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CHAPTER I 

 

INTRODUCTION 

When considering both recommended and excessive medication dosages, almost 

all drugs have potentially serious adverse effects.  Adverse effects (AEs) are any harmful 

or unintended reactions to medication.  AEs can occur at doses normally used for 

treatment or because of overdose. Due to known limitations in premarketing medication 

trials (1–3), identification of adverse effects requires vigilant post-marketing surveillance.  

Agencies and investigators have recognized the potential for Electronic Medical Record 

Systems (EMRs) to characterize clinical correlations in large numbers of patients using 

prescription medications. 

This thesis project explores one aspect of using EMRs to detect single drug 

ingredient AEs – specifically, the feasibility of mining History and Physical (H&P) exam 

notes to detect concurrent mentions of single drug ingredients and clinical findings 

(including both symptoms and diseases).  In the remainder of this document, the term 

―drug‖ will refer to a single (active) drug ingredient (as opposed to a multi-component 

―combination‖ medication or an inert ingredient), unless otherwise stated. Our approach 

identifies drug and finding concepts using Natural Language Processing (NLP) of clinical 

text.  We hypothesize (based on previous work (2; 4–6)) that drug-finding pairs occurring 

in a higher-than expected number of records signify an underlying relationship between 

drug and finding.  If one can distinguish which pairs occur for known reasons, then one 
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can postulate that the remaining pairs occur for unknown reasons -- especially previously 

unrecognized potential adverse effects. 

Our project involved three phases. In Chapter III of this thesis, I describe the 

creation and evaluation of a knowledge base (KB) of known drug-finding pairs.  I 

developed this KB from multiple existing reference sources containing structured data. I 

used automated methods to extract, reformat, and combine the information.  In Chapter 

IV, I describe the extraction of drug-finding pairs from a corpus of de-identified H&P 

notes using NLP. Further processing required generalization of specific drug terms (e.g., 

mapping a brand name or a specific dose form to a common generic drug descriptor).  I 

calculated statistical measures of the strength of correlation between drug and finding 

concepts that appeared across large numbers of notes.  Finally, I discuss application of 

the (Chapter III) drug-finding KB to categorize the (Chapter IV) correlations as either 

known and/or unknown drug-finding correlations. I discuss the project results and the 

limitations of this study.  
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CHAPTER II 

 

BACKGROUND 

Introduction 

Most drugs have potentially serious, medication-specific adverse effects (AEs) at 

therapeutic or excessive doses (we detail our definition of AE in Figure 1).  The U.S. 

Food and Drug Administration (FDA) requires multi-phase clinical testing (described 

below) in an attempt to ensure efficacy and safety of prescription medications sold in the 

marketplace.  Due to known limitations in premarketing clinical trials (1–3), 

identification of adverse effects also requires vigilant post-marketing surveillance.  Some 

AEs remain unknown until after a drug has been approved for clinical use and used by 

large numbers of people. 

After extensive in vitro and animal research, developers of new medications must 

undertake FDA-mandated pre-marketing clinical trials using human subjects in three 

phases (7). In Phase I testing, researchers administer the new drug to a small group of 

volunteer subjects, generally between 20 and 80 people.  This initial testing determines 

the metabolism and pharmacologic action of the drug in humans, determines a safe 

dosage range, and identifies side effects associated with different dosages.  Phase I trials 

may include healthy individuals or patients with specific diseases.  In Phase II, 

researchers test the drug in a controlled trial on a somewhat larger group, usually between 

100 and 300 volunteers.  This phase studies the effectiveness of the drug in treating 

patients with one or more targeted conditions. Phase II also further evaluates safety and 
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determines common side effects.  A drug still promising after the first two phases 

undergoes Phase III trials. These include both controlled and uncontrolled studies 

typically enrolling 1000-3000 individuals. Phase III trials determine the overall risk-

benefit relationship for the new drug in treating a particular condition. 

 

 

 

 

Figure 1. Illustration of drug effects. We define a ―single drug ingredient‖ AE as those 

effects shaded in blue.  Arrows represent a ―may lead to‖ relationship. 

 

Some AEs do not arise in pre-market clinical trials for a variety of reasons (1).  

First, such clinical trials are relatively small (typically fewer than 3000 people), so they 

cannot detect rare side effects that occur in fewer than 1 in 10,000 patients. Upon 
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reaching the market, hundreds of thousands, or even millions, of people might use a new 

drug (3).  Second, inclusion criteria for FDA pre-marketing trials are often restrictive in 

terms of age, race, gender, and health status.  While necessary for accurate testing, a 

small, uniform population sample is unlikely to mimic the diverse spectrum of 

individuals who will eventually use the drug.  Additionally, controlled trials rarely 

emulate the exact conditions of medication use by the public at large. Pre-marketing trials 

cannot and do not fully explore effects of comorbid conditions, ranges of dosing, duration 

of administration, and interactions with other medications taken simultaneously.  

Unfortunately, this means that many medication AEs only appear after a large number of 

people have taken a drug over much longer periods of time than typical durations of pre-

marketing trials (2; 3). 

 

Examples of AEs discovered in post-marketing surveillance 

Rofecoxib (Vioxx), a COX-2 selective nonsteroidal anti-inflammatory drug 

(NSAID), was marketed by Merck to treat arthritis, acute pain in adults, and 

dysmenorrhea (8).  The FDA approved the sale of rofecoxib on May 21, 1999, and it 

became one of the best-selling prescription drugs worldwide. On September 30, 2004, 

after over 80 million people had taken the medication, Merck voluntarily withdrew the 

drug because of an increased risk of myocardial infarction (MI) and stroke that only 

appeared after 18 months of use of the medication (9).  Rofecoxib is no longer sold in the 

United States, but was available for over 5 years before these serious effects were 

discovered.  Valdecoxib (Bextra), another COX-2 NSAID, was also withdrawn from the 

market due to an increased risk of heart attack and stroke.  Due to these problems, the 
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FDA warns against the use of Celecoxib (Celebrex), another popular COX-2 NSAID, by 

patients at risk of heart disease, but there is at best contradictory evidence that it is 

associated with similar side effects. 

Rosiglitazone (Avandia) is a thiazolidinedione class drug that was widely used in 

the treatment of Type II diabetes.  The drug was approved by the FDA in 1999 and by 

2006 had sales of approximately $2.2 billion (10).  In 2007, an analysis published in the 

New England Journal of Medicine (NEJM) showed that rosiglitazone use increased the 

risk of MI and other adverse cardiovascular effects (11).  Despite some criticism of the 

NEJM study, and subsequent studies that provided mixed results, public confidence in, 

and sales of rosiglitazone dropped rapidly(12).  Three years after the NEJM study, on 

September 23, 2010, the European Medicines Agency (EMA) removed the drug from the 

European market and the FDA imposed significant restrictions on its use in the United 

States (13; 14).  While the NEJM study eventually discovered these AEs, the question 

remains whether information was available earlier that might have led to a more timely 

detection.  Another anti-diabetic drug in the thiazolidinedione class, pioglitazone (Actos), 

has a lower risk for MI than rosiglitazone, but was linked to increased risk of bladder 

cancer in 2011 after four years on the market.  As a result, France suspended the sale of 

pioglitazone, and the FDA has issued a warning that it should not be used in patients with 

a history of bladder cancer (15). 

The HMG-CoA reductase inhibitors (commonly known as statins) have been 

available in the U.S. since the 1980s.  This class includes the frequently prescribed drugs 

simvastatin (Zocor), atorvastatin (Lipitor), and rosuvastatin (Crestor).  More than 20 

million Americans currently take statins to lower their cholesterol levels (16).  On 
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February 28, 2012, the FDA announced that statin users have a dose-related increased 

risk for memory loss and for developing type II diabetes mellitus (17).  Using a 

conservative estimate that 1/200 patients treated with higher doses of the statins develop 

diabetes, suggests that up to 100,00 new statin-induced cases of diabetes would occur in 

the US alone (16). 

Finally, in recent news, on April 11, 2012, Johnson and Johnson was ordered to 

pay $1.2 billion in fines on charges that they minimized or concealed the dangers 

associated with the drug risperidone (18).  Risperidone is an anti-psychotic drug used to 

treat schizophrenia, bipolar disorder and behavior problems in teenagers and children 

with autism.  The adverse effects that were allegedly minimized or withheld include 

weight gain, increased risk of diabetes, and stroke. 

 

Prevalence of ADRs/AEs 

Studies have shown a surprisingly high prevalence of adverse drug reactions AEs 

and ADRs, in terms of both generic effects, such as allergic reactions, and medication-

specific pharmacological effects.  In 2004, a British study of 20,000 inpatients showed 

that 6.5% of admissions were associated with ADRs.  The ADR directly led to the 

admission in 80% of those cases (19).  A 2008 systematic review of 25 studies involving 

over 100,000 patients found that approximately 5.3% of hospital admissions were 

associated with ADRs. The ADR rate was higher in elderly patients, who more 

commonly receive multiple medications (20).  In 2010, a study of patients admitted to a 

1250-bed hospital in Dordrecht, The Netherlands, found that 19% to 29% of admissions 
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to the Departments of Internal Medicine, Cardiology, and Pulmonology were due to 

ADRs (21).  Adverse effects are a serious threat to patient safety.   

The withdrawal of drugs such as rofecoxib and rosiglitazone, as well as improved 

warnings for pioglitazone and the statins, illustrates that FDA monitoring can eventually 

detect dangerous AEs in the market. Nevertheless, the key question remains whether one 

could detect such important and unanticipated AEs sooner after a drug reaches the 

marketplace (1). 

 

Pharmacovigilance & Post-marketing surveillance 

The science of pharmacovigilance comprises detection, assessment, 

understanding, and prevention of AEs (22), including AEs at both normal and excessive 

doses.  Concerted and coordinated pharmacovigilance efforts began in the 1960s, 

including those of the World Health Organization (WHO) and the FDA. These followed 

the widespread, highly publicized, and tragic side effects of thalidomide administration 

during pregnancy.  Pharmacovigilance includes pre-marketing risk assessment of newly 

developed drugs, ongoing risk minimization, and post-marketing surveillance (23).  Post-

marketing surveillance is essential for identifying a medication’s AEs since it is unlikely 

that pre-marketing trials can be comprehensive enough to do so. 

In the 1960s, Spontaneous Reporting, the process of healthcare professionals 

reporting suspected ADRs to a national agency or to the drug manufacturer, became the 

standard method of gathering data for post-marketing surveillance.  Most countries 

collect such information in databases known as Spontaneous Reporting Systems (SRS).  

United States laws require drug manufacturers to submit reports of any suspected AEs to 
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the FDA.  In addition, hospitals, healthcare professionals, and patients can submit 

spontaneous reports to the FDA through a program called MEDWATCH (24). The 

current FDA AE database, the Adverse Event Reporting System (AERS) contains over 2 

million reports (24).  In addition to the national regulatory authorities (NRAs) of each 

European country, the EMA maintains an EU-wide spontaneous reporting database 

known as EudraVigilance (European Union Drug Regulating Authorities 

Pharmacovigilance) (25)(26). In 1968, the WHO set up the International Drug 

Monitoring Programme.  Today, it pools data from the spontaneous reporting systems of 

over 80 countries to assess post-marketing risk (27).  

SRS are well known for under-reporting, over-reporting, and duplicate reporting. 

Clinicians often under-report due to lack of time, education, and financial compensation, 

as well as fear of revealing medication errors, and a generally negative attitude towards 

reporting activity (25).  Additionally, the decision to report requires individual to make 

the connection between the event and the administration of the suspected drug; incidents 

that occur rarely, or seem disconnected from the drug administration for some reason, 

may go unreported. Examples of under-reporting include physicians not reporting effects 

that they do not consider significant or missing data in significant cases.  Examples of 

over-reporting might include physicians reporting known, well-understood, and common 

AEs.  Duplicate reports can be generated by physician or patient reports to the FDA 

followed by reports of the same incident by the drug manufacturer.  SRS also lack 

information on the number of individuals actually consuming a drug and contain limited 

temporal information (28). Additionally, there are significant differences in the reporting 

of serious versus non-serious AEs, as well as trends relating to time on the market and the 
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number of prescriptions written (29).  Oftentimes, these reports are focused on known 

AEs.   

The Medical Dictionary for Regulatory Activities (MedDRA) includes concepts 

such as diseases, diagnoses, signs, symptoms, therapeutic indications, and medication 

errors(30) that categorize AEs.  An international group of NRAs, including the FDA, 

EMA, WHO, and others, manages MedDRA.  Trained staff use MedDRA to process and 

encode spontaneous reports.  MedDRA has become the required or preferred terminology 

for reporting AEs throughout the world, facilitating collaborative data exchange and 

analysis (31).   

Traditionally, efforts to monitor spontaneous reporting databases have focused on 

review of individual case reports.  Newer methods facilitate analysis of aggregate data for 

purposes of detection and evaluation of what are known as ―signals‖ (32).  Signals are 

defined as threshold-based indicators that suggest a particular medication produces an 

AE, as detected by statistical, computational, or data-mining techniques in 

pharmacovigilance databases. Most methods use what is known as disproportionality 

analysis – that is, methods that measure the extent to which a given AE is 

disproportionally reported with a given drug (32).  These methods have been validated in 

drug safety research, but they are only exploratory; one cannot draw conclusions solely 

from disproportionality analysis or any other single method (33).  Definitive proof can 

only come from a convergence of experimental, clinical, and statistical research. 
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Signal Detection Methods and Examples 

One of the most popular disproportionality analysis methods is the Proportional 

Reporting Ratio (PRR). Developed in 2001 by researchers using the UK SRS, the PRR is 

analogous to the concept of epidemiology concept of proportional mortality ratios (PMR) 

(34) (35).  The PRR for a particular AE is defined as the ratio of the particular AE among 

all AEs for the given drug, divided by the ratio of the particular AE among all AEs for all 

drugs.  One major drawback for the PRR, however, is that it is ―numerator-based.‖  

When estimating the prevalence of an AE with a particular drug, the ―numerator‖ 

is the number of users experiencing an AE, while the ―denominator‖ is the total number 

of individuals using the drug (34).  Since the focus of a spontaneous report is on a user 

experiencing an AE, SRS do not contain information on the total number of users taking 

the drug in the population.  Therefore, most methods are numerator-based. 

One of the strengths of the PRR is that underreporting of adverse events should 

not influence the PRR, given that the AE in question is equally underreported as the 

aggregate of other AEs in the SRS.  Unfortunately, the PRR also suffers from the same 

weaknesses of the PMR.  The size of the numerator influences the size of the 

denominator and thus distorts the PRR; therefore a drug can appear to increase the risk of 

an AE solely because it reduces the risk of another AE (36).  The PRR is frequently used 

in the EMA’s EudraVigilance (37). 

Another common numerator-based method is the Reporting Odds Ratio (ROR). It 

is similar to the PRR, but it is computed by viewing the SRS database as a case-control 

study; unlike the PRR, the ROR excludes any cases from the denominator that are 

suspected of being related to exposure of the drug in question.  So unlike the PRR, the 
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ROR is an unbiased estimator of the risk ratio (36).  Researchers frequently use the ROR 

to analyze data from the FDA’s AERS (30). 

Other statistical measures include Pearson’s Chi-Square and the Poisson 

probability test.  The chi-square test is used as a test of independence between two 

variables – whether a patient was exposed to the drug and whether the patient suffered 

the adverse effect.  The Poisson distribution, often used to model rare events in large 

samples, is popular as well. Research has shown that methods such as the PRR, ROR, 

Poisson probability test, and the Chi-square test are broadly comparable when four or 

more cases per combination have been collected (38).  Correlation analysis, multivariate 

regression, and Bayesian logistic regression are used, as well.   

In addition to statistics, data mining methods have been used in post-marketing 

signal detection as well.  Bayesian Confidence Propagation Neural Networks (BCPNN), 

a form of Bayesian data mining, used ideas from Information Theory to calculate a 

quantity known as the information component (IC) for each possible drug-event 

combination in a database.  Signal detection is based upon this value and the time trend 

of the data (34).  It is one of the primary methods used by the WHO.  Empirical Bayes 

Screening (EBS), another Bayesian data mining technique, has been applied to the FDA’s 

AERS.  EBS ranks drug-event combinations according to how large the number of 

reports for a given combination is compared with what would be expected if the two were 

statistically independent (31).  Unlike BCPNN, which provides a stand-alone measure for 

each drug-event combination, EBS provides only an overall ranking of drug-even 

combinations.  A more thorough discussion on the strengths and weaknesses of many of 

these methods can be found in (33; 35; 36; 39). 
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Harpaz and Friedman at Columbia have done groundbreaking work in applying 

data-mining techniques to investigate drug interaction adverse effects – AEs that are 

caused by a specific combination of two or more drugs.  Using popular association rule 

mining techniques, they investigated associations in the FDA’s AERS between sets of 

drugs and sets of findings (40; 41).  Similarly, they later applied the biclustering 

paradigm to the AERS to identify drug groups that share a common set of AEs.  

