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CHAPTER I 

 

INTRODUCTION 

 

1.1. Overview and Motivation 

In order to design objects using modern materials like composites, engineers 

represent the physical behavior in terms of mathematical models. Apart from embodying 

the physical laws governing the behavior, such representations often incorporate certain 

simplifying assumptions to enable quick solutions with readily available technology, 

without adversely affecting the performance. However, as modeling and computational 

technologies advance, more realistic modeling approaches are being developed by 

dropping some of the simplifying assumptions so that the real behavior could be 

represented accounting for various kinds of irregularities which are unavoidable in 

practice. Moreover, in spite of the appearance of homogeneity in the macro scale, real 

materials cannot be treated as being homogeneous at smaller scales, say, at meso or micro 

scales. Currently, researchers are trying to devise efficient modeling methods for 

inhomogeneous systems accounting for the presence of various irregularities. 

In engineering design, irregularities can be defined as discontinuities or abrupt 

changes in geometry and/or material properties. Generally, such irregularities create a 

disruption in the stress pattern, resulting in the spiky formation in the stress/strain field. 

These locations of steep stress gradients may lead to damage initiation and propagation, 

culminating in failure. For instance, irregularities like crack or delamination would 

appear in the normal aging process or abnormal service conditions even if the initial 
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conditions of the components did not apparently have any irregularity at the time of 

manufacture. After an irregularity is initiated, the rate of its propagation affects the 

fatigue life of the system or a component under cyclic loading conditions. In practice, 

even under most ideal conditions, irregularities cannot be avoided to satisfy the 

functional requirements, strength requirements and various constraints on the object 

being designed. For instance, synergistic systems like composites are heterogeneous for 

being a combination of different materials. Another example is that of irregularities in 

aircraft structure and skin. Spar and ribs in the wing are provided with cutouts for weight 

reduction and other functional reasons. Moreover, the presence of the holes in the wing 

ribs redistributes the membrane stresses in the skin material which, in turn, may affect the 

stability of the component significantly. 

Specially, materials like engineered composites consist of a synergistic combination 

of two categories of materials, reinforcement and matrix, with significantly different 

physical or chemical properties. From the point of view of mechanical behavior, fiber-

reinforced composites are similar to reinforced concrete, one of the popular materials of 

civil engineering construction. The reinforcements, being much stronger, impart the 

mechanical strength; whereas the matrix keeps the reinforcements in place and also 

protects them against brittle failure. The composite materials are commonly classified 

into fibrous composites, particulate composites, and laminated composites. Among them, 

the laminated composites are made in layers with fiber reinforcement in each layer 

embedded in a resinous matrix. The laminated composite material may have a flat (as a 

plate) or curved (as a shell) configuration of unidirectional fibers or woven fibers in a 

matrix. The orientation of fibers in each layer is changed for optimal performance. In 
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commercial laminated composites, reinforcement material may consist of fibers (woven 

or otherwise) of glass, aramid, carbon, kevlar, or suitable combinations thereof. Polymers 

like epoxy resin, polyimide, polyester, vinyl ester, etc., are used as the matrix material. 

Due to the property of high strength combined with lightweight, composites have found 

widespread applications in aerospace components, marine vehicles, sports equipments, 

automobile bodies, bicycle frames, medical prosthetics, and more. 

 

Engineering design
(global macro-scale analysis)

Global composite structure

Multiple layers

Multiple fibers

Unit cell
(fiber+interface+matrix)

Atoms

Electrons

Scale unit

m



A

mn

m

mmLaminate analysis

Three-dimensional finite element 
micromechanics

Molecular dynamics

Quantum mechanics
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Fig. 1.1 Basic scope of analysis for laminated composite materials 

 

As shown in Fig. 1.1, from the point of view of scales involved, the analysis of 

structural elements made of laminated composite materials comprises of several steps. 



4 

For instance, from the macro mechanical point of view, a lamina is considered as a 

continuum. It signifies the absence of irregularities in a lamina. This assumption of 

homogeneity in a lamina is enforced by using weight-averaged apparent macroscopic 

properties. Also, the anisotropic nature of the properties of a lamina is based on 

orientation of the fibers and can be characterized, say, as orthotropic or transversely 

isotropic. In the presence of damage in a lamina, a micromechanical approach may need 

to be considered. As laminated composites have complex structure, several failure modes 

are possible for representing the damage states. Apart from the presence of flaws or 

manufacturing defects, a composite structure or component may undergo damage due to 

impact of objects, shock loading, or exposure to large number of loading cycles. The type 

of damage in a particular case can be determined by the type of the fiber and matrix 

materials, the proportion of each material component, the disposition of fibers, and, of 

course, the nature of stresses created by external loads. The damage may appear as  

 Fiber breaking: tension in fiber direction 

 Fiber buckling: compression in fiber direction 

 Matrix fracture: tension in transverse direction 

 Matrix compression failure/matrix crazing: compression in transverse direction 

 Fiber debonding: fiber-matrix bond fails 

 Delamination: separation between layers 

One of the important applications of composite laminates is its use in bonded patch 

repair of damaged metallic, and non-metallic structures and components. Generally, for 

patchwork, using materials different from those in the original component has been a 

popular method of strengthening a damaged structure. In the past, aluminum or steel 

plates for patch repair works were employed in order to cover the damaged area with 
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cracks or other flaws. The connection between damaged component and such patch 

material used rivets. However, due to the holes created in the parent material and the 

rigidity of rivets, the repair work introduced additional irregularities in the skin 

surrounding the patch. In order to avoid this problem, more recent repair techniques have 

use bonded composite materials which offer both strength and weight advantages. Such 

fiber-reinforced composites can be laminated with different fiber orientations. Epoxy 

resin is often used as a bonding adhesive between the fiber-reinforced composite and the 

surface of the parent material. Heat and pressure are sometimes needed in order to ensure 

proper adhesion to the metal surface. Physically the patch repair work is an additional 

source of irregularity over and above the already existing irregularity within the original 

system. In other words, when the original component has cracks or holes, it has 

geometrical irregularities. The addition of patch repair work introduces additional 

geometric and material irregularities. The use of composite patch material, introduces 

another source of material irregularity in the system. Furthermore, if debonding occurs 

between the patch and parent material, further geometric irregularity appears in the 

system. Accounting for all these irregularities in the repaired component is no doubt of 

considerable complexity to the analyst. In bonded patch repair work, there are two 

distinct situations of stress transfer which have the potential to cause interfacial failure or 

local failure in the parent material. Premature failure of this kind before the limit capacity 

of the component is reached can be of special concern. Also, for optimal performance of 

complex structures, components may need to be customized. For greater efficiency, it 

may be sometimes be desirable to induce a pretension in the patch during the repair 
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process to further attenuate the stress intensity factor (SIF) in the cracks being patch 

repaired and thus extend the fatigue life of the structure or component. 

Over the past few decades, research on the systems with various irregularities has 

been undertaken utilizing analytical solutions, physical experiments, and numerical 

simulations. As analytical solution of complex problems of practical interest is not 

possible, one has to apply numerical discrete modeling techniques, sometimes, coupled 

with experimental verification. Also, as practical problems of interest numerical 

simulation may often be highly compute intensive demanding significant resources, it is 

imperative that reliable discrete numerical methods which are computationally efficient 

will be welcome.  

The increasing power of personal computers and advances in numerical simulation 

techniques has enabled accurate prediction of the behavior of complex problems. Of the 

many numerical methods like finite difference methods, finite element methods, 

boundary element methods, meshless methods, wavelet methods, etc., it is true that finite 

element methods has been most widely adopted as the standard modeling and simulation 

tool for problems of the continua. Although the conventional finite element methods 

based on lowest order elements and mesh refinement are widely used to analyze systems 

with irregularities, it is found to be inferior to some advanced implementations of the 

method by way of solution accuracy, computational efficiency, and ease of use. In 

laminated systems which have built-in irregularities, when augmented with others like 

cutouts, patches, delamination, debonding, etc. and environmental factors, the 

development of a more advanced finite element modeling scheme may be in order. 
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1.2 Literature Review 

 

1.2.1 Basic Laminate Analysis 

In laminated composites, a lamina, often called as layer, is inherently heterogeneous 

from microscopic point of view. The simplest representation of laminated composite 

material considers macro-mechanical behavior of a lamina signifying homogeneous 

linear elastic continuum without any discontinuity.  In this macroscopic representation, 

displacement formulations of composite plates or shells have been based on two-

dimensional (2D) elasticity theory, three-dimensional (3D) elasticity theory or 

combinations thereof. 

2D modeling of laminated plates or shells by way of dimensional reduction from 3D 

to 2D represents a way of the extension of the assumptions made in single-layer plate or 

shell theories, like Kirchhoff-Love theory or classical plate theory (Ugural, 1998), 

Reissner-Mindlin theory or shear deformation plate theory (Reissner, 1945; Mindlin, 

1951), and higher order theories by Hildebrand et al. (1938). These theories are often 

called 1
zC  function theories (Rohwer et al., 2005). Among some 1

zC function theories, the 

classical lamination theory, CLT (Reissner and Stavsky, 1961; Stavsky, 1961; Dong et al., 

1962; Yang et al., 1966; Whitney and Leissa, 1969) is the extension of the classical plate 

theory, as shown in Eq. 1.1.  
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In this equation, (x, y, z) represent the Cartesian coordinate system with z-axis normal to 

the reference surface of the plate with (u, v, w) representing displacements of a point in 

these directions, t refers to the time variable, and ( 000 ,, wvu ) are mid-surface 

displacement components. In CLT, transverse shear strains are neglected, and the number 

of degrees of freedom (NDF) is three. Unlike CLT, in the first-order shear deformation 

lamination theory (FSLT) (Whitney and Pagano, 1970; Reissner, 1972, 1979), transverse 

normal displacements do not remain perpendicular to the mid-surface after deformation 

and thus the transverse shear strains are included, as in Eq. 1.2.  
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Here ( 11,vu ) are rotations of a transverse normal with respect to y-axis and x-axis leading 

to NDF equal to 5. As transverse normal displacement is not a function of coordinate z in 

the thickness direction, FSLT requires shear correction factors (Srinivas et al., 1970; 

Chow 1971; Bert, 1973; Whitney, 1973; Wittrick, 1987). The shear correction factors 

depend not only on the laminas and geometric parameters, but also on the natural 

boundary conditions at top and bottom surfaces. So it is difficult to determine the shear 

correction factors for arbitrarily laminated composite plate structures resulting from the 

assumption that the transverse shear strain is constant through the whole thickness. 

Additionally, Hinton and Owen (1984) proposed expressions as the extension of the 

degenerated shell concept (Ahmed et al., 1970) with first-order shear deformation plate 

theory for applying laminated plates and shell. As an extension of FSLT, the quadratic 

variations (Sun and Whitney, 1973; Whitney and Sun, 1973) and cubic variations (Lo et 

al., 1977, 1978) of in-plane displacements through the plate thickness were introduced by 
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adding some terms to FSLT, which are often called higher order 1
zC  functions theories. 

The basic form of the higher order 1
zC  function theories for n-layered plate or shell is as 

follows. 
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Here NDF is 3+2n. In such theories, the additional degrees of freedom except the terms 

related to FSLT are often difficult to explain in physical terms. Reddy (1984) used the 

third-order laminated plate theory by imposing the condition of vanishing transverse 

shear strains on the top and bottom surface of the plate based on the previously published 

third-order theory (Lo et al., 1977, 1978) in order to reduce NDF, as shown in Eq. 1.4, 

noting that h represents the plate thickness. 
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When using higher-order polynomials for in-plane displacements, there is no need to use 

shear correction factors. These theories provide a slight increase in accuracy relative to 

the FSLT approaches at the expense of increased computational effort. Based on above 

third-order laminate plate theory by Reddy (1984), Senthilnathan et al. (1987) separated 

the transverse displacement 0w  into a bending contribution bw  and a shear 

contribution sw . The resulting displacement fields are as shown in Eq. 1.5. 
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This theory can reduce NDF to four. However, it was pointed out (Rohwer, 1992) that 

results of the theory would sometimes be worse than those by FSLT. As an example of 

using different polynomial degrees for in-plane and transverse displacements, Whitney 

and Sun (1974) proposed a quadratic polynomial for transverse displacement, w, keeping 

the in-plane displacements, u and v, linear. On the other hand, Kwon and Akin (1987) 

modified the theory by eliminating the term linear in w by placing the reference surface 

in the mid-surface and enforcing zero shear strains at upper and lower surfaces. This form 

is given by Eq. 1.6. 
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This allowed NDF to be reduced to five. As pointed out by (Rohwer, 2005), no shear 

correction factor is needed here, but the accuracy is found to be inferior to FSLT utilizing 

a proper shear correction factor. Reissner (1975) used cubic in-plane displacement 

variation and quadratic out-of-plane variation for application to laminated plates, as in Eq. 

1.8. 
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Attention of some important behaviors in multilayered structures is to describe a 

piecewise continuous displacement field through the plate thickness direction, which is 

known as zigzag behaviors, and fulfill inter-laminar continuity of transverse stresses at 

each layer interface. However, most laminate theories based on CLT or FSLT are 

incapable of accurately representing these effects or, often give highly erroneous results 

even if the global behavior such as gross deflection, critical buckling loads, and 

fundamental vibration frequencies can often be accurately determined, if thinner 

laminates are involved. Especially, in thick laminated systems, CLT or FSLT cannot give 

reliable results even in global laminate response. Thus the analysis of some composite 

structural components may require the use of 3D elasticity theory. The analytical 

solutions based on 3D elasticity theory for various laminated systems were obtained by 

some researchers (Pagano, 1969, 1970; Pagano and Hatfield, 1972; Srinivas et al., 1970; 

Srinivas and Rao, 1970; Noor, 1973a, 1973b; Savoia and Reddy, 1992; Varadan and 

Bhaskar, 1991; Ren, 1987). In finite element analysis, conventional solid elements based 

on 3D elasticity theories have been usually used to provide a more realistic description of 

the kinematics of composite laminates for representing discrete layer transverse shear 

effect in the assumed displacement fields. Reddy (1987) adopted layerwise approach 

based on 3D elasticity theory with piecewise expansions of three displacement 

components. In the layerwise theory, displacement field within any layer can be written 

as 
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Here, for N layers, the number of free degrees of freedom will be 3N(n+1), which can be 

reduced to 3(Nn+1) by applying displacement compatibility at the layer interfaces. Based 

on this concept, Ahmed and Basu (1994)  proposed higher-order layerwise theory to 

effectively account for aforementioned deficiencies of continuous functional 

representations across the thickness of a plate or shell due to abrupt changes in material 

properties, in which displacements are defined over layer thickness in terms of in-plane 

coordinates only. Although conventional solid elements or the layerwise approach can 

provide accuracy to satisfy the conditions like the interlaminar continuity of the 

transverse stresses and zigzag behavior of displacement fields, the critical problem of 

such techniques is increased computational effort. For computational efficiency, Owen 

and Li (1987a, 1987b) assumed piecewise linear variations of the in-plane displacements 

and a constant value of the lateral displacement across the thickness. Also, Lee et al. 

(1990, 1994) presented the model for laminated plates with a layer-wise cubic variation 

of the in-plane displacement. These modifications can partially satisfy the conditions of 

zigzag behavior in displacements and interlaminar continuity of transverse stresses. As 

other ways to improve efficiency of analysis, some mixed variational principles in terms 

of displacements and transverse stresses have been suggested for laminated plates and 

shells (Murakami, 1986; Murakami and Toledano, 1987; Carrera, 1996, 1998, 1999; Cho 

and Kim, 2001). However, these theories also have some disadvantages like using 1
xyC  

basis functions requiring too complicated formulations as compared to displacement-

based formulations, or only obtaining good results for limited number of problems. So, 
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displacement-based formulations have still been in the mainstay for analyzing laminated 

composite plates and shells. 

For more efficient analysis in terms of solution accuracy and computational efficiency, 

techniques using sequential methods, multistep methods, or methods based on a 

combination of different mathematical models have been proposed. Sequential or 

multistep methods can be divided into two categories such as non-iterating sequential 

methods and iterating sequential methods. For non-iterating sequential methods, 

Thompson and Griffin (1990) modeled the global region using FSLT finite elements, 

while the local region by 3D finite elements. One of the main criticisms of non-iterative 

sequential methods is that influence of the local region on the global region is not well 

understood. In other words, the equilibrium of forces along the boundaries between 

different models is not maintained while the displacement continuity is ensured. In order 

to avoid this shortcoming, iterative sequential methods were suggested by Mao and Sun 

(1991) and Whitcomb and Woo (1993a, 1993b). Park and Kim (2002) described two re-

analysis procedures, which utilize the post-processing results for improvement. These 

methods attempt to iteratively establish force equilibrium along the boundaries as well as 

impose displacement continuity, mainly using the same mathematical model. One of the 

main disadvantages of these methods is the problem of incorporation of nonlinearity into 

the analysis. Unlike sequential or multistep methods, simultaneous mixed methods 

combine different mathematical models to analyze the entire computational domain, 

including the use of distinctly different levels of h- or p-refinements in specified local 

regions. Here different sub-regions with different mathematical models are explicitly 

accounted for and is, thus, easily amenable to nonlinear analysis. One simple scheme of 
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simultaneous application of mixed methods to composite laminate analysis is the concept 

of selectively grouping the plies in the vicinity of the location where accurate stress 

values are desired (Wang and Crossman, 1978; Pagano and Soni, 1983; Jones et al., 1984; 

Chang et al., 1990; Sun and Liao, 1990). Another scheme to apply simultaneous mixed 

methods is to use multipoint constraint equations or Lagrange multipliers. Here the 

variational statement is supplemented with additional terms to enforce compatibility 

between adjacent sub-regions. For 2D problems, Aminpour et al. (1992) used an assumed 

one-dimensional (1D) interface function in conjunction with a hybrid variational 

formulation to couple sub-regions with incompatible mesh discretizations, using a 2D 

mathematical model like FSLT within the entire computational domain. Although the 

Lagrange multiplier approach can be used to couple sub-regions which use different 

mathematical models, the method to connect different mathematical models have rarely 

been used, because the implementation would be very cumbersome. The most popular 

approach for connecting different mathematical models (like, simultaneous 2D to 3D 

modeling of plates and shells) is to implement special transition elements (Surana, 1980; 

Liao et al., 1988; Davila, 1994; Garusi and Tralli, 2002). 

 

1.2.2 Free-Edge Stresses and Delamination 

For laminated systems, finding free-edge stresses and representing delamination can 

be regarded as a challenging problem due to geometrical irregularities and associated 

stress singularity. It is well known that high interlaminar stresses at the free edges arise 

from discontinuity of elastic properties between layers. The stress distribution in the 

vicinity of the free edges is in the 3D state even if the laminated components are only 
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subjected to in-plane loading. These high stresses can lead to delamination of laminates at 

a load lower than the failure strength. Therefore, the accurate determination of the 

interlaminar stresses is crucial to correctly describe the laminate behavior and to prevent 

its early failure, characterized by the onset of delamination. Over the years, the 

interlaminar stress distribution at free edge in composite laminates has been investigated 

by many researchers. However, no exact solution is known to exist because of the 

inherent complexities involved in the problem. Amongst analytical methods, the first 

approximate solution for interlaminar shear stresses was by Puppo and Evensen (1970). 

Other approximate theories were used by Pagano (1978a, 1978b), based on assumed in-

plane stress. Wang and Choi (1982a, 1982b) studied the free edge singularities with 

quasi-3D analytical solution. Kassapoglou (1990) used the principle of minimum 

complementary energy and the force balance method for general unsymmetrical 

laminates under combined in-plane and out-of-plane loads. The first numerical method of 

edge effect was given by Pipes and Pagano (1970). Altus et al. (1980) developed a 3D 

finite difference solution to study the edge-effect problem in angle-ply laminates, and 

Spiker and Chou (1980) used hybrid-stress finite element. Whitcomb et al. (1982) 

showed the reliability of quasi-3D finite element approach. Until that time, in analytical 

and numerical techniques, the stresses and strains had been assumed to be independent of 

the axial coordinate. Thus analysts only had to be independent of the axial coordinate. 

Robbins and Reddy (1996) presented displacement based variable kinematic formulations 

with the assumption that the stresses and strains are dependent on all three coordinates. 

Tahani and Nosier (2003a, 2003b) developed an elasticity formulation for finite general 

cross-ply laminated systems subjected to extension and thermal loading. 
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The delamination process in laminated plates is usually divided into delamination 

initiation and delamination propagation. At first, for delamination initiation, the point or 

average stress criteria proposed by Whitney and Nuismer (1974) have often been used in 

the macro level. Kim and Soni (1984) applied the criteria to carbon fiber reinforced 

plastics under in-plane tensile and compressive loading giving experimental and 

analytical solutions. Davila and Johnson (1993), and Matthews and Camanho (1999) 

developed a technique by combining the previous stress analysis with a characteristic 

distance, which are applied to composite bolted joints and post buckled dropped-ply 

laminates, respectively. Next, to characterize the growth of delamination, the use of linear 

elastic fracture mechanics has become common practice and has proven to be effective if 

other material nonlinearities can be neglected. So, in the context of a fracture mechanics 

approach, the propagation of an existing delamination is analyzed by comparing the 

amount of energy release rate (ERR) with interface toughness. Moreover, the behavior of 

delamination in laminated systems is sometimes dominated by interlaminar tension and 

shear stresses at discontinuities that create a mixed-mode (I, II and III) stress field. For 

determining the ERR in delamination analysis, J-integral methods (Rice, 1968), virtual 

crack extension methods (Hellen, 1975; Hwang et al., 1998) or modified crack closure 

integral (Rybicki and Kannimen, 1977) or the, so-called, virtual crack closure technique 

(VCCT), etc. have often been used. Especially, VCCT (Rybicki et al., 1977; Raju, 1987; 

Krueger, 2002; Quaresimin and Ricotta, 2006) is preferable for computing ERRs of 

laminated plates because of its simplicity. Also, Glaessgen et al. (2002) observed that 

shell VCCT models of debonding specimens in which the adherents are of different 

thickness can predict the correct total ERR, but that the mixed modes do not converge 
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with mesh refinement. This phenomenon is similar to the well known oscillatory behavior 

of in-plane linear elastic stress field near the tip of a bi-material interfacial crack (Raju 

and Crews, 1988). Consequently, in recent times, formulations have been suggested to 

overcome the above mentioned difficulties (Camanho et al., 2003; Jin and Sun, 2005; 

Turon et al., 2006; Davila et al., 2007). 

 

1.2.3 Patch Repair Work 

Patch repair work have been proved to be quick but inexpensive method of repairing 

structures with defects or local damage, for service life enhancement. The objectives of 

the repair work are to restore the static strength and durability of the structure and to 

decrease high stresses caused by damage in the form of cutouts of different shapes, 

indentations, inclusions, and cracks. The repair work can be done to one face or both the 

faces of the damaged component. The patch material can be metallic or non-metallic. It 

can be either adhesively bonded or bolted to the damaged components. It is well known 

that the traditional approach of fastening steel or aluminum patches to the damaged 

region has drawbacks as compared to the more recent technique of patch repair using 

composites, because mechanical fastening or riveting would result in additional stress 

concentrations in the structure and could be problematic particularly in regions of high 

stresses or strains. In order to overcome the disadvantages of traditional techniques, 

bonding of composite patches has been more preferred (Baker, 1984, 1987). The 

important components of analysis for the patch repairs are the prediction of the strength 

and representation of the effectiveness of the technique used. Sometimes the 

determination of fracture parameters such as SIF or ERR at the tip of pre-existing crack 
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like damage can give a precise idea on the performance of bonded composite repair. The 

SIFs and the ERRs in some patch repair works have been calculated by some researchers 

(Jones and Chiu, 1999; Ting et al., 1999; Umanaheswar and Singh, 1999; Bouiadjra et al., 

2002; Ayatollahi and Hashemi, 2007). All these publications showed that SIF and ERR 

exhibit asymptotic behavior as the crack size increases after patch repair. This behavior is 

due to the fact that there is stress transfer from the cracked plate to patching component 

throughout the adhesive layer. The properties of adhesive play an important role on the 

performance of a bonded composite repair. Bouiadjra et al. (2002) showed that an 

adhesive with high shear modulus (an undesirable property) leads to weaking of SIF at 

the tip of a repaired crack.  

The geometrical configuration of bonded patch repairs is classified as symmetric 

(double-sided) and asymmetric (single-sided) types. The symmetric arrangement with 

reinforcements bonded on two surfaces of a plate ensures that there is no out-of-plane 

bending over the repaired region, provided the plate is subjected to extensional loads only. 

Generally, for a cracked plate with the symmetrically bonded patch repairs, with 

increasing crack length, the crack extension force shows asymptotic behavior. In practical 

applications, however, single-sided repair work is often unavoidable if only one face of 

the component being repaired is accessible. If the component has adequate support 

against out-of-plane deflection, the effect of asymmetric patch can be similar to that of 

symmetric patch. Otherwise, an unsupported one-sided repair may considerably lower the 

repair efficiency because of out-of-plane bending caused by shift of the neutral plane 

away from that of the component being repaired. Such performance degradation of 

single-sided patch repair was recognized in some literature (Ratwani, 1979; Jones, 1983; 
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Wang et al., 1998; Belhouari et al., 2004). Their results suggested that SIFs for a single-

sided repair would increase indefinitely with increasing crack length due to influence of 

secondary bending in the repaired component. 

Achour et al. (2003) and Ouinas et al. (2007b) have implemented numerical analysis 

of repaired cracks at regular and semicircular notched edges. Barut et al. (2002) analyzed 

the behavior of bonded patch repair with cutout using experimental measurements and 

3D finite elements. Also, to increase the durability and damage tolerance, many 

researchers have undertaken experimental tests and numerical analysis on patched thin 

plates (Denney and Mall, 1997) and patched thick plates (Jones et al., 1988). Patch 

debonding is also of importance since its presence increases the possibility of crack 

growth in the repaired structure by reducing the effective area of the patch. Some 

researchers have studied behavior of composite patch debonding in adhesively bonded 

repairs (Naboulsi and Mall, 1996, 1997; Denney and Mall, 1997) by using 2D finite 

element model consisting of three layers coupled with experimental studies, in order to 

investigate the effects of pre-existing debonding of various sizes in different locations, on 

the fatigue crack growth and life of repaired components with cracks. The results showed 

variations in fatigue life and SIF with changing location and size of debonding. Megueni 

et al. (2004) and Ouinas et al. (2007a) used conventional finite element analysis to 

compute the SIF in cracks repaired by composite bonded patches taking into account pre-

existing debonding. They also found that the presence of debonding increases the SIF 

considerably. Papanikos et al. (2007) examined initiation and progression of composite 

patch debonding on variation of patch thickness, patch width, adhesive thickness, and 

applied load. As a whole, it was noticed from the results that the debonding affected the 
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effectiveness of the repairs significantly. 

 

1.3 Objectives and Scope 

The proposed study comprises of five major objectives. 

The first objective of this study is to develop 2D and 3D representations of laminate 

behavior in the context of advanced laminate theories using higher order basis functions. 

The resulting formulations are to be implemented as m-file codes of MATLAB. The 

developed software is to be verified for anisotropic multilayer plates and isotropic 

problems. In addition to simple problems, those with increasing complexities are 

considered. 

The second objective is to implement an efficient scheme for high-precision analysis 

of laminated systems, based on p-convergent finite element method. For modeling 

simplicity, computational efficiency and higher accuracy, models with a combination of 

elements with 2D and 3D representation of laminate behavior are considered by 

introducing suitable transition elements between the first two element types. The 

implemented scheme is verified or validated with basic problems as well as challenging 

ones with irregularities. 

The third objective is to develop and implement the ordinary Kriging interpolation for 

obtaining improved solution during post-processing of the solution followed by 

verification or validation with example problems. 

The fourth objective is to apply the developed modeling schemes and tools to more 

challenging practical problems such as patch repair in the presence of cracks, cutouts, 

delamination, etc. Studies on optimal performance of patch repairs through parametric 
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studies are also be undertaken. 

The fifth objective is to determine the effect of geometric nonlinearity on the response 

of single patch repaired systems. 

Some highlights of the tasks associated with these objectives are as follows. 

(1) To achieve the first objective, it is necessary to develop the following p-version finite 

element models for laminated systems 

(a) Full discrete-layer model (FDLM): it is implemented independently of each other 

in the assumed in-plane displacement fields and the out-of-plane displacement 

field within a lamina. 

(b) Partial discrete-layer model (PDLM): it adopts FDLM for in-plane behavior 

within a lamina and 2D models of laminate analysis for out-of-plane behavior. 

(c) Equivalent single-layer model (ESLM): it has assumptions of first-order shear 

deformation theory and plane stress theory and is formulated by 2D higher-order 

approximating functions. 

(d) The aforementioned three formulations are to be implemented as MATLAB 

scripts. 

(e) These implementations are verified or validated with a number of test problems. 

(2) For achieving the second objective involving the use of models with mixed element 

types, the following steps are to be followed. 

(a) Discrete-layer transition model (DLTM): it is formulated to allow smooth 

transition among the different element types used in the same model. 

