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CHAPTER I 

 

INTRODUCTION 

 

An emerging area of research in the field image-guided procedures is image-

guided surgery (IGS) of soft tissue within the abdomen.  Traditional image-guided 

surgery techniques rely on the use of rigid anatomical landmarks on or near the site of 

surgery.  However, with open abdominal procedures, no such rigid landmarks exist.  

Therefore, in soft tissue procedures, such as liver resections, surface descriptions of 

anatomical features are used to drive surface-based registrations.  This method of 

aligning surfaces relies upon an initial orientation of the surfaces given by an initial, often 

point-based, registration that utilizes anatomical features as fiducials.  The work of this 

thesis involves applying current IGS techniques, as those used in liver cases, to kidney 

resection procedures, generally called nephrectomies, and assessing the associated 

complications with those registrations.  After attending and analyzing a variety of 

nephrectomy procedures, the complications of incorporating IGS into kidney surgery 

became evident.  The most prominent obstacle with these procedures is the limited field 

of view of the intraoperative kidney surface, which constrains the ability to obtain a 

geometrically descriptive surface.  For instance, using surface acquisition techniques such 

as a laser range scanner (LRS) is hindered by the large amount of fat surrounding the 

kidney and by the incision size made by the surgeon.  The limited view of the surface 

decreases the ability to accurately register the surfaces.  This thesis will focus on the 

validation of surface-based registrations using various patches of the surface on a realistic 
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kidney phantom arranged in two orientations representative of typical partial 

nephrectomies: laparoscopic and open.  Varying the combination of surface patches used 

to drive registrations will resemble varying amounts of visible surface data during a 

procedure.  Also, testing sequential versus random patch combinations of the phantom 

surface will indicate whether the threshold for accurate registrations is based on the 

acquisition of a percentage of total surface points or the acquisition of descriptive surface 

properties, such as curvature. 

 

Kidney Cancer 

Approximately 30,000 new cases of kidney cancer, generally renal cell 

carcinoma, are detected each year in the U.S., and kidney resection, also known as a 

nephrectomy, is the only known curative treatment for this type of localized cancer [1].  

Traditionally, a radical nephrectomy, which is the resection of the kidney, its surrounding 

fat and lymphatics, and the adrenal gland, is the primary treatment for patients with 

advanced renal cell carcinoma.  The need for such a drastic resection is due to the 

frequent tendency of the tumor to extend into the fat and lymphatics [2].  However, with 

advances in imaging, surgical techniques and the early discovery of low stage 

carcinomas, treating patients with a partial nephrectomy has become a more common 

acceptable form of treatment.  A partial nephrectomy involves the complete removal of a 

renal tumor while leaving the largest possible amount of normal functioning kidney, also 

known as a clear margin [3].  With the ability to detect carcinomas early, the diseased 

tissue is more localized to the kidney with the absence of metastasis, thus increasing the 

number of candidates for a partial nephrectomy procedure.  Recent studies have 
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demonstrated that a partial nephrectomy, either open or laparoscopic, with a clear margin 

is an effective procedure for renal cell carcinoma, especially for tumors less than 4 cm [4-

7].  This nephron-sparing procedure is imperative when the contralateral kidney is 

functionally impaired or has been surgically removed [5, 7].  However, there are 

technical challenges associated with these procedures.  Such obstacles include adequate 

intraoperative identification of the tumor, identification and control of the vascular 

supply, and avoidance of ischemic injury to the normal kidney tissue [7].  Currently, 

surgeons remove the renal tumor masses using only direct or laparoscopic visualizations.  

This limited view prolongs the procedure and decreases the likelihood of a clear margin.  

Surgeons are aiming for a target that they can barely see unless they significantly disturb 

healthy tissue.  The less the surgeons are required to disturb the kidney and its 

surrounding tissue during the procedure, the shorter the recovery time will be for the 

patient.  Thus, there remains a need for surgeons to acquire additional intraoperative 

visualizations of the patient in order to improve surgical outcome.  Employing image-

guided surgery could provide such representations in the operating room (OR).  

 

Image-Guided Surgery 

The goal of image-guided surgery (IGS) is to provide surgeons with an accurate, 

real-time location of a surgical probe or instrument within the context of a preoperative 

image containing patient anatomy and pathology.  Achieving such localization entails: 1) 

the acquisition of a three-dimensional (3D) preoperative image of the patient, and this 3D 

"image space" must show the boundaries of the kidney as well as the location of the 

pathology,  2) the definition of a 3D "physical space" containing 3D information 
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corresponding to the image space, and 3) the registration of physical to image spaces, 

which enables the real-time simultaneous display of both spaces [8].   

 

Image Space Acquisition 

Most IGS procedures utilize high resolution 3D image volumes such as computed 

tomography (CT) and magnetic resonance imaging (MRI) to provide detailed 

representations of the patient’s anatomy along with pathology.  Sample MR and CT 

images
1
 are depicted in Figure 1 for some renal carcinoma cases. 

 

 

 

  In addition, other preoperative imaging modalities are used for guidance such as 

emission tomograms (SPECT, PET) to localize function.  Intraoperative modalities such 

as ultrasound, endoscopic and laparoscopic video data, and intraoperative CT and MRI 

may also be used [8].  Preoperative images alone provide a rough location for the targeted 

area of treatment, i.e. the tumor, and are critical for surgical planning.  However, most 

                                                 
1
 http://www.emedicine.com 

MRI CT

 

Figure 1 Sample MRI (left) and CT (right) images of patients with renal cell 

carcinoma. 
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surgical procedures require a more accurate location of a tumor mass and its margins.  

Thus, IGS takes pertinent information from the image to better localize treatment areas 

during a therapeutic procedure.  The information of interest is the location of 3D 

reference point sets, i.e. fiducials, and/or reconstructed surfaces of the area of interest in 

terms of image space coordinates.  Anatomical landmarks can be used as fiducials, or in 

some cases, extrinsic fiducial markers, visible in the imaging modality of choice, are 

rigidly attached.  The use of extrinsic fiducial markers must be determined preoperatively 

because they must be present in the preoperative image to determine their corresponding 

image space coordinates.   

