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CHAPTER 1 

INTRODUCTION 

There are various studies which indicate that the adoption of health information 

technology (HIT) can improve patient outcomes and reduce medical errors [8].  

Moreover, implementing electronic medical record (EMR) systems can benefit clinicians 

by providing information about a patient in real time and assisting in clinical decision 

making [1,8,25].  The EMR is integral to all aspects of a patient’s interaction with the 

healthcare enterprise.  From a patient’s admission until discharge, healthcare providers 

interact with a patient’s EMR and apply necessary clinical actions to treat the patients.  

The patterns by which the healthcare provider interacts with the EMR system can identify 

the patient-specific information needs or patient-centered workflow [11].  

In general, clinical workflows are patterns of actions that healthcare providers apply to 

accomplish tasks associated with a patient’s treatment [8]. Standardizing the clinical 

workflow by implementing guidelines and protocols can reduce the variability in the 

treatment process and ensure the effective utilization of EMR [43,44]. To share and 

standardize the implementation of clinical guidelines, the InterMed Collaboratory (which 

is a collaborative partnership among investigators from Columbia, Harvard, and Stanford 

universities) worked to develop shared infrastructural software, tools, and system 

components. The InterMed collaborators developed GuideLine Interchange Format 

(GLIF) to encode the guideline as computer-interpretable guidelines which is more 

relevant way instead of the referring to all published text guideline [44,46]. An evidence-

based consensus has to be developed whether manually reviewing the medical literature 

or automatically discovering the current clinical workflow using data mining techniques 

[44]. Implementing GLIF reduces the variability in translating, sharing and implementing 

the standard guidelines [46], however, the treatment of patients with the same diagnosis 

may differ due to multiple factors, such as the healthcare team who treats the patient, the 

demographics and comorbities associated with the patient, and the laboratory test results 

[11,23]. Understanding the clinical workflow and treatment patterns may identify 
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bottlenecks in treatments processes, evaluate the current treatment plans, and compare 

implementation across clinics and within the same clinic.  

Over the past several decades, workflow mining techniques have been developed and 

applied to understand the current processes in place at an organization and, subsequently, 

to improve its performance (e.g. [31,48,56,58]). In particular, a collection of workflow 

mining methodologies, have been designed to utilize the log of information system 

events, analyze the outcome of the existing system, and infer the followed processes 

[8,15,56].  Process mining relies on ordered events stored in the system logs to discover 

the current process, find common performed steps, and compare the observed processes 

to a desired process flow [31].  

To assess the difference in quality of care, using inferred process measures may require 

less data collection (e.g., lower number of cases required) in comparison to traditional 

outcome quality assessment strategies such as mortality [34,35]. Process mining 

techniques have been invoked to model and investigate the processes in various industrial 

settings such as supply chains, banks (e.g., opening accounts), government agencies [54]. 

Translating such techniques into the clinical setting may provide intuition into the 

pathways patients follow. Moreover, the common steps in such pathways may support 

evaluation of the current clinical practices and improve the treatment processes by 

reducing uncertainty and achieving treatment goals within the required treatment timeline 

[22,31,32,43]. Standardizing treatment processes may further reduce variability in the 

data collection and enable discovery of the ideal point at which a healthcare facility 

should integrate decision support tools or present information to users of the EMR [43]. 

However, there are a number of challenges to the application of existing process mining 

techniques for healthcare data. First, the healthcare environment is highly dynamic [30], 

while, the clinical processes are complex and mutli-disciplinary. There are many factors 

that may influence the treatment process (both at the clinical and organizational level), 

such as i) the care providers who are involved in the treatment process, ii) the clinical 

protocol that may affect the treatment process, and iii) new regulations or policies that 

require organizational changes [48,49]. Second, healthcare organizations that rely upon 
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EMRs are complex cyberphysical systems that rely heavily on human factors that 

perform a variety of actions that are based on various factors outside of the digital 

domain. As a consequence, the variability between patients within the same cohort or 

treated for the same reason can be high.  Third, healthcare providers may treat the same 

condition in different ways depending on the social characteristics (e.g., primary care 

physician), economic characteristics (e.g., patient insurance), and patient’s health status 

[2,50]. 

Most of the processing mining techniques used petri net to describe the process model in 

a graphical model. Nevertheless, recent studies have applied multiple sequence alignment 

(MSA) to infer the common behaviors associated with performing certain processes 

[7,22]. To date, most studies that have applied process mining in the clinical domain have 

assumed systems that 1) are devoid of noise and 2) exhibit only a small variation in the 

order or number of steps in the treatment plan for patients with the same 

diagnosis.   Moreover, existing algorithms focus on an organizational view for the 

treatment process and fail to address the clinical process that affects the role of the person 

who will be involved in the treatment or how sudden clinical events can change a 

treatment plan. As such, direct application of traditional process mining methods is 

unlikely to provide the most common steps that are invoked to treat a specific cohort of 

patients. Evidence already suggests that doing so will provide a very complex and 

spaghetti-like model [5,7,22,35]. 

This thesis aims to overcome the aforementioned limitations in process modeling for 

clinical systems. In particular, this thesis makes several specific contributions.  

 Clinical Process Mining: We introduce a system, called Treatment Mining using 

Frequent Sequential Patterns (TMFSP). This is a multi-step learning approach to 

detect frequent treatment patterns from the standard actions that healthcare providers 

perform to treat patients admitted for a specific diagnosis.  First, TMFSP forms the 

treatment sequence from the clinical events documented in a                                                                                                                                                                                                          

patient’s EMR, such as medication and laboratory order sets. Second, it uses the 

frequent patterns to reduce the dimension of the data and remove the noise. Third, it 
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applies MSA to discover the shared frequent subsequence patterns for patients in a 

cohort and represent the sequences using the common sequential patterns.   

 TMFSP Evaluation: We evaluated our methodology by mining the clinical process 

for a cohort of 133 patients diagnosed with ischemic stroke patients over 4 months. 

The results illustrate that the patients’ treatment plans include 2,020 patterns that 

consists of 7 medications and 12 laboratory tests. Moreover, TMFSP generated a 

common clinical pathway that the patients’ treatment sequences share. In addition, it 

was discovered that Insulin and Beta Blockers were excluded from a subpopulation 

treatment due to lipid metabolism disorders influence. 

The reminder of the thesis is organized as follows. In Chapter 2, we review related 

research in process mining, with a particular focus on workflows. In Chapter 3, we 

present the TMFSP approach for modeling patient treatment processes. Chapter 4 

introduces the cohort of ischemic stroke patient records extracted from the EMR of the 

Vanderbilt University Medical Center and the series of experiments applied to evaluate 

TMFSP.  In Chapter 5, we discuss the main experimental findings and limitations of the 

study. Finally, Chapter 6 summarizes the next steps and logical extensions to this work. 
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CHAPTER 2 

BACKGROUND AND RELATED WORK 

A clinical pathway is a standardized treatment pattern that implements guidelines and 

protocols formed by clinical experts [21,38]. The standard pathway implies that specific 

interactions with the EMR system occur at a defined time or in a known order. Some 

studies implemented qualitative methods, such as surveys or observational studies, to 

collect data from EMR users to define clinical workflow [11]. During the past years, 

different algorithms and models were developed to perform process mining in the 

industrial domain and healthcare domains. It will be instructive to describe some of the 

algorithms and techniques that have been used, examine their success, highlight their 

shortcomings, and learned lessons that influenced our model. In the first section, we 

describe the usage pattern of an EMR system and its relation with clinical processes. In 

the second section, we discuss the usage of petri nets and the limitation of this framework 

on mining healthcare processes. The third section discusses multiple sequence alignment 

(MSA) and its usage in the domain of process mining. The fourth section describes the 

data preprocessing that can be applied on the clinical data to reduce the data dimension 

and remove noise.  

2.1 EMR Utilization  

The availability of patient information plays a crucial role in increasing the EMR 

adoption [53]. When a patient is hospitalized, healthcare providers use and integrate 

different clinical data types to provide treatment. As such, facilitating timely user 

interactions with the patient record can improve the usability of the EMR [36].  However, 

without understanding how users interact with an EMR, and the specific points of 

interaction, it is difficult to determine the possible set of opportunities to enhance its 

usability.  

Almost a decade ago, Chen and Cimino [11,12] began to address this issue by using log 

file analysis to study the clinical information systems from a user-centered perspective. 

