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SUMMARY 

This document summarizes my work on integrated structural biology to 

study membrane proteins. My focus is utilizing experimental and computational 

biology tools to study membrane proteins with primary focus on the translocator 

protein (TSPO). It is divided up into orthogonal publications, with each publication 

having incorporated some aspects of experimental and computational 

technologies.  

The introduction in chapter I outlines background knowledge in the order of: 

big picture, methodology, and specific biological problems. I first detail the current 

state of the structure biology field, the difficulties in structure characterization of 

membrane proteins, and the rationale to use an integrated structural biology 

method. I also describe the molecular modeling suites BCL and ROSETTA, which 

are the primary computational toolkits used in all of my work. Lastly I introduce my 

model system of TSPO, its role in biological functions, and its potential as 

therapeutic target.  

The description of my research starts in chapter 2. This part of my research 

aims to develop integrated structure biology tools for membrane protein structure 

determination. I outline the sequence space and fold space for membrane protein 

structure determination as a major obstacle for both computational and 

experimental structural biology. I developed strategies in BCL and ROSETTA to 

fold membrane proteins using various orthogonal experimental data such as NMR, 

EPR and EM. The computational structure prediction pipeline developed in this 

work can circumvent some of the current limitations of structure biology tools and 
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determine large protein structures to a high accuracy from sparse or low resolution 

structural data. The folding algorithm developed can be used for determining 

membrane protein structures for a broader structural biology audience.  

Chapter 3 of my thesis details the structural biology investigation on mice 

TSPO (mTSPO). I set out to determine the structure of TSPO at the early phase of 

my graduate school when there was no high-resolution structural data available to 

study TSPO. During this time, structures of TSPO from different sources were 

experimentally determined by other groups in the field. While controversies exist 

between the published experimentally determined structures, these structural 

models along with our own biochemical characterization of TSPO has brought 

unique opportunity for computational modeling this system. I also address the 

niche in structural characterization of TSPO, where model systems appear not to 

provide a true representation of biological activity. By constructing a unified 

structural model of TSPO based on currently available data, I show that integrating 

computational modeling with NMR data could further our understanding of crucial 

ligand-TSPO interactions.  

In chapter 4, I describe two cases of application projects. First, I detail the 

computational ligand docking and protein modeling work to provide additional 

structural insight for a Class-C GPCR crystal structure. A case where 

computational ligand docking can accurately predict ligand efficacy and residue 

contributions to ligand interaction. I also describe the working hypothesis of Class-

C GPCR activation. In the case of TSPO ligand study, I briefly describe how NMR 

spectroscopy could identify differences of ligand binding site and detailed 
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interactions. I report findings that human rs6971 polymorphism site can be 

structurally characterized to account for ligand sensitivity.   

Finally, chapter 5 details conclusions from current studies and future 

directions I foresee for these projects. I suggest additional improvement of the 

computational folding algorithm in the of BCL and Rosetta to utilize additional 

information such as evolutionary data. I reiterate the current understanding of 

TSPO structural studies and proposed future directions for TSPO protein 

characterization. I also detailed experimental conditions failed to produce 

meaningful data on mTSPO structural characterization.  

 

. 
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CHAPTER 1 INTRODUCTION  

1.1 Current state of structural biology of membrane proteins 

Roughly 20-35% of all proteins are integral MPs. While thousands of protein 

structures that have been determined to high resolution, only about 110 distinct 

MP folds with more than one transmembrane span (TMS) are represented in the 

PDB (Figure 1) [1, 2]. This is important as knowledge of all distinct MP folds would 

allow MP structure prediction via comparative modeling. However, analysis of 

genomes suggests up to 1200 distinct MP folds[3, 4]. At the current rate of MP fold 

determination, another 120 years would be required to determine the more than 

1000 remaining MP folds. Hence, experimental determination of the complete fold 

space of integral MPs remains a formidable challenge for structural biology in the 

21st century. As experimental data for MPs with unknown fold are often limited, 

computational methods gain importance to supplement missing experimental 

information and to model the MPs fold at atomic-detail resolution. At the same 

time, challenges to computational protein structure prediction exist because many 

MPs have no templates for template-based comparative modeling. De novo 

protein structure prediction from protein sequence alone is limited to only small 

MPs, simulations driven by limited experimental data are required for accurate 

modeling of large multi-span MPS. 

98% of all protein structures currently deposited in the protein data base 

(PDB) [5] have been determined by X-ray crystallography and nuclear magnetic 

resonance (NMR) spectroscopy. However, MPs remain difficult targets for both 

techniques [1, 6]. MPs are often crystallized only after an exhaustive search of 
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crystallization conditions that far exceeds what is typically necessary for soluble 

proteins [6] or even evade crystallization completely [7]. The particular challenge 

for MP crystallization arises as crystals are inherently three-dimensional while MPs 

naturally assemble into two-dimensional membranes. It remains difficult to provide 

realistic membrane mimics in the context of a stable three-dimensional crystal 

although – also at this frontier – progress is made using lipoic cubic phases [8]. 

However, even if MP structure determination through crystallization is feasible, 

biological relevance of the resulting models needs to be verified with orthogonal 

experimental techniques to avoid over-interpretation. Solid- [9] and solution- [10] 

state NMR have made exceptional advances in investigations of MP structure and 

dynamics [11-15], but the large size of the MP in its membrane mimic (most often 

a micelle) continues to be the limiting factor in the applicability of NMR 

spectroscopy [6, 10, 16].  

 

 

 

 
Figure 1 Cumulative 

number of integral MPs with 
experimentally determined 
structure (left y-axis) and    
total number of unique integral 
MP folds (right y-axis).  
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Figure 2 Membrane mimetics for studying membrane proteins. (A) 
detergent micelle systems; (B) lipid bicelle systems; (C) nanodisc systems; (D) 
liposome systems; (E) Amphipol systems; (F) crystaline systems.  
 
Experimental MP structural model determination requires rigorous optimization in 

sample preparation 

Structural and biochemical characterization of MPs requires expression and 

purification of proteins of high quality in sufficient quantities. The experimental 

technique most used is recombinant protein expression in model systems such as 

E.coli cells [17], yeasts cells [18, 19], insects cells [20] and mammalian cells [21]. 

While the bacterial recombinant expression system has been most widely used, 

the MPs of interest are sometimes expressed into the insoluble inclusion bodies or 

expressed in bacterial membrane with low yield due to cytotoxicity. The MPs in 

inclusion body require further extraction treatments and re-folding, which is often 

tedious and resource consuming [22, 23]. Additional tags and fusion proteins need 

A	 B	 C	

D	 E	 F	
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be introduced into the MPs to improve membrane-targeted expression [24, 

Tilegenova, 2016 #707, 25]. Additionally, recombinant expression of multi-pass 

mammalian membrane proteins often requires additional thermos-stabilizing 

mutations, thus making the method less ideal for investigating native structural 

functional states [26, 27]. Eukaryotic expression systems have been successful in 

producing functional membrane embedded MPs, but requires more resources and 

infrastructure building. More recently, cell-free expression methods have been 

successfully applied to MPs production [28, 29]. Such platforms offer other 

opportunities such as non-canonical amino acids labeling and robust lipid-mimetic 

optimization alone with protein expression [30].  

To study membrane protein structure, one would have to utilize one of the 

many lipid mimetic system to first isolate the protein of interest (Figure 2). While 

detergent micelle systems can efficiently solubilize membrane proteins, it often 

fails to maintain the structural integrity due to its high exchange with solvent 

(Figure 2A). Lipid bicelles or nanodiscs are alternatives to detergent (Figure 2B, C) 

that have the advantage of maintaining a bilayer lipidic environment. However, 

these systems are often too large for NMR spectroscopy and requires high 

expertise in sample preparation. Smaller nanodiscs have been developed 

specifically for solution state NMR studies of MPs [31]. Liposome particles are 

often used for spectroscopic characterization of membrane proteins and solid-state 

NMR (Figure 2D). Amphipol polymers are emerging systems for membrane protein 

studies [32]. Lastly, crystallization of membrane proteins can be done in many well 

established systems, but requires a large amount of protein in screening for a 
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suitable condition. It seems that even with all the model systems available to 

scientists, optimizing the condition of MPs for a functional stable state is often the 

limiting step.  

Apart from sample preparation, to determine the structure of membrane 

protein, several other obstacles persist in the pursuit of high quality diffraction 

patterns from X-ray crystallography to produce high resolution density maps. The 

same is that for the limited number of structural restraints from complementary 

experimental techniques such as nuclear magnetic resonance (NMR), site-directed 

spin labeling (SDSL)-electron paramagnetic resonance (EPR) spectroscopy, or 

cross-linking coupled with mass spectrometry (XLMS) and imaging contrast for 

cryo-electron microscopy (cryoEM). As a result, datasets are limited (i.e. they fail 

to unambiguously define all aspects of the IMP structure at atomic detail).  

Computational MP structural model prediction is challenged by the fold space and 

energy evaluation 

Computational MP modeling can successfully complement experimental 

data by adding atomic-detailed simulations in the MP models where experimental 

data are limited [33-35]. However, de novo prediction of IMP fold from its primary 

sequence remains a challenging problem [36]. The vast size of the fold space that 

needs to be sampled from a primary structure is a prohibitive factor in accurate 

prediction of large IMPs with unknown structure. Computational structural 

prediction algorithms often suffer from limited coverage of the fold space or 

approximations of the free energy, hindering accurate sampling of native-like 

structural models as well as discrimination of inaccurate models. The limited 
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sampling density results in an intrinsic, minimal deviation of the conformations 

sampled and the lowest energy conformation that exists in each region of the 

conformational space further adding to the uncertainty. In addition, the 

environment of the protein – the cytoplasm or the membrane – is represented in 

an implicit and static way, adding another layer of inaccuracy in free energy 

evaluation. 

MP structural models must consider biologically relevant structural ensembles 

While prediction of the fold of MPs is challenging, modeling the ensemble of 

the functional states of MPs might represent the next holy grail in computational 

structure modeling. Within a structurally characterized IMP fold, biologically 

relevant structural ensembles are observed to deviate from an experimentally 

determined structural model. Many IMPs function through shifting ensembles of 

numerous conformations. Biophysical methods that observe ensembles of 

molecules can be used to complement knowledge from X-ray crystallographic 

data.  

The best examples for dynamic ensemble elucidations are perhaps the 

GPCRs. GPCRs exist in a dynamic conformational equilibrium of basal, activated, 

inactivated, G-protein coupling, and arrestin binding states as demonstrated by 

many recent biophysical studies [34, 37-46]. Solution NMR experiments using 19F 

probes conjugated to specific amino acids [39] and 13C methionine side chain 

labels [43] capture β2 adrenergic receptor in distinct population of structural states 

aside from observed crystal structural models. The shift of the conformational 

equilibrium of GPCRs during signal transduction is accompanied by major 
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structural changes, as revealed by SDSL-EPR in β2 adrenergic receptor [37] and 

rhodopsin [34, 44]. The architecture of the molecular assembly of GPCR and 

heterotrimeric G-protein and arrestin in a dynamic state could also be visualized 

using cross-linking mass spectrometry (XLMS) and EM [41]. Using fluorescence 

resonance transfer experiment, conformational rearrangement in oligomerized 

state have also been observed in Class-C GPCRs, where the activated receptor 

dimers undergo conformational change in individual subunit as well as the dimer 

interface [45, 46]. Molecular dynamics simulations and Monte-Carlo simulations 

utilizing these experimental data were successful in generating structural models 

that match the observed conformational states [34, 41, 43].  

1.2 BioChemical Library (BCL) and Rosetta molecular modeling 

suite 

BCL is developed for efficient sampling of conformational fold space to 

complement Rosetta.  

The complexity of the conformational space grows exponentially with 

number of residues in the protein, rendering exhaustive sampling of the 

conformational space impossible. Protein structure prediction groups have come 

up with different approaches to address this problem. For example, Rosetta 

assembles the tertiary structure of proteins by using assembling short fragments 

collected from the Protein Data Bank (PDB) [47]. This approach substantially 

reduces the complexity of the sampling space because the dihedral angles are not 

exhaustively sampled. Rotational conformer libraries provide a similar 

simplification for the side chain conformations [48]. However, even with the 
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mentioned simplifications, the size of the conformational space remains too large 

for many proteins with more than 100 residues. Additionally, previous studies 

found that de novo prediction with Rosetta has bias towards structures with low 

contact order [22]. 

The de novo protein structure prediction algorithm BCL::Fold [6] was 

developed to overcome the aforementioned problems and efficiently predict the 

topology of larger proteins with up to 400 residues. It was specifically designed to 

complement Rosetta by predicting secondary structure elements (SSE)-only 

models with likely topologies of the protein and feeding them into Rosetta for loop 

and side chain construction as well as high-resolution refinement. The necessary 

reduction of complex sampling space is achieved by assembling predicted SSEs 

using a Monte Carlo algorithm and omitting more flexible loop regions. The energy 

evaluation of the sampled models is conducted using knowledge-based scoring 

functions [7], which provide a rapid way to approximate the free energy of the 

sampled conformation. In a previous study, it was demonstrated that BCL::Fold is 

able to efficiently sample the topologies of larger proteins [8]. Problems in model 

discrimination, which can arise from necessary simplifications made to sampling, 

scoring, and system representation, can be compensated for through incorporation 

of limited experimental data from electron microscopy [9–11], nuclear magnetic 

resonance spectroscopy [12], electron paramagnetic resonance spectroscopy 

[13,14], cross-linking experiments [15], small angle X-ray and neutron scattering 

[16], and predicted residue-residue contacts.  
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Rosetta is successful in computationally modeling atomic-detailed interactions 

Rosetta molecular modeling suite [47] contains a package of community 

maintained software suite for biomolecule modeling. Being the inspiration for BCL, 

Rosetta utilizes a knowledge-based potential to evaluate the full atomic energy of 

biomolecules as well as simplified centroid models [47, 49-52] by a combination of 

evaluation terms such as van der Waals attractive and repulsive forces, 

electrostatic interactions, hydrogen bonding, solvation, likelihood of particular side-

chain & backbone conformations and implicit membrane environment [47, 49-52]. 

Similar to BCL::MP-Fold, incorporation of individual experimental restraints into 

Rosetta been successful for EM [53], NMR [54, 55] and EPR [56] data. 

The two particular applications I have extensively used but will not explain 

in detail in this document are: RosettaCM [50, 57] and RosettaLigand [57-59]. 

RosettaCM is a homology modeling application that takes multiple template 

models as input. Conventional homology modeling using single template suffers 

from limited sampling of conformational space when sequence divergence is large. 

RosettaCM circumvent such sampling limitation by allowing fragment replacement 

from multiple models to the target sequence using a Monte Carlo sampling 

algorithm. Although using the same core energy evaluation scheme in Rosetta, 

RosettaCM could produce more native-like models. RosettaLigand is the ligand 

docking algorithm developed for structure based drug discovery. It accounts for 

both ligand flexibility and protein flexibility during the docking process. In principle, 

such conformational sampling techniques can improve the chance of finding global 

energy minimum for ligand conformations.  
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1.3 The evolving understanding of TSPO proteins in biological 

processes 

Translocator Protein 18 kDa (TSPO) was originally discovered as a 

secondary binding site for the widely prescribed anti-anxiety drugs, 

benzodiazepines, in the mitochondria of rat kidney [60]. For this reason, it became 

known as the peripheral-type benzodiazepine receptor (PBR). In 2006, it was 

renamed as Translocator Protein 18 kDa (TSPO) [61] to better represent the 

emerging understanding of a family of highly conserved integral membrane 

proteins found in Archaea through to plants and human, with a broad spectrum of 

functions including steroid and porphyrin transport and regulation of apoptosis, 

inflammation, metastatic cancer and cardiovascular disease [62].  

TSPO’s biological function is controversially discussed  

Primarily located in the outer mitochondrial membrane and concentrated at 

the outer/inner membrane contact sites in mammalian cells [63], knock-out of 

TSPO is developmentally lethal in mouse [64]. It is expressed in all organs 

examined so far and at particularly high levels in steroid hormone producing 

tissues, such as adrenal glands and kidney. The major function of TSPO has been 

proposed to be transporting small molecules, including cholesterol and heme 

biosynthesis intermediates, into or out of mitochondria to be further metabolized 

[65-67]. In addition, TSPO has been found to be highly expressed in areas of brain 

injury and inflammation [68], and aggressive cancers [69, 70], as well as brains of 

Alzheimer and Huntington disease patients [71]. In these situations, TSPO has 

been proposed to be involved in the regulation of the mitochondrial permeability 
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transition pore (MPTP) [72, 73], thus exerting its effects on cellular homeostasis 

([74, 75]). TSPO ligands, including benzodiazepines and more specific compounds 

represented by the diagnostic ligand PK11195, have been shown to attenuate 

cancer cell proliferation [70], to have neuro-protective effects [76],  and to inhibit 

the MPTP [77]. There are discrepancies and controversies in the literature 

regarding the binding of TSPO ligands and the physiological significance of their 

interactions [78-80]. For instance, TSPO ligands have been reported to have pro-

apoptotic effects in cancer cells [81] but to be anti-apoptotic in cardiac tissue after 

ischemia and reperfusion injury [77, 82, 83].  A major difficulty comes from the 

interpretation of binding data measured in complex systems such as total 

membranes or whole cells from different tissues.  

TSPO is a promising target for therapeutic ligand development 

The interaction of TSPO with ligands continues to be a emerging research 

focus for development of drugs targeting TSPO for imaging and treatment of 

diverse disease states (Table 1). Table 1 (adopted from [84]) summarizes several 

major developments of imaging ligands.  From the early generation of ligand 

PK11195 that binds TSPO at nano-molar affinity, new generations of TSPO 

ligands have achieved sub nano-molar affinity to the protein and greatly increased 

specificity. However, one of the major obstacles remaining in the development of 

imaging ligands as highlighted in the table is ligand’s sensitivity towards a human 

rs6971 polymorphism (A147T). The sensitive ligands summarized in the table 

display low efficiency in imaging patients with this polymorphism. Developing 

ligands that are tolerant for such variation in mTSPO may assist by structural 
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based ligand characterization and computational ligand screening. In order to 

achieve that, one would need to establish experimental conditions to probe TSPO 

structure reliably and with high resolution. The computational structure-based 

ligand docking also requires high quality models of TSPO with appropriate binding 

pocket features to distinguish minor structure perturbations arise from A147T 

polymorphism.  

Chemical Class Radioligand Advantage Limitation Generation 

Isoquinoline 
carboxamide 

11C-PK11195 rs6971-insensitive Low signal-to-noise ratio First 

Indole acetamides 
11C-

SSR180575 

 

 
rs6971-sensitive 

Reproducibility in 
humans 

Short half-time 11C 
 

Second 
(11C) 

Vinca alkaloids 
11C-

vinpocetine 

Phenoxyarylacetamides 11C-PBR28 

Imidazopyridine 
acetamides 

11C-DPA713 

Imidazopyridines 11C-CLINME 

Dihydro-9H-
purinacetamides 

11C-DAC 

Phenoxyarylacetamides 18F-PBR06 
Longer half-time than 11C 
Improved signal-to-noise 

ratio 

rs6971-sensitive 
Reproducibility in 

humans 

Second 
(18F) 

Imidazopyridine 
acetamides 

18F-PBR111 

Pyrazolopyrimidines 18F-DPA-714 
Isoquinoline 
carboxamide 

11C-ER176 
  Third 

Tetrahydrocarbazole 18F-GE180 

Table 1 Summary of different generation of TSPO radiotracers (table 
adopted from [84]) 

 
Structural understanding of TSPO has been improved by the recent high resolution 

experimental structural models 

TSPO structural functional studies was initiated from recombinant 

expression and purification of mice TSPO (mTSPO) in to proteoliposomes [85]. 
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Although the proteins were first solubilized in SDS detergent, subsequent re-

folding into lipid bilayers restored its high-affinity cholesterol and PK11195 binding. 

Electron microscopy image of the freeze-fracture of proteoliposome particles 

showed particles consistent with the size of a monomeric protein. In a subsequent 

study, the same group performed NMR characterization of its cholesterol 

recognition/interaction amino acid consensus (CRAC) motif (L/V–X (1–5)–Y–X (1–

5)–R/K) [86]. The C-terminal peptide containing CRAC motif of mTSPO was 

purified in organic solvent, where NMR structural studies showed the motif 

adopted helical conformation. Additional deletion and mutation data within the 

CRAC motif confirmed CRAC was necessary for the nano-molar affinity of 

cholesterol.  

NMR studies from Murail et al. produced the first 2D 1H-15N NMR spectrum 

of mTSPO in DPC detergent micelles [87]. In the absence of PK11195 ligand, the 

NMR spectra of mTSPO showed typical features of a dynamic molten-globular 

state. PK11195 drastically improved spectrum quality and NMR peak dispersions 

[87].  

A homologue of the mammalian TSPO, Rhodobacter sphaeroides TSPO 

(rsTSPO), was crystalized into helical crystals in lipid membranes [88]. The 10Å 

resolution cryo-EM density map elucidated dimeric packing of TSPO. The low 

resolution EM density showed helices orientations of TSPO but not the 

connectivity of the respective helices. We attempted computational structure 

prediction based on the cryo-EM density map [89] and proposed that the dimeric 

interface would support potential pathway for cholesterol transport in mammalian 
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TSPOs.  

In 2014, the first atomic detailed mTSPO structural model was determined 

using solution-state NMR spectroscopy [90, 91]. The structure was determined in 

complex with PK11195 in DPC detergent micelles. The mTSPO protein adopts a 

5-helical bundle structure where PK11195 is bound in the core of the protein. 

Interestingly, the authors also observed the dramatic stabilization upon ligand 

binding in NMR spectrum [92]. The structure of A147T polymorphism mutant of 

mTSPO was also determined [91]. The A147T mutation does not affect the binding 

mode of PK11195 to mTSPO, thus explaining the molecular mechanism of 

PK11195’s insensitivity for this polymorphism.  

The subsequent year, two TSPO X-ray crystal structural models from were 

published [93, 94]. While the details of these bacterial homologue structures differ 

much from that of the mTSPO NMR structure, the overall fold is conserved through 

evolution. In both crystal structures, the helix 3 adopted helical conformation, 

where in the mTSPO NMR structure the helix 3 was partially unfolded. The authors 

of the crystal structures argued that in the NMR conditions, high temperature and 

detergent might results in deviations of the fold from its native state.  

More recently, reconstituted mTSPO in liposome was shown to exists in a 

dimeric equilibrium modulated by cholesterol binding using solid-state NMR [95]. 

While cholesterol binding affected chemical shift surrounding the CRAC motif, 

allosteric modulation has been observed in residues away from the CRAC motif. 

Other attempts to produce functional homologues of mammalian TSPO were 

carried out in mammalian cell cultures [96]. HEK293T cells were able to produce 
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functional mammalian TSPOs into membrane environment, thus circumvent harsh 

detergent extraction processes adopted by many prior studies.  

The structural characterization of mammalian TSPO has advanced greatly 

in the recent years. While controversies exist in discussion of the precise structural 

features of TSPO proteins, the three high quality structural models present 

valuable starting point to hypothesis cholesterol binding mechanisms, drug 

interaction mode as well as functional implications. It seems that the biochemical 

characterization of mammalian TSPO in membrane mimetics remains a 

challenging task, that further optimization is required for studying the native 

functional states of TSPO.  
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CHAPTER 2 INTEGRATED STRUCTURE BIOLOGY FOR 

ALPHA-HELICAL MEMBRANE PROTEIN STRUCTURE 

DETERMINATION 

This chapter is a reproduction of Yan Xia, Axel W. Fischer, Pedro Teixeira, 

Brian Weiner, Jens Meiler, ’Integrated structural biology for alpha-helical 

membrane protein structure determination’, manuscript published in Structure [97]. 

The chapter focus on methodologies to combine orthogonal experimental data in 

membrane protein modeling that I developed during my Ph.D. I am the first author 

of the manuscript, I contributed in producing data, writing the manuscript and 

generating all the figures.   

De novo structure prediction for large membrane proteins remains a 

challenging task due to the vast conformational space of such proteins. As 

membrane protein structure determination is entering another stage of probing the 

ensemble of dynamic structures, methods such as NMR, EPR and EM were used 

to provide orthogonal information of the structure. We hypothesized that 

simultaneous integration of experimental data from multiple sources can allow for 

accurate atomic detail prediction of IMP structure. Our current structure 

determination pipeline is built on the foundation of BCL::MP-Fold and many other 

advances in BCL and Rosetta software, integrating various frameworks of 

experimental data in both programs.  

We have constructed a pipeline to utilize multiple experimental restraints to 

fold membrane protein in BCL and Rosetta. The pipeline described in the 



 

 
20 

manuscript could determine structure to an accuracy of 1.2Å RMSD to the 

experimentally determined structural model. My work demonstrated the potential of 

this methodology to be applied to membrane protein structural determination when 

limited experimental data were available. The structural determination pipeline 

described in the manuscript could be attractive to the boarder structural biology 

community for structure determination. This work ties in my thesis for membrane 

protein structure modeling as an important computational method development, 

and thus can be considered as core component of my thesis.  

