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CHAPTERII

INTRODUCTION

Purpose

The eastern Laurentian craton comprises a sequence of Archean to
Mesoproterozoic-age belts which get progressively younger from northwest to southeast
(Figure 1). This observation has led to models of Grenvillian-age continental growth by
(1) addition of juvenile material to the southeastern margin of Laurentia (Karlstrom et al.,
1999, 2001) or (2) by reworking of pre-existing Laurentaian crust (Hatcher et al., 2004).
Such models imply that the southern Appalachian basement should comprise either
juvenile, mantle-derived crust or pre-existing Laurentian material as young as or younger
than the eastern Mid-continent Granite Rhyolite Province (MCGRP) to the west. Either
a mantle or reworked Laurentian crust model for the origin of the southern Appalachian
basement would predict that (1) Sm/Nd-depleted mantle ages (Tpm's) would be the same
as or less than the ~1.50-1.55 Ga ages observed in the eastern portion of Mid-continent
Granite-Rhyolite province (EGRP), and (2) Pb isotopic signatures similar either to those
in the MCGRP or to the more youthful crust that lies to the southeast, in the Adirondacks
and Texas. However, recent work utilizing U-Pb zircon geochronology, and whole rock
Sm-Nd and Pb isotopic data has cast doubt on this model for the origin of the southern
Appalachian basement (Carrigan et al., 2003, Loewy et al., 2003, Ownby et al., 2004,

Tohver et al., 2004).



Recent Work

An alternative model, based on whole rock Nd and Pb isotope data, has been
proposed in which the southern and central Appalachian basement (SCAB) comprises
exotic crust accreted to southeast Laurentia during Grenvillian orogenesis (Loewy et al.,
2003; Tohver et al.,, 2004). The first large scale whole-rock Pb isotopic study for
Proterozoic rocks in the eastern US was presented by Sinha et al. (1996) and Sinha and
McLelland (1999). This work demonstrated that the source of Mesoproterozoic rocks of
SCAB had a notably higher initial **’Pb/***Pb than that of Adirondacks, suggesting
derivation of these units from different Pb isotopic reservoirs. High Tpm's from the
southern Appalachians substantiated this discrepancy (Carrigan et al., 2003; Ownby et
al., 2004). Loewy et al. (2003) demonstrated the overlap of Pb isotopic data between
juvenile Mesoproterozoic rocks found in the Adirondacks and Texas (west Texas and the
Llano uplift). This trend showed little overlap with data from SCAB, which they
demonstrated was strikingly similar to Pb data from Mesoproterozoic rocks of the
southwest Amazonian craton. On these grounds, they suggested that SCAB was
transferred to southeast Laurentia from Amazonia during the Grenville. Tohver et al.
(2005; 2004; 2002) made a similar argument for an Amazonian origin for SCAB using
existing Pb and Nd isotopic data, new thermochronology and a new paleomagnetic pole
from ~1.2 Ga basalt from Rondonia that was consistent with an Amazonia collision near

the Llano region of Texas at this time.
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Figure 1. Generalized U/Pb zircon and Ty, (depleted mantle model age- age of crust formation
based on Nd isotopic composition) distribution for Proterozoic and older igneous rocks of east-
ern North America. Thick dashed line separates Ty, ages >1.55Ga in the Midcontinent
Granite-Rhyolite Province. Stippled pattern denotes the ~1470%30Ma Eastern Granite-Rhyolite
Province (EGR), dashed pattern denotes ~1370130Ma Southern Granite-Rhyolite Province (SGR) .
Modified from Van Schmus et al. 1996, Thomas et al. 2006, Sinha et al. 1996.

*Dashed box represents area where no isotopic data existed prior to this study except sample
KyPU (U/Pb 1457 Ma; Ty, ~1.45) (Van Schmus et al. 1996).

AD-Adirondacks; AR-Arbuckle Mountains; BG-Baltimore Gneiss; CO-Crab Orchard(drill core);
CG-Corbin Gneiss; FbM-Forbidden Mountain; FM-Franklin Mountains; GL-Goochland terrane;
GV-Goodlettsville (drill core); HU-Honeybrook Uplands; LU-Llano Uplift; MCR-mid-continent rift;
PM-Pine Mountain Windwow; RC-Rancheria Canyon; RM-Roan Mountain; SFM-St. Francis Moun-
tains; SM-Sauratown Mountain Window; TD-Toxaway Dome; TF-Tallulah Falls Dome VBr-Virginia
Blue Ridae. VH-Van Horn Mountains.



Testing Models of SCAB Origin

Evaluating and testing models of crustal origin with conventional methods of
terrane correlation such as paleomagnetic and conventional geochronologic data often
fall short in ancient, high-grade, polydeformed crust like SCAB. In these settings,
modern U-Pb zircon geochronology combined with whole rock Pb and Nd isotopic data
provide the most sensitive and robust recorders of crustal origin and growth. Therefore,
in order to evaluate recent suggestions of a non-Laurentian SCAB origin, we present new
whole rock Sm-Nd and Pb isotopic data for Mesoproterozoic igneous rocks from the
southern Appalachian basement, the exposed MCGRP, and subsurface samples from
between the southern Appalachians and the southeasternmost MCGRP. We also present
a single new SHRIMP U-Pb zircon age from a subsurface sample. Combined with
available geochronologic and isotopic studies, these data help characterize the isotopic
signature of Proterozoic southeastern North America and provide the most complete set
of isotopic constraints for the evaluation of the relationship of the SCAB to Laurentia.

Understanding the role of the southeast margin of Laurentia during the Grenville
has important implications for Rodinian tectonics and paleogeography. Knowledge of the
isotopic signature of individual crustal blocks currently juxtaposed within the Laurentian
craton can provide a powerful test for comparing out-of-place Laurentian terranes with
other cratons now far removed from Laurentia. Previous studies utilizing similar
‘isotopic fingerprinting’ has proven valuable for testing reconstructions of the Rodinian

supercontinent (Wareham et al., 1998; Ruiz et al., 1999; Loewy et al, 2004; 2003; 2002,).



CHAPTER II

WHOLE ROCK ND AND PB ISOTOPES AS INDICATORS OF CRUSTAL
ORIGIN

Sm-Nd isotopes

Samarium-neodymium Tpwm's can provide an estimate for the time at which
continental crust was extracted from a depleted mantle source. Therefore, Tpm ages may
delineate crustal blocks of differing ages (Loewy et al., 2004; Bennett and DePaolo,
1987; DePaolo, 1981). Numerous estimates of the Nd isotopic evolution of the depleted
mantle have been published with variations in resulting calculated Tpm age as much as
300 m.y. (Arndt and Goldstein, 1987). For consistency, all Tpm ages discussed in this
study are calculated with the widely-used model of DePaolo (1981).

The assumptions and potential pitfalls of the use of Tpwm -‘crustal formation’ ages
have been discussed in some detail by Ardnt and Goldstein (1987). However, the most
important consideration, that of the incorporation of pre-existing crustal material, will be
discussed further. In order for a Tpm age to be a true ‘crust formation’ age, the sample
must consist of material entirely derived from a depleted mantle source at the same time.
Dating of samples using an independent isotopic system, preferably U-Pb zircon
geochronology, permits testing of juvenile origin. If U-Pb zircon and Tpwm ages are
similar (within ~100 m.y.) then derivation from a predominantly depleted mantle source
is likely, in which case Tpm ages provide the time of crust-mantle differentiation or the
‘crustal-formation age’. Alternatively, if the Tpwm age is significantly greater than U-Pb

zircon age then at least partial derivation from pre-existing crust is likely. Therefore,



although only providing an approximate average crustal residence time, Tpwm ages can be

used to detect incorporation of pre-existing crustal material (Arndt and Goldstein, 1997).

