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CHAPTER I 
 

     
 

INTRODUCTION 

 

Purpose 

 The eastern Laurentian craton comprises a sequence of Archean to 

Mesoproterozoic-age belts which get progressively younger from northwest to southeast 

(Figure 1).  This observation has led to models of Grenvillian-age continental growth by 

(1) addition of juvenile material to the southeastern margin of Laurentia (Karlstrom et al., 

1999, 2001) or (2) by reworking of pre-existing Laurentaian crust (Hatcher et al., 2004).  

Such models imply that the southern Appalachian basement should comprise either 

juvenile, mantle-derived crust or pre-existing Laurentian material as young as or younger 

than the eastern Mid-continent Granite Rhyolite Province (MCGRP) to the west.  Either 

a mantle or reworked Laurentian crust model for the origin of the southern Appalachian 

basement would predict that (1) Sm/Nd-depleted mantle ages (TDM's) would be the same 

as or less than the ~1.50-1.55 Ga ages observed in the eastern portion of Mid-continent 

Granite-Rhyolite province (EGRP), and (2) Pb isotopic signatures similar either to those 

in the MCGRP or to the more youthful crust that lies to the southeast, in the Adirondacks 

and Texas.  However, recent work utilizing U-Pb zircon geochronology, and whole rock 

Sm-Nd and Pb isotopic data has cast doubt on this model for the origin of the southern 

Appalachian basement (Carrigan et al., 2003, Loewy et al., 2003, Ownby et al., 2004, 

Tohver et al., 2004). 
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Recent Work 

An alternative model, based on whole rock Nd and Pb isotope data, has been 

proposed in which the southern and central Appalachian basement (SCAB) comprises 

exotic crust accreted to southeast Laurentia during Grenvillian orogenesis (Loewy et al., 

2003; Tohver et al., 2004).   The first large scale whole-rock Pb isotopic study for 

Proterozoic rocks in the eastern US was presented by Sinha et al. (1996) and Sinha and 

McLelland (1999).  This work demonstrated that the source of Mesoproterozoic rocks of 

SCAB had a notably higher initial 207Pb/204Pb than that of Adirondacks, suggesting 

derivation of these units from different Pb isotopic reservoirs.  High TDM's from the 

southern Appalachians substantiated this discrepancy (Carrigan et al., 2003; Ownby et 

al., 2004).  Loewy et al. (2003) demonstrated the overlap of Pb isotopic data between 

juvenile Mesoproterozoic rocks found in the Adirondacks and Texas (west Texas and the 

Llano uplift).  This trend showed little overlap with data from SCAB, which they 

demonstrated was strikingly similar to Pb data from Mesoproterozoic rocks of the 

southwest Amazonian craton. On these grounds, they suggested that SCAB was 

transferred to southeast Laurentia from Amazonia during the Grenville.  Tohver et al. 

(2005; 2004; 2002) made a similar argument for an Amazonian origin for SCAB using 

existing Pb and Nd isotopic data, new thermochronology and a new paleomagnetic pole 

from ~1.2 Ga basalt from Rondonia that was consistent with an Amazonia collision near 

the Llano region of Texas at this time. 
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Testing Models of SCAB Origin 

Evaluating and testing models of crustal origin with conventional methods of 

terrane correlation such as paleomagnetic and conventional geochronologic data often 

fall short in ancient, high-grade, polydeformed crust like SCAB.  In these settings, 

modern U-Pb zircon geochronology combined with whole rock Pb and Nd isotopic data 

provide the most sensitive and robust recorders of crustal origin and growth.  Therefore, 

in order to evaluate recent suggestions of a non-Laurentian SCAB origin, we present new 

whole rock Sm-Nd and Pb isotopic data for Mesoproterozoic igneous rocks from the 

southern Appalachian basement, the exposed MCGRP, and subsurface samples from 

between the southern Appalachians and the southeasternmost MCGRP.  We also present 

a single new SHRIMP U-Pb zircon age from a subsurface sample. Combined with 

available geochronologic and isotopic studies, these data help characterize the isotopic 

signature of Proterozoic southeastern North America and provide the most complete set 

of isotopic constraints for the evaluation of the relationship of the SCAB to Laurentia. 

Understanding the role of the southeast margin of Laurentia during the Grenville 

has important implications for Rodinian tectonics and paleogeography. Knowledge of the 

isotopic signature of individual crustal blocks currently juxtaposed within the Laurentian 

craton can provide a powerful test for comparing out-of-place Laurentian terranes with 

other cratons now far removed from Laurentia.  Previous studies utilizing similar 

‘isotopic fingerprinting’ has proven valuable for testing reconstructions of the Rodinian 

supercontinent (Wareham et al., 1998; Ruiz et al., 1999; Loewy et al, 2004; 2003; 2002,).     
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CHAPTER II 
 
 
 

WHOLE ROCK ND AND PB ISOTOPES AS INDICATORS OF CRUSTAL 
ORIGIN 

 
 
 

Sm-Nd isotopes 

  Samarium-neodymium TDM's can provide an estimate for the time at which 

continental crust was extracted from a depleted mantle source.  Therefore, TDM ages may 

delineate crustal blocks of differing ages (Loewy et al., 2004; Bennett and DePaolo, 

1987; DePaolo, 1981).   Numerous estimates of the Nd isotopic evolution of the depleted 

mantle have been published with variations in resulting calculated TDM age as much as 

300 m.y. (Arndt and Goldstein, 1987). For consistency, all TDM ages discussed in this 

study are calculated with the widely-used model of DePaolo (1981).   

