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CHAPTER I 

 

Introduction 

 

Pediatric brain tumors are the most common solid tumor diagnosis of childhood, 

and malignant brain tumors are the second most common cancer diagnosis under the age 

of 20 (Mulhern & Butler, 2004; Sklar, 2002).  This heterogeneous set of diagnoses occurs 

at an incidence rate of approximately 4.8 cases per 100,000 children per year, and it is 

estimated that 4,150 new cases of childhood primary non-malignant and malignant brain 

and central nervous system (CNS) tumors are expected to be diagnosed in the United 

States in 2011 (Central Brain Tumor Registry of the United States; CBTRUS, 2011).  

Greater than 70% of these diagnoses are expected in children less than 15 years of age.  

Despite being the second leading cause of death by disease in children, the overall 5-year 

survival rate following diagnosis of a primary malignant brain and CNS tumor for 

children under the age of 20 reached 72.5% by 2007 (CBTRUS, 2011).  Many of the 

improvements in survival are largely due to clinical trials and subsequent modifications 

in treatment protocols involving a combination of surgery, radiation therapy, and/or 

chemotherapy (Gottardo & Gajjar, 2008; Partap & Fisher, 2007).   

As survival rates have risen, increased attention has been given to late effects 

experienced by survivors of brain tumors in childhood.  A range of late effects have been 

identified, including problems with endocrine function, cardiac impairment, and physical 

limitations (Ness & Gurney, 2007).  Additionally, survivors often experience significant 

neurological, neurocognitive, and psychosocial late effects, resulting from a combination 
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of the effects of the tumor itself and its treatment (Panigrahy & Bluml, 2009).  Foremost 

among documented late effects are neurocognitive late effects, including possible long-

term disruptions in brain development, cognitive function, and later school and work 

performance and social-emotional functioning.  Neurocognitive effects may occur as a 

consequence of the extent and location of a tumor, surgery, radiation and chemotherapy, 

and complications as a result of treatment (e.g., Glauser & Packer, 1991; Mulhern, 

Hancock, Fairclough, & Kun, 1992).  Psychosocial difficulties have also been 

consistently documented in survivors, with disruptions in social functioning being the 

most common (e.g., Mabbott et al., 2005; Schultz et al., 2007; Vannatta, Gartstein, Short, 

& Noll, 1998).   

Before describing the current study, I first provide a brief summary of the 

treatment of pediatric brain tumors.  This is followed by a description of the nature, 

extent, and severity of documented neurocognitive and psychosocial late effects in 

survivors of pediatric brain tumors and a conceptualization of the interactions between 

these domains of deficit.  Next, I provide an overview of the current research study aimed 

at examining the associations between neurocognitive and social deficits in children 

treated for pediatric brain tumor including study hypotheses.  Finally, the methods and 

results of the study are presented. 

 

Pediatric Brain Tumors: Disease Overview 

Although the overall survival rate for pediatric brain tumors has reached 72.5% 

(CBTRUS, 2011), this overall statistic may be misleading, as incidence rates, treatment 

modalities, and survival rates vary by tumor location, type, and staging.  Over 50% of 
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pediatric brain tumors arise from the posterior fossa, which includes the cerebellum, 

brainstem, and fourth ventricle, and the remaining tumors arise from the supratentorial 

and ventricular regions (Panigrahy & Bluml, 2009).  Common posterior 

fossa/infratentorial tumors include pediatric medulloblastomas, cerebellar astrocytomas, 

gliomas, and ependymomas.  The most common histologies of hemispheric/supratentorial 

tumors include supratentorial gliomas, craniopharyngiomas, germ cell tumors, choroid 

plexus tumors, and pineoblastomas.   

Treatment approaches for pediatric brain tumors depend on a variety of factors.  

Surgical resection of the tumor remains the therapeutic mainstay, providing both 

alleviation of the intracranial tumor burden and a histological diagnosis (Ullrich, 2009).  

The extent of resection prior to the onset of secondary treatment modalities is highly 

prognostic, with better outcomes expected in children for whom complete resection 

occurred (Merchant, Pollack, & Loeffler, 2010).  Improvements in surgical approaches, 

including image-guided surgical techniques and intraoperative imaging have resulted in 

greater safety and ease of tumor resection (Ullrich, 2009).  For some patients, surgical 

resection and radiographic follow-up may be the only therapy needed; for example, 

juvenile pilocytic astrocytomas, the most common childhood glioma, are highly 

localized.  Treatment of these low-grade tumors is often limited to maximal surgical 

resection, and survival rates exceed 90% (CBTRUS, 2011).  In some cases, however, 

surgical resection is impossible due to the location of the tumor relative to essential brain 

structures.  Optic pathway gliomas, for example, are rarely able to be resected due to the 

proximity of tumors to the optic nerve and the associated risk for vision loss (St. Jude 

Children’s Research Hospital, 2009).  In other cases, complete surgical resection is not 
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possible, or the degree of malignancy is such that additional treatment is necessary to 

improve survival. 

Secondary treatment approaches often involve cranio-spinal irradiation, adjuvant 

multiagent chemotherapy, or both.  Radiation may be focal or may cover the entire brain 

and spine, depending on the extent to which the tumor has spread (National Cancer 

Institute, 2008).  Although radiation has been associated with increases in survival rates 

for some diagnoses, significant late effects have been observed in long-term survivors, 

particularly for young children.  Therefore alternatives to this treatment approach have 

recently been explored (Merchant et al., 2010).  In “low-risk” cases, use of radiation 

treatment may be eliminated all together, and for most patients, dosage of radiation may 

be reduced by the addition of chemotherapy to treatment protocols.  This practice has 

been adopted most significantly for children diagnosed prior to age 3, as radiation-

associated late-effects are most pronounced for survivors diagnosed at an early age.  

However, use of chemotherapy to avoid or delay use of radiation in young children 

diagnosed with highly aggressive tumors remains controversial, as survival rates for these 

children fall below those of older children (Merchant et al., 2010).  Presently, age at 

diagnosis and staging are the overriding factors in treatment protocol selection.  

However, current research in this area focuses on increasing the specificity of risk-

adapted therapy through the better identification of histopathological and molecular 

predictors of outcome (Merchant et al., 2010). 

 Decisions about the most appropriate treatment approach for a pediatric brain 

tumor must take into consideration the associated late effects of a given modality.  Risks 

associated with cranio-spinal irradiation therapy, for example, range from insults to 
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motor, sensory, coordination, hearing, and visual systems, to significant endocrine 

dysfunction, to neurocognitive deficits.  These effects are magnified in children 

diagnosed and treated at a younger age (Merchant et al., 2010).  For example, one study 

found that survivors ages 3-7 years treated between with a cranio-spinal axis dose of 

3600 cGy of radiation experienced a 20- to 30-point decline in IQ (Packer, Meadows, 

Rorke, Goldwein, & D’Angio, 1987).  Balancing the competing demands of treatment 

success and reduction of significant and functionally debilitating late-effects is a priority 

in the field, and accurate and systematic documentation of both epidemiologic and 

functional outcome data is essential. 

 

Late Effects of Pediatric Brain Tumors 

As noted above, as the survival rates for pediatric brain tumors have risen, 

researchers have paid increased attention to the long-term sequelae of diagnoses and 

treatment.  Recently, two of the most frequently examined types of late effects are 

neurocognitive deficits and difficulties in psychosocial functioning in survivors of 

pediatric brain tumor. 

Neurocognitive deficits. 

Research has emerged examining long-term deficits in neurocognitive function 

following diagnosis and treatment for pediatric brain tumors, and the early studies in this 

field reviewed by Glauser and Packer (1991) identified some form of cognitive deficit in 

at least one domain in 40% to 100% of survivors of pediatric brain tumors.  

Neurocognitive deficits have been found in a variety of domains, including overall 

intelligence, executive function, memory, and academic achievement.  Research has 
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reported small to large deficits in most measures of global intelligence, which appear to 

emerge shortly after treatment ends, and functioning has been found to progressively 

decline over the following several years (e.g., Mulhern & Butler, 2004; Poggi et al., 

2005).  Childhood brain tumor survivors have been found to display poor performance on 

measures of global executive function, working memory, processing speed, and sustained 

attention, which are related to problems in broader areas intellectual and academic 

functioning due to difficulties in the acquisition and storage of new knowledge (Mulhern 

& Butler, 2004).  

Given this wide range of deficits found in individual studies, the need is evident 

for quantification of the magnitude and scope of deficits, and the factors by which they 

vary.  A recent meta-analysis of the neurocognitive deficits in survivors of pediatric brain 

tumors indicated that children treated for brain tumors exhibit pervasive and substantial 

deficits along a range of broad and specific neurocognitive domains, including overall 

cognitive functioning, academic achievement, attention, psychomotor and visual-spatial 

skill, verbal memory, and language (Robinson, Kuttesch, et al., 2010).  Overall, the 

magnitude of the effects across all domains ranged from small to large in size (g = -.45 to 

-1.43) with a large mean overall effect size of g = -.91.   

One especially important domain of neurocognitive implicated in studies of 

deficits in survivors of pediatric brain tumors is executive function.  Throughout 

adolescence, these higher order cognitive processes become increasingly important as 

maturation of the frontal lobes allows children to begin to better integrate complex 

information and regulate emotions (e.g., Lezak, Howieson, & Loring, 2004; Luna, 

Garver, Urban, Lazar, & Sweeney, 2004; Luna & Sweeney, 2004).  These processes are 
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essential factors in the ability to problem solve, engage in goal-directed behavior, and 

maintain stable interpersonal relationships (Lezak et al., 2004).  Children with brain 

tumors primarily display poor performance on measures of global executive function, 

working memory, and sustained attention (Ullrich, 2009), which are related to problems 

in broader areas of intellectual and academic functioning due to difficulties in the 

acquisition and storage of new knowledge (e.g., Mulhern & Butler, 2004; Mulhern et al., 

2004).   

The extent to which deficits in overall neurocognitive functioning, and executive 

function in particular, are associated with other documented areas of deficits in survivors 

is largely unknown, and further research is needed.  Key executive functions, including 

working memory and response inhibition, have been linked to deficits in social 

information processing in other populations, including the ability to engage in distinct, 

problem-solving steps that are implemented when children are faced with social 

situations in children with traumatic brain injury (Yeates et al., 2007).  However, research 

on the associations between executive function, social competency, and outcomes in 

survivors of pediatric brain tumors has only recently begun to emerge, and 

neurobiological underpinnings of these associations have yet to be examined. 

Social functioning. 

Social difficulties are a consistently reported problem experienced by survivors of 

pediatric brain tumors (e.g., Fuemmeler, Elkin, & Mullins, 2002; Schulte & Barrera, 

2010), and are more apparent for survivors of brain tumors than survivors of non-CNS 

cancers (e.g., Schultz et al., 2007; Turner, Rey-Casserly, Liptak, & Chordas, 2009).  A 

report from the Childhood Cancer Survivor Study (CCSS), the largest multi-institutional 
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study of long-term effects of childhood cancer, indicated that survivors of pediatric brain 

tumors were at 2.6 times greater risk of demonstrating increased antisocial behaviors as 

compared to healthy children, and their risk of demonstrating diminished social 

competence was nearly twice that of children with no history of cancer (Schultz et al., 

2007).   

In their recent review of studies assessing the social competence of survivors of 

pediatric brain tumors, Schulte and Barrera (2010) reviewed and synthesized the findings 

of 20 articles published between 2000 and 2009.  Overall, studies consistently found that 

survivors experience impaired social adjustment following treatment, with individual 

studies documenting deficits relative to siblings (e.g., Schultz et al., 2007), population 

norms (e.g., Aarsen et al., 2006), healthy controls (e.g., Palmer, Meeske, Katz, 

Burwinkle, & Varni, 2007), children with other types of chronic illness (e.g., juvenile 

rheumatoid arthritis; Bonner et al., 2008), and survivors of acute lymphocytic leukemia 

(e.g., Meeske, Katz, Palmer, Burwinkle, & Varni, 2004)..   

Research has found that children treated for pediatric brain tumors have poor 

social skills and peer relationship problems in school, in addition to academic difficulties 

(Boydell, Stasiulis, Greenberg, Greenberg, & Spiegler, 2008).   When compared to 

children with juvenile rheumatoid arthritis, survivors of pediatric brain tumors were rated 

by parents as having more problematic social behaviors, deficits in nonverbal social 

behaviors, and more social problems overall, after controlling for IQ (Bonner et al., 

2008).  In the only known study examining the neural bases of social deficits in 

survivors, researchers found that survivors performed more poorly on tasks of social 

facial expression recognition, suggesting potential difficulties distinguishing nonverbal 
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social cues (Bonner et al., 2008).  This has broad implications, as processing nonverbal 

social information during interpersonal interactions becomes increasingly important 

throughout adolescence (Bonner et al., 2008). 

Mabbott and colleagues (2005) found that survivors of posterior fossa tumors 

experienced increased symptoms of social problems, particularly in cases where 

treatment included cranial radiation therapy.  Growth curve analysis indicated that these 

deficits in social functioning increased significantly over time, based on both parents’ and 

teachers’ report (Mabbott et al., 2005).  Survivors have also been found to report poorer 

quality of life and greater difficulties in the area of social functioning as compared to 

survivors of other cancers (e.g., Zebrack & Chesler, 2002).  In addition, they have been 

described by parents as less socially competent as compared to healthy children or 

children with non-CNS malignancies (e.g., Bonner et al., 2008; Carpentieri, Mulhern, 

Douglas, Hanna, & Fairclough, 1993; Fossen, Abrahamsen, & Storm-Mathisen, 1998; 

Poggi et al., 2005; Radcliffe, Bennett, Kazak, Foley, & Phillips, 1996).   

According to their peers, children who have been treated for a brain tumor are 

perceived as isolated and withdrawn, and are significantly less likely to be endorsed as a 

best friend than healthy children (Vannatta et al., 1998).  Further, survivors perceive 

themselves as being significantly more isolated than their peers (Vannatta et al., 1998).  