This work analyzed the way that EMR users access the patient’s record to understand the 
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users’ interaction with the elements that influence clinical decision making, such as 

characteristics about the users and patients [11]. An association role-mining framework 

was applied to learn the interactions that are associated with each other. For instance, in 

10% of the user sessions (between login and logout), they found that the user opened 

pages on the main laboratory, the patient laboratory results, the radiology main, and the 

patient radiology reports. Moreover, they used a sequential pattern discovery technique to 

detect the order of clinical data types that the users viewed or invoked. For example, 

using data from New York Presbyterian Hospital logs, they discovered that the 

abdominal ultrasound result is viewed after a liver function test. It was also shown that 

there were specific ordered patterns associated with the utilization of clinical forms and 

the actions that transpire between the start and end of the clinical system user’s 

interaction session. However, the interaction patterns do not describe the system from a 

patient-centric view at which the treatment process over multiple care providers revolves. 

 2.2 Frequent Pattern Mining 

In this section, we describe what constitutes a frequent pattern and the main algorithms 

for pattern discovery.  

Pattern mining discovers a set of common attributes shared among objects in a dataset 

[61]. The first usage of pattern mining was for analysis of market basket data to infer 

customers’ purchasing habits and create a plan to increase the sales [20]. Since then, 

researchers have used frequent pattern mining to analyze interactions and association 

between events for wide range of environments. Consider several examples in market 

analysis, 70% of the people, who buy Jane Austen’s Pride and Prejudice, buy Emma in 

the following month [61]. In EMR interactions, Cimino and colleagues [14] studied the 

way the users interact with the clinical systems to redesign the insertion and increase the 

usage of information buttons, which are applications that provides health information 

resources to clinical system users based on specific links.  

Another successful implementation for frequent pattern mining is in   similarity search of 

complex and structured datasets such as event logs, transaction sequences, and images 

[20]. In such datasets, the volume of the data is huge and searching for an object can take 
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a long time. Hence, summarizing the objects by their frequent patterns can reduce the 

dimensionality of the search space and decrease computational cost when searching [20].  

For datasets that consist of sequences of categorical data, there are numerous algorithms 

to discover frequent patterns such as SPAM [3], PrefixScan [45], and SPADE [61]. In 

2001, Zaki developed SPADE [61] that convert the dataset of sequence Identification 

Numbers (ID), the event time, and the events that happened at that time into a vertical 

database that consists of tuples in the form <itemset : (sequence_ID, event time)> [61]. 

Implementing the vertical data format reduces the number of database scans to discover 

frequent patterns [61]. 

2.3 Process Mining 

Process mining corresponds to the automated discovery of ordered behavior in the form 

of models that characterize an organization and its performance [22,32]. Process mining 

is applicable to any event, or time, based systems such as business process management 

(BPM) systems (e.g., filenet), enterprise resource planning (ERP) systems (e.g., 

Microsoft Dynamics NAV, and SAP), and hospital information systems (e.g., Epic, 

ChipSoft) [22,32,30]. All of the aforementioned systems share one feature in common - 

the storage and analysis of events associated with a process in an electronic format along 

with the event time in logs.  Each event represents a defined step that is performed by a 

specific actor or originator [22,30].  

The goal of process mining is to infer a process model and project it against an intended, 

or an a priori, model [22,32,59]. Thus, process mining is positioned at the intersection of 

data-oriented techniques (i.e., data mining and machine learning) and workflow 

management to answer “What if” questions and verify the current steps of a process [57]. 

The following subsections describe some of the techniques that have used in processing 

mining. 

2.3.1 Process Mining Algorithms and Petri Net Representation 

The most popular process mining algorithms are the α-algorithm, heuristic algorithm, and 

genetic algorithm. All of these algorithms provide the same type of model representation, 
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which is a petri net. The α-algorithm scans the event log to find the order relations 

between events [58]. The heuristic algorithm expresses the main behavior in the events 

log and attempts to reduce the effect of noise [60]. The genetic algorithm tries to mimic 

the process of evolution to tackle the duplicate entries and incomplete data problem [55]. 

A petri net is a mathematical and graphical modeling tool that describes the information 

system process [39]. It provides a graphical representation for the concurrent, sequential 

and asynchronies similar to the flow charts, which may represent the sequential patterns 

in the system. Figure 2.1 shows an example of an event log and its corresponding petri 

pet representation. Here each box represents a state or a task and the direction of the 

arrow indicates the sequence of events. The splitting out from a state is similar to an 

OR relation, where any one of the next states may happen. For example, after state A 

event B or event C may happen but both of them will be followed by event D. The 

petri net simulates the concurrent activities or events in the system; however, it may 

provide a graph that is difficult to interpret when the system is complex, and has a 

substantial number of loops. 

 

Figure 2.1. A petri net example, where the processes in (a) a tabular form are represented as a (b) flow 

chart. 

2.3.2 Process Mining and Sequence Alignment 

Comparing two or more sequences of items (numbers or letters) has been used in 

numerous domains, including speech recognition and molecular biology [9]. Multiple 

sequence alignment (MSA) was designed to find the optimal alignment for a set of 
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sequences through a series of edit operations, such that all the sequences have the same 

length and share the highest number of items at the same position [4,17]. The alignment 

procedure typically starts by overlaying the most similar sequences and gradually adds 

the next most related sequences [52]. MSA can be used on any set of sequences provided 

the vocabulary of terms (e.g., DNA, RNA, or a natural language sentence) is well-

specified. More recently, MSA has been adopted by other fields such as process mining, 

and outlier detection in a set of sequences [9,22]. 

MSA has mainly been used in the fields of computational biology and bioinformatics 

fields where the goal is aims to discover biological and evolutionary processes of 

different organisms [27]. Discovering patterns across the biological sequences is essential 

to understanding evolutionary processes [13]. In support of this goal, researchers have 

used MSA methods to discover the conserved components of sequential categorical 

systems.  

2.4 Process Mining in Healthcare 

A healthcare organization is, essentially, an event-based system where care providers 

manage patient transition from one point of care to another, treat patients to manage a 

disease, or communicate with other parties for payments, supplies, or other actions. 

Understanding the healthcare process and discovering current flows of care can assist in 

improving the process and detecting bottlenecks [6,32]. Over the past several years, there 

have been an increasing number of studies into the application of process mining in 

healthcare. 

2.4.1 Process Mining using Petri Net 

Most process mining studies in healthcare have relied upon event logs (such as those 

affiliated with admission, discharge, registration, and radiology or laboratory orders) and 

the people who were involved in the care steps to represent the process [23,30,48]. 

Process mining techniques that use the actions of people and administrative tasks provide 

a representation for the organizational process.  

Mans and colleagues [30] performed process mining on gynecological oncology 

workflows in an academic medical center in the Netherlands. First, they used heuristic 
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mining to generate a petri net for gynecological patients using event logs. Figure 2.2 

depicts their petri net after preprocessing the data. Notice the complex spaghetti-like 

structure, which is difficult to read and directly interpret.  

 

Figure 2.2. Petri net with a spaghetti-like model for a gynecological oncology workflow in a Dutch 

hospital reprinted from [30]. 

To obtain more informative models, they analyzed the clinical workflow from three 

perspectives:  

1) Control flows in which they investigated the pathways that patients went through via 

visits. In this model, they only provided the type of visit and clinical visit pathways. The 

generated model lacks the details about social and clinical events and focused only on 

how the patient flows from one type of visit to another.  

2) Organizational and social networking in which they investigated how collaborations 

and interactions between different departments at the hospital come together to treat 

patients with a specific diagnosis.  

3) Performance models in which they aligned the events according to their relative time 

from the patient’s admission to provide measures associated with admission duration, the 

number of events in each case, and patterns associated with certain treatment sequences. 

They represented the output in a dotted chart which represented the patient clinical path 

as a series of dots. Each dot represents an event that happened to the patients and 

different events had different colors. They tried to detect frequent patterns of clinical 

events from the chart using only visual inspection.  
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The three studies model form the clinical process, however, they did not discuss whether 

those models could be combined to obtain a complete clinical model. This would be 

difficult because each model represented the process in a different way. 

Few investigations have used data from actual medical treatments, such medications 

[19,33,47]. Mans and colleagues [33] applied process mining on ischemic stroke 

treatments in four Italian hospitals (hospital names were not mentioned). In doing so, 

they attempted to identify the clinical pathways that the patients followed and contrasted 

the processes between the hospitals. They used the data from collected by stroke units in 

the four hospitals. They used process mining to produce petri net for the patients’ 

treatment in stroke unit. They compared two hospitals’ petri net and found a difference in 

the treatment protocol. Specifically one of the hospitals gave an antihypertensive 

medication while the other one did not. They concluded that one of the hospitals is a 

research facility since its petri net included neuroprotection which is a therapeutic 

protocol. This study was limited since it did not use data about the medications were 

administered, or were laboratory tests ordered by the Emergency department. These 

features, as our investigation shows, are critical to modeling ischemic stroke treatments. 