The assumptions and potential pitfalls of the use of TDM -‘crustal formation’ ages 

have been discussed in some detail by Ardnt and Goldstein (1987).  However, the most 

important consideration, that of the incorporation of pre-existing crustal material, will be 

discussed further.  In order for a TDM age to be a true ‘crust formation’ age, the sample 

must consist of material entirely derived from a depleted mantle source at the same time. 

Dating of samples using an independent isotopic system, preferably U-Pb zircon 

geochronology, permits testing of juvenile origin.  If U-Pb zircon and TDM ages are 

similar (within ~100 m.y.) then derivation from a predominantly depleted mantle source 

is likely, in which case TDM ages provide the time of crust-mantle differentiation or the 

‘crustal-formation age’.   Alternatively, if the TDM age is significantly greater than U-Pb 

zircon age then at least partial derivation from pre-existing crust is likely.  Therefore, 
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although only providing an approximate average crustal residence time, TDM ages can be 

used to detect incorporation of pre-existing crustal material (Arndt and Goldstein, 1997).   

   

 

Pb isotopes 

Previous studies have demonstrated coherent Pb isotopic signatures for 

Precambrian-age provinces (Wooden and Mueller, 1988; Wooden and Miller, 1990; 

Sinha and McLelland, 1996; Loewy et al. 2003, 2004;).  Thus, Pb isotopes can be a 

valuable tool for both discriminating crust derived from different Pb isotopic sources as 

well as constraining the location of major terrane/crustal boundaries (Wooden et al. 

1986; Liew et al., 1994; Sinha et al., 1999). 

 The identification of coherent Pb isotopic signatures for large crustal domains 

suggests that these regions had relatively uniform ratios at one time and that their 

compositions have subsequently diverged only as a consequence of variable U/Pb and 

Th/Pb ratios.  Because both 206Pb and 207Pb are products of U decay (238U and 235U, 

respectively), and the two parents are inseparable by natural processes, the rates of 

change in the ratios of  206Pb and 207Pb to non-radiogenic 204Pb are closely related and 

can be linked to the single parameter µ (238U/204Pb).  Increase in thorogenic Pb, 208Pb, is 

sensitive to natural fractionation of Th from U and therefore is only indirectly linked to 

evolution of 206Pb and 207Pb.   The apparent Pb isotopic homogeneity of large tracts of 

crust at a point in the past suggests that either this crust was juvenile and derived from an 

isotopically distinct and uniform source, or that it was homogenized by a crustal-scale 

event.  The anticipated variable μ values within this crustal domain lead to predictable 
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subsequent evolution in uranogenic Pb leading to linear arrays in 206Pb/204Pb vs. 

207Pb/204Pb, so long as there is no further fractionation of U from Pb (Figure 2a). The 

slope of this linear array (Δ207Pb/Δ206Pb) provides the age at which the domain was last 

~homogenous in Pb isotopic composition, and the lower portion of the array, presumably 

occupied by samples with the lowest µ, provides an approximation of the initial Pb 

isotopic composition  (Figure 2a). 

Lead isotopic data from two similar age crustal provinces, each derived from a 

distinct Pb source, will produce two parallel arrays in uranogenic Pb space.  Therefore, 

when comparing terranes it is convenient to define their Pb isotopic signature as either 

ESF (elevated seven-four) or LSF (low seven-four) (Figure 2b).  Typically, regional Pb 

isotopic data sets do not fall along a single line in uranogenic Pb space, but rather define 

an array, reflecting sample heterogeneity resulting from modest variations in age and/or 

extent of isotopic homogenization (hence initial compositions) and subsequent histories 

among samples. 

 7



 

 

 

 

 8



CHAPTER III 

 

PROTEROZOIC ROCKS OF EASTERN NORTH AMERICA 

 
 
 

 Eastern North America comprises Archean to Proterozoic crustal provinces that 

are progressively younger toward the continental margin (Figure 1).  Exposed basement 

closest to SCAB toward the interior of North America (to the NW) includes the 

Adirondacks to the north, the Llano uplift to the south in Texas, and the EGRP to the 

west.  Previous isotopic data from these crustal provinces are discussed below. 

 

Mid-continent Granite-Rhyolite Province (MCGRP) 

 The MCGRP comprises a large NE-SW trending belt of Mesoproterozoic felsic 

granitoids and associated rhyolites stretching from Ontario southwest to New Mexico 

(Figure 1).  Exposures of the MCGRP are limited to the St. Francis Mountains, Missouri, 

and the Arbuckle Mountains, Oklahoma; the geochemical characteristics of the province 

are otherwise known only from drill core samples (Van Schmus et al., 1996; Lidiak et al., 

1996).  The MCGRP is divided on the basis of U/Pb ages into the Eastern Granite-

Rhyolite Province (EGRP; ca. 1470 +/- 30 Ma) and the Southern Granite-Rhyolite 

Province (ca. 1370 +/- 30 Ma), as well as TDM ages (Van Schmus et al., 1996).  The 

boundaries dividing the MCGRP based on U/Pb age and TDM are not coincident and cut 

one another at a high angle.  TDM ages in the western portion of the mid-continent are 

uniformly >1.55 Ga (see thick dashed line in Figure 1, hereby referred to as the 1.55 Ga 

TDM line) while those to the east are <1.55 Ga.  The similarity between TDM and U-Pb 
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zircon age east of the 1.55 Ga TDM line suggests a greater contribution from the depleted 

mantle than for samples west of the line (Van Schmus et al., 1996). Thus, Van Schmus et 

al. (1996) suggested that this boundary is a fundamental crustal feature marking the 

southeastern limit of Paleoproteozoic crust.  Previous Pb isotopic data from the MCGRP 

comes only from two drill cores, in southeast Missouri and northwestern Illinois. Whole 

rock data from these cores were taken at various depths at both locations and define a 

strikingly coherent array with a secondary isochron age of ~1.45 Ga, plotting below the 

average crustal evolution curve of Stacey and Kramers (1975) (Doe et al., 1983).  