(b) The MATLAB script based on this formulation is to be appended to the one 

developed under the first objective. 
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(c) The resulting software is applied to test problems for verification as well as to 

some practical problems to evaluate the efficiency of the scheme. 

(3) The third objective is part of post-processing of computed results and is realized 

through the following steps 

(a) Ordinary Kriging interpolation is implemented in the context of p-version of finite 

element method. 

(b) The resulting algorithm is to be implemented. 

(c) The proposed scheme is to be verified with the help a few example problems.  

(4) To realize the fourth objective, the steps to be undertaken are  

(a) In order to meaningfully solve problems with irregularities, the following special 

computational schemes are to be implemented.  

i. Linear mapping and blending mapping for curved boundaries 

ii. Extension of VCCT to 2D models with p-convergent elements. 

iii. Extension of VCCT to 3D models with p-convergent discrete-layer elements. 

iv. Implementation of Gauss-Lobatto quadrature technique with arbitrarily 

unlimited number of quadrature points. 

v. Implementation of frontal solver for problems with very large number of 

degrees of freedom. 

(b) Formulate and implement the following capabilities related to external loads, 

i. Membrane loading 

ii. Uniformly distributed transverse loading 

iii. Distributed sinusoidal loading. 

(c) Develop capabilities to handle the following problem types 
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i. Stepped plates 

ii. Skew plates 

iii. Free-edge stress problems in layered plates. 

iv. Plates with cut-outs 

v. Plates with crack. 

vi. Delamination analysis 

(5) To achiever the fifth objective, the following steps are followed. 

(a) In implementing the capability to handle geometric nonlinearity the total 

Lagrangian approach is to be used. 

(b) Transverse deflections are assumed as large but the strains continue to be small. 

(c) Newton-Raphson scheme will be used during load increment. 

(d) The resulting formulation will be implemented and verified. 

(e) Comparison of results with those by linear analysis will be undertaken. 
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CHAPTER II 

 

FORMULATION OF LAYER MODELS BASED ON P-FEM 

 

2.1 Overview 

The p-version of finite element method (p-FEM) using basis functions based on 

Legendre polynomials or integrals of Legendre polynomials differs from the conventional 

finite element methods (h-FEM) using basis functions usually based on Lagrange 

polynomials, in the sense that a structure can be modeled with higher-order finite 

elements hierarchically, and convergence can be achieved by simply increasing the order 

of the elements over a fixed mesh without the buildup of round off errors, as opposed to 

mesh refinement using a large number of first- or second-order elements in the case of 

conventional finite element based models. 

Over the past decades, the p-FEM has matured into a powerful numerical modeling 

tool. The first experimental software COMET-X based on p-FEM was developed by Basu 

et al. (1977) at Washington University, St. Louis, USA, which was released in 1977. Later 

on, the advantages of p-FEM became quite obvious through numerical analysis, 

experimental verification, and and sound mathematical proof (Woo and Basu, 1988; 

Akhtar and Basu, 1989; Ahmed and Basu, 1989; Crull and Basu, 1989; Ghosh and Basu, 

1996). Past research on p-FEM has demonstrated that apart from significantly less 

computational effort as compared to h-FEM to achieve the same degree of accuracy, p-

FEM is robust, that is, unaffected by problem parameters. Also, p-FEM can handle 

discontinuities like cracks, notches, and cutouts of arbitrary shape without the need for 
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any special treatment. Another advantage is that due to modeling simplicity resulting 

from the need for only a few very large elements satisfying primarily the geometric, 

loading and constraint requirements, and ease of achieving solution convergence, the 

analyst’s time is saved significantly. Also, the same p-FEM code can be used in p-mode, 

h-mode, or hp-mode. The hp-mode attracted special attention as the best strategy in the 

presence of irregularities. In this situation, it may, sometimes, be helpful to strongly grade 

the mesh near irregularities like, say, a reentrant corner.  

 In this chapter, the formulation of layered models for laminate analysis is presented, 

using displacement-based approximating functions in the context of p-FEM. At first, 1D 

and 2D shape functions for vertex modes and nodeless side and internal modes are 

introduced; in conventional finite element formulations nodeless modes are not 

considered. These shape functions will be used only for assuming the displacement fields 

of different p-levels, and not for geometric mapping. In the present study only p-FEM 

based, non-isotropic (or, nonparametric) elements are considered. Using these 1D and 2D 

shape functions, finite elements for layered models such as FDLM, PDLM, ESLM, and 

DLTM for simulating 2D and 3D behavior of plates, or suitable combinations thereof are 

developed in the following. 

 

2.2 Hierarchic Shape Functions of P-FEM 

1D hierarchical shape functions are classified as nodal modes and side modes, as 

shown in Fig. 2.1. For any p-level, (p-1) side modes are created. Here, p represents the 

degree of polynomial of the approximating function. In terms of standard coordinate ξ, 

the shape functions corresponding to the two nodal modes are  
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where ix  denotes the standard coordinates corresponding to the i-th mode. 

 

 

Fig. 2.1 Configuration of 1D element in p-FEM 

 

To ensure orthogonality in the energy norm, at any p-level (p≥2), the internal modes are 

based on integrals of Legendre polynomials, as defined in Eq. 2.2.  
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Here, Ψ refers to Legendre polynomials, which is defined in Eq. 2.3 as 
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2D hierarchic shape functions for a quadrilateral element can be built by using the 1D 

shape functions. The 2D shape functions can be classified by vertex (or nodal) modes, 

edge (or side) modes, and internal (or bubble) modes. The assignment of variables for a 

quadrilateral element with respect to 2D standard coordinates ξ and η is shown in Fig. 2.2. 

The shape functions for four 2D vertex modes can be obtained by a combination of the 

shape functions of two 1D nodal modes, as in Eq. 2.4. 

)()(),(  kkk NNV             in k=1,2,3,4             (2.4) 
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Fig. 2.2 Configuration of 2D element in p-FEM 

 

Fig. 2.3 shows the surface plots of these shape functions for four vertex modes. In the 

case of higher p-levels, edge modes are needed for each side and are defined as  
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jn         (2.6) 

Here the subscript e represents an edge number in the standard element shown in Fig. 2.2. 

Surface plots of the shape functions of edge modes for Edge 1 are shown in Fig. 2.4. The 

surface plots of the shape functions of edge modes for Edges 2, 3, and 4 will be similar to 

those in Fig. 2.4, except that non-zero edge functions will appear in the edge under 

consideration. In addition, if the p-level is greater than 3, internal modes will have to be 

defined. Thus for any p-level>3, say, 4,5,6,…etc., the internal-modal shape functions can 

be obtained from a combination of higher order 1D shape functions, as in Eq. 2.7. 



28 

)()(),( 22  isik SSI    in i=1,2,…,s-3; 





04

0

4
p

j

jisk ; s=4,5,…,p       (2.7) 

Figs. 2.5 and 2.6 display the surface plots of the shape functions of internal modes from 

p-level=4 to p-level=10. Meanwhile, the number of total nodal (or vertex), edge, and 

internal modes in the 2D approximation, M(p), is given by 
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                (a) V1                           (b) V2 

         

               (c) V3                           (d) V4 

Fig. 2.3 Four nodal or vertex shape functions 
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(a) E1                           (b) E9                  (c) E13 

  

(d) E18                    (e) E24                   (f) E31 

 

(g) E39                  (h) E48                    (i) E58 

Fig. 2.4 Shape functions of edge modes on Edge 1 in p=2~10 
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(a) I17                  (b) I22                   (c) I23 

       

(d) I28                  (e) I29                  (f) I30 

       

(g) I35                  (h) I36                  (i) I37 

       

(j) I38                  (k) I43                  (l) I44 

       

(m) I45                  (n) I46                  (o) I47 

Fig. 2.5 Internal modal shape functions from p-level=4 to p-level=8 
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(a) I52                  (b) I53                  (c) I54 

       

(d) I55                  (e) I56                  (f) I57 

 

(g) I62                  (h) I63                  (i) I64 

 

(j) I65                  (k) I66                  (l) I67 

 

(m) I68 

Fig. 2.6 Internal modal shape functions in p-level=9 and 10 
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2.3 Full Discrete-Layer Model (FDLM) 

In this approach for 3D modeling of laminated systems, each layup is treated 

discretely with deformation of a point in the layup in terms of three displacement 

components defined for each layer separately. Displacement fields at bottom and top 

surfaces within a layer are approximated by 2D shape functions (V, E, and I). Then the 

two surfaces are connected by 1D shape functions (N and S) which are of first-order or of 

higher variation across the thickness. Side modes of 1D shape functions connecting the 

two surfaces (bottom and top) can be called as thickness modes. Also, from the shape 

functions (V, E, I, N, and S) defined in terms of standard coordinate (ξ, η, or ζ) which 

were defined in section 2.2, shape functions with respect to local axes of a layer (x, y, and 

z) can be identified by the symbols SNIEV
~

and,
~

,
~

,
~

,
~

. First, the in-plane displacement 

filed (Uc; c=1 and 2) can be expressed as following Eq. 2.9. 
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where i and j follow regular summation convention. The function M refers to the number 

of total modes in 2D shape functions aforementioned in section 2.2. Also, xyp  and zp  

indicate p-level with respect to xy-plane and z-axis, respectively. Similarly, out-of-plane 

displacement field (W) can be defined as follows. 
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where zp̂  represents p-level with respect to z-axis, zp , used in planar displacement field. 

However, these need to be identical. That is, zz pp ˆ  or zz pp ˆ . 
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As the stress-strain relationships are based on 3D elasticity theory, all six strain 

components with respect to layer axes (x, y, and z) can be expressed as 
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Considering a state of anisotropy with three mutually orthogonal planes of symmetry, the 

following stress-strain relationships in any layer l can be defined. 

l
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Also, 66][ D  is a 3D elasticity matrix which is composed of engineering material 

constants with respect to principal material axes (1,2,3), and 66][ X  is the 

transformation matrix based on the angle between layer axes (x, y) and principal axes of 

anisotropic material (1,2). The elasticity matrix can be written in the form 
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and 
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Here E1, E2, and E3 are Young’s moduli in 1, 2, and 3 material directions, respectively. 

Moreover, νij are Poisson’s ratios, defined as the ratio of transverse strain in the jth 

direction to the axial strain in the ith direction when stressed in the ith direction. G12, G13, 

and G23 are shear moduli in the 2-3, 1-3, and 1-2 planes, respectively. In addition, for the 

orthotropic material, the following reciprocity relations among the engineering constants 

hold 
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The aforementioned transformation matrix 66][ X  can be shown to be 
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Here r, s, and t refer to the principal axes (1, 2, and 3) of the layer material. The variable 

rx means direction cosine of positive x direction with respect to the l-direction. To arrive 

at the elasticity matrix, lD 66]
~

[  , with respect to layer reference axes (x, y, and z), the 

similar matrix, lD 66][  , defined in Eq. 2.14 with respect to the principal axes (1, 2, and 3) 

of the layer can be transformed as shown in Eq. 2.19. 
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Meanwhile, the displacement field    of a layer defined in Eqs. 2.9 and 2.10 can 
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be written by the following general form. 

  }{]
~
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where the matrix ]
~

[H  indicates hierarchical shape functions with respect to layer 

reference axes (x, y, and z). All the elements of variables u1, u2, and w are included in the 

matrix {d}. The element equations for a layer can be expressed by using the principle of 

virtual work 

0 WU                                       (2.21) 

With the strain vector }~{ and the stress vector }~{ defined in (Eq. 2.13), the internal 

virtual strain energy can be written as 
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If the virtual displacements are defined as   
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The virtual strain can be written as 
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where ]
~

[B  is the strain-displacement matrix with respect to layer reference axes (x, y, 

and z). In addition, the external virtual work takes following form. 

  
V

b

S A

rqp dVFddAFddSFdFdW }{}{}{}{}{}{}{}{ TTTT       (2.25) 

Here the superscripts p, q, r, and b signify point forces, side forces, surface forces, and 

body forces, respectively. Based on these definitions, the virtual work equation shown in 

Eq. 2.21 can be expressed as 
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The element stiffness matrix of a layer can then be obtained from 
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where [B] is strain-displacement matrix with respect to the standard coordinate system (ξ. 

η, and ζ ). J  is determinant of the Jacobian matrix. It is clear from Eq. 2.27 that FDLM 

can take into account any variation of material properties within a layer. Fig. 2.7 

demonstrates the modeling scheme with FDLM for a laminated system with three layers. 

If there are no gaps and empty spaces between interfaces of layers, compatibility 

conditions can be applied at the layer interfaces. 

 

 

Fig. 2.7 Modeling scheme with full discrete-layer model 
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2.4 Partial Discrete-Layer Model (PDLM) 

Another discrete-layer model which is somewhat simpler than FDLM can also be 

used for 3D modeling will be termed as the partial discrete-layer model. As in FDLM, in 

PDLM the two planar displacement components which have first or higher order 

variation across the thickness of lamina. On the other hand, the out-of-plane displacement 

is, however, assumed to be independent of the transverse coordinate z, invoking the 

condition of in-extensional theory in the thickness direction. Therefore, Eq. 2.9, 

developed for FDLM, can again be used to represent the in-plane displacement fields of a 

PDLM based layer. However, for the sake of reducing the required number of modal 

variables without significantly affecting the accuracy of the solution, a linear variation of 

the in-plane displacement field across the thickness is adopted. Thus the in-plane 

displacement field modified from Eq. 2.9 can be expressed in the following form.  
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Also, due to the assumption of in-extensional thickness, the out-of-plane displacement 

field is defined as 
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As a consequence to above, the strain components in a layer will reduce from the 3D 

ones used for FDLM to those shown in Eq. 2.30. 
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Just as Eq. 2.12 used for FDLM, the stress-strain relationships of PDLM in any layer l 

can be re-written as Eq. 2.31. 
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Based on the constitutive matrices Eq. 2.14 through Eq. 2.16 allowing for the state of 

anisotropy, the elasticity matrix of PDLM, accounting for the zero transversal normal 

stress assumption used in Eq. 2.31, takes the following modified form. 
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where 33][ G  matrix defined in Eq. 2.16 is still valid here. The zero transverse normal 

stress condition also allows the use of following assumptions. 

0322331133  E                              (2.34) 

Thus, reciprocity relations among the engineering constants from Eq. 2.17 can be 

reduced to 

2

21

1

12

EE


                                         (2.35) 

From Eq. 2.34 and Eq. 2.35, the matrix 22][ C  can be written more concisely as Eq. 2.36. 
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Also, Transformation matrix 55][ X  mentioned in Eq. 2.31 can be given the modified 

form based on Eq. 2.18 leading to Eq. 2.37. 
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The elasticity matrix with respect to the layer reference axes can be expressed as the 

triple product shown in Eq. 2.38.   
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[   XDXD ll                                (2.38) 

Here again, for finite element formulation, the principle of virtual work can be used. 

Thus, Eqs. 2.20 through 2.25 are also valid for PDLM. The virtual work equations will 

now take the form 
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Like Eq. 2.27 of FDLM, the element stiffness matrix of a PDLM based layer can be 

obtained from 
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Fig. 2.8 defines the modeling scheme of PDLM for a three layered laminated system. The 

compatibility conditions at layer interfaces can be handled as with FDLM. Also, for out-

of-plane displacements, 2D modeling is available as shown in Fig. 2.8. 
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Fig. 2.8 Modeling scheme of partial discrete-layer model 

 

2.5 Equivalent Single-Layer Model (ESLM) 

In this 1
zC  function based model, dimensional reduction is effected by incorporating 

first-order shear deformation for bending behavior and plane stress condition for 

membrane action. In this case, the deformation at any point in the laminated plate is 

based on three displacement fields for a quadrilateral subparametric 0
xyC  element with 

three translational mode components (u1,u2 and w) and two rotational mode components 

(θ1 and θ2). The three displacement fields (Uc and W; c=1,2) can be defined as 
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For strain components of the ESLM model, Eq. 2.30 used in the case of the PDLM 

model can still be used. As shown in Eq. 2.42, the strain vector can be partitioned into 
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membrane strains 13}~{ 
m , bending strains 13}~{ 

b , and transversal shear strains 

12}~{ 
t . 
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Also, instead of using ),(
~

yxNi , and ),(
~ )( yxM h

j , the shape functions with respect to 

element axes (x and y) are denoted by H
~

. The strain-displacement matrix for five nodal 

(and modal) variables is then given by 
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with 

































































 

N
y

H

N
x

H

B

x

H

y

H
y

H
x

H

BB sbm

0
~

0
~

]
~

[;

~~

~
0

0
~

]
~

[]
~

[ 322323           (2.45) 

For constitutive equations of stress resultants, it is assumed that each layer is 

orthotropic with respect to its material symmetry lines, like previously described partial 

discrete-layer models. The matrix 33][ G  in Eq. 2.33 needs to be modified. Based on Eq. 

2.3-8 used for FDLM and PDLM, 33][ G  for ESLM takes the following form 
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where the terms 1k  and 2k  are shear correction factors in the 1-3 and 2-3 planes of 

material axes, respectively, to account for the actual presence of non-uniform transverse 

shear stress distribution across the thickness. The shear correction factor is equal to the 

ratio of the effective area resisting shear deformation to the actual cross-sectional area of 

the laminate plate. In general, the transverse shear continuity must be guaranteed at each 

layer interface. The equilibrium equations in x-direction (1-direction) and y-direction (2-

direction) of layer reference coordinate axes (1x, 2y, 3z) can be written as 
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Assuming cylindrical bending with z=h/2 at top and bottom surfaces,  
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where 

· xzQ  and yzQ  are the shear forces in xz- and yz-planes. 

· dzzzDf
h

h
2/

2/

2
11 )(  and dzzzDf

h

h
2/

2/

2
22 )(  are flexural plate stiffnesses in x- and 

y-directions. 

· z is the coordinate in the thickness direction. 

· zdzzDz
z
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2/ 11   and zdzzDz
z

h
)()(

2/ 22   represent the transverse shear 

stress shape factors for xz-plane and yz-plane, respectively. 
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The functions )(z  which determines the shape of the shear stress diagram is 

independent of the loadings for the conditions specified. The transverse shear strain 

energy components are given by  
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Here )(13 zG  and )(23 zG  are transverse shear modulus in xz- and yz-planes at a point z 

in the thickness direction. Substituting Eq. 2.48 into Eq. 2.49 leads to 
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The strain energy components under the assumption of constant shear strain are 
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Here xz̂  and yz̂  are the mean values of the shear strains. Using Eqs. 2.50 and 2.51, it is 

possible to obtain the shear correction factors 1k  and 2k  as 
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Eq. 2.38, representing the elasticity matrix of each layer, can be rewritten in the following 

form. 
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Also, although the strains are continuous through the thickness of the laminated plate, 

stresses are not so because of change in material coefficients through the thickness. Thus, 
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the integration of stresses through the thickness of a laminated plate requires lamina-wise 

integration. Like the case of strain components, stress resultants are also classified into 

membrane force resultants, bending moment resultants, and transversal shear force 

resultants, respectively. In laminated plate with n layers, the stress resultants are as 

follows. 
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Here α and β refer to bottom and top indexes. The constitutive relationships for the 

laminated plate as a whole with respect to the reference surface of ESLM can then be 

expressed as 

 188818 }~{][}~{    E                                    (2.56) 

where 88][ E  is the constitutive matrix linking membrane, bending, and transverse shear 

force resultants to reference surface strains and curvatures. 

Meanwhile, like previous two models, principle of virtual work is applied for finite 

element formulation. Hence, Eq. 2.21 is also valid in process of formulation of present 
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ESLM. With strain components shown in Eq. 2.42 and stress resultants in Eq. 2.54, the 

internal virtual strain energy can be written as  
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A

dAU }~{}~{ T                                    (2.57) 

The virtual displacements and strains defined in Eq. 2.23 and Eq. 2.24, respectively, are 

valid for ESLM as well. Here the external virtual work takes following form. 
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Based on above definitions, the virtual work equation shown in Eq. 2.21 is rewritten as 
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The stiffness matrix of the element with respect to the reference plane is then given by 
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where [B] is strain-displacement matrix with respect to standard coordinate system (ξ. 

and ζ ). Also, J  is determinant of the Jacobian matrix. Fig. 2.9 shows modeling 

strategy of FSLM for laminated system with three layers. 

 

 

Fig. 2.9 Modeling scheme of equivalent single-layer model 
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2.6 Discrete-Layer Transition Model (DLTM) 

Each of the three element models presented so far has its unique positive aspects as 

well as negative aspects characterized in terms of the accuracy of results obtained, 

relative degree of computational effort, and ease of modeling. No single model can be 

regarded to be best suited for all composite problems of practical importance. The choice 

of the most efficient model in a given situation will depend upon the characteristics of a 

given problems, the objectives of analysis, computational efficiency, the ease of modeling 

and so on. For example, if one tries to obtain maximum deflection or stress in a thin 

laminated plate, it is enough to use ESLM. Alternatively, if the objective is to determine 

the distribution of in-plane displacement or stresses across the thickness in a moderately 

thick-laminated plate, PDLM would be the reasonable choice. Furthermore, if the 

objective is to determine the accurate distribution of all stress components throughout the 

system, FDLM may be the logical choice in spite of being compute-intensive. However, 

if the objective is to study the effect of localized irregularity like delamination, it will be 

more efficient to use a mixed model involving a combination of FDLM in the 

delamination region and PDLM and/or ESLM, elsewhere. By a proper choice of models 

in such mixed modeling scheme, solutions of high accuracy with least computational 

effort can be obtained. Although this choice is conceptually simple, the actual 

implementation would be complicated and somewhat cumbersome due to the need of 

maintaining displacement continuity at interfaces of sub-domains modeled with different 

finite element models. In this study, for more efficient analysis, discrete-layer transition 

model (DLTM) is developed for joining sub-regions that use elements based on different 

types of mathematical models such as ESLM, PDLM, and FDLM. From Eq. 2.9 and Eq. 
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2.41, the assumed in-plane displacement fields (Uc; c=1,2) for DLTM can be expressed as 
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where the functions A and B comprise of modal variables, depend on types of i-th mode 

of 2D shape functions in the xy-plane, and are defined as shown in the following. 
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where zp  and zp  may or may not be identical.  
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Based on Eq. 2.10, Eq. 2.29 and Eq. 2.41, the out-of-plane displacement field, W, for 

DLTM is given by 
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where the functions F and G comprise of modal variables, depend on types of i-th mode 

of 2D shape functions in the xy-plane, and defined as 
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In DLTM, the need to include or neglect transverse normal strains and stresses, 

primarily, depends on the application. For instance, if the transition elements are located 

in a thick or moderately thick laminated system, transverse normal strains and stresses 

should be included in the derivation of the element properties. On the other hand, if 

DLTM belongs to a thin laminated system, these can be neglected in deriving the element 

properties. Formulation of finite element based on the DLTM can be undertaken in the 

same way as was shown in Sections 2.3 through 2.5. Fig. 2.10 illustrates simple 

connection of the DLTM when 3D elements (FDLM or PDLM) and ESLM-based 

element are simultaneously considered for modeling a laminate plate with three layers 

and Fig. 2.11 demonstrates another transitional link role of DLTM from FDLM-based 

elements to PDLM-based elements. 

 

 

Fig. 2.10 Connection of 2D and 3D elements using DLTM 

 

 

Fig. 2.11 Connection of full and partial discrete-layer elements using DLTM 
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Fig. 2.12 Element based on DLTM with respect to standard coordinate system 

 

Fig. 2.12 displays connection of one layer element with nodes in the 2D space and 

multi-layered element with nodes in the 3D space. It means that the larger the number of 

layers in a laminated plate is, the bigger the savings in computational effort required in 

this modeling technique using the proposed transition element. Fig. 2.13 shows an 

example finite element mesh in the 2D-plane for the application of transition elements 

when three element types are simultaneously used in the computational domain. The 

transition elements serve the purpose of preventing the violation of inter-element 

compatibilities in a heterogeneous modeling environment. Normally, FDLM-based 

elements should be used near regions where the stress field is likely to be three-

dimensional. Such regions are characterized by the presence of various types of 

irregularities described in Chapter 1. On the other hand, PDLM-based elements can also 

be used in regions with less severe geometric irregularity in the thickness direction and 

the transverse stresses are not significant. ESLM-based elements can be used in regions 

free of irregularities where the stress field tends to be smooth. Finally, it is necessary to 



50 

use transition elements (DLTM) to allow smooth displacement variations between mixed 

pairs like FDLM-PDLM, FDLM-ESLM, PDLM-ESLM, etc., as shown in Fig. 2.13. 

 

 

Fig. 2.13 Simple 2D mesh of a mixed model 

 

2.7 Geometric Nonlinearity 

In the formulation of the finite element models discussed in the preceding sections, 

the displacements and strains were assumed to be very small. In some applications of thin 

laminated plates, however, relatively large deflections may occur. In such cases, the 

laminated plate may undergo in-plane stretching giving rise to in-plane tensile stresses 

which tend to stiffen the plate. This may lead to considerable increase in the load capacity 

of laminated plates. This effect cannot be simulated by small-deflection bending theory 

used so far. For large deflection problems in solid mechanics, two formulations are 

possible - (a) Total Lagrangian approach, and (b) Updated Lagrangian approach. In this 

section, geometrically nonlinear finite element formulations are developed for FDLM, 

PDLM, ESLM, and DLTM based on the Total Lagrangian approach. It is assumed that 

deflections are large and rotations are still small or relatively moderate in the sense of 
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Von Karman hypothesis. 

The problem is solved incrementally, and corresponding to n-th load increment, the 

following equilibrium equations must be satisfied. 

0][][  nn PF                                   (2.68) 

where [F] are the summation vector of the external applied forces and the corresponding 

reaction forces, and [P] is the internal equivalent force vector. As the exact satisfaction of 

the equilibrium equations can not always be assured in s nonlinear analysis, a residual 

force vector [R] would exist such that 

0][][][  nnn PFR                                (2.69) 

An iterative sequence can be preformed in order to eliminate the residual forces ([R]n ≈ 0). 

During the general stage of the iterative solution, the computed displacement vector at i–

th iteration will be expressed as n
i][ . Therefore the iterative form of Eq. 2.69 will be 

0][][][  n
i

nn
i PFR                                  (2.70) 

After each iteration cycle, the displacement vector is updated as below, 

n
i

n
i

n
i ][][][ 1                                    (2.71) 

where n
i][   denotes the change of displacements occurring during the current iteration. 

Also, in order to obtain the change of the displacements n
i][  , the tangent stiffness 

approach, which requires displacement search direction, can be used. The internal 

equivalent force vector n
iP][  in Eq. 2.70 can be written in following form 


V

n
i

n
i

n
i dVBP ][][][                                 (2.72) 

where [B] is the strain-displacement matrix, [σ] is the current stress field, and V denotes 
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the volume of considered domain. Taking the variation of Eq. 2.70 with respect to a 

displacement variation d[δ] and using Eq. 2.72, gives the tangent stiffness matrix for 

present geometrically nonlinear analysis as 

dVBddVdBPddK
VV
  ][][][][][][][ TT              (2.73) 

The strain-displacement matrix [B] may be separated into usual infinitesimal part 

][B and nonlinear contribution ]ˆ[B  so that 

]ˆ[][][ BBB                                     (2.74) 

Thus, the variation of the strain-displacement matrix may be written as 

]ˆ[]ˆ[][][ BdBdBdBd                            (2.75) 

Also, from Eq. 2.73, the following variational form is obtained. 

 dVBdddVBDBdK
VV
  ][][][][][][][][ TT                 (2.76) 

where [D] is the elasticity matrix. Eq. 2.73 can now be written as 

dVBddKdK
V
 ][][][][][][ T                          (2.77) 

Defining the stresses [σ] from results of previous iteration, the geometric stiffness matrix, 

being the second term in the right hand side of Eq. 2.77, can be obtained from 

dVBddVBddK
VV
  ][]ˆ[][][][]

~
[ TT                     (2.78) 

The substitution of Eq. 2.78 in Eq. 2.77 results in 

]
~

[][][ KKK                                  (2.79) 

Here, from Eqs. 2.76 and 2.77, ][K  is given by  

dVBDBK
V
 ][][][][ T                             (2.80) 
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As per one element of Von Karman assumption that derivatives of in-plane displacements 

with respect to three local coordinates are small, strain vector of FDLM expressed in Eq. 

2.11 may be modified as 
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Similarly, from Eq. 2.30, the nonlinear strain vector for PDLM, ESLM, and DLTM in 

which the variation of w with z may be neglected can be written by 
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The components of the second-order Piola-Kirchhoff stress vector are given by usual 

stress-strain relations of linear elasticity like Eqs. 2.12, 2.31, and 2.5-55 in which the 

current strains are taken to be the nonlinear strains mentioned above. From Eqs. 2.81 and 

2.82, the nonlinear contribution to the strain vector can be rxpressed as 
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where [S] is a matrix with two rows and a number of columns equal to the total number 

of element nodal variables. This leads to the following 


























y

w
x

w

S ]][[                                             (2.84) 

Also, in FDLM-based elements, [A] in Eq. 2.83 is given by 
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In addition, for PDLM-based elements and DLTM-based elements with combination of 

only FDLM and PDLM, [A] can be expressed as 
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Also, for ESLM-based elements, and DLTM-based elements including ESLM, [A] can be 

written as 
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Now, the variation of Eq. 2.83 can be expressed as  

    ][]][[]][[][
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][  dSASdASAdd NL                  (2.88) 
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The nonlinear part of strain-displacement matrix, ]ˆ[B , used in Eq. 2.74 is given by 

]][[]ˆ[ SAB                                        (2.89) 

Therefore, the incremental strain-displacement matrix [B] can be calculated by summing 

the initially calculated matrix ][B  and the matrix ]ˆ[B  evaluated at any iteration step. 

