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ABSTRACT

Software Defined Networking (SDN) has seen growing deployment in the large wired

data center networks due to its advantages like better network manageability and higher-

level abstractions. At the core of SDN is the separation and centralization of the control

plane from the forwarding elements in the network as opposed to the distributed control

plane of current networks. However various issues need to be addressed for an efficient

transition to SDN from existing legacy networks. In this thesis, we address following three

important challenges in this regards. (1) The task of deploying the distributed controllers

continues to be performed in a manual and static way. To address this problem, we present

a novel approach called InitSDN to bootstrapping the distributed software defined network

architecture and deploying the distributed controllers. (2) Data center networks (DCNs)

rely heavily on the use of group communications for various tasks such as management

utilities, collaborative applications, distributed databases, etc. SDN provides new oppor-

tunities for re-engineering multicast protocols that can address current limitations with IP

multicast. To that end we present a novel approach to using SDN-based multicast (SDMC)

for flexible, network load-aware, and switch memory-efficient group communication in

DCNs. (3) SDN has been slow to be used in the wireless scenario like wireless mesh net-

works (WSN) compared to wired data center networks. This is due to the fact that SDN

(and its underlying OpenFlow protocol) was designed initially to run in the wired network

where SDN controller has wired access to all the switches in the network. To address this

challenge, we propose a pure opneflow based approach for adapting SDN in wireless mesh

netowrks by extending current OpenFlow protocol for routing in the wireless network.
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CHAPTER I

INTRODUCTION

I.1 Software Defined Networking

The control plane in the network devices has historically been tightly coupled with the

data plane. Although this approach has the benefit of promoting an inherently distributed

architecture, it makes it difficult to manage, program, update and upgrade the control plane

without impacting the data plane. Overcoming these difficulties has led to the vision of

programmable networks with Software Defined Networking (SDN) [4, 17] being a front-

runner among the emerging solutions. The primary idea behind SDN is to move the con-

trol plane outside the switches and enable external control of data plane through a logical

software entity called controller. The controller offers northbound interfaces to network

applications and southbound interfaces to communicate with data plane. OpenFlow is one

of the possible southbound protocols.

At the core of SDN is the separation and centralization of the control plane from the

forwarding elements in the network as opposed to the distributed control plane of cur-

rent networks. This decoupling allows deployment of standards-based software abstraction

between the network control plane – the so called SDN controller – and the underlying

data plane, including both physical and virtual devices. This standards-based data plane

abstraction, called OpenFlow, provides a novel approach to dynamically provision the net-

work fabric from a centralized software-based controller. SDN architecture envisions a

centralized control plane, which may result in adverse consequences to the reliability and

performance [9]. First, grouping all the functionality into a single node requires more com-

putation power, data storage and throughput to deliver the traffic. Second, a centralized

software controller will incur higher packet processing latency due to increased traffic and

can become a single point of failure. For example, as the size of data centers and cloud
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Figure 1: Software defined networking layers

computing networks increase to thousands or even millions of nodes in the near future, the

speed up of the controller is a critical issue where neither the over-provisioning mechanisms

nor load-balancing solutions can solve the scalability problems.

In this way, Software-Defined Networking (SDN) has emerged as a new intelligent ar-

chitecture for network programmability. It moves the control plane outside the switches

to enable external centralized control of data through a logical software entity called con-

troller. The controller offers northbound interfaces to network applications that provide

higher level abstractions to program various network-level services and applications. It

also uses southbound interfaces to communicate with network devices. OpenFlow is an

example of southbound protocols. OpenFlow behavior is simple but it can allow complex

2



configurations: the hardware processing pipeline from legacy switches is replaced by a

software pipeline based on flow tables. These flow tables are composed of simple rules to

process packets, forward them to another table and finally send them to an output queue

or port. One complementary technology to SDN called Network Function Virtualization

(NFV) has the potential to dramatically impact future networking by providing techniques

to re-factor the architecture of legacy networks by virtualizing as many network functions

as possible. NFV advocates the virtualization of network functions as software modules

running on standardized IT infrastructure (like commercial off-the-shelf servers), which

can be assembled and/or chained to create services

Software Defined Networking (SDN) has seen growing deployment in the large wired

data center networks due to its advantages like better network manageability and higher-

level abstractions. However various issues need to be addressed for an efficient transition

to SDN from existing legacy networks. In this thesis, we address following three important

challenges in this regards.

I.2 Challenges and proposed Solutions for Software Defined Networks

I.2.1 Distributed Control Plane Management

To improve reliability and performance of Software Defined Networking (SDN) archi-

tectures, a number of recent efforts have proposed a logically centralized but physically

distributed controller design that overcomes the bottleneck introduced by a single physical

controller. Despite these advances, two key problems still persist. First, the task of control-

ling the host network and the task of controlling the control-plane network remain tightly

intertwined, which incurs unwanted complexity in the controller design. Second, the task

of deploying the distributed controllers continues to be performed in a manual and static

way.

Solution: Bootstrapping Software Defined Network for Flexible and Dynamic Control

Plane Management using InitSDN: To address these two problems, this work presents a

3



novel approach called InitSDN to bootstrapping the distributed software defined network

architecture and deploying the distributed controllers. InitSDN makes the SDN control

plane design less complex, makes coordination among controllers flexible, provides addi-

tional reliability to the distributed control plane.

I.2.2 Group Communication in Date Center Networks using SDN

Data center networks heavily rely on the use group communication for various tasks.

Data center management utilities (e.g. software update/upgrade, log management, resource

monitoring, scaling various resources up or down, access control etc.), collaborative appli-

cations like social media, project management tools, version control systems etc.), mul-

timedia applications, multi-player games are few examples of tasks that require efficient

group communication. However though multicast is useful for efficient u group commu-

nication, IP multicast has seen very low deployment in the data center networks due to its

deficiencies like inefficient scaling, inefficient switch-memory utilization, initial receiver

latency. With the advent of SDN (Software defined Network), though, multicast has be-

come easy to implement in the SDN controller, it too faces challenges faced by IP multi-

cast.

Solution: SDN-based Adaptive Multicast(SDMC) For Efficient Group Communication

in Data Center Networks: To address these problems, in this work, we propose an new

way of implementing multicast protocol for group communication protocol in SDN enabled

networks specifically in large data centers networks. This multicast protocol will be more

lightweight, dynamic, adaptive to networking resources like link utilization and switch

memory when compared to the traditional multicast solutions. We list our contributions in

this work as below,

• Design a network-load-adaptive and switch-memory-adaptive multicast for data cen-

ter networks .

• Implement it as a SDN network application running on the top of SDN controller.

4



• Evaluate it for different data-center network load variations, switch-memory utiliza-

tion.

I.2.3 Software defined Wireless mesh networks

Software Defined Networking (SDN) has seen growing deployment in the large wired

data center networks due to its advantages like better network manageability and higher-

level abstractions. SDN however has been slow to be used in the wireless scenario like

wireless mesh networks (WSN). This is due to the fact that SDN (and its underlying Open-

Flow protocol) was designed initially to run in the wired network where SDN controller has

wired access to all the switches in the network. Various workarounds have been proposed

for adapting SDN and Openflow to the wireless setting. However all these approaches re-

quire some kind of hybrid switching hardware and software (especially for routing) which

goes against the fundamental SDN architecture and also causes unnecessary increase in

hardware and software complexity of the switch.

Solution: Three Stage Routing Protocol for SDN based Wireless Mesh Networks: To

address this challenge, we propose a pure opneflow based approach for adapting SDN in

wireless mesh netowrks by extending current OpenFlow protocol for routing in the wireless

network. We describe the extension to OpenFlow protocol and also its use in a novel

three stage routing strategy which allows us to adapt a centralized routing of SDN in an

inherently distributed wireless mesh network without requiring additional support from

switch hardware. We evaluate our approach with the existing hybrid approach using latency

metric for controller-switch and switch-switch connections.

5



CHAPTER II

BOOTSTRAPPING SOFTWARE DEFINED NETWORK FOR FLEXIBLE AND
DYNAMIC CONTROL PLANE MANAGEMENT USING INITSDN

To improve reliability and performance of Software Defined Networking (SDN) archi-

tectures, a number of recent efforts have proposed a logically centralized but physically

distributed controller design that overcomes the bottleneck introduced by a single physical

controller. Despite these advances, two key problems still persist. First, the task of control-

ling the host network and the task of controlling the control-plane network remain tightly

intertwined, which incurs unwanted complexity in the controller design. Second, the task

of deploying the distributed controllers continues to be performed in a manual and static

way. To address these two problems, this work presents a novel approach called InitSDN

to bootstrapping the distributed software defined network architecture and deploying the

distributed controllers. InitSDN makes the SDN control plane design less complex, makes

coordination among controllers flexible, provides additional reliability to the distributed

control plane.

II.1 Motivation

Recent efforts have proposed a logically centralized but physically distributed control

plane [9]. The distributed control plane is more responsive to handle network events be-

cause the controllers tend to be closer to the events than the centralized architecture. How-

ever, these solutions incur a different set of complexities for developing and managing the

controllers. One key limitation of these approaches is that they club task of controlling the

host network and task of managing the distributed control plane together. There is no global

optimal view of the network to keep a consistent network state among multiple controllers.

Additionally, increasing the number of controllers does not necessarily guarantee a linear

6



scale up of the architecture nor does it improve the flexibility or enhance the performance.

Hence, the developer of a distributed controller now has to take care of all the concerns

that arise out of distributed nature of the system including controller synchronization, con-

troller replication, controller logic partitioning and controller placement [12, 36]. All the

above issues are orthogonal to the fundamental controller functionality. However current

distributed control plane architecture forces controller developer to invest energy into ad-

dressing these issues which complicates the controller design and management and makes

control-plane inflexible.

To address these problems, we propose a solution called InitSDN, which is based on

a bootstrapping mechanism that helps to decouple the orthogonal distributed systems con-

cerns from the primary issues related to the controller. InitSDN is designed to make SDN

more flexible, reliable, fault-tolerant without adding complexity to the controllers.

InitSDN divides a single physical network substrate into two slices: a dataslice for

controlling the hosts that run user applications and a controlslice for controlling the con-

trollers. Based on the configuration or strategy defined by a network operator, InitSDN

allocates the right number of hosts between these two slices,1 selects an initial topology

for the controlslice, deploys required controllers in the controlslice, sets the coordination

mechanism among the controllers, maps the switches in the dataslice to distributed con-

trollers, and kick-starts the operation of the real/actual SDN. Over the course of the SDN

operation, InitSDN can increase or decrease the size of slices dynamically, change the

topology of the controlslice, change the coordination mechanism among the controllers

(e.g. use Zookeeper or Chubby, etc) to adapt to network topology changes or to dynamic

network loads or simply as part of an upgrade.
1In a shared or in-band control network, which is our focus, the controller logic must reside on some host

of that network and hence some hosts will be used for hosting the controller logic while others will be used
for application logic.

7



II.2 Problem Description

In this section, we describe problem desciption of distributed controller placement prob-

lem.

II.2.1 Control Plane Message Types

We categorize messages that are being exchanged in the SDN in three different cate-

gories as described below:

1. Control messages: These are the messages that are used to control the communica-

tion between the hosts. It includes various OpenFlow messages like OFPT_FLOW-

MOD, OFPT_FLOW_REMOVED, OFPT_PACEKT_IN etc. These messages flow

between controller-switch pairs.