 
 
 

Grenville-age Belts 

Central and Southern Appalachians 

 Grenville-age (0.9-1.3 Ga) igneous or meta-igneous rocks are exposed 

throughout the SCAB, from Pennsylvania to Alabama (Figure 1).  For ease of discussion 

we divide the Grenville age rocks within the Appalachian orogen into the southern 

Appalachian basement which includes massifs south of the North Carolina-Virginia 

border, and the central Appalachian basement which includes massifs north of the North 

Carolina-Virginia border. 

Central Appalachians   Grenville age rocks of the central Appalachian basement 

discussed here are limited to those with pre-existing Pb isotopic data (Sinha et al., 1996).  

These include the Honey Brook Uplands of Pennsylvania, the Baltimore Gneiss of 

Maryland, and numerous massifs in Virginia which are exposed in two roughly NE-SW 

trending belts, the Virgina Blue Ridge and the Goochland terrane (Figure 1).   
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 Magmatic ages throughout the central Appalachian basement range from ~1.0-1.2 

Ga (e.g., Aleinikoff et al. 2004; Owens and Sampson, 2004; Sinha et al., 1996).  A 

relatively small range of TDM ages (~1.3-1.5 Ga) is reported from the Virginia Blue 

Ridge and Goochland terrane (Owens and Sampson, 2004; Pettingill et al., 1984).  With 

the exception of the Stage Road Layered Gneiss of Virginia, which defines a steeper 

slope, Pb isotopic data from the central Appalachians define a coherent array that 

overlaps and lies slightly above the Stacey and Kramers (1975) curve.  This array yields 

an apparent 207Pb/204 – 206Pb//204Pb age of 1190 Ma (Sinha et al, 1996). The similarity 

between U-Pb zircon ages and the whole rock Pb-Pb age suggest that Paleozoic events 

did not affect regional Pb isotopic systematics (Sinha et al., 1996; Pettingill et al. 1984).  

Southern Appalachians  A majority of the basement in the southern Appalachians is 

exposed in a  NE-SW trending belt along the Tennessee-North Carolina border (Hatcher 

et al., 20004). Smaller exposures are also found to the south and east including the 

Sauratown Mountain window, Trimont Ridge complex, Toxaway dome, Tallulah Falls 

dome, and the Pine Mountain window (Hatcher et al. 1984) (Figure 1).  

 The southern Appalachian basement is typically divided into the eastern and 

western Blue Ridge (EBR, WBR) (Figure 5) (Hatcher, 1978). The WBR as discussed 

here is the same as the Laurentian margin/western Blue Ridge terrane of Hatcher et al. 

(2004) and also includes the Corbin Gneiss, Georgia, and the Sauratown Mountains, 

thought to be a window into the WBR (McConnell, 1990). The EBR comprises the 

Cowrock, Cartooogechaye, Dahlonega Gold Belt, and Tugaloo terranes of Hatcher et al. 

(2004) as well as the Pine Mountain terrane, Georgia-Alabama. Additionally, we 

distinguish the Mars Hill Terrane, as it contains the most ancient crust thus far identified 
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in the Appalachian orogen and is now considered to be exotic to Laurentia (fig SAB) 

(Hatcher et al., 2005; Ownby et al 2004; Carrigan et al. 2003). 

Western Blue Ridge: The Grenville age basement of the WBR consists of 

orthogneisses of predominantly granitic composition (Carrigan et al. 2003).   U-Pb zircon 

SHRIMP ages for the WBR define two major magmatic pulses at 1.02-1.08 and 1.13-

1.18Ga as well as a single granitoid gneiss at 1.38 Ga (Berquist et al., 2005; Berquist 

2005).  Eight TDM ages show no systematic variation with U-Pb age, and range from 1.34 

to 1.75 Ga; two model ages are ≤ 1.55 Ga (1.34 and 1.46 Ga), and six are 1.59-1.75 Ga 

(Carrigan et al., 2003; Heatherington et al., 1996).  Available Pb isotopic data are limited 

to the Corbin Gneiss and Sauratown Mountains and plot slightly below the Stacey and 

Kramers (1975) curve (Sinha et al., 1996).  No Pb data have been published from the 

widespread exposures of Grenville-age basement along the Tennessee-North Carolina 

border, within the Watauga, Globe, and Elk River massifs of Bartholomew et al. (1984). 

Eastern Blue Ridge: Exposures of the predominantly granitic basement rocks of 

the EBR are scarcer than those of the WBR and occur primarily in the Trimont Ridge 

complex, within the Toxaway and Tallulah Falls dome, and in the Pine Mountain terrane 

(Hatcher et al. 2004, Carrigan et al. 2003).  U-Pb zircon ages from the EBR range from 

1.14-1.17 Ga, and TDM ages range from 1.50-1.69 Ga (Carrigan et al. 2003) 

(Heatherington et al., 2006, cite a range of 1.32-1.59 Ga for the Pine Mountain terrane, 

with xenoliths in granitic gneisses up to 1.97 Ga).  Pb isotopic data from the Tallulah 

Falls dome and the Pine Mountain terrane overlap the Stacey and Kramers (1975) curve 

(Sinha et al., 1996). 
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Mars Hill Terrane:  The Mars Hill Terrane has been distinguished from the 

surrounding EBR and WBR on the basis of (1) apparent older (1.8 Ga) age for some 

lithologies based U-Pb zircon and Rb-Sr isochron ages; (2) older TDM ages (most >1.8 