2.4.2 MSA in Process Mining 

Bose and van der Aalst [5,6,22] discuss the potential for MSA in discovering common 

patterns, processes, and deviations in the process. In [6], MSA is applied to mine 

processes in a variety of settings, such as telephone repair, rental allocation by a rental 

agency, and building permit requests in Dutch municipalities. In each process, they 

discovered common patterns or subsequences that the processes shared, as well as rare 

instances or deviations that some sequences exhibited. For example, in the telephone 

repair model, one of the sequences exhibited included a rare event that did not exist in 

other repair sequences. The deviated event was a failure to perform the first phone 

inspection because the customer was not at home. 

In the medical domain, Bouarfa and Dankelman [7]
 
introduced an MSA algorithm to 

align and recognize patterns in the sequence of instrument usage in laparoscopic 

cholecystectomy surgeries. They demonstrated that surgical process sequences could be 
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generated from event logs and applied MSA to discover the surgical workflow and 

outlying sequences. For example, one of the sequences included extra clipping and 

cutting of the cystic artery. They found that all the surgical sequences included an outlier, 

which is an item that the surgical sequence has in a position but the common alignment 

does not have it at that position. They justified their findings by claiming that the surgical 

workflow varies from patient to patient. 

2.4 Challenges and Limitations in Clinical Workflow Mining 

Lang and colleagues [24] evaluated different process mining approaches by detecting the 

process pathway in a radiology department. They created metrics and formulated 

equations to assess the output by measuring the completeness of the generated model, the 

ability to deal with noisy data, the ability to distinguish different processes, and the 

ability to deal with fuzzy entries and end points. They found that most of the process 

mining algorithms failed to either: i) discover the process models or ii) the discovered 

process models did not match the real known pathways [24]. Different factors contribute 

to the challenges in applying process mining to healthcare systems. 

1- Highly Dynamic.  Medical knowledge changes daily and can have a dynamic and 

complex nature [30,32], while the main actors in the healthcare system rotate. 

Different clinical teams or actors may treat different patients with the same 

disease with a slight variation. In addition, the patient’s demographics, health 

insurance, and health status can increase the variability of treatments.  

2- High-Dimensionality and System Complexity. Interactions in the healthcare 

system are non-linear and multivariate [26]. Different levels and types of people 

are involved in the treatment process, physicians including ranging in department 

and specialty, nurses, family of the patients, and the patients themselves. 

Moreover, a patient’s demographic factors and health conditions (e.g., 

comorbidities) can induce a personalized set of treatment steps. 

3- Ad Hoc and Self-Organized. The clinical systems can be described as emergent 

event-based self-organized systems, in which the occurrence of events shifts that 

care protocol [26]. Healthcare providers act according to their experience, 

knowledge, and current patient situation which varies from one case to another.  
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All of these factors can increase the variability in a patient’s treatment and 

different order sets of care actions. 

4- Level of Abstractions. The data stored in EMRs is highly diverse and may be 

generated by different subsystems in the healthcare organization. For instance, 

data may be derived from administrative records, clinical information systems, 

and medical devices [32]. While different data types can be combined to describe 

what happened to patients specifically and, more generally, in the organization, 

the data may exhibit different levels of abstraction. For instance, administrative 

data has a high-level of abstraction that considers the main checkpoints such as 

admission, discharge and registration. By contrast, clinical data has a different 

level of abstractions, some of the data have low abstraction (e.g. clinical notes), 

some data have average abstraction level (e.g. timestamp of ICD9 daily code 

includes the date only). 

5- Missing Data and Poor Documentation Procedures.  Although there is growing 

attention to improve clinical documentation, there remains a mismatch between 

current documentation interfaces and the application flows that support them [29]. 

Automating the completion of fields, providing copy-paste capability, and 

switching from an unstructured to a structured format can facilitate the clinical 

documentation process [49]. However, the mismatch between the documentation 

applications, the type of the care flow based on urgency, and the required 

accuracy, reusability and readability contributes to poor documentation [49]. 

When a certain document or data that describes a certain treatment step is missing 

or ill-presented, it could lead to improper modeling of the patient treatment. For 

instance, when applying a process mining strategy, it could suggest that patients 

with similar ailments and treatments had a different care plan, when, in reality, 

they all went through the same steps.  
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CHAPTER 3 

DISCOVERY OF FREQUENT PATTERNS AND FORMATION OF CLINICAL 

PATHWAYS 

In this chapter, we present a methodology to discover the common behavior in treating 

patient in specific cohort. First, we formalize the problem of treatment process discovery. 

Second, we introduce Treatment Mining using Frequent Sequential Patterns (TM-FSP), 

which is a multi-step process mining model to learn from EMRs to form the clinical 

pathways associated with the treatment of a specific diagnosis. It consists of three phases, 

as Figure 3.1 depicts: 

Clinical Sequence Formation (Phase 1): First, it uses medications and laboratory tests to 

form the clinical sequence for each patient in the cohort.  

Filtering and Dimensionality Reduction (Phase 2): Second, it discovers the frequent 

patterns using frequent pattern mining, and uses frequency as a proxy to reduces the 

dimension of sequential medical data by filtering the sequences into generated sequence 

frequent patterns. 

Sequence Alignment and Clustering (Phase 3): Third, it clusters the filtered sequences 

based on their similarity. Each cluster is subject to MSA, and finally, TM-FSP represents 

the common actions among patient subtype (i.e. cluster) as a workflow. 
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3.1 Treatment Process Discovery 

The treatment for an admitted patient consists of performing clinical actions, such as the 

ordering of laboratory tests and medication administration. The healthcare providers 

know the main steps to treat the patients; however, the treatment process can be highly 

dynamic [28]. As a consequence, healthcare providers may not realize the different steps 

performed for a given set of patients nor the frequency of clinical actions among the 

patients in the cohort.  We propose TM-FSP to discover the frequency and the order in 

which clinical events transpire.  

The following sections describe the phases of TM-FSP. Each section starts with the main 

objective or high-level overview of the phase, then it provides a detailed description of 

the corresponding phase. 

Figure 3.1. TM-FSP approach to generating clinical pathways for a cohort of patients. Phase 1: 

Formation of clinical sequences s using clinical events {e1, e2, .., en}. Phase 2: Reduction of the domain 

dimensionality using pattern set σ and projection of the sequences along the patterns. Phase 3: 

Generation of the clinical pathways via the application of MSA. 
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3.2 Phase 1:  Clinical Sequence Formation 

In this phase, TM-FSP takes a set of patients P and forms the clinical sequence for each 

patient. Let C = {c1, c2, …, cj} be the set of single  clinical events that were performed on 

the patient (e.g., admission, medication, laboratory order, and radiology scan). Clinical 

events may happen at the same time; hence, the set of clinical events E = {e1, e2,…, ei} 

where ei is the set of single clinical activities that were performed at ti such that ei  = {c1, 

c2, ci}. 

We define the patient clinical sequence as the clinical events that healthcare providers 

performed to treat the patients from a specific disease. TM-FSP obtains the clinical 

events dataset E from a patient dataset P, and forms the clinical sequences. A clinical 

sequence s for patient p   P is the ordered clinical events such that sp = {e1, e2, …, en}, 

where ei is a clinical events that happened  at time ti and i  j: ti < tj (i.e., ei happens 

before ej). For each patient, we formed the clinical sequence sp. The output of Phase 1 is a 

set of clinical sequences S = {s1, s2, s3,…, sp}. 

3.3 Phase 2: Removing Noise By Dimensionality Reduction 

The core clinical pathway consists of common steps that were applied to treat the 

patients. The clinical environment is highly dynamic and contains a lot of variables, thus 

the data is vulnerable to noise and events that are not part of the clinical process (e.g., 

users can access a patient’s record to check laboratory result status, medication or 

combinations made by the hospital for several patients). To dampen noise and reduce the 

dimensionality of the data, we invoke a frequent pattern mining method to uncover the 

number of dimensions necessary to represent the set of sequences. 

3.3.1. Detecting Frequent Patterns 

The first step in Phase 2 is discovering the events that happen frequently in the sequence 

set S and events that occur together in the same sequence across all the sequence set. 