 

Physical Space Acquisition 

Physical space is defined as the 3D space present within the OR.   This space is 

used to track the real-time location of surgical instruments, points, and surfaces in the 

region of treatment.  The most common method of physical space localization for IGS 

applications is optical tracking, which is based on the principle of triangulation [8].  

Emitters broadcast unique energy patterns to a series of detectors at known locations.  

The energy signals detected reveal information on the location of the emitters based on 

distance or angular position.  Thus, the location and orientation of a rigid structure can be 

established if three or more emitters are mounted on that structure and at least three of 

them are visible to the detectors.  A widely used optical tracker is Northern Digital’s 

Polaris model.  Instruments are attached or embedded with markers, which may be active 

or passive.  Active markers, known as infrared-emitting diodes (IREDs), emit infrared 

light.  Passive markers reflect infrared light generated elsewhere.  Light from individual 
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markers is received by a set of infrared cameras which calculate the position of each 

marker in terms of physical space.  The origin of the physical space is defined by a 

reference emitter, often attached to the operating table.  If enough IREDs can be seen by 

the camera, the tip of the instrument can be localized through the previously determined 

marker configuration on the tracked object.  One surgical localization device containing 

these IREDs is referred to as a pen probe.  The tip of the pen probe can be placed on a 

fiducial to obtain its physical space coordinates within submillimeter accuracy as shown 

in Figure 2 [9]. 

 

 

 

In addition to localizing fiducials, the tracked probe can accurately delineate a 

surface description by contact with the surface of interest; however, this contact leads to 

soft tissue deformation.  Other methods of  physical surface acquisition include 

intraoperative MRI units [10, 11], A-mode ultrasound [12, 13] and stereo pairs of video 

 

Figure 2 Localizing fiducial markers with pen probe. 
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images [14, 15].  These aforementioned methods of surface acquisition, despite their 

recent advances, are either unsuitable or too costly to be clinically applicable.  Recently it 

has been demonstrated that a laser range scanner (LRS) can obtain fast, accurate, and 

structured 3D surface descriptions while avoiding contact with the surface [16].  A 

typical LRS by 3D Digital Corporation
2
 is depicted in Figure 3.   

 

 

 

Laser range scanners also employ the principle of optical triangulation where a 

light source illuminates the surface of interest and a CCD camera records the orientation 

and position of reflected light.  The position of the surface can be calculated using the 

known trigonometric relation between the CCD camera and the light source.  However, 

the calculated surface position is not in terms of the physical space defined by the optical 

tracking system.  Therefore, a relationship must be established between the LRS 

coordinate system and the physical space coordinate system.  A rigid body embedded 

with IREDs is attached to the LRS, and the optical tracker localizes the rigid body as it 

did with the probe mentioned previously.  Then, a calibration transformation is performed 

                                                 
2
 3D Digital Corp., Sandy Hook CT, http://www.3ddigitalcorp.com  

 

Figure 3 Laser range scanner used to obtain surfaces. 
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to relate the rigid body position with the LRS coordinate system as described in Cash et. 

al.[16].   Using this relationship and the relationship between the LRS reference emitter 

with the tracker reference emitter, the transformation from LRS space to physical space 

can be established within 2 mm of accuracy [16]. 

 

Registration 

A "registration" is the determination of a geometrical transformation consisting of 

a rotation and translation that aligns points in the "physical space" with corresponding 

points in "image space" [17].  Registrations are useful for IGS procedures because they 

provide the necessary relationship to display homologous locations in the image and 

physical spaces simultaneously.  There are three classes of registration techniques: point-

based, surface-based, and intensity-based.  For the purpose of this paper, the registration 

techniques mentioned are all rigid transformations, meaning that distances between 

points is preserved and the translation has six degrees of freedom: three in rotation and 

three in translation.   

Point-based registrations require a one-to-one correspondence between two sets of 

homologous points, i.e. fiducials, in each 3D space [17].  Fiducial point sets may be 

anatomical landmarks or extrinsic markers rigidly attached to the area of treatment.  For 

3D imaging modalities, a minimum of three fiducials must be used to calculate the 

registration.  Achieving the accurate location of the fiducials in both image and physical 

spaces is naturally subject to error.  This error is referred to as fiducial localization error 

(FLE) and each point is independent and normally distributed about the true position.  

Sources of FLE include human error, soft tissue deformations between the time of 



 9 

imaging and the time of the procedure, and fiducial segmentation in the preoperative 

image.  FLE cannot be observed directly but can be measured indirectly through the 

registration errors it causes.  A measure of accuracy for aligning the two 3D spaces is the 

fiducial registration error (FRE), which is the root mean square (RMS) error of the 

overall fiducial misalignment.  The objective of a point-based registration is to calculate a 

rotation (R) and translation (t) that will minimize the FRE as defined by 

 2 21
FRE

N

i i i

i

w Rx t y
N

2=  + − ∑  (1) 

The matrices xi and yi represent the physical and image space 3D coordinates, 

respectively, and the error between them can be weighted with a non-negative weighting 

factor, wi, to account for unreliable fiducials.  A major advantage of point-based 

registrations is that a closed form solution can be determined for this minimization, which 

is based on the solution of singular value decomposition introduced by Schonemann [18].    

A measure of accuracy of the resulting registration is target registration error (TRE), 

which is the difference between the transformed target coordinates from physical space 

(x) and the target coordinates in image space (y).   

 ( ) ( )TRE x T x y= −  (2) 

The target is not used to compute the registration, and thus TRE is proportional to the 

target’s distance from the fiducials used to calculate the registration.  Typically, point-

based registrations are calculated over many trials given the same set of fiducials, and a 

distribution of the TRE values is analyzed to determine the robustness of that point-based 

registration.   

