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CHAPTER 1

INTRODUCTION

Designers working in radiation environments often look at emerging technologies to

provide radiation tolerance as semiconductor dimensions continue to scale down. De-

creased transistor size can lead to an increase in susceptibility that can impede implemen-

tation of modern processes in radiation tolerant designs [1]. The radiation tolerance of

electronic circuits has long been a reliability concern for space applications, but with sub-

32-nm transistor technologies, even terrestrial designers are having to seriously consider

the stability of future technology nodes [2–4]. At the same time, planar CMOS circuits are

reaching the physical limits of scaling and density (non-radiation hardened technologies),

which has led to increased interest in emerging technologies for terrestrial applications [5].

Alternate material (non-flash based) Non-Volatile Memories (NVMs) are seen as a pos-

sible next-generation storage technology. Resistive memory technologies, where bits are

stored as resistance instead of electric charge, have shown promise as non-volatile memo-

ries for radiation environments (robust total dose response), as well as possible scalability

advantages over their planar CMOS counterparts [6].

Inter-device spacing will also decrease as scaling trends downward, and understanding

the interaction between tightly spaced junctions is paramount to quantifying the response

of modern memories and circuits to heavy ion strikes [7–9]. Multi-Node Charge Collec-

tion (MNCC) is when more than one node in a system collects charge from a single event.

Data on MNCC can be found throughout the literature for circuits and higher level systems

[10, 11], but lacks detailed analysis of the generated current pulses and response of a set

of junctions. The response of these tightly spaced junctions can aid in the development of

radiation-tolerant ICs for highly-scaled technologies and provide insight into the mecha-

nisms driving MNCC [12–14]. Lower-level mechanisms are often inferred using measured
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upset rates [15, 16] and/or estimated leveraging device simulations [4, 17], but this runs the

risk of overlooking mechanisms that can be less obvious in complicated data.

For the near future, NVM technologies will share the requirement that they be CMOS

compatible. This is a fabrication requirement needed for adoption because of the enormous

cost of developing, retooling, or rebuilding fabrication plants for non-CMOS processes.

CMOS compatibility means that most dense NVMs will be built with tightly spaced silicon

transistors. These access transistors will most likely be susceptible to some form of MNCC,

requiring an understanding of these mechanisms for quantification of their reliability. Fig-

ure 1.1 shows the standard SRAM cell size reported by Intel as a function of technology

nodes. The cell areas show how drastically the cell spacing will decrease as gate sizes con-

tinue to shrink. The coincidence in response of adjacent memory cells, for instance in two

separate 1 Transistor 1 Resistor, Resistive Random-Access Memory (1T1R RRAM) struc-

tures, will increase as cell spacing decreases. This work concentrates on understanding the

underlying MNCC mechanisms coupled with the single-event susceptibility of the 1T1R

RRAM structure.

Figure 1.1: Intel’s reported standard SRAM cell size as a function of technology nodes
[18].
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1.0.1 Overview of Presented Work

The cornerstone of this work is the first experimental evidence for single-event upsets

in Hf/HfO2 RRAMs. A new type of upset was also seen, whereby effects from subsequent

strikes on a cell can accumulate until the cell transitions to its complementary state. It is

termed a Multiple Event Upset (MEU), an extension of the commonly used acronym SEU

for Single-Event Upsets. MEUs are made possible because the RRAM lacks a restora-

tion force seen in other memory types (e.g., SRAMs). Data are also presented that show

an exponential dependence between the sensitivity of the cell to ionizing radiation and the

applied voltage to the BL of the device. The RRAM becomes more sensitive with larger ap-

plied bias voltage on the bit line (BL) of the device, which is inverse to similar mechanisms

seen in SRAM cells where higher operating voltages decrease a cell’s sensitivity.

Further understanding of how RRAM cells will respond in dense memory arrays ex-

pected from commercial designs was gathered using a custom diode test structure of tightly

spaced silicon junctions in both expirements and simulation. Four independent junctions

were alternated between on and off states to quantify the response in each condition. The

data showed nearby junctions significantly alter the amount of charge collected on the main

junction of interest. If adjacent junctions are biased in the on state, they compete for the

same generated charge as the main junction, resulting in decreased charge collection values

on the main junction. The difference in the magnitude of MNCC was also compared be-

tween heavy-ion experiments, simulation, and Two-Photon Absorption laser experiments.

The likelihood that MNCC events occur is higher using laser testing compared to similar

heavy-ion data. This result confirms that the larger spot size of the TPA generation region

(compared to heavy-ions) does affect the underlying MNCC mechanisms. Understanding

these results can change the way circuit designers interpret comparisons of laser data and

heavy-ion results, giving them a numerical comparison metric to replace assumptions.

The presented MNCC work can be applied to a variety of emerging technologies (Fin-

FETs, FeRAM, MRAM, PCRAM, etc.); likewise, the RRAM research can be used in situ-
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ations where MNCC may not be a factor. Together the presented data and simulations pro-

vide insight into how future NVM will respond in radiation environments. Combined with

the presented dynamic compact model for the resistive element in the RRAM, simulations

were performed on a highly-scaled FinFET device, and showed a relatively low susceptibil-

ity to incident radiation. Using this work, well-founded prediction of future generations of

emerging memory technologies is possible, allowing designers to choose the best available

technologies for fabrication. The ability to predict a technology’s single-event response

reduces the cost of reliably implementing advanced technologies for mission-critical com-

ponents in radiation environments.

1.0.2 Outline

The goal of this document is to detail the state of the art for radiation-induced MNCC

mechanisms and RRAM single-event susceptibilities. This work provides insight to the ra-

diation effects community and helps enable the next generation of radiation-tolerant mem-

ories. This is accomplished by reviewing the available literature on MNCC (Section 2.2),

as well as 1T1R RRAM fabrication and operation (Section 2.3). There is also a review of

single-event testing sources for reference during experimental descriptions (Section 2.1.4).

Chapter 3 presents the experimental and simulation data for MNCC, showing the mecha-

nisms described above, as well as a metric to compare heavy-ion experiments to TPA laser

data. Chapter 4 provides data supporting the first report of SEUs and MEUs in resistive

memories, along with a compact model used for 3D TCAD simulations. Chapter 5 com-

bines information from Chapters 3 and 4 to simulate the radiation response of highly-scaled

FinFET RRAMs using calculated on-orbit environments. A discussion of this work, and

future applications of this research are presented in Chapter 6.
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CHAPTER 2

Background

2.1 General Radiation Effects

This Background Chapter has been divided into four sections covering various informa-

tion that is useful throughout the document. Section 2.1 reviews basic energy deposition by

energetic particles as well as an overview of different memory storage elements presently

used in commercial applications. Section 2.2 covers literature related to the importance

of MNCC in radiation environments, and Section 2.3 looks at the current state of resistive

memory research.

2.1.1 Processes of Ionizing Energy Deposition

The initial process contributing to a Single Event Upset (SEU) is ionization. There are

two main categories of ionization, indirect ionization, a process by which the incident par-

ticle creates secondary particles that then generate electron hole pairs in the struck material,

and direct ionization which describes electron hole pair generation resulting from energy

loss by the incident particle.

The three forms of indirect ionization are: Rutherford scattering, elastic nuclear reac-

tions, and inelastic nuclear reactions. Rutherford scattering, sometimes called Coulomb

scattering, occurs when an incident particle passes within a small distance of an atomic

nucleus. This close proximity allows the like-charge of the two particles to repel each

other and deposit energy into the system. Coulomb forces cause the repulsion, and are the

source of the name Coulomb Scattering. A nuclear reaction, in general, is an interaction

that directly involves the nucleus of an atom. In an inelastic nuclear reaction, the resultant

products are physically different from the particles that initiated the reaction. For instance,

when an iron ion strikes a silicon nucleus, the result could be a variety of ions other than

silicon and iron. An elastic nuclear reaction is related to Rutherford scattering, but the in-
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cident particle comes into direct contact with the nucleus. The products from this reaction

are identical to those that existed before the reaction occurred.

Opposed to indirect ionization, direct ionization deposits almost all of its energy along

the vector of trajectory of the charge-generating particle. During direct ionization, the

incident particle generates electron hole pairs by transferring enough energy to a bound

electron to free it. This process is illustrated in Figure 2.1. The freed electrons are often too

energetic to interact directly with the energy bands of the device, but will continue to scatter

with other bound electrons until they lose enough energy to stabilize at the conduction

band of the incident material. This mechanism usually has a fairly constant Linear Energy

Transfer (LET) over short distances (10 nm < distance < 1 µm) [19], but can sometimes

be accurately estimated over greater distances. Direct ionization dominates SEE in most

environments, and will be the focus of this work.

Figure 2.1: Process of direct ionization of an incident particle with the electron cloud of a
target material [20].
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2.1.2 Ion-Generated Carrier Collection Mechanisms

Output current generated from a strike can be translated to a voltage drop for propa-

gation through a circuit to determine whether or not a cell has upset. The magnitude and

duration of a current pulse depends on the fundamental mechanisms of charge transport

and the topology of the struck device. There are two dominant mechanisms that contribute

to charge transport at the lattice level: drift and diffusion.

Diffusion is a relatively slow process compared to drift. There are two types of diffu-

sion that have a relevant impact on SEUs, and those are standard and ambipolar diffusion.

Standard diffusion is regularly used in the solution to carrier transport of operating semi-

conductor devices. This mechanism works from the concept that an excess of carriers in

one area results in a net transport of those carriers into regions with a lower density. The

equation for this transport method can be seen in (2.1), where µ is the carrier mobility, D

is the diffusion coefficient, and dn
dx is the change in carrier concentration versus distance.

JDi f f = µDn
dn
dx

(2.1)

Ambipolar diffusion is a special case of standard diffusion by which oppositely charged

carriers in a plasma diffuse at the same rate because of the electrostatic attraction between

the particles. In silicon, this causes electrons to diffuse slower, while increasing the diffu-

sion of holes. This is a special case of diffusion that is only relevant here due to the ability

of high energy particles to create plasma columns when they strike a device. The plasma

can affect the transport of charge in the device, either impeding it from moving towards a

sensitive node, or keeping the charge from moving away from the sensitive node.

Drift is typically a faster process than diffusion. Drift is enabled by an electric field

being present in a material. Carrier transport caused by drift acts on electrons and holes

in an opposing manner. Electrons move towards regions of higher potential, while holes

are attracted to regions that have lower potential. This causes electron hole pairs deposited
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inside an electric field to be separated in opposite directions. The equation for drift current

can be seen in (2.2). A concept related to drift current is that of carrier drift velocity, the

speed at which a carrier moves due to the presence of an electric field. In silicon, the

drift velocity saturates at approximately 1 · 107 cm/s. Equation 2.3 shows drift velocity,

accounting for saturation, with the total current equation given in Eq. 2.4 as the sum of

drift and diffusion. Eq. 2.5 gives the final equation needed to see how drift and diffusion

play a role in the calculation of the carrier velocity, or transport.

JDri f t = qnµE (2.2)

νD(E) =
µE

1+ µE
νDsat

(2.3)

Jtotal = qnµE +µDn
dn
dx

(2.4)

velectron =
Jtotal

qn
= µE +

µDn

qn
· dn

dx
(2.5)

Drift and diffusion are fundamental to all semiconductor devices, but in radiation en-

vironments there are several mechanisms that can play a unique role. Conduction through

a plasma can occur when the incident particle generates enough carriers along a path ex-

tending away from the drain of a transistor to allow that path to become highly conductive.

Carriers travel along the column at a higher rate than they do radially away from the col-

umn center. When this column extends through a region of high electric field, like a reverse

biased junction depletion region, an enhancement of charge collection can occur [21].

Likewise, tracks with high carrier densities can create regions outside of the track that

inhibit carrier motion. This is most prominent when the ion track travels through the deple-

tion region and extends well into the substrate. A barrier is established, caused by carrier

gradients and thus an electric field, below the track (in the substrate) that inhibits majority

carriers from entering into the substrate. The barrier can allow for a higher percentage of

charge to be collected at the junction, due to a lack of recombination [22].
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Figure 2.2: Collection from an ion strike is illustrated for a basic p-n junction.
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2.1.3 Basic Single-Event Example

A simple overview of current generation from a single-event strike aids in the under-

standing of this work. A p-n junction diode with an incident ion is shown in Figure 2.2.

The strike is normal to the junction, and all electron hole pairs are generated by direct ion-

ization. For lightly ionizing strikes, the field in the depletion region remains stable and

immediately begins transporting electrons to the n-type material and holes to the p-type

material. As discussed before, this process is fast, and leads to the generation of a current

pulse that is often known as the prompt current pulse. The prompt component of a gen-

erated current pulse is shown in Figure 2.3. Following the prompt collection, a transition

to diffusion-dominated collection occurs. There is not a hard geometrical boundary for

this location, rather a range over which drift becomes less dominant. The region, some-

times called the diffusion tail, is labeled in 2.3. The distance a carrier can diffuse before

recombining is referred to as the diffusion length.

Figure 2.3: The resultant current pulse is shown for the strike in Figure 2.2.
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This example uses an unloaded and ideal voltage source to power the device. In circuits,

there will be a load of some kind, like a resistive element in the case of the RRAM. This

load will change the way the current is collected, always causing slower collection. Slower

collection will maintain a voltage drop for longer than the pulse width of the unloaded

device. The voltage pulse is what causes error propagation in digital CMOS, and also

causes state changes in resistive elements.

2.1.4 Single-Event Excitation Sources

Testing devices and systems in actual space environments is resource intensive [23];

subsequently, alternative ground testing methods have been implemented to help quantify

radiation effects on microelectronics while using significantly less resources [24, 25]. The

three types of high-flux terrestrial sources are particle accelerators, lasers, and x-ray gen-

erators. This section does not cover low-flux sources like button sources, because they are

typically only applicable for specialized SEE testing purposes

Particle Accelerators

The original source for ground testing, and arguably the closest comparison to actual

space environments, particle accelerators produce energetic ions which can then be used

to excite carriers in electronics. Most facilities are broadbeam, where by particles arrive

at random intervals, across a relatively large region (2 cm2). A variety of facilities with

different ion masses and energies allow for robust characterization of a wide variety of

different environments and effects.

There have also been substantial improvements in the ability to shrink the region of

exposure. Microbeam has shrunk the window of opportunity to 3.7 µm2, and has the

ability to raster over a region of interest [26]. The major drawback is the limited ion mass

and energy range that can be used in this setup. This setup shares the major issue with

ion testing, which is cost. The facilities are very expensive to maintain, and are often less

reliable than other testing alternatives.
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Focused Laser

Focused laser testing is the lowest cost of the testing sources available. Systems can fit

in a normal laboratory space, and be maintained by several experienced engineers. There

are two main types of laser excitations for single event testing, single [27] and two photon

absorption [28]. Both sources have similar charge generation regions (1µm), which are

about an order of magnitude larger than a comparable ion energy deposition region. Single

photon laser excitation uses photons above the energy bandgap of the incident material to

generate carriers in the DUT. This means that while the generation depth into the material

is tunable, it is limited to tens of micrometers, thus requiring the laser to be incident on

the top of the active device. This can be problematic for metal overlayers, as the photons

cannot penetrate the metal overlayers.

Two photon absorption helps alleviate this issue by using subbandgap photons that can

be focused through the entirety of the device material. This allows for backside laser expo-

sure, limiting the effects of metal overlayers. Both laser sources share the same limitation

which is their difficulty in generating charge in the system similar to that of an ion. For this

reason it is often difficult to quantitatively compare ion and laser data.

Focused X-Ray

Focused X-Ray testing is a relatively recent development for single event testing, and

was first shown by [29]. X-Ray irradiation has two main advantages over Laser testing: the

carrier generation region can be made to closely match that of a variety of ions and ener-

gies, and has the ability to transmit through metal overlayers. The major issue is that X-Ray

irradiation will generate trapped charge in device oxides, which can affect device perfor-

mance due to total ionizing dose [30]. The most promising application of focuses x-ray

irradiation is in highly scaled technologies where a 100 nm generation region (approximate

ion value) is paramount to getting a realistic response. Multi-node charge collection is an

example of a measurement that depends strongly on the nature of the generation region of

the excitation source.
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2.2 Multi-Node Charge Collection

When technology feature sizes were relatively large (> 0.25 µm), the inter-cell spacing

made it difficult for generated charge from a normally incident ion to result in signifi-

cant current generation on two or more sensitive nodes. As node spacing became smaller,

MNCC became a topic of interest for the radiation effects community. It has been studied

as it pertains to systems [10, 11]. These papers are often able to calculate the number of

adjacent cells which are upset as a function of incident flux. Using some assumptions, they

make conjectures about the mechanisms at the device-level.

Amusan et al. [7] showed in simulation that inter-device spacing (scales with tech-

nology feature sizes), would be a major factor in the amount of charge collected between

adjacent nodes. This can be thought of as the magnitude of MNCC. The plot is shown in

Figure 2.4. Although simulation based, it suggests that there will be a strong increase in

the magnitude and/or quantity of MNCC events as device spacing continues to decrease. It

also shows a strong correlation between the Linear Energy Transfer (LET) of the incident

ion, and the amount of charge spread between nodes. Both of these factors are important

when choosing a technology for space applications, and these issues will be present in both

standard CMOS and CMOS compatible non-volatile memories alike.

Artola et al. [11] looked at MNCC as a function of Multi-Bit Upsets (MBU), but had to

rely heavily on simulation to garner any information about MNCC. Even this intensive look

at MNCC simulations resulted in predicted cross sections being off by 2-3x. Kauppila et

al. had better results with compact modeling [12], but very little of this work concentrated

on MNCC, and relied solely on simulation to calibrate the compact model. Concentration

on a calibrated model was ultimately the same issue with [13], which used simulation work

that relied on MNCC simulation to determine the output of higher order systems.
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Figure 2.4: .
Plot from Amusan et al. showing the increase in adjacent node charge collection as a

function of inter-device spacing [7].

2.2.1 Radiation Hardened By Design

Radiation-tolerant circuit-designers are now taking advantage of MNCC to reinforce

their designs. Many of these methods come with minimal area penalties and increased sta-

bility with decreased node spacing. One such technique is reinforcement by Pulse Quench-

ing. Pulse quenching is a common mode rejection technique whereby a current pulse on

an adjacent node reduces the magnitude of the primary generated current pulse. This re-

duction in magnitude is called pulse quenching, and is shown as a quenched current pulse

in Figure 2.5. Pulse quenching occurs when a strike occurs on S1 (Figure 2.6), because

nodes X and Y can both collect charge simultaneously. Collection on one node reduces the

magnitude of the generated pulse on the other, reducing the cell’s vulnerability.

