
COORDINATE CONTROL OF METABOLIC FLUX 

WITH LIVER ENERGY STATUS BY AMPK IN VIVO  

 

By  

Clinton Michael Hasenour 

 

Dissertation 

Submitted to the Faculty of the  

Graduate School of Vanderbilt University  

in partial fulfillment of the requirements  

for the degree of  

DOCTOR OF PHILOSOPHY  

In 

Molecular Physiology and Biophysics 

August, 2014 

Nashville, TN 

 

 

Approved: 

Owen P. McGuinness 

Richard M. O’Brien 

John M. Stafford 

David R. Gius 

 



ii 
 

 

 

 

 

 

 

 

 

 

 

To my former students, 

may you be afforded the same opportunities   



iii 
 

ACKNOWLEDGMENTS 

 This work would not have been possible without the enduring support of many people. 

The Wasserman lab has provided invaluable contributions to my development as a scientist. I am 

grateful for the support of my mentor, Dr. Wasserman, whose intellectual, financial, and comedic 

contributions over the last 5yrs are likely to be found on every page of this dissertation. By 

providing the opportunity to investigate basic control of in vivo metabolism, Dr. Wasserman 

essentially gave me the opportunity to pursue a dream. For this, a single acknowledgments 

section hardly seems fitting.  

 Several current and former members of the lab made contributions to this dissertation. 

Emerson Ridley was crucial for the success of the stable isotope project; his versatility, work 

ethic, and friendship made his time in the lab far too short. Jeffrey Bonner was always willing to 

lend a hand, ear, and provide critical advice. Furthermore, Deanna Bracy, Freyja James, Mickael 

Goelzer, Curtis Hughey, Eric Berglund, Li Kang, Robert Lee-Young provided invaluable 

surgical and experimental support. The former three members ensure the functions of the lab 

and, thus, its continued success. I would also like to acknowledge the members of the Mouse 

Metabolic Phenotyping Center and Vanderbilt Hormone Assay and Analytical Services Core 

(particularly Pat Donahue and Larry Swift). 

 My thesis committee members (Owen McGuinness, John Stafford, Richard O’Brien, and 

David Gius) have provided a strong base of support and constructive criticism. Their expertise 

and encouragement were paramount for the development of the hypotheses examined in this 

dissertation. The dedication of our collaborators Jamey Young and Martha Wall made central 

studies of this dissertation—and many more to come—possible. I would also like to thank my 

early instructors who were instrumental in preparing me for each phase of education—



iv 
 

particularly Mrs. Steedman, Mrs. Smith, Mr. Martin, Mr. Gardner, and Mrs. Funkhouser. A 

special thanks to Dr. Wade Hazel for providing >2yrs of science research mentorship at DePauw.  

 Lastly, I would like to acknowledge my family and friends. My brother and sister have 

provided constant support, advice and a healthy level of competition over the years. I owe a debt 

of gratitude to my parents, who have served as exemplars of hard work, creativity, and 

unconditional love. I would also like to thank the Lorenz family for their support and, in 

particular, Maggie Lorenz for her patience, dedication and love.   

 This work would not have been possible without funding from NIH Grants U24 

DK59637, R37 DK50277 (David H. Wasserman) and DK20593 (the Diabetes Research and 

Training Center). This work was also supported by the Molecular Endocrinology Training 

Program at Vanderbilt.  

 

  



v 
 

TABLE OF CONTENTS 

Page 

DEDICATION ................................................................................................................................ ii 

ACKNOWLEDGMENTS ............................................................................................................. iii 

LIST OF TABLES ........................................................................................................................ vii 

LIST OF FIGURES ..................................................................................................................... viii 

LIST OF ABBREVIATIONS ........................................................................................................ xi 

Chapter 

I. INTRODUCTION .........................................................................................................1 

          

Cultural-Physiological Context ......................................................................................1 

A Glucagon-Centric View of the Liver in Normal and Pathophysiology .....................2 

Hepatic Energy State Regulates AMPK Activation ......................................................6 

AMPK Signaling in the Control of Energy Producing and Biosynthetic Pathways  

in the Liver during Fasting and Exercise .......................................................................7 

A Brief Discussion on the Importance of Carnitine in Mitochondrial Substrate 

Trafficking and Utilization ..........................................................................................10 

Lessons from Genetic Models Concerning the Coupling of Substrate Utilization  

with Gluconeogenesis ..................................................................................................11 

An Overlap in Energy Sensor Function and Challenges that Arise from the Use of 

Pharmacological AMPK Activators ............................................................................14 

AMPK Activation is a Component of Exercise-Mediated Reversal of Fatty Liver ....16 

AMPK and Hepatic Glucose Production: “A Mystery Inside an Enigma” .................18 

Convergence of AMPK and Insulin Signaling Pathways in the Liver ........................21 

AMPK at the Helm in the Coordinate Control of Metabolic Flux and Energy 

Production in the Liver ................................................................................................24 

 

II. RESEARCH METHODS AND MATERIALS ...........................................................32 

 

Mouse Models ..............................................................................................................32 

Surgical Procedures .....................................................................................................33 

In Vivo Experiments .....................................................................................................34 

In Vitro Experiments ....................................................................................................39 

Processing Tissue Samples ..........................................................................................41 

Processing Plasma Samples .........................................................................................45 



vi 
 

Calculations..................................................................................................................48 

Flux Modeling Figures .................................................................................................50 

Radio and Stable-Isotopic Infusion Setups ..................................................................56 

 

III. HEPATIC AMPK SYNCHRONIZES METABOLIC FLUX WITH ENERGY 

STATUS IN THE LIVER ............................................................................................58 

 

Aims .............................................................................................................................58 

Experimental Approach ...............................................................................................58 

Results ..........................................................................................................................59 

Discussion ....................................................................................................................65 

 

IV. 5-AMINOIMIDAZOLE-4-CARBOXAMIDE-1-Β-D-RIBOFURANOSIDE  

(AICAR) EFFECT ON GLUCOSE PRODUCTION, BUT NOT ENERGY 

METABOLISM, IS INDEPENDENT OF HEPATIC AMPK IN VIVO .....................85  

 

Aims .............................................................................................................................85 

Experimental Approach ...............................................................................................86 

Results ..........................................................................................................................86 

Discussion ....................................................................................................................89 

 

V. EXERCISE TRAINING ATTENUATES METABOLIC ABNORMALITIES  

IN THE LIVERS OF HIGH-FAT FED MICE LACKING HEPATIC AMPK.........102 

 

Aims ...........................................................................................................................102 

Experimental Approach .............................................................................................103 

Results ........................................................................................................................103 

Discussion ..................................................................................................................109 

 

VI. CONCLUSIONS........................................................................................................123 

 

Summary ....................................................................................................................123 

Future Directions for Flux Analysis In Vivo ..............................................................130 

Hepatic AMPK and Nutrient Sensor Specific Future Directions ..............................130 

Concluding Remarks ..................................................................................................132 

 

REFERENCES ............................................................................................................................134 

 



vii 
 

LIST OF TABLES 

  

       Table Page 

 

1.1     The Putative Effect of AMPK Activity on Mediators of Metabolism in the Liver ......25 

 

2.1     Mouse Diet Macronutrient Composition ......................................................................32 

 

2.2     PCR Primer Sequences for Floxed AMPKα1α2 Catalytic Subunits and Albumin Cre   

          Recombinase .................................................................................................................33 

 

4.1     Body Composition and 5hr Fasted Metabolites of α1α2
lox/lox

 and α1α2
lox/lox

+Albcre   

          Mice ..............................................................................................................................97 

 

4.2     AICAR-Euglycemic Clamp Metabolites ......................................................................99 

 

  



viii 
 

LIST OF FIGURES 

  

       Figure Page 

 

1.1     Energy and Cofactor Requiring Processes Associated with Gluconeogenesis ............27 

 

1.2     Parameters Regulating Adenylate Energy Balance ......................................................28 

 

1.3     Putative Regulation of Hepatic Lipid Metabolism Through AMPK ............................29 

 

1.4     Putative Mechanism for the Role of AMPK in Amino Acid Metabolism ...................30 

 

1.5     Paradox of AMPK Activation in Physiology and Signaling ........................................31 

 

2.1     INCA Interface for Biochemical Reaction Network Input ...........................................50 

 

2.2     Atomic Positional Information is Provided by GC/MS Analysis of Fragments  

          Generated from Glucose Derivatization .......................................................................51 

 

2.3     Atomic Properties of Each Molecule Specified in INCA .............................................52 

 

2.4     Specification of Tracer Entry, Composition, and Enrichment in INCA .......................53 

 

2.5     A. Specification of Labeled and Unlabeled Atoms in Each Fragment .........................54 

 

2.5     B. GC/MS Fragment Mass Input for Each Sample Time Point ...................................55 

 

2.6     Experimental Setup for the AICAR-Euglycemic Clamp..............................................56 

 

2.7     Experimental Setup for Stable-Isotopic Infusions ........................................................57 

 

3.1     Schematic for Stable-Isotopic Infusions and Blood Glucose Log ................................71 

 

3.2     A. Schematic for Glucose and Oxidative Fluxes in Mice Lacking Hepatic AMPK ....72 

 

3.2     B. Abnormal Glucose and Oxidative Fluxes in Mice Lacking Hepatic AMPK—  

          μmol∙min
-1

.....................................................................................................................73 

 

3.2     C. Abnormal Glucose and Oxidative Fluxes in Mice Lacking Hepatic AMPK—  

          μmol∙kg
-1

∙min
-1

 .............................................................................................................74 



ix 
 

 

3.2     D. Abnormal Glucose and Oxidative Fluxes in Mice Lacking Hepatic AMPK— 

          Relative to EndoRa .......................................................................................................75 

 

3.3     AMPK Protects Against Fasting-Mediated Reductions in Energy State ......................76 

 

3.4     Fasting-Mediated Changes in Liver AMPK, ACC, Akt, ERK1/2 Phosphorylation  

          State ..............................................................................................................................77 

 

3.5     Oxygen Flux Data from Mitochondria Isolated from the Livers of α1α2
lox/lox

 and  

          α1α2
lox/lox

+Albcre Mice ................................................................................................78 

 

3.6     Liver AMPK-Dependent and Independent Effects of Fast Duration on Liver Lipids .79 

 

3.7     AMPK Attenuates Elevations in Hepatic Long Chain Fatty Acids in Short Term  

          Fasting...........................................................................................................................80 

 

3.8     AMPK Deletion Results in Aberrant BCAA/BCKA-Related Metabolism ..................81 

 

3.9     AMPK Deletion Alters Oxidative Metabolites but Not TCA Cycle Intermediates .....82 

 

3.10   Lipid Signaling Molecules in the Livers of α1α2
lox/lox

 and α1α2
lox/lox

+Albcre Mice ...83 

 

3.11   Liver Medium Chain Fatty Acids are Unaffected by Hepatic AMPK Deletion ...........84 

 

4.1     Schematic for AICAR-Euglycemic Clamps .................................................................96 

 

4.2     Acute Inhibition of Glucose Production by AICAR is Independent of Hepatic  

          AMPK ...........................................................................................................................98 

 

4.3     Effect of AICAR on Liver AMPK Activation State ...................................................100 

 

4.4     Liver AMPK Deletion Exacerbates AICAR Effects on Hepatic Energy State ..........101 

 

5.1     Induction Phase Body Weight and Composition ........................................................115 

 

5.2     RW Activity, Body Weight, Composition, and Plasma Parameters during the    

          Intervention Phase ......................................................................................................116 

 

5.3     Hepatic Lipids and Saturation at the End of the Intervention Phase ..........................117 



x 
 

 

 

5.4     Metabolites Related to the De Novo Synthesis of Phosphatidylcholine (PC) and  

          Phosphatidylethanolamine (PE) ..................................................................................118 

 

5.5     Hepatic Adenine Nucleotides and Energy State .........................................................119 

 

5.6     Hepatic TCA Cycle Intermediates ..............................................................................120 

 

5.7     Acylcarnitine and TCA Cycle Related Liver Metabolites ..........................................121 

 

5.8     Glucuronidation and Ascorbate-Related Metabolites .................................................122 

 



xi 
 

LIST OF ABBREVIATIONS 

AcAc    Acetoacetate 

ACC    AcetylCoA Carboxylase 

AICAR    5-Aminoimidazole-4-Carboxamide-1-β-D-Ribofuranoside 

Akt    Protein Kinase B 

AMPK    AMP-Activated Protein Kinase 

BCAA/BCKA   Branched-Chain Amino Acid/Keto Acid 

BCAT    Branched-Chain Aminotransferase 

BCKDH    BCKA Dehydrogenase 

CaMKKβ    Calcium/Calmodulin Kinase Kinase β 

CBP    CREB Binding Protein 

CBS    Cystathione β-Synthase 

CE    Cholesterol Ester 

CPT1 and 2   Carnitine Palmitoyltransferase 1and 2 

CREB    Cyclic AMP Response Element Binding protein 

CRTC2    CREB-Regulated Transcription Coactivator 2 

DG    Diglyceride 

DHAP    Dihydroxyacetone Phosphate 

EC    Energy Charge 

EndoRa    Endogenous Glucose Production 

ER    Endoplasmic Reticulum 

ERK1/2    Extracellular Signal-Regulated Kinase 1/2 

FA and LCFA   Fatty Acid and Long Chain Fatty Acid 

FAD (FADH2)   Flavin Adenine Dinucleotide  

FFA (NEFA)   Free Fatty Acids 

FGF21    Fibroblast Growth Factor 21 

FOXO1    Forkhead Box Protein O1 

F6P    Fructose-6-Phosphate 

GAP/GA3P   Glyceraldehyde-3-Phosphate 

GC/MS    Gas Chromatography/Mass Spectrometry 

GIR    Glucose Infusion Rate 

G6P    Glucose-6-Phosphate 

G6Pase    Glucose-6-Phosphatase 

HDAC    Histone Deacetylase 

HETE    Hydroxyeicosatetraenoic Acid 

HMGCoAR   Hydroxy-3-Methylglutaryl-CoA Reductase 

HMW    High Molecular Weight 

HNF4α    Hepatocyte Nuclear Factor 4α 

HODE    Hydroxyoctadecadienoic Acid 

INCA    Isotopomer Network Compartmental Analysis 



xii 
 

LKB1    Liver Kinase B1 

ME    Malic Enzyme 

MFA    Metabolic Flux Analysis 

mTORC1    Mammalian Target of Rapamycin Complex1 

NAD+ (NADH)   Nicotinamide Adenine Dinucleotide 

NAFLD    Non-Alcoholic Fatty Liver Disease 

NAMPT    Nicotinamide Phosphoribosyltransferase 

NASH    Non-Alcoholic Steatohepatitis 

NMP    Nucleotide Monophosphate 

NMR    Nuclear Magnetic Resonance Spectroscopy 

OAA    Oxaloacetate 

OXPHOS    Oxidative Phosphorylation 

PC    Phosphatidylcholine 

PE     Phosphatidylethanolamine 

PEP    Phosphoenolpyruvate 

PEPCK    Phosphoenolpyruvate Carboxykinase 

PGC1α    Peroxisome Proliferator-Activated Receptor γ Coactivator  

     1α 

PK    Pyruvate Kinase 

PKA    Protein Kinase A 

PL     Phospholipid 

PPARα    Peroxisome Proliferator-Activated Receptor α 

Ra     Rate of Glucose Appearance 

RCR    Respiratory Control Ratio 

Rd     Rate of Glucose Disappearance  

ROS    Reactive Oxygen Species 

SAM    S-Adenosylmethionine 

SCS    SuccinylCoA Synthetase 

SHP    Small Heterodimer Partner 

SIK1 and 2   Salt-Inducible Kinase 1 and 2 

Sirts 1 and 3   Sirtuins 1 and 3 

SREBP1c  and 2   Sterol Regulatory Element-Binding Protein 1c and 2 

S6K1    Ribosomal Protein S6 Kinase 1 

TAN    Total Adenine Nucleotide pool 

TCA    Tricarboxylic Acid 

TG    Triglyceride 

TSC1 and 2   Tuberous Sclerosis Complex 1 and 2 

T2DM    Type 2 Diabetes Mellitus 

Ulk1    Unc-51-Like Kinase 1 

VDAC1    Voltage-Dependent Anion-Selective Channel Protein 1 



xiii 
 

VHL    Von Hippel Lindau protein 

ZMP    5-Aminoimidazole-4-Carboxamide-β-D-Ribosyl-5-  

     Monophosphate 

2PG    2-Phosphoglycerate 

3-OH    3-Hydroxybutyrate 

4E-BP1    Eukaryotic Initiation Factor 4E-binding Protein 

5-methylthioadenosine  MTA 

 

 

 

 

 

 

 

 

            

 

 

  



1 
 

Chapter I 

 

INTRODUCTION 

 

Cultural-Physiological Context 

 The alarming incidence of diabetes and obesity has emerged as a byproduct of 

globalization. Global shifts in economic growth, trade, and urbanization have led to behavioral 

changes which promote positive energy balance (1). Billions of dollars are spent annually on 

treating pathologies associated with metabolic dysregulation (1). The US Surgeon General 

reports that obesity increases risk of premature death from all causes by 50-100%. Moreover, US 

obesity has doubled in children and quadrupled in adolescents over the last 30yrs (CDC). These 

statistics convey the serious impact of sedentary lifestyle and overnutrition on physical and 

financial welfare in the United States.   

 Glucoregulation is a vital, integrative metabolic process which is often perturbed in 

overnutritive states. In normal physiology, blood glucose concentrations are maintained within a 

relatively narrow range despite dramatic changes in fuel flux following a meal, during exercise 

and fasting (2). The consequences of acute and chronic glycemic dysregulation are, indeed, life 

threatening—ranging from hypoglycemic seizure and death to metabolic derangements that 

result from hyperglycemia and insulin resistance (2). Diabetes is generally characterized by a 

deficit in insulin action and, consequently, an imbalance in the insulin:glucagon ratio. In this 

context, impairments in insulin-stimulated glucose uptake coincide with increased hepatic 

glucose, ketone, and triglyceride production.    



2 
 

 Modern therapeutics designed to maintain normoglycemia have significant limitations 

and, in many cases, patients must resort to insulin therapy (3). Furthermore, researchers are still 

investigating the mechanisms that mediate the effects of the biguanide metformin—a globally 

prescribed treatment for type II diabetes (3, 4). A clearer understanding of the origins of 

metabolic dysregulation and drug action will enhance our ability to develop effective treatment 

strategies. The liver is a major determinant of metabolic state due to its high metabolic activity 

and diverse functionality. Consequently, overnutrition generates maladaptations in the liver 

which spur many of the pathogenic symptoms observed in diabetes and obesity. An 

understanding of the hepatic response to changes in nutritional state is a chief public health 

concern.  

 

A Glucagon-Centric View of the Liver in Normal and Pathophysiology 

  Feeding, fasting, and physical exertion require a complex neuroendocrine response that 

activates pathways for energy mobilization and utilization (2). The liver is positioned to ensure 

the body’s metabolic requirements during an increase in nutrient demand or scarcity. Nutrients 

and endocrine signals from the pancreas and gut empty into the portal vein, which drains into the 

liver. Broadly speaking, this anatomy supports the hormonal control of liver metabolism by the 

opposing actions of insulin and glucagon (5, 6). Hepatic sinusoids mix the metabolic and 

endocrine contents delivered by the portal vein with arterial O2. An acute increase in glucose 

availability elicits an increment in insulin secretion and action at the liver; conversely, glucagon 

secretion and action increase with a fall in glucose and insulin. In normal physiology, elevated 

glucagon action occurs in the context of low circulating insulin. Glucagon is a principal regulator 
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of hepatic metabolic state. Elevated glucagon action transforms the liver into a factory for the 

production and supply of macronutrients for whole-body metabolism.  

  A primary function of the liver is to sustain the glucose requirements of the body during 

fasting and exercise. Glucoregulatory control is so precise that arterial glucose levels are 

maintained within narrow limits. Two unique properties of the liver support its role in glucose 

homeostasis: 1) unlike other organs, the liver’s glycogen stores are reserved to meet whole-body 

glucose demands and 2) the liver is uniquely equipped to perform gluconeogenesis, which 

assembles carbon from amino acids, glycerol, and lactate into new glucose molecules.  Most 

organs catabolize glycogen during fasting and exercise, which generates energy through aerobic 

and anaerobic glycolysis. The liver retains the highest glycogen concentrations in the body yet 

degrades its supply to provide glucose for other tissues. This contrasts with the muscle, for 

example, whose large glycogen reservoirs are retained to meet its own energy needs. 

 Hepatic gluconeogenesis and associated pathways place an energetic burden on the liver 

(Fig. 1.1). The liver is suited with an enzymatic arsenal uniquely capable of synthesizing glucose 

and ketones de novo from amino acids, glycerol, lactate, and fat (7–11). These processes are 

necessary to provide a steady source of nutrients to the brain. Glucagon facilitates amino acid 

extraction and utilization in the liver (8, 11, 12). Muscle proteolysis is a principle supplier of 

amino acids for gluconeogenesis in starvation (7). However, it has been suggested that glucagon 

represses hepatic protein synthesis while promoting proteolysis (13, 14), and amino acids 

liberated via autophagy in the liver may contribute to gluconeogenesis (15). Clearly, multiple 

mechanisms are in place to supply carbon for glucose synthesis in the liver. Anaplerosis refers to 

the net entry of carbon into the TCA cycle—which excludes acetylCoA due to the loss of 2CO2 

in a turn of the TCA cycle. Certain gluconeogenic reactions consume high-energy phosphates 
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and reducing cofactors; amino acid catabolism necessitates the disposal of NH3 through 

ureagenesis (Fig. 1.1). Accordingly, disrupting gluconeogenic flux through PEPCK prevents the 

effects of glucagon on liver energy state (16).  

 Processes that consume large amounts of energy require a commensurate increase in 

energy production. The liver derives a substantial portion of its energy from fatty acid oxidation. 

A decline in insulin and increase in adrenergic signaling during fasting and exercise increases 

lipolysis from adipose tissue (17, 18). Moreover, a reduction in insulin magnifies glucagon 

action at the liver. In vivo studies performed across species demonstrate glucagon’s efficacy at 

promoting substrate (i.e. certain fatty and amino acids) utilization in the liver. Hepatic fat 

oxidation and ketogenesis are accelerated during exercise due to glucagon action (11). Glucagon 

controls ketogenesis through intrahepatic mechanisms (18–20) but its effects on fatty acid 

delivery are controversial (see glucagon.com, Dr. Daniel J Drucker). A detailed analysis of these 

mechanisms will be provided in subsequent sections. By mass, energy production from fat 

exceeds that of other endogenous substrates. Though the initial priming of fatty acids requires 

ATP hydrolysis, subsequent β-oxidation and the complete oxidation of acetylCoA make fatty 

acids a rich energy source. Indeed, glucagon promotes hepatic mechanisms that support fat 

oxidation during fasting (21).  

The complex function of the liver is integral for whole body energy homeostasis. The 

liver dictates the flux of multiple fuels in accordance with endocrine state. An imbalance in 

substrate delivery, uptake, or utilization transforms the liver into a driver of pathophysiology. 

Metabolic dysregulation may exert pathological changes in insulin (22) and glucagon (5) action 

at the liver. Defining their contributions to diabetes and obesity poses a significant challenge due 

to extensive overlap in endocrine, metabolic, and signaling pathways in the liver. Moreover, 
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insulin regulates glucagon secretion from pancreatic α-cells (23, 24). Pathophysiological 

glucagon action is most clearly demonstrated in conditions of insulin deficiency (25–27).  

“Insulin lack” results in severe hyperglycemia and hyperketonemia only if glucagon is present 

(25). Furthermore, knockout of the glucagon receptor attenuates hyperglycemia and 

hyperketonemia following β-cell ablation in mice (26, 27). 

 Deviations in ATP synthesis and/or utilization are observable in ordinary physiology (16, 

28–30), pathophysiology (16, 31, 32), and pharmacological intervention (33, 34) in the liver. 

Hepatic glucagon signaling decreases energy availability (16), despite increasing substrate 

uptake and utilization (11). This likely stems from the energetic requirement of pathways and 

processes that support gluconeogenesis in the liver. Pathological glucagon action may contribute 

to the acceleration in TCA cycle flux, gluconeogenesis, aberrations in oxidation (35), and 

elevation in the AMP/ATP observed in high-fat feeding (16). 

 In subsequent sections, substrate flux in and out of the TCA cycle will be evaluated in the 

context of the current understanding of hepatic signaling mechanisms. The dissertation is 

structured around physiological and pathophysiological energy stress in the liver. Reductions in 

ATP and/or increases in AMP are hallmark indices of cellular energy stress. AMP-activated 

protein kinase (AMPK) serves as the linchpin because glucagon signaling increases the 

AMP/ATP ratio and drives AMPK activation (16, 36). Glucagon action on macronutrient flux 

overlaps with AMPK’s signaling repertoire (37). Extrapolating from this observation, it is our 

conjecture that glucagon exerts control over macronutrient flux through AMPK.  
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Hepatic Energy State Regulates AMPK Activation 

 Changes in the AMP/ATP ratio reflect a shift in the balance between ATP production and 

consumption (38). Adenylate kinase maintains the equilibrium of the adenine nucleotide pool 

(Fig. 1.2). An acute increase in ATP demand results in the generation of ADP. Adenylate kinase 

senses the imbalance and, to restore equilibrium, drives the reaction toward the production of 

ATP and AMP. Thus, AMP increases relative to ADP and ATP. A linear increase in the 

ADP/ATP ratio results in an exponential increase in the AMP/ATP ratio (Fig. 1.2).  