Here, we formalize terms that will be invoked to describe methods in TM-FSP later. 

Each sequence in S can be represented by events or subsequences such that s = (e1, e2, 

…, ei)  that forms the sequence. Given clinical sequence S, the support of an event ei or 
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subsequence of events is the number of sequences that include the event ei or the 

subsequence s. The minimum support threshold minSupp is the minimum number of 

sequences that include the event ei or the subsequence s.  

A pattern σ is the subsequence of ordered events (e1, e2, …, ei) that occurs in at least 

minSupp of  sequences in S.  A subpattern σ is a pattern that is part of another longer 

pattern. We say σi is a subpattern of σj if, and only if, σi   σj (i.e., all the events in σj 

includes all the events in σi as well as other events). Similarly, we call σj a superpattern of 

σi. A pattern is considered to be closed if its support is greater than the minimum support 

threshold and none of its immediate superpattern has the same support. TM-FSP uses 

SPADE to generate the frequent patterns.  

3.3.2. SPADE Mechanism 

In this section, we describe how SPADE works. The input to SPADE is a dataset that 

includes: sequence id (SID), time of event(s) which is also considered as the event id 

(EID), and the set of events that happened at that time. To generate frequent patterns, 

SPADE creates a vertical id-list dataset. For each event, SPADE associates each 

sequence id that included the event with the time at which the event occurred in the 

corresponding sequence. SPADE starts by obtaining the most frequent events from the 

vertical id-list, where the support values for those events or generated patterns are more 

than the minimum support threshold. To create patterns that consist of two frequent 

events, SPADE joins the tables of two events and obtains the support value for the 

generated patterns. The events in the generated patterns do not have to be adjacent, other 

events can occur in between, but the events in patterns should occur in the same order as 

it occur in the sequences. Hence SPADE uses the timestamp with each sequence id to 

meet the order condition. To create patterns with three events or more, the same approach 

that SPADE uses to generate the patterns of two events using the joined tables of 

previous frequent patterns and frequent events tables. 

For example, Figure 3.2(a) depicts an example of a dataset for which SPADE will 

generate the frequent patterns. In our example, we use 0.5 as the support threshold. 

SPADE generates patterns A, C, and D because their support values are all 1. In addition, 
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the vertical id-list that SPADE generates and are going be used to get the next patterns 

are Table A, Table C, and Table D as shown in Figure 3.2(b). To generate the frequent 

patterns of two events, SPADE joins the vertical id-list in Figure 3.2(b) taking into 

consideration the EID. To generate A  C, SPADE joins vertical list-id A and C, where 

EID (A) should be less that EID (C).  Although A and C events were separated by B in 

sequence 1, but SPADE counted the pattern that counted that sequence in the pattern 

generation because SPADE only check the time condition which was met in sequence 1. 

When SPADE joins C  D, SPADE uses the events in sequence 1 and 2 to generate C  

D, but SPADE does not use C and D events in sequence 3 because EID (C) is larger that 

EID (D). Hence, the support value of C  D is 0.67. Figure 3.2(c) depicts the frequent 

patterns generated in the second iteration. SPADE keeps generating patterns until it 

cannot generate any larger frequent patterns.  

 
Figure 3.2. Generating frequent patterns via the SPADE algorithm. 
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3.3.3. Obtaining Frequent Patterns Using SPADE 

The first step of Phase 2 takes the clinical sequence set S and discovers the closed 

frequent patterns that occur in all clinical sequences. The output of this step includes the 

events that all sequences in S share. Moreover, the frequent events and patterns form the 

dimensions that can represent the sequences without losing the essential data that 

characterizes the cohort of the patients. 

3.3.4. Sequences Projection 

In this step, TM-FSP reduces the dimension of the sequences by representing them  

through the discovered closed patterns. For each sequence s, it goes through all of the 

patterns, starting from the longest and proceeding to the shortest (TM-FSP goes from the 

longest patterns to the shortest or from the superpatterns to subpatterns). If the sequence 

contains pattern σi, TM-FSP passes the events that form the pattern to the projected 

sequence. If there are two patterns that overlap, the events which the patterns fail to share 

will be a subpattern and caught later in the reduction process. In the final output, the 

projected sequence includes only the events of the frequent patterns.  Hence, the output is 

a compressed form of the original sequences. Figure 3.3 depicts the sequence projection 

algorithm. 

 

Figure 3.3. Pseduocode for the clinical sequence projection algorithm. 
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3.4 Phase 3: Process Mining Through MSA 

In this phase, TM-FSP clusters the sequences, and applies the MSA on each cluster. 

2.3.1 Pairwise Sequence Alignment: 

The pairwise alignment is a special case of MSA where the number of aligned sequence 

is tow. The alignment process enforces both sequences to have the same length by 

inserting gaps to represent an insertion or deletion process (or indel process) that 

happened in the sequences. Sequences can be aligned in different ways. To provide the 

best alignment, an alignment score is generated. Needleman and Wunsch [41] proposed a 

dynamic programming to find the optimal alignment based on a score. The alignment 

score is calculated by matching score (number of matched element multiplied by the 

number of matched elements) and the mismatches scores (the number of mismatch 

multiplied by the corresponding mismatch score). The mismatch between two sequences 

is represented by a gap and corresponds to an insertion process in one of the sequences 

accompanied with a deletion process in the other sequence. In other words, the alignment 

score is: 

       ∑  

 

   

 

Where: 

L is the length of the tow sequences after the alignment 

  is the score at position i: 

   =  {

 (       )                                               

 (       )    {
                           

                           

 

such that:  

S(s1i,s2j) is substitution value. If a = b, then the substitution is 1. Otherwise, the 

substitution will be -1, and  

I(s1i,s2j) is indel value, which is the penalty for inserting a gap. 
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2.3.2 Progressive Alignment Approach 

For a given set of clinical sequences S = {s1, s2,…, si,…, sn}, the progressive alignment 

constructs a succession of pairwise alignment. The alignment happens between two 

sequences, one sequence and generated alignment, and between generated alignments. To 

guide the multiple alignment process, a guide tree is produced based on the edit distance 

between aligned sequences and the features used to characterize the sequences such as N-

Gram which a similarity measure that counts the co-occurrence of the set of character in 

strings to categorize electronic texts [10]. The guide tree will place the most similar 

aligned sequences in the same branch [22,52]. To generate the guide tree, TM-FSP uses 

an agglomerative hierarchical clustering (AHC). The AHC is a bottom up approach that 

iterates through all the sequences and clusters the most similar groups (based on the 

defined similarity metric) together until all the sequences are merged into one cluster 

[51]. The AHC builds the tree by iterating through the sequences, and align the most 

similar pair of sequences together. Then, the AHC aligns the next sequence or the 

alignment of a group of sequence with the most similar alignment of group of sequences 

to generate a new alignment. Following the branch in the guide tree, the progressive 

alignment will align the sequences in the same branch then align the most similar 

branches together to generate a dendrogram. 

3.4.3 Clustering Similar Sequences: 

To cluster the alignments, TM-FSP picks the best cut-point in hierarchical clustering, 

which is the point that determines to which cluster each sequence belongs. TM-FSP uses 

different number of cluster starting from 2 clusters. For a given clusters number, the TM-

FSP choses the cut-point in the dendrogram and assign each sequence to a cluster. TM-

FSP iterates through number of possible clusters. TM-FSP picks the clusters number that 

generate the least sum of pairs which are the edit distances between each pair in the 

cluster, in all clusters. 

3.4.4 Applying MSA on Generated Clusters: 

For the generated clusters C = {c1, c2, …, cm}, where m is the number of generated 

clusters, TM-FSP apply the MSA on each cluster. Given a set of clinical sequences from 

the same cluster, the MSA process creates a set of aligned traces  ̅ = {  ̅,   ̅,… ,   ̅}. 
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Each sequence has the same length L after inserting the gaps in each sequence such that: 

|  ̅|= |  ̅| ,… , |  ̅| =  L, where   ̅ is the sequence si after gap insertion. The output of the 

MSA is the consensus sequence that represents the backbone of all aligned sequences. 
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CHAPTER 4 

WORKFLOW MINING FOR ISCHEMIC STROKE TREATMENT 

We wanted to test the TM-FSP performance and whether we can detect the common 

clinical pathway for specific cohort and discover the clinical pathways for subpopulation. 