2.1  Introduction 

2.1.1 Integral membrane proteins remain a formidable challenge for 

structure determination methods 

Alpha-helical integral membrane proteins (IMPs) are important players in 

many cellular functions; specifically, they orchestrate the communication between 

the cell and external stimuli by transferring signals and chemicals across the 

plasma membrane. Roughly 20-35% of a genome’s proteins are IMPs and yet only 

around 2-3% of the experimentally determined structures in the protein data bank 

(PDB) are IMPs [98]. Around 80% of all protein structures currently deposited in 

the PDB [5] have been determined by X-ray crystallography. The particular 

challenge for IMP crystallization arises as crystals are inherently three-dimensional 

while IMPs naturally assemble into membranes that extend in two dimensions. It 

remains difficult to provide realistic membrane mimics in the context of a stable 

three-dimensional crystal, although impressive progress has been made using 

lipidic cubic phases [8, 16, 99-101]. Even if MP structure determination through 
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crystallization is feasible, biological relevance of the resulting models needs to be 

verified using orthogonal experimental techniques to exclude artifacts introduced 

by crystallization aides such as thermo-stabilizing mutations, helper proteins 

integrated into MP loop regions, or the non-native membrane mimic. 

2.1.2 Experimentally determined structures of IMPs cover a small variety of 

folds  

Interestingly, IMPs in the PDB cluster into only about 100 distinct IMP folds 

with more than one transmembrane helix (TMH). This number is small compared 

to the fold space of soluble proteins and small with respect to the number of IMP 

sequence families (read below). Multiple factors could contribute to this finding: the 

fold space of IMPs might be smaller than the fold space for soluble proteins as 

structure might be better conserved than sequence in IMPs with IMPs of very low 

sequence identity adopting the same fold [102]. This seems to be the case for G-

Protein Coupled Receptors (GPCRs) or in the LeuT transporter family. In addition, 

it is possible that once the experimental procedures have been refined to 

crystallize one particular class of IMPs, many members of the same fold family are 

experimentally studied rather than discovering new folds [103], resulting in a non-

representative fold representation in the PDB.  

2.1.3 A vast sequence space for IMPs remains to be represented with 

experimentally determined structures 

Oberai and colleagues have estimated that between 700 and 1700 families 

of IMPs would cover 90% of the IMP sequence space [104]. By the end of 2011, 

structural genomic efforts have increased structural coverage of IMPs to ~28%. It 
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was estimated that without significant structural genomic investment it would take 

up to 25 years to achieve a structural coverage of 50% of IMPs [105]. Accelerating 

fold determination for particularly important IMPs would therefore be of great 

relevance to biology. It is estimated that 3305 human membrane proteins exist in 

the Homo sapiens proteome (Uniprot), with 90% of the sequences mapping to one 

Pfam family. In particular, of all the Pfam-mapped human IMPs, only 10% (around 

50) have an experimentally determined structural representative that is a human 

protein or a sequence related non-human protein [106]. It was calculated that with 

the best theoretical prediction, an additional 100 protein families need to be 

structurally characterized to cover the human α-helical IMP proteome to 58% of all 

sequences [107].  

2.1.4 Current experimental and computational methods to determine IMP 

structures suffer from limitations 

The large theoretical fold space is contrasted by experimental datasets that 

– if available at all – are often limited by crystals that fail to defract to high 

resolution (X-ray crystallography), medium resolution of electron microscopy (EM) 

density maps, or the limited number of structural restraints from complementary 

experimental techniques such as nuclear magnetic resonance (NMR), site-directed 

spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy, or 

cross-linking coupled with mass spectrometry (XLMS). Those experimental 

datasets are limited in a sense that they provide insufficient information to 

determine a structure at atomic detail. Ideally, computational methods could be 

used to fill those information gaps [33-35]. However, de novo prediction of an 
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IMP’s fold from its primary sequence remains a challenging problem [36]. The vast 

size of the theoretical fold space makes exhaustive sampling of an IMP’s potential 

conformations prohibitive. In addition, necessary simplification when approximating 

a conformation’s free energy frequently results in problems distinguishing accurate 

from inaccurate models. 

2.1.5 BCL::MP-Fold and Rosetta predict membrane protein structural 

ensembles using experimental data 

BCL::MP-Fold [108] was developed for de novo protein structure prediction. 

We demonstrated in previous studies that BCL::Fold is able to efficiently sample 

the fold of large IMP [53]. To achieve sufficient coverage of the fold space, the 

algorithm simplifies the sampling by assembling predicted secondary structure 

elements (SSEs) in a virtual membrane using a Monte Carlo Metropolis algorithm, 

while the loops connecting the SSEs are modeled implicitly [109]. After each 

Monte Carlo step, the free energy of the intermediate model is approximated using 

knowledge-based scoring functions that were specifically developed for IMPs 

[108]. Incorporation of limited experimental data can compensate for the simplified 

representation of IMPs during sampling and energy evaluation. Incorporation of 

individual experimental data  has been established and benchmarked for EM [33, 

110], NMR [111], EPR [112], and XLMS [113]. The BCL::MP-Fold algorithm 

outputs a simplified fold consisting of SSEs that exhibit only limited deviations from 

idealized dihedral angles. These models are then input for further optimization to 

atomic detail using the Rosetta modeling suite [52, 114, 115]. Similar to BCL::MP-

Fold, incorporation of individual experimental restraints into Rosetta been 
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successful for EM [53], NMR [54, 55] and EPR [56] data. The membrane 

environment was simulated implicitly during the structural refinement.  

Considering the theoretical fold space for IMPs, we estimate that billions of 

folds are possible, a number increasing sharply with an increasing number of 

trans-membrane spans. The number of IMP sequence is large as well, though 

most IMP families have relatively few trans-membrane spans. We hypothesize that 

simultaneous integration of experimental data from multiple sources can allow for 

accurate prediction of IMP structures at atomic detail. Here we test this hypothesis 

by using BCL and Rosetta to incorporate a combination of EM, EPR, and NMR 

data to predict the fold of Rhodopsin. The proposed computation structure 

prediction pipeline is not limited to the prediction of new folds. BCL::MP-Fold and 

Rosetta were developed to allow simulations from a given starting structure and 

leverage sparse experimental data to derive a model for alternative states. 

2.2  Materials and Methods 

Enumerating the theoretical α-helical integral membrane protein fold space  

The theoretical calculation was done using Mathematica (Wolfram). We 

simplified the TMH fold space by defining the position of α-helices on a two-

dimensional grid, where the arrangements for a given number of TMHs was 

plotted. For each unique TMH arrangement, we inserted the TMHs into the 

arrangement to generate all possible folds. A particular fold was accepted when 

each TMH had two direct contacts with other TMHs and every TMH was 

connected in a single fold. When internal symmetry was detected for an 

arrangement of TMHs, the number of folds was divided by the symmetry operator. 



 

 
25 

Assuming each TMH in the neighboring sequence adopts anti-parallel insertion in 

membrane, to account for topology of N-terminal facing extracellular or intracellular 

environment, we multiplied the number of folds by two. For each number of TMHs, 

the number of possible arrangements of TMHs and the number of possible folds 

were computed.  

Enumerating the sequence space of α-helical integral membrane protein 

The database search for all α-helical IMPs was performed using UniProt 

and pfam (Figure 2A). We used the UniProt server to retrieve the sequence 

information of α-helical IMPs by searching for the annotated keyword 

‘Transmembrane helix’. The TMH annotation and the pfam family id associated 

with each Uniprot entry was downloaded as a tab delimited table. Around 75 

thousand entries were pulled and entries containing less than three TMHs were 

filtered out. The unique pfam families and their number of TMHs were then 

compiled by clustering all UniProt entries based on their pfam id. We also directly 

used the pfam server to download all 2100 families that were annotated as IMPs. 

The sequences in each pfam family were then subjected to transmembrane span 

prediction using SPOCTOPUS[116] until multiple sequences were predicted to 

have more than two TMHs. The IMP family list mined from the two methods were 

then combined and cleaned for duplicates and manually inspected. The XML 

representation of the MPtopo database [117] was downloaded to search for IMP 

families with a known structural fold.  
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Integral membrane protein structure prediction using combined experimental 

restraints and BCL::MP-Fold 

The test dataset of bovine rhodopsin (PDB entry 1GZM) [118] was 

downloaded from the PDB and considered the ‘native’ structure. An experimentally 

determined electron density map for rhodopsin [119] at 5.5 Å resolution was used 

for the EM data. At this resolution, TMH density could be distinguished but the 

connectivities between density rods could not be observed directly. The NMR data 

was simulated in the form of backbone chemical shift (CS) using SPARTA+ [120], 

and ten sets of randomly selected sparse side chain Nuclear Overhauser effect 

(NOE)-derived distances at a 1 restraint per residue level (a total of 326 distances) 

using BCL with simulated uncertainties dereived from the NMR knowledge-based 

potential [111]. Ten sets of distance data from EPR double electron-electron 

resonance (DEER) spectroscopy was simulated with a distance uncertainty model 

[56]. Each set consisted of at least 3 restraints per TMH (a total of 27 distances). A 

sample restraint file containing simulated NOE and DEER distances was included 

in Table.S1 & S2.  

The protocol was based on the protein structure prediction protocols of 

BCL::MP-Fold [108] and BCL::EM-Fold [33]. The SSEs were first predicted from 

the primary structure of Rhodopsin using the consensus of two secondary 

structure prediction methods, JUFO9D [121] and SPOCTOPUS [116]. When 

limited NMR data was included, the backbone CS was used to generate SSEs 

definitions from the primary structure. The SSEs were then assembled in a multi-

stage approach and intermediate and final models were evaluated using a 
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membrane-specific knowledge-based potential and the Metropolis criterion. During 

the assembly process, the protein model was randomly perturbed by one of over 

100 MC moves belonging to one of six categories: (1) adding SSEs, (2) removing 

SSEs, (3) swapping SSEs, (4) single SSE moves, (5) SSE-pair moves, and (6) 

moving domains. The energy function contained terms for evaluating amino acid 

pairwise distances, amino acid environment, loop closure, radius of gyration, 

contact order, secondary structure prediction agreement, environment prediction 

agreement, TM topology, and steric interferences. A static membrane object was 

utilized in conjunction with the environment-specific potentials. If experimental data 

were used, the scoring function was extended by the appropriate scoring terms to 

account for density rod agreement with experimental density map in the case of 

EM [33], and a knowledge-based distance agreement evaluation in the case of 

EPR [56] and NMR [111]. The scores were linearly combined to a sum score with 

weighted score components.  

1000 models were sampled in each prediction experiment with hybrid data. 

The models were evaluated through the RMSD100 [122] metric: !"#$100 =

	
)*+,

-./0 1/-33
, where the root-mean-square deviation (RMSD) of the Cα-coordinates 

between the predicted model and the crystal structure model is normalized by the 

number of amino acid (N) of the protein. When the prediction was performed from 

single/multi sets of experimental data and native-like models could be identifies by 

their score rank, the top 1% scoring models (10) were selected for the subsequent 

Rosetta refinement – regardless of the selected set included non-native-like 

models. When the prediction was performed from EM data only, the top 10 folds 
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were selected.  

Integral membrane protein structure refinement using combined experimental 

restraints and Rosetta 

Rosetta was used to add loop regions and side chains to the model, and 

refine with a high-resolution scoring function. The protocol for the Rosetta 

refinement was modified to incorporate multiple experimental data.  

As Rosetta uses fragments from a structural database to model local 

sequence bias, the fragment search excluded fragments from structures that are 

homologous to Rhodopsin. In the case of NMR data incorporation, fragment 

search was performed using backbone CS information to select for fragment with 

preferable backbone torsion angles [123]. For each of the models from the 

previous BCL stage, 500 models were sampled using Rosetta’s cyclic coordinate 

descent algorithm [124] to build loops and remodel TMHs. Further atomic detail 

refinement was carried out using Rosetta’s “relax” application [115] once for each 

of the 500 model. A TMH definition file is used for the placement of a virtual 

membrane encompassing each input model for membrane environment 

evaluations. When EM experimental data was used, additional electron density 

scoring terms were turned on [53]. In the case of distance restraints from NMR, a 

bounded penalty potential 4 5  was used to discourage sampling of conformations 

that are inconsistent with the experimental data. For each distance restraint, an 

upper (ub) and a lower boundary (lb) are provided by the user (Table S 1). If the 

measured distance of xÅ fulfills the criterion lb≤x≤ub, ;	if x is outside the boundary, 

a score penalty would be given: if x ≤ lb, 4 5 = (
89:;

<=
)
?
	; if		ub ≤ x ≤ ub + rswitch ∗
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sd	, 4 5 =
89P;

<=

?

;	 if ub + rswitch ∗ sd ≤ x, 4 5 =
-

<=
5 − (RS + TUVWXYℎ ∗ U[)) +

(
\<]^_`a∗<=

<=

?

	, where the rswitch term is set to default of 0.5. The distance restraints 

from EPR DEER measurements (Table S 2) are treated with a knowledge-based 

potential as detailed in [125]. The score terms were linearly combined with 

respective weighting to compute the total Rosetta energy score. The RMSD100 

relative to the ‘native’ 1GZM structure was used to quantify the prediction accuracy. 

The RMSD100 specific to the TMH region was computed by limiting the 

comparison of Cα-coordinates to residues in the predicted TMHs. Inspection of the 

models and their depiction was performed using Pymol [126].  

2.3  Results 

The Result section is divided into subsections discussing the fold space and 

sequence space for IMPs, followed by the results of the Rhodopsin fold prediction 

experiment. Results from BCL::MP-Fold and Rosetta refinement are divided into 

subsections describing in detail the sampling accuracy, fold discrimination and the 

effects of combining hybrid experimental data on protein fold prediction.  

2.3.1 Estimation of the fold space for α-helical IMPs from theoretical 

arrangements of TMHs 

To estimate a lower boundary for the theoretical size of the IMP fold space 

we first simplify the problem by considering only helices that actually span the 

membrane. We further assume that these helices are perfectly parallel and 

arranged on a hexagonal grid to maximize packing density. Under these 

assumptions we can compute the number of TMH arrangements, which is the 
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general relative placement of trans-membrane spans. From the number of 

arrangements, we can infer the number of folds, which are the distinct, compact 

units of protein structure that differ in specific topological order of trans-membrane 

spans including the order of the TMH insertion and extra-/intra-cellular location of 

the N-terminus. Thus, the number of unique folds for a theoretical protein with X 

number of TMHs will be the number of its possible arrangements with all possible 

helices insertion in a particular arrangement times two from whether its N-terminal 

being inside/outside divided by the symmetry operators under a particular 

arrangement (Figure 3A). An example of a Five-TMH protein’s fold defined by our 

criteria is demonstrated here (Figure 3B). For proteins with less than five TMHs, 

there is only one unique arrangement, but up to 120 unique folds. As one might 

expect, the number of TMH arrangements and folds increases exponentially with 

the number of trans-membrane spans (Figure 3 B,D). For example, an IMP with 

nine TMHs can adopt about one million distinct folds. Consequently, exhaustive 

sampling of all possible folds is prohibitive for larger IMPs even if one considers 

that some folds might be forbidden because loops might be too short to connect 

trans-membrane spans distant in the fold. Next we will look at the sequence space 

for the number of IMP families that exist. 

2.3.2 Sequence space for α-helical MPs  

An analysis of protein sequence families documented by Pfam (pfam27.0) 

and crosschecked by Uniprot annotation (Figure 4 A) The non-redundant arrangement 

and fold is computed for each revealed 895 IMP families consisting of α-helical 

TMHs. For 108 of these IMP families, at least one structure has been determined  
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Figure 3. The theoretical fold space for IMP.The theoretical fold space of α-helical MPs 
is computed through the arrangement of helices (A) and the topological insertion of TMHs (B). 
The theoretical fold (C) and arrangement (D) numbers scale with the number of TMHs. The 
computed hexagonal grid and the TMHs are represented as circles from a top view (A): 
systems with more than three TMHs start to have more than one arrangement. number of 
TMH. An example fold of a five TMH IMP is illustrated in the rainbow diagram (B). The number 
of folds (C) and TMH arrangements (D) computed for different numbers of TMHs is plotted on 
a logarithmic scale. 
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Figure 4. The sequence space for IMPs.A survey of the protein sequence database 

was performed to map the unique membrane protein families separated by sequence 
homology (A). Taking statistics about the average TMH numbers of each IMP family and 
counting the occurrences of families with average TMH numbers, a histogram (B) of families 
with different number of TMHs was illustrated.  
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experimentally based on a cross check with the MPtopo database. Since the 

complexity of IMP folds grows exponentially with an increasing number of TMHs, 

we collected TMH statistics over the 895 families from sequence space. The family 

counts were plotted against the TMH number: more than 70% of the IMP families 

have less than 7 TMHs, few have more than 12 TMHs (Figure 4B). The IMP 

sequence space is large, though most of the IMP families fall in the lower 

complexity regions of the fold space, i.e. the simplified fold space is limited to 105. 

Computational structure prediction methods such as BCL::MP-Fold are suitable for 

sampling such fold spaces, though distinguishing accurate from inaccurate folds 

would remain an obstacle for de novo methods without assistance from 

experimental data [109]. 

2.3.3 BCL::MP-Fold assembly of TMHs using hybrid experimental data 

BCL:MP-Fold was used to simultaneously incorporate experimental data 

from multiple sources like EM density maps, EPR distance restraints from DEER 

experiments, NOE distance restraints from NMR experiments, and chemical shift 

information during structure prediction. In the following subsections, we present 

our results for α-helical IMP fold prediction from hybrid experimental data for 

Rhodopsin.  

In addition to pure de novo structure prediction, predictions were performed 

from limited experimental data using a single dataset (NMR, EPR, or EM), 

integrating two data sets (NMR_EPR, EM_NMR, or EM_EPR – double-hybrid) or 

integrating all three experimental data sets (EM_EPR_NMR – triple-hybrid). 

Predicted structural models were evaluated by computing the RMSD100 [122] of 
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the sampled models relative to the experimentally determined structure and their 

respective energy scores in the BCL. Note that the RMSD100 calculation was 

performed over aligned regions of the structure: since BCL::MP-Fold assembles 

only the TMHs in the three-dimensional space, the RMSD100 values presented 

here only relate to the TM helices of the IMP.  

Restraints BCL RMSD100 Score     

Best Top 5% Best Top 5%     

No 
Restraints 4.5 5.4 9.4 9.2     

N
NMR   3.1 3.8 5.1 6.1     

 E
EPR  3.5 4.5 8.5 7.5     

  E
EM 2.9 4.8 8.3 8.1     

N
NMR 

E
EPR  2.7 3.7 3.6 4.0     

N
NMR  E

EM 3.0 4.0 4.0 5.5     

 E
EPR 

E
EM 1.9 4.1 8.4 7.4     

N
NMR 

E
EPR 

E
EM 1.4 2.9 2.5 3.9     

           
 
Restraints Rosetta  

  

RMSD100 RMSD100_TM Score Score (RMSD100_TM) 

Best Top 5% Best Top 5% Best Top 5% Best Top 5% 
NMR   4.0 4.4 1.7 3.0 5.3 6.4 2.1 1.8 
  EM 4.0 4.2 3.0 3.0 5.4 4.9 4.6 3.7 
NMR EPR  3.9 4.1 1.5 1.8 8.2 5.8 1.5 1.6 
 EPR  EM 3.3 3.7 1.9 2.1 4.4 4.2 2.0 2.1 
NMR  EM 3.3 3.5 1.6 1.3 3.8 4.1 1.1 1.1 
NMR EPR  EM 2.9 3.0 1.3 1.2 3.8 3.6 1.2 1.1 

 
Table 2. Structure prediction results from hybrid experimental data.The RMSD100 

metric is used to quantify model quality. RMSD100: RMSD100 of models ranked by RMSD100 
to native model; Score: RMSD100 of models ranked by either BCL score or Rosetta score; 
Top5%: Averaged RMSD100 over top 5% models ranked by the respective metric. 
RMSD100_TM: RMSD100 value calculated from TMH regions of the models that ranked by 
total RMSD100. Score (TM_RMSD): RMSD100 value calculated from TMH regions of the 
models that ranked by Rosetta score.  

 
 
In each case, BCL::MP-Fold was able to sample the native-like fold (Table 

2). However, although the de novo sampled structures were structurally similar to 

the experimentally determined structure (RMSD100 = 4.5 Å) (PDB ID 1GZM 
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[118]), the scoring function lacked the discriminative power to identify the most 

accurate models. The models with the most favorable score often exhibited large 

structural deviations from the experimentally determined structure. Incorporation of 

experimental restraints improved the sampling accuracy and discriminative power 

of the scoring function. Prediction using a single set of experimental data (Figure 5 

A) improved sampling and scoring slightly. Notably, NMR data improved model 

discrimination and sampling density around the experimentally determined 

structure (Figure 5 B), where the best scoring models achieved an RMSD100 of 5.1 

Å. EM data helped in positioning the TMHs in the EM density rods, resulting in 

more accurate sampling of the native fold (RMSD100 = 2.9 Å). However, the 

medium resolution density map, combined with our simplified energy evaluation, 

was unable to unambiguously identify the most accurate models by score. EPR 

data suffered from the limited number of restraints leading to a moderate 1 Å 

improvement in sampling accuracy (RMSD100 = 3.5 Å). Again, the scoring 

function was unable to identify these improved models. Both, NMR- and EM-

assisted models included low RMSD100 folds in the top scoring models and were 

further refined in next stage under the assumption that an all atom representation 

of the protein structure combined with higher resolution energy evaluation would 

allow to identify and refine the most accurate models. 

Before we proceeded to the refinement step, we combined two or three 

experimental data sets to test if integrating data from multiple sources improved 

sampling accuracy and/or discriminative power. Substantial improvements were 

observed over de novo prediction or the single-experimental data prediction. The  
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Figure 5. Prediction accuracy of low-resolution SSE assembly using hybrid 
experimental data. Density distributions of structure prediction accuracies using single 
experimental dataset (A,C) and hybrid experimental dataset (B,D). The fraction of models 
versus the predicted models’ RMSD100 to the native crystal structure is shown. (A) A 
comparison is drawn between the sampling density for native-like models using de novo 
structure prediction (orange), EM (light green), EPR (blue) and NMR (purple). (C) Cumulative 
fraction of models that falls within 8Å RMSD, the y-axis is cut off at 0.1.  (B) A comparison is 
drawn between the sampling density for native-like models using de novo structure prediction 
(orange), NMR_EPR (light green), EM_EPR (green), EM_NMR (blue) and EM_EPR_NMR 
(Purple). (D) Cumulative fraction of models that falls within 8Å RMSD, the y-axis is cut off at 
0.1.   

NMR_EPR, EM_NMR sets improved sampling density near the native-like folds to 

below 3 Å RMSD100(Figure 5 B, D). The best models ranked by score are among 

the 5% most accurate models. EM_EPR prediction also improved the RMSD100 of 

A B 

C D 



 

 
37 

the most accurate folds sampled to 1.9 Å but had an accurate model ranked only 

second by score (RMSD100 = 2.2 Å). The improvement in sampling density was 

less compared to tests that included NMR restraints (Figure 5B), possibly due to 

the limited distance information in experimental data and alternative folds fulfilling 

the 27 EPR distance restraints.  

Unsurprisingly, the EM_EPR_NMR set performed best. The most accurate 

model had an RMSD100 of 1.4 Å and an average RMSD100 of 2.9 Å among the 

top 5% sampled folds. The sampling density was also significantly larger as seen 

in the peak centered near 2 Å in Figure 5 B, D. Models ranked by score in 

EM_EPR_NMR also had the best agreement with the crystal structure, which is 

demonstrated by an RMSD100 of 2.5 Å and an average RMSD100 of 3.9 Å among 

the top 5% scoring models. The top scoring models using two or three datasets 

were further processed for all-atom refinement.  

2.3.4 Loop modeling and structural refinement using hybrid experimental 

data  

The BCL::MP-Fold models consist of simplified helices with only limited 

deviations from idealized dihedral angles. The models don’t contain loops and 

side-chain components. The top scoring models sampled in the BCL::MP-Fold 

stage using EM, NMR, EM_NMR, EM_EPR, NMR_EPR and EM_NMR_EPR 

datasets were refined in Rosetta using their corresponding restraint sets. In each 

case, except EM and EM_EPR, the top scoring BCL models used as inputs in this 

stage were within reasonable accuracy to the experimentally determined 1GZM 

structure. The single restraint set (EM and NMR) was successful in refinement and 
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finding native-like models among the best scoring models. However, using two or 

three experimental data sets, added additional layers of accuracy in refinement 

(Figure 6 A, B and Table 2).  

The energy landscape of the rhodopsin fold, visualized by plotting the 

RMSD100 of each model with its respective Rosetta energy score, shows that 

native-like models are strongly favored by the inclusion of experimental data 

during the refinement stage (Figure 6 A, B). The use of hybrid experimental data 

improved the prediction accuracy in the core of the protein. The RMSD100_TM, 

which quantifies the RMSD100 of the trans-membrane region, for the top 5% 

sampled models using hybrid restraint data improved by at least 1 Å improvement 

over that of the top 5% sampled models using single restraint (Table 2, 

RMSD100_TM).  

With EM data alone, which is not able to generate an unambiguous answer 

to the correct fold using the low-resolution scoring functions in BCL::MP-Fold, the 

Rosetta refinement successfully sampled the core of the protein with a high 

accuracy of 3 Å RMSD100_TM. Although input models contained models with 

incorrect folds that extend to an RMSD100_TM above 8 Å, the native-like folds 

were strongly favored by the EM density scoring function. EM_EPR and EM_NMR 

both showed improvements when EM data was incorporated.   

Overall, whereas the inclusion of the EM density map resulted in an 

improvement of the total RMSD100 of the best scoring model to below 6 Å, 

distance type restraints (NMR, NMR_EPR) were unable to refine the best scoring 

models to below 6 Å (Figure 6 A, B). The EM data restrains loop conformations to 
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the boundary of the density map. NMR information could improve modeling the 

correct contacts between the TMHs, as seen in the improvement in TM_RMSD100 

to below 2 Å in the best scoring models. The models that were refined using NMR 

data also had less favorable scores to our surprise.  To break down the cause of 

the worse scores, rescoring using only the built-in Rosetta scoring function was 

performed to investigate the behavior of the membrane scoring function (see 

discussion). 

