharomyces cerevisiae MAG (grey) free enzyme is superimposed onto the 
Schizosaccharomyces pombe Mag1/THF-DNA complex (blue/gold, PDB ID 3S6I). (A) 
Overall structures. (B) Active sites. Mag1 residues Phe158 and Ser159 are the only two 
active site residues that differ between the two enzymes. (C) Close-up of Mag1-DNA 
contacts at the lesion. Swapping Mag1 His64 and MAG Ser97 between the two enzymes 
effectively swaps their respective abilities to remove εA (see text for details). 

 

Our laboratory recently determined crystal structures of Mag1 bound to DNA 

containing a THF abasic analog (Adhikary and Eichman 2011) and of free MAG 

(unpublished results) (Figure 9). Neither MAG nor Mag1 contain the mixed α/β domain 

present at the N-terminus of the AlkA orthologs (Figure 9A). Nevertheless, Mag1 
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engages the THF-DNA similarly to AlkA, with the DNA bent by ~60° and the THF 

moiety rotated around the phosphate backbone toward the nucleobase binding pocket. 

Inside the active site, there are only two notable differences between MAG and Mag1. 

Mag1 residues Phe158 and Ser159 at the back of the binding cleft are occupied by 

Ser197 and Gly198 in MAG (Figures 7D and 9B). Swapping these residues (Mag1 

FS→SG and MAG SG→FS double mutants) did not affect their relative εA activities, 

providing evidence that the bulky Phe residue in the binding pocket is not responsible for 

the lower εA excision activity of Mag1 (Adhikary and Eichman 2011). Interestingly, 

substitution of the catalytic aspartate residues had dramatically different effects. MAG 

Asp209Asn completely abrogated εA and 7mG excision activities similar to that 

observed for AlkA Asp238 (Labahn, Scharer et al. 1996), while Mag1 Asp170Asn had a 

more modest effect, implying that this residue in MAG plays a more significant role in 

catalysis, which may explain the broader substrate preference of this enzyme (Adhikary 

and Eichman 2011).   

Outside of the active site, there is a notable difference between MAG and Mag1 at 

the point of contact with the DNA minor groove flanking the damage site (Figure 9C). In 

addition to the plug and wedge residues, His64 in Mag1 is in position to hydrogen bond 

with either the N3 of the adenine immediately 5′ to the lesion or to the exocyclic N2 of 

the guanine on the opposite strand. MAG and AlkA orthologs, including those from 

Bacillus halodurans and Deinococcus radiodurans, which have broad substrate 

preferences and for which crystal structures are available, contain a serine residue at this 

position (Figure 9C) (Rubinson, Adhikary et al. 2010; Adhikary and Eichman 2011; 

Moe, Hall et al. 2012). Surprisingly, swapping histidine and serine between Mag1 and 



49 
 

MAG led to dramatic increase in εA excision rate in Mag1 and a decrease in εA excision 

in MAG, whereas the 7mG excision rates in both enzymes remained the same (Adhikary 

and Eichman 2011). This is another illustration of how contacts to the minor groove may 

be important for damage detection and/or stabilizing a specific enzyme-substrate complex 

for catalysis. These results also suggest that cationic lesions like 7mG may be detected or 

stabilized differently than neutral alkylpurines.  

 

4. H. pylori MagIII and T. maritima MpgII 

MagIII and MpgII are related alkylpurine glycosylases identified by their 

sequence similarity to EndoIII (Begley, Haas et al. 1999; O'Rourke, Chevalier et al. 

2000). MagIII is highly specific for 3mA but can excise mispaired 7mG, whereas MpgII 

can excise both 3mA and 7mG (Begley, Haas et al. 1999; O'Rourke, Chevalier et al. 

2000). The crystal structure of MagIII showed a unique feature in the N/C-terminal 

domain, which contains a carbamylated lysine (Lys205) that neutralizes an otherwise 

highly positively charged region of the protein (Eichman, O'Rourke et al. 2003). MagIII’s 

preference for 3mA can be explained by the snug fit of 3mA inside the active site, which 

partially excludes N7-substituted purines. Structures of MagIII bound to positively 

charged 3,9-dimethyladenine (3,9-dmA) and neutral εA bases showed the nucleobases to 

stack between Phe45 and Trp24 and to be bound on three sides by Trp25, Pro26, and 

Lys211 (Figure 7E). Other than these van der Waals and π-stacking interactions, there 

are no specific hydrogen bonding or polar contacts to the adenine ring like those observed 

in TAG (see section 5). Similar to Mag1, mutation of the putative catalytic aspartate 

Asp150 in MagIII does not completely abrogate base excision activity, again suggesting 
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that the catalytic power of this residue determines the ability of the HhH enzymes to 

remove more stable, neutral nucleobases from DNA, and that little catalytic assistance is 

required for hydrolysis of the labile 3mA glycosidic bond (Eichman, O'Rourke et al. 

2003; Stivers and Jiang 2003). 

Unlike MagIII, MpgII contains an iron-sulfur cluster and shows robust activity 

toward 7mG, which is intriguing given the sequence similarity between MagIII and 

MpgII (Begley, Haas et al. 1999; Rubinson, Adhikary et al. 2010). Although there is no 

structure for MpgII, sequence comparison predicts that only two residues differ within 

the active site: MpgII Trp52 and Lys53 are occupied by Phe45 and Glu46 in MagIII, 

respectively. The MagIII active site is constrained by a salt bridge between Glu46-

Lys211. Substitution of Glu46 with the corresponding lysine residue (Lys53) in MpgII 

should relieve this constraint from electrostatic repulsion. Indeed, a MagIII Glu46Lys 

mutant resulted in an 8-fold increase in 7mG•T activity, suggesting that steric exclusion 

of 7mG partially accounts for thes low activity of MagIII toward methylguanine bases 

(Eichman, O'Rourke et al. 2003).  

 

5. E. coli TAG  

TAG substrate preference is strictly limited to N3-substituted purines 3mA and 

3mG (Bjelland, Bjørås et al. 1993) and does not have the catalytic aspartate residue 

present in other 3mA DNA glycosylases. NMR studies of E. coli TAG showed it to be a 

structurally divergent member of the HhH family and to contain a zinc ion in the N/C-

terminal domain (Drohat, Kwon et al. 2002; Cao, Kwon et al. 2003; Kwon, Cao et al. 

2003). Similar to MagIII, TAG’s specificity can be partially attributed to the fact that the 
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3mA binding pocket would sterically exclude all other nucleobases (Figure 7F). Binding 

studies and NMR investigation of 3mA in the active site led to the suggestion that TAG 

enhances the rate of 3mA depurination by binding tightly to the nucleobase, thereby 

destabilizing the ground state of the enzyme-substrate complex (Cao, Kwon et al. 2003). 

This idea was illustrated by crystal structures of a TAG/abasic-DNA/3mA product 

complex using the Salmonella typhi ortholog, which is 82% identical and 92% conserved 

overall with E. coli TAG (Metz, Hollis et al. 2007). In that structure, the bound DNA is 

more B-form when compared to the highly distorted 1-azaribose DNA bound to AlkA, 

and there was a large (7 Å) separation between the THF, which is not fully engaged 

inside the active site, and 3mA, which is buried deep inside the cleft. These observations 

indicated that the DNA undergoes significant relaxation upon breakage of the N-

glycosidic bond, and it was suggested that steric strain may contribute to bond cleavage 

(Metz, Hollis et al. 2007). A recent structure of Staphylococcus aureus TAG recapitulates 

the structural features observed in the E. coli and S. typhi structures, and the authors 

suggested that tautomerization of 3mA contributes to its recognition by TAG (Zhu, Yan 

et al. 2012). 

 

Uracil / Thymine / 5mC 

 G•U and G•T mismatches arise from deamination of cytosine and 5-

methylcytosine (5mC), respectively, and lead to A•T transition mutations (Coulondre, 

Miller et al. 1978; Duncan and Miller 1980). Uracil is excised in eukaryotes by uracil 

DNA glycosylase (UDG, also known as UNG), single-stranded monofunctional uracil 

glycosylase (SMUG), and to a lesser extent by thymine DNA glycosylase (TDG). In 



52 
 

bacteria, uracil is removed by the UDG ortholog, Ung, and mispaired uracil glycosylase 

(MUG) (Lindahl 1974; Gallinari and Jiricny 1996; Haushalter, Todd Stukenberg et al. 

1999; Kavli, Sundheim et al. 2002). Thymine is removed from G•T mismatches by TDG 

and MBD4 in eukaryotes and by archaeal mismatch specific glycosylase (MIG) (Brown 

and Jiricny 1987; Begley and Cunningham 1999; Hendrich, Hardeland et al. 1999). With 

the exception of MBD4 and MIG, which belong to the HhH superfamily, the UDG/TDG 

glycosylases adopt a highly conserved α/β fold (Figure 6) and can be divided into 4 

subfamilies on the basis of sequence similarity and substrate specificity (Mol, Arvai et al. 

1995; Mol, Arvai et al. 2002; Wu, Qiu et al. 2003). UDG family 1 contains UDG/UNG 

and is defined by the landmark structures of the human and viral enzymes in various 

states, which revealed mechanistic details about substrate recognition and catalysis 

common to the entire superfamily (Mol, Arvai et al. 1995; Mol, Kuo et al. 1995; Savva, 

McAuley-Hecht et al. 1995; Slupphaug, Mol et al. 1996). Family 2 is composed of 

thymine-specific TDG and MUG, which are homologous to UDG in structure but not 

sequence (Barrett, Savva et al. 1998; Barrett, Savva et al. 1998; Barrett, Scharer et al. 

1999; Maiti, Morgan et al. 2008). The third family is defined by SMUG, and the fourth 

by Thermus thermophilus TDG. The common α/β fold of the UDG superfamily contains 

a positively-charged groove approximately the width of a DNA duplex that is ideal for 

binding double-strand DNA (Mol, Arvai et al. 1995).  

 UDG has served as a model for understanding the structural and biochemical 

functions of DNA glycosylases in general, and recent work has focused on the 

mechanism by which the enzyme locates uracil amidst undamaged DNA. This collective 

body of work on UDG has been the subject of several recent reviews (Krokan, Drablos et 
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al. 2002; Fromme, Banerjee et al. 2004; Huffman, Sundheim et al. 2005; O'Brien 2006; 

Stivers 2008; Friedman and Stivers 2010; Zharkov, Mechetin et al. 2010), and thus will 

not be discussed here. We instead focus on recent structural results for TDG in light of 

new evidence implicating this enzyme in active 5mC demethylation (Cortellino, Xu et al. 

2011; Jacobs and Schar 2011). 

 

A possible role of BER in DNA demethylation  

In addition to repair of thymine mismatches, the biological functions of TDG and 

MBD4 may extend beyond DNA repair as a defense against mutations to a potential role 

in regulating gene expression and DNA demethylation (Cortazar, Kunz et al. 2007; 

Cortellino, Xu et al. 2011). 5mC is an important marker for gene expression, X-

chromosome inactivation, and transposon silencing among other developmental 

processes (Chan, Henderson et al. 2005; Huh, Bauer et al. 2008; Law and Jacobsen 

2010). Whereas DNA methylation mechanisms are relatively well understood (Goll and 

Bestor 2005), the demethylation pathways are not. Demethylation can occur passively 

after replicative synthesis of unmethylated daughter strands or actively by demethylase 

enzymes. In plants, active demethylation takes place by the DME/ROS1 family of 5mC 

DNA glycosylases, but an analogous 5mC glycosylase has not been discovered in 

mammals. TDG and MBD4 have been implicated in active demethylation on the basis of 

their abilities to excise mispaired thymine produced from AID- or APOBEC-dependent 

5mC deamination, and recent studies have shown TDG to be necessary for maintenance 

of epigenetic stability (Rai, Huggins et al. 2008; Cortazar, Kunz et al. 2011; Cortellino, 

Xu et al. 2011). In addition, the recent discoveries that the ten-eleven translocation (TET) 
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proteins oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 

5-carboxylcytosine (5caC) (Figure 4C), and that 5hmC is found at transcriptional start 

sites and within actively transcribed genes  raises the distinct possibility that these 5mC 

derivatives and their deamination products are intermediates in a BER-dependent active 

demethylation pathway (Tahiliani, Koh et al. 2009; Ito, D'Alessio et al. 2010; Ficz, 

Branco et al. 2011; Guo, Su et al. 2011; Guo, Su et al. 2011; He, Li et al. 2011; Ito, Shen 

et al. 2011; Pastor, Pape et al. 2011; Veron and Peters 2011; Wu and Zhang 2011). 

