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CHAPTER I

AUCTIONS WITH SELECTIVE ENTRY

Entry is a quantitatively and qualitatively important aspect of many real-world auc-

tion processes, but theoretical analysis of auctions with entry has to date been limited

to a few notable but restrictive special cases. Two paradigmatic examples in the liter-

ature are Samuelson [1985] (henceforth S), who proposes a simultaneous entry model

in which potential bidders know their valuations ex ante but must incur a �xed cost to

submit bids, and Levin and Smith [1994] (henceforth LS), who consider simultaneous

entry under the alternative assumption that bidders learn their valuations after incur-

ring the �xed cost. A common theme in this literature is that di�erent assumptions

on entry can produce very di�erent practical and policy conclusions. For example,

under the LS model a revenue-maximizing seller will set a zero reserve price and max-

imize social welfare, whereas in the S model revenue maximization requires a binding,

socially ine�cient reserve price. Hence while the existing literature contains many

important insights on auctions with entry, it permits few overarching theoretical and

policy conclusions.

This paper seeks to generalize existing work on auctions with entry using a

framework we call the A�liated Signal (AS) model. First suggested by Ye [2007], the

AS model assumes that potential bidders receive imperfect signals of their valuations

prior to entry, make simultaneous entry decisions based on these signals, then learn

their valuations and submit bids. This structure imposes minimal a priori restrictions

on pre-entry information, requiring only that signals and values be a�liated in the

sense of Milgrom and Weber [1982] (so that higher signals are �good news�). It also

includes both the S and LS models as polar cases: the former when signals and values
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are perfectly correlated, and the latter when signals and values are independent. The

AS model thus represents an ideal basis for a general theoretical analysis of auctions

with entry.

Building on the general AS entry model, the paper makes the following speci�c

contributions. We consider IPV auction environments with AS entry, focusing on a

class of mechanisms we call RS auctions (after Riley and Samuelson [1981]).1 For

this class of auctions, we establish the following four results. First, we characterize

equilibrium entry and bidding behavior induced by any auction in the class considered.

Second, building on this result, we establish a generalized revenue equivalence theorem

applicable to auctions with general AS entry. Third, we characterize e�ciency in

auctions with AS entry, and show that the seller's optimal auction is ine�cient in

general; that is, that Levin and Smith [1994]'s �nding that revenue maximization

implies e�ciency applies only to the polar case of LS entry. Finally, we explore

revenue-maximizing reservation prices and entry fees directly, and establish that these

will be positive in the �regular case� where potential bidders prefer lower costs of entry.

These �ndings have potentially important implications for welfare and policy analysis

in auctions with entry, and to our knowledge none have been established at the level

of generality we consider.

This study is related to a large and growing literature on the theory and empirics

of auctions with entry. The empirical branch of this literature includes studies estab-

lishing the importance of entry in a wide range of applications: Bajari and Hortacsu

[2003] in online auctions, Hendricks et al. [2003] in outer continental shelf �wildcat�

auctions, Li and Zheng [2009] and Krasnokutskaya and Seim [2009] in highway con-

struction procurement auctions, and Li and Zheng [2012], Li and Zhang [2010a], Athey

et al. [2011] and others in timber auctions, to mention just a few. The theoretical

literature also contains a number of notable contributions not yet mentioned. McAfee

1Roughly, mechanisms such that only the high bidder has a positive probability of award, and
the probability of award depends only on the highest bid.
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and McMillan [1987] explore a model of sequential entry where entry is interpreted as

value discovery; this value-discovery paradigm has been adopted by much of the sub-

sequent entry literature, though these studies typically consider simultaneous rather

than sequential entry. More recent work by Lu [2008, 2009a,b, 2010] and Moreno and

Wooders [2011] extends the basic LS entry model to incorporate heterogeneous en-

try costs; Lu characterizes equilibrium, e�ciency, and optimal auction design in this

extended model, while Moreno and Wooders note that the presence of private entry

costs overturns core e�ciency results in Levin and Smith [1994]. Finally, Marmer

et al. [2007], Gentry and Li [2012], and Roberts and Sweeting [2010b,a] explore spec-

i�cation testing, nonparametric identi�cation, and an empirical application of the

general AS model respectively. This study provides a theoretical complement to this

recent application-oriented work.

The rest of the paper is organized as follows. Section 1 outlines the structure of

the AS model, and Section 2 characterizes symmetric equilibrium entry and bidding

behavior under any RS auction rules. Section 3 establishes revenue equivalence in the

class of auctions considered. Section 4 establishes that the seller's optimal auction will

in general be ine�cient, and Section 5 explores revenue-maximizing policy directly.

Finally, Section 6 concludes.

I.1 The AS model

We consider allocation of a single indivisible good among N potential bidders via a

two-stage auction mechanism M , where bidders have independent private values for

the good being sold. Timing of the auction game is as follows. First, in Stage 1,

each potential bidder i observes a private signal si of her (unknown) private value

vi, and all potential bidders simultaneously choose whether to enter the auction.

Each entering bidder must pay an entry cost c; this may be interpreted as the net

of opportunity, learning, and bid preparation costs. Then, in Stage 2, the n bidders
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who chose to enter in Stage 1 learn their true values vi and submit bids for the object

being sold. Finally, auction outcomes are determined according to the rules of the

mechanism M , which are common knowledge to all participants. Consistent with

institutional features common to many o�cial procurement lettings, we assume that

bidders observe the number of potential bidders N prior to entry, but do not observe

the number of entrants n prior to bidding.2

We frame our analysis in terms of a general class of mechanisms we call RS

auctions (after the work of Riley and Samuelson [1981]):

De�nition I.1. A RS auction is any bidding mechanism having the following prop-

erties:

1. Mechanism rules are anonymous.

2. If award is made, it is to the bidder submitting the highest bid.

3. The probability of award depends only on the highest bid.

4. For any distribution of rival values, there exists a unique symmetric bidding

equilibrium such that bids submitted are strictly increasing in bidder values.

The class of RS auctions includes all four standard auctions (�rst-price, Vickery,

English ascending, and Dutch), plus many less common auction types. It therefore

represents a natural focal point for our current investigation.

We formalize the remaining assumptions of the AS entry model as follows.

Assumption 1. The seller and all potential bidders are risk-neutral.

Assumption 2. All bidders are ex ante symmetric, and draw value-signal pairs

(V, S) independently from a continuous joint distribution f(v, s) satisfying the fol-

lowing properties:

2Allowing bidders to observe n prior to bidding would slightly change the details of the derivation,
but would not substantially alter any of our core results.
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(i) The marginal density of second-stage values (f(V )) has positive support

on a bounded interval [v, v̄].

(ii) WLOG, we normalize �rst-stage signals S to have a uniform marginal

distribution on [0, 1]: Si ∼ U [0, 1].

(iii) For each bidder i, the random variablesVi and Si are a�liated in the sense

of Milgrom and Weber [1982].

Assumption 3. Information structure:

(i) Each bidder i observes own signal si prior to entry, but does not learn

own value vi until after entry.

(ii) The number of potential bidders N is known to all participants, but the

number of entrants n is not revealed until the auction concludes.

Assumption 4. The second-stage auction mechanism M and all other model funda-

mentals are common knowledge.

Assumption 4 (common knowledge) is entirely standard, Assumption 1 (risk

neutrality) is strong but typical in the auction literature, and the signal normaliza-

tion 2(ii) is feasible since any monotone transformation of a signal preserves informa-

tion. The a�liation assumption 2(iii) formalizes the sense in which a higher signal is

�good news,� but otherwise imposes minimal restrictions on the nature of selection;

in particular, it nests both the S model (perfect dependence) and the LS model (in-

dependence) as polar cases. Leaving n unobserved prior to bidding di�ers slightly

from the corresponding assumption in Levin and Smith [1994], but is motivated by

institutional features typical of many real-world auctions and in any event is entirely

incidental to our core results.3

3For instance, in sealed-bid procurement auctions, the auctioneer typically does not disclose
information on bids received until announcing auction results. The form of the equilibrium pro�t
function would be slightly di�erent if n were observed prior to bidding, but substantive features of
the auction system would be otherwise unchanged.

5



Finally, as usual, we frame our theoretical analysis in terms of direct mecha-

nisms; by the Revelation Principle, any mechanism has an equivalent direct mecha-

nism, so this is without loss of generality (see Krishna [2009]). Let the award rule

αM(y) denote the probability RS auction M results in a sale when the highest re-

ported value among entrants is y; by de�nition, RS auctions can award only to the

highest bidder, so the performance of any RS auctionM can be fully characterized by

its award rule αM(·). For current purposes, we add three further regularity conditions

on the mechanism M :

Assumption 5. The second-stage mechanism M is an RS auction with a direct

equivalent such that:

(i) The award rule αM(y) is weakly increasing in the maximum entrant value

y.

(ii) A low-type bidder (entrant with value v) weakly prefers less Stage 2 com-

petition.

(iii) WLOG, the mechanism M is speci�ed such that when N − 1 potential

rivals report values z−i ∈ [0, v̄]N−1, the payment of a potential bidder

reporting value zi ≤ v takes the form

p(zi; z−i) = 1[n = 1]

{
α(zi)zi −

ˆ zi

0

α(y)dy

}
+ ρ(z−i), (I.1)

where ρ(z−i) is a symmetric function and reports z−i incorporate the pos-

sibility of non-entry.

Conditions (i) and (ii) are standard and satis�ed by almost all mechanisms used

in practice. Condition (iii) may look restrictive at �rst glance, but is actually without

loss of generality since it applies only to out-of-equilibrium reports zi ≤ v . This latter
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fact is important in ensuring the generality of our results, so we state it formally as

a lemma:

Lemma I.1. Any RS auction satisfying Assumptions 1-5(ii) is payo�- and performance-

equivalent to some RS auction also satisfying Assumption 5(iii).

Finally, note that Assumption 5 intuitively nests all leading special cases of

interest. We illustrate this fact via two simple examples:

Example I.1. Consider a �rst-price auction with a reserve price r ≤ v . This structure

can be nested under Assumption 5 by setting α(y) = 1[y ≥ r] and ρ(z−i) = 0 for all

z−i.

Example I.2. Consider a second-price auction with a secret reserve price r ∼ Fr(·)

and an entry fee e > 0. This structure can be nested under Assumption 5 by setting

α(y) = Fr(y) and ρ(z−i) = 0 for all z−i.

I.2 Equilibrium

Since bidders are ex ante symmetric by hypothesis, we focus on the class of symmetric,

subgame perfect, pure strategy Bayesian Nash equilibria. An equilibrium of this form

involves two components: a Stage 1 entry set S∗ such that �enter if si ∈ S∗� is

optimal given equilibrium continuation play, and a Stage 2 bidding function β(v;S)

(monotonic in its �rst argument) such that an entrant with value vi optimally submits

bid β(vi;S) in response to N − 1 rivals who enter according to S and bid according

to β(·;S). We restrict attention to RS auctions, so by de�nition β(·;S) exists and is

unique for any nonempty entry set S.

Stage 2: Bidding equilibrium

Temporarily suppose that the Stage 1 entry set S can be characterized by a symmetric

entry threshold s̄ ∈ [0, 1] such that bidder i chooses to enter if and only if si ≥ s̄; we
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subsequently establish that any Stage 1 equilibrium must take this form. Then the

(selected) distribution of values among entrants at s̄ is given by

F ∗(v; s̄) ≡ 1

1− s̄

ˆ 1

s̄

F (v|t) dt. (I.2)

By hypothesis, the equilibrium bid function β(·; s̄) is monotonic in its �rst argument.

An entrant with value v will thus win against potential rival j in one of two events:

either j does not enter, or j enters but draws a value less than v. Let F ∗w(v; s̄) denote

the joint probability of these events:

F ∗w(v; s̄) = s̄+ (1− s̄) · F ∗(v; s̄).

We will frequently reference stochastic ordering of the distributions F ∗(v; s) and

F ∗w(v; s) in s, so we formally establish these orderings via the following lemma.

Lemma I.2. For any (v; s) and any s′ ≥ s, the ex-post value distribution F ∗(v; ·)

satis�es

F ∗(v; s) ≥ F ∗(v; s′)

and the ex-post win probability distribution F ∗w(v; ·) satis�es

F ∗w(v; s) ≤ F ∗w(v; s′).

In other words, F ∗(·; s′) �rst-order stochastically dominates F ∗(·; s), and F ∗w(·; s) �rst-

order stochastically dominates F ∗w(·; s′).

The form of the equilibrium bidding function β(·; s̄) will obviously depend on the

rules of the mechanism M . However, via standard arguments in mechanism design,

we can characterize expected Stage 2 pro�t in any RS auction as follows.
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Proposition I.1. In any symmetric Stage 2 equilibrium of any RS mechanism, the

expected Stage 2 pro�t of an entrant with value v facing N − 1 potential rivals who

enter according to threshold s̄ is given by

π(v; s̄) =

ˆ v

0

αM(y) · F ∗w(y; s̄)N−1dy − E[ρ|N, s̄], (I.3)

where the low-type payment function ρ(·) is de�ned as in Assumption 5 and

E[ρ|N, s̄] ≡
ˆ
· · ·
ˆ
ρ(z1, ..., zN−1)dF ∗w(z1; s̄) · · · dF ∗w(zN−1; s̄). (I.4)

Stage 1: Entry equilibrium

Given this symmetric Stage 2 equilibrium pro�t function π(v; s̄), we next characterize

the symmetric Stage 1 entry threshold s̄. Toward this end, consider the Stage 1

decision faced by potential bidder i with signal si facing N − 1 potential rivals who

enter according to s̄. Bidder i's ex ante expected Stage 2 pro�t is given by

Π(si; s̄) = Ev[π(v; s̄)|si]

=

ˆ v̄

0

f(v|si)
ˆ v

0

α(y) · F ∗w(y; s̄)N−1dy − E[ρ|N, s̄]

=

ˆ v̄

0

α(y) · [1− F (y|si)] · F ∗w(y; s̄)N−1dy − E[ρ|N, s̄],

where the second line follows from Proposition I.1 and the third follows from inte-

gration by parts. The key properties of this ex ante pro�t function are stated in the

following lemma.

Lemma I.3. Ex ante expected Stage 2 pro�t for a bidder with Stage 1 signal si facing

N − 1 rivals entering according to s̄ under RS auction M is

Π(si; s̄) =

ˆ v̄

0

α(y) · [1− F (y|si)] · F ∗w(y; s̄)N−1dy − E[ρ|N, s̄]. (I.5)
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This function is weakly increasing in si for all (s̄, N), strictly decreasing in s̄ for all

(si, N), and strictly decreasing in N for all si and any s̄ < 1.

Bidder i will choose to enter whenever expected net pro�t from entry is positive,

i.e. whenever

Π(si; s̄) ≥ c. (I.6)

This fact in turn implies a breakeven condition which must hold at any candidate

interior threshold s̄ ∈ (0, 1):

Π(s̄; s̄) ≡ c

that is, a bidder drawing signal Si = s̄ must be indi�erent to entry when facing N −1

potential rivals who also enter according to s̄.

Finally, note that that any Stage 1 equilibrium can be represented in threshold

form. To see this, �rst generalize the expected Stage 2 pro�t function in Equation I.5

to an arbitrary entry set S:

Π(si;S) =

ˆ v̄

0

α(y) · [1− F (y|si)] · F ∗w(y;S)N−1dy − E[ρ|N,S].

A�liation implies that F (v|s) is decreasing in s for all v, so Π(si;S) will be (weakly)

increasing in its �rst argument. Hence, if S is an equilibrium, we must have Π(s, S) ≥

Π(min(S);S) ≥ c for every s ≥ min(S). If either inequality is strict, it will be optimal

for a bidder with signal s to enter, so we must have s ∈ S∗. Otherwise, we can

replace min(S) with s′ to obtain a new entry set S ′ which is payo�- and performance-

equivalent to S, and iterating this argument will eventually produce an equivalent

threshold set.

We combine these arguments to establish Proposition I.2, which formally char-

acterizes Stage 1 equilibrium.
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Proposition I.2. A symmetric entry equilibrium in the AS model is characterized

by a signal threshold s̄ such that only bidders with si ≥ s̄ choose to enter. This signal

threshold is uniquely determined as follows.

• If Π(0; 0) > c, then s̄ = 0 and all potential bidders always enter.

• If Π(1; 1) < c, then s̄ = 0 and no potential bidder ever enters.

• Otherwise, the signal threshold s̄ satis�es the breakeven condition

Π(s̄; s̄) ≡ c, (I.7)

where Π(si; s̄) is de�ned as in Lemma I.3.

Taken together, Propositions I.1 and I.2 characterize the unique symmetric

Bayesian Nash equilibrium of the AS model under any Stage 2 RS auction.

I.3 Revenue equivalence

By de�nition, ex ante expected seller revenue in mechanism M under entry structure

(s,N) is the di�erence between total social welfare and surplus accruing to bidders

at (s,N):

RM(s;N) = W ∗
M(s;N)−NΠ∗M(s;N),

where W ∗
M(s;N) is expected social welfare generated by mechanism M under entry

structure (s,N), and Π∗M(s;N) is expected ex ante equilibrium pro�t for any given

potential bidder at this equilibrium.

First consider social welfare W ∗
M(s;N). Let Yk:N be the kth highest realized

value among N potential entrants, where bidder i's realized value is de�ned as vi if

bidder i enters and 0 otherwise. By de�nition, RS auction M awards either to the
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high bidder or not at all, with the probability of award conditional on Y1:N determined

by the award rule αM(·). Mechanism M thus generates expected social welfare

W ∗
M(s,N) = E [Y1:NαM(Y1:N) + v0[1− αM(Y1:N)]|s,N ]−N(1− s)c

=

ˆ
[yαM(y) + v0[1− αM(y)]] dG∗1:N(y; s,N)−N(1− s)c,

where G∗1:N(y; s,N) ≡ F ∗w(y; s)N denotes the distribution of Y1:N given (s,N). Note

that this function depends on M only through the award rule αM(·).

Now consider equilibrium pro�t Π∗M(s̄, N). By Proposition I.1, equilibrium

Stage 2 pro�t for an entrant with value vi is given by

πM(v; s,N) =

ˆ v

0

αM(y) · F ∗w(y; s)dy − ρM ,

where for ease of exposition we assume ρ(·) = ρM .4 Π∗M(s,N) is the expectation of

this function with respect to the distribution F ∗w(v; s) less expected entry costs at

(s,N); that is, the ex ante expected pro�t of an arbitrary potential entrant:

Π∗M(s,N) =

ˆ v̄

0

ˆ v

0

αM(y) · F ∗w(y; s)dy dF ∗w(v; s)− (1− s)(ρM + c).

Again, note that this function depends on Π∗M(s,N) only through αM(·) and ρM .

Finally, by Proposition I.2, any two mechanisms M1 and M2 having the same

award rule and low-type payo� must induce the same entry behavior: ρ1 = ρ2 and

α1(y) = α2(y) for all y implies s̄1 = s̄2 in equilibrium. Revenue equivalence of M1

and M2 then follows immediately from the de�nitions of W ∗
M(·) and Π∗M(·) above.

But ρ1 = ρ2 and α1(y) = α2(y) are exactly the conditions of the standard �xed-n

equivalence theorem. This in turn establishes our core equivalence result:

4The argument can easily be extended to general ρ(·).
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Proposition I.3 (Revenue Equivalence). Suppose RS mechanisms M1 and M2 are

revenue-equivalent for �xed n. Then M1 and M2 are also revenue-equivalent under

endogenous and selective AS entry.

We thus extend the classic equivalence results of Riley and Samuelson [1981]

and Levin and Smith [1994] to the case of endogenous and selective AS entry.

I.4 Revenue maximization and e�ciency

In this section we study the relationship between revenue maximization and social

e�ciency in the class of RS auctions with AS entry. This investigation is motivated

by a key result of Levin and Smith [1994]: when bidders enter without selection,

a revenue-maximizing seller will also maximize social welfare. We show that this

conclusion applies only in the polar LS case: in the broader AS model, the seller

will generally prefer an ine�cient mechanism. For current purposes, we focus on two

policy instruments: a public reserve price r and an entry fee e. For simplicity, we also

normalize v0 = 0.

First consider social welfare at an arbitrary entry threshold s. Specializing the

arguments in the last section, we obtain

W ∗
M(s) =

ˆ v̄

r

ydG∗1:N(y; s,N)−N(1− s)c. (I.8)

A binding reserve price r > v is obviously ine�cient, and a nonbinding reserve price

r ∈ (0, v ] can always be o�set by an appropriate entry fee. Hence we can set r = 0

WLOG, and characterize the e�cient auction via only choice of e.

Rearranging Equation I.8 via integration by parts and substituting using the

de�nition of G∗1:N(y; s,N) produces the following equivalent representation for social
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welfare at threshold s:

W ∗
M(s) = v̄ −

ˆ v̄

0

F ∗w(y; s)Ndy −N(1− s)c. (I.9)

It can be shown that this function is concave in s. Social welfare is thus maximized

at a threshold ŝ satisfying the necessary and su�cient �rst-order condition

−N
ˆ v̄

0

F ∗w(y; ŝ)N−1[1− F (y|ŝ)] +Nc ≡ 0. (I.10)

Let s̄e be the entry threshold corresponding to entry fee e. By Proposition I.2, s̄e

satis�es ˆ v̄

0

F ∗w(y; s̄e)
N−1[1− F (y|s̄e)] ≡ c+ e.

Setting e = 0 thus ensures
´ v̄

0
F ∗w(y; s̄0)N−1[1− F (y|s̄0)] ≡ c, which by Equation I.10

implies s̄0 = ŝ. This observation translates into the following characterization of the

socially optimal mechanism:

Proposition I.4 (E�ciency). Social welfare is maximized when the seller sets no

reserve price or entry fee: setting r̂ = 0 and ê = 0 produces socially optimal entry.

Now let m = (e, r) be the seller's policy choice, and consider the seller's revenue

maximization problem. By de�nition, seller revenue is the di�erence between social

surplus and expected pro�ts among potential bidders, which with slight abuse of

notation we write as follows:

R∗(m) = W ∗(m)− Π∗(m).