Refinement using EM_NMR_EPR resulted in the most accurate models 

(RMSD100 = 2.9 Å). The total RMSD100 approached a limit of 4 Å while the 

RMSD100 of the core helical TM region was close to 1 Å. In our prediction 

pipeline, the retinal molecule is not modeled. Accurate modeling of the extra-

cellular loop 2 (ECL2) that interacts with the retinal molecule and the 30 amino 

acids long N-terminus remains challenging using the Rosetta loop modeling 

algorithm.   

The refinement protocol using hybrid experimental data could recapitulate 

backbone conformation features observed in the crystal structures such as kinks in 

TMHs. For example, the best scoring model from the EM_NMR_EPR dataset 

reproduced the backbone contacts and loop conformation similar to the native 

structure (Figure 6 C). Even when input models were idealized helices, the kinks in 

helices six and seven could be observed after the refinement. The side chain 

conformers from the model could be modeled to high accuracy (Figure 6 D). 
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Figure 6. Prediction accuracy of Rosetta refinement using hybrid experimental data. 

The scatter plot for model quality in terms of sampling and scoring of rhodopsin models to 
atomic detail using Rosetta modeling suite and representative predicted models of low energy. 
The resulting models are plotted with their respective Rosetta score against their RMSD 
relative sto the experimentally determined 1GZM structure (A), or TMH RMSD to the TMH 
region of 1GZM (B). The scatter plot is color coded with the respective dataset used for the 
refinement: NMR (Green), EM (Red), NMR_EPR (Yellow), EM_EPR (Blue), EM_NMR (Black) 
and EM_EPR_NMR (Orange). The best scoring model from EM_EPR_NMR experiment is 
depicted in rainbow diagram, with the experimental structure show in grey (C). The side chain 
rotational conformer of the predicted structure matched the experimental structure with high 
accuracy (D).  

 

 

A C 

B D 
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2.4 Discussions 

2.4.1 The fold and sequence space of α-helical MPs  

Structural representatives remain to be determined for about seven hundred 

more IMP families to allow for comprehensive comparative modeling of all IMPs. 

At an average rate of six new folds per year (average over the last 5 years), 

experimentally determining the remaining IMP folds would take approximately 110 

years. Our survey also showed that a large number of IMP families have a 

relatively low theoretical fold complexity. The fold space of these IMPs can be 

comprehensively searched with the current computational algorithms. Therefore, 

integrating limited experimental data into these computational algorithms should 

accelerate fold determination for such IMP families. For larger proteins, such as 7-

TM Rhodopsin, which has a theoretical fold space of around one hundred 

thousand representations, additional restraints will be required to achieve high 

prediction accuracy.  

In this survey, we also found that within a single IMP family, there are 

members containing different numbers of predicted TMHs, further increasing 

complexity for accurate homology modeling, which requires a template structure 

that contains most of the structural elements. Modeling such IMPs would require a 

combination of template-based modeling methods and de novo structure 

prediction in order to sample the additional fold space.  

2.4.2 Available experimental data for Rhodopsin are suboptimal for IMP 

structure determination 

Although the use of actual experimental data would be preferred in demonstrating 
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our algorithm’s capability in application, this proved difficult in the present case: The 

DEER restraints published by Hubbell et al[44]. are centered on the intra-cellular side of 

rhodopsin to monitor the conformational changes upon receptor activation. The amino 

acid pairs for labeling were selected for that purpose alone and are not suited to 

determine the fold. In our previous studies using a single restraint type, incorporating 

these 16 restraints resulted in an RMSD100 improvement from 5Å to 4.5Å [112]. In our 

study using simulated DEER restraints, the RMSD100 of the most accurate model arrived 

at 3.5 Å. The additional improvement by 1Å is a direct result of selecting restraints that 

restrict the overall fold of the protein. There is a complete NMR dataset available for 

sensory Rhodopsin from bacteria [127], however the NMR restraints for bovine rhodopsin 

are sparse and affiliated with a higher uncertainty due to experimental limitations. In the 

experimental paper where the bovine rhodopsin NMR structure was described, only 

secondary structure restraints stem from NMR. In addition, 17 long-range constraints from 

EPR experiments and 58 inter-helical constraints from low resolution electron diffraction 

experiments are used (pdb ID: 1JFP) [128]. The experimental procedure was also based 

on resolving overlapping peptide constructs of bovine rhodopsin solubilized in DMSO, 

which is not expected to stabilize a biologically relevant conformation of a membrane 

protein. As a result, the limited availability of actual NMR-derived distance data prompted 

us to use simulated NMR restraints. For our simulated NMR distances, the lower bound of 

distances is 0 Å, the upper bound of the distances is below 6Å.  

2.4.3 Experimental data overcomes the limitations of simplified 

representation of IMPs during de novo structure prediction 

Due to the simplified representation of IMPs in the BCL and in Rosetta, the 

depth of the native energy minimum is reduced. As a consequence, energy 

differences between the native-like folds and non-native-like folds are small and 
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unambiguous identification of the correct native fold becomes often difficult or 

impossible. Further, by virtue of their respective sampling algorithms, not all IMP 

conformations are easily accessible or accessible at all. Therefore, the optimal 

native conformation might be missed as the algorithm fails to sample it.  

In the Rosetta stage, we observed that models predicted from EM and 

EM_EPR datasets had more favorable scores compared to models predicted from 

NMR data. To confirm that those discrepancies were not caused by the 

experimental data, the models were re-evaluated using the original Rosetta 

membrane scores. Notably, the Rosetta score of the crystal structures was 

substantially lower than the Rosetta score of the computational models (Figure S 2) 

suggesting that the Rosetta energy function can correctly distinguish non-native 

states from native states. Since the overall RMSDs of the computational models 

are above 3 Å, the energy gap could be explained by inaccurate loop 

conformations that arise from insufficient sampling of the long N-terminal loop and 

ECL2. An energy gap is observed between models predicted from EM, EM_EPR 

and other datasets where NMR data were included. Analysis of the individual 

score components showed that EM and EM_EPR models, although exhibiting a 

larger deviation in the core of the protein, have less unfavorable energy 

contributions from fa_rep (Lennard-Jones repulsive energy between atoms in 

different residues[49, 129]), and fa_dun (Internal energy of sidechain rotamers as 

derived from Dunbrack’s statistics [48]). At the same time, models predicted from 

triple-hybrid experimental data exhibited lower Rosetta scores compared to that of 

EM_NMR, NMR_EPR, and NMR. The experimental data leveraged in the 
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prediction constrained the model to sample conformations in a fold space close to 

the experimentally determined structural model and was able to correct the 

deviations in the scoring function used by Rosetta. The reason for such 

observations is perhaps the richness in the side-chain contact information provided 

by NMR distance data, that forces side-chain contact that are otherwise hard to be 

sampled due to the simplified representation of the IMPs.  

The existing abundance of sequence data of IMPs are expected to 

challenge the limit of experimental structural determination pipelines in the near 

future. Hybrid approaches combining experimental and computational techniques 

could accelerate determination of protein structures and refine existing knowledge 

of protein structural functions. We demonstrated that using a combination of 

computational structure prediction methods and sparse experimental data enables 

accurate fold determination for large IMPs to atomic detail. Although combining 

orthogonal experimental data improved the prediction accuracy, future applications 

should always consider the source of the experimental data on whether they can 

be used complementarily since not all combinations yield results of comparable 

quality. Future development of the proposed structural prediction pipeline will be 

focused on the prediction of structural ensembles.  
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2.5 Supplemental Materials 

 

 
 

Figure S 1 Score versus RMSD100 plot for BCL::MP-Fold assembly of rhodopsin fold. 
(A) de novo; (B) NMR; (C) EPR; (D) EM; (E) EM_NMR; (F) NMR_EPR; (G) EM_EPR; (H) 
EM_NMR_EPR.  
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Figure S 2. Score versus RMSD100 in TMH for models rescored with original Rosetta 

membrane scores and individual score terms. fa_atr is the Lennard-Jones attractive energy 
between atoms in different residues; fa_rep is the Lennard-Jones repulsive energy between 
atoms in different residues; fa_dun is the internal energy of rotational tautomer of the 
sidechain, derived from Dunbrack;s statistics of protein sidechains observed in pdb; fa_mbenv 
is  the solvation energy for residues in membrane environment based on amino acids’ 
hydrophobicity.  
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Restraint	
	type	

Atom	
1	

Residue	
	1	

Atom	
	2	

Residue	
	2	

Evaluation	
Function	 lb	 ub	 sd	

Tag	
/rswitch	

AtomPair	
H			 75	 1HG1	 130	 BOUNDED	 0	 5.94786	 1	 NOE	

AtomPair	
3HD1	 59	 3HD2	 77	 BOUNDED	 0	 5.33137	 1	 NOE	

AtomPair	 2HD1	 131	 1HG1	 254	 BOUNDED	 0	 4.62996	 1	 NOE	
AtomPair	

3HD1	 76	 1HD1	 131	 BOUNDED	 0	 4.93543	 1	 NOE	
AtomPair	

3HG2	 63	 3HD2	 77	 BOUNDED	 0	 5.92617	 1	 NOE	
AtomPair	

2HD1	 133	 1HG1	 218	 BOUNDED	 0	 4.05534	 1	 NOE	
AtomPair	

1HD2	 125	 3HD2	 262	 BOUNDED	 0	 5.8083	 1	 NOE	
AtomPair	 3HG1	 139	 3HG2	 230	 BOUNDED	 0	 4.66986	 1	 NOE	
AtomPair	

2HG2	 129	 	H			 219	 BOUNDED	 0	 3.95145	 1	 NOE	
AtomPair	

1HG1	 130	 	H			 156	 BOUNDED	 0	 5.00824	 1	 NOE	
AtomPair	

3HG1	 209	 3HD1	 214	 BOUNDED	 0	 5.63787	 1	 NOE	
AtomPair	

	H			 260	 1HD1	 305	 BOUNDED	 0	 4.45914	 1	 NOE	
AtomPair	

1HG2	 129	 	H			 219	 BOUNDED	 0	 5.48106	 1	 NOE	
AtomPair	

1HD1	 128	 3HD1	 219	 BOUNDED	 0	 4.94971	 1	 NOE	
AtomPair	 1HD2	 72	 3HG2	 250	 BOUNDED	 0	 5.42105	 1	 NOE	
AtomPair	

2HD2	 131	 3HG2	 254	 BOUNDED	 0	 4.32513	 1	 NOE	
AtomPair	

3HD1	 131	 	H			 254	 BOUNDED	 0	 5.35469	 1	 NOE	
AtomPair	

2HG1	 139	 	H			 230	 BOUNDED	 0	 4.91498	 1	 NOE	
AtomPair	

2HD1	 75	 2HG2	 130	 BOUNDED	 0	 5.69671	 1	 NOE	
AtomPair	 1HD2	 72	 1HG1	 250	 BOUNDED	 0	 4.5216	 1	 NOE	
AtomPair	

	H			 51	 1HG2	 87	 BOUNDED	 0	 4.4161	 1	 NOE	
AtomPair	

2HD2	 50	 1HG2	 304	 BOUNDED	 0	 4.84477	 1	 NOE	
AtomPair	

	H			 47	 1HG2	 300	 BOUNDED	 0	 5.80309	 1	 NOE	
AtomPair	

3HD1	 219	 2HG2	 258	 BOUNDED	 0	 3.0854	 1	 NOE	
 

Table S 1. Sample NMR restraints used in Rhodopsin fold determination. NMR 
restraints were specified in a line-based file. AtomPair specifies the type of restraint to be 
used, followed by atom name and residue number of the first and second atom. BOUNDED 
term is used to set the restraint evaluation for calculating a bounded penalty. The lb an ub 
define the lower and upper bound of the NOE distances, while sd defines the standard 
deviation of distances. The tag is optional input to specify a rsswitch term, when tag is not 
numeric, the rswitch is set to default of 0.5.  
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Restraint	
	type	

Atom	
1			

Residue	
	1	

Atom	
	2	

Residue	
	2	

Evaluation	
Function	

EPR		
descript	

Distance	
value	

Weight	
	

Bin	
size	

AtomPair	 CB	 5	 CB	 215	 SPLINE	 EPR_DISTANCE	 31.6286	 1	 0.5	

AtomPair	 CB	 13	 CB	 210	 SPLINE	 EPR_DISTANCE	 32.5877	 1	 0.5	

AtomPair	 CB	 35	 CB	 241	 SPLINE	 EPR_DISTANCE	 56.7064	 1	 0.5	

AtomPair	 CB	 39	 CB	 293	 SPLINE	 EPR_DISTANCE	 9.27139	 1	 0.5	

AtomPair	 CB	 41	 CB	 159	 SPLINE	 EPR_DISTANCE	 35.8508	 1	 0.5	

AtomPair	 CB	 42	 CB	 136	 SPLINE	 EPR_DISTANCE	 41.8808	 1	 0.5	

AtomPair	 CB	 57	 CB	 295	 SPLINE	 EPR_DISTANCE	 22.5476	 1	 0.5	

AtomPair	 CB	 58	 CB	 223	 SPLINE	 EPR_DISTANCE	 25.2647	 1	 0.5	

AtomPair	 CB	 70	 CB	 221	 SPLINE	 EPR_DISTANCE	 22.281	 1	 0.5	

AtomPair	 CB	 72	 CB	 128	 SPLINE	 EPR_DISTANCE	 11.9059	 1	 0.5	

AtomPair	 CB	 78	 CB	 299	 SPLINE	 EPR_DISTANCE	 13.5557	 1	 0.5	

AtomPair	 CB	 81	 CB	 263	 SPLINE	 EPR_DISTANCE	 22.6959	 1	 0.5	

AtomPair	 CB	 91	 CB	 165	 SPLINE	 EPR_DISTANCE	 19.359	 1	 0.5	

AtomPair	 CB	 97	 CB	 285	 SPLINE	 EPR_DISTANCE	 13.7844	 1	 0.5	

AtomPair	 CB	 115	 CB	 291	 SPLINE	 EPR_DISTANCE	 18.7978	 1	 0.5	

AtomPair	 CB	 116	 CB	 205	 SPLINE	 EPR_DISTANCE	 23.0765	 1	 0.5	

AtomPair	 CB	 131	 CB	 261	 SPLINE	 EPR_DISTANCE	 11.0256	 1	 0.5	

AtomPair	 CB	 131	 CB	 291	 SPLINE	 EPR_DISTANCE	 25.1033	 1	 0.5	

AtomPair	 CB	 135	 CB	 167	 SPLINE	 EPR_DISTANCE	 23.5482	 1	 0.5	

AtomPair	 CB	 140	 CB	 226	 SPLINE	 EPR_DISTANCE	 7.02843	 1	 0.5	

AtomPair	 CB	 158	 CB	 212	 SPLINE	 EPR_DISTANCE	 21.0541	 1	 0.5	

AtomPair	 CB	 162	 CB	 249	 SPLINE	 EPR_DISTANCE	 29.4457	 1	 0.5	

AtomPair	 CB	 200	 CB	 301	 SPLINE	 EPR_DISTANCE	 30.2289	 1	 0.5	

AtomPair	 CB	 213	 CB	 267	 SPLINE	 EPR_DISTANCE	 16.8667	 1	 0.5	

AtomPair	 CB	 230	 CB	 290	 SPLINE	 EPR_DISTANCE	 37.2075	 1	 0.5	

AtomPair	 CB	 247	 CB	 306	 SPLINE	 EPR_DISTANCE	 16.5986	 1	 0.5	

AtomPair	 CB	 274	 CB	 300	 SPLINE	 EPR_DISTANCE	 26.0892	 1	 0.5	

 
 

Table S 2. Sample EPR restraints used in Rhodopsin fold determination. EPR DEER 
distance restraints were specified in a line-based file, AtomPair specifies the type of restraint 
to be used, followed by atom name and residue number of the first and second atom. SPLINE 
and EPR_DISTANCE would specify the program read in a histogram file and create cubic 
spline for the RosettaEPR knowledge-based potential. Experimental distances are set in the 
next column. Weight sets the numerical multiplier for the score term when linearly adding it to 
the total energy evaluation. Bin size set the histogram bins, in this case, distances are 
evaluated by a 0.5Å bin.  
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CHAPTER 3 UNIFIED STRUCTURE MODEL OF THE 

MAMMALIAN TRANSLOCATOR PROTEIN (TSPO) 

Chapter 3 is a reprint of “Yan Xia, Jun Li, Amanda Duran, Charles R. 

Sanders, Charles H. Manning, Jens Meiler. A Unified Structural View of the 

Mammalian Translocator Protein.” Manuscript in preparation. I designed and 

performed the experiments, analyzed the data, generated the figures and write the 

manuscript or text describing the specific scientific findings.  

The translocator protein (TSPO), previously named peripheral-

benzodiazepin receptor (PBR), is a membrane protein located on the outer-

mitochondial membrane. Structures of mouse TSPO (mTSPO) and its homologue 

from bacterial species determined using NMR spectroscopy and X-ray 

crystallography, respectively, display distinct differences that prompted discussion 

and additional experiments. Herein we leverage computational and experimental 

studies to conclude that that the lipid-mimetic system used to solubilize mTSPO 

thermodynamically destabilizes the protein, introduces structural perturbation, and 

affects its ligand binding characteristics. Further, to contribute to resolving the 

controversies in the structural features of mTSPO, we used Rosetta to construct a 

unified model that reconciles deviating features of mammalian and bacterial TSPO 

that are likely a result of the detergent system used for structure determination of 

mTSPO. The unified mTSPO model agrees with available experimental NMR, is 

physically realistic – i.e. thermodynamically not frustrated – as judged by the 

Rosetta energy function, and simultaneously shares the structural features 
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observed in sequence-conserved regions of the bacterial proteins. Finally, we 

determined the putative binding site for a new, clinically tested imaging ligand 

VUIIS8310 using NMR spectroscopy and propose a computational model of 

VUIIS8310 in complex with mTSPO.  

3.1     Introduction  

The 18kDa TSPO, previously known as the peripheral benzodiazepine 

receptor (PBR), is an evolutionarily conserved 5 transmembrane (TM) alpha-

helical protein in the mitochondria [1, 2]. Research on TSPO has been conducted 

for decades from basic biochemical analysis to high-affinity ligand development. It 

has been found that TSPO is universally expressed in all human tissues, 

especially elevated in steroidogenic tissues and pathological tissues such as 

cancer and brain inflammation tissues [3, 4]. In vivo imaging suggests that TSPO 

is also a promising target of cancer and central nerve system (CNS) disorder 

biomarker or therapeutics [5, 6]. There is evidence that the majority of TSPO 

ligands interact with the loop between helix 1 and 2, while the cholesterol binding 

is mediated by its C-terminal cholesterol recognition/interaction amino acid 

consensus (CRAC) motif [7, 8].  

3.1.1 TSPO is involved in important functions in mitochondrial metabolism 

TSPO, together with the voltage dependent anion channel (VDAC) and 

adenine nucleotide translocase (ANT), is a component of the mitochondrial 

permeability transition pore (MPTP) during apoptosis [9, 10]. TSPO-mediated 

cholesterol translocation is discussed as the rate-limiting step in progesterone 

synthesis in mitochondria, where cholesterol is further metabolized to steroid 
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hormones [11]. Several studies have been conducted to probe pharmacological or 

biochemical properties of TSPO involvement in hormone metabolism and 

apoptosis [12-14]. Recently, a number of genetic studies of in vivo or in vitro 

knocked-out TSPO challenged the paradigm of TSPO’s function role in biological 

processes [15-18]. Additional compensatory factors such as F0F1 ATP synthase 

was found in MPTP complex [19], that MPT could occur in TSPO knockout mice 

[18]. Some TSPO ligands were found to also inhibit F0F1 ATP synthase mediated 

MPTP function [20]. Conditional knockout or global knockout of TSPO produced 

no apparent changes in viability and steroid hormone synthesis in mice [15, 16], 

conflicting with previous report that TSPO knockout was embryonically lethal, 

albeit the methodology of generating TSPO null models were different. An in vitro 

knockout of TSPO by siRNA also failed to display inhibition of steroidogenic 

pathway [16]. One report also suggested that the effect of early generation TSPO 

ligands on steroidogenesis might be the result of alteration of membrane 

properties by ligands or other off-target effects [21]. TSPO is highly expressed in 

activated microglia, and has been proposed as a biomarker of neuroinflammation 

[22]. With the TSPO global knockout mice, it was subsequently demonstrated that 

activation of microglia after neuronal injury does not require TSPO, though 

microglia isolated from TSPO knockouts have altered oxygen consumption and 

ATP synthesis rates [23]. At this point, it seems likely that compensatory 

mechanisms exist for absence or malfunction of TSPO as mitochondrial function is 

a critical component of cellular function. Thus, the presence of redundancy in 

mechanisms that mediate crucial mitochondrial functions would be expected. It is 
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possible TSPO’s exact function in biological processes remains to be elucidated. 

Nevertheless, TSPO remains an ancient, well-conserved protein that is highly 

expressed during physiological response and disease state and thus an important 

target of study.  

3.1.2 TSPO is an emerging target for imaging and therapeutic ligands 

development 

Despite the controversies about TSPO function, TSPO has become a target 

for cancer imaging via positron emission tomography (PET) as TSPO is 

overexpressed in several cancer types, including glioma [24, 25], breast [26, 27], 

and colorectal [28-30] cancers. TSPO overexpression in cancer cells has also 

been linked with disease progression and prognosis in patients with colorectal [28-

30], breast [26, 27], and brain [24, 31] cancers. Additionally, elevated TSPO levels 

appear to be associated with metastatic potential in breast and colorectal cancer 

cells [26, 32, 33]. Thus, TSPO is an important prognostic biomarker in oncology 

and target for tumor-selective TSPO PET ligands for cancer imaging. The second 

generation of PET imaging ligands derived from pyrazolopyrimidine such as 

[18F]DPA-714 [34] and [18F]VUIIS1008 [35, 36] is used to visualize TSPO 

expression in tumors in preclinical settings. A recent development of PET ligand 

based on similar scaffold 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[F]fluoropyridin-2-yl)-

3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (VUIIS8310) [37] is also 

shown to be a viable candidate developed as PET tracer for cancer imaging.  

3.1.3 The structural fold of TSPO is highly conserved  

The current understanding of the TSPO structure at molecular level 
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revolves around the solution NMR structure of mTSPO [38, 39] and two crystal 

structures of bacterial homologues from Rhodobacter sphaeroides (rsTSPOX-Ray) 

and Bacillus cereus (bcTSPOX-Ray) [40, 41]. The NMR structure of mTSPO 

(mTSPONMR) is determined in Fos-Cholin-12 (DPC) detergent system with the 

imagining ligand PK11195 complexed with the protein (Figure 8 A). The crystal 

structures of two bacterial TSPO homologs are determined by liquid cubic phase 

crystallization (Figure 8 A schematics). All three models share the same fold, 

despite bacterial TSPOs having less than 30% sequence identity to human TSPO 

(Figure 8 A schematics). In all structures, the CRAC motif is facing lipid 

environment and away from dimerization interface, complicating a hypothesis on a 

cholesterol transport mechanism. 

3.1.4 Ligand conformation observed in experimentally determined structures 

differ 

co-crystalized with bcTSPO displays a different binding mode when 

compared to PK11195 as positioned in the mTSPO structure determined by NMR 

spectroscopy. The ligand binding site in bcTSPOX-Ray is 5.5 Å away from the center 

of the protein, while the ligand binding site in mTSPONMR is 6.7 Å from the center. 

Use the In the crystal structure model, PK111195 establishes a π-π stacking 

between the indol ring of the ligand and, a polar interaction between the ligand’s 

hydroxyl group with the W138 tryptophan side chain. In contrast, the NMR 

structure from both the native mTSPO and the A147T mutant show the ligand 

PK11195 to have predominantly hydrophobic interactions with amino acid side 

chains in the binding pocket. The ligand hydroxyl group points away from W143 
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which is in mTSPO the structural equivalent amino acid to W138 in bcTSPO, and 

fails to form a strong polar interaction. At the same time, the ligand flips 180º in 

orientation when compared between the two structural models. Structural features 

in the conserved regions of helix III in the NMR structure also show an 180º 

rotation compared to that of the bcTSPO crystal structure. However, as sequence 

identity between the mTSPO and bcTSPO is only ~30%. Thus, it is unclear if these 

structural changes and the different ligand binding mode are caused by this 

substantial deviation in amino acid sequence. After all, the affinity of PK11195 to 

mTSPO is reported to be a thousand fold higher than the affinity to bcTSPO. 

3.1.5 TSPO exists in an equilibrium of oligomeric states in biological 

membrane  

While the mTSPONMR structure is monomeric in detergent systems, there 

are reports indicating that a fraction of mTSPO exists as oligomers in lipid bilayers 

[42-44]. Bacterial TSPOs are homodimers in the crystal structure with different 

dimerization interfaces. In the case of bcTSPOX-Ray, helix I&II contribute to the 

main dimerization interface. RsTSPOX-Ray’s main dimer interface is formed by helix 

I&III. mTSPO in lipid bilayer is shown to be in an equilibrium state of dimer and 

monomer mediated by the 83GxxxG87 motif on helix III, as demonstrated by the 

solid state NMR studies [44]. Addition of cholesterol shifts the equilibrium towards 

monomeric protein, and additionally induces structural changes of mTSPO distal to 

the cholesterol binding site.   