Ga); (3) well-preserved granulite-grade metamorphism of Mesoproterozoic age; (4) 

lithologic diversity – specifically, mafic rocks are abundant and interspersed with granitic 

gneisses on outcrop scale; (5) distinctive Pb isotopic compositions - 207Pb/204Pb ratios are 

higher than for other Appalachian rocks with similar 206Pb/204Pb ratios, and Pb data 

appear to define an unusually steep slope in 207Pb/204Pb-206Pb/204Pb plots, suggesting 

greater antiquity (e.g., Merschat, 1977; Monrad and Gulley, 1983; Gulley, 1985; 

Raymond et al., 1989; Bartholomew and Lewis, 1988; Sinha et al., 1996; Ownby et al., 

2004). However, recent investigations of the Mars Hill Terrane have demonstrated that 

the oldest magmatic and TDM ages are confined to the Roan Mountain area, Tennessee-

North Carolina border (Berquist 2005; Ownby et al., 2004).  Based on the pre-

Grenvillian history of Roan Mountain we discuss it separately from the adjacent Mars 

Hill terrane to the south, which has yielded two SHRIMP U-Pb zircon ages of 1.26 and 

1.28 Ga, slightly older than the surrounding EBR and WBR (Ownby et al., 2004; 

Berquist 2005). 

Roan Mountain: Investigations of the meta-igneous rocks exposed at Roan 

Mountain have demonstrated their distinctive age and isotopic characteristics (Ownby et 

al., 2004; Carrigan et al. 2003; Sinha et al., 1996; Monrad and Gulley, 1983).  Monrad 

and Gulley (1983) determined a 1.8 Ga whole rock Rb/Sr isochron based on five meta-

igneous samples.  A magmatic age of 1.8 Ga was confirmed by U-Pb zircon dating by 

SHRIMP and LA-ICPMS, although recent studies have demonstrated that most 
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magmatic ages are between 1.2 and 1.3 Ga (Fisher and Bream, unpublished data (see 

Appendix E and F); Ownby et al 2004; Carrigan et al. 2003).   TDM ages range from 

1.65-2.32 Ga, the oldest known in the southeastern United States (Ownby et al. 2004; 

Carrigan et al., 2003).  The unusual Pb isotopic characteristics cited above for the Mars 

Hill Terrane, which suggest an older age than the surrounding basement, were 

determined from samples collected on the flanks of Roan Mountain (Carvers Gap)(Sinha 

et al. 1996). 

Adirondack Mountains 

 The Grenville-age rocks of the Adirondack Mountains comprise mainly granitic 

and anorthositic gneisses intruded into a predominantly carbonate sedimentary sequence 

(Daly and McLelland, 1991; Sinha and McLelland, 1999).  U-Pb zircon ages range from 

~1.35 Ga for tonalitic arc-related rock to 1.04 Ga for younger intrusions (McLelland et 

al., 1996).  TDM ages from the tonalites are ~1.37-1.40 Ga, within ~70 Ma of their U-Pb 

zircon ages, suggesting a juvenile mantle derivation.  Younger lithologies typically have 

TDM ages similar to the tonalites (1.5-1.3 Ga), suggesting derivation by melting of the 

magmatic arc crust (McLelland et al. 1993; Daly and McLelland, 1991).  The Pb isotopic 

data from the Adirondacks form a coherent array plotting below the Stacey and Kramers 

(1975) curve (Sinha and McLelland, 1999).    

Texas  

Grenville-age basement is exposed in Texas in both the Llano Uplift and in the 

Franklin and Van Horn Mountains (west Texas) as well as within xenoliths hosted in 

Tertiary volcanic rocks at Rancherias Canyon and the Forbidden Mountains (fig 1) 

(Bickford et al., 2000; Smith et al., 1997; Cameron and Ward, 1998).  Surface exposures 
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in Llano and west Texas both contain younger (~1.07-1.12 Ga) granitic rocks intruded 

into predominantly sedimentary-volcanic sequences (Bickford et al., 2000; Smith et al., 

1997).  Both the granitic and older igneous units, as well as the xenoliths, have TDM ages 

~1.0-1.4 Ga (Roller 2004; Smith et al., 1997; Cameron and Ward, 1998). Pb isotopic data 

from these units form a coherent array plotting below the Stacey and Kramers (1975) 

curve (Roller 2004; R.C. Roback, personal communication; Cameron and Ward, 1998). 

 
 
 

Summary of previous whole-rock Pb isotopic data 

Whole rock Pb isotopic data for igneous rocks discussed above define three 

coherent arrays in Pb space (Figure 3):   

(1) The Roan Mountain samples (excluding a single sample thought to be 

metasedimentary) and the Stage Road Layered Gneiss define an array with the steepest 

slope, suggesting either an older age for these rocks or mixing between distinct Pb 

isotopic sources.  If the array is a result of mixing, an ancient source component is still 

needed to explain the elevated 207Pb/204Pb of one end member (Sinha et al., 1996). While 

a secondary isochron age of ~3.0 Ga (Sinha et al., 1996) is likely too old, some Roan 

Mountain samples have 1.8 Ga magmatic ages, abundant detrital and inherited zircon 

ages are >1.6 Ga, and TDM ages approach 2 Ga (Ownby et al., 2004; Carrigan et al., 

2003; Sinha et al., 1996).   