 The importance of ATP requires little explanation, as it is the common currency for the 

vast majority of energy-consuming reactions in the cell and is a requirement for many kinase 

reactions. AMP regulation of enzyme activity has been recognized for decades (39, 40). In fact, 

the cell works to keep ATP high and the AMP/ATP ratio low. Mitochondria are adapted to 

convert ADP to ATP from the reducing cofactors NADH and FADH2. In some cell types, 

specialized high-energy phosphate stores rapidly provide energy and protect against changes in 

ATP. For example, exercise can cause a significant reduction in intramuscular phosphocreatine 

while ATP levels remain unchanged; in these studies, the AMP/ATP ratio was estimated to be 

very high despite no observable fall in ATP (41).  

 Cells may even sacrifice the size of the adenylate pool to maintain energy charge. 

Evidence for an increase in AMP degradation has been observed in conditions when ATP 

demand exceeds supply (42–46). Reductions in ATP and Pi can provoke the catabolism of AMP 

(47, 48) to preserve the relative balance between ATP, ADP, and AMP in the liver (49). Thus, 

buffering systems have evolved that protect both absolute and relative liver ATP levels.  

 AMPK extends the capabilities of this sophisticated adenylate buffering network. Rather 

than directly acting on adenine nucleotides, AMPK’s structure is equipped to sense increases in 



7 
 

AMP and direct signaling pathways that control macronutrient flux (50). The heterotrimeric 

structure of AMPK contains an α (catalytic), β (anchoring), and a γ (nucleotide-sensing) subunit. 

The nucleotide binding sites in the γ-subunit are constructed from two Bateman units, each with 

two CBS (helix-β-hairpin-helix) sequence repeats. AMP binding to the γ-subunit makes AMPK a 

better substrate for its major upstream activators (LKB1 and CaMKKβ) and prevents its 

dephosphorylation. Once phosphorylated, AMPK activity is enhanced further by AMP activation 

(51).  

 

AMPK Signaling in the Control of Energy Producing  

and Biosynthetic Pathways in the Liver during Fasting and Exercise 

 

AMPK Regulation of Hepatic Fat Oxidation and Lipogenesis 

 The energetic advantage of fat oxidation stems from the production of NADH and 

FADH2 through β-oxidation and the TCA cycle. NADH and FADH2 are synthesized during the 

release of acetylCoA from the hydrocarbon chain of a fatty acid during β-oxidation. 

Furthermore, acetylCoA catabolism yields 3NADH and 1FADH2 in the TCA cycle. The fate of 

acetylCoA is largely determined by the physiological condition of the liver. During elevated 

glucagon action, acetylCoA is shunted toward ketogenesis and further oxidation in the TCA 

cycle and away from lipogenesis (52). AcetylCoA availability does not appear to limit rates of 

oxidation or ketogenesis during fasting, as it serves as a metabolic node for the entry of carbon 

from β-oxidation, certain amino acids, and pyruvate. Thus, acetylCoA utilization in fasting and 

exercise occurs through the synthesis of ketone bodies and oxidation in the TCA cycle.  
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 AMPK may coordinate fatty acid flux into the mitochondria for β-oxidation and 

ketogenesis during glucagon action (Fig. 1.3). MalonylCoA directly inhibits the activity of 

carnitine palmitoyltransferase I (CPT1) and prevents the initial entry of long-chain fatty acids 

into the mitochondria for β-oxidation (53, 54). Formation of malonylCoA results from the 

carboxylation of acetylCoA by acetylCoA carboxylase (ACC) (55). ACC activity is under the 

biphasic, hormonal control of insulin and glucagon. Insulin potently stimulates while glucagon 

inhibits ACC activity. AMPK is activated by glucagon in the liver, which inversely corresponds 

to ACC activity (56). In fact, AMPK’s inhibitory effect on ACC was deduced from studies 

investigating the relationship between glucagon, PKA, and ACC inhibition (57, 58).  

 The inverse relationship between AMPK and ACC activities may explain aspects of 

metabolic zonation in the liver. Periportal parenchyma have elevated capacity for 

gluconeogenesis, ureagenesis, β-oxidation and ketogenesis; these functions correspond to 

hormonal (e.g. glucagon) and substrate gradients in the liver (59). In the fasted state, AMPK 

activity is elevated predominantly in the periportal zone and corresponds to reduced ACC 

activity (60). This is consistent with glucagon concentrations being highest in the periportal 

region of the liver. As noted above, glucagon promotes fat oxidation in the liver (61). Moreover, 

high intensity exercise results in reductions in ACC activity, malonylCoA concentrations, 

increased 3-hydroxybutyrate and AMPK activation (62).  

 Activation of AMPK may acutely suppress lipid biogenesis and promote fat oxidation in 

the liver by attenuating the ability of ACC to generate malonylCoA, thus lessening CPT1 

suppression. Elevated fatty acid flux at the liver increases the AMP/ATP ratio when coupled 

with anaplerotic substrate (63), which may contribute to AMPK activation and ACC inhibition. 

Elevated fatty acids alone—independent of glucagon action—decrease malonylCoA 
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concentrations (64) and activate AMPK (65). Some evidence suggests that certain fatty acids 

alter AMPK’s conformation and make it a better target for its upstream activator, LKB1 (65). 

These observations imply multiple mechanisms for the activation AMPK and the inhibition of 

ACC in the control of fat oxidation and lipogenesis in the liver.  Moreover, glucagon represses 

the expression of SREBP-1c (66), a controller of lipogenesis in the liver. Elegant work with 

AMPK activators demonstrates that AMPK phosphorylates and reduces SREBP activity (67). It 

is possible that glucagon, through AMPK activation, might also inhibit SREBP activity (68). 

Indeed, a block in lipogenesis in fasting is a major determinant of ketogenesis in the liver (69, 

70) and, accordingly, the overexpression of hepatic AMPK increases circulating ketones (71).   

 

AMPK and Amino Acid Utilization in the Liver  

 Glucagon is a major hormonal driver of amino acid metabolism in the liver, stimulating 

the uptake and utilization of  specific amino acids and inhibiting signaling pathways that promote 

protein synthesis (11, 72, 73). Additionally, glucagon potently stimulates autophagy and 

proteolysis(13, 74, 75). The net effect of these processes would appear to be an increase in amino 

acid availability for anaplerosis, oxidation, and—potentially—gluconeogenesis. 

  Mechanistically, glucagon’s effects on the aforementioned processes may be mediated 

by AMPK activation (73). AMPK controls the activity of major hubs of protein synthesis and 

authophagy—mTORC1 and Ulk1. Glucagon markedly increases AMPK activation while 

decreasing mTORC1 signaling to 4E-BP1 and S6K1 (73).
 
 During periods of elevated glucagon, 

insulin (an mTORC1 activator) is unable to deactivate AMPK or fully restore mTORC1 

signaling (76). Other factors that increase the intrahepatic AMP/ATP ratio or activate AMPK 

have a similar impact on mTORC1 signaling and protein synthesis (77).
 
Extensive signaling 
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work has identified at least two sites where AMPK intercedes in the mTORC1 signaling 

pathway: TSC2 (78) and raptor (79).
 
 In both cases, phosphorylation by AMPK leads to a 

reduction in mTORC1 signaling (Fig. 1.4).  

 Recent research demonstrates that AMPK promotes autophagy during glucose 

deprivation by activating Ulk1, which is also negatively regulated by mTORC1 (80, 81). The 

physiological relevance of AMPK, Ulk1, and autophagy in the availability of amino acids for 

anaplerosis is unresolved. Using an autophagy-deficient mouse model, it was recently 

demonstrated that amino acids released through autophagy may contribute to gluconeogenesis 

(15). Glucagon’s effects on protein synthesis and degradation align with the effects of AMPK 

activation. The possibility clearly exists that AMPK facilitates amino acid catabolism during 

glucagon-mediated uptake and autophagy in the liver.  

 

A Brief Discussion on the Importance of Carnitine in Mitochondrial  

Substrate Trafficking and Utilization 

 The research groups spearheaded by CB Newgard and DM Muoio have utilized the 

power of metabolomics to investigate the relationship between mitochondrial substrate 

trafficking in insulin resistant states (82–84). Their research has made substantive contributions 

to the hypothesis of metabolic overload in overnutrition (84), particularly in skeletal muscle. 

More importantly, perhaps, this work has emphasized the importance of understanding substrate 

trafficking in conditions with aberrant signaling, oxidation, and/or nutrient load.  

 Long-chain fatty acylCoAs are converted to fatty acylcarnitines (CPT1) for transport 

from the cytosol into the mitochondria. Located on the inner mitochondrial membrane, CPT2 

converts acylcarnitines back to their CoA esters for oxidation. This process is particularly 
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relevant for the acute regulation of fat oxidation by AMPK (Fig. 1.3). Furthermore, medium and 

shorter chain acylcarnitines are generated from their antecedent acylCoA species through 

carnitine acyltransferases in subcellular organelles (primarily mitochondria) (85, 86). The 

formation of acylcarnitines from CoA esters can range from long to very short (i.e. 

acetylCoAacetylcarnitine, C2). Shorter, odd chain carnitine species (C3 and C5) derive 

primarily from amino acid catabolism whereas C4 (butyrylcarnitine) may be generated from fatty 

and amino acid catabolism (85). The metabolic origin of certain stereoisomeric/isobaric carnitine 

species can be elucidated through LC/tandem-MS. For example, C4-OH carnitine can be 

generated from L-3-hydroxybutyrate (D-C4-OH-carnitine), L-3-hydroxybutyrylCoA (L-C4-OH-

carnitine) or L-3-hydroxyisobutyrylCoA (L-isoC4-OH-carnitine) (87).  

 Certain genetic and nutritional states may also generate an “overloaded”-like condition in 

the liver. As discussed briefly in the subsequent section, genetic inactivation of VHL impairs 

respiration, hepatic glucose production, and elevates short-even chain acylcarnitines (88). 

Chronic overnutrition increases TCA cycle flux, short-even/odd and long chain acylcarnitines, 

and distorts mitochondrial function in the liver (35). Though these conditions are drastically 

different, the quantity of available substrate may exceed its rate of removal by the TCA cycle.        

 

Lessons from Genetic Models Concerning the Coupling of  

Substrate Utilization with Gluconeogenesis 

 A relationship between oxidative metabolism and glucose production has been observed 

for decades (63, 89–93). Glucagon stimulates fat utilization in the liver to support 

gluconeogenesis and ketogenesis (11, 52). In the absence of changes in insulin and glucagon, an 

elevation in circulating fatty acids is sufficient to stimulate an increment in gluconeogenesis (94, 



12 
 

95). The delivery of agents that impede CPT1-mediated fatty acid transport and, consequently, β-

oxidation abrogate the effects of fatty acids on gluconeogenesis (96, 97). The metabolic products 

of oxidation are long proposed regulators of gluconeogenic reactions (98). Multiple control 

mechanisms are in place to accelerate or throttle flux through oxidative, anaplerotic, and 

cataplerotic pathways during changes in substrate availability and demand (99–102).  

 The Burgess group at UTSW has implemented state-of-the-art tracer technologies in 

genetic mouse models to investigate the coupling of metabolic fluxes in the liver. 

Phosphoenolpyruvate carboxykinase (PEPCK) links TCA cycle flux with gluconeogenesis by 

converting oxaloacetate to phosphoenolpyruvate (PEP). Unless returned to the TCA cycle 

through pyruvate (103), PEP undergoes a series of chemical conversions to yield glucose 

(Fig.1.1). Elimination of liver cytosolic PEPCK (PEPCK) and, consequently, a major 

cataplerotic flux from the TCA cycle results in severe aberrations in oxidative metabolism. 

Despite a compensatory increase in enzymes that control fat oxidation and the TCA cycle, liver 

PEPCK deletion causes marked steatosis, a decrease in ketones, and an increase in circulating 

alanine and fatty acids (104). These changes in metabolites are symptomatic of severe decreases 

in oxidative metabolism as evidenced by the 10-fold reduction in TCA cycle flux, a more 

reduced mitochondrial status, and impaired oxygen consumption; as expected, gluconeogenic 

glucose production from PEP is virtually abolished from the livers of PEPCK knockout mice 

(105). To a degree, these studies corroborate results obtained through acute, pharmacological 

PEPCK inhibition in vivo (106). Without PEPCK, in fact, glucagon does not exert its depletive 

effect on liver energy state (16).  

 The reciprocal question—does impaired oxidative metabolism impinge on cataplerosis-

linked gluconeogenesis—was approached with similar methods in mice lacking PGC1α. In this 
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regard, PGC1α-deficient livers are useful because they exhibit an ordinary fasting-mediated 

increase in key enzymes for gluconeogenesis but a decrease in those that control the TCA cycle 

and OXPHOS (107). Whole-body deletion of PGC1α induces liver steatosis, impairs hepatocyte 

fat oxidation and increases triglyceride synthesis (108). Elegant studies in the perfused liver 

demonstrate that reduced rates of TCA cycle flux, O2 consumption, β-oxidation, cataplerosis, and 

pyruvate cycling correspond to a drop in gluconeogenesis from PEP. The deficit in substrate 

utilization imposed by PGC1α deletion is coupled to trend toward a reduction in ATP and ADP 

(107). In effect, these studies provide evidence that impairments in gluconeogenic flux to 

glucose and substrate utilization can result from a primary deficit in oxidative capacity.   

 Nutrient utilization requires the coordination of neurohormonal inputs with enzymatic 

and transcriptional activity in the liver. The peroxisome proliferator-activated receptor α 

(PPARα) regulates the expression of a multitude of enzymes involved in multiple loci of lipid 

handling in the liver (109). PPARα-/- mice exhibit similar impairments in indices of hepatic 

metabolism as PGC1α-/- mice. Fasting results in hypoglycemia and hypoketonemia with marked 

lipid accumulation in the liver (110, 111). Glucagon, which upregulates PPARα expression, fails 

to acutely stimulate fat oxidation in PPARα-/- hepatocytes (21). Global metabolomics reveals 

that impairments in oxidation associate with altered substrate selection in PPARα-/- mice (85).   

 The resemblance between these genetic models and features of the hepatic response to 

“signaling-hypoxia” are unmistakable. von Hippel-Lindau protein (VHL) directs  the hypoxia-

inducible factors 1, 2, and 3α for degradation under normoxia (112). VHL deficiency results in 

hepatic steatosis, impairments in ketogenesis, respiration, and glucose production (112, 113). 

Accordingly, PPARα target and PGC1α gene expression reduce with VHL deficiency in the liver 

(112).  
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 These models emphasize the intricate relationship between substrate availability, 

utilization, and glucose production in the liver. Cataplerosis-linked gluconeogenesis is attenuated 

by impairments in oxidative metabolism. Reciprocally, anaplerosis and oxidation are limited by 

defects in cataplerotic flux to PEP. Thus, reactions of the pyruvate and TCA cycles yoke 

anaplerosis and fat oxidation with gluconeogenic glucose production in the liver (114). The 

synchronization of these events is visible in physiology during fasting and exercise, when 

substrate supply and utilization fuel gluconeogenesis.  

 

An Overlap in Energy Sensor Function and Challenges that Arise  

from the Use of Pharmacological AMPK Activators 

 Physiological conditions with sustained or elevated glucagon action result in the uptake 

and utilization of substrates in the liver. Despite this surplus of oxidizable substrate, a decrease in 

the AMP/ATP ratio and an increase in AMPK activation are observable (28, 115). Thus, it is 

unsurprising that absolute and relative NAD+ and NADH levels might also fluctuate during 

acute, physiological energy stress (116, 117). As discussed, AMPK responds to an increase in the 

AMP/ATP ratio by controlling signaling pathways that regulate ATP consumption and synthesis. 

Sirtuins (Sirts), which require NAD+ as a substrate, act on a range of targets that influence 

hepatic metabolism (117). Sirt1shares a degree of overlap with AMPK signaling and function 

(117). Increases in the expression and activity of Sirts1 and 3 and AMPK activation may be 

observable under similar pharmacological, nutritional, and hormonal states (16, 116–119). The 

outcome of crosstalk between both systems appears to be the protection of energy status by 

modulating catabolic and anabolic signaling networks (117).  
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 A number of models have been proposed to explain the congruence between AMPK and 

Sirt1 function. Some propose that AMPK stimulates Sirt1 activity through a NAMPT (120) or β-

oxidation dependent (121) mechanism. Many of the metabolic benefits of resveratrol—a 

compound that targets Sirt1—appear to be dependent on the presence of AMPK in vivo (122). 

The mechanisms that substantiate this relationship require further investigation. For example, 

AMPK’s acute effect on transport-mediated β-oxidation would appear to promote the production 

of NADH from NAD+ (Fig. 1.3). Moreover, AMPK supports glucose uptake in the muscle 

during contraction, presumably to sustain the ATP pool (123). The relationship between AMPK 

and Sirt1 is further complicated by studies demonstrating that Sirt1 promotes AMPK activation 

(124). Much work still remains in elucidating the relationships between the aforementioned 

enzymes in different physiological states, organs and cellular compartments. Furthermore, a 

complete description of these complex interactions is well beyond the scope of this dissertation.  

 

Pharmacological AMPK Activators—the “ Known Unknowns” 

There are limitations in the investigation of energy sensors in metabolism using non-

specific pharmacological activators (4, 34, 122, 125–128). Biguanides—such as metformin—

which inhibit respiratory complex I (128) and glucagon signaling (4), may exert opposing effects 

on AMPK and Sirt activity. Inhibitors of respiration may decrease NADH and FADH2 oxidation 

and, consequently, impair ATP synthesis. Indeed, metformin impairs respiration and increases 

the NADH/NAD+ (Lact/Pyr and 3-OH/AcAc) (125) and AMP/ATP ratio in hepatocytes (34). 

One might hypothesize an inverse relationship between Sirt and AMPK activity in these 

conditions—the former low and the latter high. However, dose-dependent and compartmental 

effects of these pharmacological agents may obscure their mechanisms of action.          
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 Many of the effects of AICAR resemble those of biguanides. For example, AICAR 

reduces hepatic ATP and alters the adenine nucleotide pool (33, 34) and inhibits respiration 

(127). Metformin and AICAR exert control over nucleotide sensitive pathways through the 

aforementioned mechanisms. The conversion of AICAR to ZMP requires ATP (129). ZMP 

mimics the effects of AMP, which triggers allosteric AMPK activation and phosphorylation 

(130). Thus, to borrow a phrase from former US Secretary of Defense Donald Rumsfeld, “there 

are known unknowns—that is to say we know there are some things we do not know” 

concerning the AMPK-dependent and independent effects of AICAR and metformin on 

metabolism. Defining these relationships poses a significant challenge (4, 34), when one 

considers the breadth of enzymes that require ATP for catalysis or are adenine-nucleotide 

responsive (e.g. Phosphofructokinase (131), Fructose-1,6-bisphosphatase(39), and Glycogen 

Phosphorylase (132)). 

 Metformin is used globally to treat type II diabetes. The current diabetes and obesity 

epidemic make a mechanistic understanding of the effects of antidiabetic compounds imperative. 

As AMPK activators, AICAR and metformin actions are generally associated with AMPK 

activation and signaling (133–138). 

 

AMPK Activation is a Component of Exercise-Mediated Reversal of Fatty Liver  

 Fatty liver is a condition of excessive lipid infiltration in the liver (>5%) and closely 

associates with the features of metabolic syndrome (139, 140). Fatty liver is present in 50-60% 

of T2DM patients, yet fatty liver does not present easily identifiable symptoms (139). Fatty acids 

in their “free,” unesterified or CoA derivatives may exert lipotoxic effects in the liver (141). The 

mechanisms linking fatty acids with liver injury are extensive (142). Elevated fatty acid β-
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oxidation is a proposed component of pathological oxidative stress (142). However, fatty acids 

may accelerate TCA cycle flux and stimulate ROS formation independent of their entry into the 

mitochondria (101).Though liver lipid accumulation coincides with metabolic stress, the 

formation of inert triglycerides may protect the liver from the lipotoxic effects of fatty acids 

(143, 144).  

 Obesity drastically alters hepatic metabolic flux in humans and rodents. de novo 

lipogenesis becomes a larger contributor to triglycerides secreted by the liver (145). Recent in 

vivo flux studies performed in humans (146) and rodents (35) have profoundly contributed to a 

modern understanding of hepatic metabolism in states of overnutrition. An increase in free fatty 

acid turnover in fatty liver corresponds to conditions with elevated anaplerosis, TCA cycle flux, 

and gluconeogenesis (146). The metabolic dysregulation caused by high-fat feeding disrupts the 

coupling of ATP production with O2 consumption (mitochondrial efficiency) in liver 

mitochondria (35). To compensate, increased rates of TCA cycling may generate enough 

NADH/FADH2 to increase the NADH/NAD+ ratio (147). The elevation in oxidative metabolism 

may provide for increased electron deposition in an inefficient electron transport system (35).   

 High-fat feeding in rodents results in a pathological increase in the hepatic AMP/ATP 

ratio (16); likewise, aberrations in ATP homeostasis are observable in diabetes (31) and NASH 

(32)  in humans. Exercise intervention improves indices of “hepatic health”, alters liver lipid 

composition and signaling, and/or reduces liver adiposity (36, 148–153). Exercise modalities 

permit acute and chronic intervention strategies. For example, acute intervention (7days, 85% 

max HR, 60min in duration) increases liver polyunsaturation and circulating HMW adiponectin 

(149). Chronic, voluntary exercise reduces hepatic triglycerides and activates AMPK (36). 

Moreover, early intervention in the development of fatty liver prevents liver triglyceride 
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accumulation, steatosis, and improves mitochondrial fat processing (151, 154). The physiological 

effects of exercise training closely associate with an anti-lipogenic, pro-oxidative program in the 

liver (151, 154).  

AMPK’s putative role in hepatic fat metabolism (Fig. 1.3) may link exercise intervention 

with the amelioration of fatty liver. Hepatic AMPK is activated in conditions where whole-body 

nutrient demand and substrate processing in the liver increase. Extra-hepatic nutrient demand 

provides an outlet for accelerated glucose and associated fluxes in the liver. In this setting, 

AMPK may route fatty acids and, consequently, acetylCoA toward oxidation and ketogenesis 

and reduce triglyceride assembly, fatty acid and cholesterol biosynthesis. Thus, AMPK may 

work to utilize circulating lipids and reduce intrahepatic fat stores to accommodate the energetic 

demands of exercise, thereby reducing fatty liver.    

 

AMPK and Hepatic Glucose Production: “A Mystery Inside an Enigma” 

 The role of AMPK signaling in control of glucose release from the liver can be 

paraphrased by the words of Sir Winston Churchill. It is a mystery inside an enigma. The results 

obtained in transgenic and mutant mice are contrary to what one might expect from physiological 

observations. Hepatic LKB1 deletion causes hyperglycemia and glucose intolerance (137). 

Likewise, liver-specific AMPKα2 deletion results in glucose intolerance, albeit to a lesser degree 

than LKB1
-/- 

mice (155). Moreover, overexpression of AMPKα2 in the liver decreases fasting 

and fed glucose levels and the transcripts encoding the PEPCK and G6Pase enzymes (71). The 

phenotype of these genetic models would suggest that endocrine mediated activation of AMPK 

(e.g. glucagon) would result in reduced hepatic glucose production. The enigma is that AMPK is 

activated in physiology at times when glucose production is high.  
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 Mechanistically, glucagon stimulates the gluconeogenic program in a PKA dependent 

manner. PKA phosphorylates CREB (156, 157) which upregulates PGC-1α. PGC-1α, in turn, 

acts to increase the expression of gluconeogenic enzymes (158, 159) and glucose production in 

hepatocytes (159). PGC-1α’s ability to co-activate gluconeogenic gene expression is lost in the 

absence of hepatocyte nuclear factor 4α (HNF4α) (160). Likewise, PGC-1α co-activates FOXO1 

which augments gluconeogenic gene expression in FAO cells (161). AMPK disrupts HNF4α 

activity through phosphorylation(162) and AICAR-mediated activation of AMPK coincides with 

reductions in HNF4α protein levels and target gene expression (Fig. 1.5) (163). Liver-specific 

knockout of PGC-1α attenuates fasting-mediated increases in gene expression for the PEPCK 

and G6Pase enzymes (164). However, livers from PGC-1α-null mice have impaired 

gluconeogenic glucose production from PEP, despite normal fasting levels of the aforementioned 

transcripts (107).  