When asked to rate themselves on several aspects of psychosocial functioning, survivors 

perceived themselves as less skilled in the areas of athletics, academics, and social 

domains (Gerhardt et al., 2008).  These survivors also reported greater loneliness and 

were rated by parents as having more symptoms of internalizing disorders (Gerhardt et 

al., 2008).   
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Social deficits may emerge in survivors of pediatric brain tumors for a number of 

reasons.  Researchers have postulated that conditions affecting the CNS may place 

children at increased risk for problems in social functioning due to cognitive impairments 

impacting social understanding, peer stigmatization due to visual manifestations (e.g., 

scars, mobility problems), or reduced opportunities for peer interaction during 

hospitalization and recovery (Nassau & Drotar, 1997).  Children treated for pediatric 

brain tumors, therefore, may be at particular risk due to the impact of treatment on their 

physical appearance and mobility, ability to attend school or participate in a mainstream 

classroom, and ability to process social information due to deficits in neurocognitive 

domains. 

Emotional functioning. 

 In addition to deficits in social functioning, survivors of pediatric brain tumors are 

at risk for psychosocial distress, including symptoms of anxiety and depression 

(Fuemmeler et al., 2002; Rey-Casserly & Parsons, 2006).  In their review of studies of 

the emotional adjustment of survivors, Fuemmeler and colleagues (2002) identified eight 

studies published between 1979 and 1997, reporting rates of internalizing symptoms 

(e.g., anxiety, depression) in children treated for brain tumors.  Results of these studies 

were mixed, with some indicating survivors were more likely to experience internalizing 

symptoms, and others suggesting survivors’ were no more likely than healthy children to 

experience these symptoms.   

An early study by Hirsch, Renier, Czernichow, Benveniste, & Pierre-Kahn, 

(1979) indicated that survivors of pediatric brain tumors were at increased risk of 

“emotional problems,” with 93% of survivors endorsing symptoms.  Although the term 
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“emotional problems” was not operationally defined in the article, these authors 

documented difficulties in the areas of instability, slowness, anxiety, inhibition, and 

negative attitude, which map onto internalizing symptoms (Fuemmeler et al., 2002).  In a 

follow-up study on this sample of survivors, Hoppe-Hirsch et al. (1990) reported that, of 

the participants able to be contacted for follow-up assessments, 47% (26 of 55 

participants) of this sample continued to experience symptoms 5 years after treatment, 

and 77% (10 of 13 participants) after 10 years.  Similarly, Seaver et al. (1994) found that 

44% of survivors experienced clinically-significant symptoms of internalizing based on a 

structured interview of overall psychological functioning.  In contrast, Radcliffe et al. 

(1996) found that survivors rated themselves as significantly less depressed and less 

anxious than normative samples, whereas parents and teachers of this sample of survivors 

rated them as equally as likely as normative samples to experience symptoms of 

internalizing. Importantly, studies reporting elevated symptoms most often relied on 

parent reports of internalizing problems, whereas children reported fewer problems.  This 

suggests that multi-informant designs may be beneficial in determining better estimates 

of these problems in survivors.  

Other studies have examined emotional functioning of survivors of pediatric brain 

tumors relative to other clinical populations or healthy children.  A report from the CCSS 

indicated that brain tumor survivors were twice as likely as healthy siblings to report 

symptoms of depression and anxiety (Schultz et al., 2007).  Mulhern, Carpentieri, Shema, 

Stone, & Fairclough (1993) examined rates of internalizing symptoms in survivors of 

pediatric brain tumors versus survivors of cancers outside of the CNS.  They found 

clinically elevated symptoms of internalizing in 30% of the sample of brain tumor 
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survivors and 20% of the sample of survivors of non-CNS cancers.  Although rates of 

internalizing in this study did not differ between clinical samples, rates for each sample 

statistically exceeded the expected rate of internalizing (7%) based on the general 

population.  In a study comparing psychological adjustment problems of brain tumor 

survivors relative to children who had survived traumatic brain injuries, Poggi et al. 

(2005) found evidence of significant psychological disorders in 26.7% of survivors of 

pediatric brain tumors.  The most frequently endorsed symptoms within this sample of 

survivors included symptoms of internalizing disorders (73.3%), withdrawn behavior 

(26.7%), and social problems (13.3%). 

Overall, the majority of studies on the emotional functioning of survivors of 

pediatric brain tumors suggest that survivors are at elevated risk for experiencing 

symptoms of internalizing disorders.  However, rates of symptoms or disorders in 

individual studies suggest that only a subset of survivors experience these difficulties.  

Although a few studies have considered predictors of psychosocial and emotional 

functioning (e.g., Carpentieri et al., 1993; Foley, Barakat, Herman-Liu, Radcliffe, & 

Molloy, 2000; Seaver et al., 1994), further research is warranted. 

Coping and emotion regulation. 

 One possible predictor of the emergence of psychosocial and emotional 

difficulties in survivors of pediatric brain tumors is the skill with which survivors cope 

with stress and interpersonal problems, and regulate their emotions.  For example, 

Fuemmeler, Mullins, Van Pelt, Carpentier, and Parkhurst (2005) examined the 

association between coping strategies and levels of posttraumatic stress symptoms 

(PTSS) in a group of survivors of childhood cancer, some of whom were treated for 
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pediatric brain tumors.  Results indicated that less use of emotion-focused coping (e.g., 

distancing, self-controlling, accepting responsibility, escape-avoidance, and positive 

reappraisal) was associated with increased frequency of PTSS as well as general 

psychological distress across all participants in this study.  However, it is not known 

whether this pattern holds true specifically for survivors of pediatric brain tumors, and in 

general, research has yet to consider the ways in which brain tumor survivors cope with 

stress. 

 In the present study, coping is conceptualized based on a multidimensional model 

of coping and stress reactivity (Connor-Smith, Compas, Wadsworth, Thomsen, & 

Saltzman, 2000).  According to this framework, coping includes voluntary responses 

implemented in stressful situations, and is defined as “conscious, volitional efforts to 

regulate emotion, cognition, behavior, physiology, and the environment in response to 

stressful events or circumstances” (Compas, Connor-Smith, Saltzman, Thomsen, & 

Wadsworth, 2001, p. 89).  Several skills outlined in this model rely heavily on self-

regulatory skills that depend on the use of complex problem solving and higher order 

executive function.   

Coping responses are divided into dimensions based on orientation towards vs. 

away from a stressor or one’s reactions to the stressor.  Coping responses that orient a 

person toward the stressor are classified as engagement responses, and responses that 

orient a person away from the stressor are classified as disengagement responses.  

Engagement responses are further classified as primary control coping strategies or 

secondary control coping strategies.  This model has been validated in multiple studies of 

children and adolescents (e.g., Compas, Boyer, et al., 2006; Connor-Smith et al., 2000; 
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Wadsworth, Rieckmann, Benson, & Compas, 2004) and adults (Compas, Beckjord, et al., 

2006). 

Primary control coping strategies aim to change the stressor or situation itself, and 

include problem solving, emotional modulation, and emotional expression.  In contrast, 

secondary control coping strategies aim to manipulate or adjust one’s own reactions to 

the stressor, and include strategies like positive thinking, cognitive restructuring, 

acceptance, and distraction.  Disengagement coping responses include avoidance, denial, 

and wishful thinking.  Whereas primary and secondary control coping responses have 

been found to be associated with lower levels of emotional and behavioral problems in 

children and adolescents, disengagement responses have been associated with higher 

levels of emotional and behavioral problems (e.g., Compas, Boyer, et al., 2006; Jaser et 

al., 2007).   

Integration of neurocognitive and psychosocial deficits. 

Although research on social, emotional, and neurocognitive functioning clearly 

suggests that survivors of pediatric brain tumors can experience difficulty in several 

areas, the associations among these problems remain unclear. 

It has been suggested that disturbances in cognitive and neuropsychological 

functioning resulting from a pediatric brain tumor may result in the onset of 

psychological and behavioral problems (Poggi et al., 2005), but research documenting 

this association is still emerging.  Nassau and Drotar (1997) hypothesized that children 

with CNS-related chronic health conditions (e.g., cerebral palsy, epilepsy, spina bifida) 

may exhibit deficits social functioning as a result of cognitive impairments that hinder 

their understanding of social cues and social relations.  In one study, researchers found 
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evidence of deficits in overall and specific areas of neurocognitive functioning, and 

psychosocial functioning, including social deficits (Carey, Barakat, Foley, Gyato, & 

Phillips, 2001).  Further, these researchers found that nonverbal intelligence was 

marginally associated with parents’ reports of children’s social skills, such that as 

nonverbal intelligence increased, so did social functioning.   

In a recent study on the cognitive and psychosocial functioning of 76 brain tumor 

survivors, Poggi and colleagues (2005) found that parent-reported internalizing, social 

problems, withdrawn behavior, and total problems on the Child Behavior Checklist 

(CBCL) were associated with lower full scale IQ.  When participants were divided into 

age groups, cognitive deficits were associated with social problems for children under the 

age of 6 at assessment, but not for older children.  Additionally, Holmquist and Scott 

(2002) examined the associations between treatment effects and behavioral outcome, and 

found that difficulties in verbal learning accounted for a significant 51% of the variance 

in social withdrawal, and overall intellectual functioning accounted for a significant 36% 

of the variance in social problems in survivors.  In contrast, Hardy and colleagues (2010) 

found that, overall, indicators of cognitive functioning were not related to perceived 

social competency, with the exception of a positive association between survivors’ 

processing speed and perceived competence in athletics (Hardy, Willard, Watral & 

Bonner, 2010). 

Models of social-cognitive development and social information processing 

suggest that deficits in neurocognitive, social and emotional functioning may share 

common underlying mechanisms (e.g., Crick & Dodge, 1994; Lemerise & Arsenio, 

2000).  In their model of social information processing, Crick and Dodge (1994) describe 
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the roles of a variety of skills in order for processing to occur.  These include attending to 

social cues during interactions, correct interpretation of cues, the generation of potential 

responses, imagining possible consequences of these responses, and acting on the 

selected response.  Intuitively, deficits in any of the contributing skills may influence a 

child’s ability to process social information in an effective and efficient manner. 

More recently, Yeates et al. (2007) provided a conceptual framework for social 

information processing within the context of childhood brain disorder.  Specifically, this 

model incorporated the fields of social cognitive neuroscience and developmental 

psychology to examine the social deficits observed in children treated for traumatic brain 

injury.  These researchers theorized that social information processing involves not only 

the problem solving steps described above (Crick & Dodge, 1994), but also relies on 

cognitive constructs including executive function and emotion regulation.  A person’s 

responses within the context of social interactions, therefore, are dependent upon his or 

her cognitive/executive functions, social problem solving ability, and emotional 

functioning. 

Several specific cognitive skills have been considered in research on contributing 

factors to successful social functioning.  Research on the cognitive skills necessary for 

social information processing has examined regulation of attention, working memory, 

and processing speed.  Other research has found that selective attention, perception, 

memory, and processing speed skills each set limits on what children notice and process 

about situations (Lemerise & Arsenio, 2000).  Access to social groups to increase 

knowledge of possible outcomes and consequences of behaviors have also been 

considered as environmental contributors (Crick & Dodge, 1994).   
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 Although the association between neurocognitive function, most importantly 

executive function, and coping skills in survivors of pediatric brain tumors has yet to be 

examined, existing research with other populations can serve as a framework for the 

conceptualization of these associations (Compas, 2006; Compas, Campbell, Robinson, & 

Rodriguez, 2009).  In a review of the association between coping and attention in the 

context of child health, Compas and Boyer (2001) suggested that the regulatory processes 

available for an individual to use are constrained by his or her biological, cognitive, 

social, and emotional development.  Several important cognitive abilities, including 

sustained attention, cognitive flexibility, and metacognition, are necessary for the 

engagement in coping strategies such as cognitive reappraisal or problem solving.  

Therefore, it is likely that a survivor experiencing significant neurocognitive late-effects 

in the area of executive function may be unable to develop beneficial coping skills, 

and/or use these skills effectively.  Because these engagement coping responses have 

been associated with a more positive outcome, this may leave survivors of pediatric brain 

tumors more vulnerable to social and emotional difficulties. 

Hocking, Barnes, Shaw, Lochman, Madan-Swain, and Saeed (2011) recently 

examined the associations between executive function, coping, and symptoms of anxiety 

and depression in a sample of children with functional abdominal pain.  Within this 

sample, significant correlations were found between selective attention (i.e., the ability to 

identify and attend to the important elements of a stimulus) and use of secondary control 

coping, indicating that children with abdominal pain who had better selective attention 

also reported greater use of these coping responses.  Additionally, use of secondary 

control coping was inversely related to anxiety symptoms, such that children who used 
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more of these coping responses were less likely to report symptoms of anxiety.  

Examination of the potential mediating role of coping indicated that secondary control 

coping responses significantly mediated the association between selective attention and 

anxiety, as well as the association between attentional control and anxiety (Hocking et al., 

2011). 

One particularly relevant recent study examined the association between 

neurocognitive functioning, behavioral functioning, and coping in survivors of pediatric 

acute lymphocytic leukemia (ALL; Campbell et al., 2009).  Within the group of survivors 

of ALL, significant correlations were found between measures of executive function and 

primary and secondary control coping.  Additionally, significant negative associations 

were found between primary and secondary control coping and behavior problems, as 

well as between executive function and behavior problems.  Examination of the potential 

mediating role of coping in the association between executive function and behavior 

problems suggested that secondary control coping significantly mediates the relationship 

between several specific domains of executive function (i.e., working memory, cognitive 

flexibility, self-monitoring) and behavior problems in survivors of ALL (Campbell et al. 

2009).  Although these patterns of association have yet to be examined in survivors of 

pediatric brain tumors, similarities in late effects profiles highlight a need for 

consideration of similar processes in this group of survivors. 

Neurobiological underpinnings of neurocognitive and psychosocial 

functioning. 

 Although research on survivors of pediatric brain tumors has not directly 

examined the neurobiological underpinnings of neurocognitive deficits and their 
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contribution to social functioning, it has been suggested that the areas of executive 

function, coping and emotion regulation, and social cognition may share underlying 

neurobiological mechanisms (Compas, 2006; Compas et al., 2009; Yeates et al., 2007).  

The extent to which deficits in these areas manifest at a neurobiological level within 

children with acute and chronic illnesses is relatively unknown.  However, examination 

of neurobiological networks underlying these skills would provide valuable information 

toward better understanding of the mechanisms underlying observed deficits. 

Executive function skills improve throughout childhood and adolescence, and 

improvements in these skills have frequently been attributed to maturation of the 

prefrontal cortex (Gogtay et al., 2004; Tamnes et al., 2010).  In particular, lesion studies 

documenting deficits in executive function in patients with anterior brain injuries have 

led to the conclusion that the neural substrates of these skills lie in the prefrontal regions 

alone (Alvarez & Emory, 2006; Collette, Hogge, Salmon, & Van der Linden, 2006).  