2. Data messsages: These are normal data packets sent/received by hosts. These mes-

sages normally flow between switch-host or switch-switch pairs.

3. Meta-control messages: We define meta-control messages as those messages that are

used to control the communication between SDN infrastructure entities, i.e. con-

trollers, switches. It includes all the messages that are required for controller-switch

connection setup, connection tear-down, controller-migration, switch-migration, host-

migration, network discovery and topology services, controller logic synchronization

or backup, etc. These messages flow between controller-switch, controller-controller

and switch-switch pairs. It can includes OpenFlow messages like OFPT_FLOW-

MOD, OFPT_FLOW_REMOVED, OFPT_PACEKT_IN, OFPT_PACKET_OUT etc.

Also in addition to above OpenFlow messages, it may include other non-OpenFlow

non-standardized messages and different solutions may implement them in their own

proprietary manner.

8



Figure 2, shows three kinds of messages flowing in the SDN network: (1) control mes-

sages (shown as red pipes), (2) data messages (shown as yellow pipes) and (3) meta-

control messages (shown as blue pipes). We illustrate distinction between these three

messages using couple of examples below. Suppose, initially there are no flow rules in-

stalled in any of the switches of Figure 2. We use notations (P1,P2,P3,...) for numbering

packets; (H1,H2,H3,...) for numbering hosts; (S1,S2,S3,...) for numbering switches and

(C1,C2,C3,...) for numbering controllers.

1. Example 1: H1 sends a P1 (e.g. TCP) to H2. P1 reaches S1. S1 does not have

flow rule to handle it. Hence it sends P1 enclosed in the OpenFlow PACKET_IN

message P2 to the C1. C1 then sends either OpenFlow FLOW_MOD message P3 or

PACKET_OUT message P4 to S1. In this example, P2, P3, P4 are control messages

since they deal with the control of host network i.e. (network between H1 and H2).

And P1 is a data message since it is the part of host network.

2. Example 2: C1 wants to find the network topology. To do that, it sends OpenFlow

PACKET_OUT message P1 encapsulating LLDP broadcast message P2 in it to all

its connected switches. All connected switches receive this message. Lets focus

on S1 only. On receiving P1, S1 modifies it and adds its Link Layer address as

Source L2 address in P2. Lets call this new packet P3. S1 then broadcasts P3.

All switches reachable from S1 will receive P3 while unreachable switches will not.

These reachable switches do not have flow rule to handle P3. Hence they will send

P3 enclosed in OpenFlow PACKET_IN message P4 to C1. In this way, C1 can now

build a topology of all the switches reachable from S1. In this example, P1, P2, P3,

P4 are all meta-control messages since they deal with the control/management of the

control network. Note that some of these messages are OpenFlow while some are

non-OpenFlow.

As illustrated by above examples and by Figure 2, different types of messages deal with

9



different concerns in the SDN. But existing distributed control-plane does not make dis-

tinction among them, which becomes problematic as explained next.

Figure 2: Three Types of Messages Flowing in the Distributed Controller Architec-
ture

II.2.2 Limitations of Existing Control Plane

A number of prior studies have proposed designs for a distributed, scalable, and fault

tolerant controller architecture in the SDN [5, 9, 12]. A key commonality across these ap-

proaches is to add a connection management module in the controller alongside the Open-

flow module. This module is responsible for tasks like leader election, synchronization,

participation in switch migration, managing backups, state consistency, etc.

There are two basic problems with such distributed control plane design. First, in such

architectures, the data messages flow in the SDN network but control messages flow in

the non-SDN legacy network. This occurs because currently, control messages need to be

exchanged to set up the SDN first. Then only after SDN is setup (i.e. switches are config-

ured with correct controller references and flow-rules), data messages can be exchanged.

Hence control messages are thought to be flowing in the pre-SDN (or non-SDN or legacy

network).

This design is sufficient for supporting a subset of network applications like routing or

network monitoring where applications need to instrument only data messages and not

control messages. However, many other network applications exist that perform load-

balancing, leasing virtual network switches using network hypervisors (e.g. flowvisor [30],
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OpenVirteX [3]), mobile networking and others which require instrumentation of both the

data and control messages. Some example use cases that demonstrate these needs are: (1)

in mobile networking, switches and controllers migration requires instrumentation of con-

trol messages (2) for applications like leasing virtual network switches or load balancing

where dynamic controller placement is needed that is based on control message instrumen-

tation. Using existing control plane architecture, the above applications need to operate

in both the SDN network (for data messages) and non-SDN legacy network (for control

messages) simultaneously.

Secondly, in these architectures, the control and meta-control messages are clubbed

together, i.e. they originate from the same controller. This forces the controllers to handle

many of the distributed system complexities, such as handling partitioning, placement,

consensus, synchronization, coordination, which complicates the design of the controller

and violates many of the software engineering principles resulting in code that is hard to

maintain and evolve.

II.2.3 Problem Statement

Controller should perform only core controller functionality (i.e. to control communi-

cation between the host network). Any other complexity that arises due to the distributed

nature of the controller design should be stripped away from controller to make controller

design simpler and modular. Also network application should be able to instrument both

the data messages and control messages exclusively inside the SDN , without any help from

legacy network.

II.3 Solution Approach

We now discuss the design and implementation details of InitSDN. We start with the

key idea behind InitSDN, its architecture, message flow and a use case illustrating how

InitSDN can be used.
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II.3.1 Intuition Behind our Solution

As discussed in Section II.2, the SDN control plane faces two key problems:

1. A chicken-and-egg situation: In the current control plane design, data messages flow

in the SDN network but control messages flow in the non-SDN legacy network. This

is because of the classic chicken-and-egg situation where we need a way to exchange

control messages before starting to exchange any data message in SDN. Hence, con-

trol messages tend to operate in the legacy network as opposed to the SDN network.

2. Separation of concerns in the SDN: In the current control plane, control and meta-

control messages originate from the same controller. From the definition of the mes-

sage types, we can articulate that the data and control messages form the operational

concern of SDN while the meta-control messages form the initialization concern of

SDN. Hence, clubbing these together renders the control plane inflexible.

In searching for a solution to these problems, we realized that bootstrapping is a very

basic and fundamental concept used in computational systems that addresses the chicken-

egg scenario and as a way to achieving separation of initialization and operational concerns.

A classic example of bootstrapping is found in operating systems boot loading where the

loading of the OS is done by the boot-loaders like grub or lilo. It helps to relieve the

operating system from the burden of booting and dealing with BIOS related issues which

are accidental/orthogonal to the objectives of the OS.

In the context of OS, the mounting of the root file system is another scenario where

bootstrapping is a necessity. The Initramfs (earlier called as initrd) is used to search for the

root file system which may reside on the hard disk, removable disk or on the network. It

then mounts the root file system and hands over the control to it. The root file system is

responsible for all the further disk I/Os. Without initramfs, it becomes a chicken-and-egg

problem where an OS is supposed to search and mount a root file system which in turn

requires the root file systems to be mounted first.
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The reason bootstrapping is able to solve these problems is because it essentially con-

fines/restricts the scope of staticness, inflexibility and tight-coupledness that is present in

the system to a very small portion of system instead of permeating it into the entire sys-

tem. Since SDN faces the same two problems that are faced by operating systems and root

file systems, we can exploit the bootstrapping pattern in the SDN during its initialization so

that the static-ness and inflexibility is confined to a small part of the network allowing SDN

to become more flexible, dynamic, scalable and hence more reliable. Therefore we have

designed a solution by adding an initialization phase in the SDN setup for bootstrapping

called as InitSDN (for initialization of SDN).

We now present the architecture and implementation details of the InitSDN approach.

InitSDN works in two phases. The first phase is the initialization (or bootstrapping) phase

and second phase is starting the real (or root) SDN network. In the first phase, a statically

configured SDN is started and is responsible for loading (or booting) the real (or root) SDN

with all the required controllers, switches and applications with the appropriate number of

controllers, topology of controllers, type of controllers (standalone, distributed, hierarchical

etc.), and communication protocols for meta-control messages on the physical network

substrate, which are all determined and set by the network operator.

Figure 3 shows the architecture of InitSDN. It works in the legacy network (i.e., non

SDN) that uses the TCP/IP protocol. InitSDN has a modular structure with various modules

as follows:

1. Network discovery & topology service: This is the basic module of the InitSDN. It

discovers the switches and hosts in the network. It then creates the model of the

network topology using specialized packets. It sends LLDP (Link Layer Discovery

Protocol) packets to switches, parses the reply messages and builds the topology

model.

2. Network Hypervisor: This module provides access to the existing network hypervi-

sors. A network hypervisor is used to slice the network into control and data slice.
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Figure 3: InitSDN modular architecture

Currently we have used Flowvisor [30]. This module is also used to create virtual

switches for multi-tenant network applications. For this, currently we use OpenVir-

tex [3]. However, our design can accommodate other network hypervisors.

3. Control-plane topology: This module allows the network operator to specify the

initial control plane topology. By default, InitSDN uses the basic topology with

one centralized controller and one backup controller. Network operators however,

can provide their own control plane topology as described below. This module then

slices the network into two slices using information from the previous two modules

(i.e., network hypervisor configuration and discovery & topology service).

4. Control-plane partitioning: This module is used to slice the control plane logic. This

requires the controller to expose an API to perform this action. These APIs currently

are controller-specific. In our present implementation, we have used a modified POX

controller. For example, Pyretic [28] has a modified POX client, which allows us

to specify the flows to be controlled by the POX controller using a command line

argument when starting the controller.

5. Control-plane synchronization: This module is used to specify the synchronization

mechanism to be used in the control plane, e.g., how to synchronize the backup

controller. Currently with the modified POX controller, we use Apache Zookeeper
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for synchronization. The modified POX controller writes its state (e.g. topology,

counter etc) to a file. This file then gets synchronized across the control plane. This

module allows an operator to use any other synchronization mechanism, e.g., Vagrant

Serf, Google Chubby, etc.

6. Host Remote Access: Since InitSDN installs controllers on the hosts, it needs access

to do so on those hosts. This module provides a way to configure such access. At

present this module uses a combination of SSH and SCP through the Python com-

mand line tool Fabric [26]. However, based on the host access policy, the network

operator can use any other tool.

II.3.2 InitSDN in Action

Now we describe the steps involved in the booting of a legacy network into a flexible,

dynamic and fault tolerant SDN network using InitSDN.

1. Initial Setup: We assume a network substrate which uses a legacy network with

Openflow-enabled switches. InitSDN has remote access to all the hosts that are sup-

posed to host the control plane. The chosen SDN controller exposes the API to

configure the partitioning and synchronization strategy.

2. InitSDN is started on one of the hosts in this network substrate and is connected to

all (top-level) main switches statically.

3. An InitSDN network application will then configure the InitSDN controller. This

InitSDN application contains configuration information of all the InitSDN control-

plane modules shown in Figure 3 and also described in the previous Section II.2.

4. InitSDN will build a model of the topology of the network using the discovery and

topology module. The topology contains all the hosts, switches and links present in
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the network. It will also contain link properties and switch configurations like the

ones supported in the OpenFlow version.

