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ABSTRACT

In this thesis, we apply and adapt a new method to assess conditional associations in

a large dataset from the Vanderbilt University Medical Center Electronic Health Record

(EHR). We estimate pairwise rank correlations among disease status and lab values in the

EHR after adjusting for demographical information. Our covariate-adjusted rank corre-

lations involve fitting cumulative probability models (CPMs), extracting probability-scale

residuals (PSRs) from these models, and computing the sample correlation between PSRs

for different outcomes. This approach is rank-based, robust, and applicable to a variety of

data types. Computational challenges arise with large datasets, particularly when we apply

these methods to continuous outcome variables such as most lab values; we propose some

workaround solutions. We present our results with estimates and confidence intervals for

the partial Spearman’s rank correlations among all pairwise combinations of the most fre-

quent 250 ICD codes and 50 lab results among 472,570 patients with data in the EHR. We

also present results stratified by sex and diabetes status, demonstrating how to assess for

differences in correlations between different population strata.
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Chapter 1

Introduction and Background

1.1 Introduction to Electronic Health Records (EHR)

An electronic health record (EHR) is a digital version of a patient’s medical chart [1].

EHR are real-time, patient-based records that make information available instantly and

securely to authorized users. An EHR system is built to go beyond standard clinical data

collected in a provider’s office and can be inclusive of a broader view of a patient’s care.

EHR can:

• contain a patient’s medical history, diagnoses, medications, treatment plans, immu-

nization dates, allergies, radiology images, and laboratory and test results;

• allow access to evidence-based tools that providers can use to make decisions about

a patient’s care;

• automate and streamline provider workflow.

An EHR system integrates data for different purposes [2]. It enables the administrator to

utilize the data for billing purposes, the physician to analyze patient diagnostics information

and treatment effectiveness, the nurse to report adverse conditions, and the researcher to

discover new knowledge.

EHRs are much better transformation tools of healthcare information compared with

paper-based systems, and they can benefit the whole healthcare system in several ways.

From the financial perspective, EHR enhance revenue by reducing costs (supply, transcrip-

tion, utilization of tests). From the clinical perspective, EHR improve productivity, clini-

cian satisfaction, accuracy of diagnosis and care, quality and convenience of care, patient

safety, coordination of care, legal and regulatory compliance, reliability, and aggregation

of data and interoperability. Despite these advantages in practice, the adoption rate of EHR
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is still low in United States and faces obstacles such as physicians’ resistance, loss of pro-

ductivity, lack of standards, and privacy and security concerns [3]. Technically, there are

also some challenges to using EHR data: incompleteness, errors, uninterpretable data, in-

consistency, unstructured text, selection bias, and interoperability. Nevertheless, the EHR

creates great opportunities for clinical and translational research.

1.2 Motivation for EHR Studies

Clinical decision making is complicated because the physician must attempt to bridge

what has been referred to as an inferential gap between the information at hand in a given

case and what patients need to better their health [4]. EHR can narrow this gap. Typically,

structured patient data in the EHR system have four features: demographic information,

diagnoses denoted by International Classification of Diseases (ICD) codes, medications

(treatment using drugs), and laboratory values. EHR typically also include unstructured

patient data that mainly consist of free text notes. Researchers are often interested in as-

sessing associations between different variables in the EHR. A scientific question is what

are the internal correlations among features in the EHR, and a statistical question is how to

quantify them. Small cohort sizes do not allow a comprehensive view of the co-occurrence

of diagnoses, laboratory values, and other patient features. The large sizes of EHR and

their tremendous amount of structured patient-level data can help us make inference at the

population scale to discover new associations that may be of relevance to patient care. For

example, a phenome-wide association study (PheWAS), introduced by Vanderbilt BioVU,

uses individual SNPs to check for statistical associations with hundreds of disease pheno-

types found in the EHR [5]. Given the ready availability of EHR data, they represent a

cost-efficient tool for studying and discovering associations.

There are some common approaches to analyze EHR data. One can do a 2 by 2 table

analysis using the chi-square test of homogeneity if the interest is on the comorbidity of

two diseases [6]. One can cluster patients based on a similarity metric calculated from
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feature values [7, 8]. One can perform regression or machine learning methods (e.g. super-

vised: decision tree classifier or support vector machine (SVM), unsupervised: clustering)

to predict future diagnoses [9]. One can also create a cohort study by querying for pa-

tients associated and not associated with certain features. With PheWAS, a novel method

is proposed to scan phenomic data for genetic associations using ICD codes. However,

these methods have their own limitations. The EHR data usually come in large dimen-

sions and are hence sparse, which could induce bias given incomplete and heterogeneous

features. While most modern machine learning methods are robust to outliers and errors,

they tend to overfit as a result of being purely data-driven. Another drawback of machine

learning methods is their difficulty of interpretation. Finally, the various data types in EHR

also cause problems since some methods are only appropriate for specific types of vari-

ables (e.g. linear regression for continuous variables). Lab values may be skewed or highly

variable and require proper transformation before performing analyses. Other metrics may

have detection limits.

It is desirable to have methods that can assess for associations in big data (many records

and variables). In particular, we need robust methods applicable to a wide variety of out-

come types and distributions that can be quickly implemented without requiring transfor-

mation and extensive data diagnostics. Spearman’s rank correlation is good because it is

robust to many outcomes and does not require normality or linear relationships, however,

it does not adjust for covariates. In recent work, Spearman’s rank correlation has been

extended to adjust for covariates [10]. This new method is rank-based, robust, and allows

covariate adjustment. It involves three main steps:

• fit robust models (e.g. cumulative probability models) to disease status and lab test

values in EHR data;

• obtain probability-scale residuals (PSR) from these models;

• calculate Pearson’s sample correlation of PSRs to get the adjusted partial rank corre-

3



lation.

We can also stratify on variables of interest to get conditional partial Spearman’s correla-

tions. For example, the partial correlation between two lab tests among males and among

females, after controlling for age, race, and BMI.

