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CHAPTER 1 
 

INTRODUCTION 
 

Dysregulation of Cellular Components in Cancer 
 Despite more than 2000 years of research on cancer, we still do not fully 
understand the disease1. Cancer is a complicated process that can occur in nearly every 
cell type and is characterized by abnormal cell proliferation. It is the second leading cause 
of death in the United States; more than half a million people die each year due to cancer2. 
 Cancer is a genetic disease driven by changes in DNA3. Genetic mutations include 
single nucleotide polymorphisms, small insertions or deletions, chromosomal 
translocations, and copy-number alterations of large regions. Some of these mutations 
might occur in the germline, while the majority are somatic. Germline mutations, which 
can be inherited and passed on to future generations, appear in most cells of the body. 
Hereditary cancer accounts for 5 to 10% of all cancer diagnoses4. Somatic mutations, 
however, cannot be inherited and usually occur in a small population of cells. Together, 
genetic aberrations cause changes in other cell components, leading to pathology.  

The first step in cell physiology is the transcription of genes to RNA. Transcriptional 
regulation is itself a complicated process involving specific DNA promoter sequences, 
transcription factors, and regulatory proteins and RNAs. Therefore, dysregulation of 
transcription is one of the contributing factors to cancer pathology. Both the expression 
and regulation of genes can be affected5. For example, MYC is a transcription factor 
frequently mutated in cancer and these mutations often affect its function or prevent its 
degradation6. Furthermore, overexpression of MYC causes changes in the expression 
levels of numerous other genes and results in tumor growth7. In T-cell acute lymphoblastic 
leukemia, chromosomal translocation moves a set of genes closer to a DNA regulatory 
element, leading to increased expression8. In addition to coding RNAs, non-coding RNAs 
can be dysregulated in cancer. miRNAs are small non-coding RNAs responsible for finely 
regulating the expression of protein-coding mRNA. For example, amplification of the miR-
17-92 cluster of miRNAs allows for increased cell growth in lymphoma by inhibiting tumor 
suppressor translation9. Furthermore, long non-coding RNAs (lncRNAs) regulate gene 
expression through various mechanisms. In breast cancer, amplification of the lncRNA 
HOTAIR reduces tumor suppressor expression10.    

After RNA is transcribed, it is further translated into proteins. Protein translation is 
another point of dysregulation in cancer. First, abnormalities from previous steps can be 
transferred to proteins. Changes in mRNA expression usually lead to corresponding 
changes in protein levels. DNA mutations can be translated into the protein sequence, 
leading to changes in protein structure and function. For example, single missense 
mutations in the TP53 transcription factor decrease its ability to bind DNA11. Additionally, 
chromosomal translocation events can create new fusion proteins. A fusion of two 
kinases, BCR and ABL, forms after a translocation event between chromosomes 9 and 
22. The fusion affects regulation of these kinases, leading to a constitutively active 
enzyme12. Finally, the actual process of translation might contribute to cancer 
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development. The ribosome might have altered structure or function and altered signaling 
might affect the rate of translation13.    
 Finally, all components of the cell can be further regulated by the addition of other 
molecules. DNA methylation influences gene transcription. Hypermethylation of some 
promoters in colon cancer inhibits tumor suppressor expression14. Proteins are also 
modified in several ways. Glycosylation, the addition of a carbohydrate to a protein, is 
altered in cancer. Tumors have overall changes in glycosylation compared to normal15. 
One effect is the disruption of E-cadherin junctions that contributes to metastasis16. 
Similarly, phosphorylation, the addition of a phosphate group, is dysregulated in cancer. 
Tumor cells have a different phosphorylation pattern than normal cells17. Mutations can 
also create or destroy phosphorylation sites, leading to altered signaling18. 
 The altered cellular components are intricately connected and combine to produce 
cell phenotypes. While elucidating the effect of a single mutation on an individual cell is 
relatively easy, determining the result of the interplay between several mutations is much 
harder. Average solid tumors contain between 33 and 66 genes with single-base 
substitutions or small insertions or deletions19. They also have dozens of chromosomal 
translocations, as well as amplification of 17% of the genome and deletion of a further 
16%20,21. Only a fraction of these mutations drive disease pathology, while the remaining 
are passenger mutations that do not contribute to tumor growth. Determining the driver 
mutations and how they contribute to cancer development and progression is essential 
for effective treatment. Studying these data together produce a much better overall picture 
of the cancer.   
 
Multi-Omics Integration in Cancer 
 The development of high-throughput methods has allowed the collection of many 
data types, resulting in compilations of large amounts of information about specific tumors 
and cell lines. Each cellular component can be assayed. The whole genome can be 
sequenced to find mutations (genomics). RNA sequencing determines expression of 
coding and non-coding transcripts (transcriptomics). Copy number alterations are often 
identified by gene arrays. Methylation is further assayed using tiling microarrays or 
BeadChips. Protein levels and post-translational modifications are evaluated using mass 
spectrometry or protein arrays (proteomics). Finally, clinical data can be collected for each 
patient and phenotype data can be collected for each cell line.  
 There are a few large-scale studies collecting and integrating multi-omics 
information on cancer patients. The Cancer Genome Atlas (TCGA) was a large program 
that collected clinical, genomic, transcriptomic, and proteomic data for over 11,000 
patients and 30 tumor types21. The Clinical Proteomic Tumor Analysis Consortium 
(CPTAC) extended this data to include mass spectrometry proteomic and 
phosphoproteomic data for three of the cancer types22. The Molecular Taxonomy of 
Breast Cancer International Consortium (METABRIC) collected similar data for over 2000 
breast cancer patients23. Finally, the International Cancer Genome Consortium (ICGC) 
also collected data from several different countries on 21 tumor types24. Much work has 
been done creating bioinformatics tools and resources to integrate and analyze these 
diverse data types. 
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Kinases and Phosphatases in Cancer 
 While many aspects of the entire cell system are involved in cancer, kinase 
signaling is an important component. Kinases, the second largest protein class, are 
enzymes that catalyze the transfer of a phosphate group from energy molecules to other 
substrates. The majority of kinases phosphorylate proteins, but other substrates include 
carbohydrates, amino acids, and lipids25. Phosphatases are the enzymes that reverse 
this process. This signaling process contributes to all of the essential cell pathways that 
are also hallmarks of cancer including metabolism, motility, proliferation, and the DNA 
damage response. 

These two enzyme groups, along with their substrates, are known to be 
dysregulated in cancer. For example, PTEN, a phosphatase and known tumor 
suppressor, is frequently mutated in cancer. The mutations inactivate PTEN, leading to 
constitutive activation of AKT kinase signaling26. The phosphatidylinositol-3-kinase 
(PI3K)/AKT pathway regulates cell survival in response to stress and promotes cell 
proliferation and migration. The gene for the driving kinase of this pathway, PIK3CA, is 
also one of the most frequently mutated genes in cancer27. The activating mutations on 
PIK3CA increase proliferation and enhance AKT signaling28. Another kinase signaling 
pathway frequently dysregulated in cancer is the mitogen activated protein kinase 
(MAPK) pathway. The MAPK pathway is involved in many cell processes and can function 
to suppress or support tumor growth based on context29. In cancer, abnormal 
overexpression of the upstream receptor tyrosine kinases, SRC, or RAS upregulates 
MAPK signaling to increase proliferation and invasion30. 

Because kinases are such important targets, almost 40 kinase inhibitors have been 
approved by the FDA and are frequently used as anti-cancer agents31. Furthermore, 
some kinase inhibitors can be used for very specific mutations in personalized medicine. 
For example, vemurafenib specifically targets the kinase BRAF with the V600 mutation32. 
Imatinib targets the fusion kinase BCR-ABL, although it also inhibits the kinases c-KIT 
and PDGFR33. While kinase inhibitors have been instrumental in treating some patients, 
there are some downsides to using them. Because the active domains of many kinases 
are very similar, inhibitors frequently target many kinases34. Resistance to the drugs 
develops rapidly because of redundancy in the kinase signaling pathways35. Finally, 
toxicity to normal cells causes severe side effects for some inhibitors36. 
 
The Use of Phosphoproteomic Data to Study Kinase Signaling   
 Understanding which kinases are dysregulated in a patient and prioritizing kinases 
for drug development requires studying kinase signaling at a systems level. In the past, 
global kinase signaling dysregulation was primarily studied at the genomic level with 
determination of activating or inhibiting mutations. Individual kinases are studied in 
individual patients or cancer cell lines using molecular biology techniques. However, a 
method has recently been developed to study kinase signaling at the systems level for 
numerous cancer patients at once. Phosphorylated peptides in samples are enriched by 
affinity purification, optionally labeled for quantification, and identified by mass 
spectrometry. Because phosphorylation is the direct result of net kinase and phosphatase 
activity, it can be used as a read-out of active enzymes and their downstream pathways. 
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 There are, however, numerous challenges with phosphoproteomic experiments. 
First, sample preparation and enrichment strategies can bias results. For example, the 
use of immobilized metal affinity chromatography to enrich phosphorylated peptides 
produces a higher proportion of multiply phosphorylated peptides than the use of metal 
oxide affinity chromatography37. Furthermore, phosphorylation is dynamic and unstable. 
When tumor samples are collected for phosphoproteomic analysis, cold ischemia time 
affects the results. Mertins et al found 24% of the phosphoproteome is regulated by cold 
ischemia, which complicates comparisons between patients if sample collection is not 
tightly controlled38. Finally, identification of the protein and the exact location of the 
phosphorylated residue is still a challenge39. Peptides can map to multiple proteins, which 
can affect site quantification. Additionally, spectra for phosphorylated sites within close 
proximity are hard to differentiate. In a study of 22 research groups analyzing the same 
phosphoproteomic data, the groups did not agree on site localization for 21% of the 
spectra40. 
 Because mass spectrometry phosphoproteomics is a relatively new but promising 
technique, much work still needs to be done to understand its limitations and determine 
the best and most biologically relevant methods for analysis. This thesis aims to 
characterize the limitations of mass spectrometry in studying kinase signaling and 
demonstrate its utility in identifying new insights in cancer that cannot be determined 
using other methods. 
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CHAPTER 2 
 

OVERVIEW OF RESOURCES FOR STUDYING KINASES, PHOSPHATASES, AND 
PHOSPHORYLATION SITES: TOOLS FOR ANALYZING PHOSPHOPROTEOMIC 