By construction, the seller's optimal policy m∗ satis�es

∂R∗(m∗)

∂m
≡ 0.
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Meanwhile, the social optimum m̂ satis�es

∂S∗(m̂)

∂m
=
∂R∗(m̂)

∂m
+
∂Π∗(m̂)

∂m
≡ 0,

which in turn implies

∂R∗(m̂)

∂m
= −∂Π∗(m̂)

∂m
. (I.11)

Since bidders earn positive expected pro�ts when entry is selective, the RHS of Equa-

tion (I.11) will not be zero in general. Hence the seller's optimal policy need not

correspond to the social optimum. We state this result formally as a lemma:

Lemma I.4. In general, a revenue-maximizing seller will not maximize social welfare.

As noted above, this result contrasts with the corresponding �nding in Levin

and Smith [1994]. Intuitively, when potential bidders have no private information,

entry will involve mixed strategies and potential bidders will compete away all pro�ts.

Hence Π∗(m) will be identically zero for all m, so R∗(m) ≡ W ∗(m) and a revenue-

maximizing seller will maximize total surplus. In contrast, when entry is selective,

Π∗(m) > 0 in general, and a revenue-maximizing seller will induce distortion to

capture part of this additional surplus. The welfare results of Levin and Smith [1994]

thus depend crucially on the particular informational assumptions of the LS model,

and in general do not apply outside that polar case.

I.5 Revenue-maximizing policy

The last section proceeded via negation, �rst characterizing the socially e�cient auc-

tion, then noting that in general a revenue-maximizing seller will not choose this auc-

tion. This section proceeds more positively, �rst characterizing revenue-maximizing

choices of the seller's policy variables e and r, then deriving conditions under which

these will be positive.
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Seller's optimal entry fee

Set r = 0, and consider second-price auctions without loss of generality. Proposition

I.2 implies a one-to-one correspondence between the entry fee e and the equilibrium

entry threshold s, so we can derive optimal policy in terms of either. We thus consider

maximization of expected revenue corresponding to threshold s:

R∗(s) =

ˆ v̄

0

y dG∗2:N(y; s) +N(1− s) · e(s),

where e(s) ≡
´ v̄

0
[1 − F (y|s)]F ∗w(y; s)N−1dy − c is the entry fee required to produce

threshold s as an equilibrium. Integrating by parts, substituting for e(s), and rear-

ranging then produces the following expression for seller revenue:

R∗(s) =

{
v̄ −
ˆ v̄

0
F ∗w(y; s)Ndy −N(1− s)c

}
−
{
N(1− s)

ˆ v̄

0
[F (y|s)− F ∗(y; s)]F ∗w(y; s)N−1dy

}
,

where the �rst term gives total surplus (see Equation (I.9)) and the second term gives

total pro�t among potential bidders. In the �regular case� where potential bidders

strictly prefer lower total entry costs, the second term will be decreasing in s. Com-

bining these observations with a standard FOC yields the following characterization

of the seller's optimal entry fee e∗:

Proposition I.5 (Optimal entry fee). Suppose the seller's only policy variable is

e. Then the seller will choose e∗ to induce an equilibrium threshold s∗ satisfying

R∗s(s
∗) = 0, where:

R∗s(s) ≡ c−
ˆ v̄

0
[1− F (y|s)]F ∗w(y; s)N−1dy

− (1− s)
ˆ v̄

0
Fs(y|s) · F ∗w(y; s)N−1dy

− (1− s)
ˆ v̄

0
[F (y|s)− F ∗(y; s)] · (N − 1)F ∗w(y; s)N−2[1− F (y|s)]dy (I.12)

The �rst line of R∗s(s) is negative, zero, or positive as s R ŝ, the second line is always
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positive, and the third line is always negative. Hence R∗s(s) may be either positive or

negative at ŝ, but will not be zero in general.

If potential bidders strictly prefer lower total cost of entry, the sum of the last

two lines will be positive and a revenue-maximizing seller will choose e∗ > 0.

Finally, for completeness, we specialize Proposition I.5 to the S and LS polar

cases.

Corollary I.1 (Optimal entry fee, LS case). Suppose LS entry obtains (bidders have

no prior information on own values). Then the seller optimally choosese∗ = 0 and

induces e�cient entry.

Proof. Under LS entry, bidders cannot select into participation, so F (y|s) ≡ F ∗(y; s) ≡

F (y) and Fs(y|s) ≡ 0. Condition (I.12) then reduces to

0 ≡
ˆ v̄

0

[1− F (y)]F ∗w(y; s∗)N−1dy − c,

which we know from above is uniquely satis�ed at the social optimum e∗ = 0.

Corollary I.2 (Optimal entry fee, S case). Suppose S entry obtains (bidders know

values exactly prior to entry). Then the seller optimally induces an entry threshold

s∗ such that R∗y(F
−1
y (s∗)) = 0, where

R∗y(y) ≡ N [1− F (y)]F (y)N−1 −N [yF (y)N−1 − c]f(y).

Further, R∗y(ŷ) > 0 at the social optimum ŷ, so the seller always prefers less than

e�cient entry.

Proof. Follows by setting F ∗(y; s̄) = [F (y) − s̄]/[1 − s̄], F (y|s̄) = 1[y ≥ F−1
y (s̄)],

Fs(y|s̄) equal to the Dirac delta function δ(y−F−1
y (s̄)), and s̄ ≡ F (ȳ) in Proposition

I.5. A direct proof is given in the appendix.
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Seller's optimal reserve price

Now set e = 0 and consider the seller's choice of r in a second-price auction. Seller

revenue corresponding to reserve price r ≥ 0 at entry threshold s is given by:

R(r, s) = v̄ −
ˆ v̄

r

G∗2:N(y; s)dy − rF ∗w(r; s)N−1.

As above, we frame the seller's problem in terms of choosing an entry threshold s

to maximize R∗(s) ≡ R(r(s), s), where r(s) is the reserve price inducing equilibrium

entry s. In this case, R(r, s) is non-separable and r(s) is de�ned implicitly, so while

a formal characterization of the solution is feasible, it is not particularly helpful. We

thus focus instead on conditions under which the seller will prefer a positive reserve

price. Toward this end, we take appropriate partial derivatives, evaluate at the social

optimum ŝ, and simplify to obtain

R∗s(ŝ) ∝ −
ˆ v̄

0

Fs(y|ŝ) · F ∗w(y; ŝ)N−1dy

−(N − 1)

ˆ v̄

0

[F (y|ŝ)− F ∗(y; ŝ)]F ∗w(y; ŝ)N−2[1− F (y|ŝ)]dy.

The RHS of this expression is identical to the last two terms of Equation (I.12) in

Proposition I.5. Gains from setting a positive reserve price are therefore feasible under

exactly the same condition as gains from a positive entry fee; namely, in the �regular

case� when potential bidders strictly prefer lower total entry costs.

Proposition I.6 (Seller's optimal reserve price). Suppose the seller's only policy

variable is r. Then the seller will set a positive reserve price if

−
ˆ v̄

0

Fs(y|ŝ) · F ∗w(y; ŝ)N−1dy > (N − 1)

ˆ v̄

0

[F (y|ŝ)− F ∗(y; ŝ)]F ∗w(y; ŝ)N−2[1− F (y|s)]dy.

If potential bidders prefer lower total entry costs, this condition will be satis�ed and

the seller will optimally set r∗ > 0.
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Finally, we specialize Proposition I.6 to the polar cases of S and LS entry.

Corollary I.3 (Optimal reserve price, LS case). Suppose LS entry obtains (bidders

have no prior information on own values). Then the seller optimally chooses r∗ = 0

and induces socially optimal entry.

Proof. Levin and Smith [1994] derive this result from Proposition I.4 plus the fact

that the seller captures all social surplus. It also follows immediately from Proposition

I.6, since Fs(y|s) ≡ 0 and F (y|s) ≡ F ∗(y; s) in the LS case.

Corollary I.4 (Optimal reserve price, S case). Suppose S entry obtains (bidders know

values exactly prior to entry). Then the seller's optimal entry fee r∗ induces entry

threshold s∗ ≡ Fy(y
∗), where y∗ satis�es the �rst-order condition

N [1− F (y∗)]F (y∗)N−1 − r∗F (y∗)N−1f(y∗).

Further, r∗ > 0 and the seller induces less than optimal entry.

Proof. r∗ > 0 follows from Proposition I.6 plus Corollary I.2. The �rst-order condition

is derived in the Appendix.

I.6 Conclusion

This study proposes a general analysis of auctions with entry based on a framework we

call the A�liated-Signal (AS) model. From a theoretical perspective, this framework

has several major advantages: it relaxes existing restrictions on pre-entry information,

permits endogenous and arbitrarily selective entry, and nests several leading special

cases in the literature. The AS model thus represents an ideal basis for a general

theoretical approach to auctions with entry.

Within this general AS entry framework, we focus on the broad class of mecha-

nisms considered by Riley and Samuelson [1981]: roughly, auctions such that award (if
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made) is only to the high bidder. For this class of auctions, we establish the following

four results. First, we characterize equilibrium entry and bidding behavior in the AS

model under general RS auction rules. Second, we extend the classic revenue equiv-

alence results of Riley and Samuelson [1981] and Levin and Smith [1994] to auctions

with endogenous and arbitrarily selective entry. Third, we characterize e�cient entry

in the AS model, and show that a revenue-maximizing seller will in general induce

suboptimal entry decisions. Finally, we explore revenue-maximizing policy in the AS

model, and derive conditions under which the seller will prefer positive reservation

prices and entry fees. While some of these results were available for special cases of

our model, to our knowledge none have been established at the level of generality we

consider.

Our �ndings on e�ciency in particular contrast sharply with those of Levin

and Smith [1994], and this contrast is worth discussing further in the context of the

literature. Levin and Smith [1994] study entry under two key assumptions: that

all potential bidders face the same entry cost, and that potential bidders have no

speci�c information on own values prior to entry. Under these assumptions, entry is

in mixed strategies, the seller captures all auction gains, and the revenue-maximizing

auction is thus by de�nition e�cient. Recent work by Moreno and Wooders [2011]

has established that the �rst assumption is pivotal: if potential bidders have private

entry costs, the revenue-maximizing auction will in general be ine�cient. This study

establishes that the second is also pivotal. Taken together with the work of Moreno

and Wooders [2011], our �ndings thus suggest that the Levin and Smith result is best

considered a �corner case�: coincidence between revenue maximization and e�ciency

is not a general consequence of entry, but rather arises only very special assumptions.

This observation in turn has implications for both policy design and welfare analysis.
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CHAPTER II

IDENTIFICATION IN AUCTIONS WITH SELECTIVE ENTRY

Endogenous participation clearly matters in real-world auction markets. Studies of

auctions in a variety of economic contexts routinely �nd that large fractions of eligible

bidders elect not to submit bids. For example, Hendricks et al. [2003] report an overall

participation rate of less than 25 percent in US Minerals Management Service �wildcat

auctions� held from 1954-1970. Li and Zheng [2009] �nd that only about 28 percent of

planholders in Texas Department of Transportation mowing contracts actually submit

bids. Similar results have been reported for timber auctions (Athey et al. [2011], Li

and Zhang [2010a,b]), in online auction markets (Bajari and Hortacsu [2003]), and

in other procurement settings (Krasnokutskaya and Seim [2009]). Such endogenous

participation can overturn core predictions of classical auction theory: for instance,

Levin and Smith [1994] show that the possibility of entry can lead to a zero optimal

reserve price, and Li and Zheng [2009] show that it can cause a seller to prefer less

potential competition. Hence properly accounting for entry is practically important

in applied research.

The A�liated-Signal (AS) model described in Chapter I represents an ideal

theoretical basis for the structural analysis of auctions with entry: it nests both the

S model (after Samuelson [1985]) and the LS model (after Levin and Smith [1994]) as

polar cases, and permits a wide variety of policy dynamics. This model has recently

begun to receive attention in empirical applications; Marmer et al. [2007] (henceforth

MSX) propose nonparametric tests of the AS, S, and LS models, and Roberts and

Sweeting [2010a,b] apply a parametric variant of the model to data on timber auctions.

Unfortunately, the identi�cation properties of the AS model are not well established,
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and in many applications the model will not be point-identi�ed.1 Consequently,

empirical work on the AS has to date been limited and reliant on strong parametric

assumptions.

This chapter explores identi�cation in the general AS model, building on the

partial identi�cation paradigm pioneered by Manski.2 In particular, we establish

three core identi�cation results for auctions with AS entry. First, using exogenous

variation in entry behavior (induced by variation in, e.g., potential competition or

entry costs), we derive identi�ed bounds on fundamentals under endogenous and

arbitrarily selective entry in a general class of auction mechanisms considered in

Riley and Samuelson [1981]. Second, we translate these bounds on fundamentals into

bounds on seller revenue corresponding to a wide range of counterfactual mechanisms

(again accounting for endogenous and selective entry). Finally, we state conditions

under which all bounds collapse to exact identi�cation. To our knowledge, these are

the �rst such results in the identi�cation literature.

Within the existing literature on partial identi�cation in auctions, our work is

most similar in spirit to that of Haile and Tamer [2003], who derive bounds on fun-

damentals in ascending auctions under weak behavioral assumptions, then translate

their results into bounds on the seller's optimal reserve price. However, we focus on

a very di�erent problem (endogenous entry, not considered in Haile and Tamer) and

relax a di�erent set of assumptions (those governing the nature of selection). An-

other related paper is Tang [2011], who provides bounds for counterfactual revenue

1Nonparametric identi�cation of auction models focuses on using observables such as bids to
identify model primitives such as the distribution of values. This literature was established by Guerre
et al. [2000], who address nonparametric identi�cation and estimation in �rst-price IPV auctions,
and has focused primarily on auction models without entry. See, e.g., Li et al. [2002] for the a�liated
private value (APV) model, Li et al. [2000] for the conditionally independent private information
model, Krasnokutskaya [2009] for an asymmetric auction with unobserved auction heterogeneity,
Hortacsu [2002] for treasury bond auctions, and Athey and Haile [2002] for other standard auction
models/formats. Athey and Haile [2005] provide a comprehensive survey of the literature.

2See Manski [2003] for a summary of the early partial-identi�cation literature; recent additions
to the literature include Manski and Tamer [2002], Magnac and Maurin [2008], Molinari [2008], Fan
and Park [2009], and Tamer [2003], to name only a few.
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in a�liated values (AV) auction settings. Again, however, our work is set in a dif-

ferent context (auctions with selective entry) and focuses on a much di�erent set of

problems. We thus contribute both to the literature on partial identi�cation and to

the literature on the econometrics of auctions with entry.3

The plan of this chapter is as follows. Sections II.1 and II.2 explore identi�cation

of the AS entry model for the general class of RS auctions and present our core partial-

identi�cation results. Section II.3 translates these core partial-identi�cation results

into bounds on seller revenue corresponding to a wide range of counterfactual RS

auctions. Finally, Section II.4 concludes. Detailed proofs and a numerical example

are included as appendices. The model and equilibrium are as de�ned in Chapter I.

II.1 The identi�cation problem

Identi�cation involves recovery of model fundamentals F (v, s) and c. We consider

this problem based on a large sample of auctions from some AS process L, where for

each auction ` the following variables are observed: number of potential bidders N`,

number of actual bidders n`, and a vector of submitted bids b`. In applications, Nl

is typically proxied by variables such as number of planholders (e.g. Li and Zheng

[2009]) or number of bidders in related auctions (e.g. Roberts and Sweeting [2010a])

and n` is taken to be the number of bids submitted. Optionally, the econometrician

may also observe a vector of cost shifters z`, which are assumed to be excluded from

F (v, s).4 For current purposes, we impose three further restrictions on the DGP L.

First, our core contribution in this paper is to derive bounds on AS model

fundamentals from statistical objects already established as identi�ed by prior work.

3Though much of the early structural auction literature focused on the no-entry case, auctions
with entry have also received substantial attention in recent years. See, e.g., Athey et al. [2011],
Bajari and Hortacsu [2003], Li [2005], Li and Zhang [2010a,b], Li and Zheng [2012, 2009], Hendricks
et al. [2003], Krasnokutskaya and Seim [2009], MSX, and Roberts and Sweeting [2010b,a] among
others.

4As usual, it is trivial to extend all results to the case of nonexcludable covariates x`.
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We therefore focus on RS auctions which are Stage 2 identi�ed:

De�nition (Stage-2 identi�ed). RS mechanism M is Stage-2 identi�ed if, for any

marginal distribution F ∗(v) and any n > 1, a sample of observed bids b` generated

by n bidders competing (without entry) under M based on draws from F ∗(v) would

permit consistent nonparametric estimation of F ∗(v).

Assumption 6 (Stage 2 identi�cation). Process L involves an auction mechanism

M that is Stage 2 identi�ed.

The class of Stage-2 identi�ed mechanisms includes all standard auctions (�rst-

price, English, Vickery, and Dutch), so this focus is not particularly restrictive. We

refer readers to Athey and Haile [2005] for further details.5

Second, we assume that the distribution F (v, s) and the cost function c(z) are

invariant across auctions in L:

Assumption 7. For each auction ` generated by process L, F`(v, s) = F (v, s) and

c` = c(z`).

As usual, our results generalize immediately to the case of observable auction-

level heterogeneity x`: simply condition all statistical objects on x` in the arguments

below. We return to the case of unobservable auction-level heterogeneity u` as an

extension.

Finally, to obtain meaningful restrictions on the joint distribution F (v, s), we

require at least some observable variation attributable to signals s. In the context

of the AS model, this translates into requiring variation in factors a�ecting the equi-

librium entry threshold s̄: namely, potential competition N` and instruments z`. We

therefore introduce a key exclusion restriction:

5An interesting question we do not address here is how to apply our method when the Stage 2
distribution is only partially identi�ed (e.g. the model of Haile and Tamer [2003]). In principle, this
should be a relatively straightforward extension, but would complicate notation and discussion.
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Assumption 8 (Exogenous entry variation). Process L involves either exogenous

variation in N` for �xed z, or exogenous variation in z` for �xed N , or both.

Exogenous variation in N` has been used in several prior studies for testing

purposes: for instance, Haile et al. [2003] use such variation to construct a test for

common values, and MSX use it to construct tests for competing entry speci�cations.

Exogenous variation in z` directly extends a long tradition of instrumental variables

in econometrics.6 Both induce variation in the equilibrium threshold s̄, which we in

turn exploit as a source of identifying information on model fundamentals.

Directly identi�ed objects

For each (z,N) ∈ L, a large sample from process L will directly identify two statistical

objects. First, given an equilibrium threshold s̄, the probability that any particular

bidder enters is simply 1− s̄. We can thus identify the equilibrium threshold s̄(z,N)

corresponding to (z,N) directly from observed entry decisions:

s̄(z,N) ≡ 1− E[n`|z,N ].

Second, by hypothesis, the mechanism M is Stage-2 identi�ed. For each (z,N) ∈

L, we can therefore recover the value distribution F ∗(·|z,N) corresponding to bids

submitted at (z,N). By Proposition I.2, this will represent the ex post distribution

of values among entrants at (z,N):

F ∗(v; s̄(z,N)) ≡ F ∗(·|z,N),

where as above F ∗(v; s̄) ≡ F (v|Si ≥ s̄).

6Recent work using instrumental variables to address identi�cation of nonparametric models
includes Chesher [2005] for nonparametric identi�cation of models with discrete endogenous variables
and Berry and Haile [2010a] for nonparametric identi�cation of multinomial choice demand models,
to name only a few.
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Let S(L) denote the set of equilibrium thresholds induced by process L:

S(L) ≡ {s ∈ [0, 1]|s = s̄(z,N) for some (z,N) ∈ L}.

The objects identi�ed by process L are then S(L) itself and the ex post distribution

F ∗(v; s̄) for each s̄ ∈ S(L). For notational compactness, we state all subsequent

identi�cation results in terms of the identi�ed set S(L).

Identi�ed objects versus model fundamentals

Identi�cation in the AS model requires recovery of the joint distribution F (v, s), but

the AS process L directly identi�es only distributions of values conditional on entry:

F ∗(v; s̄) ≡ F (v|Si ≥ s̄) for each s̄ ∈ S(L). The relationship between these two

distributions can be expressed as follows:

F (v, s) = F ∗(v; 0)− (1− s)F ∗(v; s). (II.1)

This fact in turn suggests the AS-model equivalent of a full-support condition: if

the identi�ed set S(L) spans the unit interval, then F (v, s) will be fully identi�ed.

Unfortunately, this condition is likely to fail in many applications of interest. In

particular, if no instrument z` is available, then all variation in s̄ will be driven by

variation in N` and S(L) will be a �nite set. In such cases F (v, s) will not be fully

identi�ed, so nonparametric analysis must fall back on identi�ed bounds.

II.2 Identi�ed bounds on fundamentals

This section establishes our core identi�cation results, building on the insight that

exogenous variation in s̄ generates practically useful information on model fundamen-

tals. The precision of this information depends on the nature of variation in s̄: the

AS model will be partially identi�ed in DGPs where s̄ takes a discrete set of values
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in equilibrium, but may be point identi�ed when equilibrium s̄ takes a continuum of

values. We therefore frame results in this section as a map from the identi�ed set S

to natural identi�ed bounds on model fundamentals. As above, the objects of interest

are the joint distribution F (v, s) and the entry cost c.

To establish the main results in this section, we will need some additional no-

tation. De�ne nearest-neighbor functions t+(s) and t−(s) as follows:

t+(s) =


inf {t ∈ S|t > s} if max{S} > s;

1 otherwise.

t−(s) =


sup {t ∈ S|t < s} if min{S} < s

0 otherwise.

The intuition behind these functions is simple: for any t ∈ [0, 1], return the nearest

upper and lower neighbors of t in the identi�ed set S. The implementation captures

three important special cases: return uninformative bounds if t is outside the scope

of S, return t if t ∈ int(S), and return nearest elements in S not equal to t otherwise.

Bounds on distributions: F (v|s) and F (v, s)

As a �rst step toward obtaining bounds on F (v, s) and c(·), we derive bounds on

the conditional distribution F (v|s). Toward this end, rewrite the ex post distribution

F ∗(v; s̄) in terms of F (v|s) as follows:

F ∗(v; s̄) ≡ 1

1− s̄

ˆ 1

s̄

F (v|t)dt.

This identity in turn implies

F (v|s̄) = − ∂

∂s̄
[(1− s̄)F ∗(v; s̄)].
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Both s̄ and F ∗(v; s̄) are identi�ed for s̄ ∈ S. Consequently, if s̄ ∈ int(S), we can

identify the RHS derivative exactly. Otherwise, we can approximate via a small �nite

di�erence ∆s̄:

F (v|s̄) ≈ −∆[(1− s̄)F ∗(v; s̄)]

∆s̄
.