When rigid point-based landmarks are impracticable for a procedure, such as 

surgery in the abdomen, surface representations of an anatomic object are used to 
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compute the geometrical transformation that aligns the preoperative image surface with 

its corresponding intraoperative surface.  This transformation is known as a surface-based 

registration.  Unlike point-based registrations, surface-based registrations lack exact point 

correspondence information, which necessitates an algorithm to iteratively search for a 

transformation that minimizes some sort of distance measurement between the points on 

the image surface to transformed points on the physical surface.  The 3D description of 

the image surface can be extracted and reconstructed from the original image data, after 

an image segmentation algorithm.  Soft tissue surface extraction is more complicated and 

less automatic than extraction of skin or bone surfaces.  The physical surface can be 

obtained by a number of methods as described previously.  One of the first surface-based 

registration methods was the "head and hat" algorithm proposed by Pelizzari [19].  This 

algorithm first draws a line from each point in the "hat" surface to the centroid of the 

"head" surface.  It then calculates a transformation using a standard gradient descent 

technique to minimize the RMS distance between the points in the "hat" and the 

intersection of the line with the "head" surface.  The most well known surface-based 

registration method is the iterative closest point (ICP) algorithm proposed by Besl and 

McKay [20].  As its name implies, the distance function minimized in this algorithm is 

the distance between each point on the physical surface and the closest point to it on the 

image surface.  Without intervention, this minimization could lead to a local minimum 

since initially the closest points between each surface are unlikely to be the true 

corresponding points.   
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For instance, if one surface is insufficiently aligned from the other as in the left 

side of Figure 4, the closest point to the edge of the physical surface may not necessarily 

be on or near the corresponding edge of the image surface.  The yellow surface is the 

physical surface and should be on top of the image surface of the liver rather than 

underneath it.  The red and blue regions represent the falciform ligament on the liver in 

the image and physical spaces, respectively.  An example of the resulting ICP 

transformation due to a local minimum because of this poor initial alignment is shown in 

the right side of Figure 4.  Since the ICP result did not properly align the ligaments, the 

registration is considered inaccurate and unacceptable for clinical procedures.  Therefore, 

an initial alignment is established between the two surfaces to increase the actual 

correspondence between the points on each surface.  In general, the initial alignment is 

given by a point-based registration of fiducials.  After initial alignment, pairs of closest 

points are determined between the two surfaces and a point-based registration is 

    

Poor ICP registrationPoor initial alignment

 

Figure 4 Poor initial alignment effect on iterative closest point registrations.  The 

yellow surface is the physical surface of a liver, and the white surface is the image 

surface of the liver.  The red region represents the falciform ligament in image space 

and the blue region represents the falciform ligament in physical space. These images 

were provided by Logan Clements at Vanderbilt University. 
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performed on these point pairs.  The resulting transformation realigns the physical 

surface and calculates the new closest points on the image surface.  This process is 

performed iteratively until the closest point calculations converge since the distance 

between closest points decreases with each iteration.  Finding the closest points at each 

iteration is a very computationally expensive step in the algorithm and is of O(NxNy), 

where Nx and Ny are the number of points in the physical and image surfaces, 

respectively.  A proposed method of speeding up the search for closest points is to use a 

multidimensional binary search tree, known as a k-D tree, where k is the dimensionality 

of the image space [21, 22].  Application of a k-D tree reduces the search time to 

O(NxlogNy) because it is an efficient method for examining only those image points 

closest to a given physical surface point.  Another major limitation of surface-based 

registrations is the requirement for geometrical descriptive surfaces.  If an anatomical 

object is round without any defining features, there will be multiple closest point pairs 

that provide an acceptable registration in the ICP algorithm.  As a result, accurate initial 

alignments reduce this error since the closest points are relatively close to where they 

should be. 

Rather than using points or surface features as the basis for a registration, 

intensity-based registrations use the scalar value in an image pixel or voxel, called the 

intensity.  The intensity values within the physical space can come from a textured LRS 

scan or some other intraoperative imaging device.  A registration is calculated iteratively 

by optimizing some similarity measure based on the intensity values in the preoperative 

and intraoperative images [17].  Some similarity measures include mutual information 

(MI), normalized mutual information (NMI), the sum of squares of intensity differences 
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(SSD), correlation coefficient (CC), and ratio-image uniformity (RIU).  While intensity-

based registrations are useful in many applications, they do not currently possess a 

pivotal role in image space to physical space registrations.   
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CHAPTER II 

 

METHODS 

 

Examining current nephrectomy procedures, both open and laparoscopic, revealed 

that the major concern for implementing current IGS soft tissue techniques is the limited 

view of the kidney's intraoperative surface.  The lack of a large intraoperative surface 

raised concerns for the ability to achieve accurate surface-based registrations using a laser 

range scanner (LRS) to obtain surfaces.  Thus, surgeons must know the necessary amount 

of intraoperative surface to unveil in order to achieve accurate registrations.  This chapter 

focuses on the methods used for preliminary phantom studies in order to explore the 

behavior of surface-based registrations when using various limited intraoperative surface 

views. 

 

Phantom Setup 

Testing the feasibility of extending the current image-guided surgery framework 

to kidney procedures first required the creation of a realistic, to-scale kidney phantom 

using silicon rubber
3
.  The phantom accurately modeled typical geometrical surface 

properties such as curvature and smoothness.  Two different orientations of the phantom 

were used to simulate the different orientations usually presented in the operating room 

(OR).  The typical view of the kidney during a laparoscopic nephrectomy is shown in 

Figure 5.  For traditional open partial nephrectomies, the patient is right/left lateral with 

the smooth, round back of the kidney facing upwards.  To model this, a cradle was 

                                                 
3
 Smooth-On, http://www.smooth-on.com 
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constructed using Plexiglas and nylon screws to hold the phantom upright as depicted in 

Figure 6.  Nine Acustar
4
 markers were screwed into the cradle and the centroids of these 

markers served as fiducial and target point sets.  Markers 2, 5, 7, 8, and 9 served as 

targets and the other four were used as fiducials.   

 

 

 

 

 

CT images of both phantom orientations were acquired.  The kidney phantom CT 

images were segmented manually using Analyze AVW 6.0
5
.  From the segmented 

                                                 
4
 Acustar, http://www.z-kat.com/products/acustar 

5
 Mayo Clinic, Rochester MN, http://www.mayo.edu/bir 

 

Figure 6 Cradle constructed to provide open orientation of kidney seen by surgeons during 

a partial nephrectomy. 