DATA 
 
Introduction 
 Post-translational modifications (PTMs) are an essential aspect of cell signaling. 
The enzymatic addition or removal of a molecule or chemical to a protein allows a cell to 
rapidly and reversibly respond to environmental stimuli. There are many types of PTMs, 
but phosphorylation, the method of transferring a phosphate group to a substrate, is the 
best-studied and is common in mammalian cells. Cells use phosphorylation as a 
molecular switch and carefully regulate the process. Furthermore, phosphorylation 
dysregulation has been hypothesized to contribute to diseases such as cancer17. In 
mammalian cells, proteins are phosphorylated primarily on serine, threonine, and tyrosine 
amino acid residues. However, phosphorylation occasionally occurs on other residues 
including histidine, as well as on non-protein substrates41. 
 Kinases are enzymes responsible for catalyzing the transfer of the phosphate 
group to a substrate. There are over 500 human kinases, but the actual number varies 
among research groups due to differences in functional prediction and annotation of 
pseudogenes25,42. Phosphatases reverse the action of kinases by catalyzing the removal 
of the phosphate group. There are almost 200 human phosphatase genes and, like 
kinases, most phosphatases dephosphorylate protein substrates43.   
 Phosphoproteomic data have emerged as a mechanism to study kinase signaling. 
To analyze this data, resources such as knowledge bases of kinases, phosphatases, and 
phosphorylation sites are required. Additionally, tools for prediction, visualization, and 
analysis are instrumental in understanding the data. 
 While many tools have overlapping functions, they differ in underlying knowledge 
bases, algorithms, input and output format and data, accessibility, advantages, 
limitations, and maintenance. Additionally, a newly developed tool is usually compared to 
a similar, previously published tool, but comparisons often do not include real-world, 
biological use-cases. For example, the inference of kinase activity is a popular use for 
phosphoproteomic data. Methods used to infer activity include using permutation to 
determine non-uniform distribution of substrates, comparing mean phosphorylation of 
substrates using a Z-test, and assessing phosphorylation levels of regulatory sites on 
kinases44,45. There has been little validation of the methods and only one benchmarking 
paper study comparing a few of the methods has been published44.   

Finally, the targeted audience for many tools consists of biologists without 
computational backgrounds. However, biologists are rarely consulted for design input and 
never requested to test the final product. There is no comprehensive list of tools to aid 
those using phosphoproteomic data in their research. Therefore, this chapter aims to 
collect tools and resources that can be used to analyze phosphoproteomic data, perform 
some benchmarking comparisons to determine the best tool available, and assess 
usability of the tools from the standpoint of a user. 
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Methods 
Collection of Tools 
 The OMICtools resource (https://omictools.com) is a manually curated collection 
of bioinformatics tools46. This site was searched in October 2017 for tools using the words 
‘kinase’, ‘phosphorylation’, ‘phospho’, or ‘phosphatase’. In addition, several more tools 
were collected from the literature. Only tools that were freely available, still accessible, 
and non-obsolete were included. Tools specific for organisms other than human were 
discarded. The year of last update was assumed to be the year of publication unless 
otherwise noted on the website. The method of access can be by a website (Web) or by 
a downloadable, locally-run tool (Tool). DL indicates database information or tool results 
could be downloaded. The website URLs for all resources can be found in Appendix B.     
 
Testing Knowledge Bases 
  Each website was accessed in October 2017. A protein was submitted to the 
search function and the links provided in the results were tested. Data statistics were 
collected for human proteins from downloadable files where possible and from websites 
or manuscripts for online-only resources.  
 
Identifying the Human Kinome and Phosphatome 
  Human protein kinases were downloaded from KinBase25 (http://kinase.com/web/ 
current/) and non-protein kinases annotated with the term KW-0418 were downloaded 
from Swiss-Prot47 (http://www.uniprot.org) in January 2017. Human phosphatases, 
excluding inactive phosphatases and those with the designation ‘pseudophosphatase,’ 
were downloaded in April 2017 from the DEPhOsphorylation Database48 (DEPOD, 
http://depod.bioss.uni-freiburg.de/) and Phosphatome.Net43. All gene identifiers (HGNC, 
UniProt) were updated to the June 2017 versions.  
 
Testing Kinase-Substrate Prediction Tools 
 Tools predicting kinases for phosphorylation sites were accessed through local 
tool installation or through the tool’s website. PhoScan49 and phos_pred50 were run locally 
on a Windows laptop, while NetPhorest51, NetworKIN52, iGPS53, GPS54, 
PhosphoPredict55, and MusiteDeep56 were run locally on a Mac laptop. PhosphoPICK57, 
NetPhos58, Musite59, and pkaPS60 were accessed via their websites. Gold standard 
positive and negative phosphorylation sites for five kinases (CDK1, CK2, MAPK1, PKA, 
and PKC) were downloaded from dbPTM61. Positive sites were phosphorylation sites 
experimentally validated to be phosphorylated by a particular kinase. Negative sites were 
phosphorylatable residues not known to be phosphorylated on the same proteins. Only 
human serine and threonine sites were used. Tools were set with the lowest threshold if 
they did not have an option to return scores for all sites. For each site, the maximum score 
was retained if the tool predicted for more than one related kinase (e.g., the maximum 
score of PKCalpha and PKCbeta on the same site). If a tool did not return a score for a 
site, the lowest possible score was given to the site. The receiver operating characteristic 
(ROC) curve and area under the curve (AUC) were calculated for the results from each 
tool using the R package ROCR62. 
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Testing Kinase Activity Prediction Tools 
 A phosphoproteomic dataset from a cell line experiment with 20 kinase inhibitors 
was used to test kinase activity prediction tools63. The R programming environment was 
used to create files in the input format for each tool. Significantly downregulated sites for 
each inhibitor were submitted to KEA264 and significantly inhibited kinases were defined 
as those with false discovery rate (FDR) < 0.05 and at least 3 overlapping substrates. 
The log2 fold change for each thirteenmer phosphorylation site (±6 amino acids 
surrounding the phosphorylated site) was submitted to PHOXTRACK65 (1000 
permutations, minimum number of substrates = 3, weighted statistics). Significantly 
inhibited kinases were defined as those with FDR < 0.05 and normalized enrichment 
value < 0. The fold change for each site with each inhibitor was submitted to the KSEA 
app website45 and significantly inhibited kinases were defined as those with FDR < 0.05, 
at least 3 substrates in the dataset, and a z score < 0. The substrates of kinases from 
PhosphoSitePlus66 (version July 2017) and Signor67 (version October 2017) were used 
for IKAP68. IKAP was run locally on a Mac laptop with the bounds between -11 and 11 
and 50 iterations. The 5 kinases with the lowest activity scores for each experiment were 
chosen. The positive set were kinases known to be inhibited by each drug (supplementary 
table in reference 63); all other kinases were considered to be negative. The significant 
kinases for each tool were counted for presence in the positive and negative sets. 
 
Creating Gold Standard Sets for Testing Kinase Activity Inference 

Twenty-five known kinase targets of the 20 inhibitors used in the Wilkes’ 
experiment with at least six substrates in the data were chosen for analysis. The gold 
standard positive set was the 60 known inhibitor-target pairs. The 20 inhibitors were then 
paired with each of the twenty-five kinases that were not known targets of that inhibitor. 
The gold standard negative sets were created by randomly selecting 60 inhibitor-non-
target pairs 20 different times.  

 
Method Comparison for Kinase Activity Inference 

Pre-ranked gene set enrichment analysis (GSEA) was implemented using 
WebGestaltR69.  The z score method from the KSEA app was also implemented in R. 
Briefly, the mean log2 fold change for all sites was subtracted from the mean log2 fold 
change for substrates in the set. This difference was multiplied by the square root of the 
number of sites in the substrate set and divided by the standard deviation across all sites 
in the dataset. Phosphorylation sites were defined as the thirteenmer peptide and the 
median log2 fold change was calculated for multiple peptides referring to the same site. 
Activity scores were calculated as the signed -log10(FDR). The sign followed the 
normalized enrichment score (NES) from GSEA or the z score from the z score method. 
 
Kinase Activity Inference Using Substrate Sets with Different Experimental Evidence 
 Experimentally validated substrate sets were created for the 25 kinases from 
PhosphoSitePlus (version May 2018) annotated as in vivo or in vitro experimental 
evidence. In silico substrate sets were generated from NetworKIN using the NetworKIN 
score ³ 2. Analysis was limited to the 16 kinases with at least 3 substrates in each set.  
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Kinase Activity Inference Using Substrate Sets from Different Databases 
 Substrate sets were created for the 25 kinases from 5 different databases. 
Thirteenmer sequences for substrates from each database were created by mapping to 
their respective protein sequences. Substrates for PhosphoSitePlus (version May 2018) 
were combined with those from Signor (version May 2018), Swiss-Prot (version May 
2018), the Human Protein Reference Database70 (HPRD, version 9), and Phospho.ELM71 
(version 9.0). Two additional sets of a combination of PhosphoSitePlus + HPRD + Swiss-
Prot and a combination of all five databases were created. Analysis was limited to the 23 
kinases with at least 3 substrates in every database combination. 
 
AUC for Kinase Activity Inference 
 AUC was calculated using the ROCR R package for each of the 20 negative sets 
with the positive set. AUC values within a method were compared using ANOVA with a 
Tukey’s post hoc analysis for differences between pairs. AUC values between methods 
were compared by t-test. Significance was defined as p < 0.05.  
 
Results 
Knowledge Bases of Kinases and Phosphatases 
 Knowledge bases for kinase signaling can be separated into those collecting 
information on the enzymes, and those collecting experimentally validated 
phosphorylation sites. Of the 15 different resources that collect information specifically on 
protein kinases and phosphatases, 12 provide data on kinases, while 4 provide data on 
phosphatases (Table 1). Only one resource, the Eukaryotic Protein Kinase & Protein 
Phosphatase Database (EKPD) contains information on both types of enzymes72. The 
databases contain various types of data and some include an option for downloading files, 
while others are only available as an online website.  

The kinase knowledge bases can be further separated into two different types: 
those that include comprehensive data on all known protein kinases, and those that were 
developed for a specific purpose, such as collecting driver mutations in kinases. Notably, 
no kinase resource collects data on non-protein kinases. KinBase, which was developed 
by Gerard Manning, contains 538 protein kinases and is considered the primary source 
of human protein kinases and their classification25. Many other resources base their 
kinase list on KinBase.  
 Kinomer, Kinase Sequence Database (KSD), and KinG are general kinase 
sequence databases that provide very little other information and are outdated73–75. 
KinMutBase, a collection of disease-causing mutations in protein kinase domains, is also 
outdated, contains data on only 31 kinases, and primarily consists of broken links76. 
KinWeb and EKPD provide gene and protein identifiers, classification, description, and 
sequence information, but these data can also be found in other resources. However, 
KinWeb does have prediction of the disulfite bonding state of cysteines in the protein, as 
well as prediction of alpha helices, and EKPD presents data in an easy-to-read format72,77. 
 Use of the remaining general resources depends on which data you want to 
access. KinaseNET and ProKinO contain the most comprehensive databases on protein 
kinases, but both are only available as online resources78. They include protein 
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sequences, links to the kinases in other databases (e.g., UniProt, Ensembl, Entrez), 
information on the kinase domains, expression in tissue, and disease associations. 
ProKinO specifically contains pathway information, mutations and their disease 
associations, chromosomal location of the kinase, and links to published manuscripts. 
KinaseNET includes PTMs, known binding partners, inhibitors, upstream kinases, 
downstream substrates, and information about regulation. KinaseNET provides all data 
on a single page, while ProKinO requires more than 10 clicks on separate tabs and pages 
to obtain all information on a kinase. 

