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CHAPTER 1
INTRODUCTION

There are various studies which indicate that the adoption of health information
technology (HIT) can improve patient outcomes and reduce medical errors [8].
Moreover, implementing electronic medical record (EMR) systems can benefit clinicians
by providing information about a patient in real time and assisting in clinical decision
making [1,8,25]. The EMR is integral to all aspects of a patient’s interaction with the
healthcare enterprise. From a patient’s admission until discharge, healthcare providers
interact with a patient’s EMR and apply necessary clinical actions to treat the patients.
The patterns by which the healthcare provider interacts with the EMR system can identify

the patient-specific information needs or patient-centered workflow [11].

In general, clinical workflows are patterns of actions that healthcare providers apply to
accomplish tasks associated with a patient’s treatment [8]. Standardizing the clinical
workflow by implementing guidelines and protocols can reduce the variability in the
treatment process and ensure the effective utilization of EMR [43,44]. To share and
standardize the implementation of clinical guidelines, the InterMed Collaboratory (which
is a collaborative partnership among investigators from Columbia, Harvard, and Stanford
universities) worked to develop shared infrastructural software, tools, and system
components. The InterMed collaborators developed GuideLine Interchange Format
(GLIF) to encode the guideline as computer-interpretable guidelines which is more
relevant way instead of the referring to all published text guideline [44,46]. An evidence-
based consensus has to be developed whether manually reviewing the medical literature
or automatically discovering the current clinical workflow using data mining techniques
[44]. Implementing GLIF reduces the variability in translating, sharing and implementing
the standard guidelines [46], however, the treatment of patients with the same diagnosis
may differ due to multiple factors, such as the healthcare team who treats the patient, the
demographics and comorbities associated with the patient, and the laboratory test results
[11,23]. Understanding the clinical workflow and treatment patterns may identify



bottlenecks in treatments processes, evaluate the current treatment plans, and compare

implementation across clinics and within the same clinic.

Over the past several decades, workflow mining techniques have been developed and
applied to understand the current processes in place at an organization and, subsequently,
to improve its performance (e.g. [31,48,56,58]). In particular, a collection of workflow
mining methodologies, have been designed to utilize the log of information system
events, analyze the outcome of the existing system, and infer the followed processes
[8,15,56]. Process mining relies on ordered events stored in the system logs to discover
the current process, find common performed steps, and compare the observed processes
to a desired process flow [31].

To assess the difference in quality of care, using inferred process measures may require
less data collection (e.g., lower number of cases required) in comparison to traditional
outcome quality assessment strategies such as mortality [34,35]. Process mining
techniques have been invoked to model and investigate the processes in various industrial
settings such as supply chains, banks (e.g., opening accounts), government agencies [54].
Translating such techniques into the clinical setting may provide intuition into the
pathways patients follow. Moreover, the common steps in such pathways may support
evaluation of the current clinical practices and improve the treatment processes by
reducing uncertainty and achieving treatment goals within the required treatment timeline
[22,31,32,43]. Standardizing treatment processes may further reduce variability in the
data collection and enable discovery of the ideal point at which a healthcare facility

should integrate decision support tools or present information to users of the EMR [43].

However, there are a number of challenges to the application of existing process mining
techniques for healthcare data. First, the healthcare environment is highly dynamic [30],
while, the clinical processes are complex and mutli-disciplinary. There are many factors
that may influence the treatment process (both at the clinical and organizational level),
such as i) the care providers who are involved in the treatment process, ii) the clinical
protocol that may affect the treatment process, and iii) new regulations or policies that

require organizational changes [48,49]. Second, healthcare organizations that rely upon



EMRs are complex cyberphysical systems that rely heavily on human factors that
perform a variety of actions that are based on various factors outside of the digital
domain. As a consequence, the variability between patients within the same cohort or
treated for the same reason can be high. Third, healthcare providers may treat the same
condition in different ways depending on the social characteristics (e.g., primary care
physician), economic characteristics (e.g., patient insurance), and patient’s health status
[2,50].