In practice, the smallest di�erences we can recover will be ∆s̄ = [t+(s̄) − s̄] and

∆s̄ = [s̄− t−(s̄)]. These di�erences yield natural identi�ed approximations to F (v|s̄),

which by a�liation can also be shown to bound F (v|s̄). We thus obtain the following

lemma:

Lemma II.1. Choose any s̄ ∈ S, and de�ne F̌+(v|s̄) and F̌−(v|s̄) as follows:

F̌+(v|s̄) =


limt↑t−(s̄)

{
(1−t)F ∗(v;t)−(1−s̄)F ∗(v;s̄)

s̄−t

}
if t−(s̄) ∈ S;

1 otherwise.

F̌−(v|s̄) =


limt↓t+(s̄)

{
(1−s̄)F ∗(v;s̄)−(1−t)F ∗(v;t)

t−s̄

}
if t+(s̄) ∈ S;

0 otherwise.

Then F̌+(v|s̄) and F̌−(v|s̄) are identi�ed for all v, represent distributions over [v, v̄],

and bound the conditional distribution F (v|s̄):

F̌+(v|s̄) ≥ F (v|s̄) ≥ F̌−(v|s̄)∀v,

with equality whenever s̄ ∈ int(S).

We can thus obtain identi�ed bounds on F (v|s̄) for any s̄ ∈ S. The next

proposition extends this result into bounds on F (v|s) for any s ∈ [0, 1]:
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Proposition II.1 (Bounds on F (v|s)). For any s ∈ [0, 1], de�ne F+(v|s) and F−(v|s)

as follows:

F+(v|s) =


F̌+(v|s) if s ∈ S;

F̌+[v|t−(s)] if s /∈ S.

F−(v|s) =


F̌−(v|s) if s ∈ S;

F̌−[v|t+(s)] if s /∈ S.

Then F+(v|s) and F−(v|s) are identi�ed, represent distributions over [v, v̄], and bound

F (v|s):

F+(v|s) ≥ F (v|s) ≥ F−(v|s),

with equality whenever s ∈ int(S).

This proposition naturally extends the logic of Lemma II.1: given any s ∈ [0, 1],

�nd the nearest identi�ed neighbors s̄ ∈ S. Lemma II.1 gives identi�ed bounds on

F (v|·) at these neighbors, and by a�liation these bounds will also apply to F (v|s).

Local variation in s̄ permits approximations become exact, and exact identi�cation

follows. For clarity, we restate this latter fact as a corollary:

Corollary II.1. F (v|s̄) is exactly identi�ed for any s̄ ∈ int(S(L)).

Finally, identi�ed bounds on the conditional distribution F (v|s) immediately

imply identi�ed bounds on the joint distribution F (v, s):

Corollary II.2. De�ne F+(v, s) and F−(v, s) as follows:

F+(v, s) =

ˆ s

0

F+(v|t)dt

F−(v, s) =

ˆ s

0

F−(v|t)dt.

29



Then F+(v, s) and F−(v, s) are identi�ed and F+(v, s) ≥ F (v, s) ≥ F−(v, s).7

Bounds on c(z)

Now consider identi�cation of c(z). By Proposition I.2, at any (z,N) with nontrivial

entry, the equilibrium entry threshold s̄N(z) must satisfy a breakeven condition of

the form:

c(z) ≡ Ev [π(v; s̄N(z), N)|Si = s̄N(z)]

=

ˆ v̄

0

α(y) · [1− F (y|s̄N(z))] · F ∗w(y; s̄N(z))N−1dy − ρ. (II.2)

ρ and α(·) are known from the Stage 2 auction, F ∗w(y; s̄) ≡ s̄ + (1 − s̄)F ∗(y; s̄) is

identi�ed directly for s̄ ∈ S, and the RHS integral is decreasing in F (y|s̄). Identi�ed

bounds on F (y|s) thus immediately imply identi�ed bounds on c(z):

Proposition II.2. For any (N, z) ∈ L, de�ne c+
N(z) and c−N(z) as follows:

c+
N(z) = π0(s̄N(z), N) +

ˆ v̄

v
α(y) · [1− F−(y|s̄N(z))] · F ∗w(y; s̄N(z))N−1dy.

c−N(z) = π0(s̄N(z), N) +

ˆ v̄

v
α(y) · [1− F+(y|s̄N(z))] · F ∗w(y; s̄N(z))N−1dy.

Then c+
N(z) and c−N(z) are identi�ed and c+

N(z) ≥ c(z) ≥ c−N(z), with equality if

s̄N(z) ∈ int(S(L)).

As usual, we can pool across N to obtain sharper bounds on c(z). Let c+(z)

7If desired, we could extend this proposition to incorporate the Frechet-Hoe�ding bounds (see
Nelsen [1999]):

Fv(v) + s− 1 ≤ F (v, s) ≤ min{Fv(v), s}.

In practice, Fv(v) may be unknown, but can be bounded as follows:

F ∗(v; minS) ≤ Fv(v) ≤ minS + (1−minS)F ∗(v; minS).

Combining these results yields alternative bounds on F (v, s), which in some cases might be tighter
than those above.
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and c−(z) denote these intersection bounds:

c+(z) = min
N∈L

c+
N(z)

c−(z) = max
N∈L

c−N(z).

Finally, by Corollary II.1, F (v|s̄) is exactly identi�ed if s̄ ∈ int(S(L)). Equation (II.2)

then implies an analogous condition for exact identi�cation of entry costs:

Corollary II.3. For any z such that s̄N(z) ∈ int(S(L)) for some N , c(z) is exactly

identi�ed.

Full identi�cation

Corollaries II.1, II.2, and II.3 convey a common message: the AS model is exactly

identi�ed (almost) everywhere if we observe data generated at (almost) every s̄ ∈

[0, 1]. The conditions under which this will occur will depend on the nature of the

underlying fundamentals, but will require an excluded instrument z that induces

su�cient variation in entry cost c(z). The next proposition formalizes this intuition.

Proposition II.3. Suppose the econometrician observes an instrument z satisfying

Assumptions 7 and 8 above, which has positive support on a set Z ⊂ Rk. Then the

following statements hold:

1. If z ∈ int(Z), then c(z) is identi�ed and F (v|s̄) is locally identi�ed at each

s̄ ∈ S(L(z)).

2. If [0, v̄] ⊂ c(Z), then F (v|s), F (v, s), and c(·) are fully identi�ed.

The su�cient Condition 2 can probably be relaxed somewhat in many appli-

cations: as noted above, the fundamental property needed for full identi�cation is

cl(S(L)) = [0, 1]. Condition 2 merely ensures that this property will hold absent

further restrictions on N and F (v, s).
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Sharp bounds

Full identi�cation in the general AS model depends on strong conditions, which can

easily fail in practice. In such cases, nonparametric analysis must fall back on bounds

like those in subsections II.2 and II.2. These bounds represent natural, intuitive,

and directly estimable approximations to the fundamentals of interest, but may not

exhaust all variation in the data. This subsection formally characterizes sharp bounds

in the AS model.

De�ne a candidate model corresponding to process L as follows:

De�nition II.1 (Candidate model). A candidate model for process L is any pair

{F̃ (·|·), c̃(·)} satisfying the following conditions for all z ∈ L:

1. Distribution: for all s ∈ [0, 1], F̃ (·|s) de�nes a distribution over [v , v̄].

2. Selection: F̃ (·|·) implies the set of distributions identi�ed by sub-process L(z):

(1− s)F ∗(v; s) =
´ 1

s
F (v|t)dt for all v, for all s ∈ S(z).

3. A�liation: F̃ (·|·) implies a joint distribution F̃ (v, s) ≡
´ s

0
F̃ (v|t)dt satisfying

a�liation.

4. Entry: Π∗(s,Ns(z); F̃ ) ≡ c̃(z) for all s ∈ S(z), where Ns(z) denotes the com-

petition level N corresponding to s under L(z) and

Π∗(s,N, F̃ ) ≡
ˆ
V

π(v; s,N)dF̃ (v|s). (II.3)

As de�ned above, F+(v|s) and F−(v|s) directly exploit only the distribution

and selection conditions of De�nition II.1.8 Hence there could exist a (v, s) pair such

8More precisely, we incorporate a slightly weaker �di�erences� version of the selection condition
(2):

(1− s)F ∗(v; s)− (1− s′)F ∗(v; s′) =

ˆ s′

s

F+(v|t)dt

for s′ > s, with F− substituted for F+ when s′ < s.
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that (say) no candidate F̃ (·|·) attaining the upper bound F+(v|s) at (v, s) could

simultaneously satisfy the entry condition (4) for all other s ∈ S(z). Consequently,

the bounds in sections II.2 and II.2 would not be sharp.

Extending this intuition yields a characterization of the sharp identi�ed set. Let

M(L) be the set of all candidate models {F̃ (·|·), c̃(·)} for process L. By assumption,

the true model {F (v|s), c(·)} satis�es De�nition II.1, so M(L) is nonempty. Then

sharp bounds will be given by the upper and lower envelopes ofM(L):

Lemma II.2. LetM(L) be the set of all candidate models at L. Then M(L) is the

sharp identi�ed set at L, and implies sharp bounds {c̃+, c̃−} and {F̃+, F̃−} as follows:

c̃+(z) = sup{c̃(z) s.t. c̃(·) ∈M(L)}

c̃−(z) = inf{c̃(z) s.t. c̃(·) ∈M(L)}

and for each (v, s)

F̃+(v|s) = sup{F̃ (v|s) s.t. F̃ (v|s) ∈M(L)}

F̃−(v|s) = inf{F̃ (v|s) s.t. F̃ (v|s) ∈M(L)}.

Implementation of Lemma II.2 could perhaps be attempted using sieve or other

functional approximation methods, but would likely be challenging in practice. Hence

we focus primarily on the (more interesting) constructive bounds in II.2 and II.2, but

note that in principle sharper bounds might exist.9

9Our discussion in this respect parallels that of Ciliberto and Tamer [2009b] on sharpness in
oligopoly entry models. In particular, at any t ∈ S, our bounds on F (v|t) exploits information gen-
erated by the nearest-neighbors s+(t) and s−(t), but not that potentially generated by more distant
entry equilibria. Meanwhile, Ciliberto and Tamer [2009b] exploit zero-one bounds on probability
magnitudes, but not the condition that probabilities must sum to one. In both cases the condition
omitted is a cross-equation restriction which, though potentially informative, would be very di�cult
to implement.
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II.3 Bounds on counterfactual revenue

This section considers counterfactual analysis based on the AS model. In particular,

we start from the set of entry thresholds S(L) identi�ed by process L, and seek to

characterize expected seller revenue RM corresponding to counterfactual RS auction

M . This problem is complicated by the generality of the AS model: in the presence

of endogenous and selective entry, M will a�ect seller revenue directly, through the

Stage 1 entry threshold s̄, and through the selected Stage 2 distribution F ∗(·; s̄).

We derive revenue bounds accounting for all three e�ects in the presence of partial

identi�cation induced by AS entry, where as usual we assume the no-sale outcome

yields value v0 ≤ v to the seller.

Our �rst step toward this end is to characterize seller revenue RM(s̄, N) gener-

ated by mechanism M under arbitrary (out-of-equilibrium) threshold s̄:

Lemma II.3. Under Assumptions 1-5, expected seller revenue under RS auction M

at competition structure (s̄, N) is given by

RM (s̄;N) =

ˆ v̄

v0

{αM (y)[y − λM (y; s̄, N)] + [1− αM (y)]v0} dG∗1:N (y; s̄) +N(1− s̄)ρM (II.4)

where

λM(v; s,N) ≡


0 if αM(v) = 0;

´ v
v0

αM (t)
αM (v)

· F
∗
w(t;s)N−1

F ∗
w(v;s)N−1dt otherwise.

Further, considered as a function of s̄, RM(s̄;N) satis�es the following properties:

1. RM(s̄;N) is decreasing in s̄ for all N .

2. RM(s̄;N) is identi�ed for any s̄ ∈ S(L).

We now consider counterfactual entry. When entry is endogenous, the equilib-

rium threshold s̄M will depend on M , and when F (v|s) and c(·) are not identi�ed,
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this dependence will not be determined exactly. However, we can use the bounds on

fundamentals derived above to bound the relationship between s̄M and M :

Lemma II.4. Choose any (z,N) and let c+(z) and c−(z) be identi�ed bounds on c(z),

F+(v|s̄) and F−(v|s̄) be identi�ed bounds on F (v|s), and s̄M(z,N) be the (unknown)

equilibrium entry threshold induced by counterfactual mechanismM . De�ne s+
M(z,N)

and s−M(z,N) as follows:

s+
M(z,N) =


inf{s ∈ S|ΠM(s,N ;F+) > c+(z)} if ∃such s;

1 otherwise

s−M(z,N) =


sup{s ∈ S|ΠM(s,N ;F−) < c−(z)} if ∃such s;

0 otherwise

where ΠM(·; F̃ ) denotes expected pro�t of an entrant with signal s given conditional

distribution F̃ and mechanism M :

ΠM(s,N ; F̃ ) =

ˆ v̄

v0

[1− F̃ (y|s)]αM(y)F ∗w(y; s)N−1dy − ρM .

Then s+
M(z,N) and s−M(z,N) are identi�ed and s+

M(z,N) ≥ s̄M(z,N) ≥ s−M(z,N),

with equality if sM(z,N) ∈ int(S(L)).

Finally, combining results in Lemmas II.3 and II.4 produces identi�ed bounds

on expected seller revenue RM(z,N) corresponding to counterfactual mechanism M :

Proposition II.4. Choose any (z,N), de�ne s+
M(z,N) and s−M(z,N) as in Lemma

II.4, and let RM(z,N) be (unknown) expected revenue under α(·) at (z,N). De�ne
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R+
M(z,N) and R−M(z,N) as follows:

R−M(z,N) =


RM(s+

M(z,N);N) if s+
M(z,N) ∈ S(L)

0 otherwise

R+
M(z,N) =


RM(s−M(z,N);N) if s−M(z,N) ∈ S(L)

ŘM(0;N) otherwise,

where

Řα(0;N) =

ˆ v̄

v0

{
α(y)[y −

ˆ y

v0

α(t)

α(y)
· F
∗(t; minS)N−1

F ∗(y; minS)N−1
]dt+ [1− α(y)]v0

}
dG∗1:N (y; minS) +NρM

is a semi-informative upper bound applicable when s−M(z,N) ≡ 0.10

Then R+
M(z,N) and R−M(z,N) are identi�ed and R+

M(z,N) ≥ RM(z,N) ≥

R−M(z,N), with equality if sM(z,N) ∈ int(S(L)).

The intuition behind this result is straightforward: Lemma II.3 establishes that

conditional revenue is decreasing in s̄ for any M , Lemma II.4 establishes bounds

s+
M and s−M on the counterfactual entry threshold s̄M , and we know RM(s̄, N) is

identi�ed for any s̄ ∈ S(L). Plugging entry bounds s+
M and s−M into RM(s̄, N) then

yields bounds on expected revenue accounting for endogenous and selective entry.

Revenue bounds applicable to the special case of a public reserve price can easily

be obtained by setting αM(y) ≡ 1[y ≥ r] in Proposition II.4. In some applications,

however, researchers may wish to characterize not just expected seller revenue but

also the seller's optimal reserve price (ORP). Consequently, following Haile and Tamer

[2003], we translate the revenue bounds above into bounds on the seller's ORP:

Corollary II.4 (Bounds on Seller's ORP). Let R+(r; z,N) and R−(r; z,N) be de�ned

10In particular, Řα(0;N) is the revenue that would result if all potential bidders always enter but
draw values from distribution F ∗(·; minS). Since minS ≥ 0, we know F ∗(v; minS) ≤ F ∗(v; 0), so
Řα(0;N) ≥ Rα(0;N) ≥ Rα(sα;N). Further, since minS ∈ S, Ř(0;N) is identi�ed.
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as in Proposition II.4, R∗− ≡ supr R
−(r; z,N) be the maximum value of the lower

bound, and r∗(z,N) be the seller's optimal reserve price at (z,N). De�ne r∗+(z,N)

and r∗−(z,N) as follows:

r∗+(z,N) = sup{r|R+(r; z,N) ≥ R∗−}

r∗−(z,N) = inf{r|R+(r; z,N) ≥ R∗−}.

Then r∗+ and r∗− are identi�ed and r∗+(z,N) ≥ r∗(z,N) ≥ r∗−(z,N), with equality if

sr∗(z,N) ∈ int(S(L)).

Thus, to summarize: we obtain identi�ed bounds on expected revenue applicable

to a wide range of counterfactual mechanisms in the general class of RS auctions

accounting for endogenous and arbitrarily selective entry. To our knowledge, these

are the �rst such results reported in the literature. Further, in the special case of

a public reserve price, these revenue bounds can be translated into bounds on the

seller's optimal reserve price following Haile and Tamer [2003]. We thus establish

that the general AS model can support a rich variety of counterfactual and policy

analyses under relatively weak assumptions on the nature of entry and selection.

II.4 Conclusion

In this paper, we explore a general approach to identi�cation in auctions with entry

based on a framework we call the AS model. In the process, we make three core

contributions to the related literature. First, we derive nonparametric bounds on

AS model fundamentals applicable to a general class of auctions with endogenous

and arbitrarily selective entry. Second, we translate these bounds on fundamentals

into bounds on expected revenue corresponding to a wide range of counterfactual

award rules, again accounting for endogenous and selective entry. Finally, we outline

conditions under which all bounds collapse to exact identi�cation. To our knowledge,

37



these are the �rst formal (partial) identi�cation results applicable to the general AS

model, and represent the most general treatment of identi�cation in auctions with

entry to date.

While our discussion thus far has focused on the case of symmetric bidders,

our underlying logic extends readily to environments with asymmetry. In particular,

suppose process L involves a set T of potential bidder types, where a bidder of

type τi ∈ T draws from a�liated joint distribution Fτi(v, s|·) and has entry cost

cτi(·).11 Let τ ∈ T N be a vector of bidder types, and s̄(τ) a corresponding vector

of type-symmetric Stage 1 equilibrium entry thresholds. A repeated sample from

equilibrium s̄(τ) will permit identi�cation of s̄τi(τ) and F ∗τi(·;s̄τi(τ)) for each type

τi, and pooling across other type vectors containing τi will generate a set of type-

speci�c identi�ed thresholds Sτi(L). Identi�cation of Fτi(·) and cτi(·) can then proceed

as above. The key additional complication in the asymmetric case is the potential

presence of multiple Stage 1 equilibria, and the corresponding additional restriction

is that the equilibrium played is either known or depends deterministically on τ .

Given this restriction, however, asymmetry may substantially improve identi�cation:

in particular, a continuous typeset T may induce a continuous identi�ed set Sτi(L),

and thus permit exact identi�cation based only on variation in potential competition.

A second potentially important extension of our results is to environments with

unobserved heterogeneity. As noted in our discussion of Assumption 7, this exten-

sion requires two additional restrictions. First, following Krasnokutskaya [2009], we

assume auction-level unobserved heterogeneity u enters the value distribution either

additively or multiplicatively: that is, vi = uεi or vi = u+εi, where εi is IID across bid-

ders.12 Second, we assume the realization of u is revealed to bidders only after Stage 1

entry is complete. This second assumption seems plausible in applications where c is

11These types can be either discrete or continuous; we require only that continuous types a�ect
model fundamentals continuously.

12Krasnokutskaya [2009] assumes u enters multiplicatively, but her argument can easily be adapted
to the additive case as well.
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interpreted as a cost of learning, and permits us to separate heterogeneity induced by

the unobserved latent variable u from that induced by unobserved signals si.
13 The

identi�cation argument can then proceed as follows. First, following Subsection II.1,

we know we can identify the set of equilibrium entry thresholds S(L) corresponding

to process L. For each s̄ ∈ S(L), the observed bid distribution will depend on two

components: the ex-post selected distribution F ∗(εi; s̄) and the distribution of unob-

served heterogeneity Fu(u). Second, following Krasnokutskaya [2009], each of these

components can be recovered using deconvolution methods on an appropriate sample

of observed bids. It follows that the ex-post distribution F ∗(εi; s̄) is identi�ed for

any s̄ ∈ S(L). Finally, we can apply results in Section II.2 to the identi�ed ex post

distribution F ∗(εi; s̄) to obtain bounds on remaining model fundamentals, and partial

identi�cation of the overall model follows immediately.

13For instance, in highway construction auctions, many features likely to generate project-level
heterogeneity (e.g. exact location, speci�cs of work to be performed, soil type, etc) are observable
only to bidders obtaining detailed project plans (the outcome typically taken to represent entry).
Hence the assumption that u is revealed following entry seems reasonable. Without this separat-
ing restriction, identi�cation would require us to successfully disentangle distribution e�ects directly
attributable to heterogeneity (u) from those attributable to changes in endogenous selection (includ-
ing those induced by shifts in u). In a fully nonparametric model with endogenous and arbitrarily
selective entry, this is likely to prove impossible in practice.
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Numerical example

Sections II.2 and II.3 develop identi�ed bounds for model fundamentals and seller

revenue in auctions with arbitrarily selective entry. In this appendix, we explore a

simple numeric example designed to illustrate what these theoretical identi�ed bounds

might look like in practice. Consistent with our emphasis in the rest of the paper,

this example focuses on identi�cation, not estimation: the �gures that follow illus-

trate the bounds that would obtain in an in�nite auction sample. Nevertheless, this

simple exercise should help to indicate what kind of information could in principle be

recovered using the methods developed above.

Details of this example are as follows. We model the joint distribution F (v, s)

using a Gaussian copula Cρ(Fv, Fs), where the marginal distribution Fv(·) ∼ N(µ =

100, σ = 10) and as above we normalize Fs(·) ∼ U [0, 1]. The correlation parame-

ter ρ measures the degree of a�liation between s and v, with ρ = 0 generating the

no-information LS case and ρ → 1 approaching the full-information S case. In what

follows, we take ρ = 0.75 unless noted otherwise; other values of ρ yield quite sim-

ilar results. Entry involves cost c = 2, and we assume potential competition varies

exogenously on the set N = {4, 5, ..., 16}. These parameter values are chosen to be

qualitatively similar to existing �ndings in the literature.14

Given this parametric speci�cation, it is straightforward to calculate the set of

equilibrium entry thresholds S = {s̄4, ..., s̄16} satisfying the the breakeven condition

(I.7). From subsection II.1, we know these thresholds (and the corresponding value

distributions F ∗(v; s̄) are the objects identi�ed by a standard (N, n,b) sample. We

can then use results in Sections II.2 and II.3 to obtain identi�ed bounds on quantities

of interest as follows.