For studying diseases, MOKCa and Kin-Driver specifically have data on protein 
kinase mutations79,80. MOKCa has tissue specificity of mutations while Kin-Driver focuses 
on driver mutations and reports whether the mutation is activating or inactivating. Finally, 
KLIFS provides structural information for approximately half of the protein kinases bound 
to various ligands81. 
 Because phosphatases are less well studied than kinases, there are fewer 
resources dedicated to their collection. EKPD provides the same information for 
phosphatases as it does for kinases. HuPho, however, was the first comprehensive 
collection of phosphatases and the database includes pathway and substrate data, as 
well as siRNA phenotype data and links to orthologs in other species82. DEPOD used 
data from HuPho as a starting point and therefore contains much of the same 
information48. Finally, Phosphatome.Net is the phosphatase version of KinBase43. The 
website contains basic classification and sequence information. 
 

Name Last 
Update 

Method of 
Access Version Enzyme Protein Number Reference 

KSD 2002 Web|DL  Protein Kinases 913 74 
KinWeb 2005 Web  Protein Kinases 519 77 
Kinomer 2008 Web|DL 1 Protein Kinases 505 73 
MOKCa 2008 Web  Protein Kinases 423 79 
HuPho 2012 Web|DL  Phosphatases 313 82 
EKPD 2013 Web 1.1 Protein Kinases and Phosphatases 676 72 
KinBase 2014 Web  Protein Kinases 538 25 
Kin-Driver 2014 Web|DL  Protein Kinases 518 80 
KinG 2014 Web  Protein Kinases 1813* 75 
KinMutBase 2015 Web|DL 4 Protein Kinases 31 76 
DEPOD 2016 Web|DL 1.1 Phosphatases 239 48 
ProKinO 2016 Web 2 Protein Kinases 538 78 
KinaseNET 2017 Web  Protein Kinases >530  
Phosphatome 2017 Web 3 Phosphatases 189 43 
KLIFS 2018 Web|DL 2.3 Protein Kinases 285 81,83 

 
Table 1. Knowledge bases of human kinases and phosphatases. *Indicates the inclusion of an 
unknown number of non-human proteins.  
 
Generating the List of Human Kinases and Phosphatases 
 After evaluation of the knowledge bases, I collected the human protein kinases 
from KinBase because it contained the most comprehensive list. Because no resource 
includes non-protein kinases, these enzymes were collected from Swiss-Prot 
(http://www.uniprot.org) annotated with the term KW-0418 (‘Kinase’). Notably, other 
ontologies do not have a term to specify proteins with phosphotransferase activity. For 
example, the Gene Ontology term ‘protein kinase activity’, GO:0050222, contains 1246 
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human genes, many of which are regulators of kinase activity and do not contain 
phosphotransferase activity themselves. The final collection contained 687 unique human 
kinases. This corresponded to 688 genes, as CKMT1A and CKMT1B produce the same 
protein product despite being separate genes. Of these 688 genes, 538 encode protein 
kinases.  

Active human phosphatases were collected from DEPOD. Additional human 
phosphatases that were not in DEPOD and were not verified pseudophosphatases were 
added from Phosphatome.Net. This resulted in 255 human proteins annotated as 
phosphatases.  
 
Knowledge Bases of Phosphorylation Sites 
  Besides information about specific kinases and phosphatases, data on 
phosphorylation sites are important for studying the signaling process. Phosphorylation 
site databases collect information on the location of phosphorylated residues in proteins 
from experimental data. These experiments can be low-throughput or high-throughput. 
High-throughput phosphorylation site identifications are assigned by probability unlike the 
more stringent experimental validation in low-throughput experiments, but some 
databases combine sites from both types of experiments without identifying the source 
experiment type.  

In addition to phosphorylation site information, about 75% of the 23 resources 
collect interactions between kinases or phosphatases and their substrates (Table 2). 
These often do not include the exact phosphorylation site, but instead provide interactions 
between an enzyme and its substrate at the gene level. 

 
Name Last 

Update 
Method of 

Access Version Sites Proteins Kinases Phosphatases Data Type Reference 

PhosphoPep 2007 Web|DL 2.0 3,980    MS 84,85 
Phospho.ELM 2010 Web|DL 9.0 26,651 5,374 250  HT, LT 71,86,87 
Phospho3D 2010 Web|DL 2.0 1,770  59  HT, LT 88 
HPRD 2010 Web|DL 9 78,005 11,807 291 42 UNSP 70,89,90 
PHOSIDA 2011 Web|DL 3.24 22,806 5,175   MS 91,92 
PTMfunc 2012 Web  31,165    MS 93 
HuPho 2012 Web|DL  190 121  55 UNSP 82 
SubPhosDB 2012 Web|DL 1 137,153 17,297 238  UNSP 94 
RegPhos 2013 Web|DL 2.0 66,301 10,849 380  UNSP 95,96 
ANIA 2013 Web|DL  305 220   LT 97,98 
PhosphoNetworks 2013 Web|DL   1,140 255  UNSP 99 
Kinome NetworkX 2014 DL  173,460 18,610 357  UNSP 100  
ProteomeScout 2014 Web|DL 2 290,007 23,387   MS 101,102  
dbPTM 2015 Web|DL v2016 76,736 10,648 >360  UNSP 61,103,104 
dbPAF 2016 Web|DL 1.0 244,034 18,773   UNSP 105 
PhosphoAtlas 2016 DL  2,595 1,284 501  UNSP 17 
DEPOD 2016 Web|DL 1.1 253 210  88 UNSP 48 
KANPHOS 2016 Web β   73  MS 106 
Phosphatome 2017 Web 3 6,008 2,000 319 106 UNSP 43  
PhosphoNET 2017 Web  966,817† 22,698 488  UNSP+pred 107  
PhosphoSitePlus 2018 Web|DL May-18 235,406 20,086 370  HT, LT 66 
Swiss-Prot 2018 Web|DL May-18 40,150 7,971 350  UNSP 47,108  
Signor 2018 Web|DL 2.0 4,354 1,605 415 98 UNSP 67,109 
 
Table 2. Databases of phosphorylation sites. The number of unique kinases and phosphatases reported 
to phosphorylate sites in the database is included. For some databases, these numbers include enzyme 
groups in addition to individual enzymes. Data type indicates whether the data are from mass spectrometry 
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(MS) experiments, separated high-throughput (HT) and low-throughput (LT) experiments, or whether the 
database combines data from both HT and LT experiments without specifying (UNSP). †Indicates inclusion 
of predicted phosphorylation sites (pred). 

 
 The four main resources for phosphorylation sites curated data manually from the 
literature (Figure 1). HPRD and Swiss-Prot are general databases of all proteins47,70. The 
remaining two, PhosphoSitePlus and Phospho.ELM, specifically contain phosphorylation 
site information66,71. Both PhosphoSitePlus and Swiss-Prot are frequently updated, while 
HPRD and Phospho.ELM were last updated in 2010. All four of these databases also 
include kinase information for sites if known.  
 

 
Figure 1. Network of phosphorylation site and kinase-substrate interaction databases. Gray nodes 
indicate databases that are no longer accessible. Arrows point from the knowledge source to the collecting 
database. Arrows originating from the four most highly used databases are colored by source 
(green=HPRD, blue=Swiss-Prot, red=PhosphoSitePlus, purple=Phospho.ELM).   

 
Other smaller databases were generated through manual curation or publication 

of a laboratory’s own phosphorylation site data. KANPHOS collects phosphorylation sites 
in neural signaling identified by high-throughput experiments106. PHOSIDA is another 
collection of data that were primarily produced in cell lines91. PhosphoPEP integrates 
mass spectrometry experiments from Cell Signaling Technology and their own 
laboratory84,85. PTMfunc collects mass spectrometry experiments and adds functional 
predictions from various tools for each site93. Signor extracts high quality signaling 
interactions from the literature67. Finally, ANIA and PhosphoNetworks curate the literature 
for a specific purpose. ANIA collects phosphorylation sites that serve as binding sites for 
14-3-3 proteins, while PhosphoNetworks creates a kinase-substrate network curated 
from the literature and a protein microarray experiment97,99.  

The remaining resources integrate phosphorylation sites and kinase information 
from other databases (Figure 1). The database dbPAF collects phosphorylation sites 
from several databases105. ProteomeScout also collects phosphorylation sites from other 
databases along with literature-curated experiments and provides a tool for analyzing a 
user’s data101. The database dbPTM collects all PTMs and the responsible enzyme from 
several sources61. KinomeNetworkX, RegPhos, and PhosphoAtlas curate and integrate 

dbPAF

ProteomeScout RegPhos PhosphoBasePhosphoPOINT PhosphoAtlas literature

Phospho3DdbPTM KinomeNetworkXSubPhosDB SysPTM DEPOD

literatureliterature literatureliterature literatureexperimentsliterature literatureliteratureliterature literatureexperimentsliterature literature

ANIAPhospho.ELMSwiss-Prot PhosphoSitePlus PhosphoNetworksPHOSIDA HPRDPhosphoPep HuPho

Signor

literature

PDB
PTMfuncKANPHOS

experiments literature



 12 

data specifically to create kinase-substrate networks17,95,100. PhosphoNET is an online-
only tool that includes predicted phosphorylation sites in addition to those with 
experimental evidence107. SubPhosDB annotates phosphorylated proteins with 
subcellular localization94. Finally, Phospho3D specifically collects phosphorylation sites 
with 3D structures88. 

Five databases collect information on phosphatase-substrate interactions. As 
mentioned, DEPOD, HuPho, and Phosphatome.Net all curate enzyme interactions from 
the literature. HPRD and Signor also collect some site-specific phosphatase information. 