Indeed, TDG is capable of excising 5mC oxidation products 5fC and 5caC (Maiti and 

Drohat 2011; Zhang, Lu et al. 2012), further implicating the thymine glycosylases in 

active demethylation.  

 

Structural Insight into TDG Function 

Structures of the catalytic domain of TDG (residues 111-308) bound to substrate 

and product DNA and conjugated by the regulatory protein SUMO have provided a basis 

to understand the sequence specificity and mechanisms of base excision and product 

release of TDG (Baba, Maita et al. 2005; Maiti, Morgan et al. 2008; Manvilla, Maiti et al. 

2012; Zhang, Lu et al. 2012). In addition, an NMR study of the N-terminal regulatory 

domain of TDG (residues 1-111) supports models for allosteric control of TDG activity 

(Steinacher and Schar 2005; Smet-Nocca, Wieruszeski et al. 2008). 

 

1. TDG-DNA complexes 

Structures of TDG bound to duplex DNA containing a THF product mimic 

provided the general features of DNA binding and the first glimpse into thymine 
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recognition (Maiti, Morgan et al. 2008). In this structure, two TDG molecules bound to a 

single 22-nucleotide DNA duplex, with one protein anchored at the abasic site and the 

other positioned at an undamaged site, although biochemical analysis indicated that only 

one protein per lesion is required for catalysis (Maiti, Morgan et al. 2008; Morgan, Maiti 

et al. 2011). 

The TDG complex is very similar to DNA-bound structures of UDG and E. coli 

MUG, with notable exceptions. Both TDG and UDG impose a ~43° bend in the substrate 

DNA at the abasic site, although MUG does not significantly bend the DNA (Barrett, 

Savva et al. 1998; Parikh, Mol et al. 1998; Barrett, Scharer et al. 1999; Stivers and Jiang 

2003). TDG utilizes an arginine (Arg275) to plug the gap created by the flipped 

nucleotide, whereas UDG and MUG have leucine plugs. Substitution of Arg275 with 

either alanine or leucine results in a significant decrease in both the rate of thymine 

excision and substrate binding (Maiti, Morgan et al. 2009). Another unique aspect of the 

TDG family are lysine residues Lys246 and Lys248, which make contacts to the DNA 

backbone of the non-damaged strand, 8 and 9 nucleotides away from the damage site, 

providing an explanation for TDG’s requirement for  9-10 bases 5′ to the lesion (Scharer, 

Kawate et al. 1997; Maiti, Morgan et al. 2008).  

 Two TDG-substrate-DNA complexes were recently determined that provided a 

snapshot of an uncleaved nucleobase in the active site (Maiti, Noon et al. 2012; Zhang, 

Lu et al. 2012). One structure contained the wild-type enzyme bound to DNA containing 

a non-hydrolyzable dU mimetic (2′-deoxy-2′-fluoroarabinouridine, UF) (Figure 10A) and 

the other trapped 5caC in the active site by utilizing a variant TDG containing an 

Asn140Ala substitution (Figure 10B), which had previously been shown to decrease the  
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Figure 10. Protein-DNA contacts within the TDG active site. (A) TDG bound to DNA 
containing 2′-deoxy-2′-fluoroarabinouridine (UF) (PDB ID 3UFJ). Hydrogen bonds are 
shown as dashed lines and the putative catalytic water molecule is a red sphere. (B) TDG 
in complex with 5-carboxylcytosine (5caC)-DNA. 
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rate of thymine excision while having only marginal effect on substrate binding (Maiti, 

Morgan et al. 2008; Maiti, Morgan et al. 2009). 

The overall structures of UF and 5caC substrate complexes are similar to the THF 

product complex, and the active sites reveal common modes of recognition of the two 

substrates. A hydrogen bond was observed from Asn191 to N4 in the 5caC structure and 

to pyrimidine N3 in the UF structure, and this contact is conserved in UNG and SMUG1 

but not MUG. In UNG and SMUG1, this asparagine side chain forms an additional 

hydrogen bond to the pyrimidine O4 (Parikh, Mol et al. 1998; Barrett, Scharer et al. 

1999; Wibley, Waters et al. 2003). Maiti et al suggest the differential orientation of this 

residue in UNG and SMUG1 prevents these enzymes from excising cytosine analogs 

such as 5fC and 5caC (Maiti, Noon et al. 2012). In addition, 5caC and likely thymine 

participate in van der Waals interactions with Ala145 and both UF and 5caC form 

hydrogen bonds with main chain atoms of Tyr152, at either the O4 of uracil (and 

thymine) or the carboxyl group of 5caC. The 5caC forms an additional interaction with 

Asn157. Even though modeling a thymine base into the active site of the UF structure 

shows a steric clash with Ala145, this residue is able to accommodate the 5-carboxyl 

group in the 5caC structure. Nevertheless, Ala145Gly and His151Ala mutants both 

increase TDG’s thymine excision activity by 13-fold over the wild-type. Maiti et al 

propose that His151 slows the cleavage reaction by destabilizing the partial negative 

charge that develops during the reaction (Maiti, Noon et al. 2012). The mutations showed 

an even greater increase in activity for thymine from normal A•T base pairs, suggesting 

that these highly conserved residues are needed to limit aberrant action on undamaged 

DNA (Maiti, Noon et al. 2012). Zhang, et al. found that TDG binds DNA containing 
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5caC with higher affinity than 5fC, U, and T, which they attribute to the hydrogen bonds 

to the electronegative 5caC carboxyl group from Asn157, His151, and Tyr152 (Zhang, 

Lu et al. 2012). The inability of other members of the UDG family, including SMUG1 

and UDG, to bind 5caC and 5fC may result from the presence of residues that interfere 

with these interactions (Zhang, Lu et al. 2012). 

Regarding catalysis, stabilization of Asn140 and the β2-α4 catalytic loop, which 

encircles the active site, by Thr197 was found to be important for TDG function, as a 

Thr197Ala substitution resulted in a 32-fold reduction in base excision activity (Maiti, 

Noon et al. 2012). Interestingly, the UF structure suggested that a putative water 

nucleophile, which is absent from other TDG structures and the enzyme-substrate 

complex for related MUG enzymes, is positioned by the side chain and main chain of 

Asn140 and Thr197, respectively. The low resolution and extensive merohedral twinning 

of the crystallographic data precludes an unambiguous assignment of such a water 

molecule. However, the presence of a water at this position in TDG is consistent with 

those observed in the high-resolution structure of free MUG (Barrett, Savva et al. 1998) 

and with the putative water nucleophiles located in high-resolution structures of UNG 

(Parikh, Mol et al. 1998; Xiao, Tordova et al. 1999).  

TDG makes several contacts to the guanine opposite the lesion that offer an 

explanation for the enzyme’s specificity for thymine in certain sequence contexts. 

Specificity for G•T mispairs (Waters and Swann 1998) is dictated by Ala274 and Pro280, 

which make guanine-specific hydrogen bonds from their backbone oxygen atoms to N1 

and N2 of the G opposite the abasic site (Figure 11A). The Ala274 contact is conserved 

by UDG enzymes, whereas the Pro280 interaction is unique to TDG. In addition, TDG  
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Figure 11. Comparison of TDG (A) and MBD4 (B) contacts to the strand opposite the 
lesion. The guanine base opposite the THF abasic site is marked with an asterisk. (A) 
TDG/THF-DNA complex (PDB ID 2RBA). (B) MBD4/THF-DNA complex (4DK9). 
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has the highest affinity for thymine that is immediately 5′ to a guanine (i.e., in a 

TpG/CpG dinucleotide step) (Sibghat, Gallinari et al. 1996; Morgan, Bennett et al. 2007). 

Interestingly, TDG does not contact the 5′ cytosine on the non-lesion strand. The 

specificity for TpG/CpG is likely explained by contacts to the TpG guanine from the 

conserved Gln278 side chain and Ala277 main chain, as well as the Ala274/Pro280 

contacts to the G•T guanine described above (Figure 11A) (Waters and Swann 1998; 

Morgan, Bennett et al. 2007; Maiti, Morgan et al. 2008).  

 

2. TDG-SUMO interaction 

Sumoylation of TDG at lysine 330, located at the C-terminal end of the catalytic 

domain, weakens TDG-DNA binding (Hardeland, Steinacher et al. 2002; Steinacher and 

Schar 2005). The crystal structure of human TDG conjugated with SUMO1 was 

determined in 2005 and provided insight into how SUMO1 modulates TDG-DNA 

binding (Baba, Maita et al. 2005). C-terminal residues of TDG (307-330) form a 

crossover β-strand that extends a β-sheet with SUMO1. In addition, TDG and SUMO1 

interact through a series of main chain hydrogen bonds and side chain hydrophobic and 

polar interactions at its SUMO-interacting site (SIM). A mutational analysis revealed that 

these noncovalent bonds are necessary for SUMO1-induced disruption of DNA binding 

by TDG, confirming an earlier study (Hardeland, Steinacher et al. 2002; Baba, Maita et 

al. 2005). The covalent tethering of SUMO1 to the C-terminus of TDG places helix α7 in 

an outwardly extended conformation from the rest of the protein. Superposition of 

sumoylated and DNA-bound forms of TDG predict that helix α7 in this orientation 

collides with the DNA strand immediately opposite the lesion (Figure 12). The nature of 
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the conformational change in the C-terminal end of the TDG glycosylase domain is 

uncertain since helix α7 was not present in the DNA-bound structures. Nevertheless, the  

SUMO1-TDG structure suggests that sumoylation of TDG locks helix α7 in an 

orientation that promotes DNA release. A structure of SUMO3 conjugated to TDG shows 

very similar binding between the two proteins as with SUMO1 (Baba, Maita et al. 2006).  

 

 

Figure 12. SUMO1 modified TDG creates steric clash with DNA. The SUMO1-modified 
TDG structure (blue TDG, green SUMO1, PDB ID 1WYW) is superimposed onto the 
TDG/THF-DNA complex (silver/gold, 2RBA). SUMO1 modification holds helix α7 in a 
position that would presumably clash with the DNA. 
 

3. TDG regulatory domain 

TDG contains at its N-terminus a lysine-rich regulatory domain (RD) that 

interacts with DNA and a number of proteins involved in genome maintenance. The RD 

binds to DNA methyltransferase DNMT3a (Li, Zhou et al. 2007) and is a target for 
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acetylation by transcriptional co-activators CBP (CREB binding protein)/p300, which 

aids in recruitment of APE1 (Tini, Benecke et al. 2002). In addition, the RD is important 

for TDG specificity for G•T mismatches (Gallinari and Jiricny 1996). This regulatory 

domain is highly flexible and contains a non-specific DNA binding function that is 

modulated by sumoylation of the catalytic domain, thereby affecting its enzymatic 

activity (Steinacher and Schar 2005). A recent NMR study of this domain revealed 

residues 1-50 to be unstructured even in the context of the full protein. Residues 51-111, 

on the other hand, showed a modest degree of structure and an extended conformation 

that contacts the catalytic domain in the context of the full-length protein (Smet-Nocca, 

Wieruszeski et al. 2008). The authors propose an electrostatic interaction between the 

regulatory and catalytic domains that modulates rates of thymine and uracil excision, 

supporting previous models for allosteric control of G•T specificity (Steinacher and Schar 

2005; Smet-Nocca, Wieruszeski et al. 2008). 

 

MBD4  

Mismatch specific thymine glycosylase MBD4 contains a methyl-CpG-binding 

domain (MBD) and a C-terminal glycosylase domain that preferentially excises T 

mispaired with G (Hendrich, Hardeland et al. 1999). Crystal structures of the glycosylase 

domains of mouse and human MBD4 showed that the enzyme belongs to the helix-

hairpin-helix structural superfamily (Wu, Qiu et al. 2003; Zhang, Liu et al. 2011). A 

recent structure of MBD4’s glycosylase domain bound to THF-DNA showed the overall 

DNA binding regime characteristic of HhH glycosylases, including a 57° bend in the 

DNA, an extrahelical THF moiety, the opposite base (guanine) stacked in the duplex, and 
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plug (Leu506) and wedge (Arg468) residues to stabilize the flipped nucleotide and 

distorted duplex (Manvilla, Maiti et al. 2012). Like TDG, MBD4 makes several guanine-

specific contacts to the base opposite the thymine, and thus the structure provides a 

rationale for discrimination of G•T over A•T base pairs (Figure 11B). Specifically, 

Leu506 and Arg468 mainchain oxygens participate in hydrogen bonds or polar 

interactions with the N1 and exocyclic N2 of guanine, contacts which cannot be made to 

adenine (Maiti, Morgan et al. 2008; Manvilla, Maiti et al. 2012) (Figure 11B). Finally, 

although MBD4 has been proposed to process G•T mispairs created by active 

demethylation (Rai, Huggins et al. 2008), MBD4 is not able to excise 5fC or 5caC (He, 

Li et al. 2011; Manvilla, Maiti et al. 2012). Manvilla et al attribute this lack of activity to 

incompatibility between the MBD4 active site and the negative charges that develop on 

5fC and 5caC upon dissociation (Manvilla, Maiti et al. 2012).  