The covariate-adjusted rank correlation approach has many strengths. Cumulative prob-

ability models are rank-based and good for EHR data because they can handle various data

types, complicated relationships, outliers, and censored measurements. The PSRs, which

can be easily calculated for all kinds of orderable outcome variables (binary, continuous,

ordered categorical, count) can accommodate most variables in EHR data on a common

bounded scale between −1 and 1. The Pearson’s correlation of PSRs is easy to calculate

and does not involve a ranking algorithm. Overall, this approach is easy to implement and

achieves a good balance between parametric and nonparametric approaches.

The main goal of this work is to apply covariate-adjusted Spearman’s partial rank cor-

relation to study pairwise relations among ICD codes and lab test results while adjusting

for demographical variables. There are some potential challenges with fitting covariate-

adjusted Spearman’s rank correlations in practice. Most of these challenges have to do

with computational difficulties with scaling up this method to a big data setting. First, the

computational difficulty of fitting cumulative probability models increases as the number

of unique values in the outcome variables increases. Second, in order to get inference of

the correlation, we need to calculate first and second-order derivatives of the log-likelihood

function for each record. Evaluating the inverse of the information matrix is also compu-

tationally intensive. Third, lab test values could be unstructured and therefore it is hard

to order them without natural language processing (NLP) knowledge. Overall, the chal-

lenges in this work lie in applying these methods in a big data setting that stretches the

computational capabilities of these methods.

Before going into the details of our study, it is helpful to briefly review the various

components of the statistical methods we will be employing.
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1.3 Cumulative Probability Models (CPM)

Many variables of interest in EHR are ordinal. That is, we can rank the values, but

the real distance between levels is unknown. This type of data distinguishes itself from

categorical and continuous data. For example, diseases are graded on scales from least

severe to most severe. Some lab test results, especially those recorded by human beings,

are recorded in the format of given levels rather than numerical values. When the ordinal

variables are predictors with small numbers of levels, in many cases we can treat them as

categorical values without losing too much information. The situation is more complicated

when we have ordinal response outcomes. In this work, we focus on dealing with ordinal

outcomes such as disease status and lab test results. Note that binary outcomes are special

cases of ordinal outcomes with the number of levels equal to two.

The general approach for the analysis of ordinal data is to fit cumulative probability

models (CPM) which can be motivated by supposing there is a latent continuous variable

and that the observed ordinal outcomes come from discretizing the underlying latent vari-

able into K ordered groups. Let the cumulative probability under the specific level k be

γk(x) = P(Y ∗ ≤ k|X = x) such that there is a link function connecting γk with the linear

model of X :

g(γk) = Xβ +βk0,

where X is a vector of predictor variables and β is a vector of coefficients. “g()” is the

link function which is often a logit function (g(x) = log( x
1−x)) but could be something else

depending on the distribution of outcome variables. A cumulative probability model with

the logit link is referred to as a proportional odds model, which is so named because it

takes the covariate effects to be constant across the K categories. That is, the only varying

coefficient is the intercept βk0 where k ranges from 0 to K−1. The intercepts must increase

as k increases to ensure that the cumulative probabilities increase. When the outcome has

2 categories and the logit link is used, this model reduces to logistic regression.
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Although generally used for ordinal or binary data, CPM can be fit to continuous data

as well [11], which allows us to study most of the data types in EHR. CPM applied to

continuous outcomes can be thought of as semiparametric transformation models: a linear

relationship is assumed between covariates and a latent variable whose distribution is im-

plied by the choice of link function. CPMs assume that the observed continuous outcome

arises from an unspecified monotonic transformation of the latent variable. The “unspeci-

fied” transformation explains why it is semiparametric while we still assume a parametric

distribution on the transformed latent variable [12]. It has been seen that cumulative prob-

abilities models are fairly robust to minor or moderate link function misspecification with

moderate sample sizes. CPMs also directly model the CDF from which important statistics

(e.g. moments and quantiles) can be easily calculated. Moreover, CPMs can handle com-

plicated data types and mixed distributions. For instance, some lab test results in the EHR

data are continuous in a range and discrete beyond that range. CPMs can be applied as long

as the values are still ordered.

Regardless of many attractive features, CPM have not been extensively used to study

continuous outcomes. One reason might be computation limits, which are now less of a

concern thanks to modern computing power and optimized algorithms. The orm function

in the rms package in R fits CPM for continuous or ordinal response variables, and ef-

ficiently allow for a large number of intercepts by capitalizing on the information matrix

being sparse [13]. This allows us to model lab tests with thousands of unique values. How-

ever, because CPMs with continuous data require estimating K−1 intercepts for K unique

outcomes, computational challenges still arise when applying these methods to big data

such as the EHR. One of the major challenges on the applied side is how to optimize the

calculation of the inverse matrix in order to make inference when the model has thousands

of intercepts or the sample size is large.
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1.4 Probability Scale Residual (PSR)

Whenever a statistical model is fitted to explain the data, it is often important to check

for systematic departure from the model. This can be done with diagnostic plots that il-

lustrate the relationship between residuals and predictor variables or outcomes. In addition

to diagnostics, residuals may also serve as messengers inherited from the model conveying

leftover information of the response variables after accounting for covariates in the model.

We are often interested in the correlation between two outcome variables X and Y , after

adjusting for potential confounder Z. One way to measure this association is to fit mod-

els of X on Z and Y on Z and then to assess the correlation between residuals from these

models. For linear models, Pearson’s partial correlation is defined in this manner. We will

employ a similar technique but fit more general and robust models of X on Z and Y on

Z (i.e., cumulative probability models), and compute a more general type of residual, the

Probability Scale Residual.

1.4.1 Residual

When assessing a model, residuals serve as a measure of the discrepancy between the

observed and fitted values for each observation. The degree to which one observation af-

fects the estimated coefficients is a measure of influence. We can also understand residuals

from another perspective: the variation of the outcome variable which is not explained by

the current working model.

Pierce and Schafer [14] and Cox and Snell [15] provide nice surveys of various defi-

nitions for residuals in Generalized Linear Models (GLM). The general goal for defining

residuals is to make their distribution follow some patterns if the model is appropriately

specified. This goal is achieved by considering linear equations, link functions, and de-

viance contributions. In this section, we briefly mention several forms of common residu-

als.
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Response residuals are simply the difference between the observed and fitted values as

used in linear regression, which can be treated as “normal scale residuals”. Pearson resid-

uals are scaled versions of response residuals. Large absolute values of Pearson residuals

indicate failure to fit an observation. The support range of Pearson residuals are not scaled

(still the same as Response residuals). Deviance residuals are monotone to the deviance

for each observation and based on the χ2 distribution. In generalized linear modeling, they

are generally preferred over Pearson residuals for model checking as their distributional

properties are closer to the residuals in linear regression. Score residuals are related to the

score function which is the optimized estimating equation.