Each database contains a different number of phosphorylation sites and enzyme-
substrate relationships depending on the source and method of collection (Table 2). 
ProteomeScout, PhosphoSitePlus, and dbPAF contain the most number of 
experimentally validated, downloadable sites. The site numbers for these three databases 
include specific protein isoforms, as do several other resources. PhosphoAtlas contains 
substrates for the most number of individual kinases. Signor, Swiss-Prot, RegPhos, 
Phospho3D, dbPTM, and Phospho.ELM have substrates for individual kinases and 
kinase families. Finally, PhosphoSitePlus has substrates for some specific kinase 
isoforms.  

Besides the general phosphorylation site databases, other specialized databases 
have formed using phosphorylated protein information. For example, PepCyber: P~PPep 
is an online searchable database of proteins that interact with phosphorylated proteins110. 
  
Errors in Substrate Databases 
 Based on these databases, PhosphoSitePlus is the best resource for 
experimentally-identified phosphorylation sites and kinases for phosphorylation sites. 
PhosphoSitePlus is frequently updated and well-curated. The downstream integrating 
databases suffer from ID mapping errors. For example, in PhosphoAtlas there is an entry 
for PEG (paternally expressed gene 3) phosphorylating CDC25B. PEG is not a known 
kinase, but pEg3 kinase (also known as maternal embryonic leucine zipper kinase, 
MELK) is known to phosphorylate CDC25B111.  Many of the downstream databases also 
have issues with PDPK1 and PDK1. The gene PDPK1, 3-phosphoinositide-dependent 
protein kinase 1, produces a protein known to the biological community as PDK1. 
However, there is an additional kinase, pyruvate dehydrogenase kinase, that is produced 
by the gene PDK1. Databases that try to integrate sites frequently attribute the substrates 
of PDPK1 to PDK1. Finally, integrating databases propagate errors from the original 
databases. For example, HPRD contains an entry for PTPN11 phosphorylating PTK2B 
although PTPN11 is a known phosphatase and not a kinase. The original manuscript 
connected to this entry confirmed that PTPN11 is a phosphatase and that it just binds to 
PTK2B at that particular site112. Databases that collect information from HPRD, such as 
RegPhos and PhosphoAtlas, include this incorrect entry for PTPN11. 
 
Known Substrates of Kinases and Phosphatases 
 The four main databases together produce 493 substrate sets of individual kinases 
and kinase families (Figure 2A). PhosphoSitePlus contains the most unique sites, while 
other databases contribute only a few additional sites per kinase. CSNK2A1 has the most 
number of substrates (584), while over half of the sets contain fewer than 10 substrates. 
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 For substrates of phosphatases, DEPOD, HPRD, and Phosphatome.Net 
combined produce sets for 83 phosphatases. The most unique information comes from 
DEPOD and Phosphatome.Net. The number of known sites for each phosphatase is far 
fewer than that for kinases. PPP2CA has the most substrates (167), while 70% of the 
phosphatases have fewer than 10 substrates (Figure 2B).  
   

 
Figure 2. Number of substrates per kinase and phosphatase. A) Number of substrates for the top 100 
kinases in four databases. Substrates present in more than one database are colored black while the 
remaining sites are unique to each database. B) Number of substrates for each phosphatase in DEPOD 
(blue), HPRD (green), Phosphatome.Net (red), or in more than one database (black). 
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Phosphorylation Site Prediction Tools 
 Despite decades of research, very few phosphorylation sites have known kinases 
or phosphatases. Of the sites in PhosphoSitePlus, only about 3% have an experimentally 
validated human kinase. Therefore, numerous tools have been developed to predict 
which sites in a protein can be phosphorylated and which kinases phosphorylate that 
given site.  
 These prediction tools were developed using a variety of features and methods 
and have been reviewed elsewhere113,114. The early versions of phosphorylation site 
predictors were motif-based. They generated the frequency of amino acids surrounding 
a site and searched for that pattern in protein sequences. Later tools used more 
sophisticated methods such as support vector machines (SVM), random forest, Bayesian 
probability, and position specific scoring matrices (PSSM)50,115–117. Besides amino acid 
sequence, tools included a vast array of features such as the 3D structure of the 
phosphorylation site, disorder score, cell cycle data, and co-expression of kinases and 
substrates118–120. Others, like NetworKIN and iGPS, used protein-protein interaction data 
to filter predictions53,121. Table 3 provides an overview of all currently available tools to 
predict phosphorylation sites or kinases for phosphorylation sites. While a few tools have 
been developed to predict sites for phosphatases, only NetPhorest and NetworKIN are 
still accessible121. 
 

Tool Last 
Update Version Prediction Type Method Kinases/ 

Phosphatases Type Reference 

Disphos 2004 1.3 phosphorylation sites bagged logistic regression  Web 118 

PPSP 2006 1.06 phosphorylation sites of 
kinases 

Bayesian decision theory 68 Web 116 

KinasePhos2.0 2007 2.0 phosphorylation sites of 
kinases 

SVM 58 Web 115 

pkaPS 2007 
 

phosphorylation sites of 
PKA 

scoring function 1 Web|DL 60 

PhoScan 2008 
 

phosphorylation sites of 
kinases 

scoring function 48 Web|Tool 49 

Phos3D 2009 
 

phosphorylation sites and 
some kinase specificity 

SVM 5 Web 119  

Musite 2010 1 phosphorylation sites and 
some kinase specificity 

SVM 13 Web|DL 59 

PHOSIDA 
Predictor 

2011 3.24 phosphorylation S and T 
sites 

SVM 
 

Web 91 

Predikin 2011 
 

phosphorylation sites of 
kinases 

PSSM any Web|DL 117 

GPS-Polo 2012 1.0 phosphorylation sites of 
Plk 

group-based scoring 
function PSSM 

1 Web|Tool 122 

iGPS 2012 1.0.1 phosphorylation sites of 
kinases in vivo 

GPS with PPI 407 Tool 53 

HMMpTM 2013 
 

phosphorylation sites of 
kinases and topology 

HMM 9 Web|DL 123 

PKIS 2013 
 

phosphorylation sites of 
kinases 

SVM 56 Web|DL 124 

CEASAR 2013 
 

kinases for known 
phosphorylation sites 

naïve Bayes 289 DL 120 

GPS 2014 3.0 phosphorylation sites of 
kinases 

group-based scoring 
function PSSM 

464 Web|DL|Tool 54 

NetPhorest 2014 2.1 phosphorylation sites of 
kinases 

ANN&PSSM 244 Web|DL|Tool 51,121 

NetworKIN 2014 3.0 phosphorylation sites of 
kinases in vivo 

naïve Bayes with PPI 123 Web|DL|Tool 52,121 
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phos_pred 2014 
 

predicts phosphorylation 
sites for kinases 

random forest 54 Tool† 50  

PhosphoSVM 2014 
 

phosphorylation sites SVM 
 

Web 125 

PSEA 2014 
 

phosphorylation sites of 
kinases 

GSEA 33 Web 126 

Scansite 2015 4 kinase motifs in proteins PSSM 70 Web|DL 127 

KSP-PUEL 2015  phosphorylation sites of 
kinases 

SVM ensemble 2* Tool 128 

PhosphoPICK 2016 
 

phosphorylation sites of 
kinases 

Bayesian network 107 Web|DL 57 

PhosD 2016 
 

kinase-substrate 
relationships 

probabilistic model 399 DL 129 

PhosphoNET 2017 
 

phosphorylation sites of 
kinases 

PSSM 488 Web 107 

NetPhos 2017 3.1 phosphorylation sites and 
some kinase specificity 

ANN 17 Web|Tool† 58,130 

PhosphoPredict 2017 
 

phosphorylation sites of 
kinases 

random forest 12 Web|DL|Tool 55 

MusiteDeep 2017 
 

phosphorylation sites and 
some kinase specificity 

deep learning 5 Tool† 56 

PhosPred-RF 2017 
 

phosphorylation sites random forest 
 

Web 131 

 
Table 3. Available phosphorylation site and kinase-substrate prediction tools. *Indicates number of 
trained kinases, but tool can be trained with others. †Indicates tool is not available for all three main 
operating systems (Linux, Mac, Windows). SVM – support vector machine, PSSM – position specific 
scoring matrix, GSEA – gene set enrichment analysis, ANN – artificial neural network, HMM – hidden 
Markov model, PPI – protein-protein interaction 
  
 Almost all phosphorylation site predictors were trained using data from 
Phospho.ELM (Figure 3). Swiss-Prot and PhosphoSitePlus were also heavily used 
resources. Notably, almost all tools were developed using experimentally verified 
substrate data as the training set. Therefore, the tools are only able to predict the 
responsible kinase if there is existing data for substrates of that kinase.  
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Figure 3. Network of phosphorylation site predictor tools and the resources used to make 
predictions. Tools are colored purple while the databases used by the tools are colored blue. 
 
 The usability of each tool differs based on purpose of use. For possible kinases 
phosphorylating a single substrate of interest, web-based tools would suffice. However, 
the limit on the number of sequences submitted for prediction and the lack of 
downloadable results prevent these same tools for being useful in large-scale studies. 
Furthermore, downloadable tools are useful for large-scale studies, but tools can be 
difficult to install and use. For example, phos_pred requires modifying MATLAB code to 
run. NetPhos is downloadable but can only be run on Linux, while PhoScan can only be 
run on Windows machines. Finally, tools like GPS and phos_pred provide pre-defined 
cutoffs for results, while others like musite and KSP-PUEL allow users to define their own 
thresholds or to train the models using their own data.  
 For large-scale kinase-substrate prediction, only 12 pre-trained tools were 
available that provide downloadable results. The best, unbiased way to test these tools 
is to use validated sites that were not used for the training of any tool. Unfortunately, most 
tools do not report the actual sites used for training and finding a set of sites to fit these 
criteria is nearly impossible. Therefore, all 12 tools were tested using gold-standard 
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positive and negative human sites from dbPTM for five kinases. The outcomes might be 
slightly biased in favor of newer tools and those that used some of these sites in their 
training. 

ROC curves for four kinases (CDK1, CK2, MAPK1, and PKA) are shown in Figure 
4, while the fifth curve (PKC) is shown in Appendix A (Figure S1). Notably, musite was 
unable to predict for a few random protein sequences in each submission. MusiteDeep 
and GPS had the highest area under the curve (AUC) for all kinases tested. The PKA-
specific tool pkaPS also performed well. Performance for most tools, however, varied 
across kinases.  

 

 
Figure 4. ROC curves for substrate prediction of four kinases. The false positive and true positive rates 
of substrate prediction for A) CDK1, B) CK2, C) MAPK1, and D) PKA. The AUC for each tool is listed next 
to the tool name. The tool pkaPS only predicts for PKA, while phos_pred does not predict for PKA and 
NetPhos does not predict for MAPK1.   
 