Most of the processing mining techniques used petri net to describe the process model in
a graphical model. Nevertheless, recent studies have applied multiple sequence alignment
(MSA) to infer the common behaviors associated with performing certain processes
[7,22]. To date, most studies that have applied process mining in the clinical domain have
assumed systems that 1) are devoid of noise and 2) exhibit only a small variation in the
order or number of steps in the treatment plan for patients with the same
diagnosis.  Moreover, existing algorithms focus on an organizational view for the
treatment process and fail to address the clinical process that affects the role of the person
who will be involved in the treatment or how sudden clinical events can change a
treatment plan. As such, direct application of traditional process mining methods is
unlikely to provide the most common steps that are invoked to treat a specific cohort of
patients. Evidence already suggests that doing so will provide a very complex and
spaghetti-like model [5,7,22,35].

This thesis aims to overcome the aforementioned limitations in process modeling for

clinical systems. In particular, this thesis makes several specific contributions.

e Clinical Process Mining: We introduce a system, called Treatment Mining using
Frequent Sequential Patterns (TMFSP). This is a multi-step learning approach to
detect frequent treatment patterns from the standard actions that healthcare providers
perform to treat patients admitted for a specific diagnosis. First, TMFSP forms the
treatment  sequence from the clinical events documented in a
patient’s EMR, such as medication and laboratory order sets. Second, it uses the

frequent patterns to reduce the dimension of the data and remove the noise. Third, it



applies MSA to discover the shared frequent subsequence patterns for patients in a
cohort and represent the sequences using the common sequential patterns.

e« TMFSP Evaluation: We evaluated our methodology by mining the clinical process
for a cohort of 133 patients diagnosed with ischemic stroke patients over 4 months.
The results illustrate that the patients’ treatment plans include 2,020 patterns that
consists of 7 medications and 12 laboratory tests. Moreover, TMFSP generated a
common clinical pathway that the patients’ treatment sequences share. In addition, it
was discovered that Insulin and Beta Blockers were excluded from a subpopulation

treatment due to lipid metabolism disorders influence.

The reminder of the thesis is organized as follows. In Chapter 2, we review related
research in process mining, with a particular focus on workflows. In Chapter 3, we
present the TMFSP approach for modeling patient treatment processes. Chapter 4
introduces the cohort of ischemic stroke patient records extracted from the EMR of the
Vanderbilt University Medical Center and the series of experiments applied to evaluate
TMFSP. In Chapter 5, we discuss the main experimental findings and limitations of the

study. Finally, Chapter 6 summarizes the next steps and logical extensions to this work.



CHAPTER 2
BACKGROUND AND RELATED WORK

A clinical pathway is a standardized treatment pattern that implements guidelines and
protocols formed by clinical experts [21,38]. The standard pathway implies that specific
interactions with the EMR system occur at a defined time or in a known order. Some
studies implemented qualitative methods, such as surveys or observational studies, to
collect data from EMR users to define clinical workflow [11]. During the past years,
different algorithms and models were developed to perform process mining in the
industrial domain and healthcare domains. It will be instructive to describe some of the
algorithms and techniques that have been used, examine their success, highlight their
shortcomings, and learned lessons that influenced our model. In the first section, we
describe the usage pattern of an EMR system and its relation with clinical processes. In
the second section, we discuss the usage of petri nets and the limitation of this framework
on mining healthcare processes. The third section discusses multiple sequence alignment
(MSA) and its usage in the domain of process mining. The fourth section describes the
data preprocessing that can be applied on the clinical data to reduce the data dimension

and remove noise.

2.1 EMR Utilization

The availability of patient information plays a crucial role in increasing the EMR
adoption [53]. When a patient is hospitalized, healthcare providers use and integrate
different clinical data types to provide treatment. As such, facilitating timely user
interactions with the patient record can improve the usability of the EMR [36]. However,
without understanding how users interact with an EMR, and the specific points of
interaction, it is difficult to determine the possible set of opportunities to enhance its

usability.

Almost a decade ago, Chen and Cimino [11,12] began to address this issue by using log
file analysis to study the clinical information systems from a user-centered perspective.