This chapter reports on an experimental analysis of TM-FSP using ischemic stroke cohort 

and data derived from the electronic medical record system of Vanderbilt University 

medical center (VUMC). The chapter begins with a presentation of the patient cohort. It 

then describes the data we used to form clinical sequences. Next, it describes how we 

removed the noise and reduced the dimensionality of the data using frequent pattern 

mining. Afterwards, it discusses how we used MSA to find common behavior. Finally it 

reports the findings regarding the clusters of clinical sequences we got and the difference 

between them. 

4.1 Ischemic Stroke Cohort  

To evaluate TM-FSP, we selected a population of patients diagnosed with ischemic 

stroke.  This phenotype was chosen because its treatment requires a well-defined and 

ordered treatment steps [1,64].  Specifically, these steps can be formalized as a guideline, 

which should be followed by clinicians to maximize the outcome for the patient.  The 

American Heart Association publishes an updated stoke management guideline every 

couple of years [1]. The Brain Attack Coalition is a group of professionals who aim to 

minimize the disabilities and deaths associated with stroke [64]. Via their website, they 

provide a well formatted stroke management steps that summarizes the stroke treatment 

guidelines.  

In a Dutch case study [33], process mining was applied to discover the treatment process 

for ischemic stroke patients while they were treated by the Neurology department. They 

obtained the petri net and compared between two Italian hospitals. However, the study 

did not discuss the common pathway of patients’ treatment nor the how similar the 

clinical pathways in those two hospitals.  Moreover, they applied the process mining on 

part or segment of the treatment which is the Neurology segments. In our experiment, we 
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used all the clinical events during the whole treatment to obtain the common clinical 

pathway. 

The process by which patients were ruled into the cohort is shown in Figure 4.1.  First, 

we restricted our analysis to a four-month period in 2010, such that all patients were 

admitted and discharged (or died) during this time period. Initially there were 67,300 

patients admitted.   Second, we excluded patients who failed to be billed for ischemic 

stroke, using the 434.91 ICD9 code. This yielded 145 patients. Third, we removed all 

patients who were admitted for a different reason, such as sepsis or skin melanoma and 

had a stroke during the hospitalization. These patients were excluded because the 

treatment protocol that was followed at the beginning does not necessarily match a stroke 

protocol. This process yielded a final data set of 133 patients.   

 

Figure 4.1. Cohort formation for ischemic stroke patients. 

During their admission, the patients received different medical services based on the 

department that patient was admitted to or treated by. From the admission table, we 

obtained the services provided to the patients and the time windows during which they 

received the service. We defined the start and the end time for each service and obtained 

the events that transpired. Figure 4.2 depicts as example of segmenting the clinical 

sequence by the services that were provided to the patient. Table 4.1 provides a summary 

of the cohort and corresponding dataset. The patients were admitted, on average, for 241 
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hours.  For 133 patients, 14 different hospital services were provided, where each patient 

might receive only one service or more during the admission. Table 4.2 provides the 

different services and the number of patients who received the corresponding service. We 

focused our analysis on two services: i) Emergency service (EMER) and ii) Neurology 

service (NEU). This was done for two reasons. First, both services are core to the 

provision of care for ischemic stroke patients. Second, the number of patients who 

received other services in other services is very small (15 patients and less). Of the 133 

patients, 95 received service in the Emergency department and 88 received Neurology 

care. We refer to the period during at which the patients received care in a service as its 

stage. 

 

 

Figure 4.2. Example of segmenting patient’s hospitalization based on provided service. 

 

 

Number of patients 133  

Average admission duration (hours) 241 

Standard Deviation of duration (hours) 3.9 

Minimum, Maximum of admission duration (hours) 2.0, 677.1 

Patients with EMR service 95  

Patients with NEU service  88  

Table 4.1. Summary statistics for the ischemic stroke cohort. 
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Service name Number of patients 

Emergency 102 

Neurology 88 

General internal medicine 15 

Pulmonary  5 

Cardiac 5 

Geriatrics 4 

Trauma 2 

Hematology 2 

Vascular surgery 1 

Obstetric general 1 

Nephrology 1 

Infectious disease 1 

Emergency general surgery 1 

Cardiac/thoracic surgery 1 
Table 4.2. Frequency of services number provided for 133 ischemic stroke patients. 

4.2 Clinical Event Sequences 

Each patient was represented as a sequence of events documented in the EMR.  

Specifically, we represented each patient as a series of time-stamped medication and 

laboratory orders. The type of laboratory test was documented in the medical record. The 

medication table includes the National Drug Code (NDC), however, medications with the 

same effect have different NDC values. For example, METOPROLOL has a NDC value 

51079025520, and CARVEDILOL has a NDC value 51079093020. Both drugs have 

different names and different NDC values but both are Beta Blockers. Hence, each 

medication was assigned its class according to the National Drug File – Reference 

Terminology (NDF-RT) [62]. In the VUMC laboratory table, each row represents a 

single item that is a part of a laboratory type. Each laboratory item has a battery value 

which consists of three sections: i) laboratory type abbreviation ii) more specific 

information about the laboratory type iii) a number that identify the laboratory performed 

for a specific patient. Table 4.3 provides an example of laboratory items and battery field 

value. Multiple items may share the same battery which means that all the items belong 

to the same laboratory type for the same patient. To obtain the laboratory type to which 

an item belongs, we take the first section of the battery field value. In the provided 

example, the lab type for all the items is basic metabolic panel (BMP). Table 4.4. 

provides a summary of the total number and variety of medications and lab tests ordered. 
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The dataset has 882 medications that group into 182 classes, and 630 laboratory tests 

items that were grouped into 241 laboratory types. 

Lab item Battery Field 

AN-GAP BMP BasMet XXXXXXXXXXXX 

BUN BMP BasMet XXXXXXXXXXXX 

CO2 BMP BasMet XXXXXXXXXXXX 

Ca BMP BasMet XXXXXXXXXXXX 

Cl BMP BasMet XXXXXXXXXXXX 

Table 4.3. An example of the laboratory items and battery values used to obtain the laboratory type. 

 

 Medication Laboratory 

All patients 16220 57477 

Distinct number 882 630 

Class or type number 182 241 

Table 4.4. Summary statistics regarding medication and laboratory classes. 

4.3 Frequent Patterns 

As noted in Chapter 1, a workflow is composed as the common items or patterns that are 

conserved across. We applied the SPADE algorithm [61] to obtain the frequent 

association patterns with a support of at least 40%.  Applying SPADE generated 2,020 

closed patterns. Table 4.5 shows some closed patterns that have the highest support 

values. One of the most important steps for stroke patient is checking the PT before 

administering the Anticoagulant. However, PT  Anticoagulant has support 0.6 and it is 

less than Anticoagulant support value 0.75, which might indicate that not all the 

documented Anticoagulant was preceded by documenting ordered PT test. From 182 

medication classes, 7 were found to be frequent: i) Anticoagulants, ii) Antilipemic agents, 

iii) Beta Blocker/Related, iv) Insulin, v) Non-Opioid Analgesics, vi) Opioid Analgesics, 

and iii) Potassium.  From 241 laboratory types, 12 were found to be frequent: i) A1C, ii) 

Blood Panel (BP), iii) CPD[Complete Blood Count (CBC) / Platelet Count/ Differential], 

iv) Creatinine, v) Glucose, vi) Lipid, vii) Creatine Kinase, viii) the Partial thromboplastin 

time (PTT), ix) Prothrombin time (PT), x) Urine test, xi) INR or PT test, and xii) 