A manuscript from the original authors of the solution NMR structure 

describes the conformational state of apo-mTSPO [45]. In their findings, the apo-
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mTSPO NMR spectra is partially assigned and showed pico to nano-second 

backbone motion of mTSPO in the absence of PK11195. Detergents of difference 

acyl-chain length are used to demonstrate the conformational exchange is 

independent of detergent system. It is also shown that apo-mTSPO lacks tertiary 

contact that could be observed on the NMR time scale. While the NMR structure 

was determined with a ligand-induced fold of mTSPO, the high temperature and 

the lack of a NMR titration result raises concerns of the structure’s biological 

relevance. Understanding the conformational plasticity of mTSPO in lipid-mimetic 

systems is of crucial importance for investigate the binding of PET imaging ligands 

to mTSPO in similar methods used in the NMR structural determination. 

3.1.6 TSPO structural models need additional experimental and 

computational validations for the use to assist drug development 

Taken together, the physiological role of TSPO is still unclear. Several 

structural snap-shot have been revealed, that contradict each other. The 

biophysical and biochemical mechanism of ligand binding is not readily accessible 

in light of the recent structures alone. The three experimental structures of TSPO 

provide a starting point for understanding possible biological roles of the protein 

from a molecular level. However, they suffer from respective limits of technology 

applied in the study or their potential biological relevance to the mammalian model 

systems. In this study we report experimental validation of ligand binding in the 

reported NMR conditions. A unified structural model of mTSPO was constructed 

based on all three experimentally determined structures featuring its energy 

optimization. Such computational validation of the experimental models will be 
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important to support framework for future investigation. Lastly, we report the 

molecular interaction between imaging VUIIS8310 and mTSPO based on 

computational docking and NMR experiments.  

3.2     Materials & Methods 

Protein expression and purification 

15N-labeled TSPO was expressed in BL21 (DE3) E. coli in M9 minimal 

media, solubilized, and purified with DPC detergent, as adapted from previous 

publications [46, 47]. In short, 15N labeled mTSPO was expressed in BL21(DE3) 

cells in M9 media following 1mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) 

addition for 12 hours at 25°C. The membrane targeted mTSPO fraction was 

collected using ultracentrifugation after lysing cells by sonication. 1% (w/v) DPC 

was used to solubilize the membrane faction for Ni-NTA affinity chromatography. A 

constant concentration of 0.1% (w/v) of DPC was maintained throughout 

purification and mTSPO was eluted using 300mM imidazole. The purity of the 

protein was estimated on SDS-PAGE stained with coomassie blue. In case when 

N-Dodecyl β-D-maltoside (DDM) was used, 1% DDM (w/v) was used to solubilize 

the membrane fraction of mTSPO expressing E. coli and 0.1% DDM (w/v) was 

used during purification. The resulting sample was subjected to buffer exchange 

into buffer containing 25 mM MES buffer, pH 6.2, and 100 mM NaCl. Both NMR 

and fluorescence experiments were performed under such buffer conditions.  

Tryptophan fluorescence quenching experiments of ligand binding.  

A tryptophan fluorescence quenching assay was used to study the binding 

properties of TSPO by utilizing the intrinsic tryptophan fluorescence [48].  For the 
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mTSPO in DPC and DDM, 0.5 μM purified protein was titrated with increasing 

amounts of ligand in the desired concentration range at room temperature or 42 

C°. Each titration point was monitored by a spectral scan from 300 nm to 400 nm 

(excitation at 290 nm) on a Horiba Jobin Yvon Fluoromax-3™ spectrofluorimeter. 

Control experiments were performed to evaluate the absorption/emission of 

ligands as well as buffers and solvents. Since mTSPO contains multiple buried 

and solvent exposed tryptophan residues, the area under each emission spectrum 

was integrated to account for all tryptophan and a percentage quenching ratio for 

each concentration was calculated. The binding curve was obtained by plotting the 

percentage quenching %Change against total ligand concentration [X] in mole 

fraction unit (Mol fraction) in Prism 6©. The actual solvent condition for membrane 

proteins is its lipid mimetics, in this case, the detergent. Since fluorescence and 

NMR experiments operates at very different protein and detergent concentrations, 

we used mole fraction here for the ease of comparing titration data of membrane 

protein cross different conditions and spectroscopic techniques. Mole fraction was 

calculated by dividing the amount mole of ligand by the amount of detergent in the 

system. Since we observed a pseudo two phase transition from raw data in 

fluorescence quenching experiment, Equation (1) was derived based on a two site 

per monomer assumption, taking into consideration ligand depletion. [X] is the total 

ligand concentration plotted on the binding curves.   
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%Change represents the calculated percentage quenching at each 

concentration, Fmax is the maximum amplitude of fluorescence quenching, which 

equals the difference between the initial and final fluorescence signals divided by 

the initial fluorescence, [X] is the total ligand concentration, [Et] is the total 

concentration of purified mTSPO protein (fixed at 0.5 μM in the experiment and 

during the fitting procedure) and oipp

kclm& oipp
tuvis the apparent dissociation constant for 

the two sites. Offs (offset) allows a fit unconstrained to go through zero. All ligands 

were dissolved in DMSO as a stock solution and diluted with DMSO or buffer for 

measurement. One representative binding curve was shown in each figure while 

the oipp

kclm & oipp
tuvwere reported as the average of 3 replicate measurements fitted 

with Equation (1). 

NMR experiments of ligand binding 

2D 1H-15N TROSY spectra of mTSPO with/without ligands were recorded 

on an 800 MHz NMR spectrometer at 42 °C with 0.1mM TSPO in 2% DPC (w/v), 

25 mM MES buffer, pH 6.2, and 100 mM NaCl. When NMR spectra were 

mentioned in the manuscript, it refers to a 2D 1H-15N TROSY, unless specified 

differently. In ligand binding experiments, PK11195 was added to the sample for a 
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final concentration of 0.1mM TSPO with 0.1mM, 0.2mM, 0.4mM, 0.8mM, 1.6mM 

and 3.2mM. The ligand concentration [X] was converted to Mol fraction unit for 

data fitting. The Spectra were processed with NMRpipe and analyzed using 

Sparky. Complete backbone assignment of mice TSPO was obtained from 

Biological Magnetic Resonance Data Bank (http://www.bmrb.wisc.edu/ BMRB 

entry: 19608). The backbone 1H and 15N assignments were transferred to our 

mTSPO-PK11195 spectrum with most of the peaks aligning well with the published 

data, except for central region of the spectrum where overlapping peaks made 

unambiguous assignment difficult (Figure S 3 D, E).   

The partially assigned mTSPO-PK11195 spectrum were then used for 

identifying resonance peaks in each concentration. The spectral changes upon 

ligand binding are indicative of a typical slow-exchange process. Thus, the titration 

was monitored by integrating peak intensity from assigned resonances belonging 

to mTSPO-PK11195 bound species. The binding curve was obtained by plotting 

the percentage intensity change %Change (calculated by dividing the intial peak 

intensity at [X] by max peak intensity at highest ligand concentration) against total 

ligand concentration [X] in mole fraction unit (Mol fraction).  Since we observe a 

one phase transition from raw data in NMR titration experiment, Equation (3) was 

derived based on a one site per monomer assumption, taking into consideration 

ligand depletion. [X] is the total ligand concentration plotted on the binding curves.  

The binding curve is plotted by pooling intensities for ten residues surrounding the 

ligand binding site (W5, Y34, W42, W47, G72, F100, W107, S116, V118, W155).  

 



 

 
60 
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In the case of VUIIS8310 ligand binding experiment, 2D HSQC spectra of 

mTSPO with/without 5mM VUIIS8310 were recorded on an 800 MHz NMR 

spectrometer at 42 °C with 0.1mM TSPO in 2% DPC (w/v), 25 mM MES buffer, pH 

6.2, and 100 mM NaCl. The partially assigned mTSPO-PK11195 spectrum from 

previous NMR experiments was leveraged for identifying resonance peaks in the 

mTSPO-VUIIS8310 spectrum (Figure 11A). In short, residues with resonances 

unshifted in mTSPO-VUIIS8310 compared to mTSPO-PK11195 were marked as 

no shift; residues with resonances shifted in mTSPO-VUIIS8310 but traceable 

from near assigned mTSPO-PK11195 resonances were marked either significant 

or insignificant chemical shift change (ΔCS) based on a cut-off of 0.05 ppm in the 

proton dimension; residues with resonances completely disappeared in mTSPO-

VUIIS8310 were marked significant ΔCS. The Resulting chemical shift difference 

mapping was used for identify potential VUIIS8310 binding site on TSPO.  

RosettaCM modeling of mTSPO  

The mTSPONMR structural ensemble (PDB: 2GMY), bcTSPO crystal 

structure (PDB:4RYI), rsTSPOX-Ray crystal structure (PDB:4UC2) was energy 

optimized using Rosetta fastrelax protocol [49] to produce mTSPONMR-opt, 

bcTSPOX-Ray-opt and rsTSPOX-Ray-opt models. RosettaCM [50] was then used to 

construct 2000 homology models based on either 5 structures of best energy 
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optimized bcTSPOX-Ray and rsTSPOX-Ray or a combination of 5 bcTSPOX-Ray-opt, 5 

rsTSPOX-Ray-opt and top 10 mTSPONMR ensemble models. The top 1% models with 

favorable energy from each condition were subjected to an additional round of 

energy optimization. After this stage, all models were evaluated, whereby only the 

top 1% models were selected for a final energy optimization. The best energy 

mTSPORosettaCM model is used to plot Rosetta energy versus root mean square 

distance (RMSD) plot using R. All structural comparisons of the mTSPORosettaCM 

model to experimentally determined structures was done using Dali pairwise 

structural alignment [51]. Chemical shift calculations from constructed models 

were carried out using the Sparta+ server [52]. NOE distance deviations were 

calculated on a per residue basis. The atomic distances between the respective 

long range NOE restraint from the models were calculated to compare with NOE 

restraint values downloaded from BMRB. Proline dihedral angles were calculated 

for a database of membrane proteins downloaded from PDB to generate 

Ramachandran plot for the Pro-Pro motif. The Pro-Pro dihedrals of the top 20 

models from mTSPONMR-opt and top 20 models from mTSPORosettaCM were plotted 

on the graph.   

Computational ligand docking in mTSPO binding pocket 

PK11195 was computationally docked into the bcTSPOX-Ray-opt, the 

mTSPONMR-opt and the mTSPORosettaCM structure using RosettaLigand [53]. 

VUIIS8310 [37] was computationally docked into the mTSPONMR-opt structure and 

the mTSPORosettaCM model. The Ligand conformers were generated using MOE 

[54] (Molecular Operating Environment; Chemical Computing Group Inc., 
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Montreal, QC, Canada). In the case of docking PK11195, the ligand was placed 

into the binding pocket, superimposing with the experimentally determined 

PK11195 coordinates. For each setup, 1000 docking models were constructed 

with 5Å translational and 360° rotational sampling [53, 55]. In the case of docking 

VUIIS8310, the ligand was placed into the protein center based on proximity to 

residues determined from NMR experiments. Here, 2000 docking models for 

mTSPORosettaCM and 2000 for mTSPONMR-opt were constructed with 5Å translational 

and 360° rotational sampling. Resulting models were ranked based on their 

predicted binding energy using the Rosetta energy function that contains terms for 

van der Waals attractive and repulsive forces, electrostatic interactions, hydrogen 

bonding, solvation, and likelihood of particular side-chain conformations. The top 

scoring docked model is used for visualizing ligand-protein interface in PyMol [56]. 

The final model is reported after manual inspection for agreement with NMR 

chemical shift data.  

3.3     Results 

3.3.1 TSPO in DPC micelles shows highly dynamic behavior  

We recombinantly expressed mTSPO, purified it, and reconstituted it into 

DPC micelles, the same system that was used to determine the mTSPONMR 

structure. The purity of mTSPO was checked using SDS-PAGE (Figure S 3A). 

Equilibrium ligand binding experiment were performed to demonstrate mTSPO 

ligand binding function in micelle. The amide peaks in the NMR 2D 15N-1H 

correlation spectrum are sensitive to the local chemical environment, thus could be 

viewed as fingerprints of actual protein structure. The NMR spectra of the apo 
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mTSPO in DPC micelles displayed very narrow peak dispersion in line with 

literature [22] (Figure S 3 C), typical of a highly dynamic protein or protein in the 

molten globule state.  

3.3.2 NMR Titration of PK11195 into mTSPO preparation in micelles shows 

significantly lower binding affinity than membrane preparation 

Increasing concentration of PK11195 were added into mTSPO in NMR 

conditions as specified in methods. The chemical shift changes showed a typical 

slow-exchange, whereby the peaks belonging to the apo-protein diminished with 

the increase concentration of the ligand, and peaks belonging to the PK111955 

bound species appeared in the 2D TROSY spectrum (Figure S 3 D, E).  The 

changes in peak intensity with increasing concentration of PK11195 showed a 

single transition of ligand binding response (Figure 7 Purple line). The lower limit of 

the apparent binding constant (Kapp) calculated from ligand titration was 0.0057 

(Mol fraction) (Table S 3), while PK11195 was reported to bind mTSPO with 

nanomolar affinity (which would be equivalent to ~10-7 Mol fraction Kd, assuming a 

ligand to lipid/detergent ratio of 1 to 100). A decrease of intensity for some peaks 

was also observed at high concentration of PK11195, possibly due to aggregation 

or changes in the dynamic of the protein due to excess amount of ligand. The very 

high apparent Kd could be a result of changes in the energetics of the protein at 

high temperature accompanied by the effect of detergent system  

An intrinsic tryptophan fluorescence quenching assay was then used to 

complement the NMR binding assay. The ligand-induced quenching of intrinsic 

protein tryptophan fluorescence was used to monitor ligand binding (Figure S 3B). 
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Different concentrations of DPC were tested for mTSPO-DPC system at room 

temperature (25 °C) or the temperature used for NMR studies (42 °C). mTSPO 

purified in DDM detergent (mTSPO-DDM) was also included in the set of 

experiments to monitor possible detergent effects apart from concentration and 

temperature. In both DDM and DPC detergent systems, a two-phase transition 

curve was observed when titrating PK11195 (Figure 7 A-C). Without prior 

assumption of possible non-specific binding, we fitted the data with a two-site per 

monomer model for binding. For all samples of mTSPO-DPC at 42 °C, the high 

affinity apparent binding constant component ({|}}
a^~a) for DPC was around ~10-6 

Mol fraction and independent from the DPC concentration; while the low affinity 

apparent binding constant component (oipp
tuv) in the second transition was at 0.0068 

Mol fraction for 0.2%DPC, 0.0054 Mol fraction for 0.4%DPC and 0.012 Mol fraction 

for 0.1% DPC. This second transition in the fluorescence titration experiments 

correlated with the transition observed with NMR spectroscopy (Figure 7 A). A set 

of experiment at room temperature was performed for mTSPO-DPC to access 

temperature dependencies of the observed transitions (Figure 7 B). The 

oipp
tuv

	transition appeared to shift slightly with half order of magnitude (Table S 3). 

The oipp

kclm
	transition for 0.4%DPC 25 °C displayed a significant shift, however the 

exact reasons could not be attributed. The mTSPO-DDM sample was prepared for 

42°C experiments to account for detergent dependencies of the observed 

transitions (Figure 7 C).  In this case, The oipp
tuvcomponent of titration data from 

mTSPO-DDM showed two order of magnitude increase (Table S 3). The 

oipp
tuv

	component changed only slightly. 
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The fluorescence binding results demonstrate that mTSPO-DPC binds 

PK11195 in a similar manner as seen in NMR studies, where the quenching event 

would suggest a binding and reorganizing of the structure of mTSPO during the 

low affinity apparent binding constant (oipp
tuv) transition. In NMR experiments, such a 

ligand binding induced reorganization of the mTSPO structure was seen as a slow-

exchange transition of resonance peaks. High temperature affected the ligand 

binding behavior significantly in DDM micelles, suggesting the DDM micelles might 

not be suitable to maintain structural integrity at high temperature. The high affinity 

apparent binding constant ( oipp

kclm ) transitions seems to be temperature and 

detergent sensitive. We hypothesize that it represents an initial binding of 

PK11195 to a preformed partial ligand binding pocket at low ligand concentrations. 

As the concentration of PK11195 is increased and this preformed partial ligand 

binding pocket constantly occupied, the structure of mTSPO is rearranged, the 

protein folds, and the complete binding pocket is formed. 

3.3.3 The experimentally TSPO structures might be determined in perturbed 

system 

The available structural models of TSPO obtained from experimental data 

have several limitations (Figure 8 A): The mTSPONMR structure was determined 

using micelle systems at high temperature where the energy landscape is 

substantially perturbed. Additionally, some features of the NMR structure conflict 

with conformations observed in sequence-conserved regions of bacterial 

homologs, specifically in helix III. At the same time, these bacterial homologs 

(bcTSPOX-Ray and rsTSPOX-Ray), although determined in a more native-like 
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environment, have less than 40% of sequence identity to mTSPO. The sequence 

divergence could prevent them being directly used to model structural interactions 

of small molecule probes, imaging agents or therapeutics.  

3.3.4 An Integrated Comparative Model of mTSPO is biophysically realistic 

and reconciles conflicting structural information from multiple templates 

To better sample the energy landscape of TSPO while including structural 

features of experimental structures, we decided to construct homology models of 

mTSPO using a single bacterial structure as template (bcTSPOX-Ray or rsTSPOX-

Ray, resepctively) and multiple templates (bcTSPOX-Ray, rsTSPOX-Ray, and 

mTSPONMR) using RosettaCM. The sequence alignment from Figure S 4 was used 

to generate the initial threading template. We also performed energy optimization 

on mTSPONMR structural ensemble to computationally evaluate its energy 

landscape. The mTSPORosettaCM model produced from multiple template homology 

modeling displayed the lowest energy amongst other strategies after 2 rounds of 

selection based on energy of generated models (Figure 8 B). The mTSPONMR-opt 

structural model has a higher energy compared to that of the homology models 

from single and multiple templates. When plotting the average energy of the top 20 

models obtained from each sampling strategy, mTSPORosettaCM models showed 

clearly favorable energies compared to that of the mTSPONMR-opt or models 

obtained from a single bacterial template (Figure 8 C). This suggests that the NMR 

structure when removed from the micelle and embedded in a biological model 

membrane is in a high energy, i.e. biophysically unrealistic state with many local 

unfavorable interactions. Similarly, simple homology models of mTSPO based on 
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single bacterial template structures are energetically frustrated suggesting that 

major rearrangements are needed to accurately describe the conformation of 

mTSPO in a biological membrane. Only if structural features form all three models 

are combined using RosettaCM, the energy of mTSPO gets in the expected range 

of high-resolution experimental structures of helical membrane proteins (Figure S, 

to be added). The final mTSPO RosettaCM model was compared to original 

template structures using structural alignment tools (Figure 8 D). The model 

shared the same global fold with all templates, although differ from mTSPONMR 

model by 4.1Å, bcTSPOX-Ray by 3.3Å and rsTSPOX-Ray by 3.5Å.  

3.3.5 mTSPORosettaCM model shares structural features with all three 

experimentally determined structural templates 

In contrast to the mTSPONMR structure the mTSPORosettaCM has a Rosetta 

energy that is biophysically realistic in a membrane model. Globally, the model 

resembled the conformations observed in the bacterial proteins more closely. 

Hence, we wondered if this model is still generally consistent with the restraints 

obtained by NMR spectroscopy, keeping in mind that the NMR restraints are valid 

in the thermodynamically destabilized micelle conformation of the protein. 

RosettaCM modeling was conducted in an implicit membrane model. We expected 

that the overall fold as well as secondary structure are well conserved between 

mTSPO models in a micelle and in a membrane. We expected slightly larger 

deviations in local features of the tertiary structure such as bending or rotation of 

transmembrane segments.  
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3.3.6 mTSPORosettaCM model agrees with experimental NMR chemical shift 

data 

Backbone chemical shifts from CA and CB atoms are sensitive to 

secondary structure and local structural perturbations. To access the agreement of 

mTSPORosettaCM model with the experimental NMR data, the back-calculated 

backbone chemical shifts (CS) were computed from the mTSPORosettaCM and 

mTSPONMR-opt using Sparta+ [52]. The chemical shift of CA and CB were then 

compared with the experimentally determined backbone chemical shift. The 

mTSPORosettaCM model agrees with the experimental CS data as good as the 

mTSPONMR-opt structure (Figure 9). Note, that CS were not input into the 

RosettaCM modeling protocol as restraints but only indirectly provided through the 

mTSPONMR template. This result indicates that secondary structure and many local 

structural features are consistent between the mTSPONMR and mTSPORosettaCM 

structures.  

Since the mTSPONMR structure was calculated from experimentally 

determined NOE distance restraints, we also calculated the per residue NOE 

deviation for both the mTSPORosettaCM model and mTSPONMR-opt model (Figure S 5 

A). Figure 10 displays the per residue distance deviations. As expected, 

mTSPONMR-opt model showed very small deviation from the experimental data 

(Figure 10 A). In the case of RosettaCM model, residues in helix III, IV, and V 

adopted alternative backbone and side conformations and deviate from the 

experimental data more significantly (Figure 10 B). The majority of the deviations 



 

 
69 

between mTSPORosettaCM and the NOE distance restraints occurs in the top part of 

the protein close to PK11195 binding site, while other parts of mTSPORosettaCM fulfill 

the majority of long-range NOE restraints. We interpret this finding as consistent 

with our experimental observations: mTSPO is destabilized in micelles and the 

PK11195 binding pocket only fully forms at ligand concentrations sufficiently high 

to induce protein folding. The induced tertiary structure in this region is the most 

stable conformation in micelles but deviates from the low energy conformation in a 

membrane. 

3.3.7 Ligand binding pocket of mTSPORosettaCM shares similarity to that of the 

bacterial homologues 

The ligand binding pocket in the core of mTSPORosettaCM structure shows a 

larger similarity to bcTSPOX-ray (Figure 10 C) compared to mTSPONMR (Figure 10 

D). mTSPORosettaCM has transmembrane helix III in a conformation close to that of 

bcTSPOX-ray. Helices III, IV, and V of  mTSPORosettaCM are in a different backbone 

conformation compared to mTSPONMR. Specifically, the conserved residues W53 

and W143 packing the core of the protein adopt similar conformations that point to 

the core of the protein as observed in bcTSPOX-ray. Of W93 and W95, which are 

evolutionary not conserved, only W95 points towards the core of the protein in 

mTSPORosettaCM (Figure 10 D).   

There are three Pro-Pro motif in mTSPO: the 44Pro-45Pro is sequence 

conserved, while the 96Pro-97Pro, 131Pro-132Pro is not conserved through evolution. 

96Pro-97Pro is located at the partially unfolded helix III in the mTSPO NMR 

structures. In the mTSPORosettaCM model, the 96Pro-97Pro motif adopts a slightly 
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perturbed but still helical conformation. To test, if this is a likely conformation for 

Pro-Pro motifs in membrane proteins, we plotted the ψ,φ angles in a 

Ramachandran plot for all Pro-Pro motifs in the transmembrane regions of 

membrane proteins with known structure (Figure S 5B). The 96Pro-97Pro motif for 

both mTSPORosettaCM model and NMR structure agrees with the dihedral angles of 

other experimentally determined Pro-Pro motifs.  

At last, docking PK11195 with RosettaLigand [53] into bcTSPOX-ray yielded 

a low energy binding model similar to the ligand binding pose observed 

experimentally (Figure S 7A). Docking of PK11195 into the binding pocket of 

mTSPONMR_optimized failed to converge to the NMR observed ligand pose (Figure S 

7B). Docking of PK11195 into mTSPORosettaCM (Figure S 7C) converged to a low 

energy ligand conformation differs from bcTSPOX-ray and mTSPONMR. It is possible 

that after rearrangement of binding pocket in these RosettaCM model after 

homology modeling, the ligand binding pocket for PK11195 is in a conformation 

that does not favor either observed ligand conformation from experimentally 

determined structure. 

3.3.8 VUIIS8310 interaction with mTSPO from NMR and computational 

ligand docking studies  

Chemical shift information from 2D N-H correlation NMR spectrum reflects 

local chemical environment of backbone amide atoms. When comparing two 

separate NMR spectra of two distinct ligands binding to the protein, one would 

observe ΔCS arises from presence and absence of ligand and the chemical shift 

for residues in purple overlap might expect either a change or no change based on 
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the particular chemical environment. While PK11195 binding to mTSPO produces 

a chemical environment unique to its binding site and its set of NMR resonances, 

other ligands that binds to a slightly different site would results in a different 

chemical environment and producing a slightly different set of chemical shifts. 

When comparing the two spectra, the differences in chemical shift could be results 

of two phenomena: the difference in chemical moiety of ligand and difference in 

protein conformation. Ligand binding site mapping based on resonance shift (ΔCS) 

in NMR is conceptualized as following (Figure 11 A): Red circle and its dashed 

circle represents a molecule’s influence to its surrounding chemical environment 

thus producing distinct resonance peaks; Blue circle and its dashed circle 

represents a molecule’s influence to its surrounding if binding at a different site 

and producing distinct resonance peaks;  If the NMR spectrum for the Red circle 

sample is assigned, and the NMR spectrum of Blue circle is not assigned, one can 

still deduce the approximate ligand binding site of Blue circle by comparing ΔCS in 

NMR spectra of Blue circle to Red circle.  