Application of that information could allow researchers to gain insight into the etiology 

of AEs (42).  

As late as 2005, it was suggested that no major stakeholders had the goal of 

hypothesis-free examination of large databases in efforts to find new AEs (1).  While 

methods exist which attempt to compensate for the shortcoming of SRS (43), methods 

that focus on new data sources with fewer limitations must also be explored. 

 

Identifying AEs From EMR Data 

Spontaneous reporting databases once stood as the only systems that had the 

necessary data in machine-readable formats for large-scale AE signal detection.  

However, with the proliferation of EMRs, substantive drug and finding data now exists at 

most healthcare institutions, providing an important opportunity for post-marketing 

surveillance (44). 

In recent years, there have been several attempts to scan EMRs for AEs.  In 2001, 

Honigman, et al., (45) were able to identify known AEs in the ambulatory setting using 

diagnosis codes, allergy rules, computer event monitoring, and text searching.  These 

methods had a sensitivity of 58%, specificity of 88%, and a positive predictor value 
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(PPV) of 7.5%.  In 2003, Murff, et al., (46) searched free text discharge summaries for 

trigger words that indicated a possible adverse event.  The study achieved sensitivity, 

specificity, and PPV of 69%, 48%, and 52%, respectively.  In the 2004-2007 NIH-

sponsored TIME (Tools for Inpatient Monitoring Using Evidence) project, Miller and 

colleagues at Vanderbilt correlated inpatient laboratory test abnormalities with CPOE-

based medication orders to discover time dependencies of known AEs and attempt to find 

new AEs (47–49). In 2004, Field, et al., (50) examined multiple strategies for identifying 

AEs in older patients in ambulatory clinics, including manual review of clinician and 

administrative incident reports, electronic codes, and automated text searching of patient 

notes for known drug-AE combinations.  They found far more instances of AEs than 

were actually labeled in the records, suggesting that one should use multiple strategies to 

detect AEs in clinical notes.  In 2009, Hazlehurst, et al., (51) used NLP to detect AEs in 

clinical notes.  As part of the Vaccine Safety Datalink collaboration, researchers modified 

an existing NLP tool so that it could recognize possible general vaccine adverse events 

(VAEs), and specifically gastrointestinal-related VAEs.  The authors believed their 

reported sensitivity, specificity, and PPV (75%, 97%, and 89%, respectively) improved 

on previous work due to more sophisticated NLP methods. 

At Columbia, Friedman, Wang, and colleagues showed that NLP could 

effectively identify disease, symptom, and AE concepts in EHRs.  In 2008, they reported 

extracting diseases and related symptoms with a recall of 90% and precision of 92% from 

discharge summaries (52).  They also used NLP to extract disease-drug co-occurrence 

statistics discharge summaries, as well as from Medline articles (6).  Building on their 

previous work, Wang and Friedman were later able to use NLP to extract both disease-
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symptom and drug-AE pairs from clinical notes, filtering out sections of the note that are 

not directly related to patient experiences (such as ―family history‖) to improve precision 

and recall to 0.92 and 0.90 for disease-symptom pairs and 0.31 and 0.75 for drug-AE 

pairs (5).  In 2009, Wang & Friedman, et al., used NLP to identify drugs and findings in a 

collection of 25,074 discharge summaries.  Using co-occurrence statistics, they found 

correlations between seven drugs/drug classes and their known AEs.  They had a recall of 

0.75 and a precision of 0.31 for the known AEs, and based upon dates of the discharge 

summaries, showed that novel AEs would likely have been detected using their 

methodology (4).   

The FDA’s recent Sentinel Initiative aims to ―create a linked, sustainable system 

that will draw on existing automated healthcare data from multiple sources to actively 

monitor the safety of medical products continuously and in real time‖ (53).  Sentinel will 

monitor drug safety and, eventually, all FDA-regulated products.  This will include data 

mining of healthcare information stakeholders (i.e., insurance companies and hospitals).  

After a successful pilot program, the FDA is developing and implementing Sentinel in 

stages.  Key project areas include: evaluation of potential data sources; evaluation of 

existing methods of signal detection; engagement of patients, consumers, and healthcare 

professionals; evaluation of potential database models; and the evaluation of privacy 

regulations. 

 

Drug Indication and Adverse Effect Information Sources 

When analyzing the co-occurrences among drugs and findings in EHRs, 

correlations (signals) will be identified not only between drugs and novel AEs, but also 
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between drugs and indications and drugs and known AEs.  In order to discover new AEs, 

one must distinguish these unknown signals from those that are already understood.  

Several resources exist that catalog drug indications and adverse effects.  DailyMed is a 

NLM-operated website that makes FDA-approved prescription drug labels available to 

the public (54).  Commercial resources such as Micromedex, First Databank (FDB), 

UpToDate, and many others provide drug information including treatments and dose 

amounts for a given conditions or AEs for specific medications (55–57).   

Despite this wide variety of drug knowledge resources, there is no definitive 

source with all information in a structured format.  In 2010, Wang, et al., attempted to 

compile drug indication information from a combination of sources: the FDA AERS, 

SemMed – a database generated from NLP on MEDLINE abstracts, and the National 

Drug File-Reference Terminology (NDF-RT) (58).  In 2011, Li, et al., applied 

information from Micromedex, NDF-RT, and the AERS to identify the reasons for 

prescriptions for 20 drugs mentioned in EHR discharge summaries.  They achieved 62% 

sensitivity, 93.9% specificity, 90% precision, and an F-measure of 73.9% (59). 

 

Summary 

As proposed by the MOMENT project (47–49) and similar to Wang, et al. (4), we 

used NLP on narrative clinical reports to identify co-occurrence of drugs and findings, 

and to study the feasibility of using this data for identifying novel adverse effects.  Unlike 

Wang, et al., the current project uses History and Physical exam (H&P) notes instead of 

discharge summaries, and captures data from a much larger corpus of notes.  While 

discharge summaries may contain major findings, therapies, and diseases, we believe 



17 

 

H&Ps provide a deeper and richer picture of patient findings and symptoms prior to what 

happened during a hospital admission. Since we are interested in discovering AEs related 

to prescription medications that the patient is taking outside of the hospital, we believe it 

is better to capture medications and symptoms at time of admission (when H&Ps are 

recorded).  Similar to (5), we used clinical note section header data to restrict the sections 

from which we mine concepts, eliminating potential ―false positive‖ terms from sections 

such as ―Plan‖ and ―Family Medical History.‖  Additionally, we developed an automated 

methodology to generate a knowledge base of known drug-finding pairs, and to use this 

knowledge to identify known drug-finding pairs from our results.  We did not intend to 

discover novel adverse effects at this stage of research, but we hoped to re-identify AEs 

that were discovered using post-marketing surveillance in the past and explore the 

potential for using this approach to discover novel associations in the future. 

In summary, previous studies have examined the co-occurrence of drug and 

findings concepts using NLP, but others often performed their research on discharge 

summaries, which could confound drug effects prior to hospital admission with drug 

effects that occurred post admission.  H&Ps contain a richer set of findings and 

symptoms because, while discharge summaries catalog the course of treatment in-

hospital, H&Ps attempt to describe the patient’s health more fully.  Additionally, the 

Vanderbilt Synthetic Derivative provided us with the opportunity to use far more records 

than most previous studies, potentially allowing us to identify rare effects.  Finally, 

through the creation and application of a drug-finding evidence base, we automatically 

identified known indications and adverse effects from the drug-finding correlations 
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discovered in the corpus of H&P notes, improving our ability to identify previously 

unknown correlations. 

 

Project Specific Tools 

 

Unified Medical Language System 

The Unified Medical Language System (UMLS) is a collection of controlled 

vocabularies and ontologies in the biomedical sciences and healthcare.  The UMLS is 

primarily composed of three knowledge sources (databases) – the Metathesaurus – 

database of vocabularies that contains information about biomedical and health-related 

concepts; the Semantic Network – information on the semantic types of and relationships 

between concepts in the Metathesaurus; and the SPECIALIST Lexicon – a source of 

lexical information for use with NLP tools (60–63). 

We used UMLS version 2009AA throughout this project because it was the 

version of UMLS being currently used by our tools the KnowledgeMap Concept 

Identifier and MedEx (see below).  We made significant use of the semantic types, 

UMLS Concept Unique Identifiers (CUIs), the UMLS co-occurring concepts table 

(MRCOC), and two drug vocabularies included in the UMLS – RxNorm and NDF-RT. 

 

KnowledgeMap Concept Identifier 

The KnowledgeMap Concept Identifier (KMCI) is a natural language processing 

(NLP) tool developed at Vanderbilt by Denny, Miller, Spickard, et al.  Originally 

developed for use in medical education (64), it has been extended for use in clinical 
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research.  KMCI is an NLP tool that indexes Unified Medical Language System (UMLS) 

concepts that occur in an input document.  KMCI uses UMLS-derived resources, along 

with locally developed and publically available components, for word and term 

normalization, language processing, and concept identification.  When candidate 

concepts have multiple UMLS matches, KMCI resolves ambiguous concepts using 

previously matched concepts and document context. 

KnowledgeMap is used extensively at Vanderbilt for both medical education and 

research.  KMCI is used to index concepts in the medical school curriculum to allow 

students easy access to information from course documents on a particular topic (64).  

KMCI has been used to extract EKG findings from clinical reports and correlate them 

with patient medication administration records in order to identify patients with 

prolonged QT intervals (65).  KMCI was also used to recognize clinical text descriptions 

of colonoscopy screening events, status of the procedures’ completion, and the dates the 

procedure was performed (66).  It was later extended to better identify colorectal cancer 

in EMRs by recognizing three additional tests – flexible sigmoidoscopy, fecal occult 

blood testing, and double contrast barium enema – and determining whether testing was 

planned or completed and to estimate the date of completed tests (67).  Another research 

project used KMCI to extract noun phrases from article titles in the American Journal of 

Epidemiology and, using heuristic rules, identify terms that contained epidemiologic 

exposure (68).  KMCI has also been used for phenotype identification algorithms  (69; 

70). 
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SecTag 

SecTag is another Vanderbilt-developed NLP tool used in clinical research.  

Developed by Denny, Miller, Spickard, et al., SecTag is used to identify section headers 

in clinical notes.  The SecTag algorithm uses a locally developed lexicon of ―clinical note 

section header‖ terms and heuristics to identify sections in H&P notes, such as ―History 

of Present Illness,‖ ―Medications,‖ or ―Family Medical History.‖  SecTag identifies not 

only major headings, such as ―Cardiovascular Exam,‖ but also subheadings within 

sections, such as ―Cardiac Auscultation.‖  In some instances, SecTag can also detect 

implied section headers, such as those for ―Chief Complaint,‖ using a modified Naïve 

Bayes algorithm combined with terminology-based rules.  An evaluation of SecTag on 

319 randomly select EMR H&P notes found 16,036 sections.  Physician reviewers agreed 

with SecTag for 15,329 tags and identified 160 sections that were not recognized by the 

algorithm.  The recall and precision of the SecTag algorithm were 99.0% and 95.6% for 

all sections, 98.6% and 96.2% for major sections, and 96.6% and 86.8% for unlabeled 

sections (71). 

 

MedEx 

MedEx is a Vanderbilt-developed NLP tool for extracting medications and 

medication-related information from natural language clinical notes. Developed by Xu, 

Denny, et al., MedEx extracts medication name, both generic and brand names, as well as 

other strength, dose, route, frequency, form, dose amount, intake time, duration, dispense 

amount, refill, and necessity, if they are present.  Tested on discharge summaries, MedEx 

was shown to be very reliable in extracting not only drug names (F-measure 93.2%), but 
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also related information such as strength, route, and frequency, with F-measures of 

94.5%, 93.9%, and 96.0% respectively (72).  MedEx was later combined with other NLP 

tools, including SecTag, to participate in the 2009 i2b2 NLP challenge, placing second 

overall (73).  It achieved an overall F-measure of 0.821 for exact matching with a 

precision of 0.839 and recall of 0.803 and an F-measure 0.822 for inexact matching 

(precision 0.866 and recall 0.782) (74).   

MedEx has been used in studies to calculate the daily dose of drugs mentioned in 

clinical text.  Specifically, MedEx was extended to normalize dose-related findings and 

calculate daily doses of the medication tacrolimus.  Precision was greater than 0.90 and 

recall greater than 0.81 (75).  MedEx was further extended to calculate weekly doses of 

the drug warfarin in another study.  It determined patients’ weekly doses with 99.7% 

recall, 90.8% precision, and 93.8% accuracy (76).  MedEx is also extensively used at 

Vanderbilt to identify medications present in the Synthetic Derivative (SD) – the de-

identified version of the Vanderbilt EMR used for research.  

 

Vanderbilt Synthetic Derivative 

The Synthetic Derivative (SD) is a comprehensive database containing nearly all 

clinical information present in the Vanderbilt ―Star‖ EMR system (77).  This includes 

laboratory values, billing codes, imaging and pathology reports, and clinical narratives 

from both the inpatient and outpatient setting.  The SD is a de-identified resource; it is 

stripped of personal identifiers such as names, places, and addresses, dates are shifted by 

up to one year backward (consistent within each record but different across records), and 

medical record numbers are hashed to a new value consistent for each record.  It is 
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updated nightly with new information from Star.  The SD can be used as a stand-alone 

resource for clinical research, or as part of the BioVU program, in combination with 

genetic samples for phenome-genome analysis. 

 

UMLS Co-Occurring Concepts (MRCOC) 

The MRCOC contains aggregations of co-occurrences of concepts from multiple 

data sources, including MEDLINE (Medical Literature Analysis and Retrieval System 

Online), the AI/RHEUM Knowledge Base, and Canonical Clinical Problem Statement 

System (CCPSS) (78).  AI/RHEUM contains co-occurrence of diseases and findings; 

CCPSS contains problem-problem co-occurrences extracted from patient records.  Since 

we are attempting to classify drug-finding co-occurrences, we focused solely on the 

MEDLINE data. 

The MEDLINE co-occurrence data in MRCOC was compiled from the MeSH 

(Medical Subject Headings) concepts designated as main topics of a given indexed 

journal article.  Counts exist for the frequencies with which the first concept is qualified 

with MeSH qualifiers when it appears with the second concept.  Separate counts and 

subheadings are provided for each direction of the relationship; that is, MRCOC gives the 

qualifying MeSH terms for concept one when it appears with concept two, as well as the 

qualifiers for concept two when it appears with concept one.  MRCOC contains separate 

counts for recent MEDLINE entries, designated as MED and including entries from the 5 

years prior to release (2003 – 2008), as well as entries from a preceding 5-year bloc, 

designated MBD (1998 - 2002) (79). 
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RxNorm 

RxNorm is a standardized nomenclature of drugs and drug delivery devices 

developed by the National Library of Medicine (80).  With RxNorm, medications are 

represented as ―clinical drugs.‖  Each clinical drug is defined by one or more ingredients, 

possible strengths, and dose forms.  Since drug concepts are formed from these 

constituent pieces, clinical drugs can be mapped back to other doses or forms, and more 

importantly, generic ingredients.  These mappings allow a user to link a brand name or 

dose-form drug with its generic ingredient concept(s) (81).  RxNorm is included as part 

of the UMLS.  We used the RxNorm version included in the UMLS2009AA release 

throughout this project. 

 

National Drug File – Reference Terminology 

The National Drug File – Reference Terminology (NDF-RT) is produced by the 

U.S. Department of Veterans Affairs Veterans Health Administration (VHA) since 2002 

(82).  It is an extension of the VHA National Drug File.  The NDF-RT organizes the list 

of drugs into a formal representation used for modeling drug characteristics.  Among 

other things, this includes ingredients, dose form, physiologic effect, mechanism of 

action, related diseases, and 25 distinct relationship types between concepts.  Information 

exists for approximately 80,000 orderable compositions associated with 4000 active 

ingredients (83).  Among other features, the NDF-RT contains 25 distinct relationship 

types between concepts (81; 84).  Both RxNorm and NDF-RT contain mappings among 

drug concepts. These mappings allow a user to link a brand name or dose-form drugs 

with its generic ingredient concept (81).   
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The NDF-RT is updated regularly and new versions are released every six weeks.  