 

DME/ROS1 

Plants contain a family of 5mC glycosylases, represented by the Arabidopsis 

proteins DEMETER (DME), Repressor of Silencing 1 (ROS1), DME like 2 (DML2) and 

DML3, that are responsible for active demethylation via BER. DME is responsible for 

endosperm gene imprinting and is necessary for seed viability (Choi, Gehring et al. 

2002). The DML enzymes, including ROS1, likely function as genome wide 

demethylases, particularly at sites 5′ and 3′ to genes to regulate transcription, protecting 

plants from erroneous gene silencing (Gong, Morales-Ruiz et al. 2002; Zhang, Yazaki et 

al. 2006; Zhu, Kapoor et al. 2007; Zilberman, Gehring et al. 2007). DME, ROS1, and 

DML3 excises 5mC in CpG, CpNpG, and CpNpN contexts, and DML2 was shown to 
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have 5mC excision activity in a CpG context (Gehring, Huh et al. 2006; Morales-Ruiz, 

Ortega-Galisteo et al. 2006; Penterman, Zilberman et al. 2007).  

The DME/ROS1 family of enzymes utilize a bifunctional glycosylase-lyase 

mechanism and adopt an iron-sulfur-containing HhH glycosylase domain similar to 

EndoIII and MutY (Choi, Gehring et al. 2002; Gehring, Huh et al. 2006; Penterman, 

Zilberman et al. 2007; Ponferrada-Marin, Roldan-Arjona et al. 2009). A homology model 

of ROS1 using BsEndoIII as a template helped to identify several residues conserved 

among the HhH superfamily that are important for ROS1 function (Ponferrada-Marin, 

Parrilla-Doblas et al. 2011). Tyr606 and Asp611 are predicted to reside near the base 

recognition pocket and are necessary for the excision of both 5mC and thymine from G•T 

mismatches. A Tyr606Leu mutant slightly reduced the DNA binding activity, whereas 

Asp611Val mutation increased DNA binding with respect to wild-type ROS1 

(Ponferrada-Marin, Parrilla-Doblas et al. 2011). The homology model also revealed that 

two aromatic residues (Phe589 and Tyr1028) conserved in the DME family are 

positioned to interact with the nucleobase lesion. Interestingly, Phe589Ala and 

Tyr1028Ser mutations changed the preference of ROS1 from 5mC to T•G mismatches, 

indicating that they are important for substrate recognition (Ponferrada-Marin, Parrilla-

Doblas et al. 2011). We have constructed a similar homology model for the glycosylase 

domain of DME, and find analogous residues predicted to be necessary for catalysis (See 

Chapter III). 

Unlike other glycosylases, DME/ROS1 proteins contain two additional domains 

flanking the glycosylase domain and that are essential for 5mC excision (Morales-Ruiz, 

Ortega-Galisteo et al. 2006; Mok, Uzawa et al. 2010; Ponferrada-Marin, Martinez-Macias 
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et al. 2010). The C-terminal domain lacks any identifiable sequence homology to proteins 

outside of the DME/ROS1 family, and thus additional structural and functional studies 

will be necessary to ascertain its function. The N-terminal domain, on the other hand, 

contains a conserved lysine-rich region required for ROS1 binding to non-methylated 

DNA and enhances ROS1 specificity for 5mC over T. Deletion of this domain caused 

ROS1 to process long DNA substrates less effectively (Ponferrada-Marin, Martinez-

Macias et al. 2010). On its own, the N-terminal region binds DNA with a high affinity. 

Deletion of the N-terminal domain reduces the ability of ROS1 to bind DNA and excise 

5mC, but does not affect the ability of DME to bind methylated and non-methylated 

DNA (Mok, Uzawa et al. 2010; Ponferrada-Marin, Martinez-Macias et al. 2010). The N-

terminal and glycosylase domains are separated by ~240 and 400 residues in ROS1 and 

DME, respectively. Deletion of this interdomain region (IDR1) in DME does not affect 

5mC excision activity (Mok, Uzawa et al. 2010). The ROS1-EndoIII homology model 

predicted that this linker region is an inserted sequence within the glycosylase domain 

and that the lesion-intercalating plug residue is N-terminal to the IDR1 insertion 

(Ponferrada-Marin, Parrilla-Doblas et al. 2011). A study of DME and DML3 and 

comparison to the ROS1 homology model continues in Chapter III, where the specificity 

of the DME/ROS1/DML3 enzymes for 5mC is investigated. 
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Chapter III 

 

5-METHYLCYTOSINE RECOGNITION BY ARABIDOPSIS THALIANA DNA 

GLYCOSYLASES DEMETER AND DML3* 

 

Introduction 

5-Methylcytosine (5mC) is an important epigenetic modification that serves as a 

marker for gene expression, X-chromosome inactivation, and transposon silencing, 

among other developmental processes (Chan, Henderson et al. 2005; Huh, Bauer et al. 

2008; Law and Jacobsen 2010). Abnormalities in the regulation of DNA methylation may 

lead to neuronal disorders and cancer development (Feinberg, Ohlsson et al. 2006; Dulac 

2010). 5mC is generated by a class of DNA methyltransferases, which use S-

adenosylmethionine to methylate cytosine at position C5 by a relatively well 

characterized mechanism (Goll and Bestor 2005). In contrast, the mechanism of 5mC → 

C demethylation is less well understood. DNA demethylation may occur passively after 

synthesis of unmethylated daughter strands during replication or actively by enzymes that 

remove the methyl group through chemical modification. Active demethylation has 

recently been linked to the base excision repair (BER) pathway, which is normally 

associated with removal of detrimental nucleobase modifications from the genome 

(Lindahl 2000; Piccolo and Fisher 2013).  

 

 

* Part of the work presented in this chapter was published in Brooks, S. B., Fischer, R. L., Huh, J. 
H., and Eichman, B.F. (2014) 5-methylcytosine recognition by Arabidopsis thaliana DNA 
glycosylases DEMETER and DML3. Biochemistry, 53(15): 2525-2532. 
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BER is initiated by DNA glycosylases, which recognize and remove a specifically 

modified nucleobase by cleaving the N-glycosidic bond (reviewed in Fromme, Banerjee 

et al. 2004; Huffman, Sundheim et al. 2005; Brooks, Adhikary et al. 2013). In mammals, 

5mC may be removed in two ways. In one pathway, activation-induced (DNA-

cytosine) deaminase (AID) converts 5mC to thymine, which is excised from the resulting 

T/G mispair by thymine DNA glycosylase (TDG) and MBD4 (Rai, Huggins et al. 2008; 

Cortazar, Kunz et al. 2011; Cortellino, Xu et al. 2011). Alternatively, 5mC is oxidized by 

ten-eleven translocation (TET) proteins to 5-hydroxymethylcytosine (5hmC), 5-

formylcytosine (5fC), and 5-carboxylcytosine (5caC) (Tahiliani, Koh et al. 2009; Ito, 

Shen et al. 2011; Veron and Peters 2011; Wu and Zhang 2011). Of these, 5fC and 5caC 

are substrates for TDG (Maiti and Drohat 2011; Zhang, Lu et al. 2012).  

In contrast to mammals, plants have evolved specific 5mC DNA glycosylases that 

remove DNA methylation (Choi, Gehring et al. 2002; Gehring, Huh et al. 2006; Morales-

Ruiz, Ortega-Galisteo et al. 2006). Arabidopsis thaliana DEMETER (DME) functions 

during plant gametogenesis before fertilization and is responsible for imprinting specific 

genes in the endosperm, which is necessary for seed viability (Choi, Gehring et al. 2002; 

Hsieh, Shin et al. 2011). DME demethylation in the central and vegetative cells is also 

thought to produce small interfering RNAs (siRNA) that guide methylation at 

transposons in the egg and sperm cells, respectively (Calarco, Borges et al. 2012; Ibarra, 

Feng et al. 2012). Arabidopsis also contain three DME paralogs—Repressor of Silencing 

1 (ROS1), DME-like 2 (DML2), and DML3—which function in adult cells as genome 

wide demethylases that remove 5mC marks at sites 3′ and 5′ to genes (Gong, Morales-

Ruiz et al. 2002; Zhang, Yazaki et al. 2006; Penterman, Uzawa et al. 2007; Penterman, 
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Zilberman et al. 2007; Zhu, Kapoor et al. 2007; Zilberman, Gehring et al. 2007; Ortega-

Galisteo, Morales-Ruiz et al. 2008). Recent reports of DME activities indicate that the 

control of DNA methylation can be utilized agriculturally to benefit crop production and 

medically to develop therapies against celiac disease by suppressing DME expression to 

produce wheat varieties lacking gliadins and glutenins that cause immunogenic epitopes 

(Qi, Wei et al. 2009; Kim, Kwak et al. 2010; Mitea, Salentijn et al. 2010; Osorio, Wen et 

al. 2012; Wen, Wen et al. 2012; Kapazoglou, Drosou et al. 2013).   

The DME/ROS1/DML enzymes contain a conserved DNA glycosylase domain 

belonging to the helix-hairpin-helix [4Fe-4S] iron-sulfur cluster superfamily (Choi, 

Gehring et al. 2002). DME and ROS1 utilize a bifunctional glycosylase/lyase mechanism 

to cleave the glycosidic bond and the phosphodiester backbone through β,δ-elimination to 

create a one-nucleotide gap in the DNA (Agius, Kapoor et al. 2006; Gehring, Huh et al. 

2006). DME/ROS1/DML enzymes are much larger than other glycosylases, ranging from 

1100 to over 1700 residues, and contain two additional domains (A and B) with no 

known homology to other proteins (Figure 13). Like the glycosylase domain, domains A 

and B are conserved among the DME paralogs and are essential for DME function (Mok, 

Uzawa et al. 2010). Homology modeling of ROS1 predicted a bipartite discontinuous 

glycosylase domain separated in sequence by an unstructured interdomain region (IDR) 

(Ponferrada-Marin, Parrilla-Doblas et al. 2011). All DME paralogs contain an N-terminal 

lysine-rich region that in ROS1 is necessary for binding long stretches of DNA in a 

methylation-independent manner (Choi, Gehring et al. 2002; Ponferrada-Marin, 

Martinez-Macias et al. 2010).  
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In contrast to ROS1, which has been the subject of several biochemical studies 

(Ponferrada-Marin, Roldan-Arjona et al. 2009; Ponferrada-Marin, Martinez-Macias et al. 

2010; Ponferrada-Marin, Parrilla-Doblas et al. 2011; Parrilla-Doblas, Ponferrada-Marin 

et al. 2013), little is known about the molecular mechanisms of DME and DML enzymes. 

Here, we investigated 5mC excision and substrate specificity of DME and DML3 by 

mutational analysis. Residues that constitute the active site and DNA damage binding 

face of DME were predicted from Endonuclease III (EndoIII/Nth) homology modeling 

and the importance of these residues to DNA binding and 5mC excision tested. In 

addition, we previously showed that DME is able to excise 5hmC (Jang, Shin et al. 

2014), and we now extend this activity to DML3 and report a comprehensive kinetic 

analysis of oxidized 5mC excision by DME and DML3. These results provide new 

insight into the molecular underpinnings for 5mC specificity and excision by the DME 

family of enzymes. 

 

Figure 13. DME paralogs and constructs. Schematic representation of the four 
Arabidopsis thaliana DME proteins (yellow) and DME and DML3 deletion constructs 
(grey) used in this study. Conserved domains are indicated by blue (domain A), green 
(glycosylase), and orange (domain B) boxes. Deletion constructs (∆N) lack the N-
terminal region preceding domain A, and the inter-domain region (IDR) 1 has been 
replaced with a synthetic dodecapeptide linker in DME∆N∆IDR1. Numbers refer to 
amino acid positions at the termini.  
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Materials and Methods 
 

Protein Expression and Purification 

Arabidopsis thaliana DMEΔN (residues 678-1729) and DMEΔNΔIDR1, in which 

residues 798-1188 were replaced with the dodecapeptide AGSSGNGSSGNG, were 

overexpressed as N-terminal His6-MBP-fusion proteins as described previously (Mok, 

Uzawa et al. 2010). The region encoding A. thaliana DML3 amino acids 334-1044 

(DML3ΔN) was PCR-amplified from full-length DML3 cDNA template (Penterman, 

Zilberman et al. 2007) using primers 5ʹ- AAT TGG ATC CGT AAC AAC GAT GAT 

CAA AGC) and 5'-AAT TGA ATT CCT ATA TAT CAT CAT CAC TCA TAA AC. 