(2) Mesoproterozoic rocks of the Adirondacks, Llano Uplift, West Texas, and samples 

from drill cores in northwest Illinois and southeast Missouri all define a coherent LSF 

array below curve of Stacey and Kramers (1975), suggesting a common Pb isotopic 

source (Figure 3).   
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(3) A third ESF array defined by the Grenville age SCAB plots with and slightly above 

the crustal Pb evolution curve of Stacey and Kramers (1975) (Figure 3).  All units 

discussed above, with the exception of Roan Mountain and Stage Road Layered Gneiss, 

have secondary isochron ages consistent with available U-Pb zircon ages (~1.0-1.25 Ga), 

demonstrating that subsequent magmatic and metamorphic events did reorganize Pb 

systematics (Sinha et al., 1996).  It should be noted that almost no overlap exists between 

the ESF and LSF data sets for 206Pb/204Pb < ~18.5. 

 
 
 

Summary of Previous Whole-rock Sm/Nd Isotopic Data 

Roan Mountain samples have the oldest TDM ages (1.65-2.32 Ga) in the 

Appalachian orogen, coinciding with the steepest slope in Pb space.  The LSF basement 

rocks discussed above have TDM ages ranging from ~1.55 Ga in the EGRP to ~1.0 Ga in 

the Llano Uplift.  These samples typically have TDM ages within ~100 my of their 

respective U-Pb zircon ages, attesting to the juvenile nature of these provinces.  

Lithologies with an ESF signature can be subdivided into two groups based on TDM ages.  

The central Appalachian basement typically has TDM ages between 1.3 and 1.5 Ga and 

U-Pb zircon ages of 1.0-1.2 Ga.  The southern Appalachian basement has TDM ages 

which range from 1.3-2.3 Ga with 14 of 18 samples > 1.55 Ga, including those from 

Roan Mountain.  
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CHAPTER IV 

 
 

RESULTS: NEW DATA 

 
 

Whole rock Nd and Pb isotopic data were obtained from surface and drill core 

samples of Proterozoic igneous and meta-igneous basement of the southern Appalachian 

basement and MCGRP in order to better constrain the origin of Grenville-age basement 

in the southern and central Appalachians.  Previous Pb isotopic comparisons of 

Proterozoic eastern North America did not include the extensive MCGRP, suggested to 

be the protolith of Appalachian basement massifs (Hatcher et al., 2004), or the WBR 

basement of the southern Appalachians, thought to have formed at the Laurentian margin 

during the Grenville (Bartholomew and Lewis, 1986, 1992; Hatcher et al., 2005, 2004).   

New Nd isotopic data from the southern Appalachian basement were collected to better 

characterize the Nd isotopic signature of the WBR, EBR, and Mars Hill terrane.  In 

addition, a single drill core sample from central Tennessee was dated using SHRIMP U-

Pb zircon geochronology.  These data, combined with previous Pb, Nd, and U-Pb 

isotopic data, elucidate the relationships among units of SCAB (WBR, EBR, Mars Hill 

terrane) and adjacent portions of Proterozoic Laurentia.  Note: major and trace-element 

geochemistry for samples CO-DC, GV-DC, and RMHB is in Appendix C. 

 
 
 

U-Pb Zircon Data 
 

Zircon from a granitic drill core sample from central Tennessee (GV-DC; see 

Figure 1) was dated using SHRIMP U-Pb zircon geochronology.  Analyses displayed a 
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wide range of discordance and produced a poorly constrained lower intercept age (Figure 

4), perhaps due to a regional Pb loss episode at ~260 Ma (Doe et al., 1983), in general 

agreement with the.  The upper-intercept age of 1381±27 Ma is interpreted to represent 

the crystallization age.  Together with previous zircon U-Pb data from a Kentucky drill 

core sample (KyPU, 1457±10 Ma; Van Schmus et al., 1996), these data confirm the 

eastern extension of ~1400 Ma MCGRP granites into central Tennessee and Kentucky 

(Figure 

1).
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Whole-rock Pb Isotope Data 
 

Whole rock Pb isotopic analyses were performed for 23 southern Appalachians 

basement samples, including the WBR (Figure 5) and 14 samples from the MCGRP, 

both east and west of 1.55 Ga TDM line of (Van Schmus et al. 1996) (Figure 6), and  

(Table 1).  All of the MCGRT samples, including GV-DC and a troctolite drill core from 

eastern Tennessee (CO-DC; see Figure 1), plot below Stacey and Kramers’ (1975) 

crustal evolution curve (Figure 7a).  These data fall within the LSF array defined by data 

previously reported from the Adirondacks, Texas, and two drill holes in northwest 

Illinois and southeast Missouri. There does not appear to be a relationship between TDM 

age and whole rock Pb-Pb age, i.e. samples with older TDM do not yield older Pb-Pb 

ages.  All whole-rock Pb isotopic data for the MCGRT define a coherent array with a 

secondary isochron age of ~1.45 Ga, suggesting either a major crustal homogenization 

event at this time, or derivation from a relatively homogenous reservoir in the upper 

mantle. 

Newly analyzed EBR samples provide the first Pb data for Trimont Ridge, the 

Toxaway dome, and two unnamed basement exposures in the Dahlonega Gold Belt and 

Tugaloo terrane in North Carolina (as defined by Hatcher et al., 2004) which previously 

lacked Pb isotopic data.  These samples and two others from the Tallulah Falls dome all 

plot within the ESF array defined by Sinha et al. (1996) for the southern and central  

Appalachian basement (Figure 7b).  Similarly, 8 samples from the WBR and 2 samples 

from the Mars Hill terrane (outside of the Roan Mountain area)  plot within or slightly 

above the SCAB ESF array defined by Sinha et al. (1996) (Figure 7b).  
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Five samples from Roan Mountain, including a single metasedimentary sample 

(RMCLG), confirm the steeper slope (older age?) of this unit (Figure 7c).  All Roan 