5. InitSDN then builds the control-plane topology based on the configuration provided

by the network operator and network topology model from the previous step.

6. Using the network hypervisor (e.g. flowvisor), InitSDN will slice the network into

two slices namely data-slice and control-slice. The number of hosts in both the slices

and their topology is determined by the control-plane topology from the previous

step.

Figure 4: Legacy Network During the Bootstrapping Phase (1) network slicing step
has been executed (2) Brown colored hosts are chosen to be in the control plane
as per topology and configuration

7. InitSDN then remotely installs the controller in all the hosts in the control plane.

8. InitSDN configures the controllers in the control plane as per the control plane par-

titioning strategy provided by the network operator, e.g., controller C1 handles only

secure flows while controller C2 handles only non-secure flows, etc.

9. InitSDN configures the synchronization strategy in the control plane as the con-

trollers need to share the local topology changes with the other (non-local or remote)
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controllers, e.g., backup controllers need to be synchronized with the respective pri-

mary controller, etc.

10. InitSDN then installs the default flow-rules in the switches so that in case of control

plane failure, switch will notify InitSDN. This adds an additional level of reliability

to the SDN control plane.

11. InitSDN then configures all the switches with one or more controllers from the

control-slice.

12. At this point, SDN is considered to be booted as per the configuration provided by

the network operator and InitSDN is out of the picture.

II.3.3 Implementation Details for Prototype

The following tools and technologies were used to realize InitSDN and evaluate its

properties.

• Network Emulation: Mininet [19].

• Switch: OpenVswitch and Openflow’s Reference Switch (ofdatapath) [24].

• Controller: Openflow’s Reference Controller [24], Apache Floodlight, Stanford Uni-

versity’s Pox and Ryu.

• Host: Docker Containers and VirtualBox VMs.

• Network Virtualization: Flowvisor [30], OpenVirtex [3].

• Network Topologies: Real network topologies (built using traceroute) obtained from

Stanford University [32, 33].

• Distributed Consensus and Synchronization: Hashicorp Serf, Apache ZooKeeper,

Google Chubby, Doozerd, etc.
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• Host Remote Access: Fabric SSH

We used Mininet to simulate the real world communication network with hosts, switches

and controllers. We have configured the Mininet to use OVS user space switch and refer-

ence switch (ofdatapath) provided by the Openflow. We have implemented InitSDN on

top of the network virtualizer Flowvisor and OpenVirtex. Flowvisor is used to slice the

network into control-slice and data-slice. OpenVirtex is used to create multiple virtual

SDNs(vSDNs) with full address space and own topology. POX is used for building logi-

cally centralized but physically distributed control-plane. Since the default hosts provided

by the Mininet do not have full isolation, we use docker containers and/or VirtualBox vir-

tual machines to serve as hosts. For distributed consensus and synchronization among the

controllers we use Apache Zookeeper. We also use few other tools like Hashicorp Serf,

Google Chubby just to show the flexibility of InitSDN. For evaluation purpose we used

various real world internet scale network topologies from the Stanford University.

Figure 5: Legacy Network turned into SDN Network After Bootstrapping is Com-
pleted (1) InitSDN has taken a back seat (2) SDN controllers are placed in control
plane, configured and have been activated
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II.4 Experimental Evaluation

In this section we provide a qualitative evaluation of InitSDN’s capabilities. In evalu-

ating InitSDN qualitatively we focus on properties such as the ease of performing some of

general use cases for the management of SDN control plane with and without InitSDN.

Figure 6: Three Types of Messages Flowing in the bootstrapped SDN

II.4.1 Evaluation Criteria: Building Network Applications for SDN Control Plane

Management

This criteria is relevant to the SDN service providers. As we discussed in the previous

section, InitSDN separates the control and meta-control messages as shown in Figure 6.

This helps to modularize the network applications by providing separation of concerns

between two different types of applications as follows:

1. SDN network application: These are the network applications that instrument the

network among the hosts. These are developed by the SDN user or vSDN(virtual

SDN) tenant. Examples of such applications are routing (OSPF, IS-IS, BGP etc),

security, access control, application-based forwarding, etc. These applications are

written against the controller that client is using in its SDN (or vSDN).

2. InitSDN network application: There is another type of application that instruments

the network along the control-plane. These are developed by the SDN service providers.
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Examples of such applications are switch migration, controller migration, VM net-

work state migration, control-plane scale up/down, controller updates, control-plane

topology management, vSDN control-plane management, etc. Without InitSDN,

these applications have to be written for individual controllers. For example, if SDN

hosts three types of controllers, then the controller migration application has to be

written for each of these controllers. However, these applications become easier to

develop with InitSDN since such applications now need to be written against only

InitSDN irrespective of the number of controllers, number of vSDNs, or types of

controllers present in the system.

In this way, InitSDN brings the separation of concerns in the SDN control plane man-

agement.

II.4.2 Evaluation Criteria: Controller Scale-up/Scale-down

Controller scale-up or scale-down can be achieved easily using InitSDN.

1. scale-up: InitSDN needs to find out idle hosts (or VMs) for adding them to the

control-plane. This has to be programmed by a network operator through the InitSDN

application. InitSDN then adds such new hosts to the control plane. InitSDN installs

controllers on these new hosts. It also modifies flow-rules on new switches, so that

they start to redirect their traffic to new controllers.

2. scale-down: InitSDN simply modifies the flow rules in the switches to point them to

controllers from to be scaled-down control-plane only. After that InitSDN can either

shutdown hosts containing extra controllers (i.e. those controllers which are now not

connected to any switches) or use them for other controllers (e.g. different vSDN).

This way InitSDN provides scalability to the SDN control plane. This also increases

reliability of SDN control plane against network load changes.

1. Make InitSDN build a new topology.
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2. Compare old and new topology and find out the scale up/down steps required.

3. Ask InitSDN to scale up/down accordingly.

II.4.3 Evaluation Criteria: Controller/switch Migration

In InitSDN, the controller or switch migration is reduced simply to the task of updating

the control-plane topology. InitSDN builds new control-plane topology after notified by

its discovery module about the change in the network topology. This new topology is then

enforced on the control plane as described in the previous subsection.

II.4.4 Evaluation Criteria: Managing Control-Plane Topology of Virtual SDNs

In the multi-tenant network infrastructure (e.g. large data centers), SDN will need to

provide services for creating virtual SDNs(vSDN). In such environments, individual vSDN

will be managed by the different independent controllers and may require different control

plane topology. For example, Client A and Client B lease the one vSDN each from the

SDN service provider C. C hosts both the vSDN on the same physical network hardware. A

wants hierarchical control-plane with POX controllers, while B wants centralized control-

plane with RYU controller. We can accomplish such requirements easily using the InitSDN

as follows.

1. Case when vSDN is created before SDN bootstraps i.e. statically: Say, we need to

create two vSDNs with different control-plane topology. Network hypervisor first

creates two vSDNs on the data slice. It will then inform InitSDN about switches and

hosts used to create these two vSDNs. It will also provide control-plane topology

requirements of these two vSDNs. InitSDN then can calculate the total number of

controllers needed to satisfy requirements of both vSDNs. This calculation depends

upon the switches used by the both vSDNs. InitSDN can optimize the number of
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hosts required for control-plane of these two vSDNs based on switch sharing between

them.

2. Case when vSDN is created dynamically i.e. after the SDN is booted: In this case,

similar approach is used, however InitSDN need to use the existing control plane or

scale up if required. This decision is based on whether control-plane requirement of

new vSDN is met by the existing control-plane.

This way InitSDN provides flexibility to the SDN control plane management.

II.5 Related Works

This section compares related efforts and contrasts them with InitSDN. In [9], the au-

thors present a solution for an elastic distributed controller for the SDN called ElastiCon. It

is capable of providing logically centralized but physically distributed control mechanisms

with reliability and scalability services like switch migration, load balancing, fault toler-

ance among other properties in the southbound API. It consists of autonomous controller

nodes that coordinate among themselves to provide a consistent control logic for the entire

network. Every switch connects to multiple controllers, one of which is the master while

others are slaves. Each controller contains a core module similar to the basic centralized

controller which is responsible for the control plane management. Every controller also

contains another module which is responsible for distributed controller services like leader

election, state synchronization, switch migration from one controller to another, etc. While

these properties are much desired, as discussed in Section II.2.2, such an approach adds

to the complexity of the controller by not separating control and meta-control messages.

Moreover, this approach does not provide a configurable control plane topology, e.g. a case

where the network operator may want only a centralized controller.

The authors in [18] propose a solution called the Pratyaastha control plane to address

a related but different controller placement problem. Pratyaastha first partitions the SDN
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application state into the lowest granularity possible so that it can be distributed across the

controllers. Subsequently, based on the controller load, it decides the placement (in this

case, reassignment) policy that maps the switches and application state to the out-of-band

controller instances. This placement problem is different than ours where the controllers

are mapped to the physical hosts. Hence, Pratyaastha does not require the network hyper-

visors since the control plane still resides on the dedicated network. Though, Prayaastha

provides elasticity to the control plane in the case of changing controller load, it does not

provide elasticity in the case of major network topology changes or large-scale failures in

the initially assigned control plane physical hosts since the control plane physical nodes are

still statically assigned.

The authors in [11] describe a two-level controller hierarchy called “Kandoo” with the

lower-level controllers being responsible for handling the frequent events and short-lived

flows, while top-level controllers handle the other flows. However, it is not flexible enough

to adapt to the network topology and load, e.g. in the case where most (or all) of the network

flows are long-lived. The authors in [12] discuss the placement problem in the control

plane and observe that a single controller is sufficient for most of the use cases. However,

it does not consider the use case that requires robust fault tolerance, virtual SDNs, multi-

level controller hierarchy, etc where multiple controllers are needed and hence placement

becomes more complex. Another effort [36] discusses the controller placement problem

but in the context of the network load alone. It does not provide configurable control-plane

topology. Difane [37] and DevoFlow [7] extend the switches data-path mechanisms to

offload the central controller. To scale the topology with multiple rules, lower delay, higher

throughput, and reduce the time required for installing new rules, Difane tries to partly flood

forwarding decisions from the controller to an authority switch. DevoFlow introduced new

mechanisms to dispatch important events to the control plane. Kandoo [11] addressed

the same issues, but instead of extending the switch’s data path, it removes control data

functions close to the switch. Kandoo distinguishes two-level hierarchies for controllers:
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local distributed controllers and a logically centralized root controller. The local controllers

are deployed throughout the network to process events locally, each controls one or more

switches in the network and they do not need the network-wide state. The root controller

controls all local controllers to access to non-local network-wide state. If the root controller

wants to install flow entries on a switch, it delegates the requests to its local controller. As a

result, Kandoo offloads control applications over available resources without violating any

requirements of control applications.

HyperFlow [31] provides the tradeoff between the centralized control while keeping

scalability, by passively synchronizing the entire network views and delegates the decision

making to individual controllers. Hyperflow uses Flowvisor to slice the network to several

partitions and enable multiple controllers in the network, each manage a single slice. The

global synchronization is done by creating a rendezvous point between locally selected

events, so state changes are propagated using publish/subscribe messaging bus between the

distributed controllers and the switches in different slices.

