
Adaptive Methods and Collocation by Splines for Solving Differential Equations

By

Shiying Li

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Mathematics

August 9, 2019

Nashville, Tennessee

Approved:

Larry Schumaker, Ph.D.

Marian Neamtu, Ph.D.

Akram Aldroubi, Ph.D.

Caglar Oskay, Ph.D.

Alexander Powell, Ph.D.

To my dear parents, Qiang Li and Li Dai

ii

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Prof. Larry Schumaker and co-advisor

Prof. Mike Neamtu. I am grateful for the freedom that Prof. Schumaker gave me to explore areas of

interest on my own as well as his generous help in supporting me to attend many wonderful workshops and

conferences both in the US and Europe. Through his wise guidance in our first project, I learned to write

relatively complicated codes and became motivated and comfortable in programming. I also appreciate his

patience and tremendous help when we were writing our first paper; we had to communicate via emails

since I was in China during that time. I am also very grateful for the financial support Prof. Schumaker

kindly provided in several summers and my last year at Vanderbilt. The observation of his diligence and

organization in daily research and always giving honest opinions will have a lasting influence in my future

career and life. I am also extremely grateful to my co-advisor Prof. Neamtu for his genuine care for the

development of students and time in many insightful discussions about IGA and collocation methods, despite

an overwhelming schedule. He made an effort in identifying good summer schools and workshops for me

and generously supported my travel. His optimistic attitude and fearlessness when facing a challenging

research problem has been a constant encouragement to me. Lastly, I would like to thank Prof. Neamtu

for his sincere effort in helping and care for my fellow student Ziliang and his family last winter, which

comforted his family and friends including me greatly during that difficult time.

Many thanks to my committee members, Professors Akram Aldroubi, Caglar Oskay and Alexander

Powell, for spending precious time reading and revising this manuscript. I especially thank Prof. Aldroubi

for his encouragement through the years and introducing me to a very nice lab and research area for my

postdoc career. I would also like to thank Professors Bruce Hughes and Jesse Peterson for writing and

sending recommendation letters for me. Prof. Hughes and Dr. Jakayla Robbins’s instruction style has had

an impact on the way I teach and I thank them for their genuine care for me and other students.

I would also like to thank my fellow graduate students in our department for their friendship and support.

Special thanks to Longxiu Huang and Bin Sun who offered me some insightful ideas related to a lemma in

the thesis and generously shared their experiences related to the graduation and OPT application process

with me.

My very special thanks to my family in China and Nashville Chinese Baptist Church (NCBC) family

iii

here. My parents have always supported me with their love and understanding. I also thank my younger

brother for taking care of them when I am in the US and his encouragement. I am deeply indebted to Andrew

Siao and Iwen Chia, who treated me like their daughter in faith and supported me with constant prayer,

encouragement and care, along with many other elders and friends in NCBC. In particular, I am grateful

to Mengying Xi for her sincere company, Joy Wang for her humor and positive words, and Chunxue Wang

for her wisdom in clarifying various issues for me. Most importantly, I thank God for being my guide and

strength.

iv

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . viii

Chapter

1 Introduction . 1

1.1 Adaptive Methods by Splines on H-Triangulations . 1

1.2 Collocation Methods . 1

2 Spline Tools . 4

2.1 B-splines . 4

2.2 Splines on Triangulations . 5

2.3 Tensor-Product Splines . 6

2.4 Spline Quasi-interpolation . 7

2.5 Spline Approximation Theory . 9

3 Spline-Based Adaptive Methods . 11

3.1 Introduction . 11

3.1.1 Splines on H-Triangulations . 11

3.1.2 Approximation Power of Splines on H-triangulations 13

3.2 Local Refinements and A Posteriori Error Estimators . 14

3.3 The Ritz-Galerkin Method . 17

3.4 Numerical Examples . 19

3.5 Remarks . 24

4 Collocation Methods . 31

4.1 Notations . 31

4.2 Collocation with Cubic Splines . 32

4.3 A Generalized Collocation Method for L = D2 . 39

4.4 A Model for the Generalized Collocation Methods . 43

4.5 Numerical Examples Using the Generalized Collocation . 48

4.5.1 1D Examples . 48

4.5.2 2D Examples . 53

4.6 Least-squares Collocation for Poisson’s Problem Using Splines on Triangulations 59

Appendix . 68

BIBLIOGRAPHY . 71

v

LIST OF TABLES

Table Page

3.4.1 Table of errors for Example 3.4.1 with d = 4 . 20

3.4.2 Table of errors for Example 3.4.1 with d = 5 . 20

3.4.3 Table of errors for Example 3.4.2 with d = 3 . 22

3.4.4 Table of errors for Example 3.4.2 with d = 5 . 22

3.4.5 Table of errors for Example 3.4.2 with d = 7 . 23

3.4.6 Table of errors for Example 3.4.3 with d = 3 . 23

3.4.7 Table of errors for Example 3.4.3 with d = 5 . 24

3.4.8 Table of errors for Example 3.4.3 with d = 7 . 24

3.4.9 Table of errors for Example 3.4.4 with d = 3 . 25

4.3.1 u = ex on [0,1] . 43

4.3.2 u = log(1+ x) on [0,1] . 43

4.3.3 u = (x− 1
2
)7
+ on [0,1] . 43

4.3.4 u = (x− 1
π)

7
+ on [0,1] . 44

4.3.5 u = (x− 1
π)

5
+ on [0,1] . 44

4.5.1 u = ex with Gencol, d = 3 . 49

4.5.2 u = ex with Gencol, d = 4 . 49

4.5.3 u = ex with Gencol, d = 5 . 49

4.5.4 u = ex with Ordcol, d = 3 . 50

4.5.5 u = ex with Ordcol, d = 4 . 50

4.5.6 u = ex with Ordcol, d = 5 . 50

4.5.7 u = sin(x) with Gencol, d = 3 . 52

4.5.8 u = sin(x) with Gencol, d = 4 . 52

4.5.9 u = sin(x) with Gencol, d = 5 . 52

4.5.10 u = sin(x) with Ordcol, d = 3 . 53

4.5.11 u = sin(x) with Ordcol, d = 4 . 53

4.5.12 u = sin(x) with Ordcol, d = 5 . 53

vi

4.5.13 u = 1
1+25x2 with Gencol, d = 3 . 54

4.5.14 u = 1
1+25x2 with Gencol, d = 4 . 54

4.5.15 u = 1
1+25x2 with Gencol, d = 5 . 54

4.5.16 u = 1
1+25x2 with Ordcol, d = 3 . 54

4.5.17 u = 1
1+25x2 with Ordcol, d = 4 . 55

4.5.18 u = 1
1+25x2 with Ordcol, d = 5 . 55

4.5.19 u = sin(x2 + y2)+ .1sin(25(x2 + y2)), TPGencol with S2
3(△)

⊗
S2

3(△) 56

4.5.20 u = sin(x2 + y2)+ .1sin(25(x2 + y2)), TPOrdcol with S2
3(△)

⊗
S2

3(△) 57

4.5.21 u =−sin(4x)− sin(4y), TPGencol with S2
3(△)

⊗
S2

3(△) 57

4.5.22 u =−sin(4x)− sin(4y), TPOrdcol with S2
3(△)

⊗
S2

3(△) 57

4.5.23 u = ex+2y2

+20sin(5x2 + y), TPGencol with S2
3(△)

⊗
S2

3(△) 58

4.5.24 u = ex+2y2

+20sin(5x2 + y), TPOrdcol with S2
3(△)

⊗
S2

3(△) 59

4.6.1 Least-squares collocation for Example 4.6.1 using S
2,4
9 (△) 67

vii

LIST OF FIGURES

Figure Page

3.1.1 An H-triangulation . 12

3.4.1 Results for Example 3.4.1 with d = 4 . 21

3.4.2 Results for Example 3.4.2 with d = 7 . 29

3.4.3 Results for Example 3.4.4 . 30

4.5.1 u = sin(x2 + y2)+ .1sin(25(x2 + y2)) in Example 4.5.4 . 56

4.5.2 u =−sin(4x)− sin(4y) in Example 4.5.5 . 58

4.5.3 u = ex+2y2

+20sin(5x2 + y) in Example 4.5.6 . 59

viii

Chapter 1

Introduction

1.1 Adaptive Methods by Splines on H-Triangulations

The discussion about adaptive methods by splines on H-triangulations is in Chapter 3. Polynomial

splines defined on ordinary triangulations are a well known and highly effective tool in numerical mathe-

matics, and are used in a variety of settings for approximating data and solving partial differential equations

numerically, among other things. The recent book [38] explains in detail how to compute with such splines

efficiently using Bernstein–Bézier techniques, and even includes an extensive Matlab library.

Polynomial splines defined on triangulations with hanging vertices (H-triangulations) have been used for

some time by engineers to solve boundary value problems (BVP), see [1, 3, 41] to cite just a few examples.

The main advantage of allowing hanging vertices is that it allows much simpler local adaptive refinement

techniques than is possible in the framework of ordinary triangulations.

On the other hand, splines on triangulations with hanging vertices have been treated in the mathematical

literature only recently — see [40], where questions such as dimension, construction of stable local bases,

and approximation power are dealt with using Bernstein–Bézier techniques. The purpose of our study is to

show how these same techniques can effectively be used for computing with such splines, thus avoiding the

use of parametric maps as is common in the engineering literature.

All of the numerical algorithms described in [38] for working with splines on ordinary triangulations can

be carried over to the case of H-triangulations. These include a variety of scattered data fitting methods such

as minimal energy methods, local macro-element based methods, and local methods based on derivative

estimation. They also include least-squares fitting and penalized least-squares for fitting noisy data. Chapter

3 of this manuscript is focused on adaptive computation using splines on H-triangulations, with two specific

applications :1) function approximation, and 2) solution of boundary value problems for partial differential

equations. This part is largely from the paper [26].

1.2 Collocation Methods

The discussion about collocation methods is in Chapter 4. The application of the collocation methods

to differential equations appeared as early as 1930s [16]. Two basic ingredients of collocation are a finite

1

dimensional space of trial functions and a set of points to be collocated by the differential equations. Collo-

cating with cubic splines were first seen in [8, 17] to solve two-point boundary value problems. Russell and

Shampine [32] developed a general theory for solving two-point boundary problems involving m-th order

ordinary differential equations using splines in Cm. Existence, uniqueness and convergence properties of a

solution was treated. In general, a convergence order of (d+1−m) is obtained for sufficiently smooth solu-

tions , where d is the degree of spline space involved. deBoor and Swartz [11] generalized their argument to

collocation using Cm−1 splines and proposed the use of Gauss-Legendre points in each subinterval to obtain

optimal order accuracy, which is also known as the orthogonal spline collocation (OSC) method nowadays,

see the survey paper [14] by Fairweather and Meade and references therein. Applications and analysis of the

OSC method to partial differential equations can be found in [7, 31] among many others. In particular, for

an overview of convergence theory of the OSC methods, see Sect. 3.2 in [7], where references of optimal

order H1, H2 or L2 error estimates for different types of elliptic boundary value problems are directed. A

recent application of the OSC method to the Navier-Stokes equations can be found in [15]. Collocating at

other special collocation sets such as Cauchy-Galerkin points in [19] leads to production of the Galerkin

solution. One drawback of this idea is that these points are not easy to obtain in general and can only be

estimated in practice. A comparison of the numerical performance of various collocation sets can be found

in [29].

In this thesis, we presented an alternative proof of existence and error bounds to that in [32, 11] in the

case of of cubic collocation on the knots for linear second-order two-point boundary value problems and

extended the proof to the case when the collocation points are the associated Greville points. While their

proofs deal with more general cases, i.e., higher-order ordinary differential equations (both linear and non-

linear), our proof does not rely heavily on the properties of the Green’s function associated with a specific

differential operator and the constants in our error bounds are more tractable. To achieve higher order

convergence, instead of collocating at special points such as the OSC method, we introduce a generalized

collocation model by modifying the collocation equations based on certain quasi-interpolation operators.

The collocation points being used can be simply uniformly distributed points or Greville points. Algorithms

using spline spaces of maximum smoothness for both 1D and 2D problems (second-order elliptic partial

differential equations in the unit square) have been proposed and numerical examples showing optimal

convergence results for spline spaces of various degrees are given. A detailed analysis for the generalized

collocation using C2 cubic splines in the case when the differential operator L = D2 is also given. After

2

completing the research, we found out that similar results had been proved for the C2 cubic case in Archer’s

Ph.D. thesis [4], in which the term modified collocation is used. Archer later generalized this idea to obtain

optimal convergence rate using C1 cubic splines in [5]. Irodotou-Ellina and Houstis developed an O(h6)

modified collocation method with quintic splines for linear fourth-order two-point boundary value problems

in [22] and extended the method to more general problems in [21]. Houstis et al. [20] presented a modified

collocation method using C2 bicubic splines for solving elliptic BVP in the unit square, the numerical results

of which can be compared with ours in Sec. 4.5.2. A connection between the modified collocation and the

so-called deferred correction process [17] has been noted in several papers, e.g. [22, 20], which is considered

an alternative way to achieve optimal convergence rates.

In Sec. 4.6, a least-squares collocation problem using C2 spline spaces defined on triangulations is for-

mulated for the Poisson problem. A sufficient condition on the choice of collocation points which guarantees

the existence of a unique collocation solution is given and an example of such choice is also provided. In

Theorem 4.6.1, an error bound for the collocation solution comparing the error with the error of best ap-

proximation in W 2,∞-norm to the solution of the Poisson problem is given. Results on convergence rates are

given in Theorem 4.6.2. Numerical examples are tested for S
2,4
9 (△), a macro-element spline space of degree

9.

3

Chapter 2

Spline Tools

2.1 B-splines

Univariate splines are piecewise polynomials defined on a partition △ of an interval I = [a,b], where the

partition is defined by a set of points △ := {xi}k+1
i=0 with a = x0 < x1 < · · ·< xk < xk+1 = b. The mesh size is

defined to be h := max
i=1,...k+1

|xi − xi−1|. We recall the following definitions and properties guided by classical

spline literature, see e.g., [10, 35].

Given integers 0 ≤ r < d and a partition △, the space of univariate splines of smoothness r and degree

d is defined as

Sr
d(△) := {s ∈Cr(I) : s|(xi,xi+1) ∈ Pd , i = 0, ...,k}, (2.1)

where Pd is the space of univariate polynomials of degree at most d. It is well known that the dimension of

spline space Sr
d(△) is

n := dimSr
d(△) = k(d − r)+d+1. (2.2)

The associated extended partition △e is defined to be {yi}n+d+1
i=1 , where n is the dimension of Sr

d(△),

a = y1 = · · ·= yd+1, yn+1 = · · ·= yn+d+1 = b,

and

yd+2 ≤ ·· · ≤ yn =

d−r︷ ︸︸ ︷
x1, ...,x1, · · · ,

d−r︷ ︸︸ ︷
xk, ...,xk .

Given an extended partition △e, starting from m = 1, the B-splines of order m can be generated recur-

sively by the Cox-de Boor formula, where

N1
i (t) :=

1, yi ≤ t < yi+1,

0, otherwise,

(2.3)

4

and

Nm
i :=

t−yi

yi+m−1−yi
Nm−1

i + yi+m−t
yi+m−yi+1

Nm−1
i+1 , yi ≤ t < yi+m,

0, otherwise,

(2.4)

for 2 ≤ m ≤ d +1 and i = 1, ...,n+d −m+1.

2.2 Splines on Triangulations

Bernstein–Bézier techniques are the key tools for dealing with splines on ordinary triangulations, see

[24]. Given a non-degenerate triangle T :=< v1,v2,v3 > in R
2 and an integer d > 0, the associated Bernstein

basis polynomial of degree d relative to T are defined as

Bd
i jk :=

d!

i! j!k!
bi

1b
j
2bk

3, i+ j+ k = d, (2.5)

where b1(x,y),b2(x,y),b3(x,y) are the linear functions giving the barycentric coordinates of the point (x,y)

relative to T and i, j,k are non-negative integers. The associated set of domain points of degree d is

Dd,T := {ξ T
i jk :=

iv1 + jv2 + kv3

d
, i+ j+ k = d}.

It is easy to associate each domain point with a Bernstein basis polynomial. We may also index the basis

polynomials as {BT
ξ }ξ∈Dd,T

. Note that the number of these basis polynomials associated to a triangle T is

nd := (d +1)(d +2)/2.

A collection △ := {Ti}nt

i=1 of triangles in the plane is called a triangulation of Ω =
⋃nt

i=1 Ti, provided the

non-empty intersection of any pair of triangles is either a common vertex or a common edge. We denote the

mesh size of △ as |△| := max
Ti∈△

|Ti|. Given a triangulation △, we write PP(△) for the linear space of all

piecewise polynomials defined on △. Then for any s ∈ PP(△) and any T ∈△, we can write

s|T = ∑
ξ∈Dd,T

cξ BT
ξ .

The coefficients cξ are called the B-coefficients of s. It is easy to see that PP(△) is in 1-1 correspondence

with the set of domain points

Dd,△ :=
⋃

T∈△
Dd,T

5

associated with △, where here the union is to be understood in the sense that multiple appearances of the

same point are allowed. This implies immediately that dimPP(△) = ntnd .

2.3 Tensor-Product Splines

In spaces of dimension two or larger, tensor-product splines are convenient approximation tools. These

splines are simply tensor products of univariate B-splines. Consider a (hyper-) cube Ω :=
⊗N

i=1[a j,b j] in

R
N , and partitions △ j := {x

j
i }

k j+1

i=0 with a j = x
j
0 < x

j
1 < · · · < x

j
k j
< x

j
k j+1 = b j with j = 1, ...,N, and let

α := (α1, ...,αN) be a multi-index and

Ωα :=
N⊗

j=1

[x j
α j
,x j

α j+1),

where 0 ≤ α j ≤ k j and we replace the corresponding half-open intervals by closed intervals when α j = k j.

This partitions Ω into
N

∏
i=1

(ki + 1) subcubes. We denote the space of tensor-product polynomials of degree

d := (d1, ...,dN) as

P
d := {p(x) : p(x) = ∑

β≤d

cβ xβ},

where xβ follows the usual multi-index power rule with x = (x1, ...,xN) and β = (β1, ...,βN), and “≤” is a

partial order induced by the component-wise comparison.

Given multi-index N-tuples d and r, let

Sr
d := {s(x) ∈Cr(Ω) : s|Ωα ∈ P

d,α ≤ k}

where k = (k1, ...,kN) and Cr(Ω) is the set of all functions on Ω such that the partial derivatives Dγu are

continuous for all N-tuple γ ≤ r. We call this space of the tensor-product splines of degree d and smoothness

r. It is common to denote the above space as
N⊗

j=1

S
r j

d j
(△ j), where each S

r j

d j
(△ j) is a univariate spline space

defined in Section 2.1. A basis for this space is of the form

N
d+1

i (x) :=
N

∏
j=1

N
d j+1

i j
(x j), 1 ≤ i j ≤ n j, (2.6)

where i = (i1, ..., iN), N
d j+1

i j
is a univariate B-spline basis function in the corresponding space dimension and

n j is the dimension of the space S
r j

d j
(△ j). For more properties of these tensor-product B-splines, see [38].