 

Figure 5 Laparoscopic orientation of kidney seen by surgeons during a partial nephrectomy. 



 16 

images, the marching cubes algorithm was used to generate an initial approximation of 

the kidney phantom’s surface [23].  The Fast RBF Toolbox was then used to define a 

parametric version of the marching cubes surface [24].  This smooth surface was 

considered as the image surface.  The laparoscopic orientation RBF surface contained 

50,812 points and the open orientation RBF surface contained 31,081 points.  The 

construction of the image surface is improved when using a relatively small image slice 

thickness.  A slice thickness of 1 mm was used for these experiments.  The caps on the 

markers contained a liquid visible in CT images, and a program was computed to localize 

the image coordinates of each marker's centroid for the phantom in the open orientation.  

The liquid caps of the markers were replaced with divot caps designed to be localized 

with a probe, as depicted earlier in Figure 2.  Fiducial point sets for the laparoscopic 

orientation were compiled from the CT image volume using anatomical features on the 

kidney phantom such as the ureter, renal artery and renal vein.  The lack of rigid markers 

greatly reduced the localization accuracy of the fiducials for the laparoscopic orientation.  

Also, there were no reliable targets available for this experiment.   

 

Registration Validation 

For both phantom orientations, the fiducial points were used to perform a point-

based registration, which then served as a guide for a surface-based registration.  Physical 

surfaces were obtained using a LRS
6
 and were registered to the image surface. The 

surface-based registrations used a rigid iterative closest point (ICP) algorithm formulated 

by Besl and McKay [20].  In order to decrease closest point search times, k-d 

dimensional trees were used in the ICP implementation [21, 22].  These registrations 

                                                 
6
 3-D Digital Corp., Sandy Hook CT, http://www.3ddigitalcorp.com  
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were validated in order to characterize the effect of restricted, visible surface on the 

robustness of the surface-based registrations.  Robust surface-based registrations are 

characterized by subsets of the physical surface consistently achieving registration errors 

close to those attained when using the entire LRS surface, suggesting that the subsets are 

capable of accurately predicting a registration for the entire kidney surface.   

  

Laparoscopic Orientation Validation 

The LRS surface (25,938 points) was divided into subsets of increasing number of 

points in a sequential manner (see Figure 7).  Increasing the number of points in the 

surface subset should reflect the increase in the intraoperative surface available for a 

registration.  Each colored surface represents the increase in the amount of surface used 

in a subset.  For example, the red surface represents the smallest surface used (9.0% of 

the total surface) and the blue surface represents the amount of surface added to the red 

surface for the next largest surface subset (12.8% of the total surface). 
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In a separate experiment, the surface was divided into six subsets, and various 

combinations of these subsets also served as a measure for the possible intraoperative 

views.  This method of surface division explored the effect of using patches from 

different areas of the kidney, rather than contiguously adding more points to the surface.  

Using various patch combinations should reveal more on the nature of how each surface 

subset affects the registrations.  The second segmentation of the kidney is shown in 

Figure 8. 

 

9.0%

12.8%

12.9% 15.1%

21.6%

25.9%

31.1%

38.7%

51.1%

 

Figure 7 Sequential subsets of kidney surface in laparoscopic orientation.  Each colored 

surface represents the increase in the amount of surface used in a subset.  Numbers 

represent the percentage of the total image surface used in the registration. 
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Since current methods of IGS in soft tissue are so heavily reliant on the initial 

pose provided by point-based registration, a rotation and translation were introduced to 

the physical fiducial points by applying a random normalized vector with magnitudes of 

5, 10, 15, 20, and 25 mm to each fiducial point.  Examples of this misalignment 

transformation of the LRS surface for perturbation vector magnitudes of 5, 15, and 25 

mm are shown in Figure 9.  These perturbations should reveal the effects of poor initial 

alignments given by the point-based registration.   

1

2

3
6

4

5

 

Figure 8 Second segmentation of kidney surface in laparoscopic orientation.  Each 

color corresponds to a different surface subset. 
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To test how different intraoperative views affect the robustness of the surface-

based registration, each surface subset, or patch combination, was registered to the image 

surface using the perturbed initial alignments.  The rotations and translations from those 

surface-based registrations were used to transform the rest of the LRS surface not 

included in the subset in order to assess the accuracy of using partial surfaces to estimate 

the rest of the physical space surface’s registration.  Since reliable targets were 

unavailable, the root mean square (RMS) of the distances between closest points on the 

image surface and the transformed points on each LRS surface without the subset was 

calculated to serve as a measure for error.  The RMS error was averaged over 500 trials 

for each magnitude of perturbation.  It is expected that RMS distances will decrease by 

increasing the amount of points in the LRS surface subset used to calculate the 

registration.  It is also expected that subsets with greater geometrical description the more 

accurate the registrations will be.  These experiments should reveal whether the 

5 mm 15 mm 25 mm 

 

Figure 9 Example of the transformation of the initial pose caused by perturbation 

vector with magnitudes of 5, 15, and 25 mm. 



 21 

robustness of the registrations depends strictly on a percentage of the surface used or on 

geometric surface properties.  

 

Open Orientation Validation 

Subsets of the total LRS surface (11,802 points) were constructed to emulate the 

views seen in the OR.  The LRS surface was divided into six patches as seen in Figure 

10.  Various combinations of these six patches were used as subsets of the LRS surface to 

examine sequential versus random patch combinations.   