It is desirable to have a residual that is well defined, easily computable, and robust

across many outcome types with a common scale. The residuals listed above have their

own advantages and disadvantages in different scenarios depending on the type and distri-

bution of covariates and outcomes. In particular, they are not easily extendable to ordinal

outcomes where we lack a natural definition of difference unless we convert the ordinal

values to continuous values. Moreover, none of these residuals are suitable for cumulative

probability models. These facts motivate the introduction of the PSR.

1.4.2 Probability Scale Residual

As we mentioned earlier, residuals quantify the discrepancy between the observed and

fitted values. Alternatively, one can also extend the concept of a residual to a metric quan-

tifying the discrepancy between the observed values and fitted distributions. For example,

one can contrast them through their mean, E(y−Y ∗) = y− ŷ, where Y ∗ is the random

variable from the fitted distribution. This is the response residual in linear regression. An

extension of the response residual is the mean of the sign of this contrast: E{sign(y,Y ∗)},

which we refer to as the PSR.

To formally define the PSR, we assume Y is an orderable (binary, count, ordinal, or

continuous) random variable from a distribution F . Let y be the observed value of this
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random variable and F∗ be the fitted distribution of Y . The PSR of this observation is:

r(y,F∗) = E{sign(y,Y ∗)}= pr(Y ∗ < y)− pr(Y ∗ > y) = F∗(y−)+F∗(y)−1, (1.1)

where Y ∗ is a random variable with distribution F∗ and F∗(y−) = limt→yF∗(t). The support

of the random variable sign(y,Y ∗) is {−1 ,0 ,1}. So, the PSR is bounded between -1 and 1.

Also, it is monotonic in y and F∗ with respect to stochastic ordering. To calculate the PSR,

we only need the fitted cumulative density functions (CDF) evaluated at y and y−, rather

than the full specification of the fitted distribution. Note that PSRs are readily calculated

from CPMs because CPMs estimate the CDF.

Li and Shepherd [16, 17] introduced the PSR for ordinal outcomes and demonstrated

that it has several desirable properties. We emphasize a few of them here. First, the PSR is

useful for ordinal outcomes as it does not require assigning arbitrary numbers to categories.

Second, it does not require calculation of E(Y ∗). Note that although the PSR is calculated

using a probability scale, it does not require fully specifying the fitted distribution [18], but

rather just cumulative probabilities at some specific values. This property makes it useful

with nonparametric and semiparametric models. Third, PSRs are easily calculated for both

continuous and ordinal outcomes such that we can compare residuals from different out-

comes and models on the same scale (-1 to 1). This property allows us to use PSRs across

various features in EHR data. Finally, the PSR has a nice connection with ranks and is easy

to interpret.

For continuous outcomes, r(y,F∗) = 2F∗(y)−1. When the model is correctly specified,

that is F∗ = F , the PSR follows a uniform continuous distribution: r(y,F∗) ∼ Unif(−1,1).

Correspondingly, the PSR has mean 0 and variance 1
3 . One can use these properties to do

model diagnostics. In our EHR data, most lab test results are continuous, although some

have detection limits.

For discrete outcomes, r(y,F∗) = 2F∗(y)− f ∗(y)−1, where f ∗ is the probability mass
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function (PMF) of the fitted distribution F∗. It is proved in [18] that the PSR for discrete

outcomes can be viewed as an integrated version of the PSR for some underlying latent

continuous variable. In general, however, the PSR in the discrete case does not follow a

uniform distribution if F∗ = F . Its variance, which is equal to {1−∑ f ∗(y)3}/3 if F∗ = F ,

does converge to 1/3 as the number of discrete levels increases. In our EHR data, all ICD

codes (yes or no) and a few lab tests (ordered levels) have discrete outcomes.

For censored outcomes, the PSR is also a function of the censored indicator δ : r(y,F∗,δ )=

F∗(y)−δ [1−F∗(y−)]. When we use a fully parametric model to fit the survival data, the

calculation of the PSR is straightforward. When we use a semiparametric model (e.g. Cox

model), the PSR can be estimated using empirical baseline hazard functions and relative

hazards conditional covariates. It is interesting that the three commonly used residuals

(Cox-Snell, deviance, and martingale) in the censored case can be written as one-to-one

functions of the PSR. Although censored data are found in the EHR (e.g. censored lab

values because of detection limits), our analyses do not include censored outcomes.

1.5 Covariate-adjusted Spearman’s Rank Correlation

A correlation coefficient measures the extent to which two variables tend to change to-

gether. It ranges from−1 to 1, with the sign and value indicating the direction and strength

of the relationship, respectively. Pearson’s correlation is a parametric linear correlation for

two random variables X and Y :

ρP =
cov(X ,Y )

σX σY
.

It is equal to −1 or 1 when and only when there is an exact linear relationship between

X and Y : Y = aX + b. Spearman’s rank correlation is a nonparametric measure of rank

correlation. It assesses how well the relationship between two variables can be described

using an unspecified monotonic function. For a sample of size n, the n raw values Xi, Yi are
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converted to ranks RXi and RYi and Spearman’s correlation is:

ρS =
cov(RXi,RYi)

σRXiσRYi

.

Spearman’s correlation is equal to −1 or 1 when and only when Y monotonically increases

or decreases as X increases. In the case that Y = aX +b, Pearson’s correlation and Spear-

man’s correlation are equal. When dealing with ordinal outcomes, nonlinear relationships,

skewed distributions, and extreme values, Spearman’s correlation is generally preferred.

It is often of interest to assess pairwise associations after adjusting for the influence of

other variables. For example, demographic factors such as patients’ ages and sex may have

large impact on the disease diagnosis and lab test values in EHR data. It may be important

to control for these when assessing associations. Pearson’s partial correlation is defined as

the correlation between response residuals from linear models of X on Z and Y on Z. It can

also be written as:

ρXY ·Z =
(ρXY −ρXZρY Z)√
(1−ρ2

XZ)(1−ρ2
Y Z)

.