II.6 Concluding Remarks

In this work, we highlighted the limitations of the current SDN distributed control plane

in terms of controller complexity, reduced flexibility, scalability and reliability. To address

these concerns, we described a solution approach that involves a separate bootstrapping or

initialization phase for the SDN network. Our solution is called InitSDN and its architec-

ture involves a number of functionalities that relate to topology, discovery, synchronization,

and placement. Our current work has qualitatively evaluated the benefits stemming from

the work in terms of ease of developing the controller logic and operationalizing the SDN

network for network operators using real world network toplogies. To use our approach

at present, we need to add a few APIs, e.g., for control plane logic partition and synchro-

nization, to the existing controllers individually. We are working on creating a generic API

for these tasks so that any future controller can be used in our solution seamlessly. Also
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as a future work, we plan to obtain comparative performance results of the InitSDN such

as controller-switch latency, recovery time of controller for various network topology and

configurations.

In the context of our InitSDN, we make the following three contributions in this work:

• We propose and describe the architecture of the InitSDN controller used for boot-

strapping a real SDN network,

• We describe the implementation details of the InitSDN controller.

• We qualitatively evaluate the benefits of our approach in terms of separation of con-

cerns, reduced complexity of the SDN controller, increased reliability and better

management of control-plane using various motivating use cases.
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CHAPTER III

SDN-BASED ADAPTIVE MULTICAST (SDMC) FOR EFFICIENT GROUP
COMMUNICATION IN DATA CENTER NETWORKS

In this chapter, we describe our work related to the SDN based multicast solution for ef-

ficient group communication in data center networks. First we describe the organization of

this chapter. Next, in the section III.1, we provide motivation and background information

for IP based multicast and SDN based multicast. In the section III.2, we discuss the con-

siderations that drive the SDMC design and its architecture. We also describe the problem

statement in this section. In the section III.3, we describe the architecture and implementa-

tion of the SDMC. This section also provides detailed workings of SDMC with its behavior

in various events like sender join, receiver join etc. In the next section III.4, we provide the

evaluation of SDMC in various data-center network settings using the metrics like latency,

network load variations, switch-memory utilization etc. and compare it with unicast and

multicast for performance. In the section III.5, we discuss the previous works related to

multicast in data center using SDN and their shortcomings. In the last section III.6, we

conclude our work by providing the summary and directions for future work.

III.1 Motivation

III.1.1 Importance of Group Communication in Large Data Centers

Group communication is used when one participant (or multiple participants) needs to

talk to multiple participants. Participant in this communication could be any entity like an

application level abstraction, class object, process, host machine or IP address, person etc.

Group communication is heavily used in the today’s data center networks because various

tasks that are routinely performed in data center networks inherently follow one-to-many

or many-to-many semantics [20]. For example,
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1. Elasticity: DCN use different elasticity techniques to provide commodity or tenant

based services like PaaS, SaaS or IaaS. These techniques used for scaling up or down

of computing, storage and network resources rely on group communication.

2. Fault Management: Fault management algorithms/strategies used by data centers to

tolerate and mitigate faults require group communication at its core e.g. active and

passive replication, fail-over, state synchronization in passive/semi-active replication,

quorum management in active replication,

3. Access control/Privacy: Access control solutions like managing users, groups, pass-

words, user privileges etc. use group communication.

4. Security: Similarly security solutions like prevention, detection and removal of mal-

ware, virus etc. rely on group communication.

5. Application Management: DCN use application management tools for bulk software

installment, software update, software upgrade, etc. All these need group communi-

cation.

All these tasks are routinely and heavily used in the data-centers and hence smallest over-

head (network latency or load in this case) in them would be detrimental to the overall

performance of data centers networks. Apart from above data center specific tasks, DCN

also hosts many client applications which rely on group communication. For example,

1. Multi-player Gaming:

2. Multimedia Applications: video conferencing, on-demand video services like YouTube,

3. E-learning applications: Moodle, Coursera etc.

4. Collaboration Applications: online team editors like Google Docs, Microsoft 365,

5. Online storage Applications: e.g. Dropbox, Google drive, Microsoft OneDrive, Box

etc.
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6. Distributed Database applications: Hadoop etc.

Hence it is very obvious that efficient group communication is important for better perfor-

mance of data center networks.

III.1.2 IP Multicast for group communication in DCN and its limitations

Traditionally IP multicast (IPMC) has been used (though quite minimally and inef-

fectively) for the group communication requirements of different applications. However,

IPMC is very inefficient for adapting to dynamically changing network load and switch-

memory. Due to these reasons, IPMC has not been seen large-scale deployment into the

data center networks. Hence, dynamic and adaptive multicast protocol for the data center

network is required to increase its use in the DCN.

III.1.3 SDN based multicast

In the recent years, new paradigm called Software Defined Networks has been emerged

as a new way for managing networks. SDN decouples control plane of networking devices

like (switches, routers, rate limiters, firewalls etc.) from its data plane. Due to very nature

of SDN architecture, multicast has become easy to implement in the SDN controller as

compared to the traditional IP multicast. However it too faces same challenges faced by

IP multicast as described above. These challenges were very difficult to overcome in the

legacy network where IPMC was implemented in the switches and was totally distributed.

However softwarization of networking through SDN has made it possible to overcome

these challenges. Also data center networks normally are composed of highly structured

topologies and possess single window control of all the networking infrastructure as com-

pared to wide-area-network or local area networks. Hence DCN provides great opportunity

to use the SDN based multicast. In this work, we propose a novel way of using SDN based

multicast(SDMC) for flexible, network-load aware, switch-memory efficient group com-

munication specifically for the data center networks. SDMC efficiently uses combination
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of unicast and software defined multicast and switches between them at run time agnostic

to application and without any additional packet loss to find a better trade off to retain ben-

efits of group communication while avoiding its disadvantages. In this work, we describe

the design and implementation of SDMC using SDN controllers and OpenFlow enabled

switches and evaluate it for various metrics like adaptiveness to network load and switch-

memory utilization.

III.1.4 Our Contribution

In this work, we propose an new way of implementing multicast protocol for group

communication protocol in SDN enabled networks specifically in large data centers net-

works. This multicast protocol will be more lightweight, dynamic, adaptive to networking

resources like link utilization and switch memory when compared to the traditional multi-

cast solutions. We list our contributions in this work as below,

• Design a network-load-adaptive and switch-memory-adaptive multicast for data cen-

ter networks .

• Implement it as a SDN network application running on the top of SDN controller.

• Evaluate it for different data-center network load variations, switch-memory utiliza-

tion.

III.2 Problem Description

IP Multicast

Communication between two or more participants can have different semantics based

on number of participants on the sender side and receivers side.

• Unicast or one-to-one

• Broadcast or one-to-all
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• Multicast or one-to-many or many-to-many

• Incast or many-to-one

IP multicast is standard for the multicast over UDP. IPMC assigns static multicast IDs

(224.0.0.0 to 239.255.255.255) to the to be multicast group members (senders and re-

ceivers), creates routing tree before sender can send any payload data. There are three

major ways by which IPMC generates routing trees. Common routing protocols used for

multicast are as below.

• Internet Group Management Protocol (IGMP)

• Protocol Independent Multicast (PIM)

• Multicast BGP (MBGP)

IGMP is commonly used for IPv4 networks and MLD for IPv6 networks on the LAN(Local

Area Network). PIM is used inside routing domain while MBGP is used between multiple

routing domains.

We list the main reasons behind the lack of large scale deployment of the IPMC in the

data center.

1. Static binding of multicast groups to sender and receivers.

2. Duplication of redundant multicast routing trees.

3. High overhead for creating multicast routing tree in the multi-sender scenarios.

4. Non-adaptive to the dynamically changing load.

5. Non-adaptive to the available switch memory.

6. Non-adaptive to the dynamically changing subscriptions or receivers.
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In this section we will describe various requirements for designing a SDN based multi-

cast solution (SDMC).

Flexible/Dynamic: Existing multicast protocols follow all or none semantics for mul-

ticast users. It allows users the choice of either using multicast for all the senders and

receivers or not using it at all for all. It does not allow us to use selective multicast for few

receivers or few senders while using unicast for remaining ones. SDMC should be capa-

ble of allowing applications to use multicast communication selectively as per application

needs.

Initial Latency/Lazy initialization: In the existing multicast protocols like IPMC, cre-

ation/destruction of multicast senders/receivers immediately triggers creation/update/dele-

tion of multicast routing trees. This incurs initial latency for the receivers especially for the

highly dynamic subscriptionpublications and for the larger sized multicast groups. SDMC

should be capable of reducing this initial multicast routing tree creation delay without com-

promising on the receiver performance. This is achieved by deferring the creation of mul-

ticast routing tree(lazy initialization) at later time when network and switch conditions are

suitable for it.

Reuse of overlapping multicast routing trees: Existing multicast protocols makes it

impossible to reuse partial or complete multicast routing trees due to flat nature of its mul-

ticast ids. This makes the scaling of multicast very difficult due to limited switch memory

resources. SDMC should reuse the partially or completely overlapping multicast routing

trees. For example if two (or more) multicast ids are having same (or almost) receivers (or

switches to which receivers are connected), they should be able reuse the same multicast

routing tree and hence save valuable switch memory.

Adaptive to network load: SDMC should be able to adapt to changing network traffic

by switching between unicast and multicast. For example, if a (or more) link is under high

load due to unicast traffic, SDMC should be able to switch that traffic to use multicast (if

that traffic is part of group communication.)
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Adaptive to switch-Memory: In data centers, switches come in various sizes and shapes.

Depending on the specifications of the particular switch, switch memory, switching speed

etc. may vary. Hence in a large data centers especially those that are in operation for long

time, switches are heterogeneous. SDMC should be able to adapt to the switch-memory

limitation scenario of the data center.

Consistent and Application-Agnostic SDMC : This consideration arises due to flexible

and adaptive nature of new multicast protocol SDMC. Since, we are allowing multicast

protocol to adaptively use either total multicast or partial multicast or total unicast dynam-

ically based on the network load, switch memory or application requirements, a receiver

may be changed from using unicast to multicast and to unicast during its life-cycle. Hence

while switching between these configurations, SDMC is required to provide a consistent

performance to all senders and receivers such that application remains unaware of these

switching.

III.3 Solution Approach

In this section we will describe the implementation of the SDMC.

III.3.1 SDMC infrastructure

Figure 7 depicts the infrastructure required to implement the software defined network-

ing based multicasting setup. It contains SDN enabled switches connected to form a SDN

network with the control plane managed by the SDN controller (either centralized or dis-

tributed) and connected to a number of host machines (physical or virtual) with the SDN

middleware (SDNMiddleware) installed on them.

Openflow enabled Switches: In a typical data-center network, number of openflow

enabled switches are to be connected in a network using topologies like mesh, tree or

jellyfish. Each such switch contains a OF-client to connect to the SDN controller. Also
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Figure 7: SDMC infrastructure

switch has fixed memory in the form of TCAM which is used to store the openflow rules

for forwarding data packets.