Another example of radiation hardening by design (RHBD) is Sensitive Node Active

Charge Cancellation (SNACC) [32]. This is more concentrated on analog circuitry, but

is a similar common mode rejection technique, whereby collection on two adjacent nodes
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Figure 2.5: MNCC induced current pulse quenching during simulation from [31].

improves signal integrity over a single junction collecting generated charge. The utiliza-

tion of MNCC for common mode rejection has and will continue to be a popular RHBD

technique. Examples include Differential Charge Cancellation (DCC) [32], Reinforcing

Charge Collection (RCC) [33], etc. The one thing all these techniques share is the heavy

reliance on simulation data to understand how the mechanisms of MNCC affect the charge

collection on adjacent junctions, and confirmation is often left solely to TPA laser data.

These are just a few examples of RBHD concepts, much like [14, 34]. In modern

CMOS processes, simulation results of RHBD techniques are also often verified using Two

Photon Absorption (TPA) laser excitation. This adds a significant layer of complexity of

the response of the circuit. The generation region under laser excitation can be orders of

magnitude large than that which occurs for ion irradiation. While ions may generate charge

near two or three junctions in a modern technology, an equivalent laser pulse could generate

charge near 10-20 active devices. Increasing the number of charge-collecting junctions can

cause a significant over-prediction in the effectiveness of a hardening techniques based

on MNCC. Likewise, alternative testing techniques can result in a much worse response
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(a) Pulse quenching OR gate circuit. (b) Pulse quenching OR gate layout.

Figure 2.6: Circuit and layout for the pulse quenching technique presented in [31].

for unhardened circuits that have significant MNCC susceptibilities. Quantifying these

mechanisms from a basic level will lead to more robust standard CMOS and non-volatile

memories, and is one of the goals of this work.

2.3 Resistive Random Access Memories

The prediction of the “Death of Silicon CMOS!” has a long and storied history. Every

few years a crucial manufacturing hurdle is faced, and people begin predicting that CMOS

circuits will be replaced with a new exotic material or process. Time and time again, the

hurdle has been cleared to result in the next generation of CMOS devices. Recently the

book had to be rewritten with the introduction of the FinFET, a 3D device topology. This

diverged from planar CMOS to create smaller devices that could be more tightly packed to

create even higher transistor densities.

Planar silicon memory is facing similar hurdles, and will face even more going forward,

so the race is on to find its replacement. Resistive Random Access Memory (RRAM) is

one such candidate [35, 36]. It has a crucial advantage that many alternatives do not posses;

it can be built on silicon wafers (CMOS compatible), with similar processing steps, drasti-

cally lowering the barrier for adoption by large chip manufacturers [37]. This compatibility

also closely intertwines the response of RRAM memory cell and standard CMOS because
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Figure 2.7: The difference between the conduction mechanisms of ECM and VCM resis-
tive memories. ECM forms a metallic ion path through an electrolyte, while VCM forms
oxygen vacancies through a mixed ionic-electronic material [38].

they share similar transistor attributes. The RRAM operates by storing a resistance instead

of electronic charge, giving it theoretical power and stability advantages over current mem-

ory storage technologies. RRAM is still a developmental process, and will, at this stage,

have the issues that come along with unproven manufacturing.

2.3.1 Types of Resistive Memories

The two main types of resistive memories used in RRAM are shown in Figure 2.7.

They are valence change memory (VCM) and electrochemical memory (ECM). Both types

of RRAM are presently manufactured using a one transistor one resistor (1T1R) structure.

The transistor is called the access transistor and is used to activate the resistive element for

read/write operations. The resistive memory element is built in the overlayers on top of the

drain of the access transistor, but other configurations are possible.

VCM typically uses a stack of materials consisting of a stable metal electrode, a reactive
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ohmic metal, a switching oxide, and a stable metal oxide [39]. VCM operates by applying a

voltage across the electrodes, forming charged vacancies in the switching oxide that lower

effective resistance (Figure 2.7). Operating in this manner leads to two possible states

(depending on the applied write voltage). In one state, referred to as the low resistance state

(LRS), the formed vacancies create a conductive path, leading to a lower resistance. In the

other state, vacancies are removed from the oxide, limiting the conductivity of the oxide,

and thereby increasing the overall resistance. This is referred to as the high resistance state

(HRS).

There are numerous material options for constructing VCM-based RRAMs. For in-

stance, TaOx, HfOx, TiO2, among others have all been studied as suitable switching oxide

materials, while Ta, Ti, and Hf have been shown to be suitable reactive metals [35]. Each

material choice impacts the overall device performance in complex ways [35] and must be

optimized for successful implementation of RRAM into a device. Careful consideration of

oxide thickness is also required, as it has a direct influence on the overall switching speed

of the RRAM cell. Determining the best combination of materials for the oxide and elec-

trodes results in a large parameter space, whereby each parameter has some effect on the

read/write cycle lifetime.

ECM operates much the same way as VCM but with a different underlying structure and

switching mechanism [40]. The ECM element stack is composed of an electrochemically

active electrode, a solid-state electrolyte, and an opposing electrochemically inert electrode.

ECM switches by applying a voltage across the electrodes to transport atoms from the

electrochemically active electrode into the electrolyte, forming a path of low resistance

metal atoms. Like VCM, it has an LRS, where the metal atoms have created a conductive

path, and an HRS, where metal atoms have been removed from the electrolyte to produce

a high resistance path. Suitable materials for ECM switching oxides have been shown to

be ZiOx, SiOx, and GeOx, amongst others [35]. The active electrode is often Cu or Ag,

with common inactive electrodes being Pt or Ni [35]. Just as with VCM, the optimization
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of material choices and oxide thickness plays a critical role in determining overall device

performance. The device tested in this work is a HfO2 based VCM memory, and is detailed

in Section 2.3.3.

2.3.2 Currently Manufactured Semiconductor Memory Elements

One of the principal limitations in aerospace electronics is the size and speed of reliable

memory. Most unhardened memories, such as Flash or SRAM, are unusable for radiation

environments because of their sensitivity. The only way to successfully field these tech-

nologies is through extensive hardening techniques and error correcting codes that can

cause speed, power, and area penalties of 250 % or more [41]. Four types of memories are

primarily used for space applications: Static Random-Access Memory (SRAM), Dynamic

Random Access Memory (DRAM), Electrically Erasable Programmable Read-Only Mem-

ory (EEPROM)/Flash, and Magnetoresistive Random-Access Memory (MRAM). Each is

discussed below.

Figure 2.8: Circuit schematic of the common used 6T SRAM cell [41].

SRAM operates by using a bistable latch to store each bit of information. Each latch

is composed of multiple transistors (e.g., the common 6-transistor SRAM cell, shown in

Figure 2.8 [42]). An SRAM cell is capable of retaining stored information without a regular

refresh, assuming the SRAM remains powered. If power to the SRAM is lost, so are the

contents of the memory, making it a volatile memory. Non-volatile versions of traditional
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SRAM do exist (e.g., nvSRAM [43]), and are sometimes used in situations where retaining

stored information is critical. However, non-volatile SRAMs are typically comprised of a

traditional SRAM paired with a different, non-volatile memory type (such as EEPROM)

[44]. SRAM is used throughout the radiation effects community to measure a process

technology node’s radiation tolerance. SRAMs are a useful test device because they are

easy to layout/operate, and can be found in almost all microprocessors flown on satellites

and spacecraft. When unhardened, SRAMs are also highly sensitive to ionizing radiation

due to the collection of radiation-induced charge at sensitive semiconductor junctions in the

transistors of the SRAM cell [3]. As excess charge is collected, it can lead to a voltage spike

on the struck node. If the voltage spike is of sufficient magnitude and duration, it can cause

the bit state to flip from its true value, resulting in the storing of erroneous information.

As a result, every cell of an SRAM is potentially vulnerable to radiation-induced upsets,

requiring that each individual cell be hardened to ensure radiation tolerance.

Dynamic Random-Access Memories (DRAMs) operate by storing bits as electronic

charge on a capacitor using a single access transistor. Like SRAM, DRAM cannot be

classified as a non-volatile memory (NVM), as the capacitor does not maintain its charge

state for long durations during periods of device inactivity. Capacitive storage also suffers

from a high sensitivity to radiation. If the access transistor is struck by an ionizing particle,

it can discharge the stored charge on the capacitive node at any time during operation,

resulting in loss or corruption of stored data [26].

Flash, also known as floating gate MOSFET-based memory, stores data as electric

charge in a floating gate fabricated inside its access transistor. Flash can be used in some

space applications, because of its reasonable resistance to total ionizing dose (TID) effects,

but it still suffers from SEU sensitivity, especially for higher-energy events [45]. This can

be mitigated through the use of error correcting codes, but application of Flash memory

is still limited to low-flux particle environments (due to its SEU sensitivity), making it

difficult to field in many space environments.
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Figure 2.9: DRAM circuit schematic as tested in [3].

Figure 2.10: Read and write operation of a floating gate Flash memory cell [46].
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Magnetoresistive Random-Access Memory (MRAM) is a recently available radiation-

tolerant memory for non-volatile applications [47]. It stores data as a magnetic polariza-

tion, and is currently available in chips up to 16 Mbits. It suffers from relatively slow

access times (approximately 35 ns) and, in its current form, is limited to relatively small bit

densities [48]. Of all the previously discussed memory designs, MRAM is the most similar

to the resistive random access memory discussed in this work because MRAM is a true

NVM and shows good radiation tolerance. However, it lacks the scalability and fast access

times seen in current RRAM research, making MRAM a less likely commercial memory

for general applications [35].

Figure 2.11: Cell drawing of a magnetic tunnel junction (MTJ) based MRAM [49].
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(a) Unformed RRAM structure. (b) Conduction path after forming
(LRS).

(c) Constricted conduction path
(HRS).

Figure 2.12: Conduction mechanism in the RRAM resistive element.

2.3.3 Characteristics of Hf/HfO2 Resistive Random Access Memory

The resistive element of the RRAM consists of two TiN electrodes on the top and

bottom of the resistive layers. The top layer is 10 nm of physical vapor deposition (PVD)

Hf, while the bottom layer is 5 nm of atomic layer deposition (ALD) HfO2, Figure 2.12a.

These are similar to devices discussed in [50]. This is considered a digital resistive element

because it has two states, a High Resistance State (HRS) and a Low Resistance State (LRS),

which are analogous to a 1 or 0 being stored as a charged state in a standard CMOS SRAM

(Static Random Access Memory) [6].

The physics behind the resistive switching mechanism is still under investigation, but

is widely believed to be caused by the constriction or relaxation of the conductive path

through the Hf oxide [50–52]. The conduction path is formed by ions that are transported

through the oxide by the high electric fields created by the applied voltage across the TiN

electrodes. This applied voltage is called “forming” and only takes place once for a resistive

element to create the conductive path. When the conductive path is in its unrestricted state,

the RRAM to is set to the LRS, Figure 2.12b; likewise when the path is restricted in the

oxide, the RRAM is in the HRS, Figure 2.12c. Simulation of this mechanism is discussed

in [51].

The resistive element is built on top of the drain of a single access transistor. In this

case the transistor is built in a 65 nm process with a gate width of 1 µm and a gate length
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Figure 2.13: Circuit schematic of the RRAM 1T1R structure.

of 100 nm. The TiN electrodes are built on top of the via between the active drain diffusion

and the connecting metal layer. Figure 2.14 shows a diagram of the 1T1R structure. This

highlights one of the major advantages of the technology, it can be implemented with stan-

dard CMOS transistors, and is a vertical process that maximizes density. The same SRAM

cell with the same size transistors would require at least twice the area of a single 1T1R

cell, cutting the bit density by a factor of two.

2.3.4 Hf/HfO2 Resistive Random Access Memory Operation

Once the conductive path has been formed during normal operation, the RRAM can be

in two states, high or low. The states are not truly discrete, but are decided using bounds

of operation. For instance it is common to use values like <10 kΩ for the low state, and

>100 kΩ for the high state [53–55]. This does mean that the exact value of resistance is

variable, and highly dependent on the voltage applied to the device. To set the device into

a high state, the source is biased high, the BL is grounded, and a voltage pulse is sent to

the gate to turn it on for a very short period of time. The field generated inside the RRAM

25



Figure 2.14: Diagram of the 1T1R device structure.

oxide causes a constriction of the conductive path (RESET), creating a higher resistance.

The present state of the RRAM is measured by applying a very small voltage across the

RRAM and measuring the resulting current. Inversely the RRAM is SET into the low

resistance state by biasing the BL high, grounding the source and pulsing the gate. This

relaxes or expands the conductive path creating a lower resistance region for current to flow

[56, 57].

While there used to be some debate over whether the resistance switching mechanism

was voltage or current controlled, several recent papers have provided strong evidence of

electric field (i.e., voltage) driven switching [39, 52, 55]. Figure 2.15 shows the dependence

of the resistance state as a function of the applied voltage. Regardless of the load resistor,

and subsequently the applied current, the same resistance change is seen. Another note

from Figure 2.15 is that the amount of time the voltage is applied can strongly impact the

resistance.

This begins to show the possibility of a complex single event response as a function of
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incident ion and strike location. Since the 1T1R structure is essentially a CMOS transistor

with a large resistance applied to the drain terminal, the generated current transients will

be something very familiar to the radiation effects community. Similarly, understanding

the RRAM response to short voltage spikes being applied across the resistive element, may

give great insight into the relative susceptibility to different ions and energies.
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(a) (b)

(c)

Figure 2.15: Voltage dependence of the RRAM SET/RESET procedure from [55].
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CHAPTER 3

Multi-Node Charge Collection

As the size and inter-device spacing of semiconductor devices decreases, the interac-

tion between junctions increases, affecting the response to ion-generated charge [7–9]. In

this chapter, heavy-ion and backside two-photon absorption (TPA) laser measurements on

closely spaced bulk-silicon diodes are used to investigate MNCC effects on current tran-

sients at the individual device level. MNCC occurs when more than one node in a system

collects charge from a single event. Section 3.1 explains the experimental setup, while

Section 3.2 presents the experimental and simulation data for laser and heavy-ion results.

This chapter concludes with discussion of the results in Section 3.3.

Figure 3.1: Layout of the test structure: N+ regions (red), contacts (blue), metal 1 (purple),
and metal 6 (gold).

While data related to MNCC can be found throughout the literature for circuits and

higher level systems [10, 11], investigating device-level MNCC effects through high-speed
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current transient capture can provide insight into the factors affecting MNCC [12–14]. This

information is often inferred using measured upset cross sections [15, 16]. These complex

systems convolute the device response with the underlying charge-collection mechanisms,

which can lead to conflicting results [8, 10]. The fundamental response of a set of junctions

is typically determined using device simulation [4, 17], with experimental verification only

in higher level systems. The following sections describe experimental investigations of how

neighboring junctions compete for ion-generated charge and the probability that MNCC

events occur using different excitation sources.

Broadbeam heavy-ion and backside TPA measurement results are presented for a 180 nm

bulk CMOS test structure that was fabricated to investigate MNCC phenomena at the indi-

vidual device level. Current transient capture measurements using two-photon absorption

[28] are used to map out regions in the test structure to reveal areas of single-node and

multi-node charge collection. Heavy-ion test results on the same structure are also pre-

sented for several ions and energies. These data show the likelihood of MNCC by ion

species and generated charge density, which can be correlated to position using TPA mea-

surements.

3.1 Laser and Heavy-Ion Experimental Details

The Device Under Test (DUT) is a set of four identical n+/p-well diodes fabricated in a

180 nm bulk CMOS process, shown to-scale as a GDSII image in Figure 3.1. Each diode

is 1x6 µm and is 1.3 µm from its nearest neighbor (corner to corner). Spreading resistance

measurements were performed to determine the device doping. The N+ regions are highly

doped and extend a relatively short depth (.100 nm) compared to the p-well and shallow

trench isolation (STI). This is a blanket p-well technology, meaning the entire substrate

(1015 cm−3) is doped with a p-well (1017 cm−3), and its depth was measured to be 600 nm.

The N+ diffusions are connected using on chip transmission lines, which connect to

I/O pads with no electrostatic discharge protection (ESD) or other circuitry. The substrate
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contact (p-well) is out of view in Figure 3.1, but is located 20 µm from center traveling

southwest. This 180 nm CMOS process has a standard SRAM cell size on the order of

5 µm2 (reported by scaling trends in [18]), which is approximately the size of the region

between all four junctions in Figure 3.1 (4.85 µm2). The adjacent active diffusions are

also spaced with the minimum distance allowed by the fabrication process. These facts

reinforce that the junctions used for the presented results represent approximate spacing

for active junctions in standard SRAM cells for this technology.

The on-chip GSG (Ground Signal Ground) pads are wire-bonded to 50 Ω matched

microstrips. The DUT and microstrip are mounted using conductive epoxy in a custom

brass high speed package that uses high speed precision K connectors for connection with

the oscilloscope (Tektronix TDS 6124C). High-speed cables, rated and tested to exceed the

oscilloscope sampling rate, are connected to 40 GHz bias tees (50 Ω), with bias voltages

supplied by a Keithley 2410 SourceMeter. Collecting junctions are labeled J1 through J4,

and are identical except for their location and orientation. Data are recorded using the

RATACA code base that is detailed in Appendix A.

Heavy-ion testing was performed with the 10 MeV/u and 4.5 MeV/u cocktails at Lawrence

Berkeley National Laboratories (LBNL) 88” Cyclotron in vacuum. Junction J3 was chosen

as the oscilloscope trigger channel for all heavy-ion results. Transients are captured if and

only if J3 generates a transient exceeding the trigger level.