This work analyzed the way that EMR users access the patient’s record to understand the



users’ interaction with the elements that influence clinical decision making, such as
characteristics about the users and patients [11]. An association role-mining framework
was applied to learn the interactions that are associated with each other. For instance, in
10% of the user sessions (between login and logout), they found that the user opened
pages on the main laboratory, the patient laboratory results, the radiology main, and the
patient radiology reports. Moreover, they used a sequential pattern discovery technique to
detect the order of clinical data types that the users viewed or invoked. For example,
using data from New York Presbyterian Hospital logs, they discovered that the
abdominal ultrasound result is viewed after a liver function test. It was also shown that
there were specific ordered patterns associated with the utilization of clinical forms and
the actions that transpire between the start and end of the clinical system user’s
interaction session. However, the interaction patterns do not describe the system from a

patient-centric view at which the treatment process over multiple care providers revolves.

2.2 Frequent Pattern Mining

In this section, we describe what constitutes a frequent pattern and the main algorithms
for pattern discovery.

Pattern mining discovers a set of common attributes shared among objects in a dataset
[61]. The first usage of pattern mining was for analysis of market basket data to infer
customers’ purchasing habits and create a plan to increase the sales [20]. Since then,
researchers have used frequent pattern mining to analyze interactions and association
between events for wide range of environments. Consider several examples in market
analysis, 70% of the people, who buy Jane Austen’s Pride and Prejudice, buy Emma in
the following month [61]. In EMR interactions, Cimino and colleagues [14] studied the
way the users interact with the clinical systems to redesign the insertion and increase the
usage of information buttons, which are applications that provides health information

resources to clinical system users based on specific links.

Another successful implementation for frequent pattern mining is in similarity search of
complex and structured datasets such as event logs, transaction sequences, and images

[20]. In such datasets, the volume of the data is huge and searching for an object can take



a long time. Hence, summarizing the objects by their frequent patterns can reduce the

dimensionality of the search space and decrease computational cost when searching [20].

For datasets that consist of sequences of categorical data, there are numerous algorithms
to discover frequent patterns such as SPAM [3], PrefixScan [45], and SPADE [61]. In
2001, Zaki developed SPADE [61] that convert the dataset of sequence Identification
Numbers (ID), the event time, and the events that happened at that time into a vertical
database that consists of tuples in the form <itemset : (sequence_ID, event time)> [61].
Implementing the vertical data format reduces the number of database scans to discover

frequent patterns [61].

2.3 Process Mining

Process mining corresponds to the automated discovery of ordered behavior in the form
of models that characterize an organization and its performance [22,32]. Process mining
is applicable to any event, or time, based systems such as business process management
(BPM) systems (e.g., filenet), enterprise resource planning (ERP) systems (e.g.,
Microsoft Dynamics NAV, and SAP), and hospital information systems (e.g., Epic,
ChipSoft) [22,32,30]. All of the aforementioned systems share one feature in common -
the storage and analysis of events associated with a process in an electronic format along
with the event time in logs. Each event represents a defined step that is performed by a

specific actor or originator [22,30].

The goal of process mining is to infer a process model and project it against an intended,
or an a priori, model [22,32,59]. Thus, process mining is positioned at the intersection of
data-oriented techniques (i.e., data mining and machine learning) and workflow
management to answer “What if” questions and verify the current steps of a process [57].
The following subsections describe some of the techniques that have used in processing

mining.

2.3.1 Process Mining Algorithms and Petri Net Representation
The most popular process mining algorithms are the a-algorithm, heuristic algorithm, and

genetic algorithm. All of these algorithms provide the same type of model representation,



which is a petri net. The a-algorithm scans the event log to find the order relations
between events [58]. The heuristic algorithm expresses the main behavior in the events
log and attempts to reduce the effect of noise [60]. The genetic algorithm tries to mimic
the process of evolution to tackle the duplicate entries and incomplete data problem [55].