Pb isotopes

Previous studies have demonstrated coherent Pb isotopic signatures for
Precambrian-age provinces (Wooden and Mueller, 1988; Wooden and Miller, 1990;
Sinha and McLelland, 1996; Loewy et al. 2003, 2004;). Thus, Pb isotopes can be a
valuable tool for both discriminating crust derived from different Pb isotopic sources as
well as constraining the location of major terrane/crustal boundaries (Wooden et al.
1986; Liew et al., 1994; Sinha et al., 1999).

The identification of coherent Pb isotopic signatures for large crustal domains
suggests that these regions had relatively uniform ratios at one time and that their
compositions have subsequently diverged only as a consequence of variable U/Pb and
Th/Pb ratios. Because both **Pb and **’Pb are products of U decay (***U and *°U,
respectively), and the two parents are inseparable by natural processes, the rates of
change in the ratios of *°Pb and **’Pb to non-radiogenic ***Pb are closely related and

238U/204Pb). Increase in thorogenic Pb, ZOSPb, i

can be linked to the single parameter p (
sensitive to natural fractionation of Th from U and therefore is only indirectly linked to
evolution of *°Pb and *’Pb. The apparent Pb isotopic homogeneity of large tracts of
crust at a point in the past suggests that either this crust was juvenile and derived from an

isotopically distinct and uniform source, or that it was homogenized by a crustal-scale

event. The anticipated variable p values within this crustal domain lead to predictable



subsequent evolution in uranogenic Pb leading to linear arrays in *"°Pb/***Pb vs.
207pp/ 2P, so long as there is no further fractionation of U from Pb (Figure 2a). The
slope of this linear array (A*"Pb/A*Pb) provides the age at which the domain was last
~homogenous in Pb isotopic composition, and the lower portion of the array, presumably
occupied by samples with the lowest p, provides an approximation of the initial Pb
isotopic composition (Figure 2a).

Lead isotopic data from two similar age crustal provinces, each derived from a
distinct Pb source, will produce two parallel arrays in uranogenic Pb space. Therefore,
when comparing terranes it is convenient to define their Pb isotopic signature as either
ESF (elevated seven-four) or LSF (low seven-four) (Figure 2b). Typically, regional Pb
isotopic data sets do not fall along a single line in uranogenic Pb space, but rather define
an array, reflecting sample heterogeneity resulting from modest variations in age and/or
extent of isotopic homogenization (hence initial compositions) and subsequent histories

among samples.
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Figure 2. A) Pb isotopic compostion of a sample is dependent upon its u value, such
that samples extracted from the same source at the same time will evolve in uranogenic
Pb space along a curved line dictated by their respective u. The samples will define a
line with a slope proportional to the age. The slope of this line gives the time of
extraction. Ifthis age coincides with the average U/Pb zircon age of the terrane then
subsequent reheating events did not reorganize Pb isotopic compostion. B) Present day Pb
isotopic compostion of samples from two different sources with different u (**3U/?%Pb),
Stars denote the Pb compositions of the sources at the time of extraction, which is
inherited by all crustal samples. Grey and black circles represent present day
compositions of samples extracted from these sources at the same time in the past.



CHAPTER 11

PROTEROZOIC ROCKS OF EASTERN NORTH AMERICA

Eastern North America comprises Archean to Proterozoic crustal provinces that
are progressively younger toward the continental margin (Figure 1). Exposed basement
closest to SCAB toward the interior of North America (to the NW) includes the
Adirondacks to the north, the Llano uplift to the south in Texas, and the EGRP to the

west. Previous isotopic data from these crustal provinces are discussed below.

Mid-continent Granite-Rhyolite Province (MCGRP)

The MCGRP comprises a large NE-SW trending belt of Mesoproterozoic felsic
granitoids and associated rhyolites stretching from Ontario southwest to New Mexico
(Figure 1). Exposures of the MCGRP are limited to the St. Francis Mountains, Missouri,
and the Arbuckle Mountains, Oklahoma; the geochemical characteristics of the province
are otherwise known only from drill core samples (Van Schmus et al., 1996; Lidiak et al.,
1996). The MCGRP is divided on the basis of U/Pb ages into the Eastern Granite-
Rhyolite Province (EGRP; ca. 1470 +/- 30 Ma) and the Southern Granite-Rhyolite
Province (ca. 1370 +/- 30 Ma), as well as Tpm ages (Van Schmus et al., 1996). The
boundaries dividing the MCGRP based on U/Pb age and Tppm are not coincident and cut
one another at a high angle. Tpwm ages in the western portion of the mid-continent are
uniformly >1.55 Ga (see thick dashed line in Figure 1, hereby referred to as the 1.55 Ga

Towm line) while those to the east are <1.55 Ga. The similarity between Tpwm and U-Pb



zircon age east of the 1.55 Ga Tpwm line suggests a greater contribution from the depleted
mantle than for samples west of the line (Van Schmus et al., 1996). Thus, Van Schmus et
al. (1996) suggested that this boundary is a fundamental crustal feature marking the
southeastern limit of Paleoproteozoic crust. Previous Pb isotopic data from the MCGRP
comes only from two drill cores, in southeast Missouri and northwestern Illinois. Whole
rock data from these cores were taken at various depths at both locations and define a
strikingly coherent array with a secondary isochron age of ~1.45 Ga, plotting below the

average crustal evolution curve of Stacey and Kramers (1975) (Doe et al., 1983).

Grenville-age Belts

Central and Southern Appalachians

Grenville-age (0.9-1.3 Ga) igneous or meta-igneous rocks are exposed
throughout the SCAB, from Pennsylvania to Alabama (Figure 1). For ease of discussion
we divide the Grenville age rocks within the Appalachian orogen into the southern
Appalachian basement which includes massifs south of the North Carolina-Virginia
border, and the central Appalachian basement which includes massifs north of the North
Carolina-Virginia border.

Central Appalachians  Grenville age rocks of the central Appalachian basement

discussed here are limited to those with pre-existing Pb isotopic data (Sinha et al., 1996).
These include the Honey Brook Uplands of Pennsylvania, the Baltimore Gneiss of
Maryland, and numerous massifs in Virginia which are exposed in two roughly NE-SW

trending belts, the Virgina Blue Ridge and the Goochland terrane (Figure 1).

10



Magmatic ages throughout the central Appalachian basement range from ~1.0-1.2
Ga (e.g., Aleinikoff et al. 2004; Owens and Sampson, 2004; Sinha et al., 1996). A
relatively small range of Tpm ages (~1.3-1.5 Ga) is reported from the Virginia Blue
Ridge and Goochland terrane (Owens and Sampson, 2004; Pettingill et al., 1984). With
the exception of the Stage Road Layered Gneiss of Virginia, which defines a steeper
slope, Pb isotopic data from the central Appalachians define a coherent array that
overlaps and lies slightly above the Stacey and Kramers (1975) curve. This array yields
an apparent 2*"Pb/2* — 2°°Pb/?*Pb age of 1190 Ma (Sinha et al, 1996). The similarity
between U-Pb zircon ages and the whole rock Pb-Pb age suggest that Paleozoic events
did not affect regional Pb isotopic systematics (Sinha et al., 1996; Pettingill et al. 1984).