SDN controller: Data center network is managed by the SDN controller. This SDN

controller could be centralized or distributed. Though it is possible to use distributed con-

troller, in this paper though we do not deal with the complexities arising from the distributed

controller. We assume the SDN controller is on the dedicated machine with the dedicated

connections to all the openflow enabled switches in the SDN network. For the SDN con-

troller, we have various choices like NOX, POX, Floodlight, RYU, Opendaylight etc. SDN

controller is part of the control plane in the SDN architecture as we discussed in the last

section.
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SDMC as SDN-NetApp: The core logic of Software Defined MultiCast(SDMC) is im-

plemented as a SDN network application (SDN-NetApp). As described in the earlier sec-

tion, network application forms the top layer of the SDN architecture and runs on the top

of the SDN controller.

Other SDN Applications: As described above a major part of SDMC is implemented as

a SDN network application(SDN-NetApp) on the top of the SDN control plane. However,

we also need other SDN applications (apart from the SDMC itself) for the execution of the

SDMC as described below. Some of these applications are general (like routing) but others

(like host manager) are need to be specifically built for the SDMC type applications.

• Discovery: This SDN-NetApp provides service of automatic discovery of joining

and leaving switches and hosts. It can assist SDMC for finding out joining-in or

leaving-out recipients or senders of multicast group.

• Topology: This SDN-NetApp provides the service of topology creation out of the

SDN network. It can be asked to create various topology among the switches and

hosts. It does that by activating some links and de-activating others links.

• Monitoring: This SDN-NetApp is used to monitor and report various network prop-

erties like link bandwidth utilization, switch memory utilization etc.

• Routing: Routing SDN-NetApp is used to find (unicast) routes between two hosts

using algorithms like OSPF. SDMC uses services of this SDN-NetApp to build a

dynamic multicast routing tree at run-time.

• Network Virtualizer: If we are working in shared and multi-tenant SDN network

then we need network virtualizer to slice the one physical SDN network space into

multiple SDN networks. In this work though, we will deal with only non-virtualized

SDN network. Hence we will not need Network Virtualizer.

• Host Manager: This SDN-NetApp is used to keep track of hosts connected to switches
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and to communicate with them. This application is used by the SDMC to commu-

nicate with the SDN-Middleware of the host machines. This application is required

as we are building a hybrid multicast protocol with the combination of application-

level-multicast(or overlay multicast) and native network-level-multicast.

Host machines with SDN Middleware: Part of the SDMC which deals with application-

level-multicast (or overlay multicast) is implemented with the help of a middleware (SDN

Middleware) which runs on the top of the host machine connected to the SDN network.

SDN-NetApp can control host network by communicating with this Middleware using the

Host-Manager service application of SDN. This SDN middleware installed on the host

machine is capable of things like translating a endpoint listening on a multicast id into

multiple unicast ids, switching a endpoint from unicast to multicast or vice-versa without

application intervention etc.

SDMC participants (Senders and receivers): The SDMC participants (senders and re-

ceivers) will run on the top of SDN-Middleware. SDN-Middleware will hide the vari-

ous complexities arising out of dynamic, lazy and flexible SDMC from these participants.

Sender and receivers will send/listen to a SDMC id and does not deal with (or know)

whether underlying layers are using unicast or multicast or both.

III.3.2 Lazy Initialization

Initialization process of SDMC senders-receivers and SDMC routing tree creation is

lazy to allow flexibility of adapting dynamically to the network load and switch memory

limitations (described later in this section). SDNMCast exhibits this laziness in its workings

while switching to multicast communication from default unicast. This laziness of SDMC

can be seen in three different ways. First, when a new receiver requests to listen on SDMC-

ID, it is not immediately added to the SDMC-ID as a multicast receiver but is added as an

unicast destination on the all the existing senders of that SDMC-ID if any. Secondly SDMC

multicast routing tree for new receiver is created in the controller but is not installed (in the
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form of OF rules) in the switches immediately. And thirdly, when a receiver (or sender)

leaves the SDMC-ID group, multicast tree is not updated immediately. All these above

three decisions (viz. 1. when to add a receiver as a multicast destination 2. when to

install multicast routing tree in switches 3. when to update the multicast routing tree after

a receiver leaves) are taken by the SDMC holistically based on all other SDMC sender-

receiver status and on the network load and switch-memory utilization instead of triggering

them immediately. In the figure 8 and in figure 9, lazy initialization of the senders and

receivers is described in the SDMC with the two-level SDMC-IDs.
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Figure 8: Initial SDMC Sender Setup

III.3.3 Two-level SDMC-ID

To allow reuse of the multicast routing trees, SDMC-ID space is divided into two viz.

application-level (or external) and network-level (or internal). SDMC participants will

deal with only external SDMC-IDs while network data-path will deal with internal SDMC-

IDs. SDN-Middleware will be responsible for the translation of external SDMC-IDs to

appropriate internal SDMC-IDs (and vice-versa). The SDMC (SDN-NetApp) will direct

SDN-Middleware about use of appropriate translation and when to switch between different

SDMC-IDs as described below. This two level SDMC-ID structure will allow SDMC to use
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Figure 9: Initial SDMC Receiver Setup

same multicast routing tree (with the internal SDMC-ID) for the overlapping receivers of

two different external SDMC-IDs. The decision about how to divide the address space into

external and internal SDMC-IPs is left at the hand of the administrator of SDN network

and can be configured at the network set-up time via the SDN controller configuration

parameters.

III.3.4 Network link monitoring :

SDMC constantly keeps track of network links and their utilization with the help of

monitoring network application. It then populates the link utilization information against

the SDMC-IDs which are using that link for the unicast for a receiver as shown in the the

Table 1.

III.3.5 Network Switch-memory monitoring:

SDMC also constantly keeps track of the memory utilization of the network switches

with the help of the controller. Since controller installs rules in the switches, it knows
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Table 1: Network Link Monitoring

Link Switch Switch Utilization SDMC-ID Receiver
No. No. (Unicast)

L1 Switch-03 Switch-05 17%
SDMC-ID-01 Rec-33
SDMC-ID-87 Recv-54

L2 Switch-20 Switch-11 32%
SDMC-ID-11 Rec-12
SDMC-ID-42 Recv-23
SDMC-ID-45 Recv-54

L3 Switch-31 Switch-21 31%
SDMC-ID-03 Rec-13
SDMC-ID-85 Recv-53

L4 Switch-13 Switch-03 69%

SDMC-ID-21 Rec-21
SDMC-ID-52 Recv-67
SDMC-ID-74 Recv-42
SDMC-ID-24 Recv-45

L5 Switch-3 Switch-9 81% SDMC-ID-1 Rec-1

L6 Switch-15 Switch-21 70%
SDMC-ID-11 Rec-11
SDMC-ID-32 Recv-28

exactly how many OF rules are on each switches. Each switch comes with the maximum

number of OF rules that it can accommodate. So we measure the switch-memory utilization

as number of actual OF rules installed in the switch against the maximum number of OF

rules allowed. For this work, we deal with OF 1.0 rules for all switches. However as newer

version of OF standard are proposed, controller should keep track of different version of

OF rule space for different switches. This table (Table 2) also keeps track of multicast

receivers and associated SDMC ids for each switch.

III.3.6 Workings of SDMC:

We will now describe the SDMC with explaining sequence of activities executed by

SDMC in response to various events like sender join, receiver join, sender leave, receive

leave etc.

Sender Join: When a participant(sender) wants to send data on an application-level

SDMC-ID, Me,
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Table 2: Network Switch Memory Monitoring

Switch Available Used SDMC-ID Receiver
No. Memory Memory (Multicast)

Switch-00 10000 9132
SDMC-ID-01 Rec-65
SDMC-ID-19 Recv-65

Switch-10 20000 1313
SDMC-ID-41 Rec-43
SDMC-ID-64 Recv-84
SDMC-ID-08 Recv-63

Switch-32 20000 14434
SDMC-ID-13 Rec-15
SDMC-ID-43 Recv-14

Switch-12 30000 15151

SDMC-ID-01 Rec-64
SDMC-ID-18 Recv-24
SDMC-ID-34 Recv-47
SDMC-ID-75 Recv-51

Switch-32 10000 3234
SDMC-ID-14 Rec-76
SDMC-ID-65 Recv-54

• It sends a request to its SDN-Middleware. SDN-Middleware sends the request to the

SDMC SDN-NetApp.

• SDMC SDN-NetApp assigns an appropriate internal SDMC-ID Mi to correspond to

the requested application-level SDMC-ID, Me.

• It also installs OF rule in the edge switch of the sender to block all the traffic with

the destination id Mi.

• After than SDN-Middleware on the sender node installs a translation rule for Me <

−> Mi in the host so that (1) when sender sends packets on external SDMC-ID Me,

it gets translated to internal SDMC-ID Mi and also (2) when any receiver receives the

packet with SDMC-ID Mi, it gets translated to application level external SDMC-ID

Me.

• Additionally it also installs following translation rule Me−> (Mi,U1,U2) where U1
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and U2 are the unicast destinations of the receivers of the application level multicast

id Me. This allows sender to start sending packets using unicast.

As seen from the above sequence of events, joining of a sender does not trigger creation or

update of the multicast routing tree. This is possible because initially every sender is made

to use unicast only. Later on as per the conditions of the network and the switch, sender are

asked to switch between multicast and unicast. This is part of the lazy initialization process

of SDMC.

Receiver Join: When a participant (receiver) wants to listen on an application-level

SDMC-ID, Me,

• It sends a request to its own SDN-Middleware which for-wards the request to the

SDMC NetApp.

• SDMC NetApp retrieves the respective internal network-level SDMC-ID ,Mi, if avail-

able otherwise create new, and sends it to the receiver SDN-Middleware.

• SDMC then installs OF rule in the edge switch of the receiver to block all the traffic

with the destination id Mi.

• SDN-Middleware on the receiver installs the two translation rules Me <−> Mi and

Me <−>U1 where the U1 is the unicast id of this receiver.

• SDN-Middleware also gives the preference to Me <−>U1 rule over Me <−> Mi

so that first rule gets matched. This makes receiver to listen on unicast instead of

multicast id. This is part of the lazy initialization of SDMC receivers.

• Meanwhile, SDMC-NetApp searches for all the senders of Mi and adds the unicast

destination of U1 in their SDN-Middleware translation rules.

• It then requests the unicast routing paths for this receiver to every sender of Mi from
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the Routing-NetApp. Based on these routing paths, it then updates Table 1 and Ta-

ble 2 with adding sender-receiver pair against each appropriate network link and

switch.

Similar to joining of a sender, joining of a receiver also does not trigger creation or update

of the multicast routing tree. This is possible because initially every sender is made to use

unicast only. Later on as per the conditions of the network and the switch, sender are asked

to switch between multicast and unicast. This is part of the lazy initialization process of

SDMC.

Adapting to network load: As discussed above, whenever a link (or more) in the SDN

network crosses the threshold load, the SDMC-NetApp is notified by the Monitoring-

NetApp. This is done because SDMC-NetApp registers a listener event on the Monitoring-

NetApp to notify it in the case of link crosses a particular threshold. Threshold is specified

in the percentage of bandwidth utilization for a specific amount of time. For example 90%

bandwidth utilization for a link for more than 30 consecutive seconds. SDMC-NetApp

logic periodically (e.g. once in 60 seconds etc.) tries to reduce the network load by switch-

ing relevant unicast receivers to multicast receivers. It searches for the unicast receivers

in the Table 1 against the link which is overloaded. SDMC-NetApp then switches these

receivers from unicast to multicast either one by one or simultaneously. In the next subsec-

tion, we describe the process to switch from unicast to multicast without losing any packet

or impacting the receiverś performance.