 

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MusiteDeep:0.97
Musite:0.94
GPS:0.94
iGPS:0.61
Netphorest:0.94
NetworKIN:0.92
NetPhos:0.5
PhosphoPredict:0.89
PhosphoPICK:0.68
PhoScan:0.92
phos_pred:0.76

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MusiteDeep:0.98
Musite:0.92
GPS:0.96
iGPS:0.65
Netphorest:0.88
NetworKIN:0.84
PhosphoPredict:0.91
PhosphoPICK:0.72
PhoScan:0.91
phos_pred:0.49

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MusiteDeep:0.99
Musite:0.93
GPS:0.98
iGPS:0.63
Netphorest:0.96
NetworKIN:0.91
NetPhos:0.92
PhosphoPredict:0.92
PhosphoPICK:0.77
PhoScan:0.91
pkaPS:0.97

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

MusiteDeep:0.98
Musite:0.82
GPS:0.91
iGPS:0.65
Netphorest:0.87
NetworKIN:0.83
NetPhos:0.86
PhosphoPredict:0.8
PhosphoPICK:0.79
PhoScan:0.86
phos_pred:0.64

A B 

D C 



 18 

Comparison of Kinase Activity Tools 
 Using known or predicted kinases for phosphorylation sites, kinase activity can be 
inferred from global phosphoproteomic data. Tools and methods have been developed to 
predict kinase activity, but there has been little effort spent towards comparing these tools 
or determining the most biologically-relevant set of parameters. The available tools 
(PHOSIDA, KEA2, KSEA App, PHOXTRACK, and IKAP) each use a different algorithm 
to infer activity (Table 4). The PHOSIDA de novo motif finder uses a simple method of 
bootstrapping to determine enrichment of sequence motifs in a set of phosphorylated 
peptides and then matches those to known kinase motifs91. Kinase Enrichment Analysis 
2 (KEA2) uses over-representation analysis to determine enrichment of kinase substrates 
in a condition64. Similarly, the KSEA App uses mean phosphorylation of substrates of 
kinases as a proxy for activity45. PHOXTRACK modified pre-ranked GSEA to determine 
enrichment of known kinase targets65. IKAP extended these methods using a cost 
function to infer the relative contributions of multiple kinases acting on the same site68. 
 

Tool Last 
Update Prediction Type Method Input Type Reference 

PHOSIDA Motif 
Finder 

2011 sequence motifs bootstrap phosphosite 13mer Web 91 

KEA2 2012 kinase activity Fisher’s exact 
test 

gene symbols and 
phosphosite 

Web|DL|Tool 64 

CellNOpt 2013 signaling networks logic formalisms phosphoproteomic 
data 

Tool 132 

Sorad 2013 time-course 
analysis 

ordinary 
differential 
equations 

phosphoproteomic 
data 

Tool 133 

PHOXTRACK 2014 kinase activity GSEA phosphosite 13mer 
and log2 expression 

Web|DL 65 

ProteomeScout      101 

CLUE 2015 time-course kinase 
activity 

k-means 
clustering 

phosphoproteomic 
data 

Tool 100 

PhosFox 2015 phosphorylation 
site comparison 
between groups 

comparison phosphoproteomic 
data 

Tool 134 

SELPHI 2015 phosphoproteomic 
data analysis 

multiple functions phosphoproteomic 
data 

Web|DL 135 

DynaPho 2016 phosphoproteomic 
analysis for 
multiple conditions 

activity modules phosphoproteomic 
data 

Web|DL 136 

IKAP 2016 kinase activity cost function phosphoproteomic 
data 

Tool 68 

KinasePA 2016 kinase perturbation 
in multiple 
treatments 

directional 
hypothesis testing 
framework 

phosphoproteomic 
data 

Web|Tool 137 

KSEA 2017 kinase activity Z score phosphoproteomic 
data 

Web|DL|Tool 45 

 
Table 4. Kinase activity prediction and phosphoproteomic dataset analysis tools. GSEA – gene set 
enrichment analysis 
 
 Comparison of these tools is challenging because they use different input and 
underlying databases. Because PHOSIDA is only available online without downloadable 
results, I excluded this tool from further analysis. KEA2 requires a set of sites in the format 
of HGNC symbol and phosphorylated amino acid residue position separated by an 
underscore. It contains sets for 250 different kinases. KSEA App requires a strictly 
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formatted comma-delimited file with the HGNC symbol, phosphorylated position, and non-
log-transformed fold change. Users can choose between known sets from the July 2016 
release of PhosphoSitePlus or the known + predicted site sets from PhosphoSitePlus and 
NetworKIN. PHOXTRACK requires a two-column file with a thirteenmer peptide and log-
transformed fold change. It can use substrate sets from the four main databases or a 
user-supplied database. Finally, IKAP required tabular data entered into MATLAB, 
manual modification of MATLAB code to change parameters, and allowed a user to 
upload their own set of substrates. Because one thirteenmer might match multiple 
proteins and phosphorylated positions, the actual substrate list presented to each tool 
may differ slightly.    

I used a phosphoproteomic experiment with 20 kinase inhibitors to compare the 
kinase activity predictions by KEA2, KSEA app, PHOXTRACK, and IKAP. To determine 
how well each tool covered the known targets of kinases, I counted the number of 
significantly downregulated known kinases of each inhibitor and the significantly 
downregulated kinases of each inhibitor that were not known targets of that inhibitor. The 
KSEA App made the most true positive predictions across all experiments, while IKAP 
made the fewest true positive predictions (Figure 5A). PHOXTRACK made the fewest 
false positive predictions (Figure 5B). 

 

 
Figure 5. True and false positive predictions for kinase activity prediction tools. A) For all 20 
inhibitors, the number of known targets predicted to be significantly downregulated by each tool. B) For all 
inhibitors, the number of all significantly downregulated kinases that do not match known inhibitor targets. 
 
Comparison of Kinase Activity Inference Methods 
 Because the KSEA app and PHOXTRACK both maximized true positive results 
while minimizing false positive results, I performed a systematic comparison of the 
methods underlying these two tools following a protocol similar to Hernandez-Armenta et 
al in their benchmarking paper44. While kinase prediction tools can increase the number 
of substrates for each kinase, it is not known how including these substrates affects 
kinase activity inference. I compared the AUC for the positive set of inhibitor-target pairs 
and 20 different randomly permuted inhibitor-target pairs for kinase activity inference 
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using substrate sets from different levels of evidence. The GSEA and z score methods 
had similar performance, but the GSEA method performed better when the substrate sets 
came from in vitro experiments (Figure 6A, p = 0.002). For both methods, using substrate 
sets from in silico predictions performed significantly worse in comparison to using 
experimentally validated substrate sets (p = 0.0009 for GSEA and p = 0.001 for z score).  

As shown above, many databases collect substrates of kinases, so I compared the 
performance of each database paired with PhosphoSitePlus to maximize the number of 
kinase targets with substrate sets. The z score method performed better than the GSEA 
method for all databases (Figure 6B, p < 0.002). Within each method, performance 
across most of the databases was similar except for Signor. Substrate sets from the 
combination of PhosphoSitePlus and Signor performed worse against PhosphoSitePlus 
alone, Phospho.ELM, and Swiss-Prot using the GSEA method (p < 0.01). Substrate sets 
from the combination of PhosphoSitePlus and Signor performed worse against Swiss-
Prot and the combination of Swiss-Prot, PhosphoSitePlus, and HPRD using the z score 
method (p < 0.002). Swiss-Prot performed better than PhosphoSitePlus alone and with 
Phospho.ELM (p < 0.04) using the z score method.  

    

 
Figure 6. Kinase activity AUC for the GSEA and z score methods using various substrate sets. A) 
AUC values for 20 randomly permutated negative sets matched with the single positive set using two 
methods. Substrate sets were generated using substrates with in vivo, in vitro, and/or in silico evidence. B) 
AUC values for experiments using substrate sets from combinations of databases. 
 
Phosphoproteomic Experiment Analysis Tools 

Besides activity prediction, phosphoproteomic data can be used for other 
analyses. PhosFox compares phosphorylated peptides between conditions134. SELPHI 
allows biologists to quickly and easily analyze phosphoproteomic data with clustering 
analyses, kinase-substrate correlation, and pathway enrichment135. Finally, a set of tools 
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(CellNOpt, Sorad, CLUE, DynaPho, and KinasePA) were developed specifically for 
phosphoproteomic time-course or multiple condition analyses (Table 4)100,132,133,136,137. 
 
Prediction of Mutation Effect 

Mutations can affect kinase function or presence of a phosphorylation site. 
PhosSNP is a database of known gene polymorphisms near phosphorylation sites that 
are categorized based on suspected effect138. The remaining four resources are tools to 
predict the effect of mutations (Table 5). Mutations Impact on Phosphorylation (MIMP) 
uses Bayesian statistics to predict whether mutations around a phosphorylation site will 
change which kinase binds to that site139. It can predict rewiring for 124 kinases using 
experimentally validated data, or it can be extended to predict for 322 kinases using 
predicted kinase-substrate relationships. ReKINect also predicts rewiring from mutations, 
but it further predicts the destruction or creation of phosphorylation sites and inactivation 
or constitutive activation of kinases140. PhosphoPICK-SNP is also similar to MIMP. It 
predicts the kinase responsible for phosphorylating a site, and whether a mutation affects 
its ability to phosphorylate the site141. Finally, wKinMut2 predicts which mutations on 
kinases contribute to disease142. 
 

Tool Last 
Update Version Prediction Type Method Kinases/ 

Phosphatases 
Method of 

Access Reference 

PhosSNP 2009 1.0 SNVs that might influence 
phosphorylation status 

rules 
 

Tool 138 

MIMP 2015 
 

missense SNV impact on 
kinase-substrate 

Bayesian 
model 

322 Web|DL|Tool 139 

ReKINect 2015 
 

effect of SNV on signaling 
network 

PSSM 
 

Web|DL 140 

PhosphoPICK-
SNP 

2016 
 

effect of SNV on 
phosphorylation level 

Bayesian 
models 

107 Web|DL 141 

wKinMut2 2016 2 SNV effect on kinase Random 
Forest 

450 Web|DL|Tool 142 

 
Table 5. Resources for studying the effect of mutations on kinases and phosphorylation sites. SNV 
– Single Nucleotide Variation, PSSM – Position Specific Scoring Matrix   

 
Resources for Kinase Inhibitors 
 Which small molecules inhibit which kinases is important when considering 
kinases as therapeutic targets. Most resources connect known drugs to their known 
kinase targets (Table 6). KidFamMap connects kinases, their inhibitors, and associated 
diseases143. DrugKiNET shows the known inhibitors for kinases, and the kinases that a 
compound inhibits. It also predicts which kinases a drug can inhibit. K-Map extends these 
interactions to suggest the best compound to inhibit a set of kinases144. Finally, 
KinomeSelector groups kinases by sequence similarity and similarity of drug response. It 
then allows a user to choose a subset of kinases to target that cover the kinome121.   
  