Southern Appalachians A majority of the basement in the southern Appalachians is

exposed in a NE-SW trending belt along the Tennessee-North Carolina border (Hatcher
et al., 20004). Smaller exposures are also found to the south and east including the
Sauratown Mountain window, Trimont Ridge complex, Toxaway dome, Tallulah Falls
dome, and the Pine Mountain window (Hatcher et al. 1984) (Figure 1).

The southern Appalachian basement is typically divided into the eastern and
western Blue Ridge (EBR, WBR) (Figure 5) (Hatcher, 1978). The WBR as discussed
here is the same as the Laurentian margin/western Blue Ridge terrane of Hatcher et al.
(2004) and also includes the Corbin Gneiss, Georgia, and the Sauratown Mountains,
thought to be a window into the WBR (McConnell, 1990). The EBR comprises the
Cowrock, Cartooogechaye, Dahlonega Gold Belt, and Tugaloo terranes of Hatcher et al.
(2004) as well as the Pine Mountain terrane, Georgia-Alabama. Additionally, we

distinguish the Mars Hill Terrane, as it contains the most ancient crust thus far identified

11



in the Appalachian orogen and is now considered to be exotic to Laurentia (fig SAB)
(Hatcher et al., 2005; Ownby et al 2004; Carrigan et al. 2003).

Western Blue Ridge: The Grenville age basement of the WBR consists of
orthogneisses of predominantly granitic composition (Carrigan et al. 2003). U-Pb zircon
SHRIMP ages for the WBR define two major magmatic pulses at 1.02-1.08 and 1.13-
1.18Ga as well as a single granitoid gneiss at 1.38 Ga (Berquist et al., 2005; Berquist
2005). Eight Tpm ages show no systematic variation with U-Pb age, and range from 1.34
to 1.75 Ga; two model ages are < 1.55 Ga (1.34 and 1.46 Ga), and six are 1.59-1.75 Ga
(Carrigan et al., 2003; Heatherington et al., 1996). Available Pb isotopic data are limited
to the Corbin Gneiss and Sauratown Mountains and plot slightly below the Stacey and
Kramers (1975) curve (Sinha et al., 1996). No Pb data have been published from the
widespread exposures of Grenville-age basement along the Tennessee-North Carolina
border, within the Watauga, Globe, and Elk River massifs of Bartholomew et al. (1984).

Eastern Blue Ridge: Exposures of the predominantly granitic basement rocks of
the EBR are scarcer than those of the WBR and occur primarily in the Trimont Ridge
complex, within the Toxaway and Tallulah Falls dome, and in the Pine Mountain terrane
(Hatcher et al. 2004, Carrigan et al. 2003). U-Pb zircon ages from the EBR range from
1.14-1.17 Ga, and Tpm ages range from 1.50-1.69 Ga (Carrigan et al. 2003)
(Heatherington et al., 2006, cite a range of 1.32-1.59 Ga for the Pine Mountain terrane,
with xenoliths in granitic gneisses up to 1.97 Ga). Pb isotopic data from the Tallulah
Falls dome and the Pine Mountain terrane overlap the Stacey and Kramers (1975) curve

(Sinha et al., 1996).
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Mars Hill Terrane: The Mars Hill Terrane has been distinguished from the
surrounding EBR and WBR on the basis of (1) apparent older (1.8 Ga) age for some
lithologies based U-Pb zircon and Rb-Sr isochron ages; (2) older Tpm ages (most >1.8
Ga); (3) well-preserved granulite-grade metamorphism of Mesoproterozoic age; (4)
lithologic diversity — specifically, mafic rocks are abundant and interspersed with granitic
gneisses on outcrop scale; (5) distinctive Pb isotopic compositions - 2*’Pb/***Pb ratios are
higher than for other Appalachian rocks with similar ***Pb/***Pb ratios, and Pb data
appear to define an unusually steep slope in 2’Pb/***Pb->"°Pb/**Pb plots, suggesting
greater antiquity (e.g., Merschat, 1977; Monrad and Gulley, 1983; Gulley, 1985;
Raymond et al., 1989; Bartholomew and Lewis, 1988; Sinha et al., 1996; Ownby et al.,
2004). However, recent investigations of the Mars Hill Terrane have demonstrated that
the oldest magmatic and Tpwm ages are confined to the Roan Mountain area, Tennessee-
North Carolina border (Berquist 2005; Ownby et al., 2004). Based on the pre-
Grenvillian history of Roan Mountain we discuss it separately from the adjacent Mars
Hill terrane to the south, which has yielded two SHRIMP U-Pb zircon ages of 1.26 and
1.28 Ga, slightly older than the surrounding EBR and WBR (Ownby et al., 2004;
Berquist 2005).

Roan Mountain: Investigations of the meta-igneous rocks exposed at Roan
Mountain have demonstrated their distinctive age and isotopic characteristics (Ownby et
al., 2004; Carrigan et al. 2003; Sinha et al., 1996; Monrad and Gulley, 1983). Monrad
and Gulley (1983) determined a 1.8 Ga whole rock Rb/Sr isochron based on five meta-
igneous samples. A magmatic age of 1.8 Ga was confirmed by U-Pb zircon dating by

SHRIMP and LA-ICPMS, although recent studies have demonstrated that most

13



magmatic ages are between 1.2 and 1.3 Ga (Fisher and Bream, unpublished data (see
Appendix E and F); Ownby et al 2004; Carrigan et al. 2003). Tpm ages range from
1.65-2.32 Ga, the oldest known in the southeastern United States (Ownby et al. 2004;
Carrigan et al., 2003). The unusual Pb isotopic characteristics cited above for the Mars
Hill Terrane, which suggest an older age than the surrounding basement, were
determined from samples collected on the flanks of Roan Mountain (Carvers Gap)(Sinha
et al. 1996).
Adirondack Mountains

The Grenville-age rocks of the Adirondack Mountains comprise mainly granitic
and anorthositic gneisses intruded into a predominantly carbonate sedimentary sequence
(Daly and McLelland, 1991; Sinha and McLelland, 1999). U-Pb zircon ages range from
~1.35 Ga for tonalitic arc-related rock to 1.04 Ga for younger intrusions (McLelland et
al., 1996). Tpm ages from the tonalites are ~1.37-1.40 Ga, within ~70 Ma of their U-Pb
zircon ages, suggesting a juvenile mantle derivation. Younger lithologies typically have
Tom ages similar to the tonalites (1.5-1.3 Ga), suggesting derivation by melting of the
magmatic arc crust (McLelland et al. 1993; Daly and McLelland, 1991). The Pb isotopic
data from the Adirondacks form a coherent array plotting below the Stacey and Kramers
(1975) curve (Sinha and McLelland, 1999).
Texas

Grenville-age basement is exposed in Texas in both the Llano Uplift and in the
Franklin and Van Horn Mountains (west Texas) as well as within xenoliths hosted in
Tertiary volcanic rocks at Rancherias Canyon and the Forbidden Mountains (fig 1)

(Bickford et al., 2000; Smith et al., 1997; Cameron and Ward, 1998). Surface exposures
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in Llano and west Texas both contain younger (~1.07-1.12 Ga) granitic rocks intruded
into predominantly sedimentary-volcanic sequences (Bickford et al., 2000; Smith et al.,
1997). Both the granitic and older igneous units, as well as the xenoliths, have Tpm ages
~1.0-1.4 Ga (Roller 2004; Smith et al., 1997; Cameron and Ward, 1998). Pb isotopic data
from these units form a coherent array plotting below the Stacey and Kramers (1975)

curve (Roller 2004; R.C. Roback, personal communication; Cameron and Ward, 1998).