Based on this principle mTSPO-VUIIS8310 interaction was studied using 

NMR spectroscopy. Comparing the spectra of mTSPO-PK11195 to the spectra of 

mTSPO-VUIIS8310 revealed many differences in the chemical shift of residues in 

the binding pocket (Figure S 6). Mapping the residues with and without ΔCS onto 

the mTSPORosettaCM model revealed initially a deeper binding site for VUIIS8310 

(Figure 11 B right) compared to that of PK11195 (Figure 11 B left). The VUIIS8310 

might make specific interaction with W53, W95, W143, and A147. Computational 

ligand docking experiments were performed on VUIIS8310 to mTSPO CM Model 
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and energy optimized NMR structure (Figure S 7 D, E).  While both structures 

showed convergence to low energy conformers, the energy optimized NMR 

structure docked with VUIIS8310 (Figure S 7 F) could not fulfil all ΔCS of the 

residues. VUIIS8310 docked to mTSPORosettaCM model (Figure 11 B right enlarged 

panel) showed pi-pi stacking of W53 to the pyrazolopyrimidine ring and potential 

for the flexible chemical groups on VUIIS8310 to interact with A147. The docking 

data can be used for optimizing imaging ligand development.  

3.4      Discussions 

3.4.1 Current micelle preparations of mTSPO display reduced ligand affinity, 

likely through a thermodynamic destabilization of the protein 

mTSPO solubilized in detergent micelles displayed lowered binding affinity 

to PK11195 compared to previously reported data of nano-molar affinity. Based on 

titration results from NMR and fluorescence experiments, the ligand induced NMR 

spectra changes and the second transition of tryptophan quenching curve is a 

combined effect of ligand binding to mTSPO and induced structural changes that 

affects global fold of protein. The high affinity transition observed in fluorescence 

experiment is sensitive to temperature and detergent conditions, thus is likely to be 

binding of ligand to either pre-formed ligand binding pocket in the apo mTSPO or 

detergent micelles. Taking both fluorescence and NMR data into account, we 

suggest that mTSPO in micelles at 42 °C is not fully folded in its biologically 

relevant three-dimensional structure. It has only a partially pre-formed ligand 

binding pocket that allows for an initial, fast association of PK11195 with the 

protein. As the concentration of PK11195 is increased, its high binding energy is 
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sufficient to induce mTSPO folding. The resulting tertiary structure adopts the 

biologically relevant fold of the protein but is still locally perturbed because of the 

thermodynamically destabilized and altered energy landscape in the micelle 

environment. 

We concluded that the binding of PK11195 induces stabilization effect of 

mTSPO is a combined effect of ligand binding and induced folding event. In 

detergent conditions explored by previous NMR experiments at high temperature 

and at our hands, mTSPO might exist in a ligand binding capable, altered high-

energy state. This high-energy state, indicated by the highly dynamic 

characteristics in apo mTSPO NMR spectrum, appears to deviate from that of 

mTSPO in mitochondrial membrane extract where protein is in lipid and other 

protein co-factors. It is important to note that our experimental results appear not 

to invalidate the NMR results, as the conformational stability of apo protein does 

not interfere with its final ligand-bound states. The binding of ligands such as 

PK11195 could induce the folding of mTSPO to a conformation that reflect 

physiologically realistic ligand binding despite of the altered energy landscape.   

In the recently published solid state NMR studies on mTSPO in DMPC 

liposomes, apo mTSPO also displayed dynamic characteristics [44]. Resonance 

assignment and further experiments in solid state NMR could only be achieved by 

complexing mTSPO with a ligand in a similar fashion as in the case of detergent 

micelles. This would reflect that at least in vitro, mTSPO alone might exist in a 

dynamic, ligand binding capable state. mTSPO is found to be in complex with 

VDAC, ANT possibly other proteins in the MPTP [9, 10].  
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In the current study of mTSPO, all determinant of protein function is based 

on the capability of binding to the ligand while ignoring the energy state of the 

protein might be altered or other proteins in the MPTP complex being absent from 

the system. Mitochondrial membrane is also asymmetric in its lipid composition 

and membrane potential. It is unclear whether these conditions would contribute to 

the normal function of TSPO, i.e. the energy state of mTSPO in its apo state. 

Future experiments must be able to establish the validity of mTSPO-ligand 

complex being physiologically realistic or the binding phenomenon is trackable to 

literature values.  

3.4.2 The remodeled mTSPO structure is a viable model for structural 

studies 

We presented the mTSPORosettaCM model as an alternative conformation 

that might exist for studying ligand binding to TSPO proteins. While all 

experimentally determined TSPO structures provide valuable insight to this 

important protein, certain features in the experimental structures should be 

carefully examined. Computational modeling to energetically optimize TSPO 

structures is able to sample a larger conformational equilibrium and achieve lower 

energy ensembles for mTSPORosettaCM model. The resulting structure, while 

resembling a fold closer to that of the bacterial TSPOs, still agrees with NMR 

chemical shift data experimental collected on mTSPO.  

We also employed computational docking experiment to access the models’ 

potential for future structure based ligand screening. The mTSPORosettaCM model 

was able to produce meaningful ligand conformation for VUIIS8310, that agrees 
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with NMR binding data. Imaging ligand targeting TSPO seems to be binding to the 

core of the protein [46, 57] and often interact with all five TM helices. These 

ligands might also alter the conformation of mTSPO or cause functional changes 

of the protein. Thus computational models that provide a larger sampling area for 

ligands is important for future structure based ligand development. 

The It is worth noting that in all cases of ligand docking, the energy 

optimized NMR structure fails to produce data that can be interpreted along with 

our experimental supplement. Docking of PK11195 into bcTSPOX-ray-opt clearly 

showed the model can accurately generate ligand ensembles close to the 

observed crystal structure. It is possible that mTSPONMR structure is over-

optimized in a condition that fulfills all structural restraints. The resulting 

conformation is in a local energy minimum in the respective computational energy 

evaluation that is not viable for other computational modeling software to carry 

forward.  

3.4.3 Mechanism of ligand binding and influences on function of TSPO 

The functional role of TSPO in biological processes still needs to be further 

investigated in light of the recent shift in paradigm of TSPO’s involvement in 

cholesterol biosynthesis pathways. While this ancient protein has been proposed 

to be involved in many alternative processes in terms of oxidative stress sensing, 

fatty acid metabolism, the molecular basis of TSPO’s function has never been 

tackled from a bottom up approach. Despite the controversies surrounding its 

biological function, TSPO still remains to be a highly anticipated target for imaging 

molecules. It is our intention to refine TSPO structures for a better basis to provide 
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computational models for future development of potent TSPO ligands. While the 

specific ligand pocket configuration might change regarding different ligands, the 

ligand binding of different molecules seems not to induce global conformational 

shift of the protein and maintains a 5 helices bundle for TSPO.  

We have demonstrated that second generation TSPO ligand binds at a 

deeper pocket in mTSPO, where it would be interacting with A147. This piece of 

information is important for determining the molecular mechanism of rs6971 

(A147T) polymorphism interfering the potency of these TSPO ligands [58, 59]. In 

human, the rs6971 polymorphism results in three genotypes and its associated 

binding phenopypes for the A147 in TSPO: C/C (Ala/Ala) and high binding affinity, 

C/T (Ala/Thr) and mixed binding affinity, and T/T (Thr/Thr) and low binding affinity. 

Clinical assessment for T/T binding is difficult for separating specific binding to 

non-specific bindings in human subjects. Using our computational model and NMR 

studies, we could access ligand binding information at A147 position. Future 

direction characterizing this important polymorphism site would include TSPO 

ligands of different scaffold and sensitivity to this site for systematic assessment of 

all ligands molecular mechanisms of binding.  

It is unclear how binding of ligand would mechanistically interfere with the 

function of TSPO. It seems that ligand-bound mTSPO retains the cholesterol 

binding and oligomerization potential [44] in lipid. It is difficult to incorporate 

cholesterol molecules in DPC micelles used in solution NMR studies. Future 

experimental implementation should consider screening various conditions where 

incorporation of cholesterol can be achieved along with TSPO ligands. 
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Figure 7. Fluorescence quenching and NMR ligand binding experiment of mTSPO in 
different conditions. X-axis is plotted as Mole fraction unit, and Y-axis is ploted as percent 
change to account for difference sources of data to be comparable at the same level. The 
titration curve obtained from NMR experiments is plotted in all panels as reference 
comparison. (A) Fluorescence quenching and NMR ligand titration for PK11195 and mTSPO 
in 0.1% (w/v), 0.2% (w/v), 0.4% (w/v), NMR condition (~2% w/v) DPC at 42C°. (B) 
Fluorescence quenching and NMR ligand titration for PK11195 and mTSPO in 0.1% (w/v), 
0.2% (w/v), 0.4% (w/v), NMR condition (~2% w/v) DPC at 25C° (C) Fluorescence quenching 
and NMR ligand titration for PK11195 and mTSPO in 0.1% (w/v), 0.2% (w/v), 0.4% (w/v) DDM 
and NMR condition (~2% w/v) DPC at 42C°. Error bars are based on triplicate experiment of 
the same condition. Data fitting is performed as described in methods.  
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Figure 8. Remodeled mTSPO CMmodel structures have favorable energy. (A) 

Schematics of the current available high resolution structural data: mTSPO NMR structure 
utilizes micelles, while bacterial TSPO has low sequence homology to mammalian protein.  (B) 
Energy (in REU) versus RMSD plot between the final model of mTSPO and all the models 
produced in each steps of the pipeline. Each point in the plot represents one model’s RMSD to 
the final CMmodel and its respective energy. Yellow: energy optimized mTSPO NMR 
structure; Orange: mTSPO homology model based on bcTSPO; Green: mTSPO homology 
model based on rsTSPO; Gray: mTSPO homology model based on bcTSPO, rsTSPO and 
mTSPO using RosettaCM; Red: models after 2 rounds of energy optimization of models from 
above pipelines; Blue: final models from RosettaCM after another round of energy 
optimization. (B) Bar plot of the energy of top 20 models produced in each pipeline shows the 
mTSPO CMmodel has a superior energy (color scheme follows that of panel A). (C) Structural 
comparison of CMmodel to the experimentally determined structural models based on 
sequence independent alignment. mTSPO CMmodel is depicted in brown ribbon, the RMSD to 
bcTSPO (Gray), rsTSPO (Green), mTSPO (Magenta) are reported. 
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Figure 9. Back calculated chemical shift of the mTSPO CMmodel correlates with 
observed chemical shift from NMR data. (A) Back calculated chemical shift for CA, CB from 
experimental mTSPO NMR structures correlates with the observed NMR data. (B) Back 
calculated chemical shift for CA, CB from mTSPO CMmodel correlates with the observed NMR 
data. R2 value is calculated and noted in the graph.  
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Figure 10. Energy optimized experimental mTSPO NMR structure and mTSPO 

CMmodel mostly agree with experimentally measured long-range NOEs, but differ in ligand 
pocket configuration. (A) The per residue agreement of experimental NOE derived distances 
and model of energy optimized NMR structure are color coded to the backbone trace of the 
model with distance deviation higher than 4Å coded red, lower than 0.5Å coded blue and 
middle ground of 2Å coded white. The diameter of backbone trace is also scaled to the 
deviation. (B) The per residue agreement of experimental NOE derived distances and model 
of mTSPO CMmodel are depicted with the same scheme as panel A. (C) The ligand binding 
pocket of mTSPO CMmodel resembles that of the bcTSPO, where conserved residues are 
also structurally conserved. (D) Comparing the ligand binding site of mTSPO CMmodel to the 
NMR structure shows different backbone trace for helix three and four, where the partially 
unfolded helix three adopts alpha helical conformation.  
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Figure 11. The Ligand binding interactions are mapped for VUIIS8310 on mTSPO. (A) 
Concept of ligand binding mapping based on differences of chemical shift (ΔCS) in NMR: Red 
circle and its dashed circle represents a molecule’s influence to its surrounding chemical 
environment; Blue circle and its dashed circle represents a molecule’s influence to its 
surrounding; When comparing ligand induced chemical shift of two distinct ligand binding 
event the net chemical shift changes is a combination of the two. The molecular 
representations of PK11195 and VUIIS8310 are also shown. (B) mTSPO CMmodel with 
mapped chemical shift differences arise from VUIIS8310 (Black: no ΔCS; Gray: insignificant 
ΔCS or unassigned; Pink: moderate ΔCS; Red: large ΔCS). Left: PK11195 docked to mTSPO 
CMmodel. Right: VUIIS8310 docked to mTSPO CMmodel at a deeper site compared to 
PK11195. The enlarged picture of VUIIS8310 binding site is depicted at the side with residues 
interacting with the ligand marked 
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3.6 Supplemental Materials 

 
Figure S 3 mTSPO protein purification and spectroscopic data of ligand titration. (A) 

SDS-PAGE gel of mTSPO purification. The eluted sample were above 95% purity. (B) Sample 
raw data of fluorescence titration of PK11195 into mTSPO. In all PK11195 experiments, ligand 
does not completely abolish tryptophan spectra even at very high concentration. (C) 2D 1H-
15N HSQC spectrum of apo mTSPO. (D) 2D 1H-15N HSQC NMR titration for PK11195 and 
mTSPO overlaid (zoom-in) (Black: 0.1mM Yellow: 0.2mM Magenta: 0.4mM Green: 0.8mM 
Blue: 1.6mM Red: 3.2mM). (E) 2D 1H-15N HSQC NMR titration for PK11195 and mTSPO 
overlaid (full plot) in the same color scheme as (D).  
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Sample	 oipp

kclm oipp
tuv oipp 

DPC 0.1% 25C 5.79E-07 8.30E-03  
DPC 0.2% 25C 6.33E-07 1.46E-02  
DPC 0.4% 25C 1.05E-05 2.19E-02  
DPC 0.1% 42C 8.39E-06 1.23E-02  
DPC 0.2% 42C 5.60E-06 6.87E-03  
DPC 0.4% 42C 2.66E-06 5.47E-03  
DDM 0.1% 42C 7.62E-07 7.85E-01  
DDM 0.2% 42C 1.45E-06 8.66E-01  
DDM 0.4% 42C 5.42E-06 8.60E-01  
N M R  4 2 C   >5.74E-03 

 Table S 3 Apparent binding constant of PK11195 to mTSPO in various conditions. 
The values reported in the table are in Mol Fraction unit. The fluorescence binding data were 
fitted with equation (1) to report oipp

kclmand oippwith prior assumption of a high affinity binding 
event. The NMR binding experiment data was fitted with equation (2) to report a lower limit of 
oippfor apparent binding constant. 
 
 
 
hTSPO        1 MAPPWVPAMGFTLAPSL-GCFVGSRFVHGEGLRWYAGLQKPSWHPPHWVLGPVWGTLYSA 
mTSPO        1 MPESWVPAVGLTLVPSL-GGFMGAYFVRGEGLRWYAGLQKPSWHPPRWTLAPIWGTLYSA 
rsTSPO       1 MNMDWALFL-TFLAACGAPATTGALLKPDE---WYDNLNKPWWNPPRWVFPLAWTSLYFL 
bcTSPO       1 ----MKKSSIIVFFLTY-GLFYVSSVLFPIDRTWYDALEKPSWTPPGMTIGMIWAVLFGL 
consensus    1 .   ............. .....  ........** .*.**.*.**.. ....*..*..  
 
 
hTSPO       60 MGYGSYLVWKELGGFTEKAVVPLGLYTGQLALNWAWPPIFFGARQMGWALVDLLLVSGAA 
mTSPO       60 MGYGSYIVWKELGGFTEDAMVPLGLYTGQLALNWAWPPIFFGARQMGWALADLLLVSGVA 
rsTSPO      57 MSLAAMRVAQLEGS-----GQALAFYAAQLAFNTLWTPVFFGMKRMATALAVVMVMWLFV 
bcTSPO      56 IALSVAIIYNNYGF---KPKTFWFLFLLNYIFNQAFSYFQFSQKNLFLATVDCLLVAITT 
consensus   61 .. .........*.................. *.......*.......*. ....... . 
 
 
hTSPO      120 AATTVAWYQVSPLAARLLYPYLAWLAFTTTLNYCVWRDNHGWRGGRRLPE 
mTSPO      120 TATTLAWHRVSPPAARLLYPYLAWLAFATVLNYYVWRDNSGRRGGSRLAE 
rsTSPO     112 AATMWAFFQLDTWAGVLFVPYLIWATATTGLNFEAMRLNWNRPEAR---- 
bcTSPO     113 LLLIMFSSNLSKVSAWLLIPYFLWSAFATYLSWTIYSIN----------- 
consensus  121 ................*..**..*... * *.. ....* ........ . 
 

Figure S 4. Multiple sequence Alignment of mammalian TSPO and bacterial 
homologues. The identical amino acids are colored blue, while similar amino acids in the 
aligned are colored grey. This sequence alignment was converted to pairwise sequence 
alignment in Grishin format for RosettaCM.   
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B 

 

Figure S 5. NOE distance deviations and proline conformation deviations of the 
mTSPONMR-opt structure and mTSPORosettaCM model. (A) The average per residue NOE 
distance deviation (Å) was plotted against the amino acid sequence, with transmembrane helix 
regions noted below the x-axis. The per residue NOE distance deviation was calculated by 
averaging the total distance deviations for a residue’s backbone and sidechain NOE by the 
number of NOE distance restraints. The dashed line was determined at 1Å to indicate manual 
cut-off. (B) The pro-pro dihedral angles of were plotted in the Ramachandran plot. The leading 
proline in sequence was termed Pro1 and the trailing proline was termed Pro2. All pro-pro 
motifs in the transmembrane region of available PDB structures were taken to construct the 
database plot in gray and contour graph. The pro-pro dihedrals from top 20 mTSPONMR-opt 
structures were colored blue, while the pro-pro dihedrals from top 20 mTSPORosettaCM model 
were colored purple.  
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Figure S 6 2D 1H-15N HSQC spectrum overlay of mTSPO in presence of 5.0 mM 
VUIIS8310 (Blue) and mTSPO in prescence of 5.0 mM PK11195 (Red).   
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Figure S 7 Computational ligand docking of ligands to TSPO proteins. The Energy (in 

REU) versus RMSD plots were used to indicate energy funnels of ligand docking or deviation 
of ligand conformation from the experimentally determined ligand pose when available. In the 
case where experimentally determined ligand-protein complex is available, the ligand RMSD 
values in the x-axis were calculated based on deviations to the experimentally determined 
structural models. (A) Energy vs RMSD plot for PK11195 docking into energy optimized 
bcTSPO crystal structure showed a cluster of ligand conformations similar to experimentally 
determined ligand pose. (B) Energy vs RMSD plot for PK11195 docking into energy optimized 
mTSPO showed no obvious convergence to a ligand pose close to the observed NMR 
structure complex. (C) Energy vs RMSD plot for PK11195 docking into mTSPO CMmodel 
(RMSD calculated based on lowest energy ligand, since differences in protein conformation 
between CMmodel and NMR model is large, especially in the ligand binding pocket) showed 
convergence to a cluster of low energy ligand conformations. (D) Energy vs RMSD plot for 
VUIIS8310 to CMmodel (RMSD calculated based on lowest energy ligand) showed two major 
clusters. NMR data could manually filter the other ligand conformation. (E) Energy vs RMSD 
plot for VUIIS8310 to the energy optimized NMR model (RMSD calculated based on lowest 
energy ligand) showed some convergence to two low energy ligand conformers. (F) The 
lowest energy conformers were visualized, the ligand placement was at membrane-protein 
interface with ligand pointing towards membrane, the interactions between ligand and 
CMmodel appeared not to agree with NMR data. 
 

bcTSPO-PK11195	 mTSPO-PK11195	 CMmodel-PK11195	

B	 C	A	

CMmodel-VUIIS8310	

D	
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CHAPTER 4 ELUCIDATING PROTEIN-LIGAND 

INTERFACE 

This chapter presents and discusses several projects on interface modeling 

of membrane proteins based on experimental data. Computational modeling in 

protein-protein or protein-ligand interface can be useful in rationalizing molecular 

mechanisms of biological processes, understanding crucial structural feature of 

binding interactions, analyzing energy landscape of the interface of interest, etc. 

Application of computational modeling technologies to advance the understanding 

of biological problems is an important component of my thesis.  The application 

projects in the chapter includes the TSPO project where I personally collected 

experimental data, and solely computational modeling work on GPCR.  

The chapter begins with the computational modeling work on class C GPCR 

mGlu5 based on an intermediate resolution crystal structural model. It is the first 

project I completed on modeling membrane protein-ligand interface and homology 

modeling of large membrane protein complexes using Rosetta modeling suite. The 

project serves as a proof of principle case where computational modeling could 

accurately predict ligand binding energy and ligand efficacies based on crystal 

structure of mGlu5. Modeling of the full-length mGlu5 is the first case of a full-length 

class C GPCR model constructed to elucidate molecular mechanisms of receptor 

activation. 

The second part of the chapter is based on imagining ligand development 

work in collaboration of the Manning lab. TSPO is proposed to be a potential target 

for imagine molecules for many types of cancer and neuro-inflammation. While the 
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ligand described in the manuscript VUIIS1009A & B showed differential binding 

characteristics in in vivo PET imagining results from rats and mice, our NMR 

characterization was able to demonstrate both ligands binds at the same site on 

TSPO with similar binding behavior. We also mapped the ligand binding site of 

DPA714, VUIIS1009A & B on mTSPO based on NMR chemical shift data. This 

work can be used for future structure based ligand optimization and development.   

4.1     An introductory project into modeling: mGlu5, a Class-C 

GPCR 

Chapter4.1 contains partial reproduction of “Wu H, Wang C, Gregory KJ, 

Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V, Conn 

PJ, Stevens RC. Structure of a class C GPCR metabotropic glutamate receptor 1 

bound to an allosteric modulator. Science. 2014 Apr 4; 344(6179):58-64”. 

Reprinted with permission from AAAS. I contributed to the section of text 

describing determinant of subtype selectivity within common allosteric site and 

communication between the extracellular domain and transmembrane domain. I 

edited other section of the paper, and produced Figure 12 Figure 13Figure 

14Figure 15. The manuscript describes the first crystal structure of a Class-C 

GPCR and discusses potential implications of the allosteric modulator binding and 

receptor activation through interpretation of crystal structure models in combination 

of in vivo assays and computational modeling. The computational modeling work 

in the project advances the understanding of crucial ligand interaction to 

downstream signaling, and showed the potential of integrated structural biology to 

understanding of biological problems.   
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4.1.1 Introduction  

The human G protein-coupled receptor (GPCR) superfamily is composed of 

over 800 seven transmembrane (7TM) receptors that can be divided into four 

classes based on their sequence homology: class A, B, C, and Frizzled (F) [167]. 

The fifteen Class C GPCRs play important roles in many physiological processes 

such as synaptic transmission, taste sensation and calcium homeostasis, and 

include metabotropic glutamate receptors (mGlu), γ-aminobutyric acid B receptors 

(GABAB), calcium sensing receptor (CaS), taste 1 receptors (TAS1), as well as a 

few orphan receptors. A distinguishing feature of class C GPCRs is constitutive 

homo- or hetero-dimerization mediated by a large N-terminal extracellular domain 

(ECD) (Figure 12A). The ECDs within homodimeric receptors (mGlu and CaS) are 

cross-linked via an intermolecular disulfide bond. The heterodimeric receptors 

(GABAB and TAS1) are not covalently linked, but their heterodimerization is 

required for trafficking to the cell surface and signaling [168]. The ECD of class C 

GPCRs consists of a Venus flytrap (VFT) domain, which contains the orthosteric 

binding site for native ligands (Figure 12A), and a cysteine-rich domain (CRD), 

except for GABAB receptors. The CRD, which mediates the communication 

between ECD and 7TM domains, is stabilized by five disulfide bridges, one of 

which connects the CRD and VFT [169]. 

The mGlu family was the first group of class C GPCRs to be cloned [170, 

171]. Comprised of eight members, the mGlu family can be separated into three 

subgroups [172], termed groups I (mGlu1 and mGlu5), II (mGlu2 and mGlu3) and III 

(mGlu4,6,7,8), based on their sequence homology, G protein coupling profile, and 
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pharmacology [173]. Group I mGlus are predominantly coupled to Gq/11 and 

activate phospholipase Cβ, which hydrolyses phosphoinositides into inositol 1,4,5-

trisphosphate (IP3) and diacylglycerol, inducing intracellular calcium mobilization 

and activating protein kinase C (PKC). 

The group I mGlus, mGlu1 and mGlu5, are considered promising therapeutic 

targets for the areas of cancer, pain, schizophrenia, Alzheimer’s disease, anxiety, 

autism and others [173, 174]. However, the development of subtype-selective 

small molecule ligands that might serve as drug candidates for these receptors 

has been hampered by the conservation of the orthosteric (glutamate) binding site 

(Figure 12A). This problem can be overcome by the utilization of allosteric 

modulators that act at alternative binding sites; these compounds bind 

predominantly within the 7TM domain for the class C receptors. Allosteric 

modulators can alter the affinity or efficacy of native ligands in positive, negative, 

and neutral ways, demonstrating a spectrum of activity that cannot be achieved by 

orthosteric ligands alone.  

In this study, we report the crystal structure of the human mGlu1 7TM 

domain bound to a negative allosteric modulator (NAM), 4-fluoro-N-(4-(6-

(isopropylamino)pyrimidin-4-yl)thiazol-2-yl)-N-methylbenzamide (FITM) [175] at 2.8 

Å resolution [176]. This structure provides a 3D framework for understanding the 

molecular recognition and facilitating the discovery of allosteric modulators for the 

mGlu family and other Class C GPCRs. It also complements crystallographic 

studies of the transmembrane domain structures of class A [177, 178], B [179, 180] 

and F [181] GPCRs and extends the knowledge base upon which to study the 
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diversity and evolution of the entire GPCR superfamily.  