TPA laser testing was carried out at Vanderbilt University. The laser system used in this

work employs optical parametric generation (OPG) in a BBO crystal to convert 800 nm,

120 fs pulses at a repetition rate of 1 kHz from a Titanium/Sapphire chirped-pulse ampli-

fier (Titan, Quantronix, Inc) into signal and idler wavelengths. The OPG (TOPAZ, Light

Conversions Inc) is tuned to a signal wavelength of 1260 nm; available pulse energies at

this wavelength can exceed 150 µJ. A series of dielectric mirrors are used to isolate the sig-

nal wavelength, and a spatial filter reduces the pulse energy and produces a near-Gaussian

beam profile. A waveplate/polarizer combination is used to fine-adjust the pulse energy
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incident on the sample, and a beamsplitter sends a small percentage of the incident light

to a large-area InGaAs photo-diode that has been calibrated with a sensitive pyroelectric

detector (J10MB-LE, Coherent Inc.) over the range of pulse energies used.

The signal from the photo-diode is captured for each transient measurement, allowing

direct correlation of specific laser pulses and subsequent transients. The TPA data pre-

sented here include only those transients from pulse energies that are within one standard

deviation of the mean laser energy during the scan. This optimization removes much of

the inherent variance in laser pulse energies and allows for a more accurate mapping of

the transient response within a relatively small range of laser pulse energies (±10 pJ). The

laser generation spot is optically focused on the active silicon surface of the device, and

charge generation spot size measurements [58] show 80% of the generated charge is con-

tained within a 1.2 µm diameter circular region (Gaussian distribution) when using a 100x

(NA 0.5) focusing objective. Specific data on spot size measurements can be found in [59].

Scans were run at ±3 µm of the surface focus, with no change in the results. The DUT is

mounted on a high precision 2-axis linear stage that has a minimum step size of 0.1 µm.

3.2 Results

3.2.1 Two-Photon Absorption Experiments

TPA transient measurements were performed on the diode test structure shown in Fig-

ure 3.1. Various laser energies were used to cover a large range of charge generation. The

data presented are based on analysis of individual transients captured simultaneously on

three separate channels of the oscilloscope. Figure 3.2 shows current transient character-

istics on junction J3, exclusively, as a function of laser pulse location, while the adjacent

junctions, J2 and J4, are either biased (top) or unbiased (bottom). In order to minimize the

pulse-to-pulse variance of the laser energy during area scans, the laser energy is recorded

on the fourth channel of the oscilloscope, and data are optimized using RATACA. The

response of J1 cannot be simultaneously recorded, and is disconnected for all laser area
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scans.

Total collected charge is calculated by numerically integrating the captured current tran-

sients. Due to variations in the experimental noise floor, the regions of the captured wave-

form that fall outside of the transient response will, in many cases, not integrate to zero.

In some cases, the integral of this region can even be on the order of the integral of the

transient response itself. Therefore, it is necessary to choose integration bounds that ap-

propriately bound the transient response, but do not include a significant amount of the

captured waveform outside of the transient response. During a typical measurement, many

transients may be captured. This makes choosing these integration bounds by visual inspec-

tion prohibitively time consuming. Because of this, it is necessary to develop a method to

algorithmically determine the integration bounds during the automated post-processing of

the captured waveforms.

This is done by first applying a ten-point median filter to each waveform to eliminate

high frequency noise components. The filtered waveform is only used to choose the inte-

gration bounds. In this case, the first point of the filtered waveform above 10 µA is chosen

as the first bound and the last point above 10 µA is chosen as the second bound. The noise

floor cutoff is determined by analyzing noise captures at the test location. These points in

time are then used as integration bounds for the unfiltered waveform. This helps eliminate

error in measurements on non-trigger channels (possibly only noise) and low frequency

drift that can cause small shifts in baselines, which can be especially problematic in heavy-

ion data. Eliminating the unnecessary integration of noise by the judicious selection of

integration bounds helps to remove sources of error from the measurement that could lead

to mis-calculations of the total collected charge. The other reported quantities (peak cur-

rent and FWHM) are more straightforward. The peak current is determined by the largest

value that occurs above the noise floor, and the FWHM is the time over which the transient

response is greater than half of the maximum peak current for a particular waveform.
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(a)

(b)

Figure 3.2: Average values for collected charge from TPA laser data. For (a), J2, J3, and J4
are connected and biased at 3.3 V; for (b), J2 and J4 are disconnected, while J3 is biased at
3.3 V.
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(a)

(b)

Figure 3.3: Average values for peak current from TPA laser data. For (a), J2, J3, and J4
are connected and biased at 3.3 V; for (b), J2 and J4 are disconnected, while J3 is biased at
3.3 V.
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(a)

(b)

Figure 3.4: Average values for FWHM from TPA laser data. For (a), J2, J3, and J4 are
connected and biased at 3.3 V; for (b), J2 and J4 are disconnected, while J3 is biased at
3.3 V.
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The surfaces in Figures 3.2, 3.3, and 3.4 are linearly interpolated between recorded

locations. No smoothing or functional fit has been applied to the data. Each record location

is the average value for transients generated from laser pulses that are within one standard

deviation of the mean laser pulse energy during the scan.

Significant increase in the collected charge can be seen in the region approaching the

adjacent junctions, when the adjacent junctions are unbiased, showing the effect these junc-

tions have on J3 (Figure 3.2). Direct strikes on J3 typically result in maximum charge

collection, but the collected charge decreases when the adjacent junctions are biased, even

though this location is greater than 1.3 µm from an adjacent junction. There is an even

stronger difference in the peak current (Figure 3.3), which nearly doubles when the adja-

cent junctions are disconnected.

The opposite trend holds true for the FWHM (Figure 3.4); the FWHM decreases slightly

when the adjacent junctions are not connected, especially for events that occur on the outer

edge of J3. The FWHM depends on the peak amplitude, so what appears as a slight pulse

broadening here is accounted for by the large difference in peak current. This is shown in

Figure 3.5 where the pulses have approximately the same duration, but because the peak

current amplitudes differ by about 50%, the magnitude for the half maximum differs by

50%, causing the black curve (adjacent junctions off) to result in a higher FWHM.

The sharing of charge between adjacent junctions can be seen most clearly as a change

in the peak and collected charge values near the adjacent junctions (J2, J4). Scans were

repeated for a wide range of laser energies (100 pJ to 1.5 nJ) to investigate how the charge

is distributed between the junctions as a function of charge density. Charge is collected by

multiple junctions for all energies, demonstrating that MNCC exists across the full laser

energy range.
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Figure 3.5: Transients from direct strikes to J3 (TPA) with all junctions connected (black)
and only the struck junction connected (red). The difference in the peak magnitudes causes
a difference in the FWHM that may not correlate to a difference in pulse duration.

3.2.2 3D TCAD Simulations

The distribution of the charge between junctions was analyzed using 3D Synopsys

TCAD simulations [60] by looking at the radiation-generated current. Figure 3.6 is a top-

side view, 2D slice of a 3D TCAD simulation. The bias value is 3.3 V, and the LET of

the particle is 60 MeV-cm2/mg. The strike occurs at X=0.75, Y=0.75 µm, and the plot is

captured 1 ns after the strike occurs. The generation track is normal to the device surface,

extends 45 µm in length, and has track radius of 50 nm. The block of silicon was 20 µm

on a side forming a cube.

Figure 3.6 displays the difference between the current density in the Z-direction with

only J3 connected, and with all junctions connected. Figure 3.6 is made by subtracting

the current density in the Z-direction for two separate simulations (all junctions biased

at 3.3 V, and only J3 biased at 3.3 V). A value of zero means that whether the adjacent

junctions are biased or unbiased, there is no difference in the generated current. If the
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value is positive, the current density increases, and likewise a negative value means the

current density decreases. The Z-direction is plotted to represent current flowing into, or

out of, the junctions. While there is also current flowing in the x and y directions, it is not

recorded by the measurement until it flows through the plane in the Z-direction. The most

affected junctions are the closest to the strike center. The current density of J3, which is

connected in both cases, decreases while that of J4 increases after being connected. The

changes in current density flowing into a collecting junction exhibit the same trend as the

current recorded at that node by the oscilloscope for the backside laser measurements.

Figure 3.6: Difference simulation plot showing increased charge collection when adjacent
junctions are disconnected.

If the strike location is further from the center (e.g. X =Y = 1.5 µm), MNCC decreases,

due to the increased distance between the deposited charge and the collecting junction. This

agrees with the observation that as technology decreases in size, MNCC (competition for

charge) increases [7]. For example, at the 32 nm technology node, an entire SRAM cell can
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fit inside the region between the corners of J3 and J4 [18], leading to even more competition

for the generated charge.

Figure 3.7: Sum of charge collection on all three junctions (J2, J3, J4) as a function of laser
position at a reverse bias of 3.3 V, showing regions in between two junctions that collect
the same amount of charge as direct hits on a single junction.

The effect of MNCC on the ensemble of junctions can been shown by summing the

output from the three active junctions in the device (J2, J3, J4). The sum represents the

total charge collected on all three junctions, as a function of laser position, which is shown

in Figure 3.7. When the laser generates charge between two junctions, the total collected

charge is approximately the same as when a single junction is struck. The region between

the nearest neighboring corners of two junctions demonstrates this effect in Figure 3.7 as

the narrow red regions that connect the individual junctions. When strikes occur near only

a single junction (i.e., not between two closely spaced junctions), only about half as much

charge is collected as when the laser strikes between J2 and J3 or between J3 and J4. This

demonstrates the sharing of charge between adjacent junctions and the mechanism’s strong

dependence on the bias conditions of adjacent junctions.
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Figure 3.8: Transient capture for a 10 MeV/u Ag strike that occurs approximately in be-
tween all four junctions, showing the peak and duration of a strike occurring between all
four junctions.

3.2.3 Heavy-ion Experiments

Heavy-ion transient measurements were performed at LBNL on the diode test structure

previously discussed. A variety of ions were used from both the 4.5 and 10 MeV/u cocktails

in order to cover a range of deposition characteristics, summarized in Table 1. The results

presented here are based on an analysis of individual transients captured simultaneously on

all four junctions on separate channels of the oscilloscope. This is different from the TPA

measurements where only events on three junctions were captured.

Table 3.1: Ion generation properties in Si for the LBNL 88-inch cyclotron.

Ion LET QSV QTotal
(MeV-cm2/mg) (pC) (pC)

10 MeV/u Ar 9.7 0.12 17.8
10 MeV/u Ag 48.2 0.57 46.2
4.5 MeV/u Y 45.6 0.51 18.2
4.5 MeV/u Xe 68.8 0.74 26.8
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Spatial resolution is inherently difficult in broadbeam heavy-ion testing due to the ran-

dom isotropic flux and beam size (4 inch radius) produced by the 88-inch cyclotron. Even

though the exact location of the generated charge cannot be determined, insight can be

gained through individual transient captures as well as statistical analysis of the data.

Figure 3.8 is a single capture of a 10 MeV/u Ag ion striking between all four junctions.

The total charge collected by all four junctions for that strike is 0.85 pC, which is 91% of

the highest recorded strike on a single junction (J3, 0.94 pC). The peak currents however

varied significantly from 2.4 mA on the trigger junction (maximum response), to 0.14 mA

for a single event that produced a signal on all four junctions. This significant decrease

in peak magnitude occurs because the ion does not pass through the depletion region of a

junction. The fraction of the deposited charge collected by all junction is similar to that

of a direct strike on a single junction, even though there is not a substantial modulation of

the depletion region, which is commonly associated with funneling and higher efficiencies

[61].

Figure 3.9: Simulation structure and sensitive volume used in MRED to determine the
amount of charge generated in the first micrometer of active silicon.

Figure 3.10 shows the probability of MNCC as a function the charge generated by the
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ion in the first micrometer of active silicon. The metric used here, ξ , is the fraction of ion

strikes that meet a specific set of MNCC criteria (ξ = Valid Events / All Events). To be

considered a valid MNCC event, transient captures must a) be above the noise floor, and b)

have at least a 15/85% split in collected charge between adjacent junctions. Specifically,

if two adjacent junctions collect charge, one will have at most 85% of the total collected

charge by the two junctions, and the other junction will have at least 15%. The specific

ratio for ξ is somewhat arbitrary, but this value is sufficient to eliminate noise without

suppressing actual events. In this test setup, only events that trigger on J3 are measured.

Values are shown as a function of QSV , which is defined here as the amount of charge

generated by the incident ion in the first micrometer of active silicon. This depth approxi-

mately corresponds to the collection depth for all the ions tested, based on the incident ion

LET and assuming 100% collection efficiency. QSV can differ significantly from an ion’s

total generated charge along the entire ion track. For example, 10 MeV/u Ar and 4.5 MeV/u

Y have approximately the same total generated charge, but Y generates five times as much

charge in QSV . If these ions were plotted as a function of total generated charge in Fig-

ure 3.10, they would have nearly the same x-location, but their MNCC probabilities would

vary by over an order of magnitude.

Charge generated in QSV was estimated for each ion using the Monte-Carlo Radiative

Energy Deposition code (MRED) [62]. A 300 µm on a side cubic silicon volume was sim-

ulated, including approximately 11 µm of overlayers that are above the sensitive volume,

shown in Figure 3.9. Overlayer information was obtained from the device manufacturer.

The sensitive volume used to calculate the amount of generated charge is 300 µm wide,

300 µm long, and 1 µm deep was placed at the active silicon surface (below the overlay-

ers), and 10,000 ions were simulated to calculate the average values shown in table 3.1.

These ions all have similar radial charge generation profiles in the first few micrometers

(excluding magnitude) with the 1/e point of a Gaussian fit at approximately 50 nm.

ξ , and thus MNCC, increases with increased charge generation density in the sensitive
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Figure 3.10: MNCC metric ξ for heavy-ion data and 3D TCAD simulation shown as func-
tion of the generated charge in a 1 µm deep sensitive volume, as well as TPA laser measure-
ments shown as a function of laser pulse energy squared. Data show a significant increase
in MNCC during TPA data collection when compared to heavy-ion data and TCAD simu-
lations.

volume. While this has been documented before [10], a saturation of the MNCC probability

occurs at high charge generation densities (QSV = 0.45 pC), which is consistent with circuit-

level data obtained using flip-flops [10]. This validation is important however, because

some circuits do not show this high LET saturation of MNCC [8], resulting in ambiguity

about the mechanism’s existence. The saturation in the probability of MNCC at high LETs

demonstrates that the utility of multi-node hardening schemes may depend strongly on the

particle environment for which a particular IC is intended.

The same MNCC saturation is shown in simulation data using 3D Synopsys TCAD.

The location of the generated charge was scanned over the active silicon in 1 µm steps over
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an origin-centered, regularly spaced grid (11 x 11), covering the experimental LET range.

The output data are processed using the same criteria used for experimental ion data.

3.3 Discussion of Multi-Node Charge Collection Results

Two-photon laser experiments were performed to compare the qualitative MNCC re-

sponse for laser and ion irradiation. Due to the difficulty in quantitatively comparing ion-

generated and laser-generated charge values, the laser data are presented on a separate

x-axis, with the laser energy squared (approximately proportional to the laser-induced car-

rier density). The results are shown in Figure 3.10. While QSV and laser energy squared are

related, there is not a unique relationship between the quantities plotted on the two x-axes.

Laser data also saturate at higher energies, consistent with the ion results, but the fraction

of MNCC events is greater when compared to simulation or ion irradiation. This increase

in the saturation value of ξ for TPA testing occurs because of the significantly larger gen-

eration region for laser excitation compared to ion energy deposition. The laser-generated

spot size diameter is approximately 1.1 µm while that of the incident ions is approximately

100 nm [59]. Holding the generated charge density in QSV constant, the increased size of

the generation region for TPA excitation decreases the distance generated carriers have to

diffuse in order to be collected, and increases the probability that the generated carriers can

be collected by one of the adjacent junctions.

The differences in the MNCC probabilities between ion irradiation and laser excitation

need to be considered when comparing data between the two sources. The probability of

MNCC may differ significantly between the two sources for the same amount of generated

charge. Although the relationships between the TPA laser energy and QSV in Figure 3.10 is

arbitrary to some extent, there is no scaling factor that matches the heavy-ion or simulation

results exactly. In the saturation region, the probability of MNCC using TPA is 25% higher

than it is for heavy-ions. Using TPA experimental data without accounting for these effects

could affect estimates of MNCC in circuits that are susceptible to multi-node events, or
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could lead to overestimates of improvements in circuits that use MNCC to increase their

single-event reliability [14, 32].

ξ depends on the proximity of the collecting junction to the ion-generated charge. A

decrease in distance between adjacent junctions, leads to an increase in the probability that

more than one junction collects significant charge. This is shown in Figure 3.7; as the laser

travels from a point between the corners of two adjacent junctions (heading away from

center), the sum of all collected charge decreases rapidly. If the laser travels west towards

J3, the sum of the collected charge increases, but all of that charge is collected on J3. This

occurs because the adjacent junction, J4, is too far away to collect a significant amount of

charge. This shows that with decreased scaling of CMOS circuits, these events will become

more probable, and since at the 32 nm technology node, four SRAM cells can fit in between

all four junctions in this layout [18], MNCC is an important issue for present and future

technology nodes.

Heavy-ion measurements show a positive correlation with the incident ion and the prob-

ability that MNCC occurs, but a saturation in this trend occurs with charge generation in

excess of 0.45 pC in QSV . This saturation also occurs during TPA measurements, although

a 25% increase in probability exists; this value may change depending on device charac-

teristics and circuit topology. TPA data also show the position dependence of MNCC, as

well as evidence that neighboring junctions compete for the same generated charge. Ion

data also show that strikes between four adjacent junctions can lead to approximately the

same amount of total charge collection at all four junctions that was measured by an ion

directly striking an individual junction. Experimental validation and quantification of these

MNCC effects can be used for both strengthening simulation environments that are model-

ing multiple collecting junctions, as well as interpreting data from circuits and systems that

leverage MNCC as a scheme for hardening.
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CHAPTER 4

Resistive Random Access Memory

Many alternative memories are being explored as a next-generation flash memory. As

discussed previously, RRAM is a prime candidate for this role, and to this point has shown

a resilience to total ionizing and displacement damage effects. Chapter 4 explores the final

radiation susceptibility, single-event upsets. Section 4.1 describes the device under test,

followed by experimental setup details in Section 4.2. Experimental results are presented

in Section 4.3, and complementary modeling techniques follow in Section 4.4. Hardening

methodologies are described in Sections 4.5 and 4.6. The final section (4.7) discusses these

radiation testing and simulation results for SEUs in resistive memories.