Mountain samples plot within the field identified by Sinha et al. (Carvers Gap; 1996), 

and most have a higher 207Pb/204Pb for a given 206Pb/204Pb than the surrounding 

basement.  It should be noted that the other two Mars Hill terrane samples also fall within 

the array defined by Roan Mountain/Carvers Gap data, at its lower end where it overlaps 

with the dominant ESF field. 
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Whole-rock Sm-Nd isotopic data 

 Whole rock Sm/Nd analyses were performed for 8 WBR, 3 EBR and 2 Mars Hill 

terrane (non-Roan Mountain) samples collected along a NW-SE transect of the Blue 

Ridge (Table 2).  Combined with previous southern Appalachian Sm/Nd isotopic data 

(Ownby et al., 2004; Carrigan et al. 2003) the EBR, WBR, and Mars Hill terrane show 

significant overlap in εNd vs. time plots (Figure 8).  One of the new EBR samples extends 

the range of TDM ages to 1.88 Ga (total range now 1.50-1.88 Ga), and one WBR analysis 

extends the upper limit to1.82 Ga (1.34-1.82 Ga).  Previously, the only samples analyzed 

from the Mars Hill terrane came from the Roan Mountain area; our 2 new analyses, all 

south of Roan Mountain, yielded TDM ages 1.53 and 1.65 Ga.   As noted previously, TDM 

ages of Roan Mountain samples range from 1.65-2.32 Ga (Ownby et al., 2004; Carrigan 

et al. 2003) 

TDM ages for samples from the southern Appalachian basement are 200-600 Ma 

greater that their U/Pb magmatic ages, indicative of derivation from either older crust or 

a juvenile mantle magma contaminated by older crust.  Available data from the ~1.0-1.2  

Ga central Appalachians have younger of TDM ages (~1.3-1.5 Ga) that are closer 

to their U/Pb ages, suggesting a greater juvenile mantle contribution or incorporation of 

younger pre-existing crust than in the southern Appalachians. 
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CHAPTER V 

 

DISCUSSION 

 

Isotopic Domains in Proterozoic Basement of Southeastern North America 

 The three coherent, but distinct, Pb isotopic arrays defined by Proterozoic rocks 

of eastern North America suggest differences in the crustal histories for rocks of each 

array:  

Roan Mountain and the Stage Road Layered Gneiss of the Virginia Blue Ridge 

define the steepest array in 207Pb/204Pb-206Pb/204Pb space, possibly indicating an older age 

for these units.  Only a single TDM age of 1.59 Ga is available from the Stage Road 

layered gneiss, but isotopic data from Roan Mountain confirm antiquity for this area, 

with TDM ages up to 2.32 Ga, and 1.8 Ga Rb/Sr and U-Pb magmatic ages (Fisher and 

Bream, unpublished data (see Appendix E and F); Ownby et al., 2004; Carrigan et al., 

2003; Monrad and Gulley, 1983; Pettingill et al., 1984).  TDM ages > 1.9 Ga and evidence 

for a >1.4 Ga magmatic event have not been identified elsewhere in the SCAB, including 

the remainder of the Mars Hill Terrane.  The nearest known Laurentian rocks that could 

produce the TDM ages observed at Roan Mountain lie ~1000 km to the NW in the Central 

Plains (Van Schmus et al, 1996) and Penokean Orogens (Van Wyck and Johnson, 1997) 

(Figure 1).   

Two coherent subparallel arrays are defined by the remainder of the Pb isotope 

data.  Juvenile crust of the Adirondacks, Llano Uplift, West Texas and MCGRP all have 

overlapping Pb isotopic compositions that define a distinct LSF array, suggesting a 
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common source.  An ESF array is defined by Mesoproterozoic basement in both the 

southern and central Appalachians, suggesting a Pb source for these units distinct from 

that of the nearby juvenile, LSF crust of the Adirondacks, Texas, and MCGRP.  

A plot of 208Pb/204Pb vs 206Pb/204Pb for all Proterozoic eastern North American 

samples is shown in Figure 8.  There is no clear distinction between the ESF domain 

(grey and black data symbols) and LSF domain (open data symbols) defined by the 

uranogenic Pb data.  Most samples from the MCGRP plot along or below the crustal 

growth curve of Stacey and Kramers (1975), indicating average or slightly lower Th/U 

values (Th/U </~4). The Adirondacks, Texas and central Appalachian data are scattered 

above and below the curve of Stacey and Kramers (1975).  Data for the southern 

Appalachians typically have a higher 208Pb/204Pb for a given 206Pb/204Pb than the other 

domains and a smaller range of 206Pb/204Pb, including the central Appalachians.  Roan 

Mountain samples are especially distinct in their high 208Pb/204Pb and low 206Pb/204Pb, 

indicating very high Th/U (evident in whole rock data: Appendix D; Ownby et al., 2004).       

Present day elevated 208Pb/204Pb ratios (relative to 206Pb/204Pb), such as those 

observed in the southern Appalachian basement, are the result of an increase in Th/U in 

the past, and have been associated with preferential U loss during metamorphism 

(Wooden et al., 1986).  In addition, most southern Appalachian basement samples show a 

narrower range of 206Pb/204Pb (17-18) than is observed in the central Appalachian and 

other domains.  These characteristics may reflect Grenville high-grade metamorphism in 

the deep crust that resulted in U loss and hence increase in Th/U and decrease in U/Pb. 

As a consequence, thorogenic 208Pb has continued to rise at near-normal rates while 

growth of uranogenic 206Pb (and 207Pb) has been limited.   Plausibly, the southern 
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Appalachian isotopic signature may reflect greater involvement of older, deep, high-

grade crust, represented by Roan Mountain gneisses, than occurred elsewhere in the 

Appalachians.  