 

 

  

As with the other phantom orientation, the physical fiducial points were perturbed 

by a normalized random vector of magnitudes 5, 10, 15, 20 and 25 mm to simulate poor 

initial alignments.  The various surface patch combinations were registered to the image 

surface using the perturbed initial alignment.  The translation and rotation from the 

surface-based registration given by each patch combination was used to transform the rest 

of the physical space surface as well as the five targets.  Mean RMS errors were 

 

Figure 10 Segmentation of kidney surface in open orientation. 
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calculated as before, but this time using 1000 trials.  In addition, due to the ease of 

attaching targets on this phantom setup, the target registration error (TRE) was averaged 

over 1000 trials for each magnitude of perturbation.  This study should help further 

determine whether the threshold for an accurate registration is based on the amount of 

points in the subset or on sequential patches that capture enough of a surface's descriptive 

characteristics. 
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CHAPTER III 

 

RESULTS & DICUSSION 

 

Laparoscopic Orientation Results 

 

 

 

The preliminary results of both laparoscopic experiments suggest that 

approximately 28% of the total kidney surface is needed to drive an accurate surface-

based registration.  The amount of surface needed to produce low RMS errors for the 

sequential patches was very evident.  The RMS error for the surface subset using 22% of 

the total surface dropped significantly for all magnitudes of perturbation.  In addition, the 

standard deviation also dropped significantly, further supporting the accuracy of the 

registration for this subset.  The discrepancy between 28% and 22% of the surface will be 

discussed later.  Figure 11 and Table 1 show the means and standard deviations of the 
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Figure 11 Mean RMS error over different magnitudes of perturbation for sequential 

patch combinations in the laparoscopic orientation. 
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RMS errors for the sequential patches at varying magnitudes of perturbation.  Surfaces 

that contained percentages greater than 22% of the surface produced similar results.  

Higher RMS values were generated for surface subsets with fewer portions of the surface.  

For the 9% and the two 13% subsets, the RMS errors were very large (between 2.5 and 9 

mm) for all magnitudes of perturbation.  Increasing the magnitude of perturbation 

increased the registration error, which is consistent with similar surface-based registration 

studies.  This is most evident with the 15% surface subset.  For small magnitudes of 

perturbation the RMS error was on the order of 1 mm, but for higher magnitudes of 

perturbation the error was more on the order of 8 mm.  The standard deviation also 

greatly increased for the 15% subset, revealing its inability to consistently yield an 

accurate registration.  The perturbation effect was negligible with surfaces of 22% and 

higher, implying that their surface-based registrations are robust.  These findings suggest 

that accurate surface-based registrations require obtaining fractions of the surface that 

include at least 22% of the total image surface.   

 

Table 1 Mean ± standard deviation of RMS error (mm) of sequential patches for 

laparoscopic orientation of phantom. 

RMS error (mm) for Sequential Patches 

 Magnitude of Perturbation (mm) 

Portion of Total Surface 5 10 15 20 25 

9.0% 7.5 ± 1.7 7.5 ± 2.8 7.2 ± 3.5 8.2 ± 4.5 8.5 ± 5.1 

12.8% 6.0 ± 2.2 6.3 ± 3.4 6.4 ± 4.3 7.2 ± 5.3 7.3 ± 6.1 

12.9% 3.1 ± 1.7 2.8 ± 2.1 3.1 ± 2.8 3.6 ± 4.0 4.1 ± 4.9 

15.1% 0.5 ± 0.0 1.1 ± 2.7 2.1 ± 4.6 3.6 ± 6.3 4.8 ± 7.5 

21.6% 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.1 

25.9% 0.6 ± 0.0 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 

31.1% 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 

38.7% 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 

51.0% 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 
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The results of the various patch combinations suggest that obtaining 22% of the 

image surface is not enough.  This experiment revealed that robust surface-based 

registrations require obtaining at least 28% of the total image surface.  The mean RMS 

errors for many of the patch combinations tested are displayed in Figure 12 and Table 2.  

Similar to the sequential patches' experiment, patch combinations containing fewer than 

13% of the surface yielded RMS errors greater than 1 mm for all magnitudes of 

perturbation.  Patch 5 also demonstrated the lack of robustness of the registration since 

for increasing magnitudes of perturbation the RMS error greatly increased to 5mm.  

Surface subsets containing patch combinations 1 & 3 and 3 & 4 are of particular interest 

since they yielded RMS errors below 1 mm but only contained 15% of the image surface.  

These surfaces contained information from opposite sides of the kidney surface, 

suggesting that they contained more geometrically descriptive properties.  Typically, the 

more geometrically unique a surface is, the more accurate surface-based registrations will 
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Figure 12 Mean RMS error for different magnitudes of perturbation for various patch 

combinations in the laparoscopic orientation. 
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be using that surface.  The patch combination of 3 & 6 (25%) yielded a much higher 

RMS error (~3mm) than the patches containing similar surface percentages (less than 1 

mm).  This surface subset contained more than 22% of the surface, yet performed poorly 

in the robustness test.  Additionally, the surface containing patch 6 was inconsistent with 

the patches with similar percentages.  These results suggest that the constraint for an 

intraoperative surface to be able to drive an accurate surface-based registration is not just 

a percentage of the total surface.  The surface subsets that appeared to include enough 

percentage of the total surface did not contain enough geometric descriptions to be able to 

drive an accurate registration.  Further, surface subsets with a relatively small percentage 

of the total surface but with more geometrically descriptive surfaces were able to yield 

accurate registrations.  The percentage of total surface does play a role, but should not be 

the only criterion considered when deciding how much of a surface to use for an accurate 

registration. 
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Table 2 Mean ± standard deviation of RMS error (mm) of various patch combinations for 

laparoscopic orientation of phantom. 

RMS error (mm) for Various Patch Combinations 

Portion of Total Surface  Magnitude of Perturbation (mm) 

Patch # Percentage 5 10 15 20 25 
1 4.2% 2.8 ± 0.4 2.7 ± 0.7 2.9 ± 1.0 3.1 ± 1.6 3.8 ± 2.4 

4 4.6% 7.0 ± 2.1 6.0 ± 2.7 6.2 ± 2.4 6.1 ± 2.5 6.0 ± 2.6 

2 8.5% 3.0 ± 0.5 3.0 ± 0.5 3.0 ± 1.4 2.9 ± 1.6 3.3 ± 2.0 

1 and 4 8.8% 2.9 ± 0.4 3.0 ± 1.1 3.2 ± 1.5 3.2 ± 1.8 3.6 ± 2.2 

3 9.6% 3.4 ± 0.4 3.2 ± 0.6 3.0 ± 0.9 2.8 ± 1.0 3.0 ± 1.8 

5 10.1% 0.4 ± 0.7 1.2 ± 3.4 2.9 ± 5.5 4.4 ± 6.7 5.4 ± 7.2 

1 and 2 12.6% 2.9 ± 0.4 2.9 ± 0.9 2.8 ± 1.1 2.9 ± 1.4 3.1 ± 1.6 

1 and 3 13.9% 0.6 ± 0.0 0.6 ± 0.0 0.6 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 