Research has indicated that response selection, decision making, and volitional control of 

behavior can all be linked to activation in the prefrontal and anterior cingulate cortices 

(Adolphs, 2001).  However, more recent imaging studies have suggested that the 

neurobiological underpinnings of executive function extend beyond this single region, 

and likely involve both frontal and parietal regions, as well as their coordination (Tamnes 

et al., 2010). 

Although caution should be taken in applying the findings of neuroimaging 

studies in adults to children and adolescents due to differences in amount and dispersion 

of activation (Nagel, Barlett, Schweinsburg, & Tapert, 2005), studies using fMRI have 

indicated a pattern of prefrontal and parietal activation in both adolescents and adults 
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during engagement in tasks relying on executive function (e.g., Kwon, Reiss, & Menon, 

2002; Nelson et al., 2000).  A recent meta-analysis of studies of brain regions activating 

during a working memory task in adult subjects provides a relevant starting point for 

future studies (Owen, McMillan, Laird, & Bullmore, 2005).  This review synthesized the 

findings of 24 functional neuroimaging studies using the N-back working memory 

paradigm, one of the most often employed paradigms for the assessment of working 

memory in an imaging context.  Evidence of robust activation was found in the lateral 

premotor cortex, dorsal cingulate cortex, medial premotor cortex, dorsolateral and 

ventrolateral prefrontal cortices, frontal poles, and medial and lateral posterior parietal 

cortices (Owen et al., 2005).  Studies examining activation during the N-back within 

samples of children and adolescents has similarly identified prefrontal-parietal networks 

(Nelson et al., 2000; Thomas et al., 1999). 

Other studies have examined patterns of blood-oxygenated level dependent 

(BOLD) signal activation during working memory task completion in pediatric 

populations.  McAllister and colleagues (1999) examined brain activation during N-back 

task completion in children who had suffered mild traumatic brain injury, relative to a 

sample of healthy children.  Their findings indicated that both survivors of TBI and 

healthy children recruited similar networks of brain regions to facilitate task completion, 

including prefrontal and parietal regions.  Interestingly, an interaction between group and 

task difficulty was detected, such that healthy controls showed increases in activation in 

the right dorsolateral prefrontal and parietal cortices as the task difficulty increased from 

the 0-back to the 1-back, and minimal additional increases from the 1-back to the 2-back 

condition.  Survivors of TBI, in contrast, showed a slight increase in activation from the 
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0-back to the 1-back condition, and extensive activation from the 1-back to the 2-back 

conditions (McAllister et al., 1999).  This suggests that although brain injury may not 

lead to full loss of functioning of a given region, distribution of resources during task 

completion may vary in clinical populations relative to healthy children. 

The field of social cognitive neuroscience provides a platform for the integration 

of knowledge about brain structure, function, and their unique and shared contribution 

toward overall social development (Lieberman, 2007; Yeates et al., 2007).  Satpute and 

Lieberman (2006) discuss a dual-process model of social cognition, which distinguishes 

between automatic and controlled processes of social perception.  Relevant to the current 

study are controlled processes, which rely heavily on executive function.  Specifically, 

the lateral prefrontal cortex, medial temporal lobe, posterior parietal cortex, rostral 

anterior cingulate cortex, medial prefrontal cortex, and dorsomedial prefrontal cortex 

have been hypothesized to underlie willful, consciously experienced reactions that 

involve reflection, serial processing, and mental representation (Satpute & Lieberman, 

2006).  It is possible, therefore, that individuals with deficits in executive function may 

struggle with these aspects of social cognition. 

Several brain regions have been postulated to play a role in social cognition, as 

well as affective processes (Satpute & Lieberman, 2006; Yeates et al., 2007).  The 

cingulate cortex, for example, has been associated with emotion processing and social 

skills including theory of mind, as well as the processing of emotional and cognitive 

conflict.  The orbitofrontal cortex has been found to be related to these social skills as 

well, and is involved in processes of self-regulation.  The medial prefrontal cortex has 

been linked to emotion regulation, emotional responses to stimuli interpreted as 
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emotionally arousing, and assessing outcomes that have a reward/punishment component 

(Yeates et al., 2007).  The lateral prefrontal cortex has been associated with effortful and 

resource-demanding cognitive tasks that require manipulation, reasoning, working 

memory, or other complex problem-solving skills.  Finally, the posterior parietal cortex 

has been found to activate when tasks require reasoning and working memory processing 

(Satpute & Lieberman, 2006). 

Importantly, several brain regions implicated in studies of social cognition 

overlap with regions implicated in basic executive function.  This overlap suggests that 

key executive functions, including working memory, are actively engaged when 

individuals are faced with conflicts with a social component.  These overlapping regions 

include the cingulate cortex, medial and lateral prefrontal cortices, orbitofrontal cortex, 

and posterior parietal cortex.   

Research on the neurobiological underpinnings of coping and emotion regulation 

has implicated several brain regions as important in these processes.  Whereas activation 

of many of the brain regions identified in the dual-process model of social cognition 

indicate emotional arousal (e.g., amygdala; Lieberman, 2007; Satpute & Lieberman, 

2006), others have been linked to attempts to regulate, modify, or otherwise cope with 

emotions.  The cingulate cortex, for example, has been tied to the processing of 

emotional information, particularly in the context of conflict.  The orbitofrontal cortex 

has been tied to self-regulation, and the medial frontal cortex has been linked to processes 

of emotion regulation and outcome monitoring when stimuli contain a socially relevant 

component (Yeates et al., 2007). 

The association between executive function abilities and coping suggests that the 
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development of good coping skills likely parallels (and is therefore associated with) the 

development of the prefrontal cortex (Compas, 2006; Compas & Boyer, 2001).  Although 

imaging of the neurobiological bases of specific coping strategies is still in its early 

stages, a recent study by McRae, Hughes, Chopra, Gabrieli, Gross, and Ochsner (2010) 

examined the differences in brain activation when participants engaged in distraction 

versus reappraisal, which both fall under the category of secondary control coping in the 

framework used in the current study (Connor-Smith et al., 2000).  McRae et al. (2010) 

found that both distraction and reappraisal were related to reduction of activation in the 

amygdala, left insula, right inferior parietal lobule, and middle temporal gyrus, and to 

increased activation in the left middle and inferior prefrontal cortices, dorsomedial 

prefrontal cortex, and dorsal anterior cingulate cortex.  Although no known functional 

neuroimaging studies have been conducted to examine neurobiological processes 

associated with use of primary control coping or disengagement coping, determining 

whether similar or distinct networks subserve these subtypes of coping may be useful 

towards understanding the impact of insult to a particular brain region on one’s ability to 

cope.  

In summary, deficits in executive function, social information processing, and 

subsequently in social relationships are consistently found in survivors of pediatric brain 

tumors, and research suggests that difficulties in social functioning are among the most 

often cited problems experienced by these children (Schulte & Barrera, 2010).  Although 

research has strongly supported the presence of social and executive function deficits in 

survivors, the mechanisms underlying these deficits are not well understood.  Possible 

mechanisms are suggested by research in social cognitive neuroscience that has 
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implicated several brain regions as playing a role in deficits of this nature, including the 

anterior cingulate cortex, medial and lateral prefrontal cortices, orbitofrontal cortex, and 

posterior parietal cortex (e.g., Amodio & Frith, 2005; Mah, Arnold, & Grafman, 2004; 

Robinson, Livesay, et al., 2010; Yeates et al., 2007).  Research to date has largely 

focused on reports of behavioral data, and utilization of neuroimaging methods to 

examine the neurological mechanisms underlying evidenced deficits has been limited to 

studies of survivors’ processing of human emotional faces (Bonner et al., 2008) and 

activation in sensory brain regions (e.g., Zou et al., 2005).  Research on the functional 

underpinnings of these deficits in survivors of pediatric brain tumors is a necessary next 

step in understanding the predictors of and implications of these deficits. 

 

Current Studies: Rationale and Hypotheses 

To advance research in this area, the current research had several goals which 

were explored in two studies.  First, in Study I, we examined executive function during 

neurocognitive assessment, working memory task performance, and patterns of BOLD 

signal activation during functional magnetic resonance imaging (fMRI) in child and 

adolescent survivors of brain tumor and healthy controls in order to examine whether 

brain tumor survivors demonstrate deficits in these domains relative to age and gender 

matched healthy children.  In Study II, in order to explore the range of deficits 

experienced by brain tumor survivors, assessment of executive function and patterns of 

BOLD signal activation during a verbal working memory task was completed in a larger 

sample of survivors of pediatric brain tumors; further, the associations between BOLD 

signal activation and measures of psychosocial functioning and coping were explored.
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CHAPTER II 

 

Study I 

 

The goals of Study I were to explore differences in executive function abilities in 

brain tumor survivors, relative to matched healthy control children, using 

neuropsychological assessment, working memory task performance during fMRI, and 

BOLD signal activation during fMRI.  The following specific hypotheses were tested: 

Hypothesis 1.  Consistent with literature on late effects of pediatric brain 

tumor, survivors will exhibit poor performance, relative to healthy controls, on 

measures of neurocognitive and executive function, including the areas of 

working memory, processing speed, overall cognitive ability. 

Hypothesis 2.  Brain tumor survivors will perform more poorly on a 

verbal working memory task administered during fMRI, relative to healthy 

controls.  Specifically, survivors will demonstrate lower accuracy, and slower 

reaction times, than healthy children. 

Hypothesis 3.  Differences in brain activation between brain tumor 

survivors and healthy controls during a verbal working memory task will be 

explored.  In parallel with findings of a study on survivors of ALL (Robinson, 

Livesay, et al., 2010), it is expected that brain tumor survivors will show patterns 

of compensatory activation in specific regions, including the dorsolateral 

prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC), as compared to 

healthy children.  This pattern of processing will be manifested in increased 
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recruitment of oxygenated blood to these brain regions, relative to healthy 

controls, as task difficulty increases. 

 

Method 

Participants. 

 Seven survivors of pediatric brain tumor (4 girls) and 7 healthy children (4 girls) 

were included in these analyses.  These children constituted a subset of participants in a 

larger study on neurocognitive functioning of survivors of pediatric brain tumor.  

Survivors were identified through the Childhood Cancer Survivorship Clinic in the 

Department of Pediatric Hematology/Oncology, or the Department of Neurology, at 

Vanderbilt University Monroe Carrel Jr. Children’s Hospital.  Healthy children were 

identified through the Vanderbilt University StudyFinder program, and were matched to 

survivors for age and gender.   

Six brain tumor survivors and 6 healthy controls self-identified as Caucasian, and 

one participant in each group self-identified as African American.  Upon enrollment in 

the study, brain tumor survivors were on average 12.91 years old (SD = 2.96) and healthy 

controls were 12.95 years old (SD = 2.76).  On average, survivors were diagnosed at 6.30 

years old (SD = 2.77; range 2.06-10.74 years) with a brain tumor, and were on average 

6.60 years post-diagnosis (SD = 3.31; range 2.20-10.60 years).  Tumor pathologies 

included juvenile pilocytic astrocytoma (n = 5), posterior fossa medulloblastoma (n = 1), 

and left temporal dysembryoplastic neuroepithelial tumor (n = 1).  All procedures were 

approved by the Institutional Review Board, and informed consent and assent were 

obtained from all participants. 
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 Demographic information for participants can be found in Table 1.  Between 

groups t-tests and chi-square analyses were conducted to assess whether group matching 

was successful.  Results indicated that brain tumor survivors and healthy controls were 

similar in terms of age (t = -0.03, p = .98), gender (Χ2 = 0.00, p = 1.00), race (Χ2 = 0.00, 

p = 1.00), primary caregiver’s marital status (Χ2 = 1.09, p = .58), primary caregiver’s 

level of education (Χ2 = 4.48, p = .35), and family income (Χ2 = 6.53, p = .37).  This 

suggests that survivors and healthy controls were adequately matched in terms of 

demographic characteristics. 

 

Table 1  
Group Comparisons on Demographic Informationa 

 Survivors 
(n = 7) 

Healthy 
Controls 
(n = 7) 

t/χ2 p Cohen’s 
d 

Demographics      

Child Age 12.91 (2.96) 12.95 (2.76) -0.03 .98 -0.01 

Child Gender 57.1% Female 57.1% Female 0.00 1.00  

Child Race 85.7% Caucasian 85.7% Caucasian 0.00 1.00  

Parent Marital Status 85.7% Married 71.4% Married 1.09 .58  

Parent Education 4.57 (1.40) 5.71 (0.95) 4.48 .35  

Family Income  6.57 (2.76) 5.71 (2.43) 6.53 .37  

Time Since Diagnosis 6.60 (3.31) na    
Note.  For survivors, a mean parent education of 4.57 corresponds to some post-high school training, and a 
family income of 6.57 corresponds to an income range of $50,000-$60,000.  For healthy controls, a mean 
parent education of 5.71 corresponds to some college education, and a family income of 5.71 corresponds 
to an income range of $40,000-$50,000. 
aValues in parentheses indicate standard deviation. 

 

Procedure. 

 Parents or caregivers of brain tumor survivors were sent a letter from a physician 

informing them of the study and providing a contact number to call in order to opt out of 
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being contacted regarding participation.  Approximately two weeks after the letter was 

sent, families were contacted by the study coordinator to provide more information and 

assess the family’s interest in participating.  Healthy controls responded to a study 

advertisement posted on the Vanderbilt University StudyFinder website.  For each family 

expressing interest, a brief phone screen was conducted to ensure families met inclusion 

criteria, and study appointments were scheduled for either one full day or two half-days, 

depending on each family’s preference, and study questionnaires and consent/assent 

forms were mailed to each family’s home.  Informed consent and assent were obtained 

from participants and parents in person during study appointments.  After a research 

assistant answered all questions regarding the study, parents and children completed their 

appointments.   

Study participation included a neurocognitive assessment battery completed with 

a trained graduate student, completion of questionnaire measures, and a neuroimaging 

session, including structural, functional, functional connectivity, and diffusion tensor 

imaging.  Neurocognitive assessments included measures of overall cognitive 

functioning, memory, visual-spatial integration, and executive function.  Additionally, 

parents and children completed several questionnaire measures assessing various 

domains of functioning, including psychosocial, emotional, and behavioral problems, 

executive function, and coping. 