4.1.2 Materials and Methods 

Computational ligand docking in FITM binding pocket 

 FITM and five derivatives reported by Satoh et al [175] were 

computationally docked into the mGlu1 using RosettaLigand [59]. The Ligand 

conformers were generated using MOE [182] (Molecular Operating Environment; 

Chemical Computing Group Inc., Montreal, QC, Canada). The ligands are placed 

into the binding pocket, superimposing the large common substructure with the 

experimentally determined FITM coordinates. 1000 docking models per compound 

were constructed with 2Å translational and 10° rotational sampling [59, 166]. We 

limited sampling to retain the experimentally determined FITM binding mode for all 

derivatives. Resulting models were ranked based on their predicted binding energy 

using an energy function that contains terms for van der Waals attractive and 

repulsive forces, electrostatic interactions, hydrogen bonding, solvation, and 

likelihood of particular side-chain conformations. The ligand interface energy of the 

top 1% scoring models was used to compute the predicted ensemble average 

ligand binding energy and to correlate with experimental IC50. The predicted per 

residue binding energy was extracted from top 1% models where negative values 

indicate residues that contribute favorable interactions, positive values indicate 

residues that contribute unfavorable interactions, zero values indicate residues not 

involve in ligand binding. The top scoring docked model is used for visualizing 

ligand-protein interface in PyMol. 
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Full length model building 

The ECD of mGlu1 was constructed by homology modeling of the 

glutamate-bound dimeric VFT domain structure from mGlu1 (PDB ID: 1EWK) and 

CRD from mGlu3 (PDB ID: 2E4U) using Rosetta ([47, 58]). The model was 

constructed imposing a perfect 2-fold rotational symmetry ([183]). For this purpose, 

the template 1EWK which is in a putative Aco (active closed-open) conformation 

was converted into a symmetric Acc (active closed-closed) conformation before 

the CRDs were added. To bring the CRDs into intimate contact [184] the loop 

region between Q513 and V523 and the C254-C543 disulfide bond were 

remodeled to allow the relative orientation of CRD and VFT to be sampled. The 

ECD was placed with its C-termini P580 within 4Å distance to I581, the N-terminal 

residue of the 7TM domain, imposing C2 symmetry. The loop region E579 to P582 

was reconstructed to link CRD and 7TM domain. 

4.1.3 Overall structure of the mGlu1 7TM domain 

The human mGlu1 7TM domain (residues 581-860), complexed with FITM, 

was crystallized by the lipidic cubic phase method using the thermostabilized 

apocytochrome b562RIL (BRIL) N-terminal fusion strategy (10). A series of in vitro 

pharmacological studies were performed to verify that this truncated construct 

binds FITM and was functional in G protein coupling. The structure was solved 

using a 4.0 Å single wavelength anomalous dispersion (SAD) dataset collected 

from a single crystal soaked with tantalum bromide cluster, followed by extending 

the resolution to 2.8 Å using native data collected from multiple crystals. 

The mGlu1 7TM domain forms a parallel dimer in each asymmetric unit with 
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a dimer interface mediated mainly through helix I (Figure 12B). Interestingly, we 

observed six well-resolved cholesterol molecules packed against hydrophobic 

residues on the extracellular side of helices I and II, mediating the dimer formation. 

The extracellular loop (ECL) 2 adopts a β-hairpin conformation, pointing to the 

extracellular space, which was also observed in many peptide class A GPCRs 

[185, 186]. This β-hairpin is connected to the top of helix III through a disulfide 

bond (C657-C746) that is conserved through all classes of GPCRs. The mGlu1 

NAM, FITM, binds within a pocket formed by the 7TM bundle close to the 

extracellular side (Figure 12 B and C), in the region where ligand binding is 

observed for some class A GPCRs. The intracellular loop (ICL) 1 forms an ordered 

helical turn, while a large part of ICL2 (residues 688-695 in molecule A and 

residues 689-693 in molecule B) is missing in the structure due to the long and 

presumably flexible nature of this loop. ICL3 is well resolved and forms a short link 

connecting the intracellular ends of helices V and VI. In addition, we did not 

observe helix VIII, reported in most class A GPCR structures, as well as in class B 

and F. Instead, C terminal residues (844-860 in molecule A and 847-860 in 

molecule B) are missing in the mGlu1 structure, indicating that this region can be 

disordered. 
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Figure 12. Overall structure of the mGlu1 TM domain. (A) Cartoon models for structure 
and endogenous ligand recognition in different GPCRs classes. For class A, in most cases, 
the endogenous ligand (shown in green) is recognized by an orthosteric site in the 7TM 
domain. For class B, the endogenous peptide ligand (shown in orange) binds to both ECD and 
7TM domains. For class C, the endogenous small molecule ligands (shown in yellow circle) 
are recognized by orthosteric sites in the VFT domains. For class F, lipoprotein WNT (shown 
in magenta) binds the CRD domain of Frizzled receptors. (B) The mGlu1 7TM domain 
crystallized as a parallel dimer shown in cyan cartoon. Cholesterols mediating the dimer 
interface are shown as green carbons. The surface representation of the cavity embedded in 
the 7TM domain is shown in transparent palecyan. (C) Side chains of the FITM binding pocket 
residues are shown as white carbons. Hydrogen bond interaction between the NAM and 
T8157.38 is shown as a dashed line. The Ca carbon of G7615.48 is shown as a green ball. In (B) 
and (C), the ligand FITM is shown as yellow carbons. 
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4.1.4 Determinants of subtype selectivity within the common allosteric site 

Previous mutagenesis studies have proposed at least one common 

allosteric site for the mGlu family within the 7TM domain. The mGlu1 binding 

pocket for FITM (Figure 12C) largely corresponds to this proposed common 

allosteric site in mGlus and probably other class C GPCRs. Despite the evidence 

that binding of various chemotypes of class C GPCR allosteric modulators involve 

similar residue positions, many mGlu modulators display a high degree of subtype 

selectivity, including FITM which shows high affinity (Ki = 2.5 nM) and selectivity 

for mGlu1 over mGlu5 [175]. Examination of the contact residues in the binding 

pocket reveals only four residues of mGlu1 that differ from mGlu5: V6643.32, 

S6683.36, T8157.38, and A8187.41, all of which have previously been implicated in 

subtype selectivity by mutagenesis-based studies [187-189]. Therefore, we 

mutated three out of four residues to their corresponding amino acid in mGlu5 in 

comparison to the wide-type (WT) full-length human mGlu1 ( Figure 13 A). 

Methionine substitution of T8157.38 ( Figure 13 B) had the most profound effect, 

reducing FITM affinity ~6 fold and decreasing negative cooperativity with 

glutamate. This indicates that T8157.38 is a key selectivity determinant for FITM, a 

result that is not surprising given the observed polar interaction between T8157.38 

and the ligand in the structure. Mutation of S6683.36 and A8187.41 had little effect, 

although there was a trend for reduced FITM affinity at S6683.36P.  

In addition, we assessed mutations known to influence the allosteric 

modulation of other mGlu subtypes that had not previously been explored in mGlu1. 

T7946.44A and S8227.45A had no effect on FITM; while P7565.43S significantly 
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reduced FITM affinity (~ 3 fold) as well as negative cooperativity (Fig. 3C). Based 

on its location in the binding pocket, we predict that a P7565.43S mutation may 

induce conformational changes in the backbone altering the geography of the 

binding pocket in relation to the thiazole core of FITM. Interestingly, multiple mGlu5 

modulator scaffolds are known to be sensitive to mutations of two non-conserved 

residues, S6.39 and A7.46 [166, 188, 190-194]; neither is observed here as 

contributing to the FITM binding pocket. However, both of these residues 

contribute to a small pocket separated from that occupied by FITM by the side 

chain of Y6723.40. Given that the S3.36 in mGlu1 is replaced by P3.36 in mGlu5, it is 

conceivable that the unique proline induced kink in helix III of mGlu5 can 

significantly change the shape of the pocket, making S6.39 and A7.46
 of mGlu5 

accessible to ligands.  

To further improve our understanding of the critical ligand-receptor 

interactions for FITM binding within the pocket, we docked a selection of FITM 

analogs ( Figure 13 D-G and Figure 14) [175] into the crystal structure. Re-docking 

FITM (Figure 14 A-C) and analyzing the binding energy contribution per residue 

(Figure 14 D) revealed that T8157.38 is forming an energetically favorable hydrogen 

bond with FITM (Figure 14 C and D). Compound 17 lacks not only the hydrogen 

bond with T8157.38, but also misses a non-polar interaction with L6482.60 ( Figure 13  

D and E); however, a potential hydrogen bond between Q6603.28, which is not 

observed in FITM binding, may compensate for this loss and account for the 

retained activity at 10 nM. The 3-pyridyl analog (compound 14,  Figure 13 D and E) 

lacks this potential interaction with Q6603.28, accounting for its further decreased 
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potency (230 nM). Furthermore, compound 28 exhibits approximately 10-fold lower 

potency and differs from FITM by the introduction of a methyl group to the amine 

on the pyrimidine ring. Docking compound 28 reveals a major energy penalty that 

arises from the loss of a polar interaction and the introduction of steric clash with 

T8157.38 ( Figure 13 D and F). The binding pose of compound 28 also lacks a polar 

interaction with Q6603.28 and requires movement of T8157.38 and Y8056.55 to 

accommodate the methyl group ( Figure 13 F). Compound 22 ( Figure 13 D and G), 

which contains an iso-propyl group on the amide linker, requires movement of two 

residues in helix V (P7565.43 and L7575.44) to fit in the pocket, and also lacks 

hydrogen bonding capacity with either T8157.38 or Q6603.28, accounting for its 

reduced (micromolar) potency. Collectively, by comparing the binding poses of 

FITM with that of other less active or inactive compounds, we attribute the superior 

potency observed for FITM to the polar interaction between T8157.38 and the amine 

derivative on the 5’ position of the pyrimidine ring, as well as the perfect fit of the 

ligand shape within the narrow binding pocket.  
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 Figure 13. Critical FITM-receptor interactions are revealed by mutations and SAR. (A) 
FITM is a full NAM of the wild-type (WT) full-length human mGlu1 receptor, while the affinity of 
FITM and the degree of negative cooperativity with glutamate are reduced in (B) T8157.38M 
and (C) P7565.43S mutants. (D) Structures of FITM and FITM-related NAMs used for study. 
Binding pose of FITM (yellow carbons; IC50: 5 nM) in comparison with lower potency analogs, 
(E) compound 17 (green carbons; IC50: 10 nM) and compound 14 (orange carbons; IC50: 230 
nM), (F) compound 28 (grey carbons; IC50: 77 nM) and (G) compound 22 (purple carbons; 
IC50: 2 µM). Per-residue binding energy ddG is predicted by Rosetta in Rosetta Energy Units 
(REU). In (E), (F) and (G), side chain rotamers from the top 1% of key amino acids are 
depicted in sticks and colored corresponding to their respective docked ligand, with the 
exception of those from the crystal structure shown in cyan. 
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Figure 14. Analysis of compound docking to human mGlu1 7TM crystal structure. (A) Re-
docking FITM with RosettaLigand recapitulates the docking pose observed in the co-crystal 
structure with a RMSD of 0.3Å. (B) The Q6603.28 side chain samples different rotamers. The 
T8157.38 side chain conformation is strictly conserved, suggesting an essential role in 
interacting with ligand. (C) and (D) The important role of T8157.38 in ligand binding is 
confirmed when comparing per-residue binding energies (ddG) as predicted by Rosetta in 
Rosetta Energy Units (REU). (E) Compound 9 (salmon; IC50: 10 μM) docked into the binding 
pocket lacks the capacity to interact with T8157.38, and forms unfavorable interactions with 
I7645.51, T7946.44, W7986.48 and S8227.45, as indicated by ddG. (F) Correlation plot 
between log IC50 and Rosetta predicted binding energy for all the tested compounds and 
FITM. The Pearson correlation coefficient is 0.9704 (R square: 0.9418). The dashed line 
separates compounds considered active and inactive. 
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4.1.5 The communication between ECD and 7TM domain 

In the mGlu family, as well as in other class C GPCRs, a signal is initiated 

by the native ligand binding to the ECD, which induces large conformational 

changes in the ECD. In our structure, the linker region (I581-E592) between the 

ECD and 7TM domain is resolved. The linker forms strong interactions with the 

ECL2 β-sheet via main chain and side chain hydrogen bonds (Figure 15 A). ECL2 

is connected via a covalent disulfide bond to the top of helix III, known to be 

important in triggering activation in class A GPCRs [195]. Thus, the interaction 

between the linker region and ECL2 may establish a communication path through 

which the ligand induced conformational changes of the ECD are transduced to 

the 7TM region, driving intracellular signaling transduction. In addition, part of the 

linker residues (e.g. W588, a residue conserved in all mGlus) insert into the lipid 

bilayer, where they form extensive contacts with cholesterol molecules that 

mediate the observed dimerization of the 7TM domain. This interaction highlights a 

potential role of dimerization and/or lipid components in the coupling between the 

ECD and 7TM domain during the activation process. 

ECDs of class C GPCRs are known to mediate receptor homo- and hetero-

dimerization. Several dimeric structures of mGlu receptor VFT domains have been 

previously solved in different conformations: putative active (A) or resting (R) state 

defined by the relative orientation between the VFT protomers as well as closed (c) 

or open (o) states defined by the conformation of each VFT (Figure 16) [196]. 

Comparing different conformations, the distance between the C terminal ends of 

the ECDs within a dimer changes dramatically [169]. In our crystal structure of the  
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Figure 15. A full-length mGlu1 dimer model with highlighted details of interactions 
between ECL2 and the 7TM-to-CRD linker. (A) Shown in cyan is the extracellular part of the 
mGlu1 7TM. ECL2 residues (M731-I745) are shown as white carbons, while the linker region 
residues (I581-E587) are shown as yellow carbons. Hydrogen bond interactions between 
ECL2 and the linker region are shown as dashed lines. (B) Full-length model of mGlu1 with the 
VFT in the Acc (active closed-closed) state. VFT, CRD and 7TM domains are colored in slate, 
firebrick and cyan, respectively.  

 

7TM domain, we observed a parallel dimer mediated by interactions of helices I 

and cholesterols. In this dimer conformation, the distance between the N terminal 

linkers that are attached to the C termini of ECDs is ~20 Å. If this is a conformation 

that can be adopted by the full-length receptor dimer, the CRDs of each protomer 

should also be in a close proximity. Disulfide bond crosslinking experiments have 
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shown that such a conformation is feasible in an activated receptor dimer [184]. 

Although our structure is solved in complex with a NAM and the 7TM domain 

appears to be in an inactive state, there is evidence supporting the existence of a 

glutamate-bound, but signaling incapable state, in the full-length mGlu dimmers 

[197]. Moreover, there is evidence that cholesterol can positively modulate 

glutamate responses by recruiting mGlus to lipid rafts [166, 198], consistent with 

the observation that the close proximity of the N terminus of the 7TM domain 

results from a dimer conformation mediated by multiple cholesterol molecules. To 

test the possibility of fitting the existing ECD structures into our observed 7TM 

dimer conformation, we created a full-length dimer model in which the VFT adopts 

an Acc (active closed-closed) conformation as this conformation has the closest 

distance (~ 50 Å) between the C termini of the ECDs [169] (Figure 15 B). A 20° 

rotation was applied to the CRD coupled with a conformational change in the 

Q513-V523 loop region that reduces this distance to 20 Å, fulfilling the CRD 

interface proposed in the cysteine mutant study [184], as well as matching the 

distance of the 7TM domain N termini observed in the crystallographic dimer. This 

model might represent a glutamate bound, but signaling incapable, conformation 

of mGlu1. We acknowledge that this model, while consistent with the currently 

available experimental data, is only one of the several explanations for the 

biological role of the 7TM domain dimer we observed, and needs to be confirmed 

by future studies. We further acknowledge that the 7TM domain dimer 

conformation might vary in different states of the receptor and could be modulated 

by several factors in real biological systems, such as membrane lipid content or 
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other protein-protein interactions. 

4.1.6 The conformation states of mGlu5 during receptor activation 

The ECD/TMD together forms a symmetric dimer with three regions of 

contacts via upper ligand binding domain, CRD, and TMD (Figure 16 A). The 

structures of mGlu ECD have been determined in Activated-open-close 

conformation (Aoc), Resting-open-open (Roo) and Resting-close-close 

conformation (Rcc). It is hypothesized that only the Roo to Acc transition is 

biologically relevant. However, only the Rcc conformation resolves location and 

structure of the CRD. The relaxed ECD structure showed the CRDs have the 

potential to be as close as 20Å at resting states. Thus the Roo conformation of 

ECD hints that TMD may not have to move a large distance through membrane to 

dimerize/activate. The conformational changes from Roo to Acc might only require 

a small distance change between the C-termini, and reorganization of VFT domain 

and CRD domain. The time scale for mGlu activation is estimated to be smaller 

than 10ms.  

The conformation of the CRD in our model significantly differs from that of 

crystalized mGluR3, which suggest Q513-V523 loop region would require an 

extent of conformational flexibility for such transition to occur. The CRD has been 

described to be mediating activation of mGluR2, and cysteine mutations along the 

3rd beta-sheet of CRD lead to constitutive activation or dimerization of the receptor 

[184]. We identified the equivalent residues to the proposed CRD dimer interface 

to be in very close proximity: G539, E540, C544, I546 T548 E554 and G568.  

These residues may mediate the dimerization interface during receptor activation, 
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as receptor transitions from open to close conformation, and further brings TMD to 

the dimer conformation. The linker in mGluR1 between CRD and TMD is shorter 

than other mGluRs, and the bottom of the CRD domain does not have the 

propensity to form beta-sheet structure as seen in mGluR3. In our model, we 

conservatively model the linker region between CRD and TMD. There exists the 

possibility that CRD dimer conformational changes would alter the PIP linker 

region even further to affect helix 1 or the ECL2.   

Taken together, Ligand binding to the VFT ligand-binding pocket leads to 

the transition and domain reorientation from Open to Closed state. The coupled 

conformational changes in the VFT loop region thus lead to domain reorientation 

and restricts the conformational flexibility of CRD for dimerization to occur. The 

CRD dimerization and further conformational changes would be relayed by linker 

and ECL2 to the TMD. It was later demonstrated in works by Li et al [46] that TMD 

dimer interface reorientation is required for receptor activation. By cross-linking 

experiment, it was demonstrated that TM4 & TM5 formed the dimer interface at 

resting state, while receptor activation required TM6 to come in contact with each 

other. Cross-linking TM4 & TM5 interface locked receptor in resting state that 

cannot be rescued by agonist. Cross-linking TM6 interface resulted in 

constitutively activated receptor. It is thus interesting to observe that cross-linking 

both CRD and TMD would lead to constitutively active receptor. It is possible that 

receptor activation is largely mediated by mechanical signaling upon ligand binding. 
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Figure 16. Schematics of mGlu5 activation and conformational changes. (A) The basal state of 
mGlu where ECL adopt resting open state of VFT domain would change its conformation upon 
ligand binding to activated closed state. The conformational changes would then propagate to 
CRD domain, where further signal transduction was relayed to TMD dimer. The activated TMD 
would be in its activated state for binding G-proteins and downstream signaling. (B) The full 
length mGlu1 model of the Roo state. (C) The full length mGlu1 model of the Acc state. 
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4.1.7 Conclusions 

The mGlu1 7TM structure presented here uncovers atomic details of the 

class C GPCRs transmembrane domain, providing the heretofore missing link in 

our structural understanding of the entire GPCR superfamily. As noted for the 

recently solved class B and F GPCR structures, and now for class C, despite a 

lack of sequence and motif conservation, the architecture of the 7TM bundle is 

generally preserved. Furthermore, while class C GPCRs are known to form 

obligate dimers via ECDs, the observed 7TM dimer suggests additional points of 

communication between protomers, mediated by multiple cholesterol molecules 

and direct protein-protein interactions. Moreover, as a robust structural template, 

the mGlu1 7TM domain structure will likely provide crucial insights into 

pharmacology of small molecule allosteric modulators for class C GPCRs. 
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4.2 Resolving Binding mode differences of imaging ligand 

VUIIS1009A/B for mTSPO  

Chapter4.2 is largely based on manuscript “DW, Li J, Buck JR, Tantawy 

MN, Xia Y, Harp JM, Nickels ML, Meiler J, Manning HC. Evaluation of TSPO PET 

Ligands [18F]VUIIS1009A and [18F]VUIIS1009B: Tracers for Cancer Imaging. Mol 

Imaging Biol. 2016 Nov 16.”  

We started characterizing ligands reported in the manuscript after our 

collaborators reports interesting differences in in vivo PET imaging results for the 

pair of regioisomers. I performed the NMR experiments and mapping of DPA714, 

VUIIS1009A/B binding site on TSPO. The mapping of ligand binding sites were 

produced using the NMR structure of mTSPO. Our work demonstrated 

pyrazolopyrimidine ligands bind to the center cavity of TSPO, slightly different from 

the binding site for benzodiazepine ligand. After confirming the regioisomers 

binding to TSPO in a similar fashion, our collaborators carried out further analysis 

to characterize the ligands’ bioavailability differences were caused by plasma 

protein binding.   

4.2.1 Introduction  

Neuroimaging enables the noninvasive evaluation of the structure and 

function of the nervous system and has found particular use towards glioma 

detection and guidance of therapy. Neuroimaging techniques routinely used in 

clinical neuro-oncology include magnetic resonance imaging (MRI), x-ray 

computed tomography (CT), single-photon emission computed tomography 

(SPECT), and positron emission tomography (PET). Clinically, T1-weighted MRI, 
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with or without contrast, remains the gold standard for glioma imaging and 

treatment response evaluation [199]. However, this technique is an indirect 

measurement, only reflecting biological activity of the tumor due to degradation of 

the blood–brain barrier (BBB) [200]. As such, MRI is limited towards providing 

molecular information attributable to disease pathology and tends to poorly 

discriminate disease margins, particularly where tumors can be highly infiltrative. 

With its sensitivity and quantitative nature, coupled with the ability to readily 

produce biologically active compounds bearing positron-emitting isotopes, such as 

fluorine-18 (18F) and carbon-11 (11C), PET imaging has the potential to overcome 

many of the limitations associated with conventional brain tumor imaging methods. 

Through the use of different PET tracers, various gliomas can be evaluated based 

upon: glucose metabolism ([18F]FDG) [201, 202]; amino acid metabolism 

([11C]MET) [203]; nucleoside metabolism/proliferation ([18F]FLT) [204]; hypoxia 

([18F]FMISO) [205]. However, all these tracers possess limitations [202, 206]. 

Thus, there is still an urgent need to develop and validate new biomarkers for 

glioma PET imaging. 

Our recent efforts in the PET imaging of glioma have focused on 

development of novel PET probes that target translocator protein (TSPO), an 18-

kD outer mitochondria membrane protein that is overexpressed in several cancer 

types, including glioma [147, 148] and oral [207], liver [208, 209], breast [70, 149], 

and colorectal cancers [150-152]. Elevated TSPO expression has also been linked 

with disease progression and diminished survival in patients with oral [207, 210], 

colorectal [150-152], breast [70, 149], and brain [147, 153] cancers. Additionally, 
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elevated TSPO levels appear to be associated with aggressive, metastatic 

behavior in breast and colorectal cancer [70, 154, 155], suggesting TSPO 

expression as a potentially important prognostic biomarker in oncology and 

suggest the utility of tumor-selective TSPO PET ligands for cancer imaging. 

Our previous research has shown that high-affinity, pyrazolopyrimidine 

TSPO PET probes such as [18F]DPA-714 (1) [156] and [18F]VUIIS1008 (2) [157, 

158] can be used to visualize TSPO expression in tumors in preclinical settings 

(Fig. 1). The novel ligand [18F]VUIIS1008 was specifically developed within our lab 

through focused library synthesis and structure-activity relationship (SAR) 

development of the 5,6,7-substituted pyrazolopyrimidine scaffold of 1. 

[18F]VUIIS1008 proved to be a highly potent TSPO PET ligand, exhibiting a 36-fold 

enhancement in TSPO affinity, compared to 1, and high radiochemical yield and 

specific activity [157, 158]. 

 

Figure 17. Pyrazolopyrimidine TSPO ligands: (1) 18F-DPA-714; (2) 18F-VUIIS1008; (3A) 
VUIIS1009A; (3B) VUIIS1009B.  
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imaging, we have discovered two novel TSPO probes, N,N-diethyl-2-(7-ethyl-2-(4-

(2-fluoroethoxy)phenyl)-5-methylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide 

(VUIIS1009A, 3A) and N,N-diethyl-2-(5-ethyl-2-(4-(2-fluoroethoxy)phenyl)-7-

methylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide (VUIIS1009B, 3B) (Figure 17). Both 

probes share the same pyrazolopyrimidinal scaffold with 1 and 2, but with distinct 

modifications at the 5- and 7-positions. These minor structural variations yielded 

comparable picomolar binding affinities (in vitro) against [3H]PK11195 that were 

20-fold greater than 2 and 500-fold that of 1. NMR titration analysis showed both 

ligands to bind approximately the same sites within the TSPO binding pocket and 

elicit similar conformational changes within the protein. Though regioisomers, 3B 

demonstrated a lower plasma protein binding affinity than 3A. Radiolabeling of 

corresponding precursors with fluorine-18 (18F) gave [18F]3A and [18F]3B, which 

allowed exploration of quantitative, in vivo imaging characteristics in healthy mice 

and a rat model of glioma (C6). Of the two, [18F]3B demonstrated overall higher 

uptake in tumor tissue, which facilitated better imaging contrast. Taken together, 

these studies highlight [18F]3B as a promising and novel PET ligand for evaluating 

TSPO expression in cancer and potentially other disease. 