First, Proposition II.1 implies identi�ed bounds on F (v|s) for any (v, s). Figures

14See, e.g., Roberts and Sweeting [2010a, 2010b] and Li and Zheng [2009] for examples.
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II.1 and II.2 illustrate these bounds (across s) for two values of v.

Second, based on Proposition II.2, we can translate identi�ed bounds on F (v|s)

into identi�ed bounds on c. Applying this proposition to our numeric example and

pooling results across N yields identi�ed bounds c+ = 2.026 and c− = 1.971, where

(as noted above) true c = 2.

Third, following Section II.3, we can translate these bounds on F (v|s) and c

into identi�ed bounds on counterfactual seller revenue. Results in Section II.3 are

framed in terms of an arbitrary award rule α(·), but for simplicity we here restrict

attention to the special case of a counterfactual public reserve price r. As in Section

II.3, the �rst step in this process is to obtain identi�ed bounds on the counterfactual

entry threshold s̄r corresponding to each candidate reserve price r. These bounds are

illustrated for N = 6 and N = 9 in Figures II.3 and II.4 below.

Finally, using Proposition II.4, we can translate bounds on s̄r to bounds on

counterfactual revenue Rr at any (N, r). These bounds are illustrated for N = 6 and

N = 9 in Figures II.5 and II.6 below. In both cases, the seller's value is assumed to

be v0 = 60.

If so desired, we could also adapt the argument of Haile and Tamer [2003] to

translate bound on counterfactual revenue to bounds on the optimal reserve price r as

in Corollary II.4. In this example, the implied bounds on optimal r would be rather

wide: an upper bound of roughly 90 when N = 6, and of roughly 100 when N = 9

(with uninformative lower bound v0 = 60 in each case). However, in both cases the

identi�ed bounds on counterfactual revenue are surprisingly tight.
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Figure II.1: IDed bounds on F (v|s), v = 95

Figure II.2: IDed bounds on F (v|s), v = 105
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Figure II.3: IDed bounds on s̄r at N = 6, ρ = 0.75

Figure II.4: IDed bounds on s̄r at N = 9, ρ = 0.75
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Figure II.5: IDed bounds on CF revenue at N = 6, ρ = 0.75

Figure II.6: IDed bounds on CF revenue at N = 9, ρ = 0.75
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CHAPTER III

DISPLAYS, SALES, AND IN-STORE SEARCH IN RETAIL MARKETS

A large body of literature has established two clear and consistent empirical regu-

larities in retail markets. First, supermarket prices in most product categories vary

substantially from week to week, and most of this variation takes the form of �sales�:

temporary, quickly reversed reductions from a prevailing modal price.1 Second, even

controlling for sales and other advertising, in-store product displays (e.g. end-of-aisle

features, in-store banners, and other measures designed to call attention to displayed

products) have large e�ects on �nal purchase outcomes.2 Stigler [1961]'s costly search

paradigm provides a natural framework within which to analyze both e�ects: the

week-to-week price churn induced by sales creates a natural economic motive for

search, and the presence of search in turn helps to explain observed display e�ects.

To date, however, structural work on supermarket search has been relatively limited.3

In this paper, I develop a structural model of retail demand in an environment

with di�erentiated products, in-store product displays, and costly price search. I

then apply this model to data on laundry detergent purchases, using temporary price

reductions (sales) to recover preference parameters and temporary informational vari-

1See, e.g., Pesendorfer [2002], Hendel and Nevo [2006], Gri�th et al. [2009] and Chevalier and
Kashyap [2011] for empirical descriptions of retailer pricing practices, and Varian [1980] for a theo-
retical exploration of potential links between consumer search and retail sales.

2See, e.g., Roberts and Lattin [1991], Andrews and Srinivasan [1995], Mehta et al. [2003], and
van Nierop et al. [2010], among many others.

3Search models have a long history in empirical industrial organization; Sorensen [2000, 2001] to
prescription drug stores, Hortacsu and Syverson [2004] to mutual funds, and Hong and Shum [2006]
to online book markets are three representative examples. Historically, most such applications have
focused on the case of identical products, which would exclude classic supermarket settings. More
recent work has begun to reverse this trend; this literature is summarized below. There is also a
long history of �consideration� models in marketing; examples include Roberts and Lattin [1991],
Andrews and Srinivasan [1995], Mehta et al. [2003], and van Nierop et al. [2010], among many others.
These studies draw on motivations similar to search, but their underlying methodology is typically
quite di�erent.
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ations (in-store displays) to recover search parameters. The preference component of

the model follows Berry, Levinsohn, and Pakes [1995] (henceforth BLP), but unlike

BLP I assume that only prices on displayed products are observed ex ante. This

structure is motivated by the large and signi�cant e�ects of in-store displays on pur-

chase outcomes, a fact not readily explainable in standard full-information demand

models.

This work makes several core contributions to the literature on retail markets.

First, I structurally analyze in-store search in retail markets, a subject about which

relatively little is known. My estimates suggest that information frictions have sub-

stantial e�ects on purchase outcomes, a �nding with potential implications for both

the retail supply-side literature (which frequently references search as an explana-

tion for sales) and the literature on consumer behavior. In particular, parameter

medians suggest roughly 52 percent of consumers have positive search costs, with a

mean search cost of roughly $1.68 among this sub-population. Second, I explore the

relationship between consumer search and demand analysis, �nding that accounting

for in-store displays and other promotions substantially lowers elasticity estimates.

Finally, econometrically, I exploit a novel source of informational variation (displays)

to estimate search e�ects without direct data on search. I thus contribute both to the

literature on demand estimation in retail markets and to the emerging literature on

search with di�erentiated products.4

This work is most closely related to three existing studies in industrial organiza-

tion.5 First, using panel data on laundry detergent purchases, Hendel and Nevo [2006]

4As noted above, search applications have historically focused on the case of identical products.
However, recent work has begun to reverse this trend. See, e.g., Moraga-Gonzalez and Wildenbeest
[2008], Wildenbeest [2009], Moraga-Gonzalez et al. [2010], Santos et al. [2010], and Seiler [2011] to
mention just a few.

5Another somewhat related study in marketing is Mehta et al. [2003], which estimates a structural
model of consideration and choice using data on laundry detergent and ketchup purchases. While
I reference similar empirical patterns, my structural interpretation of these patterns is considerably
di�erent. Among other things, Mehta et al. [2003] focus primarily on learning and incorporate search
via a simple reduced-form speci�cation, while I formally characterize search using the full empirical
price distribution.
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estimate a discrete-choice demand model incorporating dynamic responses to sales,

�nding that intertemporal substitution is an important avenue by which consumers

respond to sales. My focus on search is obviously di�erent from Hendel and Nevo's

focus on dynamics, but the underlying sales motivation is similar. Second, Goeree

[2008] develops a model purchase under limited information in di�erentiated-product

markets, which she estimates using data on advertising in the personal computer

industry. I similarly exploit advertising variation in an environment with limited in-

formation, but whereas Goeree bases estimation on a reduced-form pure consideration

model, I directly incorporate endogenous price search. Finally, building on Hendel

and Nevo [2006], Seiler [2011] develops a dynamic choice model with a preliminary

market entry decision, �nding that in-store search is an important factor explaining

purchase incidence in detergent markets. My main innovation is to explicitly incorpo-

rate in-store displays as a source of identifying variation in a structural search model.

Insofar as displays represent a direct proxy of information availability, my approach

thus exploits a potentially powerful source of variation which to my knowledge has

not been previously explored in the search literature.

The rest of this paper is organized as follows. Section III.1 summarizes my

data and surveys price, display, and other promotional variation in laundry detergent

markets. Section III.2 presents descriptive evidence on promotional e�ects in the

target market, and Section III.3 describes the structural model I develop based on

this evidence. Section III.4 outlines details of my estimation procedure, and Section

III.5 presents key results. Finally, Section III.6 concludes.

III.1 Data, industry, and market

Data comes from the Information Resources Incorporated (IRI) marketing dataset,

which contains both UPC-level scanner data for 30 product categories in 47 geographic

regions and household-level panel data for two selected markets for years 2002-2007. I
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here focus on the scanner sample, which includes data on revenue, units sold, tempo-

rary price promotions, displays, and other advertising activity at the store-UPC-week

level for all stores and categories in the sample. Following standard practice, I divide

weekly revenue by weekly to recover store-UPC-level price series.6 Further description

of this dataset is given in Bronnenberg et al. [2008].

While the structural features motivating my analysis are common to many retail

markets, my empirical application in this paper focuses on the laundry detergent

industry. Prior work suggests that information frictions matter in laundry detergent

purchasing; Mehta et al. [2003] and Seiler [2011] directly explore aspects of search,

while Hendel and Nevo [2006] �nd strong reduced-form display e�ects. The existing

body of work on laundry detergents also provides a natural frame of reference within

which to interpret my structural results.7

Finally, the structural model I develop below is primarily designed to capture

store-level economic e�ects, and would be computationally infeasible to estimate on

the entire IRI detergent sample. My descriptive regressions therefore focus on the

Atlanta market, and my structural estimates on six of the largest detergent retailers

(IRI identi�ers 243785, 250094, 263568, 653369, and 683960) in this market. Selec-

tions in all cases are arbitrary with respect to the question under investigation, and

quite typical of the broader IRI sample; I plan to continue expanding the estimation

sample in future work. In what follows, I refer to the Atlanta market simply as �the

market.�

6As typical in scanner datasets, this means that UPC-level prices are observed only in weeks
with positive sales. My structural estimates focus on �important� products de�ned at the brand-size
level, so missing UPC-level prices are not a major problem in practice. Where necessary, I �ll in
missing prices using the regular price series constructed below.

7The main potential caveat here is dynamics: Hendel and Nevo [2006] show that consumers re-
spond to sales in laundry detergent markets by concentrating purchases in sale periods. Notably,
however, Seiler [2011] �nds that incorporating costly search substantially reduces estimates of dy-
namic response. Given this result and the vast computational cost of a full dynamic implementation,
I here focus primarily on a static choice framework, with reduced-form proxies for dynamic e�ects
included in estimation.
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Table III.1: Liquid laundry detergent sales, Atlanta market

BRAND Price / oz Sale Feat Disp Disc if sale Share
ALL 0.0234 0.264 0.111 0.0645 0.149 0.126
ARM&HAMMER 0.0169 0.300 0.0599 0.0354 0.149 0.0969
CHEER 0.0347 0.146 0.0480 0.0312 0.162 0.0379
FAB 0.0202 0.329 0.0531 0.0338 0.209 0.0218
GAIN 0.0272 0.194 0.107 0.0670 0.167 0.104
PUREX 0.0162 0.276 0.0900 0.0926 0.166 0.186
SURF 0.0262 0.254 0.0890 0.0856 0.190 0.0171
TIDE 0.0333 0.223 0.138 0.0807 0.189 0.312
WISK 0.0287 0.312 0.157 0.0918 0.174 0.0490
XTRA 0.0102 0.211 0.0820 0.128 0.187 0.0192
Notes: Sale, Feat, and Disp are UPC-by-week indicators for sale, feature, and display

promotions. Disc if sale represents average discount from �regular� price in weeks a

sale occurs, where regular price series are constructed as in Section III.1 below.

The Market

Laundry detergents come in liquid and powdered forms, with liquid detergent account-

ing for roughly 66 percent of market-wide sales. I here focus on liquid detergents; this

both simpli�es computation and promotes comparability with prior studies. Table

III.1 summarizes prices, market shares, and marketing variables for the top 10 liquid

detergent brands in the market. As this table illustrates, the market is highly concen-

trated, with the top 5 (10) brands accounting for roughly 80 (97) percent of volume

sold. Sales, displays, and features all occur regularly, with sales occurring most fre-

quently and displays least frequently.8 Finally, sales induce substantial short-term

variation in prices, with average discounts in the neighborhood of 12-15 percent.9 For

completeness, Table B.1 in Appendix 1 presents corresponding summary statistics

for stores in the estimation sample; as expected, these look similar to those for the

overall Atlanta market.

8The IRI dataset also includes information on type of features and displays, but for current
purposes I simply aggregate to �any feature� and �any display� indicators.

9As discussed in detail in Sections III.1 below, the vast majority of price variation in this market is
driven by �sales,� temporary, quickly reversed reductions from a prevailing �regular� price. �Discount
if sale� gives the average percentage discount (relative to regular price) in periods where a sale
occurred.
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Prices and promotions

The interaction between prices, promotions, and search is at the heart of my structural

analysis, so a thorough investigation of price and promotional variation in the data is

essential in motivating the particular structure employed. Three patterns in particular

will play a key role in my subsequent analysis: most price variation is driven by

temporary �sales,� most products have �regular prices� about which sales take place,

and non-price promotions (displays and features) vary substantially apart from sales.

Each of these patterns is explored in more detail below.

Price patterns

The large and growing literature on retail sales has shown that short-term, quickly

reversed price reductions are a pervasive feature of most retail markets.10 Surveying

this literature, Hosken and Rei�en [2007] identify �ve key empirical regularities in

supermarket pricing, of which the three most relevant for current purposes are (1)

that there tends to be a large mode in the pricing distributions for all types of goods,

(2) that most deviations from this mode are price reductions, and (3) that most such

price reductions are temporary. Figure III.1 presents one representive price history

for the current market; Figures B.1 and B.2 in Appendix 1 present two additional

examples.11 All clearly illustrate the core pattern in question: a dominant regular

price which changes infrequently, punctuated by frequent temporary sales.

In turn, this consistent empirical pattern suggests at least two structural im-

plications. First, sale-induced price churn motivates the hypothesis of costly price

search: while consumers may be able to learn regular prices over time, they are likely

to observe actual price realizations only after conscious e�ort. Second, insofar as av-

10Relevant studies include Kehoe and Midrigan [2007], Chevalier and Kashyap [2011], Nakamura
and Steinsson [2011], and Glandon [2011] on the macro side, and Gri�th et al. [2009], Konieczny
and Skrzypacz [2004], Pesendorfer [2002], and of course Hendel and Nevo [2006] on the micro side.

11The examples chosen are the best-selling UPCs for the three largest brands (Tide, Purex, and
All) in the Atlanta market.
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Figure III.1: Price history for Tide 100oz, IRI store 683960 (2002-2007)
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erage tastes should be relatively stable from week to week, short-run price variation

induced by sales should help to identify price elasticities in a standard preference

model.12 Both insights play key roles in my subsequent structural analysis.

Regular prices

In my structural analysis, regular prices will be employed primarily to characterize

expected gains from search: consumers will be assumed to know regular prices from

prior experience but only observe sale realizations following costly search. I construct

regular price series using a modi�ed rolling median algorithm: drop all periods listed

as sales, calculate 9-week rolling price medians over remaining periods, and �ll in

promotional periods forward or backward based on least deviations from observed

12Of course, price distributions will be endogenous to consumer tastes, but an examination of price
histories suggests that week-to-week price realizations are not. This is particularly true of a market
like laundry detergent, where the underlying fundamentals driving demand presumably shift only
gradually. In some other markets, there is evidence that sale frequencies increase during periods of
high demand (see, e.g., Chevalier et al. [2003]), but even this seems best interpreted as endogeneity
of the price distribution rather than endogeneity of week-to-week price realizations. I will return to
these issues in more detail below.
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prices.13 Figure III.2 illustrates this procedure applied to the price series for Tide

100oz in Figure III.1; a formal description of the algorithm and additional examples

are given in Appendix 2.

Figure III.2: Price vs Regprice for Tide 100oz, IRI store 683960 (2002-2007)
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Sales, displays, and features

My identi�cation strategy hinges on exploiting week-to-week price variation to recover

preference e�ects and week-to-week display variation to recover search e�ects. Strong

correlation in sale and display realizations could pose problems for this approach, so

Table III.2 explores the nature of promotional variation in the data. In particular,

note that less than 60 percent of products on display are also on sale, and only 17

percent percent of products on sale are also on display. This level of distinct variation

13Several other de�nitions have been proposed in the retail sales literature: for instance, Hendel
and Nevo [2006] use a simple price mode, Eichenbaum et al. [2008] use a quarterly price mode, and
Kehoe and Midrigan [2007] and Chevalier and Kashyap [2011] track regular prices as price changes
not reversed within 5 weeks. My de�nition produces results similar to these approaches, but more
consistently incorporates the concept of a regular price (by construction, periods with sales are not
�regular�) and more fully exploits the detailed promotional information available in the IRI data.
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Table III.2: UPC-level promotional variation, Atlanta market 2002-2007
Conditional means

Outcome sale = 1 disp = 1 feat = 1 Overall
sale 1 0.579 0.896 0.237
disp 0.172 1 0.258 0.0704
feat 0.398 0.387 1 0.105
Notes: Cells represent frequencies of row outcomes conditional

on column outcome; variables at store-week-UPC level.

should be more than su�cient to support the identi�cation strategy pursued here.

III.2 Descriptive regressions: price and promotion e�ects

A vast body of evidence from economics and marketing has established that both in-

store displays and external advertising have important e�ects on consumer behavior.14

Table III.3 highlights a number of descriptive regressions which strongly suggest that

this pattern extends to the current sample. In these regressions, sale, disp, and feat

are the IRI-generated promotion indicators summarized above, discount is percentage

di�erence between current price and regular price, discxdisp and discxfeat are the

corresponding interaction terms, and the dependent variable qnorm is a normalized

store-UPC-level sales measure (percentage by which quantity sold this week exceeds

average weekly quantity sold). Table B.2 in Appendix 1 reports related regressions

using several alternative outcome measures and covariate speci�cations; qualitative

results are similar in all cases.

Several key patterns in Table III.3 suggest the presence of search e�ects. First, as

expected, display and feature e�ects are large and signi�cant in every regression where

they appear. Second, the magnitude of the coe�cient on discount falls consistently

as promotional covariates are added: nearly two-thirds from Column (1) to Column

(4). Finally, displays and features strongly increase the quantity e�ects of price

14See for instance Hauser and Wernerfelt [1990]. Roberts and Lattin [1991], Andrews and Srini-
vasan [1995], Mehta et al. [2003], and van Nierop et al. [2010], among many others.
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Table III.3: UPC-level promotion e�ects, Atlanta detergent 2002-2007
(1) (2) (3) (4)

VARIABLES Prices only Promo dummies Only interacts All channels
price -0.0104*** -0.00952*** -0.00987*** -0.00912***

(0.000341) (0.000322) (0.000355) (0.000328)
discount -3.263*** -2.230*** -1.205*** -1.144***

(0.0513) (0.0415) (0.0355) (0.0423)
sale 0.145*** -0.0299*** 0.0528***

(0.00823) (0.00584) (0.00621)
feat 0.734*** 0.323***

(0.00685) (0.0155)
disp 0.563*** 0.304***

(0.00735) (0.0151)
discxfeat -3.461*** -2.286***

(0.0633) (0.0951)
discxdisp -3.066*** -2.204***

(0.107) (0.129)
Constant 0.113 -0.159 -0.0649 -0.146

(553.0)
Observations 528,801 528,801 528,801 528,801
R-squared 0.202 0.282 0.292 0.303
Notes: Dependent variable is qnorm, percent by which store-UPC-week quantity sold

exceeds average store-UPC weekly quantity sold. sale, disp, and feat are store-UPC-

week promo indicators, discount ≡ (price− regprice)/regprice, and discxdisp and
discxfeat are corresponding interaction terms. Robust standard errors in parentheses.

*** p<0.01, ** p<0.05, * p<0.1

reductions. This can be seen most clearly from Column (4), which suggests that

displayed and featured price reductions have quantity e�ects roughly three times

larger than those not advertised. This last �nding in particular strongly supports the

idea that promotional activities convey price information, which in turn motivates

the structural model I develop below.15

More broadly, Table III.3 also highlights the importance of properly accounting

for promotional e�ects in demand analysis. Since discount and qnorm are expressed

as percentage deviations, coe�cients on discount will roughly parallel own-price elas-

15Of course, more work would be needed to claim a de�nite causal connection. Combined with
prior marketing work on displays, advertising, and consideration, however, the patterns reported
here are highly suggestive.
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ticities.16 Column (1) of Table III.3 thus roughly corresponds to the expected output

of a demand model with no promotional e�ects, and Column (2) to that of a demand

model incorporating displays and features as preference shifters. Comparison with

Column (4) suggests that either partial approach will substantially overstate own-

price elasticities: relative to the model with all interaction e�ects, the model with no

promotion controls overestimates the coe�cient on discount by a factor of three and

the model with only promotion dummies overestimates the coe�cient on discount by

a factor of two. This �nding suggests the need to explore the structural relationship

between price elasticities and promotional e�ects, a question to which I return in

more detail below.

III.3 Structural search-plus-choice demand model

I consider choice among J = {1, ..., J} di�erentiated products in a single retail mar-

ket. Each product j is characterized by a vector of attributes xj, and is marketed via

a time-varying two-part process: a weekly price pjt and a weekly display indicator

djt.
17 Consumers are assumed to know the equilibrium price distribution Fpt(·) for

each period t, but may not observe price realizations pt ex ante. Purchasing decisions

therefore involve aspects of price search. The no-purchase option is modeled via an

outside good 0, which has utility normalized to 0 and is always displayed.

Within this environment, I model consumer i's choice problem as a two-stage

16The equivalence is rough because the percentages used to construct pgap and qnorm do not
exactly correspond to those used to de�ne elasticities, and because the speci�cation here ignores
rival prices. Price endogeneity is not a major concern since variation in pgap primarily re�ects week-
to-week changes in sales realizations, and as noted in Section III.1 these realizations are almost
certainly not responding to week-to-week shifts in demand.