6

2.4 Spline Quasi-interpolation

Spline quasi-interpolation (QI) is an approximation scheme of the following form:

Qu := ∑λi(u)Ni, (2.7)

where u is a continuous function defined on some domain, λi is a linear functional and {Ni} is a basis of

a certain spline space Sr
d(△). A construction theory and properties of such schemes can be found in [27].

Unlike Lagrange interpolation or least-squares approximation, they can be constructed directly with local

information on the function u. Here we introduce the case when the linear functional λi takes local values of

u in a neighborhood of the support of Ni, in contrast to other possibilities like derivatives or local integrals of

u. In general, we impose that Q is a projection on the space of polynomials of total degree at most d. Various

constructions of such Q have an order of accuracy comparable to the best approximation in the spline space

used.

The following notion of local boundedness is useful in proving error bounds for a quasi-interpolation

operator. We repeat Definition 1.52 in [38]:

Definition 2.4.1. Suppose Q is a linear operator mapping C[a,b] to Sr
d(△), and suppose there exist constants

K1,K2 independent of u such that for every subinterval Ii of the partition △, there exists an interval Ji

containing Ii with

1) |Ji| ≤ K1|Ii|

2) ||Qu||L∞(Ii) ≤ K2||u||L∞(Ji) for all u ∈C[a,b].

Then we say that Q is locally bounded.

According to Theorem 1.53 in [38], a locally bounded quasi-interpolation operator Q which reproduces

polynomials up to degree d has the following property: for every u ∈Cm[a,b] with 1 ≤ m ≤ d +1,

||D j(f −Qu)||L∞[a,b] ≤ Khm− j||Dmu||L∞[a,b], (2.8)

for all 0 ≤ j ≤ min(m− 1,r). For j = 0, the constant K depends only on d and the constants K1,K2 in

the above definition. For j > 0, it also depends on the global mesh ratio σ :=
max

0≤i≤k
(xi+1−xi)

min
0≤i≤k

(xi+1−xi)
associated the

partition △ being used.

7

We give a few explicit schemes in the one-dimensional setting, see more details in [33]. For multidi-

mensional quasi-interpolation schemes, see [27]. In the following examples, let I = [a,b] and △= a = x0 <

x1 < · · · < xk < xk+1 = b be a uniform partition of I, i.e., xi = a+ ih and h = b−a
k+1

. Given a spline space

Sd−1
d (△), define a quasi-interpolation operator Q of the form

Qu :=
n

∑
j=1

λ j(u)N j, (2.9)

where n is the dimension of the spline space and {Ni}n
i=1 is the associated B-spline basis.

Example 2.4.1. Consider the cubic spline space Sh := S2
3(△) where n = k+4. Given a continuous function

u, a cubic quasi-interpolation operator Q3 : C[a,b] → Sh is defined such that the coefficient functionals

are: λ1(u) = u(x0), λ2(u) =
1
18
(7u(x0)+18u(x1)−9u(x2)+2u(x3)), λn−1(u) =

1
18
(2u(xn−6)−9u(xn−5)−

18u(xn−4)+7u(xn−3)), λn(u) = u(xn−3), and for 3 ≤ j ≤ n−2,

λ j(u) =
1

6
(−u(x j−3)+8u(x j−2)−u(x j−1)). (2.10)

Discussion: In this construction, the coefficient linear functionals only take values of u on the knots {x j}k+1
j=0

of the partition. According to [33], ||Q3||∞ ≤ 2 and Q3 p = p for all p ∈ P3.

Claim 2.4.1. The quasi-interpolation operator Q3 is locally bounded.

Proof. Let Ii = [xi−1,xi], i = 1, ...,k+1 and {N j}n
j=1 be the B-spline basis for the cubic spline space in this

example. For convenience we employ the convention that xi = x0 when i < 0, xi = xk+1 when i > k+1, and

N j(x) = 0 if j < 0 or j > n. Using the local properties of the B-splines, it is easy to verify that for x ∈ Ii,

Qu(x) =
i+3

∑
j=i

λ j(u)N j. Recall the definition of λ j and the partition of unity property of the basis {N j}n
j=1, we

have

||Qu||L∞(Ii) ≤ max
i≤ j≤i+3

|λ j| ≤ 2||u||L∞[x j−3 ,x j+2]. (2.11)

Hence by letting Ji = [x j−3,x j+2],K1 = 5 and K2 = 2, the claim is proved.

Hence by (2.8) we obtain that for u ∈Cm[a,b] with 1 ≤ m ≤ 4

||D j(u−Q3u)||L∞[a,b] ≤ Khm− j||Dmu||L∞[a,b], (2.12)

8

for all 0 ≤ j ≤ min(m − 1,2) and the constant K depends only on d = 3 and the constants K1,K2 as in

Definition 2.4.1. Note that ||u−Q3u)||L∞[a,b] ≤ Kh4||D4u||L∞[a,b] for all u ∈C4[a,b], which turns out to have

the same convergence rate in terms of the mesh size h as the best spline approximation in S2
3(△).

Example 2.4.2. Consider the quartic spline space Sh := S3
4(△) where n = k+5. Let T := {t j}n−2

j=1 be a set of

discrete points such that t1 = x0, tn−2 = xk+1 and t j =
1
2
(x j−2+x j−1) otherwise. Given a continuous function

u, a quartic quasi-interpolation operator Q4 :C[a,b]→ Sh is defined such that the coefficient functionals are:

λ1(u) = u(t1), λ2(u) =
17
105

u(t1)+
35
32

u(t2)− 35
96

u(t3)+
21

160
u(t4)− 5

224
u(t5), λ3(u) = − 19

45
u(t1)+

377
288

u(t2)+

61
288

u(t3)− 59
480

u(t4)+
7

288
u(t5), λ4(u) =

47
315

u(t1)− 77
144

u(t2)+
251
133

u(t3)− 97
240

u(t4)+
47

1008
u(t5), and for 5 ≤

j ≤ n−4,

λ j(u) =
47

1152
[u(t j−4)+u(t j)]−

107

288
[u(t j−3)+u(t j−1)]+

319

192
u(t j−2),

while λn−3,λn−2,λn−1,λn are defined accordingly by symmetry (of which we omit the explicit forms).

Discussion: In this construction, the coefficient linear functionals take values of u on the the set T , i.e., mid-

points of subintervals of the partition and endpoints of I. According to [33], ||Q4||∞ ≤ 3 and Q4 reproduces

polynomials up to degree 4. It can be shown that Q4 is locally bounded using similar arguments as in Claim

2.4.1. Hence for u ∈Cm[a,b] with 1 ≤ m ≤ 5,

||D j(u−Q4u)||L∞[a,b] ≤ Khm− j||Dmu||L∞[a,b], (2.13)

for all 0 ≤ j ≤ min(m − 1,3) and the constant K depends only on d = 4 and the constants K1,K2 as in

Definition 2.4.1. Note that ||u − Q4u||L∞ ≤ Ch5||D5u||L∞[0,1] for all u ∈ C5[a,b], which shows the same

convergence rate in terms of the mesh size h as the best spline approximation in S3
4(△).

2.5 Spline Approximation Theory

In this section we present some results about the approximation power of spline spaces defined on

partitions of an interval and on partitioned rectangles. For proofs of these results, see [35, 38]. In the two

theorems below, we follow the notations in Section 2.1 and 2.3 respectively.

Theorem 2.5.1. (cf. Sect. 6.5, 6.6 in [35] or Theorem 1.51 in [38]) Let Sr
d(△) be a space of univariate

splines defined on [a,b]. Suppose u ∈Cm[a,b] with 1 ≤ m ≤ d+1. Then there exists a spline s ∈ Sr
d(△) such

9

that

||D j(s−u)||L∞[a,b] ≤Chm− j||Dmu||L∞[a,b] (2.14)

for all 0 ≤ j ≤ min(m−1,r), where C depends only on d.

We remark that for u ∈Cd+1[a,b], the above error bound for ||s−u||L∞[a,b] is of order O(hd+1), which is

known to be the optimal order of approximation, see Sect. 6 in [35].

Theorem 2.5.2. (cf. Theorem 12.7 in [35] or Theorem 2.22 in [38]) Let S
r1

d1
(△1)

⊗
S

r2

d2
(△2) be a space of

tensor-product splines defined on a rectangle Ω. Suppose u ∈ Cm1,0(Ω)∩C0,m2(Ω) with 1 ≤ m1 ≤ d1 + 1

and 1 ≤ m2 ≤ d2 +1. Then there exists a spline S
r1

d1
(△1)

⊗
S

r2

d2
(△2) such that

||s−u||L∞(Ω) ≤C(hm1

1 ||Dm1
x u||L∞(Ω)+h2

m2 ||Dm2
y u||L∞(Ω)), (2.15)

where the constant C depends only on d1,d2 and hi is the mesh size corresponding to the univariate partition

△i with i = 1,2.

10

Chapter 3

Spline-Based Adaptive Methods

3.1 Introduction

3.1.1 Splines on H-Triangulations

Let △ := {Ti}nt

i=1 be a collection of triangles such that the interior of the domain Ω := ∪Ti is connected.

In addition, suppose that any pair of distinct triangles can intersect each other only at points on their edges.

Then we call △ an H-triangulation of Ω.

This definition allows triangulations to have hanging vertices, i.e., a vertex v of a triangle may lie in the

interior of an edge of another triangle. Whenever we refer to an H-triangulation, we assume it is regular and

without cycles in the sense of the paper [39].

It turns out that for splines defined on H-triangulations we can use the same Bernstein–Bézier techniques

that are the key tools for dealing with splines on ordinary triangulations.

For most applications we prefer to work with spaces of splines that are at least continuous, i.e., that

are subspaces of S0
d(△). Indeed, for many applications it suffices to work with S0

d(△) itself. This space

is well understood in the case of ordinary triangulations, but has to be treated with care when working on

H-triangulations.

First, we describe an efficient scheme for storing splines s ∈ S0
d(△). Rather than storing s as a member

of PP(△), which would involve ntnd coefficients, we can take advantage of the continuity of s and store

a smaller set of coefficients. Let D̂d,△ be the subset of Dd,△ obtained by choosing just one point at each

vertex, d −1 points on each edge, and the
(

d−1
2

)
points of Dd,T that lie inside of T for each triangle T ∈ △.

It is clear the cardinality of D̂d,△ is

nc = nv +(d−1)ne +

(
d −1

2

)
nt ,

where nv, ne, and nt are the numbers of vertices, edges, and triangles of △.

The number nc is not generally equal to the dimension of S0
d(△). Indeed, if the coefficients of s are

known for domain points on a composite edge e, then the C0 continuity of s determines all of its coefficients

associated with domain points on subedges of e. For example, consider a spline s ∈ S0
1(△) on the triangu-

11

v1

v2

v3

v4

v5

Figure 3.1.1: An H-triangulation

lation in Figure 3.1.1. Then since s reduces to a linear polynomial on the edge 〈v1,v4〉, it follows that the

value of s at the vertex v5 is determined by its values at the vertices v1 and v4.

To get the dimension of S0
d(△), we now look for a smallest set M of points in D̂d,△ such that setting

the corresponding coefficients of a spline s ∈ S0
d(△) uniquely determines all other coefficients. Such a set

is called a minimal determining set (MDS), see e.g. [24, 38, 40]. Let M be the subset of D̂d,△ which is

obtained from D̂d,△ by dropping the domain points at hanging vertices along with those lying in the interior

of edges which are proper subedges of composite edges. We quote the following theorem from [40].

Theorem 3.1.1. For any H-triangulation △, the set M is a MDS for S0
d(△), and

dimS0
d(△) = n̂v +(d−1)n̂e +

(
d −1

2

)
nt , (3.1)

where n̂v is the number of nonhanging vertices of △, and n̂e is the number of composite edges of △.

Proof. It is easy to verify that the set M described above is a minimal determining set for S0
d(△). It follows

that the dimension of S0
d(△) is just the cardinality of M , which is given by the formula in (3.1).

12

Suppose △= {Ti}nt

i=1 is an H-triangulation of a polygonal domain Ω, and let 0 ≤ r < d be given integers.

Then we define the associated space of splines of degree d and smoothness r to be

Sr
d(△) := {s ∈Cr(Ω) : s|Ti

∈ Pd for all i = 1, . . . ,nt},

where Pd := span{xiy j}0≤i+ j≤d is the usual space of polynomials of degree d. Clearly Sr
d(△) is a finite

dimensional linear space. For d ≥ 4r + 1 an explicit formula for its dimension in terms of d, r, and the

number of both hanging and nonhanging vertices of △ can be found in [40].

Certain superspline subspaces of Sr
d(△) defined on H-triangulations are also useful for applications.

Here we only recall their definition, leaving a disussion of computational methods for another time. Fix

0 ≤ 2r ≤ ρ < d. Then

S
r,ρ
d (△) := {s ∈ Sr

d(△) : s ∈Cρ(v) for all vertices of △}, (3.2)

is called a superspline space, where s ∈Cρ(v) means that the polynomial pieces s|T associated with triangles

T with a vertex at v have common derivatives up to order ρ at the point v. They were introduced in [40] for

H-triangulations.

For a detailed theoretical treatment of supersplines on ordinary triangulations, see [24], and for compu-

tational methods based on them, see [36, 38]. Superspline spaces like S
r,ρ
d (△) have several advantages. In

particular, they have the same approximation properties as S0
d(△), but with fewer degrees of freedom, and

often they are easier to work with than the spaces Sr
d(△).

3.1.2 Approximation Power of Splines on H-triangulations

The approximation power of spline spaces defined on H-triangulations was investigated in [40]. Suppose

S
r,ρ
d (△) is the super-spline space defined in (3.2) with 0 ≤ 2r ≤ ρ < d. Let |△|= max

T∈△
|T | be the mesh size

of △, and for any m ≥ 0 and 1 ≤ q ≤ ∞, let W m+1
q (Ω) be the usual Sobolev space defined on the domain Ω.

Let ‖ ·‖q be the usual q-norm on Ω, and let | · |m+1,q,Ω be the seminorm measuring m+1-st order derivatives

in the q-norm.

Theorem 3.1.2. (cf. [40]) Suppose f ∈W m+1
q (Ω) with 0 ≤ m ≤ d and 1 ≤ q ≤ ∞. Then there exists a spline

13

s ∈ S
r,ρ
d (△) such that

‖Dν
x Dµ

y (f − s)‖q ≤ K|△|m+1−ν−µ | f |m+1,q,Ω,

for all 0 ≤ ν +µ ≤ m.

The constant K depends on d, the size of the smallest angle in △, the length of the longest chain of

hanging vertices (see Remark 6), and the constant

α△ := max
e∈Ec

max
ẽ⊂e

|e|
|ẽ| , (3.3)

where Ec is the set of all composite edges containing two or more edge segments. If Ω is not convex, then

K also depends on the Lipschitz constant of the boundary of Ω.

3.2 Local Refinements and A Posteriori Error Estimators

Given an H-triangulation △, we can locally refine it by choosing a triangle T and splitting it into two or

more subtriangles. This can be done in several different ways. Here are two commonly used approaches:

1. S1: Edge split. Insert an edge segment connecting one vertex v of T to the midpoint w of the edge e

opposite to v. This splits T into two subtriangles.

2. S2: Midpoint refinement. Connect the midpoints of the edges of T to each other to split T into four

subtriangles.

For other refinement possibilities, see Remark 9. Each of these methods has advantages and disadvan-

tages. Method S1 may reduce the size of the smallest angle in the triangulation, but this can be somewhat

mitigated by always splitting the longest edge of the triangle. Method S2 leaves the smallest angle un-

changed.

In both of these methods, if a new vertex is introduced, it will be either a boundary vertex, or a new

hanging interior vertex of the refined triangulation. If a split point falls on an existing vertex, then that

vertex becomes a non-hanging vertex.

In [36, 38] it was shown how various spline spaces can be used in conjunction with the Ritz-Galerkin

method to compute approximations to the solutions of elliptic boundary value problems. The discussion

there was for spline spaces on ordinary triangulations, but there is no essential difficulty in carrying out the

14

same program for splines defined on H-triangulations. We just need to work with spline spaces for which we

know a minimal determining set, and for which we can compute the transformation matrix A. In this section

we illustrate the method using the spaces S0
d(△) along with local refinement to find good triangulations.

We first illustrate how to couple adaptive methods with H-triangulations in function approximation,

assuming that we can sample the function at arbitrary points. Suppose f is a given continuous function

defined on a domain Ω. We propose to use an adaptive algorithm to compute a spline approximant of

f . In this section we choose an intitial triangulation of Ω, and work with splines of degree d on △ and

refinements of it. Here is a general algorithm for carrying this out. Suppose Appx is some approximation

process producing an approximation in a spline space S(△). Suppose Err is a process to compute a vector

err = (err1, . . . ,errnt
), where nt is the number of triangles in △. Choose a maximal number of iterations nr.

Algorithm 1.

For i = 1 until nr

1. Pick a type of spline space S(△)

2. Pick an initial triangulation △

3. Use Appx to compute a spline s in S(△)

4. Use Err to compute the error vector err

5. Sort err

6. Split the triangle with the largest error

7. Replace △ by the new triangulation and repeat this process

Refining one triangle at a time can be slow since at each step we have to reconstruct the approximating

spline and compute the vector err of triangle errors. Thus, in practice we suggest using the following variant

of this algorithm where we refine groups of triangles. Pick a number 0 < p < 100.

Algorithm 2. Replace step 4 in Algorithm 1 by

4’. Choose the triangles corresponding to the largest p percent of the errors, and split them.

For the experiments below, we will primarily use Algorithm 2 with p = 5. The choice of the approx-

imation process and error computation will depend on the application. Here we define the approximation

scheme Appx as follows: Find a spline s ∈ S(△) that interpolates f at all of the domain points Dd,△. Next

15

we have to choose a scheme Err for computing the error on each triangle. Here are some possible choices.

Let m be an integer greater than d, and define

e1(T) := A(T) ∑
ξ∈Dm,T

|s(ξ)− f (ξ)|, (3.4)

e2(T) := A(T) ∑
ξ∈Dm,T

|s(ξ)− f (ξ)|2, (3.5)

em(T) := A(T) max
ξ∈Dm,T

|s(ξ)− f (ξ)|, (3.6)

E1(T) :=

∫

T
|s− f |, (3.7)

E2(T) :=
∫

T
|s− f |2, (3.8)

where A(T) is the area of the triangle T . In practice we typically take m = d +2.