Each new release of the UMLS Metathesaurus contains the most recent version of the 

NDF-RT, as a part of RxNorm.  We used version NDFRT_2008_03_11, the version 

contained in the UMLS 2009AA release used throughout this project. 

 

Structured Product Labels 

The Food and Drug Administration’s Structured Product Labeling (SPL) is a 

XML (Extensible Markup Language) document standard for the labeling of human 

prescription drugs in the United States.  Structured Product Labels contain information 

such as product names, generic names, ingredients, strengths, dosages, dose forms, and 

route of administration.  In addition, they contain the full product labels from drugs sold 

in the United States (85).  While the document is encoded using XML, the content of the 

sections is in unstructured natural language. 

 

SIDER Side Effect Resource 

The SIDER Side Effect Resource is a database that connects 925 drugs to 1450 

side effect terms (86).  The information contained in SIDER was extracted from the FDA 

SPLs using text-mining methods.  The indication and adverse effects used by SIDER are 

from the COSTART (Coding Symbols for Thesaurus of Adverse Reaction Terms) (87) 

vocabulary, and are thus already in the UMLS with CUI representation.  Drugs in the 

SIDER database are identified using a STITCH ID from PubChem (88). SIDER is 

available freely on the web and for download (89). 
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CHAPTER III 

 

DRUG INDICATIONS AND ADVERSE EFFECTS EVIDENCE BASE 

Overview 

We constructed the Drug Indications and Adverse Effects Evidence Base (DEB, 

for Drug Evidence Base) to enable an automated system to identify potential explanations 

for why specific drug-finding pairs appear in clinical notes.  To build the drug evidence 

base, we used information from the UMLS Co-Occurrence of Concepts (MRCOC), the 

National Drug File-Reference Terminology (NDF-RT), and the Food and Drug 

Administration’s Structured Product Labels (SPL) for human prescription drugs.  Based 

on data extracted from these resources, we algorithmically classified a drug-finding pair 

as an adverse effect (AE) – that is, the drug causes the finding – or an indication (IND) – 

the drug treats or prevents the finding.  

The development of the DEB involved operational definition of a drug-finding 

pair; extraction of the relevant information from each of the knowledge sources; and 

reconciliation of this information into the evidence base.  We compared the evidence base 

to the existing widely-used SIDER Side-Effect Resource to evaluate the DEB’s 

comprehensiveness and accuracy. 

 

Materials 

This work was performed on a MacBook Pro with a 2.8 GHz Intel Core 2 Duo 

processor and 8 GB of RAM and a Linux server with eight 2.0 GHz Intel Xeon cores and 
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16 GB RAM.  All data processing scripts were written in Perl. 5.10.0.  The project used 

MySQL version 5.5.16. 

 

Methods 

 

Definition of Drug-Finding Pairs 

Throughout this work, we defined a drug-finding pair as the co-occurrence of a 

particular Unified Medical Language System (UMLS) drug identifier (i.e., its name) and 

a particular UMLS clinical finding name that appeared together in a relevant clinical 

resource (e.g., SPL, NDF-RT, or a patient’s clinical note).  A drug refers to a single-

ingredient medication.  A finding can describe indications for drug therapy (e.g., a 

disease treated or prevented by the drug) or adverse effects of therapy (e.g., a physical 

examination finding, such as maculopapular rash). We designated all concepts using 

specific UMLS Concept Unique Identifiers (CUIs).  We did not constrain concept origins 

to any specific UMLS source vocabularies.  We used the UMLS 2009AA release because 

project tools, KMCI and MedEx, used that version. 

We operationally constrained our definition of ―drug‖ to include a UMLS concept 

that had at least one of the following UMLS semantic types:  

 Antibiotic 

 Pharmacologic Substance 

 Clinical Drug 
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Based on review of several hundred de-identified patient charts by an experienced 

project clinician (RAM), we operationally constrained our definition of ―finding‖ to 

UMLS concepts having at least one of the following semantic types:  

 Anatomical Abnormality 

 Injury or Poisoning 

 Congenital Abnormality 

 Finding 

 Sign or Symptom 

 Acquired Abnormality 

 Clinical Attribute 

 Disease or Syndrome 

 Mental or Behavioral Dysfunction 

 Neoplastic Process 

 Pathologic Function 

 

Extracting Pairs from UMLS Co-Occurring Concepts (MRCOC) 

The ―MRCOC component‖ of the DEB was derived from co-occurring concepts 

from articles indexed in MEDLINE (using both MED and MBD intervals, discussed 

above).  To do so, we extracted from the UMLS MRCOC table those drug-finding pairs 

that potentially denoted an AE or IND. Each entry in MRCOC consists of two concepts, 

their source information, the number of co-occurrences in the literature during a specified 

time period, and the MeSH subheadings qualifying the relationship between the two 



28 

 

concepts as they appeared in the literature.  The MRCOC table contains separate entries 

for each direction of the relationship between two distinct concepts (see Figure 2).  

Procedurally, we extracted all MRCOC entries in which the first concept (cui1 in 

Figure 2) met our definition as a drug and the second concept (cui2 in Figure 2) qualified 

as a finding (per definitions above), or vice versa. Next, we combined entries from the 

UMLS time intervals MED and MBD entries (mentioned above, shown below in 

―source‖ column in Figure 2) and summed the co-occurrence counts (―count‖ column in 

Figure 2) and the individual subheading counts (rightmost column in Figure 2).  We only 

retained subheading information for the following relevant MeSH subheadings: AE – 

Adverse Effect; DT – Drug Therapy; ET – Etiology; and TU – Therapeutic Use.  Lastly, 

to ensure well-established relationships for a given pair, we discarded drug-finding pairs 

with an overall co-occurrence count less than 4. 

As illustrated in Figure 2, MeSH subheadings in the rightmost column of the 

MRCOC table only apply to the first of the paired two concepts when they appear 

together.  We utilized the MRCOC subheading information to infer whether the 

relationship between drug and finding was most likely IND or AE.  When the subheading 

TU qualifies the drug concept of the drug-finding pair, this suggests the finding is an IND 

for the ―therapeutic use‖ of the drug. When the subheading DT qualifies the finding 

concept of the drug-finding pair, this further supports that the finding was an IND for the 

―drug therapy‖.  When the subheading AE (―adverse effects‖) qualifies the drug concept 

of the drug-finding pair, this directly suggests that the finding was an AE.  Similarly, 

when the subheading ET qualifies the finding concept of the drug-finding pair, this 

indicates that administration of the drug may have played a role in the etiology of the 
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finding (i.e., the finding was an AE).  Thus, the combination of the subheadings is 

important; drug/TU+finding and drug+finding/DT implies an indication and 

drug/AE+finding and drug+finding/ET implies an adverse effect. Nevertheless, the actual 

indexing of articles in the literature (which may describe concurrent use of multiple drugs 

for multiple conditions with multiple possible interrelationships) can produce conflicting 

information. We describe how we addressed such conflicts below. 

We stored the ―MRCOC component‖ of the DEB in a temporary MySQL table 

before combining this information with the other DEB sources (see below).  For each 

MRCOC drug-finding pair, the temporary table contained two entries, one for each 

direction of the relationship, along with subheadings and co-occurrence counts, as 

described above and illustrated in Figure 2.  

 

UMLS MRCOC Table 
 
         |          |         |       | mesh subheadings of cui2 when it 
  cui1   |  cui2    | source  | count | appears with cui1 
+--------+----------+---------+-------+-------------------------------------+ 
 C0043031| C0038454 |   MBD   |   91  | TU=74,AD=22,AE=20,CT=6,EC=3... 
 C0043031| C0038454 |   MED   |  121  | TU=89,AD=41,AE=29,CT=4,EC=4... 
... 
 C0038454| C0043031 |   MBD   |   91  | PC=78,ET=42,EP=10,DT=9,MO=6... 
 C0038454| C0043031 |   MED   |  121  | PC=100,ET=55,DT=21,EP=20,MO=6... 

 

Combining sources and discarding extra subheadings... 

 
 C0043031| C0038454 | MED+MBD |  212  | TU=163,AE=49 
 C0038454| C0043031 | MED+MBD |  212  | ET=97,DT=30 

 

Figure 2.  Sample MRCOC data for Warfarin (C0043031) and Stroke (C0038454) 

 

 

Extracting Pairs from National Drug File Reference Terminology (NDF-RT) 

To create the ―NDF-RT component‖ of the DEB, we extracted drug-finding pairs 

from the NDF-RT information included in the UMLS MRREL table. As indicated in 
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Figure 3, we extracted all MRREL entries from NDF-RT that contained a drug concept 

and a finding concept that also had one of the following NDF-RT relationships: ―has 

physiologic effect‖ and ―induces‖ (indicating a potential AE), and ―may prevent‖ and 

―may treat‖ (indicating a likely IND).  The final form of the data extracted from NDF-RT 

included, for each entry, a drug CUI, a finding CUI, and all of the relevant relationships 

that appear between the two CUIs. 

 

 
  drugCUI | findingCUI | relationship(s) 
+---------+------------+---------+-------------------------------------+ 
  C2267047|  C0035235  | may_prevent,may_treat  
  C1096766|  C0041657  | induces  
  C0913469|  C1371635  | has_physiologic_effect  
  C2587204|  C0040136  | may_treat  
 ... 

 

Figure 3. Sample rows from the temporary table for the NDF-RT component.  

 

 

Extracting Pairs from FDA Structured Product Labels (SPLs) 

To create the ―SPL component‖ of the DEB, we extracted drug-finding pairs 

using NLP of the FDA’s product labels for prescription drugs. 

We downloaded all available human prescription drug product labels from 

DailyMed (54), as well as the SPL Downloadable Data Elements file (90). This file acts 

as in index for the SPLs, containing information such as National Drug Code (NDC), 

proprietary name, ingredient(s), product type, marketing category, and a link to the 

appropriate SPL files. Based on NDC, this contained information on 56,854 drugs 

associated with approximately 2400 unique sets of ingredients, often containing more 

than one active ingredient.   



31 

 

Using the index, we selected all ingredient and proprietary names for drugs 

containing a single active ingredient and with a ―product type‖ indicating the name 

applied to a Human Prescription Drug. We then automated a process whereby these 

ingredients were mapped to CUIs by exact match with UMLS strings of drug concepts 

available in the MRCONSO table of the UMLS Metathesaurus.  We manually reviewed 

these matches to confirm accuracy and correct any mismatches or unmatched ingredients 

where possible.  

For every drug that we were able to match to a CUI, we then parsed the respective 

SPL. Using the XML structure, we extracted the Adverse Reactions Section (section 

34084-4) and the Indications and Usage Section (section 34067-9) when they were 

present (91).  We then used the Knowledge Map Concept Identifier (KMCI) to extract all 

of the finding concepts in each section for each label. 

Since the SPLs contain entries for every drug marketed in the US, there are many 

duplicates. For example, there is a label for every package quantity, dose form, and brand 

name of acetaminophen.  Therefore, a single CUI often mapped to many different SPLs.   

For each SPL, we extracted a set of all unique finding concepts identified in the 

AE section, another of all unique finding concepts in the IND section.  This data was then 

transformed into a table of drug-finding pairs by linking the drug CUI with the CUI of 

every distinct concept identified in the Adverse Reactions Section (classified as an AE) 

and the CUI of every distinct concept identified in the Indications and Usage Section 

(classified as an IND).   

The final form of the data we extracted from the SPLs includes, for each entry, a 

drug CUI, a finding CUI, whether or not this was mentioned as an AE, and whether or 
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not this was mentioned as an IND (see Figure 4).  It is possible for a concept to appear as 

both an AE and an IND.  We discuss this issue in the following section on construction of 

the final combined evidence base.  

 

 
  drugCUI | findingCUI | AE | IND  
+---------+------------+----+-----+ 
  C0059985|  C1514463  | AE |      
  C0059985|  C1517205  | AE | 
  C0060135|  C0002874  | AE | IND 
  C0248719|  C0262926  |    | IND 

  C0249529|  C0018418  | AE | 
 ... 
 

Figure 4. Sample rows from the temporary table for the SPL component.  

 

 

Mapping to Uniform Drug Concepts 

A wide variety of medication-related identifiers from the three DEB knowledge 

sources met our UMLS-semantic-type-based definition of a drug.  For instance, 

C0000970 – Acetaminophen, C0699142 – Tylenol, and C1640784 – Tylenol 160 mg 

were all unique UMLS CUIs that appeared in the DEB knowledge sources, and might 

also appear in patient notes.  While these CUIs all represent the same drug ingredient, 

they all correspond to different UMLS concepts. The first is a generic drug, the second is 

a brand name drug, and the third is a dispensable form of the drug that includes a specific 

dose.  The DEB requires, whenever possible, that a single identifier/name be assigned to 

all single-component drugs that involve the same generic ingredient.  To combine and 

condense the DEB drug names from multiple sources, we mapped each identified drug 

CUI to a drug generic ingredient using the relationships in MRREL, predominantly using 

mappings from RxNorm. In particular, we used the relationships ―ingredient of‖ and ―has 

ingredient‖ to map dose forms of a drug to the drug ingredient only (C1640784 – Tylenol 
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160 MG to C0699142 – Tylenol).  We also used the ―has tradename‖ and ―tradename of‖ 

relationships to map a brand name drug back to its generic ingredient name (C0699142 – 

Tylenol to C0000970 – Acetaminophen). We mapped all specific instances of each drug 

term to its generic ingredient, whenever mappings existed. 

 

Integrating Source Information into Combined Evidence Base 

We combined the data extracted from MRCOC, NDF-RT, and SPL components 

of the DEB into a single DEB table. This table contained a single entry for each generic-

drug--finding pair. To combine data regarding whether the pair comprised an IND or an 

AE, we developed a scoring system that assigned weights to the information from the 

three disparate sources. We created scores indicating the level of support for a pair being 

an AE versus an IND (the INDscore and the AEscore). We ranked the three component 

sources based on our own interpretation of their authoritativeness to determine the 

maximum number of points each could contribute to the overall score.   

We rated the NDF-RT highest because it is a manually curated, trusted knowledge 

source and because the NDF-RT relationships that we used state directly whether a drug-

finding pairing represents an IND or an AE. The NDF-RT component contributed 10 

points to the AEscore if a relationship indicating an AE was present, and 10 points to the 

INDscore if a relationship indicating an IND was present.  If NDF-RT indicated that both 

an AE and IND relationship were present, we added 10 points to each score.   

We rated the MRCOC component as second most authoritative because it was 

based on NLM indexers reviewing articles published in the peer-reviewed literature.  It 

could contribute a maximum of 10 points, but the exact score was based upon the fraction 
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of co-occurrences that indicated either AE or IND.   More specifically, if there were X 

subheading counts that supported an AE determination, Y subheading counts that 

supported an IND determination, and N total co-occurrences, (X/N)*10 points were 

added to the AEscore and (Y/N)*10 points were added to the INDscore. 

We gave the SPL component the lowest weighted proportion of the overall score, 

not because of the authoritativeness of SPL per se, but because extraction of information 

via NLP was deemed to be potentially unreliable. This process involved the least amount 

of manual review – concepts were extracted automatically using NLP, unlike the 

structured expert-derived NDF-RT or the structured manual coding of MeSH terms.  The 

SPL component contributed a maximum of 5 points to the scores.  If a drug-finding pair 

was designated only as an AE or an IND in SPL, 5 points was added to appropriate DEB 

score.  If, however, there was contradictory evidence – that is, a finding appeared in both 

the Indications section and Adverse Effects section of the SPL, we added 2 points to 

AEscore and 4 points to INDscore.  We assigned the slight advantage to IND because we 

observed that mentions of indications often appeared in the text of the Adverse Effects 

sections of the SPL, as in ―When treating for the indication XYZ, adverse effects might 

include…‖. Our NLP processing typically would label XYZ as an IND and an AE in such 

circumstances.  Therefore, if a concept appeared in both SPL sections, we assigned a 

higher value to IND. 