Switching from unicast to multicast: This event is triggered by the fluctuations in net-

work link utilization as discussed above. Figure 10 shows the sequence of events that

happen during a receiver is switched from unicast to multicast by the SDMC. So when

SDMC wants to add receiver r1 to the multicast for a particular sender s1, it will execute

following steps.

• SDMC will instruct the receiver r1 to listen on its unicast id U1 along with multicast

id Mi. At this point, receiver will not receive anything on its multicast id from sender
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Figure 10: Adapting to Network Load

s1, since core switches and edge switches of sender/receiver are blocking the packets

for multicast destination Mi.

• Then, it updates the multicast routing tree by adding appropriate OF rules to reach

receiver r1 from the existing multicast routing tree of Mi in the core switches. At this

point too, receiver, r1 will only receive packets on unicast id since edge switches of

sender/receiver are blocking the packets for multicast destination Mi.

• Update multicast routing tree on the edge switch of sender s1 by adding/enabling OF

rule for multicast ID Mi for receiver r1. (This last step is not required if one or more

receiver, apart from r1, of sender s1 are using multicast and reached by same switch

from the sender s1. This step is always required initially when there are no existing

multicast receivers for the sender s1.) At this point too, receiver, r1 will only receive

packets on unicast id since edge switches of receiver are blocking the packets for

multicast destination Mi. However now there will be duplicate packets sent by the

sender s1 in the network but without any receiver.

• SDMC now executes following two tasks atomically. (1) add a OF rule which blocks

packets to the unicast destination of receiver r1 on the edge switch of sender s1. (2)
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update multicast routing tree on the edge switch of receiver r1 by adding/enabling

OF rule for multicast ID Mi to reach receiver r1.

• Atomicity of above two steps guarantees that no packet was lost and no packet was

received more than once in the migration from unicast to multicast. This however

does not prevent senders from sending packets on both unicast and multicast IDs

during the time step 3 is started till the time last step in this sequence is finished.

• Later, when receiver starts to receive packets on its multicast id, it will stop listening

on its unicast id.

• Receiver then notifies SDMC that it is now listening on only multicast ID, SDMC will

then update a translation rule in the SDNMiddleware of s1 by removing the unicast

address of receiver r1 (u1) from its mapping. i.e. Me− > (Mi,U1,U2) becomes

Me−> Mi,U2. At this point, sender will stop sending packets to unicast destination

of receiver r1.

However for efficiency, SDMC should not switch single receivers-sender pair from unicast

to multicast but perform bulk switching periodically.

Adapting to switch-memory utilization: Similar to network load monitoring, Monitoring-

NetApp monitors the network switch memory utilization too. Hence, whenever a memory

utilization of a SDN switch in the SDN network crosses the threshold limit, the SDMC-

NetApp is notified by the Monitoring-NetApp. This is done after SDMC-NetApp registers

a listener event on the Monitoring-NetApp to notify it in the case of switch memory uti-

lization crosses a particular threshold. This Threshold is specified either in the percentage

of memory utilization of a switch or number of OF-rules installed on the switch for the

SDMC. In this work, we take the later approach of counting the switch-memory in the

form on number of OF-rules. The reasoning behind this approach is that it specifically

measures the switch-memory utilized for the SDMC and not other SDN-network applica-

tions like unicast routing or load balancing etc. SDMC-NetApp logic periodically (e.g.
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once in 60 seconds) tries to decrease the memory utilization of the switch by switching

relevant multicast receivers to use unicast communication. To do that, it searches for the

multicast receivers in the Table 2 against the overloaded switch. . SDMC-NetApp then

switches these receivers from multicast to unicast either one by one or simultaneously. In

the next subsection, we describe the process to switch from multicast to unicast without

losing any packet or impacting the receiverś performance.
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Figure 11: Adapting to Switch Memory Utilization

Switching from multicast to unicast: This event is triggered by the changes in switch

memory utilization as discussed above. Figure 11 shows the sequence of events that happen

during receiver is switched from multicast to unicast by the SDMC. So, when SDMC wants

to remove receiver r1 from the multicast for a particular sender s1,

• SDMC will instruct the receiver r1 to listen on its unicast id U1 along with multicast

id Mi. At this point, receiver will not receive anything on its unicast id from sender

s1, since core switches and edge switches of sender/receiver are blocking the packets

for multicast destination Mi and sender is not sending any packet on the unicast id of

the receiver.
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• SDMC will then update a translation rule in the SDN-Middleware of sender s1 by

adding the unicast address of receiver r1 (u1) in its mapping. i.e. Me− > (Mi,U2).

becomes Me−>Mi,U1,U2. At this point, sender will start to send on both the unicast

and multicast. But at this point too, receiver will not receive anything on its unicast id

from sender s1, since core switches and edge switches of sender/receiver are blocking

the packets for multicast destination Mi.

• Now, SDMC updates the multicast routing tree for multicast id Mi, on the core

switches by disabling/removing OF rules which to reach receiver r1 for multicast

id. At this point too, receiver will not receive anything on its unicast id from sender

s1, since edge switches of sender/receiver are blocking the packets for multicast des-

tination Mi.

• SDMC now executes following two tasks atomically. (1) remove the OF rule on the

edge switch of sender s1 which blocks packets to the unicast destination of receiver

r1. (2) update multicast routing tree on the edge switch of sender s1 by disabling/re-

moving OF rule to reach receiver r1.

• Atomicity of above step guarantees that no packet was lost and no packet was re-

ceived more than once in the migration from multicast to unicast. This however does

not prevent senders from sending packets on both unicast and multicast IDs during

the time step 3 is started till the time previous step in this sequence is finished.

• Later, when receiver starts to receive packets on its unicast id, it will stop listening

on its multicast id.

• Receiver then notifies SDMC that it is now listening on only unicast ID, SDMC will

then update the multicast routing tree on the edge switch of the receiver r1 such that

packets for destination Mi will not reach receiver r1.
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However for efficiency, SDMC should not switch single receivers-sender pair from multi-

cast to unicast but perform bulk switching periodically.

Receiver Leave: When a receiver wants to leave the multicast group, its SDN-Middleware

notifies the SDMC with “Receiver_Leave” notification. SDMC first checks if the receiver

is using unicast or multicast. If receive is on unicast mode then SDMC only need to remove

it from the translation rule of its senders. However if receiver is using multicast then SDMC

needs to update the routing tree. However SDMC does not need to do this action immedi-

ately. But it only removes that OF rule from the edge-switch of receiver which for-wards

dest=Mi packets to this receivers. Remaining multicast routing tree is cleaned up during the

next periodical switch-memory monitoring event. So if same receiver (or another receiver

connected to same switch or another receiver which can be reached via the same switch)

joins again (before cleanup), SDMC takes lesser time in updating the multicast routing tree

for it.

Sender Leave: When a sender receiver wants to leave the multicast group, its SDN-

Middleware notifies the SDMC with “Sender_Leave” notification. SDMC then add OF

rule in the edge switch of the sender to block the traffic from the sender s1. At this point,

there will be no traffic from sender in the network. Then SDMC asks SDN-Middleware of

sender to delete the sender. SDMC defers the removal of multicast routing tree of the Mi

used by sender to later time.

III.4 Experimental Evaluation

In this section, we measure the performance of the SDMC against unicast and tradi-

tional multicast using IPMC for various performance metrics like average latency for re-

ceivers, switch-memory utilization efficiency, network load aware and packet loss. As we

described in the design considerations, SDMC is hybrid and flexible in a sense that it tries

to combine the benefits of both unicast and multicast at run time. Hence in this section, we
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Figure 12: Receiver Latency against group size

will compare SDMC with the unicast and multicast (IPMC) and see how overall SDMC

performs better than both the approaches.

III.4.1 Average latency for receivers:

We will measure the performance of our approach against the generic IPMC in terms

of the latency for the receivers. As the size of multicast group becomes more dynamic

i.e. more number of receivers/senders join or leave the multicast group per second, in the

traditional multicast time to update the multicast routing tree increases which is mandatory

before new receiver starts to receive any packets. However in SDMC, since SDMC can

switch to unicast and take benefit of 0 latency during this time, overall SDMC performs

better. Figure 12 shows initial receiver latency comparison as senders increases for a fixed

topology (jellyfish) and fixed network size (10 networks switches). Figure 12 shows re-

ceiver latency comparison as network size(in terms of switches) increases for a fixed mcast

group size (10) and fixed number of senders (1). In both the cases SDMC can be seen

scaling better in terms of receiver latency as compared to basic multicast.
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Figure 13: Receiver Latency for different network topology and size

III.4.2 Network Load Adaptive-ness:

We will measure the performance of our approach against dynamic network load. Basic

unicast (when used in one-to-many communication) increases the network load since it has

to duplicate same packets for every receivers. The traditional multicast (IPMC) reduces

the network load compared to basic unicast. However it increases latency for receivers

and (as we will see in the next section) also increases switch-memory utilization. SMDC

efficiently switches between unicast and multicast based on network load. When network

load is less, SDMC uses unicast while it switches to multicast when network load increase.

Hence as seen from figure 14, SDMC adopts to network load by switching between unicast

and multicast.

III.4.3 Switch-Memory Utilization Adaptive-ness:

We will measure the performance of our approach against dynamically changing switch

memory utilization. The traditional multicast (IPMC) requires large amount of switch-

memory compared to basic unicast. However it reduces network load as we saw before.

SMDC efficiently switches between unicast and multicast based on switch-memory. When
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Figure 14: SDMC adaptive-ness to network load and to switch memory utilization

switches have sufficient remaining memory, SDMC uses multicast but when when available

switch memory becomes less, SDMC starts to use unicast. Hence as seen from figure 14,

SDMC adopts to switch-memory and performs better than multicast.

III.4.4 Packet Loss

Now, we will measure the packet loss during SDMC as compared to basic unicast and

multicast. As seen in the figure 15, SDMC does not decreases the packet loss as compared

to basic multicast (IPMC). The reason behind this result is that SDMC switches to unicast

when network is not heavily loaded. Hence during this time SDMC suffers less packet loss

as compared to IPMC hence overall SDMC performs better than basic IPMC.

III.5 Related Works

In this section we will describe some of previous works related to multicast in data

center networks. These approaches do not use SDN specifically for improving multicast

problems but use other ways like rich path diversity or steiner tree etc. In [21], authors

describe a way to improve multicast in data center networks by using rich paths available
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Figure 15: SDMC Packet loss

in large and highly connected data center networks. This approach creates backup overlays

for every multicast routing tree as switches to it as per network load fluctuations. In [20],

authors describes a technique to improve the multicast latency by compressing the tree

using a multiclass bloom filters. In the same way, authors in [15] presents a optimization

multicast routing tree creation by using steiner tree approach.