An ad hoc procedure to estimate partial Spearman’s correlation is to replace all the

Pearson’s correlation terms in the above formula with rank correlations [19]. However,

this approach does not correspond to a sensible population parameter [20]. We adopt new

estimators for covariate-adjusted Spearman’s rank correlation proposed in [10]. There are

two general estimators: partial and conditional. The partial correlation is the correlation

after removing the effect of covariates. The conditional correlation is a correlation written

as a function of adjusted covariates. For example, a partial correlation between biomarkers

X and Y may be defined as the correlations after removing the influence of other covariates

(e.g. sex, age). The conditional correlation may be defined as the correlation between

biomarkers X and Y among men and the correlation among women, which may differ.

In general, conditional correlations may have more than two levels. In some cases, the

marginal partial correlation may be washed out by conditional partial correlations with
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opposite signs across levels of covariates.

It has been shown that Spearman’s correlations, both partial and conditional, can be

computed as the correlation of PSRs [10]. In the unadjusted case, that is, in the absence

of covariates, the sample correlation of PSRs reduces to the common Spearman’s rank

correlation of raw values. The PSR of an observed value is fully determined by the empir-

ical CDF, which is based on the ranks of the observed data. Therefore, PSRs are a linear

transformation of the ranks. It can be proved that:

γXY = corr[r(X ,F),r(Y,G)],

where γXY is the Spearman’s rank correlation between random variables X and Y and r

denotes the PSR [16].

In the adjusted case where the PSR is calculated from models including all adjusted co-

variates, the sample correlation of PSRs is equal to Spearman’s partial correlation. Specif-

ically,

γXY ·Z = corr[r(X ,FX |Z),r(Y,GY |Z)].

Here, Z represents the covariates to be included to fit model F for outcome variable X

and model G for outcome variable Y . The impacts of Z on X and Y are removed through

models F and G, from which the PSRs can be calculated and reflect the covariate-adjusted

relationship between X and Y . In practice, we model F and G using cumulative probability

models.

After adjusting for demographical variables, additional interest may lie in the condi-

tional correlations. For example, the association among diseases and lab tests may be

different between males and females. The conditional partial Spearman’s rank correlation

is defined in [17] as:

γXY ·Z|Z1 = corr[r(X ,FX |Z),r(Y,GY |Z)|Z1],
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where Z1 is a subset of covariates in Z to be conditioned on. Therefore, it is possible to use

PSRs to estimate conditional associations as well.

1.5.1 Calculation of Standard Error

The point estimator of covariate-adjusted partial Spearman’s rank correlation is ob-

tained by calculating the Pearson’s correlation of two sets of PSRs, each of which comes

from a model fitting the outcome of interest on the adjusted covariates. PSRs are functions

of the fitted semiparametric distribution and readily calculated from the CPMs we choose.

After obtaining the point estimator, we need to estimate the standard error and p-value.

One simple way to do this is to treat the PSRs as random variables and the test statistic

t =
r
√

n−2√
1− r2

will follow a t distribution with degree of freedom n− 2, where r is the sample Pearson’s

correlation and n is the number of pairwise complete observations [21]. This is problem-

atic as the two sets of PSRs are residuals from models with the same set of covariates and

hence may be correlated. Recent work [17] proposes two approaches: a bootstrap method

and a large sample approximation. In our case, we go with large sample approximation

using M-estimation [22]. In short, let Xi,res be the PSR for subject i from the model of X

on Z and Yi,res be defined similarly. Let θ = (θx,θy,θ1,θ2,θ3,θ4,θ5), with θ1 = E(Yi,res),

θ2 = E(Xi,res), θ3 = E(Yi,resXi,res), θ4 = E(Y 2
i,res), θ5 = E(X2

i,res), and θx and θy denot-

ing the parameters in the models of X on Z and Y on Z. The goal here is to estimate

γ̂XY ·Z = (θ̂3− θ̂1θ̂2)/
√
(θ̂4− θ̂ 2

1 )(θ̂5− θ̂ 2
2 ), whose point estimate can be calculated from

the sample Pearson’s correlation and variance can be obtained from the delta-method. The

large sample distribution of θ̂ under usual conditions is:
√

n(θ̂ −θ)
d−→ N[0,V (θ)], where

V (θ) =A(θ)−1B(θ)[A(θ)−1]′, A(θ) =E[−∂Ψi(θ)
∂θ

], and B(θ) =E[Ψi(θ)Ψi(θ)
′]. Note that

Ψ(θ) is composed of many estimating functions (e.g. score equations and moment-based

13



estimating functions). In practice, estimating the large sample distribution of the Fisher’s

transformation of γ̂XY ·Z , i.e., log[(1+ γ̂XY ·Z)/(1− γ̂XY ·Z)]/2, usually leads to more rapid

convergence to normality, and is therefore adopted by us to construct confidence intervals.

For conditional correlation, it is easy to calculate the sample Pearson’s correlation of

PSRs within each level of the categorical variable Z (e.g. gender, diabetes) given that we

have sufficient observations in each category. Similarly, standard errors and confidence

intervals can be also obtained through M-estimation techniques. P-values can also be com-

puted using M-estimation techniques to test whether conditional correlations across dis-

crete strata are the same.

1.6 Summary

In this chapter we have introduced electronic health record data and covariate-adjusted

Spearman’s rank correlations using CPMs and PSRs. In Chapter 2, we will apply the

described statistical methods to examine pairwise partial rank correlations between a large

number of variables in the VUMC EHR. Although these methods have been applied in other

settings, they have never been applied to such large sample sizes and numbers of variables.

These induce computational challenges which we highlight and provide workarounds for

in our EHR analysis.
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Chapter 2

Application of Covariate-adjusted Rank Correlation to VUMC EHR Data

Now we dive into the main analysis of this work, which studies the correlation among

various variables in EHR data after adjusting for demographical factors. We first introduce

the VUMC EHR, describe our dataset, and finally proceed to calculate partial and condi-

tional partial rank correlations across a wide variety and number of EHR variables. Various

challenges and our solutions will be highlighted in our analyses.