Finally, we algorithmically compared the overall AEscore and INDscore as 

determined by the combined three sources, and used the larger of the two scores to 

determine the final DEB classification of a drug-finding pair.  In the case of a tie, we 

assigned IND because we observed that when there was evidence for a drug being both 
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an IND and an AE, it was often when a treatment when withdrawn, might exacerbate the 

treated condition, such as when withdrawal of clonidine exacerbates the hypertension it 

was previously treating.  The DEB only classifies a drug-finding pair as AE or IND; there 

is no ―both.‖  A large difference between the AE score and IND score implies higher 

certainly, whereas very similar scores imply less certainty.   

 

 

  drugCUI | findingCUI | Sources         |INDscore |AEscore|Determination 
+---------+------------+-----------------+---------+-------+-------------+ 
  C0020740|  C0029408  | mrcoc,ndfrt,spl | 25.00   |  5.00 | IND 
  C0020740|  C0029882  | mrcoc           |  5.00   |  5.00 | IND 
  C0020740|  C0038358  | mrcoc           |  4.29   |  5.71 | AE 
  C0020740|  C0038454  | mrcoc,spl       |  3.33   | 11.67 | AE 
  C0020740|  C0021368  | mrcoc,ndfrt     | 18.00   |  0.00 | IND 
 ...  
 

Figure 5. Sample rows from the combined DEB for Ibuprofen (C0020740) and 

Degenerative Polyarthritis (C0029408), Otitis Media (C0029882), Gastric Ulcer 

(C0038358), Cerebrovascular Accident (C0038454), and Inflammation (C0021368), 

respectively. 

 

 

Evaluation of DEB: Comparison with Expert Opinion and SIDER as “Gold Standard” 

SIDER is an open-source database of medication indications and adverse drug 

effects (described in more detail above) (86).  We did not integrate SIDER content into 

DEB, but instead used it as a ―gold standard‖ external reference for evaluation as 

described below. 

We downloaded the SIDER Side Effect Resource files ―adverse_effects_raw‖, 

―indications_raw‖, and ―label_mapping‖ from the SIDER website (89).  The 

adverse_effects_raw and indications_raw files contained AE and IND concepts, 

respectively, and the drug label ID from which they were extracted.   The label_mapping 

files contained the label IDs, as well as the brand name, generic name, and PUBCHEM 
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STITCH ID for the drug.  The data was in tab separated value format that we loaded into 

a MySQL database.   

To use SIDER for evaluation purposes, we mapped SIDER concepts to UMLS 

CUIs so we could directly compare the drug-finding pairs in SIDER with those in the 

DEB.  Finding concepts in SIDER were already designated by CUI, but drug names in 

the SIDER database were identified using STITCH ID, brand name, and generic name.  

We used simple string matching to compare the generic names (or the brand name if 

there was no match with the generic) with UMLS strings from the MRCONSO file.  

When there was a match, we were able to link the STITCH ID to the appropriate UMLS 

CUI for the drug concept.  We manually reviewed these matches to ensure correct 

matching whenever possible. 

The final format of the extracted SIDER information included a drug CUI, a 

finding CUI, and a field indicating whether the finding was an adverse effect or an 

indication for that drug.  It is possible for SIDER to classify a drug-finding pair as both 

an AE and an IND; in this case, we considered the SIDER pair an IND, as was done for 

the DEB.  

 

Expert Reviewer Evaluation of DEB 

To evaluate the accuracy and potential utility of DEB, we used a two-step 

approach.  First, we compared DEB to SIDER, a commonly used resource to identify 

drug adverse effects and indications. We first identified which drug-finding pairs were 

present in both the DEB and SIDER or absent in one or the other.  For drug-finding pairs 
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present in both SIDER and the DEB, we determined if both resources categorized the 

relationship in the same manner as an IND or AE, or if they differed.   

Four Vanderbilt faculty physician reviewers, each board-certified in internal 

medicine and with over 10 years of clinical experience, each rated 200 drug-finding pairs 

from the DEB. Reviewers were blinded to the DEB and SIDER categorizations of the 

pairs. We provided to each reviewer a Microsoft Excel spreadsheet containing their 

unique set 200 drug-finding pairs and, for each pair, links that enabled them, with one 

click, to search either PubMed or Google for information regarding the pair.  The experts 

received instructions to mark the relationship of the pair as either AE, IND, Both (see 

explanation below), or Neither. They also could fill out an optional field for comments 

about the relationship or the information they found.  Of the 200 pairs given to each 

reviewer, 25 were the same across all reviewers (to calculate inter-rater agreement), 75 

were randomly chosen from drug-finding pairs where the DEB categorization differed 

from SIDER, and 100 were chosen at random from the overall DEB segment that did not 

overlap with SIDER (i.e., SIDER did not contain the pairing).  To find inter-rater 

agreement, we calculated both Cohen’s Kappa for each pairwise combination of 

reviewers and Fleiss’ Kappa for the entire group.   

Due to the nature of indications and adverse effects in clinical practice, a finding 

concept can represent both an AE and an IND. As previously discussed, this was often 

the case in the MEDLINE classifications in MRCOC.   For example, warfarin might be 

used for stroke prophylaxis in a patient with atrial fibrillation, but when given in 

excessive dosages, warfarin can cause a stroke through intra-cerebral hemorrhage.  Even 

though both DEB and SIDER classify a drug-finding pair as one or the other, reviewers 
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were allowed to classify pairs as ―both‖ or ―neither‖. The ―neither‖ category implied that 

the pair was an incorrect association or, in some cases, one that was too broad or 

nonsensical. 

We compiled and compared the expert reviewers’ comments to identify any 

common themes regarding problems with DEB.  Additionally, one reviewer empirically 

analyzed some of the drug-finding pairs that occurred in DEB alone, SIDER alone, and 

both DEB and SIDER to assess the similarities and differences among the 

categorizations. 

 

Results 

 

MRCOC Component of DEB 

From the MRCOC table, our DEB construction algorithms extracted 423,776 

entries that contained paired drug and finding concepts matching our semantic type 

criteria.  These entries represented approximately 100,000 drug-finding pairs since there 

were typically four UMLS entries for each pair: an entry in each of two directions from 

MBD and from MED sources).  After combining entries into drug-finding pairs, 

generalizing and combining drugs concepts, and rejecting pairs that did not have our 

required MeSH subheadings, the algorithms retained 65,930 distinct pairs consisting of 

1825 unique drugs and 3121 unique findings. 
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NDF-RT Component of DEB 

From the NDF-RT, the DEB construction algorithms extracted 51,132 entries in 

which one of the relevant relationships was present between a drug concept and a finding 

concept. These entries represented ~25,500 drug-finding pairs (one entry for each 

direction of the relationship).  After generalizing and combining drug concepts, the 

algorithms retained 7870 pairs consisting of 2084 unique drugs and 1033 unique findings.  

This included 273 ―has physiological effect‖ relationships, 622 ―induces‖ relationships, 

5483 ―may prevent‖ relationships, and 44,934 ―may treat‖ relationships.   

 

SPL Component of DEB 

From the SPLs, the DEB construction algorithms identified 958 single active 

ingredient drugs.  Using UMLS strings to map these drugs to CUIs, the algorithms were 

able to match 888 drugs.  After generalizing and combining drug concepts, the algorithms 

retained 758 distinct drugs.  Overall, the algorithms extracted 6980 unique finding 

concepts from the SPLs as both AEs and INDs.  This resulted in 81,223 distinct drug-

finding pairs. 

 

Combined DEB 

After combining information from the three DEB data sources, the resulting DEB 

evidence base contained 137,194 drug-finding pairs consisting of 3242 unique drugs and 

8266 unique findings.  There were 132,629 pairs (97%) with data from only one source, 

4086 pairs (~3%) where data came from two knowledge sources, and 479 pairs  (< 1%) 
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where data came from all three sources.  Overall, the DEB classified 79,284 pairs as AEs 

and 57,854 pairs as INDs. 

 

SIDER 

After mapping SIDER information to UMLS CUIs and generalizing and 

combining drug concepts (in the manner done for the DEB), we retained 63,857 SIDER 

drug-finding pairs consisting of 871 unique drugs and 1688 unique findings.  This 

included 58,024 pairs as AEs and 5833 pairs as INDs. 

 

 

 
 

Figure 6. Venn diagram illustrating drug-finding pairs in DEB and SIDER. 
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SIDER Evaluation 

In comparing the DEB with the information in SIDER, we determined that 34,406 

pairs were in both SIDER and DEB (see Figure 6).  This represented 54% of extracted 

SIDER findings and 25% of DEB.  The other 29,451 pairs in SIDER did not appear in the 

DEB (see below).  Of the pairs in both sources, SIDER and the DEB agreed on 33,398 

(97%) categorizations (as IND or AE) and disagreed on 1008 (3%). 

 

Expert Reviewer Evaluations 

Of the 200 drug-finding pairs reviewed by each reviewer, 25 were the same for 

each reviewer.  Using their ratings of the common drug-finding pairs, we calculated inter-

rater agreements. We used Cohen’s Kappa for each pairwise combination between each 

of the four reviewers, and we used Fleiss’ Kappa to measure overall agreement.  Since 

determining whether a finding is an AE or IND can be subjective, we also calculated 

Kappa separately for those drug-finding pairs on which no reviewer had indicated a 

―both‖ relationship, in order to estimate the degree of agreement on the less ambiguous 

pairs.  Results are shown in Table 1 below. 

 

Table 1. Agreement between Reviewers. 

Reviewers 

N=25 (all) N=21 (“Both” removed) 

Kappa p-value 95% CI Kappa p-value 95% CI 

1 and 2 0.11 0.374 (-0.13, 0.36) 0.17 0.312 (-0.16, 0.49) 

1 and 3 0.58 <0.001 (0.28, 0.87) 0.59 <0.001 (0.27, 0.90) 

1 and 4 0.43 <0.001 (0.18, 0.68) 0.59 <0.001 (0.27, 0.90) 

2 and 3 0.13 0.291 (-0.11, 0.38) 0.18 0.273 (-0.14, 0.49) 

2 and 4 0.47 <0.001 (0.23, 0.71) 0.34 0.034 (0.03, 0.66) 

3 and 4 0.50 <0.001 (0.25, 0.75) 0.67 <0.001 (0.36, 0.99) 

1, 2, 3,  & 4 0.36 <0.001 (0.26, 0.47) 0.42 <0.001 (0.29, 0.55) 

1, 3, & 4 0.50 <0.001 (0.34, 0.65) 0.62 <0.001 (0.43, 0.80) 
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Of the 200 drug-finding pairs reviewed by each of the four reviewers, 75 were 

from a random sample of those pairs where the DEB categorization of IND vs. AE 

disagreed with that of SIDER (this sample included 300 of the total of 1008 overall DEB-

SIDER classification disagreements).  Table 2 below shows ratings on these 300 

discrepant pairs by our reviewers.  All the four reviewers agreed with DEB more often 

than SIDER (P≤0.01 for the group as a whole).  On average, reviewers agreed with DEB 

30% more of the time when the disagreement occurred between DEB and SIDER (95% 

CI was 20% to 40%). 

 

Table 2. Reviews on Disagreements between DEB and SIDER. 

Rev 
Agreed w/ DEB 

(Pr1) 

Agreed w/ SIDER 

(Pr2) 

Both 

(Pr3) 

Neither 

(Pr4) 

Pr1 – Pr2 H0 : Pr1= Pr2 

Est. 95% CI P-value 

1 0.64 (48/75) 0.28 (21/75) 0.03 (2/75) 0.05 (4/75) 0.36 (0.16, 0.56) <0.001 

2 0.55 (41/75) 0.24 (18/75) 0.09 (7/75) 0.12 (9/75) 0.31 (0.12, 0.50) 0.001 

3 0.53 (40/75 0.28 (21/75) 0.01 (1/75) 0.17 (13/75) 0.25 (0.06, 0.45) 0.011 

4 0.52 (39/75) 0.25 (19/75) 0.07 (5/75) 0.16 (12/75) 0.27 (0.08, 0.46) 0.006 

Avg 0.56 0.26 0.05 0.13 0.30 (0.20, 0.40) <0.001 

 

 

Of the 200 drug-finding pairs each expert reviewed, 100 were from a random 

sample from DEB that did not overlap with SIDER.  Results of categorizations for each 

reviewer are shown in the below in Tables 3 and 4.  All the reviewers significantly agreed 

with DEB on more than 42% of the pairs and disagreed on less than 25% of the pairs.  On 

average, reviewers were 9-fold more likely to agree with the DEB categorization than to 

disagree with it (95% CI was 5.6 to 20.9 fold).  Note that DEB did not include ―both‖ or 

―neither‖ options in its internal categorizations. 
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Table 3. Reviewers’ categorizations of random selection from DEB/SIDER overlap. 

Reviewer Agreed w/ DEB 

(Pr1) 

Disagreed w/ DEB 

(Pr2) 

Both (Pr3) Neither (Pr4) 

1 0.78 (78/100) 0.16 (16/100) 0.03 (3/100) 0.03 (3/100) 

2 0.52 (52/100) 0.11 (11/100) 0.08 (8/100) 0.29 (29/100) 

3 0.58 (58/100) 0.08 (8/100) 0.00 (0/100) 0.34 (34/100) 

4 0.57 (57/100) 0.03 (3/100) 0.02 (2/100) 0.38 (38/100) 

On avg. 0.61 0.10 .0.3 0.26 

 

Table 4. Reviewers’ agreements (continued from Table 3). 

Reviewer 
Pr1 Pr2 Pr1 / Pr2 

Estimate 95% CI Estimate 95% CI Estimate 95% CI 

1 0.78 (0.70, 0.86) 0.16 (0.09, 0.24) 4.88 (3.00, 9.33) 

2 0.52 (0.42, 0.62) 0.11 (0.05, 0.17) 4.73 ( 2.71, 10.60) 

3 0.58 (0.48, 0.67) 0.08 (0.03, 0.14) 7.25 ( 3.79, 20.36) 

4 0.57 (0.48, 0.66) 0.03 (0.00, 0.07) 19.00 ( 7.86, 63.00) 

On avg. 0.61 (0.57, 0.66) 0.10 (0.07, 0.12) 8.96 ( 5.60, 20.86) 

 

 

Table 5 shows an expert clinician’s categorizations of the DEB and SIDER drug-

finding pair classifications for one drug, abacavir. The reviewer, in the comments field, 

noted how often apparent differences might be due to use of differing terms for similar 

findings. 

 

Table 5.  DEB/SIDER classifications for the drug abacavir. 

Finding SIDE

R 

DEB Comments Discrepancy 

Count 

Musculoskeletal pain AE AE See "myalgia" below  

Abdominal Pain AE AE   

Acidosis AE  See below 1 

Acidosis, Lactic  AE See above 2 

Acquired 

Immunodeficiency 

Syndrome 

IND IND   

Adverse event  AE Bad category 3 

Alanine aminotransferase 

increased 

 AE See "Liver function …" and "Increased 

liver function …" below 

4 

Allergy Severity - Severe  AE See below 5 

anaphylaxis AE  See above 6 
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Table 5 (continued).  DEB/SIDER classifications for the drug abacavir. 

Anemia AE AE   

Anorexia AE   7 

Anxiety AE   8 

Arthralgia AE  See "Musculoskeletal Pain" above 9 

Blind Vision  AE  10 

Bronchitis AE AE   

Chills AE AE   

Conjunctivitis AE   11 

Coughing AE  See "Bronchitis" above 12 

Creatine phosphokinase 

increased 

 AE  13 

Depressive disorder  AE  14 

Diarrhea AE AE See also "Severe Diarrhea" below  

Dizziness AE AE bad category  

Dream disorder  AE See "Sleep Disorders" below 15 

Dyspnea AE  See "Shortness of breath" below 16 

Edema AE   17 

Enlargement of lymph 

nodes 

AE   18 

Erythema Multiforme AE AE   

Exanthema AE AE See multiple skin disorders listed 

elsewhere 

 

Fatigue AE AE bad category  

Fatty Liver AE AE   

Fever AE AE   

Gastritis AE AE See below  

Gastroenteritis AE  See above 19 

gastrointestinal sign  AE See above 20 

Gastrointestinal 

symptoms NOS 

 AE See above 21 

Headache AE AE   

HIV Infections AE IND MAJOR error in SIDER; See "Acquired 

Immunodeficiency …" above 

 

Hyperamylasemia AE AE See pancreatitis below  

Hyperglycemia AE AE   

Hypersensitivity IND IND Looks like ERROR in both unless better 

explained 

 

Hypertriglyceridemia AE AE   

Hypotension AE  ?? Part of "Anaphylaxis" above ?? Or 

independent ?? 