The PCR amplicon was digested with BamHI and EcoRI and cloned into the pET27 

(Novagen) derived expression vector pBG102 (Vanderbilt Center for Structural Biology), 

which produces a cleavable N-terminal His6-SUMO-fusion protein. All constructs were 

transformed into E. coli Rosetta2 (DE3) cells (Novagen) and propagated in LB media to 

an OD of 0.5. Proteins were overexpressed for 18 h at 16 °C upon addition of 0.1 mM 

IPTG. Cells were harvested by centrifugation at 6,000 rpm and lysed in 50 mM Tris-HCl 

pH 8.5, 500 mM NaCl, and 10% glycerol with an Avestin Emulsifier C3 homogenizer 

operating at ~20,000 psi. The lysates were cleared by centrifugation at 22,000 rpm for 20 

minutes at 4 °C. Fusion proteins were purified using Ni-NTA (Qiagen) affinity 

chromatography, followed by cleavage of the affinity tag by PreScission Protease 

overnight at 4 °C. The proteins were further purified by heparin-sepharose (GE 

Healthcare) in 50 mM Tris-HCl pH 8.5, 10% glycerol, 0.1 mM DTT, 0.1 mM EDTA and 

a NaCl gradient (0.1 – 1 M), followed by gel filtration on a 16/60 Superdex 200 column 

(GE Healthcare) in 20 mM Tris-HCl pH 8.5, 200 mM NaCl, 10% glycerol, 0.1 mM DTT, 
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and 0.1 mM EDTA. Protein was concentrated to 100-150 μM and stored at -80 °C in 20 

mM Tris-HCl pH 8.5, 150 mM NaCl, 40% glycerol, 0.1 mM DTT, and 0.1 mM EDTA. 

Mutant proteins were prepared by site-directed mutagenesis using a Quik-Change Kit 

(Stratagene) and purified in the same manner as the wild-type proteins.  

 

Glycosylase Activity Assay 

Proteins were dialyzed in reaction buffer (20 mM Tris-HCl pH 8.5, 150 mM 

NaCl, 0.1 mM DTT, 0.1 mM EDTA) prior to use. Oligonucleotides of the sequence 

d(TGACTACTACATGXTTGCCTACCAT), in which X is 5mC, 5hmC, 5fC, 5caC, or T, 

were synthesized with 6-carboxyfluoroscein (FAM) at the 5′ end by Integrated DNA 

Technologies (5mC and T) and Midland Certified Reagents (5hmC, 5fC, and 5caC) and 

annealed to the complementary strand containing G opposite base X. Enzyme (at least 10 

μM for single-turnover conditions) was incubated with 100 nM duplex DNA at 25 °C in 

reaction buffer. For data shown in Figure 14C, 2 µM protein (non-saturating) was used. 

Aliquots of 8 μL were removed from each reaction and terminated with stop buffer (10 

mM EDTA in formaldehyde with xylene cyanol and bromophenol blue). Substrate and 

product DNA were separated by gel electrophoresis with a 20% acrylamide gel in TBE 

buffer run at 40 W for 1 hour. Gels were imaged using a Typhoon Trio variable mode 

imager and quantified using ImageQuant software. Single-turnover rate constants (kst) 

were determined by exponential fit of the fraction product versus time. To establish the 

apparent KM (K1/2) for each substrate, rate constants (kobs) were determined at varying 

enzyme concentrations, and plots of kobs vs [E] were fit to the equation, kobs = kst[E] / (K1/2  
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+ [E]).  Under non-saturating conditions, kobs is dependent on enzyme concentration and 

is thus reported in units of M-1s-1. 

For inhibition experiments, the glycosylase assay was carried out with 10 μM 

(5mC excision) and 2 µM (T/G excision) DME∆N∆IDR1 in the presence of varying 

concentrations of unlabeled competitor DNA containing tetrahydrofuran (THF), a 1-

nucleotide gap, or thymine (T/G mismatch) in the central position. Gap-DNA was 

assembled by annealing the two 12-mer oligonucleotide sequences flanking the central 

position to the 25-mer opposite strand. To determine the inhibitory effects of free 5mC or 

Thy base on 5mC excision, 10 μM DME∆N∆IDR1 was incubated with varying 

concentrations of free base (0.01 – 31 mM) for 30 minutes prior to the addition of 100 

nM FAM-5mC-DNA substrate.  The Ki was determined by plotting kobs as a function of 

competitor DNA concentration and fitting the data to the equation, kobs = kst[E] / (Ki  + 

[E]). 

 

DNA Binding  

Oligonucleotides containing the same sequence as above and a centrally located 

5mC were annealed to 6-carboxyfluorescein at the 3′-end. Varying concentrations of 

enzyme (0-100 μM) were incubated with 50 nM duplex DNA in reaction buffer for 10 

min at 25 °C. Fluorescence anisotropy was measured using a Biotek Synergy H1 hybrid 

multi-mode microplate reader at excitation and emission wavelengths of 485 and 538 nm, 

respectively. Dissociation constants (Kd) were calculated by fitting the data to a two-state 

binding model. Reported values are averages from three independent experiments.  

Because DME reacts slowly, there is no significant product generated within 10 minutes. 
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Anisotropy values measured 0, 10, and 30 minutes after addition of wild-type enzyme did 

not change. 

 

DME Homology Model 

A homology model of DME bound to abasic-DNA was constructed using Swiss-

Model (Guex and Peitsch 1997) and the structure of Bacillus stearothermophilus 

EndoIII/Nth (PDB ID 1P59 (Fromme and Verdine 2003)) as a template, similar to that 

previously described for ROS1 (Ponferrada-Marin, Parrilla-Doblas et al. 2011). The final 

model incorporated DME residues 737 – 796 of domain A and 1217 –1396 of the 

glycosylase domain. Protein-DNA contacts were predicted using the coordinates of the 

tetrahydrofuran (THF)-containing DNA from the Nth structure superimposed on the 

DME model. 

Results 

A Model for DNA Binding by DME 

Arabidopsis DME, ROS1, DML2, and DML3 each contain three highly 

conserved domains important for function (Figure 13). The N-terminal and inter-domain 

regions (IDRs) have very low homology and little predicted secondary structure. We 

previously showed that the three conserved domains are necessary and sufficient for 

DME 5mC excision activity, as constructs lacking the N-terminal 677 residues (DMEΔN) 

and with the IDR1 replaced with a short dodecapeptide linker (DMEΔNΔIDR1) retain 

activity (Mok, Uzawa et al. 2010). In order to quantify the effect of IDR1 removal on 

enzymatic activity, we compared the kinetics of 5mC excision of DMEΔN and 

DMEΔNΔIDR1 proteins. Under non-saturating conditions, the observed rate constant 
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(kobs) of DMEΔN is 134 ± 9 M-1s-1, compared to 43 ± 1 M-1s-1 for DME∆N∆IDR1 

(Figure 13, 14). Thus, removal of the 393-residue region between domain A and 

glycosylase domain has only a 3-fold effect on the rate of 5mC excision, which, under the 

conditions of this assay, is not significant. However, deletion of IDR1 significantly 

improves protein solubility, purity, and stability, mainly as a result of proteolytic 

sensitivity of IDR1, making DMEΔNΔIDR1 more amenable to biochemical analysis than 

DME or DMEΔN. Therefore, the DMEΔNΔIDR1 construct was used for the remainder 

of this study. 

Figure 14. 5mC excision kinetics and DNA binding of DME. (A) Representative 
denaturing polyacrylamide gel showing DNA glycosylase activity. Reactions contained 
FAM-5mC-DNA and either 17 μM or 0 μM DMEΔNΔIDR1. Numbers above the gel 
represent reaction times in hours. Substrate (S) and β and δ elimination products are 
labeled. (B) Representative fluorescence anisotropy binding isotherm for wild-type 
DMEΔNΔIDR1 binding to 25mer 5mC-DNA. (C) 5mC excision activities of DMEΔN 
(black circles) and DMEΔNΔIDR1 (green triangles). (D) 5mC excision activities of plug 
and wedge mutants compared to DMEΔNΔIDR1 (WT) used to determine single-turnover 
rates (kst) shown in Table 1. 
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In order to gain insight into the DME structural features important for 5mC 

excision, we constructed a homology model of the glycosylase domain using the structure 

of Bacillus stearothermophilus Nth, a closely related [4Fe-4S]-containing glycosylase 

specific for oxidized purines. As reported previously for ROS1 (Ponferrada-Marin, 

Parrilla-Doblas et al. 2011), the C-terminal region (residues 737-796) of domain A is 

predicted to complete the helix-hairpin-helix glycosylase fold based on its significant 

sequence conservation with the N-terminal 60 residues of Nth (Figure 15B). The 

conserved regions place DME Phe796 (domain A) in close proximity to DME Asp1217 

(glycosylase domain) such that IDR1 is excluded entirely and most likely an independent 

domain. This aspect of the model is validated by the retention of activity in the 

DMEΔNΔIDR1 mutant and the inclusion of functionally important residues within the 

region contributed by domain A (Mok, Uzawa et al. 2010). In addition, the model places 

the catalytic Asp1304 and Lys1286 in close proximity to the flipped abasic site. 

Substitution of either of these residues (Asp1304Asn and Lys1286Gln) abrogates 5mC 

excision activity (Table 1) (Gehring, Huh et al. 2006).  
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Figure 15. DME domain structure and distribution of critical residues. (A) Schematic of 
A. thaliana DEMETER (DME), showing the location of the glycosylase domain (green) 
and domains A (blue) and B (gold) of unknown function. IDR1, inter-domain region 1; 
IDR2, inter-domain region 2. Red bars mark the locations of residues identified by 
random mutagenesis to be critical for DME function. Putative residues important for 
DNA binding and catalysis and conserved in other HhH enzymes are marked by symbols 
below the schematic (Asn778 DNA plug, magenta triangle; Met1238 DNA wedge, blue 
triangle; catalytic Lys1286, yellow star). (B) Homology model of the C-terminal half of 
domain A and the glycosylase domain with DNA superimposed from the structure of 
Bacillus stearothermophilus EndoIII bound to abasic DNA (PDB ID 1P59). The putative 
catalytic Lys1286 (cyan) Met1238 wedge (slate) residues are contributed by the 
glycosylase domain (green), the putative Asn778 plug residue (magenta) is from domain 
A. 

 

Damage recognition and catalysis by DNA glycosylases is facilitated by extrusion 

of the target nucleobase inside an active site pocket. This extrahelical conformation is 

stabilized by intercalating side chains that plug the gap left by the flipped nucleobase and 



77 
 

create a wedge in the opposite strand to create a sharp kink in the DNA duplex (Fromme, 

Banerjee et al. 2004; Huffman, Sundheim et al. 2005; David, O'Shea et al. 2007; Dalhus, 

Laerdahl et al. 2009; Friedman and Stivers 2010; Li 2010; Brooks, Adhikary et al. 2013). 

Substitutions to these intercalating residues typically have a dramatic effect on 

glycosylase activity. Our homology model predicts that Asn778 and Met1238 would 

serve as the plug and wedge residues in DME (Figure 15B). Substitution of Met1238 

with alanine in DMEΔNΔIDR1 abrogated 5mC excision activity and had no effect on 

DNA binding (Figure 14D and 16, Table 1), consistent with results from the  

Table 1. DNA binding and 5mC excision activities for 

DME∆N∆IDR1 point mutants 

 
Kd 

(µM) 

Relative 

affinity 

kst 

(x 10-5 s-1) 

Relative 

to WT 

WT 8.3 ± 1.2 1.0 18.1 ± 1.2 1.0 

Q777A 8.1 ± 1.1 1.0 7.6 ± 0.4 0.4 

N778A 18.9 ± 3.4 0.4 2.7 ± 0.6 0.1 

M1238A 8.5 ± 1.0 1.0 0.02 ± 0.01 0.001 

K1286Q 8.2 ± 1.8 1.0 < 0.01† 0.0005 

D1304N 0.6 ± 0.1 14 < 0.01† 0.0005 

Dissociation constants (Kd) and single-turnover rate 
constants for 5mC (kst) excision were measured at 25 °C, 
pH 8.5 and 170 mM ionic strength using a 25mer DNA 
duplex containing 5mC and end-labeled with fluorescein. 
Enzyme concentration was saturating (10 µM) in activity 
assays.  Values are reported as averages ± S.D. from at 
least three experiments. Relative binding affinities 
calculated as (Kd WT)/(Kd Mutant); Relative to WT rates 
calculated as (kst Mutant)/(kst WT).  