4.2.2 Material and Methods 

NMR experiments of ligand binding 

15N-labeled TSPO was expressed in BL21 (DE3) E. coli in M9 minimal 

media, solubilized, and purified with DPC detergent, as adapted from previous 

publications [90, 163]. 2D 1H-15N heteronuclear single quantum coherence 

(HSQC) spectra of mouse TSPO with/without ligands (5.0 mM) were recorded on 



 

 
112 

an 800 MHz NMR spectrometer at 42 °C with 0.2 mM TSPO in ~2% DPC (w/v), 25 

mM MES buffer, pH 6.0, and 100 mM NaCl. Ligands tested were: 1, 3A, 3B, and 

PK11195. Spectra were processed with NMRpipe and analyzed using Sparky.  

Mapping of ligand site by chemical shift differences  

Complete backbone assignment of mice TSPO was obtained from 

Biological Magnetic Resonance Data Bank (http://www.bmrb.wisc.edu/ BMRB 

entry: 19608). The backbone H-N assignments were transferred to our mTSPO-

PK11195 spectrum with most of the peaks aligning well with published assignment 

value, except for center regions where overlapping peaks made accurate 

assignment impossible. The assigned mTSPO-PK11195 spectrum were then 

overlaid with mTSPO-DPA714, mTSPO-3A and mTSPO-3B to further analyze the 

differences in chemical shift (ΔCS). Partial assignment of mTSPO-DPA714, 

mTSPO-3A and mTSPO-3B were carried out when the chemical shift of a 

backbone residue can be confidently assigned from overlapping peaks compared 

to mTSPO-PK11195 spectrum, or a shifting peak that can be unambiguously 

identified from the original spectrum assignment. 3A and 3B ligand binding 

differences were marked with ΔΔCS, since it is derived from assignment of the 

ΔCS. The putative ligand binding site for the three pyrazolopyrimidine were 

mapped onto the sequence and mTSPO NMR structure [90] (PDB:2GMY) using 

Pymol.  

4.2.3 Protein Binding Pockets for 3A and 3B in Mammalian TSPO 

Jaremko et al. recently reported that the structure of TSPO could be 

stabilized in the presence of PK11195, yielding a tight bundle of five 
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transmembrane α helices that form a hydrophobic binding pocket to accept 

PK11195. 2D 1H-15N heteronuclear single quantum coherence (HSQC) NMR 

analysis of this structure allowed for a high-quality spectrum of the ligand-bound 

state of the protein [90]. To investigate the differences in the structure of TSPO 

when bound to 3A and 3B, 2D HSQC spectroscopy was used to observe structural 

features of each ligand-bound state of the protein and compared to DPA-714 and 

PK11195. In a 2D 1H-15N HSQC spectrum, peaks arise from amides in the protein 

backbone and side chains that are highly dependent on the chemical environment 

surrounding each amide group, allowing the HSQC spectra to serve as a 

fingerprinting method of a protein structure in solution. The ligand-free TSPO 

reconstituted in dodecylphosphocholine (DPC) micelles displayed the same 

narrow dispersed spectrum as previously reported (Figure 18 A). Addition of 

PK11195 (Figure 18 B), as well as DPA-714 (Figure 18 B&C), resulted in highly 

dispersed spectra, with a new set of peaks representing signals from the ligand-

bound state of the protein. The DPA-714 spectrum showed significant differences 

in chemical shift perturbation when compared with the PK11195 spectrum (Fig. 

3B), possibly due to different chemical groups from the two compounds interacting 

with the protein, the different ligand-induced protein conformational changes, and 

the ligand-binding pocket formed for DPA-714 being different from that of 

PK11195. Titrating 3A or 3B into the TSPO also gave improved spectra 

dispersion, though in our hands, of the four compounds tested, only 3B completely 

saturated the ligand-bound state. No obvious changes in chemical shift 

perturbation were observed between DPA-714, 3A, or 3B (Fig. 3C), indicating that 
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all three ligands bind the same site within the TSPO binding pocket and elicit 

similar ligand-induced conformational changes within the protein. 

4.2.4 Ligand Binding Site mapping for DPA714, 3A and 3B in Mammalian 

TSPO 

Based on chemical shift of information of mice TSPO in the high quality 2D 

HSQC of mTSPO-PK11195, resonance assignment transfer was performed. The 

assigned mTSPO-PK11195 spectrum were then overlaid with mTSPO-DPA714, 

mTSPO-3A and mTSPO-3B respectively to further assign resonances from these 

samples. In the mTSPO-DPA714, mTSPO-3A and mTSPO-3B spectra, shifted 

peaks from mTSPO-PK11195 were marked by the differences in chemical shift 

(ΔCS) (Figure 19) and the peaks that did not shift were also marked. In all samples, 

we observed well dispersed NMR spectra after ligand addition, indicative of the 

ligand stabilizing mTSPO in similar global fold. Comparing mTSPO-PK11195 and 

mTSPO-DPA714 spectrum showed peaks away from ligand binding site having no 

significant ΔCS, with few exceptions. This finding suggest the protein conformation 

and chemical environment surrounding these residues are the same. The residues 

that shows ΔCS in mTSPO-DPA714 were found to overlap partially with those 

comprised of the PK11175 binding pocket. In all three cases for mTSPO-DPA714, 

mTSPO-3A and mTSPO-3B, residue G22, R27, W53, G54, W93, W95, V118, 

A119, A147 and W143 showed significant ΔCS (Figure 19, Figure 20A). Among 

these residues that showed ΔCS, W53, G54 and V118, A119 are located further 

away from PK11195 binding site on TSPO, suggesting that pyrazolopyrimidine 

molecules might bind at a deeper site within the transmembrane domain (Figure 
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20A).  

Additionally, for residues that can be successfully assigned in mTSPO- 

DPA714, 3A and 3B, we also observed differences in chemical shift. We termed 

this differences between pyrazolopyrimidine molecules to be ΔΔCS (Figure 19), 

which would be indicative of minor differences in binding pose of the respective 

ligand in mTSPO ligand binding pocket. After comparing the ΔCS between 

pyrazolopyrimidine molecules and PK11195 and ΔΔCS between the DPA714, 3A 

and 3B. We mapped the ligand binding site on mTSPO (Figure 20). The 

regioisomer also induced differential binding induced chemical shift to residue 

G19, G22, W93, W95 and A147 (Figure 20B). These residues would be important 

for ligand binding based on the chemical moiety differences in the ligand. 

However, specific interactions between ligand chemical moieties and amino acids 

could not be determined by our NMR experiment since 2D HSQC only monitors 

the protein resonances. Amongst the residues that showed significant ΔΔCS, 

A147 is of particular interes. Our finding suggests that modifications to 

pyrazolopyrimidine molecules would affect the ligand interaction with A147.  

The ΔCS and ΔΔCS mapping also showed residues away from ligand 

binding site has chemical shift changes based on ligand binding. This suggest 

certain allosteric interactions might play a row in protein function upon ligand 

binding.  
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C 

 

Figure 18 2D 1H-15N HSQC spectrum of TSPO in presence of different ligands.  (A) 
The 2D HSQC spectrum of TSPO in the absence of ligand. (B) Comparison of TSPO spectra 
in presence of 5.0 mM PK11195 (Black), and 5.0 mM DPA-714 (Red).	 (C) Comparison of 
TSPO spectra in presence of 5.0 mM DPA-714 (Red), 5.0 mM 3A (green), and 5.0 mM 3B 
(Blue). 
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Figure 19 The ΔCS mapping of the binding pocket for DPA-714, 3A and 3B onto TSPO 
sequence. Transmembrane helices were highlighted as cylinders on top of the sequence 
based on NMR model, while amino acids that are within 6 Å to binding site for PK11195 were 
highlighted blue in the sequence. When comparing ΔCS of the Amino acids, ones that showed 
no significant CS differences were marked by red stars; Amino acids that showed minor shift 
were marked by green triangles, while amino acids that showed major shift changes were 
marked by yellow triangles. When comparing 3A and 3B chemical shift, the residues that 
showed significant ΔΔCS changes were marked by black inverse triangles.  
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A. 
 

 
B. 

 
 

Figure 20 The ΔCS mapping of the binding pocket for DPA-714, 3A and 3B. (A)  ΔCS 
mapping of the binding pocket for DPA-714, 3A and 3B. (B) residues with significant ΔΔCS 
changes in respond to 3A and 3B titration in the binding pockets are mapped according to 
coloring schemes as previous figure. 
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4.2.5 Discussions 

 
At the molecular level, both [18F]3A and [18F]3B exhibited similar binding 

affinity and binding pockets, while at the tissue-system level, they demonstrated 

significant different in vivo performance. This difference could be explained by the 

pharmacokinetic analysis with kinetic modeling and kinetic parameter analysis. 

Based on our results of the 2-compartment, 4-paramter kinetic modeling, we found 

[18F]3B to have a similar tumor BPND and lower brain BPND relative [18F]3A. When 

compared with [18F]3A, we also noticed a significantly higher K1/k2 ratio for [18F]3B 

in both tumor and brain, indicating a higher plasma-to-tumor extraction efficacy for 

[18F]3B. We propose that this higher plasma-to-tumor extraction efficacy could be 

the reason for the higher tumor and brain uptake for [18F]3B.  

The plasma-to-tissue extraction efficacy is important for PET imaging, 

especially for glioma imaging, which requires radioligands to readily cross the 

blood-brain barrier (BBB). This capability relies mainly on the molecule’s 

lipophilicity and plasma binding affinity. As regioisomers, [18F]3A and [18F]3B have 

nearly the same structure and very similar lipophilicities, with their ability to cross 

the BBB due mainly to their different plasma binding affinities. Measurement of the 

plasma binding affinity of 3A and 3B showed that modification at the 5- and 7-

position of the pyrazolopyrimidine scaffold bore significant effects on plasma 

protein binding affinity. Of the four pyrazolopyrimidine TSPO ligands tested (DPA-

714, VUIIS1008, 3A, 3B), VUIIS1008 had the highest plasma protein binding 

affinity, and DPA-714 the lowest. Although they have very similar structures and 

lipophilicities, 3A possesses a higher plasma protein binding affinity than 3B. In 
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light of the comparatively higher in vivo uptake of [18F]3B in glioma, and 

considering the similar binding in TSPO as measured by NMR, we propose the 

lower plasma binding affinity to be a crucial factor for the higher uptake and higher 

extraction efficiency for [18F]3B, when compared with its regioisomer [18F]3A. 

In vivo radiometabolite analysis indicated both probes to possess a higher 

level of stability compared to 1, which has a faster in vivo plasma clearance, with 

its parent compound ratio dropping from 95 to 27%, in a timespan of 2 to 60 

minutes. Direct comparison between [18F]3A and [18F]3B indicated a slower 

clearance for [18F]3A and thus, a higher overall in vivo stability. Interestingly, both 

probes demonstrated the same biodistribution pattern, as well as specificity and 

reversibility in healthy tissues in mice, indicating similar overall performance for 

both probes in healthy tissue. 

Residue A147 is of particular interest since the human rs6971 (A147T) 

polymorphism. Our finding suggests that modifications to pyrazolopyrimidine 

molecules would affect the ligand interaction with A147. This information is 

important for imaging ligand development as pyrazolopyrimidine is sensitive in to 

human rs6971 polymorphism in pre-clinical PET imaging settings. We have 

demonstrated that NMR spectroscopy could determine whether A147 is involved in 

ligand interactions. Future ligand development could use NMR to screen for ligand 

that does not affect interactions with A147 site based on our protocol described 

here.  
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CHAPTER 5 CONCLUSION AND FUTURE DIRECTIONS 

The work presented in this document summarizes methodology 

development for membrane protein structure determination and application of 

NMR spectroscopy and computational modeling to solve biological problems such 

as in the case of TSPO. I presented an integrated structural biology tool to predict 

membrane protein structures with limited experimental data. I have shown that 

structural properties of mTSPO is dependent on the detergent and ligands. I have 

also constructed a unified model of mTSPO that can be used to explain ligand 

interactions based on computational ligand docking and experimental NMR data. 

The crossroad of computational and experimental structure biology could also 

yield structural insight on large GPCR allosteric modulators or elucidate ligand-

protein interactions between imaging ligands and TSPO.  

However, several challenges are still present that call for further 

development of our computational tool kit and experimental characterization of 

TSPO. I outline the future direction for developing the integrated MP structure 

prediction pipeline in section 5.1. Section 5.2 summarizes the published production 

and purification methods for TSPO structural characterization, and discusses other 

strategies to characterize TSPO-ligand interactions. Most of the structural data of 

TSPO are obtained in a ligand-bound stabilized condition. The dynamics of TSPO 

are studied in the context of ligand-stabilization or oligomerization. In reality, TSPO 

might function as a component in the mitochondria permeability transition pore 

(MPTP) complex with VDAC and other proteins. Future research on TSPO should 

also consider probing the larger molecular complexes. At last, I describe the 
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current understanding of TSPO dynamics and its role in biological function and 

potential experimental strategies to study the TSPO dynamics in lipid bilayers.  

5.1   Structure determination from limited experimental data will 

be important to determine conformational states of integral 

MPs 

5.1.1 The experimental data needed for the current BCL and Rosetta 

prediction pipeline can be optimized 

The integrated structure prediction pipeline has been shown to successfully 

determine membrane protein structures to atomic accuracy [97]. We observe 

consistent improvement when combining experimental data from orthogonal 

experimental techniques in our simulation. However, it is uncertain what is the 

minimum requirement of experimental data for accurately predicting large 

membrane proteins in the current implementation. In the test case used in the 

publication, a combination of NMR, EPR distance restraints and intermediate 

resolution EM density maps were used. Specifically, the benchmark case used 

simulated sets of 348 NMR NOE distance restraints (1 restraint per residue), 27 

EPR DEER distance restraints and 5.5Å resolution experimental EM density map. 

The distance restraints were simulated due to the lack of experimental NOE data 

and uniformly distributed EPR spin labeling dataset.  

We have previously determined the lower limit of experimental NOE and 

EPR data required for accurate protein structure prediction based on single type of 

data [112, 211]. I hypothesis that to achieve atomic accuracy modeling of MPs, a 

lower number of experimental restraints is required when these restraints are 
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simultaneously incorporated in the modeling process. A benchmark can be 

designed with simulated sets of different number of restraints from a set of MPs of 

different sizes. The simulated experimental data can be designed to 0.25, 0.5, 1 

restraint per residue for long-range NOE distances, and 2,3,4 restraints per SSE 

for DEER distances. Combination of these sets of restraint can be used for finding 

the required numbers of experimental data for accurate structure modeling at 

atomic detail. The same principle could be applied to cryo-EM density maps, as 

the experimental density can be adjusted for the voxel sizes that account for lower 

resolution maps. The benchmark would be useful for finding the limit of our 

algorithm and also guide experimental data collection. After establishing such 

minimum requirement for accurate modeling, experimentalists can use subsets of 

unambiguous data to drive computational modeling or attempt structure 

determination when no single type of experimental data can yield unambiguous 

models.  

While NOE measurement is often difficult in MPs due to the large size of the 

system, other experimental data from PRE, PCS and RDC may be implemented 

and incorporated into the prediction pipeline. With the resolution-revolution of cryo-

EM [212], our current pipeline can also be used in structure validation, refinement, 

and constructing missing dynamic loops that are not accessible in the electron 

density.  

5.1.2 Integrating evolutionary information in structure prediction may further 

improve prediction accuracy 

Recent developments in co-evolution contact prediction offer alternative 
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information for IMP structure determination [213-216]. With large enough 

sequence databases, residue-residue contacts can be inferred from residues that 

co-evolve. Such restraints have been used to improve structure prediction 

accuracy for IMPs by restricting the sampling space in Rosetta [217]. Combining 

sparse experimental restraints from NMR with evolutionary constraints allows for 

accurate prediction of soluble protein structure in many cases [213]. Evolutionary 

Coupling-NMR developed by Tang et al [213] incorporates evolutionary contacts 

during and after the NMR data interpretation and NOE assignment. In a more 

recent publication by Ovchinnikov et al, 206 unknown IMP folds were predicted 

using integrated metagenome data and co-evolutionary analysis [218]. The sizes 

of the proteins involved in this study are below 300 amino acids.  

In the current implementation of the membrane protein folding pipeline, only 

experimental data were implemented. Future works on the integrated structural 

prediction pipeline may focus on expanding the functionality to incorporate 

evolutionarily derived contact information. The residue-residue contact can be 

implemented a similar way to the NOE distance potential in BCL and Rosetta (See 

Chapter 2.2), where a contact may be defined by the lower and upper bound 

distances between the center of mass of two residues.  

With the expansion of genomic databases coupled with computational 

prediction algorithms, evolutionary constraints provide viable orthogonal structural 

information to guide protein structure prediction. The structural conservations from 

sequences could also inform crucial interactions in the protein that might affect its 

functionality. 
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5.1.3 Future development of the pipeline should focus on conformational 

ensemble states modeling guided by experimental data 

Structural models of IMPs could be obtained through X-ray crystallography:  

in many cases, disruptive experimental technologies are used to stabilize and alter 

the energy landscape of the native IMP via thermo-stabilizing mutations, chimeric 

protein engineering, or the non-native-like membrane mimics. Biophysical methods 

observe ensembles of molecules in their native-like dynamic equilibrium to 

complement or correct observations in crystal structures.  

For example, transporters exist in multiple conformations with respect to 

their transport cycle. The small multidrug resistance transporter EmrE ultilizes the 

proton gradient to export cytotoxic molecules against their chemical gradient out of 

the cell and protect the bacteria. Whereas the crystal structure is limited to its 

substrate bound state [219], the transport cycle needs to adopt  the intermediate 

proton-bound state to complete a cycle. A systematic SDSL-EPR study on EmrE 

has revealed rotation and tilting of TM helices 1 – 3 in response to the change of 

the protonation state [220], which in turn results in the change of substrate entry 

and binding site. The distance distribution from the SDSL-EPR study, combined 

with computational modeling was successful in producing an intermediate 

structural ensemble that fills the knowledge gap of the crystal structures [220]. 

NMR, EPR, cryo-EM data, albeit with samples at high temperature or flash-

frozen, are expected to reflect native-like conditions when different conformations 

of the protein exist in the equilibrium. SDSL-EPR spectroscopy can observe such 
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ensemble states as a probability distribution of a distance within an ensemble is 

observed. NMR spectroscopy can observe ensemble averages of conformations 

or distinct conformational states depending on the time-scale of motion in the 

exchange process. With improvements in direct electron detection and image 

averaging, EM can also distinguish diverse conformational states in the sample 

[221]. Computational modeling algorithms  

BCL::MP-Fold and Rosetta molecular modeling suite can optimize a given 

starting structure. Thus from any given starting structural model one can derive a 

model for an alternate state of an MP by fitting it to sparse experimental data 

observed for this state [220]. By combining experimental data from different 

sources, excluding the likely outlier populations due to artifacts in the disruptive 

experimental methods, one can model the entire conformational ensemble of the 

IMPs. Such ensemble models along with the statistic inferences could provide 

further molecular mechanistic insight on protein function, and possibly guide small 

molecule modulator development against intermediate states. 

5.2    TSPO biochemistry and molecular interactions require 

further examination 

5.2.1 Experimental techniques perturb TSPO function in multiple aspects 

The introduction briefly describes progresses towards TSPO structural 

characterization. The sample preparation protocol that has been used in the 

aforementioned studies can be described by two types: 1. TSPO extraction from 

recombinant expression host using harsh detergent and re-folding into lipid 

mimetics [86, 87, 90-92, 95]; 2. TSPO or TSPO homologue production and 
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extraction from biological membrane fractions using milder detergent [88, 93, 94, 

96].  

The mTSPO is produced in E.coli and mostly expressed into inclusion 

bodies [85]. Thus a harsh detergent such as SDS were used to extract mTSPO 

from insoluble aggregate after centrifugation. The proteins are then refolded into 

proteoliposomes [85, 95] or milder detergent DPC [87, 90-92]. While 

proteoliposome preparations have been shown to restore the re-folded mTSPO’s 

nano-molar affinity to cholesterol and imaging ligand PK1195, the re-folding 

efficiency has not been reported in the literature. Ligand binding behavior in DPC 

micelles was not well documented in literature.  

In our experimental optimization steps, we found a fraction of mTSPO are 

expressed into the membrane during E.coli recombinant expression. DPC and 

DDM detergent was used to solubilize mTSPO for subsequent purification and 

ligand binding assays. The binding affinity of mTSPO to PK11195 in detergent 

systems are determined to be at high micro-molar to milli-molar range. The 

mTSPO in DPC micelles might It in a destabilized state.  

In the second approach, TSPO homologues from bacteria (rsTSPO, 

bcTSPO) can be expressed into the biological membranes. Milder detergent such 

as DM and DDM are used to extract the TSPOs. Ligand titration experiment in 

detergent solubilized rsTSPO and bcTSPO found these homologues binds 

PK11195 at micro-molar affinity. The discrepancies in ligand affinity of these 

bacterial homologues could be the result of sequence divergence in the ligand 

binding pocket. In the case of rsTSPO, DM and DDM micelles are found to 
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stabilize homo-dimeric states in solution.  

More recently, mammalian cell expression system was used to express a 

number of mammalian TSPOs [95]. The HK293T cells allowed for membrane 

targeted expression of mammalian TSPO and extraction using mild detergent. A 

mixed micelle system containing DDM and CHS were used to solubilize TSPOs. 

Fluorescence quenching experiments showed the mammalian TSPO in DDM/CHS 

mix micelles had micro-molar affinity to PK11195, lower than the literature values. 

The results suggest that regardless of the extraction methods, detergent systems 

must be further investigated for conditions that stabilize TSPO.  

In our optimization effort for mTSPO extraction and solubilizing, a number of 

conditions were tested (Table 3). In contrast to the protocol used in NMR studies, 

where SDS was used for solubilization, milder detergent such as DPC and DDM 

are used for protein extraction. However, many of the conditions tested result in 

poor solution-state NMR spectrum. Attempts to incorporate purified mTSPO in 

detergent into isotopically tumbling lipid-bicelles and nanodiscs failed due to 

aggregation in the sample after mixing. In the case of nanodiscs, mTSPO start to 

aggregate upon interaction to the mixture of detergent, lipid and scaffolding 

proteins. It is possible that during the mixing, TSPO is kinetically favored for 

aggregation than association with the lipid molecules present in the mixture. 

Additional lipid-mimetic systems such as amphipols can be screened, 

Taken together, the current available technologies to produce and purify 

TSPO require further optimization. Cell-free expression might be a viable path for 

TSPO production, as it circumvents the step of exchange process with detergent. 
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Direct expression of MPs into nanodiscs haven been successfully demonstrated 

and could be applied for TSPO production [31, 222, 223].   

Detergent NMR spectral quality SOlubilization 

DPC[90] +++ + 

LPPG +++ + 

LPPG/DPC 1:1 +++ + 

LPPG/DPC 1:2 +++ + 

LPPG/Cholesterol ++ Aggregation at 
NMR temperature 

LDAO - + 

DDM - Aggregation at 
high concentration  

DDM/CHS - Aggregation at 
high concentration 

D7PC - Aggregation during 
purification 

TDPC [92] + + 

DMPC/DMPG/D7PC 
bicelle 

- Aggregation* 

DMPC/D7PC bicelle - Aggregation* 

LMPG + + 

cNW9/DMPC/DMPG 
nanodiscs 

- Aggregation* 

DMPC/DMPE 
liposome 

- + 

DMPC liposome - + 

Table 3. list of detergent systems used to optimize mTSPO ligand. The number of + in 
the table is indicative to spectra quality and peak numbers. *: In these conditions, protein 
aggregation is observed several minutes after mixing the components of the membrane 
mimetic system with mTSPO.  
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5.2.2 Cholesterol interaction to TSPO needs further elucidation 

We have shown that TSPO ligand binding can be monitored by NMR 

spectroscopy in our studies of mTSPO. However, the molecular mechanisms of 

many of the proposed TSPO functions are still unknown. For a proposed 

cholesterol transporter protein, mTSPO binds cholesterol at nano-molar affinity at 

the CRAC site [86, 137]. Identification of potential secondary cholesterol binding 

site could explain TSPO’s cholesterol transporting mechanism. Solid state NMR 

results suggest mTSPO favors the monomeric state upon cholesterol binding in 

liposome systems. Cholesterol not only affected the chemical shifts of the CRAC 

site, but also affected the chemical shifts of the GXXXG motif that is proposed to 

be the putative protein dimerization interface. The authors suggested that a 

potential allosteric effect upon cholesterol binding might influence the 

oligomerization states of mTSPO.  

Chemical shift data from solid-state NMR data alone might not be sufficient 

to ascertain such claims. The allosteric effect of cholesterol molecules in mTSPO 

requires further examination to exclude the effects of possible cholesterol-

mediated membrane re-organization. GXXXG motif has been proposed to mediate 

membrane protein interactions [224]. Cholesterol also seems to negatively affect 

GXXXG mediated protein-protein interactions [225, 226] and, in a specific case, 

bind to GXXXG [227]. The influence of cholesterol on the transmembrane GXXXG 

motif of the ErbB2 receptor has been studied using CG MD simulations of the 

dimer in bilayers with varying amounts of cholesterol [226]. In the study, it was 

observed that cholesterol generally packs more closely around the helix and that 
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the position of cholesterol along the membrane normal overlaps with the position 

of each of the two GxxxG sequences. The increased cholesterol content also 

causes a thickening of the membrane, thus affecting tilt angle of the helix with 

respect to the membrane normal and changes interaction mode for GXXXG motifs. 

Additional experimental validations are need to examine cholesterol 

interactions with TSPO. Spin-labeled cholesterol molecules could provide 

information of the cholesterol interaction motifs in TSPO [228]. The spin-labeled 

cholesterol, when bound to TSPO, would introduce PRE effect to the back-bone 

amide protons in the protein. Such PRE effect can be monitored through H-15N 

cross peak intensities changes in 2D NMR and used for quantifying the distance of 

the protein residues to the spin-lable on Cholesterol. Computational ligand docking 

guided by such distance restraint could provide atomic detailed interaction 

mechanism for cholesterol.  