22 

Infection IND  bad category 23 

Infective pharyngitis  AE See "pharyngitis" below 24 

Influenza AE  See "viral respiratory infection" below 25 

Kidney Failure AE   26 

Leukopenia AE AE See low individual WBC type 

descriptors also 
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Table 5 (continued).  DEB/SIDER classifications for the drug abacavir. 

Lipid Metabolism 

Disorders 

AE  See "Hypertriglyceridemia" above 27 

Liver Failure AE  See below 28 

Liver function tests 

abnormal finding 

 AE See above AND below "Raised liver …" 29 

Lymphopenia AE  See "Leukopenia" above 30 

Malaise AE AE bad category  

Migraine Disorders AE AE   

Morular Metaplasia of the 

Endometrium 

 AE ?? Bad category ?? 31 

Myalgia AE  See "Musculoskeletal Pain" above 32 

Myocardial Infarction  AE  33 

Nasal infection  AE  34 

Nausea AE AE   

Neutropenia AE AE See "Leukopenia" above  

Oral Ulcer AE   35 

Pain AE AE bad category  

Pancreatitis AE AE   

Paresthesia AE   36 

Pharyngitis AE  See "infective pharyngitis" above 37 

Pneumonia AE AE   

Raised liver function tests AE  See "Liver function …" and "Alanine 

Amino…"  above 

38 

Respiratory Distress 

Syndrome, Adult 

AE  See below 39 

Respiratory Failure AE  See above 40 

Severe diarrhea  AE See also "Diarrhea" above 41 

Shortness of Breath AE  See "Dyspnea" above 42 

Sleep Disorders AE AE See below  

Sleeplessness AE  See above 43 

Sore Throat AE  See "Pharyngitis" above and "Infective 

Pharyngitis" above 

44 

Spondylolisthesis, grade 2  AE ?? Bad category ?? 45 

Stevens-Johnson 

Syndrome 

AE AE   

Therapy naive  AE bad category 46 

Thrombocytopenia AE AE   

Toxic Epidermal 

Necrolysis 

AE AE   

Urticaria AE  See "Allergy" above 47 

Viral respiratory infection  AE See "Influenza" above 48 

Vomiting AE AE   

White blood cell count 

increased 

 AE  49 
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Of the 49 apparent discrepancies (enumerated in Table 5) where only DEB or 

only SIDER listed a finding associated with the drug abacavir, the expert marked four as 

―bad category‖ errors in for finding concepts.  Of the remaining 45 discrepancies, the 

expert identified 16 where collapse of findings into homogenous terminology would 

eliminate discrepancies.  These 16 collapsible discrepancies plus 4 bad categories 

represent 44% of apparent discrepancies. 

Table 6, below, shows a sample of reviewer comments.  Note that most reviewers 

only commented on those drug-finding pairs that were more ambiguous.  Matching 

determinations between DEB and the reviewer are in bold. 

 

Table 6. Sample of reviewer comments (including Reviewer and DEB determinations.) 

Drug Finding Review DEB Comments 
Acetylcysteine Heart Diseases IND IND "heart Diseases" too vague to use. N-

Acetlycysteine used to prevent damage 

due to myocardial ischemia, mostly in 

research 

almotriptan Nausea Both IND Either both, or side effect only . Can 

cause nausea, and indicated for 

migraine which has nausea as a 

symptom often 

Anti-Bacterial 

Agents 

Theileriasis Neither IND "anti-bacterial agents" too broad; 

disease only affects CATTLE 

Anticoagulants Compartment 

syndromes 
AE AE a stretch, sort of 

Anticonvulsants Ketogenic Diet Neither IND both are tx for seizures 

Antioxidants Pathologic 

Neovascularization 
IND IND "Antioxidants" too general, and 

pathologic neovasc is not much better; 

Bupropion Weight Gain IND IND Indirect association, helps with 

smoking  but prevents wt gain 

experienced during smok. Cessation 

Cardiovascular 

Agents 

Atrial Fibrillation Both IND "CV agents" category too general; 

mostly treat; digoxin  does both 

Cardiovascular 

Agents 

Atrial Fibrillation IND IND med too general 

Chlormethiazole Alcoholic Intoxication, 

Chronic 

AE IND Fatal in alcoholics 

Cisplatin Horse Diseases Neither IND "horse diseases" not a relevant term -- 

drop it. 

Corticotropin Contracture Neither AE Corticotropin is a natural substance in 

humans -- its deficiency can lead to 

flexion contractures 
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Table 6 (continued). Sample of reviewer comments. 
Dantrolene Tachypnea Neither IND Dantrolene treats malignant 

hyperthermia, itself a very rare cause of 

tachypnea 

Dantrolene Tachypnea Neither IND Doesn't treat tachypnea, rather malig 

hyerthermia which presents with 

tachypnea 

Dantrolene Tachypnea IND IND for MH 

Dextrothyroxine 

Sodium 

Coronary 

Arteriosclerosis 

Neither IND Ancient form of lipid-lowering therapy 

no longer used, especially for CAD 

Estrogens Cerebrovascular 

accident 

AE IND Very weak association in the literature.  

Excitatory 

Amino Acid 

Antagonists 

Tobacco Use Disorder IND IND Mostly research studies; terms both too 

vague 

Goserelin Neoplasms IND AE "Neoplasms" too broad-used in treating 

breast/prostate cancers 

Haloperidol Vomiting Neither IND could be AE but rare 

Heparin Asthma IND IND Weak association 

Hydrocortisone Erythema Neither AE Could say this is an indication, or an 

effect, but I think neither is best 

Iloprost Personal Satisfaction Neither AE "Personal satisfaction" is a "junk" term 

in UMLS for our purposes 

imiquimod Carcinoma IND IND "Carcinoma" too general - this is a 

topical agent used in various forms of 

skin cancer 

Lactulose Diarrhea AE IND Both desired and adverse effect 

Levalbuterol Adverse event Neither AE Adverse Event is too nonspecific, 

ignore this term 

Lidocaine 

Hydrochloride 

Drug toxicity Neither IND too broad 

Metformin Hepatitis AE IND rare 

Nicotine Pain Both IND Too complex -- "nicotinic receptors" 

involved in neural pain pathways, 

smoking interacts with pain, etc. 

Nitric Oxide Lung diseases IND IND "Lung diseases" too nonspecific -- it 

only treats pulmonary hypertension and 

rare other disorders 

Omeprazole Vomiting IND AE If GERD/PUD is causing vomiting 

Phenylalanine Cognition Disorders IND AE unsure 

Praziquantel Sheep Diseases Neither IND huh? 

Psychotropic 

Drugs 

Substance-Related 

Disorders 

IND AE "Substance-related disorders" and 

psychotropic drugs -- both too broad as 

categories 

Raloxifene Breast tenderness Neither AE Breast tenderness only occurs when this 

drug is combined with estrogen therapy 

repaglinide CARDIAC EVENT AE AE "CARDIAC EVENT" too nonspecific 

of a term 

Zinc Skin Neoplasms Neither IND unsure 

Zinc Skin Neoplasms IND IND Zinc oxide sunblock creams used in 

preventing later skin cancer 
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Discussion & Limitations 

 

Summary 

 The DEB automatically combines drug indication and adverse effect information 

from multiple sources.  These sources are frequently updated, and since DEB is 

constructed algorithmically without manual intervention, it can be regenerated in a fully 

automated manner to take advantage of updates in the knowledge sources.  We have 

shown that the DEB is comparable in several ways to SIDER, a popular resource for 

drug-finding information, for the drug-finding pairs that they have in common.  

Additionally, our expert review suggests that the DEB may be more accurate when 

SIDER and DEB disagree on IND/AE determination.  While there are disparities (e.g., 

use of different synonyms to denote the same findings) among many of the UMLS 

concepts in DEB and SIDER, there appears to be general agreement on broad concepts.  

It appears that future work on condensing clinical synonyms into a canonical list of 

concepts should be able to address these disparities.  We discuss our specific results 

below. 

 

Direct Comparison with SIDER 

For the drug-finding pairs present in both DEB and SIDER (34,406), there was 

97% agreement (33,398) on whether the pair represented an AE or IND. These results 

suggest that DEB is comparable to SIDER for the drug-finding pairs they have in 

common. We cannot draw conclusions regarding the accuracy or reliability of the 
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remaining portions of DEB from these results alone.  We discuss experts’ judgments 

regarding the disagreements below. 

 

DEB Evaluation: Inter-rater reliability 

Landis and Koch (92) gave one of the most popularly used interpretations of 

Kappa, however it is not universally accepted (93).  They reported that a Kappa less than 

or equal to zero indicates poor agreement; a Kappa of 0.01-0.20, slight agreement; 0.21-

0.40, fair agreement; 0.41-0.60, moderate agreement; 0.61-0.80, substantial agreement; 

and almost perfect agreement at 0.81-1.00. 

For the 25 pairs that the reviewers rated in common, the pairwise Kappas between 

reviewers range from slight agreement to moderate agreement, with values implying 

moderate agreement.  However, if one does not consider the pairs that reviewers rated as 

both – that is, removing those pairs that were ambiguous – some of the pairwise Kappas 

move into the range of substantial agreement.  Similarly, for Fleiss’ Kappa over all 

reviewers, agreement ranges from fair (Kappa=0.36, p < 0.001) to moderate 

(Kappa=0.42, p < 0.001).  We believe that this illustrates a general agreement between 

reviewers, but further illustrates the difficulty of determining the nature of a drug-finding 

pair relationship.  We believe that further research might take advantage of the 

information used in constructing the DEB to examine the differences in the INDscore and 

AEscore for each drug pair, along with the number of sources from which the DEB 

derived a drug-finding pair relationship, to incorporate a certainty metric into DEB.  
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DEB Evaluation: Expert Review of DEB/SIDER Disagreements 

Our expert reviewers examined a random sample of 300 pairs (75 for each 

reviewer) taken from the overall set of 1008 drug-finding pairs where the DEB and 

SIDER categorizations (IND vs. AE) disagreed.  While the reviewers agreed with DEB 

between 53% and 72% of the time, they only agreed with SIDER between 24% and 28% 

of the time.  On average, reviewers agreed with DEB 30% more of the time when DEB 

and SIDER disagreed (P≤0.01).  We believe this suggests that a drug-finding database 

compiled from multiple sources of varying reliability might provide better information 

than using only a single, potentially unreliable source whenever information – especially 

when data regarding a specific effect are ambiguous.  Additionally, improved mapping of 

similar finding concepts to canonical ―consensus‖ terms (discussed below) could 

potentially resolve many discrepancies within the DEB and within SIDER, as well as 

between the two knowledge sources. 

 

Expert Review of Random Selection from DEB 

The expert reviewers also examined a random sample of 400 pairs (100 for each 

reviewer) from DEB that were not in SIDER.  On average, they agreed with the DEB 

categorizations of the drug-finding pairs 61% of the time.  All the reviewers significantly 

agreed with DEB on more than 42% of the pairs and only disagreed with DEB on 25% of 

the pairs.  Reviewers only selected the opposite determination (AE when DEB had IND, 

or vice versa) 10% of the time on average. While reviewers agreed with DEB a majority 

of the time (they were 9-fold more likely to agree with DEB than disagree), nearly a 
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quarter of the pairs were marked as ―neither,‖ often due to problems with vague 

terminology.    

 

DEB/SIDER Content Comparison 

As illustrated in Table 4, there are many specific CUIs that appear only in SIDER 

or DEB, but many general concepts are addressed by both sources.  Sometimes the two 

sources use similar but different CUIs for the same findings, and neither uses the CUI the 

other used.  Sometimes one source lists a specific concept and the other a more general 

concept.  Occasionally, one source will list a high-level disease process and the other will 

only list the disease process and findings of that disease, or sometimes only findings.  

Similar to how drug-concepts were mapped to a single generic ingredient, a method to 

combine similar finding concepts would be beneficial.  Table 5 suggests that up to 44% 

of apparent discrepancies in whether a finding was listed in SIDER but not in DEB or 

vice-versa might be due to using different synonyms for the same concept, or one using a 

parent concept and the other using a child concept. Future research should attempt to 

combine finding concepts in a manner analogous to the way in which we combined 

different drug concepts into a ―single ingredient generic drug concept‖ in constructing the 

DEB.  Automatically relating disease and findings concepts derived from UMLS 

vocabularies is nontrivial: not all UMLS vocabularies have robust conceptual 

relationships defined, and related concepts between different vocabularies often cannot 

be algorithmically linked. 

  



52 

 

Reviewer Comments 

Reviewer comments from the drug-finding pair reviews denoted that many pairs 

were ―too broad‖ (e.g., Lidocaine and Drug toxicity), ―not relevant‖ (e.g., Praziquantel 

and Sheep Diseases), ―weak associations‖ (e.g., omeprazole and tachycardia) or ―did not 

make sense‖ (e.g., Protease Inhibitor and Occupational Diseases).  We believe these 

comments indicate that metrics in addition to UMLS semantic type should be considered 

to ensure the relevance of a finding.  Concepts such as ―adverse effect‖ are too broad, 

even though the concept has one of the relevant semantic types.  Additionally, comments 

revealed that reviewers had differing mindsets; for instance, some reviewers would 

indicate that ―both‖ was a valid choice in their comment, but would select the 

predominant explanation instead (marking either AE or IND instead of ―BOTH‖ when 

rating the pair).  This inconsistency likely decreased the inter-rater agreement. 

 

Limitations 

There was surprisingly little overlap in the drug-finding pairs extracted from 

MRCOC, NDF-RT, and the SPLs.  Nearly 97% of drug-finding pairs came from one of 

the three knowledge sources (i.e., the other sources did not mention the pair).  Thus, in 

the majority of cases, no corroboration existed to ensure the reliability of the drug-finding 

pairs entered in the evidence base.  Using additional knowledge sources to ―back up‖ 

DEB entries could potentially increase its reliability.  One explanation, previously noted, 

for why the overlap between sources was low relates to our observation that similar 

finding concepts did not have the same UMLS CUI representations in different sources, 

leading to entry of multiple finding concepts for what was essentially the same concept.  
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The UMLS contains over 140 source terminologies, each containing differing concepts at 

different levels of specification and meant for different purposes.  The resulting 

discrepancies lead to imprecise matching, imprecise categorization by experts, and 

incomplete mapping among concepts within the UMLS.  One potential solution might be 

to limit the vocabulary of allowed finding concepts, possibly by using a terminology 

designed for adverse effects concepts, such as COSTART or MedDRA – after 

eliminating their own internal inconsistencies. 

While we mapped multiple similar drug concepts to a single specific generic 

ingredient, we did not do the same with finding concepts.  Concepts such as ―diabetes,‖ 

―diabetes mellitus,‖ ―diabetes mellitus Type I,‖ and ―diabetes mellitus Type II‖ are all 

related, and could represent the same finding.  It was straightforward to map drug 

concepts such as  ―Tylenol‖ and ―Acetaminophen 500mg,‖ to the generic ingredient 

―Acetaminophen,‖ but it is difficult to conclude if ―diabetes‖ the be mapped to the 

generic ―diabetes mellitus‖ concept, or to the more specific Type I or Type II concepts. 

Having multiple finding concepts for what is actually one finding results in multiple 

drug-finding pairs from disparate sources, instead of a single pair with evidence from 

multiple sources.  Future work should focus on ways to correctly generalize and combine 

these finding concepts.  

There were also several drug concepts that we could not automatically map to 

their generic ingredient concepts.  This was due to missing relationships (has_tradename, 

has_ingredient) in either RxNorm and/or the UMLS MRREL file.  While these 

relationships are present for the majority of drugs, they were not present for several 

obscure drugs or and for some recently added drug concepts. As newer versions of 
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RxNorm and UMLS correct these problems, automated re-generation of the DEB content 

could take advantage of these improvements. 

As discussed above, the reviewers considered a number of drug-finding pairs ―too 

broad‖ or ―too vague‖. A more extensive manual review to eliminate irrelevant identified 

finding concepts is one option.  Another possible solution would be to include more 

knowledge sources, such as MicroMedex or SemMED (58), and require pairs to be in at 

least two sources. From our analysis, it seems that using only the UMLS semantic type to 

define the finding concepts is not restrictive enough.  Other UMLS information, such as 

the hierarchy of concepts, might be useful in restricting finding concepts to more specific 

terms.  We plan to investigate this in future work. 