6 13.9% 6.0 ± 0.8 5.0 ± 2.3 4.6 ± 2.6 4.1 ± 2.8 4.0 ± 2.9 

3 and 4 14.2% 0.6 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.1 

2 and 3 18.2% 0.6 ± 0.0 0.6 ± 0.1 0.6 ± 0.1 0.5 ± 0.1 0.6 ± 0.1 

1 and 6 18.2% 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 

4 and 6 18.5% 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 

2 and 5 18.7% 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.5 0.5 ± 0.7 

1,2, and 3 22.5% 0.6 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 

3 and 6 23.6% 3.1 ± 3.1 3.2 ± 3.1 3.1 ± 3.1 3.2 ± 3.1 3.3 ± 3.1 

1,2,4, and 5 27.5% 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 

4,5, and 6 28.7% 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 

1,3,4, and 6 32.4% 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 

1,2,3, and 5 32.5% 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 

2,3,5, and 6 42.3% 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 

1,2,3,4,5, and 6 51.0% 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 
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Open Orientation Results 

 

 

 

The results for the open orientation suggest that at least 24% of the total surface is 

needed for an accurate registration, but that less of a percentage can produce an accurate 

registration when it captures more surface information.  Not all combinations of the 

surface patches were tried, but representative data is shown in Figure 13.  Unlike the 

laparoscopic results for sequential patches, there was not a clear drop off in the error after 

a certain percentage of points are acquired.  In this case, obtaining about 15% of the total 

LRS surface points yielded varying results depending on the location of those points.  

Using as little as 13% of the surface with patch combination 1 & 6 resulted in relatively 

low TREs (on the order of 2.5 mm) for all magnitudes of perturbation as well as low 

standard deviations (less than 1 mm).  The means and standard deviations of the TREs 

calculated for the combinations of patches tried are shown in Table 3.  Additionally, 
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Figure 13 Mean TRE for different magnitudes of perturbation in the open orientation. 
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patch combination 1 & 3 (9.5%) consistently produced TREs from 1 to 3 mm less than 

those produced by larger portions of the surface such as combinations 2 & 5 (14%) and 3 

& 6 (14.5%).  This result seemed to follow a trend that combinations of patches that 

included a section from the front and back produced much lower TREs with little 

variance, regardless of proper initial alignment.  For example, the left front (patch 1) and 

the right back (patch 6) sections yielded the most favorable TREs (~2.5 mm) for any two 

patches combined.  The curvature information from the front and back is needed to "lock" 

the surface in during the ICP.  Further, surface patch combinations that did not contain 

patches from both ends of the surface (1; 2; 1 & 4; 2 & 5; and 3 & 6) generated high 

TREs on the order of 20 mm (the spikes in the graph) with larger standard deviations, 

which increased with higher magnitudes of perturbation.  This finding suggests that the 

sides of the kidney are not as geometrically descriptive as the front and back.  However, 

if a patch combination contains information from the front, back, and sides, then the 

mean TRE will further decrease for all magnitudes of perturbation.  Such patch 

combinations include 2, 4 & 6; 1, 2 & 3; and 4, 5 & 6.  This outcome is also why the 

patch combination of 1 & 6 produced such low TREs.  Thus, one must use care when 

choosing which part of the kidney surface to unveil in order to maximize its ability to be 

accurately registered.  Determining which parts of the kidney's surface are the most 

descriptive preoperatively would be prudent when planning the surgical exposure.  Using 

these portions of the surface will decrease registration errors while using the least amount 

of surface.  By using this a priori knowledge of the kidney surface, the TRE significantly 

drops for a given percentage of the total surface and this holds true for the variety of 

percentages tested.  This effect for 15 mm of perturbation is shown in Figure 14, where 
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the "a priori" results represent errors yielded with careful preoperatively planning and the 

"naïve" results represent no preoperative planning. 
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Figure 14 A priori vs. naïve approach to obtaining intraoperative surface. 
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Table 3 Mean ± standard deviation of TRE (mm) for open orientation of phantom. 

Portion of Total Surface  Magnitude of Perturbation (mm) 