All imaging was conducted on a 3Tesla MR scanner (Philips Medical Systems, 

The Netherlands) dedicated for research.  The general imaging protocol involved 

acquiring data for anatomic, functional, functional connectivity and diffusion-tensor 

analysis.  These provided measures of brain tissue volume, function, and microstructure 
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in an exam of 60-70 minutes.  After arriving for their neuroimaging appointment, 

families were taken to a mock scanner room, which included a structure resembling an 

MRI, and children we encouraged to climb into the scanner to become familiar with the 

enclosed space.  Children were also shown the headset and the response pad that would 

be attached to each child’s dominant hand during the scan.  Once children were 

comfortable with the scanning environment, children were taught how each of the 

computerized tasks ran and would appear during the scan.  Remaining questions were 

answered and children were taken back to the scanning room where they were placed in 

the scanner by a certified technician and trained study personnel.  In addition to the 

response pad, a pulse oximeter was attached to participants’ non-dominant index finger to 

record heart rate, and a respiration belt was placed over participants’ diaphragm to record 

respiration rate.  Protocols were run via computer in an adjacent room, and task stimuli 

appeared via rear projector on a screen mounted in the MRI.  Participants were able to 

respond to questions using buttons on the response pad, and they were able to 

communicate reciprocally with study personnel throughout the scan through headphones 

and a microphone. 

Measures. 

 Neurocognitive assessment.   

At their assessment session, children completed a brief neurocognitive testing 

battery.  Among other measures, children completed 8 subtests of the Wechsler 

Intelligence Scale for Children –Fourth Edition (WISC-IV; Wechsler, 2003) to measure 

overall cognitive functioning, including general verbal and nonverbal intelligence, 

working memory, and processing speed.  The Working Memory Index (WMI) is 
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composed of the Digit Span and Letter-Number Sequencing subtests, and the Processing 

Speed Index (PSI) is composed of the Coding and Symbol Search subtests.  These indices 

are of particular interest due to the frequently documented deficits in these domains in 

survivors of pediatric brain tumors (Robinson, Kuttesch, et al., 2010).  In these analyses, 

participants’ full-scale IQ (FSIQ), WMI, and PSI were examined.  The Wechsler 

intelligence scales have demonstrated excellent internal consistency (α = .97) and test-

retest reliability (r = .93), as well as established convergent and discriminant validity. 

 Functional neuroimaging.   

 During their first functional scan, participants completed the N-back task, which 

is designed to assess working memory.  A letter version of the visual N-back task (Barch, 

Sheline, Csernansky, & Snyder, 2003) has been developed, and involves sequences of 

uppercase consonants.  In the 0-back condition, participants were instructed to respond to 

a single target (i.e., V).  In the 1-back condition, participants were instructed to respond 

only when the consonant was identical to the one preceding it (e.g., M, M).  In the 2-back 

condition, participants responded only when the consonant was identical to the one 

presented two trials prior (e.g., M, T, M), and in the 3-back condition, participants 

responded when the consonant was identical to the one presented three trials prior (e.g., 

M, T, F, M).  Each condition was presented three times in order of increasing difficulty, 

for a total of 12 blocks.  Each block contained 15 consonants, and 3 of these consonants 

required a response.  This task has been used effectively with children in this age group 

with no adverse effects (Robinson, Livesay, et al., 2010).  N-back task performance data 

were extracted using ePrime software (Psychology Software Tools Inc., Pittsburgh, PA).  

Accuracy, reaction time, number of omissions, and number of false positive responses 
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were calculated for each participant at each level of N-back difficulty.  Overall accuracy 

and reaction time total scores across N-back difficulty level were also calculated. 

Image acquisition. 

Imaging consisted of a 3-plane localizer (5 slices per plane, 22s scan time) from 

which 33 oblique axial slices (parallel to the AC-PC plane) were prescribed.  High 

resolution 3D anatomical images were acquired using an inversion-prepared spoiling 

gradient recalled echo sequence (IR-SPGR), with an inversion time T1 of 400ms, a TR of 

15ms, minimum TE (3ms), a matrix size 256x256 for a FOV of 256x256x270mm3 with 

near isotropic resolution, for use in volumetric analysis.  All functional images were 

acquired with a gradient echo EPI pulse sequence, with TE 30ms (optimized for T2* at 

3T), flip angle of 70°, TR 2000ms, 33 slices 3.5mm thick and .35mm skip, and a matrix 

size of 80x80 (reconstructed to 128x128) sampled at +/-62.5kHz.  During the N-back 

task, each condition contained 15 consonants and a pause between each condition, for a 

total of 192 dynamic scans per run.  The first 6 image volumes of the functional image 

dataset were discarded to allow magnetization to reach equilibrium. 

Data analysis. 

 Statistical power. 

 Due to the small sample size (n = 7 per group), the power to detect statistical 

significance at p < .05 is limited to only very large effects.  For example, for independent 

samples t-tests, a sample size of 7 per group would require a t-statistic of greater than 

2.179 to reach significance at p < .05.  This corresponds to an effect size (Cohen’s d) of d 

= 1.26.  Cohen (1988) provides guidelines for determining the magnitude of an effect size 

of a group comparison (Cohen’s d), which state that effect sizes of d = 0.2-0.5 indicate a 
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small effect, effect sizes of d = 0.5-0.8 indicate a medium effect, and effect sizes of d = 

0.8 or larger indicate a large effect.  Therefore, in addition to discussing findings in terms 

of statistical significance, we will identify group differences reaching Cohen’s threshold 

for medium and large effects. 

fMRI data preparation. 

All functional data were analyzed using BrainVoyager QX software (Brain 

Innovation B. V., Maastricht).  For each participant, functional images from the 

participants’ N-back run were corrected for 3D motion and slice-time delays, and linear 

trends were removed and temporally filtered.  Motion correction results were assessed to 

ensure that all data fell within movement criteria (>3mm displacement, 3° rotation).  For 

participants whose movement exceeded the established criterion for fewer than 1/3 of any 

given condition of the N-back, this data was corrected and the dynamic scans 

corresponding to the time points of excessive motion were removed.  Individualized 

design matrices were generated for these participants for use in group analysis.   

The functional data for each participant was aligned to the participant’s high-

resolution 3D anatomic dataset. Each participant’s activation map was normalized to a 

common reference space (Talairach), using registration techniques.  Following Talairach 

transformation, within-group GLM analyses were conducted by designing a multi-study 

design matrix.  This analysis calculated all significantly activated voxels, both positively 

and negatively, during all levels of the N-back.  Individual contrasts were then set, and 

activation at any given contrast could be examined individually.  Analyses of covariance 

were conducted to determine whether patterns of activation differed as a whole between 

groups, or between different levels of the N-back, as well as to examine group by N-back 
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level interactions.  A cluster level threshold was used to correct for multiple comparisons 

via 1,000 iterations of a Monte Carlo Simulation.  For the current analyses, a cluster 

threshold of 3 functional voxels was established for examining between group 

interactions and main effect of group, a cluster threshold of 8 functional voxels was 

established for examining the main effect of N-back level, and a cluster threshold of 6 

functional voxels was established for examining specific N-back level contrasts between 

groups.  Each of these cluster thresholds maintained a significance criterion of p < .01.  

Significantly activated clusters that met this criterion were considered further.  Region-

of-interest (ROI) analyses were conducted using Talairach Daemon software (Lancaster 

et al., 2000) to determine the brain region in which significantly activated clusters 

occurred and the corresponding center-of-gravity coordinates in Talairach space for each 

relevant cluster.  Composite t-values were calculated to measure the degree of activation 

in each cluster for examination of specific N-back level contrasts, and F-statistics were 

calculated to measure main effects of group and N-back level, and overall interaction 

effects. 

Analytic plan. 

 Study hypotheses were analyzed as follows: 

Hypothesis 1.  Three independent-samples t-tests were conducted to 

examine whether brain tumor survivors performed more poorly than healthy 

controls on measures of executive function.  Measures included the WMI, PSI, 

and FSIQ of the WISC-IV. 

Hypothesis 2.  Independent samples t-tests were conducted to examine 

whether brain tumor survivors performed more poorly than healthy controls on 
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the N-back task.  Measures included accuracy at the 0-back, 1-back, 2-back, and 

3-back conditions, as well as overall task accuracy and rates of false positives 

(commission errors) and omission errors.  Differences in response times were also 

examined at individual N-back levels, and for the task overall. 

Hypothesis 3.  Between-group GLM and Analysis of Covariance was 

conducted to detect BOLD signal interactions between group and N-back level 

during fMRI.  Significant interactions were further examined by testing specific 

contrast levels of the N-back task between groups.  Main effect of group and main 

effect of N-back level were also examined. 

 

Results 

Hypothesis 1. 

 Means and standard deviations for measures of executive function are reported in 

Table 2.  On the WISC-IV, mean FSIQ and WMI scores for brain tumor survivors fell 

within the average range, and mean PSI scores fell within the low average range.  In 

contrast, mean WMI scores for the healthy control group fell within the average range 

and mean PSI and FSIQ scores fell within the high average range.  Comparisons between 

the performance of brain tumor survivors and healthy controls, assessed using 

independent samples t-tests, indicated significant differences on the WISC-IV PSI (t = -

4.07, p = .002) and WISC-IV FSIQ (t = -3.36, p = .006).  Differences on the WISC-IV 

WMI were non-significant (t = -1.35, p = .202), although the effect size was medium (-

0.72).  These scores indicate that brain tumor survivors performed more poorly than 

healthy controls on measures of processing speed and overall cognitive ability, and effect 
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sizes suggest they also performed more poorly that healthy controls on measures of 

working memory.  These findings are consistent with a recent meta-analysis (Robinson, 

Kuttesch, et al., 2010), documenting deficits in survivors of pediatric brain tumors of 

medium to large effect size. 

 

Table 2  
Group Comparisons on Measures of Executive Function During Neurocognitive 
Assessmenta 

 Survivors 
(n = 7) 

Healthy 
Controls 
(n = 7) 

t p Cohen’s 
d 

WISC-IV      

Working Memory 90.57 (13.94) 98.86 (8.34) -1.35 .20 -0.72 

Processing Speed 88.57 (10.00) 112.43 (11.86) -4.07 <.01 -2.18 

Full Scale IQ 90.57 (8.66) 112.14 (14.65) -3.36 <.01 -1.79 
Note.  Scores on the WISC-IV are presented as standard scores (M = 100, SD = 15). 
aValues in parentheses indicate standard deviation. 

 

Hypothesis 2. 

 Means and standard deviations for measures of N-back task performance are 

reported in Table 3.  Comparisons between the performance of brain tumor survivors and 

healthy controls, assessed using independent samples t-tests, indicated significant 

differences in accuracy on the 2-back (t = -2.58, p = .024) and 3-back (t = -3.33, p = .006) 

conditions, overall task accuracy (t = -2.56, p = .039), omission errors (t = 2.24, p = 

.045), and false positives (t = 2.37, p = .048) (Figure 1).  Exploratory analysis of group 

differences in response times indicated no significant differences between groups (Figure 

2).  These scores indicate that, although brain tumor survivors responded within a similar 

time frame as healthy controls, they were more likely to make errors on the N-back task 

as difficulty increased, resulting in significantly poorer accuracy scores as the difficulty 



 

36 

of the N-back task increased. 

 

Table 3  
Group Comparisons on N-back Performance During fMRIa 

 Survivors 
(n = 7) 

Healthy 
Controls 
(n = 7) 

t p Cohen’s 
d 

TASK ACCURACY      

0-back Accuracy 42.43 (4.16) 44.86 (0.38) -1.54 .15 -0.82 

1-back Accuracy 42.14 (4.18) 44.86 (0.38) -1.71 .11 -0.91 

2-back Accuracy 40.14 (2.48) 43.29 (2.06) -2.58 .02 -1.38 

3-back Accuracy 36.86 (2.79) 41.00 (1.73) -3.33 <.01 -1.78 

Total Accuracy 161.57 (12.47) 174.00 (3.11) -2.56 .04 -1.37 

False-Positive Responses 5.57 (3.78) 2.00 (1.29) 2.37 .05 1.27 

Omission Errors 12.86 (9.91) 4.00 (3.32) 2.24 .05 1.20 
TASK REACTION TIME      

0-back Reaction Time 620.94 (89.39) 583.22 (96.44) 0.73 .48 0.41 

1-back Reaction Time 639.38 (170.24) 567.52 (61.74) 1.05 .33 0.56 

2-back Reaction Time 620.52 (91.05) 660.71 (185.53) -0.48 .64 -0.28 

3-back Reaction Time 753.36 (129.66) 835.26 (188.28) -0.95 .36 -0.51 

Total Reaction Time 655.94 (122.67) 650.73 (91.23) 0.09 .93 0.05 
Note.  Reaction times are presented in milliseconds. 
aValues in parentheses indicate standard deviation. 
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Hypothesis 3. 

A between-group GLM and analysis of covariance was conducted to determine 

whether brain tumor survivors and healthy controls differed in their patterns of BOLD 

signal activation during the N-back task.  First, interactions between group and task load 

were examined; this yielded clusters in three brain regions where activation significantly 

differed by group and load level (see Table 4; Figures 3-5).  These regions included the 

ventral ACC (BA 24), postcentral gyrus (BA 2), and supramarginal gyrus (BA 40).   

Next, between-group comparisons were conducted to examine the nature of the 

interaction effects.  In these analyses, individual contrast levels of the N-back were 

entered to determine whether survivors and healthy controls differed in their recruitment 

of oxygenated blood to the brain regions identified in the above interaction as task 

difficulty increased (see Table 5).  These findings indicate that, as the difficulty of the N-

back increased from the 0-back to the 1-back level, patterns of activation differed 

between survivors and healthy controls.  Specifically, survivors recruited greater amounts 

of oxygenated blood to the left supramarginal gyrus (BA 40), whereas healthy controls 
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Figure 5 
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recruited lesser amounts of oxygenated blood.  This region has been associated with 

retention of temporal information related to verbal stimuli (Owen et al., 2005).  Similarly, 

patterns of activation differed between survivors and healthy controls in the right ventral 

anterior cingulate cortex (BA 24), a region that has been associated with increases in 

effort and attention during increasingly challenging tasks, as well as with error detection 

and monitoring of performance.  In this region, brain tumor survivors recruited increasing 

amounts of oxygenated blood as task difficulty increased from the 1-back to the 3-back, 

and from the 2-back to the 3-back.  Healthy controls, however, recruited lesser amounts 

of oxygenated blood to this area as difficulty increased.  In contrast, whereas survivors 

maintained a relatively consistent level of activation in the postcentral gyrus (BA 2), 

healthy controls showed a significant increase in oxygenated blood as the N-back task 

difficulty increased from the 1-back to the 3-back level.  This region is associated with 

processing of sensory information.  