2.1 VUMC EHR data

Vanderbilt University Medical Center (VUMC) is known for its highly acclaimed teach-

ing hospital and its groundbreaking efforts in EHR. Over 65 million notes were stored in

VUMC EHR system during the period 1999-2008, with 50.1 million stored during 2004-

2008 [23]. Scanned documents in the EHR come from a diverse set of sources, including

clinical notes (35%), administrative documents (28%), orders and prescriptions (19%), and

lab test results (10%).

Among massive information available in the VUMC EHR data, two important pieces

of data are ICD codes and lab test results. ICD is the foundation for the identification

of health trends and statistics globally, and the international standard for reporting diseases

and health conditions [24]. Uses of ICD include monitoring of the incidence and prevalence

of diseases, insurance reimbursement, and keeping track of safety and quality guidelines.

In our case, the patient is assigned an ICD code given a diagnosis and it may evolve as

the doctor gains more and better knowledge in diagnosis. As a result, we can get the

longitudinal disease history of each patient as well as the prevalence of a specific disease

over the population of patients visiting VUMC. Lab tests are ordered to help with diagnosis

and treatment decisions. At least 50% of clinical lab tests ordered whose results are in a
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positive/negative, ordered categorical, or numerical format are incorporated in certified

EHR technology as structured data. Often, the occurrence of lab tests are closely related to

the assigned ICD codes.

2.2 Data Analysis

2.2.1 Data Extraction and Pre-processing

The data we analyze throughout the whole work is based on the Synthetic Derivative

(SD) database containing clinical information derived from VUMC EHR. The SD is de-

identified and altered to the extent that it closely resembles the original record, but that

identifying features (e.g. dates, names, etc) have been adjusted or stripped. Therefore,

the SD can be used as a stand-alone research source. The data consist of three csv files,

corresponding to demographic data, ICD codes, and lab test values.

Table 2.1: Criteria for Records to be Kept after Filtering

Entries Range
weight (KG) [50, 130]
height (CM) [150, 200]

BMI (KG/M2) [20, 45]
ICD date 01/01/2000 – 08/31/2016
LAB date 01/01/2000 – 08/31/2016
age (years) ≥ 18

We received demographic data from the SD on 582,243 patients. This dataset was fil-

tered for our analyses. The filtered dataset contains demographic data for 472,570 patients.

Patient records were kept only if the patient ID showed up in all three databases. Since the

methods we will employ are robust to outliers in the outcome variables but not necessar-

ily the predictor variables, we initially filtered the demographical data by removing those

records falling out of reasonable ranges. A summary of filtering criteria is shown in Table

2.1. Age was not directly provided in the data; we took the difference of patients’ dates

of birth and the time of their earliest entry in the database as their age. Based on age, we
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filtered the data by only keeping adult records (18 years or older). Race was clustered to 5

categories: Asian, Black, White, others, and unknown.

For each patient ID, the same ICD codes may have been assigned multiple times. Sim-

ilarly, the same lab test may have been performed more than once. For simplicity, we

summarized all the distinct ICD codes per patient as never versus ever occuring. For lab

tests, the earliest lab test value attached to each patient ID was used if a particular lab was

performed more than once. Certainly this collapsing of data results in a loss of informa-

tion, but it is reasonable in this proof-of-concept study. There were 48,954 distinct ICD

codes and 4,235 distinct lab tests. ICD codes included both ICD-9 and ICD-10 codes; we

made no attempt to cluster codes in these analyses. We focus on the 250 most frequent

ICD codes and the 50 most frequent lab tests with orderable outcomes. While the ICD

code results are simple as they are binary (never versus any), the lab test results can be

quite messy. First, not all lab test results are orderable (e.g. ABO blood type). Second,

many lab tests have string values and typos in recording (e.g. many urine related labs do

not have numerical results). Third, some lab test values are censored due to detection limits

(e.g. a range instead of a number is given). After consulting with physicians, we chose to

drop outcome variables that are not orderable, we ordered string values based on clinical

orderings, we corrected typos as best we could, and we incorporated censored values to

their nearest thresholds (e.g. the measurement of bilirubin in urine had detection limits at

2 and 12, and we rounded all “< 2” results to 2 and all “> 12” results to 12). We made

no effort to filter lab values except ordering those lab results with ordinal string values and

converting those continuous lab results to numerical values.

2.2.2 Descriptive Statistics

Based on the cleaned data, a summary of descriptive statistics of demographical infor-

mation is shown in Table 2.2 and Table 2.3. 58% of included patients were male, 79%

white and 10% black, and median age was 46 years. The median BMI was 27.6, which is
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typically considered overweight.

Table 2.2: Summary of Demographic Information (Categorical)

Factors number percentage

Sex
male 274,383 58
female 198,187 42

Race
white 372,166 78.8
black 46,157 9.8
asian 6,905 1.5
other 1533 0.3
unknown 45,809 9.7

Table 2.3: Summary of Demographic Information (Continuous)

Covariates Mean Median 0.25 percentile 0.75 percentile
weight (KG) 82.6 80.9 69.0 94.5
height (CM) 170.1 170.2 162.6 177.8
age (years) 46.7 46 33 59

BMI (KG/M2) 28.5 27.6 24.3 31.8

The 50 lab values used in these analyses are described in Table 2.4 and Table 2.5. Two

labs were binary (bilirubin and nitrite), four were ordered categorical (shown in Table 2.4),

the remaining 44 labs were continuous. With that said, the number of distinct levels for

the continuous labs was highly variable, from 11 (urobilinogen) to 7104 (thyroid stim hor-

mone). Although we selected the 50 most common labs, a large proportion of patients still

had missing lab measurements, ranging from 20% (creatinine blood) to 60% (cholesterol

blood). The 250 most common ICD codes and the proportion of patients with them listed

is given in the Appendix A.1.