 
 
 
 
 



 22 

Tool Last 
Update Description Kinases Inhibitors Method of 

Access Reference 

KIDFamMap 2012 kinase-inhibitor interactions 399 35,788 Web 143 
K-Map 2013 best inhibitor for a set of kinases 300 or 442 178 or 72 Web|DL 144 
KinomeSelector 2014 minimal set of kinases to inhibit >500 NA Web|DL 121 
DrugKiNET 2017 Known and prediction drug activity on 

kinases 
>800  Web|DL  

 
Table 6. Kinase-inhibitor relationship resources. K-Map has two different databases – one with 178 
drugs inhibiting 300 kinases and one with 72 drugs inhibiting 442 kinases.  
 
Other Kinase Signaling Tools 
 The final set of bioinformatics tools related to kinase signaling, summarized in 
Table 7, cover visualization, data retrieval, and prediction tools. KinMap, PyTMs, and 
RegPhos2.0 are visualization tools for the kinome tree, 3D structures of phosphorylation 
sites, and signaling networks, respectively95,145,146. RegPhos2.0 also provides heatmaps 
for kinase and substrate mRNA expression in cancer. PhosphoLogo is used to generate 
sequence logos for kinases147. For data retrieval, RLIMS-P and eFIP are both tools that 
extract data on phosphorylation interactions from the literature148,149. CPhos identifies 
phosphorylation sites that are conserved across species150. 14-3-3-Pred predicts 
phosphorylation sites in protein sequences that might bind to 14-3-3 proteins151. 
KinConform takes structure files and predicts whether any kinase chains in the structure 
are inactive or active152. Kinannote predicts whether a protein sequence is a kinase153. 
Finally, CrossCheck can identify the overlap between a given list of genes and the data 
in a database154. 
 

Tool Last 
Update Version Type Input Output Method of 

Access Reference 

PhosphoLogo 2012 
 

generate 
sequence logos 

peptide 
sequences 

logo Web|Tool 147 

CPhos 2012 1.3 identifies 
conserved 
phosphorylation 
sites 

phosphopeptides conservation 
score 

Web|DL|Tool 150 

RegPhos2.0 2013 2.0 visualization of 
kinase data 

gene names network 
visualization or 
cancer gene 
expression 

Web|DL 95,96 

eFIP 2014 
 

returns 
publications 
involving 
phosphorylation 

gene names or 
words 

publications 
matching those 
words 

Web 149 

RLIMS-P 2014 2.0 returns protein 
phosphorylation 
information from 
literature 

PMIDs or 
keywords 

kinase, 
substrate, and 
site 

Web|DL 148 

PyTMs 2015 1.2 pyMOL plugin to 
add PTMs to 
protein models 

protein models, 
PTMs 

PTMs 
integrated in 
protein models 

Tool 146 

14-3-3-Pred 2015 
 

predicts 14-3-3 
binding 
phosphosite 

protein 
sequences 

predicted 14-3-
3 binding sites 

Web|DL 151 

KinMap 2016 
 

kinome tree 
visualization 

kinases tree with 
highlighted 
branches 

Web|DL 145 

KinConform 2017 
 

determines which 
structures are 
kinases 

structures active or 
inactive kinase 
chains 

Tool 152 
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Kinannote 2017 
 

identifies and 
classifies kinases 

protein 
sequences 

kinase 
classification 

Tool 153 

CrossCheck 2017  identifies overlap 
between a 
database and 
input gene list 

protein names protein overlap Web|DL|Tool 154 

  
Table 7. Miscellaneous kinase signaling tools.  
 
Discussion 

The available databases and tools for studying kinase signaling cover diverse 
functions and include information on enzymes and their substrates, inhibitors, activity, 
and mutations. Together the tools comprise the current best standard for studying kinase 
signaling. Through the review of available resources, the human kinome and 
phosphatome were identified, substrate prediction tools were compared, and the choice 
of substrate sets on kinase activity inference was evaluated. Overall, these tools allow a 
researcher to discover vast amounts of information from their phosphoproteomic data and 
some tools can even perform entire sets of analyses with a single button click135.   

Despite the work that has been done, there is lots of room for advancement both 
in tool and method development to study kinase signaling using phosphoproteomic data. 
First, the majority of tools focus almost exclusively on the study of protein kinases. 
However, phosphatases are critical components of the kinase signaling cascade and are 
frequently dysregulated in cancer. Understanding the role of the interplay between 
kinases and phosphatases on the net phosphorylation seen in global phosphoproteomic 
data is essential to identifying abnormal cell signaling in disease. Furthermore, while the 
current tools and research are aimed at studying dysregulated protein phosphorylation, 
non-protein phosphorylation is also often altered in disease. For example, hexokinases, 
which phosphorylate glucose, drive glucose metabolism and contribute to tumor initiation 
in mouse models of lung and breast cancers155.  The development of resources and tools 
to study non-protein kinases and phosphatases could advance research in a variety of 
fields.   

While the current tools provide critical functions, their error rate and accuracy could 
be improved. Errors are frequently propagated or amplified when tools collect data from 
a variety of resources. However, the integration of several databases did not affect kinase 
activity inference compared to a single database, so the error rate in phosphorylation site 
databases may have a minimal effect on downstream tools.  

Current tools to predict substrates of kinases perform well, but accuracy varies 
based on kinase. Furthermore, most tools can predict only for few kinases. MusiteDeep 
achieved high accuracy using their deep learning approach, but the large number of 
substrates required for training their method resulted in predictions for only 5 kinases. 
This limits its use in studying global kinase signaling. pkaPS also performed well, although 
it was built for a single kinase. This tool was unique because their negative set was sites 
experimentally validated to not be phosphorylated by PKA. Most other tools use sites not 
currently known to be phosphorylated by the kinase of interest, which means it is possible 
those sites could actually be phosphorylated by the kinase. Replicating the strategy for 
gold standard negative sets from pkaPS might improve accuracy for kinases in other 
tools.  
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Kinase activity inference is currently limited by the substrate number for kinases. 
The majority of kinases have fewer than 10 known substrates and the probability of 
identifying those sites in phosphoproteomic experiments is low. However, the current 
tools for adding substrates using prediction decreased the accuracy of kinase activity 
inference. The best two methods for activity inference are GSEA and z score. However, 
the substrate sets have a significant effect on the accuracy of the results. Because 
publicly available tools each use a different substrate set, this might affect the results 
when using different tools. In this review, I counted the number of true positives and false 
positives to compare the tools to understand how well each tool covered the target space 
of the inhibitors. The overrepresentation analysis method had a high number of false 
positives and the tools using the GSEA method and the z score method performed better. 
However, both could only predict downregulation for a small fraction of the known targets 
of those inhibitors. More work should be done to elucidate substrate sets and identify new 
ways to infer kinase activity.  

For all tools, usability can be an issue, both for bioinformaticians and biologists 
with no computational experience. Tools are frequently platform-dependent, do not allow 
downloadable results, and are not well annotated. Furthermore, tools are difficult to 
compare or to use more than one during analysis. The input and output formats are not 
standardized and use a variety of protein naming conventions. 

The largest challenge was deciphering input limitations and understanding results. 
For example, submitting a sequence with a large number of phosphorylatable residues to 
GPS caused the software to stall without an error message and no documentation 
mentioned a size limit. Musite did not provide results for a sequence or two each run 
without explanation. Furthermore, downloadable result files for many tools had no column 
headers so the column contents were unknown. For example, the downloadable file from 
musite has no column titles, so you have to check the table on the website to understand 
the results. Additionally, scores are usually presented without explanation. Only careful 
reading of the manuscript or the manual elucidates what value signifies a “good” 
response. For example, in Scansite, the score 0 is the best, with scores closest to 0 
indicating the best match. But in PhosphoPICK, the score indicates probability of being 
phosphorylated by a kinase at that site so a score closer to 1 is better. Experts in machine 
learning might understand the score without explanation, but biologists likely will not.   

One way to fix this challenge is to have a detailed, easy-to-find manual. The 
manual should include ways to run the tool, the underlying mechanism of the method, 
and detailed description of the results. The description of the results should also be 
available where results are visualized. Furthermore, sample input is helpful for a new user 
to test the tool and determine whether the results will be useful for their experiment before 
preparing their own data files.    

In conclusion, there are many tools and resources that can be used to study kinase 
signaling and these tools will become even more essential with the continued production 
of phosphoproteomic data. It is essential for the biological community to research under-
studied enzymes and to validate specific substrates of kinases and phosphatases. 
Furthermore, bioinformaticians should consider creating tools that utilize information from 
both sides of the enzymatic phosphorylation reaction. Finally, resources should be 
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carefully planned, easy to use, and well maintained. The community should work to 
standardize the use of enzyme IDs and phosphorylation site location. 
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CHAPTER 3 
 

PROTEOMIC LANDSCAPE OF KINASE SIGNALING IN CANCER 
 

Introduction 
 The massive sequencing efforts identifying the genomic and transcriptomic 
alterations in numerous cancer samples by groups such as TCGA, METABRIC, and 
ICGC provided novel insights into cancer processes and better understanding of the 
underlying biological mechanisms156,157. However, the size and complexity of the data 
make translating these findings into the clinic challenging. Furthermore, discoveries at the 
genomic level do not always translate well to the protein level. The correlation between 
mRNA and protein expression is low for many genes158,159. Additionally, many genomic 
alterations are in non-coding regions and the number of druggable mutations in some 
cancers is low22. Because proteins are the primary drivers of cell phenotype and are the 
majority of drug targets in cancer, complementing the genomic data with global proteomic 
changes should help to clarify the effect of genomic alterations and narrow the focus to 
important drug targets. 
 CPTAC undertook the goal of characterizing the proteome in three cancer types 
(breast, colorectal, and ovarian) that already had genomic data in the TCGA22. 
Additionally, they generated phosphoproteomic data for breast and ovarian cancers. To 
study the global proteome and phosphoproteome, they used quantitative mass 
spectrometry. In comparison to the antibody approach of studying proteins, mass 
spectrometry can discover novel peptides, elucidate the entire proteome of a sample at 
once, and can circumvent the non-specificity issue of antibodies.  
 Global protein mass spectrometry is performed by first lysing tissue and digesting 
proteins into short peptides. Trypsin is the most commonly used digesting enzyme, but 
other proteases used include chymotrypsin, LysC, LysN, AspN, GluC, and ArgC160. 
Sequence coverage depends heavily on the selection of protease and including more 
than one can increase coverage160. After digestion, peptides are either labeled with a 
stable isotope such as isobaric tags for relative and absolute quantification (iTRAQ) or 
tandem mass tag (TMT) or left unlabeled. Label-free mass spectrometry is not easily 
quantified due to differences in peptide ionization efficiency and lack of internal standard, 
although counting the number of spectra correlates well with protein abundance161,162. 
Tags such as iTRAQ or TMT provide multiplexing and easier quantification but diminish 
signal and can therefore discover fewer differentially expressed proteins163,164.  
 Peptides are further divided into fractions, usually using liquid chromatography 
(LC), to allow for better peptide resolution. Ideally, the mass spectrometer should detect 
a single peptide at a time. Tandem mass spectrometry (MS/MS), which outputs m/z and 
intensity values, follows sample separation. Finally, peptides are identified from the mass 
spectrometry spectra by matching to reference protein databases using software.  