Troponin.  
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Pattern Support 

<{BP}> 0.977 

<{PT}> 0.864 

<{BP} {BP}> 0.848 

<{GLB}> 0.826 

<{MB}> 0.811 

<{TRI}> 0.811 

<{PT} {BP}> 0.788 

<{GLB} {BP}> 0.773 

<{ANTICOAGULANTS}> 0.750 

<{BP,MB}> 0.742 

<{TRI} {BP}> 0.742 

<{BP} {ANTICOAGULANTS}> 0.742 

<{CRE}> 0.720 

<{NON-OPIOIDANALGESICS}> 0.720 

<{BP} {NON-OPIOIDANALGESICS}> 0.705 

<{MB} {BP}> 0.705 

<{BP} {GLB}> 0.697 

<{A1C}> 0.689 

<{MB,TRI}> 0.689 

<{BP} {BP} {BP}> 0.682 

<{ANTICOAGULANTS} {ANTICOAGULANTS}> 0.682 

<{BP} {ANTICOAGULANTS} {ANTICOAGULANTS}> 0.674 

<{UA}> 0.667 

<{PT,TRI}> 0.659 

<{LIP}> 0.652 

<{GLB} {BP} {BP}> 0.652 

<{BP} {BP} {ANTICOAGULANTS}> 0.652 

<{GLB} {GLB}> 0.636 

<{PT} {BP} {BP}> 0.636 

<{BP,MB} {BP}> 0.636 

<{BP,PT}> 0.629 

<{BP} {BP} {NON-OPIOIDANALGESICS}> 0.621 

<{CRE} {BP}> 0.621 

<{GLB} {TRI}> 0.614 

<{BP} {ANTICOAGULANTS} {BP}> 0.614 

<{PT} {NON-OPIOIDANALGESICS}> 0.606 

<{MB,TRI} {BP}> 0.606 

<{PT} {ANTICOAGULANTS}> 0.606 
Table 4.5. Most Frequent patterns generated by SPADE. 
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In our study, we picked 0.4 as the minimum threshold for SPADE to generate the 

frequent patterns. Picking a threshold higher than 0.4 generated no more than 511 

patterns. We attempted to use a threshold lower than 0.4 but the SPADE R-package 

execution stopped and it might happen because the number of generated patterns was 

very large.  Hence, for future direction, if SPADE cannot generate patterns using small 

threshold value (e.g., 0.2), we can use 0.4 because it is the value that explains higher 

percentage of data variability. 

 

Figure 4.3. Relation between SAPDE minimum threshold and the number of generated closed patterns that 

explain data variability. 

 

TM-FSP projected each patient’s event sequence onto the set of frequent items to obtain a 

reduced (or denoised) view. 

 

 Original  Projected 

Minimum length 4 events 2 events 

Maximum length 1,540 events 833 events 

Average length  131.82 events 69.75 events 

Standard Deviation 187.13 events 98 events 

Total Number of events 18,151 events 10,885 events 

Table 4.6. Sequences before and after projection for 133 ischemic stroke patients. 

Table 4.7 summarizes the subsequences in the Emergency and Neurology services. The 

subsequences length in the Neurology service is, on average, by 62 events, with a 
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standard deviation of 102.97, which is much higher than the deviation of subsequences in 

Emergency services, which has a standard deviation of 11.55. 

 Emergency subsequence Neurology subsequence 

Minimum length 1 event 2 events 

Maximum length 83 events 833 events 

Average length  5.66 events 62.11 events 

Quartile of length (25%, 50%, 75%)  (2, 3, 4) events (2, 30, 67) events 

Table 4.7. Statistics for subsequences in Emergency and Neurology services. 

4.4 Detecting Common Behavior using MSA 

To apply MSA, TM-FSP uses the ProM6.3 tool, an open source framework for process 

mining [63]. We ran a series of investigations and experiments to sequences alignment. 

We performed the alignment on: 

1- The original sequence without segmentation or applying any tokenizing criteria. 

2- The projected sequence without segmentation or applying any tokenizing criteria.  

3- The projected sequences for events that happened in the first 24 hours. This time 

period was selected because it is the most critical window in treating a stroke 

patient.  

4- Projected sequences segmented into service subsequence: Clinical systems are 

event-based. The performed clinical events depend on the department and 

healthcare provider interacting with the patient. Hence, we created the 

subsequences based on the type of the service in which the event happened.   

We aligned the original sequence (without removing the infrequent patterns or items) and 

the projected or denoised sequences. Then, we segmented the original and projected 

sequences based on the service time. The ProM6.3 tool provides a number of different 

options to i) select the sequence features to align the sequences, ii) pick the number of the 

clusters to group the sequences based on the best clustering score, and iii) align the 

sequences in the cluster with each other. For sequence features, we selected i) Individual 

events which align items that have exactly the same value, ii) K-Gram: In the alignment 

feature, we used k = 4.  
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Figure 4.4 depicts a cluster of aligned sequences for events that transpired on the 

Emergency service. Each row represents the treatment sequence for a patient after 

inserting the gaps to align the sequences on the common items and equalize the length of 

the sequences. Instead of using the item name in the aligned sequence, the PROM6.3 tool 

creates a mapping table that represents each distinct item in the sequences by a symbol. 

The symbol can be a lower case alphabetical letter, upper case alphabetical letter, or 

combination of alphabetical character and number depending on the number of required 

symbols to represent the items in the sequences. The number of mapping character 

depends on the number of distinct items in all sequences. The dash - represent an 

inserted gap. Table 4.8 shows the corresponding sequence items and the mapped 

character for the dataset used in part of study (in some parts of the experiment, we had to 

use more symbols to represent sequences items).  

 

Sequence Item Alignment Character  

Insulin A 

Blood Panel B 

AIC C 

Troponin D 

Antilipemic Agents E 

Creatinine F 

Anticoagulants G 

CPD H 

Prothrombine I 

Glucose J 

Lipid K 

Creatine L 

Urine M 

Beta Blocker N 

Table 4.8. Character mapped to sequences’ items in Figure 4.4. 
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At the bottom of Figure 4.4, the generated output incudes the common sequence that 

represents all the aligned sequences. In the left column, sequences (cases) of one of the 

Emergency service clusters, which are highlighted with gray, are either an empty 

sequence that did not include any event or sequences that lack no more than one of the 

events in the common sequence. 

 

Figure 4.4. A multiple sequence alignment for one of the EMER service clusters. 

4.4.1 Alignment Without Segmenting the Sequences  

PROM was unable to align the sequences when we aligned the original sequence without 

removing infrequent items nor segmenting. This is because the dataset consists of 423 

distinct events which is high number of events to be aligned especially if there are so 

many rare events. However, when we reduced the dimension or filtered the sequences 

without segmenting the sequence, and aligned them using MSA discovered two clusters. 

In Original_Cluster 1 the common sequence (i.e., output of MSA) contains 6 items, 3 of 

which are associated with a Blood Panel test, two with Insulin, and the last item is 



 33 

Glucose. The MSA output for Original_Cluster 2 was empty, implying the items were too 

sparse.  

The sequences for events that happened within the first 24 hours have, on average, 10 

events with a standard deviation of 6.7. The smallest sequence included 2 events while 

the longest sequence included 29. We applied MSA on sequences that included events 

that happened for the patient within the first 24 hours. This yielded 4 clusters, each with a 

different common sequence. The alignments of clusters for sequences for the first 24 

hours are is: 

24Hours_Cluster 1: Creatine Kinase  Creatine Kinase  Troponin  Glucose  

Insulin  Glucose 

24Hours_Cluster 2: Creatine Kinase  Glucose  Insulin  Glucose  Insulin  

Glucose  Insulin 

24Hours_Cluster 3: Creatine Kinase  A1C  Non-opioid Analgesics 

24Hours_Cluster 4: CPD  Creatine Kinase  INR   INR   

 24hours_Cluster 1 included Creatine Kinase, Troponin, Insulin, and Glucose, while 

24hours_Cluster 2 included only Creatine Kinase, Glucose and Insulin. The common 

sequence for 24hours_Cluster 3 included only Creatine Kinase, Non-opioid Analgesics 

and A1C tests. Finally the common sequence for 24hours_Cluster 4 had CPD, Creatine 

Kinase, and INR. By comparing the alignment for all the clusters, the only element that 

all the clusters share and can be aligned at is Creatine, which one of main laboratory tests 

for ischemic stroke but not the most important laboratory nor the only one.  

4.4.2 Alignment of Segmented Sequences Based on Service 

In the Emergency service, TM-FSP discovered common behavior in three clusters. The 

main behavior that extracted was as follows: 

Glucose  Blood Panel  Creatine  INR  Troponin 
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The common sequences for all Emergency clusters include laboratory tests implying that 

other diseases (e.g., hyperglycemia, hemorrhagic stroke) and check other patient’s health 

conditions such as heart condition. 

In the Neurology service, the sequences were longer, on average, by 56 events. MSA 

found three common sequences and the three clusters shared the following common 

sequence:  

Blood Panel  Non-opioid Analgesics  Anticoagulant  Blood Panel  

Anticoagulant  Non-opioid Analgesics 

4.5 Events Distribution Per Cluster 

In both Emergency and Neurology services, the patient sequences were grouped into 

three clusters. Table 4.9 summarizes the number of patients in the generated clusters. In 

the Emergency service stage, the majority of the patients were grouped in EMER_Cluster 

1, while the proportion of patients per cluster has different distribution of the Neurology 

service.  It is worth mentioning that the patients who were in EMER_Cluster 1 during the 

Emergency stage could be in a different cluster during the Neurology service stage. 