 

 Despite similarities in uranogenic Pb isotopic data, the Nd isotopic signature of 

the southern Appalachian basement is notably older (1.34-1.88 Ga) than the more 

uniform TDM ages (1.35-1.50 Ga) found in the central Appalachians.  A Laurentian origin 

for SCAB predicts TDM ages to be the same or less than the <1.55 Ga EGRP, which 

bounds SCAB to the west. Although Sm/Nd isotopic data from the central Appalachians 

are consistent with this model, less than 30% of southern Appalachian samples have TDM 

ages <1.55 Ga, and thus the data are at odds with a Laurentian derivation (Berquist et al., 

2005; Ownby et al., 2004; Carrigan et al., 2003).  This is illustrated in a probability plot 
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of TDM ages available for Proterozoic rocks from the EGRP, and Grenville age rocks in 

Texas, the Adirondacks and SCAB (Figure 10). 
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Recent work has suggested that Roan Mountain-type crust may represent an 

exposed lower crustal fragment similar to that which underlies the younger, Grenville-

age rocks of the southern Appalachians (Ownby et al., 2004; Fullagar 2002).  Similar, 

~Paleoproterozoic and older crust has also been suggested to underlie the Pine Mountain 

terrane (Heatherington et al., 2006).  Thus, it is plausible that both the southern and 

central Appalachian basement may have come from a similar, ESF Pb isotopic source, 

with either variable lower crustal ages, the older of which must underlie the southern 

Appalachians, or a larger juvenile component in the central Appalachian Grenvillian 

rocks.   

 
 
 

Implications of Lead Isotopic Domains for Architecture of Southeastern North 
America 

 
 The utility of mapping distinct Precambrian isotopic domains, even in areas 

where Precambrian rocks are not exposed at the surface, has been established in previous 

studies (Kistler and Peterman, 1973; Wooden et al., 1986; Wooden and Miller, 1990).  

Similar mapping of the ESF and LSF uranogenic Pb isotope arrays of Proterozoic eastern 

North America provides a striking map pattern showing no geographic overlap of the 

arrays (Figure 11).  All samples plotting within the ESF array form a NW-SE trending 

belt outboard of all LSF signature samples and parallel to the proposed SE Laurentian 

margin of Bartholomew and Lewis (1986; 1992). 

 If the SCAB indeed represents an exotic terrane accreted to the SE Laurentian 

margin, then the boundary between ESF and LSF signatures may indicate potential 
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suture locations.  Although such a suture is likely buried beneath Paleozoic thrust sheets, 

regional geophysical data define a major subsurface crustal boundary beneath Paleozoic 
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cover, termed the New York-Alabama (NY-AL) lineament (King and Zietz, 1978), 

which could mark its location.  Defined by both magnetic and density gradients,  

the NY-AL lineament stretches from New York to Alabama, eastern USA, parallel to but 

west of the proposed SE Laurentian margin during the Grenville (Bartholomew 1986; 

1992) (King and Zietz, 1978).  Shown in Figure 11, it separates the rocks of LSF 

signature west of the lineament with those of ESF signature to the east (Fisher et al., 

2005, 2006).  The division of the data is especially compelling given new Pb data from 

samples collected close to the lineament on either side, i.e. WBR exposures and EGRP 

drill core.   The relatively narrow gap between currently exposed LSF and ESF basement 

also includes the frontal faults of the Appalachians.  All ESF are in the NW-directed 

upper plate, allochthonous with respect to the deep crust.  Thus, the original location of 

the suture in autochthonous crust could lie as much as hundreds of km to the southeast, 

beneath overthrust Appalachians (Hatcher 1984; Bartholomew and Lewis, 1992).    

Possible Origin of Southern Appalachian Basement in Rodinia  

 Recent Rodinian reconstructions have placed either the Amazonian or Kalahari 

craton in a near conjugate margin position relative to southeastern Laurentia during the 

Grenville orogeny and suggest the possibility that fragments of these cratons remain 

within North America (Hoffman, 1991; Daziel et al., 2000; Loewy et al., 2003; Tohver et 

al., 2004).  Data from the MCGRP and the southern Appalachian basement presented 

here strengthen arguments for an exotic SCAB that was accreted as a fragment during the 

construction of Rodinia. 

 Limited Pb isotopic data from Kalahari (Wareham et al., 1998) appear to overlap 

the LSF signature of juvenile Laurentian rocks and therefore could not have produced the 
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ESF signature observed in SCAB samples.   In contrast, the Sunsas orogen, within 

Amazonia, experienced 1.3 to 1.0 Ga magmatism and has >1.6 Ga TDM ages and ESF Pb 

isotopic signatures similar to SCAB (Figure 12) (Geraldes et al. 2001; Loewy et al., 

2003; Tohver et al., 2004). 
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 Based on paleomagnetic and structural data, Tohver et al. (2004; 2005) suggest a 

collision between SW Amazonia and the Llano segment of Laurentia followed by 

sinistral displacement of Amazonia along the Laurentian margin.  A possible best fit for 

the geophysical data from the NY-AL lineament suggests sinistral movement along its 

strike, which agrees with the oblique collisionsal and/or roational (?) model of Tohver et 

al. (2004; 2005) and is compatible with the distribution of ESF and LSF samples 

presented here.   

 
 
 

Conclusions 
 

 1.  New whole-rock Pb isotopic data from Mid-continent Granite-Rhyolite 

province and Western Blue Ridge basement samples provide a more complete 

characterization of the Pb isotopic signatures of Mesoproterozoic age rocks in the eastern 

USA.  These data indicate that WBR basement has a very similar heritage to most 

Proterozoic Appalachians rocks and demonstrate that the MCGRP crust is similar to that 

of adjacent juvenile North American Proterozoic crust (Adirondacks, Texas).  