In order to couple adaptive methods with the Ritz-Galerkin method (to be defined in the next section)

for solving our boundary value Problem 1, we make use of either Algorithm 1 or Algorithm 2. To use them,

we need to have a way of computing an error value associated with each triangle in △. Here is the problem

to be attacked. We follow the notation of [38]. Suppose we are given functions f and κ defined on a domain

Ω, and suppose g is a function defined on the boundary ∂Ω of Ω.

Problem 1. Find a function u defined on Ω such that

Lu :=−∇ · (κ∇u) = f , on Ω, (3.9)

u = g, on ∂Ω. (3.10)

Here ∇ denotes the vector-valued differential operator [Dx,Dy]
T , and the dot denotes the vector inner-

product. Now given a spline space S(△), suppose {φ1, ...,φn0
} is a basis for U0 := {s ∈ S(△) : s ≡ 0 on ∂Ω}.

Then we look for an approximate solution of Problem 1 in the form

s =
n0

∑
i=1

ciφi + sb, (3.11)

where sb is a spline in S(△) such that sb is approximately equal to g on the boundary ∂Ω.

Since we do not know the true solution of the boundary value problem, this error will have to be con-

16

structed numerically without using u. Computed error estimates of this type are usually called a posteriori

error estimates, and have been studied extensively in the PDE literature, see e.g. [2, 6, 9]. Here are some

possibilities in our setting, based on estimating the size of the residual Ls− f . Given a triangle T and a

spline s along with an integer m > d, let

r1(T) := A(T) ∑
ξ∈Dm,T

|Ls(ξ)− f (ξ)|, (3.12)

r2(T) := A(T) ∑
ξ∈Dm,T

|Ls(ξ)− f (ξ)|2, (3.13)

R1(T) :=

∫

T
|Ls− f |, (3.14)

R2(T) :=
∫

T
|Ls− f |2, (3.15)

where A(T) is the area of T . The last two of these are integrals, and need to be computed by numerical

quadrature, see e.g. Sect. 4.6 of [38]. In practice we typically take m = d+2.

The adaptive Ritz-Galerkin method can be summarized in the following:

Algorithm 3.

1. Pick a type of spline space S(△)

2. Pick an initial triangulation △

3. Use the Ritz-Galerkin method to find a spline s in S(△) giving an approximate solution of the bound-

ary value problem

4. Apply Algorithm 2 to successively refine △ either a fixed number of times, or until some error measure

is sufficiently small, where the Appx step in Algorithm 2 employs the Ritz-Galerkin approximation

process in Step 3

3.3 The Ritz-Galerkin Method

We recall briefly here the Ritz-Galerkin Method coupled with splines on triangulations in solving our

model boundary value Problem 1.

17

Definition 3.3.1. Suppose the spline s in (3.11) is such that

∫

Ω
[Ls(x,y)− f (x,y)]φi(x,y)dxdy = 0, i = 1, . . . ,n0. (3.16)

Then s is called the Ritz-Galerkin approximation to the solution u of Problem 1.

We recall some notation from [38]. For each triangle T ∈△, let

〈φ ,ψ〉2,T :=

∫

T
φψ dxdy,

and

〈φ ,ψ〉G,T :=

∫

T
κ(x,y)∇φ(x,y) ·∇ψ(x,y)dxdy

=

∫

T
κ(x,y)[φx(x,y)ψx(x,y)+φy(x,y)ψy(x,y)]dxdy.

Let

〈φ ,ψ〉2 := ∑
T∈△

〈φ ,ψ〉2,T , 〈φ ,ψ〉G := ∑
T∈△

〈φ ,ψ〉G,T .

Then as shown in Theorem 9.5 of [38], the coefficients of the spline s in (3.11) approximating u via the

Ritz-Galerkin method can be computed by solving the linear system of equations

Mc = r,

with M = [〈φi,φ j〉G
]n0

i, j=1 and

ri = 〈 f ,φi〉2 −〈sb,φi〉G, i = 1, . . . ,n0.

To use this approach with the space S0
d(△) on an H-triangulation, we can follow the algorithm outlined

in Sect. 9.3.1 of [38] to set up the stiffness matrix M and right-hand side vector r. This algorithm makes use

of the transformation matrix A for the spline space.

18

3.4 Numerical Examples

Here are a few examples showing the performance of the above algorithms. We first illustrate the

capabilities of adaptive methods coupled with H-triangulations in function approximation.

Example 3.4.1. Fit the function f1 = e−500[(x−.375)2+(y−.375)2] on the unit square by a spline in S0
d(△).

Discussion: A plot of the function f1 is shown in Fig.3.4.1b. We begin with the type-2 triangulation of

[0,1]2 shown in Fig.3.4.1a. It has 64 triangles. Then for fixed d, we apply Algorithm 2 using the local error

indicator defined in (3.6) with m = d+2. In each pass through the algorithm we identify the triangles corre-

sponding to the top p = 5 percent of the errors, and split each such triangle uniformly into four subtriangles,

see method S2 in Sect. 3.2. Table 3.4.1 illustrates the behaviour of the algorithm for d = 4, where

nr := number of passes through the algorithm,

nt := number of triangles of the final triangulation,

ndo f := number of degrees of freedom of the associated spline space,

emax := maximum error on a 1001×1001 grid,

RMS := the root mean square error over that grid,

time := number of seconds to perform the computation.

With nr = 5 we get the triangulation shown in Fig.3.4.1c. It has 136 triangles, and gives maximum

and RMS errors of 1.54(-3) and 4.96(-5). We do not show a plot of the associated spline surface since

it is visually indistinguishable from a plot of f1 itself. With nr = 10, we get the triangulation shown in

Fig.3.4.1d which has 220 triangles. Now the errors are 8.64(-5) and 3.49(-6). As we can see from the table,

as nr increases, we get more triangles, but the accuracy improves rapidly in both the maximum and RMS

norms.

Table 3.4.2 shows the case d = 5. We get essentially the same accuracy with 340 triangles and 4161

degrees of freedom as we do with d = 4 and 808 triangles and 6369 degrees of freedom. For these examples

we have used the local error indicator given in (3.6). Using the other local error indicators defined above

give similar results.

19

nr nt ndof emax RMS time

5 136 1089 1.54e-03 4.96e-05 0.14

10 220 1737 8.64e-05 3.49e-06 0.40

15 388 3017 3.65e-05 1.16e-06 0.85

20 508 3993 2.04e-05 4.84e-07 1.56

30 808 6369 2.97e-06 1.04e-07 3.34

Table 3.4.1: Table of errors for Example 3.4.1 with d = 4

nr nt ndof emax RMS time

5 136 1701 6.12e-04 1.22e-05 0.15

10 244 3001 1.53e-05 4.82e-07 0.47

15 340 4161 6.04e-06 1.52e-07 0.95

20 532 6561 1.71e-06 4.01e-08 1.71

30 952 11701 2.53e-07 5.47e-09 4.93

Table 3.4.2: Table of errors for Example 3.4.1 with d = 5

To illustrate the amount of compression achieved by the adaptive algorithm, one can compare with the

interpolants from S0
4(△) based on large type-2 triangulations. For example, using a type-2 triangulation

defined on a 17× 17 grid gives an RMS error of 7.52(-5), but with 1024 triangles and 8321 degrees of

freedom. We achieve a better fit with only 136 triangles and 1089 degrees of freedom. Similarly, using a

type-2 triangulation on a 33× 33 grid gives an RMS error of 2.42(-6), but with 4096 triangles and 33025

degrees of freedom. We achieve a better fit with only 388 triangles and 3017 degrees of freedom.

As a second example we take a test function which we shall use later in our study of boundary value

problems.

Example 3.4.2. Fit the function f2 := tanh(40y− 80x2)− tanh(40x− 80y2) on the unit square by a spline

in S0
d(△).

Discussion: A plot of the function f2 is shown in Fig.3.4.2d. This time we begin with the type-1 trian-

gulation of [0,1]2 on a 5× 5 grid shown in Fig.3.4.2a. It has 32 triangles. We then apply Algorithm 2

using the local error indicator defined in (3.6) with m = d +2. In each run of the algorithm we identify the

triangles corresponding to the top p = 5 percent of the errors, and split each such triangle uniformly into

four subtriangles, see method S2 in Sect. 3.2. Tables 3.4.3 – 3.4.5 give numerical results for d = 3,5,7.

They contain the same information as given in Tables 3.4.1 – 3.4.2. As to be expected, larger values of d

give smaller errors. We have also experimented with the other local error indicators defined earlier, and get

20

(a) nt = 64 (b) The peak function f1

(c) nt = 136 (d) nt = 220

Figure 3.4.1: Results for Example 3.4.1 with d = 4

similar results.

For comparison purposes, we note that interpolation with S0
7(△) on a type-1 triangulation of a 17× 17

grid has 512 triangles and an RMS error of 3.85(-3). This can be compared with our adapted triangulation

with 230 triangles which has an RMS error 8.71(-4). Interpolation with S0
7(△) on a type-1 triangulation

of a 33× 33 grid has 2048 triangles and an RMS error of 1.2(-4). This can be compared with our adapted

triangulation with 1079 triangles which has an RMS error of 1.32(-6).

21

nr nt ndof emax RMS time

10 134 598 3.94e-01 2.89e-02 0.43

20 248 1072 1.60e-01 1.03e-02 0.70

30 422 1819 1.03e-01 3.93e-03 1.59

40 632 2704 5.71e-02 1.58e-03 3.08

50 860 3688 1.80e-02 8.20e-04 5.23

60 1100 4756 1.37e-02 5.08e-04 8.02

70 1448 6262 1.16e-02 3.24e-04 11.68

80 1928 8332 5.52e-03 1.61e-04 17.07

Table 3.4.3: Table of errors for Example 3.4.2 with d = 3

nr nt ndof emax RMS time

5 68 876 7.14e-01 4.67e-02 0.10

10 128 1586 2.90e-01 1.02e-02 0.28

20 254 3101 8.40e-02 2.54e-03 1.01

30 398 4851 2.56e-02 5.81e-04 2.32

40 578 6951 1.01e-02 2.18e-04 4.49

50 806 9771 3.66e-03 6.75e-05 7.97

60 980 11931 1.44e-03 2.73e-05 12.70

Table 3.4.4: Table of errors for Example 3.4.2 with d = 5

We also give two examples of the use of the Ritz-Galerkin approach coupled with our algorithm for

locally refining triangulations.

For the examples in this section we will work with the a posteriori error estimator R2 defined in (3.15).

Our first example deals with the Poisson equation where the differential operator is the Laplace operator.

Example 3.4.3. Use the spline spaces S0
d(△) to solve the boundary value Problem 1 on Ω := [0,1]2 with

κ = 1, f :=−∆u, and g = u|∂Ω, where u := tanh(40y−80x2)− tanh(40x−80y2).

Discussion: The true solution of this boundary value problem u is the same as the function f2 used in

Example 3.4.2, see Fig.3.4.2d. In running Algorithm 2 we sort the triangles according to the size of the error

estimates, then refine the top 5% using the refinement method S2 described above. We repeat this nr times

to get our solution.

Table 3.4.6 gives numerical results for the case d = 3. It has the same columns as in our previous tables,

where again we use a 1001× 1001 grid on Ω to compute the max and RMS errors. The cases d = 5,7 are

shown in Tables 3.4.7 – 3.4.8.

22

nr nt ndof emax RMS time

10 98 2395 3.53e-01 1.34e-02 0.31

20 230 5496 4.34e-02 8.71e-04 1.31

30 362 8723 1.17e-02 1.42e-04 3.27

40 536 12818 2.86e-03 4.10e-05 6.39

50 686 16430 9.43e-04 1.35e-05 11.82

60 884 21218 2.67e-04 3.80e-06 19.64

70 1079 26013 1.71e-04 1.32e-06 29.69

Table 3.4.5: Table of errors for Example 3.4.2 with d = 7

For comparison purposes, we note that working with S0
7(△) on a type-1 triangulation of a 33×33 grid

with 2048 triangles and 50625 degrees of freedom gives an RMS error of 8.26(-5). This can be compared

with using our adapted triangulation with 488 triangles and 11614 degrees of freedom which leads to an

RMS error 4.54(-5).

We do not give any plots of the splines produced in this example or their associated triangulations since

they are very similar to those obtained in Example 3.4.2 where we computed an interpolating spline for u.

For example, for d = 7 using nr = 40 here we get a triangulation with 374 triangles and an associated RMS

error of 2.28(-4), while in Table 3.4.5 with nr = 30 we had 362 triangles, and an RMS error of 1.42(-4).

Thus, suprisingly the Ritz-Galerkin solution has virtually the same accuracy as the interpolating spline fit to

the true solution.

nr nt ndof emax RMS time

10 104 445 8.85e-01 1.16e-01 2.96

20 218 907 2.00e-01 1.99e-02 9.72

30 392 1612 8.93e-02 1.03e-02 22.32

40 518 2137 8.15e-02 7.74e-03 41.68

50 626 2587 4.55e-02 3.18e-03 66.32

60 872 3598 4.28e-02 2.43e-03 102.46

Table 3.4.6: Table of errors for Example 3.4.3 with d = 3

In this example we have worked with the space S0
7(△) along with the a posteriori estimator R1 given in

(3.15). The performance is not as good with other error estimators listed above, see Remark 14. Our second

example is a boundary value problem defined on an L-shaped domain with a reentrant corner.

Example 3.4.4. Use the spline space S0
3(△) to solve the boundary value Problem 1 on the L-shaped domain

23

nr nt ndof emax RMS time

10 92 1136 7.89e-01 7.55e-02 3.70

20 182 2181 6.40e-02 5.57e-03 12.31

30 284 3381 4.13e-02 2.19e-03 27.53

40 374 4446 2.34e-02 1.11e-03 51.45

50 458 5466 1.78e-02 8.01e-04 82.55

60 596 7136 6.59e-03 3.20e-04 123.81

Table 3.4.7: Table of errors for Example 3.4.3 with d = 5

nr nt ndof emax RMS time

10 104 2500 1.98e-01 1.65e-02 5.87

20 188 4467 6.61e-02 2.88e-03 20.09

30 248 5909 7.96e-03 6.06e-04 44.11

40 374 8856 4.84e-03 2.28e-04 81.46

50 488 11614 1.02e-03 4.54e-05 139.34

Table 3.4.8: Table of errors for Example 3.4.3 with d = 7

shown in Fig.3.4.3a with κ ≡ 1, f ≡ 0, and Dirichlet boundary values taken from the function

u(x,y) = r(x,y)2/3 sin(
2

3
θ(x,y)),

where (r(x,y),θ(x,y)) are the polar coordinates of (x,y) for all θ ∈ [0, 3
2
π].

Discussion: This example corresponds to Example 9.13 in [38]. Here we begin with the triangulation shown

in Fig.3.4.3a. It has 12 triangles. As in the previous example we use the a posteriori error estimator R2 given

in (3.15), and run Algorithm 2 with p = 5, again using the local refinement method S2. We repeat this nr

times to get our solution.

Table 3.4.9 gives numerical results for this example. where here we report errors on a 101×101 grid to

save evaluation time. Otherwise, it has the same information as in our previous tables. We have stopped the

table at nr = 15 since at this level the smallest triangle already has area 1.5(-5) and doing another round of

refinement gives only a marginal improvement in errors.

3.5 Remarks

Remark 1. In the introduction we have referenced only a few of the many papers in the FEM literature

which involve solving boundary value problems adaptively with some kind of piecewise polynomials defined

24

nr nt ndof emax RMS time

0 12 67 2.79e-02 2.85e-03 0.00

5 42 178 1.16e-02 1.07e-03 0.69

10 72 307 2.45e-03 1.40e-04 1.73

15 102 433 2.68e-04 6.37e-05 3.44

Table 3.4.9: Table of errors for Example 3.4.4 with d = 3

on triangulations with hanging vertices. However, as far as we know, the approach in all of these papers

follows the standard engineering approach of working with a single reference triangle which is then mapped

to the triangles of an H-triangulation of the physical domain. Here we are able to avoid working with such

parametric maps by employing Bernstein–Bézier techniques.

Remark 2. The reason for restricting our attention to H-triangulations that are regular is to prevent the

situation where two triangles touch at a common vertex, while no other triangles share that vertex, see for

example Fig. 4.1 in [24]. We need connectivity to connect the polynomial pieces on adjoining triangles.

Remark 3. It can be shown that if △ is an H-triangulation with no cycles, then the H-triangulation △̃

obtained applying either of the refinement methods discussed in Sect. 3.2 does not have any cycles, see [40].

Remark 4. The construction of minimal determining sets for Sr
d(△) on H-triangulations was carried out in

[40] only for d ≥ 4r+1. It is possible to extend this to all d ≥ 3r+2 by arguments similar to those used for

splines on ordinary triangulations, see [24].

Remark 5. For splines on ordinary triangulations, the columns of the transformation matrix A give the

coefficients of the individual dual basis functions {φξ}ξ∈M , see [36]. The same holds here.

Remark 6. Suppose e is a composite edge of △, and suppose e1, . . . ,em is a maximal sequence of composite

edges such that for each i = 1, . . . ,m, one end of ei is in the interior of ei+1, where em+1 = e. Following [40],

we call e1, . . . ,em a chain ending at e. We refer to m as the length of the chain.

Remark 7. Theorem 3.1.2 gives an error bound on the entire domain Ω. There is an analogous local result

which gives a bound on a single triangle. For a constructive proof, see [40]. We have stated the global form

here for simplicity.

Remark 8. If we start with an ordinary triangulation and repeatedly locally refine it using the refinement

method S2, the constant α△ in (3.3) can be bounded by 1/m, where m is the maximum number of times a

25

given edge is refined. We also note that if we use this refinement process, the smallest angle in the resulting

triangulation cannot be smaller than the smallest angle in the original triangulation.

Remark 9. Here we have focused only on two possible refinement strategies. As is well known in the

literature, see e.g. [24], and references therein, in some applications it may be desirable to split triangles in

different ways – e.g., with the so-called Powell-Sabin split into either 6 or 12 subtriangles, or the Clough-

Tocher split into 3 subtriangles.

Remark 10. In using local refinement with H-triangulations, it will happen that eventually very small

triangles will be introduced. Fortunately, if we use the refinement strategy S2, we don’t have to worry about

the angles, but if the triangles are too small it is hard to keep track of the triangle lists or even to decide

whether a point is in a triangle or not. Thus, in our test codes we have avoided splitting any triangle whose

area is below a threshold (which we took to be 10−7).

Remark 11. All experiments here were run in Matlab on a typical desktop. The times reported are just for

comparison purposes – they of course would be different for other machines.

Remark 12. In the interest of saving time, our experiments have all been run with Algorithm 2 where we

process the top 5% of triangles in turn, before recomputing the approximation and associated error. If

we work with a larger percentage, the algorithms will run faster, but with slightly less accurate results.

Conversely, if we work with a smaller percentage, computational times will go up, but we will get somewhat

better errors. The best would be to do only one triangle at a time.