We obtained the distribution of clinical events in each cluster to recognize the difference 

between the clusters that belong to the same service.  Figure 4.5 depicts applying the 

MSA on one of the Emergency clusters and the alignment of those sequences. To create 

Figures 4.5, we obtained the support value for each event in the corresponding cluster. 

For example, in Figure 4.5, we computed the support values for Blood Panel (BP) by 

dividing the number of patients in EMER_Cluster 1 for whom BP was assessed, on the 

number of patients in EMER_Cluster 1 (i.e. BP proportion of patients in cluster X= 

number of patients who had BP in cluster X/number of patients in cluster X). Figure 4.4 

summarizes the distributions for the patients/events in the Neurology service in the three 

clusters. From the Emergency distribution in Figure 4.5, one of the clusters exhibited a 

set of clinical events that did not exist in the other two clusters. The EMER_Cluster 1 

included all the clinical events and it is the only one that included Beta Blockers, 
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Anticoagulant, and Insulin, and all of those medications have low support value. 

Moreover, cluster one has the highest support value for Troponin test.   

 

Service Cluster 1 Cluster 2 Cluster 3 

Emergency (95 patients) 80 3 12 

Neurology (88 patients) 51 12 25 

Table 4.9. The number of patients in each cluster for the Emergency and Neurology stages of care. 

Figures 4.5 and 4.6 show the clinical events distribution in the Emergency and Neurology 

services respectively, and Table 4.10 includes a description for the acronyms that appears 

in the mentioned figures.  As EMER_Cluster 1 and Firgure 4.5 depict, Troponin has 

support value of 0.9 which is one of the highest values among all clusters in Emergency 

service. One the other hand, the CPD support value in EMER_Cluster 1 has the lowest 

support value compared to EMER_Cluster 2 and EMER_Cluster 3. 

The Neurology service yielded three clusters. As Figure 4.6 depicts, Insulin and Beta 

Blocker were not prescribed to the patients, and the lipid and glucose tests had the higher 

support in NEU_Cluster 2. In NEU_Cluster 1 the blood panel test, glucose test, and 

Insulin tests have the highest support, while NEU_Cluster 3, blood panel test, non-opioid 

analgesics, and A1C test have the highest support. 

From the distributions of clinical events in the Neurology and Emergency services 

clusters, we want to know whether the proportion of patients for each event is statistically 

significant or not. For a specific event (e.g., BP or Anticoagulant), we used a Chi-square 

test and compared between the observed number of patients who had the event in the 

sequence versus the expected value. Table 4.11 lists the calculated Chi-Square values for 

the Emergency service. Statistical significance was only observed in Cluster 1 in which 

all of the values are statistically significant except Beta Blocker, Anticoagulant, and 

Insulin. All the computed Chi-square values were more than 5.9 threshold for degree of 

freedom equals 2. For the Neurology service, Table 4.12 includes the Chi-Square values 

for the patient proportion for a specific event. In EMER_Cluster 1, and Insulin was 

statistically significant. If we look at the Insulin support value shown in Figure 4.5, it can 
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be seen that most of the insulin administration occurred at EMER_Cluster 1. Insulin is 

statistically significant value in all the Neurology clusters. In NEU_Cluster 2, the Chi-

Square for Beta Blocker is statistically significant. From Figure 4.6, it can be seen that 

Insulin and Beta Blocker were not given to the patients in NEU_Cluster 2, while the 

expected value for the patient proportion who should be given those medication should 

be higher than zero (as indicated from the Chi-Square value). 

 

Description of Clinical Event Acronym in Figures  

Anticoagulants AGU 

AntiLipemic Agents ALP 

Beta Blockers BB 

Blood Panel BP 

Creatinine CRE 

Glucose Blood GLB 

Insulin INS 

LIPID LIP 

Creatine Kinase MB 

Triponin TRI 

Urine UA 

Coumadin COU 

Non-Opioid Analgesics NOPD 

Opioid Analgesics OPD 

Potassium  POT 

Table 4.10. Abbreviations of events in Figures 4.5 and 4.6. 
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Figure4.5. Clinical event distribution for Emergency Service clusters. 

 

 

 

Figure 4.6. Clinical event distribution for Neurology Service clusters. 
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 Cluster 1 (χ
2

, p-value) Cluster 2 (χ
2

, p-value) Cluster 3 (χ
2

, p-value) 

A1C 0.30 (0.43) 37.03 (0) 0.250 (0.4) 

AGU 0.03 (0.49) 3 (0.11) 0 (0.5) 

ALP 0.07 (0.48) 6 (0.03) 0 (0.5) 

BB 0.03 (0.49) 3 (0.11) 0 (0.5) 

BP 0.02 (0.50) 264.03 (0) 0.92 (0.32) 

CPD 1.48 (0.24) 117.07 (0) 0.92 (0.32) 

CRE 0.78 (0.34) 179.02 (0) 0.17 (0.46) 

GLB 0.69 (0.35) 170.02 (0) 0.17 (0.46) 

INS 0.03 (0.49) 3 (0.11) 0 (0.5) 

LIP 0.02 (0.50) 22.04 (0) 0 (0.5) 

MB 0.73 (0.35) 222.03 (0) 0.25 (0.44) 

PT 1.62 (0.22) 231.04 (0) 0 (0.5) 

PTT 0.18 (0.46) 65.06 (0) 0 (0.5) 

TRI 0.99 (0.31) 227.02 (0) 0.25 (0.44) 

UA 0.22 (0.45) 137.03 (0) 0.25 (0.44) 
Table 4.11. Chi-Square Values for Events in Emergency Clusters. 

 

 

 

 

 Cluster 1 (χ
2

, p-value) Cluster 2 (χ
2

, p-value) Cluster 3 (χ
2

, p-value) 

A1C  0.27 (0.44) 0.04 (0.49) 0.35 (0.42) 

ALP 0.05 (0.49) 0.00 (0.50) 0.09 (0.48) 

AUG 0.31 (0.43) 1.14 (0.28) 0.003 (0.50) 

BB 1.81 (0.20) 6.48 (0.02) 0.02 (0.50) 

BP 0.04 (0.49) 1.16 (0.28) 0.21 (0.50) 

COU 0.09 (0.48) 0.83 (0.33) 0.04 (0.49) 

CPD 0.66 (0.36) 0.55 (0.38) 0.40 (0.41) 

CRE 0.15 (0.47) 3.03 (0.11) 0.45 (0.40) 

GLB 5.67 (0.03) 2.77 (0.13) 4.91 (0.04) 

INS 11.05 (0.002) 6.07 (0.02) 8.96 (0.01) 

LIP 0.000 (0.50) 0.43 (0.40) 0.23 (0.45) 

MB 0.001 (0.50) 3.04 (0.11) 1.55 (0.23) 

NOPD 0.01 (0.5) 0.38 (0.41) 0.08 (0.48) 

OPD 1.71 (0.21) 1.32 (0.26) 1.11 (0.29) 

POT 4.19 (0.06) 1.77 (0.21) 3.89 (0.07) 

PT 1.22 (0.27) 2.01 (0.18) 0.34 (0.42) 

PTT 2.14 (0.17) 2.90 (0.12) 0.79 (0.34) 

TRI 0.04 (0.49) 4.83 (0.05) 1.55 (0.23) 

UA 1.10 (0.29) 1.87 (0.20) 0.29 (0.43) 
Table 4.12. Chi-Square Values for Events in Neurology Clusters. 
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4.6 Validation 

We validated why we used Phase 2 of TM-FSP to remove infrequent patterns. We 

focused on validating the model using sequences segemented by service. To do so, we 

applied MSA on the original sequences (the sequence without applying SPADE) in the 

Neurology and Emergency services. In one of the Neurology service clusters, the 

alignments contained only blood panel test, CPD, and antilipimec agents, while the MSA 

could not align the sequences in the second cluster. In emergency clusters, the sequences 

did not align at any sequence in one of the clusters. However, the alignment produced a 

common sequence that included Blood Panel test, Glucose, and CPD. 