Also, to evaluate the geometric stiffness matrix appearing in Eq. 2.78, use of Eq. 2.89 

results in  

dVAdSdVSAddK
VV
  ][][][][])][([][]

~
[ TTT                (2.90) 

][][ T Ad  in Eq. 2.90 can be expressed with the aid of Eq. 2.84 through Eq. 2.87 in 

following form. 

][]][[][][ T  dSAd                                      (2.91) 

where [σ] is composed of components of the current second-order Piola-Kirchhoff stress 

vector given by 
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In addition, the geometric stiffness matrix appearing in Eq. 2.90 can be expressed by 
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CHAPTER III 

 

COMPUTER IMPLEMENTATION OF PROPOSED MODELING SCHEMES 

 

3.1. Overview 

Since the advent of electronic digital computers, a number of discrete numerical 

schemes have been put forward for solving the differential equations of the continua. 

Although the finite difference method predates the digital computer era, the schemes 

termed finite element method, boundary element method, mesh free method, wavelets 

method, etc., have advanced almost hand-in-hand with the ever increasing power of 

digital computers. Currently among the several numerical approaches, the finite element 

method, especially so-called h-FEM, is most widely used in all disciplines of engineering 

and sciences, primarily because commercial modeling and simulation software like 

ABAQUS, ADINA, ANSYS, LS-DYNA, and NASTRAN etc. almost exclusively utilize 

this scheme resulting from enhancements of available public domain software which 

essentially utilize h-FEM. The primary power of the stated commercial software lies in 

their excellent user-interface, and superior pre- & post-processing capabilities. In view of 

proven superiority of p-FEM, halfhearted attempts have been made to incorporate it as a 

secondary module in software like ANSYS and NASTRAN. A more comprehensive 

implementation of p-FEM can be found in the commercial software like StressCheck and 

ANSYS which is specifically designed for detailed local analysis. In spite of this 

welcome development, there is a glaring lack of capability in commercial software to 

deal with localized behavior of complex laminated composite systems. Since COMET-X, 
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the first implementation of p-FEM software, by Basu et al. (1977), p-FEM software tools 

described in some references (Hall and Merrill, 1987; Woo, 1988; Akhtar, 1989; Ahmed, 

1989; Crull, 1989; Crim, 1992; Ghosh, 1996) have been basically meant for research 

work, but having limitations in efficient and accuracy in the modeling of complex and 

also the monitoring of the quality of predicted response. New efficient approach based on 

p-FEM can be considered as compelling reasons for developing a more accurate 

modeling scheme for complex composites materials and implemented for the purpose of 

the current investigation in the form of a set of software tools to be nicknamed as CTLAP 

(Computing Tools for Laminate Analysis based on P-version of finite element method). 

The CTLAP program is implemented using the M-file code of MATLAB 7, which is one 

of many technical computing languages and has recently become quite popular for 

research as well as for industrial applications. Formulations of laminate theories 

considered in present research are mentioned in previous Chapter 2. Here, additional 

numerical techniques built in CTLAP are discussed first. 

 

3.2. Mapping of Curved Boundary Geometry Using Blending Functions 

If edges of a quadrilateral or triangular element are straight, its geometry can be 

mapped uniquely from the standard element by defining the mapping function in terms of 

vertex node locations only. If one or more edges of the element is curved and the equation 

of such a curve can be defined in terms of a polynomial like: y=f(x), or x=f(y), by 

introducing additional node(s) on such a curved edge (number of nodes should be one 

less than the degree of polynomial defining the curve) will allow exact one-to-one 

mapping of the geometry between the standard element and the actual element. 
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Alternatively, as normally done in h-FEM, the size of straight edged elements at a curved 

boundary can be made small enough to follow the curved side as closely as desired, 

irrespective of the shape of the curved edge. In p-FEM, this option is not acceptable and 

to avoid geometrical sources of error, exact mapping of a curved edge is necessary, 

because one of the sources of efficiency of p-FEM is the use of as large an element (or, as 

few) as it is possible. If the geometry of the curved edge of an element is defined in terms 

of conic sections like circle, ellipse, or hyperbola, a mapping based on the introduction of 

additional nodes in the curved edge will not allow exact mapping of the geometry. This 

calls for the use of more advanced scheme to enable exact mapping of such curved edges. 

Fig. 3.1 shows that 2D standard coordinates (ξ and η) is transformed into 2D actual 

coordinates (x and y) involving arbitrary curvilinear boundary with four reference points 

and sides. For this process, the general mapping functions with respect to the 2D-plane 

are derived from blending functions based on bilinear mapping expressions (Gordon and 

Hall, 1973) as shown below. 

 

 

),( 11 yx ),( 22 yx

),( 33 yx

),( 44 yx

 

Fig. 3.1 Mapping concept for arbitrary curvilinear boundary 



59 
 

)()()()()()()()(

)(),,()(),,()(),,()(),,(

)()()()()()()()(

)(),,()(),,()(),,()(),,(

4321

41
4

34
3

32
2

21
1

4321

41
4

34
3

32
2

21
1







TSyTTySTySSy

SyyHTyyHTyyHSyyHY

TSxTTxSTxSSx

SxxHTxxHTxxHSxxHX







  (3.1) 

in which S and T are given by 
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 TS                                (3.2) 

Also, X and Y refer to mapping functions with respect to x and y. The four edges are 

treated independently. Then iH  is the function with respect to ξ or η describing the 

geometric property on Edge i. If the curved edge of an element is defined by a p-th 

degree polynomial, say, in the form y=f(x), the functions iH  defining the geometry of 

any edge i (=1,2,3, and 4) can be expressed in terms of p-degree Lagrange interpolation 

polynomial. For example, if p-order equation defining the geometry of Edge i between 

any point a and b is in terms of the x coordinate in the xy-plane that is of the form G(x), 

the functions iH  with respect to ξ  to define the mapping function X in Eq. 3.1 is as 

follows. 
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Also, the functions iH  with respect to ξ to define the vector function Y in Eq. 3.1 are as 

follows. 
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Fig. 3.2 Arc of circular as the boundary 

 

Moreover, when shape of any edge is the arc of a circle, trigonometric functions are used 

to define the shape. Fig. 3.2 shows the edge i as an arc of a circle with the two referenced 

end points, a and b. The center of the arc is located at c. In Fig. 3.2, the actual coordinates 

of point a and b can be obtained from radial vectors: 

 cbcbbcacaa yyxxdyyxxd ,;,


                  (3.5) 

Here the radius d is obtained from the norm of the vectors, so that  

ba ddd


                                       (3.6)               

Also, a  and b  are the anticlockwise angles measured from the positive x direction to 
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the vector ad


 and bd


, respectively. The functions iH  for any edge i shown in Fig. 3.2 

are of the form 
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where u


 is the unit vector along the x-axis. 

 

 

Fig. 3.3 Points in standard element (ξ and η) 

 

Meanwhile, in order to verify the mapping technique defined above, at first, 80 and 9 

sampling points on the boundaries and the interior on standard coordinate system, 

respectively, are considered as shown in Fig. 3.2. Using Eq. 3.1, all sampling point 

locations defined by standard coordinates can be transformed into those in actual 
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coordinates. The results of mapping of these points onto a series of domains of different 

shapes are shown in Fig. 3.4. The red-solid lines indicate the boundaries of real domain. 

It is noticed that the all the sampling points are exactly transformed into boundaries or 

inner parts of real domains. 

 

(a) Straight edges (b) Circular 

(c) Sector (d) One quadratic curved edge 

(e) One cubic curved edge (f) Two curved edges 
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Fig. 3.4 Domains on actual coordinate system 

 

Fig. 3.5 Irregular sub-domain (361 sampling points) 

 

       

(a) Sampling points on the boundary               (b) Inner sampling points 

               Fig 3.6 Irregular domain (Arc + Quadratic + Arc + Linear) 

 

To further determine the accuracy of mapping the interior sampling points, 361 sampling 

points are considered for a grossly irregular domain. Fig. 3.5 shows that all interior points 

in the standard element are mapped inside the actual irregular sub-domain. However, Eq. 

3.1 is not always valid for each and every irregular shape. For example, although Fig. 3.6 
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(a) shows that the sampling points on the boundaries of the standard element are mapped 

exactly on the boundaries of the real domain; a few interior sampling points have been 

mapped slightly outside at some edges of the real domain as shown in Fig. 3.6 (b). 

Therefore, in the case of actual problems, proper geometric discretization process of 

highly complex geometries will enable avoiding the situation shown in Fig. 3.6 (b). 

 

 

Fig. 3.7 Typical laminated system with four laminas 

 

The mapping scheme defined in Eq. 3.1 is valid for purely 2D systems. In general, for 

3D modeling, additionally z-axis needs to be considered. To account for geometry of the 

3D elements, the standard element should be a cube with standard coordinates taken as (, 

, and ). In laminated system as shown in Fig. 3.7, however, top and bottom surfaces of 

layers are generally parallel. Therefore, from the characteristic of laminated systems and 

Eq. 3.1, the geometric mapping parameters for any layer i in 3D modeling of laminated 

systems can be expressed as follows 
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    (3.9) 

where Z represents mapping function for z-coordinate, and iz  and 1iz  denote the 

positions of the bottom and top faces, respectively, on the z-axis. 

 

3.3 Calculation of Energy Release Rate 

In general, based on an energy approach proposed by Irwin (1956) for an elastic body 

containing a crack, a crack-extension force (or crack-driving force) G, so-called energy 

release rate (ERR), can be defined as 

A
G




                                         (3.10) 

Here A is crack area and potential energy of an elastic body Π is defined as follows. 

WE                                         (3.11) 

where E is the strain energy stored in the body and W is the work done by external forces. 

According to linear elasticity theory, a body under constant applied loads obeys  

EW 2                                           (3.12) 

Then Eq. 3.11 can be rewritten by following form 

EEE  2                                  (3.13) 

Therefore, Eq. 3.10 can be expressed as 

A

E
G




                                            (3.14) 
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3.3.1 Strain Energy Release Rate 

A variety of methods have been used to compute ERR based on results obtained from 

finite element analysis. Among various methods, one of the simple techniques is strain 

energy release rate technique (Owen and Fawkes, 1983; SERR), often called finite crack 

extension method (Krueger, 2002). This SERR requires two complete analyses. In the 

first step with the actual crack length a, the strain energy is calculated as global forces on 

the structural level are multiplied with global deformations. Then the crack is extended 

for by an infinitesimal length (da) prior to the second analysis. In the second step, 

additional strain energy is calculated like in the first step. Thus, as shown in Fig. 3.8, the 

change in strain energy, dE, can be calculated as the difference between the values of two 

energies obtained from the two analyses Then the ERR can be obtained by applying Eq. 

3.14. Although the SERR is very simple method, it is difficult to compute ERR locally at 

crack front because the method provides one global total energy release rate. Also, the 

process requiring two analyses is somewhat cumbersome. 

 

 

Fig. 3.8 Calculation of change in strain energy by constant load control 
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3.3.2 2D VCCT for ESLM 

For fracture analysis for laminated plates with crack-like flaws and modeled with the 

proposed elements, 2D VCCT (virtual crack closure technique) is considered. This 

method is based on Irwin’s original observation (Irwin, 1958) that the work required to 

extend a crack by an infinitesimal distance a is equal to the work required to close the 

crack to its original length. This procedure requires two calculations; whereas, the 

modified VCCT adapted below requires just one calculation. The VCCT procedure of 

calculating energy release rate for a model using the proposed ESL element is based on 

reference (Rybicki and Kanninen, 1977). Fig. 3.9 represents configurations for 

undeformed plate with a crack of length a (before analysis) and the deformed case (after 

analysis) applying the VCCT on ESLM-based element. 

 

 

Fig. 3.9 Virtual crack closure technique for ESLM 

 

The discontinuity caused by the presence of crack is shown by a dotted line between the 

vertex modes. In the same figure, the adjacent vertex modes within a crack are assigned 
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identical coordinates allowing independent deformations in adjacent vertex nodes and 

side modes enabling both Mode I and II deformations, as shown in Fig. 3.9 (b). Like Fig. 

3.9, the basic premise of the method is that the energy E released when the crack is 

extended by a from a+a (point C) to a+2a (point D) is same as the required work, W, 

to close the crack between points C and D. Another premise is that an additional crack 

extension of a from a+a (point C) to a+2a (point D) does not noticeably change the 

deformation state at the original crack tip, point A and B in Fig. 3.9 (a). The significance 

of this assumption is that for crack tip location point D, the deformations at point C will 

almost be same as those at point A, when the crack tip located at point C. The 

aforementioned premises lead to the following relationships. 

)()( aEaaEEW                             (3.15) 

The work W for crack extension can be expressed as   

  



a

yx daVaUW
0

)()()()(
2

1               (3.16) 

where U and V relative displacement functions parallel to crack (x-direction) and normal 

to crack (y-direction), respectively. The stress components σx and σy also act parallel to 

the same axes. The variable ρ is the measure of distance of a point on the crack surface 

with the origin located at the crack tip. From Eq. 3.15 and Eq. 3.16, the total energy 

release rate can be expressed as 
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where t is thickness of a cracked plate. With nodal forces ( xFC , yFC ) at vertex node C and 

relative displacements (u, v) between vertex nodes A and B, the total energy release rate 

can be expressed as 
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In 2D crack problems, the total energy release rate can be calculated from individual 

component modes using the following uncoupled equations 
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2
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II                               (3.19) 

So, the energy release rate expressions take the form 

III GGGtotal                                (3.20) 

The nodal forces F at vertex node C represent the summation of nodal forces for 

adjacent elements on one side of the crack and, say in the case of y
cF , will be based on 

the two shaded elements shown in Fig 3.9 (b). To calculate an internal force F  in any 

direction, say x or y, at a vertex node k of an ESLM-based element, the elasticity matrix 

88][ L  and the strain vector T
81ˆ    (Eq. 2.56) are used, so that 

T
8188

T
81 ˆ][}{ 

  LBF                                 (3.21) 

where strain vector { B } is a column vector of strain matrix qB 8][  used in Eq. 2.24, 

corresponding to the degrees of freedom in the desired direction at vertex node k. 

Substituting Eq. 2.24 into Eq. 3.21, the internal forces are given by 

T
188881

* ][][ qqBLBF 
                            (3.22) 

 

3.3.3 3D VCCT for PDLM and FDLM 

In the case of 3D VCCT, the concept of 2D VCCT is extended in the z-direction. In 

doing so, the extension of the method from 2D to 3D requires adding displacement w and 
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stress z  in the z-direction. So, Eq. 3.17 is modified to 
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The total energy release rate within any layer i applying 3D VCCT to elements based on 

discrete-layer models can be written as follows. 
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In a 3D crack problem, Mode III of the total energy release rate needs to be added, so that.  

IIIIII GGGGtotal                               (3.25) 

Therefore, as in 2-D VCCT, the modal energy release rates will have the following forms. 
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Meanwhile, x
iF , y

iF , and z
iF  refer to crack-sliding, crack-opening, and crack-tearing 

forces. Also, u, v, and w are relative displacements corresponding to x
iF , y

iF , and z
iF . 

Superscripts denoted by bot and top mean bottom and top surfaces. it  is a thickness of 

layer i. Fig. 3.10 represents the 3D VCCT on the elements based on discrete-layer models 

graphically. From Fig. 3.10 (a) the relative displacements of layer 1 can be written as 

follows. 
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                             (3.27) 

In Fig. 3.10 (b), showing the three-layer laminated plate, for layer 1, the nodal forces are 

considered at vertex nodes I and J. These forces can be calculated by adding the internal 

forces obtained for elements 1 and 2.  

 

 

(a) 3D view after analysis 

 

(b) Side view 

Fig. 3.10 Virtual crack closure technique for elements based on discrete-layer model 
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Similar to the case of ESLM-based elements using 2D VCCT, in FDLM-based elements, 

the internal forces F  with the elasticity matrix lD 66]
~

[   used in Eq. 2.19, and strain 

vector l
zyx ,,}~{  defined in Eq. 2.12 or Eq. 2.13 are considered. 

l
zyx

lDBF ,,66
T

61 }~{]
~

[}
~

{ 
                                (3.28) 

Here strain vector }
~

{ B  is a column vector of strain matrix nB 6]
~

[  mentioned in Eq. 

2.24, based on the applicable degrees of freedom. Therefore, the internal force F  can 

be expressed as 

  T
166661

* ]
~

[]
~

[
~

nn
l BDBF 

                            (3.29) 

Additionally, in a similar way, the internal force of elements based on PDLM can be 

obtained from Eqs. 2.31, 2.32, and 2.38 in the following form. 

  T
155551

* ]
~

[]
~

[
~

nn
l BDBF 

                            (3.30) 

 

3.4 Adaptive Analysis Using Ordinary Kriging Interpolation 

In general, the process of stress smoothening at interfaces between elements is often 

required for adaptive analysis. In this study, ordinary Kriging (OK) interpolation 

technique is considered for stress smoothening. The OK interpolation technique is a 

method which predicts unknown values at an arbitrary location based on known values 

with associated weight factors at specific locations. The weight factors are assigned by 

examining the spatial variation of data. For distribution of the spatial variation, variogram 

is used. From the references (Chen and Jiao, 2001; Lloyd and Atkinson, 2001; Pardo-

Iguzquiza and Dowd, 2001), the semi-variogram γ(h) can be defined as 
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where u(x,y) is the value of the variable of interest at location (x,y), and E is the statistical 

expectation operator. The variogram, 2γ(h), is a function of the separation between points, 

)( 22 yxh  . It is not a function of the specific location (x,y). The semi-variogram 

can also be expressed as 
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where n  is equal to the number of pairs of values in which the separation distance is 

equal to h. Experimental semi-variogram by Eq. 3.32 can be approximated. Thus, for OK 

interpolation technique, one alike a theoretical variogram is usually chosen among some 

of the possibilities such as linear model, spherical model, exponential model and so on. In 

this study, to avoid manual selection of variogram model by trial-and-error, the third-

order polynomial model has been adopted for theoretical variogram as shown in Fig. 3.11 

by implementing it in a p-adaptive analysis using least square fitting. 

 

 

Fig. 3.11 Polynomial model for theoretical semi-variogram 
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In the Kriging technique, unknown value at any point a is calculated by multiplying 

the known values with the corresponding weight factors. The form is as follows 
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where i  is weight factor assigned to the available data and neighbor data ),( ii yxu  in 

the proximity of the location ),( aa yx  of unknown value. In OK, the weight factors add 

up to unity to ensure that the estimate is unbiased. 
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The Kriging variance associated to an OK estimate is called the minimum variance 

unbiased estimator or best linear unbiased estimator, since the constraint condition 

defined in Eq. 3.34 should be applied to minimize the variance of estimate errors. Thus 

the mathematical form can be expressed as 
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where 2
OK is error variance of ordinary Kriging. σ is defined as 
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Here u0 refers to the value to be determined. Using Lagrange multiplier, above formula 

can be expressed as 
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where );,...,,( 21  nL  is Lagrange objective function, and μ is Lagrange multiplier. 

Minimization of the objective function can be carried out by finding the partial 

derivatives with respect to i  and μ such that 
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Eq. 3.39 can be rearranged to the following form. 
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From Eq. 3.40, weight factors for any unknown value are calculated by following form. 
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The unknown values for m points can, then, be obtained from. 
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Meanwhile, for a posteriori error estimate for p-refinement, it is inevitable to slightly 

modify the existing superconvergent patch recovery (SPR) technique (Zienkiewicz and 

Zhu, 1992) because the number of Gauss points in each element is different when non-

uniform p-distribution exists. The elemental error measure in SPR technique is quantified 

by computing the strain energy contained in the difference between the discontinuous p-

FEM solution at the sampling points and the smoothened solution. The energy norm of 

the error in the displacement field proposed by SPR technique is given by 

       

 dDe pp
r  *1T*                       (3.43) 

where σ* is the smoothed stress field by projection; σp the computed stress at Gauss points 

by non-uniform p-refinement; [D] the constitutive matrix; Ω the mesh domain. Thus the 

error in terms of stresses may be computed either exactly using the exact stress field, ̂ , 

or it can be estimated using σ*: 

ppe   *
                                 (3.44) 

in which the smoothed continuous stress field, σ*, is derived from the discontinuous finite 

element stresses σp. This means that the nodal values can be obtained by fitting surfaces 

to the sampling point values in a patch of elements by using OK interpolation, and then 

averaging the contributions from all element patches meeting at a node. The estimated 

stresses at the non-Gauss points can be computed by the weighted combination of 

stresses at Gauss points like Eq. 3.33. The energy norm of the displacement field can be 

expressed in terms of stresses as 

       

 dDr pp  1T
ˆ                         (3.45) 

The relative error can then be defined as 
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A typical patch normally consisting of four elements is adaptively refined by increasing 

the polynomial order uniformly. Gauss points are located symmetrically in a regular 

pattern. On the contrary, the distribution of the Gauss points will be irregular with non-

uniform p-distribution. This raises the issue of effectively maintaining functional 

continuity across the inter-element boundary. In this study, the functional continuity 

between elements different polynomial orders sharing a common edge is achieved by 

constraining to zero the extra edge terms in the higher order element. 

 

3.5 Numerical Integration 

For the evaluation of some integrals like Eq. 2.27, Eq. 2.40, and Eq. 2.5-60, both 

Gauss-Lobatto quadrature and Gauss-Legendre quadrature are considered. Gauss-

Legendre quadrature has widely been used in finite element analysis. The general form 

for 1D quadrature in standard coordinate system is as follows. 

 



1

1
1

)()(
n

i
ii xfcxf                                (3.47) 

where c is weight factor and n the number of sampling points. It is well know that in this 

quadrature technique, x1 and xn is not exactly in accordance with -1 and 1, respectively, 

which are position of end points in standard coordinate. It means that stresses of two end 

points, that is, nodes in an element, cannot directly be obtained. Thus the process of 

extrapolation is additionally required for obtaining stresses at nodes in present models. In 

order to avoid this additional calculation, Gauss-Lobatto quadrature which can directly 
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obtain stresses at nodes can be chosen to evaluate some of the integrals. The general form 

for one dimensional quadrature with n sampling points in standard coordinate system is 

given by 

 






1

1

1

2

)()]1()1([)(
n

i
ii xfffxf                        (3.48) 

where α and ω are weight factors which are determined by following forms. 

2
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2

in
i xPnnnn 



                           (3.49) 

The abscissas xi are the roots of the )(1 xPn  where P(x) is a Legendre polynomial. In the 

application of Gauss-Legendre and Gauss-Lobatto for numerical evaluation of integrals, 

the required number of optimally located sampling points within an element depends on 

the p-level, and is given by 






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

modelslayerdiscretefor)()(

ESLMfor)(
2

2





zxy

xy

optimal
pp

p
n            (3.50) 

where β = 1 for Gauss-Legendre quadrature and 2 for Gauss-Lobatto quadrature, In 

addition, pxy and pz are p-level chosen for two- and one- dimensional shape functions, 

separately. 

The weight factors and Gauss points for the application of these techniques are 

calculated in CTLAP. The possible numbers of sampling points within the interval of 

standard coordinates, (-1, 1), are nearly unrestricted because about 8000 sampling points 

within an interval were tested using MATLAB programming. Actually, 2~15 sampling 

points with respect to one axis are approximately used according to the order of shape 

functions used in the model. 
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CHAPTER IV 

 

VERIFICATION AND VALIDATION OF PROPOSED MODELING SCHEMES 

 

4.1 Overview 

In order to validate and evaluate the developed simulation tools, some basic examples 

such as isotropic and anisotropic single-layer and multi-layer plates are analyzed. The 

results of the developed tools are compared with analytical solutions available in the 

published literature, and with values based on commercial software. 

 

4.2 Isotropic Single-Layer Plates under Tensile Loading 

As the first example, a 30 in × 10 in cantilever plate (E=3×107 psi, ν=0.0 or 0.3) 

subjected to uniaxial tension, shown in Fig. 4.1 (a), is considered. The thickness of the 

plate is 2 in. A three-element model of the computational domain shown in Fig. 4.1 (b) is 

subjected to applicable essential (constrained in all three directions at the fixed end and 

constrained in the y-direction on the boundary corresponding to the line of symmetry) 

and the natural boundary condition (at the free end). 

 

 

Fig. 4.1 Cantilever plate under tensile loading 
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The combination of element types assigned to three elements in each model is shown 

in Table 4.1. Model A~C are composed of only one of the element three developed types, 

namely, ESLM, PDLM and FDLM. The meshes in Model D~F consist of elements based 

on DLTM to allow transition between different element types. In Model D~F, transition 

elements are introduced to allow modeling with different element types in the same 

model. To compare the results from these models with those of commercial finite element 

code, this example problem is also analyzed by ANSYS. The ANSYS models are based 

on linear isoparametric elements Plane42 for 2-D modeling and Solid45 for 3D modeling. 

The results from these analyses are shown in Table 4.2. 

 

Table 4.1 Models assigned to each element 

Model Types Element 1 Element 2 Element 3 

Model A ESLM ESLM ESLM 
Model B PDLM PDLM PDLM 
Model C FDLM FDLM FDLM 
Model D FDLM PDLM ESLM 
Model E ESLM FDLM PDLM 
Model F PDLM ESLM FDLM 

 

 Table 4.2 Maximum displacements (unit: inch) and stresses (unit: psi) 

Type 

Poisson’s ratio = 0.0 Poisson’s ratio = 0.3 

Maximum 
displacement 

Maximum 
stresses 

Maximum 
displacement 

Maximum 
stresses 

2D elements of ANSYS 0.20000×10-2 2000.0 0.19874×10-2 2062.1 

3D elements of ANSYS 0.20000×10-2 2000.0 0.19564×10-2 2073.7 

Model A 0.20000×10-2 2000.0 0.19805×10-2 2143.2 

Mode B 0.20000×10-2 2000.0 0.19805×10-2 2143.2 

Model C 0.20000×10-2 2000.0 0.19407×10-2 2439.3 

Model D 0.20000×10-2 2000.0 0.19805×10-2 2143.2 

Model E 0.20000×10-2 2000.0 0.19805×10-2 2143.2 

Model F 0.20000×10-2 2000.0 0.19805×10-2 2143.2 



81 

It is evident from this table that with a zero value for Poisson’s ratio, the maximum 

displacements and stresses for all the models are same as those with ANSYS regardless 

of whether 2D or 3D elements are used. However, when the Poisson’s ratio equals 0.3, 

displacement and stress values shown in Table 4.2 are not exact agreement due the effect 

of non-zero Poisson’s ratio in the presence of fixed support condition. To verify the 

accuracy of the results obtained by the proposed analysis tools, convergence test is 

implemented by increasing the NDF by p-refinement in the developed scheme, and h-

refinement in ANSYS. As expected, Fig. 4.2 illustrates that the convergence 

characteristics of ESLM and PDLM are similar to that of 2D model of ANSYS, and the 

converged value of FDLM agree with the 3D model of ANSYS. In addition, it is seen that 

PDLM has more rapid rate of convergence ANSYS 3D model based on h-refinement. 
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Fig. 4.2 Maximum displacements with variation of NDF 
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Fig. 4.3 shows comparison of maximum stresses (xx) by Model A~C and ANSYS with 

variation of NDF. It is noticed that maximum stress continues to go up with an increase of 

NDF at the corner points in the supported end, where stress singularity is expected. Also, 

it is shown that with increasing NDF, the proposed models using p-refinement approach 

the peak stress value more rapidly than ANSYS models. 
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Fig. 4.3 Variation of maximum stresses with NDF 

 

Fringe plot of stresses (xx) are shown in Fig. 4.4 (a) for the case with ν=0 and in Fig. 4.4 

(b) when ν=0.3. The existence of stress singularity at the corner of fixed support is 

evident from Fig. 4.4 (b). The stress fringes shown in Fig. 4.4 are typical for all the 

models including models using DLTM and ANSYS models. To further examine the 

accuracy of the proposed DLTM-based elements for problem with stress singularity, Fig. 

4.5 shows the variation of displacement with the p-level of shape functions in the xy-
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plane for the case with ν=0.3. It is evident from Fig. 4.5 that the converged characteristics 

of Models D~F with DLTM is identical with that of Models A and B in which just one 

element type such as ESLM and PDLM is used. On the other hand, Fig. 4.6 shows the 

variation of maximum stress with p-level. In this case also, the results of Model A, B, D, 

E, and F are same, except in the case of Model C simulating 3D behavior shows some 

difference. Therefore, the proposed elements are capable of modeling planar problems of 

elasticity quite accurately. 