18



Table 2.4: Summary of Lab Values (Ordinal)

Lab names levels number of observations percentage
BILIRUBIN 2 195,238 100

negative 191,076 97.9
positive 4,162 2.1

URINE BLOOD 5 194,227 100
negative 141,026 72.6

trace 14,641 7.5
small 14,368 7.4

moderate 11,981 6.2
large 12,211 6.3

CHARACTER 4 195,332 100
clear 160,605 82.2
slight 7,607 3.9
cloudy 21,419 11
turbid 5701 2.9

HEMOLYSIS INDEX 4 296,807 100
none 282,271 95.1
slight 10,695 3.6

moderate 2,757 0.9
gross 1,084 0.4

KETONE URINE 5 185,255 100
negative 171,495 92.6

trace 7,890 4.3
small 3,112 1.7

moderate 1,575 0.9
large 1,183 0.6

NITRITE 2 194,591 100
negative 187,820 96.5
positive 6,771 3.5
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2.2.3 Methods

A randomly picked small subset was used for initial exploratory data analysis (EDA)

and model validation. After this was done, the full filtered dataset was used for analysis.

Analyses were run on the clusters at the Advanced Computing Center for Research &

Education (ACCRE).

First, we estimated the partial Spearman’s rank correlation for all pairwise combina-

tions of the 300 ICD codes/labs. In our case, the adjusted covariates Z included the demo-

graphical variables: gender, race, BMI, and age. We first fitted CPMs for each ICD code

(binary) and lab test (continuous, binary, and ordinal) with Z. To make the models more

flexible, we treated gender and race as categorical variables and fitted cubic splines for BMI

and age. Specifically, for each outcome Y , we fitted a CPM with the logit link:

log
P(Y ≤ k)

1−P(Y ≤ k)
∼ SEX+RACE+ rcs(BMI,3)+ rcs(AGE,3)+βk0,

where the range of k is determined by the rank distributions of the observed outcome vari-

ables. For example, ICD code is binary with 0 indicating no and 1 indicating yes. There-

fore, k = 1, and we fitted one intercept in addition to the coefficients for covariates. When

the model was applied to continuous variables such as most of the lab test results, we

needed to fit the same number of covariate coefficients but more intercepts, with k+1 be-

ing equal to the number of unique outcome values. This significantly slowed down the

computation when the test values had large numbers of unique values (4 out of 50 labs

in our data had more than 2000 unique values; specifically, they were neutrophil antibody

with 2859 unique values, thyroid stim hormone with 7104 unique values, NT automated

ABS with 3090 unique values, and white blood cell with 2238 unique values). We grouped

those lab test results with more than 1000 unique values down to 1000 quantiles and con-

ducted simulations to investigate the effect of grouping. Our simulations suggested that

correlation point estimates remain similar after reducing the number of unique outcomes

22



from 2000 to 1000 by binning. Certainly the validity of this approximation might be case

by case depending on the distribution of lab values, but it is reasonable in the context of 50

labs we studied as the numbers of unique values for most of the labs affected by the binning

were only slightly above 1000 (evidenced in Table 2.4).

To apply M-estimation techniques to obtain confidence intervals and p-values, we needed

to calculate more expressions in addition to PSRs. Specifically, let n be the number of valid

observations for a biomarker and L be the number of distinct levels across all observa-

tions. We needed to calculate nL first order derivatives of log likelihood, L2 second order

derivatives of log likelihood, and nL first order derivatives of PSRs and then invert the large

information matrix. This added more computational burden. As a workaround, we reduced

L by grouping lab test results with more than 200 unique values down to 200 quantiles

when computing confidence intervals and p-values. Note that about 50% of the lab tests

had fewer than 200 unique values. It is interesting to explore the impact of binning on esti-

mation of p-values. We investigated this by comparing the p-values estimated by grouping

to 200 quantiles versus 100 quantiles. Fig. 2.1 shows the comparison of log of p-values in

two different binning methods (200 versus 100). Most of them appear to be consistent.

Second, we estimated partial rank correlations conditional on gender and conditional

on diabetes status. Both covariates are binary. Diabetes was defined in these analyses

as having at least one of the following ICD codes: “250.00”, “250.01”, “250.02”, and

“E11.9”. We inherited the model outputs from the calculation of partial correlations. Also,

in theory, we needed to fit new models adding diabetes status as a covariate when we

evaluated the conditional correlation on diabetes. In practice, the difference in PSRs were

small (see discussions in Appendix B), so it was justified to just use the outputs from the

CPMs including demographical covariates only.
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Figure 2.1: The Impact of Binning on Estimation of P-values
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2.3 Results: Estimation and Inference

We calculated the point estimates and confidence intervals of partial correlations among

all pairwise combinations of the most frequent 250 ICD codes and 50 lab results, and

then compared them with the unadjusted Spearman’s rank correlation. Any strong contrast

between the adjusted and unadjusted correlations may suggest the impact of demographic

covariates on the associations of biomarkers. We also calculated the point estimates and

confidence intervals of partial correlations conditional on gender or diabetes status as well

as the p-value of testing whether the partial correlations across two strata are the same.

Although Fig. 2.2 provides an overall view of the pairwise correlations, it is helpful

to be able to look more closely at specific correlations. We developed a Shiny app to

help visualize the results. Fig. 2.2 shows a heat map of the pairwise covariate-adjusted

Spearman’s rank correlation for the 300 variables in the VUMC EHR data. Q1 and Q2

indicate the pairwise biomarkers. The left bottom square is for the pairwise correlation

among 250 ICD codes, and the right top square is for 50 lab values. The left top and right

bottom regions are for correlations between ICD codes and lab values. It appears that most

correlations among ICD codes are positive, which suggests that a patient diagnosed with

some disease tends to be diagnosed with other diseases. There are many strong correlations

among the lab values as well. It is interesting that most correlations between ICD codes and

lab values are weak. Intuitively, disease is a complicated issue which cannot be inferred

from only a single lab test.

In addition to showing pairwise Spearman’s correlations, the Shiny app also allows

us to see the heat maps for unadjusted Spearman’s correlation and the difference between

the unadjusted and adjusted correlations. In addition, it includes 95% confidence inter-

vals calculated through M-estimation based on large sample approximations and Fisher’s

transformation. Investigators can zoom into any specific area in the heat map and click the

points to see the summary statistic of biomarkers around this region.