Furthermore, these data confirm that Appalachian crust is distinct from that of adjacent 

North America, and that rocks from a small area in the vicinity of Roan Mountain, NC-

TN, is isotopically even more extreme and distinctive than those in the remainder of the 

Appalachians.   

2. The Pb isotope data, together with Sm-Nd TDM ages, strongly support recent 

suggestions of an exotic origin for Proterozoic Appalachian crust (Loewy et al 2003; 

Ownby et al., 2004; Tohver et al 2004). 
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3.  Comparison of Pb isotopic data from the southern and central Appalachians 

with terranes suggested to have been in the vicinity of SE Laurentia during Rodinian 

construction favors an Amazonian connection.  Thus, the NY-AL lineament could 

represent the boundary between Laurentian crust to the NW and accreted Amazonian 

crust to the SE. 

.   

 

 38



APPENDIX A.  TDM age analytical uncertainty calculation 
 
 
 
 

Potential sources of error in calculating TDM age include extrapolation beyond 

the crystallization age (which assumes no change in Sm/Nd), uncertainty in the 

composition of mantle sources  in space and time, and analytical uncertainty. Analytical 

uncertainty of TDM ages is the result of the uncertainty of 147Sm/144Nd and 144Nd/143Nd 

measurements that are used to calculate TDM age (illustrated by the sub-horizontal bands 

in Figure A).  The uncertainty in TDM age is further increased as the extrapolation line 

intersects the depleted mantle model curve (Figure 13a).  Samples with higher 

147Sm/144Nd intersect the depleted mantle model curve at low angle resulting a larger 

uncertainty in TDM ages.    An approximation of this uncertainty is presented here for 

147Sm/144Nd between 0.14 and 0.07, typical of continental/crustal materials.  This 

approximation assumes an uncertainty of ±0.000005 for measured 144Nd/143Nd, and a 

0.4% uncertainty in 147Sm/144Nd (Patchett and Kouvo, 1986).   Figure (13b) shows the 

calculated uncertainty for Sm/Nd from 0.14-0.07, the ratios considered in this study. 
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APPENDIX B.  Methods 

 

Whole-rock Elemental and Isotopic data 

 Fresh, representative 1-5 kg samples for whole rock geochemistry and isotope 

analysis as well as U/Pb zircon analysis were collected from roadcuts, outcrops, and 

quarries.  In the case of drill cores, the freshest possible portions were used.  Thin slabs 

were cut from each sample (parallel to lineation and perpendicular to foliation, where 

applicable) and powdered in an alumina ceramic shatterbox. Drill core samples were cut 

into smaller slabs, or consisted of cuttings and were pulverized in an alumina ceramic 

mortar and pestle. 

 Both whole rock Sm/Nd and Pb isotopic analyses were performed at the 

University of North Carolina-Chapel Hill on a Micromass Sector 54 mass spectrometer.  

For Pb analysis, 300 mg aliquots of the pulverized powder were washed in 1N HNO3 for 

30 minutes on a warm hotplate before dissolution in Teflon™ dissolution bombs. 

Samples were dissolved in two stages using HF/HNO3 and 6N HCl. Pb was isolated 

using an HBr anion exchange technique, loaded onto standard Re filaments with a 

mixture of silica gel and phosphoric acid, and analyzed with a VG Sector 54 TM thermal 

ionization mass spectrometer. Twenty analyses of NBS981 indicate fractionation of 

0.12% per amu with measured isotopic ratios within 0.05%. For Sm/Nd analyses, 300 mg 

aliquots of pulverized powder were spiked with 147Sm/150Nd mixed spike and dissolved in 

the same manner as the Pb samples, except the powders were not washed in HNO3. Rare 

earth elements (REE) were isolated using REE-SPECTM column chemistry. Sm and Nd 

were subsequently isolated using LN-spec columns. Analyses were normalized to 
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146Nd/144Nd = 0.7219. Twenty-seven analyses of JNdi yielded an average 143Nd/144Nd of 

0.5121080 +/- 0.0006% std error. TDM ages are calculated using the theoretical isotopic 

decay constant (6.54*10-12/yr) of Lugmair and Marti (1978) and the depleted mantle 

model of DePaolo (1981; ENd=0.25T2-3T+8.5).  

 
 
 

Zircon U/Pb geochronology 

 Zircons from sample GV-DC were separated from ~100 g of core material at 

Vanderbilt University.  The sample was crushed in an alumina ceramic shatter box to 

sieve size of <500 microns.  Zircons were separated using heavy liquids and a Frantz 

Isodynamic magnet separator, then handpicked from non-magnetic fractions and 

mounted in epoxy with zircon standard R-33 and VP-10.  Mounts were then polished to 

reveal the approximate center of the grain and imaged by cathodoluminescience (CL) to 

reveal internal morphology.  Points on zircons (~30µm in diameter) were analyzed 

according to the Stanford/U.S. Geological Survey (USGS) Sensitive High-Resolution Ion 

Microprobe, Reverse Geometry (SHRIMP-RG) Facility procedure (Bacon et al., 2000)    

Data reduction used the SQUID software package of Ludwig (Ludwig 2002a, 2002b).  
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Appendix C.  Major- and trace- element geochemistry (drill cores and RM-HB) 

 

Note: oxide value in wt. %, trace element value in ppm.  LOI-loss on ignition. 
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APPENDIX D.  Major- and trace- element geochemistry for Roan Mountain 

 

Note: oxide value in wt. %, trace element value in ppm.  LOI-loss on ignition. 
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APPENDIX E.  Concordia plot for CLG-4 (Figure 14) 
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APPENDIX F.  U/Pb isotopic data for CLG-4 
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