17In practice, this process will presumably re�ect an equilibrium outcome of competition among
pro�t-maximizing retailers, but for purposes of demand estimation I take it as given. A substantial
existing literature explores this supply-side equilibrium more formally; see, e.g., Salop and Stiglitz
[1977], Butters [1977], Varian [1980], Burdett and Judd [1983], Rob [1985], Pesendorfer [2002], and
Glandon [2011], to name just a few. Notably, several of these studies cite costly consumer search
as a leading explanation for observed retail practices, and in future work I hope to use the model
described here to explore this connection more fully.
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process. First, upon entering the store, consumer i costlessly observes prices for all

products in the display set Dt = {j|djt = 1}. Next, in Stage 1, consumer i chooses

whether to search remaining prices at e�ort cost ci ∼ Fc(·). Finally, in Stage 2,

consumer i chooses the utility-maximizing alternative j from the set of products

searched. This search-plus-choice process is formally summarized in Assumptions

9-11 below.

Assumption 9. All consumers know the prevailing price distribution Fpt(·), but week-

to-week price realizations are random from the perspective of at least some consumers.

Assumption 10. For each consumer i, the Stage 1 search decision is binary: either

search only the display set D (free) or search all products J at cost ci ≥ 0.

Assumption 11. Consumer i's choice set is the set of products searched; i.e. con-

sumer i can purchase product j only if consumer i �rst searches product j.

Assumption 9 is standard in the search literature, but also has a natural eco-

nomic motivation here: general knowledge of the price distribution can arise from

repeated shopping experience, but price churn induced by sales implies that price

realizations are likely to di�er substantially from visit to visit.18 Assumption 10 is

more restrictive, but some additional structure seems essential in this context: the

leading fully endogenous alternatives (sequential or simultaneous search) would be

computationally infeasible and would likely derive identi�cation only from functional-

form assumptions.19 The particular structure chosen is motivated by a �supermarket

story� in which consumers face a choice between buying from an end-of-aisle display

or searching the entire aisle. While obviously not trivial, this represents a reasonable

18A slight caveat here: the model I estimate will permit a fraction of consumers with zero search
costs. This is primarily intended to account for the fact that some people enjoy shopping, but
would also be consistent with a model where some hyper-rational consumers perfectly predict retail
behavior.

19As noted above, there is a rapidly growing literature on estimation of search models in envi-
ronments with di�erentiated products. To my knowledge, this literature has not yet established
identi�cation results for the context explored here.
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simpli�cation of the economic fundamentals involved. Finally, Assumption 11 is stan-

dard in the search literature. I thus seek to distill the interactions between search,

displays, and choice noted above into an econometrically tractable structural choice

model.

As usual in the discrete-choice demand literature, consumers are assumed to

make Stage 2 purchasing decisions to maximize net utility. For current purposes, I

specialize preferences using a linear structure similar to BLP [1995, 2004]:

Assumption 12. Consumers have BLP-style linear preferences with heterogeneous

tastes for product attributes x:

vijt = −αipjt + βixjt + ξjt + εijt,

where (αi, βi) are idiosyncratic preference coe�cients, ξjt is average residual taste for

product j at time t, εijt is consumer i's idiosyncratic residual taste for product j, and

consumer types ωi ≡ (αi, βi, εi) are drawn from a conditional distribution function

Fω(·|ζit) that is continuous, time-invariant, and depends (at most) on a vector of

individual- or market-level observables ζit.

Finally, I assume search costs are drawn independent of tastes (but potentially

conditional on observables) from a distribution with nonnegative support:

Assumption 13. Search costs ci are drawn conditionally independent of tastes ωi

from a distribution function Fc(·|ζit) with positive support on C ⊆ R+ that depends

(at most) on the individual- or market-level observable vector ζit.

In practice, some consumers may enjoy shopping for its own sake, in which case

the cost distribution Fc(·|ζit) will have a mass point at c = 0 and the corresponding

subpopulation of consumers will always search. All speci�cations I estimate below

permit such a mass point. The standard full-information discrete-choice demand

model is formally nested by a cost distribution Fc(·) with all mass at 0.
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Optimal search

Under assumptions 9-11, consumer i's Stage 1 search problem reduces to a binary

decision: buy a product from the display set D∪{0}, or search all available products

J at e�ort cost ci. Consumer i will thus choose to search when expected utility gain

from search exceeds ci, and will purchase from the display set otherwise.

Let preferences vijt = −αipjt + βixjt + ξjt + εijt be as above, and let uijt ≡

βixjt + ξjt + εijt denote consumer i's direct utility from consuming good j. Then

consumer i's total utility from purchasing good j at market prices p is given by

vij = uij − αipj,

with uij being the component of total utility that is always known ex ante.

Now consider consumer i's search problem. Without loss of generality, I par-

tition the price vector p into displayed prices pd and searched prices ps, so that

p ≡ (pd,ps). By assumption, pd is observed upon entering the market, but from

consumer i's perspective ps is a random vector realized only following costly search.

Conditional on choosing to purchase from the display set, consumer i obtains realized

value

v̄id(pd) = max{uik − αipk|k ∈ D}, (III.1)

and this quantity is known with certainty ex ante.20 Meanwhile, conditional on choos-

ing to search, consumer i observes the full price vector p, chooses the good yielding

the highest net utility, and obtains realized value

v̄is(p) = max{uik − αipk|k ∈ J }.
20Again, bear in mind that the outside good 0 is included in the display set by de�nition, though

to streamline presentation Equation III.1 does not explicitly indicate this.
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Consumer i's expected gain from search can thus be written

gis(pd) = Eps [v̄is(pd,ps)− v̄id(pd)]

≡ Eps [max{ui − αi · (pd,ps)}]− v̄id(pd) (III.2)

It will be optimal for consumer i to search whenever the expected net utility gain is

positive; i.e. whenever

gis(pd) ≥ ci.

Under assumption 13 above, ci is drawn independently of other preference parameters.

Consequently, the probability that consumer i will choose to search facing display

prices pd is simply

πis(pd) = F [gis(pd)], (III.3)

where gis(pd) has the known form de�ned in equation (III.2).

Predicted market shares

Now consider consumer i with preference type ωi = {αi, βi, εi} facing marketing

realizations (p,d), and de�ne a collection of binary maximand indicator functions

ιj(S; ·) over sets S and products j ∈ J as follows:21

ιj(S;p, ωi) ≡ 1[uij − αipj ≥ uik − αipk∀k ∈ S]. (III.4)

The probability that consumer i purchases product j can then be described as follows.

If consumer i with preferences ωi chooses to search, all prices are observed, the

choice set is J , and i chooses good j if

ιj(J ;p, ωi) = 1.

21That is, a set of functions such that ιj(S;p, ωi) ≡ 1 when product j is the maximand of set S
given tastes ωi at prices p and ιj(S;p, ωi) ≡ 0 otherwise.
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Alternatively, if consumer i chooses not to search, only displayed prices pd are ob-

served, the choice set is D, and i chooses good j if j ∈ D and

ιj(D;p, ωi) = 1.

Equation (III.3) implies that consumer i will search with probability

πs(p,d;ωi) = Fc[gs(pd;ωi)].

Conditional on type ωi, the probability that consumer i chooses product j is thus

σj(p,d;ωi) = dj · [1− πs(p,d;ωi)] · ιj(D;p, ωi) + πs(p,d;ωi) · ιj(J ;p, ωi).(III.5)

Integrating this function across types ωi gives the unconditional probability of choos-

ing product j:

σj(p,d; ζ) = dj

ˆ
Ω

[1− πs(p,d;ωi)] · ιj(D;p, ωi) dFω(ω; ζ) (III.6)

+

ˆ
Ω

πs(p,d;ωi) · ιj(J ;p, ωi) dFω(ω; ζ),

Finally, stacking predicted market shares σj(p,d; ζ) across products j gives the overall

(J + 1) × 1 predicted search-plus-choice demand system σ(p,d) corresponding to

marketing realizations (p,d). Display e�ects in this system correspond to the �rst

line in Equation III.6; additional technical properties are described in a supplemental

appendix.

III.4 Econometrics: implementation and estimation

As usual, estimation will involve matching predicted market shares σ(p,d; ξt) to em-

pirical choice probabilities in an estimation sample. I implement this match using
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simulated maximum likelihood under the following identi�cation hypothesis:

Assumption 14. Price, display, and feature distributions are endogenous to con-

sumer tastes, but week-to-week variation in price, display, and feature realizations is

not.

This assumption is motivated by the empirical patterns noted in Section III.1,

and is consistent with empirical surveys of retail price-setting behavior.22 It should

be plausible in almost any market exhibiting a clear regular-sale-regular price se-

quence, but is particularly so for products like detergent where underlying demand

fundamentals are likely to change only slowly over time. Short-run changes in pro-

motional realizations will then provide informative variation on underlying preference

fundamentals.23

Implementation

As above, consumer i's utility function takes the linear form vijt = −αipjt + βixjt +

ξjt + εijt. For current purposes, I assume product-level unobserved preferences ξjt

are stable across the estimation sample: ξjt = ξj for all t.
24 I adopt the following

22Two observations from the sales literature seem particularly relevant here. First, Kehoe and
Midrigan [2007] suggest that retailers typically update pricing strategies on a quarterly system,
which would imply that week-to-week demand shifts are not driving short-term price variation.
Second, Hosken and Rei�en [2007] note that sales are typically not driven by retailer margins, which
would undercut typical price instruments at the store-week level.

23More formally, estimation under Assumption 14 turns on a preference orthogonality restriction:
short-run changes in promotional realizations do not re�ect short-run changes in preferences. This
restriction could be implemented in at least three ways. First, one could invert market shares
σ(p,d; ξt) to recover product-market-level errors ξjt, and proceed based on assumed orthagonality
of week-to-week changes in tastes and preferences (e.g. (∆pjt,∆dkt) ⊥ ∆ξlt∀j, k, l). Second, one
could impose structural restrictions on the evolution of unobserved preferences ξt; for instance,
assume a Markov chain or higher-order autoregressive process. Finally, one could simply assume
that preferences ξt are constant over the period in question. I pursue the latter here, but plan to
explore the other approaches in future work.

24While I hope to incorporate time-varying ξt in future work, I here assume �xed ξ for several
reasons. First, since I pursue estimation at the store-week level, the large-market justi�cation for
standard BLP demand inversion may not hold (in particular, zero shares are common). Second,
calculating market shares σ(p,d; ξt) is computationally costly, and assuming �xed ξ signi�cantly
reduces the number of such calculations required. Third, I focus on a relatively short sample period
(one year), so assuming �xed ξ seems unlikely to substantially bias structural results. Finally, Hendel
and Nevo [2006] also assume �xed ξ, so this assumption helps to maintain comparability.
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additional parametric structure on the distributions of taste-related parameters.25

Assumption 15 (Parametrics). The fundamental type distributions Fω(·) and Fc(·)

are specialized as follows:

1. Idiosyncratic attribute-level tastes are joint normally distributed and IID across

consumers: βi ∼ N(β̄x,Σx) for all i.

2. Idiosyncratic taste residuals are IID standard normal across consumers, prod-

ucts and periods: εijt ∼ N(0, 1) for all i,j,t.

3. Search costs are distributed across the population as follows:

• Fraction λ of consumers are shoppers: have zero search cost and always

search.

• The remaining fraction (1 − λ) of consumers have positive search costs

drawn from a exponential distribution: ci ∼ 1− exp(−γci).

4. Price sensitivity is constant across consumers: αi ≡ α for all i.

βi ∼ N(β̄x,Σx) follows BLP exactly, and εijt ∼ N(0, 1) di�ers from BLP only

in substituting a normal distribution for a logit.26 The assumption that a fraction

of consumers always search is common in the sales literature (see, e.g., Pesendorfer

[2002] and Chevalier and Kashyap [2011]) and is particularly attractive in my case

since it nests the standard full-information demand model. Assuming a constant price

sensitivity α is somewhat more restrictive, but follows Hendel and Nevo [2006] and

25An interesting question I do not address here is whether the search-plus-demand model derived
above is nonparametrically identi�ed. Berry and Haile [2010b,c] have established that the standard
BLP-style discrete choice structure is nonparametrically identi�ed under relatively weak index re-
strictions on the underlying preference model. The presence of search and display e�ects renders the
corresponding analysis more complicated for the model considered here. My conjecture at present
is that the full search-plus-demand model may not be point-identi�ed, but that estimation based on
general functional forms could in principle proceed a long way toward �exible implementation.

26Normal errors permit computation of market shares using a modi�ed GHK algorithm, a proce-
dure formally described in Appendix 3 below.
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greatly simpli�es computation.27 For notational compactness, I index free preference

parameters via the vector θ ≡ {α, β̄x,Σx, λ, γ, ξ}.

Since I pursue estimation at the store level rather than the city or regional level,

standard large-sample equivalence beteween market shares and empirical purchase

frequencies may not apply. I therefore model purchase outcomes in each week as

a size-Nt draw from a multinomial distribution characterized by probability vector

σ(·; θ), where Nt is a proxy for number of consumers �in the market� in week t (to be

formalized below). My �nal store-level log-likelihood function is thus

lnL(θ) =
T∑
t=1

[
ln

Nt!

qot! · · · qJt!
+

J∑
j=0

qjt ln(σj(Mt; θ))

]
. (III.7)

where Mt = {pt,dt, ft} are marketing outcomes in week t, qt is the vector of units

sold in week t, and σj(Mt; θ) are predicted purchase probabilities at realizationMt

and parameters θ.28

Constructing Nt

Unfortunately, actual store-level market size is unobserved in practice: by nature,

scanner data contains information on quantities sold, but not on number of consumers

visiting a store. Consequently, I consider two distinct approaches to estimation, which

together span the set of plausible measures of Nt. The �rst of these, labeled narrow

Nt, takes market size to be the total units of detergent sold (both liquid and solid)

in the target store in week t. This approach probably understates the true number

of potential customers in the marketplace, but may be a plausible approximation

27In my context, letting αi to vary across consumers would require recalculating predicted market
shares for every possible value of αi. If the set of possible values is small, this should be feasible, but
it would increase computation time linearly in the number of types. I am also exploring alternative
approaches to simulation, which might permit more signi�cant variation in αi at lower computational
cost.

28One potential problem with maximum likelihood this context is that I must ultimately simulate
the likelihood function, and simulated maximum likelihood estimates are guaranteed to be consistent
only as simulation size approaches in�nity. I recognize this as a potential problem, and plan to
explore estimation based on method of moments in future work.
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for the informational reach of displays.29 The second, labeled broad Nt, combines

estimates derived from IRI-household-level panel surveys with scanner data on total

purchases in the target store to derive a prediction for market size in week t. This

approach almost certainly overstates the number of consumers actively shopping for

detergent, but likely represents a reasonable proxy for total number of consumers

visiting the store. Encouragingly, both proxies yield qualitatively similar estimates,

which suggests that results are not overly sensitive to de�nition of Nt. The rest of

this subsection gives details on the construction of my second (broad) proxy.

As noted in Section III.1, the IRI dataset contains two primary types of data:

store-level scanner data for 47 geographic markets, and BehaviorScan household-

level panel data for two selected markets (Eau Claire, Wisconsin and Pitts�eld, Mas-

sachusetts). The BehaviorScan survey includes information on both household-level

purchases and locations purchased, so I can construct a dataset relating the total

number of BehaviorScan households visiting each store in each week to total pur-

chases (across all product categories) by BehaviorScan households in that store for

that week. I then reverse this relationship via the following predictive model:

tripsst = β1 · qcat1,st + β2 · qcat2,st + · · ·+ β30 · qcat30,st + est, (III.8)

where tripsst is the total number of BehaviorScan households visiting store s in week

t, and qcatk,st is the total number of units purchased (across all UPCs) in IRI prod-

uct category k by these households at store s in week t. I then use the estimated

coe�cients β̂ plus data on total purchases in each target store to generate a proxy

for number of store visits.30 Figure B.5 in Appendix 1 illustrates the predicted Nt

resulting from this procedure.

29If anything, this approach should understate total display e�ects, since it ignores the possibility
that displays increase e�ective market size.

30Obviously, Nt is an integer, so one could also use a count data model. In this case, however,
Nt is large (more than 5000 in all periods), rounding is unlikely to be important. Further, a simple
regression model �ts the data very well. Thus a more complex approach would seem unnecessary.
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Figure III.3: Predicted vs actual visits, IRI store 652159
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Encouragingly, the simple predictive regression (III.8) �ts the BehaviorScan

data very well: R2 > 0.98. This fact is illustrated in Figure III.3, which plots predicted

versus actual visits to IRI store 652159, the store with the most observed trips in the

BehaviorScan sample. Since household purchases are likely to be fairly predictable in

aggregate, this �nding is not particularly surprising, but it does build con�dence that

the Nt proxy thus constructed provides a reasonable estimate for trips to the target

store.

Product aggregation

To simplify computation of market shares, I aggregate products to the brand-size level

in analysis.31 This is both because of the very large number of UPC-level products

in the market (217 in store 683960, and more than 400 in the Atlanta sample), and

because many of these products are likely to be very close substitutes in practice (e.g.

31This is again similar to Hendel and Nevo [2006], though my focus on promotions leads to a
slightly di�erent aggregation procedure.
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same size and brand but di�erent scents). I aggregate prices and displays within

groups as follows. First, to best re�ect �nal prices paid, I de�ne the weekly price for

each group as the weekly quantity-weighted average of UPC-level prices for products

in the group.32 Figure III.4 illustrates this procedure for the Tide 100oz group (15

UPCs); Figures B.3 and B.4 in Appendix 1 give corresponding plots for Purex 100oz

and All 100oz groups. As evident from these �gures, prices within brand-size groups

track very closely, with the sales-weighted average closely following the minimum.

Second, consistent with my fundamental hypothesis that promotions convey price

information, I take the maximum display or feature status among UPCs in a product

group as the aggregate display or feature status for each week. This approach is

corroborated by the close correlation in prices noted above, and should if anything

bias my �ndings away from the e�ects of interest.33

Table B.1 in Appendix 1 presents market-level summary statistics for the brand-

size product aggregates de�ned above. By construction, displays and features occur

somewhat more frequently in the aggregated sample than in the UPC-level data,

but summary variables otherwise look very similar. For completeness, Table B.3 in

Appendix 1 replicates the descriptive regressions in Section III.2 on brand-size prod-

uct aggregates; coe�cient magnitudes change somewhat, but all qualitative patterns

noted in Section III.2 extend. The brand-size aggregates de�ned above thus seem to

preserve the essential economic features of the underlying UPC-level sample.

Sample re�nement

Aggregating to the brand-size level reduces the dimensionality of the choice set con-

siderably, but estimation using the full remaining sample is still computationally

32Building on the intuition that products within brand-size groups are close subsitutes, I also
explored taking the minimum UPC-level price within each group as the group price. Since the two
price series track very closely, the two approaches are essentially equivalent in practice.

33In particular, UPC-level displays can never lead to a larger proportional increase in group-level
quantity sold than in UPC-level quantity sold. Hence if displays matter only at the UPC level, my
aggregation procedure will tend to dilute display e�ects.
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Figure III.4: Alternative price aggregates for Tide 100oz, IRI store 683960
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infeasible for most stores. Consequently, for each target store, I re�ne the estimation

sample as follows. First, since many brand-size pairs are almost never purchased, I

restrict attention to �important� brand-sizes, de�ned as those having weekly market

shares (by purchase frequency among liquid detergents) of at least 1.5 percent on

average in weeks sold by the target store.34 The number of �important� brand-sizes

varies between 9 and 16 for the stores considered; due to high market concentration,

these �important� products typically account for more than 90 percent of store deter-

gent purchases. Second, to minimize the impact of assuming constant market-level

preferences ξ, I focus on one-year subsets of the overall sample period. Baseline esti-

mates are based on the midpoint year in the sample (2004-2005); robustness checks on

other years yield similar results. For each target store, the baseline estimation sample

is thus a set of �important� brand-size products for the calendar year 2004-2005.35

34Note that many products appear in only portions of the sample, so 1.5 percent market share on
average in weeks sold is distinct from (and weaker than) 1.5 percent average market share over the
whole sample.

35This �nal sample is obviously a relatively small subset of the IRI dataset. As noted above, this
is primarily due to computation costs, which increase roughly linearly in the number of brand-store-
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Incorporating features

My discussion thus far has focused on displays, which have a clear structural in-

terpretation in the demand context I consider. The descriptive analysis in Section

III.2 suggests that feature advertisements also have large and signi�cant e�ects on

purchase outcomes, but their structural interpretation in a model of in-store choice

is somewhat less obvious. Consequently, my baseline speci�cation simply assumes

that features shift the distribution of tastes in the market. This approach is based

on the hypothesis that consumers with high tastes for a particular product may be

more likely to enter the market in weeks that product is featured. I have also ex-

plored estimation under the assumption that features are equivalent to displays, an

approach motivated by the possibility that features convey information to at least

some consumers. However, preliminary estimates suggest that the baseline approach

provides a substantially better �t, so my subsequent discussion concentrates on the

baseline case.

Estimation

Computation of the market demand system σ(·) involves two interrelated complica-

tions: purchase outcomes must be simulated conditional on endogenous search, and

simulation of search probabilities πs(·) must account for the fact that consumers will

select into search based on preferences for nondisplayed goods. Further, robust im-

plementation of the maximum likelihood approach above requires nonzero purchase

outcomes to have nonzero purchase probabilities, a result not guaranteed under simple

frequency methods. To address these concerns, I employ a modi�ed Geweke, Haji-

vassiliou, and Keane (GHK) probit simulator, which reweights GHK draws by search

probabilities simulated via price resampling to produce a consistent, always-positive,

weeks considered. Further, by design, my selection rules at every level are orthogonal to my questions
of interest: �rst alphabetical IRI market, largest stores in this market, and sample midpoint in this
store.

68



smooth-in-parameters simulator of σ(·).36 Since in practice most price variation is

induced by week-to-week sale discounts, I implement price resampling based on the

following specialization of Assumption 9:

Assumption 16. Consumers know regular prices rt but must search over sale real-

izations ∆pt ≡ pt − rt. Further, the distribution of sale realizations F∆p(·) is stable

over the sample period.

For simplicity, the resampling algorithm I employ below further assumes that

sale realizations ∆pj are independent across products. This additional restriction is

not essential, however, and will be relaxed in future work.37 Additional details on

simulation are given in Appendix 3.