Fig. 2.3 shows a screenshot of the difference between adjusted and unadjusted Spear-
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man’s correlations zooming in a particular region. For example, the unadjusted Spearman’s

rank correlation between red blood cells (RBC) and mean Corpuscular Hemoglobin Con-

centration (MCHC) is 0.21, whereas the adjusted correlation is 0.09 (95% CI: 0.086, 0.093),

suggesting that the strength of association between RBC and MCHC is explained in part

by demographical variables.

Another aspect to check our results is through gender-specific diseases. For example,

screening for malignant neoplasms of cervix (ICD code “V76.2”) is for females only, while

screening for malignant neoplasms of prostate (ICD code “V76.44”) is for males only. It is

not applicable to calculate the correlation between them. Therefore, we set the unadjusted

correlations to be NA. Otherwise, one may end up with a strong correlation as they are

exclusive from each other. However, the correlations of PSRs are close to 0 because we

have removed the impact of gender. Note that normally we would not be able to fit the

CPM if the ICD code is gender specific (e.g. for female only). However, there were some

errors in recording the patient’s gender such that a few males (females) showed up for

female (male) only ICD code such that the estimation of coefficients in the model was

possible. Nevertheless, this is a good example of diluted correlations after adjusting for

demographical variables.

We also examined partial correlations conditional on sex and conditional on diabetes

status. The main interest lies in whether the pairwise correlations among two variables

differ between males and females or between diabetics and non-diabetics. In addition to

the Shiny app for partial correlations, we also developed apps to facilitate the visualization

of conditional partial correlations for sex and diabetes. For example, we show the partial

correlations for males, females, and their difference.

Fig. 2.4 shows the difference between partial rank correlations for males and females

for a subset of ICD codes. We see that the associations between a disorder of bone and

cartilage (ICD code “733.90”) and other diseases is generally stronger for females than

males. In contrast, Fig. 2.5 shows the difference in partial correlations between males and
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females for the 50 lab values. There is little difference between sexes. It is interesting

to note that the occurrences of “Simpson’s paradox”: marginal partial correlation, that

is either smaller or greater than both conditional partial correlations. For example, the

marginal partial correlation between disorders of bursae and tendons in shoulder region

(ICD code “726.10”) and nausea with vomiting (ICD code “611.72”) is 0.027, which is

smaller than both the conditional partial correlation for males (0.068) and females (0.075).

This paradoxical scenario actually occurred among 4.2% of all pairwise associations.

We also show the partial rank correlations for patients with diabetes, with no diabetes,

and the difference. Fig. 2.6 shows the difference between partial rank correlations for

patients with and without diabetes. It appears that pairwise partial correlations among

ICD codes for patients with diabetes are higher than those without diabetes. For example,

the partial Spearman’s rank correlation between Long-term (current) use of insulin (ICD

code “V58.67”) and Long-term (current) use of aspirin (ICD code “V58.66”) is 0.246 for

diabetics and 0.066 for non-diabetics, suggesting that the strength of association between

the use of insulin and aspirin is higher for those with diabetes. Another example is to look

at the association between glucose and chloride in blood. It is −0.227 for diabetics and

0.005 for non-diabetics.
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Figure 2.2: Heat map of the pairwise covariate-adjusted Spearman’s rank correlations for ICD codes and
laboratory tests in the VUMC EHR
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Chapter 3

Conclusions

3.1 Summary

In this thesis, we applied a new method to assess covariate-adjusted rank correlations

among all pairwise combinations of the most frequent 250 ICD codes and 50 lab results

among 472,570 patients in the VUMC EHR. With the combination of cumulative probabil-

ity models and probability scale residuals, our estimators are rank-based, robust, and can

be implemented to large datasets. We highlight some computational challenges in practice

and workarounds for applications in big data.

We present our results with estimates and confidence intervals for the partial rank cor-

relation as well as the conditional partial correlation stratified by sex and diabetes status.

With further investigations, this could serve as a guidebook for researchers interested in

internal associations among EHR features.

The main strength of our approach is that it can be applied to most data types in the

EHR while adjusting for covariates and does not require selecting proper transformation for

outcomes with skewed distributions. For investigators interested in the difference in condi-

tional correlation across strata, our method can provide a formal hypothesis test. There are

a few limitations in our approach as well. First, different lab test results may have various

kinds of skewed distributions. We simply used the logit link for all labs in the CPM which

has been seen in prior work to be fairly robust [10]. However, one could also use other

link functions. Second, we tried our best not to drop useful information in the process

of converting lab values to continuous or ordered categorical variables. But information

still may be lost for some labs, especially those with text records. Third, the simplified

approach in decoding ICD code status (never vs. any) and lab values (taking the earliest

one if multiple) may be over simplified. In fact, the longitudinal history for a patient’s ICD
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code assignment and ordered labs may provide some useful information, which calls for

more thorough consideration in this procedure.

3.2 Future Research

There are a few potential directions for future work.

First, the data we received contain both ICD-9 and ICD-10 codes. We treated each

unique ICD code separately and did not pre-cluster codes. It may be worthwhile to group

similar ICD codes before further analyses. For example, there are 5 ICD codes related to

diabetes out of the 250 ICD codes we analyzed. We may want to group them into a single

ICD code.

Second, the workarounds we proposed in this work are somewhat ad-hoc and warrant

further investigation. We did show that the impact was minor when we group lab values

more compactly (from 200 bins to 100 bins). It may be worthwhile to study characteristics

of those correlations whose inference is greatly affected by binning and to explore how to

improve inference for those correlations.