Remark 13. For both function approximation and solution of boundary value problems, the approximation

process involves computing a minimal determining set. When an H-triangulation is refined locally, it is

not necessary to recompute the entire MDS – one can simply update it in the affected triangulations. This

would save time, but was not done in the reported results. The same is true of the second stage of the

process, the computation of the approximation itself. For example, when solving boundary value problems,

instead of computing the entire stiffness matrix anew, we can locally update it each time we have completed

a refinement cycle. This would also save time, but again was not implemented for the results reported here.

Remark 14. The performance of the adaptive method of Sect. 3.3 for solving boundary value problems is

somewhat sensitive to which a posteriori error estimator is used. Using the one given in (3.13), which while

26

quite similar to the one in (3.15) used here, gives significantly different results. The others do not seem to

function as well either.

Remark 15. The experiments in this paper were all conducted using the midpoint refinement method S2.

We get similar results for all of the examples if we use S1 instead, although since it only splits a triangle into

two subtriangles instead of four, we have to work with larger numbers nr of iterations to get comparable

numbers of triangles in the final triangulation.

Remark 16. The experiments of function approximation in Sect. 3.4 were carried out with C0 spline spaces.

We get very similar results when working with piecewise polynomials, i.e., splines with no global continuity.

In fact, the algorithms run faster, and as soon as we get a reasonably accurate result, the lack of continuity

cannot be detected visually.

Remark 17. In refining a single triangle from a triangulation △ with either of subdivision methods dis-

cussed here, we have chosen the new vertices to be midpoints of existing edges of △. This helps maintain

the shape of the triangles, but also has the effect that as we continue to refine, these new hanging vertices

have a tendency to disappear as we refine a neighboring triangle. The practical effect is that our final H-

triangulations don’t usually include a large percentage of hanging vertices. This feature also helps avoid

long chains of hanging vertices (see [40]).

Remark 18. The Ritz-Galerkin method can also be used to solve higher order boundary value problems. A

typical example is the biharmonic equation which is of order four, see Sect. 9.6 of [38]. For conformality,

this problem requires working with splines with global smoothness C1. This is a good example where the

space S
1,2
5 (△) can be of use, and we can apply the same adaptive approach in this setting.

Remark 19. The key to computing with splines on H-triangulations using Bernstein–Bézier techniques is

to work only with spaces where we know a minimal determining set and can construct the transformation

matrix A. This is the case for the spaces S0
d(△) for all d, as well as for the superspline spaces S

r,ρ
d (△) with

0 ≤ 2r ≤ ρ < d with d > 2ρ . It also holds for the analogs of all of the macro-element spaces discussed in

[24] defined over Powell-Sabin refinements, Clough-Tocher refinements, etc.

Remark 20. In this paper we have focused on splines on H-triangulations in the plane. It is also possible to

define splines on H-triangulations on the sphere, see [37]. Indeed, everything done there can just as easily

be done on the sphere.

27

Remark 21. Splines on triangulations can also be used to approximate images, for example using piecewise

linear polynomials with C0 or C−1 global continuity, see e.g. [13, 12, 23]. Typically such algorithms involve

starting with a coarse triangulation and adding new vertices adaptively, after which a Delaunay triangula-

tion is constructed using the resulting vertices. Then the image is stored (and transmitted) by giving only

the locations of the vertices and the associated coefficients. It is also possible to approximate images with

splines on H-triangulations using the ideas of Sect. 3.2. With our approach, we need only store an ordered

list of the triangles which have been split, along with the final set of coefficients. We have done some prelim-

inary experimentation with this approach, but to compare with previous methods one has to properly encode

this information. We plan to look into this further in later work.

Remark 22. A completely different approach to solving boundary value problems adaptively with splines

has been proprosed recently in [25]. Their method works with ordinary triangulations, and the refinement

algorithm is global rather than local. To make it easier to compare the results in [25] (which focus on the

Poisson problem) with ours, in Example 3.4.3 we solve the same BVP as they do in Example 1 of their paper.

For this BVP, their Table 2 shows an RMS error on a 1001× 1001 grid of 3.31(-3) for a spline s ∈ S0
7(△),

based on an adapted triangulation with 1568 triangles. For this problem we got a spline in S0
7(△) on an

H-triangulation with only 200 triangles with an RMS accuracy of 2.64(-3), see our Table 3.4.6.

28

(a) nt = 32 (b) nt = 362

(c) nt = 1079

10.50
0

0.5

2

0

-2
1

(d) The function f2

Figure 3.4.2: Results for Example 3.4.2 with d = 7

29

(a) nt = 12

0.50-0.5-0.5

0

0.8

0
0.5

(b) The solution u

(c) nt = 72 (d) nt = 102

Figure 3.4.3: Results for Example 3.4.4

30

Chapter 4

Collocation Methods

4.1 Notations

Let I = [a,b] be an interval and {ξi}n
i=1 ⊆ I be a set of discrete points. Define the following linear oper-

ators associated with a vector ξ := (ξ1, ...,ξn)
T and ξ⊗ :=

(
(ξ1,ξ1), ...,(ξ1,ξn), ...,(ξn,ξ1), ...,(ξn,ξn)

)T
:

• Rξ : C(I)→ R
n, the restriction operator defined by Rξ u := (u(ξ1), ...,u(ξn))

T .

• D i
ξ : C2(I)→ R

n, the “i-th derivative” operator defined by

D
i
ξ := (Diu(ξ1), · · · ,Diu(ξn))

T ,

i = 0,1,2. Note that D0 is the usual point evaluation operator and Di denotes the i-th derivative

operator.

• Lξ : C2(I)→R
n, an evaluation operator associated with a second-order differential operator L acting

on functions of one variable defined by

Lξ u := (Lu(ξ1), ...,Lu(ξn))
T .

• Lξ⊗ : C2(I × I)→ R
n2

, an evaluation operator associated with a second-order differential operator L

acting on functions of two variables defined by

Lξ⊗u :=
(
Lu(ξ1,ξ1), ...,Lu(ξ1,ξm), ...,Lu(ξm,ξ1), ...,Lu(ξm,ξm)

)T
.

Definitions of linear operators Dx
ξ⊗
,Dy

ξ⊗
, ...,Dyy

ξ⊗
etc. are analogous with L being the differential oper-

ators Dx,Dy, ...,Dyy etc., respectively. Similarly, we define Rξ⊗ : C2(I × I)→ R
n2

by

Rξ⊗u :=
(
u(ξ1,ξ1), ...,u(ξ1,ξm), ...,u(ξm,ξ1), ...,u(ξm,ξm)

)T
.

Note that we will abuse notation and sometimes denote ξ = {ξi}n
i=1 and ξ⊗ := {(ξi,ξ j)}n,n

i=1, j=1 for conve-

31

nience in describing the set of points being used, the meaning of which will be clear in the context.

Other common notations and conventions:

• If A is a n×n matrix, the ∞-norm of A is defined as ||A||∞ := Sup{||Ax||∞ : x ∈ R
n, ||x||∞ = 1}.

• Given a non-negative interger l, the W l,∞-norm of a function f on an interval I is the usual Sobolev

norm, i.e., || f ||W l,∞(I) = max
i=0,..l

||Di f ||L∞(I). The derivatives should be interpreted in the weak sense

when needed.

• Let Sh be a spline space on a partition of mesh size h. If a method produces successive approximations

sh ∈ Sh to a function u and the error bound, i.e., sh −u measured in a certain norm, is O(hk), we say

that the convergence rate (or order) of the method or of these successive approximations to u is k.

4.2 Collocation with Cubic Splines

We are interested in the following model problem:

Problem 2. Find a function u defined on I = [a,b] such that

Lu :=−u′′(x)+α(x)u′(x)+β (x)u(x) = f (x), on (a,b) (4.1)

u(a) = ua, u(b) = ub, (4.2)

where α ,β ∈C2(I) and f ∈C(I). Throughout this section, we assume that Problem 2 has a unique solution

u in C2(I) for any real pairs {ua,ub}.

Given the knots of a partition △ := {xi}k+1
i=0 , where a= x0 < x1 < · · ·< xk < xk+1 = b, we define the mesh

size h := max
i=1,...k+1

|xi − xi−1| and chose the corresponding extended partition △e := {yi}n+d+1
i=1 for Sr

d(∆), see

section 2.1 for more details about these notations and definitions. We recall that d is the degree and n is the

dimension of the spline space. One good choice of collocation points is the so-called Greville points {gi}n
i=1

associated with △e, defined as

gi =
yi+1 + · · ·+ yi+d

d
, i = 1, ...,n. (4.3)

The collocation method associated with Problem 2 is as follows: given a partition △ for I = [a,b] and a

32

spline space Sr
d(△), choose a set of collocation points ξ := {ξi}m

i=1 and find a spline s in Sr
d(△) such that

Lξ s = Rξ f (4.4)

s(a) = ua, s(b) = ub. (4.5)

When the number of equations in this system is equal to the dimension of the spline space, i.e., m = n−2,

the method is referred to as the exact collocation; while in the case where the number of equations is larger

than the dimension of the spline space, i.e., m > n− 2, we call the method the least-squares collocation if

the above system is solved in the least-squares sense. We refer to the collocation method defined in (4.4) as

ordinary collocation (OC) for convenience, since we will introduce a generalized collocation method later.

In this section we give three theorems related to the OC method using C2 cubic splines in the case of

exact collocation. The first two theorems are about the non-singularity of the collocation system with two

different choices of the collocation points: i) the knots of the partition of the spline space being used ii)

the interior Greville points associated with the partition of the spline space being used. A result about the

convergence rates of the OC method using cubic splines defined on uniform partitions is presented in the

third theorem below.

Lemma 4.2.1. Let p be a cubic polynomial. Given a differential operator L of the form as in Problem 2,

where α ,β are C2 functions defined on some interval [a1,a2], there exists a constant C depending on the

W 2
∞–norm of α and β on [a1,a2] such that

||Lp||L∞[a1,a2] ≤C(h1 +h2
1)||p||L∞[a1,a2]+(Ch1 +Ch2

1 +2)
(
|Lp(a1)|+ |Lp(a2)|

)
, (4.6)

where h1 = a2 −a1.

Proof. By Markov brothers’ inequality [28] (cf. Fact 4 in Appendix) we have ||p′||L∞[a1,a2] ≤ 18
h1
||p||L∞[a1,a2]

for any p ∈ P3. Combining this estimate with the equality p′′(a1) = α(a1)p′(a1)+β (a1)p(a1)−Lp(a1),

we can see that there exists some constant C depending on the L∞–norm of α and β such that

|p′′(a1)| ≤
C(1+h1)

h1

||p||L∞[a1,a2]+ |Lp(a1)|.

A similar estimate works for |p′′(a2)|. We will abuse the notation of the constant C in this proof and C will

33

stand for a generic constant independent of h1 and the polynomial p. Hence since p′′ is a linear polynomial

we have

||p′′||L∞[a1,a2] ≤
C(1+h1)

h1

||p||L∞[a1,a2]+max{|Lp(a1)|, |Lp(a2)|}.

We then estimate p′′′ which is a constant function. By the mean value theorem, there exists a number

t ∈ (a1,a2) such that (Lp)′(t) = Lp(a2)−Lp(a1)
a2−a1

. Since (Lp)′ = −p′′′ +(α p′)′ +(β p)′, it follows that there

exists a constant C depending on the W 1
∞(I)–norm of α and β such that

||p′′′||L∞[a1,a2] ≤
|Lp(a2)−Lp(a1)|

h1

+C
(1+h1

h1

||p||L∞[a1,a2]+max{|Lp(a1)|, |Lp(a2)|
)
.

Combining the equality (Lp)′′ = (α p′)′′+(β p)′′ with the estimates for p, p′, p′′, p′′′, we obtain that

||(Lp)′′||L∞[a1,a2] ≤C
1+h1

h1

(
||p||L∞[a1,a2]+ |Lp(a1)|+ |Lp(a2)|

)
. (4.7)

where C depends only on the W 2
∞-norm of α and β on [a,b]. Lastly, by the observation ||Lp||L∞[a1,a2] ≤

h2
1

2
||(Lp)′′||L∞[a1,a2]+ |Lp(a2)−Lp(a1)|+ |Lp(a1)|(cf. Fact 2 in Appendix), the proof is done.

In the remaining of this section, we denote the partition with mesh size h as △h and the associated C2

cubic spline space S2
3(△h) as Sh. In the following theorem, we consider the case when the collocation points

coincide with the knots of the partition being used, i.e., ξi = xi, , i = 0, ...,k+1.

Theorem 4.2.1. Let Lξ be the linear operator associated with Problem 2. For sufficiently small h , there

exists a constant C independent of h such that

||s||L∞[a,b] ≤C||Lξ s||∞, (4.8)

for any s in Sh such that s(a) = s(b) = 0, where ξ = {xi}k+1
i=0 , i.e., the knots of △h.

Proof. Given a partition △h, let sh be a cubic spline in Sh such that sh(a) = sh(b) = 0. Applying Lemma

4.2.1 to each subinterval [xi−1,xi], there exists a constant C1 depending on the W 2
∞-norm of α and β on

[xi−1,xi] such that

||Lsh||L∞[xi−1,xi] ≤C1(h+h2)||sh||L∞[xi−1,xi]+(C1h+C1h2 +2)
(
|Lsh(xi−1)|+ |Lsh(xi)|

)
. (4.9)

34

Hence there exists a constant C2 depending on the W 2
∞–norm of α and β on [a,b] such that

||Lsh||L∞[a,b] ≤C2(h+h2)||sh||L∞[a,b]+C2(1+h+h2)||Lξ sh||∞. (4.10)

Using the properties of the Green’s function related to Problem 2 with homogeneous boundary conditions

(cf. Fact 3 in Appendix), there exists a constant C3 such that

||sh||L∞[a,b] ≤C3||Lsh||L∞[a,b], (4.11)

where C3 can be the maximum of the Green’s function taken over the rectangle [a,b]× [a,b], and is hence

independent of the mesh size h. Combining the previous two inequalities, we have

||sh||L∞[a,b] ≤C4(h+h2)||sh||L∞[a,b]+C4(1+h+h2)||Lξ sh||∞, (4.12)

where C4 =C2C3. Let h be such that C4(h+h2)≤ 1/2, then

||sh||L∞[a,b] ≤ (2C4 +1)||Lξ sh||l∞ . (4.13)

Since C4 is independent of the mesh size h, the proof is finished.

Now let us consider the case when the collocation points are the Greville points associated with the

extended partitions, i.e., ξ = {gi}n−1
i=2 as defined in (4.3). Recall that here the degree d = 3 and dimension of

the spline space n = k+4. It is easy to see that

g j =

2
3
x0 +

1
3
x1, j = 2,

x j−2, j = 3, · · · ,n−2,

1
3
xk +

2
3
xk+1, j = n−1.

(4.14)

Hence only the first and last collocation points are not knots of the partition being used.

Lemma 4.2.2. We assume the same notations and assumptions as in Lemma 4.2.1. Let 0 < t < 1 be a real

number and c be a real number in interval (a1,a2) such that c = (1− t)a1 + ta2. Assume that h1 is small

35

enough such that γ = Ch1(1+h1)
1−t

< 1, where C is the constant in Lemma 4.2.1. Then

|Lp(a1)| ≤
γ

1− γ
||p||L∞[a1,a2]+

|Lp(c)|
(1− γ)(1− t)

+
|Lp(a2)|
(1− γ)

(γ +
t

1− t
). (4.15)

Proof. Since α ,β are in C2[a1,a2] and applying Taylor’s theorem to Lp,

|(1− t)Lp(a1)−Lp(c)+ tLp(a2)| ≤
h2

1

4
||(Lp)′′||L∞[a1,a2]. (4.16)

Divide both sides by 1− t and recall inequality (4.7) and the constant C in Lemma 4.2.1, we have

|Lp(a1)−
Lp(c)

1− t
+

tLp(a2)

1− t
| ≤ Ch2

1

1− t
||(Lp)′′||L∞[a1,a2] (4.17)

≤ Ch1(1+h1)

1− t

(
||p||L∞[a1,a2]+ |Lp(a1)|+ |Lp(a2)|

)
. (4.18)

Let h1 be such that γ < 1. After using the triangle inequality and moving the term γ |Lp(a1)| to the left and

dividing by 1− γ on both sides , we obtain the desired inequality (4.15).

Theorem 4.2.2. Let the notations and assumptions be the same as in Theorem 4.2.1 except that the collo-

cation points are chosen as the corresponding interior Greville points, i.e., ξ = {gi}n−1
i=2 in (4.14). Then, for

sufficiently small h, there exists a constant C independent of h such that

||s||L∞[a,b] ≤C||Lξ s||∞ (4.19)

for any s in Sh such that s(a) = s(b) = 0.

Proof. Given a partition △h, let sh be a cubic spline in Sh such that sh(a) = sh(b) = 0. Note that g2 =

(1− t)x0 + tx1 where t = 1
3
. Applying Lemma 4.2.2 to the first subinterval with [a1,a2] = [x0,x1] we get the

estimate for Lsh(x0):

|Lsh(x0)| ≤
γ

1− γ
||sh||L∞[x0,x1]+

3|Lsh(g2)|
2(1− γ)

+
|Lsh(x1)|
(1− γ)

(γ +
1

2
), (4.20)

where h1 = x1 − x0 is chosen such that γ = C1h1(1+h1)
1−t

< 1 and C1 is chosen as the constant in the statement

of Lemma 4.2.2, which depends on the W 2
∞-norm of α and β on [x0,x1]. Similarly we can bound |Lsh(xk+1)|

36

by an expression involving ||sh||L∞[xk ,xk+1], |Lsh(gn−1)| and |Lsh(xk)|. Plugging (4.20) into (4.6) we obtain

||Lsh||L∞[x0,x1] ≤
C1h1 +C1h2

1 +2γ

1− γ
||sh||L∞[x0,x1]+

3(C1h1 +C1h2
1 +2)

2(1− γ)

(
|Lsh(g2)|+ |Lsh(x1)|

)
.

Since h is the mesh size and γ ≤ 3C1h(1+h)
2

→ 0 as h → 0, we can choose h sufficiently small such that for

some constant C2 independent of h

||Lsh||L∞[x0,x1] ≤C2(h+h2)||sh||L∞[x0,x1]+C2(1+h+h2)(|Lsh(g2)+Lsh(g3)|). (4.21)

We note that g3 = x1. Similar estimates can be obtained for ||Lsh||L∞[xk ,xk+1] and the estimates for ||Lsh||L∞[xi−1,xi]

are the same as in (4.9) for i = 2, ...,k. The rest of the proof proceeds exactly as in Theorem 4.2.1.

We have the following corollary related to the existence and uniqueness of collocation solutions to

Problem 2.