5.2.3 Characterization of TSPO’s dynamic ensemble is important to 

understand its ligand binding behavior  

The possible that conformational exchange of TSPO in its imaging ligand 

bound state might influence its functional role. Although in the observed crystal 

structures, TSPO does seem to have significant change in conformation upon 

ligand binding, suggesting a change in the signaling via structure is unlikely.  The 

endogenous ligands such as cholesterol has no structural information of its binding 

mode experimentally determined. It is uncertain whether the currently reported 

structures represent a conformational species that belongs to the conformational 

assembly that performs its native biological functions, due to the disruptive nature 
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of crystallography and NMR structure determination. To date, the known natural 

ligands include cholesterol and porphyrin for mammalian TSPO, and porphyrin for 

bacterial TSPO. However, other endogenous ligand might exist as discoveries 

regarding the TSPO’s function being explored in the new paradigm.  

While cholesterol showed binding on mTSPO and influencing its structure 

[95], it is not clear if signal would propagate to downstream co-factors or facilitate 

cholesterol transport. Current structural biology effort focuses on mTSPO alone, 

while in mitochondria metabolism, mTSPO interacts with VDAC and ANT to for the 

mitochondria permeability transition pore (MPTP) complex [136, 229]. Future 

structural biology effort should also consider characterizing the molecular 

assembly of TSPO in the context of MPTP. 

The apo-state of TSPO reported in crystal structures does not show large 

structural changes upon ligand binding. The dynamic nature of mammalian TSPO 

in its apo state in detergent is difficult to track by NMR alone, as suggested by the 

previous studies that lacks a defined tertiary structure [92]. While detergent 

systems destabilize mTSPO to various extents, proteoliposome preparations 

seems to maintain the structural integrity and function. EPR spectroscopy 

experiments on mTSPO in proteoliposomes could provide an alternative approach 

to understanding the dynamics of the mTSPO and to accessing its structural 

ensemble in both apo and ligand-bound states. For example, continuous wave 

(CW) EPR experiments on single site-directed spin labeled (SDSL) protein could 

provide data in the dynamic changes, while DEER EPR experiments on double 

SDSL protein could provide distance restraints for ensemble of protein in structural 
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transitions upon ligand binding. Additionally, cholesterol incorporation into 

proteoliposomes is robust. Investigating TSPO dynamic changes in cholesterol 

containing membrane could provide additional information for the structural 

transitions proposed by solid-state NMR studies. One could measure sets of 

DEER EPR distance data of mTSPO in its apo-state in liposomes, apo-state in 

cholesterol containing liposomes, PK11195-bound-state in liposomes, and 

PK11195-bound-state in cholesterol containing liposomes. The resulting dataset 

could explain potential structural functional modulation of imaging ligand to 

mTSPO’s binding capacity to cholesterol.  

The low resolution and sparse nature of the EPR technique would need to 

be complemented by other experimental techniques and computational modeling 

for building reliable models. The approach has been successfully applied to 

various receptors and transporter structural refinement [34, 220]. To study other 

TSPO ligand-protein interaction, more experimental structure and computational 

refinement of ligand binding pocket is needed.  

In conclusion, TSPO remains a difficult target for structural characterization. 

For solution-state NMR, optimization effort must be taken to ensure a stabilized 

functional mTSPO in NMR compatible systems. While such further screening is 

needed, alternative experimental investigations, using established liposome 

systems could generate valuable structural information of mTSPO in response to 

ligand binding.  
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APPENDIX 

Protocol Capture for Integrated Structural Biology for Alpha-

Helical Membrane Protein Structure Determination 

 
We documented the protocol for structure determination using hybrid 

experimental restraints using BCL::MP-Fold and Rosetta frame work. command 

lines used for generating the test restraint sets for structure determination and 

model production using the two stage BCL::MP-Fold and Rosetta structure 

prediction suite. The following steps were taken to prepare the simulated restraints 

files used in each stage of the pipeline and running structural prediction with 

experimental data in BCL::MP-Fold and Rosetta. The protocol capture presented 

here could be used to reproduce the published data presented in chapter two. 
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Step Text Commands Comments 
1. Simulate 
EPR DEER 
distance 
restraints  

EPR distance 
restraints were 
simulated using 
BCL by first 
predicting the 
optimum a.a. 
pairs, then 
simulating spin 
label distances 
with uncertainty 
added.  

1.1 bcl.exe restraint:OptimizeDataSetPairwise  

-fasta 1GZM.fasta  

-pool secondary_structure.pool 

-exclude_residue_types GLYCINE  

-restaint_distance_structures native.ls  

-read_mutates_start mutate_start.table  

-read_mutates_optimization mutate_opt.table  

-read_scores_optimization 
score_opt_bipolar.table  

-read_mutates_end mutate_end.table  

-nmodels 100 -mc_number_iterations 10000  

 
1.2 bcl.exe restraint:SimulateDistances  

-pdb 1GZM.pdb  

-skip_undefined_aas  

-simulate_distance_restraints  

-add_distance_uncertainty sl-
cb_distances.histograms  

-output_file 1GZM.epr_cst_bcl  
-restraint_list restraint.ls  

1.1 The OptimizeDataSetPairwise 
outputs the set of amino acid pairing in 
the protein sequence and a score for the 
set.  
Input: 
1GZM.fasta #fasta file 
secondary_structure.pool #secondary 
structure pool 
native.ls #directory to native pdb 
mutate_start.table #specify number of 
restraint set 
Output: 
bcl.data #table of optimized set of EPR 
spin labeling a.a. pairs  
 
1.2 SimulateDistances outputs the EPR 
distance restraints of the given sets of 
a.a. pairs.  
Input:  
1GZM.pdb #native pdb 
sl-cb_distances.histograms #spin label 
to Cbeta distance histogram used to 
simulate uncertainty 
restraint.ls #table of a.a. pairs from step 
1.1. 
Output: 
1GZM.epr_cst_bcl #EPR distance file 

2. Simulate 
NMR restraints 

Sparse NMR 
restraints were 
simulated as 
NOEs as 1 
restraint per a.a. 
residue using 
BCL. When 
NMR restraints 
were used in 
folding, 
secondary 
structure 
information 
predicted from 
backbone 
chemical shift 
simulated by 
TALOS+ was 
also 
incorporated.  

2.1 bcl.exe restraint:SimulateDistances  
-pdb 1GZM.pdb  
-simulate_nmr_distance_restraints  
-num_restraint_fraction 1  
-output_file 1GZM.noe_star  
-aaclass AAComplete  
-add_distance_uncertainty 
noe_knowledge_based.histogram 
 

2.2.1 chemical shift simulation were done using 
SPARTA+ server 

 
2.2.2 bcl.exe protein:CreatSSEPool  

-prefix 1GZM  
-pool_min_sse_length 9 5 999  
-ssmethod TALOS  
-factory SSPredThreshold  

1.1 -join_separate   

2.1 SimulateDistances outputs the NOE 
distance restraints by randomly picking 
1 restraint per residue.  
Input:  
1GZM.pdb #native pdb (protonated) 
noe_knowledge_based.histogram # 
histogram used to add NOE distance 
uncertainty. 
Output: 
1GZM.noe_star #restraint in NMR-
STAR 3.1 file formate  
2.2.1 Input:1GZM.pdb 1GZM.fasta 
Output: 1GZMSS.tab 
2.2.2 Input:1GZM.fasta 1GZMSS.tab 
from step 2.2.1 
Output: 1GZM.TALOS.pool #SSE pool 
for BCL folding 

3. Prepare 
input files for 
BCL fold 

Other input files 
such as TM and 
secondary 
structure 
prediction pool 
were prepared 
using octopus 
and JUFO9D. 
Stage file were 
used to guide 

3.1.1 Perform SSE prediction using Octopus and 
JUFO9D    

 
3.1.2 bcl.exe protein:CreatSSEPool  

-prefix 1GZM  
-pool_min_sse_length 9 5 999  
-ssmethod SSE_prediction_method  
-factory SSPredThreshold  

 
3.2 Generate Stage file and corresponding scoring 

3.1.1  
Input: 1GZM.fasta  
Output: SSE prediction file such as 
*.jufo9d 
And *.octo_topo 
2.1.2.  
Input: SSE prediction files with the 
same prefix ‘1GZM’ 
Output: *.pool #SSE pool 
3.2 See sample file format below. 
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prediction with 
different 
experimental 
data in each 
BCL phases of 
assembly and 
refinement. 
Score weights 
files were 
adjusted to 
account for 
different 
restraint’s 
presence.  

function weight set file for each stage specified by 
stage file 

4. Running 
BCL::MP-fold 
with hybrid 
experimental 
restraints 

Running 
BCL:MP-Fold 
using the 
membrane 
environment and 
experimental 
restraints. The 
command line 
utilizes the files 
prepared in 
previous steps. 
Sections in ‘-
restraint_types’ 
and ‘-
body_restraint’ 
points to the 
BCL modules 
that could be 
mixed and 
matched to use 
different types of 
restraints.  

bcl.exe protein:Fold  
-stages_read stages.txt  
-mc_temperature_fraction 0.25 0.05  
-native 1GZM.pdb  
-quality RMSD GDT_TS -superimpose RMSD 
-pool_separate 1  
-pool_min_sse_lengths 5 999  
-sspred JUFO9D OCTOPUS TALOS  
-sequence_data 
/directory_to_SSE_prediction_data/ 1GZM  
-pool_prefix 1GZM -pool 
1GZM.SSPredHighest_TALOS.pool  
-membrane  
-tm_helices 
1GZM.SSPredHighest_OCTOPUS.pool  
 
-restraint_types NOE DistanceEPR  
-restraint_prefix 1GZM 
 
-body_restraint 1GZM_body.pdb 2.5 2.5 5.0 
5.0 -1.0  
-print_body_assignment  
-score_density_connectivity 1GZM.mrc   
 
-nmodels *  
-prefix prefix_for_output_pdbs  
-protein_storage /directory_to_save_models/  

-random_seed 

Input: 
stage.txt #Stage file 
1GZM.pdb #native pdb  
1GZM.SSPredHighest_OCTOPUS.pool 
#TM helices to guide membrane 
positioning 
1GZM_body.pdb #body restraint pdb to 
guide EM fold movers 
1GZM.mrc #EM density file 
 
Output: 
prefix_for_output_pdbs.pdb 

5. Running 
Rosetta loop 
modeling with 
hybrid 
experimental 
restraints 

Rosetta takes the 
coarse-grained 
models produced 
in previous BCL 
stage and models 
their loops and 
atomic details.  
Several 
preparations 
steps needs to be 
taken to generate 
fragment files 
and restraints 
 

5.1.1 fragment_picker.default.linuxgccrelease  
-database /rosetta/main/database/  
-in::file::vall 
/rosetta/tools/fragment_tools/vall.jul19.2011.gz  
-frags::n_frags 200  
-frags::frag_sizes 3 9 
-frags::sigmoid_cs_A 2  
-frags::sigmoid_cs_B 4  
-out::file::frag_prefix.score  
-frags::describe_fragments 1GZM.fsc.score  
-frags::scoring::config scores.score.cfg  
-in:file:fasta 1GZM.fasta  
-in:file:talos_cs 1GZM.talos  
-frags::ss_pred predSS.tab talos  
-in::file::talos_phi_psi pred.tab 

 
5.1.2 Prepare loop definition files 
 
5.1.3 Prepare TM definition files 

/rosetta/tools/membrane_tools/octopus2span.pl 
1GZM. octo_topo 

 
5.1.4 Prepare Rosetta Format restraint files  

bcl.exe restraint:NmrFileConvert  
-pdb_file 1GZM.pdb  
-input_file 1GZM.noe_star star noe  
-output_file 1GZM_nmr.cst ROSETTA  

5.1.1  
Input: vall database installed in rosetta 
1GZM.fasta  
1GZM.talos #chemical shift predicted 
from Sparta+ 
Output:  
aa1GZM09_05.200_v1_3 #3mer 
fragments  
aa1GZM09_05.200_v1_9 #9mer 
fragments 
5.1.2  
example loop file format: 
LOOP    1   22 0 0.0 0 
#1st and 2nd column indicates start and 
end of loop residues to be modeled 
5.1.3 
Input: 1GZM.octo_topo #from step 
3.1.1 
Output: 1GZM.span  
5.1.4  
Input: 1GZM.noe_star #step 2.1 
Output: 1GZM_nmr.cst # restraints in 
Rosetta format  
5.2  
Input: 
1GZM_bcl.pdb #bcl models that will be 
further refined by rosetta 
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5.2 loopmodel.linuxgccrelease  

-database /rosetta/main/database/ 
-in:file:s 1GZM_bcl.pdb  
-loops:loop_file 1GZM.loops  
-in:file:native 1GZM.pdb 
-evaluation:rmsd NATIVE _FULL FULL 
-evaluation:gdtmm 
 
-loops::frag_sizes 9 3 1 
-loops::frag_files aa1GZM09_05.200_v1_3 
aa1GZM03_05.200_v1_3 none 
-loops::remodel quick_ccd 
-loops::intermedrelax no 
-loops::refine refine_ccd 
-loops::relax fastrelax 
-ex1 
-ex2 
 
-constraints:cst_file   

 1GZM_centroid_restraint.cst 
-constraints:cst_weight 5.0 
-constraints:cst_fa_file 1GZM_full_atom.cst  
-constraints:cst_fa_weight 5  
-constraints:epr_distance 
-constraints:viol 
-constraints:viol_level 101 
 
-edensity::mapfile 1GZM.mrc 
-edensity::sliding_window 9 
-edensity::mapreso 5.5 
-edensity::grid_spacing 4.0 
-whole_structure_allatom_wt 0.1 
 
-score:weights 

membrane_highres_Menv_smooth.wts 
-membrane:no_interpolate_Mpair 
-membrane:Menv_penalties 
-in:file:spanfile 1GZM.span 
 
-out:pdb 
-out:output 
-out:file:scorefile score_file.sc 
-out:nstruct *  

-out:prefix /directory_to_save_models/prefix 

1GZM.loops #step 5.1.2 
1GZM.pdb #native pdb 
aa1GZM09_05.200_v1_3 #step 5.1.1 
aa1GZM09_05.200_v1_9 #step 5.1.1 
1GZM_centroid_restraint.cst #step 
5.1.4 
1GZM_full_atom.cst #step 5.1.4 
1GZM.mrc #EM density file 
1GZM.span #step 5.1.3 
Output:  
score_file.sc #score file  
/directory_to_save_models/prefix.pdb 
#models produced by loopmodeling  

6. Running 
Rosetta 
refinement 
with hybrid 
experimental 
restraints 

A final 
refinement step 
was used to relax 
the predicted 
model to their 
energy minimum 
using the Rosetta 
relax 
application.  
Top scoring 
models from 
loop modeling 
were taken  

6 relax.linuxgccrelease  
-database /rosetta/main/database/ 
-in:file:s 1GZM_loopmodeled.pdb  
-in:file:fullatom 
-in:file:native 1GZM.pdb 
-evaluation:rmsd NATIVE _FULL FULL 
-evaluation:gdtmm 
-relax:fast 
-relax:membrane 
-ex1 
-ex2 
 
-constraints:cst_fa_file 1GZM_full_atom.cst  
-constraints:cst_fa_weight 5  
-constraints:epr_distance 
-constraints:viol 
-constraints:viol_level 101 
 
-edensity::mapfile 1GZM.mrc 
-edensity::sliding_window 9 
-edensity::mapreso 5.5 
-edensity::grid_spacing 4.0 
-whole_structure_allatom_wt 0.1 
 

6  
Input: 
1GZM_loopmodeled.pdb #best scoring 
models after loop modeling  
1GZM.pdb #native pdb 
aa1GZM09_05.200_v1_3 #step 5.1.1 
aa1GZM09_05.200_v1_9 #step 5.1.1 
1GZM_full_atom.cst #step 5.1.4 
1GZM.mrc #EM density file 
1GZM.span #step 5.1.3 
 
Output: 
score_file.sc #score file  
/directory_to_save_models/prefix.pdb 
#models produced by relax 
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-score:weights 
membrane_highres_Menv_smooth.wts 
-membrane:no_interpolate_Mpair 
-membrane:Menv_penalties 
-in:file:spanfile 1GZM.span 
 
-out:pdb 
-out:output 
-out:file:scorefile score_file.sc 
-out:nstruct *  

-out:prefix /directory_to_save_models/prefix 
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Example BCL Stage file format: 

The BCL stage files sets the parameters for BCL::MP-Fold for the specific 

restraints used in structure prediction. In the example file, SCORE_PROTOCOLS 

specifies the membrane environment and the used of distance restraint and EM 

density; MUTATE_PROTOCOLS specifies the particular mutate moves in the 

program that are tailored to efficiently sample protein conformations for the given 

environment.  

 
NUMBER_CYCLES 1 
STAGE Stage_assembly_1 
 SCORE_PROTOCOLS Default Membrane Restraint EM 
 SCORE_WEIGHTSET_FILE assembly_1.scoreweights 
 MUTATE_PROTOCOLS Default Assembly Membrane Restraint EM 
 NUMBER_ITERATIONS 2000 400 
STAGE_END 
STAGE Stage_assembly_2 
 SCORE_PROTOCOLS Default Membrane Restraint EM 
 SCORE_WEIGHTSET_FILE assembly_2.scoreweights 
 MUTATE_PROTOCOLS Default Assembly Membrane Restraint EM 
 NUMBER_ITERATIONS 2000 400 
STAGE_END 
STAGE Stage_assembly_3 
 SCORE_PROTOCOLS Default Membrane Restraint EM 
 SCORE_WEIGHTSET_FILE assembly_3.scoreweights 
 MUTATE_PROTOCOLS Default Assembly Membrane Restraint EM 
 NUMBER_ITERATIONS 2000 400 
STAGE_END 
STAGE Stage_assembly_4 
 SCORE_PROTOCOLS Default Membrane Restraint EM 
 SCORE_WEIGHTSET_FILE assembly_4.scoreweights 
 MUTATE_PROTOCOLS Default Assembly Membrane Restraint EM 
 NUMBER_ITERATIONS 2000 400 
STAGE_END 
STAGE Stage_refinement_1 
 SCORE_PROTOCOLS Default Membrane Restraint EM 
 SCORE_WEIGHTSET_FILE refinement_1.scoreweights 
 MUTATE_PROTOCOLS Default Refinement Membrane Restraint EM 
 NUMBER_ITERATIONS 2000 400 
 PRINT_END_MODEL true 
STAGE_END 
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Example BCL weightset file format:  

A sample weightset file used in BCL stage is presented below. The first line 

corresponds to the various scoring terms used in the BCL scoring during each 

Monte-Carlo Metropolis minimization step. The second line corresponds to the 

weight for in each scoring term. Specifically, the body_agreement and connectivity 

score terms are EM specific; the noe_restraint, noe_penalty, ss_TALOS, 

ss_TALOS_ent score terms are NMR specific; the epr_distance, 

epr_lower_penalty, epr_upper_penalty are EPR specific. The scoreweight used in 

the current manuscript makes an equal contribution to the scores. It is possible for 

users to tweak the weightset based on the confidence of experimental data.  

 

bcl::storage::Table<double> aaclash aadist aaneigh aaneigh_ent loop loop_closure_gradient rgyr 
sseclash ssepack_fr strand_fr co_score ss_JUFO9D ss_JUFO9D_ent ss_OCTOPUS ss_OCTOPUS_ent 
ssealign mp_helix_topology ss_OCTOPUS_env ss_JUFO9D_env body_agreement connectivity 
noe_restraint noe_penalty ss_TALOS ss_TALOS_ent epr_distance epr_lower_penalty 
epr_upper_penalty 
weights                                375        0.35    50         50                 10     50000                          5     375         8                  
20          0.5           1                   1                         1                       1                             8             500                                   
20                           5                           300                      450              5                    5                  10                                    
10                     20.0               24                          24 
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Protocol Capture of TSPO expression, purification and on-column 

detergent exchange 

 
We documented the protocol for working with TSPO protein families 

(including mTSPO, hTSPO and rsTSPO). The protocol described here includes all 

recipes used for basic purification and a timeline for the workflow. The protocol can 

be used for on-column detergent exchange to allow efficient detergent or lipid-

mimetics screening for structural studies. It is advised that since DPC is a 

detergent of relatively low critical micelle concentration (c.m.c. = 1.1mM), 

detergent exchange following DPC should have a lower c.m.c. to allow for higher 

efficiency. In the case were the desired detergent has higher c.m.c. compared to 

DPC, the detergent used for solubilizing cells should be changed to OG or 

Empigen. The 50kDa cut-off concentrator is used to limit detergent build-up since 

we find excess detergent in samples interferes with downstream assays.     

 
Material: 

• Plasmid: pBG100 (N-terminal 6XHis tag with 3C/preScission 
protease site) 

 Kan Resistance  [1000 fold dilution of 30mg/ml Kan]  
• LB culture, pH adjusted to 7.0 
• M9 medium, basic (2g KH2PO4, 8g Na2HPO4, 0.5g NaCl, 0.5g 

MgCl2*6H2O in 1L, pH 7.2)+ 10ml Vitamin + ZnCl2 
• Buffer A: 50mM HEPES-Na, 150mM NaCl, pH 7.8 
• Lysis Buffer: Lysis Buffer+ LDR mix (for 50ml of lysis buffer, add 

100ul LDR, 500ul PMSF) 
75mM Tris-HCl. pH 7.7 (start with Tris-base and pH titration with 
HCl) 
300mM NaCl 
0.2mM EDTA 
(for 1Liter:9.086g Tris-base; 17.532g  NaCl; 1mL 0.2M EDTA, adjust 
pH to 7.7.0 and fill with ddH2O to 1L)  
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LDR stock (Lysozyme/DNase/RNase Mix) 
100mg/mL Lysozyme 
10mg/mL DNase 
10mg/mL RNase 
10% glycerol  
(for 10mL stock: 1g Lysozyme/0.1g DNase/0.1g RNase, dissolved in 
10% glycerol to 10mL, filter sterilized, stored at -80C) 

• DPC Buffer A: 1% DPC + Buffer A 
• Wash Buffer DPC: Buffer A + 0.1% DPC + 20mM Imidazole 
• Rinse Buffer: Buffer A + Detergent of choice + 10mM Imidazole  
• Elution Buffer: Buffer A pH 7.0 + 0.05% DPC/detergent if choice + 

250mM Imidazole 
• NMR Buffer: 10mM Sodium phosphate buffer (pH6), 100mM NaCl + 

detergent of choice at its c.m.c concentration.  
 

Protein production and purification: 

Day 1, 4pm 

Transfect the pBG100-mTSPO / pBG100-hTSPO / pBG100-rsTSPO into 

BL21 (DE3) competent cells, plating onto Kan agar plates 

Day 2, 8am [pre-culture] 

Pick colony from plate, inoculate transformed BL21 cells into 5ml sterile LB 

broth containing Kan.   

Day 3, 8am [scale-up] 

Transfer 5 ml of pre-culture into 1L LB/M9 with Kan. Incubation at 37 

degrees until OD reaches 0.7. Add 1ml 1M IPTG to induce protein production. 

Harvest cells after 5 hour at 37 degree by centrifugation at 7000rpm using 

Bechman centrifuge. Weigh and store the cell pellet in a 50ml falcon tube. 

Day 4, Purification (start in afternoon) 

Re-suspend the cell pellet with 20X (cell weight) Lysis Buffer, mix and 

tumble for 30 min 
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Sonicate the cell suspension in ice bath, 45%amplitude, 10 min, 5s/5s 

Alternative method for inclusion body preparation: Spin the cell down using 

JA25.5 at 20000rpm at 4 degree (20min). Save the supernatant, (for 

ultracentrifugation, collecting membrane portion). Pallet washing step: Resuspend 

inclusion body with Lysis buffer, sonicate 45% amplitude, 5 min, 5s/5s, Spin the 

cell down using JA25.5 at 20000rpm at 4 degree (20min). Homogenize inclusion 

body with 20X (pellet weight) DPC Buffer A, tumbling overnight at 4 degrees.  

For Membrane preparation: Using ultracentrifugation, 2hour, 4C, 30000rmp. 

Collect the insoluble, discard solution. Homogenize the entire fraction with 20X 

DPC buffer A, tumbling overnight at 4 degrees.  

Day 5, Purification (start in morning)  

Centrifuge the homogenized cell lysates from previous night using JA25.5 

at 20000 rpm for (30min); collect supernatant. 

Load 1X (cell weight) ml bead volume Ni-NTA to column and equilibrate 

using DPC Buffer A (10x bead volume).  

Add equilibrated beads into supernatant, tumbling 1 hour at 4 degrees. 

Add the Bead-supernatant mix to column.  

Rinse with DPC Buffer A until the peak disappear. 

Wash with 10X (bead volume) Wash Buffer DPC/until the peak disappear. 

Optional rinse step for detergent exchange: 20X bead volume Rinse Buffer 

(If using DPC buffer, no need for rinse) with the detergent of choice, restrict the 

flow of the column to allow for a slower drop rate. 

Elute using Elution buffer, collect fractions with 1.5ml Eppendorf tubes. 
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Check Purity: 

SDS PAGE.  

Buffer Exchange: 

Combine the pure elution fractions. 

Using Centricon Unit (50kDa cut-off), spin until elution fraction concentrate 

to 500ul. 

Add 5ml NMR buffer, spin, repeat for 4 times. 

Check final concentration. 

Prepare for NMR/ CD/ other biophysical and biochemical assays. 

 

 