A petri net is a mathematical and graphical modeling tool that describes the information
system process [39]. It provides a graphical representation for the concurrent, sequential
and asynchronies similar to the flow charts, which may represent the sequential patterns
in the system. Figure 2.1 shows an example of an event log and its corresponding petri
pet representation. Here each box represents a state or a task and the direction of the
arrow indicates the sequence of events. The splitting out from a state is similar to an
"OR” relation, where any one of the next states may happen. For example, after state "A”
event "B” or event "C"” may happen but both of them will be followed by event "D”. The
petri net simulates the concurrent activities or events in the system; however, it may
provide a graph that is difficult to interpret when the system is complex, and has a
substantial number of loops.

Process ID | Event Value
1 A
B
1 B
1 D A D
2 A
C
2 C
2 D
(a) Table of processes and their events (b) Petri net for processes flow in table (a)

Figure 2.1. A petri net example, where the processes in (a) a tabular form are represented as a (b) flow

chart.

2.3.2 Process Mining and Sequence Alignment
Comparing two or more sequences of items (numbers or letters) has been used in
numerous domains, including speech recognition and molecular biology [9]. Multiple

sequence alignment (MSA) was designed to find the optimal alignment for a set of



sequences through a series of edit operations, such that all the sequences have the same
length and share the highest number of items at the same position [4,17]. The alignment
procedure typically starts by overlaying the most similar sequences and gradually adds
the next most related sequences [52]. MSA can be used on any set of sequences provided
the vocabulary of terms (e.g., DNA, RNA, or a natural language sentence) is well-
specified. More recently, MSA has been adopted by other fields such as process mining,

and outlier detection in a set of sequences [9,22].

MSA has mainly been used in the fields of computational biology and bioinformatics
fields where the goal is aims to discover biological and evolutionary processes of
different organisms [27]. Discovering patterns across the biological sequences is essential
to understanding evolutionary processes [13]. In support of this goal, researchers have
used MSA methods to discover the conserved components of sequential categorical

systems.

2.4 Process Mining in Healthcare

A healthcare organization is, essentially, an event-based system where care providers
manage patient transition from one point of care to another, treat patients to manage a
disease, or communicate with other parties for payments, supplies, or other actions.
Understanding the healthcare process and discovering current flows of care can assist in
improving the process and detecting bottlenecks [6,32]. Over the past several years, there
have been an increasing number of studies into the application of process mining in

healthcare.

2.4.1 Process Mining using Petri Net

Most process mining studies in healthcare have relied upon event logs (such as those
affiliated with admission, discharge, registration, and radiology or laboratory orders) and
the people who were involved in the care steps to represent the process [23,30,48].
Process mining techniques that use the actions of people and administrative tasks provide

a representation for the organizational process.

Mans and colleagues [30] performed process mining on gynecological oncology

workflows in an academic medical center in the Netherlands. First, they used heuristic



mining to generate a petri net for gynecological patients using event logs. Figure 2.2
depicts their petri net after preprocessing the data. Notice the complex spaghetti-like

structure, which is difficult to read and directly interpret.

Figure 2.2. Petri net with a spaghetti-like model for a gynecological oncology workflow in a Dutch

hospital reprinted from [30].

To obtain more informative models, they analyzed the clinical workflow from three

perspectives:

1) Control flows in which they investigated the pathways that patients went through via
visits. In this model, they only provided the type of visit and clinical visit pathways. The
generated model lacks the details about social and clinical events and focused only on
how the patient flows from one type of visit to another.

2) Organizational and social networking in which they investigated how collaborations
and interactions between different departments at the hospital come together to treat
patients with a specific diagnosis.

3) Performance models in which they aligned the events according to their relative time
from the patient’s admission to provide measures associated with admission duration, the
number of events in each case, and patterns associated with certain treatment sequences.
They represented the output in a dotted chart which represented the patient clinical path
as a series of dots. Each dot represents an event that happened to the patients and
different events had different colors. They tried to detect frequent patterns of clinical

events from the chart using only visual inspection.
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The three studies model form the clinical process, however, they did not discuss whether
those models could be combined to obtain a complete clinical model. This would be

difficult because each model represented the process in a different way.