Corollary 4.2.1. Let the assumptions and notations be the same as in Theorem 4.2.1. Given a partition △h

with small enough mesh size h and ξ = {xi}k+1
i=0 or ξ = {gi}n−1

i=2 as defined in the beginning of this section,

the OC system (4.4) (4.5) has a unique solution for any given f in C[a,b] and real numbers {ua,ub}.

Proof. It is easy to see that the OC system (4.4) (4.5) is a square system given our choice of collocation

points here. Hence to prove the existence of a unique solution to the system, it suffices to show that the only

spline s in Sh that satisfies the following equations

Lξ s =~0, (4.22)

s(a) = s(b) = 0 (4.23)

is the zero spline, which follows directly from the inequality (4.8) or (4.19).

We have shown that the OC system (4.4) and (4.5) has a unique solution in the cubic spline space

S2
3(△) if the mesh size of the partition △ is sufficiently small and the collocation points are the knots or the

associated Greville points. Now we present a result related to the convergence rate of the OC solutions in

terms of the mesh size.

37

Theorem 4.2.3. Let △h = {xi}k+1
i=0 be a uniform partition on [a,b] with mesh size h = 1

k+1
and let Sh :=

S2
3(△h) be the associated C2 cubic spline space. Assume that for the OC system defined in (4.4) and (4.5)

the knots or the associated interior Greville points are chosen as the collocation points. Let the true solution

u of Problem 2 be in C j[a,b], 2 ≤ j ≤ 4. Then, for sufficiently small h, there exists a constant C independent

of h and u such that the solution sh ∈ Sh of (4.4) and (4.5) satisfies

||sh −u||L∞[a,b] ≤Ch j−2||D ju||L∞[a,b]. (4.24)

Proof. Let Q be the quasi-interpolation operator defined in Example 2.4.1. Recall that Lξ Qu = −D2
ξ Qu+

(Rξ α) ·Dξ Qu+(Rξ β) ·Rξ Qu where “·” denotes the entry-wise product between vectors. In light of the

error bound for Q in (2.13), there exists a constant C depending on the L∞-norm of α and β on [a,b] such

that

||Lξ (Qu−u)||∞ ≤Ch j−2||D ju||L∞[a,b], (4.25)

for u ∈ C j[a,b], with 2 ≤ j ≤ 4. Choose h sufficiently small as in Theorem 4.2.1 or Theorem 4.2.2 so that

the OC system (4.4) and (4.5) has a unique solution sh. By the triangle inequality we have ||sh −u||L∞[a,b] ≤

||sh−Qu||L∞[a,b]+ ||Qu−u||L∞[a,b], where the second term on the right-hand side satisfies (2.13). By Theorem

4.2.1, there exists a constant C independent of h and sh −Qu such that

||sh −Qu||L∞[a,b] ≤C||Lξ (sh −Qu)||∞, (4.26)

since both sh and Qu satisfy the boundary conditions of Problem 2 and therefore sh −Qu is zero on the

boundary of [a,b]. Since sh is the OC solution, i.e., Lξ sh = Rξ f = Lξ u, we have

||sh −Qu||L∞[a,b] ≤C||Lξ (u−Qu)||∞ ≤Ch j−2||D ju||L∞[a,b], (4.27)

where the last inequality follows from (4.25). Combining (4.27) and (2.13) finishes the proof.

Hence in particular, if the true solution u of Problem 2 is in C4[a,b], the accuracy is O(h2), which is

verified by the numerical examples shown in later sections. These examples also show that the quadratic

convergence rate is best possible in general using the OC coupled with cubic splines.

38

4.3 A Generalized Collocation Method for L = D2

Let us start with a motivating example, with Sh := S2
3(∆) defined on a uniform partition ∆ of interval

I = [0,1]. Consider the following two-point boundary value problem

Problem 3. Find a function u in C2(I) such that

Lu := D2u = f , on (0,1) (4.28)

u(0) = u0, u(1) = u1, (4.29)

where f is a continuous function on I.

The OC solution associated with Sh and interior Greville points ξ = {gi}n−1
i=2 is a spline s ∈ Sh such that

D2
ξ s = Rξ f (4.30)

s(0) = u0, s(1) = u1. (4.31)

From [38] it is clear that DSh := {s′′| s ∈ Sh} is the space of continuous piecewise linear functions defined

on the partition ∆ and hence, there exists a unique linear spline ŝ such that

ŝ(gi) = f (gi), i = 2, ...,n−1. (4.32)

By elementary calculus we know that there exists a unique spline s ∈ Sh such that s′′ = ŝ, satisfying

boundary condition (4.31). Hence, for a given function f , there exists a unique cubic spline in Sh solving

the collocation equation (4.30) and satisfying boundary condition (4.31).

Although with the above choice of collocation points the non-singularity of the collocation system has

been proved in Corollary 4.2.1, numerically we observe that the convergence rate of this method in terms

of the mesh size h is only quadratic (see e.g., Tables ?? and ??), despite the fact the approximation order

of cubic splines is known to be four (cf. Sect. 2.5). This apparent drawback of OC leads us to consider a

generalized collocation (GC) system:

BD2
ξ s = Rξ f (4.33)

39

subject to boundary condition (4.31), where ξ = {gi}n−1
i=2 and

B =

172
9

− 505
18

211
27

115
54

− 9
2

8 −2 − 1
2

1
16

85
96

1
24

1
96

1
12

5
6

1
12

1
12

5
6

1
12

. . .
. . .

. . .

. (4.34)

Here the (n−2)×(n−2) matrix B has been judiciously chosen to meet a number of criteria explained below.

In particular, B depends on the location of the collocation points ξ and is essentially a Toeplitz matrix except

for the first and last few rows. We prove several crucial properties of matrix B in the next two lemmas.

Lemma 4.3.1. Matrix B defined above is non-singular and such that

||B−1||∞ ≤ 12, (4.35)

i.e., the norm is not dependent on the size of the matrix (or the mesh size h).

Proof. First, let us eliminate the first entry in the second row and last entry in the second to the last row by

performing two elementary row operations. We obtain a new matrix B such that B = EB where ||E||∞ =

1+ 9
2
× 9

172
≤ 4

3
. We can write

B =

D1 B1 O1

O2 D2 O2

O1 B2 D1

, (4.36)

where D1 =

[
172
9

]
,B1 =

[
− 505

18
211
27

115
54

0 · · · 0

]
,B2 =

[
0 · · · 0 115

54
211
27

− 505
18

]
, and O1,O2

are 1×1 are (n−4)×1 zero matrices, respectively. One can check that D2 is a strictly diagonally dominant

(SDD) matrix, hence is non-singular with the property ||D−1
2 ||∞ ≤ 3

2
, using a simple fact about SDD matrices,

see Fact 1 in Appendix. Next we show that there exists some positive constant α , independent of the size of

B, such that for any x ∈R
n−2,

||x||∞ ≤ α ||Bx||∞. (4.37)

40

Let xi denote the i-th entry of a vector x. We have for example (Bx)1 = ax1 + bx2 + cx3 + dx4, where

a = 172
9
,b =− 505

18
, etc. Noting that

(
(Bx)2, · · · ,(Bx)n−3

)T
= D2(x2, · · · ,xn−3)

T , it is easy to see that

||(x2, · · · ,xn−3)
T ||∞ ≤ 3

2
||
(
(Bx)2, · · · ,(Bx)n−3

)T ||∞, (4.38)

using the estimate for ||D−1
2 ||∞. For the first entry of the vector x, let us consider two cases:

case 1: if |x1| > 1
a
|(Bx)1|, then |x1| > |x1 +

b
a
x2 +

c
a
x3 +

d
a
x4|. Hence there exists some 0 < β < 2 such that

b
a
x2 +

c
a
x3 +

d
a
x4 =−βx1. When 0 < β < 1

2
, we have that |x1 +

b
a
x2 +

c
a
x3 +

d
a
x4|= (1−β)|x1|, which

indicates that |x1| < 2|(Bx)1|. When 1
2
≤ β < 2, it is easy to see that |x1| = 1

β |b
a
x2 +

c
a
x3 +

d
a
x4| ≤

2(|b
a
|+ | c

a
|+ |d

a
|)(x2, · · · ,xn−3)

T ||∞ ≤ 9||
(
(Bx)2, · · · ,(Bx)n−3

)T ||∞ , where the last inequality follows

from (4.38). Obviously |x1| ≤ 9||Bx||∞.

case 2: if |x1| ≤ 1
a
|(Bx)1|, then |x1| ≤ 1

a
||Bx||∞.

We can do a similar analysis for xn−2 and conclude that ||x||∞ ≤ α ||Bx||∞, where α = max{1
a
,9, 3

2
} = 9.

Thus ||B−1||∞ ≤ 9. Since ||B−1||∞ ≤ ||B−1||∞||E||∞, it follows that ||B−1||∞ ≤ 12.

Lemma 4.3.2. Let Q := Q3 be the quasi-interpolation operator defined in Sect. 2.4 and let ξ be the above

choice of collocation points. Then ||BD2
ξ Qu − D2

ξ u||∞ ≤ Ch4, for any u ∈ C6(I), where the constant C

depends only on u.

Proof. Using the definition of Q, we can expand Qu as a linear combination of spline basis functions in Sh

and evaluate the second derivatives of these basis functions at the collocation points ξ . Consequently, each

entry of BD2
ξ becomes a linear combination of values of u. For each i, expanding each term of u around ξi

of (BD2
ξ Qu)i up to the 6-th derivative u(6) by Taylor’s theorem, one obtains that (BD2

ξ Qu)i = u′′(ξi)+Ch4,

where C is a constant related to the norm of the 6-th derivative of u.

The following convergence result for (4.33) and (4.31) assumes the use of the spline space Sh = S2
3(∆)

defined on a uniform partition ∆ of I and interior Greville points as collocation points.

Theorem 4.3.1. Let u ∈ C6(I) be the solution of Problem 3. The generalized collocation equation (4.33)

has a unique solution sh ∈ Sh satisfying the boundary condition (4.31), and

||sh −u||L∞(I) ≤Ch4, (4.39)

41

where the constant C depends only on u.

Proof. The existence and uniqueness of a solution to the generalized collocation system follows from that

of the ordinary collocation system and the fact that matrix B is non-singular. Let Q := Q3 as in Sec.2.4. We

know from (2.13) that ||u−Qu||L∞ ≤ Cuh4, where Cu is a constant depending on u. Since both sh and Qu

match the true solution u at the endpoints of the interval, by elementary calculus (see Fact 2 in Appendix)

we have

||sh −Qu||L∞ ≤C1||D2sh −D2Qu||L∞(I) (4.40)

≤C2||D2
ξ sh −D2

ξ Qu||∞, (4.41)

where C1 =
1
2

and C2 = 1. The second inequality holds since D2sh and D2Qu are continuous piecewise linear

functions and all the collocation points except the first (which lies at one third of the first interval) are knots.

Since ||B−1||∞ ≤ 12, inserting BB−1 into the last inequality above we get

||sh −Qu||L∞(I) ≤ ||B−1||∞||BD2
ξ sh −BD2

ξ Qu||∞ (4.42)

= ||B−1||∞||D2
ξ u−BD2

ξ Qu||∞ (4.43)

≤ 12Ch4, (4.44)

where (4.43) follows from the fact that sh is the solution to the generalized collocation equation (4.33) and

the constant C in the last inequality is the same as in Lemma 4.3.2. By the triangle inequality, ||sh−u||L∞(I) ≤

||sh −Qu||L∞(I)+ ||Qu−u||L∞(I), which finishes the proof.

We next give a few numerical examples verifying the convergence results of the above theorem. In

particular, we solve the system (4.33) and (4.31) for several test functions u using S2
3(∆) defined above by

the GC method.

In all the tables in this section, k denotes the number of subintervals in the partition, maxerr and

rmserr denote the maximum error and root-mean-square error respectively, measured on 1001 uniformly

distributed points in I, and (x− y)n
+ := max{0,(x − y)n}. The last three columns in the tables give con-

vergence rates; maxrate and rmsrate denote the convergence rates of the maximum error and root-

mean-square error, while the last column shows the convergence rate for ||BD2
ξ Qu−D2

ξ u||∞. We observed

42

k maxerr rmserr maxrate rmsrate BD2
ξ Qu − D2

ξ u

maxrate

10 1.00e-05 5.11e-06

20 6.64e-07 3.36e-07 3.92 3.93 3.84

40 4.27e-08 2.14e-08 3.96 3.97 3.92

80 2.71e-09 1.35e-09 3.98 3.99 3.94

160 1.68e-10 8.46e-11 4.01 3.99 2.35

320 1.05e-11 4.82e-12 3.99 4.13 0.96

640 1.00e-11 6.89e-12 0.07 -0.51 -4.12

Table 4.3.1: u = ex on [0,1]

k maxerr rmserr maxrate rmsrate BD2
ξ Qu − D2

ξ u

maxrate

10 1.67e-05 6.20e-06

20 1.24e-06 5.13e-07 3.76 3.59 3.24

40 8.57e-08 3.61e-08 3.85 3.83 3.58

80 5.69e-09 2.35e-09 3.91 3.94 3.78

160 3.61e-10 1.49e-10 3.98 3.98 3.89

320 2.30e-11 9.45e-12 3.98 3.98 3.90

640 3.07e-12 2.28e-12 2.90 2.05 1.90

Table 4.3.2: u = log(1+ x) on [0,1]

k maxerr rmserr maxrate rmsrate BD2
ξ Qu − D2

ξ u

maxrate

10 2.28e-04 6.07e-05

20 1.86e-05 7.31e-06 3.62 3.05 3.53

40 1.39e-06 5.71e-07 3.74 3.68 3.81

80 9.57e-08 3.80e-08 3.86 3.91 3.91

160 6.20e-09 2.42e-09 3.95 3.97 3.96

320 3.98e-10 1.52e-10 3.96 3.99 3.98

640 1.90e-11 9.53e-12 4.39 4.00 4.01

Table 4.3.3: u = (x− 1
2
)7
+ on [0,1]

optimal convergence (order 4) for cubic splines in all examples. Also, order 4 convergence is observed for

||BD2
ξ Qu−D2

ξ u||∞ in Tables 4.3.1-4.3.4 when the true solution u is at least C6, as assumed in Lemma 4.3.2.

However, for u that is only C4, this convergence rate is not clear, see Table 4.3.5. We remark that when the

error goes down to around 1(-11), the convergence rate is most likely polluted by roundoff error.

4.4 A Model for the Generalized Collocation Methods

In the following let us consider a more general model problem:

43

k maxerr rmserr maxrate rmsrate BD2
ξ Qu − D2

ξ u

maxrate

10 6.59e-04 2.27e-04

20 5.17e-05 2.14e-05 3.67 3.41 3.69

40 3.71e-06 1.52e-06 3.80 3.81 3.87

80 2.50e-07 9.89e-08 3.89 3.94 3.94

160 1.59e-08 6.26e-09 3.97 3.98 3.97

320 1.02e-09 3.93e-10 3.97 3.99 3.98

640 4.83e-11 2.45e-11 4.39 4.00 3.92

Table 4.3.4: u = (x− 1
π)

7
+ on [0,1]

k maxerr rmserr maxrate rmsrate BD2
ξ Qu − D2

ξ u

maxrate

10 2.74e-04 1.21e-04

20 1.92e-05 8.01e-06 3.83 3.92 4.92

40 1.26e-06 5.14e-07 3.93 3.96 2.81

80 8.10e-08 3.21e-08 3.96 4.00 3.42

160 5.03e-09 2.05e-09 4.01 3.97 2.34

320 3.17e-10 1.28e-10 3.99 4.00 3.06

640 1.50e-11 7.89e-12 4.40 4.02 3.20

Table 4.3.5: u = (x− 1
π)

5
+ on [0,1]

Let Sh := Sd−1
d (∆) be a spline space of dimension n defined on a partition ∆ of the interval I and let

ξ = {ξi}m
i=1 (m = n− 2) be a set of collocation points. The corresponding generalized collocation (GC)

system associated with this problem is to find an s ∈ Sh, such that

Bξ s = Rξ f , (4.45)

subject to the boundary condition s(a) = ua, s(b) = ub, with

Bξ s :=−B2D
2
ξ s+(Rξ α) ·B1D

1
ξ s+(Rξ β) ·Rξ s. (4.46)

Here B1,B2 are m×m matrices and the “·” means the entry-wise product. The following theorem gives

a sufficient condition on the matrices B1,B2 that guarantees optimal convergence rate of the generalized

collocation solutions.

Theorem 4.4.1. Let C be a generic constant independent of the mesh size h or a specific spline s in Sh and

let I = [a,b]. Let Q : C(I)→ Sh be a quasi-interpolation operator such that

44

i) u(a) = Qu(a), u(b) = Qu(b), for all u ∈C(I)

ii) for all smooth enough u, ||u−Qu||L∞(I) ≤Chd+1.

Assume further that the matrix pair {B1,B2} in (4.46) has the property that for any s ∈ Sh, with s(a) =

s(b) = 0

||Bξ s||∞ ≥C||s||L∞(I), (4.47)

and

||Bξ Qu−Lξ u||l∞ ≤Chd+1. (4.48)

Then the GC system is non-singular and the GC solution sh associated with the matrices B1,B2 satisfies

||sh −u||L∞ ≤Chd+1. (4.49)

Proof. Consider the homogeneous system Bξ s =~0 subject to zero boundary conditions. It follows from

(4.47) that s is the zero function. Since this GC system is a square linear system, i.e., the number of equations

equals the dimension of the spline space, it has a unique solution for any input {Rξ f ,ua,ub}. Using the

triangle inequality we have ||sh − u||L∞(I) ≤ ||sh −Qu||L∞(I) + ||Qu− u||L∞(I), the second term of which is

bounded by assumption ii) of Q. Hence we only need to estimate

||sh −Qu||L∞(I) ≤C||Bξ (sh −Qu)||∞ (4.50)

≤C||Lξ u−Bξ Qu||∞ (4.51)

≤Chd+1, (4.52)

where (4.50) follows from (4.47) and the fact that sh and Qu are both splines in Sh and they coincide

at the endpoints of I. Inequality (4.51) follows from the fact that sh is the GC solution to the problem,

i.e., Bξ sh = Rξ f = Lξ u, while the last inequality follows from (4.48). Again C stands for a generic

constant.

We summarize the GC method for solving Problem 2 as follows:

Algorithm 4.

45

1. Pick a spline space Sd−1
d (∆)(d ≥ 3), where ∆ is a uniform partition on [a,b], and choose the colloca-

tion points ξ to be the interior Greville points associated with the corresponding extended partition

△e.

2. Choose a quasi-interpolation operator Q with optimal approximation power, as in assumption ii) of

Theorem 4.4.1.

3. Calculate the rows of B1 and B2 by forcing B1D1
ξ Qp = D1

ξ p for polynomials p of degree ≤ d +2 and

B2D2
ξ Qp = D2

ξ p for polynomials p of degree ≤ d +3.