Follow-up tests of the main effect of group and the main effect of N-back load  
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Table 4 
Significant BOLD fMRI Responses During the N-back Task: Group x Load Level Interaction 
   Talairach Coordinates    

Region Hemisphere BA x y z F p # Voxels 
VACC R 24 17 -13 33 4.15 <.000001 127 
PCG L 2 -42 -18 30 3.01 <.000001 111 
SMG L 40 -52 -23 26 2.33 <.000001 118 

Note.  BA = Brodmann Area; VACC = Ventral Anterior Cingulate Cortex; PCG = Postcentral Gyrus; SMG = Supramarginal Gyrus; R = Right 
hemisphere; L = Left hemisphere. 
 
 
 
Table 5 
Significant BOLD fMRI Responses, by Contrast and Region, for Survivors and Controls During the N-back Task 
    Talairach Coordinates    
 Region Hemisphere BA x y z t p # Voxels 
Survivors > Controls          

1-back v 0-back SMG L 40 -52 -25 25 6.01 <.001 424 
3-back v 1-back VACC R 24 19 -13 34 3.56 .004 178 
3-back v 2-back VACC R 24 17 -13 33 4.63 .001 458 

          
Controls > Survivors          

3-back v 1-back PCG L 2 -45 -18 28 -4.42 .001 794 
Note.  BA = Brodmann Area; SMG = Supramarginal Gyrus; VACC = Ventral Anterior Cingulate Cortex; PCG = Postcentral Gyrus; R = Right 
hemisphere; L = Left hemisphere.
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were also conducted.  No significant between-group differences were found for the 

overall main effect of group.  In analyses of the whole sample, 16 clusters were identified 

where BOLD signal activation differed as a function of N-back load, regardless of 

participant group.  These clusters indicate that during the N-back task, as a whole, 

participants recruited increased oxygenated blood bilaterally to the medial frontal gyrus 

(BA 6), superior parietal lobule (BA 7), and supramarginal gyrus (BA 40), as well as to 

the right superior frontal gyrus (BA 8) and dorsal anterior cingulate cortex (BA 32).  In 

analyses of the whole sample, participants also recruited increased oxygenated blood to 

the left dorsolateral prefrontal cortex (BA 9), parahippocampal gyrus (BA 30), dorsal 

posterior cingulate cortex (BA 31), and secondary visual cortex (BA 18).  Activation in 

these areas is largely consistent with patterns of responding often seen during verbal N-

back tasks (Owen et al., 2005) and suggests that, as a whole, participants were actively 

engaged in this task during fMRI.   

 

Discussion: Study I 

The above results indicate that we were able to successfully identify a sample of 

survivors of pediatric brain tumors who showed deficits in performance on cognitive tests 

compared with a matched sample of healthy controls in a pattern that is consistent with a 

recent meta-analysis (Robinson, Kuttesch, et al., 2010).  The deficits documented in this 

sample are consistent in both direction and magnitude with the literature on late-effects in 

survivors. 

 Because of deficits in processing speed and overall cognitive ability, it was 

expected that survivors would have difficulty, relative to healthy children, on the N-back 
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task.  In our sample, survivors performed similarly to healthy children during the easiest 

levels of the N-back, but as task difficulty increased, they were unable to maintain this 

level of performance.  This indicates that we were able to select a task that was sensitive 

to the types of deficits experienced by brain tumor survivors.   

The examination fMRI data related to the main effect of N-back load level across 

group, indicated that as a whole, participants showed brain activation in regions 

commonly associated with this verbal working memory task (Owen et al., 2005).  The 

engagement of these regions during the N-back task, in the absence of a main effect of 

group, provides further evidence that although differences in performance were noted, 

both survivors and healthy controls were actively engaged in this task.  This suggests that 

differences in the magnitude of activation at individual contrast levels is indicative of 

differences in cognitive effort to complete the N-back, rather than an overall lack of 

attending to the task in one group relative to another.  Finally, differences in activation in 

this sample of childhood brain tumor survivors indicates that survivors may require 

increased resources (i.e., oxygenated blood) relative to healthy children to brain regions 

associated with complex working memory processes. 

These findings suggest that neurobiological differences distinguish brain tumor 

survivors from healthy children, and raises questions regarding the association between 

these neurobiological underpinnings and deficits in psychosocial functioning.  In 

particular, survivors may struggle with skills that rely on executive function for 

successful completion.  These associations are examined in Study II.
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CHAPTER III 

 

Study II 

 

The goals of Study II were to examine variability in executive and psychosocial 

functioning within a larger sample of survivors of pediatric brain tumors, and to examine 

the associations between indicators of survivors’ psychosocial functioning and BOLD 

signal activation during a verbal working memory task administered during fMRI.  First, 

preliminary analyses were conducted to examine the association between coping and 

psychosocial functioning in brain tumor survivors.  Next, the following specific 

hypotheses were tested: 

Hypothesis 1.  Consistent with literature on late effects of pediatric brain 

tumor, survivors will exhibit poor performance, relative to normative data, on 

measures of neurocognitive and executive function, including the areas of 

working memory, processing speed, overall cognitive ability.  Survivors will also 

show deficits, relative to normative data, on measures of psychosocial and 

emotional functioning. 

Hypothesis 2.  In response to a working memory task, brain tumor 

survivors will show an increase in oxygenated blood to a priori selected regions 

of interest as task difficulty increases.  Regions of interest for these analyses will 

be identified via three mechanisms.  First, regions identified in Study I as more 

activated, relative to healthy controls, will be considered.  These include the 

ventral anterior cingulate cortex (BA 24) and supramarginal gyrus (BA 40).  
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Second, a previous study examined activation during a verbal N-back task in 

survivors of ALL (Robinson, Livesay, et al., 2010), a population in which similar 

patterns of late-effects have been identified (Campbell et al., 2007).  In this study, 

the dorsolateral prefrontal cortex (BA 9) and dorsal anterior cingulate cortex (BA 

32) were identified as regions associated with patterns of compensatory 

activation, and will therefore be examined here.  Finally, additional regions 

identified in a meta-analysis of studies using a verbal N-back task will be 

examined (Owen et al., 2005).  These include the lateral premotor cortex (BA 6), 

ventrolateral prefrontal cortex (BA 44), anterior prefrontal cortex (BA 10), 

superior parietal lobule (BA 7), and superior frontal gyrus (BA 8). 

Hypothesis 3.  BOLD signal activation during fMRI will be associated 

with the ways that brain tumor survivors cope with stress, as well as survivors’ 

psychosocial and emotional functioning.  Specifically, increased recruitment of 

oxygenated blood to a priori regions of interest identified above (see Hypothesis 

2) will be associated with use of engagement forms of coping (i.e., primary and 

secondary control coping) and less use of disengagement coping.  Increases in 

activation will also be associated with higher social competence and lower rates 

of social problems and internalizing symptoms (e.g., anxiety, depression). 

 

Method 

Participants. 

 Twenty-one children who had been treated for a childhood brain tumor and who 

were at least 2 years post-diagnosis participated in a study of the neurocognitive 
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functioning of survivors of pediatric brain tumor.  For the present analyses, 17 survivors 

(6 girls) for whom complete data was available were included.  Three survivors’ data was 

excluded due to missing N-back task performance data during the fMRI session resulting 

from a computer error, and one survivor’s data was excluded due to the participant’s 

excessive motion during the fMRI scan.  Survivors were identified through the Childhood 

Cancer Survivorship Clinic in the Department of Pediatric Hematology/Oncology, or the 

Department of Neurology, at Vanderbilt University Monroe Carrel Jr. Children’s 

Hospital.   

Sixteen survivors were Caucasian, and one was African American.  Upon 

enrollment in the study, survivors were on average 12.59 years old (SD = 2.48).  

Survivors were diagnosed at 6.94 years old (SD = 2.41; range 2.06-11.62 years) with a 

brain tumor, and were on average 5.64 years post-diagnosis (SD = 2.90; range 2.14-10.92 

years).  Tumor pathologies included juvenile pilocytic astrocytoma (n = 9), posterior 

fossa medulloblastoma (n = 4), dysembryoplastic neuroepithelial tumor (n = 3), and 

craniopharyngioma (n = 1).  All procedures were approved by the Institutional Review 

Board, and informed consent and assent were obtained from all participants. 

Procedure. 

 For details on study enrollment and procedures, see Study I.   

Measures. 

Neurocognitive assessment.    

For these analyses, in addition to participants’ scores on the WMI, PSI, and FSIQ 

of the WISC-IV (see Study I for description), several additional questionnaire measures 

will be examined.  At their assessment session, children and parents returned completed 
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questionnaire packets prior to beginning the neurocognitive assessment.  Parents 

completed several questionnaires providing information about the family overall, as well 

as the survivor in particular.  Survivors also completed measures about their own 

functioning.   

Emotional and behavioral problems.   

Parents provided information about brain tumor survivors’ social, emotional and 

behavioral problems by completing the Child Behavior Checklist (CBCL; Achenbach & 

Rescorla, 2001), a measure of symptoms of anxiety/depression, social problems, and 

disruptive behavior problems in children and adolescents.  Children completed the Youth 

Self-Report (YSR; Achenbach & Rescorla, 2001), the self-report version of the CBCL to 

further assess for symptoms of emotional and behavioral problems.  These scales have 

strong test-retest reliability and criterion validity.  In the following analyses, social 

problems and internalizing symptoms will be assessed using the Social Competence, 

Anxious/Depressed, and Social Problems scales. 

Coping.   

Parents and children also completed the Social Stress version of the Responses to 

Stress Questionnaire (RSQ; Connor-Smith et al., 2000) as a measure of coping and stress 

reactivity associated with stress related to interpersonal and peer relationships.  This 

questionnaire asks parents and children to report the frequency with which children were 

exposed to a variety of stressors associated with social relationships and the ways in 

which the children cope with these stressors.  Based on previous research on the 

association between coping and executive function (Campbell et al., 2009), the current 

study focuses on coping responses comprising the three coping domains: Primary Control 
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coping (i.e., problem solving, emotional modulation, emotional expression), Secondary 

Control coping (i.e., acceptance, cognitive restructuring, positive thinking, distraction), 

and Disengagement coping (i.e., avoidance, denial, wishful thinking).  The RSQ has been 

shown to have good test-retest reliability (alphas ranged from .69 to .81) and internal 

consistency (alphas ranged from .67 to .92); convergent and discriminant validity have 

been established (e.g., Connor-Smith et al., 2000). 

 Functional neuroimaging.   

 For details on the N-back task, see Study I.  For these analyses, within-group 

BOLD signal activation during the N-back task will be examined. 

Image acquisition. 

For details on image acquisition, see Study I. 

Data analysis. 

 Statistical power. 

 Due to the sample size (n = 17), the power to detect statistical significance at p < 

.05 is limited to only potentially medium to large effects.  For example, for correlation 

analyses, a sample size of 17 requires a correlation of greater than 0.483 to reach 

significance at p < .05.  Cohen (1992) provides guidelines for determining the effect size 

of a Pearson correlation, which state that correlations of r = 0.1 to 0.23 indicate a small 

effect, correlations of r = 0.24 to 0.36 indicate a medium effect, and correlations of r = 

0.37 or larger indicate a large effect.  With a sample of 17 survivors, a correlation of .37 

corresponds to p = 0.14 for large effects.  For each set of analyses, in addition to 

discussing findings in terms of statistical significance, we will identify correlations 

reaching Cohen’s threshold for large effects. 
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 Additionally, in order to ensure that outliers on a given measure were not 

disproportionately influencing the magnitude of correlations, each measure was reviewed 

to detect the presence of outliers in the data.  Significant outliers included data points 

where a participant’s score fell greater than 2 standard deviations away from the group 

mean for a given measure or subscale.  When outliers were identified, the data set was 

adjusted such that the participant’s scores would not be included in analyses dependent 

on the measure in question.  After these steps were taken, sample sizes for correlations 

ranged from 15-17.  This means that, when sample size was most limited (i.e., n = 15), a 

correlation of greater than 0.514 was required to reach statistical significance at p < .05.  

Large effects of r = 0.37 or greater, based on Cohen’s (1992) guidelines, correspond to p 

< 0.18. 

fMRI data preparation. 

For information on preprocessing, motion correction, and normalization of raw 

imaging data, see Study I.  Following Talairach transformation, within-group GLM 

analyses were conducted by designing a multi-study design matrix.  This analysis 

calculated all significantly activated voxels, both positively and negatively, during all 

levels of the N-back.  Individual contrasts were then set, and activation at any given 

contrast could be examined individually.  A cluster level threshold was used to correct for 

multiple comparisons via 1,000 iterations of a Monte Carlo Simulation.  For the current 

analyses, a cluster threshold of 3 functional voxels was established for examining within-

group patterns of BOLD signal activation.   This cluster threshold maintained a 

significance criterion of p < .001.  Significantly activated clusters that met this criterion 

were considered further.  Region-of-interest analysis was conducted using Talairach 
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Daemon software (Lancaster et al., 2000) to determine the brain region in which 

significantly activated clusters occurred and the corresponding center-of-gravity 

coordinates in Talairach space for each relevant cluster.  Composite F-statistics were 

calculated to measure the degree of activation in each cluster and overall region. 

Analytic plan. 

 Study II: Preliminary analyses.  

Preliminary analyses were conducted to examine the association between coping 

and psychosocial functioning in pediatric brain tumor survivors.   

 Study II: Main analyses.   

Study hypotheses were analyzed as follows: 

Hypothesis 1.  A series of one-sample t-tests were conducted to examine 

whether brain tumor survivors performed more poorly than published normative 

data on measures of executive and psychosocial functioning.  Measures included 

the WMI, PSI, and FSIQ of the WISC-IV, and the Social Competence, 

Anxious/Depressed, and Social Problems scales of the CBCL and YSR. 