 CRTC2 (TORC2), a transcriptional co-activator of CREB, could also function as a 

regulatory point between glucagon, insulin, LKB1, and AMPK signaling in gluconeogenesis 

(165, 166). While glucagon and forskolin promote CREB-CRTC2 mediated upregulation of 

gluconeogenic gene transcription, AMPK phosphorylation sequesters CRTC2 in the cytoplasm 

which reduces its activity (Fig. 1.5) (166). Hepatic deletion of LKB1 and AMPK decreases 

CRTC2 phosphorylation (34, 137). The absence of hepatic CRTC2 results in reductions in 

gluconeogenic gene expression during fasting. CRTC2-null hepatocytes have impaired glucagon-

stimulated glucose production (167). 

 Recent studies explore a role for Class IIa HDACs and FOXO in glucagon-stimulated 

gluconeogenesis (168, 169). In response to glucagon, Class IIa HDACs translocate into the 

nucleus, recruit HDAC3, and promote FOXO-dependent gene transcription of gluconeogenic 
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targets. LKB1-dependent kinases (e.g. AMPK) phosphorylate and inactivate Class IIa HDACs 

(HDACs 4/5/7). Interestingly, treatment of hepatocytes with glucagon reduces phosphorylation 

of HDACs4/5/7 at the sites of LKB1-dependent kinase action. shRNAs targeting these HDACs 

improve glucose tolerance in db/db, ob/ob, and high fat fed mice. By increasing the nuclear entry 

of these HDACS, glucagon could promote, at least in part, FOXO dependent-gluconeogenic 

gene transcription—another avenue of intervention for glucagon and potentially AMPK in 

hepatic glucose production (168). 

 These genetic models and mechanistic data support a regulatory role for AMPK in 

hepatic glucose production. However, the results obtained with these genetic models do not, in 

fact, uniformly predict the metabolic response of the liver to the hormones or conditions that 

regulate the activity of AMPK under physiological conditions. As described earlier, glucagon 

plays an integral role in maintaining glucose homeostasis by sustaining glucose production 

during the adaptive response to fasting and exercise. Paradoxically, a genetic increase in AMPK 

activity in the liver results in an inhibition, and not an increase, in glucose release from the liver 

(71). 

 Recent work in liver AMPKα1α2/LKB1 knockout models reveal that the glucose 

lowering effects of metformin and adiponectin might be AMPK independent (4, 34, 170, 171). 

Interestingly, mice lacking liver AMPKα1α2 have similar fasting and fed blood glucose levels as 

WT mice (34). Germline removal of the AMPKβ1 subunit results in significant impairments in 

hepatic AMPKα1α2 activity (172). Despite elevations in basal gluconeogenic gene transcription, 

hepatocytes isolated from these mice exhibit normal basal glucose production and similar 

reductions in glucose output versus control mice when stimulated with the AMPK activators 

A769662 and AICAR (173). The potential overlap in signaling and function between AMPK and 
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other LKB1-dependent kinases further complicates data interpretation from in vivo and in vitro 

models of AMPK activation or deletion (174). For example, overexpression of salt-inducible 

kinases (SIK) 1 and 2 reduces fasting glucose levels and gluconeogenic gene expression (166). 

Moreover, both impair CRTC2 activity by promoting its phosphorylation at S171 and 

sequestration in the cytoplasm (165, 166, 175).  

 At present, the results in the literature do not produce sufficient consensus to assign a 

definitive role for hepatic AMPK in glucose production. Investigators have often made the 

assumption that changes in gene expression are equivalent to changes in hepatic glucose flux. 

This is not necessarily true, as mRNA levels of key gluconeogenic enzymes can be poor 

surrogates for gluconeogenic flux. This is best illustrated by experiments using perfused livers 

from 24hr fasted mice with graded reductions in PEPCK content (114). Isotopic tracers were 

used to determine hepatic glucose and TCA cycle fluxes. Metabolic flux analysis of this data 

indicates that PEPCK has a rather low control coefficient (0.18) for gluconeogenesis from the 

TCA cycle (114). Although these studies are confined to a very specific set of circumstances (i.e. 

perfused livers from long-term fasted mice), they do emphasize the need to be cautious when 

ascribing changes in gene and protein expression to changes in flux.   

 

Convergence of AMPK and Insulin Signaling Pathways in the Liver 

 The balance between anabolism and catabolism must be tightly regulated in an organ as 

dynamic as the liver. Insulin stimulates the synthesis of protein, lipids, and glycogen. By 

reducing hepatic glucose output, insulin maintains euglycemia during feeding. Insulin and 

AMPK signaling pathways overlap at key signaling loci to maintain organ homeostasis. An 

imbalance in insulin and AMPK signaling compromises fuel fluxes and is observable in several 
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metabolic stresses (diabetes, obesity, under-nutrition). Components of the insulin signaling 

pathway and AMPK signaling will be briefly juxtaposed to provide a broad perspective of how 

endocrine inputs may regulate central metabolic processes in the liver.  

  

Direct Regulation 

 Insulin signaling has been shown to reduce AMPK activity in the liver (176). There is 

evidence that Akt/PKB-mediated phosphorylation of AMPK (α1Ser
485/

α2Ser
491

) results in a 

decrease in AMPK-Thr
172

 phosphorylation following insulin pre-treatment (177). Interestingly, 

AMPK Ser
485

 phosphorylation is elevated while AMPK-Thr
172

 phosphorylation remains 

unaltered during hyperinsulinemic clamps in the dog—an effect reversed by glucagon, 

hypoglycemia, or both (178). A direct relationship between Akt phosphorylation and inhibition 

of AMPK has been further substantiated recently (Hawley et al., 2014 Biochem J).  

 

 mTORC1 

 mTORC1, a central controller of growth, is activated by insulin, growth factors, and 

nutrients with the result that translation is increased. Insulin promotes mTORC1 signaling by 

inhibiting TSC1/TSC2 complex activity, an endogenous mTORC1 repressor (179).  During low 

nutrient availability, however, increases in AMPK activity reduce mTORC1 signaling by 

promoting TSC1/TSC2 activity and raptor dissociation from mTOR—as previously described. 

The reciprocity of insulin and AMPK signaling creates sensitive regulation of protein 

anabolism/catabolism in the liver. As noted, glucagon increases AMPK activation and has been 

shown to dominantly repress mTORC1 in hepatocytes exposed to both hormones (76).  
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Glucose and Lipid Metabolism 

 There has been considerable research on the acute and chronic action of insulin and 

AMPK on hepatic glucose production. Insulin and AMPK share mutual and also use exclusive 

signaling pathways to reduce the expression of gluconeogenic enzymes. AMPK and related 

kinases have been suggested to regulate hepatic glucose production through the inhibition of 

CRTC2 (166), regulation of SHP (180), and, more recently, inhibition of Class IIa HDACs 

(168). Insulin has been shown to also obstruct a functional CREB-CRTC2-CBP/p300 complex, 

thus decreasing gluconeogenic gene upregulation (156). Insulin inhibits CRTC2 activity through 

the activation of SIK2—which, phosphorylates and promotes CRTC2 degradation (165). Insulin 

also inhibits gluconeogenic gene expression (181) by excluding FOXO1 from the nucleus (182, 

183) and by suppressing PGC-1α’s impact on gluconeogenic genes (161, 184). 

 Lipid metabolism and synthesis highlight another juxtaposition of insulin and AMPK 

action in the liver. As previously discussed, several lines of evidence suggest that AMPK acutely 

and chronically suppresses lipid biogenesis while promoting fat oxidation. Through increases in 

cAMP, glucagon and epinephrine activate AMPK, which rapidly inactivates ACC in the liver. 

On the other hand, insulin decreases AMPK activity (176) while increasing ACC activity (176, 

185). The precise mechanism for insulin-mediated activation of ACC remains unresolved (55) 

but could be due to both covalent and allosteric modifications.  

  Transcriptional regulation of pro-lipogenic genes by AMPK and insulin converge on 

SREBP-1c. As mentioned, glucagon (66) and AMPK (67) work to reduce SREBP-1c expression 

and activity. Thus, intermittent glucagon-stimulated activation of AMPK such as that seen during 

regular exercise (36) could generate a pro-oxidative, anti-lipogenic tone in the liver through the 

activation of PPARα and the inhibition of mTORC1 and SREBP-1c. In contrast, insulin plus 
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glucose increase Srebf1c transcription and the expression of target genes (66, 186). Insulin 

mediated-control of hepatic lipogenesis has focused on SREBP-1c in the normal and insulin-

resistant states (22). Recent work demonstrates that insulin works through mTORC1 dependent 

and independent mechanisms to promote hepatic lipogenesis (186–188). 

 

AMPK at the Helm in the Coordinate Control of Metabolic  

Flux and Energy Production in the Liver 

 Fasting and exercise generate an AMPK activating state in the liver (16, 28–30, 36, 62, 

115). In these conditions, hormone-supported nutrient uptake and utilization in the liver sustains 

hepatic glucose production. A reduction in insulin and increase in adrenergic tone promotes 

lipolysis in adipose tissue and liberates amino acids from the muscle. Furthermore, lactate and 

glycerol are utilized for gluconeogenesis. Glucagon plays an indispensable role in substrate 

uptake and utilization in the liver (5), although it does not substantially contribute to the 

availability of substrate in the plasma (11). Liver PEPCK deletion impairs glucagon’s ability to 

discharge hepatic energy state and activate AMPK (16). Without PEPCK, in fact, reduction in 

the liver is high and TCA cycle flux, anaplerosis, ketogenesis (107), and AMPK activation are 

low (16). 

 Several molecular signaling mechanisms support a role for AMPK in coordinating the 

effects of glucagon on metabolic flux in the liver. Glucagon supports fatty acid utilization by 

promoting flux through CPT1; specifically, glucagon reduces the inhibition of CPT1 by 

malonylCoA (52). Fatty acid transport into the mitochondria is coupled with an energetic state 

that inhibits lipogenesis and supports ketogenesis. β-oxidation appears coupled with anaplerosis 

and, consequently, cataplerosis-linked gluconeogenesis (35, 105, 107). Furthermore, glucagon 
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regulates SREBP-1c activity (66, 189) and, thus, may reduce the liver’s lipogenic capacity. An 

extensive overlap exists in the regulatory control of hepatic metabolism by glucagon and AMPK 

(Table 1.1).  

    

Table  1.1  
 

The putative effect of AMPK activity on mediators of metabolism in the liver 

 

1) AMPK phosphorylates and inhibits ACC activity and decreases malonylCoA 

concentrations (190, 191)    

 

2) AMPK interferes with HMGCoAR (192–194) and SREBP2 (67) activity and, thus, 

reduces the movement of actetylCoA/HMGCoA through the isoprenoid/cholesterol 

synthesis pathway 

 

3) AMPK phosphorylates and inhibits SREBP activity (67, 195), thereby reducing the liver’s 

lipogenic capacity 

 

4) AMPK promotes mitochondrial biogenesis and functions (126, 127, 196) 

 

5) AMPK enhances TSC2 activity (78) and phosphorylates Raptor (79) to deactivate 

mTORC1 and inhibit protein synthesis (73)  

 

6) AMPK promotes autophagy through the inhibition of mTORC1 and the activation of Ulk1 

(80, 81) 
 

 

 

 The metabolic and molecular evidence suggests that AMPK acts as an arbiter of 

oxidative, anaplerotic and cataplerotic fluxes in the liver. However, 15+yrs of research using 

pharmacological AMPK activators has placed AMPK at the center of a glucoregulatory paradox 

(Fig. 1.5). The acute effect of glucose lowering agents occurs within minutes of administration 

(33) which corresponds to AMPK activation. Until recently, mechanisms for AMPK-mediated 

inhibition of glucose production have primarily been transcriptional (CRTC2, HNF4α, Class II 

HDACs). However, acute AMPK activation supports a signaling program that fuels, rather than 

inhibits, hepatic glucose production. We hypothesize AMPK is essential for the coordinated 
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control of oxidative, anaplerotic/cataplerotic, and glucose flux in the liver but not for the 

inhibition of glucose production by AICAR.   

  

The aims of this thesis are designed to  

I. Investigate AMPK’s role in the metabolic coupling of oxidation, 

anaplerosis/cataplerosis, energy status and hepatic glucose production in vivo 

 

II. Distinguish between the AMPK-dependent and independent effects of an acute, 

pharmacological elevation in nucleotide monophosphate (NMP) on hepatic 

metabolism in vivo 

 

III. Establish whether AMPK is essential for the amelioration of fatty liver in the context 

of exercise training  
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Figure 1.1 –Energy and cofactor requiring processes associated with gluconeogenesis.  Fluxes associated 

with gluconeogenesis utilize ATP and reducing equivalents. In the absence of PEPCK, TCA cycle flux, 

anaplerosis, and ketogenesis are impaired (104, 105) and elevated glucagon action does not deplete ATP (16). 

Reactions that compensate for increases in ATP demand were excluded for simplicity. 
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Figure 1.2 – Parameters regulating adenylate energy balance. The ratio of AMP/ATP varies with the 

square of the ratio of ADP/ATP and, as a result, is subject to large fluctuations. In conditions where ATP 

demand exceeds synthesis [Rxn (1) > Rxn (3)], the adenylate kinase reaction will proceed from left to right. A 

subtle rise in ADP (or drop in ATP) magnifies the increase in the AMP/ATP ratio. Adapted from (38).  
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Figure 1.3 – Putative regulation of hepatic lipid metabolism through AMPK. AMPK orchestrates an anti-

lipogenic, pro-oxidative signaling program in the liver. Glucagon-mediated AMPK activation appears to 

navigate fatty acids toward oxidation and ketogenesis while inhibiting de novo fatty acid and cholesterol 

synthesis. It is acknowledged that isoform specific functions of ACC have been proposed (191) which have 

been consolidated here.       
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Figure 1.4 – Putative mechanism for the role of AMPK in amino acid metabolism. Glucagon regulates the 

extraction and utilization of certain amino acids. Specific amino acids are considered to be anaplerotic, as their 

entry into the TCA cycle results in a net provision of carbon. AMPK regulates the activity of mTORC1 and 

Ulk1, which may route amino acids from protein synthesis and autophagy into anaplerotic pathways.  
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Figure 1.5 – Paradox of AMPK activation in physiology and signaling. AMPK activation is highest in 

physiological conditions characterized by an increased reliance on gluconeogenesis, ketogenesis, and 

ureagenesis. Acute AMPK activation would appear to route fat and amino acids toward oxidation (Figs. 1.3, 

1.4), thus providing carbon and ATP for gluconeogenesis. However, in vitro studies have demonstrated that 

AMPK works to downregulate the transcription of gluconeogenic genes. 
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Chapter II 

 

RESEARCH METHODS AND MATERIALS 

 

Mouse Models 

 All protocols and procedures were approved by the Vanderbilt University Animal Care 

and Use Committee. All mice for the studies described herein were generated on a C57Bl/6 

background with loxP sites flanking the AMPKα1 and α2 (α1α2
lox/lox

) catalytic subunits 

(generated by M. Foretz and B. Viollet) ±Albumin Cre Recombinase. Breeder pairs were 

maintained in Vanderbilt’s mouse colony on breeder chow (Table 2.1) to generate pups for 

experimentation. Pups were weaned on a standard chow diet (Table 2.1) at 3wks of age and 

divided by sex. Prior to weaning, mice were individually labeled by ear punching and a small tail 

clip was removed for genotyping. DNA was isolated using Qiagen’s DNEasy Blood and Tissue 

DNA isolation kit; PCR was performed using the primers listed in Table 2.2 to verify the floxing 

of α1 and α2 genes in the presence or absence of Albumin Cre Recombinase. All mice were 

maintained on a 12:12hr light:dark cycle in a temperature (23°C) and humidity controlled 

environment. Mice utilized in the investigation of AMPK’s role in exercise-mediated reversal of 

fatty liver were transferred to the Mouse Metabolic Phenotyping Center (MMPC) at Vanderbilt 

and were fed a high-fat diet (Table 2.1) at 6wks of age.  

        

 

         Table 2.1 – Mouse diet macronutrient composition 

 

 

 

 

 

 

Diet Fat (%Calories) Carbohydrate (%Calories) Protein (%Calories) 

Chow 13.5 58.0 28.5 

Breeder Chow 25.3 54.9 19.8 

High Fat 59.0 26.0 15.0 



33 
 

 

 

Table 2.2 - PCR primer sequences for floxed AMPKα1α2 catalytic subunits and Albumin Cre  

Gene Primer Sequence (5’- 3’) Amplicon Length 

AMPKα1 (+) TATTGCTGCCATTAGGCTAC 
586(WT); 682(Floxed)bp 

AMPKα1 (-) GACCTGACAGAATAGGATATGCCCAACCTC 

AMPKα2 (+) GCTTAGCACGTTACCCTGGATGG 
200(WT); 250(Floxed)bp 

AMPKα2 (-) GTCTTCACTGAAATACATAGCA 

Cre Recombinase (+) CCTGGAAAATGCTTCTGTCCG 
400bp Cre Recombinase (-) CAGGGTGTTATAAGCAATCCC 

   

 

Surgical Procedures 

 All equipment and surgical spaces were sterilized to generate an aseptic environment. 

Mice were maintained under continuous anesthesia (2% isofluorane) through a nose-cone. Hair 

was removed from the base of the chin to the upper abdomen for catheter insertion; the area 

extending from the base of the skull to the interscapular region of the back was also shaven for 

catheter externalization. 

 Sites for incisions were sterilized with alcohol and betadine. Mice were positioned on 

their backs and 5mm vertical, midline incisions were made cephalic to the sternum. Forceps were 

used to reflect the sternomastoid muscle and expose the left carotid artery. Arteries were isolated 

away from the vagus nerve and ligated at the cephalic end with a silk suture. An additional suture 

was loosely knotted at the caudal end of the artery. The caudal end was clamped and the artery 

was cut just below the ligated end. The catheter tip was inserted and extended to the clamp. The 

clamp was slowly released and the catheter was extended to the silastic-PE junction. Both 

ligatures were tied securely around the catheter and line patency was checked with a sampling 

syringe.        

 To insert the right jugular vein catheter, another insertion was made 5mm from the 

midline and 2mm caudal to the first insertion. Tissues were moved with forceps to expose the 

jugular vein, which was ligated at the cephalic end and loosely knotted at the caudal end with 
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silk suture. A cut was made below the cephalic ligature and catheters were inserted up to the 

restraining bead, which was secured by tightening a suture behind the bead.    

 Catheters were tunneled out the back of the mouse and externalized through a third 

incision made between the shoulder blades. Catheters were secured to stainless steel connectors 

on the MASAtm. The MASAtm was then inserted into the incision between the shoulder blades. 

Nylon suture was used to close incisions. Catheters were checked using heparinized saline and 

mice were placed in bedded cages warmed with a heating pad. Mice were observed daily for 

symptoms of distress (body weight loss, abnormal grooming, etc.) and mice were studied 

between 5-9days post-surgery. A surgery procedural guide has been detailed thoroughly 

elsewhere (197).  

 

In Vivo Experiments 

 

5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) Euglycemic Clamp 

 AICAR is an adenosine analogue that, upon entry of the cell, is phosphorylated by 

adenosine kinase to yield ZMP (129). ZMP is characterized as an AMP analog due its structural 

and functional similarities, specifically its ability to allosterically activate AMPK, promote its 

phosphorylation and activation (129). AICAR has been demonstrated to inhibit endogenous 

glucose production in vivo (133) and glucose production from hepatocytes. The AICAR-

euglycemic clamp was designed to elevate circulating AICAR levels (Fig. 2.6) and, 

consequently, intraorgan ZMP concentrations in a setting of well-controlled glycemia. 

 On the day of study mice were placed in bedded containers without food and water 

between 07:00 and 08:00 for a 5hr fast (t=-300 to 0min). Infusion lines were connected to the 
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indwelling catheters 90min prior to infusions to minimize stress. AICAR (Toronto Research 

Chemicals) or Saline (Sal)-clamps were performed similar to previously described insulin-

clamps (198) with minor modifications. At t=-90min, a primed-continuous infusion of [3-

3
H]glucose (2μCi•min

-1 
for 1.2min then 0.04μCi•min

-1
 until t=0min) was administered to 

determine 5hr fasting and clamp glucose kinetics. Samples were taken at t= -15 and -5min to 

determine basal blood and plasma parameters followed by the start of a continuous infusion of 

donor erythrocytes to prevent a fall in hematocrit during the clamp. At t=0min, AICAR or Saline 

was delivered as a primed (40mg•kg
-1

), continuous infusion (8mg•kg
-1

•min
-1

) followed by a 

variable infusion of 50% dextrose to clamp blood glucose levels at 110mg•dL
-1

. The AICAR 

infusion rate was selected to parallel the conditions of earlier clamps in rodents (133, 199), 

which afforded a more robust basis for comparing AMPK-dependent and independent changes in 

metabolism. The 0.04μCi•min
-1 

[3-
3
H]glucose infusion was reduced to 0.02μCi•min

-1
 and [3-

3
H]glucose was diluted in the glucose infusate (0.06μCi•μl

 -1
) to minimize fluctuations in specific 

activity during the clamp steady state. Arterial glucose was monitored from a 5μL blood sample 

(AccuCheck Advantage, Roche Diagnostics) every 10min and the glucose infusion rate (GIR) 

was adjusted to account for deviations from 110mg•dL
-1

. Glucose kinetics and plasma 

metabolites were determined from arterial samples taken during the clamp steady state (t=80-

120min). Blood samples were collected in EDTA coated tubes, centrifuged, and the plasma layer 

was stored at -20°C for analysis.  
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Stable-Isotopic Infusions   

Molecular Modeling 

To date, the most comprehensive method to asses hepatic glucose and oxidative fluxes in 

vivo and ex vivo employs 
2
H2O, [

13
C3]propionate, [3,4-

13
C2]glucose, and NMR (35). This 

technique maps rates of glucose production from glycerol, PEP, glycogen, and TCA cycle-

related fluxes in vivo. Despite the wealth of information provided in the analysis, the time and 

financial constraints of NMR have limited the broad application of this method. Moreover, the 

plasma required for NMR analysis exsanguinates the entire blood volume of the mouse. Other 

methods that measure these fluxes in humans are, to date, impossible in conscious, unrestrained-

unstressed mice (200). 

Thus, we sought to (1) transform the existent NMR technique to a method more 

appropriate for genetic mouse models and (2) develop a flux model of hepatic oxidative and 

glucose metabolism in vivo amenable to changes in tracers and flux pathways. Surgical methods 

(see surgical procedures) developed at Vanderbilt limit the obfuscating variable of stress often 

present in in vivo mouse research. We hypothesized that carbon flux through oxidative and 

glucose-synthetic biochemical pathways (Fig. 2.1) could be determined by measuring isotopic 

enrichment of glucose through GC/MS and performing mass isotopomer and metabolic flux 

analysis (MFA). 

A method developed by Antoniewicz et al. (201) yields 3 glucose derivatives that allow 

for independent detection of 6 analytically useful fragments (Fig. 2.2) for isotopomer analysis. A 

model composed of mass balance equations was constructed to (1) determine positional 

enrichment of glucose and (2) analyze the flow of carbon and hydrogen atoms into plasma 

glucose from oxidative, anaplerotic and cataplerotic pathways. Dr. Jamey Young guided the 
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construction of the flux model (Vanderbilt University) in the Isotopomer Network 

Compartmental Analysis (INCA, devised by Dr. Jamey Young) program. Atomic exchanges and 

tracer incorporation in a biochemical reaction network are specified by INCA users. INCA 

analyzes glucose fragment enrichment using a least squares regression in the context of the 

reaction network. MFA was performed by minimizing the sum-of-squared residuals between 

simulated and experimentally determined measurements (202).  

Isotopic tracers with labeled carbon and hydrogen atoms (
2
H2O, [6,6

2
H2]glucose, and 

[
13

C3]propionate) were used in the studies herein. Thus, the model accounts for carbon and 

hydrogen atom transitions in the TCA cycle, anaplerotic/cataplerotic reactions, gluconeogenesis 

from the PEP, gluconeogenesis from glycerol, and glucose derived from glycogen (Fig. 2.1). 

Metabolite chemical formulas in the reaction network were restricted to traceable atoms—

carbons, specified by uppercase letters, and hydrogens, specified by lower case letters. Atomic 

positions and metabolite properties were delineated in an additional interface in INCA (Fig. 2.3). 

Moreover, an additional interface detailed tracer atomic structures, enrichments, and nodes (Fig. 

2.4). Fragment mass values determined through GC/MS were input for each mouse at each time 

point of sampling (Fig. 2.5A,B). The model assumes the full equilibration of 4C intermediates in 

the TCA cycle, G6P↔F6P and GAP↔DHAP, no entry of labeled carbon from acetylCoA and 

no re-entry of CO2 formed in the reaction network. Pyruvate generated from pyruvate kinase and 

malic enzyme is indistinguishable, as described elsewhere (103). 

The reaction network consisted of 19 reactions, 22 metabolite nodes, and 316 mass 

isotopomer balance equations. Adjustable flux parameters were estimated from 29 independent 

mass isotopomer measurements for each of three time points taken during the isotopic steady 

state. Rates were relativized to citrate synthase flux. The sum of squared residuals ranged from 
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2.30 to 35.20 in α1α2
lox/lox

±Albcre studies. All fits were accepted using a χ
2
 test with 24 degrees 

of freedom (p<0.05). 