 

 

(a) Stress fringes without stress singularity 

 

(b) Stress fringes with stress singularity 

Fig. 4.4 Stress fringes for normal stresses (σxx, psi) 
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Fig. 4.5 Variation of maximum displacement with p-level 
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Fig. 4.6 Variation of maximum stresses (σxx) with p-level 
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4.3 Isotropic Single-Layer Plates under Uniformly Distributed Transverse Loading 

In this example, the simple problem of a simply supported isotropic (ν = 0.25) plate 

under uniformly distributed transverse loading, q0, is solved to evaluate the accuracy and 

efficiency of the developed modeling schemes in 2D and 3D modeling of plate bending 

problems. The geometry and coordinate system used for the plate are shown in Fig. 4.7. 

The direction of z-coordinate is obtained by the right-hand rule with the limits defined as 

-h/2 ≤ z ≤ h/2, where h is the thickness of the plate. Taking advantage of two-way 

symmetry, only one quadrant of the plate is modeled by a single element using ESLM, 

PDLM, and FDLM, respectively. The boundary conditions for ESLM, PDLM and FDLM 

are presented in Table 4.3 and the identical boundary conditions are applied across the 

thickness. For ESLM solution, the shear correction factor is assumed as 5/6. The 

deflections and stresses are normalized as 







 0,
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h
xxxx             (4.1) 

 
where E is Young's modulus. 

 

 

Fig. 4.7 Geometry and coordinate system 
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Table 4.3 Boundary conditions 

Types (x, 0) and (x, a) (0, y) and (a, y) 

ESLM u = 0, x = 0, w = 0 v = 0, y = 0, w = 0 

PDLM u = 0, w = 0 v = 0, w = 0 

FDLM u = 0, w = 0 v = 0, w = 0 

 

Figs. 4.8 and 4.9 show the convergence of maximum deflections and normal stresses for 

plates with different aspect ratios when PDLM-based elements are used. The sequence of 

markers on each line represents the sequence of p-levels. From the Figs. 4.8 and 4.9, it is 

noted that the deflection converges at p-level=5 for all thickness ratios and the stress at p-

level=6. Similar convergence characteristics were also observed with ESLM and FDLM 

elements. 

 

0 

1 

2 

3 

4 

5 

0 50 100 150 200 250 300 350

D
ef

le
ct

io
n,

NDF

a/h=10

a/h=20

a/h=40

a/h=50

a/h=100

)0,2/
,2/

(
a

a
w

 

Fig. 4.8 Central deflections with variation of NDF in PDLM 
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Fig. 4.9 Normal stresses with variation of NDF in PDLM 

 

Table 4.4 Ratio of the required NDF of each approach to NDF of ESLM [1×1×1] 

 Mesh [1×1×1] Mesh [1×1×2] Mesh [1×1×3] 

ESLM 1.0 1.0 1.0 

PDLM 1.0 1.4 1.8 

FDLM {1,1} 1.2 1.8 2.4 

FDLM {1,2} 1.4 2.2 3.0 

FDLM {2,1} 1.6 2.6 3.6 

FDLM {2,2} 1.8 3.0 4.2 

 

Table 4.4 gives the ratio of the required NDF for each model as multiple of that for single 

layer ESLM [1×1×1]. The columns designated as Mesh [1×1×2] and Mesh [1×1×3] 

signify that the plate is treated as two- and three-layered, respectively. Also, the bracketed 

numbers of FDLM in Table 4.4 represent the degrees of 1D polynomial approximation 
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for in-plane and out-of-plane displacements of the plate, respectively. In the case of single 

layer representation, ESLM and PDLM agree at all p-levels. This is, however, not true in 

the case of multiple layer representations of the plate. It may also be noted from Table 4.4 

that to achieve convergence the required NDF with FDLM is significantly more than 

ESLM and PDLM. The comparisons of central deflection and maximum stress analyzed 

by ESLM and the reference values (Reddy, 2006) based on h-FEM are shown in Tables 

4.5 and 4.6, respectively. 

 

Table 4.5 Comparison of displacements 

a/h 
h-FEM (Reddy, 2006) 

 
ESLM 

 
4×4 Linear 
[NDF=69] 

2×2 Quadratic 
[NDF=64] 

p = 4 
[NDF=51] 

p = 5 
[NDF=69] 

10 
F 0.8105 0.9956 

 0.9943 0.9996 
M 0.9962 1.0017 

20 
F 0.5109 0.9881 

 0.9905 0.9989 
M 0.9952 1.0017 

40 
F 0.2059 0.9828 

 0.9757 0.9983 
M 0.9948 1.0017 

50 
F 0.1424 0.9818 

 0.9670 0.9983 
M 0.9948 1.0017 

100 
F 0.0398 0.9803 

 0.9674 1.0002 
M 0.9948 1.0017 

 

Table 4.6 Comparison of stresses 

a/h 
h-FEM (Reddy, 2006) 

 
p-FEM (1×1) 

 
4×4 Linear 
[NDF=69] 

2×2 Quadratic 
[NDF=64] 

p = 4 
[NDF=51] 

p = 5 
[NDF=69] 

10 
F 0.7826 1.0507 

 0.9891 1.0036 
M 0.9638 0.9855 

20 
F 0.5000 0.9710 

 0.9855 0.9928 
M 0.9638 0.9855 

40 
F 0.2029 0.9783 

 0.9601 0.9855 
M 0.9638 0.9819 

50 
F 0.1413 0.9819 

 0.9457 0.9891 
M 0.9638 0.9638 

100 
F 0.0399 0.9638 

 0.8732 1.0109 
M 0.9638 0.9855 
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The tabulated values represent the ratios of finite element solutions to the analytical 

solutions based on 2D elasticity theory. Both finite element models are based on first-

order shear deformation (or, Mindlin) theory and plane stress theory, and thus have the 

same NDF per node. The analytical solution is also based on the Mindlin plate theory. In 

the case of ESLM, full numerical integration is used whereas two types, full (F) and 

mixed (M) integration, are chosen in the h-FEM. It is noted that for comparable values of 

NDF, p-FEM results are invariably better than those by h-FEM for both displacement and 

stress values. The results based on ESLM are unaffected at p=5 or more. It is noticed that 

the better ratio of convergence can be obtained and special numerical integration 

techniques do not need to be considered in ESLM with higher-order shape functions.  
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Fig. 4.10 Normal stresses at center across the thickness of the plate 

 

Fig. 4.10 shows the stress distribution across the thickness of the plate using Gauss-

Lobatto quadrature and Gauss-Legendre quadrature, respectively. It is seen that there is 
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hardly any difference between the results obtained by the two quadrature rules. It is 

noticed from the Fig. 4.10 that the advantage of Gauss-Lobatto quadrature in terms of 

ability to directly compute accurate stresses at boundary points of an element can be 

somewhat offset by the need for more sampling points and, hence, increased 

computational effort to achieve the same degree of accuracy as Gauss-Legendre 

quadrature, which is almost exclusively used as the numerical quadrature tool in finite 

element analysis. 

 

Table 4.7 Comparison of deflections and stresses for various span-to-thickness ratios 

a/h Type w (a/2, a/2, 0) x (a/2, a/2, ±1/2) 

10 ESLM 4.791 ± 0.276 
 PDLM 4.754 ± 0.276 

 FDLM 4.770 
0.279 

- 0.278 
 Analytical Solution 4.791 ± 0.276 
    

20 ESLM 4.625 ± 0.276 
 PDLM 4.616 ± 0.276 

 FDLM 4.620 
0.277 

- 0.276 
 Analytical Solution 4.625 ± 0.276 
   

40 ESLM 4.584 ± 0.276 
 PDLM 4.582 ± 0.276 

 FDLM 4.583 
 0.277 
- 0.276 

 Analytical Solution 4.584 ± 0.276 
   

50 ESLM 4.579 ± 0.276 
 PDLM 4.577 ± 0.276 

 FDLM 4.578 
 0.277 
- 0.276 

 Analytical Solution 4.579 ± 0.276 
   

100 ESLM 4.572 ± 0.276 
 PDLM 4.572 ± 0.276 

 FDLM 4.572 ± 0.276 
 Analytical Solution 4.572 ± 0.276 
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The maximum lateral displacements and stresses calculated by ESLM, PDLM, and 

FDLM for different aspect (span-to-thickness) ratios are presented in Table 4.7, to 

compare with analytical solutions based on Mindlin plate theory. The finite element 

results are obtained based on p-levels allowing convergence up to four and three 

significant digits for displacements and stresses, respectively. It is shown that stresses and 

displacements by ESLM agree mostly with the analytical solutions, for all aspect ratios. 

Therefore, it can be concluded that ESLM-based results converge with increase of NDF 

to those of analytical solution in the single-layer plate regardless of being thin or thick. It 

can also be noted that the results of FDLM are similar to those of analytical solution in 

thin plate. However, it appears that the differences between the two solutions become 

pronounced larger with increase in plate thickness. 

In FDLM, the differences between magnitudes of stresses at bottom and top surfaces 

also become larger with increase in plate thickness; whereas, these are same for ESLM 

and PDLM models. This behavior can be attributed to the fact that FDLM contains full 

three-dimensional kinematics and constitutive relations. The stresses of PDLM in Table 

4.7 are found to be mostly similar to those of analytical solutions for all aspect ratios. 

However, the differences in displacement values between PDLM and analytical solution 

become more pronounced with increasing plate thickness. Indeed, in the case of thicker 

plates, the displacement discrepancy between PDLM and analytical solutions are more 

pronounced than that between FDLM and analytical solution. In order to understand the 

cause of this discrepancy, layer thickness based weighted averages of lateral 

displacements across thickness by FDLM were calculated. These results are compared 

with PDLM results in Table 4.8. It is noticed that weighted average results of FDLM are 
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identical to the lateral displacements by PDLM, for all span-to-thickness ratios. Therefore 

it is inferred that the lateral displacements of PDLM can be characterized as the average 

of the lateral displacement distribution across the thickness. 

 

Table 4.8 Central deflections of the plate 

a/h PDLM 
Midpoint across thickness in 

FDLM 
Weighted average across 

thickness in FDLM 

10 4.754 4.770 4.754 

20 4.616 4.620 4.616 

40 4.582 4.583 4.582 

50 4.577 4.578 4.577 

100 4.572 4.572 4.572 

 

4.4 Simply Supported Square Plate with a Central Square Cutout 

A square plate of side length, a=1m with a concentric square cutout of side length 

0.5a, shown in Fig. 4.11, is considered. The plate is assumed to have a thickness to length 

ratio h/a=0.01 and is subjected to a uniformly distributed load of intensity, q=1 kPa. For 

material properties, Young’s modulus, E, is taken as 210 GPa, and Poisson’s ratio, ν, as 

0.3. This example is characterized by the existence of singular moments at the four re-

entrant corners. For boundary conditions, the plate is considered as simply supported at 

outer edges, while the cutout boundaries are free. In order to validate the proposed 

element models, three element types, such as FDLM, PDLM, and ESLM, are considered. 

Taking advantage of four-way symmetry, only the eighth quadrant of the plate, shown 

shaded in Fig. 4.11, is considered. The selected computational domain is modeled with 

just one finite element of the types mentioned. 

 



93 

 

Fig. 4.11 Geometry and modeling scheme for a square plate with a central square cutout 

 

The results of analysis based on the three models are shown in Figs.4.12 through 4.17. 

The convergence of the normalized displacements (at points A and B in Fig. 4.11) with 

respect to p-level is shown in Figs. 4.12 and 4.13. These figures indicate that for p-levels 

equal to 5 or greater the results for all three cases converge to the reference value (Hrudey, 

1986). The singular nature of the moment field is evident from the results of the models 

based on p=8, as evidenced in Figs. 4.14 and 4.15. These figures show the distributions of 

Mx and My along Line 1-1, passing through the re-entrant corner. The closeness of the 

results with the reference values (Morley, 1970) is clearly demonstrated. In addition, Figs 

4.16 and 4.17 show the distributions of Mx and My along Line 2-2 lying on the y-y axis 

and away from the singular point corners. It may be noted that a single element model is 

able to model both smooth and singular responses of the problem without the need for 

supplementing with any especial function. 
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Fig. 4.12 Convergence of displacements with different p-levels at Point A 
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Fig. 4.13 Convergence of displacements with different p-levels at Point B 
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Fig. 4.14 Bending Moment Mx across Line 1-1 
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Fig. 4.15 Bending Moment My across Line 1-1 
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Fig. 4.16 Bending Moment Mx across Line 2-2 
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Fig. 4.17 Bending Moment My across Line 2-2 
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4.5 Anisotropic-Multi-Layer Plates under Sinusoidal Loading 

In order to evaluate the performance of the developed models (ESLM, PDLM, and 

FDLM) in the case of laminated systems, a series of simply supported (Table 4.3) 

bidirectional square-symmetric laminated composite plates under sinusoidal loading are 

considered. Each unidirectional fiber reinforced composite layer has the following 

material constants. 

TL EE 25    TLT EG 5.0    TTT EG 2.0    25.0 TTLT            (4.2) 

where L signifies the direction parallel to the fibers, T the transverse direction, LT  is 

the Poisson’s ratio for T-direction with respect to L-direction. The following three cases 

of square laminates with edge dimension a and thickness h having the material properties 

given in Eq. 4.2. 

Case 1: A three-ply symmetric laminate; the layups are of equal thickness with ply 

angles 0/90/0º. 

Case 2: A five-ply symmetric laminate, with fiber orientations alternating between 0º 

and 90 º with respect to the x axis, and the 0º layups are at the outer surfaces 

of the laminate. The total thickness of 0º and 90 º layups are same, with layups 

in the same orientation having equal thickness. 

Case 3: A nine-ply symmetric laminate of same construction as case 2. 

The distributed sinusoidal transverse load (Fig. 4.18) in all cases is defined as 

















a

y

a

x
qyxq


sinsin),( 0                         (4.3) 

where constant q0 is the amplitude. 



98 

 

Fig. 4.18 3D view in sinusoidal loading 

 

Other conditions of modeling and analysis for the three models used are similar to the 

cases of the previously considered single-layer plates. However, the normalized quantities 

of interest are defined as follows 
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h

z
z                                       (4.8) 

It is well known that the thicker the thickness of a laminated plate means more 

disagreement will appear in the results by 2D and 3D modeling. So, in Case 1, for a thick 

laminated plate with a/h=4, the sufficiently converged stress and displacement 



99 

distributions using p-level≥6 as obtained for ESLM, PDLM and FDLM models are 

shown in Figs. 4.19 through 4.21, and are compared with 3D elasticity solution (Pagano, 

1970) and CLT solution (Reddy, 2004b). It is seen that although the results by ESLM 

show large discrepancy with those based on PDLM and FDLM, the latter models show 

good agreement with 3D elasticity solution. Especially, the FDLM based results are 

almost identical to the exact three-dimensional elasticity solution. It is, thus, obvious that 

with the ESLM model, the through the thickness behavior of laminated plates with a large 

aspect ratio like a/h=4 cannot be represented well. 
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Fig. 4.19 In-plane normal stress distribution in three-ply laminated plates 
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Fig. 4.20 In-plane shear stress distribution in three-ply laminated plates 
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Fig. 4.21 In-plane displacement in three-ply laminated plates 
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Table 4.9 Ratios of computed deflections to exact values 

 p-level for two-dimensional shape functions 

 3 4 5 6 8 10 

PDLM 0.939 0.975 0.982 0.982 0.982 0.982 
       

FDLM {1,1} 0.922 0.957 0.964 0.964 0.964 0.964 

 {1,2} 0.922 0.957 0.964 0.965 0.964 0.964 

 {1,3} 0.922 0.957 0.964 0.965 0.964 0.964 

 {2,1} 0.950 0.986 0.993 0.993 0.993 0.993 

 {2,2} 0.950 0.986 0.993 0.994 0.993 0.994 

 {2,3} 0.950 0.986 0.993 0.994 0.994 0.994 

 {3,1} 0.957 0.992 0.999 1.000 1.000 1.000 

 {3,2} 0.957 0.992 1.000 1.000 1.000 1.000 

 {3,3} 0.957 0.992 1.000 1.000 1.000 1.000 

 

Table 4.10 Ratios of computed normal stress (σx) to exact values 

 p-level for two-dimensional shape function 

 3 4 5 6 8 10 

PDLM 0.946 0.847 0.850 0.857 0.857 0.857 
       

FDLM {1,1} 0.963 0.865 0.868 0.875 0.875 0.875 

 {1,2} 0.962 0.864 0.867 0.875 0.875 0.875 

 {1,3} 0.962 0.864 0.868 0.875 0.875 0.875 

 {2,1} 1.088 0.976 0.978 0.986 0.986 0.986 

 {2,2} 1.087 0.976 0.977 0.986 0.986 0.986 

 {2,3} 1.086 0.974 0.976 0.985 0.985 0.985 

 {3,1} 1.113 0.995 0.993 1.001 1.002 1.002 

 {3,2} 1.112 0.994 0.992 1.001 1.001 1.001 

 {3,3} 1.111 0.993 0.991 1.001 1.000 1.000 

 

Tables 4.9 through 4.10 show the values of deflections and normal stresses (σx) for 

PDLM and FDLM models with different p-levels. In these tables, the two numbers, 

separated by a comma, appearing within parentheses for FDLM refer to degrees of 1D 

polynomial approximation for in-plane and out-of-plane displacements in each layer. In 
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the case of FDLM results, the increasing degree of in-plane variation of displacements 

shows noticeable improvement. However, no such striking improvement is noticed as the 

polynomial degree for across-the-thickness variation is increased. In the case of PDLM, it 

is seen that the results do not quite converge to exact values. This is especially true in the 

cases of stresses. Unlike PDLM, it is found that the results of FDLM for displacement 

and stresses converge to exact solutions as higher p-levels are used. For Case 1, Table 

4.11 shows the ratio of the required NDF for various p-level of PDLM and FDLM to the 

required NDF for PDLM with p-level = 1. Although FDLM leads to better accuracy than 

PDLM, the latter is found to be computationally much less intensive. 

 

Table 4.11 Ratios of the required NDF to NDF of PDLM when p-level=1 

 p-level for two-dimensional shape functions 

 1 2 3 4 5 6 7 8 9 10 

PDLM 1.00 2.00 3.00 4.25 5.75 7.50 9.50 11.75 14.25 17.00
            

FDLM {1,1} 1.09 2.18 3.27 4.64 6.27 8.18 10.36 12.82 15.55 18.55

 {1,2} 1.36 2.73 4.09 5.80 7.84 10.23 12.95 16.02 19.43 23.18

 {1,3} 1.64 3.27 4.91 6.95 9.41 12.27 15.55 19.23 23.32 27.82

 {2,1} 1.64 3.27 4.91 6.95 9.41 12.27 15.55 19.23 23.32 27.82

 {2,2} 1.91 3.82 5.73 8.11 10.98 14.32 18.14 22.43 27.20 32.45

 {2,3} 2.18 4.36 6.55 9.27 12.55 16.36 20.73 25.64 31.09 37.09

 {3,1} 2.18 4.36 6.55 9.27 12.55 16.36 20.73 25.64 31.09 37.09

 {3,2} 2.45 4.91 7.36 10.43 14.11 18.41 23.32 28.84 34.98 41.73

 {3,3} 2.73 5.45 8.18 11.59 15.68 20.45 25.91 32.05 38.86 46.36

 

In Table 4.12, the maximum deflection and stress values calculated by PDLM are 

compared with the exact solutions when a/h = 10 and 50. With the 1×1×3 mesh, the 

results are, in general, in good agreement with reference values except that relatively 

lager errors are noted in yz -values. With the 90º-ply equally assigned to two or three 
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layers across the thickness, the results appear in the categories, 1×1×4 mesh and 1×1×5 

mesh, respectively. With1×1×4 mesh, there is no change in the values. However, with 

1×1×5 mesh, it is seen that the yz -values are improve without any noticeable change in 

other results. Owen and Li (1987a) emphasized the need for artificially introducing more 

layers when partially layer-wise theory, which is similar with PDLM, is applied. 

Therefore, to achieve accuracy of the transverse shear stress values in thin as well as 

thick laminated plates with a PDLM model, discretization into more layers is needed in 

the thickness direction than the actual number of laminated plies, especially when this 

number is small. 

 

Table 4.12 Maximum stresses and deflections by PDLM approaches 

a/h 
Source 
(Mesh) 

cw  
(a/2,a/2, 0)

x  
(a/2,a/2, ±h/2)

y  
(a/2,a/2,±h/6)

xy  
(0,0,  h/2) 

xz  
(0,a/2,0)

yz  
(a/2,0,0)

10 
Analytical Sol. 
[3D Elasticity] 

1.746 ±0.590 
0.285 

-0.288 
±0.0289 0.357 0.1228

 
PDLM 

(1×1×3) 
1.716 ±0.572 ±0.281 ±0.0283 0.358 0.0958

 
PDLM 

(1×1×4) 
1.716 ±0.572 ±0.281 ±0.0283 0.358 0.0958

 
PDLM 

(1×1×5) 
1.717 ±0.572 ±0.281 ±0.0283 0.359 0.1177

        

50 
Analytical Sol. 
[3D Elasticity] 

1.032 ±0.541 ±0.185 ±0.0216 0.393 0.0842

 
PDLM 

(1×1×3) 
1.031 ±0.540 ±0.184 ±0.0216 0.392 0.0674

 
PDLM 

(1×1×4) 
1.031 ±0.540 ±0.184 ±0.0216 0.392 0.0674

 
PDLM 

(1×1×5) 
1.031 ±0.540 ±0.184 ±0.0216 0.393 0.0823
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 Table 4.13 Maximum deflections and stresses in five-ply plates (a/h=2 and 4) 

a/h 
Source 
(Mesh) 

cw  
(a/2,a/2, 0)

x  
(a/2,a/2, ±h/2)

y  
(a/2,a/2,±h/3)

xy  
(0,0,  h/2) 

xz  
(0,a/2,0)

yz  
(a/2,0,0)

2 
Analytical Sol. 
[3D Elasticity] 

12.278 
1.332 

-0.903 
1.001 

-0.848 
0.0634 
-0.0836 

0.227 
0.229 
(0.02) 

0.186 
0.268 
(0.18) 

 
Analytical Sol. 
[Closed Form] 

11.211 ±0.402 ±0.552 ±0.0243 0.284 0.262 

        

 
h-refinement 
ESLM (4×4) 

11.209 ±0.399 ±0.548 ±0.0241 0.282 0.260 

 
p-refinement 
ESLM (1×1) 

11.211 ±0.402 ±0.552 ±0.0243 0.284 0.262 

        

 
p-refinement 

PDLM (1×1×5) 
12.665 ±0.944 ±0.819 ±0.0684 0.211 0.211 

        

 
p-refinement 

FDLM (1×1×5) 
12.278 

1.332 
-0.903 

1.001 
-0.848 

0.0634 
-0.0836 

0.227 
0.229 

(0.014)

0.186 
0.269 
(0.21) 

        

        

4 
Analytical Sol. 
[3D Elasticity] 

4.291 
0.685 

-0.651 
0.633 

-0.626 
0.0384 
-0.0394 

0.238 
0.238 
(0.02) 

0.229 
0.233 
(-0.11)

 
Analytical Sol. 
[Closed Form] 

3.623 ±0.437 ±0.503 ±0.0235 0.305 0.240 

        

 
h-refinement 
ESLM (4×4) 

3.622 ±0.434 ±0.499 ±0.0233 0.303 0.228 

 
p-refinement 
ESLM (1×1) 

3.623 ±0.437 ±0.503 ±0.0235 0.305 0.240 

        

 
h-refinement 

PDLM (4×4×5) 
4.249 ±0.642 ±0.601 ±0.0382 0.233 0.240 

 
p-refinement 

PDLM (1×1×5) 
4.269 ±0.634 ±0.593 ±0.0377 0.227 0.235 

        

 
p-refinement 

FDLM (1×1×6) 
4.291 

0.685 
-0.651 

0.633 
-0.626 

0.0384 
-0.0394 

0.238 
0.238 

(0.014)

0.229 
0.233 
(0.13) 
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Table 4.14 Maximum deflections and stresses in five-ply plates (a/h=10 and 20) 
 

a/h 
Source 
(Mesh) 

cw  
(a/2,a/2, 0)

x  
(a/2,a/2, ±h/2)

y  
(a/2,a/2,±h/3)

xy  
(0,0,  h/2) 

xz  
(0,a/2,0)

yz  
(a/2,0,0)

10 
Analytical Sol. 
[3D Elasticity] 

1.570 ±0.545 
0.430 

-0.432 
0.0247 
-0.0246 

0.258 
0.223 
0.223 

(-0.02)

 
Analytical Sol. 
[Closed Form] 

1.441 ±0.502 ±0.411 ±0.0221 0.346 0.200 

        

 
h-refinement 
ESLM (4×4) 

1.440 ±0.499 ±0.408 ±0.0219 0.344 0.198 

 
p-refinement 
ESLM (1×1) 

1.441 ±0.502 ±0.411 ±0.0221 0.346 0.200 

        

 
h-refinement 

PDLM (4×4×5) 
1.553 ±0.547 ±0.431 ±0.0247 0.259 0.230 

 
p-refinement 

PDLM (1×1×5) 
1.561 ±0.540 ±0.426 ±0.0244 0.253 0.225 

        

 
p-refinement 

FDLM (1×1×5) 
1.570 ±0.546 

0.430 
-0.432 

0.0247 
-0.0246 

0.258 
0.223 
0.223 

(-0.014)

        

20 
Analytical Sol. 
[3D Elasticity] 

1.145 ±0.539 ±0.380 ±0.0222 0.268 0.212 

 
Analytical Sol. 
[Closed Form] 

1.112 ±0.528 ±0.375 ±0.0215 0.362 0.184 

        

 
h-refinement 
ESLM (4×4) 

1.112 ±0.524 ±0.372 ±0.0214 0.359 0.183 

 
p-refinement 
ESLM (1×1) 

1.112 ±0.528 ±0.375 ±0.0215 0.362 0.184 

        

 
h-refinement 

PDLM (4×4×5) 
1.137 ±0.544 ±0.384 ±0.0224 0.270 0.217 

 
p-refinement 

PDLM (1×1×5) 
1.143 ±0.537 ±0.379 ±0.0221 0.263 0.212 

        

 
p-refinement 

FDLM (1×1×6) 
1.146 

0.538 
-0.539 

±0.380 
0.0222 
-0.0221 

0.268 0.212 
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Table 4.15 Maximum deflections and stresses in five-ply plates (a/h=50 and 100) 

a/h 
Source 
(Mesh) 

cw  
(a/2,a/2, 0)

x  
(a/2,a/2, ±h/2)

y  
(a/2,a/2,±h/3)

xy  
(0,0,  h/2) 

xz  
(0,a/2,0)

yz  
(a/2,0,0)

50 
Analytical Sol. 
[3D Elasticity] 

1.023 ±0.539 ±0.363 ±0.0214 0.271 0.206 

 
Analytical Sol. 
[Closed Form] 

1.018 ±0.537 ±0.362 ±0.0213 0.367 0.178 

        

 
h-refinement 
ESLM (4×4) 

1.018 ±0.533 ±0.359 ±0.0212 0.365 0.177 

 
p-refinement 
ESLM (1×1) 

1.018 ±0.537 ±0.362 ±0.0213 0.367 0.178 

        

 
h-refinement 

PDLM (4×4×5) 
1.018 ±0.544 ±0.367 ±0.0216 0.274 0.211 

 
p-refinement 

PDLM (1×1×5) 
1.023 ±0.538 ±0.363 ±0.0214 0.267 0.206 

        

 
p-refinement 

FDLM (1×1×5) 
1.023 ±0.539 ±0.363 ±0.0214 0.271 0.206 

        

100 
Analytical Sol. 
[3D Elasticity] 

1.006 ±0.539 ±0.360 ±0.0213 0.272 0.205 

 
Analytical Sol. 
[Closed Form] 

1.005 ±0.538 ±0.360 ±0.0213 0.368 0.177 

        

 
h-refinement 
ESLM (4×4) 

1.004 ±0.535 ±0.357 ±0.0211 0.366 0.176 

 
p-refinement 
ESLM (1×1) 

1.005 ±0.538 ±0.360 ±0.0213 0.368 0.177 

        

 
h-refinement 

PDLM (4×4×5) 
1.001 ±0.544 ±0.384 ±0.0213 0.275 0.211 

 
p-refinement 

PDLM (1×1×5) 
1.006 ±0.539 ±0.360 ±0.0213 0.268 0.205 

        

 
p-refinement 

FDLM (1×1×6) 
1.006 ±0.539 ±0.360 ±0.0213 0.272 0.205 

        

 CLPT 1.005 ±0.539 ±0.359 ±0.0213 0.272 0.205 
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In Tables 4.13 through 4.15, the maximum deflections and stresses obtained by 

different models in the laminated plate with five layers (Case 2) are compared with those 

of 3D elasticity solution (Pagano, 1970) and the closed-form solution (Reddy, 2004b) for 

five side-to-thickness ratios, namely, a/h=2,4,10,20,50,100. The h-refinement results 

from references (Reddy, 2004b; Owen and Li, 1987a) are based on selective integration 

and/or extrapolation technique, for better prediction of nodal stress values. The current 

results based on p-refinement converged satisfactorily only when higher p-levels were 

used, without any mesh refinement, but with regular integration. In the Tables 4.13 

through 4.15, although p-refinement invariably shows better accuracy than h-refinement, 

the NDF required with the two numerical models are quite different. In order to examine 

performance of ESLM, PDLM and FDLM based p-FEM models, a range of thin to thick 

laminated plates are considered. It can be seen that for the full range of thicknesses 

considered, FDLM based results converge exactly to solutions based on 3D elasticity. It is 

also noted that the displacements and stresses based on ESLM tend to converge to the 

closed form solutions for all the values of side-to-thickness ratios considered. PDLM 

based results has been found to have relatively smaller error than those by ESLM. 