Hypothesis 2.  Within-group GLM was conducted to examine changes in 

BOLD signal activation at increasingly difficult levels of the N-back.  N-back 

level contrasts were made by comparing activation on more difficult levels of the 

N-back, relative to activation on less difficult levels.  Specifically, changes in 

BOLD signal in the ventral anterior cingulate cortex (BA 24), supramarginal 

gyrus (BA 40), dorsolateral prefrontal cortex (BA 9), dorsal anterior cingulate 

cortex (BA 32), lateral premotor cortex (BA 6), ventrolateral prefrontal cortex 

(BA 44), anterior prefrontal cortex (BA 10), superior parietal lobule (BA 7), and 
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superior frontal gyrus (BA 8) were examined. 

Hypothesis 3.  Pearson correlations were conducted to assess the 

association between BOLD signal activation in significantly activated clusters 

identified in Hypothesis 2 and measures of psychosocial functioning, including 

coping and social and emotional problems. 

Results 

Preliminary analyses. 

As expected, the use of engagement coping (i.e., primary and secondary control 

coping) was found to be associated with higher social competence, and lower rates of 

social problems and internalizing symptoms (e.g., anxiety, depression).  The use of 

disengagement coping was found to be associated with lower social competence, and 

higher rates of social problems and internalizing symptoms (see Table 6).   

 

Table 6 
Correlations Among Coping and Psychosocial Functioning on the CBCL and YSR 
 Parent – 

Primary 
Parent – 

Secondary 
Parent – 

Disengagement 
Self – 

Primary 
Self – 

Secondary 
Self - 

Disengagement 
CBCL SocComp .14 .55* -.28 .16 .18 -.36 

CBCL AnxDep -.09 -.30 .34 -.07 -.13 .36 

CBCL SocProb -.11 -.27 .18 -.20 -.11 .06 

YSR SocComp -.19 .49+ .06 .08 .08 -.38+ 

YSR AnxDep -.11 -.52* .46+ -.60* -.75** .60* 

YSR SocProb -.03 -.40+ .34 -.57* -.89** .57* 

Note.  CBCL = Child Behavior Checklist; YSR = Youth Self Report; SocComp = Social Competence 
Scale; AnxDep = Anxious/Depressed Scale; SocProb = Social Problems Scale. 
**Significant at p < .01; *Significant at p < .05; +Non-significant Large Effect. 

 

Specifically, survivors’ self-report of their use of primary control coping strategies was 

significantly negatively associated with their self-report on the anxious/depressed (r = -

.60, p = .011) and social problems (r = -.57, p = .016) scales on the YSR.  Similarly, 
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survivors’ self-report of their use of secondary control coping strategies was significantly 

negatively associated with their self-report on the anxious/depressed (r = -.75, p = .001) 

and social problems (r = -.89, p < .001) YSR scales.  Parents’ report of their children’s 

use of secondary control coping strategies was significantly associated with their report 

of children’s social competence (r = .55, p = .021), and children’s self-report on the 

anxious/depressed scale (r = -.52, p = .032).  Large but non-significant effects were also 

found for the association between parents’ report of their children’s use of secondary 

control coping and children’s self-report of social competence (r = .49, p = .052), as well 

as children’s self-report on the social problems scale (r = -.40, p = .111). 

 When survivors reported on their own use of disengagement coping, significant 

negative correlations were found between coping and survivors’ self-report on the 

anxious/depressed (r = .60, p = .010) and social problems (r = .57, p = .017) scales.  A 

large, but non-significant, negative effect was found for survivors’ self-report of their use 

of disengagement coping strategies and their self-report of social competence (r = -.38, p 

= .143).  Finally, when parents reported of children’s use of disengagement coping 

strategies, a large effect was found for the association between coping and children’s self-

report on the anxious/depressed scale (r = .46, p = .064).  Overall, these associations 

between psychosocial functioning and coping suggest that, among this sample of 

survivors of pediatric brain tumors, use of primary and secondary control coping is 

associated with greater social competence and fewer symptoms of anxiety, depression, 

and social difficulties, whereas use of disengagement coping is associated with poorer 

social competence and increased symptoms of anxiety, depression, and social difficulties. 
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Hypothesis 1. 

Means and standard deviations for measures of executive function are reported in 

Table 7.   

 

Table 7 
Means, Standard Deviations, and One-Sample t-tests of Measures of Executive and 
Psychosocial Functioning, and Copinga 

 Survivors 
(n = 17) t p Cohen’s 

d 
Neurocognitive Assessment     

WISC-IV     

Working Memory 90.94 (12.47) -3.00 .009 -0.66 

Processing Speed 84.12 (9.82) -6.67 <.001 -1.25 

Full Scale IQ 91.82 (13.05) -2.58 .020 -0.58 

Parent Report     
CBCL     

Social Competence 41.53 (8.00) -4.37 <.001 -0.95 
Anxious/Depressed 59.94 (8.22) 4.99 <.001 1.09 
Social Problems 62.71 (6.96) 7.53 <.001 1.48 

RSQ     
Primary Control .21 (.03)    
Secondary Control .24 (.05)    
Disengagement .16 (.03)    

Child Self-Report     
YSR     

Social Competence 42.00 (8.36) -3.83 .002 -0.87 
Anxious/Depressed 58.47 (10.60) 3.29 .005 0.82 
Social Problems 60.18 (7.87) 5.33 <.001 1.13 

RSQ     
Primary Control .18 (.04)    
Secondary Control .26 (.06)    
Disengagement .16 (.02)    

Note.  CBCL = Child Behavior Checklist; YSR = Youth Self Report; RSQ = Responses to Stress 
Questionnaire; Scores on the WISC-IV are presented as standard scores (M = 100, SD = 15).  Scores on the 
CBCL and YSR are presented as T scores (M = 50, SD = 10).  One-sample t-tests compared brain tumor 
survivors’ WISC-IV scores with a population mean of 100, and CBCL and YSR scores with a population 
mean of 50.  Scores on the RSQ are presented as ratio scores. 
aValues in parentheses indicate standard deviation. 

 

On the WISC-IV, mean FSIQ and WMI scores for survivors of pediatric brain tumors fell 



 

53 

within the average range, and PSI mean scores fell within the low average range.  When 

WISC-IV scores were compared with published normative data using one-sample t-tests, 

results indicated that survivors’ mean WMI (t  = -3.00, p = .009), PSI (t  = -6.67, p < 

.001), and FSIQ (t  = -2.58, p = .020) scores were significantly below norms, indicating 

more problems in all of these areas of functioning.  This is consistent with the pattern of 

deficits documented in survivors of pediatric brain tumors (Robinson, Kuttesch, et al., 

2010). 

Means and standard deviations for measures of psychosocial functioning and 

coping are also reported in Table 7.  When mean CBCL and YRS scores were compared 

with published normative data using one-sample t-tests, results indicated that survivors’ 

mean scores fell significantly above the norm on all problem scales, and significantly 

below the norm on competency scales, based on both parent report and child self-report 

(see Table 7).  This suggests that brain tumor survivors experience more symptoms of 

anxiety/depression and social problems, and are less competent socially, than is expected 

based on normative data. 

Hypothesis 2. 

Within-group GLM analyses were conducted to examine changes in BOLD signal 

activation at increasingly difficult levels of the N-back task.  Levels of activation for the 

contrasting load demands for the N-back tasks are presented separately for the sample of 

survivors in Table 8, as well as in Figures 6 and 7.  When regions identified in Study I as 

more activated relative to healthy controls were examined, results indicated that brain 

tumor survivors recruited significantly greater amounts of oxygenated blood to the right 

supramarginal gyrus (BA 40) as N-back difficulty increased from the 0-back to the 3- 
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Table 8 
Significant Within-Group BOLD fMRI Responses During the N-back Task 
    Talairach Coordinates    
 Region Hemisphere BA x y z t p # Voxels 
2-back v 0-back SFG R 8 1.6 17 47 6.35 <.001 96 

 DLPFC L 9 -39 7.4 30 6.32 <.001 92 
3-back v 0-back APFC R 10 37 44 21 7.80 <.001 157 

 SMG R 40 32 -53 36 5.93 <.001 339 
 DACC R 32 8.8 21 39 7.19 <.001 117 

Note.  BA = Brodmann Area; SFG = Superior Frontal Gyrus; SVC = Secondary Visual Cortex; DLPFC = Dorsolateral Prefrontal Cortex; APFC = Anterior 

Prefrontal Cortex; SMG = Supramarginal Gyrus; DACC = Dorsal Anterior Cingulate Cortex; R = Right hemisphere; L = Left hemisphere.



 

55 

back condition (p < .001).  No significant within-group differences in activation were 

found for the ventral anterior cingulate cortex (BA 24). 

 

Figure 6 
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Within-Group Changes in Activation During the N-back: 0-back vs. 3-back 

 

Next, regions identified in a study of brain activation during a verbal N-back in 

survivors of leukemia (Robinson, Livesay, et al., 2010) were examined.  Within this 

sample of brain tumor survivors, significantly greater amounts of oxygenated blood were 

recruited to the left dorsolateral prefrontal cortex (BA 9) as task difficulty increased from 
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the 0-back to the 2-back, and greater amounts of oxygenated blood were recruited to the 

right dorsal anterior cingulate cortex (BA 32) as task difficulty increased from the 0-back 

to the 3-back (all p < .001). 

Finally, when regions identified in a recent meta-analysis of studies using a verbal 

N-back task were examined (Owen et al., 2005), results indicated that brain tumor 

survivors recruited significantly greater amounts of oxygenated blood to the right 

superior frontal gyrus (BA 8) as task difficulty increased from the 0-back to the 2-back 

condition, and to the right anterior prefrontal cortex (BA 10) as task difficulty increased 

from the 0-back to the 3-back condition (all p < .001).  No significant within-group 

differences in activation were found for the premotor cortex (BA 6), ventrolateral 

prefrontal cortex (BA 44), or superior parietal lobule (BA 7). 

Each of these significantly activated regions has been consistently documented to 

activate during completion of the N-back task (Owen et al., 2005) and underlie functions 

including higher-level organization of information (BA 9), simultaneous processing of 

multiple cognitive tasks (BA 10), retaining temporal information regarding visual and 

verbal stimuli (BA 40), maintenance of visuospatial attention (BA 8), and complex 

problem solving (BA 32).  The association between activation in these five regions and 

survivors’ psychosocial functioning is explored below. 

Hypothesis 3. 

 Bivariate Pearson correlations between BOLD signal activation and coping can be 

found in Table 9.  When use of secondary control coping was examined, significant, 

positive correlations were found between parents’ report of survivors’ use of secondary 

control coping and activation in the anterior prefrontal cortex (BA 10; r = .67, p = .003), 
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and between survivors’ self-reported use of secondary control coping and activation in 

the superior frontal gyrus (BA 8; r = .60, p = .014).  Additionally, large but non-

significant effects were found for the association between parents’ report of survivors’ 

use of secondary control coping and activation in the dorsal anterior cingulate cortex (BA 

32; r = .36, p = .168), as well as between survivors’ self-reported use of secondary 

control coping and activation in the dorsolateral prefrontal cortex (BA 9; r = .48, p = 

.053) and dorsal anterior cingulate cortex (BA 32; r = .42, p = .106).   

 

Table 9 
Correlations Among BOLD Signal Activation and Coping 
 SFG – R DLPFC – L APFC – R SMG – R DACC – R 
Parent-Primary Control .09 .14 .08 -.09 .26 

Parent-Secondary Control .20 .05 .67** .36 .36+ 

Parent-Disengagement -.33 -.52* -.32 -.00 -.27 

Self-Primary Control .24 .36 .37+ -.19 .39+ 

Self-Secondary Control .60* .48+ .30 -.31 .42+ 

Self-Disengagement -.68** -.47+ -.31 .06 -.57* 

Note.  SFG – R = Superior Frontal Gyrus (BA 8), right hemisphere; DLPFC – L = Dorsolateral Prefrontal 
Cortex (BA 9), left hemisphere; APFC – R = Anterior Prefrontal Cortex (BA 10), right hemisphere; SMG – 
R = Supramarginal Gyrus (BA 40), right hemisphere; DACC – R = Dorsal Anterior Cingulate Cortex (BA 
32), right hemisphere. 
**Significant at p < .01; *Significant at p < .05; +Non-significant Large Effect. 

 

When use of primary control coping was examined, no significant effects were 

found.  However, large but non-significant effects were found for the association between 

survivors’ self-reported use of these coping strategies and recruitment of oxygenated 

blood to the anterior prefrontal cortex (BA 10; r = .37, p = .143) and dorsal anterior 

cingulate cortex (BA 32; r = .39, p = .139).  These findings suggest that selection of more 

adaptive, but cognitively complex, coping strategies is associated with increased 

recruitment of oxygenated blood to brain regions underlying similar skills during a verbal 
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working memory task. 

Parents’ report of survivors’ use of disengagement coping was found to be 

significantly negatively associated with recruitment of oxygenated blood to the 

dorsolateral prefrontal cortex (BA 9; r = -.52, p = .032).  Further, survivors’ self-reported 

use of disengagement coping was significantly negatively associated with recruitment of 

oxygenated blood to the superior frontal gyrus (BA 8; r = -.68, p = .004) and dorsal 

anterior cingulate cortex (BA 32; r = -.57, p = .021).  A large but non-significant effect 

was found for survivors’ self-reported use of disengagement coping and activation in the 

dorsolateral prefrontal cortex (BA 9; r = -.47, p = .058).  Each of these correlations 

indicates that, as activation increases in a given brain region brought on-line during 

completion of a verbal working memory task, survivors’ use of primary control coping 

and/or secondary control coping also increases, whereas survivors’ use of disengagement 

coping decreases. 

Bivariate Pearson correlations were also conducted to assess the relationship 

between BOLD signal activation in a priori regions of interest and psychosocial 

functioning (see Table 10).  With regard to survivors’ social competence, results 

indicated that parents’ reports of survivors’ social competence were significantly 

positively associated with increases in activation in the anterior prefrontal cortex (BA 10; 

r = .57, p = .018).  This indicates that survivors rated by parents as being more competent 

in the social domain recruited greater amounts of oxygenated blood to this region as the 

difficulty of the N-back task increased. 

Parents’ reports of survivors’ internalizing symptoms on the anxious/depressed 

scale were found to be significantly negatively associated with increases in activation in 
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the superior frontal gyrus (BA 8; r = -.55, p = .032) and the dorsolateral prefrontal cortex 

(BA 9; r = -.62, p = .010).  Survivors’ self-reports of internalizing on the 

anxious/depressed scale were found to be significantly negatively associated with 

increases in activation in the anterior prefrontal cortex (BA 10; r = -.59, p = .012).  