Our expert physician reviewers rated a total 725 drug-finding pairs from the DEB 

total of over 100,000 pairs.  A larger expert review sample and more detailed analysis of 

DEB might give a more complete picture of the accuracy of the DEB drug-finding pair 

categorizations.  As reviewers marked many of the drug-finding pairs in the analysis 

sample as ―both‖ or ―neither,‖ a larger sample might enable the Kappa values to indicate 

additional areas of significant inter-rater agreement.  

Having one quarter of reviewed drug-finding pairs in the DEB marked as 

irrelevant is a concern, but the primary purpose of the evidence base is for the 

classification of drug-finding pairs extracted from clinical notes.  When using the DEB 

for that purpose, we are unlikely to identify ―irrelevant‖ concepts such as ―sheep 

diseases.‖ Therefore, while the ―irrelevant‖ drug-finding pairs constitute noise in the 

DEB that should ideally be eliminated, we do not believe that their current presence 

would have a major adverse effect when applying the DEB to clinical notes. 
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Another limitation of the current study was use of NLP methods to extract 

information from the SPLs.  While NLP is an excellent tool for extracting certain types of 

discrete information from text, it can also misidentify concepts or identify concepts out of 

context.  Manual review of the SPLs discovered that indications for prescribing a 

medication were sometimes mentioned in the text of the adverse effects section.  This 

might occur, for example, when withdrawal of a medication (e.g., clonidine) exacerbates 

the underlying condition that it is used to treat (e.g., hypertension).  This phenomenon 

might cause findings to be improperly classified as adverse effects when they should be 

classified as indications.  We believe we could compensate for this type of confounding 

in the DEB by using additional knowledge sources to overcome ―false‖ signals generated 

during NLP. Additionally, generalizing symptom concepts (as discussed above) could 

help to identify when similar concepts appear in both the AE and IND sections, but are 

tagged with different CUIs.  Improvements in NLP methods may also help alleviate this 

problem in the future. 
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CHAPTER IV 

 

DRUG-FINDING CORRELATION AND ADVERSE EFFECT DISCOVERY 

 

Overview 

We analyzed Vanderbilt de-identified clinical notes to determine the feasibility of 

discovering new, unreported adverse drug effects. We did so through analysis of drug-

finding pairs mentioned in clinical notes.  This exploratory evaluation asked four general 

questions: (1) Do drug-finding pair classifications derived by applying the DEB to 

clinical notes appear at face value reasonable, i.e., do DEB categorizations match known 

drug INDs or AEs most of the time that NLP detects a pairing known to DEB? (2) For 

instances when DEB classifications appear to be incorrect, is there at least a plausible 

reason that explains the misclassification (e.g., a common diagnosis appears as false 

positive confounder, or a diagnosis causally linked to an actual indication appears as false 

positive confounder)? (3) Does there appear to be, at face value, a known clinical reason 

that can be cited to explain those clinical-note-derived drug-finding pairs that are highly 

statistically correlated (whether it be AEs, INDs, or confounding due to comorbid 

conditions)? (4) Can the NLP-based clinical note correlation algorithm rank recently 

discovered drug-AE pairs high enough to suggest future potential for more careful side 

effect discovery?  

 From the Vanderbilt SD described above, we extracted 500,000 notes that had 

tags indicating that they might possibly be History and Physical Examination (H&P) 

notes. Based on identified subsections present in the notes (as determined by SecTag), we 
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algorithmically selected a subset of the original 500,000 sample notes that were most 

likely to represent H&Ps.  From those ―more definite‖ H&Ps, we extracted finding and 

drug concepts using the Vanderbilt-developed NLP tools KMCI and MedEx, 

respectively.  We applied the same definitional requirements (based on UMLS semantic 

types) that we used in DEB construction, to refine extracted finding and drug concepts 

from the H&Ps. We also manually created a filter to remove many of the less-relevant 

concepts from consideration.  We then carried out statistical correlation analysis of drug-

finding pairs appearing in the H&P notes, and determined which pairs were represented 

in the DEB and SIDER. 

 

Materials 

This work was performed on a MacBook Pro with a 2.8 GHz Intel Core 2 Duo 

processor and 8 GB of RAM and a Linux server with forty-eight 2.2 GHz AMD Opteron 

cores and 256 GB RAM.  All data processing scripts were written in Perl. 5.10.0. The 

project used MySQL version 5.5.16 for the DEB and to store all results. 

 

Methods 

 

Source of Clinical Notes Used in Analysis 

 The de-identified Vanderbilt SD repository does not contain specific type 

identifiers for each type of clinical note entry it contains.  In the source EMR system at 

Vanderbilt, multiple types of clinical notes are all tagged with the same subtype ―HP.‖  

Therefore, the project had to determine an automated method to identifying those notes 
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that were highly likely to represent full, thorough H&Ps of the type done on admission to 

the hospital or generated during a complete evaluation during a new patient clinic visit. 

Using a set of approximately 5000 known H&Ps taken from the SD (and not included in 

the sample we later analyzed), we identified criteria to extract likely H&Ps from the SD. 

We first obtained a large group of ―candidate H&P‖ notes.  Using an SQL query, 

we extracted notes only from the HP, HPH, and HPL tables (HP, HP Hidden, and HP 

Large) in the SD, as we believed these were more likely to contain H&P notes.  We 

limited our query based on the subtype field in the SD.  We limited the search to note 

subtypes with the words ―history‖ and ―physical‖, ―HP‖, ―Admission Note‖ or some 

combination.  For this study, we focused only on adult patients and excluded any notes 

where the subtype contained the words ―pediatric,‖ ―pccu,‖ or ―nicu.‖  We also specified 

a minimum note length of 3000 characters, based on the average lengths of the known 

H&Ps we studied.  

 

where ( ( sub_type LIKE '%HISTORY%' and sub_type LIKE '%PHYSICAL%' ) 
  or ( sub_type like '%HISTORY \& PHYSICAL%' ) 
  or ( sub_type like '%HISTORY AND PHYSICAL%' ) 
  or ( sub_type like '%ADMISSION NOTE%' ) 
  or ( sub_type like '%H\&P%' ) 
  or ( sub_type = 'HP' ) 
  ) 
  and 
  ( sub_type NOT LIKE '%PEDIATRIC%' ) 
  and 
  ( sub_type NOT LIKE '%PCCU%' ) 
  and 
  ( sub_type NOT LIKE '%NICU%' ) 

  and length(content) > 3000; 

Figure 7.  Partial MySQL code used to extract notes from the SD. 

 

 

As the IRB approval restricted our study to include only 500,000 notes, we 

retrieved the 500,000 candidate H&P notes with the greatest length from our results set 
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(since we assumed longer notes were more likely to be actual H&Ps).  Programmers from 

the Vanderbilt Informatics Center responsible for the SD helped write and perform the 

query. 

The candidate H&P notes were written between February 15, 1984, and February 

28, 2011.  Due to the de-identification process, we did not have dates for each individual 

notes. 

 

Running KM/SecTag to Identify Note Sections and Finding Concepts 

 The Vanderbilt Informatics Center provided the 500,000 candidate H&P notes in 

the form of plain text files.  Files were pre-processed to remove extraneous line breaks 

and HTML/XML tags.  We ran KMCI (with the negation option on) and SecTag 

concurrently to both index the concepts in the notes and identify those sections present in 

the note.  SecTag produces as output an XML document containing tags identifying 

where H&P sections begin and end throughout the note.  KMCI produces multiple output 

files; we used the ―detailedcuis.txt‖ output file.  It contains one entry per line for each 

concept identified in the note, along with information such as CUI, semantic type, 

whether or not the concept was negated, and (when run with SecTag) in what H&P 

section the concept appeared. 

 

Identifying “Adequately Extensive” H&Ps from the Candidate H&P Set 

 To identify adequately extensive, more certain H&Ps from among the 500,000 

candidate H&Ps, we utilized the SecTag output indicating which sections were present in 

each candidate note.  Using expert-guided empirical analyses of 5000 notes not part of 
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the 500,000 samples, we explored multiple criteria to determine which sections should be 

present in a high-quality (as defined above) H&P note.  The expert examined notes using 

differing empirical criteria over multiple iterations. We arrived at three potential criteria 

that could potentially identify an ―adequately extensive H&P note‖ (according to our 

criteria, shown below in Table 7).  To further ensure that a note was an H&P, we required 

it to satisfy at least two of the three criteria. 

 

Table 7. Three section criteria to identify likely H&P notes. 

Criterion Sections Present in the note 

1 (History of Present Illness OR Past Medical History) AND Physical Exam 

2 

At least 4 of (Review of Systems | Chief Complaint | Assessment | Family 

Medical History | Medications | (History of Present Illness | Past Medical 

History)) 

3 

At least 5 of (Vital Signs | Pulmonary Exam | Cardiovascular Exam | 

Neurological Exam | HEENT Exam | Abdominal Exam | Lymphatic Exam | 

Extremity Exam | General Exam) 

 

 

Running MedEx to Identify Drug Concepts 

 From the 366,545 H&Ps notes that appeared to be ―adequately extensive‖ H&Ps 

as determined by applying our criteria, we extracted H&P sub-sections that were deemed 

to contain the patient’s current or recent medications (i.e., past medications, as opposed 

to medications that the clinician planned to prescribe as a result of the examination). 

Thus, the medication list identified drugs the patient was taking, or had very recently 

take, at the time of generation of the note (corresponding to admission for inpatient 

H&Ps).  We identified the following H&P sections as likely sites for past or current 

medications: 
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 History of Present Illness 

 Past Medical History 

 Chief Complaint 

 Problem List 

 Medications 

 Current Medications 

 Admission Medications 

 Medication History 

 Medications Outside Hospital 

 Medications at Transfer 

 Inpatient Medications 

 Outpatient Medications 

 Current Antibiotics 

 Oncologic History 

 Personal and Social History 

 Ethanol Use 

 Tobacco Use 

For each note, we exported the text of these relevant H&P sections into a separate 

file that we then used as input for MedEx.  MedEx produces output comprised of CUIs of 

identified drug concepts, along with any associated drug signature information, such as 

dose, route, and strength.  To ensure that a MedEx-identified drug concept actually 

represented a medication taken by the patient, we required that the H&P note from which 
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the drug name was extracted had to mention in addition at least one item of signature 

information. 

 

Identifying and counting drug-finding pairs within H&P notes 

 For each H&P, we constructed a patient’s finding list from the KMCI 

“detailedcuis.txt” output and a patient’s medication list from the MedEx output, as 

follows: 

We added a finding to the finding list if 1) it was of a relevant finding 

semantic type, as previously defined, 2) it was not in an “excluded” H&P section, and 

3) it had not been seen before in the current note.  We excluded family history 

sections since they are likely to contain findings not directly related to the patient.  

Specifically, we excluded the SecTag sections Family Medical History, Family History, 

and Mother-, Father-, Brother-, and Sister-Medical History. 

For each drug, we first generalized the drug concept to its generic ingredient 

(as described earlier).  Next, we added a drug to the medication list if 1) it was of the 

appropriate drug semantic type, as previously defined, 2) at least one of the MedEx 

signature fields (dose, strength, route, etc.) was present, and 3) it had not been seen 

before in the current note. 

Next, for each pairwise combination of a drug and a finding from the two sets 

extracted from a given H&P, the overall drug-finding count for that specific pair was 

incremented by one.  We did this over the entire set of H&P notes to generate counts 

for every drug-finding pair present in the corpus of H&Ps. 
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Since mentions of drugs and findings may occur at random as well as for a 

reason, we empirically set a threshold to only consider a drug-finding pair if it 

occurred in at least 100 of our several hundred thousand “adequately extensive” 

H&P notes.  For every drug-finding pair that appeared greater than this minimum, 

we reported the drug-count – the number of notes in which the drug concept was 

present, the finding-count – the number of notes in which the finding concept was 

present, and the co-occurrence count – the number of notes in which the pair was 

present.  For each drug-finding pair, we calculated the odds ratio and Pearson’s chi-

squared test statistic. 

 

Removal of Unsuitable Drug and Finding Concepts 

After calculating the drug-finding co-occurrences for all H&Ps, I generated the 

list of all distinct drug concepts identified, including those that occurred less than 100 

times.  Because some drugs do not have RxNorm mappings back to their generic 

ingredient, I manually reviewed this list to identify drugs not properly generalized.  I then 

coded manual mappings for these drugs into the drug-generalization procedure and re-

calculated the co-occurrences. 

Similarly, we generated a list of all distinct finding concepts identified by KMCI.  

We then sorted this list by descending count of occurrence and manually reviewed this 

list to remove finding concepts that were non-descriptive or too broad, for example 

―blood for culture,‖ ―non-specific positive culture finding,‖ ―able,‖ ―date of admission,‖ 

and ―annual exam.‖ 
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Applying the DEB to Highlight Known and Unknown Drug-Finding Pairs 

We combined the DEB described above with the SIDER information (that we 

previously used for DEB comparison) into a combined DEB/SIDER table stored in a 

MySQL database.  This combination added an additional 29,451 drug-finding pairs to the 

existing DEB of 137,194 pairs.  During the merger, in the case of a disagreement between 

SIDER and DEB, we used the categorization of a pair in the DEB (i.e., as an IND or an 

AE).  When we applied the combined drug effects database, we reported classifications 

of H&P drug-finding pairs from H&Ps using SIDER and DEB individually. 

For each of the drug-finding pairs (with a co-occurrence count greater than 100 

out of the set of 366,545 H&Ps), we checked for a matching pair in the combined 

DEB/SIDER table.  For visual analysis, we exported the pairs to a Microsoft Excel 

spreadsheet, along with the above-mentioned counts and statistics.  Each pair listed in 

DEB/SIDER as an AE was highlighted in red, while each pair listed as an IND was 

highlighted in green.  By identifying known pairs, we were better able to identify 

possibly unknown correlations. 

We used the chi-squared test statistic as the primary means of sorting pairs based 

on strength of correlation, using a target p-value cutoff of 0.001.  Since we performed the 

chi-square test for every drug finding pair, we used a Bonferroni correction to correct for 

multiple testing and reduce false positives.  This resulted in an absolute threshold of p ≤ 

1x10-8, corresponding to a chi-square value greater than or equal to 32.84.  As a 

secondary means of corroborating significant correlation, we also used an odds ratio of 

greater than two based on empirical examination of the results and confirmation from a 

statistician that an odds ratio of two was a reasonable cutoff. 



65 

 

 

Analysis of Drug-Finding Pair Correlations 

We examined the top (highest chi-square values) 100 drug-finding pairs ranked in 

descending (highest to lowest) order to empirically determine if our most common drug-

finding pairs fit with known clinical information.  A senior project clinician reviewed the 

list and made comments.  We also manually reviewed the automated AE/IND tagging 

from DEB for accurate classification of selected drugs.  For the selected drugs, we 

manually examined co-occurrences looking for known INDs and AEs to determine if it 

might be feasible to identify novel AEs using our methodology.  In particular, we 

identified several recent FDA drug recalls and other recently reported FDA warnings 

regarding possible adverse associations.  While DEB data focus almost exclusively on 

individual drugs, we also analyzed combined co-occurrence data for one drug class – 

HMG-CoA reductase inhibitors, popularly known as statins. To define the statin class, we 

combined the data from the following drugs:  lovastatin, simvastatin, fluvastatin, 

pravastatin, atorvastatin, cerivastatin, and rosuvastatin. We empirically examined the 

H&P drug-finding extraction results looking for interesting pairs, or pairs that illustrated 

certain limitations. 

We examined correlation results for the specific drugs rofecoxib, rosiglitazone, 

and risperidone, as well as the statin drug class and the top 100 correlations, according to 

chi-square and odds ratio.  This analysis did not use scientific metrics; instead we 

performed an informal analysis in order to identify any obvious flaws and to ascertain the 

potential for using our approach to identify novel AEs, not to make scientific 

conclusions.  In particular, we manually identified known adverse effects and indications 
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that significantly correlate with the given drugs, as well as potential confounders and 

trivial or irrelevant associations. 

 

Results 

Our original, more general SD query to identify ―candidate‖ H&P notes, 

performed by Vanderbilt Informatics Center programmers, returned 570,845 candidate 

H&P notes.  Due to IRB restrictions, we only obtained and examined the 500,000 notes 

from that set with the greatest length. We thus received the text of 496,229 ―candidate‖ 

H&P notes.  Of these, we successfully processed 494,661 notes using KMCI and SecTag.  