†Activity is below limit of detection. 
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corresponding residue (Met905) in ROS1 (Figure 16) (Ponferrada-Marin, Parrilla-Doblas 

et al. 2011; Parrilla-Doblas, Ponferrada-Marin et al. 2013). Similarly, an Asn778Ala 

substitution had a 10-fold reduction in activity relative to WT (Figure 14D, Table 1). 

Interestingly, the corresponding substitution in ROS1 (Asn608Ala) had no effect 

(Ponferrada-Marin, Parrilla-Doblas et al. 2011). Rather, the neighboring ROS1 residue 

(Gln607) was found to be necessary for 5mC removal and duplex interrogation 

(Ponferrada-Marin, Parrilla-Doblas et al. 2011; Parrilla-Doblas, Ponferrada-Marin et al. 

2013). In contrast, substitution of this neighboring residue in DME (Gln777) with alanine 

had only a 2-fold effect on 5mC excision and no effect on DNA binding relative to wild-

type (Figure 14D and 16, Table 1).  

 

Figure 16. Identification of DNA intercalation residues in DME and DML3. (A,B) 
Sequence alignments of the regions containing the plug (A) and wedge (B) DNA 
intercalating residues. Residues predicted and confirmed by mutagenesis to intercalate 
DNA are boldface and red, respectively. (C,D) Base excision activity of DMEΔNΔIDR1 
(C) and DML3ΔN (D) point mutants. Numbers above the gels represent the reaction 
times in hours. MS, molecular weight standard for 25mer substrate; MP, molecular 
weight standard for 12mer product. 
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 We also tested these two putative plug residues in DML3∆N by making alanine 

substitutions corresponding to DME Gln777 and Asn778. In this case, both DML3 

Gln426Ala and Asn427Ala abrogated 5mC excision activity (Figure 16), suggesting that 

DME and DML3 utilize subtly different modes of damage recognition. Thus, we have 

identified DME and DML3 residues from discrete domains as likely candidates for 

duplex interrogation and/or stabilization of extrahelical 5mC.  

Table 2.  Rates of excision of oxidized 5mC derivatives by DME and DML3. 
 5mC 5hmC 5fC 5caC† T/G 
DME∆N∆IDR1 18.1 ± 1.2 8.3 ± 1.1 0.02 ± 0.01 8.4 ± 1.6 6.5 ± 0.6 
DML3∆N 9.1 ± 0.3 11.4 ± 5.3 0.04 ± 0.02 35 ± 10 9.2 ± 0.6 

Single-turnover rate constants (kst, x 10-5 s-1) for excision of oxidized 5mC 
derivatives from a 25mer oligonucleotide at 25 °C, pH 8.5 and 170 mM ionic strength, 
and 10μM enzyme. Values are reported as averages ± S.D. from at least three 
experiments.  

† Enzyme removes only 20% 5caC. 
 

Specificity of DME and DML3 for oxidized 5mC  

In mammals, 5mC is oxidized to 5hmC, 5fC, and 5caC by TET proteins 

(Tahiliani, Koh et al. 2009; Ito, Shen et al. 2011; Veron and Peters 2011; Wu and Zhang 

2011) (Figure 17A). We recently found that DME and ROS1 have activity toward 5hmC 

(Jang, Shin et al. 2014). Although we were unable to detect these derivatives in 

Arabidopsis, we compared their rates of excision by DME∆N∆IDR1 and DML3∆N 

against 5mC and thymine from T/G-mismatches as a means to understand the molecular 

basis for the unique 5mC specificity of the DME family of enzymes. Under single-

turnover conditions, DME exhibited the same activity for T/G and 5hmC, with first order 

rate constants (kst) only 2-3-fold less than for 5mC excision (Figure 17B, Table 2). 
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Interestingly, the rate of 5caC excision also was 2-fold less than 5mC (Table 2), although 

the enzyme was only able to process 20% of the substrate (Figure 17B), suggesting 

either a mixture of 5caC species (e.g., amino and imino forms) (Maiti, Michelson et al. 

2013 1045) was present in the DNA or a product of 5caC excision inhibited the reaction. 

Under the same conditions, DME was inactive toward 5fC (Figure 17B). DML3 excised 

5mC 2-fold slower than DME and showed the same general trend toward excision of 

oxidized 5mC derivatives (Figure 17C and Table 2).  

 

Figure 17. Excision of oxidized 5mC nucleobases by DME and DML3. (A) 5mC can be 
deaminated to form thymine or successively oxidized to 5hmC, 5fC, and 5caC. (B,C) 
Glycosylase activities of DME∆N∆IDR1 (B) and DML3∆N (C) used to determine single-
turnover rates (kst) shown in Table 2. (D) DME∆N∆IDR1 concentration dependence on 
rates of 5mC, 5hmC, 5caC, and T/G excision used to determine K1/2 values shown in 
Table 3. 

 
In order to establish the preferred substrate of DME, we determined the apparent 

KM (K1/2) using the DMEΔNΔIDR1 construct. Interestingly, the preference of DME for 

each substrate varied greatly (Figure 17D). The K1/2 for 5hmC was comparable to 5mC, 
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whereas K1/2 values for 5caC and T/G were at least 25-fold smaller, indicating a 

preference for binding these substrates (Table 3). However, the kst for 5hmC, 5caC, and 

T/G were all lower than 5mC, suggesting inhibition by an intermediate or product of 

these reactions (Figure 17D). 

 

 

 

 

  

 

 

 

 

Because DNA glycosylases are often product inhibited, and abasic sites opposite 

5mC inhibit DME activity (Gehring, Huh et al.), we tested the inhibitory effects of DNA 

containing a THF abasic site mimetic or a 1-nucleotide gap, which resemble the reaction 

intermediate and product, respectively, on 5mC and T/G excision activity by DME 

(Figure 18). The abasic mimic and gapped DNA products inhibited 5mC excision with 

Ki values of 11.3 ± 4.3 μM and 12.6 ± 3.3 μM, respectively, which were roughly 

equivalent to the enzyme concentration used (10 µM) and to the strength of competition 

by 5mC-DNA (Ki = 4.3 ± 2.1 μM) and T/G-DNA (Ki = 7.7 ± 3.3 μM) substrates (Figure 

18). Similarly, the DNAs inhibited T/G excision with Ki values of 2.4 ± 0.6 μM (THF-

DNA) and 6.8 ± 0.8 μM (Gap-DNA) (Figure 18), similar to the enzyme concentration 

Table 3. Substrate specificity of DME 

Substrate K1/2, μM 

5mC 5.1 ± 1.7 

5hmC 7.4 ± 0.8 

5fC ND 

5caC 0.2 ± 0.9 

T/G 0.12 ± 0.04 

ND, not determined. Values are 
reported as averages ± S.D. from at 
least three experiments. 
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used (2 µM). Therefore, the DNA products inhibited DME excision of 5mC and T/G to 

the same extent. Consistent with this, Kd values measured by fluorescence anisotropy for 

binding of the catalytically dead D1304N mutant to DNA containing 5mC and T/G were 

0.6 ± 0.1 µM and 0.2 ± 0.1 µM, respectively (Figure 19). In contrast to DNA 

intermediates and products, we were unable to inhibit 5mC excision by free nucleobases, 

even at high concentrations (Figure 18D).  

 

Figure 18. Inhibition of 5mC and T/G excision by reaction intermediates. (A,B) Rate 
constants for reactions containing 10 μM DMEΔNΔIDR1, 100 nM radiolabeled 5mC-
DNA, and indicated amounts of cold 25-mer competitor DNA duplex containing a 1-
nucleotide gap or tetrahydrofuran (THF) abasic site mimetic (A), or containing 5mC- or 
T/G substrates (B). (C) Rate constants for T/G excision by 2 μM DMEΔNΔIDR1 
incubated with 100 nM radiolabeled T/G-DNA in the presence of the indicated amounts 
of Gap- and THF-DNA. (D) 5mC excision activity for 10 μM DMEΔNΔIDR1 incubated 
with 100 nM radiolabeled 5mC-DNA in the presence of 16 μM 5mC or 10 mM thymine. 
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Figure 19. DME binding to 5mC- and T/G-DNA. Fluorescence anisotropy binding 
isotherm for catalytic mutant DMEΔNΔIDR1 D1304N binding to 25mer 5mC-DNA 
(black circles) and T/G-DNA (red squares). Data was fit using a two-state binding model 
in GraphPad Prism 6.  
 
Active site residues confer specificity for substrate DNA 

Substrate specificity of the HhH superfamily of DNA glycosylases is largely 

determined by the shape and chemical complementarity between the nucleobase within 

the active site pocket (Brooks, Adhikary et al. 2013). The active site of DME predicted 

by the homology model is formed by residues contributed by both the A and glycosylase 

domains (Figure 15B), similar to that previously shown for ROS1 (Ponferrada-Marin, 

Parrilla-Doblas et al. 2011). Superimposing an extrahelical 5mC onto our homology 

model and an examination of other glycosylase-DNA structures, including MBD4 in 

complex with T/G-DNA (PDB ID 4EVV), led to the identification of six residues lining 

the DME nucleobase binding pocket: Phe759, Thr776, and Asp781 from Domain A, and 

His1360, Tyr1361, and Ile1364 from the glycosylase domain (Figure 20A). Phe759 is 

predicted to reside on an unstructured loop and to stack against the N4 nitrogen of 5mC. 
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Thr776 and Asp781 sit adjacent to the abasic site DNA in the DME homology model and 

correspond to two MBD4 residues that were observed to make contacts to the flipped 

thymine substrate in the crystal structures of MBD4 bound to DNA (Manvilla, Maiti et al. 

2012; Morera, Grin et al. 2012; Otani, Arita et al. 2013). His1360, Tyr1361, and Ile1364 

reside near the predicted location of 5mC in the active site.  

 

Figure 20. DME active site mutants affect base excision. (A) Homology model of 
DME’s active site. Protein residues are colored by domain as in Figure 13/14. THF-
containing DNA (gold) is modeled from the structure of Nth bound to THF-DNA (PDB 
ID 1P59), and a modeled 5mC is shown in silver. (B) Single-turnover excision rates of 
5mC by DME active site mutants compared with wild-type (WT) DME∆N∆IDR1. (C) 
Single-turnover rates of 5mC, 5hmC, 5caC, or T/G excision by each DME active site 
mutant relative to wild-type. 

We examined the contribution of each predicted active site residue to the substrate 

specificity of DME by mutational analysis of 5mC, 5hmC, 5caC, and T/G excision 

activity using the DME∆N∆IDR1 construct. All mutants purified well and retained the 

brilliant yellow color of wild-type DME, indicating proper folding of the proteins. 

Thr776Ala had only a modest reduction in 5mC excision activity relative to wild-type.  In 

contrast, leucine substitution of the corresponding residue in ROS1 (Thr606) abolished 

ROS1 activity (Ponferrada-Marin, Parrilla-Doblas et al. 2011).  DME activity also 

differed from ROS1 with respect to Tyr 1361 (Tyr1028 in ROS1). DME Tyr1361Phe  
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Figure 21. 5hmC, 5caC, and T/G excision kinetics. Single-turnover excision rates of 
5hmC (A), 5caC (B), and T/G (C) by active site mutants compared with wild-type (WT) 
DMEΔNΔIDR1. 

 

reduced 5mC and T/G excision activity nearly two-fold, whereas ROS1 Tyr1028Ser 

reduced 5mC activity two-fold but increased preference for T/G excision (Ponferrada-

Marin, Parrilla-Doblas et al. 2011).  In contrast to Thr776Ala and Tyr1361Phe, which 

had only a modest effect on 5mC excision by DME, Phe759Ala significantly reduced 

5mC excision and Asp781Ala, His1360Ala, and Ile1364Ala abrogated 5mC excision 

(Figure 20B, C). A similar reduction in 5mC activity was observed for ROS1 

Asp611Val, which corresponds to DME Asp781 (Ponferrada-Marin, Parrilla-Doblas et al. 