To compare these alignments to those based on TM-FSP, we calculated the edit 

(Levenshtein) [40] distance between sequences within the same cluster. We calculated 

the edit distance. For the Emergency service that included the frequent patterns, the edit 

similarity values for EMER_Cluster 1, EMER_Cluster 2, and EMER_Cluster 3 are 0.599, 

0.382, and 0.511, respectively. For the projected sequences in the Neurology service, the 

edit similarity values for the four clusters were:  0.72, 0.71, 0.64. The edit similarity 

values in Emergency service clusters are less than the edit similarity values in Neurology 

service clusters. Looking at Table 4.4, it can be seen that the sequences in the Neurology 

service were, on average, longer than the sequences in Emergency service; moreover the 

difference in the mean between sequences in Neurology and Emergency service is 

statistically significant with p-value less that 0.001 and confidence interval (-83.39, -

34.12). Using long sequences will give us clusters with higher dissimilarity values and 

more general common behavior. 
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CHAPTER 5 

DISCUSSION 

The results suggests that applying process learning on the whole treatment process will 

provide only a general overview and will skip certain important interactions or cases that 

affect the treatment process. Dividing the treatment into stages, based on the type of 

event that were applied, can provide us more insight about the process and the main 

factors that may alter the treatment. Moreover, extracting the processes from similar 

patients generates a patient-centered flow that considers the standard process as well as 

the required variation in the treatment. 

The frequent items generated by phase to TM-FSP matches the main laboratory test and 

the main medications that are recommended by the American Heart Association for 

stroke patients [1]. Using SPADE gave us the opportunity to provide an unsupervised 

noise removing or providing the main key factors in the treatment process. The 

anticoagulants neither the Partial Thromboplastin Time (PTT) nor Prothrombin Time 

(PT) were not administered for everyone. Moreover, not every anticoagulant 

administration was preceded by PTT test. This might have happened because some of the 

patients did not receive the full course of treatment (e.g., cancelled admission, or death), 

inability to capture all the instances or, simply, a poor documentation process.  

When we aligned for the original sequence (i.e., non-reduced sequence), we only 

obtained two clusters, one of which did not have any common aligned sequence. When 

we aligned the sequence of events that happened within the first 24 hours, the common 

sequences for the generated clusters did not have common events except for Creatine, 

which indicates that the treatment plan or clinical process during the first 24 hours is not 

the same among the clusters. However, when we segmented the sequences based on the 

type of the provided service, MSA generated the common alignment for all of the 

clusters. The clinical process during the Emergency service mainly consisted of 

laboratory test. During the Neurology service, all the common sequences for the clusters 

included anticoagulant, blood panels and on-opioid Analgesics. Hence, those clusters 
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follow, in general, the same path in the treatment, with a small variation or differences in 

each cluster regarding the type of events and the proportion of patients whose sequences 

included that event. Moreover, The Insulin and Glucose test were one of the main 

alignment points in some clusters, which matches the long closed pattern of Insulin and 

Glucose test that we got from SPADE. Hence, dividing the clinical plan based on events 

can provide more robust results than a division based on time.  

One of the major findings in our work is the discovery of a subpopulation that did not 

take Insulin and a Beta Blocker. This is surprising because most studies mention a 

positive effect of Beta Blockers on ischemic Stroke patients [16]. However, there are 

reasons to avoid Beta Blocker because it can have negative metabolic effects, such as 

dyslipidemia and reduced glucose control [18]. In addition, in the cluster that did not 

have Beta Blocker, Coumadin and Insulin events (NEU_Cluster 2), we found that the 

lipid lab test has the highest support value compared to support values in NEU_Cluster 1 

and NEU_Cluster 3. This finding might indicate that the patients in NEU_Cluster 2 

exhibited lipid metabolism problem that caused the withholding of a Beta Blocker 

prescription.  

Another finding in our work is the relation between the type of clinical event and the 

provided service for the patients. The stage at which events happen influences the next 

logical treatment step. During the Emergency service, the subsequences mainly consisted 

of lab tests, while during the Neurology service, the alignment included different events. 

In particular, the alignment of most Neurology clusters occurred at the anticoagulant, 

blood panel test, glucose and insulin. In some cluster, the sequences aligned at beta-

blockers, A1C and lipid tests.  

Another interesting find is the ICD9 distribution among Emergency clusters and it might 

be related to the clinical events distribution among Emergency clusters in Figure 4.4. For 

example, in EMER_Cluster 1, the ICD-9 code that has the highest support value is V71, 

which is Observation and evaluation for suspected condition. When the exact value for 

the patients in EMER_Cluster 1 was checked, it was found to be V71.7 which is 

Observation and evaluation for suspected cardiovascular disease. Moreover, 
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EMER_Cluster 1 was the only cluster that included medication orders and had the 

highest Troponin support value. The distribution of the codes, as well as the set of unique 

codes, for each cluster provides insight the differences in the distribution.  

The difference in the events distribution, and specifically in prescribing medication, 

indicates that the order medications and laboratory tests performed by healthcare 

providers depends on the patient. For instance, the sequence in which the clinical events 

happen caused the TM-FSP model to group similar patients which is indicated by the 

event distribution and the statistically significant differences in Beta Blocker and Insulin 

prescription.  

Limitations 

This work is limited in several aspects. First, the size of the dataset was small. In some 

clusters, we did not obtain a sufficient number of patients to explain the variability in 

certain clusters. Due to the size limitation, our analysis of clusters significant using Chi-

square was not the optimal option. In the contingency table that shows the clusters and 

the corresponding number of patients who had specific events (taking medication X, 

performing lab Y), the count in some cells was less than 5, hence the Chi-square may 

provide inaccurate results. For such cases, using Fisher exact test will be more 

appropriate. However, Fisher formula can be applied only on 2x2 contingency table and 

we might have more than two clusters. To find the clusters with significant value using 

Fisher test, we apply the test on each clusters pair where we form 2-way table (i.e., 2x2 

table) from each two clusters values. Even if there is a Fisher test for larger table, it does 

not specify which of the clusters has significant value. To detect the cells that have 

significant value using more general approach, we can apply general log-linear regression 

on the table. The cell with significant coefficient has a value that is different from 

expected one. We could not apply the log-linear regression since the number of 

observations is insufficient to provide a significant analysis or acceptable results. Second, 

the clinical process is much more than medications and laboratory tests, it will be more 

informative to include various activities such as radiology tests, billing, clinical visit, 

admission, scheduling and the most important factor the healthcare provider themselves. 

The model yielded the treatment patterns and the alignment of those patterns, but we will 
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need different criteria to segment the clinical process-based on the clinical event 

boundaries, such as service duration. For example, the length of stay and the number of 

events is much higher in the Neurology service compared to the Emergency service. 

Hence the alignment in Neurology might miss important factors or events. Comparing 

long sequences will provide a general model and will be less sensitive to treatment 

variation in the subpopulations. 

Third, we used MSA to obtain the common behavior in treating similar patients. 

However, MSA is highly sensitive to the order. Hence, we plan to investigate methods 

that will decrease the effect of order. For instance in some cases, the documentation for 

some clinical events might be postponed for an hour like the time at which the patient 

took a CT scan. Hence, the medications performing would be entered into the system 

before the CT scan was documented. However, the order of the events based on the time 

might indicate that the patient took the anticoagulant before taking the CT scan.  

Forth, we want to compare TM-FSP with existing process mining approaches. In [33], 

Mans and colleagues applied process mining on ischemic stroke treatment process that 

was performed in Neurology department in a Dutch hospital and represented the process 

using petri net. Since we evaluated our model using similar cohort, it will be helpful to 

implement Dutch study approach that they followed and compare between the output of 

their approach and the result generated by our model. This comparison indicates whether 

our model provides more interpretable results compared to existing approaches. 

Moreover, representing the treatment process in our dataset using petri net allow us to 

compare between petri net and MSA representations and identify the cases at which each 

approach would be more helpful and appropriate. It is a way to validate the performance 

of our process mining model against existing one. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

This thesis introduced an automated model to mine clinical process using the clinical 

events that the patient experienced. Using this model, we demonstrated that the technique 

provides a way to discover the current clinical process in comparison to other methods or 

other studies. Moreover, our investigation shows that the sequence of clinical events can 

identify subpopulations within the same cohort based on the order of clinical events that 

were performed on the patients. This can enable new ways to look at clinical processes, 

such as a mix of standardization and personalization.  

We plan to continue developing TM-FSP via several directions. First, we plan to validate 

our model on larger dataset. Second, we plan to test TM-FSP on another phenotype, such 

as Myocardial Infarction cohort to ensure that our model is general and can be applied on 

other phenotypes. Third, we plan to include additional clinical events types and scale the 

approach. As a possible extension, we can include ICD-9 codes to describe the difference 

in the clusters or cluster the sequences based on clinical similarity.  
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