Summary of previous whole-rock Pb isotopic data

Whole rock Pb isotopic data for igneous rocks discussed above define three
coherent arrays in Pb space (Figure 3):
(1) The Roan Mountain samples (excluding a single sample thought to be
metasedimentary) and the Stage Road Layered Gneiss define an array with the steepest
slope, suggesting either an older age for these rocks or mixing between distinct Pb
isotopic sources. If the array is a result of mixing, an ancient source component is still
needed to explain the elevated *°’Pb/***Pb of one end member (Sinha et al., 1996). While
a secondary isochron age of ~3.0 Ga (Sinha et al., 1996) is likely too old, some Roan
Mountain samples have 1.8 Ga magmatic ages, abundant detrital and inherited zircon
ages are >1.6 Ga, and Tpm ages approach 2 Ga (Ownby et al., 2004; Carrigan et al.,
2003; Sinha et al., 1996).
(2) Mesoproterozoic rocks of the Adirondacks, Llano Uplift, West Texas, and samples
from drill cores in northwest Illinois and southeast Missouri all define a coherent LSF
array below curve of Stacey and Kramers (1975), suggesting a common Pb isotopic

source (Figure 3).
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(3) A third ESF array defined by the Grenville age SCAB plots with and slightly above
the crustal Pb evolution curve of Stacey and Kramers (1975) (Figure 3). All units
discussed above, with the exception of Roan Mountain and Stage Road Layered Gneiss,
have secondary isochron ages consistent with available U-Pb zircon ages (~1.0-1.25 Ga),
demonstrating that subsequent magmatic and metamorphic events did reorganize Pb
systematics (Sinha et al., 1996). It should be noted that almost no overlap exists between

the ESF and LSF data sets for 2°°Pb/***Pb < ~18.5.

Summary of Previous Whole-rock Sm/Nd Isotopic Data

Roan Mountain samples have the oldest Tpy ages (1.65-2.32 Ga) in the
Appalachian orogen, coinciding with the steepest slope in Pb space. The LSF basement
rocks discussed above have Tpwm ages ranging from ~1.55 Ga in the EGRP to ~1.0 Ga in
the Llano Uplift. These samples typically have Tpm ages within ~100 my of their
respective U-Pb zircon ages, attesting to the juvenile nature of these provinces.
Lithologies with an ESF signature can be subdivided into two groups based on Tpwm ages.
The central Appalachian basement typically has Tpy ages between 1.3 and 1.5 Ga and
U-Pb zircon ages of 1.0-1.2 Ga. The southern Appalachian basement has Tpm ages
which range from 1.3-2.3 Ga with 14 of 18 samples > 1.55 Ga, including those from

Roan Mountain.
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CHAPTER IV

RESULTS: NEW DATA

Whole rock Nd and Pb isotopic data were obtained from surface and drill core
samples of Proterozoic igneous and meta-igneous basement of the southern Appalachian
basement and MCGRP in order to better constrain the origin of Grenville-age basement
in the southern and central Appalachians. Previous Pb isotopic comparisons of
Proterozoic eastern North America did not include the extensive MCGRP, suggested to
be the protolith of Appalachian basement massifs (Hatcher et al., 2004), or the WBR
basement of the southern Appalachians, thought to have formed at the Laurentian margin
during the Grenville (Bartholomew and Lewis, 1986, 1992; Hatcher et al., 2005, 2004).
New Nd isotopic data from the southern Appalachian basement were collected to better
characterize the Nd isotopic signature of the WBR, EBR, and Mars Hill terrane. In
addition, a single drill core sample from central Tennessee was dated using SHRIMP U-
Pb zircon geochronology. These data, combined with previous Pb, Nd, and U-Pb
isotopic data, elucidate the relationships among units of SCAB (WBR, EBR, Mars Hill
terrane) and adjacent portions of Proterozoic Laurentia. Note: major and trace-element

geochemistry for samples CO-DC, GV-DC, and RMHB is in Appendix C.

U-Pb Zircon Data
Zircon from a granitic drill core sample from central Tennessee (GV-DC; see

Figure 1) was dated using SHRIMP U-Pb zircon geochronology. Analyses displayed a
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wide range of discordance and produced a poorly constrained lower intercept age (Figure

4), perhaps due to a regional Pb loss episode at ~260 Ma (Doe et al., 1983), in general

agreement with the. The upper-intercept age of 1381+27 Ma is interpreted to represent

the crystallization age. Together with previous zircon U-Pb data from a Kentucky drill

core sample (KyPU, 1457+10 Ma; Van Schmus et al., 1996), these data confirm the

eastern extension of ~1400 Ma MCGRP granites into central Tennessee and Kentucky

(Figure
1.
025 r
Intercepts at
1381 £ 27 Ma
151+ 280 Ma
653 MSWD =0.92 J
0.21
018
GV-DC granite
eastern granite-rhyolite province
Goodlettsville, Tennessee
017 s : : :

1.9 21 2.3 25 27

Figure 4. Concordia diagram for zircons from
GV-DC drill core sample, eastern granite-rhyolite
province. Analyses with grey symbols are not
included in regression. Inset shows all analyses.
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Whole-rock Pb Isotope Data

Whole rock Pb isotopic analyses were performed for 23 southern Appalachians
basement samples, including the WBR (Figure 5) and 14 samples from the MCGRP,
both east and west of 1.55 Ga Tpwm line of (Van Schmus et al. 1996) (Figure 6), and
(Table 1). All of the MCGRT samples, including GV-DC and a troctolite drill core from
eastern Tennessee (CO-DC; see Figure 1), plot below Stacey and Kramers’ (1975)
crustal evolution curve (Figure 7a). These data fall within the LSF array defined by data
previously reported from the Adirondacks, Texas, and two drill holes in northwest
Illinois and southeast Missouri. There does not appear to be a relationship between Tpwm
age and whole rock Pb-Pb age, i.e. samples with older Tpm do not yield older Pb-Pb
ages. All whole-rock Pb isotopic data for the MCGRT define a coherent array with a
secondary isochron age of ~1.45 Ga, suggesting either a major crustal homogenization
event at this time, or derivation from a relatively homogenous reservoir in the upper
mantle.

Newly analyzed EBR samples provide the first Pb data for Trimont Ridge, the
Toxaway dome, and two unnamed basement exposures in the Dahlonega Gold Belt and
Tugaloo terrane in North Carolina (as defined by Hatcher et al., 2004) which previously
lacked Pb isotopic data. These samples and two others from the Tallulah Falls dome all
plot within the ESF array defined by Sinha et al. (1996) for the southern and central
Appalachian basement (Figure 7b). Similarly, 8 samples from the WBR and 2 samples
from the Mars Hill terrane (outside of the Roan Mountain area) plot within or slightly

above the SCAB ESF array defined by Sinha et al. (1996) (Figure 7b).
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Five samples from Roan Mountain, including a single metasedimentary sample
(RMCLG), confirm the steeper slope (older age?) of this unit (Figure 7c). All Roan
Mountain samples plot within the field identified by Sinha et al. (Carvers Gap; 1996),
and most have a higher *’Pb/"*Pb for a given **°Pb/**Pb than the surrounding
basement. It should be noted that the other two Mars Hill terrane samples also fall within
the array defined by Roan Mountain/Carvers Gap data, at its lower end where it overlaps

with the dominant ESF field.