4. Set up the linear system according to (4.46) and solve it.

We remark that this algorithm can be applied for non-uniform partitions and other choices of collocation

points too. However, there are several advantages of using uniform partitions and Greville points:

i) there exists a local quasi-interpolation operator Q such that the coefficient matrix is essentially Toeplitz

in the sense that its largest block is Toeplitz (cf. (4.34)). The matrix is also sparse.

ii) the relative position of the collocation points in each interval is fixed and all but the boundary the

B-spline basis functions are translations of the cardinal B-splines, cf. e.g. [34], which makes the

calculation of the values or derivatives of the basis functions at the collocation points very easy. In

fact, there are only a few different non-zero values that needed to be calculated, the number of which

depends on the degree d of the spline space only.

iii) by i) and ii) matrices B1 and B2 can be made into sparse matrices with some Toeplitz structure; hence

except for the first and last few rows, the vectors consisting of the non-zero entries in each row are

the same. These vectors of non-zero entries in each row can be calculated once and for all once the

degree d is fixed.

Next, we show how to make use of the GC scheme to solve elliptic boundary value problems on a

rectangle in R
2. Consider the following model problem

Problem 4. Find a function u defined on the unit square Ω such that

Lu :=−∇ · (κ∇u) = f on Ω, (4.53)

u = g on ∂Ω, (4.54)

46

where κ and f are given functions defined on Ω and g is a function defined on the boundary ∂Ω.

Given a partition △ on the interval I = [0,1] and an integer d ≥ 3, we employ a tensor-product spline

space S⊗ := Sd−1
d (△)

⊗
Sd−1

d (△) defined on Ω (cf. Sect. 2.3) as the approximation space. Note that the

partitions in the x- and y- directions need not to be the same; we assume that △ is the partition used in both

directions for simplicity. Let ξ = {ξi}m
i=1 be a set of collocation points in I according to Algorithm 4 and let

ξ⊗ := {(ξi,ξ j)}m,m
i=1, j=1. Expanding (4.53), we obtain

Lu =−κ(uxx +uyy)−κxux −κyuy. (4.55)

Let us define the following GC operator Bξ⊗ : S⊗ → R
m2

Bξ⊗s :=−(Rξ⊗κ) · (Bx
2D

xx
ξ⊗

s+B
y
2D

yy

ξ⊗
s)− (Rξ⊗κx) · (Bx

1D
x
ξ⊗

s)− (Rξ⊗κy) · (By
1D

y

ξ⊗
s), (4.56)

where Bx
2,B

y
2,B

x
1,B

y
1 are m2 ×m2 matrices and the “·” means the entry-wise product. We note that Bx

2,B
y
2

correspond to the m×m matrix B2 in Algorithm 4 in the following sense: if the non-zero entries of the i-th

row and j-th row of B2 are {bi,i1 , ...,bi,i2} and {b j, j1 , ...,b j, j2} respectively, then, for l = (i−1)m+ j

(Bx
2D

xx
ξ⊗

s)l =
i2

∑
k=i1

bi,ksxx(ξk,ξ j), (4.57)

(By
2D

yy

ξ⊗
s)l =

j2

∑
k= j1

b j,ksyy(ξi,ξk), (4.58)

while Bx
1,B

y
1 correspond to the matrix B1 in Algorithm 4 in similar sense.

We propose the following GC scheme to solve Problem 4:

Algorithm 5.

1. Pick a spline space Sd−1
d (△)

⊗
Sd−1

d (△)(d ≥ 3), where ∆ is a uniform partition on [a,b], and choose

the collocation points ξ to be the interior Greville points associated with the corresponding extended

partition △e.

2. Calculate matrices B1 and B2 according to Step 3 in Algorithm 4.

3. Construct the sparse matrices Bx
2,B

y
2,B

x
1,B

y
1 according to (4.57) and (4.58).

47

4. Pick nb(≥ n) uniformly distributed points on each boundary edge of Ω and obtain the boundary

degrees of freedom cb by solving four least-squares problems using the data of g on each boundary

edge, where n = dim Sd−1
d (△).

5. Solve the following linear system (GC system)

Bξ⊗s = Rξ⊗ f , (4.59)

subject to the condition that the boundary degrees of freedom of s coincide with cb obtained in the

previous step, where Bξ⊗ is as in (4.56) and s ∈ Sd−1
d (△)

⊗
Sd−1

d (△).

We remark that in the case when the partitions or collocation points in the x- and y- directions are

different, matrices Bx
2,B

y
2,B

x
1,B

y
1 can be modified accordingly. In fact, matrices B1,B2 depend on the specific

partition and collocation points being used.

4.5 Numerical Examples Using the Generalized Collocation

4.5.1 1D Examples

We present some examples of the numerical solutions of the two-point BVP in Problem 2. The spline

spaces used below are Sd−1
d (∆) where ∆ is a uniform partition of an interval I. The collocation points ξ

are interior Greville points as defined in Sect. 4.3. In the tables k denotes the number of subintervals in

the partition, maxerr and rmserr denote the maximum error and root-mean-square error respectively,

measured on 501 uniformly distributed points in I. maxrate and rmsrate denote convergence orders of

the respective errors in terms of the mesh size h.

Example 4.5.1. Consider the boundary value problem when α(x) = β (x)≡ 1 on I = [0,1] with f = ex. Note

that the true solution of this problem is u = ex.

Discussion: We give the tables of errors for the collocation solutions when d = 3,4,5, see Tables 4.5.1 –

4.5.6. All tables of GC solutions (marked as “Gencol”) show a convergence order of d+1, which is optimal

for a spline space of degree d. Note that the orders are unclear once the errors are below 1(-12). These are

polluted by the round-off errors due to the machine accuracy and condition numbers of the linear systems.

For comparison purposes, the tables of errors for the OC solutions (marked as “Ordcol”) are also provided;

48

as observed here, they agree with the odd/even discrepancy results (i.e., has convergence order (d − 1) for

odd degree splines and d for even degree splines) noted in the literature, see e.g. [29].

k maxerr rmserr maxrate rmsrate

12 4.94e-06 2.24e-06

24 3.25e-07 1.41e-07 3.93 3.98

48 2.08e-08 8.91e-09 3.96 3.99

96 1.32e-09 5.60e-10 3.98 3.99

192 8.28e-11 3.52e-11 3.99 3.99

384 3.64e-12 1.82e-12 4.51 4.28

768 4.47e-12 2.73e-12 -0.30 -0.59

Table 4.5.1: u = ex with Gencol, d = 3

k maxerr rmserr maxrate rmsrate

12 4.94e-06 3.17e-06

24 3.07e-09 6.25e-10 10.65 12.31

48 9.87e-11 1.42e-11 4.96 5.46

96 3.09e-12 3.34e-13 5.00 5.41

192 1.43e-12 1.00e-12 1.11 -1.58

384 3.44e-12 2.54e-12 -1.27 -1.34

768 2.23e-11 1.62e-11 -2.69 -2.67

Table 4.5.2: u = ex with Gencol, d = 4

k maxerr rmserr maxrate rmsrate

12 1.77e-08 6.00e-09

24 3.04e-10 9.70e-11 5.86 5.95

48 4.97e-12 1.81e-12 5.93 5.74

96 3.83e-13 1.37e-13 3.70 3.72

192 3.36e-13 1.84e-13 0.19 -0.43

384 3.44e-12 2.31e-12 -3.35 -3.65

768 2.69e-12 1.63e-12 0.36 0.51

Table 4.5.3: u = ex with Gencol, d = 5

We also give the matrix pair {B1,B2} for the case d = 3,4. We do not display the matrices for d = 5;

they possess similar structures in the sense that the non-zero entries of the middle rows (i.e., except the first

and last few rows) are identical and the matrices are strictly diagonally dominant for these middle rows.

49

k maxerr rmserr maxrate rmsrate

12 1.07e-04 7.73e-05

24 2.72e-05 1.96e-05 1.98 1.98

48 6.82e-06 4.93e-06 2.00 1.99

96 1.71e-06 1.23e-06 2.00 2.00

192 4.26e-07 3.08e-07 2.00 2.00

384 1.07e-07 7.71e-08 2.00 2.00

768 2.67e-08 1.93e-08 2.00 2.00

Table 4.5.4: u = ex with Ordcol, d = 3

k maxerr rmserr maxrate rmsrate

12 3.99e-08 2.78e-08

24 2.61e-09 1.85e-09 3.93 3.91

48 1.68e-10 1.20e-10 3.96 3.95

96 1.02e-11 7.32e-12 4.04 4.03

192 7.99e-13 5.58e-13 3.67 3.71

384 3.45e-12 2.55e-12 -2.11 -2.19

768 1.92e-11 1.35e-11 -2.47 -2.40

Table 4.5.5: u = ex with Ordcol, d = 4

k maxerr rmserr maxrate rmsrate

12 1.17e-08 8.36e-09

24 7.76e-10 5.59e-10 3.92 3.90

48 4.91e-11 3.55e-11 3.98 3.98

96 3.09e-12 2.23e-12 3.99 3.99

192 5.92e-13 4.24e-13 2.38 2.40

384 1.37e-12 9.12e-13 -1.21 -1.11

768 9.37e-12 6.78e-12 -2.77 -2.89

Table 4.5.6: u = ex with Ordcol, d = 5

For d = 3,

B2 =

172
9

− 505
18

211
27

115
54

− 9
2

8 −2 − 1
2

1
16

85
96

1
24

1
96

1
12

5
6

1
12

1
12

5
6

1
12

. . .
. . .

. . .

, B1 =

100
93

− 140
837

112
837

− 35
837

− 9
31

51
31

− 16
31

5
31

1

1

1

. . .

.

50

For d = 4,

B2 =

4867
95

− 17403
163

15999
218

− 2345
147

− 18
121

− 838
5935

− 16873
771

5752
121

− 22450
701

1285
177

133
2549

229
3755

1605
358

− 1732
181

2549
333

− 1589
1002

140
3691

− 244
11659

100
5109

− 399
6691

1091
1007

− 439
6574

191
6617

− 447
82114

33
14488

− 122
11809

47
2020

1418
1459

207
12244

− 56
13935

− 5
75351

− 110
32793

153
10873

1827
1867

523
36359

− 69
19112

− 1
58433

− 55
15409

186
12875

1574
1609

136
9361

− 28
7701

− 7
1920

7
480

313
320

7
480

− 7
1920

· · ·
. . .

. . .
. . .

. . .
. . .

,

B1 =

919
1050

1375
4172

− 235
681

583
2592

− 242
3699

33
4027

− 152
623

2619
1601

− 2104
3243

758
2149

− 2397
22480

81
7489

979
4023

− 2923
4499

188
111

− 443
1076

499
3454

− 141
7013

19
1783

− 158
4527

2461
2338

− 207
4778

128
7187

− 82
28773

11
35473

15
83054

− 68
28097

170
169

− 51
11953

59
52995

1
120766

81
68858

− 73
15246

976
969

− 17
3520

11
9095

59
48633

− 95
19559

691
686

− 62
12759

23
18931

7
5760

− 7
1440

967
960

− 7
1440

7
5760

· · ·
. . .

. . .
. . .

. . .
. . .

,

where the non-zero entries of the middle rows have the patterns

[
− 7

1920
7

480
313
320

7
480

− 7
1920

]
(with 313

320

on the diagonal) and

[
7

5760
− 7

1440
967
960

− 7
1440

7
5760

]
(with 967

960
on the diagonal) respectively.

Example 4.5.2. Consider the boundary value problem when α(x) = 100sin(x),β (x) = ex on I = [0,1] with

f (x) = 50sin(2x)+ sin(x)+ ex sin(x). Note that the true solution of this problem is u = sin(x).

Discussion: We give the tables of errors for the collocation solutions when d = 3,4,5, see Tables 4.5.7 –

51

4.5.12. All tables of GC solutions show a convergence order of d +1, while the tables for the OC solutions

indicate the usual odd/even discrepancy results. Note that the orders are unclear after the errors are below

10(-13), due to the round-off errors and the condition numbers of the linear systems.

k maxerr rmserr maxrate rmsrate

12 2.30e-06 5.42e-07

24 1.50e-07 2.56e-08 3.94 4.40

48 8.83e-09 1.09e-09 4.09 4.55

96 4.97e-10 4.61e-11 4.15 4.57

192 2.88e-11 2.20e-12 4.11 4.39

384 9.86e-13 1.26e-13 4.87 4.12

768 1.37e-13 8.50e-14 2.85 0.57

Table 4.5.7: u = sin(x) with Gencol, d = 3

k maxerr rmserr maxrate rmsrate

12 1.31e-06 7.57e-07

24 1.21e-09 2.62e-10 10.08 11.50

48 3.76e-11 5.77e-12 5.00 5.50

96 1.18e-12 1.26e-13 5.00 5.51

192 3.70e-14 7.73e-15 4.99 4.03

384 2.49e-14 1.30e-14 0.57 -0.75

768 2.46e-13 1.19e-13 -3.31 -3.20

Table 4.5.8: u = sin(x) with Gencol, d = 4

k maxerr rmserr maxrate rmsrate

12 4.35e-09 1.36e-09

24 7.37e-11 1.67e-11 5.88 6.35

48 1.24e-12 1.97e-13 5.90 6.40

96 3.11e-14 5.00e-15 5.31 5.30

192 3.15e-14 1.49e-14 -0.02 -1.58

384 1.22e-13 7.02e-14 -1.96 -2.23

768 3.65e-13 2.14e-13 -1.58 -1.61

Table 4.5.9: u = sin(x) with Gencol, d = 5

Example 4.5.3. Consider the boundary value problem when α(x) = sin(x),β (x) = x on I = [0,1], with f (x)

being chosen such that the true solution of this problem is u = 1
1+25x2 .

Discussion: We give the tables of errors for the collocation solutions when d = 3,4,5, see Tables 4.5.13 –

4.5.18. We still observe a d + 1 convergence order for d = 3,5 in the tables for the GC solutions when the

mesh is fine enough (k ≥ 48). However the convergence rate of the GC solutions for d = 4 seems to be 6

52

k maxerr rmserr maxrate rmsrate

12 5.65e-06 3.02e-06

24 1.38e-06 7.97e-07 2.04 1.92

48 3.36e-07 2.00e-07 2.03 1.99

96 8.32e-08 5.00e-08 2.01 2.00

192 2.08e-08 1.25e-08 2.00 2.00

384 5.18e-09 3.12e-09 2.00 2.00

768 1.30e-09 7.80e-10 2.00 2.00

Table 4.5.10: u = sin(x) with Ordcol, d = 3

k maxerr rmserr maxrate rmsrate

12 5.85e-08 3.58e-08

24 3.10e-09 2.02e-09 4.24 4.15

48 1.81e-10 1.18e-10 4.10 4.10

96 1.10e-11 7.11e-12 4.04 4.05

192 6.67e-13 4.26e-13 4.05 4.06

384 5.37e-14 2.38e-14 3.63 4.16

768 1.02e-13 4.83e-14 -0.93 -1.02

Table 4.5.11: u = sin(x) with Ordcol, d = 4

k maxerr rmserr maxrate rmsrate

12 5.24e-10 3.00e-10

24 3.72e-11 2.23e-11 3.82 3.75

48 2.39e-12 1.43e-12 3.96 3.96

96 1.53e-13 9.19e-14 3.96 3.96

192 2.28e-14 1.41e-14 2.75 2.70

384 1.65e-14 9.35e-15 0.47 0.59

768 4.76e-14 2.49e-14 -1.53 -1.41

Table 4.5.12: u = sin(x) with Ordcol, d = 5

numerically, although we know the rate is 5 for quartic splines in general. The convergence orders for the

OC solution agree with the usual even/odd discrepancy results. The second (or higher) derivatives of u have

large variations near x = 0, which could cause instability in the convergence orders. Recall that the design

of matrices B1,B2 are based on Taylor expansion around the collocation points and the constant C in the

inequality ||Bξ Qu−Lξ u||l∞ ≤Chd+1 depends on the derivatives of u.

4.5.2 2D Examples

In this section we show the performance of the GC method coupled with tensor-product splines (cf.,

Sec. 2.3). We abbreviate this method as TPGencol and the OC method coupled with tensor-product as

53

k maxerr rmserr maxrate rmsrate

12 9.70e-03 5.35e-03

24 7.66e-04 4.13e-04 3.66 3.69

48 9.32e-05 5.12e-05 3.04 3.01

96 6.60e-06 2.92e-06 3.82 4.13

192 4.48e-07 1.69e-07 3.88 4.11

384 2.06e-08 1.03e-08 4.44 4.04

768 1.29e-09 6.40e-10 3.99 4.01

Table 4.5.13: u = 1
1+25x2 with Gencol, d = 3

k maxerr rmserr maxrate rmsrate

12 2.47e-03 1.18e-03

24 3.43e-04 2.00e-04 2.85 2.56

48 1.29e-05 3.45e-06 4.73 5.86

96 2.44e-07 8.18e-08 5.72 5.40

192 3.71e-09 1.10e-09 6.04 6.22

384 5.08e-11 1.57e-11 6.19 6.13

768 8.25e-13 3.58e-13 5.94 5.45

Table 4.5.14: u = 1
1+25x2 with Gencol, d = 4

k maxerr rmserr maxrate rmsrate

12 5.32e-03 3.32e-03

24 5.20e-04 1.16e-04 3.35 4.83

48 1.17e-05 6.76e-06 5.47 4.11

96 2.33e-07 1.13e-07 5.65 5.91

192 4.86e-09 1.87e-09 5.58 5.91

384 4.35e-11 2.46e-11 6.81 6.25

768 7.74e-13 5.14e-13 5.81 5.58

Table 4.5.15: u = 1
1+25x2 with Gencol, d = 5

k maxerr rmserr maxrate rmsrate

12 3.60e-02 2.13e-02

24 8.46e-03 4.91e-03 2.09 2.12

48 1.99e-03 1.14e-03 2.09 2.10

96 4.88e-04 2.80e-04 2.03 2.03

192 1.21e-04 6.95e-05 2.01 2.01

384 3.03e-05 1.73e-05 2.00 2.00

768 7.57e-06 4.33e-06 2.00 2.00

Table 4.5.16: u = 1
1+25x2 with Ordcol, d = 3

TPOrdcol. We employ Algorithm 5 and present some examples of the numerical solution of second-order

linear elliptic PDE’s defined on a rectangular domain Ω with Dirichlet boundary conditions. In all of the

54

k maxerr rmserr maxrate rmsrate

12 1.21e-03 6.99e-04

24 1.80e-04 7.87e-05 2.74 3.15

48 1.35e-05 6.36e-06 3.74 3.63

96 8.50e-07 4.04e-07 3.99 3.98

192 5.31e-08 2.53e-08 4.00 4.00

384 3.32e-09 1.58e-09 4.00 4.00

768 2.07e-10 9.86e-11 4.00 4.00

Table 4.5.17: u = 1
1+25x2 with Ordcol, d = 4

k maxerr rmserr maxrate rmsrate

12 8.61e-04 4.44e-04

24 9.22e-05 4.00e-05 3.22 3.47

48 6.39e-06 3.17e-06 3.85 3.66

96 3.48e-07 1.69e-07 4.20 4.23

192 2.06e-08 9.85e-09 4.08 4.10

384 1.27e-09 6.04e-10 4.02 4.03

768 7.88e-11 3.75e-11 4.01 4.01

Table 4.5.18: u = 1
1+25x2 with Ordcol, d = 5

following examples, Ω = [0,1]× [0,1] is the unit square and nb = 2n in Step 4 of Algorithm 5. In the

tables, kx and ky denote the number of subintervals in the partitions for the intervals on the x- and y- axis,

respectively, maxerr and rmserr denote the maximum error and root-mean-square error, measured on a

51× 51 grid in Ω, n denotes the dimension of the spline space being used, and maxrate and rmsrate

denote convergence orders of the respective errors in terms of the mesh size.