4.1 Device Specifications

The resistive element under test consists of two TiN electrodes on the top and bottom

of the resistive element materials. A cross section diagram of the structure is shown in

Figure 2.12a. The top layer of the element is 10 nm of physical vapor deposition (PVD)

Hf, while the resistive layer of the element is 5 nm of atomic layer deposition (ALD) HfO2.

The element has a width of 105 nm and a length of 120 nm, and is located on top of the

access transistor. These are similar to devices discussed in [37, 50, 56]. This is consid-

ered a digital resistive element because it has two states, a High Resistance State (HRS)

and a Low Resistance State (LRS), which are analogous to a 1 or 0 in CMOS memories

(Flash/DRAM/SRAM) [63].

The physical mechanisms responsible for switching the resistor’s state are still under

investigation, but they have been described as removal and recreation of a conductive path

of Hf ions [37, 50, 56] or by the shrinking and relaxation of a conductive path formed by

oxygen vacancies [64]. In this study we work at a higher level of abstraction than the exact

physical origin using the phenomenological model proposed in [9-10]. This model is well
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suited for the relatively high current range expected from radiation generated transients, and

allows a simplification of neglecting the stochastic fluctuation of memory state as described

in [65]. Both models have the RRAM in two states during normal operation: relaxed or

connected, when the RRAM is in the LRS (Figure 2.12b), and constricted or disconnected

when in the HRS, Figure 2.12c.

Figure 4.1: Circuit diagram for the 1T1R RRAM structure.

The resistive element is built on top of the drain of a single NMOS access transistor.

In this case the transistor is built in a 65 nm process with a gate width of 1 µm and a gate

length of 100 nm. The TiN electrodes are located on top of the via between the active drain

diffusion and the connecting metal layer. Figure 3.1 shows a diagram of the 1T1R structure.

Since the resistance change is most strongly related to the voltage across the resistive oxide

[55], it is the change in voltage, not the generated current transient, caused by an incident

ion that dominates the response of the RRAM. Current is of interest because of the heating

effects in the oxide, but it was shown in [55] to be a less dominant mechanism than the

applied voltage across the cell.
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Figure 4.2: Life cycle test of the 1T1R device showing the high state (green) and low state
(blue) of the memory cell.

4.2 Heavy-Ion and Laser Experimental Setup

Before single-event testing is performed, the RRAM is formed by holding the gate at

0.8 V and sweeping the voltage across the resistive element from 0 to 3 V. Detailed forming,

setting, and resetting measurements are presented in [56]. Stability of the 1T1R structure

was verified by repeatedly setting the storage element into the LRS and then resetting back

into the HRS. SET (LRS) operation is performed by applying 1.8 V to the bit line (BL)

electrode, grounding the source of the transistor, and sending a 1 V, 20 ns pulse to the gate.

Conversely, the RESET (HRS) operation is performed by applying 1.8 V to the source,

grounding the BL electrode of the resistive element, and sending a 3 V, 20 ns pulse to

the gate. The state of the RRAM is measured by applying a 10 mV DC signal to the BL

electrode, 1 V DC to the gate (word line), grounding the source (select line), and measur-

ing the resulting current. In Figure 4.2 we show 50 samples of the SET/RESET operation
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obtained with this method. The capability of this technology to reach high endurance num-

bers ( 10 M) with ns-width pulses has been shown in [56]. The metal lines connecting the

RRAM to the transistor, as well as the lines connecting the test equipment to the cell con-

tribute a minimal capacitive or resistive load on the cell when compared to the contribution

of the resistive element.

Start RRAM 
Laser 

Raster Scan

Set RRAM 
into HRS

Measure 
RRAM State

Run 
Exposure 

Loop 
Shutter 
Open

Run 
Exposure 

Loop With 
Shutter 
Closed

Measure 
RRAM State

Set N=1
R > 10k 

&&
N < 5 

Move to 
Next 

Location

R < 10k 
&&
N=5

N+1

Figure 4.3: Flow chart of how heavy-ion test were performed on the 1T1R RRAM structure.

The following steps are used for single-event testing: write device to a high or low

state, put it into the corresponding susceptible bias condition, expose it to a carrier gen-

eration source, and measure the state of the storage cell post-exposure. The exposure and

measurement steps are repeated if no change in resistance is detected. The state of the

RRAM is determined by measuring current and converting it to an effective resistance by

dividing by the applied voltage. This measurement can take place without altering the state

of the RRAM cell.

During heavy-ion testing, the resistive element is exposed throughout the test because

the beam cannot be automatically shuttered during read/write operations. The RRAM was

not susceptible when there was no voltage applied to the BL during heavy ion or TPA

50



testing, even for high-energy events, allowing for the present state of the resistor to be

maintained even if struck by an ion. For single-event testing, the state of the RRAM is set,

the resistance is measured (∼1 s), VBL is applied for 5 seconds, and then the resistance is

measured again. If an upset occurs, the cell is rewritten into the appropriate state (∼3 s).

Neither read time or rewrite time are counted toward the single-event fluence. The heavy

ion broadbeam flux was approximately 2·107 cm−2s−1 for all runs, which equates to an

ion directly striking the transistor, on average, once per two measurement cycles. The

transistor’s lateral dimensions are given in Figure 4.19a. Each run consists of 72 read

cycles (resistance measurements) with a write only occurring when the cell is upset. The

RRAM is tested for full functionality after each run is completed.

Figure 4.4: Laser source passing through an optical shutter and optical chopper during TPA
single-event upset testing.

Backside TPA laser testing was carried out at Vanderbilt University, with the laser only

passing through the silicon substrate. The system utilizes an optical parametric generator,

which operates at a wavelength of 1260 nm, with a nominal pulse width of approximately

150 fs, and a repetition rate of 1 kHz. Generation spot size measurements [58] show 80%

of the generated charge is located within 1.2 µm (circular Gaussian distribution) when

using a 100x (NA 0.5) focusing objective. The 1T1R device is mounted on a high precision
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linear stage, which has a minimum step size of 0.1 µm. The laser is passed through an

optical chopper and automatically shuttered to limit exposure of the DUT to approximately

three measurable pulses per exposure, shown schematically in Figure 4.4. The laser pulse

energy is captured for each transient measurement using an InGaAs photo-diode, allowing

for direct comparison of each exposure and subsequent RRAM state changes.

4.3 Experimental Results

Heavy-ion irradiations, as well as TPA area scans of the RRAM access transistor, were

performed while monitoring the RRAM state and current transient response to determine

the sensitive area of the device. During ion and laser testing, the RRAM never transitioned

from LRS to HRS even when exposed to a large number of high energy events. This is

also seen in simulation and is caused by the grounded high-resistance path of the RRAM

(drain/BL) not being a favorable path for the collection of ion-generated carries. Without

significant charge collection, no significant voltage is dropped across the resistive element,

allowing the state to be maintained. The source (SL) collects a significant amount of charge,

but will not create the voltage drop across the RRAM needed to cause a state change. For

this reason, the following results concentrate on HRS to LRS transitions.

4.3.1 Device Sensitivity to Applied Voltage

Since the RRAM switching mechanism is voltage dominated, the upsets from heavy

ions should have a strong dependence on the BL voltage. Figure 4.5 shows this relationship

using data collected from the 10 MeV/u cocktail at Lawrence Berkeley National Lab 88-

inch cyclotron. The voltage is increased from 0.6 V in 50 mV increments until an upset

occurs during the test time frame (72 cycles). This is the threshold voltage for upset, and

defines the minimum VBL to cause an upset. The data are presented with an exponential

fit, based on work from [66] which derives a simplified RRAM switching model with the

following two equations.
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Figure 4.5: Exponential relationship between the BL voltage required to cause upsets in
a single RRAM and the LET of the incident ion using three DUTs. Error bars represent
experimental resolution, and the fit is y = 0.69 · e−0.085x +0.69.

dφ

dt
= Ae

− EA−αqV

k(T0+
Rth
R0

V 2) (4.1)

|∆φ |= φ

2
· ∆R

R0
(4.2)

Variables and constants for (4.1) and (4.2) are given in Table 4.1. For single-event

effects, we substitute (4.2) into (4.1) to relate the change in the resistor state to the voltage

dropped across the RRAM.

∆R =
A · e

− EA−αqV

k(T0+
Rth
R0

V 2) 2 ·R0 ·∆t
φ

(4.3)

Eq. (4.3) states that the change in resistance, ∆R, is exponentially related to the voltage
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Table 4.1: Variable Declarations

Variable Description Value
A Pre-exponential Constant ±1 [66]
φ Filament Width Data [66]
Ea Activation Energy 0.5
α Barrier Lowering Coeff. 0.3
V Applied Voltage Input
t Pulse duration Input

R(n) Present Resistance R0−∆R(n−1)
R0 Initial Resistance Input

Rth/R0 Thermal Resistance Ratio 2500
T0 Starting Temperature 300

dropped across the RRAM. ∆R is also linearly related to the voltage pulse duration, ∆t, and

the initial resistance of the RRAM, R0. The incident ion affects V and ∆t, where both are

correlated to the ion’s LET. With an increase in ion LET, it is possible to drop more voltage

for a longer period of time because of increased current pulse magnitude and duration. This

results in an increase in the change in resistance, and decreases the applied voltage required

to upset the cell. The voltage dropped across the RRAM is limited by the applied voltage

and the built in voltage; if the generated pulses reach this voltage limit, they elongate in

order to collect the ion-generated carriers. A continuation of this discussion and derivation

for time dependent waveforms is given in the modeling section, Section 4.4.

4.3.2 Investigation of Single-Event Upsets

Single-event upsets occur when a single incident particle generates enough charge in a

susceptible device to change its state. For the RRAM, this is a particle capable of changing

the resistive element beyond its complementary state threshold (from above 100 kΩ to

below 10 kΩ, or vice versa). We determine an HRS upset to be when the value of the

element falls below 10 kΩ; likewise, a LRS upset would be a transition above 100 kΩ.

From (4.3) the upset rate should correlate with applied voltage and ion LET.

Figure 4.6 presents the RRAM SEU cross section as a function of incident ion LET for
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two BL voltages, decreasing as expected with lower ion LET and lower applied voltage,

resulting in fewer SEUs. The voltage dependence is greatest at low ion LET, and there

is no measurable difference between the two voltages considered here at higher LET. The

convergence occurs because ∆R approaches saturation at higher LETs for both applied

voltages. At saturation, the upset rate is dominated by direct hits, which all have sufficient

voltage drop and duration to upset the cell. The maximum cross section in Figure 4.6 is

about 30 µm2, which suggests that there is a significant contribution from diffusive current

transients, and matches well with the sensitive area given by TPA laser scans.
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Figure 4.6: Number of single-event upsets as a function of ion LET for BL voltages of 1.0
and 1.8 V using a single sample; error bars represent standard error for Poisson counting
statistics.

4.3.3 Evidence for Multiple-Event Upsets

SEUs are considered binary events where the memory cell either upsets or does not

upset from a single incident particle. Particle-induced upsets are normally considered bi-

nary because the underlying memory technologies are only stable in two states, high and
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Figure 4.7: Ion-induced Multiple-Event Upset shown as a transition in between the high
and low thresholds, followed by a transition below the low threshold.

low. Thus the particle either changes the memory’s state, or the state remains the same.

The HfO2/Hf RRAM, like most resistive memory technologies, is stable in a continuum

of states [51]. While RRAMs are typically designed to occupy two states during normal

operation, abnormal write conditions from a single-event strike can cause the RRAM to

occupy a state in between high and low. With no restoration current, the cell will maintain

this state until a subsequent write to the cell occurs. If multiple particles strike the cell

before the cell is rewritten, the combined change in resistance by each ion can upset the

cell, even though each strike cannot upset the cell on its own.

MEUs appear in data plotted in Figure 4.7 where the resistor’s value transitions in be-

tween the threshold for HRS/LRS. It is stable in between these two states. Two subsequent

particle strikes then cause the cell to transition below the LRS threshold. This is how we

separate MEUs from SEUs. There may be some error associated with this technique in that

some MEUs may happen within a single measurement cycle, but the beam flux makes this
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probability small.

Figure 4.8 shows the fraction of MEUs that were recorded out of the total number of

upsets (MEUs and SEUs). Figure 4.8 is consistent with Figure 4.6 in that the lower applied

voltage results in fewer SEUs and more partial writes to the RRAM cell, increasing the

likelihood that it takes more than one particle to upset the cell. The same convergence trend

is also shown between SEUs and MEUs at higher LETs, caused by the same mechanism,

an increased contribution of SEUs because of an increased quantity of individual ion strikes

that have the ability to upset the cell for either voltage.
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Figure 4.8: Fraction of all upsets that are Multiple Event Upsets for the same ion experi-
ments as Figure 4.6.

The strong dependence of the RRAM’s susceptibility on the applied voltage can also be

seen with TPA laser analysis. Figure 4.11 plots the laser induced SEU cross section of the

cell vs. the applied voltage, at a single laser energy, similar to the LET in Figure 4.8. Each

measurement is an area scan of the device (6 x 6 µm in 1 µm steps). Unlike ion measure-
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Figure 4.9: Average number of laser exposures required to upset the RRAM for identical
area scans with different BL voltages.

ments, the laser is physically shuttered from exposing the device unless it is opened. The

sensitive area is reduced by 2.5 times at 0.7 V when compared to the nominal SET/RESET

voltage of 1.8 V. It should be noted that the RRAM did not upset for voltages less than

or equal to 0.65 V, even for very high laser energies. The exponential increase in cross

section with the applied voltage, as well as the minimum applied voltage required for upset

correlates well with ion data, and shows that applied voltage is a dominant factor in the

RRAM’s sensitivity.

4.3.4 Cell Sensitivity Based on Strike Location

Besides the ability to rapidly shutter the source, a major advantage of laser measure-

ments is the ability to control the position of the carrier generation. The strike location can
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cell finally upsetting after four exposures.

strongly affect the characteristics of the current transient; strikes inside the depletion region

of a biased diffusion (source or drain) respond with a high magnitude short duration tran-

sient for low level energy deposition [17], and can also create large magnitude, much longer

transients for high levels of generation [59]. Strikes in the channel can cause bipolar-like

gain [67], or strikes in unbiased diffusions can cause complicated transients that collect or

inject carriers at different points in time. Lastly, strikes outside of any active diffusion can,

in bulk CMOS, diffuse over distances of several micrometers to generate transients that are

much lower in magnitude, but longer in duration, than direct hits to active diffusions [59].

The variety of possible responses complicates testing in facilities that have random

isotropic flux (e.g., broadbeam ion), but comparing to TPA laser data can be useful for

understanding the position correlated response of the RRAM. Since the laser source is

passed through both a shutter and chopper, it is possible to look at how a limited exposure
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Figure 4.11: Measured TPA laser sensitive area of the RRAM at different applied voltages
for a single sample; error bars represent standard error for Poisson counting statistics.

can alter the RRAM state at each position. Figure 4.12 shows the number of exposures

it took to upset the RRAM, as a function of laser position. Data capture locations are

positioned where dashed lines intersect, and are plotted as 1 µm squares, which was the X

and Y step size for the scan. The upset threshold is chosen to be 10 kΩ, the LRS threshold.

It is likely that for low magnitude pulses, it may require two or more pulses to upset the

RRAM, with the pulses being cumulative in effect, and following the same exponential

voltage to resistance change relationship in (4.3). The applied voltage is on the BL, and

∆V across the RRAM is a combination of this voltage and the built in voltage dropped

across the RRAM due to a generated current transient.

Figure 4.12a shows the sensitive region with an average laser energy of 212 pJ. Most

upsets are from the first exposure, with a few fringe locations that took more than one

exposure to upset. For an energy of 406 pJ, Figure 4.12b, both the area of first-exposure
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upsets, and that of multiple-exposure upsets increases. There is some spatial translation

between these two figures, meaning they do not have the same scan origin. The increase

in multiple-exposure upsets shows that the increased energy resulted in more significant

diffusive transients (generated outside the active diffusions); these are transients that are

lower in magnitude (lower voltage drop across the RRAM), but still have the ability to

cause RRAM state changes without meeting the upset criteria.

Pulse to pulse variations from the laser source cannot be eliminated using variance

reduction techniques often employed for single-event current transient capture. This can

cause unwanted variance where it appears that fringe locations are more sensitive than

locations closer to the transistor (e.g. Figure 4.12b X=6 Y=2). This is caused by large

pulses being generated above the normal pulse energy, and cause an upset that would not

occur with the average generated laser pulse. Several different RRAM die were tested

with similar results, with the laser source variance dominating any differences seen during

scans. This correlates well with the simulation data, and is presented in more detail in

Section 4.4.2.
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(b) 406 pJ.

Figure 4.12: TPA laser area scan at two laser energies showing the number of laser exposure
to the RRAM access transistor until the cell falls below the upset threshold. Direct strikes
to the transistor result in SEUs, while diffusive transients require multiple exposures to
upset the cell.
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4.4 Resistive Random Access Memory Modeling

4.4.1 Modeling of Oxide-Based Resistive Elements

The RRAM can, and most likely will, be manufactured on a variety of access-transistor

technologies; given that the access transistor is the source of SEUs, modeling the RRAMs

response to single-event induced transients is crucial to predicting its reliability in future

technologies. The relationship given by (4.3) can be visualized by looking at the change

in resistance as a function of the applied voltage pulse. Holding the initial resistance of

the RRAM constant (150 kΩ), the theoretical voltage magnitude and pulse duration were

varied to produce the plot in Figure 4.13. The initial resistance is chosen as 150 kΩ to

represent the lower HRS states seen due to part to part variability. The lower resistance will

require less change in state to reach the LRS, and is chosen as a conservative estimate of

sensitivity. The red region in Figure 4.13 is where pulses are large enough to guarantee an

upset from HRS to LRS. Orange, yellow, and light blue areas show a significant resistance

state change of the RRAM, but do not cause the RRAM to fall below the LRS threshold.

These regions demonstrate the possibility for partial upsets due to abnormal writes, and the

ability of multiple events to contribute to an MEU.

Eq. (4.3) assumes a square pulse of constant magnitude. For time-varying waveforms,

individual changes in resistance can be computed for each time step, and summed to cal-

culate the total change in resistance, Eq. (4.4).