2011). Similarly, DME Phe759Ala showed a higher activity for T/G excision than 5mC 

excision, consistent with the corresponding residue in ROS1 (Phe589Ala) (Ponferrada-
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Marin, Parrilla-Doblas et al. 2011). His1360Ala was the only mutation in DME that 

abrogated excision of all substrates (Figure 20C, 21). Although Ile1364Ala had no 

activity for 5mC or 5hmC, it retained activity for 5caC and T/G at rates similar to wild-

type (Figure 20C and Table 4). Surprisingly, three mutations (Phe759Ala, Asp781Ala, 

and Tyr1361Phe) showed a modest increase in 5caC excision rates relative to wild-type, 

but remained unable to excise more than 20% of the 5caC-DNA substrate (Figure 20C, 

21). Interestingly, the Asp781Ala substitution showed the highest increase in 5caC 

activity despite complete loss of activity toward the other nucleobases tested. Taken 

together, these results validate the homology model, identify His1360, Asp781, and 

Ile1364 as important for DME activity, and suggest that the various 5mC derivatives may  

be recognized through architectural changes to the active site pocket. 

 

 

 

 

 

 

 

Discussion 

This work represents the first quantitative structure-function study of DME and 

DML3, providing a molecular rationale for their similarities and differences to ROS1, 

which has been extensively characterized (Morales-Ruiz, Ortega-Galisteo et al. 2006; 

Ponferrada-Marin, Roldan-Arjona et al. 2009; Ponferrada-Marin, Martinez-Macias et al. 

Table 4. Effects of predicted DME active site residues on nucleobase excision 

Mutant kst  
5mC-DNA 

Relative 
to WT 

kst 
5hmC-DNA 

Relative 
to WT 

kst 
5caC-DNA 

Relative 
to WT 

kst 
T/G-DNA 

Relative 
to WT 

F759A 4.0 ± 0.2 0.2 4.3 ± 2.0 0.5 16 ± 5 1.9 3.2 ± 0.2 0.5 

T776A 11.2 ± 0.2 0.6 3.5 ± 0.1 0.4 6.0 ± 1.6 0.7 7.7 ± 0.3 0.7 

D781A ND 0 ND 0 21 ± 4 2.5 ND 0 

H1360A ND 0 ND 0 ND 0 ND 0 

Y1361F 10.9 ± 0.4 0.6 4.4 ± 0.3 0.5 17 ± 3 2 3.7 ± 0.2 0.6 

I1364A ND 0 ND 0 7.1 ± 1.7 1.1 10 ± 2 1.5 

First-order single-turnover rate constants (kst, x 10-5 s-1) for excision of oxidized 5mC nucleobases from a 25mer 
oligonucleotide at 25 °C, pH 8.5 and 170 mM ionic strength.  Values represent the averages and standard deviations 
from at least three experiments.  ND, no detectable activity.   
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2010; Ponferrada-Marin, Parrilla-Doblas et al. 2011; Parrilla-Doblas, Ponferrada-Marin 

et al. 2013). We previously identified the catalytic core of DME to be composed of 

domains A and B in addition to the glycosylase domain and found that IDR1 is 

dispensable for 5mC excision (Mok, Uzawa et al. 2010). Here, using the structure of the 

Nth-DNA complex as a guide, homology modeling of DME revealed that domain A 

contributes three α-helices to the glycosylase domain as previously identified in ROS1 

(Ponferrada-Marin, Parrilla-Doblas et al. 2011). The model also predicts that the IDR1 

insertion extrudes from the glycosylase domain on the side opposite the DNA binding 

site, consistent with the fact that deletion of IDR1 had only a modest effect on DME 

glycosylase activity in vitro, explaining why deletion of IDR1 resulted in only a two-fold 

decrease in DME activity. Moreover, the rate of 5mC excision by DME was comparable 

to DML3 (Table 1) and ROS1 (Ponferrada-Marin, Roldan-Arjona et al. 2009), which 

contain variable IDR1s in both length and sequence. This large insertion to a glycosylase 

fold is unique to the DME family, leading us to speculate that these large insertions 

function to regulate in vivo activity, possibly by mediating protein interactions. For 

example, specific IDR1-protein interactions may facilitate DME activation of imprinted 

genes at specific loci and the genome wide demethylase activity of ROS1 and DML3 

(Gong, Morales-Ruiz et al. 2002; Zhang, Yazaki et al. 2006; Zhu, Kapoor et al. 2007; 

Zilberman, Gehring et al. 2007).  

Our homology model and mutagenesis results indicate that Asn778 and Met1238 

are plug and wedge residues, respectively, important for 5mC detection. These two 

residues were identified to be critical for DME activity from previous random 

mutagenesis experiments, which were performed in vivo in the context of full-length 
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DME (Mok, Uzawa et al. 2010) (Figure 15A). Interestingly, despite the similarity in 

their predicted structures, DME, ROS1, and DML3 seem to utilize different duplex 

interrogating residues. All DME family members contain an Asn-Gln moiety predicted to 

reside on the loop containing the plug residue in other glycosylases (Figure 16). Whereas 

alanine substitution of the Gln had a 10-fold greater effect than the Asn residue on ROS1 

activity, we found the opposite to be true for DME. Moreover, alanine substitution of 

either Asn or Gln abolished DML3 activity. These data suggest that the DNA 

intercalation loop in each DME paralog engages the DNA differently. Because the 

residues from this loop have been shown to be important for interrogation of DNA during 

discrimination of modified versus unmodified nucleobases prior to base flipping 

(Banerjee, Santos et al. 2006), a different mode of intercalation would likely alter the 

mechanism by which each enzyme locates its 5mC target. Moreover, this interrogating 

loop in HhH glycosylases plays a role in recognition of the base opposite the lesion. For 

example, Nth contacts the opposite base through hydrogen bonds from the backbone 

carbonyl of Gln42 (Fromme and Verdine 2003), which aligns with DME Asn778. There 

are no other candidate interactions with the opposing G in our homology model, and thus 

we do not expect there to be a strong opposite base specificity in DME. Consistent with 

this, ROS1 excises 5mC more efficiently when mispaired with C, T, or A, which is likely 

due to the reduced thermodynamic stability of the base pair (Ponferrada-Marin, Roldan-

Arjona et al. 2009). Given the location of the plug residues on the A-domain segment of 

the glycosylase, it is conceivable that the variable IDR1 also influences duplex 

interrogation by the Asn-Gln loop.  
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Indeed, despite differences in the identity of the plug residue, both DME and 

ROS1 utilize a conserved Met residue from the glycosylase domain to wedge between the 

nucleobases opposite 5mC (Ponferrada-Marin, Parrilla-Doblas et al. 2011). Furthermore, 

we observed both similarities and differences between the predicted active sites of DME 

and ROS1.  Most notably, the residue corresponding to DME Thr776 is essential to 5mC 

excision in ROS1 (Ponferrada-Marin, Parrilla-Doblas et al. 2011), but not in DME.  

Likewise, DME Tyr1361Phe did not cause a change in substrate specificity between 5mC 

and T/G, although the corresponding mutation in ROS1 did (Ponferrada-Marin, Parrilla-

Doblas et al. 2011).  Therefore, despite the similarity among the DME family of 

enzymes, we find subtle differences in substrate recognition by both DNA intercalation 

and active site residues that may help explain the differences in sites of demethylation in 

the Arabidopsis genome (Gong, Morales-Ruiz et al. 2002; Zhang, Yazaki et al. 2006; 

Penterman, Uzawa et al. 2007; Penterman, Zilberman et al. 2007; Zhu, Kapoor et al. 

2007; Zilberman, Gehring et al. 2007; Ortega-Galisteo, Morales-Ruiz et al. 2008). 

We found the order of substrate preference for DME and DML3 to be 5mC > 

5hmC ~ T/G > 5caC > 5fC. However, when comparing the rates of excision, it appeared 

that DME bound both 5caC and T/G tighter than 5mC and even excised 5caC faster than 

5mC at low levels of enzyme. DME was not inhibited by free 5mC or thymine base, and 

thus the low maximal rate of T/G excision compared to 5mC cannot be explained by 

product thymine remaining in the active site. In contrast, we found that both 5mC and 

T/G excision were inhibited in the presence of product-DNA. However, less product-

DNA was needed to reduce T/G excision, indicating a higher affinity of DME for 5mC-

DNA as compared with T/G-DNA. Therefore, we conclude that the apparent high affinity 
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of DME for T/G- and 5caC-DNA can be attributed to product DNA inhibition and to the 

slow turnover of the enzyme for these substrates, as evidenced by their low kst values 

(Figure 17D). Release of the abasic DNA product is often the rate-limiting step in 

glycosylase reactions and is promoted by AP-endonuclease, the next enzyme in BER 

pathway (Waters, Gallinari et al. 1999; Sidorenko, Nevinsky et al. 2007; Fitzgerald and 

Drohat 2008; Baldwin and O'Brien 2010). Consistent with this interpretation, the Ariza 

group has shown that ROS1 excises 5mC and binds to the resulting abasic site in a 

distributive manner (Ponferrada-Marin, Roldan-Arjona et al. 2009).   

DNA glycosylases, including those belonging to the helix-hairpin-helix 

superfamily, are either specific for oxidation or alkylation damage, but not both (Brooks, 

Adhikary et al. 2013). The ability of the DME family of enzymes to remove both 

methylated 5mC and oxidized 5hmC makes them unusual. This unique specificity is 

important in light of the recent progress to understand active demethylation by TDG in 

mammals (Wu and Zhang 2014). While DME excises 5hmC relatively well compared to 

5mC, it does not effectively remove 5fC nor 5caC. In contrast, TDG shows no activity for 

5hmC, and has 40% greater activity for 5fC and 25% residual activity for 5caC relative to 

its preferred T/G substrate. Thus, DME and TDG have reciprocal specificities with 

respect to the oxidized derivatives. Although there is no evidence to suggest that oxidized 

5mC nucleobases are biologically relevant substrates in Arabidopsis (Jang, Shin et al. 

2014), the ability of DME to remove these bases provides insight into 5mC 

discrimination inside the binding pocket.  

Residues contributed by both domain A (Phe759 and Asp781) and the glycosylase 

domain (His1360 and Ile1364) are necessary for full 5mC excision activity. These data 
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are consistent with our previous random mutagenesis screen, in which mutations of 

Asp781 and His1360 abolished DME activity (Mok, Uzawa et al. 2010). Similarly, the 

lack of an effect of Thr776Ala or Tyr1361Phe on 5mC excision correlates with the 

absence of Thr776 or Tyr1361 substitutions from the random screen. Interestingly, 

Ile1364 abolished 5mC and 5hmC excision, but did not affect activity toward T/G, 

implicating this residue as an important recognition element of cytosine derivatives. 

Phe579, located in close proximity to the 5mC methyl substituent, was the only residue to 

show a difference, albeit modest, between 5mC and 5hmC activity. In contrast, the 

relatively large distance of His1360 from the flipped base suggests that substitution of 

this residue affected the folding of the binding pocket. Although these data start to paint a 

picture of the 5mC active site, it is conceivable that domain B, lying outside of the 

nucleobase binding pocket, contributes to 5mC recognition, similar to the 8-oxoguanine 

recognition domain of MutY (Fromme, Banerjee et al. 2004). Indeed, domain B contains 

residues essential to DME activity (Mok, Uzawa et al. 2010). Further structural analysis 

will be necessary to elucidate the roles of domains A and B in DME. 
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Chapter IV 

 

DISCUSSION AND FUTURE DIRECTIONS 

 

 DNA is a reactive, dynamic molecule that is subject to modification in the form of 

damage and regulation.  The base excision repair (BER) pathway that is necessary for 

removal of single nucleobase adducts is also necessary for the removal of DNA 

methylation, thereby linking the regulation of gene expression to the maintenance of 

genome integrity.  While the structures, biochemistry, and mechanisms of the DNA 

glycosylases that initiate BER have been studied extensively, these enzymes have only 

recently been implicated in DNA demethylation.  Therefore, many questions on the 

mechanism of DNA demethylation remain unanswered. 

 

DNA Glycosylases Regulate DNA Methylation 

 The transfer of a methyl group from S-adenosylmethionine (SAM) to position 5 of 

a cytosine nucleotide is a well characterized reaction. The formation of the C-C bond 

creates a stable marker for various epigenetic processes.  Although the modification is 

small, its effects are large and numbered.  Combined with the modification of histones, 5-

methylcytosine (5mC) is responsible for regulating gene expression throughout organism 

development and cell differentiation to disease progression (see Epigenetics and Human 

Health below).  The C-C bond is so thermodynamically stable that it is highly unlikely 

that there exists a demethylase capable of directly removing the methyl modification.  

Instead, it has been speculated since at least the early 2000s that a DNA glycosylase is 
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responsible for the removal of the modified base.  Compared to the single enzyme 

transfer of the methyl group onto the cytosine base, removing the modified base through 

the BER pathway utilizes at least five separate enzymes to accomplish the 5mC to C 

conversion.  In addition, according to the proposed mammalian DNA demethylation 

pathway, Tet proteins are necessary to oxidize 5mC before removal by TDG, thereby 

requiring even more enzymatic steps for the demethylation event.  This labor-intensive 

pathway is indicative of the importance of proper regulation of DNA methylation and its 

necessity for organism development.  Furthermore, the fact that DNA glycosylases have 

been implicated in the removal of DNA methylation reiterates the significance of 5mC, 

5fC, or 5caC recognition by a class of enzymes that are trusted to locate and remove 

damaged DNA bases amongst the vast amount of undamaged DNA.   