 

Key: Endogenous glucose production (EndoRa, V1), flux from glycogen to glucose-6-phosphate 

(G6P) (V2), glycerol to glyceraldehyde 3-phosphate (GA3P) (V3), phosphoenolpyruvate (PEP) to 

2-phosphoglycerate (2PG) (V4), oxaloacetate (OAA) to PEP (V5), pyruvate to OAA (V6), OAA 

to citrate (V7), propionylCoA to succinylCoA (V8), succinylCoA to succinate (V9), the joint 

contribution of pyruvate kinase and malic enzyme to pyruvate (V10), and substrate flux to 

pyruvate (V11). Multiple substrates shuttle through pyruvate to the TCA cycle; thus, V11 

encompasses all non-PEP, unlabeled sources of substrate flux to pyruvate.  

     

Stable- Isotopic Infusion Protocols for Conscious Unstressed Mice 

 Two protocols were developed for the infusion of stable isotopes in conscious unstressed 

mice. All continuous infusates were dissolved in 0.9%NaCl-4.5% 
2
H2O for both protocols.  

 

(1) A sampling protocol for two isotopic steady states was developed to study the effects of liver 

AMPK deletion on short and long term fasting glucose and oxidative fluxes in vivo. A 
2
H2O 

bolus was infused into venous circulation within 25min to enrich 4.5% total body water (27μL•g
-

1
Mouse). A [6,6

2
H2]glucose prime was dissolved in the bolus (2.96mg•mL

-1
) and a separate 

continuous infusion line (0.8mg•kg
-1

•min
-1

) was initiated at the end of the bolus. Three plasma 

samples were drawn during the first stable-isotopic steady state in 10min intervals, 180min after 

initiating the 
2
H2O bolus and [6,6

2
H2]glucose prime. The second stable-isotopic steady state was 

achieved between 90-110minutes following a primed, continuous infusion of the TCA cycle 
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tracer [
13

C3]propionate (sodium salt). The [
13

C3]propionate prime (108.9mg•kg
-1

, delivered 

within 10min) and continuous infusion (5.5mg•kg
-1

•min
-1

) was administered 20min after the last 

sample of the first stable-isotopic steady state. Three plasma samples were collected at 10min 

intervals 90min following the initiation of the [
13

C3]propionate prime. Mice were fasted either 

3.5 or 14.5hrs prior to the 
2
H2O bolus and [6,6

2
H2]glucose prime. 

 

(2) The two isotopic steady state protocol was reduced to a single phase. The length of time 

separating the initiation of the 
2
H2O bolus/[6,6

2
H2]glucose prime and the [

13
C3]propionate prime 

was reduced to 120min. 3 plasma samples were collected in a single, 30min phase 90min after 

initiating the [
13

C3]propionate prime. In an effort to optimize the protocol used for studies in this 

thesis, in vivo glucose metabolism in conscious unstressed mice was evaluated in the context of a 

graded reduction in [
13

C3]propionate (108.9mg•kg
-1

 prime, 5.5mg•kg
-1

•min
-1

 infusion; 

54.5mg•kg
-1

 prime, 2.7mg•kg
-1

•min
-1

; 27.2mg•kg
-1

 prime, 1.4 mg•kg
-1

•min
-1

 infusion).      

 

Body Composition 

 Body composition was determined using a Bruker Optics mq10 nuclear magnetic 

resonance analyzer.   

 

In Vitro Experiments 

 

Mitochondrial Isolation and Oxygen Consumption 

 Mitochondrial isolation was performed using standard homogenization and differential 

centrifugation methods as previously described (203). Briefly, liver tissue was weighed and 
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subsequently minced in 5mL of ice-cold mitochondrial extraction buffer containing 250mM 

sucrose, 2mM KH2PO4, 1mM EGTA, and 20mM Tris·HCl (pH 7.2). The minced tissue was 

washed twice and homogenized at 600rpm with a Teflon Potter Elvehjem pestle (6 up-and-down 

pulses). The homogenate was centrifuged for 10min at 800g at 4°C. The mitochondria-rich 

supernatant was then pelleted by centrifugation at 8000g at 4 C for 10min and gently re-

suspended in 0.5mL of ice-cold extraction buffer. The mitochondrial sample received a second 

centrifugation at 8000g at 4°C for 10min and the final pellet was re- suspended in 200µL of 

extraction buffer. Mitochondrial protein concentration was measured using the Bradford method. 

The freshly isolated liver mitochondria were used for oxygen consumption measurements. High-

resolution respirometry (Oroboros Instruments) was performed in duplicate at 37°C in MiR05 

(0.5mM EGTA, 3mM MgCl2 6H2O, 20mM taurine, 10mM KH2PO4, 20mM HEPES, 1g/L BSA, 

60mM potassium-lactobionate, 110mM sucrose, pH 7.1, adjusted at 30°C) as previously 

described (204). State 2 oxygen flux was assessed following titration of complex I substrates 

glutamate (10mM) + malate (2mM) + pyruvate (5mM). State 3 oxygen consumption supported 

by complex I substrates was evaluated by a 5mM ADP addition. State 4o was determined by 

titrating oligomycin (2 g/mL). Carbonylcyanide- p-trifluoromethoxyphenyl- hydrazone (FCCP) 

was added in 0.05 m steps to determine maximal electron transport system (ETS)-mediated 

oxygen flux. An aliquot of fresh isolated mitochondria was frozen at -80°C for immunoblot 

analysis. 
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Processing Tissue Samples 

 

Immunoblotting 

 Liver tissue was homogenized in an extraction buffer (1:10 w/v)  containing 50mM Tris, 

1mM EDTA, 1mM EGTA, 10% glycerol, 1% Triton X-100 (pH 7.5) containing protease 

(Pierce) and phosphatase inhibitors. Homogenates were centrifuged for 20min at 4500g at 4°C 

and the supernatants were assayed for protein concentration using the Bradford method. Briefly, 

samples and standards were loaded into a 96well plate and Bradford Reagent (1:4 MilliQH2O) 

was added in equal volume to each well. Plates were read at 595nm in SpectraMax Plus 

spectrophotometer (Molecular Devices, CA) and a line was constructed from the known 

standards to determine unknown protein concentrations. The relative sensitivity of enhanced 

chemiluminescence (ECL) and the anti-AMPKα/pAMPKα
T172

 related antibodies required 

minimal protein loading for immunoblots. 5-25μg protein were separated in NuPAGE 4-12% 

(v/v) Bis-Tris gels (Invitrogen) and transferred to a PVDF membrane. Membranes were blocked 

(1hr room temperature or overnight at 4°C) in 5% milk (w/v) and probed for tAMPK, 

pAMPKα
T172

, pACC
S79

, tACC, tErk1/2, pErk1/2, tAkt, pAkt
S473

, βActin (Cell Signaling 

Technology), Total OXPHOS, VDAC1 and GAPDH (abcam). HRP-linked α-rabbit and α-mouse 

secondary antibodies were applied for ECL and visualization using GE Healthcare Amersham 

Hyperfilm ECL. Immunoblots for Total OXPHOS were performed on mitochondrial extracts and 

normalized to VDAC1. ImageJ software was used for gating and densitometry. 
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Hepatic Adenine Nucleotides 

 Liver tissue excised <20s of cervical dislocation were used to measure hepatic adenine 

nucleotides. The hypoxia that ensues directly after execution (205) translates to changes in 

hepatic adenine nucleotides and AMPK signaling. Thus, temporal and procedural criteria were 

implemented to limit these effects. Freeze-clamped liver tissue was rapidly homogenized 

(1:10w/v) using a rotor homogenizer or Bullet Blender (bead-based homogenization at 

recommended settings for liver tissue) in ice-cold, 0.5M HClO4 and 0.5mM EGTA and directly 

placed on ice. Samples were centrifuged at 3200g at ≤4°C and the supernatants were isolated and 

neutralized with 0.5M K2CO3. Samples sat on ice an additional 3min and were re-centrifuged at 

3200g for 5min. Supernatants were saved for HPLC analysis in a Supelco Supelcosil LC18-T 

column (4.6 by 250mm, 5μm particle size) with a Waters 490 detector (254nm at 1.0 AUFS) and 

constant flow rate of 0.7mL∙min
-1

. Adenine nucleotides (AMP, ADP, ATP, ZMP, and AICAR) 

from samples and standards were spotted using a 12.5min mobile phase A (100nM KH2PO4, pH 

6) and a 3.5min mobile phase B (90:10 100mM KH2PO4/MeOH), and 44min mobile phase A. 

 

Metabolomics Profiling 

 Liver metabolites were analyzed by Metabolon (Durham, NC). The following description 

is a slightly modified protocol of that provided by Metabolon. Sample proteins were precipitated 

with methanol and vigorously shaken for 2min (Glen Mills GenoGrinder 2000) and centrifuged. 

The sample supernatant was saved and split into equal volumes for LC+, LC-, and GC/MS 

analysis. The LC/MS portion of the platform incorporates a Waters Acquity UPLC system and a 

Thermo-Finnigan LTQ mass spectrometer, including an electrospray ionization (ESI) source and 

linear ion-trap (LIT) mass analyzer.  Vacuum-dried samples are reconstituted, one each in acidic 
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or basic LC-compatible solvents containing 8 or more injection standards at fixed 

concentrations.  Extracts are loaded onto columns (Waters UPLC BEH C18-2.1 x 100 mm, 1.7 

μm) and gradient-eluted with water and 95% methanol containing 0.1% formic acid (acidic 

extracts) or 6.5 mM ammonium bicarbonate (basic extracts).  For GC/MS, samples are dried 

under vacuum desiccation for ≥18 hours before derivatization under nitrogen using bistrimethyl-

silyl-trifluoroacetamide (BSTFA). The GC column is 5% phenyl dimethyl silicone and the 

temperature ramp is from 60° to 340° C in a 17 minute period. A Thermo-Finnigan Trace DSQ 

fast-scanning single-quadrupole mass spectrometer analyzes all samples using electron impact 

ionization. Library entries of purified standards are used to identify biochemicals. Using 

proprietary visualization and interpretation software, chromatographic properties and mass 

spectra are used to match specific compounds/isobaric entities. Peaks are quantified using area 

under the curve. The library match for each compound in a sample is verified. Random forest 

analyses are used to initially classify compounds.  

 

Liver Glycogen 

 Liver glycogen was determined with a modified protocol from Exton and Chan (206). 

Liver was homogenized in 0.03N HCl (1:10w/v) and incubated at 80°C for 10min. A volume of 

the digest was applied to chromatography strips (Whatman International, UK), dried, and washed 

3X in 70%EtOH and briefly rinsed with acetone. The chromatography strips were incubated in 

5mL of 0.04M NaOAc-amyloglucosidase at 37°C in a shaking water bath for 3hrs. Glycogen 

concentration was determined from the isolate through an enzyme-linked spectrophotometric 

assay. Briefly, equal volumes of glycogen isolate and glucose standards were pipetted into 

96well plates; equal volumes of a buffer (200mM Tris-HCL (pH 7.4), 500mM MgCl2, 5.7mM 
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ATP, and 2.8mM NADP) containing hexokinase and glucose-6-dehydrogenase. The generation 

of G6P from the hexokinase reaction was converted to NADPH and 6-phosho-D-gluconolactone 

by G6PDH. NADPH was quantified at 340nm (SpectraMax Plus spectraphotometer) as a 

measure of glucose. 

 

Liver Triglycerides, Diglycerides, Cholesterol Esters, and Phospholipids 

 A modification of the method developed by Folch et al. (207) was used to extract hepatic 

lipids, which were filtered and recovered in the chloroform phase. Extracts were then separated 

by thin layer chromatography—Silica Gel 60A plates developed in petroleum ether, ethyl ether, 

and acetic acid (80:20:1)—and visualized by rhodamine 6G. Boron fluoride-methanol was used 

to methylate fatty acids scraped from plates (208), which were analyzed using an Agilent 7890 

gas chromatograph with Helium as a carrier gas (Supelco, PA). The retention times of known 

standards were used to characterize FA methyl esters. An additional method was used to 

determine triglycerides in livers from the AICAR-euglycemic clamps. Tissues were placed in an 

alkaline digest (1mg/μL, 3M KOH in 65% EtOH) and incubated at 70°C for 1hr with intermittent 

vortexing. Tissues were brought to a total volume of 500μL 2M Tris-HCl (pH 7.5) then diluted 

further (1:5) in 2M Tris-HCl (pH 7.5). 10μL of the digest (or standards) were added to 1mL pre-

warmed, reconstituted GPO reagent (Pointe Scientific, MI) and incubated at 37°C for 5min. 

200μL of the reaction mix was then added to a 96well plate in duplicate. A standard curve was 

generated to calculate unknown triglyceride concentrations.  
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RT-PCR 

 Liver RNA was isolated using a RNeasy Mini Kit (Qiagen, MD) and cDNA was 

synthesized using IScript cDNA synthesis (Bio-Rad, CA) reagents and protocol to generate 1μg 

cDNA. Taqman Universal PCR Mastermix and primers (Applied Biosystems, NJ) were used for 

RT-PCR.  GAPDH was used as a loading control and relative expression was calculated using 

the 2
-ΔΔCt

 method.   

 

Processing Plasma Samples 

 

Plasma Glucose and Radioactivity 

 Plasma [3-
3
H]glucose concentrations were measured to calculate rates of endogenous 

glucose production (EndoRa) and disappearance (Rd) from [3-
3
H]glucose infused in the AICAR-

euglycemic clamp using a modified version of Steele’s non-steady state equations (209). Infusate 

tracers (1:200 in saturated C7H6O2) and plasma samples were deproteinized with Ba(OH)2 and 

ZnSO4. A volume of the supernatant was dehydrated and reconstituted in H2O to determine 

plasma and infusate [3-
3
H]glucose. A separate aliquot was used to determine total [

3
H] in the 

plasma through liquid scintillation counting (Packard TRICARB 2900, Packard CT). Ultima 

Gold scintillation fluid (10mL) was added to vials containing infusates and samples. The 

remaining volume from the sample isolates were utilized to measure plasma glucose levels using 

the same spectrophotometric assay described for liver glycogen. 
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Plasma Non-Esterified Fatty Acids (NEFA) 

 Circulating NEFAs were assay directly from the plasma using an enzymatic colorimetric 

method (HR Series NEFA-HR (2), Wako Diagnostics USA, VA). The assay is designed to 

conjugate NEFAs to CoA through the provision of AcylCoA synthetase, ATP, and CoA. 

AcylCoAs are then oxidized by AcylCoA Oxidase to yield peroxide. The addition of peroxidase 

in the presence of peroxide condenses MEHA and 4-aminoantipyrine to generate a purple 

pigment detectable at ~550nm. 5μL of each sample was diluted 1:2 in H2O and added to a 96well 

plate. Standards (oleic acid) were also loaded onto the 96well plate to generate a curve. 225μL of 

Reagent A was added to each well, lightly shaken, and incubated at 37°C for 10min. 75μL 

Reagent B was added, briefly shaken, and incubated at 37°C for 10min. Air bubbles were 

removed through light aspiration through a clean pipette tip. Plates were read at 560nm on a 

SpectraMax Plus spectrophotometer.   

  

Plasma Triglycerides 

 Triglycerides were assayed directly from the plasma using an enzymatic colorimetric 

assay (Raichem, CA). The reaction cleaves the glycerol moeity from triglycerides, which 

subsequently reacts with glycerol kinase to generate glycerol-1-phosphate. Glycerol phosphate 

oxidase generates DAP and 

peroxide from G1P and O2. 

Similar to the principle behind 

the NEFA assay, peroxide 

reacts with 4-aminoantipyrine 

and 5-dichloro-2-
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hydroxybenzene sulphonate (DHBS) in the presence of peroxidase to generate a red pigmented 

dye (Quinoneimine) detectible at 520nm (below). Plasma samples were diluted 1:20 in MilliQ 

H2O; equal volumes of plasma and standard (glycerol) were added in duplicate to a 96well plate 

and 75μL reconstituted GPO reagent were added to each well, rotated briefly, and incubated at 

37°C for 10min. The plate were read directly at 520nm using a SpectraMax Plus 

spectrophotometer.  

 

Plasma Lactate 

 Plasma isolated directly after blood sample acquisition was added to 4% HClO4 (1:4 

dilution), flicked to mix, and spun down. The supernatant was saved to assay plasma lactate. 

200μL lactate buffer (glycine, 

magnesium hexahydrate, 

hydrazine hydrate, 0.73mM 

NAD, pH 9.5) was added to 10μL of sample or known standard. The samples were shaken 

briefly and sat at room temperature for 5min. Baseline fluorescence was measured at an 

excitation 340nm and emission of 450nm. 10μL lactate dehydrogenase (LDH) buffer (1:15 

LDH:Lactate buffer, (v/v)) was added to each well and incubated for 1hr 45min. Excitation and 

emission of NADH were measured. A standard curve was generated from known standards to 

calculate unknown sample concentrations.  

   

Plasma Insulin 

 Plasma insulin was measured either by (1) Millipore Rat/Mouse ELISA or (2) 5-day 

double antibody radioimmunoassay (AICAR-euglycemic clamp). (1) The first method is a basic 
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sandwich ELISA.  10μL sample plasma and standards were loaded into a microtiter plate pre-

coated with anti-rat insulin antibodies; a polyclonal antibody targeting the captured insulin was 

next applied. Unbound sample/reagents were washed away and HRP was applied to bind the 

biotinylated antibodies. Next, HRP substrate 3,3’5,5’-tetramethylbenzidine was applied and, 

after 5-20min incubation, 0.3M HCl was added to quench the aforementioned reaction. The 

addition of HCl yielded a yellow color that was read on a SpectraMax Plus spectrophotometer at 

450 and 590nm. The standards were proportional to increasing concentrations of insulin. 

Unknown sample concentrations were determined per manufacturer’s instructions. (2) Samples 

and standards were incubated with an anti-rat/mouse insulin detection antibody. 3days later, 
125

I-

insulin was added to the sample/antibody mix. Secondary antibodies were applied to precipitate 

antibody-bound insulin. Next, samples were centrifuged and the supernatants decanted; pellet 

counts were determined using a Cobra II AutoGamma counter (Packard, IL). Counts in the pellet 

were inversely proportional to insulin concentrations. A standard curve was constructed to 

calculate unknown insulin concentrations.  

 

Calculations 

The relative contribution of [6,6
2
H2]glucose to the otherwise labeled and unlabeled 

glucose pool was determined through MFA. This relative flux was normalized to the known 

[6,6
2
H2]glucose infusion rate and extrapolated to all reactions in the flux network. The rates 

measured in these studies are within reasonable agreement with those observed elsewhere (35, 

210). Steady state glucose kinetics (Ra, rate of glucose appearance and Rd, rate of glucose 

disappearance) for AICAR clamps were calculated using the following equation:  
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where (I) represents the tracer infusion rate and (SA) represents the ratio of tracer to tracee. I 

(dpm/min) and SA (dpm/mg) were derived through measurement of counts in the infusate and 

plasma for AICAR clamps. Endogenous Ra was determined by subtracting the clamp glucose 

infusion rate from Ra.   

 Energy charge (EC) was calculated from the following equation: 

   
       

 
 

      

                   
  

where the numerator represents the total quantity of high energy adenine triphosphate (ATP) and 

the denominator represents the total adenine nucleotide pool (TAN). The equation for EC was 

derived from the equilibrium reaction catalyzed by adenylate kinase: 

             

 

Statistics 

 Data are presented as means±SEM. Differences between groups were determined through 

student t tests, Two-Way ANOVA with ANOVA contrasts (Metabolon metabolites), and Two-

Way ANOVA ± Repeated Measures with Fisher’s LSD for post-hoc comparisons to determine 

significance between groups. Significance was set at p≤0.05.   
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Figure 2.1 – INCA interface for biochemical reaction network input. The carbon and hydrogen atom 

composition of metabolites in the reaction network are designated by uppercase (C) and lower case (H) letters. 

The network was constructed from known biochemical reactions for gluconeogenesis, glycogenolysis, and the 

TCA cycle. 
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Figure 2.2 – Atomic positional information is 

provided by GC/MS analysis of fragments 

generated from glucose derivatization (201) 

. 
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Figure 2.3 – Atomic properties of each molecule specified in INCA 
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Figure 2.4- Specification of tracer entry, composition, and enrichment in INCA 
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Figure 2.5A- Specification of labeled and unlabeled atoms in each fragment 

 



55 
 

 

 

 

 

 

 

 

 

  

Figure 2.5B- GC/MS fragment mass input for each sample time point 
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                         Figure 2.6- Experimental setup for the AICAR-euglycemic clamp 
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Figure 2.7 – Experimental setup for stable-isotopic infusions 
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Chapter III 

 

HEPATIC AMPK SYNCHRONIZES METABOLIC FLUX WITH 

ENERGY STATUS IN THE LIVER 

 

Aims 

 The aims of this chapter were to determine the 1) role of AMPK in liver energy 

homeostasis in the postabsorptive mouse and 2) extent to which hepatic AMPK coordinates 

metabolic flux during a physiological decrease in energy state.  The hypothesis that AMPK 

preserves energy homeostasis by supporting oxidative metabolism and, thereby, sustains hepatic 

glucose production during fasting was tested. Multiple lines of molecular and physiological 

evidence substantiate the interconnection between fat oxidation, anaplerosis/cataplerosis, and 

gluconeogenesis in the liver. Moreover, AMPK has been characterized as a control element in 

buffering against reductions in energy state by either activating or inhibiting mediators of 

macronutrient flux in the liver (Table 1.1).  The hypothesis was approached using state-of-the art 

in vitro respirometry and metabolomics methods and in vivo metabolic flux analysis in mice with 

a liver specific deletion of AMPK α1 and α2 catalytic subunits (14-15wk old α1α2
lox/lox 

+Albcre 

vs. C57Bl/6 floxed controls, α1α2
lox/lox

).  

 

Experimental Approach 

 Chapter II provides a detailed account of the methods and models used for studies in 

Chapter III. Briefly, AMPK effects on a) mitochondrial function were assayed through high 

resolution respirometry on isolated liver mitochondria, b) liver metabolites were measured using 



59 
 

a multi-mass spectrometry platform and c) rates of oxidative and glucose fluxes were determined 

through the metabolic flux analysis (MFA) of tracer-enriched plasma glucose in short (7-9hrs) 

and long term (18-20hrs) fasted mice. The high metabolic rate of the mouse induces a vastly 

different energy state in the liver within hours of fasting. The decision to vary fast duration 

provided 1) information concerning the role of hepatic AMPK under different physiological 

nutritional states and 2) an examination of the metabolic milieu provoked by long term fasting in 

floxed control mice. The third aim c) was accomplished through the development of a stable-

isotopic, in vivo tracer technique (Fig. 2.7and 3.1) that extracts biochemical reaction rates from 

positional glucose enrichment. A model composed of mass balance equations for a network of 

classical biochemical reactions was constructed using MFA software (INCA) (202) devised by 

Jamey Young, PhD (see description in Figs. 2.1-5). A recent technique developed for plasma 

glucose derivitization and GC/MS (201) yielded 6 fragments  (Fig. 2.2) which provided 

sufficient enrichment information for isotopomer and metabolic flux analysis.  

 

Results 

 

AMPK Restrains Fasting Mediated Changes in Hepatic Glucose and Metabolic Flux 

 Post-absorptive conditions in the mouse are reached within a few hours of fasting. Long 

term fasted α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice lost ~10% body weight. The transition from a 

short to long term fast resulted in changes in glucose metabolism consistent with normal 

physiology in α1α2
lox/lox

 mice (Fig. 3.2A-C, V1-4). Hepatic glucose production (EndoRa, V1) 

reduced slightly with long term fasting (Fig.3.2A-C). The fasting-mediated decrement in V1 

resulted from a complete reduction in glucose flux from glycogen (V2). Accordingly, the fall in 
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glycogenolytic glucose production (V2/V1) corresponded to an increased reliance on glucose flux 

from glycerol (V3/V1) and PEP (V4/V1) (Fig. 3.2D). Absolute glucose flux from PEP (V4) was 

unaffected by increasing fast duration (Fig. 3.2A-C). Interestingly, flux rates through citrate 

synthase (V7) decreased with extended fasting but fluxes associated with the entry and removal 

of pyruvate (V5, V6, V10) trended toward an increase (Fig. 3.2A-D). The flux rates reported here 

are in reasonable agreement with those estimated using NMR methods in overnight fasted mice 

(V1-5,7) (35, 210).       

 Hepatic AMPK deletion reduced EndoRa (V1) in the short term fast, stemming primarily 

from a ~50% reduction in glucose flux from glycogen (V2) (Fig. 3.2A-D). The early reduction in 

glycogenolytic glucose production corresponded to a trend toward increased reliance on 

gluconeogenesis from glycerol (V3/V1) and PEP (V4/V1) in short fasted α1α2
lox/lox

 +Albcre mice 

(Fig. 3.2A-D).Though absolute glucose flux from glycerol (V3) was not significantly different 

than controls (Fig. 3.2B,C), intrahepatic glycerol levels were elevated in α1α2
lox/lox

+Albcre mice 

(Fig. 3.9A). Long term fasting fully diminished glucose flux from glycogen and the liver became 

more dependent on gluconeogenic fluxes (Fig. 3.2A-D, V2-4). The rate of glucose production 

(V1) was low enough in the short fasted α1α2
lox/lox

+Albcre mouse that increasing the fast 

duration had no statistical effect (Fig. 3.2A-C). Intriguingly, citrate synthase flux (V7) was 

actually elevated in knockout mice compared with controls with increasing fast duration (Fig. 