RM-CLG PP3A 2/ §
RMHB &= GMW-BR =~
— —

RM24 o

p3q P28 -«ﬁ‘!’; SM-GC
PazA 2k ‘\

'f-';i-; " ".4

,_/’ ®r770 = Western
TRG2 e Blue Ridge
~ T

Eastern Blue Ridge
NC

GA Anars Hill te;r:’\r =

Figure 5. Generalized tectonic map of southern Appalachians showing sample
locations with Pb and/or Nd isotopic data. Grey patterns denote exposures of
Grenville-age basement. Filled circles represent samples with both Pb and Nd
isotopic data (this study; Ownby et al., 2004; Carrigan et al., 2003) Open
squares represent samples with only Nd isotopic data (this study). Modified
from Carrigan et al., 2003.

Note: Nd data is not available for RMHB.
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Figure 6. Sample locations for Midcontinent Granite-Rhyolite province Pb
isotopic data presented here. Thick dashed line separates TDM ages
>1.55Ga (to the west) from those < 1.55 Ga.
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Table 1. Pb isotopic data.

magmatic “Pb/"Pb “Pb/ Pb 'Pb/ Pb “'Pb/Pb “Pb/ Pb “Pb/ Pb
Sample Lithology age (Ma) Ratio plod Ratio g Ratio E) Tom  latitude longitude
Western Blue Ridge
CG* granitic gneiss 1192 2017 0.004 15.76 0.005 4238 0.005 161 -81.918 36.169
GMW-BR® augen gneiss 1081 19.54 0.022 15.73 0.027 39.25 0.034 1.34 -81.850 36184
WRG" granitic gneiss 1158 2274 0.003 15.93 0.004 41.30 0.004 1.71 -81.850 36302
P32a° granitic gneiss 1375 17.57 0.004 15.61 0.005 3814 0.005 169 -82543 35986
Pe1° granulite 1159 17.35 0.009 15.55 0.010 36.82 0.01 166 -82983 35680
P62A° granite 1019 18.02 0.004 15.64 0.004 3829 0.004 149 -82929 35797
PP3A° leucocratic granite 1073 17.71 0.004 15.61 0.004 37.15 0.005 143 -82175 36228
Sauratown Mt. Window
SM-GC* augen gneiss 1165 18.02 0.005 15.60 0.005 a7 0.006 167 -80451 36336
SM-PM1¢ augen gneiss 1165 18.00 0.007 15.64 0.007 3747 0.008 1.75 -80.434 -36.383
SM-PME® augen gneiss 1165 17.97 0.006 15.60 0.007 37.38 0.008 1.75 -80.434 -36.383
Mars Hill terrane
{excluding Roan Mountain
MB-CL4" mafic granulite 1257 17.34 0.004 15.60 0.004 4203 0.005 153 -82641 35728
P54° felsic granulite 1278 17.19 0.007 15.97 0.002 36.85 0.008 165 -82614 35766
Roan Mountain
leucocratic
RM1® granulite gneiss 1765 17.55 0.006 15.66 0
RM24° banded granulite gneiss N.A. 1769 0.006 15.68 0.006 38.56 0.008 194 -82278 36,005
RM-30C" mafic gneiss 1209 17.95 0.004 15.65 0.004 38.87 0.005 232 -82.094 36127
RMHE' mafic granulite ~1250 17.78 0.003 15.65 0.004 3895 0.003 N.A. -82.145 36.093
RM-CLG® paragneiss detrital 17.28 0.004 15.58 0.004 37.68 0.004 1.82 -82133 361D
Eastern Blue Ridge
felsic/famphibalitic
P22A° migmatite 1268 1877 0.007
p77D" granitic gneiss 1261 19.85 0.003 15.76 0.004 39.74 0.004 1.88 -82.840 35.322
Trimont Ridge
TRG2® quartzefelspathic gneiss 1103 2853 0.010 16.30 0.010 47.98 0012 157 -83.444 35191
Tallulah Falls Dome
granitic
WG-cs* augen gneiss 1158 17.46 0.004 15.60 0.004 3882 0.004 1.59 -83.418 3480
ustc® tonalitic gneiss 1129 18.68 0.007 15.67 0.008 38.49 0.009 1.69 -83.410 34833
Toxaway Dome
guartzofelspathic
TOX 1° banded gneiss 1149
granitic
TXFL® augen gneiss 1149 17.58 0.004 15.52 0.021 38.08 0.005 1.52 -82.931 35117
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Midcontinent

co-bc' troctolite
Gv-DC' granite
ARFU-001° gran:te
ARSP-001° dicrite
||'\|F:U-"|li granite
INPO-001° granite
INWB-1¢ granite
KYPU-1? granite
OKTISH® granite
OKBRGd granitic gneis
MOSG-3° granite
MOFR-006° granite
MOSCH-5° hyoiite
MO-HPGN? granodiorite

N.A.
1381
1347
1378
1475
1448
1270
1457
1363
1389
1328
1458
1472
1478

16.69
17.92
17.32
17.31
21.35
17.28
19.94
21.29
17.53
17.20
17.31
2404
35.88
17.75

0.004
0.004
0.005
0.003
0.003
0.008
0.003
0.003
0.004
0.005
0.008
0.007
0.011
0.002

15.34
15.44
15.41
15.39
15.78
15.45
15.63
15.80
15.44
15.42
15.44
16.02
16.99
15.45

0.004
0.004
0.005
0.003
0.003
0.010
0.004
0.004
0.003
0.005
0.008
0.008
0.014
0.002

36.24
37.54
36.86
36.82
39.65
36.87
38.78
40.11
37.47
38.47
37.17
41.65
48.68
36.62

0.004
0.004
0.006
0.003
0.003
0.008
0.004
0.004
0.003
0.005
0.007
0.008
0.018
0.003

1.50
1.48
174
1.78
1.50
1.45
1.48
1.48
1.48
1.60
1.52
1.53

-84.855
-86.703
-91.68
-91.40
-86.47
-87.12
-85.80
-84.50
-96.65
-96.55
-90.45
-90.92
-90.73
-90.20

35.917

36.340
36.30
36.48
40.92
41.62
40.93
37.12
34.34
34.35
38.03
38.43
38.61
37.78

Sources of samples and Tpy ages:
a=0Ownby et al. 2004
b=Berquist 2005
c=Carrigan et al. 2003
d=Van Schmus et al. 1996
e=Hatcher et al. 2004
f=this study
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Whole-rock Sm-Nd isotopic data

Whole rock Sm/Nd analyses were performed for 8§ WBR, 3 EBR and 2 Mars Hill
terrane (non-Roan Mountain) samples collected along a NW-SE transect of the Blue
Ridge (Table 2). Combined with previous southern Appalachian Sm/Nd isotopic data
(Ownby et al., 2004; Carrigan et al. 2003) the EBR, WBR, and Mars Hill terrane show
significant overlap in exg vs. time plots (Figure 8). One of the new EBR samples extends
the range of Tpwm ages to 1.88 Ga (total range now 1.50-1.88 Ga), and one WBR analysis
extends the upper limit to1.82 Ga (1.34-1.82 Ga). Previously, the only samples analyzed
from the Mars Hill terrane came from the Roan Mountain area; our 2 new analyses, all
south of Roan Mountain, yielded Tpm ages 1.53 and 1.65 Ga. As noted previously, Tpm
ages of Roan Mountain samples range from 1.65-2.32 Ga (Ownby et al., 2004; Carrigan
et al. 2003)

Towm ages for samples from the southern Appalachian basement are 200-600 Ma
greater that their U/Pb magmatic ages, indicative of derivation from either older crust or
a juvenile mantle magma contaminated by older crust. Available data from the ~1.0-1.2

Ga central Appalachians have younger of Tpwm ages (~1.3-1.5 Ga) that are closer
to their U/Pb ages, suggesting a greater juvenile mantle contribution or incorporation of

younger pre-existing crust than in the southern Appalachians.
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Figure 8. Nd isotopic fields for southern Appalachian terranes
discussed in text, including new data from this study. Previous
data are from Ownby et al.(2004) and Carrigan et al.(2003).