Not all could be processed, due to problems with the encoding of some of the notes.  

After applying our criteria for what constituted an ―adequately extensive‖ H&P note, we 

further reduced the original number to 366,600 H&Ps.  After running MedEx on their 

extracted relevant sections, we derived a final set of 366,545 H&Ps from which we 

obtained drug-finding pairs.  Some of the 366,600 H&Ps did not mention any drugs and 

were excluded from further analysis.. 

From the set of 366,545 H&P notes, we extracted a total of 809,478 drug-finding 

pairs composed of 1755 distinct drugs and 10,723 distinct findings.  After requiring a 

minimum co-occurrence count of 100 for further retention of a given drug-finding pair in 

the dataset, 75,749 drug-finding pairs remained with 666 distinct drugs and 2182 distinct 

findings. 

When we applied the combined DEB/SIDER database to classify extracted pairs, 

we identified 10,500 known AEs (8066 from DEB and 2434 only in SIDER) and 3417 

known INDs (3232 from DEB and 185 only in SIDER). 
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As noted in Methods, to compensate for the approximately 100,000 chi-square 

tests performed, the Bonferroni correction for our original threshold p-value of 0.001 

produced a new p-value threshold of 1x10-8.  For the chi-square test corresponding to 

1x10-8, a significant correlation required chi-square value of greater than 32.84.  Of the 

drug finding pairs that occurred at least 100 times, 39,304 pairs had a significant chi-

square value above our threshold and of those, 20,004 also had an odds ratio greater than 

two. 

Tables below show the highest-ranked correlations and selected results for 

rofecoxib, rosiglitazone, and risperidone, as well as for the statin drug class and the top 

40 correlations, according to chi-square and odds ratio.   

We applied DEB from Part 1 (above) to highlight the known drug-finding pairs.  

Entries highlighted in green have been tagged by DEB/SIDER as indications, entries 

highlighted in red have been tagged as AEs, and entries absent from the DEB/SIDER 

knowledge base (unknown) have white backgrounds.  Determinations that came solely 

from SIDER are listed with an asterisk.  Full results are available electronically.  

Although the chi-square values of the co-occurrences exceeded our threshold, 

indicating a statistically significant correlation between given drug and finding concepts 

in the H&Ps, the chi-square values do not imply that the pair is a ―true drug-finding pair‖ 

– that is, ―drug causes finding‖ or ―drug treats finding.‖  For example, the findings are 

often not independent, both due to synonymy and due to ―hidden‖ interrelationships 

among diseases and manifestations of those diseases that are concurrently listed as 

findings. While correlations between concepts may be statistically significant, future 

work must determine better methods or criteria to separate ―true drug-finding pairs‖ from 
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those due to known confounders (e.g., drug co-occurs often with a comorbid condition or 

related findings for the actual indicated condition). 

As stated above, our exploratory analysis addressed the following four questions 

below for the top correlations, each of our selected drugs, and the statin drug class: 

1. Do drug-finding pair classifications using DEB appear at face value 

reasonable, i.e., either matching known drug INDs or AEs most of the 

time that DEB detects a pairing? 

2. For instances when DEB classifications appear to be incorrect, is there at 

least a plausible reason that explains the misclassification (e.g., common 

diagnosis appears as false positive confounder, or diagnosis linked to 

actual indication appears as false positive confounder)? 

3. Does there appear to be, at face value, a reason behind those drug-finding 

pairs that are highly statistically correlated (whether it be AEs, INDs, or 

confounding due to comorbid conditions)? 

4. Can the correlation algorithm rank recently discovered drug-AE adverse 

effects high enough to suggest future potential for more careful side effect 

discovery? 
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Table 8. Top overall chi-square correlations (in decreasing order of chi-square). 

Drug Finding cocount odds chisq det Expert Review 

Thyroxine Hypothyroidism 13422 59.93 122517.76 IND OK 

Dornase Alfa Pancreatic Insufficiency 773 637.71 105067.22  Confounder, due to CF 

Dornase Alfa Cystic Fibrosis 1418 1658.53 90518.37 IND OK 

Tobramycin Pancreatic Insufficiency 647 368.44 72462.81  Confounder, due to CF 

Tobramycin Cystic Fibrosis 1212 346.65 64923.85 IND OK 

Allopurinol Gout 2778 79.57 61419.85 IND OK 

Insulin 

Diabetes Mellitus, Insulin-

Dependent 6179 32.76 55082.08 IND OK 

Furosemide Congestive heart failure 11955 12.04 44120.11 IND OK 

Nitroglycerin Coronary Arteriosclerosis 10379 17 42400.06 IND OK 

Colchicine Gout 1650 90.31 40544.75 IND OK 

Insulin Diabetes Mellitus 11478 10.59 36228.16 IND OK 

Lactulose Hepatic Encephalopathy 747 116.26 35601.03 IND OK 

Aspirin Coronary Arteriosclerosis 19026 6.83 35539.91  

Prophylaxis and early RX; 

IND 

Statins Hyperlipidemia 15536 7.73 35356.23 IND OK 

valacyclovir Graft-vs-Host Disease 765 96.44 33656.09  Confounder 

Albuterol Asthma 9549 10.01 32429.05 IND OK 

donepezil Dementia 901 96.29 31183.81 IND OK 

Cyclosporine Graft-vs-Host Disease 875 80.65 31032.96 IND OK 

Nitroglycerin Chest Pain 9501 11.42 29787.4 IND OK 

clopidogrel Coronary Arteriosclerosis 7289 14.41 28112.3  IND 

Illicit Drugs abnormal bruising 728 87.24 28061.35  Too broad 

Digoxin Congestive heart failure 4728 15.16 26264.48 IND OK 

Sinemet Parkinson Disease 756 115.75 25794.43  Multi-component drug; IND 

latanoprost Glaucoma 663 97.64 24977.36 IND* OK 

Statins Coronary Arteriosclerosis 15692 5.34 24296.85  IND 

mesalamine Crohn's disease 610 101.51 23912.73 IND OK 

Cocaine Cocaine Abuse 552 98.09 23906.61  Trivial 

Albuterol Exacerbation of asthma 2553 30.84 23675.4 AE Incorrect – IND 

Illicit Drugs No pain 729 65.77 23650.24  Trivial 

Aspirin Hypertensive disease 33022 4.51 23593.69 IND 

Confounder, stroke/MI 

prophylaxis 

Hydroxy-

chloroquine 

Lupus Erythematosus, 

Systemic 572 86.91 23029.24 IND OK 

mesalamine Ulcerative Colitis 423 105.89 22653.9 IND OK 

Levetiracetam Seizures 2804 37.2 22565.16 IND OK 

Insulin 

Diabetes Mellitus, Non-

Insulin-Dependent 7624 7.81 22347.89 IND OK 

Statins Hypertensive disease 30117 4.65 22289.33 IND 

Confounder, used in 

stroke/MI prophylaxis 

tamsulosin 

Benign prostatic 

hypertrophy 1430 31.73 22267.01 IND OK  

Insulin Diabetic Ketoacidosis 2014 47.45 22213.8 IND OK 
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Top Overall Correlations 

For those drug-finding pairs (in Table 8) tagged by DEB/SIDER as IND or AE, 

24 out of 27 pairs were correctly categorized according to our expert review.  The 

DEB/SIDER classification was incorrect on 3 pairs for two obvious reasons.  The pair 

Albuterol-Exacerbation from Asthma was incorrectly categorized as an AE because the 

finding concept Exacerbation from Asthma was extracted via NLP from the Adverse 

Reactions section of the SPL, but only the concept Asthma was present in the Indications 

section.  The pairs Aspirin-Hypertensive Disease and Statins-Hypertensive Disease were 

both incorrectly categorized as IND because the pairs were extracted from the MRCOC 

as indications, likely due hypertension being a comorbidity of the conditions the drugs 

were intended to treat (Coronary Artery Disease and hyperlipidemia, respectively). 

For the drugs categorized by DEB/SIDER, the reason for their correlation is 

indicated by the IND/AE determination and the reviewer comments.  Five of the 

uncategorized pairs were highly statistically correlated due to confounding by comorbid 

conditions; for example, Dornase Alfa and tobramycin are correlated with pancreatic 

insufficiency likely because pancreatic insufficiency is a result of cystic fibrosis.  Four of 

the uncategorized pairs were indications, one of which was likely missed because it was a 

multi-ingredient drug.  Three of the uncategorized pairs were too trivial or broad to be of 

use, but seemed reasonable.  For these top correlations, there were no serious AEs 

ranked.  Since indications should always co-occur with medications but adverse effects 

only rarely co-occur, it is not surprising that no AEs would be in these highest-ranked 

correlations. 
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Table 9. Top chi-square correlation results for the drug Rofecoxib. 

Drug Finding cocount odds chisq det 

rofecoxib Degenerative polyarthritis 250 3.35 318.07 IND 

rofecoxib Obesity 253 2.58 188.01  

rofecoxib Hypertensive disease 598 2 138.74 AE* 

rofecoxib Arthritis 157 2.63 135.18 IND* 

rofecoxib Prothrombin time increased 101 3.1 129.33  

rofecoxib Rheumatoid Arthritis 212 2.21 113.16 IND* 

rofecoxib Congestive heart failure 170 2.32 107.98 AE* 

rofecoxib Metabolic Diseases 216 2.1 100.06  

rofecoxib Myocardial Infarction 189 2.17 98.77 AE* 

rofecoxib Chest Pain 267 1.95 94.2 AE* 

rofecoxib Coronary Arteriosclerosis 248 1.98 92.85  

rofecoxib White blood cell count increased 233 1.96 86.54  

rofecoxib Mental Depression 238 1.9 80.1  

rofecoxib Shortness of Breath 260 1.77 66.08  

rofecoxib Lupus Erythematosus, Discoid 145 1.99 61.54  

rofecoxib Gastroesophageal reflux disease 212 1.8 60.93 AE* 

rofecoxib 

Adverse Event Associated with 

the Gastrointestinal System 107 2.1 55.35  

rofecoxib Back Pain 119 2.02 54.62 AE* 

rofecoxib Swelling 113 1.93 44.95  

rofecoxib Pain 521 1.49 44.48 IND* 

rofecoxib Hypothyroidism 129 1.83 42.89  

rofecoxib Osteoporosis 114 1.87 41.58  

rofecoxib Asthenia 137 1.76 39.41 AE* 

rofecoxib Gastrointestinal tract finding 112 1.85 39.09  

rofecoxib Diabetes Mellitus 198 1.6 36.66  

rofecoxib 

Chronic Obstructive Airway 

Disease 126 1.67 29.89  

rofecoxib Urinary tract infection 121 1.67 28.81 AE* 

rofecoxib Anemia 135 1.61 27.52  

rofecoxib Lesion 273 1.44 27.43  

rofecoxib Cerebrovascular accident 136 1.57 24.86 AE* 

. . .  
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Top Correlations for Rofecoxib 

For those drug-finding pairs in Table 9 tagged by DEB/SIDER as IND or AE, all 

are correct (94) except for two: back pain is an indication for rofecoxib, not an AE, and 

asthenia was considered too broad.  Both of these incorrect classifications came from 

SIDER, not DEB. 

For the drugs correctly categorized by DEB/SIDER, the reason for their 

correlation is indicated by the IND/AE determination.  The uncategorized findings highly 

statistically correlated with rofecoxib seem to be mostly due to confounders, such as 

obesity, mental depression, hypothyroidism, diabetes mellitus, and COPD.  Some of these 

findings, such as coronary arteriosclerosis and shortness of breath, may be associated 

with cardiovascular findings tagged by DEB/SIDER as AEs.   

As is shown in the Table 9, rofecoxib use is highly correlated with the known AE 

myocardial infarction and other cardiac affects including congestive heart failure, chest 

pain, and coronary arteriosclerosis. The known AE cerebrovascular accident, or stroke, 

also occurs often with rofecoxib use, too, but not above our current threshold for 

significance.  In this case, known AEs are present in the top correlations with rofecoxib, 

but do not stand out due to confounding and incomplete tagging of known drug-finding 

pairs. 
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Table 10. Top chi-square correlation results for the drug rosiglitazone. 

Drug Finding cocount odds chisq det 

rosiglitazone 

Diabetes Mellitus, Non-Insulin-

Dependent 608 9.11 2416.6 IND 

rosiglitazone Diabetes Mellitus 745 8.77 2334.6 IND 

rosiglitazone Hypertensive disease 1028 5.02 849.05 AE 

rosiglitazone Obesity 420 3.85 611.06  

rosiglitazone Hyperlipidemia 384 3.44 475.98  

rosiglitazone Coronary Arteriosclerosis 396 2.78 320.68  

rosiglitazone Gastroesophageal reflux disease 300 2.13 139.92  

rosiglitazone Lupus Erythematosus, Discoid 209 2.37 139.78  

rosiglitazone hypercholesterolemia 164 2.54 133.66  

rosiglitazone Anicteric 808 1.82 123.49  

rosiglitazone Arthritis 177 2.36 119.52  

rosiglitazone Angina Pectoris 116 2.71 113.74  

rosiglitazone Chronic Obstructive Airway Disease 197 2.18 107.52  

rosiglitazone Dyspnea on exertion 153 2.21 89.42  

rosiglitazone Congestive heart failure 190 2.06 88.6 AE 

rosiglitazone Shortness of Breath 326 1.79 87.12  

rosiglitazone Orthopnea 136 2.27 86.62  

rosiglitazone Myocardial Infarction 214 1.95 83.16 AE 

rosiglitazone Paroxysmal atrial tachycardia 296 1.79 81.46  

rosiglitazone Anemia 193 1.9 70.68 AE 

rosiglitazone Visual impairment 111 2.23 68.43  

rosiglitazone Stenosis 103 2.27 67  

rosiglitazone Mental Depression 273 1.73 66.77  

rosiglitazone Deep vein thrombosis of lower limb 141 2.04 66.68  

rosiglitazone Pulmonary Embolism 139 1.94 56.41  

rosiglitazone Nausea 436 1.47 44.97 AE 

rosiglitazone Cerebrovascular accident 180 1.7 44.6  

. . .  

 

 

Top Correlations for Rosiglitazone 

As shown in Table 10, of the seven highest correlated findings with the drug 

rosiglitazone categorized by DEB/SIDER, two are correctly categorized as 

indications and five are AEs (myocardial infarction and congestive heart failure are 
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suspected AEs and are included in the SPL warnings).  It is also important to note 

that MI and CHF could also be due to confounding; patients with diabetes mellitus 

are much more likely to have heart disease. 

For the other drug-finding pairs with statistically correlated with rosiglitazone, 

most appear to be confounders, including obesity, hyperlipidemia, and 

hypercholesterolemia – comorbidities that often occur with Type II diabetes mellitus.  

Suspected AEs of rosiglitazone include heart disease, stroke, bone fractures, eye damage, 

and liver damage (95).  There are statistically significant correlations with coronary 

arteriosclerosis, angina pectoris, congestive heart failure, myocardial infarction, and 

chest pain (chi-square 33.04, odds ratio 1.48).  There is also a correlation with stroke 

(cerebrovascular accident) with a chi-square value of 44.6, but an odds ratio of only 1.7, 

correlation with two known complications of diabetes, visual impairment (chi-square 

68.43, odds ratio 2.23) and diplopia (chi-square 42.44, odds ratio 1.9), and co-

occurrences below our current significance threshold with liver-related findings (jaundice 

with chi-square of 23.44, odds ratio 1.59, and liver cirrhosis with chi-square 10.84, odds 

ratio 1.3).  As before, these AE signals are present in the data, but are lost among the 

confounders. 

 

  



75 

 

Table 11. Top chi-square  correlation results for the drug Risperidone. 