∆R =
m

∑
n=1

2A ·R(n) ·∆t(n)
φ

· e
− EA−αqV (n)

k(T0+
Rth
R0

V (n)2) (4.4)

Starting values for constants in Table 4.1 were used from [66], but were refined exper-

imentally to obtain the values shown. A high speed function generator (AFG3252) was

used to generate Gaussian voltage pulses of 1 V magnitude with different durations (4-

12 ns FWHM) on the gate of the access transistor. VBL was biased from 1 to 1.8 V in order

to control ∆V across the resistor. The RRAM was measured before and after a generated

pulse using an HP4156, and was reset when the resistance fell below 10 kΩ. Figure 4.14
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Figure 4.13: Change in the RRAM resistance as a function of the applied pulse magnitude
and duration.

shows the result of two of these measurements (1.2 and 1.4 V, 4 ns pulse). This test was run

on a single device, with this particular device having a series of high starting resistance val-

ues, which happens occasionally, and is commonplace for a still-maturing process. The red

line represents calculations using (4.4). Values were selected such that the model produces

conservative estimates in all cases, sometime resulting in slightly higher values of ∆R than

the experiment. These parameters along with (4.4) are used in the following section to

simulate heavy ion strikes.

There are inherent limitations to calculating the resistor’s state change in post process-

ing, typically causing an over prediction of the cell’s sensitivity. A comparison of the two

methods is shown in Section 4.4.2. 3D device simulations were performed using Synopsys

TCAD [60], and the dynamic model was implemented using the Compact Model Interface

(CMI). The CMI uses a user defined input/output matrix as well as a Jacobian matrix to
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Figure 4.14: Experimental verification of the input parameters for Eq. 4.1 listed in Table
4.1 for a pulse width of 4 ns.

communicate between the model’s calculations and device simulations. The input matrix

(4.5), output matrix (4.6), and Jacobian matrix (4.7) are given by the following.

z(t) =


u1

u2

i

 (4.5)

fR(t,z(t)) =


i

−i

(u1−u2−R · i)

 (4.6)
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d
dz

fR(t,z(t)) =


0 0 1

0 0 −1

1 −1 −R

 (4.7)

u1 and u2 are the BL and drain electrode voltages on each side of the resistive element.

i is the current flowing through the element from BL to drain, and R is given by:

R = R(n−1)− 2A ·R(n) ·∆t(n)
φ

· e
− EA−αqV (n)

k(T0+
Rth
R0

V (n)2) (4.8)

R(-1) is the initial resistance and is called R0 throughout this document. The compact

model is instantiated as a circuit element during mixed-mode TCAD simulations. The re-

sistive element is connected between an ideal voltage source (for VBL) and the drain of the

3D transistor model. During each time step of the simulation, the resistor’s state is solved

simultaneously with the differential equations that describe the transistor’s operation. Dur-

ing this process, the resistor is treated as a ‘black box’ where the simulator sends values

to the compact model, and values are returned, without any understanding of what calcula-

tions are performed inside the model. The code used to implement the model is located in

Appendix B.

4.4.2 RRAM Heavy-Ion Simulations

The importance of using a dynamically varying model is demonstrated in Figure 4.15;

the constant-resistance modeling technique over predicts the sensitivity of the RRAM when

compared to a dynamic compact model simulation using an identical access transistor struc-

ture. Both models give the same results until 1 ns, when the dynamic-resistor model has

decreased enough in resistance to collect all of the ion-generated charge, and end the event.

Conversely, the static model continues to have substantial changes in its state due to its

higher value of R0, and results in an over prediction of the memory element‘s sensitivity
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Figure 4.15: Comparison of the change in the RRAM resistance when modeling the device
with a dynamic resistance model (DR) and a static resistance model (CR).

by almost 20 kΩ. For this example case, the static model’s over prediction suggests that an

upset will occur, although the more accurate model suggest that is will not.

The heavy-ion simulations were performed on an NMOS transistor with W=1 µm,

L=100 nm with source and drain diffusions that are 1 x 0.2 µm (from fabrication informa-

tion on the device under test, and shown in Figure 4.16). The nMOSFET was calibrated to

match the fabricated transistor’s IV characteristics. The drain is loaded with a 150 kΩ resis-

tor to emulate the RRAM. This resistance in the TCAD simulation is constant, which is not

a perfect representation of the experiment, but is a good estimate of the cell’s response. It is

also a conservative estimate because holding R constant causes ion-generated carriers to be

collected slower, resulting in a longer voltage pulse, and ultimately a larger calculated value

of ∆R. Various locations (shown in Figure 4.18a), LETs (10, 40, and 55 MeV-cm2/mg), and

RRAM bias voltages (1 and 1.8 V) were chosen to demonstrate the response under varying
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Figure 4.16: Angled topside image of 3D TCAD structure used for simulation.

conditions.

Figure 4.17 shows a voltage waveform for a simulated ion strike on a device in Syn-

opsys TCAD [60]. The ion strikes the center of the reverse biased drain (1.8 V), with an

LET of 55 MeV-cm2/mg. The voltage waveform across the RRAM is plotted because it

is the driving mechanism behind changes in the RRAM resistance; this is different from

typical electronic circuits where current is typically the dominant upset criteria. Because

the change in resistance is exponentially related to the applied voltage, large changes in

resistance occur for voltages in excess of 1.5 V, while the rest of the voltage transient is of

little significance. Note that the peak ∆V reported in simulation is the BL voltage (1.8 V)

plus the built-in voltage (∼= 0.8 V).

Results from CR simulations are shown in Figure 4.18, and demonstrate the strong de-

pendence on location, voltage and LET. With an LET of 10 MeV-cm2/mg, a well-reported

trend in bulk CMOS junctions is shown whereby the most susceptible location is the cen-

ter of the reverse biased drain. However, this trend changes for higher energy deposition,
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Figure 4.17: Ion generated voltage pulse across the RRAM (blue) as well as the RRAM
resistance (black) that is calculated post simulation using Eq. 4.4.

resulting in an equally sensitive location outside of the drain (1 µm) for 55 MeV-cm2/mg.

This occurs due to the heavily loaded drain (150 KΩ) being pulled below the potential of

the lightly loaded source, making the source a more favorable path for collection of the

generated carriers. As the strike location moves towards 2 µm, the distance the carriers

must travel to the source increases, increasing the time the drain has to collect those carri-

ers, resulting in a longer voltage pulse on the drain; this ultimately causes a larger change

in resistance for the RRAM.

Near position -2 µm, ∆R decreases, due to the increased distance the carriers must

diffuse and the closer proximity to the source. Another well-reported trend in CMOS tran-

sistors is that increasing the ion’s LET increases the magnitude and duration of current

transients, which increases the change in resistance. An increase in LET dependence is

also shown with increased distance from the drain diffusion. This increase is controlled

by the amount of charge that is collected on the drain, the time over which it is collected,
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and the peak voltage dropped across the RRAM. Since ∆R is exponentially related to the

voltage across the RRAM (4.3), relatively small changes in ∆V can have large effects on

∆R. Also, ∆R is a self limiting process since the resistance cannot fall below the 5 kΩ range

for short pulses, so it will also eventually saturate with sufficiently large voltage pulses.
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Figure 4.18: (a) Top side view of the access transistor, with locations of simulated ion
strikes shown in gray. (b) The change in resistance as a function of applied voltage, ion
LET, and position using the constant resistor modeling method.

71



A more detailed comparison of the CR and DR simulation methods is shown in Fig-

ure 4.19 for ion strikes occurring at multiple locations. The main trends seen in the CR

simulation method hold true when the simulations are run using the DR method. There is

a major difference however, in the two methods in the gradual and natural slope associated

with strikes occurring outside of the transistor, with the DR method having a smoother roll

off as ions strike farther from the cell. The CR model also over predicts the cell‘s suscep-

tibility for strikes directly hitting the transistor, while under predicting diffusion transients

that are generated outside of the transistor.
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Figure 4.19: Reduction in the RRAM’s resistance as a function of ion LET and strike
location, for constant-resistance (CR) and dynamic-resistance (DR) simulations.
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Simulations were also performed with the resistor in the LRS with the source reverse

biased while the bit line connected to the RRAM was grounded. In this bias condition,

the RRAM can change from the LRS to the HRS if the gate is activated. Even with the

maximum applied voltage of 1.8 V, the generated current pulses were too low in magnitude

to cause the RRAM to upset. The change in resistance was approximately 100 Ω, which

would require much more than 1,000 worst-case events (high applied voltage, high LET)

to upset the cell, making its contribution to the upset rate of the device extremely small

for even the most extreme of radiation environments. Attempts were made to confirm this

susceptibility in experiment, but were never able to significantly alter the cell’s state even

for a large number of high energy TPA events.

The DR model can also be used to simulate MEUs in the RRAM cell, which have been

shown here to be a significant contributor to the tested upset rate. MEUs were simulated

on the fabrication matched transistor cell by striking the same location repeatedly with the

same ion-generated charge. After each simulation completes, the resistors value is main-

tained in the following simulation. This operates in the same way as the experimental

device, where the cell’s state is maintained between subsequent ion strikes. Figure 4.20

shows simulation results which have the same trend that was seen in experimental data in

Figure 4.7, where the first strike transitions the cell between the high and low thresholds.

The first strike has a large change in resistance, and subsequent strikes have a lessening ef-

fect. Each subsequent strike transitions the cell less than previous identical strikes. For the

presented simulation example, it took four subsequent strikes to upset the cell. The strong

dependence on the resistor’s initial state is expected because the change in the resistor’s

state is linearly proportional to both the RRAM’s resistance and the duration of the write

pulse. It is also exponentially dependent on the voltage magnitude of the pulse. All three

of these factors are effected during a single-event strike when the resistance of the RRAM

changes.
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Figure 4.20: MEU demonstrated in the 1T1R RRAM structure by repeatedly striking the
same cell until the value falls below the upset threshold (10 kΩ).

4.5 Window of Vulnerability of Unhardened RRAM Cells

The RRAM is susceptible to ion-induced upsets when a voltage capable of writing

to the device is applied to the off state 1T1R RRAM. The amount of time the RRAM is

in this state will be significantly less than the operational time of the device, and varies

significantly depending on the application. The following is an estimate of the fraction

of operational time that the RRAM would be vulnerable. The equation for estimating the

vulnerability window (not the upset rate (SER) or failures in time (FIT)) is:

Vul. Window = State · rows
bit lines

·Activity ·Time. (4.9)

For a 1 MB example, if we choose 1024 rows, 1024 bit lines, an activity ratio of 0.01,

and an equal probability of the RRAM being in HRS or LRS (0.5 because the RRAM is

not vulnerable in LRS):
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Vul. Window = 0.5 · 1024
1024

·0.01 ·Time (4.10)

Thus the window of vulnerability would be 0.5% of its operation time, which is or-

ders of magnitude lower compared to unhardened memories which are always vulnerable

(DRAM/SRAM/Flash). This is promising for the possibility of RRAM being used in radi-

ation environments. RRAM susceptibility is directly proportional to the current transient

generated by the access transistor, and single-event transients decrease in magnitude and

duration as technology scales [68], so RRAMs should be relatively robust in a variety of

radiation environments.

4.6 Hardening Methodologies for RRAM Technologies

Figure 4.21: Circuit diagram of the hardened RRAM cell used in simulation.

The upset sensitivity is a direct result of the applied voltage to the memory cell. Hard-

ening the cell to single-event strikes is as simple as disconnecting the applied voltage when

the cell is dormant. One way to accomplish this is by adding a second transistor to the cell

[69]. We simulated this setup using matched transistor model to the 1T1R fabricated cell,
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but with a second transistor added (shown schematically in Figure 4.21). Both transistors

turn on/off together, and in the off state there is no voltage applied to the RRAM.

Figure 4.22: Angled topside image of 3D TCAD structure used for hardening simulation.

The electrostatic potential of the simulated off-state device, with the BL enabled (1.8 V),

from Synopsys TCAD is plotted in Figure 4.23a. Normal incidence strikes for an LET of 1,

25, 50, and 100 MeV-cm2/mg were simulated across both transistors with a peak sensitivity

of 14 Ω at X = 0.5 µm. This means that thousands of events with an LET of 100 MeV-

cm2/mg would need to directly hit the access transistor, while it is biased in a vulnerable

state, before an upset becomes possible.
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(a)

(b)

Figure 4.23: Pre-strike (a) and post-strike (parallel to the surface) (b) electrostatic potential
from 3D heavy-ion simulation in Synopsys TCAD.
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Strikes parallel to the surface were also simulated, increasing the susceptibility of the

cell. By generating enough charge in both transistors, the applied voltage is dropped across

the resistive element. This is shown in Figure 4.23 as the electrostatic potential from 3D

TCAD device simulations. The simulated ion has an LET of 55 MeV-cm2/mg and passes

through both transistors. The post-strike potential shows that both transistors are shorted by

the ion-generated charge, and the strike causes a substantial voltage differential across the

resistive element. Unlike the normal incidence strikes, this can cause a significant change

in the resistive element, and is a strong function of the incident ion’s LET. The change in

the resistance of the the RRAM as a function of the ion’s LET is shown in Figure 4.24.
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Figure 4.24: Change in the state of the resistive element after a parallel to the surface strike
is simulated.

Even for a strike perpendicular to the surface with an LET of 100 MeV-cm2/mg, the

resistive element changes about 16 kΩ from its nominal state (approximately 150 kΩ).

To upset the cell, nine consecutive worse case events, occurring during the window of

vulnerability, would have to occur to upset the cell. The need to have 9 correlated events in
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order to upset the cell demonstrates the strong radiation tolerance that can be gained with a

relatively simple hardening scheme.

4.7 Discussion of RRAM Results

This chapter encompassed the first published measurement of a heavy-ion induced

memory upsets in resistive memories. The upset mechanism, a voltage pulse generated

from the collection on ion-generated charge, is similar to mechanisms that drive upsets

in other commercial memories (SRAM/DRAM/Flash). However, several mechanisms are

unique to RRAM cells such as the exponential dependence on the applied BL voltage and

the limited window of vulnerability of the cell. In SRAM cells, an increased operating

voltage usually shows a more robust SEE response than the same cell operated at a lower

voltage. This trend is reversed in RRAMs where the lower the BL voltage, the lower the

sensitivity. The other most distinguishing difference is the ability to create Multiple Event

Upsets, where subsequent particle strikes can accumulate and finally culminate in an upset

of a cell due to lack of a restoration force.

These mechanisms were shown using broadbeam heavy-ion experiments, and were cor-

roborated using position-aware TPA laser testing as well as dynamic heavy-ion simulation

using Synopsys TCAD. TPA results show a position dependence of laser excitations, where

pulse that occur farther from the junction take a larger number of excitations to upset the

cell. Simulations showed the importance of dynamic modeling with resistive elements, by

showing the over-prediction given using constant-resistance models. These results set the

foundation for future RRAM reliability work for space and radiation environments, giving

researchers and designers an understanding of what to expect from resistive memories dur-

ing ground testing for space qualification. The dynamic compact model also give designers

a methodology for RRAM simulation with the goal of minimizing implementation costs

associated with a new technology.
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CHAPTER 5

RRAM Simulations for Highly-Scaled Access Transistors

Estimating the response of the next-generation of resistive memories is a useful ex-

tension of the presented experimental data. Using a 28 nm FinFET access transistor and

modifying the resistive element’s properties to operate with the resultant decreased con-

duction current, the SER of future RRAM cells can be estimated.

5.0.1 Scaled Access Transistor and Resistive Element Model

The FinFET transistor has a gate length of 28 nm, and fin width of 20 nm. All 8 fins are

constructed on top of a 150 nm thick SiO2 buried layer. The gate oxide is 3 nm thick, and

wraps around the top and two sides of each fin. Ideal contacts are placed on the entirety of

the gate oxide opposite the silicon channel. A substrate contact is placed 140 nm from the

nearest fin, and is grounded for all simulations. The cell was designed to match information

found in [70], and the resulting structure and doping profiles are shown in Figure 5.1.

The resistive element’s properties were scaled to accommodate the lower on-state cur-

rent of the FD-SOI (Fully Depleted Silicon On Insulator) access transistor. To ensure the

resistor’s parameters stayed within physical limits, each modifiable parameter was changed

to improve the element’s switching speed. This is a safer approach than modifying one

parameter heavily, because changing a single parameter would likely move it into an un-

physical range. The new parameters are given in Table 5.1.

The parameters of the FinFET’s resistive element were verified by passing a 5 ns 1 V

square-wave pulse to the gate of the access transistor and analyzing the resulting resistance.

Figure 5.2a shows the resulting voltage across the resistive element when the gate pulse is

applied. The voltage drops as the RRAM’s resistance reduces because the access transistor

has a limited ability to conduct the necessary current. The voltage spikes at the begin-

ning and end of the write pulse are caused by switching noise. Figure 5.2a also reinforces
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Figure 5.1: Angled topside image of 3D TCAD FinFET structure used for simulations to
understand the effects of access transistor scaling.

why dynamic modeling is important to properly characterize resistive memories, because

with a static resistor the applied voltage would be constant throughout the simulation. The

constant voltage would over predict the ability of the access transistor to switch the resis-

tor’s state, leading to inaccurate modeling. Figure 5.2b shows the resulting resistance from

simulation, with the final resistance being just below the low resistance threshold.

5.0.2 Estimating On-Orbit Upset Rates

The sensitivity of the above cell can be estimated using heavy-ion simulations in Syn-

opsys TCAD. To maximize the feasibility of the heavy-ion solution space, incident angles

of the simulated strikes were limited to every 45° angle with redundant strikes (mirror

image angles) excluded. The exact angles are listed in Table 5.2. The strike origin is in the

middle of the eight fins in both the X and Y directions. The angle (0,0) is perpendicular to

the surface and passes through the origin.

To further limit the sample space, the worst case angle is used as the incidence for which
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Table 5.1: Variable Declarations

Variable Description Value
A Pre-exponential Constant ±1 [66]
φ Filament Width Data [66]
Ea Activation Energy 0.4
α Barrier Lowering Coeff. 0.3
V Applied Voltage Input
t Pulse duration Input

R(n) Present Resistance R0−∆R(n−1)
R0 Initial Resistance Input

Rth/R0 Thermal Resistance Ratio 3000
T0 Starting Temperature 300

Table 5.2: Simulated Strike angles in spherical coordinates.