Example 4.5.4. Consider the Poisson problem

∆u = f on Ω,

u = g on ∂Ω,

where f and g are chosen such that the true solution is u = sin(x2 + y2) + .1sin(25(x2 + y2)). Given a

partition △ on [0,1] , find a cubic spline in S2
3(△)

⊗
S2

3(△) (cf. Sect. 2.3) that solves the GC system

associated with this problem.

Discussion: We start with a partition with 12×14 sub-rectangles on Ω and decrease the mesh size by half

in each loop. From the last two columns in Table 4.5.19, we see the convergence orders for both errors

55

are roughly 4, which is optimal for tensor-product cubic splines. For comparison purposes, in Table 4.5.20

we also give the errors using ordinary collocation. The convergence orders are roughly 2. We observe that

the approximating spline in S2
3(△)

⊗
S2

3(△) obtained by TPGencol achieves a maxerr of 3.06(-4) with 3009

degrees of freedom. To achieve similar accuracy, the approximating spline obtained by TPOrdcol has at

least 11385 degrees of freedom (see Row 4 of Table 4.5.20). A plot for the resulting spline associated with

the last row of Table 4.5.19 is shown in Figure 4.5.1, which looks no different than the plot for the true

solution.

-0.2
1

0

0.2

0.8

0.4

1

0.6

0.6 0.8

0.8

1

0.60.4

1.2

0.4
0.2 0.2

0 0

Figure 4.5.1: u = sin(x2 + y2)+ .1sin(25(x2 + y2)) in Example 4.5.4

kx ky n maxerr rmserr maxrate rmsrate

12 14 255 3.21e-01 6.07e-02

24 28 837 4.80e-02 8.09e-03 2.74 2.91

48 56 3009 3.06e-03 4.00e-04 3.97 4.34

96 112 11385 2.05e-04 2.52e-05 3.90 3.99

192 224 44265 1.10e-05 1.33e-06 4.22 4.24

Table 4.5.19: u = sin(x2 + y2)+ .1sin(25(x2 + y2)), TPGencol with S2
3(△)

⊗
S2

3(△)

Example 4.5.5. Consider Problem 4 with κ(x,y) = ex+y and choose f and g such that the true solution is

u =−sin(4x)− sin(4y). Given a partition △ on [0,1], find a cubic spline in S2
3(△)

⊗
S2

3(△) that solves the

56

kx ky n maxerr rmserr maxrate rmsrate

12 14 255 2.92e-01 5.13e-02

24 28 837 5.37e-02 1.11e-02 2.44 2.21

48 56 3009 1.25e-02 2.92e-03 2.10 1.93

96 112 11385 3.04e-03 7.34e-04 2.04 1.99

192 224 44265 7.50e-04 1.83e-04 2.02 2.00

Table 4.5.20: u = sin(x2 + y2)+ .1sin(25(x2 + y2)), TPOrdcol with S2
3(△)

⊗
S2

3(△)

GC system associated with this problem.

Discussion: We start with a partition of 12× 14 sub-rectangles and decrease the mesh size by half in each

loop. From the last two columns in Tables 4.5.21 and 4.5.22, we see that the convergence orders of the

spline solutions by TPGencol are (roughly) 4, compared with (roughly) 2 by TPOrdcol. Hence to achieve

similar accuracy, the TPGencol scheme in general uses many fewer degrees of freedom than the TPOrdcol

scheme. For example, TPGencol produces a spline with 837 degrees of freedom which has a maxerr of

2.44(-5), while TPordcol gives a spline of similar accuracy (maxerr = 4.99e(-5)) which has 44265 degrees

of freedom. A plot for the resulting spline associated with the last row of Table 4.5.21 is shown in Figure

4.5.2, which looks no different than the plot for the true solution.

kx ky n maxerr rmserr maxrate rmsrate

12 14 255 3.11e-04 1.22e-04

24 28 837 2.44e-05 7.54e-06 3.67 4.02

48 56 3009 1.01e-06 4.50e-07 4.59 4.07

96 112 11385 6.46e-08 2.95e-08 3.97 3.93

192 224 44265 4.15e-09 1.84e-09 3.96 4.00

Table 4.5.21: u =−sin(4x)− sin(4y), TPGencol with S2
3(△)

⊗
S2

3(△)

kx ky n maxerr rmserr maxrate rmsrate

12 14 255 1.28e-02 6.25e-03

24 28 837 3.20e-03 1.55e-03 2.00 2.01

48 56 3009 7.99e-04 3.87e-04 2.00 2.00

96 112 11385 2.00e-04 9.67e-05 2.00 2.00

192 224 44265 4.99e-05 2.42e-05 2.00 2.00

Table 4.5.22: u =−sin(4x)− sin(4y), TPOrdcol with S2
3(△)

⊗
S2

3(△)

Example 4.5.6. Consider Problem 4 with κ(x,y) = sin(x + y2) and choose f and g such that the true

solution is u = ex+2y2

+20sin(5x2 + y). Given a partition △ on [0,1], find a cubic spline in S2
3(△)

⊗
S2

3(△)

that solves the GC system associated with this problem.

57

-2

-1.5

1 1

-1

-0.5

0.8 0.8

0

0.5

1

0.6 0.6

1.5

2

0.4 0.4
0.2 0.2

0 0

Figure 4.5.2: u =−sin(4x)− sin(4y) in Example 4.5.5

Discussion: We use the same partitions and spline spaces as in the previous two examples. From the last

two columns in Tables 4.5.23 and 4.5.24, we see that the convergence orders of the spline solutions by

TPGencol and TPOrdcol are again (roughly) 4 and 2 respectively. Comparing row by row in these two

tables, we observe that TPGencol gives much better accuracy than TPOrdcol. To give an idea of how many

degrees of freedom a TPGencol scheme can save to achieve a certain accuracy, we compare a TPGencol

spline with 3009 degrees of freedom which has a maxerr of 1.16(-3) with a TPOrdcol spline with 44265

degrees of freedom which has a maxerr of 2.89(-3). A plot for the resulting spline associated with the last

row of Table 4.5.23 is shown in Figure 4.5.3, which looks no different than the plot for the true solution.

kx ky n maxerr rmserr maxrate rmsrate

12 14 255 2.48e-01 7.62e-02

24 28 837 2.31e-02 6.75e-03 3.42 3.50

48 56 3009 1.16e-03 3.88e-04 4.32 4.12

96 112 11385 7.30e-05 2.51e-05 3.99 3.95

192 224 44265 4.60e-06 1.55e-06 3.99 4.02

Table 4.5.23: u = ex+2y2

+20sin(5x2 + y), TPGencol with S2
3(△)

⊗
S2

3(△)

58

1

0.5
-20

0

-10

0.1

0

10

0.2

20

30

0.3

40

0.4 0.5 0.6 0.7 0.8 0.9 10

Figure 4.5.3: u = ex+2y2

+20sin(5x2 + y) in Example 4.5.6

kx ky n maxerr rmserr maxrate rmsrate

12 14 255 8.32e-01 3.46e-01

24 28 837 1.92e-01 7.97e-02 2.12 2.12

48 56 3009 4.67e-02 1.95e-02 2.04 2.03

96 112 11385 1.16e-02 4.85e-03 2.01 2.01

192 224 44265 2.89e-03 1.21e-03 2.00 2.00

Table 4.5.24: u = ex+2y2

+20sin(5x2 + y), TPOrdcol with S2
3(△)

⊗
S2

3(△)

4.6 Least-squares Collocation for Poisson’s Problem Using Splines on Triangulations

Let Ω be a bounded domain in R
2 and suppose f and g are functions defined on Ω and ∂Ω, respectively.

Let us consider the Poisson problem:

Problem 5. Find a function u defined on Ω such that

∆u = f on Ω, (4.60)

u = g on ∂Ω. (4.61)

Assume that Ω is a polygonal domain and let △ be a triangulation of Ω with mesh size |△|, i.e., the

59

maximum of the diameters of the triangles in △. Let X ⊂ Ω and Y ⊂ ∂Ω be two finite sets of points and

S(△) be a spline space defined on △. The collocation system associated with Problem 5 is to find s ∈ S(△)

such that

∆s|X = f |X , (4.62)

s|Y = g|Y , (4.63)

where X ,Y are called the collocation points and boundary collocation points respectively. If the above

system is over-determined, i.e., the number of equations is larger than the dimension of the spline space

being used, it is solved in the least-squares sense. We first give an error bound for the collocation solution

of (4.62), (4.63), assuming the existence and uniqueness of such a solution. Examples of conditions on the

choice of collocation points X and Y which guarantee the existence and uniqueness of a solution will be

given afterwards. For convenience, given positive integers p and m, let ||φ ||lp(X) := (∑
x∈X

|φ(x)|p)
1
p for any

function φ defined on Ω and finite set X, and let ||v||lp(Rm) := (
m

∑
i=1

|vi|p)
1
p for any vector v ∈ R

m. When

p = ∞, the pertinent norms will be understood as the maximum norms. For a finite set X , we denote the

number of elements in the set as #X .

Theorem 4.6.1. Let S(△)⊂C2(Ω) be a spline space and let X ⊂ Ω and Y ⊂ ∂Ω be finite sets such that the

system (4.62) (4.63) has a unique solution in the least-squares sense. Let

ŝ = argmin
s∈S(△)

||∆s− f ||2l2(X)+λ 2||s−g||2l2(Y), (4.64)

where 1 ≤ λ ≤ K

√
#X
#Y

for some fixed constant K. Assume further that there exist constants C1,C2, indepen-

dent of the mesh size |△|, such that
√

#X ≤ C1

|△| and

||s||L∞(Ω) ≤C2

(
||∆s||l∞(X)+ ||s||l∞(Y)

)
, (4.65)

for all s ∈ S(△). If the solution u of Problem 5 is in C2(Ω)∩C0(Ω), then, for |△| sufficiently small, we have

the following error bound

||u− ŝ||L∞(Ω) ≤ C

|△| ||u− s̃||W 2,∞(Ω), (4.66)

60

where s̃ is the best approximation to u in S(△) with respect to the W 2,∞ norm, and C is a constant indepen-

dent of the mesh size |△|.

Proof. The assumption that the system (4.62) (4.63) has a unique solution guarantees that the observation

matrix associated with the system has full rank; hence the minimization problem (4.64) has a unique solu-

tion. By (4.65) and since λ ≥ 1,

||s̃− ŝ||L∞(Ω) ≤C2(||∆(ŝ− s̃)||l∞(X)+ ||ŝ− s̃||l∞(Y)) (4.67)

≤C2(||∆(ŝ− s̃)||l2(X)+λ ||ŝ− s̃||l2(Y)) (4.68)

≤C2

√
2(||∆(ŝ− s̃)||2

l2(X)+λ 2||ŝ− s̃||2
l2(Y))

1/2, (4.69)

where the last inequality follows from the fact that a+ b ≤
√

2(a2 +b2) for all non-negative real numbers

a,b. Let m = #X +#Y and let SF := {(∆s|X ,λ s|Y) ∈R
m| s ∈ S(△)}. It is easy to see that (∆ŝ|X ,λ ŝ|Y) is the

l2-projection of (f |X ,λg|Y) onto SF . Since both (∆ŝ|X ,λ ŝ|Y) and (∆s̃|X ,λ s̃|Y) are in the linear subspace SF ,

by the Pythagorean theorem, for any s ∈ S(△),

||(∆ŝ|X −∆s|X ,λ ŝ|Y −λ s|Y)||l2(Rm) ≤ ||(f |X −∆s|X ,λg|Y −λ s|Y)||l2(Rm). (4.70)

In particular, if we choose s to be s̃ and let f̃ = ∆s̃|Ω and g̃ = s̃|∂Ω, we obtain

||(∆ŝ|X −∆s̃|X ,λ ŝ|Y −λ s̃|Y)||l2(Rm) ≤ ||(f |X − f̃ |X ,λg|Y −λ g̃|Y)||l2(Rm). (4.71)

Combining (4.69) with (4.71) and since λ
√

#Y ≤ K
√

#X , we get

||s̃− ŝ||L∞(Ω) ≤C2

√
2(|| f − f̃)||2

l2(X)+λ 2||g− g̃||2
l2(Y))

1/2 (4.72)

≤C2

√
2(
√

#X || f − f̃ ||l∞(X)+λ
√

#Y ||g− g̃||l∞(Y)) (4.73)

≤ (K +1)C2

√
2#X(|| f − f̃ ||l∞(X)+ ||g− g̃||l∞(Y)) (4.74)

≤
√

2(K +1)C2C1

|△| (|| f − f̃ ||l∞(X)+ ||g− g̃||l∞(Y)) (4.75)

≤
√

2(K +1)C2C1

|△| (|| f − f̃ ||L∞(Ω)+ ||g− g̃||L∞(∂Ω)) (4.76)

≤ 2
√

2(K +1)C2C1

|△| ||u− s̃||W 2,∞(Ω), (4.77)

61

where the last inequality make use of the fact that

||∆v||L∞(Ω) ≤ ||v||W 2,∞(Ω), ∀v ∈W 2,∞(Ω). (4.78)

By the triangle inequality,

||u− ŝ||L∞(Ω) ≤ ||u− s̃||L∞(Ω)+ ||s̃− ŝ||L∞(Ω). (4.79)

Combining this with (4.77), we obtain

||u− ŝ||L∞(Ω) ≤
2
√

2(K +1)C2C1 + |△|
|△| ||u− s̃||W 2,∞(Ω), (4.80)

and the proof is finished by choosing a constant C > 2
√

2(K +1)C2C1 + |△|.

Next, we present a lemma showing how certain Sobolev norms of a spline s ∈ S(△) ⊆ C2(Ω) depend

on its boundary data and the L∞-norm of ∆s. Throughout this section, we assume that triangulation △ is

β -quasi-uniform in the following sense: there exists β > 0 such that

|△|
ρ△

≤ β , (4.81)

where ρ△ is the minimum of the radii of the largest circles inscribed (incircles) in triangles of △.

Lemma 4.6.1. Let S(△) ⊆C2(Ω) be a degree d spline space and s ∈ S(△). For any non-negative integer

α ≤ 2, there exist constants K,C such that

||s||W α,∞(Ω) ≤ Kβ α

|△|α
(
||s||L∞(∂Ω)+C||∆s||L∞(Ω)

)
, (4.82)

where K depends only on d, C depends only on diam Ω, and β is the quasi-uniform parameter associated

with △.

Proof. Applying Corollary 3.8 in [18] to the case where Lu = ∆u, it is easy to see that i) the minimum

eigenvalue of the coefficient matrix (ai j(x)) is λ = 1 since for Laplace’s equation (ai j(x)) is simply the

identity matrix ii) the coefficient functions b,c= 0 (for definitions of these variables, cf. Fact 5 in Appendix);

62

hence since s ∈ S(△) is in C2(Ω), we obtain

||s||L∞(Ω) ≤ ||s||L∞(∂Ω)+C||∆s||L∞(Ω), (4.83)

where the constant C only depends on diam Ω. Now recall the Markov inequality for polynomials on

triangles (cf. p.44 in [24]): Given a non-degenerate triangle T , there exists a constant K depending only on

d such that ∀ p ∈ Pd , and any non-negative integers α1 and α2 with 0 ≤ α1 +α2 ≤ d,

||Dα1
x Dα2

y p||L∞(T) ≤ K

ρα+α2

T

||p||L∞(T),

where ρT denotes the radius of the largest circle inscribed (incircle) in T . Hence for a spline s ∈ S(△) and

α1 +α2 ≤ 2,

||Dα1
x Dα2

y s||L∞(Ω) = sup
T∈△

||Dα1
x Dα2

y s||L∞(T) ≤ sup
T∈△

K

ρα1+α2

T

||s||L∞(T)

≤ K

ρα1+α2

△
||s||L∞(Ω).

Combining the above inequality with (4.83), we obtain

||s||W α,∞(Ω) ≤ K

(ρ△)α
||s||L∞(Ω) (4.84)

≤ Kβ α

|△|α
(
||s||L∞(∂Ω)+C||∆s||L∞(Ω)

)
, (4.85)

where K depends only on d.

We next give an example of choices of X and Y which guarantee a unique solution of the system (4.62)

(4.63) in the least-squares sense. Given a degree d spline space S(△)⊆C2(Ω), a simple choice of X and Y

is:

• X : domain points Dm,T of degree m ≥ d −2 in each triangle T ∈△ (cf. Sect. 2.2)

• Y : k ≥ d +1 uniformly spaced points on each boundary edge of △

Claim 4.6.1. Given a degree d spline space S(△) ⊆C2(Ω) and X ,Y defined above, there exists a constant

C depending only on Ω and the degree d of the spline space S(△), m and k (cf. X ,Y defined above) such

63

that for all s ∈ S(△)

||s||L∞(Ω) ≤C
(
||∆s||l∞(X)+ ||s||l∞(Y)

)
. (4.86)

Proof. By letting α = 0 and K,C be the constants as in Lemma 4.6.1, we obtain

||s||L∞(Ω) ≤ K
(
||s||L∞(∂Ω)+C||∆s||L∞(Ω)

)
. (4.87)

Hence it suffices to show that, for the given X and Y , there exists constants C1,C2 > 0 depending only on m

and k such that for any s ∈ S(△)

||s||L∞(∂Ω∩T) ≤C1||s||l∞(Y∩T), (4.88)

||∆s||L∞(Ω∩T) ≤C2||∆s||l∞(X∩T). (4.89)

Note that s|T is a polynomial of total degree ≤ d and ∆s|T is a polynomial of total degree ≤ d −2. The first

inequality holds since the interpolation matrix of one-dimensional Bernstein basis polynomials of degree

≤ (k− 1) on k uniformly spaced points on a boundary edge is non-singular, and the constant C1 depends

only on the operator norm of the inverse of this matrix, which is determined by k. The second inequality

holds for similar reasons, i.e., the interpolation matrix associated with the Bernstein–Bézier basis of degree

m and degree m domain points in a triangle is also non-singular and depends only on m.