Drug Finding cocount odds chisq det 

Risperidone Schizophrenia 308 42.2 8710.9 IND 

Risperidone Iron deficiency anemia 240 17.13 2914.91  

Risperidone Mental disorders 121 25.9 2422.33 IND 

Risperidone Dementia 269 13.01 2372.91 IND 

Risperidone HYPOKINESIS GLOBAL 164 16.7 2039.94  

Risperidone Poor historian 136 12.5 1253.73  

Risperidone Hypothyroidism 411 4.84 919.79 AE* 

Risperidone Epilepsy 497 4.2 829.72 IND 

Risperidone Bipolar Disorder 178 6.12 661.89 IND 

Risperidone Abnormal mental state 191 5.42 594.93  

Risperidone Diabetes Mellitus, Insulin-Dependent 202 5.06 564.57  

Risperidone Agitation 210 4.83 544.8 IND 

Risperidone Congestive heart failure 327 3.3 413.96  

Risperidone Diabetes Mellitus 444 2.83 378.33 AE 

Risperidone Hypovolemia 156 4.48 374.39  

Risperidone Psychiatric problem 169 4.27 372.97  

Risperidone Coronary Arteriosclerosis 455 2.73 354.89  

Risperidone Obesity 393 2.84 351.31 AE 

Risperidone 

Diabetes Mellitus, Non-Insulin-

Dependent 329 2.95 333.44 IND 

Risperidone Hypertensive disease 937 2.41 321.51 AE* 

Risperidone Rhonchi 115 4.62 297.31  

Risperidone Anicteric 1022 2.24 256.69  

Risperidone Alzheimer's Disease 157 3.23 215.55 IND 

Risperidone Hypoxia 138 3.39 210.24  

Risperidone Chest Pain 423 2.21 205.94 AE* 

Risperidone Eosinophilia-Myalgia Syndrome 103 3.91 205.85  

Risperidone Myocardial Infarction 297 2.41 198.11 AE* 

Risperidone Urinary hesitation 105 3.65 186.25  

Risperidone Deep vein thrombosis of lower limb 198 2.52 157.91  

Risperidone Mental Depression 358 2.01 139.78 IND 

Risperidone Confusion 145 2.67 136.59 IND 

Risperidone Tobacco use 154 2.59 134.66  

Risperidone Wheezing 162 2.48 127.85  

Risperidone Cerebrovascular accident 250 2.09 118.38 AE 

Risperidone Deglutition Disorders 169 2.32 112.72 AE 

Risperidone Liver Cirrhosis 284 1.9 99.54  

. . .  
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Top Correlations for Risperidone 

At face value, many of the DEB/SIDER categorizations of findings correlated 

with risperidone (Table 11) appear to be valid; 9/10 INDs are correct, but Diabetes 

Mellitus, Non-Insulin-Dependent is incorrect.  This categorization came from the 

MRCOC and is likely due to research in MEDLINE related to risperidone use in 

diabetics.  Of the 8 pairs classified as AEs, the 4 from DEB are correct (diabetes mellitus, 

obesity, stroke, and deglutition disorders) while the 4 from SIDER do not appear to be 

true (95). 

Risperidone’s known AEs include weight gain, diabetes, and stroke.  The 

concepts obesity and weight gain (chi-square 36.12, odds ratio 1.71), diabetes mellitus, 

diabetes mellitus, non-insulin-dependent, and cerebrovascular accident are all highly 

statistically significant, but are lost among many other ―significant‖ but confounding 

drug-finding pairs. 
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Table 12. Top chi-square correlation results for the statins, with select findings. 

Drug Finding cocount odds chisq det 

Statins Hyperlipidemia 15105 9.12 40606.57 IND 

Statins Coronary Arteriosclerosis 15198 6.29 28375.31 
 Statins Hypertensive disease 27734 5.48 23711.55 IND 

Statins hypercholesterolemia 7640 7.28 19811.4 IND 

Statins Myocardial Infarction 8130 3.52 8697.75 IND 

Statins Stenosis 4229 4.75 7460.27 
 Statins Diabetes Mellitus 9362 2.79 6471.34 IND 

Statins Peripheral Vascular Diseases 3601 4.52 6048.25 IND 

Statins Diabetes Mellitus, Non-Insulin-Dependent 6909 2.98 5787.67 IND 

Statins Angina Pectoris 3632 4 5192.13 IND 

Statins Congestive heart failure 6180 2.94 5128.04 
 Statins Cerebrovascular accident 6428 2.64 4328.46 IND 

Statins Epilepsy 7264 2.5 4260.15 
 Statins Ischemic cardiomyopathy 1776 5.95 4198.61 
 Statins Retina-normal 1438 6.7 3834.55 
 Statins Chest Pain 9109 2.14 3520.67 
 Statins Ischemia 3179 3.34 3519.73 IND 

Statins Arthritis 4769 2.64 3341.17 
 Statins Dyslipidemias 1783 4.73 3278.79 IND 

Statins Congenital leukocyte adherence deficiency 1612 4.82 3041.16 
 Statins Obesity 6953 2.16 2928.76 IND 

Statins Gastroesophageal reflux disease 7576 2.09 2861.92 
 Statins Mental Depression 8030 2.05 2834.82 AE 

. . .  
Statins Memory impairment 281 1.82 84.34  

Statins Memory observations  104 1.5 14.92  

Statins Memory loss 331 1.23 12.3  

. . .  
 

Top Correlations for the Statins 

Unlike the other exploratory analyses presented for single drugs, Table 12 

shows correlations for the statins drug class (as defined in Methods section).  The 

DEB categorization of findings correlated with statin use appear reasonable; of the 

top 13 drug-finding pairs categorized as indications, all seem to be correct (95).  The 
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one tagged AE, mental depression, appears to be incorrect as statins have actually 

been linked to lower risk of depression (96).   

Many of the top correlations with statins appear to be reasonable, as well; most 

are comorbid conditions or findings of those on statins.  Recently discovered AEs for 

statins include memory loss and Type II diabetes mellitus, and were the subject of a 

March 2012 FDA warning.  Memory-related AEs co-occur, including memory 

impairment, memory loss, and memory observations, but not to a statistically significant 

degree.  If these concepts were merged, however, they would likely reach our study’s 

threshold for statistical significance.  Multiple diabetes concepts appear to have a 

significant correlation, including Diabetes Mellitus, Diabetes Mellitus, Non-Insulin-

Dependent, diabetic retinopathy, diabetic neuropathies, diabetes mellitus, insulin-

dependent, diabetic, Diabetic nephropathy, proliferative diabetic retinopathy, 

nonproliferative diabetic retinopathy, diabetic foot ulcer, and diabetic gastroparesis.  

Merging these concepts would increase statistical significance, but since DEB has 

correctly tagged it as an indication, this alone might not cause the signal to stand out.  

Again, the signals of known AEs are present, suggesting future potential for adverse 

effect discovery, but they are hidden among confounders. 

 

Discussion & Limitations 

 

Summary 

While we found many ―statistically significant correlations‖ between drugs 

concepts and finding concepts in the corpus of H&P notes, many of the drug-finding 
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pairs were not truly significant in terms of representing meaningful drug knowledge – 

that is, ―drug causes finding‖ or ―drug treats finding.‖  While many known AEs were 

highly ranked in our results, we also found far too many ―statistically significant 

correlations‖ with confounders and other non-relevant concepts for this to be a viable 

method to detect novel AEs at this time.  However, as our project intended an exploratory 

analysis to assess the feasibility of this approach, we believe we were successful, and the 

future applicability of the approach will improve if one can filter the noise in the data.  

The findings in our analyses were often not independent, both due to synonymy 

and due to ―hidden‖ interrelationships among diseases and manifestations of those 

diseases that were concurrently listed as findings. While correlations between concepts 

may have been statistically significant, future work must determine better methods or 

criteria to separate ―true drug-finding pairs‖ from those due to known confounders (e.g., 

drug co-occurs often with a comorbid condition or related findings for the actual 

indicated condition). 

Among the many true and false drug-finding pairs in our results, we identified 

serious AEs associated with rofecoxib, rosiglitazone, risperidone, and the statins that 

were only discovered during post-marketing surveillance at a time years after each drug 

had been on the market.  Our results illustrate that drug-AE relationships are present in 

H&P data, if only one can find exact and reliable methods to identify them – and to verify 

such correlations through subsequent independent studies.   

We have extended the NLP-base approach use by Wang, et al., (4) on Discharge 

Summaries to show that NLP processing can identify potentially useful drug-finding 

relationships in H&P notes. We performed our analyses using a much larger number of 
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notes than Wang, et al.  Using H&P notes instead of discharge summaries enabled us to 

consider a more complete range of finding concepts as potential AEs because the H&Ps 

done at admission focus on presenting findings in detail, whereas discharge summaries 

tend to focus on the clinical course of an inpatient stay, where findings play a less critical 

role than therapies and outcomes.  Our mining of H&P finding concepts, however, also 

drastically increased the number of drug-finding pairs that derived from comorbidities, 

and potentially reduced the precision of our approach.  Additionally, by incorporating the 

retrieval of drug and finding concepts only from particular sections in the notes (5) and 

using a combined knowledge base to automatically identify adverse effects and 

indications, similar to (59), we developed the basic principles behind a method that may 

eventually automatically identify correlations and require little manual review to generate 

potential drug-AE hypotheses. 

 

Limitations 

Due to the exploratory nature of our study, the biggest limitation of our project 

was its lack of formal methods to make definitive conclusions about discovered drug-

finding pair correlations during the search for novel AEs.  As discussed above, 

confounding related to comorbidities was a significant source of noise in the data.  We 

address possible methods to reduce or eliminate such confounding in the Future Work 

section below. We further understand that indicating a potential correlation is not the 

same as showing causation. Any statistical discovery approach requires subsequent 

independent confirmation of ―interesting‖ results. Nevertheless, our exploratory analysis 
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has been successful in indicating the potential of approach to identify drug-AE 

hypotheses from EMR-derived correlation data. 

Another limitation of our study involved the ambiguous nature of the finding 

(diseases and manifestations of diseases) concepts.  There are often multiple UMLS CUIs 

with very similar meanings that appeared in the H&Ps.  For example, the concepts 

―asthma‖ and ―exacerbation of asthma‖ are obviously related, but they were treated as 

completely separate concepts in both the DEB and in terms of the co-occurrence 

calculations.  We describe a potential approach to this problem below in ―Future Work‖. 

Finally, an important limitation of our project involved the inexact nature of NLP 

processing of unconstrained text documents.  While NLP approaches allowed us to 

successfully extract discrete and computable data from clinical text, it limits our 

conclusions to what NLP tools can ―discover‖. While KMCI is very effective at correctly 

identifying UMLS finding concepts in clinical notes, there are occasional 

misidentifications.  For example, NLP systems can recognize most forms of negation, but 

not all.  When we noticed that the concept ―Exposure to HIV infection‖ (C0262514) 

seemed to occur too often in our dataset, we examined the KMCI output files.  Often, 

KMCI would identify the concept in H&Ps that state ―HIV exposure negative‖ or ―HIV: 

negative.‖ No NLP system is perfect, and such limitations must be recognized. An NLP 

system typically requires pre-specification of ―target concepts‖ to identify; it is likely that 

a more constrained set of potential findings than that specified in the UMLS might have 

produced different results. 
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CHAPTER V 

 

CONCLUSION 

 

 The goal of this project was to explore the feasibility of adverse drug effect 

discovery from the data mining of clinical notes.  We have shown that a large corpus of 

H&Ps has embedded signals that are potentially useful for AE discovery. Further 

statistical and biomedical research must conclusively prove any adverse effects 

discovered through any retrospective correlation analysis. One cannot draw conclusions 

solely from disproportionality analysis or other methods; definitive proof of an adverse 

effect can only come from a convergence of experimental, clinical, and statistical 

research (33). Our approach, while promising, cannot be used ―as is‖ to detect new 

adverse effects.  

The project has also demonstrated the potential value of using H&P notes as a 

source of medication and finding-related information.  This extends more than a decade 

of previous NLP work involving analysis of clinical documents. Unlike spontaneous 

reporting systems (SRS), EHR data results in better estimates for both the ―numerator‖ 

and ―denominator.‖  Additionally, one can compare associated findings from multiple 

medications.  These both serve to compliment traditional randomized controlled trials and 

observational studies to provide large sample sizes. 

We have learned several lessons during our project.  First, identifying known 

correlations to remove them from consideration as novel AEs, such as indications and 

known AEs, is a difficult task.  Second, while using NLP and UMLS finding concepts is 
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an effective way to discretize data in natural language text, many of the concepts are too 

specific, too broad, or too vague.  Additionally, there are often too many concepts that 

refer to the same condition (―diabetes,‖ ―diabetes mellitus,‖ ―diabetes mellitus, non-

insulin-dependent,‖ etc.).  Third, false signals appear frequently since a drug often co-

occurs not only with the finding that it is used to treat, but also with other findings that 

co-occur with the finding in questions (for example, insulin treats diabetes, but co-occurs 

frequently with heart disease since heart disease often accompanies diabetes).  Fourth, 

using a hard cutoff for significance based upon chi-square and odds ratios causes many 

potentially meaningless correlations to appear statistically significant; other measures of 

meaningful significance should be explored.  We discuss possible ways to address these 

problems in the following section. 

 

Future Work 

 

Known Correlations 

For novel adverse effect signals to better stand out, it would be useful to be able 

to better identify known reasons for drug-finding correlation.  We believe the addition of 

more knowledge sources would improve the DEB.  Sources such as the AERS and 

SemMed, as used by (58), could enhance the accuracy of DEB.  Additionally, a certainty 

metric, based upon the number of sources from which a drug-finding pair has been 

extracted, would also improve the usefulness of tagging known correlations.  The greatest 

improvement in the DEB, however, would come from the development of a method to 

generalize and combine finding concepts (discussed below). 
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Finding Concept Generalization 

To reduce the number of confounding concepts, it would be useful to develop a 

method for generalizing finding concepts similar to how we mapped drug concepts to 

their generic ingredient.  This would both reduce the number of distinct finding concepts 

and appropriately increase the counts for remaining relevant finding concepts.  Finding 

concepts, however, are more complex than drug concepts.  The symptoms and findings 

associated with a disease are often variable, and could be attributed to more than one 

disease concept or even to the drug as an adverse effect.  Methods for how and when to 

combine symptoms must be explored.  We plan to explore the use of the UMLS concept 

hierarchy as a possible source determining related CUIs and condensing them into a 

single CUI.  We are considering the development of expert-derived finding synonyms to 

condense finding concepts as well. 

 

Comorbidities 

Co-morbid conditions, another major source of confounding, must also be 

addressed.  Knowledge-based tools such as QMR include information on common co-

morbidities for given diseases, as well as symptoms and findings that occur with these 

diseases.  We believe this information can be applied to reduce confounding or identify 

inappropriate correlations, such as those between insulin and heart disease.  Additionally, 

data mining techniques, such as frequent itemset mining of symptoms and diseases, might 

be useful in determining which symptoms are likely due to which diseases, similar to 

(52). 
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Comparing Drug-Finding pairs of similar-indication drugs to identify AEs 

One potential method to overcome confounding using the current results (or 

similar results) might be to compare the findings associated with a given drug to the 

findings associated with a different drug (or drugs) with similar indications and similar 

target population.  By identifying which findings occur with all of the drugs in question, 

one should be able to distinguish indications or common comorbid conditions of the 

target patient population.  If certain findings occur more often with one drug than the 

others, that finding is possibly due to the drug in questions – and is a potential adverse 

effect. We believe this technique has the potential to compensate for confounding from 

comorbid conditions, but it needs to be both formalized and automated. 

 

Statistical Significance of Drug-Finding Pairs 

Finally, there were often too many pairs deemed significant for a given drugs.  

We believe it is necessary to explore the use of other statistics, or a combination of 

statistics and other methods, to improve the recognition of meaningful drug-finding pairs. 

The chi-square test, while appropriate for this type of data, often rejects the null 

hypothesis (no association between drug and finding) too often for very large samples.  

Significance cutoffs identified with volume tests developed by (97) and used in (98) have 

been shown to be more correct when dealing with clinical data.  Other data mining 

techniques and standard data mining significance measures, such as cosine similarity, lift, 

and support, should be further explored on our H&P co-occurrence data, as well (99). 
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Improved NLP 

Finally, we believe that improved NLP could also enhance the success of this 

approach towards the discovery of novel adverse effects.  We used NLP to identify 

known AEs and indications from SPLs for the construction of DEB, and to identify 

UMLS concepts present in H&P notes to calculate the co-occurrence.  Improved NLP 

could enhance the accuracy of this data.  We would like to further NLP tools that take 

advantage of the structure of clinical notes to help disambiguate concepts.  For example, 

if the word ―rub‖ is mentioned in the H&P section ―Cardiovascular Exam,‖ it is likely 

referring to a friction rub of the heart; if the same word is mentioned in the ―Orthopedic 

Exam‖ section, it is likely referring to a joint rub.  Improved concept generalization 

(above) could also be used to help develop special vocabularies for NLP tools that can 

facilitate the generalization similar finding concepts. 
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