Additionally, large but non-significant negative effects were found for the association 

between survivors’ self-reports of internalizing on the anxious/depressed scale and 

increases in activation in the superior frontal gyrus (BA 8; r = -.42, p = .105), dorsolateral 

prefrontal cortex (BA 9; r = -.47, p = .058), and dorsal anterior cingulate cortex (BA 32; r 

= -.47, p = .066). 

 

Table 10 
Correlations Among BOLD Signal Activation and Psychosocial Functioning on the 
CBCL and YSR 
 SFG – R DLPFC – L APFC – R SMG – R DACC – R 
CBCL SocComp .29 -.24 .57* .16 .33 

CBCL AnxDep -.55* -.62** -.01 -.24 -.18 

CBCL SocProb -.29 -.14 .11 -.26 .11 

YSR SocComp .30 -.21 .25 .26 .33 

YSR AnxDep -.42+ -.47+ -.59* -.09 -.47+ 

YSR SocProb -.46+ -.37+ -.44+ .25 -.42+ 

Note.  SFG – R = Superior Frontal Gyrus (BA 8), right hemisphere; DLPFC – L = Dorsolateral Prefrontal 
Cortex (BA 9), left hemisphere; APFC – R = Anterior Prefrontal Cortex (BA 10), right hemisphere; SMG – 
R = Supramarginal Gyrus (BA 40), right hemisphere; DACC – R = Dorsal Anterior Cingulate Cortex (BA 
32), right hemisphere; CBCL = Child Behavior Checklist; YSR = Youth Self Report; SocComp = Social 
Competence Scale; AnxDep = Anxious/Depressed Scale; SocProb = Social Problems Scale. 

**Significant at p < .01; *Significant at p < .05; +Non-significant Large Effect 

 

When parents’ and survivors’ ratings on a scale assessing social problems were 

examined, large but non-significant negative effects were found for the association 

between survivors’ self-ratings on the social problems scale and increases in activation in 

the superior frontal gyrus (BA 8; r = -.46, p = .070), dorsolateral prefrontal cortex (BA 9; 

r = -.37, p = .150), anterior prefrontal cortex (BA 10; r = -.44, p = .080) and dorsal 
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anterior cingulate cortex (BA 32; r = -.42, p = .109).  These associations indicate that 

survivors who recruited greater amounts of oxygenated blood to the regions-of-interest 

identified in this study were less likely to experience symptoms of anxiety and 

depression, and struggle in the area of social functioning. 
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CHAPTER IV 

 

Discussion 

 

The treatment of brain and CNS malignancies and other childhood cancers 

reflects a double-edged sword (Rosoff, 2006).  On the one hand, significant advances in 

treatment have led to dramatically improved rates of survival.  On the other hand, 

however, these aggressive methods of treatment are associated with significant long-term 

adverse effects, including deficits in neurocognitive and socioemotional functioning.  The 

current studies are among the first to use functional neuroimaging methods to better 

understand the nature and extent of these effects in childhood survivors of brain and CNS 

tumors.  The findings suggest that survivors suffer impairment in function in prefrontal 

and inferior parietal regions of the brain, and that these impairments are linked to deficits 

emotional, social cognitive, and interpersonal functioning.  

The current studies began by examining the differences in neurocognitive 

functioning in a sample of survivors of pediatric brain tumors relative to healthy children.  

Additionally, survivors and healthy children completed a verbal working memory task 

while undergoing fMRI, allowing for the comparison of both task performance and brain 

activation during engagement in a measure of executive function.  It was expected that 

survivors would perform more poorly than healthy children on measures of 

neurocognitive functioning and on the verbal working memory task administered in the 

scanner.  Based on previous studies documenting compensatory activation in childhood 

cancer survivors and other chronically ill populations with neurocognitive deficits (e.g., 
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Robinson, Livesay, et al., 2010; Sweet, Rao, Primeau, Durgerian, & Cohen, 2006), it was 

expected that survivors would recruit greater amounts of oxygenated blood than healthy 

controls to areas of the brain associated with working memory task completion. 

Despite a small sample size for between-group analyses, we found that survivors 

of pediatric brain tumors performed significantly more poorly than healthy controls on 

measures of processing speed and overall cognitive ability.  Although not statistically 

significant, survivors also performed on average over 8 points lower than healthy controls 

on a measure of working memory, with a corresponding effect size of -0.72.  This 

suggests that survivors are experiencing deficits in overall cognitive ability, as well as 

executive function, which are consistent with literature documenting patterns of 

neurocognitive late effects in survivors (Robinson, Kuttesch, et al., 2010). 

Examination of the individual scores on measures of cognitive ability indicates 

that there was quite a range of functioning within this sample of survivors.  For example, 

on the WMI, survivors’ scores ranged from 71, which falls in the borderline range and 

corresponds to the 3rd percentile of a normative sample, to 110, which falls in the average 

range and corresponds to the 75th percentile.  This highlights the need for examination of 

the range of deficits experienced by survivors of pediatric brain tumors, as well as 

mediators and moderators of risk.  By identifying the subset of survivors most at risk for 

developing neurocognitive late effects, future interventions can be developed that target 

those survivors most in need.   

On the N-back task, a well-established measure of working memory, survivors 

performed significantly more poorly than healthy children as the task became more 

difficult.  Specifically, survivors made significantly more errors, and had correspondingly 
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worse scores on measures of accuracy at the 2-back and 3-back levels.  In contrast, there 

was no difference in performance on the 0-back and 1-back levels of the N-back.  This 

indicates that survivors were able to complete the task accurately when the cognitive 

demand was low.  However, as the complexity of the task increased, they were unable to 

maintain the same level of performance, whereas the healthy children were able to 

consistently complete the task with a high degree of accuracy.  A similar pattern was 

observed in survivors of acute lymphocytic leukemia (Robinson, Livesay, et al., 2010), a 

population in which similar patterns of neurocognitive late effects have been 

documented.  In this study, survivors of leukemia performed similarly to healthy controls 

on the 0-back and 1-back conditions and a trend was observed for poorer performance on 

the 2-back and 3-back levels. 

Brain tumor survivors made significantly more errors of omission and false-

positive responses than healthy controls, indicating that they were more likely to both 

respond to an item that was not indicated and fail to respond when a response was 

indicated.  Importantly, this pattern of responding suggests that survivors continued to be 

actively engaged in the task.  In other words, their diminished accuracy was not simply 

due to an absence of any responding at all during difficult levels of the N-back, but rather 

they were less able to distinguish whether a given stimulus required a response. 

Between-group analyses of BOLD signal activation during the N-back task 

indicated that survivors recruited greater amounts of oxygenated blood to the left 

supramarginal gyrus (BA 40) as N-back difficulty increased from the 0-back to the 1-

back level, and to the right ventral anterior cingulate cortex (BA 24) as N-back difficulty 

increased from the 1-back and the 2-back levels to the 3-back level.  These differences in 
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activation indicate that survivors required significantly more oxygenated blood recruited 

to areas associated with N-back completion (Owen et al., 2005) in order to complete the 

task.  Although neurocognitive deficits have been well established in survivors of 

pediatric brain tumors, this is the first known study to examine these processes at a 

neurobiological level. 

The supramarginal gyrus (BA 40) is located in the inferior parietal lobe, and this 

region has been reported to activate concomitantly with areas of the prefrontal cortex 

during working memory tasks (e.g., Awh et al., 1996; Owen, Evans, & Petrides, 1996).  It 

has been posited that this region is active during these activities due to its role in the 

storage and rehearsal mechanisms central to completion of working memory tasks.  

Specifically, it is thought that this area is involved in a circuit of regions mediating shifts 

of attention necessary for mental rehearsal of verbal information (Jonides et al., 1998).  

The fact that brain tumor survivors evidenced increased recruitment to this region on the 

1-back, a level fairly low in difficulty, indicates they may need to rely on mental 

rehearsal strategies earlier than healthy controls, who showed a drop in activation in this 

area from the 0-back to the 1-back, and subsequent increases as task difficulty rose. 

The anterior cingulate cortex (BA 24) has been found to activate in response to 

tasks that require increasing amounts of effort, attention, or are increasing in complexity 

(Duncan & Owen, 2000).  Further, studies have associated this region with maintaining 

attention despite competing task demands, and monitoring of one’s performance, 

including error detection and monitoring (Rama et al., 2001).  The pattern of activation in 

this region in the current study indicates that, whereas healthy controls maintained a 

fairly consistent pattern of activation at the 0-back, 1-back, and 2-back levels, and 
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showed a decrease in activation at the 3-back level, survivors of pediatric brain tumors 

recruited lower levels of oxygenated blood to this region at simpler levels of the N-back, 

but activation sharply increased when task difficulty increased from the 2-back to the 3-

back.  The fact that survivors recruited oxygenated blood to the anterior cingulate cortex 

only on this most difficult level may be indicative of compensatory activation, in which 

survivors required an increase in resources to this region in order to manage the increase 

in cognitive load.  Alternatively, this region has been found to activate during 

performance monitoring and error detection (e.g., Kiehl, Liddle, & Hopfinger, 2000; 

Menon, Adleman, White, Glover, & Reiss, 2001; Rama et al., 2001), and this activation 

may indicate that survivors were aware of their poorer performance on the more difficult 

levels of the task.  Examination of the association between activation in this region and 

accuracy on the N-back may be helpful in further understanding the functional processes 

underlying this pattern of activation. 

Patterns of activation in the postcentral gyrus (BA 2) differed significantly 

between survivors and healthy controls.  Specifically, whereas brain tumor survivors 

maintained a relatively consistent level of activation in this region, healthy controls 

evidenced an initial decrease in activation from the 0-back to the 1-back, and subsequent 

increases in activation such that their level of activation on the 3-back was roughly equal 

to the level of activation on the 0-back (i.e., they returned to baseline).  The postcentral 

gyrus has been associated with the detailed processing of proprioceptive and tactile 

information (Dykes, 1978; Pause, Kunesch, Binkofski, & Freund, 1989).  Studies of brain 

regions underlying successful working memory task completion have not implicated this 

region, and therefore its role in healthy controls’ completion of this task is unclear.  
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Further research should monitor activation in this region to determine whether this effect 

was the product of a small sample size or whether this region subserves a particular 

function within samples of typically developing children and adolescents. 

These initial between-group analyses confirmed that survivors of pediatric brain 

tumors and healthy children differ in their neurocognitive function in response to a 

working memory task, and our analyses of BOLD signal activation in this group revealed 

that survivors and healthy controls differ at a neurobiological level as well.  Interestingly, 

quite a bit of variability was observed within this small sample of survivors, suggesting 

that additional analyses with a larger sample are warranted.   

The second study provided further examination of the range of deficits 

experienced by brain tumor survivors.  Because it has been well established that brain 

tumor survivors experience deficits in a range of areas including psychosocial and 

emotional functioning, the association between the unique neurobiological processes of 

this sample of brain tumor survivors (i.e., BOLD signal activation during fMRI) and 

these areas of functioning was explored.  The first step in examining the associations 

between neurocognitive, psychosocial and emotional functioning, and coping in survivors 

of pediatric brain tumors was to examine the relationship between 

psychosocial/emotional functioning and the ways that childhood brain tumor survivors 

cope with stress in  peer relationships.  In other populations, use of primary and 

secondary control coping responses have been found to be associated with better 

psychological adjustment, whereas disengagement coping responses have been associated 

with poorer adjustment (e.g., Compas, Boyer, et al., 2006; Jaser et al., 2007).  In order to 

accurately interpret and discuss the associations between brain activation and 
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psychosocial outcomes, it was crucial to first determine whether this pattern holds for 

survivors of pediatric brain tumors as well. 

As expected, the results of Study 2 indicated that survivors of pediatric brain 

tumors performed significantly more poorly than expected based on published normative 

data on measures of working memory, processing speed, and overall cognitive ability.  

Examination of the individual scores on measures of cognitive ability again indicated 

quite a range of functioning within the full sample of survivors (n=17).  For example, on 

the FSIQ, survivors’ scores ranged from 72, which falls in the borderline range and 

corresponds to the 3rd percentile of a normative sample, to 114, which falls in the high 

average range and corresponds to the 82nd percentile.  This reiterates the need for further 

examination of predictors of the magnitude of neurocognitive deficits, as the impact of 

diagnosis of and treatment for a pediatric brain tumor on survivors’ neurocognitive 

functioning appears to vary considerably.  Prospective longitudinal research, with pre-

treatment baseline assessment of neurocognitive functioning, will provide vital 

information in determining the trajectory of deficits overall, and within subgroups of 

survivors. 

When survivors’ and parents’ reports on measures of psychosocial and emotional 

functioning were compared to normative data, results indicated that scores on social 

competency fell significantly below the normative mean, whereas scores on measures of 

anxiety and depression, and social problems fell significantly above the normative mean.  

This is consistent with previous literature indicating that survivors experience difficulties 

with symptoms of internalizing disorders, including anxiety and depression, as well as 

deficits in social competence and social skills (e.g., Schultz et al., 2007).  Examination of 



 

68 

the range of individual scores on these measures indicated a wide range of functioning in 

survivors.  This suggests that, whereas some children may experience significant 

difficulty in areas of psychosocial functioning, others may be functioning at a level 

expected based on age and gender.  This raises the question of whether or not certain 

factors may indicate which survivors will struggle and which will demonstrate resilience. 

As expected, within this full sample of survivors of pediatric brain tumors, use of 

primary and secondary control engagement coping responses was associated with fewer 

emotional and behavioral problems in survivors.  Specifically, survivors who reported 

using more primary and secondary control coping strategies were less likely to report 

symptoms of anxiety and depression, and less likely to endorse social problems.  

Similarly, when parents reported that survivors used more secondary control coping 

strategies, they were more likely to rate survivors as competent socially.  Additionally, 

parents’ reports of children’s use of secondary control coping strategies were positively 

correlated with parents’ ratings of children’s social competence and negatively related to 

symptoms of anxiety and depression and social problems.  In contrast, use of 

disengagement coping responses was associated with poorer social competence and 

higher rates of social problems and symptoms of anxiety and depression.   Based on these 

findings, it was anticipated that survivors who were able to recruit greater amounts of 

oxygenated blood to regions underlying executive function would report fewer 

psychosocial and emotional problems, and would report using more engagement coping 

responses, as compensatory activation is thought to be an adaptive process within 

populations with deficits.  In contrast, survivors who were less able to recruit oxygenated 

blood to these regions would report greater psychosocial and emotional difficulty, and 
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would report using more disengagement coping responses. 