Phosphoproteomics experiments are performed in much the same way, but there 
is an extra step after sample fractionation to enrich for phosphorylated peptides. This is 
usually done using immobilized metal affinity chromatography (IMAC) which attracts 
negatively charged phosphate groups to positive metal ions or metal oxide affinity 
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chromatography which attracts oxygen to metal atoms165. Quantification and coverage 
for phosphorylated peptides is lower because of lower abundance and because usually 
only a single peptide can be used to quantify a site compared to several peptides referring 
to the same protein.  
 While mass spectrometry can identify proteins at a global level, the technique may 
have some bias in the quantification of proteins. Some proteins (especially smaller 
proteins) do not have enough tryptic peptides, might not have unique peptides for 
identification, or have abundance below the limit of detection. This is a particular 
challenge for kinases, because kinases are usually in low abundance166. Therefore, we 
first need to understand the limits of the technology before using it to study kinase 
signaling. 
        
Methods 
Definition of Human Kinases, Phosphatases, and Their Substrates 
 Kinases and phosphatases were defined as in Chapter 2. Protein lengths and 
sequences were downloaded from UniProt in June 2017. Experimentally validated 
phosphorylation sites and enzyme-substrate interactions were downloaded from 
dbPAF105 (http://dbpaf.biocuckoo.org/), PhosphoSitePlus (July 2017), and Signor 
(October 2017). dbPAF was used as a database of phosphorylation sites that did not 
include data from any CPTAC publications.   
 
Cancer Proteomics Datasets 
 Retrospective proteomic data for breast, colorectal, and ovarian cancers and 
phosphoproteomic data for breast and ovarian cancers generated by CPTAC were 
downloaded from the respective manuscripts. The breast cancer samples consisted of 
105 (plus 3 replicates and 3 normal) tissue samples from patients with invasive breast 
adenocarcinoma158. These proteomic samples were generated by LC-MS/MS performed 
on samples digested with LysC and trypsin. Values were log2 transformed iTRAQ ratios 
of the sample compared to a common reference pool. 
 The colorectal cancer dataset consisted of spectral counts of proteins in 95 (plus 
5 replicates) tumor samples from patients with colorectal carcinoma159. These samples 
were previously digested with trypsin and quantified by LC-MS/MS using the label-free 
spectral counting method. 
 The ovarian cancer dataset consisted of 174 (plus 32 replicates) samples from 
patients with ovarian serous adenocarcinoma167. These samples were digested with 
trypsin, processed using LC-MS/MS, and reported as log2 transformed iTRAQ ratios 
between the sample peptides and a common reference pool. Three unique peptides were 
required to identify a protein.  

Identified proteins used below are those reported in the respective manuscripts of 
the proteomic datasets. Clinical, genomic, and transcriptomic data corresponding to these 
samples were downloaded from cBioPortal (http://www.cbioportal.org/)168,169.  
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Phosphorylation Site Processing 
 All quantified phosphorylation site peptides were mapped to UniProt protein 
sequences (July 2017). The canonical UniProt ID and sequence were chosen. If the 
peptide matched only to protein isoforms, one isoform ID and sequence was chosen as 
a representative of the group. Log ratios for multiple peptides corresponding to the same 
phosphorylation site were combined by median. Sites were defined as thirteenmer 
peptides. 
 
Comparison with the Human Protein Atlas 
 Expression by immunohistochemistry in multiple cancer types was downloaded 
from the Human Protein Atlas (HPA; www.proteinatlas.org)170 in June 2017. Categorical 
expression was converted into a single score for each protein in breast, colorectal, and 
ovarian cancers. ‘Not detected’ was zero points, ‘low’ expression was 1 point, ‘medium’ 
expression was 2 points, and ‘high’ expression was 3 points. Points were averaged 
across samples, and proteins with a score less than or equal to 0.1 were considered 
undetected. This corresponded to at most one sample with ‘low’ expression.   
 
Gene Ontology Term Enrichment 
 Gene ontology (GO) biological process term enrichment was performed using the 
R package version of WebGestalt. The analysis was performed for undetected enzymes 
in all three cancers against a background reference of the human kinome or human 
phosphatome. FDR with a Benjamini Hochberg correction < 0.05 was considered 
significant. Enrichment was also performed using Fisher’s exact test and kinase and 
phosphatase superfamilies, excluding non-protein kinases.       
 
Quantified Data 
 All analyses requiring quantified data were filtered to samples passing quality 
control filters as described in the original publications. Proteins and sites with missing 
values in fewer than 50% of the samples were retained. 
 
Kinase Correlation with Clinical Features 
 Kinase activity was inferred for single samples using single sample GSEA 
(ssGSEA) analysis in the GSVA R package for enrichment of substrate sets171,172. 
Comparisons of kinase activity scores, phosphorylation site levels on kinases, and kinase 
protein abundance between groups of patients were performed using the Wilcoxon 
ranked sum test. FDR < 0.05 was considered significant. 
 
Prediction of Kinase Mutations 
 Proteogenomic variants identified in the breast cancer manuscript were submitted 
to ReKINect for analysis140. Mutations were filtered to those with predicted effect on 
kinases and with substrates identified in PhosphoSitePlus (version May 2018). For each 
mutated kinase, the mean phosphorylation level of its substrates in the mutated sample 
was compared to samples with no mutation. 
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Statistical Analysis 
 The R computing environment was used to perform all analyses. The package 
VennDiagram was used to create the Venn diagrams173. The package pheatmap was 
used to create the heatmaps174. Comparison of means between undetected and detected 
enzymes was performed using a t-test. A p value < 0.05 was considered significant. 
 
Results  
Kinases and Phosphatases Identified by Mass Spectrometry 
 Because of different experimental and data analysis methods, the total number of 
identified proteins differed between the proteomic datasets for breast, colorectal, and 
ovarian cancers (Table 8). The breast cancer dataset had the most identified proteins 
and consequently had the most identified kinases and phosphatases. Overall, enzymes 
were found across cancer samples rather than being cancer type-specific. Forty-five 
percent of kinases (Figure 7A) and 50% of phosphatases (Figure 7B) were identified in 
all three cancer types. Over 65% of the kinome and phosphatome were identified in at 
least two cancer types.   
 

Cancer Type Samples Proteins Kinases Phosphatases 
Breast 105 15,369 622 214 
Colorectal 90 7,211 347 135 
Ovarian 174 9,600 435 165 

Table 8. Number of identified proteins in three cancer datasets. There are 688 total known human 
kinases and 255 total phosphatases.  

                      

Figure 7. Intersection of detected A) kinases and B) phosphatases in three different cancer types. 
There were 56 kinases and 33 phosphatases undetected by mass spectrometry in any sample.   
 
 The other primary mechanism to measure protein expression is the use of 
antibodies. HPA evaluated the expression of proteins in a variety of cancer types using 
antibodies in immunohistochemistry. If proteins are undetected in a tissue by both mass 
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spectrometry and antibody-based methods, then the proteins are likely not expressed in 
that tissue.  
 I compared the presence of proteins in breast, colorectal, and ovarian cancers in 
both CPTAC and HPA data. Over 1/3 of the enzymes were identified in all three cancer 
types by both CPTAC and HPA. However, there was little overlap between those 
undetected by mass spectrometry and those undetected by antibodies (Figure 8). Many 
enzymes that were not identified by mass spectrometry in any cancer sample had high 
expression by antibodies. The discrepancy could not be explained by antibody reliability. 
Only 17 out of 49 antibodies for enzymes undetected by mass spectrometry were 
annotated as uncertain, while the rest were confirmed to be specific. 
  

Figure 8. Enzymes in CPTAC and HPA data. A) Identification of kinases and B) phosphatases by mass 
spectrometry (CPTAC) and immunohistochemistry (HPA). A large proportion of enzymes were identified in 
all three cancer types in both CPTAC and HPA. Some proteins undetected by mass spectrometry (indicated 
in red) showed expression with antibodies in cancer tissue.  
 
Protein Length 
 Protein length can also affect detection by mass spectrometry. Longer amino acid 
sequences might be digested into more peptides, which increases the chance of 
detection. There was a significant difference in length of undetected compared to 
detected proteins in breast cancer, but not colorectal or ovarian cancers (Figure 9).    
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Figure 9. Number of amino acids in proteins that were and were not detected by mass spectrometry. 
There was a significant difference in the lengths of the A) kinases and D) phosphatases detected by mass 
spectrometry in breast cancer samples compared to those that were not detected. There was no difference 
in detected B) kinase and E) phosphatase length in colorectal cancer, nor in the C) kinases and F) 
phosphatases of ovarian cancer.  
  
mRNA Expression 
 Proteins in low abundance may be difficult to identify in mass spectrometry. As a 
surrogate for protein expression, mRNA expression can be used to assess whether 
proteins have a low expression. In these three cancers, proteins that were not identified 
in individual cancers had a lower mRNA expression than those that were identified in that 
cancer (Figure 10).  
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Figure 10. Log2 mRNA expression of proteins that were and were not detected by mass 
spectrometry. Difference in expression of A,B,C) kinases and D,E,F) phosphatases detected by mass 
spectrometry in breast cancer (A,D), colorectal cancer (B,E), and ovarian cancer (C,F).  
 
Term Enrichment of Undetected Enzymes 
 There was no significant enrichment (FDR < 0.05) of GO biological process terms 
for undetected kinases or phosphatases compared to the full human kinome or 
phosphatome. There was also no significant enrichment of individual kinase families in 
the undetected kinases. However, the undetected phosphatases were enriched for the 
DSP, phosphatidic acid phosphatase, and the chloroperoxidase superfamilies. Fewer 
than half of the members of each of these superfamilies were identified by mass 
spectrometry in these CPTAC experiments. 
 