θ φ

0° 0°
0° 45°
0° 90°
45° 0°
45° 45°
45° 90°
90° 90°

every strike occurs. This is an overly conservative estimate of the cell’s sensitivity, but

makes the upset rate calculation easier to comprehend, while still stressing the robustness

of this cell. The worst case angle for all ion LET values is a particle traveling through the

channel of all of the fins (0,90°). A worst case strike at the highest LET (100 MeV-cm2/mg)

is not enough to upset the cell. The cell would still have to be struck three times, without

the cell being SET/RESET during normal operation. At this point in the calculation it

is already apparent that the cell will be very difficult to upset, but the finalization of this

calculation shows the magnitude of the cell’s sensitivity, and can give insight into what part

of the heavy-ion spectrum plays the most significant role.

Figure 5.3 shows the results from the worst case strike at each LET value in red. The

same exponential trend that was shown in experimental data is shown in simulation as the

LET values approach 0.1. Values below 0.1 cannot cause any measurable change in simu-
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Figure 5.2: (a) Voltage differential applied across the resistance element by activating the
access transistor and (b) the corresponding change in the resistive element’s resistance from
3D TCAD simulations.

lation, so they are seen as requiring an infinite number of strikes to upset. Ions with LET

values less than this threshold will not cause SEUs in this cell. The required number of

strikes until upset can be used to weight a particular on-orbit particle spectrum to estimate

the upset rate of this technology. The blue data in Figure 5.3 represent the best case strike

angle (normal incidence). The normal incidence data show that even at high LET values,

the best case does not match the worst case. The best case data demonstrates the conserva-

tive estimate of the following calculation.

Figure 5.4 shows data generated from Creme96, a solar spectrum generation tool, for

the worst day of geosynchronous orbit [24]. The calculation is performed with 100 mils

of aluminum shielding. Sharp peaks in this data are an artifact of the calculation process.

This spectrum, like many extraterrestrial environments, is dominated by particles with an

LET less than 5 MeV-cm2/mg. To weight this spectrum in coordination with the TCAD

simulation data, the spectrum needs to be divided by the number of strikes it would require

to upset the cell. The spectrum also needs to be weighted by the vulnerability window
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Figure 5.3: Number of ion strikes required to upset the cell, at the worst case angle (through
the channel of all fins) shown in red, and the best case angle (normal incidence) shown in
blue.

(5·10−3) discussed in Section 4.5. This is represented mathematically as:

Fluxweighted(LET ) = Flux(LET ) · Window o f Vulnerability
StrikesUntil U pset(LET )

(5.1)

Significant differences can already be seen between the two spectra shown in Figure 5.5.

The difference is several orders of magnitude across the LET range, and the weighted spec-

trum ends at an LET of 0.1 MeV-cm2/mg. The end of the spectrum is a significant contrib-

utor to the reduced single event upset rate because of the dominance of lower values in the

spectrum. Resistive memories, like their CMOS memory counterparts, have a threshold for

upset or state change, with the exact value varying between different technologies.

The desired result is an estimated upset rate per bit-s. To remove the angle of incidence

dependence, the worst case angle is assumed for all strikes; to account for all possible

incident angles, a factor of 4π is multiplied by the spectrum. The flux is also normalized
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Figure 5.4: Creme96 generated spectrum for worst day of geosynchronous orbit.

by the bit area (300 nm x 430 nm) to obtain results on a per bit basis. The spectrum is then

reverse integrated in (5.2) to estimate the total upset rate for the cell in this environment.

Integral U psets =
LET

∑
l=100

Flux(l) ·Window o f Vulnerability
StrikesUntil U pset(l)

·4π ·Bit Area (5.2)

A plot of the integral upsets per bit is given in Figure 5.6. Expected features show up in

the data for LET values less than 0.01, where the integral saturates, and there is no more

contribution to the sum. A strong contribution is also shown from lower LET particles.

Because of their high probability in the original spectrum, even the much lower state change

of the resistive element caused by these particles cannot eliminate their dominance.

The maximum value in Figure 5.6 can be used to estimate the number of upsets in a

large data array, as well as understand the likelihood that an event occurs in a single cell.

A limit-defining example is given for a memory array that is 1 Gb in size, and will be

storing data permanently. No additional (excluding initial programming) data writes will
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Figure 5.5: Creme96 generated spectrum for worst day of geosynchronous orbit (black),
and the weighted spectrum of flux taking into consideration Equation 5.1

be performed on the cell of interest during its lifetime. Any degradation to the bit will be

kept indefinitely until the cell upsets. This example is given as the extreme use case, since it

is highly improbable during operation that adjacent cells would be written to, while this cell

would remain static. Starting with the maximum value from Figure 5.6 (3.35·10−15 (bit-

s)−1), and multiplying by the number of bits yields the number of upsets per second in the

memory array.

Integral U psets = 3.35 ·10−15 ·1 ·109 = 3.35 ·10−6 (bit− s)−1 (5.3)

This equates to approximatively 1 upset in 1 Gb every 3.5 days, a quantity that can easily

be corrected with basic Error-correcting codes (ECC). ECC is almost always used in some

form in critical applications implemented in radiation environments, and is also widely
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Figure 5.6: Integral upsets per bit-s after all calculations have been performed on the orig-
inal Creme96 spectrum and has been normalized to the bit area.

used in server/data-center memory. MEU errors can further be eliminated by regularly

rewriting to the cell. Since RRAM has shown read/write cycles in the 10 billion range,

regular rewriting is not a reliability concern, but could almost eliminate MEUs, and thus

upsets in the device.

5.1 Discussion of Future RRAM Technologies in Radiation Environments

Projecting future technologies is fraught with assumptions and challenges to foresee

issues not yet discovered. The goal of this section was not to precisely predict how an

RRAM will respond as it scales, but to understand how the mechanisms will affect the

RRAM memory cell as both the resistive element and access transistor evolve. The SOI

FinFET reduces the voltage transient generated on the cell, while maintaining sufficient

drive strength. Since there are no other transistors in the storage element that are scal-
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ing downward with the access transistor, the cell’s SEU response will improve because

the single-event pulses are shrinking while the pulse needed to transition the cell remains

constant. Even when the resistive element is made to operate faster, reducing the voltage

pulse needed to upset the cell, the single-event pulse scales faster than the response of the

element. Again, there are assumptions that could be incorrect depending on the driving fac-

tors of next-generation RRAMs, but this section shows that the outlook is positive. Using

on-orbit calculated spectrum shows that SEUs will likely be impossible, and MEUs will be

the only chance for an upset. Writing on a regular basis to all cells in the array can mitigate

most MEUs because the degradation to individual cells cannot be maintained. Combined

with ECC, hardening cells may not be a strong concern because of inherent robustness in

radiation environments.

89



CHAPTER 6

Discussion and Conclusions

This chapter serves to summarize the results of this work, explain some of the limita-

tions, and detail future actions which may lead to further insight. A major result from this

work is the first experimental evidence of single-event upsets in Hf/HfO2 based Resistive

Random Access Memories (RRAMs). The cell was also found to only be susceptible in

only one of the two states it occupies during normal operation (High Resistance State). The

RRAM’s sensitivity shows that SEUs will be a concern for these memories if they are used

in space and other radiation environments. Also, the single-state sensitivity demonstrates

a 50 percent reliability increase, compared to similar unhardened memories, before any

hardening of the RRAM has taken place. Even large values of laser excitations were not

able to transition the cell, solidifying this mechanism’s existence. Since it was also seen

in simulations, there are no currently known limitations to this finding, with future work

likely examining different materials or layouts where this mechanism may cease to exist.

A new type of upset was also seen, whereby effects from subsequent strikes on a sin-

gle cell can accumulate until the cell transitions to its complementary state. This upset is

termed a Multiple Event Upset (MEU), as an extension of single-event upsets. MEUs are

possible because the RRAM lacks a restoration force seen in other memory types (e.g.,

SRAMs). An MEU in these cells should be considered a rare event, almost always occur-

ring during long periods of individual cell inactivity, when an adjacent cell is activated.

The cell’s window of susceptibility stems from the RRAM only being susceptible when a

voltage in excess of 0.7 V is applied to the BL of the device. During heavy-ion testing and

in heavy-ion simulations, MEU are the major contributor to upsets in these cells. RRAMs

can be operated in such a way that cells are rewritten if inactive during long periods of time.

Therefore, a simple firmware level condition would drastically cut the SER in the cell, and
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in some future generation of RRAM, when combined with ECC, may even eliminate upsets

altogether. There is also a real likelihood that the RRAM becomes more sensitive as the

access transistors scale to smaller dimensions, possibly offsetting gains made by these tech-

niques. The main limitation of this result is experimentally dependent definition of MEU,

something that is unavoidable when testing individual RRAM cells. There is a future need

of testing dense memory arrays to understand how these MEUs will appear in arrays while

they are being operated.

The exponential dependence between the sensitivity of the cell to ionizing radiation

and the applied voltage to the BL of the device was shown in both heavy-ion and TPA

experiments. The RRAM becomes more sensitive with larger applied bias voltages on the

BL of the device, which is inverse to similar mechanisms in SRAM cells where higher

operating voltages decrease a cell’s sensitivity. The inverse dependence is a crucial result

for future experiments and circuit design guidelines. Since the result is counterintuitive

from standard CMOS SRAM hardening, there should be a goal to limit voltage magnitudes

so that upsets rates can be minimized. The application of this information will be limited by

the circuit’s ability to function at lower supply voltages. Future insight will likely be gained

from data arrays due to the limiting statistical nature of a single cell. Some insight could

be gained from trying to find the minimum reliable operating point of the RRAM cells, and

comparing that to the nominal supply voltage while under TPA or heavy-ion irradiations.

A compact model was created to help understand experimental results on the RRAM,

and is a promising area of future work. The dynamic compact model was experimentally

calibrated to match the switching response of RRAM. Results comparing the use of a single

resistor and the created compact model show the importance of having a dynamic resistor

in simulation. Results obtained using the static resistor method over predict the change in

the resistor’s state because the resistor does not decrease in magnitude during simulation.

The dynamic model was used to investigate how the fabricated cells would respond to

position dependence of the incidence ion, and it qualitatively matched results from position-
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aware TPA testing. The model also allowed for simulation of a hardening technique that

greatly increased the hardness of the cell (likely meeting flight requirements) while still

maintaining the cell size of a standard SRAM cell. Finally a dynamic resistor model was

implemented with a scaled access transistor and resistive element to estimate the sensitivity

of future technology nodes. The results were promising, showing a decrease in sensitivity

with increased scaling. The model presented in this work is deterministic, with the goal of

matching the average response of the RRAM cell. Future modeling should concentrate on

encompassing the stochastic operation of the RRAM in a probabilistic way. This would be

an intensive modeling project, with many unknowns yet to be realized.

To understand how tightly spaced RRAM cells will interact in large arrays, experiments

and simulation were preformed on a custom silicon test structure. The investigation of

how neighboring junctions affect each other from basic physical mechanisms showed clear

evidence that adjacent junctions alter the charge collected on opposing junctions. Turning

on a nearby junction reduces the amount of charge collected on the main junction. This

is counter intuitive to the term charge sharing, because the junctions are competing for the

same generated charge. The closer junction or the junction with the stronger reverse bias

will collect more of the generated charge, and was shown experimentally using TPA laser

testing. This mechanism will become increasingly difficult to study as junction sizes and

spacing become much smaller than the generation size of the TPA laser. These junctions

will also be much smaller than the window of uncertainty during microbeam heavy-ion

experiments, making position-aware measurements as efficient as broadbeam irradiations.

Measurements will have to move to on-chip calculations with an array of measurement

circuits producing statistics. A pulse width measurement circuit may be sufficient to detail

charge collection mechanisms in a statistically valid method, and can be used in broadbeam

irradiations. This limits future work to statistical representations of the mechanisms and

not raw transient capture and processing that was used in this work.

Perhaps the most significant outcome from the Multi-Node Charge Collection (MNCC)
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research was a detailed comparison of heavy-ion irradiations and TPA laser experiments. A

significant increase in the likelihood that a MNCC event occurs was shown when TPA laser

experiments were run to correlate with heavy-ion data. TCAD simulations were compared

in the same way and showed a quantitatively similar response to heavy-ion irradiations.

The difference between excitation sources as it pertains to MNCC has a resounding effect

on the interpretation of data that is collected using only TPA laser experiments. As covered

in Section 2.2, Radiation Hardened By Design (RHBD) circuits are often validated using

TPA laser experiments exclusively. TPA validation alone could misrepresent the efficacy of

a particular hardening strategy by increasing the likelihood and magnitude of MNCC in the

circuit. Likewise, when the hardened circuit is compared to an unhardened version, the un-

hardened version may show results which are worse than heavy-ion data if the circuit has a

particular sensitivity to MNCC. The method described in this work gives future experimen-

tal guidance to understanding the difference between TPA laser and heavy-ion irradiations.

It is even possible to layout test structures to quantify the difference in an attempt to di-

rectly compare the two sources. A particular technology could be compared between the

two sources and then used as a calibration point for multiple circuits to be tested using only

TPA excitations. A calibration structure is the best future application of this work, and is

where the work should head to have a meaningful impact on the way experimental data is

understood.

All of these achievements were used to test the efficacy of a single transistor hardening

technique and a projection of how these mechanisms change with scale. MNCC was the

only way for the hardened cell to change the state of the resistor, but still required 9 or more

worst case events in a row to upset the cell. If only one transistor collects charge, the state

of the resistor is not modified. Scaling the access transistor further reduced the effect that

ionizing radiation had on the cell’s reliability, reducing the need for hardening. Work will

have to continue on this topic as devices with next-generation layouts become available,

but these results give RRAM a promising future in radiation-tolerant designs. The cell’s
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current reliability should lead the mission critical electronics community to look at these

memories.
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Appendix A

Rapid Transient Acquisition and Computational Analysis (RATACA)

A.1 DISCLAIMER

Use at your own risk! Be familiar with the code before you attempt to publish any data

that it produces. Do not blame the code for your lack of effort in learning how this code

base processes transient data. If, after reading this manual, you have questions about how

to use the software, or what calculations it is performing, please ask for help. Also, any

publications using this code base should be reviewed by the current Vanderbilt maintainers,

before being sent for outside review.

-Geoff and Nick
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A.2 Introduction

This code base was written to help facilitate single-event testing on devices using the

two-photon absorption laser source at Vanderbilt University, and particle testing around the

world. It is broken into three main subsections: data capture, data analysis, and data plot-

ting. Data capture contains scripts needed to capture data using a Tektronix oscilloscope

over TCPIP or GPIB, and control code for the motorized stages in Vanderbilt’s laser SEE

test facility. It is not recommended to use the laser code detailed here for other testing

facilities, as it may be completely incompatible. Data capture for ion sources is also doc-

umented, but should be more universal in its application. Data Analysis code processes

captured data and does the following: produces plots of transient information in real-time

(peak current, total charge, transient FWHM), filters data based on user-specified input pa-

rameters to reduce the effects of noise on transient signals, intelligently chooses integration

bounds of transients for determining total collected charge, and saves a single output file

containing all processed and original data for each individual measurement run (e.g, all of

the data for a particular laser scan is condensed into one output file).

A.2.1 Some General Comments Regarding RATACA and MATLAB

All data capture, analysis, and plotting utilizes MATLAB software. As an end user, you

should focus on the subsections of the code pertaining to data analysis and plotting. If you

do not already have access to the code base, please contact the current RER staff member

responsible for maintaining the code base, and request the RATACA code. You will be

given access to a folder containing many of the functions described below.

It is essential to understand the following MATLAB concepts in order to use this soft-

ware to its fullest potential: Basic array manipulation, Basic data plotting, Cell Arrays, and

Structures. These concepts will not be discussed here. If you are not comfortable with

these terms, Google is your friend. The rest of this guide will focus on using the RATACA

software, and will assume the user is comfortable with the MATLAB concepts mentioned
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above.

To run these functions, make sure they are on your MATLAB path, or that you have

navigated to the folder where they are saved on your machine (using the current folder bar at

the top of the MATLAB window). You can temporarily add folders to your MATLAB path

by right-clicking on them in the Current Folder pane (left side of the MATLAB window)

and choosing Add to Path. This will only be in effect for your current MATLAB session,

to permanently add folders to your path, use the File > SetPath... option.

A.3 Data Capture

A.3.1 Common Operations

A.3.1.1 Setup Oscilloscope

Required Software: TekVISA 4.0 or greater, and Agilient I/O 16.3 or greater.

It is recommended that TCPIP on a Ethernet based LAN be used for connecting to

the oscilloscope. A GPIB function is available, but should only be used in the event that

the TCPIP approach is unusable. To connect the scope, make sure the scope is found

by Agilent I/O software. If using the laser gui, go on to the next paragraph. If collect-

ing heavy ion data, you will need to create a scope instance to make measurements, i.e.

scope = connect to 12G scope tcpip();. A windows will pop-up to input the scope’s IP

address; it can be obtained from the Agilent I/O software (e.g. TCPIP0 :: 169.254.178.72 ::

inst0 :: INST R).

Next, settings on the oscilloscope need to be set according to the measurement need.

Set the oscilloscope to Fast Frame mode, and select the number of Fast Frames needed

for capture. Each requested read will capture this number of transients per read. Next

choose an appropriate record length, and make sure it matches the record length value in

xyz raster monitor rev2 gui.m. Leave on only the channels needed for data capture, and

make sure to not skip sequential channels (i.e. 1,2,3 but not 1,3,4).
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A.3.2 Laser Control GUI

A.3.2.1 Setup A Scan

Function Call: virtual joystick with scanning();

This launches the interactive GUI from which all systems can be connected to and

controlled, Figure A.1. Motion controllers for the XY and Z stages should connect auto-

Figure A.1: Laser system interactive GUI.

matically when the GUI is initialized. Error messages will prompt the user if a connection

cannot be made. Usually, an error results from the GPIB connection to the Newport Z-

stage controller. A simple fix for this is power cycling the GPIB/LAN gateway, letting it

re-acquire an IP address, and then retrying the connection. Typically, connection errors will
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need to be fixed by whoever is responsible for maintaining the setup. Finally click the oscil-

loscope menu on the GUI and select connect. If an error occurs, most likely the scope is not

visible in the TekVISA software, the Agilient I/O software, or the IP address entered into

the software was incorrect. It is also recommended that the motors of the stages be tuned

each time the GUI is opened. This should be done by the current laser operator ONLY,

and is an automated process under the Stage Control option named Tune XY Motors.