The previous claim implies that the minimization problem in (4.64) is uniquely solvable and #X +#Y ≥

dim S(△).

We next show an upper bound for the size of X defined above. Let nt := # of triangles in △ and let

nm := (m+2)(m+1)
2

be the number of domain points of degree m. By the definition of X , we have

#X ≤ nt ×nm (4.90)

≤ Area(Ω)

min
T∈△

Area(T)
×nm (4.91)

≤ Area(Ω)

πρ2
△

×nm (4.92)

≤ Area(Ω)β 2

π|△|2 ×nm, (4.93)

64

which shows that there exists a constant C independent of |△| such that
√

#X ≤ C
|△| .

We have verified that given a C2 spline space defined on a β -uniform triangulation and X ,Y as defined

above, the assumptions in Theorem 4.6.1 are satisfied. Furthermore, it is easy to see that an error bound

similar to (4.66) in W 2,∞-norm holds. Indeed, using the triangle inequality as in (4.79) while each term is

measured in the W 2,∞-norm and applying Lemma 4.6.1, we obtain that for any u ∈C2(Ω)∩C0(Ω)

||u− ŝ||W 2,∞(Ω) ≤ C

|△|3 ||u− s̃||W 2,∞(Ω), (4.94)

where ŝ is the least-squares collocation solution in (4.64) and C is constant depending on Ω,β ,m,k and

independent of |△|. To show a convergence rate of the collocation approximations to u, we make use of the

following approximation power property (cf. Theorem 10.10, Remark 10.11 in [24]): Let d ≥ 3r+ 2, and

suppose △ is a regular triangulation (in the sense of Def. 4.7 in [24]) of Ω. Then for any u ∈ W m,∞(Ω),

there exists a spline s ∈ Sr
d(△) such that

||Dα
x Dβ

y (u− s)||L∞(Ω) ≤ K|△|l−α−β max
α+β=l

||Dα
x Dβ

y u||L∞(Ω), (4.95)

for all 0 ≤ α + β ≤ l − 1, where the constant K depends only on d,r, the smallest angle θ in △, and the

Lipschitz constant of ∂Ω if Ω is not convex. Assuming the smallest angle θ∆ associated with a triangulation

△ is bounded below, i.e., there exists θ0 > 0 such that θ△ ≥ θ0 for all △ used in this section, we see that the

triangulation is △ is β = 2
sin(θ0/2) -quasi-uniform. Hence there exists a constant C depending on d,r,θ0 and

Ω such that for all u ∈W l,∞(Ω) with 2 < l ≤ d +1,

||u− s̃||W 2,∞(Ω) ≤C|△|l−2||u||W l,∞(Ω), (4.96)

where s̃ is the best approximation to u in Sr
d(△) in W 2,∞-norm as in Theorem 4.6.1. We summarize a

convergence rate result of the least-squares collocation solutions in the following theorem:

Theorem 4.6.2. Let △ be a regular triangulation of Ω with the smallest angle of triangles ≥ θ0 and let

Sr
d(△) with r ≥ 2 be a spline space with d ≥ 3r + 2. With the X ,Y defined in this section, there exists a

unique solution ŝ to (4.64) such that for any u ∈Cl(Ω)∩C0(Ω)

||u− ŝ||L∞(Ω) ≤C|△|l−3||u||W l,∞(Ω), 3 < l ≤ d +1, (4.97)

65

||u− ŝ||W 2,∞(Ω) ≤C|△|l−5||u||W l,∞(Ω), 5 < l ≤ d +1, (4.98)

where l is an integer and C is a constant depending on d,r,θ0,Ω and the Lipschitz constant of the boundary

of Ω if Ω is not convex.

Proof. The result follows from Theorem 4.6.1, (4.94) and (4.96).

Let us take the macro-element space S
2,4
9 (△) (cf. p. 174 in [24]) as a specific example of C2 splines

spaces defined on a triangulation △. It has been shown in [24] that this space has full approximation power,

i.e., order 10 approximation to smooth enough functions. By Theorem 4.6.2, the least-squares collocation

solutions in (4.64) approximate u in an order of at least |△|7 in L∞-norm and in an order of at least |△|5 in

W 2,∞-norm. We give a numerical example below.

Example 4.6.1. Let Ω be the unique square in R
2 and {△i}4

i=1 be a finite sequence of type-1 triangulations

(cf. Definition 3.10 in [38]) of Ω. Consider Problem 5 where f and g are chosen such that the true solution

u = sin(x2 + y2)+ .1sin(25(x2 + y2)) (cf. Figure 4.5.1) and solve the problem (4.64) using S
2,4
9 (△i), i =

1, ...4.

Discussion: Let {∆i}4
i=1 be a sequence of type-1 triangulations with |∆i|= 2i−1|∆1|. In particular, we make

use of triangulation corresponding to the files type1.25, type1.81, type1.289, type1.1089

and Matlab functions such as mds29 in the Matlab software package associated with Schumaker’s book

[38]. For each triangulation △, we tabulate h△ := |△|√
2

, the number of degrees of freedom ndof, the max-

imum error maxerr, the RMS error rmserr, the condition number cond of the Gram matrix associated

with the collocation systems and the convergence rate in the maximum norm maxrate. The errors are

computed over a 501× 501 grid on the unit square. Note that in this example, since |△i| = 2|△i+1|, the

convergence rate between consecutive errors ei,ei+1 is log2(
ei

ei+1
). We choose K in Theorem 4.6.1 to be 500

and choose λ = Kµ in (4.64) where µ = ⌊
√

#X
#Y
⌋. We have chosen such K so that the condition numbers of

the Gram matrices involved are comparably small in our experiments. However from Table 4.6.1, we can see

that the condition numbers are still relatively large. For the choice of X , degree d domain points are chosen in

each triangle; for Y , d +1 uniformly distributed points are chosen on each boundary edge. For each bound-

ary triangle Tb, the domain points chosen for X are associated with a similar triangle inside; the barycentric

coordinates of the vertices of this triangle relative to Tb are (0.8,0.1,0.1),(0.1,0.1,0.8),(0.1,0.8,0.1), re-

spectively. We solved the minimization problem (4.64) by applying Matlab’s built-in backslash function to

66

the Gram matrix, which may not be optimal considering the large condition numbers of the Gram matri-

ces involved; we remark that iterative methods such as gradient descent or conjugate gradient descent etc.

could be used and we leave the exploration of the performance using these methods for later work. From

Table 4.6.1, it seems that the rate of convergence in the maximum norm is about 8, which is higher than the

predicted rate 7 by Theorem 4.6.2. We expect to investigate this matter in more details in the near future.

h△ ndof µ maxerr rmserr cond maxrate

.25 575 3 1.79e+00 2.90e-01 2.22e+08

.125 1967 4 5.11e-02 2.69e-03 7.36e+08 5.13

.0625 7247 5 1.22e-04 4.96e-06 8.20e+09 8.71

.03125 27791 7 4.66e-07 1.82e-07 1.23e+11 8.03

Table 4.6.1: Least-squares collocation for Example 4.6.1 using S
2,4
9 (△)

67

Appendix

Fact 1: Let A = {ai j}n
i, j=1 be a strictly diagonally dominant(SDD) matrix, i.e., |aii| > ∑ j 6=i |ai j| for each i =

1, · · · ,n. Then A is non-singular. In addition,

||A−1||∞ ≤ 1

min
k=1,··· ,m

(|akk|− ∑
j 6=k

|ak j|)
, (A.1)

see e.g., [42, 43].

Fact 2: For any u ∈C2[a,b], ||u||L∞(I) ≤ |u(b)−u(a)|+min{|u(a)|, |u(b)|}+ ||u′′||L∞(I)

2
(b−a)2.

Proof. Let x ∈ (a,b), by Taylor’s Theorem, there exists real numbers t1 ∈ (a,x) and t2 ∈ (x,b) such

that

u(a) = u(x)+u′(x)(a− x)+
u′′(t0)

2
(a− x)2,

u(b) = u(x)+u′(x)(b− x)+
u′′(t1)

2
(b− x)2.

Subtracting the first equality from the second we get

(b−a)u′(x) = u(b)−u(a)− u′′(t1)
2

(b− x)2 +
u′′(t0)

2
(a− x)2,

and hence

||u′||L∞(I) ≤
1

b−a

(
|u(b)−u(a)|+ b−a

2
||u′′||L∞(I)

)
.

Here we used a simple inequality that for x ∈ [a,b], (b− x)2 +(a− x)2 ≤ (b− a)2. Since for any

y ∈ [a,b],

u(y) =
∫ y

a
u′(t)dt +u(a),

we have |u(y| ≤ (b− a)||u′||L∞(I) + |u(a)|. Combining the above estimate for ||u′||L∞(I) we obtain

||u||L∞(I) ≤ |u(b)−u(a)|+ |u(b)|+ ||u′′||L∞(I)

2
(b−a)2. By symmetry, the desired inequality is observed.

Fact 3: Consider the two-point boundary problem where the coefficient functions α(x),β (x) and f (x) are

68

continuous on [a,b]:

Lu :=−u′′(x)+α(x)u′(x)+β (x)u(x) = f (x), on (a,b) (A.2)

u(a) = ua, u(b) = ub. (A.3)

Assume that given any real numbers ua,ub, the above problem has a unique solution u in C2[a,b].

Then there exists a constant C such that

||u||L∞[a,b] ≤C|| f ||L∞[a,b], (A.4)

for any u ∈C2[a,b] such that u(a) = u(b) = 0.

Proof. From the theory of linear ordinary differential equations [30], the assumption on the existence

of a unique solution of the problem implies the existence of the Green’s function G(x, t) associated

with the homogeneous boundary condition, which is continuous on the square [a,b]× [a,b]. Moreover,

for any u in C2[a,b] such that u(a) = u(b) = 0,

u(x) =

∫ b

a
G(x, t) f (t)dt. (A.5)

By the continuity of G(x, t) on the square, we can take C := max
(x,t)∈[a,b]×[a,b]

|G(x, t)|.

Fact 4: We summarize Markov brothers’ inequality [28]: Let p be a polynomial of degree less or equal to n

and k be a positive integer. Then

max
−1≤x≤1

|Dk p(x)| ≤ n2(n2 −12)(n2 −22) · · · (n2 − (k−1)2)

1 ·3 ·5 · · · (2k−1)
max

−1≤x≤1
|p(x)|. (A.6)

Fact 5: We recall Corollary 3.8 in [18] : Let Lu := ∑ai j(x)Di ju+∑bi(x)Diu+ c(x)u in a bounded domain

Ω, where L is elliptic and u ∈ C2(Ω)∩C0(Ω). Let C be the constant depending only on the diam Ω

and β := sup
|b|
λ and suppose that C1 = 1−C sup

Ω

c+

λ > 0, where λ is the minimum of eigenvalues of

the coefficient matrix (ai j(x)) and c+ = max{c,0}. In particular, if Ω lies between two parallel planes

69

with a distance d apart, let C = e(β+1)d −1. Then

sup
Ω

|u| ≤ 1

C1

(
sup
∂Ω

|u|+C sup
Ω

| f |
λ

)
. (A.7)

70

BIBLIOGRAPHY

[1] AINSWORTH, M., DEMKOWICZ, L., AND KIM, C.-W. Analysis of the equilibrated residual method

for a posteriori error estimation on meshes with hanging nodes. Computer methods in applied mechan-

ics and engineering 196, 37-40 (2007), 3493–3507.

[2] AINSWORTH, M., AND ODEN, J. T. A Posteriori Error Estimation in Finite Element Analysis, vol. 37.

John Wiley & Sons, 2000.

[3] AINSWORTH, M., AND RANKIN, R. Constant free error bounds for nonuniform order discontinuous

galerkin finite-element approximation on locally refined meshes with hanging nodes. IMA journal of

numerical analysis 31, 1 (2009), 254–280.

[4] ARCHER, D. Some collocation methods for differential equations. PhD thesis, Rice University, 1973.

[5] ARCHER, D., AND DIAZ, J. C. A family of modified collocation methods for second order two point

boundary value problems. SIAM Journal on Numerical Analysis 15, 2 (1978), 242–254.

[6] BANK, R. E., AND SMITH, R. K. A posteriori error estimates based on hierarchical bases. SIAM

Journal on Numerical Analysis 30, 4 (1993), 921–935.

[7] BIALECKI, B., AND FAIRWEATHER, G. Orthogonal spline collocation methods for partial differential

equations. Journal of Computational and Applied Mathematics 128, 1-2 (2001), 55–82.

[8] BICKLEY, W. Piecewise cubic interpolation and two-point boundary problems. The Computer Journal

11, 2 (1968), 206–208.

[9] CARSTENSEN, C., HU, J., AND ORLANDO, A. Framework for the a posteriori error analysis of

nonconforming finite elements. SIAM Journal on Numerical Analysis 45, 1 (2007), 68–82.

[10] DE BOOR, C. A Practical Guide to Splines, vol. 27. Springer-Verlag New York, 1978.

[11] DE BOOR, C., AND SWARTZ, B. Collocation at gaussian points. SIAM Journal on Numerical Analysis

10, 4 (1973), 582–606.

71

[12] DEMARET, L., DYN, N., FLOATER, M. S., AND ISKE, A. Adaptive thinning for terrain modelling

and image compression. In Advances in multiresolution for geometric modelling. Springer, 2005,

pp. 319–338.

[13] DEMARET, L., DYN, N., AND ISKE, A. Image compression by linear splines over adaptive triangu-

lations. Signal Processing 86, 7 (2006), 1604–1616.

[14] FAIRWEATHER, G., AND MEADE, D. A survey of spline collocation methods for the numerical

solution of differential equations. Mathematics for large scale computing, Lecture notes in pure and

applied mathematics 120 (1989), 297–341.

[15] FISHER, N. Orthogonal Spline Collocation Methods for Fluid Flow Problems. PhD thesis, Colorado

School of Mines. Arthur Lakes Library, 2019.

[16] FRAZER, R., JONES, W., AND SKAN, S. Approximations to functions and to the solutions of differ-

ential equations. Great Britain Aero. Res. Conf., London, reprinted in Great Britain Air Ministry Aero.

Res. Comm. Tech. Rep 1 (1937), 516–549.

[17] FYFE, D. The use of cubic splines in the solution of two-point boundary value problems. The Com-

puter Journal 12, 2 (1969), 188–192.

[18] GILBARG, D., AND TRUDINGER, N. S. Elliptic partial differential equations of second order.

springer, 2015.

[19] GOMEZ, H., AND DE LORENZIS, L. The variational collocation method. Computer Methods in

Applied Mechanics and Engineering 309 (2016), 152–181.

[20] HOUSTIS, E. N., VAVALIS, E., AND RICE, J. R. Convergence of o(h4) cubic spline collocation

methods for elliptic partial differential equations. SIAM Journal on Numerical Analysis 25, 1 (1988),

54–74.

[21] IRODOTOU-ELLINA, M. Spline collocation methods for high order elliptic boundary value problems.

PhD thesis, Department of Mathematics, Aristotle University of Thessaloniki, 1987.

[22] IRODOTOU-ELLINA, M., AND HOUSTIS, E. N. An O(h6) quintic spline collocation method for fourth

order two-point boundary value problems. BIT Numerical Mathematics 28, 2 (1988), 288–301.

72

[23] ISKE, A. Multiresolution Methods in Scattered Data Modelling, vol. 37. Springer Science & Business

Media, 2004.

[24] LAI, M., AND SCHUMAKER, L. Spline Functions on Triangulations. Cambridge, 2007.

[25] LAI, M.-J., AND MERSMANN, C. An adaptive triangulation method for bivariate spline solutions of

PDEs. In Approximation Theory XV: San Antonio 2016, G. E. Fasshauer and L. L. Schumaker, Eds.,

Springer Proceedings in Mathematics & Statistics 201, pp. 155–175.

[26] LI, S., AND SCHUMAKER, L. L. Adaptive computation with splines on triangulations with hanging

vertices. In Approximation Theory XV: San Antonio 2016, G. E. Fasshauer and L. L. Schumaker, Eds.,

Springer Proceedings in Mathematics & Statistics 201, pp. 197–218.

[27] LYCHE, T., AND SCHUMAKER, L. L. Local spline approximation methods. Journal of Approximation

Theory 15, 4 (1975), 294–325.

[28] MARKOV, V. On functions of least deviation from zero in a given interval. St. Petersburg 892 (1892).

[29] MONTARDINI, M., SANGALLI, G., AND TAMELLINI, L. Optimal-order isogeometric collocation

at galerkin superconvergent points. Computer Methods in Applied Mechanics and Engineering 316

(2017), 741–757.

[30] NAIMARK, M. A. Linear Differential Operators in Hilbert Space, Part I. F. Ungar Publishing Com-

pany, 1968. English trans. by E. R. Dawson, ed. by W. N. Everitt.

[31] PERCELL, P., AND WHEELER, M. F. A C1 finite element collocation method for elliptic equations.

SIAM Journal on Numerical Analysis 17, 5 (1980), 605–622.

[32] RUSSELL, R., AND SHAMPINE, L. F. A collocation method for boundary value problems. Numerische

Mathematik 19, 1 (1972), 1–28.

[33] SABLONNIERE, P. Univariate spline quasi-interpolants and applications to numerical analysis. arXiv

preprint math/0504022 (2005).

[34] SCHOENBERG, I. J. Cardinal Spline Interpolation, vol. 12. Siam, 1973.

[35] SCHUMAKER, L. Spline Functions: Basic theory. Cambridge University Press, 2007.

73

[36] SCHUMAKER, L. L. Computing bivariate splines in scattered data fitting and the finite-element

method. Numerical Algorithms 48, 1-3 (2008), 237–260.

[37] SCHUMAKER, L. L. Splines on spherical triangulations with hanging vertices. Computer Aided

Geometric Design 30, 3 (2013), 263–275.

[38] SCHUMAKER, L. L. Spline Functions: Computational Methods, vol. 142. SIAM, 2015.

[39] SCHUMAKER, L. L., AND WANG, L. Spline spaces on TR-meshes with hanging vertices. Numerische

Mathematik 118, 3 (2011), 531–548.

[40] SCHUMAKER, L. L., AND WANG, L. Splines on triangulations with hanging vertices. Constructive

Approximation 36, 3 (2012), 487–511.

[41] ŠOLÍN, P., ČERVENỲ, J., AND DOLEŽEL, I. Arbitrary-level hanging nodes and automatic adaptivity

in the hp-fem. Mathematics and Computers in Simulation 77, 1 (2008), 117–132.

[42] VARAH, J. M. A lower bound for the smallest singular value of a matrix. Linear Algebra and its

Applications 11, 1 (1975), 3–5.

[43] VARGA, R. S. On diagonal dominance arguments for bounding ||A−1||∞. Linear Algebra and its

Applications 14, 3 (1976), 211–217.

74