27



Table 2. Sm-Nd isotope Geochemistry

Sample Age (Ma) Sm{ppm) Nd(ppm) “?SI'I'II'1“N(| g Nd/™'Nd IJ Nd ¢ I.l Nd at Mag age Tm (Ga)
‘Western Blue Ridge
P27A 1100t 9.115 46.838 0.12045 0.511926 -13.9 -32 1.82
P25C 1056* 4.906 35.317 0.086 0.511661 -19.1 -4.1 1.65
P28 1171* 8.335 46.567 0.11078 0.511958 -13.3 0.4 1.60
P29 1100t 0.744 6.066 0.07591 0.511690 -18.5 -1.5 1.50
P32A 1375* 4.793 30.154 0.09839 0.511764 -17.0 03 1.69
P34 1130* 5.462 38.804 0.08691 0.511790 -16.5 0.7 1.50
P81 1169* 8.405 45.753 0.1137 0.511951 -13.4 -1.1 1.66
P&2A 1019* 14.265 82.700 0.10676 0.511997 -125 -0.8 1.49
PF3A 1073* 0.961 6.322 0.09413 0.511922 -14.0 01 1.43
Eastermn Blue Ridge
PP22A 1268* 15.655 86.455 0.11207 0.511815 -16.1 23 1.84
P22 1268* 2.858 8.458 0.20918 0.512787 29 09 11.18%
P77D 1261* 17.359 66.133 0.16246 0.512409 45 11 1.88
Mar Hill terrane (excluding Roan Mountain)
MBCL-4 1250** 2.334 22388 0.06454 0.511543 -21.4 02 1.53
P54 1278* 4.579 21.849 0.12973 0.512130 9.9 1.1 1.65

Preferred magmatic ages of zircon geochronology from this studly;
* age from Berquist (2005), age from Ownby et al (2004) **, 1 reference age.

1 Tom age-meaningless (mafic sample)
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CHAPTER V

DISCUSSION

Isotopic Domains in Proterozoic Basement of Southeastern North America

The three coherent, but distinct, Pb isotopic arrays defined by Proterozoic rocks
of eastern North America suggest differences in the crustal histories for rocks of each
array:

Roan Mountain and the Stage Road Layered Gneiss of the Virginia Blue Ridge
define the steepest array in *’Pb/***Pb-**Pb/***Pb space, possibly indicating an older age
for these units. Only a single Tpm age of 1.59 Ga is available from the Stage Road
layered gneiss, but isotopic data from Roan Mountain confirm antiquity for this area,
with Tpm ages up to 2.32 Ga, and 1.8 Ga Rb/Sr and U-Pb magmatic ages (Fisher and
Bream, unpublished data (see Appendix E and F); Ownby et al., 2004; Carrigan et al.,
2003; Monrad and Gulley, 1983; Pettingill et al., 1984). Tpm ages > 1.9 Ga and evidence
for a >1.4 Ga magmatic event have not been identified elsewhere in the SCAB, including
the remainder of the Mars Hill Terrane. The nearest known Laurentian rocks that could
produce the Tpm ages observed at Roan Mountain lie ~1000 km to the NW in the Central
Plains (Van Schmus et al, 1996) and Penokean Orogens (Van Wyck and Johnson, 1997)
(Figure 1).

Two coherent subparallel arrays are defined by the remainder of the Pb isotope
data. Juvenile crust of the Adirondacks, Llano Uplift, West Texas and MCGRP all have

overlapping Pb isotopic compositions that define a distinct LSF array, suggesting a
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common source. An ESF array is defined by Mesoproterozoic basement in both the
southern and central Appalachians, suggesting a Pb source for these units distinct from
that of the nearby juvenile, LSF crust of the Adirondacks, Texas, and MCGRP.

A plot of 2*Pb/***Pb vs *°Pb/***Pb for all Proterozoic eastern North American
samples is shown in Figure 8. There is no clear distinction between the ESF domain
(grey and black data symbols) and LSF domain (open data symbols) defined by the
uranogenic Pb data. Most samples from the MCGRP plot along or below the crustal
growth curve of Stacey and Kramers (1975), indicating average or slightly lower Th/U
values (Th/U </~4). The Adirondacks, Texas and central Appalachian data are scattered
above and below the curve of Stacey and Kramers (1975). Data for the southern
Appalachians typically have a higher ***Pb/***Pb for a given ***Pb/***Pb than the other
domains and a smaller range of ***Pb/***Pb, including the central Appalachians. Roan
Mountain samples are especially distinct in their high ***Pb/***Pb and low **°Pb/***Pb,
indicating very high Th/U (evident in whole rock data: Appendix D; Ownby et al., 2004).

Present day elevated 208pp/29ph ratios (relative to “"°Pb/*”Pb), such as those
observed in the southern Appalachian basement, are the result of an increase in Th/U in
the past, and have been associated with preferential U loss during metamorphism
(Wooden et al., 1986). In addition, most southern Appalachian basement samples show a
narrower range of *’°Pb/”**Pb (17-18) than is observed in the central Appalachian and
other domains. These characteristics may reflect Grenville high-grade metamorphism in
the deep crust that resulted in U loss and hence increase in Th/U and decrease in U/Pb.

208

As a consequence, thorogenic “ Pb has continued to rise at near-normal rates while

growth of uranogenic “*°Pb (and *“’Pb) has been limited.  Plausibly, the southern
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Appalachian isotopic signature may reflect greater involvement of older, deep, high-

grade crust, represented by Roan Mountain gneisses, than occurred elsewhere in the

Appalachians.
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Figure 9. Thorano-uranogenic Pb isotopic compositions of Mesproterozoic eastern
North America. Black line is crustal growth curve of Stacey and Kramers (1975). Data
from this study and references in Figure 3.