Especially, the thicker the laminated plate is, the closer the PDLM based results are to 

exact solutions, which is contrary to the performance of ESLM based model. 

In Figs. 4.22 through 4.24, the distribution of in-plane displacements, normal stresses, 

and transverse shear stress, which are calculated by FDLM, are shown for nine-ply 

laminated plates (Case 3) with different values of a/h. All the results are found to be 

almost identical with the results from reference (Pagano and Hatfield, 1972), considered 

to be exact solution. 
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Fig. 4.22 In-plane displacement in nine-ply laminated plates 
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Fig. 4.23 Normal stress distribution in nine-ply laminated plates 
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Fig. 4.24 Transverse shear stress distribution in nine-ply laminated plates 

 

The across the thickness variations of the in-plane displacement u (in Figs. 4.25 

through 4.27) and normal stress xx  (in Figs. 4.28 through 4.30) based on ESLM, 

PDLM and FDLM based models are for aspect ratios of a/h=2, 4, and 10.  As the 

thickness is reduced (or, the plate aspect ratio is increased), the discrepancy in the results 

by the different models is found to reduce, converging eventually to CLT results which in 

turn are independent of the aspect ratio of the plate. Fig. 4.31 shows the transverse shear 

stress distribution by each model when a/h=10. Although the real behavior of transverse 

stresses follow continuity condition at interface of adjacent layers, PDLM and ESLM 

shown discontinuity in transverse shear stresses at ply interfaces. As with ESLM, the 

transverse shear stresses by PDLM are same within a layer. In addition, it is noted that the 

representative value of the transverse shear stresses within one layer by PDLM is 

approximately average of the values across the thickness of the layer obtained by FDLM. 
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Fig. 4.25 In-plane displacement in nine-ply laminated plates (a/h=2) 
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Fig. 4.26 In-plane displacement in nine-ply laminated plates (a/h=4) 
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Fig. 4.27 In-plane displacement in nine-ply laminated plates (a/h=10) 
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Fig. 4.28 Normal stress distribution in nine-ply laminated plates (a/h=2) 
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Fig. 4.29 Normal stress distribution in nine-ply laminated plates (a/h=4) 
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Fig. 4.30 Normal stress distribution in nine-ply laminated plates (a/h=10) 
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Fig. 4.31 Transverse shear stress distribution in nine-ply laminated plates in a/h=10 

 

4.6 Geometrically Nonlinear Analysis for Bending Problems 

   To investigate application of developed models using geometrically nonlinear 

analysis, several examples of isotropic and orthotropic rectangular plates are considered. 

For all examples considered, 1×1 mesh on xy-plane is adopted and the number of 

modeling layers through thickness is equal to the number of physical layers. 

   As the first example, an isotropic square plate subjected to uniformly distributed 

transverse loading q0, shown in Fig. 4.7, is considered with a=10 in and the thickness h is 

taken as 1 in. The boundary conditions are defined as in Table 4.3. The material 

properties are taken as 

0.3;psi108.7 6  E                         (4.9) 

Only one quadrant of the plate in the xy-plane is modeled by only one element taking 

advantage of two-way symmetry. The loading, deflection and in-plane normal stress are 

normalized as 
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Fig. 4.32 shows variation of deflection at center of plate with increase of loading. In 

the presence of tensile stresses caused by support constraints, deflections based on a 

geometrically nonlinear analysis will tend to be smaller due to stiffening effect of these 

forces. The nonlinear results based on FDLM, PDLM, and ESLM based models show 

good agreement with reference (Reddy, 2004a) using 16 elements (4×4 mesh) and first-

order shear deformation theory. Although, in the case of linear analysis, the results of 

ESLM based model and reference values are exactly same, in the case of nonlinear 

analysis, slight discrepancy (about 3%) is noted between current and reference values. 

This can be attributed to the fact that, unlike the reference nonlinear model, the present 

model applies geometric nonlinearity appropriate by using total Lagrangian formulation 

to appropriately reflect the changes in plate geometry.  
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Fig. 4.32 Plot of load versus center deflection 
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Fig. 4.33 shows variation of in-plane normal stresses with increasing load. Like 

displacement behavior, the effect of geometric nonlinearity on in-plane normal stresses 

obtained by the current models is well represented, showing good agreement with 

reference values. Also, good agreement is shown between present models and reference. 

However, slight discrepancy (within 5%) is noted between the values based on 2D 

elasticity theory models and those by FDLM model utilizing 3D elasticity theory. 

 

0

50

100

150

200

250

0 20 40 60 80

L
oa

d 
 P

ar
am

et
er

,

Stress,

Linear Analysis (Reference and ESLM)

Nonlinear Analysis (Reference)

Nonlinear Analysis (ESLM)

Nonlinear Analysis (PDLM)

Nonlinear Analysis (FDLM)

P

  

Fig. 4.33 Plot of load versus in-plane normal stress 

 

   The second problem considered consists of a simply-supported orthotropic plate 

under uniform load. As in Fig. 4.7, plate size, a, is 12 in and the thickness, h, is 0.138 in. 

The finite element models used are same as in the first example. The orthotropic material 

properties used are as follows 

0.32;psi1037.0

;psi1028.1;psi103
6

66





TTLTTTLT

TL

GG

EE


                 (4.11) 
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where subscript L denotes the fiber direction, and T denotes a direction which is 

orthogonal to L. The results of current models are shown in Fig. 4.34 and compared with 

references (Zaghloul and Kennedy, 1975; Reddy, 2004a). The values from Zaghloul and 

Kennedy (1975) are experimental results, and (Reddy, 2004a) uses h-FEM 2D elements 

and first-order shear deformation theory. In geometrically nonlinear analysis of h-FEM, 

the total Lagrangian formulation was used, like the current models. For this simply-

supported plate, results from current models are in good agreement with all reference 

values. 
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Fig. 4.34 Geometrically nonlinear response of an orthotropic plate 

 

   Finally, a four-layer (0°/90°/90°/0°) clamped plate under uniform load is considered 

as the third example. The material properties of a typical layer are given by 

0.2395;psi103125.0

;psi108315.1;psi108282.1
6

66


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EE


               (4.12) 
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Total thickness, h, is 0.096 in, and thickness of all the layers is same. Any data not 

mentioned for this problem is taken to be same as those for the second example. The 

variation of deflection for the current models with loading is shown in Fig. 4.35. Just like 

the last example, in this example the current models represent geometrically nonlinear 

behavior quite well. However, some discrepancy is noted between the results for current 

models and experiment; whereas, the same results are very similar to numerical results 

implemented by Reddy (2004a). The discrepancy with the experimental data can be 

attributed to differences between the assumptions made in the numerical models and the 

actual conditions present in the experimental setup. 
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Fig. 4.35 Nonlinear response of a laminated plate with clamped boundary conditions 

 

4.7 Remarks 

Some basic examples with in-plane and bending behaviors were solved to examine 

the validity and performance of current developed models (ESLM, PDLM, FDLM, and 

DLTM) based on p-FEM, and the results were compared with published results and in 
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some instances with results obtained by using commercial tools. On the basis of the 

numerical studies, the following preliminary observations can be made. 

1. While ESLM based on first-order shear deformation theory is inherently simple 

and computationally efficient due to the relatively small number of dependent variables 

that must be solved for, the solution accuracy and the capability of modeling laminated 

system with irregularities is questionable. In short, this model is inadequate for problems 

having 3D stress fields at the ply level or in relatively thick plates. 

2. In order to overcome these deficiencies of the ESLM, FDLM can be used with the 

assumption of separating displacement field expansions within each material layer. 

Therefore, the variation of the displacements through the thickness can be represented to 

any desired level of accuracy by independently increasing p-level with respect to planar 

shape function and shape functions in the thickness direction. Due to the presence of a 

large NDF associated a FDLM element, but its accuracy is comparable to a conventional 

3-D and is computationally more efficient than a full-blown 3D analysis. 

3. PDLM is computationally more efficient than FDLM, and at the same time 

provides more accurate representations of displacements and stresses than ESLM. 

However, because of the assumption of inextensibility of transverse normal, it is limited 

in accurately representing the 3D stress field. 

4. Considering the aforementioned advantages and disadvantages of each model, 3D 

and 2D mathematical models are concurrently analyzed with DLTM combining 3D and 

2D models in terms of solution accuracy, solution efficiency, and ease of implementation. 

5. Application of developed models using geometrically nonlinear analysis based on 

total Lagrangian approach is represented for isotropic, orthotropic and laminated plates. 
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CHAPTER V 

 

NUMERICAL ANALYSIS OF SYSTEMS WITH IRREGULARITIES 

 

5.1 Plates with Stepped Thickness 

In the presence of irregularities sudden change in thickness or section is generally 

characterized by the occurrence of stress singularity of unknown strength at such a 

location. In order to evaluate this condition, a cantilever plate with stepped thickness, as 

shown in Fig. 5.1, and subjected to in-plane and bending loads is considered.   

 

Fixed supports

2 m

1 m

0.7 m

10 m

0.1 m
0.3 m

σ1 = 1.2 MPa

σ2 = 30 Pa

x

y
z

x=0  

Fig. 5.1 Cantilever system with different sections 

 

For the plate material the Young’s modulus is assumed as 30 MPa and Poisson’s ratio as 

zero. As shown in Fig. 5.2, the cantilever is partitioned into four regions in the xy-plane, 

and the finite element model is selected as shown in Table 5.1 which shows five finite 

element models designated as Model A~E. Of these, first three uses identical elements in 

a system while later two types are composed of a combination of different element types, 
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along with appropriately located compatible transition elements. When 3D element is 

used in the thick section, discretization into three layers is considered. 

 

 

Fig. 5.2 Partition in xy-plane for finite element modeling 

 

Table 5.1 Models assigned to each region 

 Region 1 Region 2 Region 3 Region 4 

Model A 
FDLM 

(3 layers) 
FDLM 

(1 layer) 
FDLM 

(1 layer) 
FDLM 

(1 layer) 

Model B 
PDLM 

(3 layers) 
PDLM 

(1 layer) 
PDLM 

(1 layer) 
PDLM 

(1 layer) 

Model C ESLM ESLM ESLM ESLM 

Model D 
FDLM 

(3 layers) 
FDLM 

(1 layer) 
DLTM ESLM 

Model E 
PDLM 

(3 layers) 
PDLM 

(1 layer) 
DLTM ESLM 

 

5.1.1 Case of In-Plane Loading 

Stepped plate subjected to in-plane loading (σ1) shown in Fig. 5.1 is analyzed. The 

variation of axial displacement along the longitudinal centerline of the plate by Models 

A~C is shown in Fig. 5.3, showing seemingly identical values for all the models. Also, 
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using exaggerated scale, the plot of the same displacement for 0≤x≤2.5 is shown in Fig. 

5.4. The plot of Fig. 5.4 displays noticeable difference in displacements in regions near 

the step and beyond. It is seen that the displacements by Model C with only 2D elements 

are somewhat smaller than those by the 3D elements. Also, Model A and Model D which 

are composed of identical FDLM elements near the step region give identical results. The 

same is also true for Model B and Model E. 
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Fig. 5.3 Variation of displacement u along the length of the plate 
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Fig. 5.4 Variation of displacement u near region with step change in thickness 
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Figs. 5.5 through 5.7 show variation of displacements along the thickness of the plate at 

x=2 m, 1.85 m, and 1.69 m, respectively. It is seen from those figures that Model C with 

only 2D elements shows constant deflection across the thickness and thus fails to capture 

the correct pattern, especially near the step change in thickness region. 
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Fig. 5.5 Variation of displacement u along the thickness of the plate (x=2 m) 
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Fig. 5.6 Variation of displacement u along the thickness of the plate (x=1.85 m) 
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Fig. 5.7 Variation of displacement u along the thickness of the plate (x=1.69 m) 

 

Fig. 5.8 shows the variation of normal stress (xx) along the thickness of the thinner part 

of the plate at the step location (x=2.0 m). From the results of 3D models, it is noticed 

that considerably high stresses occur at the corners; whereas, can not simulate such 

behavior.  
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Fig. 5.8 Variation of stress σxx along the thickness of the plate (x=2.0 m) 
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In Fig. 5.9, the contour of normal stresses is shown near the region with stepped change 

in thickness from analysis based on Model A. The remaining models also show similar 

behavior, except Model C. 

 

 

Fig. 5.9 Stress (σxx) fringes near the region with step change of thickness 

 

From the results presented above, it can be told that in the case of the problem 

considered there is hardly any difference in 3D based models, whether transition element 

is used or not. The primary difference amongst the four models is that the required 

degrees of freedom in Model A (NDF=3762) is more than that for Model D (NDF=2964). 

The same is true between Model B (NDF=2736) and Model E (NDF=2280). However, 

although the least number of degrees of freedom is associated with Model C (NDF=1140), 

the corresponding results are gross erroneous in region of step change in thickness. It can 

therefore be stated that models with transition elements are more efficient than the rest. 
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5.1.2 Case of Transverse Loading 

Here the stepped plate with transverse loading σ2 at its tip, as shown in Fig. 5.1, is 

under consideration. Fig. 5.10 shows the variation of transverse deflection w along the 

length of the plate, and Fig. 5.11 shows an exaggerated view of the same plot over the 

region 0≤x≤2.26. The sharp change in the slope deflection curve near the step in the plate 

is as expected. In this case the results for all the models tend to agree closely. 
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Fig. 5.10 Variation of displacement w along the length of the plate 
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Fig. 5.11 Variation of displacement w in the region near the step in the plate 
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Fig. 5.12 Variation of displacement u along the thickness of the plate (x=2 m) 
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Fig. 5.13 variation of displacement u along the thickness of the plate (x=1.95 m) 
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Fig. 5.14 Variation of displacement u along the thickness of the plate (x=1.85 m) 
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Fig. 5.15 Variation of stress σxx along the thickness of the plate (x=2.0 m) 
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Figs. 5.12 through 5.14 show the variation of in-plane displacement u along the thickness 

of the plate at x=2 m, x=1.95 m, and x=1.85 m, respectively. It is seen that only Model C 

with 2D elements fails to capture the correct deformation pattern, while the results of 

Models D and E containing transition elements have no difference with those by Models 

A and B, respectively. The effect of modeling with FDLM, PDLM, ESLM, or suitable 

combinations thereof is most significant at x=2 m. In regions away from the step, the 

increasing correlation between the results of the models with 3-D elements and that with 

2D elements is obvious from the plots shown in Figs. 5.12 through 5.14. Fig. 5.15 shows 

the variation of normal stress, xx, along the thickness of the thinner plate at x=2.0 m. The 

results of Models A, B, D and E agree, but Model C fails to represent this true behavior. 

Fig. 5.16 shows normal stress fringes for the same problem. The extremely large stress 

values at step location appears to be unrealistically high and in reality the material will 

fail at this point well before reaching this stress level. This unrealistic stress value can be 

attributed to the presence of elastic stress singularity at the location, which is clearly 

revealed as the p-level of the approximation is increased. 

 

 

Fig. 5.16 Stress fringes (σxx) of the plate in the step region 
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5.2 Skew Plates 

 

5.2.1 Single-Layer Isotropic Rhombic Plate 

A simply supported rhombic plate under uniformly distributed transverse load, q = 0.7 

kPa, with skew angle, α = 60º, as shown in Fig. 5.17, is known to possess a strong 

moment singularity of the type 8.0r , at obtuse corners B and D.  

 

 

Fig. 5.17 Skew simply supported plate under uniformly distributed load 

 

Although no exact solution is available for the problem, Morley (1962) tried to address 

the problem by 2D elasticity approximation and finite difference solution and was able to 

give accurate estimates of deflection and bending moment at plate center. Here, the plate 

is separately discretized with FDLM-, PDLM-, and ESLM-based elements. For 

convenience in defining the model, the reference axes are rotated counter-clockwise by 

15 degrees, as shown in Fig. 5.17. With x´-, and y´-axis as the reference axes, the quarter 

plate area is discretized into five elements, by strongly grading the element sizes towards 
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the singular corner, as shown in Fig. 5.18. The material and geometrical properties are 

taken as: Young’s modulus, E = 210 GPa, Poisson’s ratio, ν = 0.3, the side length, a = 1 m, 

and plate thickness, t = 10 mm. 

 

 

Fig. 5.18 Finite element mesh for skew plate  

 

Figs. 5.19 and 5.20 show the convergence characteristics of lateral displacement w, and 

principal bending moment M1, both at the central point A, obtained by the three element 

types, as the in-plane p-levels are varied. From the results, it is seen that displacements by 

all the proposed element models converged at p-level = 5 and principal bending moments 

converged at p-level = 6, agreeing with Morley (1962) results. Table 5.2 gives a 

comparison of the present numerical results with those from the reference (Morley, 1962), 

showing excellent agreement. As the plate is very, all the computed results, based on 

ESLM, PDLM, and FDLM, are found to be almost the same. 
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Fig. 5.19 Convergence test of lateral displacement with p-level 
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Fig. 5.20 Convergence test of bending moment with p-level 
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Table 5.2 Comparison of lateral displacements and principal bending moments 

Types 
)1(3

250
24

3

qa

wEt
2

1100

qa

M
 

2
2100

qa

M
 

Reference 
2-D approximate solution 0.408 1.91 1.08 

Finite difference method 0.384 1.92 0.98 

Present models 

ESLM 0.4051 1.894 1.072 

PDLM 0.4049 1.894 1.072 

FDLM 0.4048 1.895 1.072 

 

In Figs. 5.21 and 5.22 are shown the variation of bending moments, xxM   and yyM   

along the line AB. With p-level = 10, the computed results closely follow those by 

Morley (1962), accurately representing singular behavior near Point B in the obtuse 

corner of the plate.  
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Fig. 5.21 Stress resultants of bending moment xxM   along line AB 



132 

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0 0.05 0.1 0.15 0.2 0.25 0.3

Distance away from point B

2-D approximate soluton

ESLM, PDLM & FDLM

2aq

M yy 

 

Fig. 5.22 Stress resultants of bending moment yyM   along line AB 

 

Table 5.3 gives maximum normal and shear stress values based on the three element 

types. It was noticed that model refinement near the obtuse corner, based on the hp-

version, led to unbounded increase in the stress values near the obtuse corner. The 

numerical values of maximum normal stresses occurring at the obtuse corner B are 

compared in Table 5.3. It can be seen that the results of PDLM and FDLM based models, 

however, are slightly smaller than those of ESLM. 

 

Table 5.3 Maximum normal stresses for p-level = 10 (unit: MPa)  

Types xx   yy   yx   

ESLM 7.39 41.27 20.49 

PDLM 6.72 37.62 18.67 

FDLM 6.16 40.62 19.50 
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In order to examine the efficacy of mixed element types along with transition element 

DLTM, the mixed models shown in Table 5.4 are used. Table 5.5 shows the resulting 

values of lateral displacements and two principal bending moments. The results obtained 

by all the models are found to be same. So, the use of mixed models along with DLTM 

did not make any difference, as far as the quality of the results is concerned. The results 

obtained from all modeling types are similar. 

 

Table 5.4 Comparison of lateral displacements and principal bending moments 

Model types Element 1 and 2 Element 3 and 4 Element 5 

Model A ESLM DLTM FDLM 

Model B FDLM DLTM ESLM 

Model C ESLM DLTM PDLM 

Model D PDLM DLTM ESLM 

Model E FDLM DLTM PDLM 

Model F PDLM DLTM FDLM 

 

Table 5.5 Lateral displacements and principal bending moments 

Types 
)1(3

250
24

3

qa

wEt
 2

1100

qa

M
 

2
2100

qa

M
 

Model A 0.4049 1.893 1.071 

Model B 0.4050 1.895 1.072 

Model C 0.4050 1.894 1.072 

Model D 0.4050 1.894 1.072 

Model E 0.4048 1.893 1.071 

Model F 0.4050 1.895 1.072 

 

The maximum normal and shear stresses at corner B, for all the models considered, are 

shown in Table 5.6. Square brackets represent the element type used in Element 5 located 
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at point B. As in Table 5.3, the value of maximum stress is dependent upon the type of 

model used for Element 5. The advantage of using mixed models along with DLTM is 

obvious from these results. 

 

Table 5.6 Maximum stresses in modeling types of using DLTM (unit: MPa) 

Types xx   yy   yx   

Model A [FDLM] 6.16 40.65 19.51 

Model B [ESLM] 7.39 41.27 20.49 

Model C [PDLM] 6.72 37.62 18.67 

Model D [ESLM] 7.39 41.29 20.50 

Model E [FDLM] 6.16 40.67 19.52 

Model F [PDLM] 6.72 37.62 18.68 

 

5.2.2 Laminated Skew Plates 

A simply supported laminated skew plates (0°/90°/0°) with total thickness h subjected 

to uniformly distributed loads is considered. In the absence of any analytical solution for 

skew laminated plates, the results based on present models (with FDLM-, PDLM-, and 

ESLM-based elements) are compared with the numerical results available in references 

(Sheikh and Chakrabarti, 2003; Kulkarni and Kapuria, 2007) using 2D finite element 

models based on first-order and third-order shear deformation. The example problems 

considered in the references are thin (a/h=100) and moderately thick (a/h=10) laminated 

plates with skew angle α = 30 º, 45 º, and 60º. Unidirectional fiber reinforced composite 

laminas of equal thickness with materials constants like those characterized in Eq. 4.2 are 

used. As shown in Fig. 5.23, the whole plate is discretized by a (3×3) mesh. The 
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deflection and the in-plane normal stresses at the center of the plate as obtained with 

proposed element models are compared in Table 5.7 along with the reference values. All 

results are normalized as below. 

 

 

Fig. 5.23 Simply-supported composite skew plate with 3×3 mesh 
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                     (5.1) 

It is obvious from Table 5.7 that the results with all the proposed element models are 

similar to the reference values. The ESLM results are closer to the reference values; 

whereas, the PDLM and FDLM values are somewhat larger. Also, it is not surprising that 

the discrepancy between the results increase as the plate aspect ratio increases from the 

thin case (say, a/h=10) to the moderately thick case (say, a/h=100). To further explore the 
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effect of increasing plate thickness, plates with aspect ratio, a/h, of 10 and 5 were 

considered. 

 

Table 5.7 Deflections and normal stresses for laminated skew plates 

a/h Skew angle (α) Types w  xx  yy  

10 30° ESLM 0.8195 0.6226 0.3701 
  PDLM 0.8838 0.6794 0.4031 
  FDLM 0.9011 0.6970 0.4092 
  Reference 1 0.8199 0.6098 0.3527 
  Reference 2 0.8665 0.6775 0.3901 
      
 45° ESLM 0.5514 0.4209 0.3869 
  PDLM 0.5794 0.4621 0.4067 
  FDLM 0.5927 0.4752 0.4150 
  Reference 1 0.5512 0.4143 0.3684 
  Reference 2 0.5725 0.4583 0.3961 
      
 60° ESLM 0.2452 0.1822 0.3134 
  PDLM 0.2517 0.2061 0.3165 
  FDLM 0.2572 0.2145 0.3252 
  Reference 1 0.2454 0.1808 0.3008 
  Reference 2 0.2461 0.1976 0.3005 
      

100 30° ESLM 0.5459 0.6587 0.2792 
  PDLM 0.5469 0.6592 0.2796 
  FDLM 0.5471 0.6595 0.2797 
  Reference 1 0.5447 0.6439 0.2626 
  Reference 2 0.5516 0.6622 0.2816 
      
 45° ESLM 0.3629 0.4494 0.3174 
  PDLM 0.3637 0.4500 0.3178 
  FDLM 0.3642 0.4504 0.3182 
  Reference 1 0.3628 0.4417 0.3006 
  Reference 2 0.3679 0.4493 0.3211 
      
 60° ESLM 0.1463 0.2063 0.2688 
  PDLM 0.1469 0.2069 0.2697 
  FDLM 0.1471 0.2071 0.2700 
  Reference 1 0.1453 0.2008 0.2570 
  Reference 2 0.1467 0.1985 0.2693 

Reference 1: FEM based on first-order shear deformation (Sheikh and chakrabarti, 2003) 
Reference 2: FEM based on third-order shear deformation (Kulkarni and kapuria, 2007) 
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To normalize transverse shear stresses, the following expression is used. 
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It can be seen in Table 5.8 that the results obtained by FDLM-based elements are 

reasonably close to those by layer-wise formulation based triangular elements (Ramesh et 

al., 2009). In addition, the results for ESLM, PDLM, and FDLM based models show 

increasing discrepancy as the thickness is increase and/or the skew angle is decreased. 

 

Table 5.8 Deflections and stresses for thick (a/h=5) laminated skew plates 

Skew angle (α) Types w  xx  yz  

30° ESLM 1.5601 0.5442 0.3048 
 PDLM 1.6870 0.7329 0.4699 
 FDLM 1.7346 0.7929 0.4738 
 Reference 1.7350 0.7932 0.4957 
     

45° ESLM 1.0587 0.3616 0.3313 
 PDLM 1.0856 0.4921 0.4262 
 FDLM 1.1217 0.5345 0.4339 
 Reference 1.1248 0.5361 0.4389 
     

60° ESLM 0.5148 0.1569 0.2535 
 PDLM 0.5015 0.2276 0.2732 
 FDLM 0.5160 0.2541 0.2792 
 Reference 0.5210 0.2576 0.2898 

Reference: Finite Elements based on 3D elasticity theory (Ramesh et al., 2009) 
 

Fig. 5.24 shows the variation of deflection at the center of plate with skew angle for 

different aspect ratios, a/h = 5, 10 and 100, representing thick, moderately thick and thin 

plates. In the case of thin plate, there is little difference in the results for ESLM, PDLM, 

and FDLM based models. Also, in the case moderately thick and thick plates, however, 

the discrepancy among these results appear when skew angles are small. However, it 

become smaller as the skew angle is increased. 
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Fig. 5.24 Variation of central deflection with skew angle 

 

Figs. 5.25 through 5.28 represent the influence of skew angle and plate aspect ratio (a/h) 

on the variation of transverse shear stresses ( yz ) through thickness of the plate at the 

location (a/2,0). It was found that only FDLM-based elements can show continuity of 

interlaminar transverse shear stresses. So, in order to study effect of degree of polynomial 

approximation in the thickness direction on transverse shear stress distribution, FDLM 

based model was considered and the p-level (Pz) was varied from 1 to 5, at the same time 

the in-plane polynomial degree, xyP , was kept fixed at 10. From these plots, it is evident 

that distribution of transverse shear stress tend to converge at Pz=3. However, minor 

stress oscillations are observed in the vicinity of the loaded surface for large skew angle 

and thicker plate. As is evident from Fig. 5.29, with higher p-level these oscillations can 

be reduced significantly and with high enough refinement (Pz=8), it can be eliminated 

completely. In Fig. 5.30 is shown the transverse shear stress distributions for different in-

plane p-levels (Pxy=3, 4,…, 10) when Pz=8, when a/h=5 and α=60°. It can be seen that for 
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Pxy > 3, the discrepancy between shear stress distributions is small and gets smaller as Pxy 

is increased, maintaining continuity in the shear stress distribution. It is evident from the 

above results that p-refinement in in-plane and out-of-plane directions is essential in 

order to accurately represent transverse shear stresses in laminated plates with large skew 

angle and thickness. 
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Fig. 5.25 Transverse shear stress distribution across thickness for a/h=10 and α = 15° 
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Fig. 5.26 Transverse shear stress distribution across thickness for a/h=10 and α = 60° 
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Fig. 5.27 Transverse shear stress distribution across thickness for a/h=5 and α = 15° 
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Fig. 5.28 Transverse shear stress distribution across thickness for a/h=5 and α = 60° 
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Fig. 5.29 Variation of transverse shear stress distribution with p-refinement in the 

thickness direction for a/h=5 and α = 60° 
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Fig. 5.30 Variation of normalized transverse shear stress distribution with p-refinement in 
the xy-plane for a/h=5 and α = 60° 



142 

For laminated plates with small skew angle but large thickness, 3D elements are needed 

for properly representing shear deformations. In 3D elements, however, much 

computational resources are required. So more efficient modeling needs to be employed. 

For computational efficiency, the mixed models like Models A, B, and C shown in Fig. 