Few investigations have used data from actual medical treatments, such medications
[19,33,47]. Mans and colleagues [33] applied process mining on ischemic stroke
treatments in four Italian hospitals (hospital names were not mentioned). In doing so,
they attempted to identify the clinical pathways that the patients followed and contrasted
the processes between the hospitals. They used the data from collected by stroke units in
the four hospitals. They used process mining to produce petri net for the patients’
treatment in stroke unit. They compared two hospitals’ petri net and found a difference in
the treatment protocol. Specifically one of the hospitals gave an antihypertensive
medication while the other one did not. They concluded that one of the hospitals is a
research facility since its petri net included neuroprotection which is a therapeutic
protocol. This study was limited since it did not use data about the medications were
administered, or were laboratory tests ordered by the Emergency department. These

features, as our investigation shows, are critical to modeling ischemic stroke treatments.

2.4.2 MSA in Process Mining

Bose and van der Aalst [5,6,22] discuss the potential for MSA in discovering common
patterns, processes, and deviations in the process. In [6], MSA is applied to mine
processes in a variety of settings, such as telephone repair, rental allocation by a rental
agency, and building permit requests in Dutch municipalities. In each process, they
discovered common patterns or subsequences that the processes shared, as well as rare
instances or deviations that some sequences exhibited. For example, in the telephone
repair model, one of the sequences exhibited included a rare event that did not exist in
other repair sequences. The deviated event was a failure to perform the first phone

inspection because the customer was not at home.

In the medical domain, Bouarfa and Dankelman [7] introduced an MSA algorithm to
align and recognize patterns in the sequence of instrument usage in laparoscopic

cholecystectomy surgeries. They demonstrated that surgical process sequences could be

11



generated from event logs and applied MSA to discover the surgical workflow and
outlying sequences. For example, one of the sequences included extra clipping and
cutting of the cystic artery. They found that all the surgical sequences included an outlier,
which is an item that the surgical sequence has in a position but the common alignment
does not have it at that position. They justified their findings by claiming that the surgical

workflow varies from patient to patient.

2.4 Challenges and Limitations in Clinical Workflow Mining

Lang and colleagues [24] evaluated different process mining approaches by detecting the
process pathway in a radiology department. They created metrics and formulated
equations to assess the output by measuring the completeness of the generated model, the
ability to deal with noisy data, the ability to distinguish different processes, and the
ability to deal with fuzzy entries and end points. They found that most of the process
mining algorithms failed to either: i) discover the process models or ii) the discovered
process models did not match the real known pathways [24]. Different factors contribute

to the challenges in applying process mining to healthcare systems.

1- Highly Dynamic. Medical knowledge changes daily and can have a dynamic and
complex nature [30,32], while the main actors in the healthcare system rotate.
Different clinical teams or actors may treat different patients with the same
disease with a slight variation. In addition, the patient’s demographics, health
insurance, and health status can increase the variability of treatments.

2- High-Dimensionality and System Complexity. Interactions in the healthcare
system are non-linear and multivariate [26]. Different levels and types of people
are involved in the treatment process, physicians including ranging in department
and specialty, nurses, family of the patients, and the patients themselves.
Moreover, a patient’s demographic factors and health conditions (e.g.,
comorbidities) can induce a personalized set of treatment steps.

3- Ad Hoc and Self-Organized. The clinical systems can be described as emergent
event-based self-organized systems, in which the occurrence of events shifts that
care protocol [26]. Healthcare providers act according to their experience,

knowledge, and current patient situation which varies from one case to another.

12



All of these factors can increase the variability in a patient’s treatment and
different order sets of care actions.

Level of Abstractions. The data stored in EMRs is highly diverse and may be
generated by different subsystems in the healthcare organization. For instance,
data may be derived from administrative records, clinical information systems,
and medical devices [32]. While different data types can be combined to describe
what happened to patients specifically and, more generally, in the organization,
the data may exhibit different levels of abstraction. For instance, administrative
data has a high-level of abstraction that considers the main checkpoints such as
admission, discharge and registration. By contrast, clinical data has a different
level of abstractions