Despite similarities in uranogenic Pb isotopic data, the Nd isotopic signature of
the southern Appalachian basement is notably older (1.34-1.88 Ga) than the more
uniform Tpm ages (1.35-1.50 Ga) found in the central Appalachians. A Laurentian origin
for SCAB predicts Tpm ages to be the same or less than the <1.55 Ga EGRP, which
bounds SCAB to the west. Although Sm/Nd isotopic data from the central Appalachians
are consistent with this model, less than 30% of southern Appalachian samples have Tpm
ages <1.55 Ga, and thus the data are at odds with a Laurentian derivation (Berquist et al.,

2005; Ownby et al., 2004; Carrigan et al., 2003). This is illustrated in a probability plot
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of Tpm ages available for Proterozoic rocks from the EGRP, and Grenville age rocks in

Texas, the Adirondacks and SCAB (Figure 10).
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Figure 10. Summed probability plot of TDM ages for Proterozoic
rocks of eastern North America. Adirondacks (Daly and McLel-
land, 1991; McLelland et al. 1993); Midcontinent granite-rhyolite
province (Van Schmus et al., 1996); West Texas and Llano (Roller
2004; Cameron and Ward 1998; Smith et al., 1997; Whitefield
1997; Patchett and Ruiz, 1989); central Appalachian basement
(Owens and Sampson, 2004; Pettingill et al. 1986); southern Ap-
palachian basement (Hatcher et al., 2004; Ownby et al., 2004;
Carrigan et al., 2003; Heatherington et al., 1996). Uncertainties for
individual TDM ages are calulated based on '/Sm/"*Nd (see Ap-
pendix A for explanation).
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Recent work has suggested that Roan Mountain-type crust may represent an
exposed lower crustal fragment similar to that which underlies the younger, Grenville-
age rocks of the southern Appalachians (Ownby et al., 2004; Fullagar 2002). Similar,
~Paleoproterozoic and older crust has also been suggested to underlie the Pine Mountain
terrane (Heatherington et al., 2006). Thus, it is plausible that both the southern and
central Appalachian basement may have come from a similar, ESF Pb isotopic source,
with either variable lower crustal ages, the older of which must underlie the southern
Appalachians, or a larger juvenile component in the central Appalachian Grenvillian

rocks.

Implications of Lead Isotopic Domains for Architecture of Southeastern North
America

The utility of mapping distinct Precambrian isotopic domains, even in areas
where Precambrian rocks are not exposed at the surface, has been established in previous
studies (Kistler and Peterman, 1973; Wooden et al., 1986; Wooden and Miller, 1990).
Similar mapping of the ESF and LSF uranogenic Pb isotope arrays of Proterozoic eastern
North America provides a striking map pattern showing no geographic overlap of the
arrays (Figure 11). All samples plotting within the ESF array form a NW-SE trending
belt outboard of all LSF signature samples and parallel to the proposed SE Laurentian
margin of Bartholomew and Lewis (1986; 1992).

If the SCAB indeed represents an exotic terrane accreted to the SE Laurentian

margin, then the boundary between ESF and LSF signatures may indicate potential
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suture locations. Although such a suture is likely buried beneath Paleozoic thrust sheets,

regional geophysical data define a major subsurface crustal boundary beneath Paleozoic
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Figure 11. Distribution of Proterozoic LSF and ESF Pb signa-
tures compared with the location of the NY-AL lineament.
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cover, termed the New York-Alabama (NY-AL) lineament (King and Zietz, 1978),
which could mark its location. Defined by both magnetic and density gradients,
the NY-AL lineament stretches from New York to Alabama, eastern USA, parallel to but
west of the proposed SE Laurentian margin during the Grenville (Bartholomew 1986;
1992) (King and Zietz, 1978). Shown in Figure 11, it separates the rocks of LSF
signature west of the lineament with those of ESF signature to the east (Fisher et al.,
2005, 2006). The division of the data is especially compelling given new Pb data from
samples collected close to the lineament on either side, i.e. WBR exposures and EGRP
drill core. The relatively narrow gap between currently exposed LSF and ESF basement
also includes the frontal faults of the Appalachians. All ESF are in the NW-directed
upper plate, allochthonous with respect to the deep crust. Thus, the original location of
the suture in autochthonous crust could lie as much as hundreds of km to the southeast,
beneath overthrust Appalachians (Hatcher 1984; Bartholomew and Lewis, 1992).
Possible Origin of Southern Appalachian Basement in Rodinia

Recent Rodinian reconstructions have placed either the Amazonian or Kalahari
craton in a near conjugate margin position relative to southeastern Laurentia during the
Grenville orogeny and suggest the possibility that fragments of these cratons remain
within North America (Hoffman, 1991; Daziel et al., 2000; Loewy et al., 2003; Tohver et
al., 2004). Data from the MCGRP and the southern Appalachian basement presented
here strengthen arguments for an exotic SCAB that was accreted as a fragment during the
construction of Rodinia.

Limited Pb isotopic data from Kalahari (Wareham et al., 1998) appear to overlap

the LSF signature of juvenile Laurentian rocks and therefore could not have produced the
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ESF signature observed in SCAB samples. In contrast, the Sunsas orogen, within

Amazonia, experienced 1.3 to 1.0 Ga magmatism and has >1.6 Ga Tpwm ages and ESF Pb

isotopic signatures similar to SCAB (Figure 12) (Geraldes et al. 2001; Loewy et al.,

2003; Tohver et al., 2004).

207K 2%%pp

15-85 a D Adirondacks, Texas, Midcontinent

15.65

15.45

Roan Mountain, Stage Road
Layered Gneiss

1
I ;
! 1 Southern and central Appalachians

-

. SW Amazonia
e Kalahari

16 17 18 19 20 21 22 23 24
208p ) 204p

Figure 12. Present day uranogenic (297Pb/2%pb vs.
206p|,/204pp) jsotopic compostions from the Grenville-age
Natal-Namaqua belt of Kalahari (Wareham et al., 1998) and
southwest Amazonia (Geraldes et al., 2001; Tohver et al.,
2004) plotted with data from Mesoproterozoic eastern North
America (see this study and Figure 4 for data references).
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Based on paleomagnetic and structural data, Tohver et al. (2004; 2005) suggest a
collision between SW Amazonia and the Llano segment of Laurentia followed by
sinistral displacement of Amazonia along the Laurentian margin. A possible best fit for
the geophysical data from the NY-AL lineament suggests sinistral movement along its
strike, which agrees with the oblique collisionsal and/or roational (?) model of Tohver et
al. (2004; 2005) and is compatible with the distribution of ESF and LSF samples

presented here.

Conclusions

1. New whole-rock Pb isotopic data from Mid-continent Granite-Rhyolite
province and Western Blue Ridge basement samples provide a more complete
characterization of the Pb isotopic signatures of Mesoproterozoic age rocks in the eastern
USA. These data indicate that WBR basement has a very similar heritage to most
Proterozoic Appalachians rocks and demonstrate that the MCGRP crust is similar to that
of adjacent juvenile North American Proterozoic crust (Adirondacks, Texas).
Furthermore, these data confirm that Appalachian crust is distinct from that of adjacent
North America, and that rocks from a small area in the vicinity of Roan Mountain, NC-
TN, is isotopically even more extreme and distinctive than those in the remainder of the
Appalachians.

2. The Pb isotope data, together with Sm-Nd Tpm ages, strongly support recent
suggestions of an exotic origin for Proterozoic Appalachian crust (Loewy et al 2003;

Ownby et al., 2004; Tohver et al 2004).
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3. Comparison of Pb isotopic data from the southern and central Appalachians
with terranes suggested to have been in the vicinity of SE Laurentia during Rodinian
construction favors an Amazonian connection. Thus, the NY-AL linecament could
represent the boundary between Laurentian crust to the NW and accreted Amazonian

crust to the SE.
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APPENDIX A. TDM age analytical uncertainty calculation

Potential sources of error in calculating Tpm age include extrapolation beyond
the crystallization age (which assumes no change in Sm/Nd), uncertainty in the
composition of mantle sources in space and time, and analytical uncertainty. Analytical
uncertainty of TDM ages is the result of the uncertainty of '*’Sm/"**Nd and '**Nd/'**Nd
measurements that are used to calculate Tom age (illustrated by the sub-horizontal bands
in Figure A). The uncertainty in TDM age is further increased as the extrapolation line
intersects the depleted mantle model curve (Figure 13a). Samples with higher
7Sm/"*Nd intersect the depleted mantle model curve at low angle resulting a larger
uncertainty in TDM ages.  An approximation of this uncertainty is presented here for
Sm/"*Nd between 0.14 and 0.07, typical of continental/crustal materials. This
approximation assumes an uncertainty of +0.000005 for measured '**Nd/'**Nd, and a
0.4% uncertainty in "*’Sm/'**Nd (Patchett and Kouvo, 1986). Figure (13b) shows the

calculated uncertainty for Sm/Nd from 0.14-0.07, the ratios considered in this study.
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APPENDIX B. Methods

Whole-rock Elemental and Isotopic data

Fresh, representative 1-5 kg samples for whole rock geochemistry and isotope
analysis as well as U/Pb zircon analysis were collected from roadcuts, outcrops, and
quarries. In the case of drill cores, the freshest possible portions were used. Thin slabs
were cut from each sample (parallel to lineation and perpendicular to foliation, where
applicable) and powdered in an alumina ceramic shatterbox. Drill core samples were cut
into smaller slabs, or consisted of cuttings and were pulverized in an alumina ceramic
mortar and pestle.