Within-group analyses of BOLD signal activation during the N-back task 

indicated that as the task difficulty of the N-back increased from the 0-back to the 2-back 

level, survivors recruited increasing amounts of oxygenated blood to the superior frontal 

gyrus (BA 8) and dorsolateral prefrontal cortex (BA 9).  When task difficulty increased 

from the 0-back to the 3-back level, survivors recruited greater amounts of oxygenated 

blood to the anterior prefrontal cortex (BA 10), supramarginal gyrus (BA 40), and dorsal 

anterior cingulate cortex (BA 32).  Each of these significantly activated regions has been 

consistently documented to activate during completion of the N-back task (Owen et al., 

2005) and underlie functions including higher-level organization of information (BA 9), 

simultaneous processing of multiple cognitive tasks (BA 10), retaining temporal 

information regarding visual and verbal stimuli (BA 40), maintenance of visuospatial 

attention (BA 8), and complex problem solving (BA 32).  Therefore, it appears that 

survivors of pediatric brain tumors activate the expected brain regions in response to a 

working memory task despite observed neurocognitive deficits. 

The current findings are consistent with recent imaging studies with healthy and 

cognitively impaired adolescents.  For example, Nagel and colleagues (2005) examined 

of BOLD signal activation patterns during a spatial working memory task in healthy 

adolescents, and the association between areas of brain activation and performance on 

measures of neurocognitive functioning.  Nagel et al. found that performance on 

neurocognitive measures was negatively associated with brain activation.  Specifically, 

individuals who performed better on measures of working memory, executive function, 

and processing speed outside of the scanner recruited less oxygenated blood to key brain 
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regions during fMRI including portions of the prefrontal cortex and anterior cingulate 

cortex (Nagel et al., 2005).  These findings suggest that individuals with deficits may 

require increased resources in order to successfully complete tasks requiring executive 

function.  In contrast, recent studies with adolescents with a history of heavy prenatal 

alcohol exposure, a condition consistently linked to neurocognitive deficits (Spadoni et 

al., 2009), and adolescent survivors of traumatic brain injury (Newsome et al., 2008) 

found that both of these groups recruited significantly more oxygenated blood to 

prefrontal regions in response to working memory tasks.  These studies suggest that 

individuals with deficits may require both greater amounts of oxygenated blood to 

expected regions than healthy controls, as well as recruitment of a broader network of 

regions associated with subcomponents of executive function (Newsome et al., 2008). 

The final set of analyses in this study examined the association between brain 

activation and measures of coping and psychosocial functioning.  Recent research has 

suggested that coping falls within the overall set of skills associated with executive 

function, which are highly reliant on brain regions like the prefrontal cortex and anterior 

cingulate cortex (Compas, 2006; Compas et al., 2009).  For example, cognitive 

restructuring, a secondary control coping response, requires an individual to focus 

attention on a stressor or problem, and simultaneously generate alternative ways to 

conceptualize the problem, with the goal of relieving the burden of the stressor on him or 

herself.  A brain tumor survivor experiencing deficits in working memory may, therefore, 

be unable to engage in cognitive restructuring. 

Within the sample of brain tumor survivors in Study 2, use of primary control 

coping responses was associated with increases in activation in the anterior prefrontal 
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cortex (BA 10) and dorsolateral prefrontal cortex (BA 9) as the difficulty of the N-back 

task increased.  These two particular regions underlie functions such as the processing of 

complex, multi-level information, and keeping the information organized so that it is 

usable (Owen et al., 2005).  Several of the specific coping responses included as primary 

control coping (e.g., problem solving, emotional modulation) require an individual to 

generate, manage and manipulate complicated bits of information, and make sense of 

them in a logical, organized way.  These tasks rely heavily on the functions in these areas 

of the prefrontal cortex, and the observed pattern of activation indicates that survivors 

who were able to recruit increasing amounts of oxygenated blood to these areas were 

more likely to engage in these coping responses.  Therefore, this process may be 

adaptive, due to the fact that use of primary control coping is associated with lower levels 

of psychosocial difficulty. 

Similarly, survivors’ use of secondary control coping responses was associated 

with increases in activation in the anterior prefrontal cortex (BA 10), superior frontal 

gyrus (BA 8), dorsal anterior cingulate cortex (BA 32), and dorsolateral prefrontal cortex 

(BA 9), as the difficulty of the N-back task increased.  This replicates the findings of 

McRae et al. (2010), who examined the neurobiological underpinnings of reappraisal and 

distraction, two types of secondary control coping responses, and found evidence of 

increased activation in the prefrontal and cingulate regions.  In addition to the functions 

associated with anterior and dorsolateral prefrontal activation described above, these 

regions have been linked to maintenance of attention and detecting discrepancies between 

a goal and one’s prepotent response (Lieberman, 2007).  Each of these skills better 

enables a person to engage in secondary control coping responses by fostering their 



 

72 

ability to focus their attention on a stressor or problem for a necessary period of time, and 

generate and examine possible alternatives with the end goal of adjusting one’s reactions 

to a stressor.  Again, recruitment of oxygenated blood to these regions appears to be an 

adaptive response within this sample of survivors, as use of this type of coping is 

associated with better outcomes. 

In contrast, survivors’ use of disengagement coping was negatively associated 

with activation in the dorsolateral prefrontal cortex (BA 9), superior frontal gyrus (BA 8), 

and dorsal anterior cingulate cortex (BA 32).  This means that survivors who tended to 

disengage when faced with stress were less likely to recruit oxygenated blood to regions 

responsible for complex problem solving, sustained attention, and higher-level processing 

and organization of information.  The specific coping responses included in the 

disengagement coping subtype (e.g., denial, avoidance) require little cognitive “effort.”  

Survivors experiencing deficits at a neurobiological level may be unable to generate 

engagement coping responses reliant on these complex skills, and therefore must resort to 

disengagement responses.  Because the temporal development of deficits and coping 

responses was not directly assessed, this is speculative, and worthy of future 

consideration. 

To date, although psychosocial deficits have been well documented in survivors 

of pediatric brain tumors, the relationship between these deficits and underlying 

neurobiological processes has not been explored.  In the current study, survivors’ and 

parents’ reports of symptoms of anxiety and depression were negatively associated with 

increases in activation in the superior frontal gyrus (BA 8), dorsolateral prefrontal cortex 

(BA 9), anterior prefrontal cortex (BA 10), and dorsal anterior cingulate cortex (BA 32).  
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This indicates that survivors who were better able to recruit oxygenated blood to regions 

associated with complex problem solving, sustained attention, and higher-level executive 

function were less likely to be experiencing symptoms of internalizing disorders.  

Overall, this pattern of associations indicates that activation in these brain regions is 

adaptive for survivors of pediatric brain tumors.    

Within this sample, brain tumor survivors who were rated as having higher social 

competence were more likely to recruit oxygenated blood to the anterior prefrontal cortex 

(BA 10).  In contrast, survivors’ and parents’ reports of social problems were negatively 

associated with increases in activation in the superior frontal gyrus (BA 8), dorsolateral 

prefrontal cortex (BA 9), anterior prefrontal cortex (BA 10), and dorsal anterior cingulate 

cortex (BA 32).  This makes intuitive sense, as individuals higher in social competence 

likely experience fewer social problems.  Navigation of the social world requires an 

individual to simultaneously attend to and process high volumes of social information, 

including verbal and nonverbal social cues, generate potential responses, and anticipate 

the consequences of these responses (Crick & Dodge, 1994).  Research has shown that 

survivors show significant impairment on tasks that assess these aspects of social 

functioning (e.g., Bonner et al., 2008), and this pattern of brain activation suggests that 

individuals who are unable to successfully recruit oxygenated blood to these areas linked 

to social information processing via their role in regulation of attention and working 

memory, are more likely to report difficulties socially. 

These findings are consistent with research with other clinical populations.  For 

example, Mah, Arnold, and Grafman (2004) examined deficits in social domains in 

individuals with a history of insult to the orbitofrontal cortex (including the anterior 
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prefrontal cortex), dorsolateral prefrontal cortex, and anterior cingulate cortex.  Their 

findings indicated that those with damage to the orbitofrontal cortex demonstrated 

deficits in social perception, whereas individuals with damage to the dorsolateral 

prefrontal cortex demonstrated deficits in the use of social cues to make informed 

judgments, as well as impaired insight into their own deficits.  This has an impact on 

one’s ability accurately interpret the social environment and respond in social situations.  

The measures of social functioning used in the current study do not separate aspects of 

social perception from social skills onto different subscales, so additional research 

examining more specific aspects of social functioning as related to neurobiological 

processes may be helpful in further understanding the origin of survivors’ social 

problems. 

Research has also examined differences in psychosocial outcomes based on 

aspects of survivors’ treatment.  First, there is evidence that broad characteristics of 

treatment (e.g., surgery vs. surgery+radiation) and more specific factors like treatment 

side effects (e.g., posterior fossa syndrome, hydrocephalus) may be important predictors 

of outcome (e.g., Wolfe-Christensen, Mullins, Scott, & McNall-Knapp, 2007).  Second, 

some studies have found age at diagnosis to be related to social outcomes; however, 

whereas some of these implicate older age at diagnosis as predictive of poor outcomes 

(e.g., Aarsen et al., 2006), others suggest younger age at diagnosis is a risk factor (e.g., 

Foley et al., 2000).  Third, time since diagnosis has emerged a consistent predictor of 

later social deficits, with longer time since diagnosis predictive of greater deficits 

(Schulte & Barrera, 2010).   

Tumor characteristics and histology, patient characteristics, and characteristics of 
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the treatment received all may play a role in the nature and extent of deficits (e.g., 

Glauser & Packer, 1991; Mulhern et al., 1992; Nathan, Patel, Dilley, Goldsby, Harvey, 

Jacobsen, et al., 2007).  Consideration of these moderating factors has been limited to 

individual studies, and synthesis of this information has been complicated by the variety 

of approaches to recording and presenting demographic, diagnostic and treatment 

information.  A meta-analysis to examine the potential risk factors for later 

neurocognitive deficits in survivors of pediatric brain tumors is currently in preparation, 

and suggests that patient age and radiation dosage will be important to examine in future 

research (Robinson et al., 2011).   

There are several strengths to the current study that provide unique contributions 

to this area of research.  This is the first known study to use fMRI to examine the 

substrates of neurocognitive deficits in survivors of pediatric brain tumors.  Further, this 

study presented the first comparison of differences in patterns of brain activation during 

this working memory task between childhood brain tumor survivors and healthy controls.  

This contributes to our understanding of the neurobiological processes underlying 

executive function abilities in survivors.  Greater understanding of these processes 

provides a starting point for examination of the association between patterns of activation 

and other areas of survivors’ functioning.  Another strength of the current study was the 

selection of a healthy control sample, matched for age and gender, against whom to 

compare measures of neurocognitive function and BOLD signal activation.  This allowed 

for the discussion of patterns of activation in survivors not only from one N-back level to 

another, but also relative to a sample of typically-developing children.  This is the first 

study to examine the relationship between neurocognitive and psychosocial functioning, 
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and coping responses, within this population.  This study also relied on multiple 

methodological approaches, including neurocognitive assessment using standardized and 

norm-referenced measures, empirically-validated questionnaires, a well-established 

verbal working memory task conducted during functional neuroimaging, and changes in 

BOLD signal activation during increasingly difficult levels of the verbal working 

memory task. 

Despite these strengths, several limitations need to be considered while 

interpreting these results.  In our examination of between-group differences, our sample 

size was limited to 7 children in each group.  Analyses of imaging data were corrected for 

multiple comparisons, with the goal of reducing the likelihood of Type I error, but this 

limited sample nonetheless reduced the ability to detect smaller but potentially 

meaningful differences in activation between survivors and healthy controls.  In order to 

detect between-group differences on cognitive measures using t-tests, differences needed 

to be quite large.  Therefore, effect sizes were provided to further explore potentially 

meaningful effects in the absence of statistical significance.  A larger number of 

participants in each group, matched for age and gender, would be helpful for improving 

confidence in the reliability of the detected effects.  Further, although survivors and 

healthy controls were matched well based on age, gender, race, and socioeconomic status, 

healthy control participants’ scores on the WISC-IV were in the high-average range for 

processing speed and full scale IQ.  It is possible that results of comparisons against this 

group of healthy children may not replicate with a sample of children whose scores 

corresponded more exactly to normative data.  Finally, although the majority of the group 

differences in brain activation replicate findings of previous research, differences 
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detected in postcentral gyrus (BA 2) were unanticipated.  Further research exploring the 

significance of this region in completion of a working memory in healthy children is 

warranted. 

 Several avenues of further research would contribute greatly to our understanding 

of the associations explored in this study.  First, additional examination of the similarities 

and differences in neurobiological processes underlying executive and psychosocial 

function, and coping, in survivors relative to healthy children is necessary due to the 

limited sample size available in this study and the associated limitations on our ability to 

detect smaller but potentially clinically significant effects.  Second, considerable research 

has indicated that the emergence of neurocognitive and psychosocial functioning deficits 

in survivors is reliant on various qualities of the survivors and their diagnosis and 

treatment.  Future analyses exploring differences in these associations within a larger 

sample of survivors would allow for the consideration of subgroups identified by 

demographic, diagnostic, or treatment-related variables and contribute to the broader 

understanding of moderators of risk and resilience in this population.  Third, the temporal 

development of difficulties in executive and psychosocial function in survivors of 

pediatric brain tumor has yet to be determined.  Although some longitudinal studies 

document the emergence of neurocognitive deficits in survivors (e.g., Copeland, deMoor, 

Moore, & Ater, 1999; Stargatt, Rosenfeld, Maixner, & Ashley, 2007), methodological 

limitations dampen our ability to draw conclusions about these processes.  Finally, a 

better understanding of the underlying neurobiological processes associated with 

executive function, psychosocial functioning, and coping in survivors will provide useful 

information for the development of intervention strategies aimed at one or more of these 
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domains.   

In conclusion, this study replicates prior research documenting neurocognitive 

and psychosocial deficits in survivors of pediatric brain tumors, and extends this area of 

research by examining related neurobiological processes and their association with these 

areas of functioning.  These findings contribute considerably to our understanding of 

these difficulties in this important clinical population, and provide a foundation for 

research that is directed at exploring the nuances of these associations and their plasticity, 

with the end goal of improving the post-treatment experience of survivors of pediatric 

brain tumors. 
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