A.3.2.2 Run A Scan

Due to a MATLAB limitation the right click mouse button must be used to control the

GUI. The N,E,S,W buttons move the stages in the given direction. Up and Down move the

stage only in Z. Stage motor speeds are controlled using the sliders below these buttons.

To move an exact quantity, use the “Relative Moves” subsection. Units are in micrometers,

and can be positive or negative, depending on the desired direction of motion.

If using the oscilloscope, select the channels you want to record, and verify that they

are enabled on the scope. Now, input the distance you want to raster over, and the number

of steps you want to take in that direction. The minimum step is 0.1 µm, and make sure

you choose a step size that is a finite length decimal number (i.e. not 0.33333 repeating).

For example, if you wanted to move 15 µm in the positive x-direction, and you wanted the

step size to be 3 µm, you would set the X distance to 15 and the first #steps value to 5 (i.e.,

move 15 micrometers in 5 steps, for a step size of 3 micrometers).

At the bottom of the Raster Scan panel, there are two text fields. The first is intended for

run number and/or run name. A good idea here is to enter something descriptive about your

current measurement. For example, “Run 1 Device A Vg=0V Vd=1V Vs=0V area scan”,

or something similar. The individual files produced during the scanning operation will take

whatever text is entered in this field and use it as the prefix of the filenames for the output

files. The second text field is intended for notes about the run you are about to perform.

This would be a good place to describe the intent of the measurement, or any other notes
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you might typically record in a lab notebook, etc. The text entered into this field will be

saved within each individual file produced during the scan, which is good for reference

later.

Once the proper scan parameters have been chosen, click the LaunchScan button. This

will open a window prompting the for the save location for the data that is about to be col-

lected. It is recommended that data be saved in one main folder, with individual subfolders

corresponding to each run. For example, the main folder might be called Data. Within

Data would be individual folders named Run1, Run2, Run3, and so on for each scan per-

formed. After the proper save location is chosen, another window will open displaying a

text field and three buttons. Clicking Go will start the scan. During the scan, progress will

be shown in the text field. DO NOT interact with the main GUI window during the scan.

Doing so could lead to errors. However, if you wish to temporarily pause a scan (if the laser

energy requires tuning, for example) click the Pause button. Double-clicking Resume will

restart the scan at the position where it was paused. If you wish to cancel the run entirely,

click Cancel.

Once a scan completes, the start button will turn gray and read finished. The stage

should then return to its original location. The same procedure that is outlined above can

be used to set up and initiate another scan.

A.3.2.3 Other Options

In addition to the buttons and text fields previously described, the Laser Scan GUI also

features several menus. These are the File menu, the Stage Control menu, and the Oscillo-

scope menu. Currently, only the functions found in the latter two menus have been imple-

mented. The Oscilloscope menu allows the user to connect via TCPIP to the TDS6124C

oscilloscope. The functions available under the Stage Control menu are described in Table

A.3.2.3.
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Function Action

Lock XY Freeze the X and Y stages in their current position
Free XY Allow the X and Y stages to be moved freely by hand

Set Current as Home Set the current position (X, Y, and Z) in memory as the Home position
Move to Current Home Automatically move the X, Y, and Z stages to the Home position

Tune XY Motors Automatic tuning function for the X and Y stages

Table A.1: Functions available in the Stage Control menu of the Laser Scan GUI and their
intended purpose.

A.3.3 Ion Transient Capture

There is currently not a GUI for transient capture for ion data, so all data capture will

be handled by the MATLAB command window. Data capture is performed by:

f unction ion f f acq rev3(scope,num reads,channel list,varargin)

Input Arguments:

Variable Name Type Comments

scope instance Oscilloscope instance created in the previous subsection
num reads int Number of times to read data from the scope
channel list array Number of channels to record, e.g. [1 2 3]

varargin arguments:
ion string Ion Under Test.

cocktail string Cocktail Under Test
notes string User notes
saves string ’yes’ or ’no’, default ’yes’

out dir string Location for data, default is user receives GUI prompt

Table A.2: Ion code input parameters.

EXAMPLE: Ion Transient Capture

This call will make 100 reads from the oscilloscope, which will have 20 Transients (fast

frames) per read, and data will be recorded for channels 1 and 2:

ion f f acq rev3(scope,100, [1,2],′ ion′,′ oxygen′,′ cocktail′,′ 16MeV ′,′ notes′, ...
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′Run 1 3.3V Device 2345W ′)

Next, a window will appear to let the user choose a save locations for the data, then the

capture will begin. The command line output will let you know which channels are being

captured, and how many total transients were recorded. The total number of data points

should be the record length times the number of fast frames.

A.4 Data Analysis

A.4.1 Raw Data

A.4.1.1 Laser Raw Data

The laser scan GUI outputs a .mat file per location per channel for the entire scan in

the user-specified folder (one folder per scan). This data can be accessed directly using the

variables in Table A.3. The data is more manageable when processed using the method

detailed in the next subsection.

A.4.1.2 Ion Raw Data

The ion code outputs a .mat file per read per channel for the entire run in the user-

specified folder (one folder per run). This data can be accessed directly using the variables

in Table A.4. The data is more manageable when processed using the method detailed in

the next subsection.
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Variable Name Type Comments

time matrix The recorded time for all data points at the given location
volts matrix The recorded voltage (mV) for all data at the given location

num fast frames int Number of captured Fast Frames in the data file
channel int Source channel

time per point int Time between data points
start time double Time of first data point

y multiplier double Scaling factor for Y data
record length int Number of data points per transient

xlength int Distance scanned in X
ylength int Distance scanned in Y
zlength int Distance scanned in Z
xstep int Distance per step in X
ystep int Distance per step in Y
zstep int Distance per step in Z

matrix size array Number of record locations in [X,Y,Z]
mat coords array Current location in the scan matrix [X,Y,Z]

Table A.3: Raw laser data structure.

A.4.2 Automated Data Processing

Raw data is processed using the following:

Laser

monitor f older laser(data store,varargin)

Ion

monitor f older(data store,varargin)

data store is the directory where the raw data is located, and varagin is a variable used

by MATLAB to pass parameters. This can be called with no additional argument as in:

monitor f older(′PathToFile′); , but does has 3 optional arguments.

‘trans’,’no’ will disable transient plotting.

‘backups’,’yes’, will backup raw data to a separate location(useful for ion testing).

‘params’,’FileName.txt’, will allow for custom filtering etc., which is detailed in the next

section.
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Variable Name Type Comments

time matrix The recorded time for all data points at the given location
volts matrix The recorded voltage (mV) for all data at the given location

num fast frames int Number of captured Fast Frames in the data file
channel int Source channel

time per point int Time between data points
start time double Time of first data point

y multiplier double Scaling factor for Y data
record length int Number of data points per transient

Table A.4: Raw ion data structure.

This function creates a single output file that contains both the raw data, and processed

data (filtered transients, peak current, collected charge, etc.). Specifically what data is in

the output file can be found in Table A.4.2.6 for laser data and Table A.4.2.7 for ion data.

Figure A.2 shows the basic plot output of the processing script. The raw transient data is

shown in blue for all four channels, while the median filter transient (only used for data

processing) is shown in red (dashed). The FWHM is shown in magenta, and the integration

bounds are shown by

EXAMPLE: monitor folder laser This call will process laser data without plotting, but

with backups, and with a different parameter file:

monitor f older laser(′DataDir′,′ trans′,′ no′,′ backups′,′ yes′,′ params′, ...

′my custom params.txt ′)

A.4.2.1 Custom Parameter File

A parameter file is loaded by monitor f older when data processing begins. It contains

several useful values such as the output directory for processed data, a directory to backup

a copy of the data (if backups are requested when using monitor f older, filter coefficients
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Figure A.2: Full plot of all four channels being plotted during processing.

for transient filtering, and the type of plots shown to the user after processing. Filter coef-

ficients often change based on the device and environment, so it may be useful to change

the filter values in order to obtain better noise canceling results. Also, it is a good idea to

specify a path to an output folder for processed data. Custom files should be located in the

same directory as the default file .\monitor parameter f iles\. Ensure that your parameter

file structure matches that of the default. The default file appears as:

Example: default parameters.txt

%User parameter folder for monitor folder.mat

%directory to save processed data files to

output directory=default

%directory to save backups to (for remote backup). Use ’none’ for no backups

backup directory=default
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Figure A.3: Histogram of raw data being plotted during data processing, but in real time
with data capture.

%filter coefficients. filter coefficients go as: [X,Y]=cheby2(A,B,C)

A=4

B=30

C=0.5

%Plot type. Default is ’peak charge’. Change if you have your own specialized plot func-

tion plot type=peak charge

A.4.2.2 Filtering

Filtering parameters are often temperamental, and depend heavily on the data being

recorded. RATACA uses MATLAB’s built in Chebyshev Type II filter which is called using

the cheby2(n,R,Wst); command. The three input parameters are detailed in the MATLAB
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help documentation. In its current state, RATACA does not allow for a different filter type,

however the filter coefficients can be edited through the parameter files described earlier.

Issue a doc cheby2 at the matlab command line to get a better understanding of the filter

coefficients.

A.4.2.3 Selective Integration

Figure A.4: Data being plotted in real time during transient data processing.

Many transients in modern devices are at, or approaching, the noise floor of the test

environment. This often makes it difficult to calculate the total collected charge from a

given measurement. Many oscilloscopes have drift in the noise that does not integrate to

zero, and can strongly affect the analysis. To alleviate this, RATACA uses the median

filtered transient (Figure A.4, red dashed line) to determine the bounds in time (Figure A.4,

green squares) of integration, then only integrates the original data over that time period.

Traveling away from the peak value in positive time, the time at which a value that is 1 %

of the maximum is chosen as the end time. The same value is chosen heading towards

negative time, and then the raw data is integrated over these bounds. Transient captures

which exceed the window of the scope will result in incorrect data.
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(a) Raw transient data shown in blue, median filtered transient data shown in red, and the section of transient
data used to integrate collected charge values shown in green when using the selective integration procedure.
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(b) The result of integrating the raw transient data from (a) without any processing is shown in red, while the
result of using the selective integration procedure is shown in blue.

Figure A.5
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A.4.2.4 Processed Data

A.4.2.5 Optimized Laser Data

f unction in data = optimize laser data(data f ile, photo diode channel)

There is inherent fluctuation in laser pulse energy during a scan, which that can make

data interpretation difficult due to the dependence of the laser generated charge on the

square of the pulse energy. To alleviate this, there is a function in RATACA that will only

keep samples from inside one standard deviation of the mean laser pulse energy. This

process gets rid of outliers, and effectively shrinks the error bars of a measurement. The

process can be seen in data shown in Figure A.6. Light red data represent the laser energy

of raw data collected during TPA testing, and the overlaid purple bars are data of laser

pulses after being optimized. The variance in the laser energy is reduced by about 65%,

significantly reducing transient data variance. The input datafile should have already been

processed using the laser folder monitor, and the photo diode channel tells the code which

channel on the oscilloscope the photo-diode voltage was recorded. If the photo-diode was

not recorded, optimization cannot take place. Therefore, it is crucial to record the wave-

forms from the photo-diode as well. Only the peak of this wave form is needed, so it is

sufficient to only record the first part of the waveform, and ignore the tail. The laser data

is optimized by averaging the pulse energy per location for an entire measurement. The

standard deviation of the pulse energy at each location is also calculated. Once this has

been done, any transient produced by a laser pulse whose energy was outside 1 standard

deviation of the average value is eliminated from further processing. This greatly reduces

the effects of pulse-to-pulse energy variation on the interpretation of the data. Because this

occurs on a location-by-location basis, it is a good idea to record several fast frames (10

or more if possible) at each location to get a better idea of the average pulse energy per

location.

Example: Optimizing laser data
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Note that this function modifies the original processed data file. No new file will be created.

optimize laser data(′PathToFile′,4)

Figure A.6: Light red data represent the laser energy of raw data collected during TPA
testing. Purple bars are overlaid data of laser pulses after being optimized.
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A.4.2.6 Processed Laser Data

Variable Name Type Comments

avg opt energy double Average laser pulse energy (pJ)
charge cell array Total integrated charge (pC)
coords cell array Location of each transient capture

filtered fwhm cell array FWHM of filtered transients
fwhm cell array FWHM of original transient

matrix size array Number of record locations in [X,Y,Z]
peaks cell array Peak current (mA)
opt * cell array Denotes data that has been optimized

num fast frames int Number of captured Fast Frames in the data file
record length int Number of data points per transient
std opt energy double Standard deviation of laser energy

opt transient indexs matrix Indexes of transient inside 1 standard deviation
time cell array The recorded time each transient in transients

transients cell array The recorded current (mA)
xlength int Distance scanned in X
ylength int Distance scanned in Y
zlength int Distance scanned in Z
xstep int Distance per step in X
ystep int Distance per step in Y
zstep int Distance per step in Z

Table A.5: Processed laser data structure.
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A.4.2.7 Processed Ion Data

Variable Name Type Comments

avg opt energy double Average laser pulse energy (pJ)
charge cell array Total integrated charge (pC)

filtered fwhm cell array FWHM of filtered transients
fwhm cell array FWHM of original transient
peaks cell array Peak current (mA)

num fast frames int Number of captured Fast Frames in the data file
record length int Number of data points per transient

time cell array The recorded time each transient in transients
transients cell array The recorded current (mA)

Table A.6: Processed ion data structure.

A.5 Data Plotting

A.5.1 General Plotting

To load processed data into the MATLAB workspace, use:

run data = importdata(′ f ull\path\to\Run1 data processed.mat ′).

This will load the variables from Table A.4.2.6 into the run data variable. You should

spend some time reviewing structures and different data types in MATLAB. Several ex-

amples are given here for reference, but basic MATLAB information is not covered. Each

cell array in the structure contains 4 cells corresponding to the 4 channels on the scope. If

channels were not recorded, some cells may be empty. All variables correspond to each

other.

EXAMPLE: Corresponding data

This is the way to access data for channel 3, transient 121.

X data (which is time) = run data.time{3}(:,121)

Y data (which is current) = run data.transients{3}(:,121)

Peak = run data.peaks{3}(121)
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Collected Charge = run data.charge{3}(121)

FWHM = run data.fwhm{3}(121)

It is often that a single piece of information wants to be accessed for all of the collected

data. The next example if accessing all of their peak values.

EXAMPLE: Access peak current for all transient captures.

This gives access to each channels peak current values in sequential order.

PeakCH1 = run data.peaks{1}(:);

PeakCH2 = run data.peaks{2}(:);

PeakCH3 = run data.peaks{3}(:);

PeakCH4 = run data.peaks{4}(:);

You can load different runs into different variables and plot them as a function of your

different run types. Next is a scatter plot example.

EXAMPLE: Scatter plot of different run.

This code snippet will load 2 separate data files, and then plot the collected charge vs.

peak current on channel 2 using the same plot.

run data1 = importdata( f ull\path\to\Run1 data processed.mat);

run data2 = importdata( f ull\path\to\Run2 data processed.mat);

scatter(run1 data.charge{2}(:),run1 data.peaks{2}(:),′ f illed′,′ ro′);

hold on % hold plot drawing to show both on the same plot
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scatter(run2 data.charge{2}(:),run2 data.peaks{2}(:),′ f illed′,′ ks′);
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A.5.2 Pick and Plot

f unction pick and plot 4trans(xdata,ydata, time, transients1, transients2, ...

transients3, transients4,varargin)

Pick and plot produces two figures, although only one is immediately visible. The

Figure that shows up first will be a scatter plotting of the first two inputs to the function

(xdata,ydata). If you mouse over this Figure you will see cross hairs. Using those cross

hairs you can click on any data point in the figure. Once you do, a second Figure will open.

This Figure will show four transients related to the data point. This is a good way, for

example, to look at what the transients look like for your events that have the greatest peak

current, collected charge, or FWHM. In addition to opening the second figure, the proper

index to the data point you click on will appear in the MATLAB command window. So, if

you clicked on a point in the first Figure that corresponds to the transient with index 187,

you will see the number 187 in the command window. This is helpful if you want to plot

a few transients together. BE CAREFUL! This is a very tough script on MATLAB and

will often cause it to crash on windows. Two precautions to keep in mind are to 1) if using

multiple monitors, bring the windows back to the original monitor before closing, and 2)

close the pop-up window of the transients being plotted before closing the scatter plot of

the X-Y data.

EXAMPLE: Pick and plot with 4 channel data.

pick and plot 4trans(data.peaks2,data.peaks3,data.times3,data. f ilteredtransients1, ...

data. f ilteredtransients2,data. f ilteredtransients3,data. f ilteredtransients4);
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(a) XY data plot to select data to plot the resultant transients (cross-hair
designates selected data).

(b) Current pulse represented by the selected data from (a).

Figure A.7: Example use of pick and plot with the XY data shown in (a), and the selected
transient data shown in (b).
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A.5.3 Laser Specific Plotting

A.5.3.1 Plot Laser Line Scans

f unction plot laser line scans(data f ile)

data f ile should be a file that only has data in 1 dimension (X or Y). It will produce a

plot of peak current and collected charge as a function of the laser position for each channel

in the file.

A.5.3.2 Plot Laser Area Scans

This is a 2 part process that starts with loading the data, then plots the loaded data.

Step 1:

f unction data out = make map data(data f ile,varargin)

This will create the necessary grids etc. needed to surf (plot) 3D data in MATLAB.

Step 2:

f unction plot laser area scan(map data in,channel,varargin)

Pass your map data to map data in, the number of the channel you want to plot data for

into channel, and an optional varagin argument for the quantity you want to plot. There are

3 varagin options: ’charge’, ’fwhm’, or ’peak’.

EXAMPLE: Area Scan Color Map.

plot laser area scan(map data,3,′ quantity′,′ f whm′).

This will plot the FWHM value for channel 3 from the imported data. Example output is

shown in Figure A.8.
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Figure A.8: Laser peak current map generated using RATACA.
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Appendix B

RRAM Compact Model Code

The following two files are the code needed to implement the presented RRAM compact

model using Synopsys TCAD’s compact model interface. The compact circuit file is used

to instantiate an instance of the model as a circuit element in the simulation netlist. The

compact model file is used by the compact circuit file to calculate values during the time

steps of the TCAD simulation. Users should be able to edit parameters in the compact

circuit files, without having to edit the compact model file. There are hard coded debug

output lines in the compact model files (lines 268 and 283), that will need to be replaced if

debug output is needed. However, the model should run without this value being changed.