Now, we will describe some SDN specific multicast approaches. Authors in [38] pro-

poses a OpenFlow based multicast approach for efficient SDN based multicast. Authors

in [16], presents an SDN enabled technique for implementing multicast in large data cen-

ters networks called Avalanche. Avalanche creates bandwidth efficient multicast routing

trees using its algorithm called as AvRA which efficiently uses the topology information

of data center networks. It also uses global visibility and centralized control provided by

centralized SDN controller. In [13], authors describe a SDN enabled efficient multicast

scheme especially for IP-over-OBS networks. In [23], authors propose another SDN en-

abled multicast scheme which uses the knowledge of anticipated processing time for each

route based on history data to use the optimal routing tree. However all the above SDN
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based approaches suffer from same issues suffered by basic multicast e.g. scalability and

latency since it does not adopts to changing network load and switch-memory.

III.6 Concluding Remarks

Data center networks heavily rely on the use group communication for various tasks.

Data center management utilities (e.g. software update/upgrade, log management, resource

monitoring, scaling various resources up or down, access control etc.), collaborative appli-

cations like social media, project management tools, version control systems etc.), mul-

timedia applications, multi-player games are few examples of tasks that require efficient

group communication. However though multicast is useful for efficient group communi-

cation, IP multicast has seen very low deployment in the data center networks due to its

deficiencies like inefficient scaling, inefficient switch-memory utilization, initial receiver

latency. With the advent of SDN (Software defined Network), though, multicast has be-

come easy to implement in the SDN controller, it too faces challenges faced by IP multicast.

In this work, we propose a novel way of using SDN based multicast(SDMC) for flexible,

network-load aware, switch-memory efficient group communication specifically for the

data center networks. SDMC efficiently uses combination of unicast and software defined

multicast and switches between them at run time agnostic to application and without any

additional packet loss to find a better trade off to retain benefits of group communication

while avoiding its disadvantages. In this work, we have described the design and imple-

mentation of SDMC using SDN controllers and OpenFlow enabled switches and evaluate

it for various metrics like initial receiver latency, network load awareness, switch-memory

utilization efficiency.
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CHAPTER IV

SOFTWARE DEFINED WIRELESS MESH NETWORKS

Software Defined Networking (SDN) has seen growing deployment in the large wired

data center networks due to its advantages like better network manageability and higher-

level abstractions. SDN however has been slow to be used in the wireless scenario like

wireless mesh networks (WSN). This is due to the fact that SDN (and its underlying Open-

Flow protocol) was designed initially to run in the wired network where SDN controller has

wired access to all the switches in the network. Various workarounds have been proposed

for adapting SDN and Openflow to the wireless setting. However all these approaches re-

quire some kind of hybrid switching hardware and software (especially for routing) which

goes against the fundamental SDN architecture and also causes unnecessary increase in

hardware and software complexity of the switch. To address this challenge, we propose a

pure opneflow based approach for adapting SDN in wireless mesh netowrks by extending

current OpenFlow protocol for routing in the wireless network. We describe the extension

to OpenFlow protocol and also its use in a novel three stage routing strategy which allows

us to adapt a centralized routing of SDN in an inherently distributed wireless mesh network

without requiring additional support from switch hardware. We evaluate our approach with

the existing hybrid approach using latency metric for controller-switch and switch-switch

connections.

IV.1 Introduction

IV.1.1 Wireless Mesh Networks (WMN)

Wireless mesh network (WMN)[2, 22] is a special kind of mobile ad-hoc network which

consists of mobile end hosts and wireless routers. Each end host is connected to the net-

work via one (or more) wireless routers over radio using peer to peer (P2P) connection.
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Mesh is connected to the internet (or outside world) through one or more routers called as

gateway routers using either cellular network link or wired link. Other routers obtain the

internet connection via one of the gateway routers. Both routers and end hosts are mobile

nodes. However routers are supposed to be less mobile as compared to end hosts. The main

difference between wireless mesh and other wireless networks like WLAN (Wireless lo-

cal area network), WMAN (wireless metropolitan area network), MANET (Mobile ad-hoc

network), WSN (wireless sensor network)[6] is the role played by mesh routers in WMN.

Mesh routers in WMN work rather independently but can also collaborate with each other

to form a larger mesh dynamically. This has made mesh network preferred way of net-

work architecture for internet of things (IoT) network scenarios in domains like intelligent

transportation and industrial automation [34].

IV.1.2 Software Defined Wireless Mesh Networks (SD-WMN)

In the recent years, research is going on to adapt SDN to wireless mesh network

setting[10, 14, 27, 34, 35]. As mentioned earlier SDN basically envisions network hav-

ing homogeneous, static and centrally controlled network topology. But wireless mesh is

the exact opposite of it and consists of highly dynamic and distributed network topology.

This creates multiples issues for using SDN architecture for wireless mesh network. In

traditional wireless mesh network, router (generally referred to as a switch in SDN termi-

nology) communicates with its neighbors to arrive at routing paths among themselves using

Ad-Hoc On-Demand Distance Vector Routing (AODV) or Optimized Link State Routing

protocol (OLSR). In SDN though, routing is exclusively controllerâĂŹs job. Controller,

however may not know whole topology for making routing decisions since it may not be

directly connected to all the switches in the first place[29]. Hence before controller starts

any routing algorithm, it has to establish connection to all the switches. This makes rout-

ing in SDN based wireless mesh network more complex than that in a traditional mesh

networks. Previously, researchers have proposed hybrid approach for converting wireless
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mesh into SDN. Such approach requires each switch to be equipped with both the tech-

nologies (SDN-Openflow and legacy routing protocols). This increases the hardware and

software complexity of the switches and also does not provide 100% pure software based

wireless mesh network as some part of the network still functions in non-SDN way. We

will discuss this hybrid approach in detail in the chapter IV.2.

IV.1.3 Contributions & Outline

In this work we provide a better approach for converting wireless mesh networks into

purely software defined networks. To achieve this we propose a novel way of performing

routing in three stages in the SDN based wireless mesh network by using modified Open-

Flow protocol which allows us to remain faithful to SDN philosophy of keeping switch

design simpler and of centralized control plane while also allowing flexibility & mobility

inherent in the distributed wireless mesh network. We propose three stage routing which

consists of following stages.

1. Initial flooding based distributed non-optimized routing between controller and switch

2. Centralized optimized shortest path routing between controller and switch

3. Centralized shortest path routing among switches

This chapter is organized as below. First we describe the differences between non-SDN

based wireless mesh network and SDN based one in chapter IV.2. Chapter IV.2 then dis-

cusses motivation behind the design and architecture of our routing strategy. Next in chap-

ter IV.3, we describe each stage of routing in details. We describe the implementation

followed by the evaluation in next chapter IV.4. In the end we conclude with discussion

about possible future direction in chapter IV.5.
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Figure 16: SDN Based Wireless Mesh Network

IV.2 Desgin

Figure 16 describes a general use case scenario of SDN based wireless mesh network.

Openflow-enabled wireless switches are distributed across a geographical field. These

switches could be either stationary or mobile. One or more of these switches are con-

nected to the internet. This connection could be either wired or cellular. SDN controller is

connected to one or more of these switches either directly by a wired connection or over

internet. Mobile end devices are connected to switches via access points (not shown in the

figure). Wireless switches are white-box SDN-enabled (Openflow enabled) switches. They

do not contain any software apart from an openflow client and flow table. Basic operations

of these switches are to receive packet, match up against Openflow rule and take appro-

priate action. Architecture of wireless mesh network allows various types of mobility and

dynamism in it. End device can move. Wireless switch can move along with its access

points.

IV.2.1 Motivation behind Three-Stage Routing

In traditional wireless mesh networks, nodes (mesh routers) communicate with each

other using routing protocols like AODV and OLSR. This is inherently distributed routing.

However the goal of SDN is to centralize the network control as much as possible. In

55



Figure 17: Hybrid Architecture for SDN Wireless Mesh Network (1)

traditional wireless mesh routing is done using either AODV or OLSR where each node

(wireless switch) will broadcast information about its directly connected end devices to all

other nodes. Using this information each node will derive its own routing path to all the

other nodes independently and in a distributed fashion.

There are major challenges in using routing algorithms in architecture in figure 16 as

compared to traditional non-SDN wireless mesh network because of following differences

in architecture. In SDN, before deciding routing among switches, switch needs to establish

a connection to the controller. In SDN, switch only supports basic forwarding capability

with Openflow client. Switch does not support any complex software hence cannot use

highly distributed algorithm like AODV or OLSR. Switch needs control instructions from

controller to perform any intelligent action. Another major difference between SDN and

non-SDN wireless mesh network is that in SDN control decisions are taken by the central-

ized controller. However in traditional wireless mesh network, control decisions are taken

in a distributed manner by the algorithms installed in every switch which themselves are

distributed. Such distributed architecture helps to allow mobility in the network. SDN be-

ing centralized does not inherently support mobility of its network nodes (hosts, switches,

controller etc.) However we need to support such mobility if we want to extend SDN to the

wireless mesh networks.
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Figure 18: Hybrid Architecture for SDN Wireless Mesh Network (2)

IV.2.2 Existing Solutions

Wm-SDN[8] tries to reconcile this problem by using hybrid protocol. It uses traditional

distributed protocol AODV for switch-controller connection. And when controller-switch

connection is established, it then used SDN based centralized protocols for switch-switch

routing decisions. This architecture is shown in the figure 17 where each switch requires to

support both SDN Openflow and also legacy routing protocols. Hence this approach makes

network not 100% software defined since switch is involved during first part of routing

decisions (i.e. during AODV). Also it requires switch to support complex hardware and

software than SDN envisions.

Other works [1, 25] have also proposed hybrid approach for routing though of different

kind. They propose to combine SDN enabled switches and legacy switches (or routers) in a

wireless mesh router as shown in the figure 18 where SDN enabled switches form the SDN

network while traditional switches form the legacy network. It makes this approach also

hybrid one. In this architecture, legacy switches run traditional routing algorithm (OSPF in

this case) while every SDN enable switch has to be in direct contact (wireless or wired) with

one of such legacy switch. This allows SDN-enabled switch to not support any complex

hardware and software. However it requires each SDN-enabled switch to communicate

with at least one legacy switch.
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IV.2.3 Design considerations

In the view of above discussion about differences in two architectures and the motiva-

tion behind this work, we list the design considerations or requirements that we try to meet

while designing architecture of the SDN based wireless mesh network routing.

1. Design of wireless switches hardware should remain simple i.e. switch should only

support SDN Openflow protocol.

2. Switch should not require to install any non-SDN specific software.

3. Architecture should allow mobility of its nodes.

IV.3 Three-Stage Routing: Architecture

To work under above constraints and requirements, we propose pure openflow based

three level routing strategy for SDN based wireless mesh network as described below.

Stage 1: Initial Controller-Switch Connection

As described in figure IV.3, in the SDN based wireless mesh networks, only few switches

are directly connected to controller. So first task is to connect all the switches to (at least

one) controller by setting up initial/basic routing. We propose an initial (non-permanent)

routing stage where controller will find all the switches through flooding the network with-

out considering whether the path it finds is best or not. To achieve this, we use an Openflow

based routing algorithm for initial controller-switch connection by adapting OLSR in two

ways. First, instead of switches broadcasting their link state (i.e. information about directly

connected end devices), controller will broadcast information about its directly connected

switch. Second, instead of running full-fledge wireless mesh routing protocol like AODV

or OLSR in switches, we modify Openflow client in switch such that switch finds the initial

path to the controller without requiring any additional software.