5.31 (a) ~ (c) are suggested. Model A consists of FDLM and DLTM-based elements. In 

Models B and C, PDLM-based elements and FDLM-based elements are considered in 

obtuse corner region, unlike Model A where ESLM based elements are used instead. The 

comparison of results for different mesh configurations comprising of both single and 

mixed element models are shown in Table 5.9. The discrepancies between the results by 

different models are found to be very small, except that the mixed models were found to 

be computationally more efficient. 
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a
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ESLM ESLM ESLM

ESLM

ESLM

    
(a) Model A                               (b) Model B 

  
 (c) Model C                             (c) Model D 

Fig. 5.31 Various models for efficient modeling 
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Table 5.9 Comparison of deflections and stresses for efficient modeling 

a/h Skew angle (α) Types NDF w  xx  yy  

5 10° FDLM 12080 2.2549 0.9954 0.6472 
  PDLM 3740 2.2053 0.9230 0.6439 
  ESLM 2052 1.9425 0.6772 0.5486 
  Model A 3752 2.0213 0.9525 0.5800 
  Model B 4200 2.1715 0.9853 0.6217 
  Model C 6372 2.1836 1.0022 0.6261 
      
 30° FDLM 12080 1.7346 0.7929 0.6266 
  PDLM 3740 1.6870 0.7329 0.6155 
  ESLM 2052 1.5601 0.5442 0.5610 
  Model A 3752 1.6024 0.7641 0.5842 
  Model B 4200 1.6810 0.7856 0.6092 
  Model C 6372 1.700 0.8021 0.6123 
      
 50° FDLM 12080 0.9089 0.4382 0.4921 
  PDLM 3740 0.8800 0.4020 0.4674 
  ESLM 2052 0.8726 0.2914 0.4745 
  Model A 3752 0.8675 0.4165 0.4762 
  Model B 4200 0.8857 0.4288 0.4823 
  Model C 6372 0.9006 0.4407 0.4830 
      

10 10° FDLM 12080 1.1274 0.8515 0.3660 
  PDLM 3740 1.1084 0.8303 0.3621 
  ESLM 2052 1.0011 0.7566 0.3166 
  Model A 3752 1.0753 0.8553 0.3465 
  Model B 4200 1.1107 0.8574 0.3572 
  Model C 6372 1.1132 0.8585 0.3606 
      
 30° FDLM 12080 0.9011 0.6970 0.4092 
  PDLM 3740 0.8838 0.6794 0.4031 
  ESLM 2052 0.8195 0.6226 0.3701 
  Model A 3752 0.8711 0.6998 0.3964 
  Model B 4200 0.8894 0.7013 0.4022 
  Model C 6372 0.8949 0.7028 0.4056 
      
 50° FDLM 12080 0.4768 0.3873 0.3988 
  PDLM 3740 0.4662 0.3758 0.3904 
  ESLM 2052 0.4467 0.3400 0.3752 
  Model A 3752 0.4656 0.3841 0.3906 
  Model B 4200 0.4694 0.3864 0.3931 
  Model C 6372 0.4735 0.3874 0.3964 

 

Thickness-wise transverse shear stress distributions at point A (in Fig. 5.31 (d)) of the 

skew plates with a/h=5 and α=15° and 60° based on Model D in Fig. 5.31 (d) and a 
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model based on FDLM only (Pxy = 10 and Pz = 8) are shown in Figs. 5.32 and 5.33. 

Although the required number of degrees of freedom for Model D is 34% of the FDLM 

based model, accuracy of the results is almost same. 

 

0

0.2

0.4

0.6

0.8

1

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 

z/
h

Single Model (FDLM)

Mixed Model (Model D)

)2/,0( ayz  

Fig. 5.32 Variation of normalized transverse shear stress for α = 15° 
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Fig. 5.33 Variation of normalized transverse shear stress for α = 60° 
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5.3 Free Edge Stresses in Laminates 

In this section, free edge stresses are considered as examples of laminate systems with 

irregularities. At free edges of laminates, a singular point exists at the intersection of the 

bi-material ply interface and the free surface, where the numerically computed stresses 

tend to be large, decaying rapidly to the stress plateau away from the free edge. Such 

effect is often termed as ‘boundary layer effect’ or, more commonly, as ‘free edge effect’. 

Such an effect is the result of the stress transfer between laminate through the action of 

interlaminar shearing stresses caused by the presence of discontinuities in material 

properties between layers, particularly the mismatch in Poisson’s ratios and shear 

coupling terms. Thus the edge effects in laminated composite may result in edge 

delamination and transverse cracking even when the applied loading is much lower than 

the failure strength predicted. The stress distributions near the free edges are of 3D nature 

even though the laminates are only subjected to in-plane loading and it is difficult to 

conceive that conventional 2D elements alone can predict all the stress components of 

interest. 

 

5.3.1 Laminates in Extension 

At first, free edge stress problems with cross-ply or angle-ply lamination with four 

layers under uniform constant axial strain εo are considered. FDLM-based elements 

capturing 3D stress states are used to investigate the free edge effect. The laminated plate 

is shown in Fig. 5.34. Each of the four material layers is of equal thickness (h) and the 

laminate length and width are a=80h and b=8h, respectively. The overall thickness is 4h. 

The xy-plane is taken to be the middle surface of the laminate with the origin of the 
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coordinate system located at the centroid of the 3D laminate. Since the geometry and 

loading are symmetric about the xy-plane, only upper half of the laminate is modeled. 

Thus the computational domain is defined by  

hzbybaxa 20;;                       (5.3) 

Also, displacement boundary conditions for the laminate are 

0)0,,()0,0,(),,(;),,( 0  yxwavzyauuzyau             (5.4) 

Fig. 5.35 shows the modeling configuration with 3×3 mesh composed of FDLM-based 

elements. Due to symmetry in the layers, only two layers are required to be considered 

across the thickness. The material properties of the layers are taken to be those of a high-

modulus graphite/epoxy lamina idealized as homogeneous, orthotropic material with the 

following properties 

21.0GPa;861.5

;GPa48.14GPa;9.137

231312231312

321


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EEE
               (5.5) 

 

 

Fig. 5.34 Coordinates and geometry of composite laminate in extension 
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Fig. 5.35 Mesh configuration on xy-plane for free edge problems 

 

Convergence of the transverse normal stresses at free edge (y = b) are investigate in 

Tables 5.10 and 5.11 for (0/90)s and (90/0)s problems, respectively. The results are 

compared with the values of reference (Tahani and Nosier, 2003b) which used h-

refinement for in-plane and out-of-plane behavior. It is seen that difference between 

current values with higher order shape functions and reference values with the 

considerable number of numerical layers is within 1%. It is also seen that the numerical 

value of σz at 0°/90° interfaces is noticeably dependent on the p-refinement, not only Pxy 

for in-plane behavior but also Pz for out-of-plane. Moreover, it can be stated that the 

transverse normal stress component grows monotonically as the order of shape functions 

is increased, which suggests that a stress singularity may exist at two materials interface 

with different fiber angles (0°/90°). In contrast, the value of σz at the middle plane (z=0) 

is seen to converge to a constant value with increasing p-level. This is true because there 

can be no stress singularity at the interface of two layers with same fiber orientations. It is 

alos noted that the results are practically identical for Pxy ≥ 6 and Pz ≥ 4. In addition, both 

σxy and σxz are approximately close to zero as expected due to the symmetric nature of the 

cross-ply laminates. 
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Table 5.10 Convergence of interlaminar normal stresses for a (0/90)s laminated plate 

Location  
Pz 

1 2 3 4 5 6 7 8 

z = 0 Pxy = 5 1.543 1.638 1.750 1.865 1.865 1.865 2.001 2.001 

 Pxy = 6 1.890 1.912 1.965 1.990 2.001 2.001 2.002 2.003 

 Pxy = 7 1.890 1.963 1.980 2.010 2.012 2.012 2.012 2.012 

 Pxy = 8 1.890 1.963 2.012 2.012 2.013 2.013 2.013 2.013 

 Pxy = 9 1.890 1.967 2.012 2.015 2.013 2.013 2.013 2.013 

 Pxy = 10 1.890 1.968 2.012 2.015 2.013 2.013 2.013 2.013 

 Reference 
1.937
<4> 

2.008
<8> 

2.000
<12>

2.000
<16>

2.001
<20>

2.002 
<24 

2.002 
<24> 

2.002 
<24> 

          
z = h Pxy = 5 1.754 1.960 2.113 2.259 2.359 2.458 2.557 2.558 

 Pxy = 6 1.800 2.008 2.114 2.271 2.344 2.449 2.550 2.559 
 Pxy = 7 1.892 2.017 2.117 2.275 2.350 2.465 2.558 2.560 

 Pxy = 8 1.892 2.024 2.120 2.280 2.378 2.495 2.560 2.561 

 Pxy = 9 1.892 2.028 2.126 2.285 2.416 2.512 2.562 2.566 

 Pxy = 10 1.892 2.030 2.128 2.286 2.426 2.586 2.563 2.569 

 Reference 
1.462
<4> 

1.790
<8> 

2.017
<12>

2.180
<16>

2.307
<20>

2.411 
<24 

2.568 
<28> 

2.579 
<32> 

< >: The number of modeling layers 

Table 5.11 Convergence of interlaminar normal stresses for a (90/0)s laminated plate 

Location  
Pz 

1 2 3 4 5 6 7 8 

z = 0 Pxy = 5 -2.112 -2.223 -2.308 -2.572 -2.527 -2.572 -2.572 -2.572

 Pxy = 6 -2.114 -2.321 -2.362 -2.573 -2.574 -2.575 -2.573 -2.575

 Pxy = 7 -2.114 -2.328 -2.371 -2.573 -2.574 -2.575 -2.575 -2.576

 Pxy = 8 -2.116 -2.331 -2.389 -2.573 -2.574 -2.575 -2.575 -2.577

 Pxy = 9 -2.119 -2.334 -2.447 -2.574 -2.575 -2.576 -2.576 -2.578

 Pxy = 10 -2.119 -2.335 -2.449 -2.576 -2.576 -2.577 -2.578 -2.578

 Reference 
-3.288
<4> 

-2.683
<8> 

-2.588
<12>

-2.576
<16>

-2.574
<20>

-2.574 
<24 

-2.574 
<24> 

-2.574
<24>

          
z = h Pxy = 5 -1.387 -0.904 -0.627 0.132 0.412 0.660 0.745 0.796

 Pxy = 6 -1.322 -0.887 -0.742 0.230 0.440 0.678 0.751 0.799
 Pxy = 7 -1.318 -0.836 -0.697 0.232 0.448 0.680 0.758 0.802

 Pxy = 8 -1.314 -0.795 -0.587 0.334 0.452 0.682 0.762 0.807

 Pxy = 9 -1.303 -0.775 -0.456 0.238 0.456 0.687 0.768 0.808

 Pxy = 10 -1.258 -0.768 -0.316 0.240 0.458 0.690 0.774 0.809

 Reference 
-0.242
<4> 

0.170
<8> 

0.377
<12>

0.523
<16>

0.637
<20>

0.730 
<24 

0.809 
<28> 

0.880
<32>

< >: The number of modeling layers 
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Fig. 5.36 shows distribution for yz  vs. y at z = h at the mid cross-section for 

(0°/90°)s and (90°/0°) laminates. It is seen that the peak values of transverse shear 

stresses occur in the close vicinity of the free edge and then rather suddenly drop to zero 

at the free edge(y=b). This behavior is suspected due to the presence of interfacial 

singularity at the free edge. Some authors (Tahani and Nosier, 2003b) argued that stress 

singularity may not exist at all because of nonlinearity in the matrix material and the fact 

that real laminates do not exhibit distinct interfaces between layers as assumed in a 

macroscopic analysis. However, it is still believed by many researchers (Pipes and 

Pagano, 1970; Wang and Crossman, 1977; Wang and Choi, 1982a, 1982b; Nguyen and 

Caron, 2006) that mathematically there is a stress singularity at the free edge at the 

interface of different materials. It is to be remembered that no exact elasticity solution to 

the free edge problems is yet known to exist. Thus the results of present analysis are 

compared with the numerical solutions by Wang and Crossman (1977) and excellent 

agreement is noted between present solutions and reference values. 
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Fig. 5.36 Distribution of interlaminar shear stresses yz  at the 0°/90° interfaces 
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   Next, the prediction of free edge stresses for (45°/-45°) angle-ply laminate is 

considered. The finite element mesh, boundary conditions, and material properties are 

identical with those of the cross-ply laminate considered last. In order to verify the 

present analysis for in-plane behavior, in Fig. 5.37 is shown the axial displacement 

distribution across the width of the top surface. Good agreement is noted between the 

present analysis and the references (Wang and Crossman, 1977; Pagano, 1978a).  
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Fig. 5.37 Axial displacement across top surface 

 

Figs. 5.38 and 5.39 show the distribution of displacement, xx  and xy  along the width 

of the laminate at the center of the top layer. The results of present analysis and those 

given in the references are found to be nearly coincident for all values of y. Fig. 5.40 

shows the distribution of xz  along -45°/45° interface. Contrary to behavior noted in the 

case of in-plane stresses ( xx  and xy ), absolute values of xz  suddenly increase near 

edge of laminate, supposedly, due to free-edge effect. Moreover it is seen that the results 
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of present analysis for xz  is closer to those of Pagano (1978a) than those of Wang and 

Crossman (1977). 
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Fig. 5.38 Distribution of xx  along center of top layer 
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Fig. 5.39 Distribution of xy  along center of top layer 
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Fig. 5.40 Distribution of xz  along -45°/45° interfaces 

 

 Figs. 5.41 and 5.42 show that the distributions of transverse normal stresses near the 

free edge (x = -0.115a and y = 0.998b) computed by 1×1 and 2×2 mesh of FDLM-based 

elements, respectively, and compared with the results of h-FEM (15×5 mesh) (Reddy, 

2004b). Here, the fourth-order shape functions for out-of-plane displacement 

approximation were kept unchanged. It can be seen that considerable transverse normal 

stress develops near the interfaces with different fiber angles. It is also noticed that, in 

both cases, the computed results become closer to those of h-FEM with increasing p-level. 

Moreover, as one will expect, the 2×2 mesh shows more rapid convergence and better 

qualitative agreement with h-FEM. 
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Fig. 5.41 Transverse normal stresses across the thickness (1×1 mesh) 
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Fig. 5.42 Transverse normal stresses across the thickness (2×2 mesh) 
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To achieve computational efficiency, mixed-element models along with FDTM-based 

single models were also considered. Fig. 5.43 shows 2D in-plane discretization (3×3 

mesh) to assess the performance of the proposed DLTM model. 

 

 

Fig. 5.43 2D mesh of finite elements using simultaneously 2D & 3D models 

 

 The results (namely, axial displacements u, normal stresses xx , and shear stresses 

xy ) for in-plane behavior based on DLTM model were found to be identical with the 

results previously shown in Figs. 5.37 through 5.39. Also, the transverse normal and 

shear stresses from the mixed model are presented and compared with the results from 

single model composed of only FDLM-based elements and the h-FEM based ones from 

reference (Reddy, 2004b). These results are shown in Figs. 5.44 and 5.45. No difference 

is detected between the mixed model and single model based results. It may also that the 

required NDF of p-FEM based single model is invariably less than that with h-FEM 

model. Moreover, the required NDF is further reduced when mixed model is used.  
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(a) Single Model (only FDLM-based elements) 
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           (b) Multiple Model using FDLM-based and DLTM-based elements 

Fig. 5.44 Transverse normal stresses across the thickness (3×3 mesh) 
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(a) Single Model (only FDLM-based elements) 
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(b) Mixed Model using FDLM-based and DLTM-based elements 

Fig. 5.45 Transverse shear stresses across the thickness (3×3 mesh) 
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5.3.2 Laminates Undergoing Flexure 

To demonstrate the effectiveness of developed finite elements for determining free-

edge stresses in laminates under flexure, a simply supported (45°/-45°) laminated plate 

subjected to uniform transverse load is considered. The physical dimensions and material 

properties of the considered laminate are the same as in the previous axial extension 

example defined in Fig. 5.34 and Eq. 5.3, respectively. The uniform transverse load 0q  

is applied to the upper surface of the laminate and acts in the negative z direction. Unlike 

symmetric conditions about mid-surface in the previous axial extension example, there 

are no planes of symmetry in this problem. Thus the computational domain covers the 

entire laminate, such that 

hzhbybaxa 22;;                       (5.6) 

The displacement boundary conditions are given by Eq. 5.7. 
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                        (5.7) 

In h-FEM model, it is necessary to use highly refined mesh near free edges of interest, 

both in-plane and out-of-plane or thickness directions. The analysis uses single model 

comprising of FDLM with a 4×3 mesh in the xy-plane, as shown in Fig. 5.46. As in 

previous examples, the number of modeling layers is taken to be the same as the number 

of physical layers. But with h-FEM, significantly more number of discretized layers than 

the number of physical layers is needed. In the present analysis, however, only four 

discretized layers are used. As discussed in the following, the results of present analysis 

are compared with those from reference (Reddy, 2004b) based on h-FEM. 
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Fig. 5.46 2D mesh for free edge problems under bending 

 

   To investigate the convergence of transverse stresses, in Fig. 5.47 is shown the 

distribution of transverse normal stresses across the thickness at the free edge (x=0, y=b), 

for increasing values of in-plane p-levels (Pxy) while the out-of-plane p-level, Pz, is kept 

unchanged at 4. In the two middle layers, both with -45° fiber angle, the responses 

obtained by using different Pxy are almost the same, whereas, in top and bottom layers, 

the nature of distribution and magnitude of transverse normal stresses across the 

thickness is dependent on Pxy. It is, also, evident from the results that the transverse 

normal stresses in the top and bottom layers reach a converged value with increasing Pxy, 

except at their interfaces with the inner layers where the values tend to increase 

indefinitely with Pxy. Based on the results obtained, all stress values converged with Pxy ≥ 

7, except at layer interfaces with different fiber angles. Fig. 5.48 shows distribution of 

transverse normal stress across the thickness with variation of p-level for out-of-plane 

behavior (Pz), when the p-level for in-plane behavior (Pxy) is kept fixed at 4. It may be 

noted from the results that there little difference in transverse normal stress profile when 

Pz ≥ 4. The results in Figs. 5.47 and 5.48 are based on Pxy=8 and Pz=4. Figs. 5.49 and 

5.50 show distributions of transverse normal stresses and transverse shear stresses across 

the thickness. In the two figures, the results of present analysis are compared with those 
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of reference. It can be noted from the results that the responses by the present analysis 

and reference are almost same, although there is small quantitative difference in the two 

responses. Distribution of transverse normal stresses and transverse share stresses, at 

upper interfaces, across the width of the plate, for different fiber angles are shown in Figs. 

5.51 and 5.52, respectively. It is seen that the results of present analysis agree well with 

the reference values. It may be noted that the transverse normal stress is almost zero over 

the segment 7.0/0  by , and then it rises suddenly near the free edge of the laminate. 

Moreover, it can be seen that considerably high transverse shear stresses also occur over 

the same region, near the free edge. Thus, the results of Figs. 5.49 through 5.52, confirm 

the existence of singular stress field at the free edge of laminated plate under flexure. 
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Fig. 5.47 Convergence of transverse normal stresses with increase of p-levels Pxy 
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Fig. 5.48 Convergence of transverse normal stresses with increase of p-levels Pz 
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Fig. 5.49 Distribution of transverse normal stresses ( zz ) across the thickness 
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Fig. 5.50 Distribution of transverse shear stresses ( xz ) across the thickness 
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Fig. 5.51 Distribution of transverse normal stresses ( zz ) across the width 
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Fig. 5.52 Distribution of transverse shear stresses ( xz ) across the width 

 

As in the case of free edge problem with in-plane stress, the mixed model analysis 

was undertaken in the case of flexure problem as well. The 4×3 mixed model mesh is 

shown in Fig. 5.53. All other conditions of present mixed model analysis are identical to 

those of single model analysis using only FDLM-based elements. Also, the p-levels are 

taken as Pxy=8 and Pz=4. NDF of single model using only FDLM-based elements is 

20,366; whereas, NDF for mixed model analysis is 9,013. Thus the reduction in 

computational resources with mixed model is almost 50% of that for single model. 

 

 

Fig. 5.53 Modeling configuration on xy-plane using simultaneously 2D & 3D models 
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The transverse normal stress distribution obtained with the single model and mixed 

model are shown in Figs. 5.54 through 5.57. It is noted that the mixed model analysis 

captures the local 3D stress field quite accurately. However, there exists a small 

discrepancy between the single and mixed model results. In addition, it is noted from Fig. 

5.57 that small stress oscillations occur in mixed model results in transverse normal stress 

values over the segment where the single model values are close to zero. 
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Fig. 5.54 Distribution of transverse normal stresses ( zz ) across thickness at the free edge 
(x=0 and y=b) 
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Fig. 5.55 Distribution of transverse shear stresses ( xz ) across thickness at the free edge 

(x=0 and y=b) 
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Fig. 5.56 Distribution of transverse shear stresses ( xz ) across the width at upper 

interfaces for single and mixed models 
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Fig. 5.57 Distribution of transverse normal stresses ( zz ) across the width at upper 
interfaces for single and mixed models 

 

5.4. Plates with Cutout 

 

5.4.1 Unpatched Plates with Circular Cutout 

The purpose of this section is to study the effectiveness of patch repair of damage in 

the form of a cutout. For the sake of simplicity a circular cutout is considered first. With a 

circular cutout the finite element model will involve elements with one edge in the shape 

of the arc of a circle with radius equal to that of the cutout. In the context of a p-refined 

model, the elements will be large with the size being kept fixed as the model is refined. In 

this situation, in order to avoid geometrical errors at the curved boundary caused by 

linear mapping, elements with mapping of curved boundary using blending functions will 

be used. As shown in Fig. 5.58 (a), the plate with a hole and subjected to tensile loading 

is considered first to verify the applicability of the present model to such plates. 
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Fig. 5.58 Plate with circular hole 

 

It is well established that the maximum stress in an infinite elastic thin plate, 

subjected to uniaxial in-plane tension stress σ, is three times the average stress, occurring 

at the edges of the hole. The, corresponding stress concentration factor, Kt, is thus given 

by 

3max 



tK                               (5.8) 

However, when the plate is finite, Eq. 5.8 is not valid any more. For a thin plate of finite 

width with centrally located hole, the stress concentration factors can be calculated from 

(Pilkey and Pilkey, 2008) 
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where Ktg and Ktn are the stress concentration factors based on nominal stress defined 

over gross and net areas, respectively. Also, R refers to radius of the circular hole and W 

is half plate width. For numerical simulation, a quarter of the plate is considered by 

applying appropriate symmetry conditions. Fig. 5.58 (b) shows the configuration of the 

used mesh on xy-plane, which is composed of five FDLM-based elements. 

In Table 5.12 is shown a comparison of the reference values (Pilkey and Pilkey, 2008) 

of Ktg and Kkn, and the values calculated by present analysis, with W = 2 in., H = 5 in., R = 

0.375 in., and thickness = 0.1 in. Also, Young’s modulus and Poisson’s ratio values for 

the plate material are taken as E = 10.2×106 psi, and ν = 0.33. The results by present 

analysis are found to agree well with the reference values. Figs. 5.59 and 5.60 show the 

variation of normal stresses (σxx and σyy) along the lines of symmetry A-B and C-D, 

respectively, based on present analysis in comparison with the analytical solutions based 

on elasticity theory for an infinite plate (Ugural and Fenster, 2003), showing good 

agreement. As the stress concentration factors Ktg and Ktn are different, both are plotted in 

Fig. 5.61, showing little difference between present analysis and reference values. As 

R/W is increased from 0 to 1, Ktg increases from 3 to ∞; whereas, Ktn decreases from 3 to 

2. Although both the factors can be used to calculate the maximum stress, Ktn is the most 

commonly used factor, since the stress of interest is usually in the net cross section. 

 

Table 5.12 Comparison of stress intensity factors 

Ktg  Ktn 

Reference value Present analysis  Reference value Present analysis 

3.129 3.132  2.543 2.545 
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Fig. 5.59 Distribution of stresses on section A-B 
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Fig. 5.60 Distribution of stresses on section C-D 
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Fig. 5.61 Stress concentration factors for a plate of finite-width with a circular cutout 

 

5.4.2 Modeling of Patched Plates with a Circular Cutout 

As the next problem concerning patch repair of components with irregularities, the 

behavior of bonded patch repair of an aluminum plate with circular cutout, subjected to 

uniform tensile loading, is considered. Fig. 5.62 shows the basic geometry of a single-

side patched plate with circular cutout. Here the single patch is shown to be placed 

symmetrically with respect to the center of the hole and glued with an intervening layer 

of adhesive. The planar dimension of the aluminum plate are specified as Wal = 2 in., and 

Hal = 5 in., and the radius of circular hole, R, as 0.375 in. Also, the size of the square 

patch and adhesive is given by Hp=Wp = 0.5625 in.. Young’s modulus and Poisson’s ratio 

of aluminum are Eal =10.2×106 psi, νal =0.33, respectively. The patch material is taken to 

be identical with the material of the parent plate. Material properties of adhesive are 

specified as Ead =160.8×106 psi, and νad =0.34, respectively. 
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Fig. 5.62 Geometric configuration of patch-repaired aluminum specimen 

 

 

Fig. 5.63 Finite element mesh of patched plate 

 

As shown in Fig. 5.63, a quarter of the patch-repaired plate is discretized with 11 

FDLM elements (5 for parent plate and 3 each for patch and adhesive, when symmetry 
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conditions with respect to x- and y- axes are used. Also, additional boundary conditions 

used for referenced experimental studies (Barut et al., 2002) are applied as follows 

0),,( zHxu alz                              (5.11) 

This problem was also analyzed by Barut et al. (2002) using a h-version mesh with over 

about 20,000 solid elements involving a NDF of over 70,000. These numbers are 

significantly more than those for the present model. Actually, for the 11 element model 

with Pxy = 7 and Pz = 3 used herein, the total required total NDF is just 3,145.  

 

5.4.3 Effect of Relative Thickness in Patched Plates 

For studying the effect of relative patch thickness (Tal/Tp), two cases (Model A and B) 

are considered. The thickness of damaged plate, adhesive, and repair plate for these cases 

are given in Table 5.13.  

 

Table 5.13 Thickness in Model A and B 

 Model A Model B 

Damaged Plate (Tal) 0.088 in. 0.0635 in. 

Patch Plate (Tp) 0.024 in. 0.049 in. 

Thickness ratio(Tal/Tp) 3.67 1.30 

Adhesive (Tad) 0.0025 in. 0.0025 in. 

 

In order to examine the accuracy of the 11-element mesh shown in Fig. 5.63 is 

considered. The response of the plate is computed by both linear and geometrically 

nonlinear analysis with increasing applied load. For both the cases, the strain component, 

εyy, near the hole of the damaged plate, at the location where x = 0.46875 in., y = 0.0 in., z 
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= 0.0 in, versus the applied load are plotted in Figs. 5.64 and 5.65.  
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Fig. 5.64 Comparison of strain values with variation of external loading (Model A) 
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Fig. 5.65 Comparison of strain values with variation of external loading (Model B) 
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It can be observed that the results of Model A are nearly identical with the reference 

values (Barut et al., 2002). Also, it is seen that there is little difference between the linear 

and geometrically nonlinear analysis results. In the case of Model B, there is small 

discrepancy between experiment and linear numerical analysis results. The values of 

present analysis reflecting geometrical nonlinearity are closest to the experimental values; 

whereas, the h-FEM results show maximum discrepancy with present linear analysis 

results lying between the other two numerical results. In other words, the present non-

linear and linear results are closer to the experimental values than the reference h-FEM 

values. Based on these findings, it can be stated that the inclusion of geometric 

nonlinearity is important when the ratio of damaged material thickness and the patch 

thickness (Tal/Tp) is small. Table 5.14 shows the lateral displacements at top surface of 

patch plate (Point A; x = 0.15625 in. y = 0.00 in.) and also at the bottom surface of the 

parent plate (Point B; x = 0.71875 in. y = 0.00 in.), for a tensile loading of 800 lb giving σ 

=2272.73 psi in Model A and σ =3149.61 psi in Model B. It is evident from the table that 

the present analysis shows better agreement with experiment than the results of Barut et 

al. (2002) using h-FEM. 

 

Table 5.14 Comparison of lateral displacements at specified locations (unit: inch) 

Model 

Type 
Locations Experiment

Reference  

(Barut et al., 2002)

Present analysis 

Linear Nonlinear 

Model A 
Point A -0.00613 -0.00425 -0.00615 -0.00613 

Point B -0.00520 -0.00409 -0.00558 -0.00547 

      

Model B 
Point A -0.01315 -0.01025 -0.01405 -0.01350 

Point B -0.01125 -0.01021 -0.01196 -0.01150 
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Fig. 5.66 shows the variation of normalized normal stress resultants along x-axis 

beginning with the center of hole, for unpatched and patch cases (for Models A and B). It 

is evident from Fig. 5.66 that the patch reduces maximum normal forces by about 

35~40% from that of unpatched plate. Likewise, Fig. 5.67 shows normalized moment 

stress resultants for the same cases. 
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Fig. 5.66 Normalized normal force resultants along x axis 

 

Fig. 5.67 represents the bending response with patch. It is well known that out-of-plane 

deflection arises in the single-side-patched plate under tensile loading because of the 

local eccentricity effect of the asymmetric patch. Especially, in Model B which has 

relatively thinner damaged plate and thicker patch, this effect is much more prominent. 