While this simulator for σ(·) renders maximum likelihood estimation tractable,

the underlying objective function III.7 may not be well-behaved. Consequently, I

implement estimation using an optimization approach pioneered by Chernozhukov

and Hong [2003]: classical estimation based on Markov Chain Monte Carlo (MCMC)

simulation. In my context, the main idea of this approach is to interpret the likelihood

function III.7 as a Bayesian posterior distribution derived from a �at prior. I can then

use the Metropolis-Hastings MCMC algorithm to generate a sample of draws from

this distribution. For my purposes, this approach has three key advantages. First,

by construction, MCMC sampling yields a sample representative of the full target

distribution, so estimation based on this algorithm will eventually �nd the global

maximum. Second, by de�nition, sample draws will be concentrated in areas with

high likelihood, so the best objective value obtained in an extended sample should

be close to the true maximum. Finally, if desired, one can interpret results as pure

36See, e.g., Geweke et al. [1994] for a description of the GHK algorithm; details of the extended
simulator are described in Appendix 3.

37In particular, studies of retail sales typically �nd that sale realizations are somewhat negatively
correlated across competing products. One natural extension would be to model sale realizations
using a copula structure. This would slightly complicate price resampling, but simulation could
otherwise proceed as above.
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Bayesian estimates, which yields con�dence bounds on parameters of interest. Thus

the Chernozhukov and Hong [2003] approach is ideal for the maximum likelihood

problem I consider.

III.5 Results

This section reports results from applying three structural demand speci�cations to

data on six Atlanta stores using variants of the procedure above. My main focus in this

section is of course the search-plus-demand model developed above, where displays

convey information as in Section III.3 and features enter as preference shifters. For

elasticity and model �t comparisons, I also estimate two standard full-information

demand models: a naive speci�cation ignoring promotions altogether, and a more

sophisticated model a la Hendel and Nevo [2006] where displays and features enter as

preference shifters. In all speci�cations, product attributesXj include dummies for all

brands and a bulk dummy for sizes above 125oz. Consumers have random preferences

βi ∼ N(0,Σx) over these attributes, where as in BLP I assume Σx diagonal. As a

reduced-form proxy for potential dynamic e�ects, all speci�cations also include 4 lags

of units sold in the utility function.38 GHK simulations in all cases are based on 200

preference draws and search simulations are based on 200 price draws.39

Structural parameters

Table III.4 reports core structural parameters resulting from application of the base-

line search speci�cation to six large stores in the Atlanta market via Chernozhukov-

Hong MCMC estimation. Results in Table III.4 are based on the narrow Nt proxy

(total category purchases) de�ned in Section III.4; corresponding estimates for my

38This approach is similar to that of Pesendorfer [2002], whose reduced-form model incorporates
dynamic e�ects via a lagged time-since-sale variable. I use lagged units sold rather than lagged
time-since-sale to better re�ect Hendel and Nevo [2006]'s insight that current product stocks should
a�ect utility of additional purchase.

39I experimented with other simulation sizes, but settled on (200, 200) as a reasonable balance of
accuracy and computation speed.
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broad Nt proxy (total store visits) are given in Table B.6 in Appendix 1. As above, α

is price sensitivity, λ is the fraction of shoppers in the market, and γ is the mean of the

exponential search cost distribution among non-shoppers. The parameters lag1-lag4

denote utility e�ects of lagged total purchases, where all lagged-purchase variables

have been centered and rescaled in terms of standard deviations. Finally, ftaste

coe�cients give the estimated e�ect of a feature promotion represented as a utility

shifter; as noted above, this representation is motivated by the fact that consumers

with high preferences for a particular product may be more likely to enter the market

when that product is featured. 95 percent Bayesian con�dence intervals based on the

last 10,000 steps in each MCMC sequence are given in parentheses.40

Parameter values in Table III.4 suggest the presence of substantial informational

e�ects, though estimated search patterns di�er somewhat across stores. The cross-

store medians of the core search-related parameters α, λ, and γ, are 0.428, 0.477,

and 0.72 respectively, which taken together would imply that roughly 100 · (1− λ) =

53.3 percent of consumers have positive search costs, with a mean dollar search cost

of approximately (γ/α) = $1.68 among this sub-population.41 The �rst four cases

are relatively heterogeneous, with estimated parameters similar to the cross-store

median, but the last two cases involve estimated γ's much larger than the median.

These latter two estimates would be too large to plausibly represent search costs,

but can be interpreted as consistent with simple models of exogenous consideration

appearing frequently; where, for instance, consumers make shopping decisions prior to

entering the store, and hence do not respond actively to displayed prices.42 In practice,

however, the last two cases may be outliers driven by a short estimation sample.

40Burn-in for all MCMC simulations involved a combination of directed search and MCMC sim-
ulation, with length varying by algorithm used. Results reported re�ect stationary series in the
underlying objective.

41This cost estimate is consistent with although slightly lower than that reported by Seiler [2011],
who reports mean costs of roughly $3.00-$4.50. My lower estimate is natural given that I explore
the search intensity following market entry, whereas Seiler focus on the market entry decision itself.

42See, e.g., Pesendorfer [2002], Chevalier and Kashyap [2011], and Glandon [2011] for three rep-
resentative examples of exogenous consideration models.
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Figure III.5: Implied structural search cost distributions, narrow Nt
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Intuitively, identi�cation of search-related parameters turns on two key patterns in

the data: level increases in quantity sold due to displays help to pin down the intercept

parameter λ, and increases in price responsiveness for displayed products help to pin

down the shape parameter γ. Both patterns hold robustly at the brand-size level

for the entire market and for all six store-level subsamples over the entire 2002-2007

sample, but the second pattern obtains only for the �rst four store-level subsamples

over the 2004-2005 estimation period (see Tables B.4 and B.5 in Appendix 1). It is

therefore not particularly surprisingly that the two exceptions also produce irregular

estimates of γ. Thus the results in Table III.4 both con�rm the structural importance

of display e�ects and motivate ongoing re�nement of the estimation algorithm.43

Figure III.5 (in text) and Tables B.7 and B.8 (in Appendix 1) give some addi-

tional interpretation of the estimated structural parameters. Figure III.5 graphically

represents the search cost distributions implied by the store-level parameters in Table

III.4, where the vertical intercept of each distribution gives the fraction of shoppers

43In particular, I am currently implementing estimation based on longer sample periods and
incorporating pooling across stores. This in turn should minimize the potential impact of small-
sample irregularities in estimation.
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λ, the shape of each distribution above zero is determined by the exponential param-

eter γ, and values on the horizontal axis have been normalized by α to express costs

in dollar equivalents. Meanwhile, Tables B.7, and B.8 summarize elasticities derived

from the structural estimates: Table B.7 presents own-price elasticities for all stores in

the estimation sample, and Table B.8 gives a full set of cross-price elasticities for one

representative store (266100), where elasticities in each case are calculated relative to

a no-promotion baseline period.

Elasticity comparisions

One key objective of this study is to explore how accounting for interactions be-

tween limited consumer information and in-store displays might in�uence elasticities

derived from a structural demand model. To address this question, I estimate two

full-information demand models for each of the six stores in my estimation sample:

the �rst a naive speci�cation ignoring promotions altogether, and the second incor-

porating promotions via preference dummies a la Hendel and Nevo [2006]. I then

compare structural price elasticities implied by these models with those based on the

full search-plus-demand model above.

Table III.5 and Figure III.6 summarize results of this procedure. Table III.5

presents one example of this cross-speci�cation comparison; in this case, implied

own-price elasticities for all speci�cations estimated for Store 266100. Consistent

with the reduced-form patterns noted in Section III.2, this table suggests that pro-

motions matter in demand analysis: the naive full-information model yields much

larger elasticities than either comparison speci�cation, with the full search model

typically (though not always) producing the smallest estimates. Figure III.6 extends

this comparison to the full estimation sample via a histogram plot, where observations

correspond to store-product pairs and values on the horizontal axis represent the ratio

of each full-information store-product elasticity to its full-search counterpart. This
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Table III.5: Implied own-price elasticities, store 266100 (no-promo baseline)
Full Info

Product Naive Promo FX Search
ALL100 4.67 2.25 2.15

SURF100 5.57 2.34 3.34
AH125 2.33 1.51 1.38

CHEER80 2.44 1.66 1.47

ERA100 3.23 2.62 1.40

FAB100 3.28 2.77 3.01
GAIN100 4.34 2.87 2.23

PUREX100 3.58 2.13 1.81

PUREX200 5.54 3.41 3.42
TIDE100 2.53 2.06 1.53

TIDE200 7.86 5.27 5.82
WISK100 5.52 4.12 2.93

Notes: elasticities based on no-promo baseline
period; row minimums in bold.

full-sample analysis strongly con�rms the conclusions of Table III.5: incorporating

promotions lead to large reductions in estimated elasticities, with naive elasticites bi-

ased upward approximately 64.5 percent relative to the full search model. In contrast

to preliminary reduced-form estimates, however, there is relatively little di�erence

between estimates based on preference and those fully incorporating search; only a

3.9 percent reduction on average. Thus while preference dummies may not elimate all

sources of potential bias, Figure III.6 suggests they may be practically su�cient for

many questions not directly involving search � a useful result in its own right, given

the additional challenges of full search implementation.

Validation and comparisions

To assess the performance of the structural search-plus-demand model, I compare

empirical purchase frequencies with corresponding market shares predicted by the

model. Figure III.7 provides one example of this model validation exercise, plotting

actual versus predicted market shares for the four most purchase brand-sizes in store

266100. Figure B.6 in Appendix 1 provides a corresponding plot for store 683960.
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Figure III.6: Full-info demand elasticities relative to search-plus-demand equivalents
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On balance, these examples suggest the search-plus-demand model �ts the data well:

predicted shares closely match both average shares and promotion-induced spikes,

though with a slight tendency to underpredict promotional e�ects. Thus while the

underlying model is obviously stylized, it seems to match important patterns in the

data well.

Finally, I directly compare the full search-plus-demand model with my two

full-information alternatives. Table B.9 in Appendix 1 presents one representative

store-level parameter comparison; not surprisingly, the naive full-information model

consistently yields larger price sensitivity estimates, but otherwise few clear patterns

exist. Meanwhile, Table III.6 presents maximized likelihood values for each store and

speci�cation estimated. This comparison suggests that the full search-plus-demand

model achieves the best in-sample �t of the three models, attaining the maximal

likelihood value for all six stores considered (with the naive model typically worst

by a substantial margin). This �nding is both encouraging and consistent with the

intuition in Section III.2: modeling displays as preference shifters will naturally gen-

erate increases in quantity sold, but not necessarily increases in price responsiveness.

Such increased price responsiveness is an important empirical consequence of displays,
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Figure III.7: Actual vs predicted market shares, store 266100
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Table III.6: Model �t by store and speci�cation (narrow Nt)

Spec / Store 250094 263568 266100 653369 243785 683960

Naive -2468.4 -2505.9 -2310.8 -2104.9 -2030.6 -2526.3

Promo FX -2161.7 -2188.8 -2149.2 -1968.4 -1949.2 -2303.8

Full search -2141.3 -2132 -2113.8 -1942 -1895.4 -2270.5

Notes: Cells give best attained likelihood values; likelihood calculations involve

�tting model-speci�c choice probabilities to store-speci�c estimation sample.

which in turn suggests that the full search-plus demand model may be capturing a

channel of consumer response missed by standard full-information demand models.

Counterfactuals

The potential interaction between search and displays raises an interesting set of

counterfactual questions: how much of the e�ect of a displayed price reduction is due

to the price, how much to the display, and how much to changes in search behavior

induced by the interaction of both? To explore this issue, I use the structural search-

plus-demand estimates obtained above to decompose the overall e�ect of a displayed
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Figure III.8: Counterfactual simulation: Search vs purchase e�ects
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price reduction into three channels: an e�ect on search, an e�ect on purchase given

search, and an e�ect on purchase given no search. Figure III.8 plots the results of this

exercise for one representative product (Tide 100oz in Store 266100), where counter-

factuals are relative to a baseline market with no other displays or sales. This �gure

in turn suggests two interesting patterns. First, as expected, displays induce both a

level shift in quantity sold and an increased quantity response to price reductions.

This can be seen by comparing the overall purchase probability Pr(buy j) with the

corresponding no-display baseline: the intercept di�erence re�ects a level shift, and

the slope di�erence re�ects an increase in price responsiveness. Second, endogenous

search tends to amplify the purchase e�ects of a displayed price reduction: search

probability decreases as the sale discount increases, thereby shifting more consumers

toward the displayed product. Both e�ects are consistent with the reduced-form pat-

terns noted in Section III.3, and tend to con�rm the potential structural importance

of displays.
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Finally, Table III.7 presents a counterfactual exercise illustrating interactions

between various forms of promotional e�ects. Starting from a mid-sample baseline

period (Week 27) in Store 27, I simulate predicted market shares under observed

marketing realizations and four alternative hypotheses: no promotions, no displays,

no features, and no sale discounts. This particular example involves a variety of

interesting features: one displayed product (Tide 100oz), three featured products

(Era 100oz, Gain 100oz, andWisk 100oz), and three substantially discounted products

(Fab 100oz, Gain 100oz, and Wisk 100oz), with Tide 100oz only displayed, Era 100oz

featured with only a minimal discount (4 percent), and Fab 100oz only discounted.

Simulation results illustrate both the e�ect of displays speci�cally and the presence of

substantial cross-e�ects across promotions and products. Comparing columns (2) and

(4) illustrates the potential importance of displays: the predicted purchase incidence

of Tide 100oz increases 2.8 points by virtue of display alone (from 11.37 percent to

14.17 percent), of which about 1.3 points represent purchases diverted from other

products. Comparisons across the remaining columns highlight potential e�ects and

cross-e�ects of other forms of promotions. For instance, note that the combination of

feature and sale nearly doubles the predicted share of Gain 100oz, and that shifting

from �no displays� to �no promotions� increases the predicted market share of Tide

100oz substantially (from 11.37 to 12.52 percent). Since Tide 100oz is displayed but

not on sale or featured, the latter change is coming entirely through cross-e�ects from

other promotions.

III.6 Conclusion

Motivated by several prominent features of retail markets, this paper develops a struc-

tural model of consumer choice in an environment with informative in-store displays

and costly price search. This model is then applied to obtain structural search-plus-

choice estimates for a representative target market, using short-run sale-induced price
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variation to recover preference parameters and short-run display-induced informa-

tional variation to recover search parameters. Consistent with preliminary reduced-

form analysis, structural parameter estimates imply substantial search e�ects, with

roughly 52 percent of consumers having positive search costs and a mean search cost

of roughly $1.68 among this sub-population. Displays and promotions are also shown

to have important e�ects on estimated elasticities, though the results presented here

suggest these can be accounted for in large part using preference dummies. Finally,

I use my structural results to explore potential interaction between search and pur-

chase decisions and to simulate counterfactual e�ects of price, feature, and display

promotions.

While the results presented here are substantial, there is still room to re�ne

several dimensions of the underlying structural model. First, to improve precision of

parameter estimates, I am currently implementing estimation based on longer samples

and incorporating pooling across stores; possibilities in both dimensions are limited

only by computing resources available. Second, to better capture potential unobserved

heterogeneity, I am considering estimation permitting multiple consumer types. This

extension will also involve some additional computational cost, but otherwise should

be straightforward. Third, the IRI dataset also classi�es displays and features by

type, and in future work I hope to better employ this more nuanced data. Finally,

while one objective this paper was to develop a model estimable using only scanner

data, I ultimately intend to pursue an application to IRI household-level panel data.

This should both allow direct observation of no-purchase outcomes and permit a

considerably richer household-level preference model.

Dynamics represent another fruitful avenue for future exploration. Notably,

while Hendel and Nevo [2006] �nd that intertemporal substitution is an important

channel by which consumers respond to price discounts, Seiler [2011] obtains much

smaller intertemporal purchase responses in a model with costly search. This �nd-
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ing suggests that accounting for information frictions reduces the scope for potential

dynamic e�ects, which in turn supports the static approach considered here.44 Nev-

ertheless, a more thorough exploration of potential dynamic e�ects would be valuable

both in terms of robustness and to deepen our understanding of the relationship be-

tween search and other possible channels for promotional e�ect. Consequently, I am

currently investigating other possible simulation algorithms, which may permit full

dynamic estimation using the IRI household panel sample in future work.45

Finally, my work thus far raises broader questions about the economics of search

in retail markets. The most obvious of these is also the simplest: what do consumers

actually know? Motivated by empirical patterns in retail markets, I extend the clas-

sical full-information demand paradigm to a simple model of rational search. This

approach is distinct from standard marketing models of consideration, which typically

take more of a reduced-form behavioral approach.46 The practical interplay between

�search� in the Stigler [1961] sense and �consideration� in the marketing sense is an

interesting topic worth further study. The structural search model explored here may

also have implications for understanding the supply side of retail markets: sales are

frequently interpreted as a means for retailers to discriminate between consumers

with di�erent willingness to search, and displays may well serve a similar function.

This is a fascinating question to which I hope to return in more detail in the future.

44I thank Stephan Seiler for clarifying my interpretation on this point.
45Panel estimation would also permit exploration of dynamic consideration e�ects: evidence from

marketing suggests that consumers are more likely to consider products they have previously pur-
chased. This would provide additional motivation for manufacturers to encourage displays, and is
an avenue I hope to explore in future work.

46See, e.g., Goeree [2008] for an example of a pure consideration model in the economics literature;
Santos et al. [2010] directly compare several leading search models in the context of online book
markets.
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APPENDIX A

TECHNICAL DETAILS

A.1 Proofs from Chapter 1

Proof of Proposition I.1 (following Krishna [2009]). WLOG, restrict attention to di-
rect mechanisms with equilibria such that participants truthfully report types. In
particular, let M be an arbitrary direct mechanism involving allocation rule Q(v;E)
and payment rule P (v;E), where v is a vector of (realized) bidder values and E ≡
(s̄, N) is an entry structure, and let q(vi;E) ≡

´
V−i

Q(vi,v−i, E)f(v−i|E)dv−i and

p(vi;E) ≡
´
V−i

P (vi,v−i, E)f(v−i|E)dv−i be the corresponding (expected) allocation
and payment functions facing bidder i.

Now consider an arbitrary bidder with value vi ∈ V , and note that by construc-
tion the mechanism α(·) permits bidders to report any signal z in Z = [0, v̄]. Thus
for truth-telling to be an equilibrium, we must have

π(vi;E) ≡ q(vi;E) · vi − p(vi;E) ≥ max
z∈Z
{q(z;E) · vi − p(z;E)}.

It follows that π(vi;E) is the maximum of a family of a�ne functions, which in turn
implies that π(·;E) is a convex function on V .

By the Integral Form Envelope Theorem (see Milgrom [2004]), this restriction in
turn implies that any incentive-compatible direct mechanism must yield equilibrium
bidder pro�t π(·;E) of the form

π(v;E) = π0(E) +

ˆ v

v
q(y;E) dy,

where π0(E) is the (mechanism-determined) pro�t of the lowest entering bidder.
Now consider RS auctions speci�cally. By De�nition I.1, the probability of

allocation to an entering bidder with value y is

q(y;E) = α(y) · Pr(Wj ≤ y ∀j)
= α(y) ·

∏
j 6=i

Pr(Wj ≤ y)

= α(y) · F ∗w(y; s̄)N−1,

where Wj ≡ 1[sj ≥ s̄] · vj is the realized value of bidder j. Corresponding low-type
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pro�ts are

π0(E) ≡ α(v)s̄N−1v − p0(E),

where p0(E) are mechanism-determined expected payments of a low-type bidder given
entry structure E.

Finally, note that under Assumption 5 we have

p0(E) ≡ s̄N−1α(v)v −
ˆ v̄

0

α(y)dy − E[ρ|s̄, N ],

where E[ρ|s̄, N ] is de�ned as in Equation I.4. The characterization in Proposition I.1
follows immediately.

Proof of Lemma I.1. Let M be any RS mechanism satisfying Assumptions 1-5, and
suppose that M involves award rule α(·) and induces low-type payment p0(z−i). De-
�ne ρ̂(z−i) as follows:

ρ̂(z−i) ≡ p0(z−i)− 1[n = 1]

{
α(v)v −

ˆ v

0

α(y)dy

}
Now de�ne p̂(zi; z−i) for zi ≤ v as in Lemma I.1:

p̂(z; z−i) = 1[n = 1]

{
α(zi)zi −

ˆ zi

0

α(y)dy

}
+ ρ̂(z−i).

By construction of ρ̂(z−i), p̂(·) induces the same realized low-type payments as p0(·)
under truthful revelation:

p̂(v ; z−i) = 1[n = 1]

{
α(v)v −

ˆ v

0

α(y)dy

}
+ ρ̂(z−i)

≡ p0(z−i).

It remains only to show that p̂(·) induces truthful revelation from an entrant with
type v . The initial mechanism induced an equilibrium, so zi > v cannot be optimal.
For zi ≤ v , the new mechanism induces pro�t

π(zi; z−i) = 1[n = 1]α(zi)v − p̂(z; z−i)

= 1[n = 1]

[
α(zi)[v − zi] +

ˆ zi

0

α(y)dy

]
− ρ̂(z−i).
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The derivative of this function with respect to the report z is

π′(z; zi) = 1[n = 1]α′(z)[v − z] ≥ 0∀z ≤ v .

Thus a low-type bidder can do no better than to report zi ≡ v . Equivalence of
p̂(z; z−i) with p0(z−i) then follows immediately from above.

Proof. Consider �rst the social optimum when r = 0. By de�nition, social welfare at
entry threshold s̄ is the expected value of the object to the highest bidder less total
expected entry costs:

S(s̄) ≡ E[Y1:N |s̄]−N(1− s̄)c

=

ˆ v̄

0

yg∗1:N(y; s̄)dy −N(1− s̄)c

= v̄ −
ˆ v̄

0

G∗1:N(y; s̄)dy −N(1− s̄)c

= v̄ −
ˆ v̄

0

[s̄+

ˆ 1

s̄

F (y|t)dt]Ndy −N(1− s̄)c (A.1)

where the third line follows from integration by parts and the last line follows by
de�nition of G∗1:N(·).

Di�erentiating this expression with respect to s̄ yields a FOC characterizing
socially optimal entry s∗:

S ′(ŝ) = −N
ˆ v̄

0

F ∗w(y; ŝ)N−1[1− F (y|ŝ)] +Nc ≡ 0.

Let s̄e be the entry threshold corresponding to entry fee e. By Proposition I.2, s̄e
satis�es ˆ v̄

0

F ∗w(y; s̄e)
N−1[1− F (y|s̄e)] ≡ c+ e.