Stage 2: Controller-switch path optimization

Once initial connection is established, the routing paths set up in this stage will be used
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Figure 19: Example SDN Mesh Scenario

Figure 20: Stage I Interactions

do install new alternative (shortest, optimum or load balanced) paths. Controller can decide

these alternative paths between itself and a switch since at this stage controller has the

global view of network. Then it will install them in switches using original non-optimized

paths.

Stage 3: Routing Among Switches

After second step, controller will derive the shortest path routing among switches them-

selves and it will install these routing paths in them via the shortest paths set-up in the

previous stage.

As described above, to achieve above routing strategy, we needed to modify the Open-

flow client. Next, we will describe modifications that we make to the Openflow client by

introducing three new message types and semantics to achieve this.
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Figure 21: Stage II Interactions

Figure 22: Stage III Interactions
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IV.3.1 OpenFlow Modifications for staged routing

Here we describe modifications to Openflow protocol with proposed new message types

which will be used to establish an initial connection between wireless switch and controller.

These messages allow wireless switch to establish an initial, non-optimized connection

to the controller without using resource-heavy wireless mesh protocols like AODV and

OLSR. Once a switch establishes initial multi-hop connection to controller, routing for

this connection can be optimized using the centralized routing information present in the

controller.

1. OF_Initial_Path_Request: Initially controller will send this OF message to all its

directly connected switches. As described in the architecture figure IV.3, switch

could be either connected via wired interface or wireless interface to the controller.

Also controller could be at the same location as that of switch or could be situated in

the cloud data center. Once a switch receives this messages, it updates the controller

path destination with the source id found in the received OF_Initial_Path_Request

message. Switch then creates new OF_Initial_Path_Request message with its own

source id and broadcasts it to the other switches. This step is performed periodically

(e.g. every 30 seconds) by every switch. Period of this can be set-up statically or

can be adjusted based on the dynamic properties of the network. In this way, every

switch that receives OF_Initial_Path_Request message establishes an initial path to

the controller. This path may not be the shortest but only be used as a first step for

obtaining the shortest path in the next stage. Also as every switch broadcasts this

message periodically, this helps to handle the mobility in the network.

2. OF_Initial_Path_Response: Switch sends this message to the controller on the initial

path found in the stage I. This message is directed towards the controller and is only

sent to that neighbor from which switch received OF_Initial_Path_Request message
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first i.e. this messages is sent via initial path between switch and controller. How-

ever, this response message contains SSIDs of all the neighboring switches i.e. all

the neighboring switches from whom this switch received OF_Initial_Path_Request

message.

3. OF_Controller_Shortest_Path: This openflow message is used to optimize the initial

connection path between controller and switch. Controller sends this message to

switches to update path to controller with the shortest path. This message is sent only

when the initial path differs from the shortest path between controller and switch.

Also this message is always sent using the initial path. When switch receives this

message, it installs new path to controller which is shorter than previous path. And

switch gives this new path higher preference by installing rule for this path before the

rule of initial path. So from now, whenever switch sends any message to controller, it

takes the shortest path. Only when shortest path fails to deliver message, initial path

is used.

We will describe message flow in three stage routing approach using use case in fig-

ure 19. Figure 19 shows a SDN based wireless mesh network with five wireless switches.

Each switch is connected to a single edge device while only first switch is connected to the

controller directly. Figure 20 describes the stage-I interactions. In stage-I, controller sends

OF_Initial_Path_Request to switch-1. Switch-1 then duplicates this message and sends to

switch-2 and switch-4. This allows each switch to find a initial path to the controller. Fig-

ure 21 describes the stage-II interactions. Each switch sends OF_Initial_Path_Response

message to the controller via the initial path found in the stage-I. This message con-

tains information about neighboring switches. In our example, switch-3 has received

OF_Initial_Path_Request from two switches (Switch-2 and switch-4). However it received

message from switch-2 first. Hence for switch-3, initial path to controller is via switch-

2. However, when switch-3 replies to controller using OF_Initial_Path_Response message

via initial path (i.e. via switch-2), it includes ssid of switch-2 and switch-4 in it. This
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Figure 23: Implementation components

allows controller to deduce the neighbors of each switch and hence the topology of the net-

work. Using knowledge about topology of the network, controller now installs the shortest

path routes in switches as shown in the figure 21 where switch-3 now has a shorter path

to controller via switch-4 instead of via switch-2. Finally in the stage-III (figure 22), con-

troller installs routing paths among switches using the shortest path from stage-II. As shown

in figure 22, controller installs Openflow rules such that switch-3 can reach switch-5 via

switch-4.

IV.4 Experimental Evaluation

We have implemented two level routing strategy using SDN based emulation frame-

work Mininet. Basic Mininet does not provide the wireless link support. Mininet-Wifi

provides basic support for simulating wireless links but lacks support for essential wire-

less network based algorithms like shortest path or AODV or OLSR which are normally

supported by other network simulator like ns2 or ns3. Hence, for this we used ns3 which

is network simulator with support for wired and wireless links. NS3 provides support for

Openflow client which is required for SDN based switch. We have used OpenNet to in-

terface ns3 Opneflow client with the Mininet simulator. Opennet simulator combines ns3

with Mininet to provide wireless simulation in the SDN based network settings.

As shown in the figure 23, Mininet simulates switch using Open Virtual Switch (OVS).
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Openflow client of OVS is interfaced with the NS3 Openflow connector using the OpenNet

APIs. This allows Mininet to use wireless support for the links between switches. NS3 also

provides off-the-shelf support for various wireless mesh network algorithms. Mininet on

the other hand creates software switches. For this work we have used OVS switch. However

Mininet has support for different types of software switches. Mininet also helps to creates

various types of topologies in the wired network like tree, fat-tree, jellyfish etc. However

since we are using wireless mesh network, such topology is not useful. We need support

for mobile nodes (switches and hosts). This is done through NS3 simulator. However since

currently there is no direct interface between NS3 and Mininet for creating topology of

mobile nodes, we hardcoded topology in the NS3 and then migrated it to Mininet in offline

fashion. However in the future we plan to create NS3-Mininet AOI for wireless mobile

topology generation. Once the wireless mesh network (of mobile switches and mobile

host) is created using Mininet and NS3, SDN controller is connected to one or more of

the wireless switches. For this purpose we have used POX controller. As shown in the

architecture diagram(figure 16), controller is directly connected to one or more of switches

or is placed in the cloud. Currently we are not considering later case. In our implantation,

POX controller is directly connected to one of the switches in the Mininet in hard-coded

fashion. In the mininet, when we add a controller in the network, by default every switch

is connected to it. This is useful because in wired data center, it is default case. However

in wireless mesh network, we need to make sure that controller is connected to only few

of the switches. In current Mininet this is not possible without modifying Mininet source

code. We have found workaround to this problem by installing dummy or proxy rules in

those switches which are not supposed to be connected to controller directly. These rules

basically direct the switch to a non-existent controller (instead of existing controller). As

result of this, switch thinks it is not connected to any controller. Three stage routing strategy

is implemented on the top of POX controller as a network application. This strategy also

makes use of shortest-path algorithms supported by the NS3 simulator under the hood.
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Figure 24: Controller Switch Connection Latency

Figure 23 shows the overview of implementation and various software components used in

the implementation.

We have evaluated our approach by comparing its performance with hybrid approach

of figure 17. For comparison we used three metric (1) controller-switch connection latency

(2) controller-switch reconnection latency and (3) switch-switch connection latency.

In the beginning, controller will try to connect to all the switches using messages

OF_Initial_Path_Request and OF_Initial_Path_Response for finding the initial path in stage-

I which in turn will be used to install the shortest path in stage-II. We measure the latency to

perform stage-I and stage-II and compare it with the hybrid approach. Figure 24 plots this

controller-switch connection latency against number of hops between controller and switch.

We measure this latency for hyrbid approach, stage-I and stage-II. As can be seen from the

figure, our approach basically breaks down the latency required in hybrid approach into two

stages (stage I and stage-II). Latency incurred by hybrid approach is approximately sum of

latency incurred by stage-I and stage-II. We observed same behavior when we measured the

latency for re-connecting controller-switch link during failure. We measured this latency

against the number of broken links between controller-switch as seen in the figure 25. Here
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also we can see the stage-I and stage-II reconnection latency adds up to the reconnection

latency in hybrid approach.

It is evident that our approach breaks up routing into two stages where first stage finds

inefficient route to controller but takes lesser time while second stage tries to optimize the

route found in first stage but takes more time. This helps overall performance of actual

routing between switch-switch connection in stage-III as seen in the figure 26. Figure 26

shows the connection latency among switches against number of hops between them. It is

seen clearly that stage-III of our approach outperforms the hybrid approach as number of

hops increase between switches. The reason for this result is switch has better connection

to controller in our approach than in hybrid approach as shown in figure 24 and figure 25.

As in software defined networking, whenever a switch wants to connect to another switch,

it requests controller to installs the routing rules. Hence, connection to controller plays a

big role in the switch-switch connection latency. In wired networks there is lesser mobility

of nodes and hence once controller installs rules in switches, these rules may not need to be

changed frequently. Hence routing among switches is not impacted by the controller-switch

latency in wired networks. However in wireless mesh networks, as nodes can move more

frequently, switch needs to establish a reliable connection to controller in order to improve

switch-switch routing.. This is where our approach improves on the hybrid approach. Hy-

brid approach always tries to find the best route to controller which incurs higher latency

and hence controller-switch connection becomes unavailable for longer times. However

three-stage approach tries to find the inefficient route to controller incurring smaller la-

tency in stage-I which helps to keep controller-switch connection alive for longer times

which helps in reducing the latency in the stage-III.

IV.5 Conclusions

In this chapter, we discussed various challenges in adapting software defined network-

ing paradigm to the wireless mesh networks as SDN is designed to work for wired data
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Figure 25: Controller Switch Re-Connection Latency

Figure 26: Switch-Switch Connection Latency
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center networks. We proposed three-stage routing to efficiently use SDN in wireless mesh

networks. In this regard, we proposed extensions to the existing Openflow protocol with

three new type of messages which facilitates three stage routing. We then evaluated three-

stage routing approach using latency metric one for the connections between controller &

switch and another for connection among switches. In the future, we would like to evaluate

performance of three-stage routing during the mobility of network nodes including switch

and controller.
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CHAPTER V

SUMMARY

In this chapter, we describe the summary of our contributions to the field of Software

defined networking. We also list our publications related to this work.

V.1 Summary of Contributions

1. InitSDN: we described a solution approach that involves a separate bootstrapping

or initialization phase for the SDN network. Our solution is called InitSDN and its

architecture involves a number of functionalities that relate to topology, discovery,

synchronization, and placement.

2. SDMC: We proposed a novel way of using SDN based multicast (SDMC) for flexi-

ble, network-load aware, switch-memory efficient group communication specifically

for the data center networks. SDMC efficiently uses combination of unicast and soft-

ware defined multicast and switches between them at run time agnostic to application

and without any additional packet loss to find a better trade off to retain benefits of

group communication while avoiding its disadvantages.

3. Openflow based routing in Wireless Mesh Network: We proposed three-stage routing

to efficiently use SDN in wireless mesh networks. We described extensions to the

existing Openflow protocol with three new type of messages which facilitates three

stage routing.
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