Both whole rock Sm/Nd and Pb isotopic analyses were performed at the
University of North Carolina-Chapel Hill on a Micromass Sector 54 mass spectrometer.
For Pb analysis, 300 mg aliquots of the pulverized powder were washed in 1N HNO3 for
30 minutes on a warm hotplate before dissolution in Teflon™ dissolution bombs.
Samples were dissolved in two stages using HF/HNO3 and 6N HCI. Pb was isolated
using an HBr anion exchange technique, loaded onto standard Re filaments with a
mixture of silica gel and phosphoric acid, and analyzed with a VG Sector 54 TM thermal
ionization mass spectrometer. Twenty analyses of NBS981 indicate fractionation of
0.12% per amu with measured isotopic ratios within 0.05%. For Sm/Nd analyses, 300 mg
aliquots of pulverized powder were spiked with '*’Sm/"”’Nd mixed spike and dissolved in
the same manner as the Pb samples, except the powders were not washed in HNO3. Rare
earth elements (REE) were isolated using REE-SPECTM column chemistry. Sm and Nd

were subsequently isolated using LN-spec columns. Analyses were normalized to
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MONd/'"*Nd = 0.7219. Twenty-seven analyses of JNdi yielded an average '*Nd/"**Nd of
0.5121080 +/- 0.0006% std error. TDM ages are calculated using the theoretical isotopic
decay constant (6.54*10-12/yr) of Lugmair and Marti (1978) and the depleted mantle

model of DePaolo (1981; ENd=0.25T2-3T+8.5).

Zircon U/Pb geochronology

Zircons from sample GV-DC were separated from ~100 g of core material at
Vanderbilt University. The sample was crushed in an alumina ceramic shatter box to
sieve size of <500 microns. Zircons were separated using heavy liquids and a Frantz
Isodynamic magnet separator, then handpicked from non-magnetic fractions and
mounted in epoxy with zircon standard R-33 and VP-10. Mounts were then polished to
reveal the approximate center of the grain and imaged by cathodoluminescience (CL) to
reveal internal morphology. Points on zircons (~30um in diameter) were analyzed
according to the Stanford/U.S. Geological Survey (USGS) Sensitive High-Resolution Ion
Microprobe, Reverse Geometry (SHRIMP-RG) Facility procedure (Bacon et al., 2000)

Data reduction used the SQUID software package of Ludwig (Ludwig 2002a, 2002b).
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Appendix C. Major- and trace- element geochemistry (drill cores and RM-HB)

Element/Oxide: CO-DC_GV-DC_RMHB
Sio; 49.89 723 55.34

ALO; 2255 134 1173
Fe,04(T) 6.54 1.82 8.77
MnO 0082 004 0211
MgO 5.79 043  11.26
cao .74 0.89 8.2
Na,0 3.67 3.8 226
K20 0.53 499 1.36
TiO; 0.408 0.209 0.437
P,0s 0.25 0.06 0.09
LOI 0.99 0.97 0.52
Total 100.4 98 92 100.2
Rb <10 170 61
sr 082 109 234
Ba 338 636 584

Y 4 33 30

Zr 10 178 71
Hf <02 6.6 2.1
Nb 07 28.2 39
Ta <03 15 0.3
Zn 39 25 83
Cu 49 3 69
v 66 14 145

Ni 179 2 326

cr 401 111 298
Co 53.8 23 53.8
Sc 9.38 414 366
La 487 481 223
Ce 106 941 51.4
Pr 1.45 10.2 6.69
Nd 6.65 345 26.7
Sm 1.48 6.07 5.83
Eu 0.89 0.99 1.27
Gd 1.48 5.05 5.1
Tb 0.2 1.4 0.88
Dy 1.04 4.47 491
Ho 0.19 0.99 0.99
Er 0.49 3.48 295
Tm 0.07 0.63 0.456
Yb 0.56 461 294
Lu 0.08 0.7 0.429

u 0.01 6.21 0.21

Th 0.11 195 2.77

Note: oxide value in wt. %, trace element value in ppm. LOI-loss on ignition.
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APPENDIX D. Major- and trace- element geochemistry for Roan Mountain

Element/Oxide: CLG1 CLG2 CLG3 CLG4 CLGS

Si0, 6245 867 7149 736 6629
ALO; 2117 1901 1435 1374  19.34
Fe,04(T) 9.19 7.49 1.34 2.97 5.76
MnQ 0.029 0.024 0.017 0.052 0.066
MgO 0.87 068 0.42 067 1.04
cao 1.35 095 083 1.59 21
Na,0 1.51 1.09 1.86 2.53 2.88
K20 2.21 227 7.95 414 262
TiO, 0.669 0.592 0.13 0.406 0.813
P,0s 0.04 0.02 0.07 0.04 0.04
Lol 0.06 0.02 033 0.19 021
Total 0954 9884 9878 999 1002
Rb 46 52 178 104 60
Sr 224 176 270 216 313
Ba 851 885 2633 1322 1045

Y 56 49 25 56 61

Zr 299 327 38 363 275
Hf 9 9.6 1.1 10.4 7.3
Nb 67 6.8 32 122 15
Ta 0.2 0.2 02 05 04
Zn 143 119 <10 94 80
Cu 3 4 p 49 7
v 61 40 9 18 45

Ni 23 42 <1 8 14
Cr 84.7 81.1 18 50.2 89.3
Co 126 107 35 39 108
sc 9.68 88 469 6.8 143
La 136 80.7 125 74.3 853
Ce 283 161 231 154 171
Pr 34.2 17.7 252 17.9 20.2
Nd 125 61.9 846 84.1 705
Sm 215F 10.5 123 122 12.4
Eu 411 276 491 274 3.58
Gd 16.9 10 7.85 10.7 115
T 2.09 156 083 1.68 186
Dy 106 879 403 9.48 106
Ho 1.97 177 074 1.87 2.06
Er 5.5¢7 5.06 208 5.54 6.05
Tm 0.771 0.663 0.307 0.793 0.854
Yb 469 3.65 1.84 493 5.39
Lu 0.661 0.488 0.244 0.702 0.769

u 0.72 0.43 068 2 0.38

Th 26.2 126 185 18.9 99

Note: oxide value in wt. %, trace element value in ppm. LOI-loss on ignition.
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APPENDIX E. Concordia plot for CLG-4 (Figure 14)
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APPENDIX F. U/Pb isotopic data for CLG-4
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