When e = 0, we thus get
´ v̄

0
F ∗w(y; s̄0)N−1[1 − F (y|s̄0)] ≡ c, which in turn implies

S ′(s̄0) = 0. Further, by the proof of Proposition I.2, we know ∂
∂s
{F ∗w(y; s)N−1[1 −

F (y|s)]} ≥ 0 for any y, so S ′′(s) ≤ 0 and ŝ = s̄0 is the unique global optimum. Hence
when r = 0, social welfare is maximized by setting e = 0.

Finally, note that r 6= 0 can never improve social welfare. Reserve prices a�ect
surplus in two ways: by shifting the equilibrium threshold s̄, and by a�ecting the
allocation of the object being sold. The �rst e�ect can be o�set via an appropriate
entry subsidy (a transfer, hence welfare-neutral). The second e�ect must decrease
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allocative e�ciency (and hence social welfare). For any (s̄, r), we thus conclude:

S(s̄; r) ≤ S(s̄; 0) ≤ S(ŝ; 0).

Hence the social optimum obtains when the seller sets no reservation price or entry
fee: ê = 0 and r̂ = 0.

Proof of Proposition I.5. Assume r = 0, and focus on second-price auctions WLOG.
Since there is a one-to-one correspondence between the entry fee e and the entry
threshold s, we can derive optimal policy in terms of either. When r = 0, expected
revenue under equilibrium threshold s is

R∗(s) =

ˆ v̄

0

y dG∗2:N(y; s) +N(1− s) · e(s),

where e(s) ≡
´ v̄

0
[1 − F (y|s)]F ∗w(y; s)N−1dy − c is the entry fee required to produce

equilibrium threshold s. Integrating by parts and substituting for e(s) then gives

R∗(s) = v̄ −
ˆ v̄

0

G∗2:N(y; s)dy +N(1− s)
ˆ v̄

0

[1− F (y|s)]F ∗w(y; s)N−1dy −N(1− s)c

= v̄ −N
ˆ v̄

0

[1− F ∗w(y; s)]F ∗w(y; s)N−1 −
ˆ v̄

0

F ∗w(y; s)Ndy

+N(1− s)
ˆ v̄

0

[1− F (y|s)]F ∗w(y; s)N−1dy −N(1− s)c

= v̄ −N(1− s)
ˆ v̄

0

[1− F ∗(y; s)]F ∗w(y; s)N−1 −
ˆ v̄

0

F ∗w(y; s)Ndy

+N(1− s)
ˆ v̄

0

[1− F (y|s)]F ∗w(y; s)N−1dy −N(1− s)c

=

{
v̄ −
ˆ v̄

0

F ∗w(y; s)Ndy −N(1− s)c
}
−
{
N(1− s)

ˆ v̄

0

[F (y|s)− F ∗(y; s)]F ∗w(y; s)N−1dy

}
,

where the �rst term represents expected total surplus (see Equation (A.1)) and the
second represents net pro�t accruing to inframarginal bidders.

Di�erentiating this expression yields the necessary FOC for the seller's optimal
threshold s∗:

R∗s(s) =

{
−N
ˆ v̄

0

[1− F (y|s)]F ∗w(y; s)N−1dy +Nc

}
− ∂

∂s

{
N(1− s)

ˆ v̄

0

[F (y|s)− F ∗(y; s)]F ∗w(y; s)N−1dy

}
. (A.2)
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In the �regular� case, net bidder pro�t should be decreasing in total entry costs. In
this case, total bidder pro�ts will also be decreasing in the entry threshold s (since e
and s are monotonically related), so the derivative of the second term will be negative.
We know (from I.4) that the �rst term vanishes at the social optimum ŝ. Hence in
the regular case we expect

R∗s(ŝ) = − ∂

∂s

{
N(1− ŝ)

ˆ v̄

0

[F (y|ŝ)− F ∗(y; ŝ)]F ∗w(y; ŝ)N−1dy

}
> 0,

and a revenue-maximizing seller will set s∗ > ŝ (or equivalently e∗ > 0).
Analytically, however, it is not clear that net bidder pro�t must be decreasing

in total entry cost for all possible fundamentals. Consequently, we derive an explicit
form for R∗s(s) as well:

R∗s(s) =

{
−N
ˆ v̄

0

[1− F (y|s)]F ∗w(y; s)N−1dy +Nc

}
+N

ˆ v̄

0

[F (y|s)− F ∗(y; s)]F ∗w(y; s)N−1dy

−N(1− s)
ˆ v̄

0

Fs(y|s)F ∗w(y; s)N−1dy

+N(1− s)
ˆ v̄

0

[
∂

∂s
F ∗(y; s)]F ∗w(y; s)N−1dy

−N(1− s)
ˆ v̄

0

[F (y|s)− F ∗(y; s)] · (N − 1)F ∗w(y; s)N−2[1− F (y|s)]dy

=

{
−N
ˆ v̄

0

[1− F (y|s)]F ∗w(y; s)N−1dy +Nc

}
− {N(1− s)

ˆ v̄

0

Fs(y|s)F ∗w(y; s)N−1dy

+N(1− s)
ˆ v̄

0

[F (y|s)− F ∗(y; s)] · (N − 1)F ∗w(y; s)N−2[1− F (y|s)]dy }

where the second and fourth lines of the �rst equality cancel since

∂

∂s
F ∗(y; s) ≡ ∂

∂s

{
1

1− s

ˆ 1

s

F (y|t)dt
}

=

{
1

1− s

}2 ˆ 1

s

F (y|t)dt− 1

1− s
F (y|s)

= − 1

1− s
[F (y|s)− F ∗(y; s)].

We thus obtain R∗s(s) given in Lemma I.5. By construction, the seller's optimal
threshold will satisfy R∗s(s

∗) ≡ 0, but without being able to sign the derivative of
bidder pro�t the relationship of s∗ to ŝ may be ambiguous in general.

97



Proof of Corollary I.2. Though Corollary I.2 is a special case of Lemma I.5, the spe-
cial features of the S model make it easier to establish directly. Entry in the S model
will involve a value threshold ȳ such that bidder i will enter if and only if vi ≥ ȳ.1 A
bidder with value vi = ȳ wins only when no other bidder enters, so given entry fee e
this threshold satis�es the following breakeven condition:

ȳF (ȳ)N−1 ≡ c+ e.

As above, seller revenue corresponding to threshold ȳ is the expected value of the
second-highest entrant plus total expected entry fees:

R∗(ȳ) = v̄ −
ˆ v̄

0

G∗2:N(y; ȳ)dy +N [1− F (ȳ)][ȳF (ȳ)N−1 − c]

= v̄ −
ˆ v̄

ȳ

{
N [1− F (y)]F (y)N−1 + F (y)N

}
dy

−
ˆ ȳ

0

{
N [1− F (ȳ)]F (ȳ)N−1 + F (ȳ)N

}
dy

+N [1− F (ȳ)][ȳF (ȳ)N−1 − c]

= v̄ −
ˆ v̄

ȳ

{
N [1− F (y)]F (y)N−1 + F (y)N

}
dy

−ȳF (ȳ)N −N [1− F (ȳ)]c,

where the second equality follows since in the S case

F ∗w(y; ȳ) ≡ F (ȳ) + [1− F (ȳ)]1[y ≥ ȳ] · F (y)− F (ȳ)

1− F (ȳ)

= F (ȳ) + 1[y ≥ ȳ] · [F (y)− F (ȳ)].

Di�erentiating R∗(ȳ) and simplifying yields:

R∗y(ȳ) = N [1− F (ȳ)]F (ȳ)N−1 −N [ȳF (ȳ)N−1 − c]f(ȳ).

The seller's optimum y∗ will satisfy R∗y(y
∗) ≡ 0. Meanwhile, from Proposition I.4 we

know the social optimum ŷ satis�es ŷF (ŷ)N−1 ≡ c, so we must have R∗y(ŷ) ≥ 0. We
thus conclude y∗ 6= ŷ in general, and under standard regularity conditions we will
have y∗ > ŷ.

1In particular, under the normalization assumption above, we would have ȳ ≡ F−1
y (s̄).
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Proof of Proposition I.6. Seller revenue corresponding to reserve price r ≥ 0 at entry
threshold s is given by

R(r; s) = E∗[Y2:N |Y2:N ≥ r; s] Pr(Y2:N ≥ r|s) + r · Pr(Y1:N ≥ r ∩ Y2:N ≤ r|s)

= yG∗2:N(y; s)|v̄r −
ˆ v̄

r

G∗2:N(y; s)dy + r[1− F ∗w(r; s)]F ∗w(r; s)N−1

= v̄ − r
{

[1− F ∗w(r; s)]F ∗w(r; s)N−1 + F ∗w(r; s)N
}

−
ˆ v̄

r

G∗2:N(y; s)dy + r[1− F ∗w(r; s)]F ∗w(r; s)N−1

= v̄ −
ˆ v̄

r

G∗2:N(y; s)dy − rF ∗w(r; s)N−1.

As in the proof of Proposition I.5, we frame the problem as a choice of the optimal
entry threshold: R∗(s) ≡ R(r(s), s), where r(s) is the reserve price inducing equi-
librium entry s. Di�erentiating with respect to s then yields the seller's necessary
FOC:

R∗s(s
∗) ≡ Rr[(r(s

∗), s∗]r′(s∗) +Rs[r(s
∗), s∗] = 0.

We obtain Rr(r, s) and Rs(r, s) directly from above:

Rr(r, s) = N(1− s)F ∗w(r, s)N−1[1− F ∗(r; s)]− r ·N(1− s)F ∗w(r; s)N−1f ∗(r; s),

Rs(r, s) = −N(N − 1)(1− s)
ˆ v̄

r

[1− F ∗(y; s)]F ∗w(y; s)N−2[1− F (y|s)]dy.

We obtain r′(s) by di�erentiating the Stage 1 entry equilibrium condition (I.7) com-
pletely with respect to s:

ˆ v̄

r(s)

[1− F (y|s)]F ∗w(y; s)dy ≡ c,

which in turn implies

r′(s) · [1− F (r|s)]F ∗w(r; s)N−1 = (N − 1)

ˆ v̄

r

[1− F (y|s)]F ∗w(y; s)N−1[1− F (y|s)]dy

−
ˆ v̄

r

Fs(y|s) · F ∗w(y; s)N−1dy.

We could combine all these elements to obtain an explicit form for the seller's FOC,
but in general this condition is likely to be unwieldy and unintuitive. We therefore
focus instead on the derivative at ŝ. By Proposition I.4, we know r(ŝ) ≡ 0, so the
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relevant terms are

Rr(0, ŝ) = N(1− ŝ)ŝN−1

Rs(0, ŝ) = −N(N − 1)(1− ŝ)
ˆ v̄

0

[1− F ∗(y; ŝ)]F ∗w(y; ŝ)N−2[1− F (y|ŝ)]dy

r′(ŝ)ŝN−1 = (N − 1)

ˆ v̄

0

[1− F (y|ŝ)]F ∗w(y; ŝ)N−1[1− F (y|ŝ)]dy

−
ˆ v̄

0

Fs(y|ŝ) · F ∗w(y; ŝ)N−1dy.

Finally, combining these terms and simplifying gives

R∗s(ŝ) ∝
ˆ v̄

0

(−1)Fs(y|ŝ) · F ∗w(y; ŝ)N−1dy

−(N − 1)

ˆ v̄

0

[F (y|ŝ)− F ∗(y; ŝ)]F ∗w(y; ŝ)N−2[1− F (y|ŝ)]dy.

Inspection reveals that this expression is identical to the last two terms of Equation
(I.12) of Proposition I.5. Hence the seller can gain by setting a positive reserve price
under the same conditions that the seller can gain by setting a positive entry fee. By
the argument in the proof of Proposition I.5, a su�cient condition for such gain to
be feasible is for potential bidders to strictly prefer lower total entry costs.

Proof of Corollary I.4. By arguments similar to those in the proofs of Proposition I.6
and Corollary I.2, we eventually obtain:

R(r, ȳ) = v̄ − ȳ
{
N [1− F (ȳ)]F (ȳ)N−1 + F (ȳ)N

}
+ rN [1− F (ȳ)]F (ȳ)N−1

−
ˆ v̄

ȳ

{
N [1− F (y)]F (y)N−1 + F (y)N

}
dy,

again (repeatedly) taking advantage of the fact that

F ∗w(y; ȳ) =

{
F (ȳ) if y ≤ ȳ

F (y) if y ≥ ȳ.

Again proceeding as in Corollary I.2, we �nd that ȳ is related to r by the breakeven
condition:

(ȳ − r)F (ȳ)N−1 ≡ c.
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Taking appropriate partial and total derivatives, we thus conclude

Rr(r, ȳ) = N [1− F (ȳ)]F (ȳ)N−1

Ry(r, ȳ) = −(ȳ − r) ·N(N − 1)[1− F (ȳ)]F (ȳ)N−2f(ȳ)− r ·NF (ȳ)N−1f(ȳ)

r′(ȳ) = 1 + (N − 1)(ȳ − r)F (ȳ)−1f(ȳ).

Finally, putting everything together yields the FOC given:

R∗y(ȳ) = N [1− F (ȳ)]F (ȳ)N−1 − rNF (ȳ)N−1f(ȳ).

A.2 Proofs from Chapter 2

Proof of Lemma II.1. We establish claims for F̌+(v|s̄); the argument for F̌−(v|s̄) is
analogous.

By construction, if s−(s̄) /∈ S then s−(s̄) ≡ 0, and if s−(s̄) = 0 and 0 /∈ S then
F̌+(v|s̄) ≡ 1 ≥ F (v|s̄). Hence we focus on the case s−(s̄) ∈ S.

When s−(s̄) ∈ S, there are two possible subcases:

• s̄ = s−(s̄): By construction of s−(s̄), this occurs when s̄ ∈ int(S), which implies
that there exists an open neighborhood of identi�ed thresholds t ∈ S around
s̄. Consequently, we can identify the function (1− t)F ∗(v; t) at points arbitrar-
ily close to s̄, and the limit de�ning F̌+(v|s̄) converges to the corresponding
derivative:

lim
t↑s−(s̄)

{
(1− t)F ∗(v; t)− (1− s̄)F ∗(v; s̄)

s̄− t

}
= − ∂

∂s̄
(1− s̄)F ∗(v; s̄) ≡ F (v|s).

Hence F̌+(v|s̄) = F (v|s), so F̌+(v|s̄) is a distribution and F (v|s) is exactly
identi�ed.

• s̄ > s−(s̄): By construction, s−(s̄) is then the nearest lower neighbor of s̄ in S
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(but separated by an open interval). In this case,

lim
t↑s−(s̄)

{
(1− t)F ∗(v; t)− (1− s̄)F ∗(v; s̄)

s̄− t

}
=

[1− s−(s̄)]F ∗(v; s−(s̄))− (1− s̄)F ∗(v; s̄)

s̄− s−(s̄)

=
1

s̄− s−(s̄)

{
F ∗(v; s−(s̄))− F ∗(v; s̄)

}
=

1

s̄− s−(s̄)

{ˆ 1

s−(s̄)

F (v|t)dt−
ˆ 1

s̄

F (v|t)dt
}

=
1

s̄− s−(s̄)

ˆ s̄

s−(s̄)

F (v|t)dt

= F (v|Si ∈ [s−(s̄), s̄]).

Line 1 implies F̌+(v|s̄) is identi�ed (since it depends only on identi�ed compo-
nents), Line 5 implies that F̌+(v|s̄) is a distribution, and Line 4 implies that
F̌+(v|s̄) bounds F (v|s):

1

s̄− s−(s̄)

ˆ s̄

s−(s̄)

F (v|t)dt ≥ 1

s̄− s−(s̄)

ˆ s̄

s−(s̄)

F (v|s̄)dt

=
s̄− s−(s̄)

s̄− s−(s̄)
F (v|s̄) = F (v|s̄),

where the �rst inequality follows since a�liation implies F (v|s′) ≤ F (v|s) for
s′ ≥ s (see Milgrom and Weber [1982]).

Taken together, the cases above establish all claims in Lemma II.1.

Proof of Proposition II.1. We establish claims for F+(v|s); the argument for F−(v|s)
is analogous.

Identi�cation of F+(v|t) follows from (i) s−(t) ∈ {S, 1} by construction, (ii)
identi�cation of F̌+(v|s) for s ∈ S, and (iii) F̌+(v|s) ≡ 1 for s = 0 if s 6= S. Hence
F+(v|t) depends only on objects recoverable from process L.

The distribution and exact identi�cation properties of F+(v|t) are inherited
directly from the corresponding properties of F̌+(v|t).

Finally, to establish bounds, we consider cases:

• If t ∈ S, then F+(v|t) ≡ F̌+(v|t) ≥ F (v|t).

• Otherwise, F+(v|t) ≡ F̌+(v|s−(t)) ≥ F (v|s−(t)) ≥ F (v|t), where the last in-
equality follows by the stochastic-dominance property of a�liation.
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Taken together, the cases above establish all claims in Proposition II.1.

Proof of II.2. Identi�cation of c+(z) and c−(z) and the inequalities c+(z) ≥ c(z) ≥
c−(z) follow immediately from identi�cation of F−(y|s̄N(z)) and F+(y|s̄N(z)) and
F+(y|s̄N(z)) ≥ F (y|s̄N(z) ≥ F−(y|s̄N(z)), with exact equality obtaining when F±(y|s̄N(z)) =
F (y|s̄N(z)).

Proof of Proposition II.3. To establish Statement 1, suppose z ∈ int(Z) and s̄ ∈
(0, 1). Then there exists an open ε-ball Bε(z) ⊂ Z around z. By Assumption 7, c(·)
is continuous and monotonic in continuous components of z, and hence maps open
sets to open sets. Thus L involves an open ε-ball Bε(c(z)) ⊂ R+ of costs around
c(z). Finally, by Proposition I.2, the equilibrium threshold s̄(·, N) is continuous and
monotonic in c(·) for s̄ ∈ (0, 1). Hence s̄(·, N) also maps open sets to open sets, so
s̄(c(z), N) ∈ int(S(L)). Exact local identi�cation then follows from Propositions II.1
and II.2.

To establish Statement 2, suppose the range of c(·) is as given. Then for an
appropriate choice of z we can produce any c(z) ∈ [0, v̄]. The former will ensure uni-
versal entry, and the latter will exclude all potential entry. The rest of the interval will
produce every intermediate case. Consequently S(L) = [0, 1] and full identi�cation
follows.

Proof of revenue characterization in Lemma II.3. For any (s;N) pair, expected seller
revenue at allocation rule α is given by

Rα(s̄;N) = AVα(s;N)−NΠ∗α(s;N),

where AVα(·) is ex ante expected allocation value of the object being auctioned and
Π∗(s;N) is expected ex ante equilibrium pro�t for an arbitrary bidder.

To obtain AVα(·), let Y1:N be max realized value among N potential bidders.
Then net value created isY1:N if sale, v0 if no sale. Conditional on Y1:N , expected
allocation value is thus

α(Y1:N)Y1:N + [1− α(Y1:N)]v0.
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Integrating with respect to Y1:N , we obtain ex ante expected allocation value:

AVα(s;N) = sNv0 +

ˆ v̄

v
{α(y)y + [1− α(y)]v0} g∗1:N(y; s)dy

=

ˆ v̄

v0

{α(y)y + [1− α(y)]v0} dG∗1:N(y; s),

where g∗1:N(y; s) ≡ NF ∗w(y; s)N−1f ∗w(y; s) is the density of Y1:N on [v , v̄] given entry
threshold s, G∗1:N(y; s) = F ∗w(y; s)N is the corresponding distribution on [v0, v̄], and
α(v0) ≡ 0 by Assumption I.1.

To obtain Π∗(s;N), we start from the result in Proposition I.1:

πα(v; s,N) = πα0 (s,N) +

ˆ v

v
α(t) · F ∗w(t; s)N−1dt

=

ˆ v

v0

α(t)sN−1dt+

ˆ v

v
α(t) · F ∗w(t; s)N−1dt− ρ

=

ˆ v

v0

α(t) · F ∗w(t; s)N−1dt− ρ

= λα(v; s,N) · α(v)Fw(v; s)N−1 − ρ,

where the second equation follows from Assumption I.1 and

λα(v; s,N) ≡

{
0 if α(v) = 0;´ v
v0

α(t)
α(v)
· F

∗
w(t;s)N−1

F ∗
w(v;s)N−1dt otherwise.

gives the average incremental pro�t (above −ρ) a bidder of type v receives per win.
Integrating over the distribution F ∗w(y; s) then gives Π∗(s;N)

Π∗(s;N) =

ˆ v̄

v
λα(y; s,N) · α(y)F ∗w(y; s)N−1f ∗w(y; s)dy − (1− s)ρ

and multiplying by N yields

NΠ∗(s;N) =

ˆ v̄

v
λα(y; s,N)α(y) ·NF ∗w(y; s)N−1f ∗w(y; s)dy −N(1− s)ρ

=

ˆ v̄

v
λα(y; s,N)α(y) · g∗1:N(y; s)dy −N(1− s)ρ

=

ˆ v̄

v
λα(y; s,N)α(y) dG∗1:N(y; s)dy −N(1− s)ρ.
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Combining the results above gives a �nal expression for seller revenue:

Rα(s;N) =

ˆ v̄

v0

{α(y)y + [1− α(y)]v0} g∗1:N(y; s)dy

−
ˆ v̄

v
λα(y; s,N)α(y) dG∗1:N(y; s) +N(1− s)ρ

=

ˆ v̄

v0

{α(y)[y − λα(y; s,N)] + [1− α(y)]v0} dG∗1:N(y; s)dy +N(1− s)ρ.

where the second equality follows because
´ v
v0
λα(y; s,N) dG∗1:N(y; s) = 0: λα(v0; s,N) ≡

0 and g∗1:N(y; s) ≡ 0 for y ∈ (v0, v).

Proof of Lemma II.3. Identi�cation of Rα(s;N) for s ∈ S follows directly from Equa-
tion II.4: Rα(·) depends only on mechanism components (α, ρ, v0) (known by hypoth-
esis) and distributions F ∗w(·; s) and G∗1:N(·; s) (identi�ed for s ∈ S). Thus it only re-
mains to show Rα(s;N) is decreasing in s. Equation (II.4) implies that s a�ects seller
revenue through (at most) three channels: the per-win pro�t function λα(v; s,N), the
distribution G∗1:N(·; s), and the residual term N(1− s)ρ. We show that each of these
partial e�ects is negative.