 DNA glycosylases have been associated with control of gene transcription before 

the evidence for TDG removal of DNA methylation was found.  TDG has been found to 

bind to hormone receptors, including retinoic acid receptors and estrogen receptor alpha 

(Um, Harbers et al. 1998; Chen, Lucey et al. 2003), and transcription factors, such as 

thyroid transcription factor-1 and CBP/p300 acetylase (Missero, Pirro et al. 2001; Tini, 

Benecke et al. 2002; Chen, Lucey et al. 2003). Interestingly, TDG may function to 

control CpG sites beyond regulation of DNA methylation. A recent report on the aberrant 

TDG activity for excising thymine opposite various adenine lesions in a TpG sequence 

contexts suggests that this activity may introduce TpG, CpA  CpG mutations, thereby 

stabilizing and extending CG content in CpG-rich promoters (Talhaoui, Couve et al. 

2014).  Therefore, the CpG islands present near the transcription start sites of genes may 

in fact be a result of aberrant TDG activity.  This hypothesis proposes that the DME 
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family of DNA glycosylases in plants, which also have some mismatch repair activity, 

allows for increased CG content of plant genomes as well (Talhaoui, Couve et al. 2014).  

Additional studies are needed to determine if this mechanism is responsible for CpG 

content in both plants and mammals. 

 

DME is a Multi-Domain Glycosylase: the Role of Domain B 

   As described in previous work, the three conserved domains of DME are 

necessary and sufficient for 5mC excision activity.  To date, there is little known about 

the function of domain B, the C-terminal domain of the enzyme.  However, many random 

mutations within domain B cause loss of DME function (Mok, Uzawa et al. 2010). 

Secondary structure calculations predict a mixture of alpha helices and beta strands in 

domain B.  Unlike the glycosylase and A domain of DME, domain B has no significant 

sequence similarity to other proteins, preventing the construction of a homology model 

for this portion of the enzyme.  The necessity for domain B, coupled with the lack of 

sequence similarity to known DNA glycosylases, indicates that this domain may not 

function during catalysis of the glycosylase reaction.  Instead, domain B may be 

necessary for proper folding and structure of the bipartite glycosylase domain.  This 

hypothesis is supported by an inability to purify recombinant DME lacking domain B.   

On the contrary, domain B could be necessary for substrate identification.  DME 

has higher activity for 5mC in a hemimethylated state, as opposed to fully methylated 

DNA and is inhibited by abasic sites on the strand opposite 5mC (Gehring, Huh et al. 

2006).  This difference in activity is consistent with other DNA glycosylases, which are 

inhibited by abasic sites or nicks on the strand opposite a DNA lesion, in order to prevent 
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detrimental double-strand breaks (Hanai, Yazu et al. 1998; David-Cordonnier, Boiteux et 

al. 2001; Weinfeld, Rasouli-Nia et al. 2001).  Domain B may function to identify the 

methylation state of the DNA, in order to prevent activity on fully methylated substrates.  

The effect of abasic site inhibition on DME activity is lost when the site is 7 nucleotides 

away from the position of 5mC (Gehring, Huh et al. 2006).  The homology model of 

DME predicts that the glycosylase fold is in contact with only the nucleotides flanking 

the 5mC and opposite G.  Thus, domain B may be positioned to interrogate the duplex 

farther in either the 3ʹ or 5ʹ direction of the substrate 5mC.  Domain B is predicted to be 

nearly 32 kDa, but is not likely to be a separate structural domain, since efforts to purify 

it independently of domain A and the glycosylase domain have failed (see Appendix II)  

The overall structure of DME is not predicted to be a modular structure of separately 

folded and independent domains.  Instead, all indications point to a single globular 

module composed of the three interdependent domains of DME.  Further conclusions 

await structural data. 

 

DME Paralogs Have Distinct Functions 

As described previously, there are four paralogs of DME in A. thaliana: DME, 

ROS1, DML2, and DML3.  The sequences of domain A, the glycosylase domain, and 

domain B are very well conserved among the four paralogs.  However, the length and 

sequence content of the N-terminal residues preceding domain A of each of the paralogs 

are not similar, nor are the sequences of the two inter-domain regions, IDR1 and IDR2.  

These unconserved regions may be responsible for the variation in activities by these 

enzymes.   
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While DME functions to activate transcription of specific imprinted genes, the 

DML enzymes, including ROS1, function genome wide, at sites 5′ and 3′ to genes to 

regulate transcription, protecting plants from erroneous gene silencing (Gong, Morales-

Ruiz et al. 2002; Zhang, Yazaki et al. 2006; Zhu, Kapoor et al. 2007; Zilberman, Gehring 

et al. 2007). An additional distinction among the paralogs is that although DME, ROS1, 

and DML3 excise 5mC in CpG, CpNpG, and CpNpN contexts, DML2 is only able to 

excise 5mC in a CpG context (Gehring, Huh et al. 2006; Morales-Ruiz, Ortega-Galisteo 

et al. 2006; Penterman, Zilberman et al. 2007). Although the majority of the residues 

identified as critical for DME function in a random mutagenesis screen are contained 

within the three conserved domains, one residue was found to be necessary for 5mC 

excision activity in each of the two IDRs (Mok, Uzawa et al. 2010).  It is plausible that 

these regions may facilitate protein-protein interactions that regulate the specific 

recruitment of each of the DME-like enzymes, which are expressed in adult cells, unlike 

DME, which is expressed in the central and vegetative cells. The IDRs contain some 

predicted alpha helices and beta strands and therefore are more likely to have functional 

interactions with regulatory proteins than the N-terminal residues preceding domain A 

that have very little predicted secondary structure (Mok, Uzawa et al. 2010). 

Although the three domains are well conserved among the DME paralogs, some 

differences in sequence within these domains and consequent 5mC excision ability 

contribute to the differentiation of these enzymes. It is of particular importance to note 

the variable interrogation and active site residues in the DME family of enzymes.  The 

interrogation residues of DNA glycosylases have been implicated as not only necessary 

for stabilization of the duplex during catalysis, but also as important detectors of DNA 
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damage and substrate identification (Stivers and Jiang 2003; Banerjee, Santos et al. 2006; 

Adhikary and Eichman 2011). As described in Chapter III, the wedge residues identified 

in DME, ROS1, and DML3 are identical, while there are discrepancies among the plug 

residues.  Additional differences are found for the active site residues that discriminate 

substrate DNA, which confer specificity for 5mC over Thy.   

The investigation of the active site residues and interrogation residues of the DME 

family contribute to the study of the mechanism of DNA glycosylases in general.  An 

outstanding problem in the field is a lack of understanding of the ability of DNA 

glycosylases to locate and maintain specificity for DNA lesions from the 700,000-fold 

abundance of unmodified DNA.  This problem extends to the glycosylases responsible 

for initiating DNA demethylation, since 5mC constitutes only one percent of human 

DNA.  This problem is compounded by the fact that not all cytosine methylation needs to 

be removed, unlike the necessity of removing harmful DNA lesions.  Thus, it is likely 

that cells maintain a complex pattern of DNA methylation through the use of 

transcriptional repressors that bind methylated DNA when genes are silenced, thereby 

excluding DNA glycosylases that could function to activate the genes. 

 

DME Unstructured Regions of Unkown Function 

The DME family of enzymes are very large proteins: DME exceeds 1700 amino 

acid residues.  However, over half of the protein sequence is not conserved among DME 

homologs.  The N-terminal 600 residues and the two inter-domain regions (IDR1 and 

IDR2) have no significant sequence similarity among homologs, nor are these regions 

predicted to have substantial secondary structure.  Because no splice variants of DME 
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have been found, it is likely that the full protein is expressed in plant cells.  However, it is 

possible that these regions are subject to protease degradation in vivo, similar to the 

degradation of IDR1 observed in vitro. If this is the case, it is expected that the functional 

DME protein in vivo would resemble the DMEΔNΔIDR1 construct used in biochemical 

experiments in this thesis. 

Alternatively, the regions of low sequence similarity and predicted structural 

complexity may function to regulate DME activity.  These regions may interact with 

other proteins to signal the need for DNA demethylation.  For example, the N-terminal 

region or the IDR1 of DME may interact with histone modifications to signal when DME 

is needed to remove methylation.  Because IDR1 is predicted to extend from the core 

glycosylase fold formed from both domain A and the conserved glycosylase domain of 

DME, it is plausible that these interactions may trigger a conformational change in DME, 

allowing for enzymatic function. Other protein interactions with these regions may lead 

to the recruitment of DME to sites of DNA methylation.  However, there are no 

established proteins that recruit other DNA glycosylases to sites of damage in need of 

repair. Instead, it is theorized that the DNA glycosylases themselves are responsible for 

locating modified nucleobases.  The method of DME localization to sites of DNA 

methylation may function differently than other DNA glycosylases. This is to be 

expected, since unlike damaged nucleobases that could lead to disease or cell death, not 

all DNA methylation needs to be removed.  Instead, the processes of DNA methylation 

and demethylation are precisely timed for proper development and cell differentiation. 

Therefore, it is quite reasonable to expect that the regions of low sequence similarity in 

these enzymes may play a role to regulate the differential function of the DME homologs.   
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Role of the Iron-Sulfur Cluster 

 Many DNA repair proteins contain iron-sulfur clusters, including EndoIII/Nei, 

MutY, and DME. The role of the [4Fe-4S] iron-sulfur cluster in EndoIII has long been 

debated (Cunningham, Asahara et al. 1989). In 1992, it was determined that the iron-

sulfur cluster of EndoIII is redox-inert and therefore would not cause damage to DNA 

(Fu, O'Handley et al. 1992).   Evidence from crystal structures of EndoIII and MutY 

indicate that one loop of the cluster presents positively charged residues to the DNA 

backbone, however these residues are not well conserved (Thayer, Ahern et al. 1995; 

Guan, Manuel et al. 1998; Chepanoske, Golinelli et al. 2000; Fromme and Verdine 2003).  

Today, the role of the iron-sulfur cluster is debated, as many recent reports indicate that it 

may facilitate lesion searching, as opposed to functioning purely as a structural 

component of the proteins. 

 Although the role of iron-sulfur clusters in repair is not fully understood, many 

suspect that repair enzymes may utilize changes in the electrochemistry of damaged DNA 

to sense lesions (Fan, Fuss et al. 2008; Netz, Pierik et al. 2012; White and Dillingham 

2012). The structure of DNA allows for charge transport due to the overlapping π orbitals 

of the stacked nitrogenous bases (Wagenknecht 2005; Genereux and Barton 2010; 

Genereux, Boal et al. 2010).  Undamaged, stacked DNA has the same conductivity as 

graphite (Gup, Gorodetsky et al. 2008), and charge transport can occur over hundreds of 

base pairs on a picosecond time scale (Wagenknecht 2005).  DNA charge transport 

chemistry distinguishes between well-matched base pairs and those that are mismatched 

or contain lesions, due to changes in conductivity.  
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Iron-sulfur clusters are a common redox cofactor for bioinorganic chemistry 

across the kingdoms of life (Sontz, Muren et al. 2012). The DNA-bound potentials of 

EndoIII and MutY are ~80 mV versus NHE, which is within the range for a biological 

redox switch (Boal, Genereux et al. 2009; Genereux, Boal et al. 2010).  Binding of DNA 

by these proteins causes a large negative shift in potential (Boal, Genereux et al. 2009; 

Genereux, Boal et al. 2010).  A proposed model for these proteins to locate sites of DNA 

damage begins with this shift in potential when the enzyme binds DNA.  The protein may 

be activated toward oxidation when in the vicinity of DNA and would then release an 

electron that travels along the length of unmodified DNA to another protein with similar 

DNA-bound potential, which would be reduced by the electron and subsequently 

dissociated from the DNA.  In this way, the proteins are scanning the DNA for lesions, 

and if the electron transfer is disrupted by an unmatched base pair, the second protein will 

not dissociate, but will instead remain bound and continue to search along the DNA for a 

site of damage (Sontz, Muren et al. 2012). 