3.2A-D). Qualitatively, glucose fluxes in short term fasted α1α2
lox/lox

+Albcre mice more closely 

resemble those of a long term fasted mouse. Thus, AMPK restrains fasting mediated changes in 

glucose flux with increasing fast duration. 

 Despite differences in hepatic glucose and oxidative fluxes, TCA cycle intermediates 

displayed a relatively uniform response to fasting in α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice (Fig. 
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3.9B-D). The TCA cycle is critical for the provision of reducing equivalents for oxidative 

phosphorylation in the liver; drastic reductions in oxidative capacity severely impairs hepatic 

glucose production (107). The modest differences in glucose and oxidative fluxes observed here 

may be an attempt to compensate for abnormal adenylate energy homeostasis in short and long 

term fasted AMPK-deficient livers.   

 

AMPK is Critical for Maintaining Hepatic Energy Homeostasis in Long Term Fasting 

  AMPK is generally described as a control element in cellular energy homeostasis. The 

cell works to keep ATP levels high and the AMP/ATP ratio low. Physiological and 

pharmacological depletion of ATP increases AMP, which exerts direct control over a number of 

enzymes, including AMPK. Long term fasting in α1α2
lox/lox

 mice reduced ATP and energy 

charge while increasing AMP and the AMP/ATP ratio in the liver (Fig. 3.3A,C,D). AMP-

deaminase works to clear elevations in AMP which, in effect, may reduce the adenine nucleotide 

pool (46). Indeed, long term fasting reduced TAN (Fig. 3.3B). Thus, fast duration reduced 

hepatic energy state which corresponded to a modest decrease in the rate of flux through citrate 

synthase (V7, Fig. 3.2A-C) in α1α2
lox/lox

 mice. The increase in the AMP/ATP ratio also 

corresponded to a slight increase in AMPK activation (pAMPK
T172

/AMPK) and the 

phosphorylation of its downstream target, AcetylCoA Carboxylase (pACC
S79

/ACC) (Fig. 

3.4A,B). Phosphorylation of the aforementioned target is undetectable in the absence of hepatic 

AMPK (See Chapter IV, Fig 4.3A,B). Decreases in Akt and ERK1/2 phosphorylation were also 

observed in the long term fast (Fig. 3.4C,D). 

 The absence of hepatic AMPK provoked a larger decrement in hepatic energy state in 

long term fasting. Indeed, ATP and ADP levels were significantly lower in long term fasted 
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α1α2
lox/lox

+Albcre mice compared to controls (Fig. 3.3A). TAN levels were reduced in short 

term fasted α1α2
lox/lox

+Albcre mice which was exacerbated by extending fast duration (Fig. 

3.3B). These data imply that AMPK-deficient livers resort to greater AMP degradation to limit 

the rise in AMP/ATP and preserve energy charge (Fig. 3.3C,D). Paradoxically, the decrease in 

ATP availability spurred by fasting did not correspond to a decrease V7 in α1α2
lox/lox

+Albcre 

mice; rather, the drop in energy availability corresponded to a relative increase in flux through 

citrate synthase in the absence of liver AMPK (Fig. 3.2A-D). These results demonstrate a defect 

in the coupling of oxidative metabolism with energy status in the absence of hepatic AMPK. 

 

Mitochondria from α1α2
lox/lox

+Albcre Mice Display Impairments in Function 

 Livers from α1α2
lox/lox

+Albcre mice demonstrate an impaired capacity to maintain 

normal energy state in a short and long term fast. Moreover, differences in in vivo oxidative and 

glucose fluxes are observable in the absence of hepatic AMPK. Given the importance of 

oxidative phosphorylation in these interrelated processes, we hypothesized that hepatic 

mitochondria from α1α2
lox/lox

+Albcre mice would demonstrate impairments in integrative 

oxidative phosphorylation function compared with floxed littermates. Polarographic oxygen 

consumption measurements were performed on mitochondria isolated from the livers of 

α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice. The absence of hepatic AMPK had no effect on 

glutamate, malate, and pyruvate supported basal oxygen consumption (State 2) (Fig. 3.5A). 

ADP-stimulated oxygen consumption (State 3), however, was attenuated in α1α2
lox/lox

+Albcre 

mice (Fig. 3.5A). The addition of the ATP-synthase inhibitor oligomycin demonstrated that non-

phosphorylating oxygen consumption was no different between α1α2
lox/lox

 and α1α2
lox/lox

+Albcre 

mice (Fig. 3.5A). Absolute FCCP-stimulated, uncoupled respiration was significantly higher in 
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α1α2
lox/lox

 mice (Fig. 3.5A) but equaled α1α2
lox/lox

+Albcre when normalized to State 3 and Leak 

respiration (Fig. 3.5D). Impaired State 3 respiration in α1α2
lox/lox

+Albcre mice led to a reduction 

in the respiratory control ratio (RCR) — an index of mitochondrial efficiency—compared with 

α1α2
lox/lox

 controls (Fig. 3.5B). These data indicate that hepatic AMPK supports efficient 

coupling of ADP phosphorylation and oxygen consumption. In addition, the removal of hepatic 

AMPK was sufficient to reduce the expression of mitochondrial complexes II and III (Fig. 

3.5C). These results are consistent with the demonstration that hepatic AMPK activity is 

protective against a greater reduction in energy state during extended nutrient deprivation. 

 

An Early Elevation in Fatty Acids Precedes Normal Triglyceride Accumulation in Liver 

AMPK Knockout Mice 

 Prolonged fasting promotes adipose tissue lipolysis through a decrease in circulating 

insulin and increases in glucocorticords and (nor) epinephrine (211). Fatty acids (FAs) 

sequestered by the liver are oxidized or re-esterified, leading to profound increases in liver TGs 

in the mouse. Indeed, increasing fast duration elevated hepatic triglycerides (TGs), diglycerides 

(DGs), and cholesterol esters (CEs) in α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice, respectively (Fig. 

3.6A-C). CE formation may protect against the lipotoxic effects of unesterified cholesterol and 

fatty acids. CEs were elevated in long term fasted α1α2
lox/lox

+Albcre mice compared to controls 

(Fig. 3.6C). AMPK deletion had no impact on fasting mediated increases in absolute TGs and 

DGs (Fig. 3.6A,B). Hepatic long chain FAs (LCFAs) exhibited a similar trend. Livers of control 

and liver-AMPK knockout mice experienced equal fasting mediated increases and decreases in 

LCFAs (Fig. 3.7).  
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 Despite no differences in TGs and DGs in short term fasting, several long chain (Fig. 

3.7), but not short chain (Fig. 3.11A-E) FA species were elevated in the absence of hepatic 

AMPK. The early rise in liver LCFAs resulted from increases in saturated (14:0, 15:0, 16:0, 

20:0), monounsaturated (17:1, 18:1, 22:1), and polyunsaturated (18:2, 18:3, 22:2) species in 

α1α2
lox/lox

+Albcre mice (Fig. 3.7). The rise in LCFAs corresponded to an increase in endogenous 

PPAR agonists that stem from linoleic and arachidonic acid (Fig. 3.10A-C, 9,13HODE and 

12,15HETEs) (212). Additionally, liver phospholipids were significantly reduced (35±2.9%) in 

short term fasted α1α2
lox/lox

+Albcre mice (Fig. 3.6D). The aforementioned changes in FAs, 

metabolite signals, and phospholipids were equalized by long term fasting. 

 

Liver AMPK Deletion Elevates BCAA/BCKA-Related Metabolites 

 Acylcarnitine species of varying lengths are formed from their antecedent acylCoA 

species (83). Catabolism of branched chain amino and keto acids (BCAA and BCKAs), yields 

reduced cofactors, acetylCoA and succinylCoA for further oxidation in the TCA cycle and 

electron transport chain (82). Though leucine, isoleucine, and valine levels were no different in 

α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice (data not shown), several BCAA/BCKA-related 

metabolites were elevated in the livers of short term fasted α1α2
lox/lox

+Albcre mice (Fig. 3.8).  

 4-methyl-2-oxopentanoate, which results from leucine deamination, was increased 

compared with controls (Fig. 3.8A). Further leucine degradation yields the intermediates 

isovalerylCoA and 3-methylglutarylCoA. Metabolites formed from intermediates in leucine 

metabolism (β-hydroxyisovalerate and 3-methylglutarylcarnitine) were elevated in the livers of 

α1α2
lox/lox

+Albcre mice in short fasting (Fig. 3.8B-D). Isobutyrylcarnitine, a metabolite 

generated from isobutyrylCoA in valine catabolism, was also elevated in the absence of AMPK 
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(Fig. 3.8E). Moreover, a metabolite associated with lysine catabolism—glutarylcarnitine (non-

BCAA/BKAA, but also an amino acid whose metabolism yields acetylCoA and/or 

acetoacetate)—was also increased in short-fasted liver AMPK knockout mice (Fig. 3.8G). The 

elevation in the majority of these hepatic metabolites in α1α2
lox/lox

+Albcre mice corresponded to 

increased pyruvate (Fig. 3.9E) and a trend toward elevated acetylcarnitine (Fig. 3.8H). 

Hydroxybutyrylcarnitine was the only small chain acylcarnitine to reduce with liver AMPK 

deletion (Fig. 3.8F). Intriguingly, this 4-carbon metabolite may emanate from processes related 

to fatty acid metabolism, in addition to BCAA/BCKA metabolism (87).   

 Fasting resulted in an increase in the majority of the aforementioned hepatic metabolites 

in control mice (Fig. 3.8B-H). In several cases, AMPK deletion led to further elevations in short 

chain acylcarnitine species in long term fasting: 2-methylbutyrylcarnitine (isoleucine 

catabolism), 3-methylglutarylcarnitine (leucine catabolism), and, interestingly, 

propionylcarnitine (Fig. 3.8D,I,J). PropionylCoA enters the TCA cycle as succinylCoA, the 

catabolic product of valine, isoleucine, and certain FAs. Thus, the aberrant oxidative flux (V7) 

and deficit in energy state spurred by AMPK deletion coincides with an atypical elevation in 

BCAA/BCKA-related metabolites in long term fasting.  

 

Discussion 

 Characterizing the fundamental role of AMPK in different physiological states has 

proven to be a difficult task due to the enzyme’s diverse functionality. Nevertheless, genetic 

models with inhibitory or activating effects on hepatic AMPK have provided valuable insight 

into AMPK function. The use of in vivo and ex vivo technologies to map the catabolism and 

interconversion of metabolites in the mouse liver have been paramount to understanding 



66 
 

molecular control of liver metabolism (35, 105, 107, 114). Similar technologies were used here 

to investigate hepatic AMPK action in two linked—yet distinct—physiological energy states. 

These studies revealed that hepatic AMPK works to resist the fasting-mediated decline in energy 

state and associated changes in glucose flux. In the absence of both AMPKα1 and α2 catalytic 

subunits, citrate synthase flux is increased and aberrant BCAA/BCKA-related metabolism 

correspond to deficits in energy state and mitochondrial function.  

     These studies add another layer of complexity to AMPK’s role in glucoregulatory 

control. An increase in AMPK activation by the administration of metformin and AICAR 

implicates AMPK in the inhibition of glucose production (34, 133, 136, 213). Removal of 

hepatic LKB1—AMPK’s major upstream activator—results in marked hyperglycemia (137). 

Moreover, AMPK negatively regulates mediators of gluconeogenic gene expression (162, 163, 

166, 168). However, acute control of glucose production and gluconeogenic gene expression by 

multiple pharmacological agents in vitro and in vivo may occur through an AMPK-independent  

reduction in energy state (4, 34).  

 Physiologically, a decrease in hepatic energy state and AMPK activation correspond to 

endocrine states characterized by increased glucagon action, substrate oxidation, and sustained 

gluconeogenesis (11, 16, 28). These observations are consistent with AMPK’s putative role in 

oxidative metabolism (71, 155), as data here and elsewhere demonstrate that AMPK deletion 

impairs respiration (127). These studies identify a novel, physiological role for AMPK in 

maintaining a metabolic state in the liver that sustains glucose production. Indeed, hepatic 

glucose fluxes in short term fasted, liver AMPK knockout mice more closely resemble those of a 

prolonged fast. 
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 The reduction in EndoRa in short term fasted α1α2
lox/lox

+Albcre mice primarily results 

from a reduction in glycogenolytic glucose production. Though liver glycogen only trended 

lower for these studies (Fig. 3.11H), reductions are observable in the knockout model used here 

(See Chapter IV, Table 4.2 and Chapter V, Fig. 5.8A) and mice with a whole-body deletion of 

the AMPKβ2 subunit (214). A mechanism responsible for this phenotype is presently unclear. 

Impairments in the generation and/or oxidation of reduced cofactors from fat in 

α1α2
lox/lox

+Albcre mice may make the liver more reliant on glycolytic ATP production. As a 

result, less glucose may be available for glycogenolytic glucose production. These studies 

demonstrate that flux from PEP does not compensate for reductions in glucose production from 

glycogen.    

 The relationship between oxidative capacity and gluconeogenic glucose production has 

been demonstrated in liver’s lacking PGC1α (107) and hypoxia-inducible factor activation driven 

by VHL inactivation (113). Whole-body deletion of PGC1α and disruption of hepatic VHL both 

result in marked liver steatosis and impairments in fat oxidation (107, 108, 112, 113). The 

reduction in oxidative capacity in PGC1α-null livers corresponds to drastic defects in V4, V5, 

pyruvate cycling, and V7 despite a normal induction of gluconeogenic enzyme expression with 

fasting (107). This model is consistent with impairments in mitochondrial respiration provoked 

by VHL inactivation. In addition to impairments in gluconeogenic glucose production, both 

models demonstrate abnormal glycogen metabolism and impaired ketogenesis (107, 113, 215).  

 Liver AMPK knockout impairs mitochondrial efficiency. This defect, perhaps, triggers 

the larger deficit in energy state observed in long term fasted AMPK-deficient livers. 

α1α2
lox/lox

+Albcre mice exhibit a much milder glucose and oxidative phenotype in vivo than the 

aforementioned models. Short term fasting results in a reduction in glycogenolytic glucose 
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production, yet gluconeogenic flux from PEP remains intact in the absence of hepatic AMPK. 

Several LCFAs increase with short term fasting, yet liver AMPK deletion does not cause 

abnormal triglyceridemia in response to a short or long term fast. Long term fasting normalizes 

the impairments in hepatic glucose fluxes exhibited in short term fasted liver AMPK knockout 

mice. Evidence presented here supports a fundamental role for AMPK in suspending the 

transition from a short to long term fasted condition in the liver. As noted, short term fasted 

α1α2
lox/lox

+Albcre mice exhibit several metabolic characteristics of the livers of long term fasted 

mice. Liver AMPK knockout promotes an early change in ERK1/2 phosphorylation, 

phospholipids, the total adenine nucleotide pool, BCAA/BCKA related metabolites, and the 

aforementioned changes in glucose fluxes and fatty acids. Extending the fast duration normalizes 

the majority of these effects.  

 Fasting mediated reductions in energy state correspond to a modest decrease in citrate 

synthase flux in control mice. Paradoxically, citrate synthase flux is actually elevated despite 

larger reductions in hepatic ATP levels in α1α2
lox/lox

+Albcre mice, demonstrating inefficient 

hepatic substrate oxidation and energy production in the absence of AMPK in vivo. As 

previously noted, liver mitochondria from α1α2
lox/lox

+Albcre mice display defects in function 

(lower State 3 respiration and State 3/State 2). Others have measured metabolic flux in 

conditions with an imbalance between substrate availability, energy state and TCA cycle flux in 

the liver. Satapati et al. (35) have recently shown that 32wks of HF-feeding may impair the 

coupling of oxidative metabolism with ATP synthesis (lower State 3/State 4)—despite an 

elevation in the rate of TCA cycle flux in vivo. Aberrant hepatic ATP homeostasis is also 

characteristic of chronic high fat feeding (16), diabetes (31), and NASH (32).  
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 Elevations in short-chain acylcarnitine species in the liver have been observed in 

conditions of aberrant oxidative metabolism (35, 113). The accumulation of short and medium 

chain acylcarnitine species in the liver may provide evidence of incomplete fatty acid oxidation 

(113). The relationship between these metabolites and acetylCoA oxidation in the TCA cycle 

may be dependent on metabolic state. For example, an elevation in acylcarnitines corresponds to 

accelerated TCA cycling, V4, and an increase in EndoRa during fatty liver (35). Short, even-

chain acylcarnitines are also elevated with liver VHL inactivation, however, glucose production, 

ketogenesis, and respiration are blunted (113).  If liver acylcarnitines are assumed to equilibrate 

with their antecedent acylCoA species, substrate load may exceed its rate of disposal in the TCA 

cycle and ketogenesis in both conditions.  

 AMPK deletion shares a degree of similarity with the aforementioned liver phenotypes—

albeit more modest. The elevation in LCFAs in the short term fast corresponds to a reduction in 

deoxycarnitine and CoA (the immediate precursor for carnitine synthesis, Fig. 3.9G,H). Pyruvate 

and lactate are elevated in the short and long term fast, respectively (Fig. 3.9E,F).  Furthermore, 

BCAA/BCKA-related metabolites (short and medium chain acylcarnitines and 4-methyl-2-

oxopentanoate) increased in livers lacking hepatic AMPK. The abundance of these metabolites 

coincides with abnormally high citrate synthase flux, normal rates of glucose flux from PEP, and 

exacerbated fasting-mediated deficits in hepatic ATP. It is plausible that impairments in fatty 

acid transport and mitochondrial function shift liver metabolism toward alternative substrates 

that yield reduced cofactors, acetylCoA and anaplerotic carbon, thus fueling the TCA cycle in 

long term fasting. Clearly, AMPK deletion impairs the appropriate coupling of energy state with 

substrate load and utilization in the liver.     
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 Energy status has been a long proposed regulator of metabolism (38, 46, 216). In 

conditions with available gluconeogenic substrate, an increase in fatty acid delivery decreases 

liver energy state and supports hepatic glucose output (63). The physiological decline in hepatic 

energy state with long term fasting corresponds to a modest decrease in citrate synthase flux, 

which does alter gluconeogenic glucose production from PEP in floxed control mice. These 

studies demonstrate that hepatic AMPK is a vital component of a molecular signaling network 

that restrains metabolic adaptations to increasing fast duration. AMPK promotes mitochondrial 

function, protects against a decline in energy state and the accumulation of oxidizable substrate. 

In its absence, a disconnect between substrate abundance, oxidation, and ATP production leads 

to greater energy deficits in long term fasting in vivo.   
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Figure 3.1—Schematic for stable-isotopic infusions and Blood Glucose Log. α1α2
lox/lox

 and 

α1α2
lox/lox

+Albcre mice were either fasted for 3.5 or 14.5hrs prior to the 
2
H2O bolus (delivered as a 

continuous infusion for 25min, beginning at t= -120min). The [6,6
2
H2]glucose prime was dissolved in the 

2
H2O bolus. A continuous infusion of [6,6

2
H2]glucose started directly following the bolus. 3 steady-state 

plasma glucose samples were taken 180min after the initiation of the 
2
H2O bolus, 10min prior to the 

primed, continuous infusion of [
13

C3]propionate. 3 steady-state plasma glucose samples were drawn 

between 90-110min following the initiation of the propionate prime.  
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Figure 3.2A-D—Abnormal glucose and oxidative fluxes in mice lacking hepatic AMPK. A scheme (A) describing 

the fluxes measured in these studies is provided for clarity. Absolute (μmol∙min
-1

 (B), μmol∙kg
-1

∙min
-1

 (C)) and relative 

(D) fluxes were determined for α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice in short and long term fasting. Stable-isotopic 

enrichment of plasma glucose was used to determine flux rates using GC/MS and metabolic flux analysis (MFA). Fluxes 

were converted to hexose units where necessary and expressed in three different formats for a comparison to the 

validation work performed elsewhere using NMR (210). Data are expressed as means ±SE, n=5-8 in each group. 

*p≤0.05 vs. short term fasting; †p≤0.05 vs. α1α2
lox/lox

 mice. 

 

Key: V1= EndoRa, V2= GlycogenG6P, V3=GlycerolGA3P, V4= PEP2PG, V5= OxaloacetatePEP, V6= 

PyruvateOxaloacetate, V7= OxaloacetateCitrate, V8= PropionylCoASuccinylCoA, V9= SuccinylCoASuccinate, 

V10= PK and ME, V11= Anaplerotic SubstratePyruvate 
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Figure 3.2B –Abnormal glucose and oxidative fluxes in mice lacking hepatic AMPK—μmol∙min
-1

. Data are 

expressed as means ±SE, n=5-8 in each group. *p≤0.05 vs. short term fasting; †p≤0.05 vs. α1α2
lox/lox

 mice. 

 

Key: V1= EndoRa, V2= GlycogenG6P, V3=GlycerolGA3P, V4= PEP2PG, V5= OxaloacetatePEP, V6= 

PyruvateOxaloacetate, V7= OxaloacetateCitrate, V8= PropionylCoASuccinylCoA, V9= 

SuccinylCoASuccinate, V10= PK and ME, V11= Anaplerotic SubstratePyruvate 
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Figure 3.2C –Abnormal glucose and oxidative fluxes in mice lacking hepatic AMPK—μmol∙kg
-1

∙min
-1

. Data are 

expressed as means ±SE, n=5-8 in each group. *p≤0.05 vs. short term fasting; †p≤0.05 vs. α1α2
lox/lox

 mice. 

 

Key: V1= EndoRa, V2= GlycogenG6P, V3=GlycerolGA3P, V4= PEP2PG, V5= OxaloacetatePEP, V6= 

PyruvateOxaloacetate, V7= OxaloacetateCitrate, V8= PropionylCoASuccinylCoA, V9= 

SuccinylCoASuccinate, V10= PK and ME Flux, V11= Anaplerotic SubstratePyruvate 
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Figure 3.2D –Abnormal glucose and oxidative fluxes in mice lacking hepatic AMPK—Relative to EndoRa. Data 

are expressed as means ±SE, n=5-8 in each group. *p≤0.05 vs. short term fasting; †p≤0.05 vs. α1α2
lox/lox

 mice. 

 

Key: V1= EndoRa, V2= GlycogenG6P, V3=GlycerolGA3P, V4= PEP2PG, V5= OxaloacetatePEP, V6= 

PyruvateOxaloacetate, V7= OxaloactateCitrate, V8= PropionylCoASuccinylCoA, V9= SuccinylCoASuccinate, 

V10= PK and ME Flux, V11= Anaplerotic SubstratePyruvate 

 



76 
 

 

             

  

Figure 3.3—AMPK protects against fasting-mediated reductions in energy state. Hepatic adenine 

nucleotides (A.), the total adenine nucleotide pool (TAN= ATP+ADP+AMP, B.), energy charge (EC= 

[ATP+0.5ADP]/[TAN], C.), and the AMP/ATP ratio (D.) were determined for α1α2
lox/lox

 and 

α1α2
lox/lox

+Albcre mice in short and long term fasting. Liver tissue was rapidly excised and freeze-

clamped following cervical dislocation to preserve hepatic energy state. HPLC analysis was performed 

on neutralized, perchloric acid extracts of liver tissue as described elsewhere (16). Data are expressed as 

means ±SE, n=6-7 in each group. *p≤0.05 vs. short term fasting; †p≤0.05 vs. α1α2
lox/lox

 mice. 
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Figure 3.4—Fasting-mediated changes in liver AMPK, ACC, Akt, and ERK1/2 phosphorylation state. Liver 

AMPK (A,B.), Akt (C.), and ERK1/2 (D.) signaling in short and long term fasted α1α2
lox/lox

 and α1α2
lox/lox

+Albcre 

mice. Activating (A,C,D.) and inhibitory (B.) phosphorylation to total AMPK, ACC, AKT, and ERK1/2 are provided 

as ratios (A.U.). Data are expressed as means ±SE, n=6-7 in each group. *p≤0.05 vs. short term fasting; †p≤0.05 vs. 

α1α2
lox/lox

 mice. 
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Figure 3.5 –Oxygen flux data from mitochondria isolated from the livers of α1α2
lox/lox

 and 

α1α2
lox/lox

+Albcre mice. Mitochondrial respiration (A.) was measured in the presence of the OXPHOS 

substrates glutamate, malate, and pyruvate (State 2) in the presence of saturating ADP (State 3), oligomycin 

(LEAK), and FCCP (ETS). The respiratory control ratio (RCR) (B.) is defined as the ratio of State 3 to State 

2 oxygen consumption. Mitochondrial complex expression (C.) in isolated mitochondria from the livers of 

α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice was measured through western blotting (normalized to VDAC1). The 

representative images are lanes obtained from different parts of the same immunoblot. Control ratios for 

ETS, normalized to State 3 and LEAK respiration (D.). Data are expressed as means ±SE, n=5-6 in each 

group. †p≤0.05 vs. α1α2
lox/lox

 mice; $ absolute rate of ETS is significant but not when normalized to Leak or 

State 3 (D.). 
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Figure 3.6 –Liver AMPK-dependent and independent effects of fast duration on liver lipids. Hepatic lipids 

in α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice following a short and long term fast. Liver triglycerides (TGs, A.), 

diglycerides (DGs, B.), cholesterol esters (CEs, C.), and phospholipids (PLs, D.) were isolated through Folch 

extraction (207) and measured as described (36). Data are expressed as means ±SE, n=6-7 in each group. 