Although the normal stress resultant in Model A is somewhat larger than that for Model B, 

the former case with smaller relative patch thickness is preferred. In the strain curves of 



175 

previous Figs. 5.64 and 5.65, Model B showed more discrepancy between experiment 

values and numerical analysis with increasing external loading. This may be attributed to 

more pronounced effect in Model B than in Model A, confirming the need for 

geometrically non-linear analysis. Figs. 5.68 (a) and (b) show the variation of normal 

stress at bottom, middle and top surfaces with distance from the edge of hole along x-axis, 

for Models A and B. 
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Fig. 5.67 Normalized moment resultants along x axis 
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(a) Model A 
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(b) Model B 

Fig. 5.68 Stress distributions at different surfaces of damaged plate 



177 

5.4.4 Effect of Adhesive in Patched Plates 

In general, the debonding of adhesive in externally bonded repaired system has an 

important effect on stiffness loss of total system and can create a local instability that 

leads to failure. Thus, for study of free edge effect in patch-repaired plates, some 

transverse stresses with singular behavior, which would cause debonding at local region, 

are investigated in Model A, the first of two models used in the preceding example. For 

comparison of absolute values of transverse stresses, the variation of stresses over the 

segment -2 ≤ y ≤ 10 on the y-axis is considered in the following plots. 

Figs. 5.69 through 5.71 show the distribution of stresses, xz , yz , and zz , in the 

adhesive across its thickness at the edge of the patch, for which x = 0.5625 in. and 0≤ y 

≤0.5625 in. It is noted that the transverse shear stresses, yz , grow slightly near the corner 

of the patch area, while the other two stress components are mostly constant along the 

patch edge. Also, the transverse stresses at interfaces between original plate and adhesive 

are relatively larger than those at other locations within the adhesive. 
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Fig. 5.69 Distribution of shear stresses τxz along y-direction at adhesive edge 
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Fig. 5.70 Distribution of shear stresses τyz along y-direction at adhesive edge 
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Fig. 5.71 Distribution of shear stresses σzz along y-direction at adhesive edge 

 

Likewise, Figs. 5.72 through 5.74 show the distribution of stresses, xz , yz , zz , at an 

edge of patch area where 0≤ x ≤0.5625 in. and y = 0.5625 in. It is to be noted that in this 

case the edge stresses are mostly larger than for the edge parallel to the y-axis. It can then 
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be arrived at that the transverse shear stresses yz  at the patch edge parallel to x-

direction (y = 0.5625 in.) are considerably larger than other stress components, especially, 

in the bottom surface of the adhesive layer. This signifies that the potential for 

delamination between the adhesive and the parent plate mobilized by high values of yz  

is quite high. The existence such high values of yz  is amply clear from Fig. 5.75. 
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Fig. 5.72 Distribution of shear stresses τxz along y-direction at adhesive edge 
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Fig. 5.73 Distribution of shear stresses τyz along x-direction at adhesive edge 
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Fig. 5.74 Distribution of shear stresses σzz along y-direction at adhesive edge 



181 

-2

0

2

4

6

8

10

0.4 0.45 0.5 0.55 0.6

N
or

m
al

iz
ed

 s
tr

es
se

s,
  -
σ y

z
/ σ

y-axis

x=0.0

x=0.1

x=0.2

 

 Fig. 5.75 Distribution of transverse shear stresses, σyz, on bottom surface of layer 

 

For studying the influence of effective of adhesive area, the four cases shown in Fig. 

5.76 are considered. First case refers to full bonding of patch area and the other three 

represent partial bonding of patch area, meaning that in the grey shaded areas no bond is 

allowed. All conditions except xy-plane area of adhesive are identical in four cases. For 

the analysis, modeling of present analysis needs to be changed. Figs. 5.77 (a), (b), and (c) 

show three modeling configurations of the analysis for partial bonding A, B, and C, 

respectively. Fig. 5.78 shows stresses distributions through the thickness of the plate at 

the point of maximum stress in the damaged plate for the four cases considered. The 

results are compared with those for the unpatched plate. It is seen from Fig. 5.78 that 

partial bonding reduces the effectiveness of a patch. Also, behavior of Part Bonding Case 

A, with un-bonded area smaller than the area of the circular hole, is similar with that of 

Full Bonding. In other cases, the trend is similar but show discrepancy with the fully 

bonded case, especially at the patched surface of the plate.  
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Fig. 5.76 Four cases according to area of adhesive 

 

  

(a) Part Bonding A         (b) Part Bonding B        (c) Part Bonding C 

Fig. 5.77 Modeling configurations for analysis of part bonding 
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Fig. 5.78 Non-dimensional stresses on effect of bonding area 

 

5.4.5 Effect of Patch Shape and Size  

   Patch shape and patch size with respect to the size of damage can play a significant 

role in the behavior of patch-repaired systems. In order to investigate this aspect, two 

patch shapes (rectangular and circular) shown in Fig. 5.79 are considered. All data not 

mentioned here are identical with those of Model A, considered in the previous section. 

In Fig. 5.79, the normal stresses in the parent plate at Pont A are calculated to examine 

reduction, if any, of the stress concentration factor in the parent plate. Also, from the 

analysis results in the previous section and reference (Soutis and Hu, 1997), it is known 

that maximum stresses in the adhesive, like σyy, τyz, and σzz, can develop near Point B, 

giving rise to the possibility of delamination. Based on the results of stress analysis of 

these two cases of rectangular and circular patch repairs, the influence of patch shape and 

size on performance is critically examined. 
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Fig. 5.79 External patch repair configurations 

 

Figs. 5.80 through 5.82 present the variation of each of these stress components with 

the planar area of the patch. For the two shapes, the area of a quadrant, A, is given by  

22 25.0or    , pp RWA                           (5.12) 

Fig. 5.80 shows the variation of in-plane normal stresses, yy , in the parent plate at 

bottom and top surfaces. It is noticed that in-plane normal stresses at bottom surface are 

mostly constant regardless of patch area while the stress at patched top surface is 

dependent on patch area for A ≤ 0.3. In addition, in the case of small values of area A, the 

stress reduction in the top surface with circular patch is greater than that with rectangular 

patch. But for A ≥ 0.3, there is almost no difference in stress reduction for the two patch 

shapes. The shear and normal stresses, yz  and zz , at the interface between the parent 

plate and the adhesive are shown in Figs. 5.81 and 5.82. In these cases, also, the 

performance of circular patch seems to be slightly better than the rectangular patch for 
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smaller values of area A. 
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Fig. 5.80 Normal stresses of parent plate with variation of patch area 
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Fig. 5.81 Transverse shear stresses of adhesive with variation of patch area 
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Fig. 5.82 Transverse normal stresses of adhesive with variation of patch area 

 

Figs. 5.83 through 5.85 illustrate the variation of same three stress components with 

patch thickness, for both rectangular and circular patches. These patches are assumed to 

the same values of A=0.6 in2. From Fig. 5.83 it is evident that the reduction of in-plane 

normal stress, yy , is practically independent of the patch thickness, although some 

difference in stress reduction at top surface is evident when tp/tal < 0.1. In addition, there 

is no difference between rectangular patch and circular patch in the reduction of this 

stress component. Figs. 5.84 and 5.85 show variation of transverse shear and normal 

stresses, yz  and zz , at the interface of parent plate and the adhesive layer. These two 

figures, however, emphasize that with a circular patch the possibility of delamination is 

lower than that with a rectangular patch. It is also evident that these transverse stress 

components at the interface are affected by the choice of path thickness, the values 

tending to increase with increase in patch, irrespective of the shape of the patch. Such 
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increase seems to be steeper in the case of transverse normal stresses, as shown in Fig. 

5.85. Based on these results, it can be deducted that circular patch repairs are superior to 

rectangular but patch thickness should not be more what is needed.  
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Fig. 5.83 Normal stresses of adhesive with variation of thickness 
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Fig. 5.84 Transverse shear stresses of adhesive with variation of thickness 
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Fig. 5.85 Transverse normal stresses of adhesive with variation of thickness 

 

5.5 Cracked Plates 

 

5.5.1 P-Adaptive Analysis Using Ordinary Kriging Technique 

In a p-adaptive procedure, the optimal mesh allowing least possible solution error is 

chosen on the basis of some error measures. In this section, the Kriging procedure is used 

for the prediction of an improved solution based on the current numerically computed 

solution. The improved solution can then be used in the local error prediction process 

required in the adaptive mesh refinement leading to optimal adjustment of p-levels of 

selected elements in the mesh. 

The validation of p-adaptive procedure based on ordinary Kriging technique is 

demonstrated with the example of a two-dimensional plate with a central crack. The 

geometry of the plate under remote tensile loading σ is shown in Fig. 5.86. Due to 

symmetry, only a quarter of the plate is considered. The p-adaptive mesh in the modeled 
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region is composed of ESLM-based elements. The plate under consideration with height 

denoted by 2H, width by 2W, and crack length by 2a has an aspect ratio (H/W) of 2 and 

crack size is one-half the plate width (a/W = 0.5). The quadrant of the plate is discretized 

with eight elements. The applied tensile loading σ is taken as 10 MPa, Young’s Modulus 

E is 70 GPa, and Poisson’s ratio ν is 0.3. 

 

 

Fig. 5.86 Geometric configuration of a centrally cracked plate and finite element model 

         

The final adaptive meshes are shown in Fig. 5.87, comparing the results of ordinary 

Kriging technique with those of least square method, which is one of the widely used 

techniques in adaptive analysis. Ordinary Kriging technique and least square method 

were used to calculate the estimated exact solution and smoothened stress field by 

projection. It is noted that the distribution of p-levels by the least square method based 

adaptive mesh in the vicinity of the crack tip is slightly higher than those required by the 

p-adaptive mesh using ordinary Kriging technique.  
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          (a) Least square method        (b) Ordinary Kriging technique 

Fig. 5.87 Final adaptive meshes for a/W = 0.5 
 

Table 5.15 gives the comparison of Mode I stress intensity factor for different crack 

lengths based on ordinary Kriging technique, least square method and other reference 

values based on global total energy release rate calculated by the finite crack extension 

method. The non-dimensional form, F, of Mode I stress intensity factor, KI, is obtained 

from  

a

K
F I


                               (5.13) 

The finite crack extension method was based on a crack length increment ∆a equal to 

a×10-6, arrived at by sensitivity tests. In Table 5.15, the results of ordinary Kriging 

technique shows good agreement with p-adaptive analysis based on least square method 

as well as other reference values. The relative percentage error based on the modified 

super-convergent patch recovery technique is listed in Table 5.16, when a/W=0.5. In 

Table 5.17, a comparison of the least square method with the ordinary Kriging technique 

is presented in terms of the number of the required iteration and the corresponding NDF 
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for optimal p-adaptive mesh. The comparison is undertaken for a/W = 0.1 to 0.9, 

incremented by 0.1. 

 

Table 5.15 Non-dimensional stress intensity factors of cracked plates with respect to a/W 

a / W Irwin Brown Feddersen Dixon
Uniform p-level 

(p=8) 

p-adaptive mesh 

Least square 
method 

Ordinary 
Kriging 

0.1 1.004 1.011 1.006 1.005 0.977 0.950 0.931 

0.2 1.017 1.026 1.025 1.0211 1.001 0.994 0.984 

0.3 1.040 1.054 1.059 1.048 1.035 1.033 1.007 

0.4 1.075 1.103 1.112 1.091 1.085 1.086 1.054 

0.5 1.128 1.183 1.189 1.155 1.158 1.162 1.123 

0.6 1.208 1.303 1.304 1.250 1.267 1.274 1.251 

0.7 1.336 1.473 1.484 1.400 1.437 1.448 1.420 

0.8 1.565 1.670 1.799 1.667 1.729 1.748 1.700 

0.9 2.114 1.994 2.528 2.294 2.384 2.420 2.331 

 

Table 5.16 Required NDF and percentile errors through p-adaptive analysis in a / W = 0.5 

The numbers of iteration 
Least square method Ordinary Kriging technique 

NDF Percentile errors NDF Percentile errors

1 23 10.77 23 11.99 

2 49 13.34 49 9.58 

3 66 11.35 79 5.66 

4 83 10.91 104 4.06 

5 113 10.73 135 2.73 

6 140 10.92 - - 

7 168 10.39 - - 

8 203 10.10 - - 

9 215 9.92 - - 
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As per Table 5.5-3, the p-adaptive procedure based on ordinary Kriging technique needs 

mostly 5~6 iterations as the crack length is varied; whereas, the p-adaptive procedure 

based on least square method requires more iterations and a larger number of NDF. 

 

Table 5.17 Comparison of the number of iterations and NDF with variation of crack length 

a / W 
Least square method Ordinary Kriging technique 

No. of iteration NDF No. of iteration NDF 
0.1 11 210 5 86 
0.2 10 198 5 95 
0.3 9 182 6 118 
0.4 10 191 6 111 
0.5 9 215 5 135 
0.6 10 223 6 141 
0.7 10 231 6 113 
0.8 9 231 6 107 
0.9 9 223 6 146 

 

Fig. 5.88 show stress fringes by interpolations based on ordinary Kriging technique and 

least square method in p=5, respectively. It is noticed that the stress distribution based on 

ordinary Kriging interpolation appear smoother than those by least square method, when 

same p-levels are used. 

 

          

(a) Ordinary Kriging technique              (b) Least square method 

Fig. 5.88 Stress distributions by OK technique and least square method in p=5 
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5.5.2 Analysis of Cracked Plates with Bonded Patch using PDLM 

   In laminated systems like bonded patch repaired plates with crack, the use of 2D 

ESLM based elements will not be advisable due to the problem of satisfying continuity 

conditions at the boundary between patched region and the unpatched region.  Although 

conventional fully fledged 3D modeling would easily overcome this difficulty, entailing 

excessive computational effort. Also, because of the extreme thinness of the adhesive 

layer relative to plate and patch thicknesses, the use of 3D elements with high aspect ratio 

cannot be avoided, otherwise the required number of elements will be exorbitant. A better 

solution to the stated modeling problems will be to use PDLM based elements, which are 

more economical than conventional 3D elements and have characteristic of 2D elements 

with respect to thickness direction. 

In this analysis, in using the PDLM based model, it is assumed that the composite 

patch is perfectly bonded to the cracked plate by the adhesive film without the possibility 

of debonding. The stress intensity factors ⅠK  with respect to opening mode are 

calculated from total strain energy release rate using finite crack extension method (Owen, 

1983). Fig. 5.89 shows various configurations of the three different cracked plates 

subjected to uniaxial tensile loading. The plate has the following dimensions: height 2Hal 

= 480 mm, width 2Wal = 240 mm and thickness tal =3 mm. The length of patch, 2Hp, is 90 

mm and the width, 2Wp, is 90 mm. The thicknesses of composite patch and adhesive film 

are 1 mm and 0.2 mm, respectively. Graphite epoxy and boron epoxy, a pair of popular 

composites, are considered as patch material. The properties of the materials used are 

given in Table 5.18. Taking advantage of symmetry in loading and geometric conditions, 

only one-quarter of center crack and double-edge crack panels and one half of the single-
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edge crack panel are modeled. The analyzed parts are shaded as shown in Fig. 5.89. Fig. 

5.90 shows the mesh used for analysis, when the quarter-plate is discretized with six 

elements. In the process, the composite patch and adhesive film are modeled with two 

elements each. 

 

 

Fig. 5.89 Three configurations of cracked aluminum plates with patch repair 

 

Table 5.18 Material properties (unit: GPa) 

 E1 E2 ν12 G12 G13 G23 

Plate material 72 - 0.33 - - - 

Graphite Epoxy 172.4 10.34 0.3 4.82 4.82 3.1 

Boron Epoxy 208 25.4 0.17 7.24 7.24 4.94 

Adhesive film 0.97 - 0.32 - - - 
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Fig. 5.90 Mesh using PDLM-based elements 

 

First, the unpatched cracked plates are analyzed using PDLM-based elements. Non-

dimensional stress intensity factors, F, defined in Eq. 5.13, are calculated by finite crack 

extension method and the results are assessed by comparing with some referenced values 

(Isida, 1971; Bowie, 1972; Tada et al., 1985; Yugawa and Nishioka, 1979) as shown in 

Fig. 5.91 for the plates with center, double-edge, and single-edge cracks. The values 

predicted by present analysis show reasonably good agreement with the reference values. 

Figs. 5.92 through 5.94 show the normal stress fringes for σyy in the middle plane of the 

un-patched plate for a/Wal = 0.3 and a/Wal = 0.6 corresponding to the three plates. It can 

be seen that that the magnitude of the maximum stress increased with crack length. Also, 

it is demonstrated well in all the stress fringe plots that the stresses at crack surfaces drop 

to zero, in conformity with the expected behavior (Anderson, 2004). 
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(b) Double-edge crack 
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(c) Single-edge crack 

Fig. 5.91 Non-dimensional stress intensity factors for un-patched plates 
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(a) 3.0/ alWa                       (b) 6.0/ alWa   

Fig. 5.92 Stresses (σyy) in center crack without patch (units: m and Pa) 
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Fig. 5.93 Stresses (σyy) in double edge crack without patch (units: m and Pa) 
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Fig. 5.94 Stresses (σyy) in single edge crack without patch (units: m and Pa) 
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Fig. 5.95 presents the variation of total potential energy, Utotal, versus the crack length 

for un-patched and patched plates with center crack, double edge crack, and single edge 

crack, respectively. As expected, these figures confirm that the strain energy stored in 

patched plates is significantly smaller than those of un-patched plates. Moreover, it is 

seen that the type of patch material used also affect the value of potential energy stored in 

the parent plate. Especially, in the case of un-patched plate with single- edge crack, the 

potential energy is found to increase sharply when the ratio of crack length is over 0.5. In 

the presence of patch, however, it is found that the change is remarkably gentle. Fig. 5.96 

shows variation of stress intensity factor for opening mode, KI, as a function of crack 

length and the type of patch material. Just as in the case of rate of variation of total strain 

energy, it is seen that the response of center crack and double edge crack are similar. Also, 

it is observed that the presence of patch weakens the driving forces for fracture, namely, 

the stress intensity factors, and the extent of such weakness in the driving force is a 

function of the stiffness of the patch material. In addition, it can be seen that the 

discrepancy in response between the two different patch materials tend to increase with 

increase in crack size. The variation of normalized stress intensity factor, F, with crack 

size for the three cases is shown in Fig. 5.97. As in the preceding figures, the influence of 

crack size on the discrepancy in F-values is noticed here as well. Contrary to plots for KI, 

the plots for F, for patched plates show the tendency to decrease with increase in crack 

size, implying that patch repair may cause retardation of crack growth.  
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Fig. 5.95 Variation of total potential energy with crack size 
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Fig. 5.96 Variation of stress intensity factor with crack size
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Fig. 5.97 Variation of non-dimensional stress intensity factor with crack size 
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Fig. 5.98 shows the variation of σyy through the thickness at the crack tip of the center 

cracked plate without patch and with boron epoxy patch, respectively. Here, z represents 

the distance from upper surface of aluminum plate through the thickness, t, of the plate. 

As expected, Fig. 5.98 (a) shows that there is no variation in crack tip stress, confirming 

membrane behavior. On the other hand, in Fig. 5.98 (b), the value of σyy, as a function of 

the normalized distance from the top of patch, increases linearly, signifying bending in 

addition to membrane action. The maximum stress develops in the patch free surface of 

the plate. Moreover, it is seen that the slope of the rate of stress variation curve increases 

with crack size. 
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Fig. 5.98 Thickness-wise variation of σyy at crack tip for different crack length 

 

Fig. 5.99 shows the fringes of the normal stresses, σyy, in the boron epoxy patched 

surface, middle surface and patch-free surface of the plates when a/ alW =0.3. From Fig. 

5.99 (a), it is seen that the stress singularity at crack tip get suppressed at the patched 

surface. The stresses over the patched region are found to be less than the average normal 

stress (σyy =3 MPa). However, at middle and free surfaces, high stresses are still induced 
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though of smaller intensity than those for the case with no patch. In addition, when the 

crack size ratio (a/Wal) is 0.6, the stress fringes for σyy in the aluminum plate with patch 

(boron epoxy) are shown in Fig. 5.100. As expected, in comparison to a/ alW =0.3, the 

stress concentration is more severe for a/ alW =0.6. In this respect, the behavior of center 

cracked plates is exhibited similarly in double-edge crack and single-edge crack cases as 

well. 
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Fig. 5.99 Fringes of stresses (σyy) with patch (a/Wal=0.3) (units: m and Pa) 
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Fig. 5.100 Fringes of stresses (σyy) with patch (a/Wal=0.6) (units: m and Pa) 

 

Fig. 5.101 (a) shows the variation of the ratio of strain energy stored in the center 

cracked plate, with total strain energy of the patched plate as crack size increases. Fig. 

5.101 (b) displays the same results for patch-adhesive combination. As expected, a 

smaller share of the strain energy is stored in the patch material having higher stiffness; 

requiring the parent plate to store a larger shear of the strain energy of the system. In this 

respect, the adhesive plays a minor role.  
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Fig. 5.101 Ratio of potential energy stored in each material in center crack 
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Similar behavior was noticed in the double-edge cracked case as well. In the case of 

patched single-edge crack case, Fig. 5.102 shows the variation of ratio of strain energy 

stored in each material with respect to total strain energy, as crack size increases. It is 

observed that when a/Wal > 0.3, the energy ratio of boron epoxy is more than that of 

graphite epoxy, unlike the case of single edge crack. 
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Fig. 5.102 Ratio of potential energy stored in each material in single-edge crack 
 

Fig. 5.103 shows the variations of the ratio of each material’s resistance force with 

respect to the total resistance force for center, double-edge and single-edge crack cases, 

respectively, when boron epoxy is used as the patch material. In the Fig. 5.103, R refers to 

resistance force against crack extension. Resistance forces can be calculated by taking the 

derivative of each material’s strain energy, assuming that, due to the presence of patch, 

crack growth will be prevented at any crack length. In center and double-edge crack cases, 

it is noticed that boron epoxy has greater resistance against crack growth than aluminum 

when a/Wal > 0.5 and in the case of single-edge crack it occurs at a/Wal > 0.2. Also, it is 

found that the resistance force ratio of the adhesive material tend to increase slightly with 

the crack length. 
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Fig. 5.103 Ratio of resistance force against crack growth 
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5.5.3 Single-Edge Cracked Plate Repaired by Composite Patch 

The objective of this example is to investigate efficient strategy for modeling 

externally repaired plates, to see characteristic of single-sided patch repair, and to 

undertake parametric studies. A single-edge-crack aluminum plate is shown in Fig. 5.104 

as repaired by a bonded glass epoxy patch. 

 

 

Fig. 5.104 Configuration of single-edge-crack plate with externally bonded repair 

 

The aluminum plate and repair materials have the following dimensions: length of plate, 

Lal = 200 mm, width of plate Wal = 40 mm, thickness of aluminum, tal = 1.5 mm, length 

and width of repair area, Lrp = Wrp = 26 mm, thickness of glass epoxy patch, tgl = 1.4 mm, 

and thickness of adhesive film, tad = 0.2 mm. The aluminum plate is subjected to a 

uniaxial tensile load of 3.5 kN giving a remote stress state of σ = 58.33 MPa. Since the 

geometry and loading are symmetric with respect to Y-axis, only one half of the whole 

domain is analyzed. The material properties of the aluminum plate, glass epoxy, and 
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adhesive film are given in Table 5.19.  

 

Table 5.19 Material properties (unit: GPa) 

 E1 E2, E3 ν12, ν13 ν23 G12, G13 G23 

Aluminum 70 - 0.32 - - - 

Glass Epoxy 38.6 8.27 0.168 0.035 4.14 3.14 

Adhesive film 2.2 - 0.32 - - - 

 

The main objectives of current analysis can be stated as follows. 

(1) Verification of proposed elements in an un-patched case 

(2) Identification of efficient models in the patched case 

(3) Influence of single-side patch on plate behavior 

(4) Influence of selected parameters on performance of patch repair 

(5) Comparison of single- and double-side patch performance 

 

(1) Verification of proposed elements in an un-patched case 

The chosen mesh in the XY-plane, shown in Fig. 5.105, is used in 2D, 3D, and mixed 

modeling. Only ESLM-based elements are considered for 2D modeling, and FDLM-

based elements are used for 3D modeling. Also, for mixed modeling, a combination of 

ESLM- and FDLM-based elements is considered, with FDLM appearing in critical local 

regions of the problem domain and ESLM in the remaining domain, and to avoid 

discontinuities in displacement values DLTM-based elements are used between ESLM 

and FDLM. The values of stress intensity factor based on these models are obtained both 

by the total strain-energy release rate method and VCCT. In Table 5.20, good agreement 
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is noted between current model values and reference values for non-patched plates. One 

of the two references (Umanaheswar and Singh, 1999) uses analytical solution; the other 

uses modified crack closure integral method with 3D solid elements. 

 

 

Fig. 5.105 Finite element 4×5 meshes on XY-plane for some models 

 

Table 5.20 Comparison of stress intensity factors in non-patched plate ( mmMPa ) 

Types 
Crack length 

10 mm 14 mm 18 mm 

Reference 
(Umanaheswar and 

Singh, 1999) 

Analytical 491.42 719.10 1062.53

3-D solid elements 484.14 712.77 1051.77

    

ESLM-based model 
SERR 484.39 711.75 1050.32
VCCT 489.02 717.49 1066.22

     

FDLM-based model 
SERR 484.77 712.69 1053..20

VCCT 490.17 718.67 1064.92
     

Mixed model 
SERR 484.04 712.66 1053.15
VCCT 489.85 716.64 1062.60
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(2) Identification of efficient models in the patched case 

Fig. 5.106 shows the mesh configurations solid elements for h-FEM and present p-

FEM models, respectively. In order to reduce the number of elements and hence the 

required DOF in the h-FEM model, graded mesh densities are used with finer mesh 

biased near the crack region, as shown in Fig. 5.106 (a) (Umamaheswar and Singh, 1999). 

However, in p-FEM, such mesh refinement is unnecessary because the same effect can be 

realized by adding shape functions of sufficiently high order. Moreover, because of 

robustness of p-FEM when higher-order shape functions (p-level ≥ 5 or 6) are used, the 

aspect ratio of elements is not an issue, unlike the situation with h-FEM. These factors 

lend to a simple modeling scheme, as shown in Fig. 5.106 (b). In order to identify the 

most efficient modeling scheme based on the proposed p-FEM elements, three models 

are considered. In all three models (A, B, and C), a 4×5 mesh in the XY-plane is used, as 

shown in Fig. 5.106. Model A is composed of FDLM-based elements alone, and Model B 

and C are mixed models comprising of a combination of 2D and 3D elements placed in 

different configurations. In Model B, the region of the plate outside the patched area is 

modeled with ESLM-based elements while the patched region is modeled with FDLM-

based elements. In the case of Model C, ESLM-based elements are used in both the 

unpatched region and the cross-checkered region of the patch, as shown in Fig. 5.106 (b). 

The small shaded region around the crack is modeled with FDLM-based elements. In all 

three models, the aluminum plate, adhesive, and composite material, are represented by 

only one layer in each. Taking advantage of one-way symmetry with respect to the crack 

line, only one-half of the plate is considered. The crack in the plate is assumed to extend 

to the adhesive layer as well and crack faces in both are treated as free surface. 
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Fig. 5.106 Mesh configurations for h- and p-FEM based analyses 

 

Unlike the behavior of unpatched plates, a combination of membrane and bending 

actions is expected to occur in a single-sided patch repaired plate. As a result, the stress 

intensity factor for such a plate is expected to vary along its thickness. Therefore, an 

average value of the stress intensity factor (Kavg) is considered as the representative value 

for the purpose of comparing the current results with the previously published results 
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(Umamaheswar and Singh 1999) using 3D solid elements when crack length is 15 mm. 

The results are shown in Table 5.21. The p-levels used in the current models are 7 for 

planer variations of displacement and 3 for thickness wise variation. For the most part, 

the discrepancies are found to be within 3%. In general, the results by current models and 

conventional solid element model show good agreement. However, the SIF values 

obtained by SERR method seem to be overestimated, though slightly, as compared to 

those by VCCT. Table 5.22 shows the number of elements and NDF used in each of the 

three current models, as well as the h-FEM model. Based on the numbers presented, 

Model C can be regarded as more efficient than the others. 

 

 Table 5.21 Average SIFs (Kavg) in patched plate with 15 mm crack ( mmMPa ) 

Types Stress intensity factors 

3-D solid elements (SERR method) 341.84 
  

Model A 
SERR method 346.94 

VCCT 337.29 
   

Model B 
SERR method 347.10 

VCCT 337.30 
   

Model C 
SERR method 344.35 

VCCT 334.34 
 

Table 5.22 Comparison of the number of elements and degrees of freedom 

 The number of elements NDF 

h-FEM using 3-D solid elements 10,920 40,176 

Model A 36 9,992 

Model B 36 8,037 

Model C 17 4,868 
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(3) Influence of single-side patch on plate behavior 

Fig. 5.107 shows the stress fringes of xx at bottom, middle, and top surfaces, 

respectively when FDLM-based elements solely are used in the mesh, such as Model A 

considered in the preceding sub-section.  Such results are also shown for the mixed 

models B and C. It is evident that the nature of stress distribution is dependent on the 

location of the reference plane across the thickness of the plate with single-sided patch; 

whereas, the stress distribution across the plate thickness happens to be constant in the 

un-patched case. Also, in the patched case the free surface (at bottom of plate) the 

stresses near the crack tip are found to be larger than those in the other two reference 

surfaces.  