 Although not investigated in this work, the role of the iron-sulfur cluster in DME 

presents an interesting perspective on the hypothesis of disruption of DNA charge 

transport as a means to lesion detection.  Since 5mC does not disrupt the base stacking or 

base pairing of the G/C base pair, it is unlikely that charge transport is changed along the 

DNA.  Much of the work on iron-sulfur clusters have focused on EndoIII, Nei, and 

MutY, which repair oxidized pyrimidines that do change the electrochemical 

environment of the DNA duplex (David and Williams 1998; Barton, Olmon et al. 2011; 

Romano, Sontz et al. 2011; Muren, Olmon et al. 2012; Sontz, Muren et al. 2012).  While 

the currently accepted model of damage location is 3D diffusion and short-distance 



101 
 

sliding along the DNA, it is possible the iron-sulfur cluster of some repair proteins may 

utilize charge transport in addition to diffusion and sliding (Zharkov and Grollman 2005; 

Friedman and Stivers 2010). 

 

Epigenetics and Human Health 

 The status of DNA methylation on certain gene promoters plays a large part in 

determining disease progression for developmental abnormalities, cancer, and 

neurodegenerative diseases (See Dysregulation of Methylation Leads to Disease in 

Chapter I) (Robertson 2005; Jakovcevski and Akbarian 2012).  In this way, methylation 

patterns can be used in personalized medicine to determine treatment options and disease 

progression.  Additional studies on the methylation patterns of various diseases will be 

needed in order to fully utilize the epigenome of each patient.  On the other hand, 

epigenetics can affect human health beyond disease progression, since people are 

consumers of plants and animals that also utilize DNA methylation to control gene 

expression.  As described in Chapter I, laboratories are seeking to engineer wheat 

varieties that lack certain proteins that induce immune responses in patients with celiac 

disease or other gluten intolerances. This idea may be extended to other plants containing 

DME family enzymes.  If the methylation state of particular genes can be turned on or 

off, many new modified plants could be selected for specific traits.  

 

State of the Field and Future Directions 

 An increased understanding of the plant DME glycosylases has implications 

beyond the possibility of engineering wheat varieties with different protein content.  
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Several questions remain outstanding in the field of DNA glycosylases.  In particular, the 

question of substrate recognition is particualry interesting with respect to 5mC, since it is 

structurally very similar to Cyt and Thy.  Although the model predicted through sequence 

homology provided some insight into the active site of DME, a crystal structure of DME 

in complex with 5mC-DNA would provide details on the specific protein-DNA contacts 

that distinguish 5mC from other substrates.  Domain B may play an important role in 

stabilizing the structure of the enzyme alone or in complex with its substrate DNA.  The 

question of the role of domain B in substrate recognition would be answered with 

additional structural information that cannot be elucidated through homology modeling. 

 The results of this body of work focus on the ability of DME to utilize a DNA 

repair mechanism to remove a non-toxic and non-mutagenic base.  Through base excision 

repair, DME is able to directly remove 5mC.  Current studies indicate that animals 

require oxidation of 5mC to 5fC and 5caC before the base can be efficiently removed by 

a DNA glycosylase.  Since there is no known mammalian 5mC glycosylase, DME 

glycosylases are an interesting distinction between plant and animal development. The 

control of DNA methylation throughout the development and life cycle of a plant is very 

complex.  Yet, these processes in animals require additional levels of controls through the 

TET proteins that oxidize 5mC.  Furthermore, the method of TDG removal of 5fC and 

5caC across from Gua may proceed through recognition of a wobble base pair, which is 

not likely formed between 5mC and Gua.  Therefore, the recognition of 5mC by DME is 

likely due to different contacts between the enzyme and substrate DNA than those 

formed through TDG recognition of 5fC and 5caC. 
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 The work presented here can be furthered through continuing crystallization 

attempts of DME in complex with DNA.  The purification methods and buffer conditions 

have been optimized for glycosylase activity and DNA binding throughout the course of 

this project. A high quality crystal of DME may be more readily obtainable using the 

improved method of purification as described in Chapter III.  In addition, the effects of 

mutations and deletion constructs on DME activity tested in vitro in this work may be 

extended to in vivo studies to explore the hypotheses on the function of the unstructured 

regions and their effects on activity of the DME homologs.  Studies of the binding 

partners of DME in vivo also would be elightening and may lead to further insight on the 

function of the unstructured regions and/or Domain B.  There remains much to be 

understood on the function and structure of DME and its role in epigenetics. 
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Appendix I 

 

STABILITY OF 5-METHYLCYTOSINE DERIVATIVES 

 

Introduction 

In order to understand the mechanism of damage recognition and removal by 

DNA glycosylases, the inherent stability of the DNA duplex is often investigated (Brown, 

Hunter et al. 1986; Hunter, Kneale et al. 1986; Hunter, Brown et al. 1987).  Glycosylases 

utilize DNA interrogation residues to probe the substrate duplex for changes to the DNA 

structure.  Once a modification or damage is found, the glycosylase flips the DNA base 

into an active site pocket, where catalysis occurs.  Often, there are specific interactions 

between the enzyme and the base in the active site pocket that allow for and/or exclude 

modifications, thereby conferring specificity to each DNA glycosylase (Scharer and 

Jiricny 2001; Stivers and Jiang 2003; Fromme, Banerjee et al. 2004; Huffman, Sundheim 

et al. 2005; David, O'Shea et al. 2007; Dalhus, Laerdahl et al. 2009; Friedman and Stivers 

2010; Li 2010; Zharkov, Mechetin et al. 2010; Rubinson and Eichman 2012).  Due to the 

increasing interest in 5mC oxidation derivatives and their role in DNA demethylation 

pathways, the inherent stability of each of the derivatives in the context of duplex DNA 

was investigated in this ongoing work.  Results of previous, unpublished work by Szulik 

and Stone on 5mC and 5hmC were extrapolated to 5fC and 5caC derivatives. 

Calorimetric measurements combined with NMR studies and x-ray crystallography were 

used to compare the 5mC derivatives with unmodified DNA.  Calorimetric measurements 

revealed similar thermodynamic stabilities for each of the derivatives.  However, NMR 
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measurements indicated that the 5caC modification increased stability over the 

unmodified duplex, while the other modifications did not affect stability. 

 

Methods 

Oligonucleotides were synthesized by Midland Certified Reagents with the self-

complementary Dickerson-Drew dodecamer (DDD) sequence d(5ʹ - 

CGCGAATTXGCG), where X is 5fC or 5caC. The samples were desalted in the Stone 

lab by gel-permeation chromatography using a Sephadex G-25 column (GE Healthcare) 

and were lyophilized to dryness.  The samples were subsequently characterized by 

MALDI-TOF-MS. The dry oligomers were annealed by dissolving the single-stranded 

oligonucleotides in buffer (10 mM sodium phosphate pH 7 and 10 mM or 100 mM 

NaCl), heating the solution up to 90 °C for 10 min, and allowing it to cool down slowly 

to room temperature for a final concentration of 100 µM duplex DNA. Calorimetry 

experiments were performed using a VP-DSC differential scanning calorimeter (DSC, 

Microcal, Inc., Northampton, MA) from 10 to 95 °C at a rate of 1 °C per minute. The 

reference cell was filled with buffer containing either 10 mM or 100 mM NaCl, 

according to the experimental condition. 

Crystallization screens were set up using the Nucleic Acid Mini Screen (Hampton 

Research, Aliso Viejo, CA).  The 24 reagents were combined in a sitting drop tray with 

either 5fC- or 5caC-DDD in a 1:1 ratio, for a final DNA duplex concentration of 0.6 mM.  

Reservoirs were filled with 500 µL of 10% 2-methyl-2,4-pentanediol (MPD), and crystals 

were grown at 18 °C for at least two weeks.  Crystals were harvested, flash-frozen in 
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liquid N2, and sent to LS-CAT (Argonne National Laboratory, Lemont, IL) for data 

collection. 

 

Results 

Thermal melts of the Dickerson-Drew dodecamer containing 5fC and 5caC were 

performed to determine differences in thermodynamic stability between the two 

modifications and to compare to the stability of 5hmC- and 5mC-containing DNA.  The 

melting temperature of each oligonucleotide as determined by calorimetry was found to 

be 67 to 68 °C (Table 5). A representative thermal melt of 5fC-DDD is shown in Figure 

22. 

   

Figure 22. Representative thermal melt of 5fC-DDD with 10 mM sodium phosphate pH 
7 and 100 mM NaCl. 
 
 
 

 

A

 

Table 5. Thermal denaturation of 5mC oxidation derivatives in DDD. 
 TM °C 

Cyt 67 
5mC 68 

5hmC 67 
5fC 68 

5caC 67 
Melting temperatures determined via DSC thermal melts of 100 µM duplex DNA.  
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crystal structure of the Dickerson-dodecamer containing 5hmC was determined by 

Szulik, et al., at a resolution of 1 Å and Rwork / Rfree of 15% / 17% (99.6% / 98.5% 

completeness) (PDB ID 4I9V). Like 5mC, the 5hmC modification does not alter base 

stacking or pairing to the opposite G (Renciuk, Blacque et al. 2013). Crystal trials were 

conducted using the 5fC and 5caC oligonucleotides in the DDD sequence context, in 

order to determine if any structural variances may elucidate the differences in recognition 

by DNA glycosylases.  Crystals of 5fC-DDD were obtained in conditions including 10% 

MPD, 40 mM sodium cacodylate trihydrate pH 5.5 – 6.0, 20 mM hexamine cobalt (III)  

chloride, 40 mM lithium chloride, and 20 mM magnesium chloride hexahydrate.  Similar 

conditions were found for 5caC-DDD crystals, except with 12 mM spermine 

tetrahydrochloride instead of hexamine cobalt (III) chloride.  Although many crystals 

were obtained from these screens, none diffracted to more than 3.2 Å, thereby precluding 

molecular replacement solution with unmodified DDD structures. 

 

Discussion 

The calorimetric measurements of TM for each 5mC oxidation derivative indicate 

that the modifications do not affect stability of the DNA duplex.  The cytosine C5 

substituent does not interfere with the G-C hydrogen bonding or base stacking to 

neighboring bases.  These results indicate that the oxidation derivatives do not have 

significant electron-withdrawing effects that weaken or strengthen the base interactions.  

Since the oxidation derivatives of 5mC do not change the inherent stability of the duplex, 

it is unlikely that DNA glycosylases, such as DME and TDG, are able to sense a 

perturbation in duplex stability in order to locate the DNA modification.  Instead, the 
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DNA glycosylase may require a specific binding pocket interaction to recognize its 

preferred substrate.  Structures of TDG bound to substrate DNA discussed in previous 

chapters support this hypothesis, since the enzyme makes specific contacts to the 

extruded base. 

Although the calorimetric melting temperatures determined by DSC were very 

similar for all oxidation derivatives of 5mC, NMR experiments conducted by the Stone 

lab at varying temperatures indicated that the 5-carboxyl modification increased stability 

of the duplex compared to 5mC, 5hmC, and 5fC. Monitoring the imino protons of the 

modified C-G base pair revealed that this interaction is lost between 46 to 48 °C for 

unmodified DDD (48 °C), 5mC- (47 °C), 5hmC- (47 °C) and 5fC-DNA (46 °C). 

Surprisingly, the melting temperature for 5caC was determined to be 62 °C (unpublished 

results from M. Szulik and M. Stone).  It is unclear what the cause of this discrepancy is, 

but we speculate that the difference in melting temperatures between the two methods 

may result from a mixture of hairpin and duplex.  Due to the high DNA strand 

concentration, repeated annealing of the samples during the DSC experiments, and high 

salt concentration (100 mM NaCl), the DNA forms a bimolecular duplex.  However, at 

the lower strand concentrations used for NMR stability studies, the DNA may form an 

intramolecular hairpin structure, which may be more affected by modifications to the 

DNA bases.  Because the structure of the DNA was not controlled for in the NMR 

experiments, this explanation cannot be ruled out. 

Crystal structures recently have been determined for the formyl- and carboxyl-

cytosine modifications by M. Szulik (unpublished results).  These structures indicate that 

none of the modifications at the C5-position cytosine in the DDD sequence context cause 
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structural perturbations.  Each of the base pairs between the modified nucleobase and the 

opposite guanine exhibits an unchanged hydrogen bonding interface, and base stacking 

throughout the duplex is not disrupted. This lack of perturbation of the duplex structure is 

consistent with the calorimetric results of this study indicating very similar 

thermodynamic stabilities among the derivatives. Additional experiments that may be 

performed to elucidate the differences between the oxidized 5mC derivatives include 

continuing calorimetric studies in the presence of increasing amounts of ethylene glycol 

to determine the number of waters associated with each modified oligonucleotide.  

Furthermore, the C5 cytosine modifications may be placed within different sequence 

contexts, in order to determine any changes to DNA stability due to neighbor base 

interactions. 
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