B.1 Compact Circuit File

1 DEVICE rram
2 ELECTRODES
3 u1 / / i n p u t v o l t a g e 1
4 u2 / / i n p u t v o l t a g e 2
5 INTERNALS
6 i / / c u r r e n t t h r o u g h r e s i s t o r
7 PARAMETERS
8 double r = 150000 / / r e s i s t a n c e
9 double a l p h a = 0 . 3 / /

10 double A = 1 / /
11 double Ea = 0 . 4 / /
12 double q = 1 . 6 E−19 / /
13 double k = 8 . 6 2 E−5 / /
14 double RthRo = 2500 / /
15 double p h i a = −0.352 / /
16 double p h i b = 4E−8 / /
17 double t r e f = 300 / / t e m p e r a t u r e
18 i n t node = 0 / /
19 END DEVICE
20
21 PSET r r a m p s e t
22 DEVICE rram
23 END PSET
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B.2 Compact Model File

1 # i n c l u d e < s t d l i b . h>
2 # i n c l u d e < s t r i n g . h>
3 # i n c l u d e < s t d i o . h>
4 # i n c l u d e <i o s t r e a m >
5 # i n c l u d e <f s t r e a m>
6 # i n c l u d e <math . h>
7 # i n c l u d e ” CMIModels . h ”
8 # i n c l u d e ” CMISupport . h ”
9 u s i n g namespace s t d ;

10
11
12 c l a s s P a r a m e t e r s {
13 p u b l i c :
14 double r ;
15 double a l p h a ;
16 double A;
17 double Ea ;
18 double q ;
19 double k ;
20 double RthRo ;
21 double p h i a ;
22 double p h i b ;
23 double t r e f ;
24 double p r e v t i m e ;
25 double p r e v d t ;
26 double d e l t a R ;
27 i n t node ;
28
29 P a r a m e t e r s ( ) ;
30 void S e t ( c o n s t CCMBaseParam* param ) ;
31 void Get ( CCMBaseParam* param ) ;
32 } ;
33
34 P a r a m e t e r s : :
35 P a r a m e t e r s ( ) :
36 r ( 1 5 0 0 0 0 ) ,
37 a l p h a ( 0 . 3 ) ,
38 A ( 1 ) ,
39 Ea ( 0 . 5 ) ,
40 q ( 1 . 6 E−19) ,
41 k ( 8 . 6 2 E−5) ,
42 RthRo ( 2 5 0 0 ) ,
43 p h i a (−0.352) ,
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44 p h i b (4E−8) ,
45 t r e f ( 3 0 0 ) ,
46 p r e v t i m e ( 0 ) ,
47 p r e v d t ( 0 ) ,
48 d e l t a R ( 0 ) ,
49 node ( 0 )
50 {
51 }
52
53 void P a r a m e t e r s : :
54 S e t ( c o n s t CCMBaseParam* param )
55 {
56
57 i f ( param−>Def ined ( ) ) {
58 i f ( s t r c mp ( param−>Name ( ) , ” r ” ) == 0) {
59 r = * param ;
60 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” a l p h a ” ) == 0) {
61 a l p h a = * param ;
62 } e l s e i f ( s t r c mp ( param−>Name ( ) , ”A” ) == 0) {
63 A = * param ;
64 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” Ea ” ) == 0) {
65 Ea = * param ;
66 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” q ” ) == 0) {
67 q = * param ;
68 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” k ” ) == 0) {
69 k = * param ;
70 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” RthRo ” ) == 0) {
71 RthRo = * param ;
72 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” p h i a ” ) == 0) {
73 p h i a = * param ;
74 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” p h i b ” ) == 0) {
75 p h i b = * param ;
76 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” t r e f ” ) == 0) {
77 t r e f = * param ;
78 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” p r e v t i m e ” ) ==

0) {
79 p r e v t i m e = * param ;
80 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” p r e v d t ” ) == 0)

{
81 p r e v d t = * param ;
82 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” d e l t a R ” ) == 0)

{
83 d e l t a R = * param ;
84 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” node ” ) == 0) {
85 node = * param ;
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86 }
87 }
88 }
89
90 void P a r a m e t e r s : :
91 Get ( CCMBaseParam* param )
92 {
93
94 i f ( s t r c mp ( param−>Name ( ) , ” r ” ) == 0) {
95 * param = r ;
96 param−>Def ined ( 1 ) ;
97 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” a l p h a ” ) == 0) {
98 * param = a l p h a ;
99 param−>Def ined ( 1 ) ;

100 } e l s e i f ( s t r c mp ( param−>Name ( ) , ”A” ) == 0) {
101 * param = A;
102 param−>Def ined ( 1 ) ;
103 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” Ea ” ) == 0) {
104 * param = Ea ;
105 param−>Def ined ( 1 ) ;
106 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” q ” ) == 0) {
107 * param = q ;
108 param−>Def ined ( 1 ) ;
109 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” k ” ) == 0) {
110 * param = k ;
111 param−>Def ined ( 1 ) ;
112 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” RthRo ” ) == 0) {
113 * param = RthRo ;
114 param−>Def ined ( 1 ) ;
115 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” a l p h a ” ) == 0) {
116 * param = a l p h a ;
117 param−>Def ined ( 1 ) ;
118 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” p h i a ” ) == 0) {
119 * param = p h i a ;
120 param−>Def ined ( 1 ) ;
121 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” p h i b ” ) == 0) {
122 * param = p h i b ;
123 param−>Def ined ( 1 ) ;
124 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” p r e v t i m e ” ) ==

0) {
125 * param = p r e v t i m e ;
126 param−>Def ined ( 1 ) ;
127 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” t r e f ” ) == 0) {
128 * param = t r e f ;
129 param−>Def ined ( 1 ) ;
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130 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” p r e v d t ” ) == 0)
{

131 * param = p r e v d t ;
132 param−>Def ined ( 1 ) ;
133 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” d e l t a R ” ) == 0)

{
134 * param = d e l t a R ;
135 param−>Def ined ( 1 ) ;
136 } e l s e i f ( s t r c mp ( param−>Name ( ) , ” node ” ) == 0) {
137 * param = node ;
138 param−>Def ined ( 1 ) ;
139 } e l s e {
140 param−>Def ined ( 0 ) ;
141 }
142 }
143
144 c l a s s Device {
145 p u b l i c :
146 P a r a m e t e r s p a r ;
147 } ;
148
149 c l a s s PSet {
150 p u b l i c :
151 P a r a m e t e r s p a r ;
152 } ;
153
154 c l a s s I n s t a n c e {
155 p u b l i c :
156 P a r a m e t e r s p a r ;
157 } ;
158
159 e x t er n ”C” void
160 c m i d e v i c e c r e a t e ( CCMBaseDevice* c o n s t d e v i c e )
161 { dev i ce−>d e v i c e d e s c = new Device ;
162 }
163 e x t er n ”C” void
164 c m i d e v i c e s e t p a r a m ( CCMBaseDevice* c o n s t dev i ce ,
165 c o n s t CCMBaseParam* c o n s t param )
166 { Device * dev = ( Device * ) dev i ce−>d e v i c e d e s c ;
167 dev−>p a r . S e t ( param ) ;
168 }
169
170 e x t er n ”C” void
171 c m i d e v i c e i n i t i a l i z e ( CCMBaseDevice* c o n s t d e v i c e )
172 {
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173 }
174
175 e x t er n ”C” void
176 c m i d e v i c e g e t p a r a m ( CCMBaseDevice* c o n s t dev i ce ,
177 CCMBaseParam* c o n s t param )
178 { Device * dev = ( Device * ) dev i ce−>d e v i c e d e s c ;
179 dev−>p a r . Get ( param ) ;
180 }
181
182 e x t er n ”C” void
183 c m i d e v i c e d e l e t e ( CCMBaseDevice* c o n s t d e v i c e )
184 { d e l e t e ( Device * ) dev i ce−>d e v i c e d e s c ;
185 }
186
187 e x t er n ”C” void
188 c m i p s e t c r e a t e ( CCMBasePSet* c o n s t p s e t )
189 { p s e t−>p s e t d e s c = new PSet ;
190 }
191
192 e x t er n ”C” void
193 c m i p s e t s e t p a r a m ( CCMBasePSet* c o n s t p s e t ,
194 c o n s t CCMBaseParam* c o n s t param )
195 { PSet * ps = ( PSet * ) p s e t−>p s e t d e s c ;
196 ps−>p a r . S e t ( param ) ;
197 }
198
199 e x t er n ”C” void
200 c m i p s e t i n i t i a l i z e ( CCMBasePSet* c o n s t p s e t )
201 {
202 }
203
204 e x t er n ”C” void
205 c m i p s e t g e t p a r a m ( CCMBasePSet* c o n s t p s e t ,
206 CCMBaseParam* c o n s t param )
207 { PSet * ps = ( PSet * ) p s e t−>p s e t d e s c ;
208 ps−>p a r . Get ( param ) ;
209 }
210
211 e x t er n ”C” void
212 c m i p s e t d e l e t e ( CCMBasePSet* c o n s t p s e t )
213 { d e l e t e ( PSet * ) p s e t−>p s e t d e s c ;
214 }
215
216 e x t er n ”C” void
217 c m i i n s t a n c e c r e a t e ( CCMBaseInstance * c o n s t i n s t a n c e )
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218 { i n s t a n c e−> i n s t a n c e d e s c = new I n s t a n c e ;
219
220 }
221
222 e x t er n ”C” void
223 c m i i n s t a n c e s e t p a r a m ( CCMBaseInstance * c o n s t i n s t a n c e ,
224 c o n s t CCMBaseParam* c o n s t param )
225 { I n s t a n c e * i n s t = ( I n s t a n c e * ) i n s t a n c e−> i n s t a n c e d e s c ;
226 i n s t −>p a r . S e t ( param ) ;
227 }
228
229 e x t er n ”C” void
230 c m i i n s t a n c e i n i t i a l i z e ( CCMBaseInstance * c o n s t i n s t a n c e )
231 { I n s t a n c e * i n s t = ( I n s t a n c e * ) i n s t a n c e−> i n s t a n c e d e s c ;
232 }
233
234 e x t er n ”C” void
235 c m i i n s t a n c e g e t p a r a m ( CCMBaseInstance * c o n s t i n s t a n c e ,
236 CCMBaseParam* c o n s t param )
237 { I n s t a n c e * i n s t = ( I n s t a n c e * ) i n s t a n c e−> i n s t a n c e d e s c ;
238 i n s t −>p a r . Get ( param ) ;
239 }
240
241
242
243 # d e f i n e u1 ( v a r i a b l e s [ 0 ] )
244 # d e f i n e u2 ( v a r i a b l e s [ 1 ] )
245 # d e f i n e i ( v a r i a b l e s [ 2 ] )
246
247
248
249 e x t er n ”C” void
250 c m i i n s t a n c e g e t r h s ( CCMBaseInstance * c o n s t i n s t a n c e ,
251 c o n s t i n t dc , c o n s t double t ime ,
252 c o n s t double * c o n s t v a r i a b l e s ,
253 double * c o n s t r h s )
254 { I n s t a n c e * i n s t = ( I n s t a n c e * ) i n s t a n c e−> i n s t a n c e d e s c ;
255 i f ( dc ) {
256 double l o c a l t i m e = t ime ;
257 double d t = l o c a l t i m e − i n s t−>p a r . p r e v t i m e

;
258 double R = i n s t −>p a r . r ;
259 s t d : : s t r i n g n o d e s t r i n g ;
260 s t d : : f s t r e a m f s ;
261
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262 / / w r i t e header t o t h e o u t p u t f i l e
263 i f ( t ime == 0) {
264
265 o s t r i n g s t r e a m c o n v e r t ;
266 c o n v e r t << i n s t−>p a r . node ;
267 n o d e s t r i n g = c o n v e r t . s t r ( ) ;
268 s t d : : s t r i n g fname ( ” / home / bennetw1 /

TCAD/RRAM/ FinFET / r r a m o u t p u t /
r r a m o u t p u t n o d e ”+ n o d e s t r i n g +” .
t x t ” ) ;

269 char * f i l eName = ( char *) fname . c s t r
( ) ;

270 f s . open ( f i leName , s t d : : f s t r e a m : : i n
| s t d : : f s t r e a m : : o u t | s t d : :
f s t r e a m : : t r u n c ) ;

271 f s << ” Time ( s ) \ t E l e c t r o d e 1 (V) \
t E l e c t r o d e 2 (V) \tRRAM(Ohm) \
t C u r r e n t (A) \ t D e l t a R (Ohm) ” <<
e n d l ;

272 f s . c l o s e ( ) ;
273 }
274
275 / / w r i t e o u t da ta i f l a s t t i m e s t e p was

s u c c e s s f u l
276 i f ( d t > 0) {
277 R = i n s t −>p a r . r − i n s t−>p a r . d e l t a R ;
278 i n s t −>p a r . r = R ;
279
280 o s t r i n g s t r e a m c o n v e r t ;
281 c o n v e r t << i n s t−>p a r . node ;
282 n o d e s t r i n g = c o n v e r t . s t r ( ) ;
283 s t d : : s t r i n g fname ( ” / home / bennetw1 /

TCAD/RRAM/ FinFET / r r a m o u t p u t /
r r a m o u t p u t n o d e ”+ n o d e s t r i n g +” .
t x t ” ) ;

284 char * f i l eName = ( char *) fname . c s t r
( ) ;

285 f s . open ( f i leName , s t d : : f s t r e a m : : i n
| s t d : : f s t r e a m : : o u t | s t d : :
f s t r e a m : : app ) ;

286 f s << t ime << ”\ t ” << u1 << ”\ t ” <<
u2 << ”\ t ” << R << ”\ t ” << i << ”
\ t ” << i n s t −>p a r . d e l t a R << e n d l
;

287 f s . c l o s e ( ) ;
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288 }
289 i f ( d t == 0) { d t = i n s t −>p a r . p r e v d t ;}
290 e l s e i f ( d t < 0) { d t = i n s t −>p a r . p r e v d t + d t

;}
291 i n s t −>p a r . p r e v d t = d t ;
292 i n s t −>p a r . p r e v t i m e = t ime ;
293
294
295
296 double V = u1 − u2 ;
297 double p h i = ( i n s t −>p a r . p h i b ) *pow ( i n s t −>p a r

. r , ( i n s t −>p a r . p h i a ) ) ;
298 i f (V > 0 . 1 ) {
299 i n s t −>p a r . d e l t a R = 2* i n s t −>p a r . r * d t / ( p h i *

exp ( ( i n s t −>p a r . Ea − ( i n s t −>p a r . q* i n s t −>
p a r . a l p h a *V) ) / ( i n s t −>p a r . k * ( i n s t −>p a r .
t r e f + V*V* i n s t −>p a r . RthRo ) ) ) ) ;

300 } e l s e {
301 i n s t −>p a r . d e l t a R = 0 ;
302 }
303 / / i n s t −>par . d e l t a R = 2*150000* d t / ( p h i * exp ( (

i n s t−>par . Ea − ( i n s t −>par . q* i n s t −>par .
a lpha *V ) ) / ( i n s t −>par . k * ( i n s t −>par . t r e f +
V*V* i n s t −>par . RthRo ) ) ) ) ;

304
305 c o u t << ” d t : ” << d t << ”\ t u 1 : ” << u1 << ”\

t u 2 : ” << u2 << ”\ tR : ” << R << ”\ tdR : ” <<
i n s t−>p a r . d e l t a R << e n d l ;

306
307 r h s [ 0 ] = i ;
308 r h s [ 1 ] = − i ;
309 r h s [ 2 ] = u1 − u2 − R * i ;
310 / / r h s [ 2 ] = u1 − u2 − 1 * i ;
311 } e l s e {
312 r h s [ 0 ] = 0 . 0 ;
313 r h s [ 1 ] = 0 . 0 ;
314 r h s [ 2 ] = 0 . 0 ;
315 }
316 }
317
318 e x t er n ”C” void
319 c m i i n s t a n c e g e t j a c o b i a n ( CCMBaseInstance * c o n s t i n s t a n c e ,
320 c o n s t i n t dc , c o n s t double

t ime ,
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321 c o n s t double * c o n s t v a r i a b l e s
,

322 double * c o n s t * c o n s t j a c o b i a n )
323 { I n s t a n c e * i n s t = ( I n s t a n c e * ) i n s t a n c e−> i n s t a n c e d e s c ;
324 i f ( dc ) {
325 double d t = t ime − i n s t −>p a r . p r e v t i m e ;
326 double R = i n s t −>p a r . r ;
327 / / i n s t −>par . p r e v t i m e = t i m e ;
328
329 / / s t d : : f s t r e a m f s ;
330 / / f s . open ( ” / home / bennetw1 / TCAD / rram cmi / debug . t x t ” ,

s t d : : f s t r e a m : : i n | s t d : : f s t r e a m : : o u t | s t d : :
f s t r e a m : : app ) ;

331 / / f s << ”u1 :” << u1 << ” u2 :” << u2 << << ” R:” << R
<< ” i :” i << e n d l ;

332 / / f s . c l o s e ( ) ;
333
334 j a c o b i a n [ 0 ] [ 2 ] = 1 . 0 ;
335 j a c o b i a n [ 1 ] [ 2 ] = −1.0;
336 j a c o b i a n [ 2 ] [ 0 ] = 1 . 0 ;
337 j a c o b i a n [ 2 ] [ 1 ] = −1.0;
338 j a c o b i a n [ 2 ] [ 2 ] = −R ;
339 / / j a c o b i a n [ 2 ] [ 2 ] = −1;
340 }
341 }
342
343 e x t er n ”C” i n t
344 c m i i n s t a n c e i s p h y s i c a l ( CCMBaseInstance * c o n s t i n s t a n c e ,
345 c o n s t double t ime ,
346 c o n s t double * c o n s t v a r i a b l e s

)
347 { re turn 1 ;
348 }
349
350 e x t er n ”C” void
351 c m i i n s t a n c e d e l e t e ( CCMBaseInstance * c o n s t i n s t a n c e )
352 { d e l e t e ( I n s t a n c e * ) i n s t a n c e−> i n s t a n c e d e s c ;
353 }
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