*p≤0.05 vs. short term fasting; †p≤0.05 vs. α1α2
lox/lox

 mice. 
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Figure 3.8 –AMPK 

deletion results in 

aberrant BCAA/BCKA-

related metabolism. Liver 

BCAA/BCKA-related 

metabolites in short and 

long term fasted α1α2
lox/lox

 

and α1α2
lox/lox

+Albcre mice 

(A-J.). Medium and short 

chain acylcarnitine species 

derive from the metabolism 

of BCAA/BCKAs, amino 

acids, and certain fatty 

acids. Elevations in medium 

and short acylcarnitines (D-

J.) have been linked with 

aberrant oxidative 

metabolism in liver. Data 

are expressed means±SE, 

n=7-8 in each group. 

*p≤0.05 vs. short term 

fasting; †p≤0.05 vs. 

α1α2
lox/lox

 mice. 
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Figure 3.9 –AMPK deletion alters oxidative metabolites but not TCA cycle intermediates. 
Central metabolites for liver glucose production and oxidative metabolism in the liver in short 

and long term fasted α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice (A-H.). Data are expressed as 

means±SE; n=7-8 in each group. p≤0.05 vs. short term fasting; †p≤0.05 vs. α1α2
lox/lox

 mice.  
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Figure 3.10 –Lipid signaling molecules in the 

livers of α1α2
lox/lox

 and α1α2
lox/lox

±Albcre mice. 

Fatty acid species derived from the 

lipoxygenation of linoleic (A.) or arachidonic 

(B,C.) acids. Data are expressed as means±SE; 

n=7-8 in each group. *p≤0.05 vs. short term 

fasting; †p≤0.05 vs. α1α2
lox/lox

 mice.  
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Figure 3.11 –Liver medium chain fatty acids are unaffected by hepatic AMPK 

deletion. Medium chain fatty acid species (A-E.), 3-phosphoglycerate (F.), N-

acetylglutamate (G.), and glycogen (H.) in the liver of short or long term fasted α1α2
lox/lox

 

and α1α2
lox/lox

+Albcre mice. All data are expressed as means±SE; n=7-8 in each group. 

*p≤0.05 vs. short term fasting; †p≤0.05 vs. α1α2
lox/lox

 mice.  



85 
 

Chapter IV 

 

5-AMINOIMIDAZOLE-4-CARBOXAMIDE-1-Β-D-RIBOFURANOSIDE (AICAR) 

EFFECT ON GLUCOSE PRODUCTION, BUT NOT ENERGY METABOLISM, IS 

INDEPENDENT OF HEPATIC AMPK IN VIVO 

 

Aims  

 The coincidence of AMPK activation and the inhibition of glucose production by 

biguanides and AICAR suggest an overlap in function. This observation has led to the discovery 

of targets of AMPK action that exert control over the transcription of gluconeogenic enzymes 

(see Chapter I). Moreover, deletion of LKB1—which phosphorylates and activates AMPK—

causes marked hyperglycemia in vivo. These compelling data have led investigators to equate 

AMPK activation with the inhibition of glucose production. However, the increase in nucleotide 

monophosphate (NMP) induced by AICAR and biguanides may be sufficient to acutely suppress 

glucose production in vivo (4, 34). The capacity of nucleotides to regulate metabolic flux has 

been recognized for decades (40, 216). The aims of this chapter are to determine if AMPK is 

necessary for the effects of an increment of NMP on 1) glucoregulation and 2) liver energy 

homeostasis in vivo. AMPK is clearly essential for the ordinary coupling of substrate utilization 

with energy production in the liver under physiological energy stress (Chapter III). Here we 

tested the hypothesis that hepatic AMPK is necessary for protecting liver energy status, but not 

the inhibition of glucose production, during an acute elevation in NMP in vivo. AICAR-

euglycemic clamps were performed in mice with a liver-specific deletion of AMPK (α1α2
lox/lox

 

and α1α2
lox/lox

+Albcre) to limit fluctuations in arterial glucose and circulating hormones.   
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Experimental Approach 

 Male α1α2
lox/lox

 and α1α2
lox/lox

+Albcre were catheterized (Chapter II, Surgical 

Procedures) at 14wks of age for a primed continuous infusion of AICAR during euglycemia. A 

schematic for the experimental design is provided in Fig. 4.1. Tissue and plasma parameters 

were measured as specified in the Chapter II. The AICAR infusion rate (40mg∙kg
-1

prime; 

8mg∙kg
-1

∙min
-1

 infusion) was selected based on the following two considerations:  

 

1) AICAR-euglycemic clamps were performed in rats infusing comparable doses (7.5-10mg∙kg
-

1
∙min

-1
) (133, 134, 199), which would afford a more robust basis for determining AMPK-

dependent AICAR effects.  

 

2) The infusions in rats hedged on the higher end of doses. We rationalized that the relatively 

high metabolic rate of the mouse would increase AICAR turnover and, thus, temper the 

perceived dose. In this setting, we would be able to test the AMPK-independent effectiveness of 

AICAR while limiting its associated complications (i.e. rhabdomyolysis).   

 

Results 

 

Body Composition and 5hr Fasted Metabolites 

A cohort of 14wk-old α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice were assayed to determine 

whether the absence of hepatic AMPK impacted whole body weight and composition. There 

were no apparent differences in body composition (Table 4.1).  Arterial glucose, plasma insulin, 
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free fatty acids (FFAs), lactate, and triglycerides (TGs) were not different between α1α2
lox/lox

 and 

α1α2
lox/lox

+Albcre after a 5hr fast (Table 4.1). 

 

AICAR-Mediated Inhibition of Glucose Production is Independent of Acute AMPK Activation 

In vivo and in vitro delivery of AICAR to hepatocytes inhibits glucose production (34, 

133). To test whether AICAR requires AMPK for the inhibition of endogenous glucose 

production (EndoRa), AICAR was continuously infused at 8mg•kg
-1

•min
-1

 and blood glucose 

was clamped at ~110mg•dL
-1

. During the experimental period, the glucose infusion rate (GIR) 

required to maintain euglycemia (Fig. 4.2A) was similar between genotypes in both Saline and 

AICAR-clamps (Fig. 4.2B); however the sustained elevation in GIR was significantly higher 

with the infusion of AICAR than Saline controls. EndoRa and glucose disappearance (Rd) were 

indistinguishable between genotypes prior to and during the AICAR or Saline-clamp (Fig. 

4.2C,D). AICAR inhibited EndoRa equivalently in α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice 

(0.8±1.4 and 1.1±2.4mg•kg
-1

•min
-1

). Likewise, AICAR induced an equal increment in Rd in 

α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice (31.0±1.2 and 32.8±1.5mg•kg
-1

•min
-1

). Plasma insulin 

levels were indistinguishable between the Saline and AICAR-clamp groups (Table 4.2). The 

data show that the inhibition of EndoRa by AICAR (Fig. 4.2C,D) is disassociated from its 

capacity to activate AMPK (Fig. 4.3A) in vivo. AMPK deletion also provoked a reduction in 

liver glycogen (Table 4.2), which did not impact AICAR-mediated inhibition of EndoRa.   

 The 2hr AICAR infusion blunted plasma FFA and plasma TG concentrations in 

α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice (Table 4.2). Indeed, AICAR was so potent at clearing 

FFAs that circulating levels were undetectable in α1α2
lox/lox

 mice (Table 4.2). AICAR elicited a 

6.6±0.6 and 5.2±0.5 fold increase in plasma lactate over Saline in α1α2
lox/lox

 and 
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α1α2
lox/lox

+Albcre mice, respectively. The elevation in plasma lactate, however, was partially 

attenuated in α1α2
lox/lox

+Albcre mice (Table 4.2).  

AMPK activation during energy stress is implicated in fat utilization in the liver (68). 

Liver TG levels in α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice at the end of the Saline infusion were 

not statistically different (24.6±0.8 and 29.1±2.0 mg/gLiver) (Table 4.2). The AICAR infusion 

in α1α2
lox/lox

 mice reduced hepatic TG concentrations compared to Saline controls (19.7±1.5 vs. 

24.6±0.8mg/gLiver, p=0.08). α1α2
lox/lox

+Albcre did not experience the same AICAR-mediated 

reduction as hepatic TG concentrations were significantly higher than α1α2
lox/lox

 (26.7±2.7 and 

19.7±1.5 mg/gLiver) (Table 4.2). Inhibitory phosphorylation of acetyl-CoA carboxylase 

(pACC
S79

) was similar between α1α2
lox/lox

 Saline and AICAR groups at the end of the clamp 

(Fig. 4.3B). Indeed, AICAR can promote carnitine palmitoyl-transferase-1 (CPT-1) activity 

independent of changes in malonylCoA (217). Thus, AICAR facilitates a decrease in liver TGs 

via hepatic AMPK.  

 

AMPK Counters a Decrease in Hepatic Adenylate Energy Charge During an Acute AICAR 

Challenge In Vivo 

The primed, AICAR infusion resulted in comparable hepatic ZMP levels in the two 

genotypes (Fig. 4.4C). The conversion of AICAR to ZMP utilizes ATP (129) and ZMP has been 

demonstrated to inhibit complex I respiration in isolated mitochondria (127).  Adenylate kinase 

maintains the equilibrium between ATP, ADP, and AMP; physiological and pharmacological 

perturbations in metabolism can alter this balance (4, 16, 28, 34, 36). Thus, hepatic ATP, AMP, 

and ADP were measured to investigate how an acute AICAR infusion perturbs hepatic adenylate 

energy balance in a euglycemic, in vivo setting. Liver ATP levels were comparable in α1α2
lox/lox
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and α1α2
lox/lox

+Albcre mice (1.7±0.12 vs. 1.5±0.09μmol∙g
-1

) that received the Saline infusion 

(Fig. 4.4A). The AMP/ATP ratio and EC were similar to previous measurements taken under 

post-absorptive conditions (28). The AICAR infusion resulted in a significant reduction in the 

total adenine nucleotide (TAN) pool (3.3±0.09 to 1.6±0.02μmol∙g
-1

) in α1α2
lox/lox

 and mice 

lacking hepatic AMPK (3.1±0.06 to 1.4±0.08μmol∙g
-1

) (Fig. 4.4B). Hepatic AMP levels were 

equivalent (0.43±0.04 vs. 0.47±0.03 μmol∙g
-1

) in Saline control groups. However, AICAR 

elicited a significant increase in AMP in α1α2
lox/lox

+Albcre over α1α2
lox/lox

 mice (0.43±0.02 vs. 

0.61±0.09 μmol∙g
-1

) (Fig. 4.4A). AICAR also elicited a reduction in ATP and ADP levels in both 

groups (Fig. 4.4A). The fall in ATP was exacerbated in the absence of hepatic AMPK. AICAR’s 

deleterious effect on the adenylate pool is exemplified by the magnitude of change in EC and the 

AMP/ATP ratio. α1α2
lox/lox

 mice sustained a ~20% reduction in EC whereas α1α2
lox/lox

+Albcre 

incurred a nearly two-fold greater reduction (Fig. 4.4D); the relative amount of available high 

energy, adenylate phosphate was severely reduced as reflected by the ~3 and ~6 fold rise in the 

AMP/ATP ratio in α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice, respectively (Fig. 4.4E). Thus, AMPK 

limits the fall in energy charge induced by an acute AICAR infusion in vivo. These data are 

consistent with the effects of metformin and AICAR in vitro (34).  

 

Discussion 

 Compounds (endogenous and pharmaceutical) and conditions that increase hepatic 

AMPK activity have been demonstrated to mitigate hepatic processes central to the etiology of 

diabetes and obesity (4, 33, 34, 135, 170, 171, 180, 213, 218–222). Here we use genetic tools to 

distinguish between the AMPK-dependent and independent effects of AICAR in vivo. Recent 

evidence challenges the role of AMPK as an indispensable arbiter for the anti-glycemic action of 
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biguanides and adiponectin in hepatocytes (4, 34, 171). The studies herein define the regulatory 

role of energy state in terms of those metabolic effects that are mediated by hepatic AMPK and 

those that are not. This was accomplished by increasing the NMP concentration in the presence 

of a fixed glucose concentration using an AICAR-euglycemic clamp technique in the presence 

and absence of hepatic AMPK in vivo. 

 AMPK activation is broadly implicated in the transcriptional control of mediators of 

gluconeogenesis (71, 166, 168, 223–226). Cre-mediated removal of the AMPKα2 catalytic 

subunit from the liver results in substantial increases in fasting glucose and insulin (155). It has 

also been demonstrated that the overexpression of constitutively active AMPKα2 reduces fasting 

glucose with a concomitant attenuation of PEPCK and G6Pase gene expression (71). Moreover, 

AICAR attenuates the gene expression of PEPCK and G6Pase; this effect has been attributed to 

AMPK activation (166, 223, 226), but the requirement for this enzyme in acute control has 

recently been strongly contested in primary hepatocytes and metabolic tests in vivo (34). We 

demonstrate that the genetic removal of both AMPKα1 and α2 catalytic subunits from the liver 

has no impact on rates of endogenous glucose production or disappearance in the conscious, 5hr 

fasted mouse. During euglycemia, liver AMPK is neither required for the AICAR-mediated 

inhibition of EndoRa nor its stimulation of glucose disappearance.  These data impart two 

important results regarding the role of AMPK in the acute glucoregulation: the genetic deletion 

of AMPK from the liver (1) does not affect 5hr fasting glucose kinetics and (2) is unnecessary 

for the AICAR mediated suppression of EndoRa in the short-fasted mouse.  

 Though these studies highlight the power of AICAR to inhibit glucose production in vivo, 

the results do not discount the possibility that hepatic AMPK participates in the regulation of 

glucose flux under other conditions. The experiments were designed to study glucose flux in the 
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short-fasted, post-absorptive mouse to limit the effects of fast duration on hepatic nucleotides 

and AMPK signaling. These and other recent studies (4, 16, 34) emphasize the need to demarcate 

the in vivo effects of AMPK in physiology from pharmacology.       

 Recent literature on glycemic regulation by glucagon (16) and biguanides (4, 34) has 

reinvigorated the conversation surrounding AMP and energy charge as regulatory variables (40, 

216). Glucagon-mediated flux through PEPCK appears to generate an autoregulatory feedback 

loop limiting the fall in ATP due to gluconeogenesis (16). These studies demonstrate that the 

unique plasticity of liver EC has an important function in response to a normal elevation in 

endocrine action. Indeed, glucagon provokes distinct changes in liver function which correspond 

to a relative decrease in available ATP (16), despite the stimulation of fat oxidation and 

suppression of triglyceride synthesis (21).  

 A therapeutic advantage of AMPK-activators like AICAR and biguanides is that they are 

not dependent on cataplerotic flux to glucose for an increase in the AMP/ATP ratio.  Rather, 

metformin has been shown to inhibit mitochondrial complex I activity (125, 128), depress energy 

charge and activate AMPK (34). AMP has the capacity to inhibit fructose 1,6-bisphosphatase 

(39) and adenylyl cyclase (4). ZMP, the AMP mimetic generated from AICAR, also inhibits the 

former (222) and interferes with complex I activity in isolated mitochondria (127). In well-

controlled conditions in which glucose is tightly regulated, the AICAR infusion induces a large 

drop in the total adenine nucleotide pool, EC, and an increase in the AMP/ATP ratio. The 

AICAR stimulated fall in ATP is even larger in the absence of hepatic AMPK, which manifests 

into a greater drop in EC and increase in AMP/ATP.  In vivo (33, 125) and in vitro(34, 127) 

delivery of AICAR can disrupt the hepatic adenylate energy pool and induce a drop in ATP. 
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AMPK clearly plays a protective role, maintaining energy state in the presence of the metabolic 

challenge induced by nucleotide phosphate disequilibrium.  

 Substrate utilization and energy production are functionally linked through oxidative 

phosphorylation. Physiological conditions characterized by decreases in ATP also correspond to 

elevations in fat, amino acid, glycerol, and lactate utilization in the liver (11). The AICAR 

infusion provokes a fall in available energy. Liver AMPK knockout impairs mitochondrial 

function and increases hepatic fatty acids, which may exacerbate AICAR’s effects on hepatic 

energy state (See Chapter III, Fig. 3.5A,B). Energy production from fat primarily results from 

the generation of reducing cofactors for oxidative phosphorylation. Additionally, AMPK 

promotes mitochondrial complex II and III expression, which serve as sites for the provision of 

reducing equivalents (Fig. 3.5C). During AICAR delivery, the efficient coupling of reduced 

cofactors with ATP production may be vital to preserving energy charge. Reductions in complex 

II and III expression and mitochondrial efficiency may trigger the larger increment in the 

AMP/ATP ratio observed in AMPK-deficient livers. It should be noted that impairments in 

hepatic energy homeostasis in α1α2
lox/lox

+Albcre mice only emerged with AICAR 

administration. No differences in adenine nucleotides, EC, or AMP/ATP were observed in short-

fasted, euglycemic α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice receiving the Saline infusion. Thus, 

defects in substrate utilization and mitochondrial function in α1α2
lox/lox

+Albcre mice only affect 

liver energy state when linked with elevated metabolic stress.  

 Similar to the effects of metformin, ZMP interferes with complex I and impairs state 3 

respiration (127). AICAR may promote AMPK-dependent and independent fat transport into the 

mitochondria yet impede cofactor oxidation. As a result, liver energy charge may decline despite 
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a relative abundance of substrate, NADH and FADH2. A similar hypothesis has been proposed 

for the actions of metformin (227).     

 The deleterious effect of AICAR on EC may be compounded by the inhibition of hepatic 

glucose uptake. AICAR delivery into the portal vein renders the liver insensitive to net hepatic 

glucose uptake, even during hyperglycemia and hyperinsulinemia (228). In vitro work confirms 

that AICAR reduces glucokinase translocation and glycolysis in hepatocytes (229), in AMPK-

dependent (230) and independent (231) conditions. Our AICAR delivery rate was selected to 

permit a reasonable physiological comparison between our results and earlier AICAR-

euglycemic clamps in rodents (133, 134). The resulting dose was sufficient to perturb hepatic 

adenylate energy balance and we expect that the depletion of ATP could contribute to an 

inhibition of liver glycolysis (230, 231). AICAR also elevates plasma lactate in vivo (33, 133), 

which may result from increased production from muscle (232) and impaired uptake in the liver 

(222). Since AICAR induced an equal increment in glucose disappearance in both genotypes, it 

is reasonable to assume muscle lactate production is unaffected by liver AMPK knockout. The 

attenuated elevation in plasma lactate in α1α2
lox/lox

+Albcre mice may instead reflect a switch in 

substrate uptake and utilization in the liver during AICAR administration.  

 The metabolic challenge induced by AICAR inhibits both glucose flux in and out of the 

liver effectively generating a condition in which the liver may become more reliant on fat 

oxidation. Ample molecular and physiological evidence connects AMPK activation with fat 

utilization in the liver. AICAR reduces hepatic TGs under various conditions in rodents (135, 

213, 218) and increases fatty acid oxidation in hepatocytes (136, 217, 233). Knockout of the 

AMPKα2 subunit in the liver (155) results in increased circulating fatty acids, TGs, and a 

decrease in β-hydroxybutyrate. Whereas, the short-term overexpression of a constitutively active 
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form of AMPKα2 reduces plasma TGs and increases β-hydroxybutyrate (71). Together, this 

suggests AMPK mediates fatty acid uptake and oxidation. Our data demonstrate that AICAR’s 

acute effect on hepatic TGs requires liver AMPK. pACC
S79

 is undetectable in α1α2
lox/lox

+Albcre 

mice and, thus, higher in AICAR-treated α1α2
lox/lox

 mice (Fig. 4.3B), implicating increased CPT-

1 activity as a potential mechanism for elevated fat oxidation in the liver. However, pACC
S79

 

was not different between α1α2
lox/lox 

Saline and α1α2
lox/lox

 AICAR. It is plausible that increased 

NMP drives fatty acid flux away from de novo lipogenesis and through CPT-1 (217), in an 

AMPK-dependent and pACC
S79

-independent manner. 

Lastly, AMPK has been shown to regulate mediators of TG and cholesterol synthesis (67, 

194, 234, 235). At the end of the AICAR infusion, higher liver TGs in α1α2
lox/lox

+Albcre mice 

could conceivably result from an impaired inhibition of TG synthesis (de novo synthesis or FA 

re-esterification) or a reduction in TG export. If this were the case, one might expect circulating 

TGs to follow a similar trend, yet circulating TGs were equivalent in α1α2
lox/lox 

and 

α1α2
lox/lox

+Albcre mice. Evidence from these studies point to impairments in fat utilization as a 

source of elevated TGs in the livers of α1α2
lox/lox

+Albcre mice following AICAR administration.  

 Collectively, the data provide in vivo support for the energy sensor paradigm (38)—

AMPK acts as a sensor and safeguard of the hepatic adenylate energy pool during an acute 

challenge to the energy status of the liver. The absolute amounts of ATP, ADP, and AMP in the 

liver are dictated by changes in synthesis and breakdown, with adenylate kinase coordinating 

their relative balance. Genetic deletion of AMPK exacerbates the AICAR-mediated disturbance 

of the adenylate pool and a larger reduction in available ATP. The evidence suggests that AMPK 

works to promote fat utilization and mitochondrial function during a pharmacological increase in 

ATP consumption, as liver AMPK knockout leaves liver TGs elevated. These data prove that 
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AMPK is not required for the acute inhibition of endogenous glucose production during 

elevations in AMP, the AMP/ATP ratio, or ZMP in vivo. This and other recent research (4, 34, 

171) has important implications for therapeutics designed to target the pathogenesis of diabetes 

and metabolic diseases. 
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Figure 4.1 –Schematic for AICAR-euglycemic clamps. α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice were fasted 

for 3.5hrs prior to the primed, continuous delivery of [3-
3
H]glucose. Basal (5hr fasted) glucose kinetics and 

circulating parameters were determined from arterial plasma samples taken directly prior to the ACIAR 

infusion. At t=0, AICAR was delivered as a primed continuous infusion (40mg∙kg
-1

bolus, 8mg∙kg
-1

∙min
-1

 

infusion). Blood glucose was monitored over the 120min time course and glucose was infused to minimize 

deviations from ~110mg∙dL
-1

. 5 steady state plasma samples were drawn between 80-120min to determine 

clamp glucose kinetics and circulating parameters.  
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 α1α2
lox/lox

  α1α2
lox/lox

 + Albcre 

Body Composition   

     Body Weight (g) 28.3±1.0 28.2±0.8 

     Fat (%)   9.3±1.1 10.6±0.5 

     Muscle (%) 87.6±3.1 86.9±0.5 

Plasma Metabolites   

     Blood Glucose 118±3   117±4 

     Insulin (ng/mL)    1.9±0.3_    2.1±0.4 

     Triglycerides (mg/dL) 95±8  82±7 

     Lactate (mmol/L)  0.7±0.1   0.6±0.1 

     Free Fatty Acids (mEq/L)  0.30±0.03   0.38±0.07 

 

  

Table 4.1 –Body composition and 5hr fasted metabolites of α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice. 

Plasma metabolites were isolated from arterial blood samples taken from 5hr fasted α1α2
lox/lox

 and 

α1α2
lox/lox

+Albcre mice. Body composition was performed on a separate cohort of α1α2
lox/lox

 and 

α1α2
lox/lox

+Albcre mice. Data are expressed as means ±SE, n=5-13 in each group. 
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Figure 4.2 –Acute inhibition of glucose production by AICAR is independent of hepatic AMPK. Arterial 

glucose (A.) and glucose infusion rate (GIR) (B.) during AICAR and Saline clamps in α1α2
lox/lox

 and 

α1α2
lox/lox

+Albcre mice. Mice were fasted 5hr prior to the primed (40mg•kg
-1

) infusion of AICAR (8mg•kg
-

1
•min

-1
) or Saline. Blood glucose was clamped at 110mg•dL

-1 
and the time course is displayed to demonstrate 

experimental quality. 50% dextrose was infused to maintain euglycemia during the steady state of the clamp 

(t=80-120min). Endogenous glucose production (EndoRa) and disappearance (Rd) during the Basal period 

(5hr fasted) (C.) and steady state of the AICAR-clamp (D.) in α1α2
lox/lox

 (■) and α1α2
lox/lox

 +Albcre (□). GIR 

means from the experimental period were analyzed for significance. Data are expressed as means ±SE, n=5-

12 in each group. *p≤0.05 vs. Sal. 