Patch # Percentage 5 10 15 20 25 

1 3.89% 7.5 ± 4.0 12.0 ± 6.6 16.6 ± 9.3 21.5 ± 11.5 27.5 ± 16.0 

2 4.98% 6.1 ± 3.1 10.6 ± 6.2 15.8 ± 9.9 20.8 ± 13.5 25.0 ± 15.6 

1 and 3 9.48% 3.0 ± 1.2 4.1 ± 2.1 5.1 ± 2.7 5.6 ± 3.0 6.2 ± 3.3 

1 and 4 10.0% 7.0 ± 3.7 10.5 ± 6.6 14.2 ± 9.6 16.7 ± 12.4 21.6 ± 17.9 

1 and 6 13.2% 2.6 ± 0.7 2.6 ± 0.6 2.6 ± 0.6 2.6 ± 0.6 2.6 ± 0.6 

2 and 5 14.0% 5.1 ± 2.0 6.8 ± 2.3 7.5 ± 2.6 8.4 ± 3.1 9.3 ± 4.1 

3 and 6 14.6% 3.3 ± 1.7 5.2 ± 3.5 6.4 ± 4.3 7.1 ± 4.5 7.8 ± 4.8 

4 and 6 15.1% 3.0 ± 0.7 3.2 ± 0.8 3.3 ± 0.8 3.4 ± 0.8 3.5 ± 0.7 

1,2 and 3 15.2% 2.7 ± 0.7 2.7 ± 0.7 3.0 ± 0.7 3.1 ± 0.7 3.2 ± 0.7 

1,3 and 4 15.3% 3.0 ± 1.2 3.9 ± 1.7 4.3 ± 2.0 4.5 ± 2.1 4.5 ± 2.1 

2,4 and 6 20.1% 3.1 ± 0.7 3.2 ± 0.8 3.3 ± 0.9 3.4 ± 1.0 3.5 ± 1.0 

4,5 and 6 22.8% 3.0 ± 0.9 3.1 ± 0.9 3.3 ± 0.9 3.4 ± 0.9 3.4 ± 0.9 

1,2,4 and 5 23.4% 4.3 ± 1.6 4.5 ± 1.7 4.7 ± 1.7 4.8 ± 1.8 5.2 ± 3.0 

1,3,4 and 6 24.0% 2.2 ± 0.2 2.2 ± 0.2 2.2 ± 0.2 2.3 ± 0.2 2.2 ± 0.2 

2,3,5, and 6 28.0% 2.5 ± 0.7 3.2 ±0.9 3.3 ± 1.0 3.3 ± 1.0 3.5 ± 1.2 

1,2,3,4,5, and 6 38.0% 2.1 ± 0.1 2.1 ± 0.1 2.1 ± 0.1 2.1 ± 0.1 2.1 ± 0.1 

 

 

The RMS error results followed the same pattern as the TRE results with the 

exception of patches 2 & 5 and 3 & 6.  RMS data are shown in Figure 15 and Table 4.  

The RMS error for combination 2 & 5 was lower than for combination 3 & 6, whereas 

the TRE for combination 2 & 5 was higher than combination 3 & 6.  The RMS errors 

were on the order of four millimeters, whereas TREs were much larger, on the order of 

30 millimeters.  Nevertheless, the RMS errors yielded the same implications as the TRE 

data, insinuating that the RMS errors for the laparoscopic orientation are a good estimate 

of actual TREs.   
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Table 4 Mean ± standard deviation of RMS error (mm) for open orientation of phantom. 

Portion of Total Surface Magnitude of Perturbation (mm) 

Patch # Percentage 5 10 15 20 25 

1 3.90% 1.0 ± 0.4 1.5 ± 0.6 2.1 ± 0.9 2.6 ± 1.2 3.5 ± 1.9 

2 4.98% 0.7 ± 0.2 1.2 ± 0.5 1.7 ± 0.8 2.2 ± 1.1 2.7 ± 1.5 

1 and 3 9.48% 0.6 ± 0.1 0.7 ± 0.2 0.8 ± 0.3 0.8 ± 0.3 0.8 ± 0.3 

1 and 4 10.0% 0.9 ± 0.3 1.4 ± 0.6 1.8 ± 1.0 2.2 ± 1.3 2.7 ± 2.1 

1 and 6 13.2% 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 

2 and 5 14.0% 0.8 ± 0.2 1.1 ± 0.5 1.3 ± 0.7 1.5 ± 1.0 1.7 ± 1.2 

3 and 6 14.6% 1.1 ± 0.3 1.4 ± 0.5 1.6 ± 0.7 1.8 ± 0.7 2.0 ± 0.8 

4 and 6 15.1% 0.6 ± 0.0 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 

1,2 and 3 15.2% 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 

1,3 and 4 15.3% 0.6 ± 0.1 0.7 ± 0.2 0.7 ± 0.2 0.7 ± 0.2 0.7 ± 0.2 

2,4 and 6 20.1% 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 

4,5 and 6 22.8% 0.7 ± 0.1 0.6 ± 0.1 0.7 ± 0.1 0.7 ± 0.1 0.7 ± 0.1 

1,2,4 and 5 23.4% 0.8 ± 0.2 0.8 ± 0.2 0.9 ± 0.2 0.9 ± 0.3 1.0 ± 0.7 

1,3,4 and 6 24.0% 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 0.4 ± 0.0 

2,3,5 and 6 28.0% 0.5 ± 0.1 0.5 ± 0.1 0.6 ± 0.1 0.6 ± 0.1 0.6 ± 0.3 

2,3,5, and 6 38.0% 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 
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Figure 15 Mean RMS error over different magnitudes of perturbation in the open 

orientation. 
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Discussion 

These preliminary experiments suggest that image-guided kidney surgery using 

current IGS techniques for soft tissue is feasible given that a geometrically descriptive 

surface can be unveiled during surgery.  The criteria used to determine what constitutes a 

"descriptive" surface were found to not only be a function of the percentage of the total 

surface, but also of geometric surface properties.  Both the laparoscopic and open 

orientation experiments gave promising results in that just 28% of the total surface was 

enough to accurately predict a surface-based registration for the rest of the surface.  

However, even less of the surface was needed when using a priori knowledge of surface 

properties to choose areas that contained more descriptive properties, such as curvature.   

The laparoscopic orientation had an unfair advantage over the open partial 

nephrectomy orientation because it exposed more descriptive properties of the kidney.  

This view of the surface contained anatomical features, such as the ureter and the renal 

artery and vein.  These features provided a more geometrically descriptive surface, 

resulting in lower errors.  For instance, the surface subsets of 22% and higher for the 

sequential patches contained the ureter and the renal artery and vein, thus postulating an 

explanation for the success of these surface subsets.  Similarly, for the random patch 

experiment we would expect any patch combination containing patch 5 or 6 to yield 

relatively low RMS errors since these patches contain the anatomical features.  However, 

the errors for patch 6 and patch combination 3 & 6 were surprisingly high for all 

magnitudes of perturbation.  Although, according to the theory that subsets only 

containing information from one side of the kidney perform poorly, patch combination 3 

& 6 are from the bottom and produced similar errors to patch combination 1 & 4, which 
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contained information only from the top.  Also, it is expected that the single patches 1 - 6 

would produce high errors since there was simply not enough of the total surface.  It was 

anticipated that patch 6 would have performed more like patch 5.  On the other hand, 

patch combination 2 & 3 unexpectedly yielded low RMS errors for all perturbation 

magnitudes.  This surface subset did not contain a relatively large percentage of the 

surface, information from opposite sides of the kidney, nor any anatomical features.  

Thus, it was unanticipated that it would be able to accurately predict a registration for the 

rest of the surface.  A reason for the success of the patches containing the renal artery and 

vein is because they possess the most curvature.  The right side of Figure 16 indicates 

that these anatomical features have the highest curvature on the entire kidney's surface.  