First, consider e�ects through the per-win pro�t function λα(v; s,N). Note that

∂

∂s
λα(v; s,N) =

ˆ v

v0

α(t)

α(v)
· ∂
∂s

{
F ∗w(t; s)N−1

F ∗w(v; s)N−1

}
dt.

By algebra,

∂

∂s

{
F ∗w(t; s)N−1

F ∗w(v; s)N−1

}
=

(N − 1)F ∗w(t; s)N−2 ∂
∂s
F ∗w(t; s)

F ∗w(v; s)N−1
−

(N − 1)F ∗w(t; s)N−1 ∂
∂s
F ∗w(v; s)

F ∗w(v; s)N

= (N − 1)
F ∗w(t; s)N−2

F ∗w(v; s)N−1

{
[1− F (t|s)]− F ∗w(t; s)

F ∗w(v; s)
[1− F (v|s)]

}
≥ 0 ∀t ≤ v,

since t ≤ v means F ∗w(t; s) ≤ F ∗w(v; s) and F (t|s) ≤ F (v|s) ∀s. Thus λα(v; s,N) is
increasing in s for all v, so the e�ect of s on R through λα(v; s,N) is negative.

Next, consider e�ects through the distribution G∗1:N(·; s). It is easy to show
that G∗1:N(v; s) is increasing in s for any v, hence s′ ≥ s means G∗1:N(·; s) �rst-order
stochastically dominates G∗1:N(·; s′). Thus if the integrand

{α(y)[y − λα(y; s,N)] + [1− α(y)]v0} (A.3)

is increasing in y, an increase in s will involve taking the expectation of an increasing
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function with respect to a stochastically dominated distribution, which must imply
a decrease in revenue. It is therefore is su�cient to show that the integrand (A.3) is
increasing in y.

• First, note that [y − λα(y; s,N)] is increasing in y:

∂

∂y
[y − λα(y; s,N)] ≡ 1− ∂

∂y

ˆ y

v0

α(t)

α(y)
· F

∗
w(t; s)N−1

F ∗w(y; s)N−1
dt

= 1− ∂

∂y

1

α(y)F ∗w(y; s)N−1
+ 1

= − ∂

∂y

1

α(y)F ∗w(y; s)N−1
≥ 0

since α(y)F ∗w(y; s)N−1 is increasing in y by construction.

• Second, note that [y − λα(y; s,N)] ≥ v0 for y ≥ v0:

[y − λα(y; s,N)] ≡ [y − λα(y; s,N)]|v0 +

ˆ y

v0

∂

∂t
[t− λα(t; s,N)]dt

= v0 +

ˆ y

v0

∂

∂t
[t− λα(t; s,N)]dt

≥ v0

since we know ∂
∂y

[y − λα(y; s,N)] ≥ 0.

• Finally, note that (by construction) α(y) is increasing in y.

Hence increasing y has two e�ects on the function (A.3): it increases [y−λα(y; s,N)]
and shifts weight from v0 to [y−λα(y; s,N)] (through α(y)). Since [y−λα(y; s,N)] ≥
v0, both these e�ects are positive, so (A.3) is increasing in y. It follows that increasing
s leads to taking an expectation of an increasing function with respect to a stochas-
tically dominated distribution. Hence the e�ect of s on R through the distribution
G∗1:N(y; s) is negative.

Finally, note that ρα ≥ 0 by construction. Hence an increase in s implies a
decrease in (1− s)Nρ.

Combining these observations, we conclude that seller revenue Rα(s;N) is de-
creasing in s for any N .

Proof of Lemma II.4. We establish claims for s+
α (z,N); the argument for s−α (z,N)

is analogous. Suppose s̄ is an equilibrium at (z,N, α). Then Proposition I.2 implies
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Πα(s̄, N ;F ) ≡ c(z). Since Πα(s,N ; F̃ ) is increasing in s and decreasing in F , it follows
that

c+(z) ≥ c(z) ≡ Πα(s̄, N ;F ) ≥ Πα(s̄, N ;F+)

Hence Πα(s′, N ;F+) > c+(z) implies s′ 6= s̄α(z,N) and (in particular, by monotonic-
ity of Πα(·) in s) s′ > s̄α(z,N). Taking the smallest such s′ identi�ed by L (or the
uninformative bound 1 if no such s′ exists) yields s+

α (z,N) de�ned above.

Proof of Corollary II.4. See Haile and Tamer [2003] for proof that r∗+(z,N) and r∗−(z,N)
bound r∗(z,N). The �nal equality statement follows from exact identi�cation of coun-
terfactual revenue when sr∗(z,N) ∈ int(S(L)).

A.3 Constructing regular prices

Regular price series used in structural estimation are de�ned as follows:

Algorithm (Constructing regular prices).

1. Drop all periods listed as sales.

2. For each remaining period, calculate forward-looking, backward-looking, and
centered 9-week rolling price medians.

3. If current price equals either forward or backward rolling median, take this value
as the regular price; otherwise use the centered rolling median.2

4. For promotional periods, �ll in regular prices from the regular price immediately
preceding or the regular price immediately following based on least deviation from
price observed. \

5. Fill in missing values rolling forward.

2The comparison with forward and backward rolling prices permits better identi�cation of the
regular price in periods near a shift in the regular price.
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Figures III.2, A.1, and A.2 illustrate the product of this algorithm on three
representative price series. On balance, the algorithm performs well: it successfully
isolates persistent local modes in the price distribution, and thereby permits distinc-
tion between secular price shifts and short-run price variation due to sales. Hence
I take the resulting regular price series as a basis for estimating sale-induced gains
from search.3

Figure A.1: Price vs Regprice for Purex 100oz, IRI store 683960 (2002-2008)
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3In preliminary work, I also explored a regular price �lter based on rolling modes. Experiments
suggest the rolling median �lter is more robust to potential noise in the price data. However,
qualitative results were vere similar in both cases.
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Figure A.2: Price vs Regprice for All 100oz, IRI store 683960 (2002-2008)
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A.4 Simulating market shares

Consider �rst simulation of the search probability πs(u;pd) for a known utility vector
u. The key component in this probability is expected gain from search:

gs(u;pd) = Eps [max{u− α · (pd,ps)}|pd]− v̄d(u,pd).

Under Assumption 16, resampled discounts from the empirical sale distribution F̂∆p

can be used to produce a consistent simulator for the the conditional search proba-
bility above:

π̂s(u;pd) ≡ Fc [ĝs(u;pd); θ] ,

where

ĝs(u;pd) ≡
1

R

R∑
r=1

max {u− α · (pd, rs + ∆ps)} − v̄d(u,pd).

For simplicity, the resampling algorithm I employ here further assumes that sale
realizations ∆pj are independent across products. As noted in Section III.4, however,
this additional restriction is not essential, and will be relaxed in future work.

In turn, combining the resampling simulator π̂s(u;pd) with a standard GHK
probit simulator gives a consistent, always positive simulator of the overall market

109



share function σj(·). Note �rst that

Pr(choose j) ≡ Pr(search ∩choose j) + Pr(no search ∩choose j).

Now consider simulation of Pr(search ∩choose j) as follows. First, following GHK,
draw a size-R sample of utilities ur such that good j will be chosen for each ur,
and calculate standard GHK probability weights Φr(θ) for these utility draws. Sec-
ond, simulate search probabilities π̂sr(θ) for each ur using the resampling simulator
π̂s(u;pd) as above, and reweight standard GHK probabilities Φjr by these search prob-
abilities. Finally, averaging these reweighted probabilities across simulation draws
yields a simulator for Pr(search ∩choose j) at parameters θ:

P̂rsj(θ) =
1

R

R∑
r=1

Φjr(θ) · πsr(θ)

This simulator is computationally faster than its accept / reject analogue and inherits
smoothness and positivity from the underlying GHK simulator. To show consistency,
note that

Pr(search ∩choose j) ≡
ˆ

Ω

πs(u|θ) · ιj(J ;u|θ) dFu(u|θ)

=

ˆ
Aj(θ)

πs(u|θ) fu(u|θ) du,

whereAj(θ) is the set of u's such that j is chosen (i.e. the set such that ιj(J ;u|θ) ≡ 1).
Further, by Assumption 15, fu(u|θ) has a known joint normal form. GHK simulation
involves approximation of the second integral via importance sampling from a cor-
responding truncated normal distribution fAj

(u|θ) de�ned on the acceptance region
Aj(θ):

Pr(search ∩choose j) =

ˆ
πs(u|θ)

fu(u|θ)
fAj

(u|θ)
· fAj

(u|θ) du

=

ˆ
πs(u|θ)

fu(u|θ)
fAj

(u|θ)
· fAj

(u|θ) du

=

ˆ
πs(u|θ) · Φj(θ) fAj

(u|θ) du, (A.4)

where Φj(θ) ≡ Pr(u ∈ Aj(θ)|θ) and the last equality follows since fAj
(u|θ) ≡

fu(u|θ)/Φj(θ). The simulator above is consistent for the RHS of (A.4), and hence
consistent for Pr(search ∩choose j).

A simulator for Pr(no search ∩choose j) can be constructed similarly, and sum-
ming over disjoint events yields a simulator for the overall vector σj(θ). I thus obtain
a computationally tractable, always positive, and smooth-in-parameters simulator of
the market demand vector σ(θ). A step-by-step description of the resulting algorithm
is given below.
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Algorithm (Simulating market shares).

1. Simulate search-plus-purchase probabilities.

(a) Draw a size-R1 sample of utilities ur such that j ≡ arg maxk{uik−αpk} fol-
lowing the standard GHK algorithm, then save the corresponding sampling
probabilities Φr ≡ Φ(ur|θ) for future reference.

(b) For each u drawn in Step 1(a), simulate implied search value Vsr using
price resampling, and obtain corresponding search probability πsr:

i. Calculate maximum display-set utility v̄r based on current-period mar-
ket characteristics and known utility draw u.

ii. Draw R2 resampled vectors of prices-to-search qr from the empirical
price distribution Fp(·), where q ≡ {pj|j /∈ D}. This can be done
using any model of Fp(·), and could in principle incorporate correlation
between displayed and nondisplayed prices.

iii. Simulate Vs via resampled average: V̂s ≡ 1
R2

∑R
r=1 max{u− αpr, v̄r} −

v̄r, and de�neπ̂s ≡ Fc(V̂s|θ).

(c) Reweight Φs by πs and average to obtain simulated probability of event
�search and purchase j�:

P̂r(search ∩ j) =
1

R1

R1∑
r=1

Φr · πr.

2. If j ∈ D: Simulate no-search-plus-purchase probabilities.

(a) As above, draw a size-R1 sample of utilities ur such that j ≡ arg maxk{urk−
αpk|k ∈ D} following the standard GHK algorithm, and recover the corre-
sponding sampling probabilities Φr ≡ Φ(ur|θ).

(b) As above, simulate search values V̂sr via resampling, and obtain correspond-
ing search probabilities π̂sr.
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(c) Reweight Φr by (1 − π̂sr) and average to obtain simulated probability of
event �don't search and purchase j�:

P̂r(no search ∩ j) =
1

R1

R1∑
r=1

Φr · (1− π̂sr).

3. Combine two conditional estimators above to obtain �nal simulated market
share:

σ̂j ≡ P̂r(search ∩ j) + P̂r(no search ∩ j).

This algorithm yields a consistent simulator of the true market share σj, which
in addition is always positive and continuous in model parameters θ.
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APPENDIX B

SUPPLEMENTAL TABLES AND FIGURES

Table B.1: Liquid laundry detergent sales, estimation stores
VARIABLES Price / oz Sale Feat Disp Discount Share

ALL 0.0238 0.279 0.111 0.0773 0.114 0.143

ARMHAMMER 0.0165 0.290 0.0455 0.0436 0.126 0.124

CHEER 0.0343 0.190 0.0661 0.0335 0.141 0.0578

ERA 0.0252 0.212 0.127 0.0763 0.128 0.0115

FAB 0.0213 0.351 0.00771 0.0129 0.159 0.0120

GAIN 0.0272 0.235 0.146 0.0600 0.190 0.0884

PUREX 0.0166 0.272 0.0788 0.0586 0.137 0.150

SURF 0.0267 0.242 0.103 0.113 0.186 0.0217

TIDE 0.0335 0.252 0.158 0.0820 0.187 0.295

WISK 0.0287 0.350 0.163 0.113 0.149 0.0685

Notes: Sale, Feat, and Disp are UPC-by-week indicators for sale, feature, and display

promotions. Disc if sale represents average discount from �regular� price in weeks a

sale occurs, where regular price series are constructed as in Section III.1.
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Figure B.1: Price history for Purex 100oz, IRI store 683960 (2002-2008)
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Figure B.2: Price history for All 100oz, IRI store 683960 (2002-2008)
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Figure B.3: Alternative price aggregates for Purex 100oz, IRI store 683960
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Figure B.4: Alternative price aggregates for All 100oz, IRI store 683960
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Figure B.5: Predicted Nt for IRI store 683960
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Table B.3: Brand-size level promotion e�ects, Atlanta market (2002-2007)
VARIABLES Prices only Promo dummies Only interacts All channels

regprice -0.00144** -0.00596*** -0.00474*** -0.00584***

(0.000731) (0.000710) (0.000714) (0.000708)

pgap 7.030*** 5.262*** 3.349*** 3.282***

(0.325) (0.289) (0.146) (0.282)

sale 0.132** -0.186*** 0.0619

(0.0640) (0.0501) (0.0496)

feat 1.331*** 0.542***

(0.0348) (0.0711)

disp 0.857*** 0.677***

(0.0230) (0.0414)

pgapxfeat 5.966*** 4.076***

(0.297) (0.438)

pgapxdisp 3.667*** 1.699***

(0.375) (0.410)

Constant -0.186*** -0.198*** -0.154*** -0.187***

(0.00626) (0.00602) (0.00674) (0.00603)

Observations 278,491 278,491 278,491 278,491

R-squared 0.150 0.196 0.193 0.203

Notes: Products aggregated to brand-size level. Dependent variable is qnorm, pct

by which store-product-week quantity sold exceeds average weekly quantity sold.

sale, disp, and feat are store-product-week promo indicators, discount is pct

price below regprice, and discxdisp and discxfeat are interaction terms. Robust

standard errors in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table B.4: Brand-size level promotion e�ects by store, whole sample (2002-2007)
Store-level regressions

VARIABLES 653369 250094 263568 266100 243785 683960 Market

regprice -0.00258 -0.00556* -0.00869 -0.00826** -0.00459* -0.00454 -0.00584***

(0.00316) (0.00319) (0.00539) (0.00344) (0.00252) (0.00295) (0.000708)

discount 3.204*** 3.368*** 3.702*** 3.329*** 3.300*** 3.663*** 3.282***

(0.404) (0.520) (0.725) (0.445) (0.454) (0.585) (0.282)

sale -0.0835 0.0195 -0.0609 0.0888 0.0724 -0.0239 0.0619

(0.0649) (0.112) (0.0999) (0.0881) (0.0673) (0.0907) (0.0496)

feat 0.216* 0.183 0.323 -0.0347 -0.0412 0.149 0.542***

(0.115) (0.127) (0.229) (0.137) (0.101) (0.109) (0.0711)

disp 0.0197 0.0421 -0.00160 0.339*** 0.796*** 0.344*** 0.677***

(0.0507) (0.0591) (0.181) (0.0724) (0.185) (0.0884) (0.0414)

discxfeat 1.823** 1.504* 0.764 2.683*** 1.421** 2.688*** 4.076***

(0.816) (0.883) (2.003) (0.872) (0.657) (0.865) (0.438)

discxdisp 4.411*** 3.454*** 6.959*** 2.834*** 2.124** 1.481* 1.699***

(0.798) (0.700) (2.058) (0.799) (0.975) (0.777) (0.410)

Constant -0.140*** -0.128*** -0.127*** -0.112*** -0.104*** -0.134*** -0.187***

(0.0330) (0.0325) (0.0449) (0.0330) (0.0288) (0.0293) (0.00603)

Observations 8,191 7,774 7,926 8,197 8,489 8,270 278,491

R-squared 0.163 0.167 0.203 0.177 0.111 0.193 0.203

Notes: Products aggregated to brand-size level. Dependent variable is qnorm, percent by which store-product-week

quantity sold exceeds average weekly quantity sold. sale, disp, and feat are store-product-week promo indicators,

discount is percentprice below regprice, and discxdisp and discxfeat are interactions. Robust SE in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table B.5: Brand-size level promotion e�ects by store, estimation sample (2004-2005)
Store-level regressions

VARIABLES 653369 250094 263568 266100 243785 683960 Market

regprice 0.00419 -0.00869** -0.0113** 0.00401 -0.00639 0.00393 -0.00659***

(0.00532) (0.00383) (0.00482) (0.00501) (0.00460) (0.00514) (0.00115)

discount 2.963*** 1.627** 2.511*** 3.297*** 3.463*** 3.495*** 3.337***

(0.777) (0.663) (0.617) (0.743) (0.736) (1.106) (0.249)

sale 0.279* 0.417** 0.432*** 0.300 0.0125 0.179 0.0505

(0.169) (0.211) (0.131) (0.183) (0.144) (0.198) (0.0524)

feat -0.588 -0.945** -0.412 -1.131** -0.580* -0.887** 0.374**

(0.412) (0.406) (0.343) (0.496) (0.329) (0.389) (0.174)

disp -0.146 0.0804 -0.101 0.0222 0.368* 0.258** 0.419***

(0.106) (0.0671) (0.130) (0.152) (0.191) (0.131) (0.0356)

discxfeat 3.587 6.722*** 3.734** 6.429** 4.776*** 7.041*** 3.949***

(2.896) (2.343) (1.841) (2.636) (1.625) (2.237) (0.786)

discxdisp 4.426** 2.942** 4.587*** 2.825** 1.086 -0.482 2.628***

(2.009) (1.271) (1.272) (1.383) (1.117) (1.229) (0.459)

Constant -0.161*** -0.170*** -0.152*** -0.178*** -0.170*** -0.147*** -0.221***

(0.0508) (0.0397) (0.0496) (0.0509) (0.0411) (0.0541) (0.00949)

Observations 1,305 1,321 1,349 1,351 1,447 1,334 51,806

R-squared 0.239 0.305 0.302 0.247 0.277 0.231 0.249

Notes: Products aggregated to brand-size level. Dependent variable is qnorm, percent by which store-product-week

quantity sold exceeds average weekly quantity sold. sale, disp, and feat are store-product-week promo indicators,

discount is percent price below regprice, and discxdisp and discxfeat are interactions. Robust SE in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table B.6: Structural parameters: All stores, broad Nt

Parameter 243785 250094 263568 266100 653369 683960

α 0.325 0.262 0.375 0.343 0.299 0.307

λ 0.726 0.658 0.361 0.433 0.508 0.776

γ 4.44 0.82 1.187 0.633 0.245 >35

lag1 -0.009 0.001 -0.016 -0.019 -0.005 -0.008

lag2 -0.003 -0.008 -0.016 -0.011 -0.015 0

lag3 -0.014 -0.006 -0.002 -0.016 -0.008 -0.009

lag4 -0.007 0.004 0.017 0.002 -0.004 -0.005

ftaste 0.162 0.267 0.142 0.118 0.187 0.197

Objective 1861.8 2091.6 2128.6 2107.2 1946.3 2304.6

Table B.7: Selected structural own-price elasticities, all stores (narrow Nt)
Prod/Store 653369 250094 263568 266100 243785 683960

SURF100 -2.96 -2.40 -3.17 -3.32 -3.47 -3.57

ALL100 -2.29 -1.51 -1.72 -1.96 -2.42 -2.53

A&H125 -1.28 -1.46 -1.40 -1.33 -1.33 -1.99

CHEER80 -1.42 -1.45 -2.35 -1.38 -1.23 -2.83

ERA100 -1.25

FAB100 -2.38 -2.75 -2.91

GAIN100 -2.55 -1.84 -1.81 -2.21 -3.24 -2.50

PUREX100 -1.74 -1.82 -1.74 -1.82 -2.43 -2.35

PUREX200 -3.30 -3.32 -3.35 -4.33

TIDE100 -1.49 -1.22 -1.57 -1.43 -1.16 -1.87

TIDE200 -6.49 -5.36 -6.32 -5.43 -5.21 -6.27

WISK100 -3.02 -2.15 -3.20 -2.83 -2.70 -3.06

Note: Elasticities relative to baseline market with no discounts or promotions.
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Table B.8: Cross-price elasticities, store 266100 (narrow Nt)
ALL100 A&H125 CHR80 FAB100 GAIN100 PRX100 PRX200 TIDE100 TIDE200

ALL100 1.96 -0.12 -0.09 -0.03 -0.14 -0.18 -0.05 -0.21 -0.08

A&H125 -0.1 1.33 -0.09 -0.03 -0.14 -0.17 -0.42 -0.13 -0.43

CHR80 -0.09 -0.11 1.38 -0.03 -0.12 -0.16 -0.04 -0.19 -0.1

FAB100 -0.14 -0.16 -0.11 2.91 -0.2 -0.28 -0.08 -0.26 -0.07

GAIN100 -0.11 -0.12 -0.09 -0.03 2.21 -0.2 -0.06 -0.22 -0.08

PRX100 -0.15 -0.15 -0.12 -0.05 -0.2 1.82 -0.09 -0.26 -0.12

PRX200 -0.1 -0.95 -0.09 -0.03 -0.14 -0.19 3.35 -0.14 -0.42

TIDE100 -0.06 -0.06 -0.06 -0.02 -0.08 -0.1 -0.02 1.43 -0.71

TIDE200 -0.04 -0.26 -0.04 -0.01 -0.05 -0.06 -0.13 -1.45 5.43

Note: Elasticities simulated relative to baseline market with no displays, features or discounts.

Figure B.6: Model validation: actual vs predicted market shares, Store 683960
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Table B.9: Cross-speci�cation comparison, store 266100 (narrow Nt)
Parameter Naive Promo FX Search

α 0.577 0.345 0.444
λ � � 0.354
γ � � 0.652
lag1 -0.029 -0.06 -0.028
lag2 -0.004 -0.025 -0.01
lag3 -0.015 -0.006 0.008
lag4 -0.012 0.028 0.003
ftaste 0.114 0.226
dtaste 0.398 �

Objective -2310.8 -2149.2 -2123.7
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