 



99 
 

 

 

 

 α1α2
lox/lox

  α1α2
lox/lox

 + Albcre 

Blood Glucose(mg/dL)   

      Saline-Clamp 109±4 113±4 

      AICAR-Clamp 111±2 112±5 

Insulin (ng/mL)   

      Saline-Clamp    4.1±0.5    3.0±0.7 

      AICAR-Clamp    6.9±1.5    4.5±1.6 

Triglycerides (mg/dL)   

      Saline-Clamp  41±5   45±5 

      AICAR-Clamp    17±1*    22±4*  

Lactate (mmol/L)   

      Saline-Clamp   0.8±0.1    0.7±0.1 

      AICAR-Clamp     5.0±0.5*        3.7±0.3*† 

Free Fatty Acids (mEq/L)   

      Saline-Clamp   0.47±0.06     0.48±0.07 

      AICAR-Clamp    ND*       0.06±0.02* 

Liver Triglycerides (mg/gLiver)   

      Saline-Clamp 24.6±0.8   29.1±2.0 

      AICAR-Clamp   19.7±1.5$    26.7±2.7† 

Liver Glycogen (mg/gLiver)   

      Saline-Clamp   7.2±2.2    3.1±0.8 

      AICAR-Clamp  14.6±3.4*      2.1±0.4† 

 

 

 

 

 

 

 

 

 

Table 4.2 –AICAR-euglycemic clamp metabolites. Plasma and liver metabolite concentrations during the Saline 

or AICAR (8mg∙kg
-1

∙min
-1

) euglycemic-clamp from α1α2
lox/lox

 and α1α2
lox/lox 

+ Albcre mice. Plasma metabolites 

were isolated from arterial blood samples drawn from externalized catheters in conscious, unstressed mice during 

the clamp steady state. Liver triglycerides and glycogen were measured from freeze-clamped tissue excised at the 

end of the clamp. Blood glucose means from the experimental period were analyzed for significance. Data are 

expressed as means ±SE, n=4-7 in each group. Values lower than detectable range (ND);*p≤0.05 vs. Sal; †p≤0.05 

vs. α1α2
lox/lox

; $p=0.08 vs. Sal. 
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Figure 4.3 –Effect of AICAR on liver AMPK activation state. Total, pAMPK
T172

 (A.) 

and total, pACC
S79

 (B.) from the livers of α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice following 

the AICAR or Saline clamp. Data are normalized to GAPDH or βActin and expressed as 

means ±SE; values below the blots are arbitrary units normalized to α1α2
lox/lox

 Saline 

controls, n=5-6 in each group. *p≤0.05 vs. Sal. ND, values lower than detectable range. 
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Figure 4.4 –Liver AMPK deletion exacerbates AICAR effects on hepatic energy state. Hepatic adenine 

nucleotides (A.) and the total adenine nucleotide pool (TAN) (B.) were measured by HPLC from liver extracts 

taken from α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice at the end of the AICAR or Saline clamp.  Hepatic ZMP 

levels (C.) were also measured to assess the quality of AICAR delivery into the liver. Energy charge (D.) was 

calculated by the following equation, ([ATP]+0.5[ADP])/([ATP]+[ADP]+[AMP]), to assess the energy state of 

the liver. The AMP/ATP ratio (E.) was provided for each clamp group. Data are expressed as means ±SE, 

n=5-6 in each group. *p≤0.05 vs. Sal; †p≤0.05 vs. α1α2
lox/lox

. 
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Chapter V 

 

EXERCISE TRAINING ATTENUATES METABOLIC ABNORMALITIES IN THE 

LIVERS OF HIGH-FAT FED MICE LACKING HEPATIC AMPK 

 

Aims 

 The aim of this chapter was to determine the AMPK-dependent effectiveness of regular, 

voluntary exercise on 1) the amelioration of fatty liver and 2) energy state during HF-feeding. An 

increment in glucagon action couples substrate utilization and hepatic glucose flux to 

accommodate the body’s increased energetic demands during exercise (2, 9, 236, 237). Glucagon 

action is necessary for the exercise-mediated reversal of fatty liver (36). Moreover, glucagon 

administration can prevent and attenuate fatty liver (238, 239). These results add to the body of 

literature substantiating the invaluable role of glucagon in control of hepatic metabolic flux (8, 

10, 18, 20, 21, 240). Glucagon regulates molecular mechanisms that support fat oxidation in 

vitro (21) and in vivo (36). Regular bouts of exercise may exert tonic effects on fat oxidation 

through PPARα (21, 36, 109) and FGF21 (36, 241, 242). Glucagon may also regulate lipogenesis 

by suppressing SREBP-1c expression and activity (66, 189). 

 Importantly conditions characterized by elevated glucagon action activate hepatic AMPK 

(16, 21, 28, 36). An extensive overlap exists between the effects of glucagon and AMPK activity 

on mediators of fat oxidation and synthesis (68). AMPK phosphorylation interferes with the 

expression and activity of SREBP-1c (67) and ACC (190, 191) which, in turn, inhibits 

lipogenesis and promotes fat oxidation. Chronic exercise reduces the expression of mediators of 

lipogenesis and promotes fatty acid transport into the mitochondria (243). Furthermore, AMPK 
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supports mitochondrial function and the maintenance of hepatic energy charge (Chapter III). 

Despite the overlap between elevated glucagon action and AMPK activation, the requirement of 

AMPK for exercise-mediated reductions in fatty liver has not been elucidated. These studies 

tested the necessity of AMPK for the amelioration of fatty liver by exercise. 

 

Experimental Approach 

 Fatty liver was induced in floxed control (α1α2
lox/lox

) and liver-specific AMPKα knockout 

(α1α2
lox/lox

 +Albcre) mice through 6wks of high-fat (HF) feeding. For an additional 10wks, mice 

were maintained on a HF-diet with access to operable (RWEX) or inoperable (Sed) running 

wheels (Fig. 5.1A). Running wheel activity was continuously monitored using a digital 

revolution counter. Body weight, composition, and plasma parameters were measured 

throughout the fatty liver induction and intervention phases. 48hrs after the last bout of exercise 

(~16wks of HF-dieting ± 10wks RWEX), mice were sacrificed by cervical dislocation and liver 

tissues were analyzed through standard biochemical and state-of-the-art metabolomics methods 

(as detailed in Chapter II). 

 

Results 

 

Liver AMPK Deletion does not Affect Changes in Body Weight and Composition during the 

Induction Phase 

 Body weight and composition were no different between α1α2
lox/lox 

and 

α1α2
lox/lox

+Albcre mice at 6wks (Fig. 5.1B-D). 6wk-old male mice were HF-fed for 6wks to 

induce fatty liver. Both groups experienced a progressive increase in body weight over the 6wk 
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Induction Phase (Fig. 5.1B) and exhibited no genotype specific differences. From 6 to 12wks, 

absolute lean (14.7±0.56 to 19.8±0.49g and 14.2±0.74 to 20.5±0.52g) and fat mass (1.3±0.05 to 

9.6±0.6g and 1.4±0.09 to 10.1±1.0g) significantly increased in α1α2
lox/lox 

and α1α2
lox/lox

+Albcre 

mice. 6wks of HF-feeding caused an equal increase and decrease in %Fat and Muscle, 

respectively, in both genotypes (Fig. 5.1C,D). 

 

Exercise Training Mediates Improvements in Whole-Body Health Independent of  

Hepatic AMPK 

Body weight, composition, blood glucose, insulin, and leptin were no different in 

untrained α1α2
lox/lox 

and α1α2
lox/lox

+Albcre mice at 12wks (Fig. 5.2B-G). HF-feeding increased 

total body weight over the 10wk Intervention Phase in α1α2
lox/lox 

and α1α2
lox/lox

+Albcre Sed mice 

(Fig. 5.2B). Running wheel activity during the Intervention Phase was not statistically different 

between α1α2
lox/lox 

and α1α2
lox/lox

+Albcre mice (Fig. 5.2A). RWEX resulted in a reduction in 

body weight and fat mass compared to sedentary controls. Lean mass, however, did not differ 

(Fig. 5.2B-D). The absence of hepatic AMPK had no impact on diet or RWEX-mediated 

alterations in body weight or composition. 

 Glucose and insulin means were no different between α1α2
lox/lox 

and α1α2
lox/lox

+Albcre 

Sed mice during the Intervention Phase (Fig. 5.2E,F). Insulin increased in sedentary controls 

over the 10wk Intervention Phase (Fig. 5.2F), which corresponded to a reduction in blood 

glucose by 22wks (Fig. 5.2E). RWEX reduced blood glucose within 5wks of training, which 

persisted until the end of the study (Fig. 5.2E). Plasma insulin levels were unchanged from 

values at the beginning of the Intervention Phase in both RWEX groups (Fig. 5.2F). HbA1c levels 

were not different in α1α2
lox/lox 

and α1α2
lox/lox

+Albcre Sed (5.3±0.32 and 5.0±0.12) or RWEX 
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(4.8±0.06 and 4.9±0.13, respectively) groups at the end of the Intervention Phase. Leptin 

uniformly increased over time in α1α2
lox/lox 

and α1α2
lox/lox

+Albcre Sed mice (Fig. 5.2G). Though 

elevated by the end of the Intervention Phase, RWEX attenuated the increment in leptin at 17wks 

in α1α2
lox/lox 

and α1α2
lox/lox

+Albcre mice. Thus, AMPK is not required for RWEX effects on 

blood glucose, insulin, and leptin during HF-feeding.   

 

AMPK Mediates Effects on Hepatic Lipids but is Not Required for the Amelioration of Fatty 

Liver by Voluntary Exercise 

Liver Triglycerides (TGs), Cholesterol Esters (CEs), and Diglycerides (DGs) 

 Fatty liver is a condition defined by excessive TG accumulation. AMPK activation has 

been proposed to be involved in the reversal of fatty liver by exercise training (36). Liver TG 

composition and concentrations were not statistically different between α1α2
lox/lox 

and 

α1α2
lox/lox

+Albcre Sed mice after 16wks of HF-feeding (Fig. 5.3A). 10wks of voluntary RWEX 

was sufficient to ameliorate fatty liver, independently of hepatic AMPK (Fig. 5.3A). RWEX 

elicited a 53±11 and 59±9% reduction in liver TGs in α1α2
lox/lox 

and α1α2
lox/lox

+Albcre mice and 

induced a shift toward in TG polyunsaturation (Fig. 5.3A).  

 CE accumulation associates with fatty liver in rodents (36). Although modest RWEX 

effects were observed, CE content and composition were no different between α1α2
lox/lox 

and 

α1α2
lox/lox

+Albcre Sed and RWEX mice (Fig. 5.3B). Likewise, liver AMPK deletion had no effect 

on hepatic DG levels in Sed and RWEX mice; however, DG polyunsaturation was elevated in 

α1α2
lox/lox

+Albcre RWEX mice (Fig. 5.3D).  
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Liver Phospholipids (PLs) 

  Aberrations in hepatic PLs have been reported in obesity (244) and fatty liver (36). 

Exercise exerted no effect on the total quantity or saturation of liver PLs in α1α2
lox/lox 

mice (Fig. 

5.3C). As observed in Chapter III, liver AMPK deletion resulted in a stark reduction in PLs in 

both Sed and RWEX groups (Fig. 5.3C), which corresponded to increased saturation and 

decreased polyunsaturation (Fig. 5.3C). 

 The gene effect on liver PLs corresponded to differences in metabolites utilized in PL 

synthesis. The de novo synthesis of the most abundant PL classes in eukaryotes, 

phosphatidylcholine (PC) and phosphatidylethanolamine (PE), is described by the Kennedy 

Pathway (245). α1α2
lox/lox

+Albcre Sed mice exhibited lower levels of choline, CDP-choline, and 

ethanolamine relative to controls (Fig. 5.4A,B,E). PC may also be synthesized through the tri-

methylation of PE, with S-adenosylmethionine (SAM) serving as a methyl donor (245). 

Metabolites that cycle through SAM were disrupted by hepatic AMPK deletion (Fig. 5.4F-I). 

AMPK deletion reduced methionine and S-adenosylhomocysteine and increased SAM and 5-

methylthioadenosine in Sed mice (Fig. 5.4F-I). RWEX largely mitigated the aberrations in PL-

related metabolites in α1α2
lox/lox

+Albcre RWEX mice (Fig. 5.4). Despite these changes, liver PL 

levels in α1α2
lox/lox

+Albcre RWEX mice remained lower than in α1α2
lox/lox

 RWEX mice (Fig. 

5.3C).  
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Deficits in Hepatic Energy State in the Absence of AMPK Associate with Alterations in TCA 

Cycle and Acylcarnitine Metabolites 

Adenylate Energy Homeostasis and the TCA cycle 

 Adenylate kinase catalyzes the interconversion of ATP, ADP, and AMP (38) which 

fluctuate in the liver during physiological or pharmacological perturbations in metabolism (16, 

28, 30, 228). Dysregulated hepatic energy metabolism is characteristic of HF-feeding in rodents 

(16, 35) and obesity-related pathology in humans (31, 32, 146). These abnormalities may stem 

from the inefficient coupling of reduced cofactors with ATP production (35, 146, 147). The 

deletion of hepatic AMPK impairs mitochondrial function in chow-fed mice (Chapter III).  

 HF-feeding reduced ATP and ADP concentrations by 20±4 and 13±5%, respectively, in 

α1α2
lox/lox

+Albcre Sed mice (Fig. 5.5A), which corresponded to a 16±3% reduction in the total 

adenine nucleotide (TAN) pool (Fig. 5.5B). RWEX elicited an increment in hepatic ATP levels in 

α1α2
lox/lox 

mice, which did not occur in the absence of AMPK (Fig. 5.5A). As a result, RWEX 

failed to increase energy charge (EC) or decrease the AMP/ATP ratio despite raising the TAN 

pool (3.7±0.14 to 4.3±0.11μmol∙g
-1

) in the absence of hepatic AMPK (Fig. 5.5B-D). Though 

AMPK-deficient livers exhibit a small recovery in ADP and TAN, AMPK is clearly essential for 

the maintenance and improvement of hepatic energy state during HF-feeding and RWEX, 

respectively.  

 The TCA cycle couples substrate catabolism with oxidative phosphorylation.  Liver 

AMPK deletion disrupted normal levels of TCA cycle intermediates and TCA-cycle related 

substrates. HF-feeding increased citrate, cis-aconitate and reduced fumarate and malate in 

α1α2
lox/lox

+Albcre mice compared to WT mice (Fig. 5.6A,B,D,E). No genotype-dependent 

changes in succinate were observed (Fig. 5.6C). Exercise training demonstrated remarkable 
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efficacy in normalizing TCA cycle intermediates. Indeed, citrate, cis-aconitate, succinate, 

fumarate, and malate levels were equivalent in α1α2
lox/lox 

and α1α2
lox/lox

+Albcre RWEX mice and 

resulted from changes in both groups (Fig. 5.6A-E).  

 

Liver Acylcarnitine Metabolites 

 The accumulation of acylcarnitine species in metabolic dysregulation may indicate 

incomplete or abnormal substrate oxidation (35, 82).  Acylcarnitines of varying lengths emanate 

from tissue and organelle specific activities of carnitine acyltransferases (86, 246). In particular, 

short-chain acylcarnitines emanate from the catabolic pathway of branched chain amino 

(BCAA), keto (BCKA), and certain fatty acids. Degradation of the latter metabolites yields 

reducing cofactors, ketogenic (acetylCoA and acetoacetate) or anaplerotic (propionylCoA) 

moieties.  

 Interestingly, elevations in the aforementioned metabolites were observable only in the 

livers from α1α2
lox/lox

+Albcre mice (Fig. 5.7A-F). 3-methylglutaryl, glutaryl (trend), and 

succinylcarnitine were elevated in sedentary α1α2
lox/lox

+Albcre mice (Fig. 5.7A-C). The 

elevation in these metabolites was sustained with RWEX. In fact, the carnitine conjugate of 

propionylCoA (propionylcarnitine) (Fig. 5.7D) increased with RWEX in α1α2
lox/lox

+Albcre mice. 

Moreover, acetylcarnitine—generated from the catalysis of carnitine and acetylCoA by carnitine 

acetyltransferase (247)—was elevated in α1α2
lox/lox

+Albcre RWEX mice (Fig. 5.7E).  

 Several small carbon chain substrates that enter the TCA cycle through anaplerosis or 

acetylCoA were also elevated with liver AMPK deletion. Glutamate, alanine, lactate, and 1,2-

propanediol were elevated in either α1α2
lox/lox

+Albcre Sed or RWEX mice (Fig. 5.7G-J).  
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Exercise exerted no effect on these metabolites in α1α2
lox/lox

 mice indicating that this 

phenotype is 1) dependent on liver AMPK deletion and 2) not correctable by chronic exercise in 

HF-feeding. Thus, hepatic AMPK deletion spurs a deficit in hepatic energy homeostasis that 

corresponds to an accumulation of anaplerotic and oxidizable carbon. 

  

Discussion 

 Dysregulated liver metabolism is associated with diabetes and obesity. Chronic HF-

feeding impairs hepatic insulin signaling and associates with the development of fatty liver (36), 

altered mitochondrial function, and an induction of TCA cycle flux (35). These and other studies 

validate the capacity of exercise to reduce liver lipids (36, 152, 243). Regular voluntary exercise 

lowered circulating insulin, leptin, and whole-body adiposity. RWEX also improved hepatic 

energy state, which was associated with a shift in the relative amounts of TCA cycle 

intermediates. The following subsections discuss the degree to which the liver relies on AMPK 

for the hepatic effects of exercise training during overnutrition.   

 

Hepatic AMPK is Unnecessary for the Reversal of Fatty Liver by Exercise 

 Glucagon receptor signaling during regular exercise is a requisite for the reversal of fatty 

liver and an induction of genes that control oxidation in the liver (36). Glucagon action may 

increase AMPK-activation with chronic exercise training (36). In these studies, however, regular 

exercise ameliorated fatty liver through mechanisms independent of liver AMPK (Fig. 5.3A).  

 The effects of acute-moderate and high intensity exercise on hepatic AMPK activation 

are well documented (28, 62, 115, 248–251). Changes in hepatic energy state and AMPK 

activation after a single bout of exercise can be captured through rapid tissue excision and 
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storage. The effects of exercise training on AMPK activation are less uniform (36, 151, 252, 

253). Discrepancies may stem from differences in exercise training protocols and duration from 

the last exercise bout. 

 Nevertheless, a body of literature substantiates AMPK’s role in promoting fat oxidation 

and suppressing lipogenesis in the liver. AMPK phosphorylation regulates ACC (190, 191) and 

SREBP-1c (67). Administration of AMPK activators promote fat oxidation in vitro (136, 217) 

and reduce liver triglycerides in vivo (135, 213, 218). Moreover, genetic models that chronically 

activate (71) or remove (172) AMPK increase or impair fat utilization. In the present studies, we 

set out to determine the metabolic effects of hepatic AMPK deletion in HF-feeding and the 

requirement of AMPK for the exercise-mediated decrement in fatty liver. The results clearly 

demonstrate that exercise can employ mechanisms to reduce fatty liver independently of hepatic 

AMPK. In addition to reductions in liver TG content, RWEX elevated the percentage of TG 

polyunsaturation and decreased monounsaturation, regardless of genotype. A similar effect on 

hepatic lipid polyunsaturation has also been observed in humans following an acute exercise 

regimen (149). 

 Chronic exercise modalities may elicit changes in the body composition of mice. In these 

studies, the introduction of exercise offset the effects of HF-feeding on body weight and 

composition. Liver TGs are particularly sensitive to even modest changes in weight in humans 

(254). Dietary intervention in obese, HF-fed mice results in weight loss and large reductions in 

liver triglycerides (255). Furthermore, HF-feeding and exercise alter the phase and rhythm of 

voluntary exercise in mice (256). RWEX -mediated changes in feeding behvaior and whole-body 

adiposity may have contributed to the reversal of fatty liver and increase in TG polyunsaturation.  
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Hepatic AMPK is Necessary for the Effects of Regular Exercise on Energy Homeostasis 

during HF-Feeding  

 Obesity and diabetes create a paradoxical energy state in the liver. Despite a chronic 

increase in nutrient availability, ATP consumption may exceed production and elicit a deficit in 

liver energy status (16). Impairments in hepatic ATP homeostasis have been observed in NASH 

(32) and type II diabetes (31). To this end, the ordinary coupling of TCA cycle flux (35), 

reducing cofactor (147) and hepatic glucose production become dysregulated (35). Recent in 

vivo research has made significant advances in measuring TCA cycle flux in the context of HF-

feeding induced mitochondrial dysfunction (35). Indeed, HF-feeding alters mitochondrial 

content, function (35, 257), and TCA-cycle associated fluxes in the transition from 8 to 32wks of 

HF-feeding (35). A reduction in mitochondrial efficiency (State 3/State 4 respiration) combined 

with the increased energetic demands of gluconeogenesis during insulin resistance may 

necessitate a compensatory increase in TCA cycle flux (35). We demonstrate that regular 

exercise improves hepatic energy state through AMPK-dependent mechanisms.  

 Hepatic AMPK deletion impairs State 3 respiration, decreases mitochondrial respiration 

efficiency (State 3/State 2 respiration) and the expression of mitochondrial complexes II and III 

(Chapter III). Metabolic stress uncovers AMPK’s role in maintaining energy homeostasis in the 

liver. AICAR delivery in chow-fed α1α2
lox/lox

+Albcre mice elicits a greater reduction in ATP, 

TAN, and energy charge than controls (Chapter IV). HF-feeding reduced ATP and TAN in 

sedentary, α1α2
lox/lox

+Albcre mice. Whereas RWEX increased ATP in WT mice, RWEX failed to 

improve deficits in ATP in the absence of liver AMPK. Thus, hepatic AMPK is required to 

dampen the energetic stress of HF-feeding with regular exercise.  
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 Metabolomic analyses provided further evidence for an imbalance between substrate 

availability and oxidation in AMPK deficient livers. In α1α2
lox/lox

+Albcre Sed mice, the 

succinylCoA synthetase (SCS) step in the TCA cycle appears to serve as an important site of 

dysregulation in oxidative metabolism. Metabolites preceding SCS (citrate, cis-aconitate) 

accumulate and subsequent SCS (fumarate, malate) drop, with no apparent changes in succinate. 

Moreover, succinylcarnitine, which forms from succinylCoA, was elevated. When coupled with 

the reductions in ATP, TAN, and impaired mitochondrial function observed in chow-fed mice 

(Chapter III), the results strongly suggest that liver AMPK deletion causes inefficient or 

impaired substrate flux through the TCA cycle in high fat feeding.  

 Voluntary exercise normalized TCA-cycle intermediates in α1α2
lox/lox

 and 

α1α2
lox/lox

+Albcre mice. Elevations in acylcarnitine metabolites, however, were augmented by 

exercise intervention in AMPK’s absence. With the exception of 2-methylbutyrylcarnitine, 

acylcarnitine species with chain lengths between 2 and 6 carbons were increased. Some species 

derive primarily from amino acid catabolism (Fig. 5.7A,B) whereas others arise from odd-chain 

fatty acids, amino acids (Fig. 5.7C,D) or several substrates that yield acetylCoA (Fig. 5.7E). The 

acylcarnitine phenotype exhibited in liver AMPK-knockout mice shares a degree of overlap with 

other models of pathological or impaired oxidative metabolism (35, 88). In addition to the 

aforementioned acylcarnitine species, substrates that feed into pyruvate (i.e. lactate, alanine) 

were also elevated. The relative ATP deprivation in α1α2
lox/lox

+Albcre livers corresponds to an 

apparent accumulation of oxidizable/anaplerotic substrate.  

 AMPK has been strongly implicated in the control of hepatic fat oxidation, synthesis, and 

mitochondrial function (Chapter III, IV). In AMPK’s absence, impairments in ATP production 

may be coupled to a metabolic switch that controls substrate selection. Though AMPK is not 
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required for the amelioration of fatty liver by RWEX, energy deficits introduced by AMPK 

deletion may reflect an impairment or switch in the utilization of substrates targeted for the TCA 

cycle. Despite adequate amounts of oxidizable carbon, the liver may be kept in a perpetual state 

of pseudo-deprivation due to inefficient energy coupling. 

 

Novel Observations Concerning a Role for Liver AMPK in ER functions 

 Hepatic AMPK has been a central molecular target in the investigation of in vitro and in 

vivo glucoregulation. The necessity of AMPK for normoglycemia and the action of 

AICAR/biguanides on hepatic glucose production has been evaluated in this dissertation and 

elsewhere (4, 34). No differences in plasma glucose or insulin emerged in HF-fed or exercised 

α1α2
lox/lox

+Albcre mice compared to α1α2
lox/lox

 mice. Sedentary, α1α2
lox/lox

+Albcre mice 

exhibited a reduction in liver glycogen (Fig. 5.8A). Whole-body deletion of AMPKβ2 (214), but 

not β1 (172), also reduces liver glycogen levels. Glycogen is lengthened by the addition of the 

glucose moiety from UDP-glucose onto a nascent branch. Alternatively, UDP-glucose may be 

converted to UDP-glucuronate and conjugated to endo and xenobiotics or converted to ascorbate 

(258). We observed an elevation in metabolites of the glucuronidation and ascorbate synthesis 

pathways in liver AMPK knockout mice (Fig. 5.8B-F). Abnormalities in the “glycogenoreticular 

system” may be a cause or consequence of the abnormal reduction in liver glycogen observed in 

the absence of AMPK. 