Therefore, obtaining intraoperative surfaces with relatively high curvature will yield the 

most accurate surface-based registrations. 

 

 

 

Figure 16 Mean curvature over kidney surface: laparoscopic orientation (left) and 

open orientation (right). 
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The lack of rigidly attached fiducials for the laparoscopic orientation suggests that 

the effect of perturbing the initial alignment provided by the point-based registration 

would be greater than for the open orientation.  The use of anatomical features should 

produce a worse initial alignment than the use of rigidly attached markers due to poor 

point correspondence between the image and physical spaces.  Thus, the effect of trying 

to throw off the surface-based registration by perturbing the initial alignment should be 

even greater for the laparoscopic orientation.  It is expected that for greater magnitudes of 

perturbation, the worse the RMS error would be for both orientations, but one would 

expect that the variation in error would be more evident with the laparoscopic case.  

However, there is less variation in the RMS errors for the laparoscopic orientation than 

for the open orientation.  This could be explained by the availability of the ureter and 

renal artery and vein to help the surface-based registration lock into place.  The presence 

of these anatomical features, and thus their curvature, provided such a robust registration 

that they compensated for the relatively poor initial alignments.  The open orientation 

LRS surface was much less geometrically distinct than the laparoscopic orientation, 

which is why there is greater variation in the TREs and RMS errors.  The open 

orientation's surface-based registrations were so poor to begin with that they could never 

over come poor initial alignments, even though they were less perturbed than the 

laparoscopic ones. 

The findings from the open orientation experiment demonstrate that a threshold 

for an accurate registration is dependent upon geometric surface properties.  Patches 1, 3, 

4 and 6 contained more descriptive information since they covered the furthest points on 

the kidney (they were part of the front and back).  Any combination of regions that 
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contained at least one region from the front and from the back produced better 

registrations, regardless of the percentage of the total surface.  For example, using region 

combination 1 & 6 produced low errors since it contained information from the front, 

back, and both sides of the kidney.  The ends of the kidney were needed to "lock" the 

surface into place and ensure an accurate registration for the rest of the kidney.  However, 

regions 2, 3, 5, & 6 and 1, 2, 4, & 5 produced relatively low TREs considering they 

contained a larger percentage of the total surface.  These two patch combinations did not 

contain information from both the front and back of the surface.  Thus, points that 

covered more of the kidney surface, although not necessarily sequentially as in the 

laparoscopic orientation, produce lower TREs.  Surfaces that did not contain information 

from both the front and back and were less than 20% of the surface were poor predictors 

for an accurate registration since they were not geometrically descriptive enough.  Thus, 

a surgeon must unveil at least 30% of the surface that would be obtained if no 

surrounding tissue obstructed the kidney surface.  This would ensure that despite its 

location, the kidney's surface should be enough to produce robust surface-based 

registrations.  However, as shown with the a priori approach, surgeons would be required 

to unveil even less of the surface when choosing areas with the greatest amount of 

geometric properties.  These geometric properties could either be curvature, as seen in the 

laparoscopic experiment, or distribution of surface uniqueness, i.e. taking information 

from opposite sides/ends to include the most coverage.  The map of mean curvature in 

Figure 16 revealed that the surface property of curvature was relatively uniform 

throughout the LRS surface.  Thus, the success of patches was dependent upon some 

other surface property (see Future Work).  Choosing the "a priori" areas preoperatively 
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decreased the TRE independent of the percentage of the total surface.  Thus, with careful 

preoperative planning, the amount of time spent unveiling a surface during a partial 

nephrectomy can be considerably reduced, which improves procedure outcomes.  In 

addition, present approaches to open kidney surgery were created to provide the best 

visibility as well as access to the pathology.  However, being able to localize the 

pathology with decreased visibility, provided the visible areas possess enough geometric 

properties, might lead to a new approach to open kidney procedures.   

 

Future Work 

More realistic phantoms that model vasculature and perfusion effects as well as 

surrounding tissues such as fat would reveal more on what influences the percentage of 

surface needed for an accurate registration.  Further, animal studies similar to the 

phantom studies presented in this thesis should be conducted to ensure similar 

percentages of the image surface are required.  Also, other methods of surface acquisition 

could be explored, such as utilizing a pen probe to obtain surface information not directly 

visible to the LRS.  In addition, since geometric properties play such an important role in 

surface-based registrations, and curvature in the open orientation did not vary 

considerably subset to subset, a parameterization of the surface properties, such as 

heterogeneity in surface normals to each patch and patch combination, should be 

performed.  It would be expected that patches 1, 3, 4, and 6 would have the most 

heterogeneity in their surface normals since 2 and 5 were relatively flat.  This could 

explain why obtaining coverage from both ends of that surface were so significant.  

Additionally, different combinations of fiducials and targets for the open orientation 
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experiment could be used to see if the location of the targets varies the TREs.  Since 

targets 7 and 8 are relatively far from the surface, larger TREs can be expected.  Moving 

the targets closer to the surface should decrease TREs for all surface subsets.   
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CHAPTER IV 

 

CONCLUSIONS 

 

The results presented here suggest that the surface obtained intraoperatively 

during a partial nephrectomy is vital for the applicability of image-guided surgery to 

kidney procedures.  If a surgeon is unable to remove enough of the surrounding tissue to 

expose a geometrically descriptive surface, then the resulting surface-based registrations 

will not be robust enough to predict an accurate registration for the entire kidney.  Thus, 

under optimal conditions, such as maximized visible surface, image-guided kidney 

surgery is feasible.  The optimal surface unveiled is not necessarily a function the amount 

of surface present, but what characteristics the visible surface possesses.  Preoperative 

decisions should be made to select regions of the kidney that contain information from 

opposite sides, curvature, and anatomical features, while minimizing the amount of tissue 

removed or disturbed.  Thus, further steps must be completed to fully understand the 

requirements necessary to deliver accurate surface-based registrations.  Nevertheless, this 

preliminary work paves the way for further development of an image-guided kidney 

surgery system.  
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