The expected variation of SIFs through the thickness cannot be represented by SERR 

method which is based on the change of total strain energy release rate of the whole 

domain and, instead, a method like VCCT needs to be used. Normally, 3D VCCT can 

determine only one value of SIF within a considered layer in the thickness direction. The 

value obtained can be regarded as the SIF at the middle of that layer. To determine the 

variation of SIF across a layer, it needs to be discretized into more layers. Fig. 5.108 

shows the variation of KI through the thickness when the aluminum plate is discretized 

into two, three, and four layers, respectively, and FDLM-based elements are considered. 

It is evident that the SIF tend to vary linearly across the plate thickness. Table 5.23 

summarizes the results of SIFs and NDF for the three model of types A, B, and C 

discussed above. It is seen that though Model C is more efficient than Model B, yet these 

two models demand significantly less computational resources than Model A, comprising 

of only FDLM-based elements. However, there is little difference in the accuracy of 
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results obtained by the three model types. Fig. 5.109 shows the comparison of thickness-

wise variations of SIFs between unpatched case and single-patched case. Fig. 5.110 

shows that the slope of SIF line in the thickness direction are dependent on crack size. 

 

 

(a) Bottom surface 

 

(b) Middle surface 

 

(C) Top surface 

Fig. 5.107 Stress fringes of σxx in the plate 
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Fig. 5.108 Thickness-wise variation of KI with the number of layers used 
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Fig. 5.109 Thickness-wise variation of KI for unpatched, patched cases 
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Fig. 5.110 Thickness-wise variation of KI for three crack sizes 

 

Table 5.23 Comparison of the number of elements and number of degrees of freedom 

 Types Stress intensity factors (K) NDF 

2 layers 

Model A 
Top layer 258.236 

14,531 
Bottom layer 400.678 

   

Model B 
Top layer 258.241 

10,035 
Bottom layer 400.391 

   

Model C 
Top layer 257,001 

5,726 
Bottom layer 396.335 

     

3 layers 

Model A 
Top layer 232.955 

19,070 Middle layer 327.142 
Bottom layer 422.852 

   

Model B 
Top layer 232.959 

12,033 Middle layer 327.152 
Bottom layer 422.864 

   

Model C 
Top layer 232.162  

Middle layer 324.688 6,584 
Bottom layer 418.364  
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(4) Influence of selected parameters on performance of patch repair 

Having identified an efficient modeling scheme and an understanding of SIF 

determination in single-sided patch repaired plates, this section undertakes the parametric 

studies to determine the influence of some of the design variables on the performance of 

the patch repaired plate. SIF at the middle surface, mid
IK , is considered as the 

representative value. 

Fig. 5.111 shows the variation of SIFs as a function of patch length measured in the 

direction normal to the crack direction in the 2D plane for a crack size, a = 15 mm. It is 

found that if the patch length is taken as two times the crack size, a, the reduction in SIF 

can be approximately 54 %. Fig. 5.112 shows the influence of patch thickness on SIF. It 

is seen that when patch thickness is same as thickness of aluminum plate and the ratio, 

Lrp/a, is over about 1, the reduction of SIF is 57% as compared to unpatched plate. Also, 

SIF can be reduced by 69% for tgl/tal = 2.0. However, a thickness exceeding tgl/tal = 1.0 

seems to be impractical. 
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Fig. 5.111 Variation of mid
IK  with patch length 
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Fig. 5.112 Variation of mid
IK  with patch thickness 

 

In patch repaired plates, the SIF value shows an asymptotic behavior with increase in 

crack length. The effects of adhesive thickness, patch material, patch size, and patch 

thickness on SIF are also investigated. The crack size is increased from a/Wal = 0.1 to 0.8. 

The crack tip For a/Wal > 0.65, the crack tip extends beyond the patch region. Fig. 5.113 

shows the variation of SIFs with adhesive thickness. The results indicate that smaller 

adhesive thicknesses are desirable because thicker adhesive thickness tend to accentuate 

bending action. Fig. 5.114 shows the variation of SIFs with patch thickness. Unlike 

adhesive thickness, the use of thicker patch is may sometimes be advantageous. It is 

noticed that the positive effect of reinforcement can be greater larger than the negative 

effect resulting from the shift of neutral axis away from the middle surface of the plate as 

the patch thickness increases. However, too large a patch thickness would be impractical 

and unnecessary. 
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Fig. 5.113 Variation of mid
IK  with crack size for different adhesive thicknesses 
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Fig. 5.114 Variation of mid
IK  with crack size for different patch thicknesses 

 

Fig. 5.115 shows the variations of SIFs with respect to planar dimensions of the patch. 

Three cases with identical thickness, tgl = 1.4 mm are considered. When crack sizes are 

small (namely, a/Wal ≤ 0.4), it is seen that SIF is independent of the size of patch. 

However, as crack size is increased, the size of patch has noticeable effect on the values 

of SIF. Also, it is noted that the patch length in a direction normal to crack line has more 
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influence than the size in crack direction. The effect of material properties of patch is 

shown in Fig. 5.116. The considered patch materials are glass epoxy, boron epoxy, which 

is stiffer than glass epoxy, and. The material properties of boron epoxy are as follows: E1 

= 208.1 GPa, E2 = E3 = 25.44 GPa, ν12 = ν13 = 0.168, ν23 = 0.035, G12 = G13 = 7.24 GPa, 

and G23 = 4.94 GPa. From the results shown in Fig. 5.116, it is noticed that damaged 

plate can take favorable turn by stiffer patch material. 
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Fig. 5.115 Variation of mid
IK  with crack size for different patch size 
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Fig. 5.116 Variation of mid
IK  with crack size for different patch materials 
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(5) Comparison of single- and double-sided patch performance 

Fig. 5.117 presents the variation of SIFs according to the crack size for single- and 

symmetrically double-sided patches. Total thicknesses of the two patch types are same. It 

can first be noted that the deformation appears to be symmetric in both the cases as long 

as the crack tip appears well within the patch region (a/Wal ≤ 0.65). Also, there is a 

reduction in the plateau part of the curve to about 40~50% with the double-sided patch. 

This observation signifies that such repair can improve the fatigue life of the repaired 

component.  
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Fig. 5.117 Variation of mid
IK  in single- and double-sided patches 

 

Fig. 5.118 shows the variation of transverse deflection at crack tip with increase in crack 

size. While the transverse deflection of double-sided patch are approximately close to be 

zero, the deflection of single-sided patch get increasingly larger with crack size. Fig. 

5.119 presents the variation of normal stress resultants at crack tip of the aluminum plate 

with crack size. In the case of single patch, the line of normal stress resultant with respect 

to crack length has approximately a constant slope. In the case of double patch, on the 
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other hand, when crack tips are within the patched region, the slop of the line is close to 

be zero. If, however, the crack tip crosses over into the unpatched region, the line has a 

slope similar with that of the single patched case. Fig. 5.120 shows the variation of 

bending stress resultants with respect to crack size for single- and double-sided patches. It 

is noticed that bending moments hardly present in the case of double-sided patch; 

whereas, single patched plates develop considerable bending moment. Moreover, the line 

for single patch shows a discontinuity at the edge of the patch where a/Wal = 0.65.  
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Fig. 5.118 Variation of deflection in single- and double-sided patches 
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Fig. 5.119 Variation of normal stress resultants in single- and double-sided patches 
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Fig. 5.120 Variation of bending stress resultants in single- and double-sided patches 

 

In order to further investigate the underlying cause of such behavior at the edge of the 

single-patched region when a/Wal = 0.65, the distributions of normal and bending stress 

resultants along line b-b shown in Fig. 5.104 are plotted in Figs. 5.121 and 5.122, 

respectively. There exist two elements near crack tip on line b-b. One element is within 

patched region, and the other element is outside. The results of membrane behavior for 

the two elements are almost similar, although there is a slight difference, as shown in Fig. 

5.121. On the other hand, the results of bending behavior obtained based on the same two 

elements have considerable difference, as shown in Fig. 5.122. Actually, bending 

moments in the patched region are found to be much larger than outside it. Such behavior 

is the underlying reason for the discontinuity in the line plotted in Fig. 5.120. Also, it is 

seen that high stresses at crack tip are the combined effect of membrane and bending 

responses.  
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Fig. 5.121 Distribution of normal stress resultants at edge of patched region 

 

0

100

200

300

400

500

600

0 1 2 3 4 5 6B
en

di
ng

 s
tr

es
s 

re
su

lt
an

ts
 (M

xx
),

 N
/m

m
 •

 m
m

Distance away from crack tip along X-direction, mm

Element in patched region

Element out of patched region

 

Fig. 5.122 Distribution of bending stress resultants at edge of patched region 

 

5.6 Delamination Analysis Using VCCT 

One of major failure modes of laminates composites is delamination. There are two 

basic approaches to characterize the delamination process. One involves the direct 

application of fracture mechanics. The other involves indirect application of fracture 

mechanics in the context of damage mechanics and/or softening plasticity, including the 
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application of cohesive models and interface elements. The main disadvantage of the first 

approach is that it cannot consider the initiation of the delamination process and also the 

case when more than one delamination processes are involved. The objective of the 

present analysis is, however, to examine the direct approach only by applying VCCT to 

finite element models based on the proposed elements. Two examples are considered – 

(a) the double cantilever beam (DCB) problem, and (b) the interior delamination problem. 

 

5.6.1 Double Cantilever Beam Problem 

The DCB problem represents a standard specimen for determining mode I energy 

release rate. The DCB problem considered here consists of unidirectional fiber-reinforced 

material with the length, L = 0.185 m, width, W = 0.025 m, and two layers of 2.5 mm 

thickness (t) each, as shown in Fig. 5.123.  

 

 

Fig. 5.123 Double cantilever beam 

 

The initial length of the crack is 55 mm. The material properties are shown in Table 5.24. 

Taking advantage of two-way symmetry with respect to y- and z-directions, only one-

quarter of the specimen is treated as the computational domain. Fig. 5.124 (a) shows the 
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conventional 3D model configuration used for h-FEM analysis (Kruger, 1994). The 

model used for present analysis is shown in Fig. 5.124 (b).  

 

Table 5.24 Properties for DCB specimen (unit: GPa) 

1E  2E = 3E  12G = 13G 23G  12 = 13  23  IcG  

135 GPa 9 GPa 5.2 GPa 1.9 GPa 0.34 0.46 281 J/m2 

 

 

(a) h-FEM based 3D Model 

 

 

(b) Mesh configuration on xy-plane for present analysis 

Fig. 5.124 Comparison of present mesh and h-FEM mesh 
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It can be seen that the mesh on xy-plane is composed of five FDLM-based elements 

placed in a single layer, unlike the h-FEM mesh shown in Fig. 5.124 (a), where a number 

of elements are used in the thickness direction. In the current model, p-levels of 8 and 3 

are used to represent in-plane and out-of-plane behaviors, respectively. To simulate 

initiation and growth of delamination, energy rerelease rate computed by VCCT is 

utilized. In Fig. 5.124 (b), virtual crack closure length, Δa, is taken as 0.25 mm. 

Displacement-increment analysis is implemented as displacement δ increases by 0.01 mm 

~ 0.25 mm. Before initiation of delamination, Eq. 5.14 is valid. 

1
I

I 
cG

G
                               (5.14) 

The initiation of delamination occurs when the energy release rate (GI) for a displacement 

increment is same as the critical energy release rate (GIc) corresponding to fracture 

toughness. Then, in the next procedural step, the crack length is increased by 2Δa. 

Thereafter, for simulating delamination growth, it is checked if Eq. 5.15 is satisfied with 

the increase of displacement δ. 

1
I

I 
cG

G
                               (5.15) 

By satisfying Eq. 5.15, displacement δ is obtained and delamination progresses forward 

again by 2Δa. During the growth of delamination, the coordinates of movable nodes 

shown in Fig. 5.124 (b) are modified. The progress of delamination is achieved by 

repeated application of the above procedure. 

Fig. 5.125 shows the variation of energy release rate with increase of displacement δ 

before the initiation of delamination. Also, in order to verify the validation of present 

delamination analysis, the results of force-displacement curves from reference (Meo and 
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Thieulot, 2005) including experimental as well as the h-FEM results and the current 

analysis results are plotted in Fig. 5.126.  
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Fig. 5.125 Displacement-energy release rate curve before initiation of delamination 
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Fig. 5.126 Applied force vs. opening displacement of delamination curve 
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In reference (Meo and Thieulot, 2005), the numerical analysis is based on conventional 

solid elements and Birth and Death option based on VCCT used in the commercial code 

(ANSYS) was utilized. For simulating the growth of delamination, the option is to 

deactivate selected elements which are not actually removed from the model. In order to 

follow the delamination process closely, it calls for the use of a significant number of 

very small elements next to the expected path of delamination growth. Contrary to this 

strategy, in the current analysis, change of position of some nodes only is required. 

Unlike the existing h-FEM based models, in the current case, the resulting changes in the 

aspect ratio of elements do not affect the results, due to the inherent robustness of p-FEM 

based models. The maximum loads and corresponding opening displacements are shown 

in Table 5.25.  

 

Table 5.25 Loads and opening displacements in delamination initiation 

Experiment h-FEM Present analysis 

P δ P δ P δ 

65 N 4.6 mm 71 N 4.5 mm 70.4 N 4.56 mm 

 

Fig. 5.126 shows that the current results are in good agreement with the reference values 

(Meo and Thieulot, 2005). Although, small discrepancy is noticed between the current 

result and the test data near the point of initiation of delamination, the good agreement 

with h-FEM results is notable. The delamination segment of the plot based on current 

results shows no oscillation as in the experimental data and unlike h-FEM results which 

show significant oscillations. Fig. 5.127 shows the variation of length of delamination 

with the increase in opening displacement. 
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Fig. 5.127 Crack length-opening displacement curve 

 

5.6.2 Interior Delamination Problem 

   In this example, a four-layer (90°/0°/0°/90°) laminate square plate with interior 

delamination shown in Fig. 5.128 is considered. Each layer comprises of a unidirectional 

fiber reinforced composite with the following material constants. 

25.0;psi102.0;psi105.0

;psi101;psi1025

231312
6

23
6

1312

6
32

6
1





GGG

EEE
      (5.16) 

The side length of the square plate with interior crack a subjected to distributed uniform 

transverse load (q=10 psi) is 2L=1 in and the thickness h=0.1 in. Location of 

delamination is at the interface of two inner layups, as shown in Fig. 5.128. Due to 

biaxial symmetry, only one-quarter of the plate is modeled. The 3×3 mesh used in the xy-

plane for present analysis is shown in Fig. 5.129. Also, for modeling along the plate 

thickness, only four layers are considered which is identical with the number of layups in 

the plate.  
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Fig. 5.128 Geometry and coordinate system used for the laminated square plate with 
interior delamination 

 

 

Fig. 5.129 Modeling scheme 
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Fig. 5.130 shows variation of deflection in the middle surface at Point A (in Fig. 

5.128) with increase of size of delamination. It is seen that gap between the top and 

bottom surfaces of the delamination widens with the increase of size of delamination. 

However, the top surface at the center of delamination tends to depress due to local effect 

of the transverse loading on the top surface of the plate. If no delamination existed in the 

laminated plate (a=0), maximum tensile and compressive normal stresses ( xx and yy ) 

would have occurred at Point A. The variation of the maximum stresses at Point A with 

the size of delamination is shown in Fig. 5.131. It is seen that the tensile stresses increase 

smoothly with crack length, and the absolute values of compressive stresses decreasing 

with increasing of size of delamination, with the rate of change getting faster.  
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Fig. 5.130 Central deflections with variation of size of delamination 
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Fig. 5.131 In-plane stresses in central point with variation of size of delamination 

 

In order to examine the behavior at delamination front where stress singularity is 

expected, energy release rates at the delamination front are obtained by VCCT. To apply 

VCCT, a new finite element mesh is needed, as shown in Fig. 5.132. Fig. 5.133 shows the 

variation of total ERR with the size of delamination with respect to edges A-A and B-B of 

the delamination. It is seen that the slope of the ERR curves become steeper with increase 

in size of delamination, the curve for edge B-B show large values because of the 

favorable disposition of the fibers in the interior layups. Fig. 5.134 shows the variation of 

ratio of ERR for opening mode (Mode I) and total ERR. It is seen that the contribution of 

opening mode decreases with increase in the size of delamination. It signifies that the 

share of contribution of shearing mode increases with increase with delamination size. It 

can further be noted that for edge A-A, the EPR ratio of shearing mode to total is more 

than 50% when a/L > 0.2. 
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Fig. 5.132 Modeling scheme for VCCT 
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Fig. 5.6-133 Variation of total energy release rates with size of delamination 
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Fig. 5.6-134 Variation of ratios of opening ERR with respect to total ERR with size of 
delamination 
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CHAPTER VI 

 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 Summary of the Present Study 

The summary of the outcome of the research effort to satisfy the stated objectives are 

as follows. 

1. The state of the art for the modeling and simulation of single layer and laminated 

composite plates in the presence of various irregularities was reviewed. Also, the 

current status of patch repair of such structures was critically evaluated. 

2. Improved finite element models were proposed for the analysis of unpatched and 

patched repaired plates. To represent the local 3D behavior of plate problems with 

localized irregularities, a set of improved and new elements, namely, ESLM, PDLM, 

and FDLM were proposed for the efficient analysis of such plates in the presence of 

various kinds of irregularities. On one extreme, FDLM simulated the 3D behavior 

closely in the context of 2D modeling. In the other extreme, ESLM simulated the 2D 

behavior in the context of a general plate element. These elements were based on 

hierarchical basis functions in the form of product of integrals of Legendre 

polynomials.  

3. For computationally efficiency in non-smooth problems, that is those with any type of 

irregularity, transition elements designated as DLTM was developed for use in mixed 

models comprising two or three of the elements mentioned above. The efficiency of 

such modeling resulted from the fact that the computationally intensive elements 
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representing 3D behavior, say, FDLM need to be placed only in the region of 

irregularities where the behavior tends to be three dimensional. 

4. Various special computational techniques associated with the proposed elements, like 

mapping of a non-parabolic curved boundary using blending functions, VCCT for 

efficient fracture mechanics computations, modified quadrature scheme specially 

adapted to the needs of the proposed elements, and the application of ordinary Kriging 

technique for post-processing of errors and mesh adaptation were covered for handling 

different modeling states related to non-routine problems. 

5. To account for geometrically nonlinear behavior in the response of single-patch 

repaired plates, the necessary formulations based on total Lagrangian approach was 

developed. 

6. All the formulations described above were implemented in the MATLAB as a series of 

script files. 

7. The validity of efficient and reliable modeling scheme developed was demonstrated 

through a variety of plate problems with irregularities such as stepped plates, cutout 

problems, skew plates, cracked plates, laminated plates, and patch repaired plates as 

well as basic simple plate problems.  

8. In order to study the characteristic behavior of patch repaired plates, some parametric 

studies were undertaken considering variables like damage type (cutout, center crack, 

double edge crack and single edge crack), patch type (symmetric and non-symmetric), 

patch materials, patch size, patch shape, adhesive thickness, nature of delamination, 

etc.. 
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6.2 Conclusions 

1. The analysis of a series of test problems with different types of irregularities using 

models based on the proposed elements led to results showing excellent agreement 

with those in the published literature. The main observations from these validation 

exercises are as follows. 

a) In the case of plates with the irregularity of stepped plates thickness, in addition to 

models with single element type, mixed models using the transition element DLTM 

was considered. Although both 3D single as well as mixed models gave excellent 

results, the mixed model was computationally most efficient.   

b) Developed models based on p-refinement were applied to rhombic plates with 

moment singularity of the type 8.0r  at the obtuse corners. A very simple 5 element 

hp-mesh mesh with element size graded strongly towards the obtuse corner led to 

convergence to accurate displacements at p-level of 6 for planar variation and 

moments exhibiting the singular behavior accurately with p-level of 10, also for 

planar variation. The use of mixed model led to considerable reduction of 

computational effort without the loss of accuracy.   

c) In the case of rhombic laminated plates, excellent performance of the proposed 

modeling schemes was realized in comparison with reference values. In parametric 

studies involving skew angle and laminated plate thickness, the effect of shear 

deformation was found to decrease as the skew angle was increased, even in the case 

of thick laminated plates. However, for greater accuracy in computed transverse shear 

stresses in laminated plates with large skew angles, not only higher pxy-levels but also 

higher pz-levels were needed, so that oscillations in stress distribution could be 
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avoided. 

d) In laminated plates with cross-ply and angle-ply laminates, stress singularities of 

transverse stresses near free edge could be clearly identified using the proposed finite 

element models. Also, the accuracy of the results was validated with reference values. 

In order to obtain reliable 3D stress field in the free-edge stress problems without 

excessive computational effort, the mixed modeling technique was helpful. 

e) In the case of square plate with square cutout problem with stress singularities at the 

re-entrant corners, the simplest possible model using only one element led to results 

which agreed well with the published ones. In this case, the single element could 

accurately represent both the singular stress field at the re-entrant corner and the 

smooth field away from it. In the case of circular cutout problem with stress 

concentration at specific points around the free edge of the cutout, a five element 

mesh with special mapping technique based on blending functions was used in the 

case of the two elements abutting the circular cutout. The results were in excellent 

agreement with the published results based on conventional h-FEM as well as 

analytical solution. 

f) The use of expanded Gauss-Lobatto numerical quadrature led to accurate evaluation 

of integrals and also enabled direct evaluation of stress at element boundary without 

the need for a special post-processing step.  

g) In center cracked plates, it was shown that a posteriori error estimator using the 

modified SPR method, previously used for adaptive h-refinement, can be effectively 

used for adaptive p-refinement of a finite element model. Solutions of high accuracy 

were successfully obtained by using the ordinary Kriging interpolation technique in 
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which the weighted least-squares method was applied to finite element stress data at 

the Gauss points with the associated weight factors determined from a variogram 

model. The quality of these solutions was found to be superior to those obtained by 

the conventional polynomial interpolation of the stress data based on least squares 

approximation. 

h) A delamination analysis scheme based on the proposed finite element models and 

VCCT was developed for application to the classical double cantilever beam problem 

and symmetrical cross-ply laminated plates with interior damage. For initiation and 

growth of delamination in the double cantilever beam, a very simple modeling 

scheme was suggested compared with those applied to conventional h-FEM based 

models. Excellent performance of present analysis was demonstrated by comparing 

with published values obtained from experiment and h-FEM. In delamination growth 

analysis, the results of proposed delamination analysis agreed with the experimental 

results very closely. Also, there no oscillations were noticed in the predicted response 

curve of delamination growth; whereas, the technique using conventional h-FEM and 

VCCT showed significant oscillations during delamination growth. In addition, the 

variation of ERR obtained by proposed VCCT based approach was investigated with 

increase of delamination size in a laminated plate with interior delamination. 

According to fiber directions of orthotropic material, rates of opening and shearing 

modes could be calculated successfully for different delamination sizes. 

2. A series of patched repaired plates subjected to tensile loading were analyzed by using 

the developed software led to the following observations. 

a) Bonded patch repaired plate with circular cutout 
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i. After successful validation of the FDLM based model along with exact mapping of 

the curved boundary boundaries in comparison with published values based on 

experiment and h-FEM modeling, the problem of patch repairing of the same hole 

was considered. 

ii. In the case of single-sided patch repair, the effect of thickness of parent plate 

modeled with the proposed elements was investigated. In the presence of relatively 

thicker patch or thinner plate, the inclusion of geometric nonlinearity in the 

formulation gave results showing excellent agreement with published experimental 

values.  

iii. In general, bonded patch repair led to reduction of the value of stress 

concentration factor.  The reduction was more pronounced in the patched face of 

the plate.  

iv. In the case of single-sided patch repair, undesirable bending effect tends to reduce 

the effectiveness of the patch in reducing the stress concentration factor.  

v. The variation of stress concentration factor was found to be linear across the plate 

thickness, which is in contrast with the constant value in the unpatched case. 

vi. Considerably high transverse shear stresses were founded near the edge of 

adhesive at interface of parent plate and adhesive. Such high stresses can initiate 

delamination of adhesive. 

vii. The configuration, thickness and size of adhesive layer in single-sided patch can 

affect the behavior of the plate. It would be preferable to use adhesive from outside 

edge of patch to the perimeter of circular hole in the parent plate. 

viii. Between rectangular and circular shaped patches, the circular patch is preferable 
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because of smaller patch area and lesser possibility of delamination. 

ix. It was found that transverse stresses in the adhesive increased with the increase in 

patch thickness. 

b) Analysis of single-sided patched plates with center crack, double-edge crack, and 

single-edge crack. 

i. Advantages of simple modeling scheme and efficiency of calculation using PDLM 

were confirmed. 

ii. Performance of patched plates in each case was shown in comparison with those of 

unpatched plates. It was found again that transverse stresses in the adhesive used in 

the patched plates tended to increase with increase in patch thickness. 

iii. The stress fringe plots confirmed that the crack faces are stress free. This 

satisfaction of the natural boundary conditions at the crack faces supports the high 

accuracy of the results obtained. 

iv. It was also noted from the stress fringe plots that, in general, the response of center 

crack and double-edge crack panels were somewhat similar. 

v. The effect of patch repair was found to significantly reduce or eliminate the crack 

tip peak stress at the patched surface of the plate and increase it at the free surface, 

resulting from bending of the plate.  

vi. The patch repair was found to reduce the SIF significantly; but as expected an 

increase in crack size causes it to rise at an increasing rate. 

vii. In the presence of patch repair, the driving forces for fracture were found to 

weaken and the degree of such weakening is dependent on the stiffness of the 

patch material. Moreover, it was found that although the response curves with 
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boron-epoxy and graphite epoxy patch materials are quite similar, the gap 

between the two increases with growing crack size. The boron-epoxy curve 

normally appears above the graphite-epoxy based curve, except in the case of 

energy share ratio, where the two curves cross at a point. 

viii. As single-sided patch repair causes bending of the cracked parent plate, causing 

the normal stress to vary across the plate thickness.  

ix. The added resistance offered by composite patch material tends to inhibit crack 

growth in the parent cracked aluminum plate. 

x. In order to uniformly reduce the crack driving force through the thickness of the 

aluminum plate, it is more advantageous to use patch repair on both the faces; but 

in real life situations that may not always be possible, especially if only one of the 

surfaces is inaccessible. 

c) Parametric studies on cracked plates with single-sided patch repair. 

i. To identify the best modeling strategy, different models using FDLM and mixed 

modeling were used to analyze patched plates with single-edge crack. The 

performance of the modeling schemes was demonstrated in terms of the accuracy of 

SIF calculated by VCCT and SERR in comparison with reference values obtained 

by conventional h-FEM.  This led to the choice of a mixed model comprising 

FDKLM and ESLM elements with appropriate transition element.  

ii. A series of parametric studies were undertaken to indentify the influence of patch 

size, patch thickness, adhesive thickness, and type of patch material on SIF. These 

were followed by suitable recommendations for effective patch repair. The SIF at the 

middle surface of the plate was reduced at least by 50%, when single-sided patch is 
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used. Actual reduction is a function of patch thickness. Among other factors, the 

magnitude of this reduction is also a function of the thickness of the glue relative to 

the plate thickness. A larger value means larger drop in SIF value.  The SIF was 

also found to be a function of the ratio of patch length to crack size, any value of this 

ratio greater than or equal to 2 leads to the maximum reduction SIF value. 

iii. The relative performance of single-sided and double-sided patch was studied.  

Apart from a detailed understanding of the behavior of two, the performance double-

sided patch was significantly more favorable than the single-sided ones.  

iv. The proposed modeling scheme, highlighting modeling simplicity aided by the 

accuracy of proposed p-FEM models, led to the possibility of a effective general tool 

for undertaking parametric evaluations related to the preliminary design of new 

composite structural components. 

 

6.3 Recommendations 

1. The developed element models based on p-FEM can be extended to laminated shells, 

thermal stress analysis, eigenvalue and transient analyses of laminated surface 

structures.  

2. The scheme for error estimation and adaptive refinement needs to be extended to all 

the proposed element types in the presence of different types of irregularities and 

associated patch repairs, if present.  

3. A very important area requiring significant effort is the extension of the proposed 

element models to handle various types of material nonlinearities which can often be 

the integral part of damage initiation and propagation near localized irregularities. This 
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may include the development of cohesive element models for the initiation and 

propagation of cracks and delamination in laminated composites.  

4. For accurate characterization of damage initiation and propagation in a complex 

heterogeneous material environment, further refined versions of the modeling scheme 

need to be developed to represent behavior at mesoscopic and microscopic levels. 

5. Research needs exist in accommodating into the proposed analysis scheme, the effects 

of meso or microscopic level behavior to accurately predict the behavior of damaged 

laminated plates, like those related to delamination initiation and propagation. 

6. In patch repaired systems, the effect of variables like loading types and other 

environmental conditions, namely, temperature, humidity, chemical attacks, etc., need 

to be investigated.  

7. The subject area of research is rife for extending it into the stochastic area to assess the 

variability of sensitive parameters like patch size, patch location, damage type, etc. and 

their influence on the reliability of the patch repair. 
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