Third, there were reasonable amount of censored observations in lab results. Our quick

treatment was rounding them to the nearest detection limit. We actually did a good job

when the detection limit was fixed. However, when we have multiple detection limits (e.g.

they evolve with time), there are potentially better solutions for censored data. One may

want to redo the analyses for those lab values with multiple detection limits to account for

censoring by applying different models (e.g. Cox models).
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Appendix A

Summary of ICD Codes
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Table A.1: Summary of ICD codes

ICD code percentage ICD code percentage ICD code percentage ICD code percentage ICD code percentage
726.10 2.5 781.2 2.9 702.0 3.5 327.23 5.1 785.1 7.7
V58.65 2.5 412 2.9 28 3.5 733.90 5.1 782.3 7.9
719.49 2.6 278.01 2.9 715.90 3.5 Z01.419 5.1 278.00 7.9
787.03 2.6 380.4 2.9 402 3.5 427.9 5.1 461.9 7.9
M54.5 2.6 276.2 2.9 553.3 3.6 V58.61 5.1 724.5 8
728.85 2.6 616.10 2.9 V72.81 3.6 366.16 5.2 V76.51 8
793.19 2.6 477.0 2.9 959.01 3.6 250.02 5.2 780.4 8.1
V10.83 2.6 V45.81 2.9 625.9 3.7 V74.5 5.2 V76.2 8.1
346.90 2.6 478.0 3 721.3 3.7 780.6 5.2 719.41 8.2
789.07 2.6 784.2 3 E11.9 3.7 458.9 5.2 723.1 8.5
R05 2.6 286.9 3 733.00 3.7 584.9 5.2 787.91 8.5
789.59 2.6 V58.67 3 518.81 3.7 211.3 5.4 V72.9 8.7
786.07 2.6 V58.11 3 V05.9 3.8 Z00.00 5.4 300.00 9.2
719.40 2.6 V58.49 3 783.21 3.8 428.0 5.5 244.9 9.2
V12.72 2.6 599.70 3 V22.1 3.8 285.1 5.6 719.46 9.4
470 2.6 V24.2 3 780.39 3.8 466.0 5.7 305.1 9.6
719.43 2.7 E03.9 3 I25.10 3.8 99.04 5.7 465.9 9.7
599.7 2.7 585.9 3 V27.0 3.9 790.29 5.8 272.0 9.8
433.10 2.7 716.90 3.1 789.06 3.9 780.2 5.8 477.9 10.4
558.9 2.7 V22.0 3.1 338.18 3.9 Z79.899 5.8 272.2 10.5
799.02 2.7 V06.8 3.1 780.09 3.9 238.2 5.9 414.01 10.6
V72.3 2.7 724.4 3.1 796.2 3.9 268.9 5.9 285.9 10.7
455.0 2.7 411.1 3.1 V06.1 3.9 V58.81 6 311 10.8
786.52 2.7 780.50 3.1 719.44 3.9 486 6.1 V67.00 10.9
25 2.7 413.9 3.1 V76.44 3.9 V03.82 6.1 518.0 11.2
V77.1 2.7 V54.89 3.2 787.20 4 787.02 6.1 786.09 11.2
263.9 2.7 381.81 3.2 702.19 4.1 V15.82 6.1 786.59 11.9
V58.78 2.7 780.57 3.2 780.97 4.1 788.1 6.1 I10 12.1
789.04 2.7 356.9 3.2 375.15 4.2 562.10 6.1 784.0 12.1
388.70 2.7 578.1 3.2 959.8 4.2 564.00 6.2 V71.7 12.1
626.2 2.7 424.1 3.2 593.9 4.2 518.89 6.3 599.0 12.2
564.1 2.7 473.9 3.2 288.60 4.3 511.9 6.3 250.00 12.8
429.9 2.7 280.9 3.2 627.2 4.3 782.0 6.4 724.2 13.2
472.0 2.7 789.01 3.2 785.6 4.3 429.3 6.4 77 14
724.02 2.8 793.80 3.2 E78.5 4.3 729.1 6.4 789.00 14.1
V70.7 2.8 715.96 3.2 V58.82 4.4 780.60 6.5 401.1 14.5
571.8 2.8 626.4 3.3 496 4.5 719.45 6.5 V72.31 14.8
272 2.8 287.5 3.3 427.89 4.5 427.31 6.5 786.2 15.1
783.1 2.8 V58.66 3.3 E78.2 4.6 V77.91 6.7 V67.09 15.6
V72.62 2.8 715.16 3.3 38.93 4.6 414.00 6.8 V04.81 15.6
88.56 2.8 794.8 3.3 722.52 4.6 719.47 6.9 530.81 15.7
728.87 2.8 276.7 3.4 424.0 4.6 462 6.9 729.5 16.3
414.9 2.8 789.03 3.4 493.90 4.7 276.8 7.1 786.05 16.3
592.0 2.8 Z12.31 3.4 729.81 4.7 782.1 7.2 V58.69 18.8
607.84 2.8 367.1 3.4 790.6 4.8 789.09 7.3 272.4 19
338.29 2.8 K21.9 3.4 780.52 4.8 V45.89 7.4 786.50 19.4
250.01 2.8 276.1 3.4 959.7 4.8 Z23 7.4 V70.0 19.6
279.3 2.8 478.19 3.4 788.41 4.9 785.0 7.5 V72.83 20.4
794.31 2.9 V71.89 3.4 692.9 4.9 V76.12 7.5 780.79 24.3
V45.82 2.9 611.72 3.5 276.51 4.9 787.01 7.5 401.9 31.8

End
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Appendix B

Discussion on Conditional Correlation

Assume that we are interested in the partial rank correlations between biomarker Y1 and

Y2 conditional on diabetes status. The correct approach is to fit one model for Y1:

log
P(Y1 ≤ k)

1−P(Y1 ≤ k)
∼ DIABETES+SEX+RACE+ rcs(BMI,3)+ rcs(AGE,3)+βk0,

and another model for Y2:

log
P(Y2 ≤ k∗)

1−P(Y2 ≤ k∗)
∼ DIABETES+SEX+RACE+ rcs(BMI,3)+ rcs(AGE,3)+βk∗0,

and then calculate the sample correlation of the PSRs of these two models. In practice,

this correlation is close to the partial correlation that we calculated earlier based on the two

models including demographic covariates only (i.e., not including diabetes). For example,

the correct conditional correlations between disorders of bursae and tendons in shoulder

region (ICD code “726.10”) and long-term use of steroids (ICD code “V58.65”) are 0.0215

and 0.0224 for diabetes and non-diabetes respectively, and the ones we obtained from mod-

els not including diabetes are 0.0243 and 0.0226 respectively. Therefore, instead of refit-

ting new models including diabetes as an extra covariate, we inherited all the outputs from

models not including diabetes and used them to obtain the point estimate and inference of

conditional correlation in both stratum (diabetes and non-diabetes).
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