 The endoplasmic reticulum (ER) serves as a key locus for glucuronidation, ascorbate 

(258) and PL synthesis in the liver (259). The absence of hepatic AMPK reduced liver PLs in 

sedentary and RWEX mice. Metabolic abnormalities in PC and PE biosynthetic pathways were 
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observed in α1α2
lox/lox

+Albcre Sed livers. These observations provide evidence for a role of 

AMPK in proper ER functioning. 

 

Summary 

 The effectiveness of metformin and AICAR (Chapter IV) on glucoregulation has 

reemphasized energy state as an AMPK-independent regulator (4, 34). Thus, distinguishing 

between the AMPK-dependent and independent effects of physiological, pathophysiological, and 

pharmacological energy stress on liver metabolism is of central importance. These studies 

establish the liver AMPK-independent effectiveness of exercise training on liver metabolism in 

HF-feeding. Indeed, liver AMPK is not necessary to correct fatty liver, lower blood glucose, 

insulin, body weight and adiposity with regular exercise. Hepatic AMPK deletion resulted in 

several metabolic abnormalities with HF-feeding, some of which were normalized by regular 

exercise—namely intermediates of the TCA cycle and those of the phospholipid synthesis 

pathway. However, RWEX failed to improve hepatic energy state or mitigate aberrant 

acylcarnitine levels in the absence of AMPK. While pharmacological targeting of AMPK may 

reduce liver TGs and improve energy state, regular exercise can reduce fatty liver through 

mechanisms independent of this enzyme. 
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Figure 5.1 – Induction Phase body weight and composition. HF-feeding induced changes in body weight 

(B) and composition (C, D) in α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice during the fatty liver Induction Phase. 

6wk old mice were placed on a HFD for 6wks prior to RWEX intervention.  A scheme has been included to 

describe the design for these studies (A). Data are expressed as means±SEM, n=13-19 in each group. *p≤0.05 

vs. 6wks. #p≤0.05, α1α2
lox/lox 

and α1α2
lox/lox

+Albcre Sed vs. 6wks. 
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Figure 5.2 – RW activity, body weight, composition, and plasma parameters during the Intervention Phase. 

After 6wks of HF-feeding (12wks), α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice were placed in cages with operable (RWEX) 

or inoperable (Sed) running wheels for 10wks. Running wheel revolutions were continuously monitored using a 

digital counter and plotted as Revs/Day for every 2 weeks of the Intervention Phase (A.). Body weight (B.) and 

composition (C,D.) were monitored biweekly and blood glucose (E.), insulin (F.), and leptin (G.) were measured 

every 5wks from the cut tail. Data were analyzed by Two-Way ANOVA RM and expressed as means±SEM, n=5-7. 

#p≤0.05, α1α2
lox/lox 

and α1α2
lox/lox

+Albcre Sed vs. 12wks; $p≤0.05, α1α2
lox/lox

 Sed vs. 12wks; $$p≤0.05, 

α1α2
lox/lox

+Albcre Sed vs. 12wks; *p≤0.05, α1α2
lox/lox

 RWEX vs. 12wks; †p≤0.05, α1α2
lox/lox

+Albcre RWEX vs. 12wks; 

**p≤0.05, α1α2
lox/lox 

and α1α2
lox/lox

+Albcre RWEX vs. 12wks. 
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  Figure 5.3 – Hepatic lipids and saturation at the end of the Intervention Phase. At the close of the study, mice 

were 22wks old and fed a HF-diet for 16wks (±10wks of RWEX). 48hrs following the last bout of activity, mice were 

sacrificed and liver tissue was taken for analysis. Liver triglycerides (A.), cholesterol esters (B.), phospholipids (C.), 

and diglycerides (D.) were isolated through Folch extraction. Lipid saturation was calculated as a sum of the 

%contribution for individual saturated, monounsaturated, or polyunsaturated fatty acid species. Data are expressed as 

means±SEM, n=5-7 in each group. *p≤0.05 vs. Sed; †p≤0.05 vs. α1α2
lox/lox

; #p=0.056 vs. Sed. 
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Figure 5.4 – Metabolites related to the de novo synthesis of phosphatidylcholine (PC) and 

phosphatidylethanolamine (PE). The listed metabolites contribute to the Kennedy or alternative PC synthesis 

pathways (A-I.). Metabolites were determined from liver tissue excised 48Hrs following the last bout of RWEX (16wks 

of HF-feeding±10wks RWEX). A minimal metabolite pathway scheme is provided for reference (adapted from (259, 

263)) and is not intended to reflect all reactions and directionality in the network; metabolites not provided (italicized) 

are included for clarity.  Dotted lines indicate multiple enzymatic steps between reactants and products. Data are 

expressed as means±SEM, n=6-7 in each group. *p≤0.05 vs. Sed; †p≤0.05 vs. α1α2
lox/lox

. 
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Figure 5.5 – Hepatic adenine nucleotides and energy state. Hepatic adenine nucleotides (A.) 

and the total adenine nucleotide pool (TAN) (B.) were measured by HPLC from liver extracts 

taken from α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice at the close of the Intervention Phase. Energy 

charge (C.) was calculated by the equation EC=([ATP]+0.5[ADP])/([ATP]+[ADP]+[AMP]). 

The AMP/ATP ratio (D.) was provided for each group. Data are expressed as means±SE, n=5-6 

in each group. *p≤0.05 vs. Sed; †p≤0.05 vs. α1α2
lox/lox

. 
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Figure 5.6 – Hepatic TCA cycle intermediates. TCA cycle metabolites (A-E.) were 

determined for liver samples taken at the end of the Intervention Phase from α1α2
lox/lox

 and 

α1α2
lox/lox

+Albcre Sed and RWEX mice. Data are expressed as means±SEM, n=6-7 in each 

group. *p≤0.05 vs. Sed; †p≤0.05 vs. α1α2
lox/lox

. 
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Figure 5.7 –Acylcarnitine and TCA cycle related liver metabolites. Acylcarnitine species (A-F.) and 

anaplerotic metabolites (G-J.) from liver tissue excised after the Intervention Phase in α1α2
lox/lox

 and 

α1α2
lox/lox

+Albcre Sed and RWEX mice. A minimal molecular pathway scheme is provided for reference and is not 

intended to reflect all possible reactions and directionality in the network; metabolites not provided (italicized) are 

included for clarity. Dotted lines indicate multiple enzymatic steps between reactants and products. The carnitine-

linked reactions emphasized in this diagram do not necessarily reflect reactions exclusive to liver mitochondria, as 

subcellular organelle carnitine acyltransferase activity may vary between tissues (246). Data are expressed as 

means±SEM, n=6-7 in each group. *p≤0.05 vs. Sed; †p≤0.05 vs. α1α2
lox/lox

. 
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Figure 5.8 – Glucuronidation and ascorbate-related metabolites. Liver glycogen 

(A.) and metabolites involved in glucuronidation and ascorbate synthesis (B-F.) in 

the livers of α1α2
lox/lox

 and α1α2
lox/lox

+Albcre Sed and RWEX mice. Data are 

expressed as means±SEM, n=6-7 in each group. *p≤0.05 vs. Sed; †p≤0.05 vs. 

α1α2
lox/lox

.  
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Chapter VI 

 

CONCLUSIONS 

 

Summary 

 Collectively, this dissertation demonstrates that hepatic AMPK preserves energy state 

during physiological and pharmacological stress by coordinating substrate availability and 

oxidative capacity with ATP production in the liver. These studies advance an understanding 

hepatic AMPK function in three in vivo settings of central value to metabolic science: (1) 

varying degrees of nutrient deprivation, (2) pharmacological inhibition of hepatic glucose 

production, and (3) regular, voluntary exercise in HF-feeding. An ancillary benefit of this work 

was gauging the liver’s metabolic capacity independent of AMPK activation. Fluctuations in 

adenine nucleotides are an ordinary feature of hepatic metabolism caused by a number of 

stressors. AMPK coordinates a signaling circuit that limits the ATP nadir observed in 

physiological and pharmacological energy stress.   

 Glucagon action stimulates mechanisms for substrate uptake and utilization in the liver 

which sustain gluconeogenesis during fasting and exercise (8, 10, 12, 240). The net effect of 

conditions characterized by sustained glucagon action is an apparent discharge of the liver’s 

energy state (16, 28–30).  Accordingly, AMPK is activated by glucagon receptor signaling 

during fasting (115), exercise (28, 115), and hyperglucagonemia (16), which serves as the 

impetus for the experiments described in Chapter III and V.   

 A salient finding from these studies is that AMPK action buffers reductions in liver ATP 

that result from pharmacological or physiological states. However, one cannot help but notice 
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that even in the presence of AMPK activation, fasting-mediated deficits in energy state are 

maintained. Therefore, AMPK works to keep changes in adenine nucleotides within a range 

integral for physiological processes in a long term fasted state. These observations support the 

postulate that products of AMPK-supported oxidation—e.g. acetylCoA and NADH—are crucial 

for sustaining gluconeogenesis and ketogenesis. Fasting and exercise mediated reductions in 

hepatic energy state, perhaps, facilitate the production of the aforementioned metabolites through 

AMPK activation. This rationale would explain, in part, the importance of a plastic energy state 

in the liver.  

 Indeed, energy coupling in the liver is unique in that substrates oxidized in the TCA cycle 

are linked with sustained gluconeogenesis. Results here and elsewhere (210) clearly demonstrate 

that glucose production in the long term fasted mouse is almost entirely dependent on 

gluconeogenesis, predominantly from PEP flux. Albeit modest, long term fasting induces a 

decrement in the rate of flux through the TCA cycle (V7) while maintaining normal rates of 

gluconeogenesis. Persistent carbon flow to glucose (OAAPEP) may diminish TCA cycle 

intermediates, lessen V7, and drain liver energy state in response to a long term fast. In these 

conditions, the  abundance of acetylCoA and NADH derived from fat oxidation may sustain flux 

through gluconeogenic reactions (98). Livers from starved rats may also exhibit a decrease in 

TCA cycle flux and an increase ketogenesis (69).   

 From these measurements we conclude that AMPK synchronizes ATP balance with 

fasting-mediated changes in substrate utilization in the liver. In the absence of AMPK, glucose 

and oxidative fluxes become discordant. Reductions in glycogenolytic flux to glucose associate 

with increases in fatty acids, aberrant medium and short chain metabolites, and a reduction in the 

total adenine nucleotide pool in a short term fast. Extending the fast duration in absence of liver 
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AMPK leads to greater deficits in hepatic ATP. Unlike what is observed in long term fasted 

controls, V7 remains elevated in conjunction with the larger fall in ATP, which coincides with a 

relative elevation in BCAA/BCKA-related metabolites.  

 Physiological changes in adenine nucleotides—which require glucagon-receptor 

signaling—may emanate from several sources. As shown in Fig. 1.1, multiple processes that 

support anaplerotic or oxidative substrate provision to the TCA cycle require ATP. Nitrogen 

disposal through ureagenesis requires ATP. The priming of fatty acids with CoA requires ATP 

hydrolysis; moreover, fatty acids may exert an uncoupling effect on mitochondria that 

dissociates electron transport from ATP synthesis. These events may contribute to liver energy 

state when gluconeogenic glucose production predominates. Research presented here (Chapter 

IV) and elsewhere (4, 34) imply that energy state exerts AMPK-independent control over energy 

consuming processes. Albeit important, AMPK is one component of a regulatory unit in the liver 

that harmonizes metabolic flux with energy production.      

 The results here also demonstrate the AMPK reliant, preservative nature of liver energy 

status during stress. Chapters III-V provide substantial evidence that AMPK supports structures 

(mitochondria) and pathways that keep energy status within a limited range. This claim is most 

clearly illustrated in Chapter III. The livers of short-fasted α1α2
lox/lox

+Albcre mice exhibit 

several complications that would either induce or exacerbate energy deprivation. First and 

foremost, liver AMPK deletion impairs maximal mitochondrial responsiveness (State 3) and 

efficiency (State3/State2); thus, the capacity and efficiency of the cell’s powerhouse diminishes 

in the absence of AMPK. Accordingly, AMPK deletion causes greater deficits in liver energy 

state following the acute delivery of a compound that consumes ATP and interferes with 
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complex I (AICAR). Chronic HF-feeding elicits reductions in hepatic ATP that cannot be 

corrected by regular exercise in the absence of AMPK.   

 Acute AMPK activation promotes fatty acid transport and regulates lipogenesis by 

inhibiting malonylCoA synthesis (Fig. 1.3). Chapters III -V provide evidence that AMPK 

promotes the appropriate coupling of fatty and amino acids with TCA cycle metabolism. For 

simplicity, the process that mediates complete LCFA oxidation can be partitioned into 3 

intracellular steps: 1) mitochondrial transport, 2) β-oxidation and 3) acetylCoA oxidation. 

LCFAs must be conjugated to carnitine by CPT1 (Fig. 1.3) to cross the mitochondrial 

membrane; once in the matrix, CPT2 reintroduces CoA allowing for β-oxidation. Unlike long 

chains, medium chain fatty acids bypass the transport regulatory step. AMPK deletion induces a 

selective elevation in long, but not short chain fatty acids in the liver. These data coincide with a 

decrease in CoA levels. Moreover, liver TGs, DGs, and CEs are equivalent to controls. Without 

AMPK-supported transport, the buildup of LCFAs may contribute to a deficit in liver energy 

state. These results are corroborated by the AICAR-mediated reduction in hepatic TGs in 

α1α2
lox/lox 

but not α1α2
lox/lox 

+Albcre mice.  

 It is acknowledged that the evidence for impaired LCFA flux into the mitochondria is 

correlative. Moreover, these studies do not discern whether the early elevation in LCFAs results 

from impairments in oxidation or re-esterification, provision from PL biosynthetic/degradative 

pathways, or enhanced delivery to the liver. Liver LCFA levels are not elevated above controls 

in long term fasted liver AMPK knockout mice—despite greater deficits in ATP and TAN. 

However, a larger increment in liver CEs was observed in the absence of AMPK, which might be 

a compensatory mechanism to combat FA lipotoxicity in a system with impaired LCFA 

intramitochondrial transport. Interpreting the results from the acute AICAR studies are 
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complicated by similar limitations. Though liver TGs are elevated in hepatic AMPK knockout 

mice following the AICAR infusion, it remains unclear whether this results from sustained 

hepatic TG assembly and/or impairments in fat oxidation.  

 This dissertation also presents substantial evidence that liver AMPK deletion increases 

metabolites in non-canonical, energetically less economical pathways that feed carbon to the 

TCA cycle. Metabolites that emanate from amino acid catabolism—primarily BCAA or 

branched-chain α-keto acid (BCKA)—are atypically elevated in the livers of short and long term 

fasted liver AMPK knockout mice. Branched-chain aminotransferase (BCAT) catalyzes the 

transamination of BCAAs to BCKAs, which utilizes α-ketoglutarate to generate BCKA and 

glutamate.  BCKA dehydrogenase (BCKDH) catalyzes BCKA decarboxylation, committing 

BCAA/BCKAs to degradation (260). Distinct from other metabolically active organs, BCAT and 

BCKDH activities in the liver are uniquely low and high, respectively (261). In addition to the α-

keto acid derived from leucine deamination (4-methyl-2-oxopentanoate), metabolites that stem 

primarily from the BCAA/BCKA catabolic pathway were elevated (Chapter III, V). The former 

metabolite is proposed to indirectly activate BCKDH activity (260). Breakdown of 

BCAA/BCKAs yield gluconeogenic and ketogenic products (gluconeogenic = succinylCoA and 

propionylCoA, ketogenic = acetoacetate and acetylCoA). An atypical elevation in BCAA/BCKA 

metabolism, perhaps, sustains V7 in long-term fasted, liver AMPK knockout mice. This 

hypothesis should be considered with caution, as the subcellular distribution of carnitine 

acyltransferase activity is not uniform in all tissues (246). Furthermore, propionylCoA is 

generated through the metabolism of certain amino and fatty acid species.  

 Though amino acid metabolism may yield reduced cofactors, gluconeogenic and 

ketogenic products in the liver, the energy costs associated with amino acid deamination and 
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nitrogen disposal might contribute to the larger energy deficits observed in liver AMPK 

knockout mice. While augmenting BCAA/BCKA-related metabolites, AMPK deletion increases 

N-acetylglutamate, an activating cofactor of the ureagenic enzyme carbomoyl-phosphate 

synthetase I. These results do not unequivocally prove that AMPK deletion accelerates 

BCAA/BCKA catabolism in short and long term fasting. It is plausible that substrate load may 

simply exceed the rate of carbon extraction by the TCA cycle. Such a condition could manifest 

during impairments in oxidation and/or during periods of substrate excess. For example, others 

observe an increase in short, medium, and long chain acylcarnitines in chronic high fat feeding—

which corresponds to a sustained increase in oxidative flux through the TCA cycle (35). Indeed, 

long term fasting increases liver acetylcarnitine in α1α2
lox/lox

 and α1α2
lox/lox

+Albcre mice, which 

serves as the carnitine conjugate of acetylCoA. It is acknowledged that the provision of 

BCAA/BCKA-related metabolites from extrahepatic tissues may be an alternative mechanism to 

explain the phenotype observed in these studies (82, 87). A complete analysis of short, medium, 

and long chain fatty acylcarnitine species would be helpful to better elucidate carbon flux. 

Several long and medium chain acylcarnitines may also be elevated in the livers of hepatic 

AMPK knockout mice. 

 An understanding of the acute mechanistic control of glucose production and 

gluconeogenic enzyme expression is crucial for developing therapeutics to treat obesity-related 

hyperglycemia. For the reasons outlined in the introduction, AMPK is often invoked as a central 

enzyme in the molecular regulation of hepatic glucose production. The studies performed here 

and elsewhere (4, 34) demonstrate that metformin and AICAR acutely inhibit glucose production 

independent of AMPK (Chapter IV), potentially through a mechanism that lowers energy state. 

Unlike the aforementioned studies, blood glucose levels were clamped in vivo and, thus, the 



129 
 

metabolic consequences of swings in glycemia were abrogated. The deleterious effect of AICAR 

on energy state is profound, even during the provision of exogenous glucose. AMPK protects 

against the depletion of the adenine nucleotide pool and energy state in this pharmacological 

setting. Though this dissertation focused on the ability of AICAR to inhibit glucose production in 

the absence of hepatic AMPK, AMPK may actually impede the effectiveness of antiglycemic 

compounds whose actions depend on a reduction in energy state. An interesting corollary study 

would be the administration of AICAR/biguanides in the presence of constitutively active 

AMPK. One might hypothesize that adaptations to chronic AMPK activation would prime the 

liver to combat the effects of these compounds on energy depletion, thereby decreasing their 

glucose-lowering effectiveness. Various exercise modalities also deplete hepatic energy state. It 

stands to reason that, in the absence of AMPK, reductions in liver energy state are exacerbated 

by exhaustive exercise. The ability of the liver to sustain glucose production during exhaustive 

exercise may require hepatic AMPK. Moreover, liver compensation to chronic bouts of high 

intensity exercise may also require AMPK signaling.   

 When taking into account the novel flux methods developed in this dissertation, a 

plethora of future directions concerning hepatic metabolism may be extrapolated from this work. 

Studies in this dissertation did not move beyond simple stressors in examining hepatic metabolic 

fluxes; this decision was made deliberately to 1) avoid an additional layer of complexity in a 

novel in vivo technique and 2) provide a reasonable basis of comparison to the results of others 

investigating similar fluxes. The results in Chapter III and in unpublished validation studies 

provide sufficient reason to move this technique into other in vivo stressors.  
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Future Directions for Flux Analysis In Vivo 

 The effects of acute exercise on hepatic energy state and AMPK activation have been 

demonstrated (16, 28, 115). Moreover, our laboratory has made sizeable contributions to 

understanding the role of glucagon in substrate uptake and utilization in the liver during an 

exercise-mediated increment in glucose production. The techniques developed here provide for 

the investigation of TCA cycle and glucose-related fluxes during an acute bout of exercise in 

wild-type and transgenic mice. The hypothesis that acute, moderate and exhaustive exercise 

accelerate flux through the TCA cycle and gluconeogenesis could be investigated in the mouse in 

vivo. Repeated bouts of exercise have been demonstrated to improve the liver’s responsiveness to 

glucagon (262); thus, the effects of regular exercise on energetic adaptations in the liver 

associated with glucose and oxidative fluxes could be tested. Moreover, these methods may be 

applied to investigate the acute and chronic effects of endogenous (e.g. FGF21, adiponectin, 

saturated/unsaturated fatty acid emulsions) and pharmaceutical agents on liver metabolic flux. 

The “insulin-resistant” and gluconeogenic effect of acute hyperlipidemia (Intralipid infusion) 

may emanate from the effects of excess fatty acids on oxidative metabolism. These future 

directions in wild-type mice are, by far, not an exhaustive list. 

 

Hepatic AMPK and Nutrient Sensor Specific Future Directions 

 Chronic RWEX ameliorated fatty liver independent of hepatic AMPK. The reduction in 

liver TGs associated with an increase in polyunsaturation and decrease in monounsaturation. 

Likewise, insulin, blood glucose, and leptin were no different in control and liver AMPK 

knockout mice. These results demonstrate that long-term voluntary exercise is capable of 

mitigating many of the pathological effects of high-fat feeding. However, abnormalities in 
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BCAA/BCKA-related acylcarnitines and energy state persisted despite exercise intervention. 

Interpreting the AMPK-independence of RWEX-mediated reductions in fatty liver is complicated 

by differences in whole-body adiposity and large variations in RW activity. A more conclusive 

investigation would standardize chronic exercise workload and prevent changes in body weight 

and adiposity. A predefined, daily treadmill exercise regimen could conceivably mitigate the 

aforementioned complications; indeed, AMPK may be important for the amelioration of fatty 

liver when differences in body weight and composition are prevented. Moreover, chronic 

administration of AMPK activators (AICAR, biguanides, A-769662) may require liver AMPK 

for lowering hepatic triglycerides and blood glucose during high-fat feeding. The flux methods 

described in Chapter III could be applied in HF-fed, α1α2
lox/lox 

± Albcre and ± acute/chronic 

AICAR administration, for example.  

 The AICAR dose selected in Chapter IV was intended to bring hepatic ZMP levels within 

the medium to high range and, thus, test the absolute requirements of AMPK for AICAR effects 

in vivo. While AICAR and metformin appear to stimulate hepatocyte fat oxidation, it is unclear 

whether they stimulate mitochondrial β-oxidation or the subsequent complete oxidation of 

acetylCoA. Evidence suggests both pharmacological agents inhibit respiration (125, 127) and 

elevate AMP. It is reasonable to suspect that these compounds also inhibit TCA cycle flux 

through feedback inhibition (227). In this setting, AMPK would support β-oxidation through the 

influx of LCFAs into the mitochondria yet the complete oxidation of acetylCoA may be 

impaired. A combination of in vivo and in vitro tracer flux modeling strategies could be 

employed to test the hypotheses that (1) AICAR promotes β-oxidation while inhibiting TCA 

cycle flux (2) AMPK activation is essential for the coordination of both processes. 
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 A series of “pulse-chase” like experiments could also be used to test the hypothesis that 

AMPK is essential for recharging hepatic energy state following a pharmacological or 

physiological stress (i.e. high intensity exercise). These studies could be performed in the 

presence and absence of liver AMPK. Since AMPK is also important for mitochondrial function, 

medium-chain FAs could be supplemented during the recharge phase to bypass complications 

associated with LCFA import into the mitochondria. A variation of the stable-isotopic tracer 

technique could be applied during the “pulse” and “chase” phases to measure liver intermediary 

metabolism.       

 These and several other energy-centric experiments can be performed in an array of 

mouse models with transgenic or knockout of nutrient/energy sensing enzymes. Severe 

hyperglycemia ensues following liver LKB1 deletion, which implies a dramatic increase in 

hepatic anaplerotic and gluconeogenic fluxes (137). LKB1-deletion may drain hepatic energy 

state and disrupt redox balance; a compensatory increase in anaplerotic and oxidative substrate 

may fuel elevated glucose production in the context of upregulated gluconeogenic enzyme 

expression. The effects of AMPK inactivity would be compounded by a decrease in the activity 

of several LKB1-dependent kinases (174) .  

 

Concluding Remarks 

 The results presented in this dissertation provide the most complete in vivo investigation 

of AMPK action in the control of fundamental liver physiology. AMPK is crucial for protecting 

energy status during a mild and extreme stressor (overnight fasting and AICAR administration, 

respectively) by supporting the coupling of oxidative flux with ATP homeostasis in the liver. 

However, the liver is capable of preventing gross impairments in glucose and oxidative 
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metabolism even in the absence of AMPK. Thus, AMPK is postured as an important control 

element of a broader signaling network that regulates metabolic state in the liver.    
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