Phosphoproteomic Analysis of Breast and Ovarian Cancers 
 The CPTAC studies for both breast and ovarian cancers contained 
phosphoproteomic data complementary to the proteomic data. The breast cancer data 
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identified almost 23,000 phosphorylation sites that had non-missing values in at least 50% 
of the 77 samples passing quality-control filters. This corresponded to sites on almost 
6,000 unique proteins. The ovarian cancer data, however, only identified 5,000 
phosphorylation sites on about 2,500 proteins in at least 50% of 66 samples. Most of 
these phosphorylation sites (92% in breast, 96% in ovarian) had been identified in 
previous low or high-throughput experiments as reported in the dbPAF database. These 
data captured phosphorylation sites on kinases (357 kinases in breast, 177 in ovarian) 
and phosphatases (96 phosphatases in breast, 41 in ovarian). Almost all the kinases and 
phosphatases with quantified phosphorylation sites had corresponding proteomic data.  
 
Kinase Activity in Breast Cancer 
 Kinase activity can be inferred by determining the enrichment of its substrates in a 
sample. Out of the almost 23,000 quantified phosphorylation sites in breast cancer, only 
1,486 have a known kinase or phosphatase. Using ssGSEA of these sites, activity for 158 
kinases and phosphatases could be determined. The enzymes with the highest variability 
in activity (standard deviation ≥ 0.25) across samples were STK11, TTBK1, and CDK5. 
Kinase activity clustered with transcriptomic subtypes, suggesting similar kinase signaling 
in tumors with similar gene expression (Figure 11). There was a subset of primarily 
luminal A tumors that had higher relative activity of most kinases compared to the other 
samples. There was another subset of mixed luminal A and luminal B tumors that had 
very low relative activity of MAP2K and MAP3K kinases compared to other samples. 
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Figure 11. Heatmap of inferred kinase and phosphatase activity scores for breast cancer samples. 
Kinase activity was determined using ssGSEA of enzyme site-level substrates. Red indicates increased 
kinase activity relative to other samples, while blue indicates decreased kinase activity. The sample PAM50 
subtype is indicated by black for basal, green for Her2, red for luminal A, and blue for luminal B. Rows are 
ordered by k means cluster (4 clusters).    
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 To determine the effect of kinase activity on patients, I wanted to compare activity 
to clinical features, but unfortunately clinical variables were limited in this cohort. 
Therefore, I chose two interesting data features: early vs late stage tumors and tumors 
with and without GATA3 mutation. The transcription factor GATA3 is mutated in about 
10% of breast tumors, but the phenotypic effects are not well understood175. None of the 
kinases with highly variable activity were significantly different in any of these groups. 
However, the activity of MERTK was significantly lower in samples with GATA3 mutation 
compared to samples without GATA3 mutation (Figure 12A, FDR = 0.02). 
 No kinase activity scores were significantly different between early (stages 1 and 
2) tumors and late (stages 3 and 4) tumors. However, the protein level of the kinase NT5C 
was significantly increased in stage 1&2 compared to 3&4 (Figure 12B, FDR = 0.01). 
NT5C is a nucleoside kinase and therefore does not have an activity score. No 
phosphorylation levels on any kinase were significantly different among these groups.  
 

 
Figure 12. Multi-omics profile of MERTK and NT5C in breast cancer. A) RNA, protein, and ssGSEA 
activity scores for MERTK. B) RNA, protein, and phosphorylation levels at S182 and T99 for NT5C. All 
values were standardized using z score. 
 
Effect of Mutations on Kinase Signaling 
 Finally, I wanted to determine the effect of protein mutations on kinase activity in 
breast cancer. To do this, I predicted the effect of the 3,658 identified protein variants 
using ReKINect. Of the 641 mutations that had a possible effect on kinase signaling, most 
were predicted to have an unknown function (Table 9). Phosphoproteomic data of kinase 
substrates could be used to evaluate the effect of these mutations. Unfortunately, 
mutations are unique to individual patients and proteins, which limits the statistical 
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analysis. However, some mutations show interesting patterns worth exploring in future 
work. For example, sample A2-A0YD had a D110N mutation in the kinase domain of 
CDK6. ReKINect predicted this mutation to be an “uninterpreted mutation on kinase 
domain.” The mean phosphorylation levels of CDK6 substrates for that sample were 1.8 
standard deviations below the mean for all samples. Therefore, this mutation might inhibit 
the function of CDK6. Similarly, patient A0-A126 had a T337K mutation on MASTL. 
Phosphorylation of its substrate was 1.5 standard deviations below the mean. 
  

Mutation Type Frequency 
Destruction of phosphorylation site 64 
Kinase downstream rewiring on kinase domain 1 
Kinase downstream rewiring, Mutation around phosphorylation site on kinase domain 1 
Kinase inactivation by phosphorylation destruction, Destruction of phosphorylation 
site on kinase domain 

1 

Mutation around phosphorylation site 510 
Phosphomimicking mutation 9 
SH2 downstream rewiring on kinase protein on SH2 domain 1 
SH2 downstream rewiring on SH2 domain 1 
Uninterpreted mutation on kinase 41 
Uninterpreted mutation on SH2 12 

Table 9. Predicted proteogenomic mutation effect from ReKINect. 
 
Discussion 
 The proteomic and phosphoproteomic data generated by CPTAC provide unique 
opportunities to explore signaling dysregulation in cancer. Although mass spectrometry 
experimental protocol and analysis methods have a significant effect on the number of 
protein identifications, in general it can identify all aspects of kinase signaling with limited 
biases. Notably a minimal number of kinases and phosphatases were not detected in any 
of the three experiments, but there was no single reason for exclusion. Some of these 
enzymes are likely to be tissue specific (e.g., GRK7 is retina-specific) or exhibit low 
expression in these cancer tissues. Because there was no bias in identifiable kinase 
family, we can be confident proteomic data can be used to study global kinase signaling 
in cancer tissue. 
 Phosphoproteomic and proteomic data can identify individual kinases that are 
interesting in breast cancer. While these are primarily association studies and limited by 
sample size, they provide a starting point for future studies. In particular, STK11, CDK5, 
and TTBK1 appear to have differential activity across samples and may become targets 
of individualized treatment. STK11 encodes liver kinase B1 (LKB1), which is a tumor 
suppressor involved in major cell pathways. In breast cancer, increased LKB1 activity can 
inhibit TGF-b1 transcription, leading to inhibition of epithelial-to-mesenchymal transition 
(EMT)176. Furthermore, lower LKB1 mRNA expression correlated with poor survival in the 
TCGA cohort177, although another study found significant correlation with survival only in 
HER2-positive patients178. Few reports explore CDK5 or TTBK1 in breast cancer, but one 
study suggested lower CDK5 expression promotes longer metastasis-free survival179 and 
CDK5 is pro-tumorigenic in several cancer types180.  
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 In addition to the kinases with variable activity across samples, predicted MERTK 
activity was significantly reduced in samples with mutations in GATA3. Although no 
associations between these two proteins are noted in the literature, it is possible that 
GATA3 affects MERTK expression. MERTK is predicted to be a target of GATA3 based 
on its binding site motif181 and MERTK mRNA was significantly reduced in GATA3 knock-
out keratinocytes182. 
 Unfortunately, clinical outcomes are limited in the breast cancer cohort, but an 
interesting finding was the correlation of NT5C abundance with breast cancer stage. Little 
is known about NT5C in breast cancer, but in leukemia patients treated with cytarabine, 
higher mRNA expression of NT5C correlated with worse outcomes. This finding is counter 
to its high expression in early stage breast cancer here183.  
 Finally, the use of phosphoproteomic data to validate kinase signaling mutations 
holds promise. Future work to quantify both variant and wild-type peptides will help 
determine the effect of mutations near a phosphorylation site on the ability of that site to 
be phosphorylated. Furthermore, extending mutation analyses to include SNVs identified 
at the gene level might increase sample size and allow for statistical analysis of the effect 
of individual kinase mutations on the activity of that kinase. 
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CHAPTER 4 
 

CHARACTERIZATION OF MOLECULAR SUBTYPE-SPECIFIC DRIVER 
SUBNETWORKS IN BREAST CANCER 

 
Introduction 
 Breast cancer is a heterogeneous disease with different treatment modalities and 
outcomes. To differentiate between patients, breast cancer is split into various subtypes 
by histological type, stage, presence of hormone receptors, or mRNA expression. Using 
mRNA data, breast tumors can be classified into four different molecular subtypes based 
on the expression of 50 genes184,185. The four PAM50 subtypes, basal, Her2, luminal A, 
and luminal B, have different characteristics, survival rates, and treatment options186,187. 
While the expression patterns of tumors within a subtype are similar, the underlying 
signaling mechanisms driving these subtypes are not well understood. 
 Cancer is hypothesized to be driven by genomic mutations that lead to 
downstream signaling dysregulation and phenotype changes. However, most mutations 
are present in small percentages of patients. As seen in Chapter 3, mutations are 
frequently specific for individual patients. However, individual mutations in patients might 
all converge on the same pathway. For example, one patient might have an inactivating 
mutation on PTEN, which results in active AKT signaling. A second patient might have an 
activating mutation on PI3K, which also results in active AKT signaling. In this way, 
different individual mutations could drive the same altered expression patterns within a 
subtype.  
 One way to extract signaling networks from individual mutations is to use the 
random walk with restart (RWR). In this method, a random walk on a PPI network starts 
from mutated nodes and randomly walks to neighboring nodes at each time step. The 
restart value allows the random walk to teleport back to the starting node to restrict the 
final smoothed network to the nearest neighborhood of the starting nodes. The final 
probabilities of landing on individual nodes provides a smoothed network from the starting 
mutated nodes. Because the probability of landing on a single node immediately 
downstream of two different mutated genes is high, the most significant genes will be 
those downstream of multiple different mutations. This method has been used to identify 
subtypes of various cancers, extract driver subnetworks in colorectal cancer, and identify 
altered signaling pathways after drug treatment, among others188–190.  

The limitations to identifying driver subnetworks using RWR are validation and 
identifying the network direction. Mutations can be activating or inhibitory on a gene and 
the actual function of most individual mutations in cancer is not known. Furthermore, 
validating the network as a true driver of the subtype usually requires extensive molecular 
biology experiments. Phosphoproteomic data, however, provides a unique opportunity to 
both validate the extracted subnetworks and determine whether the network is under- or 
overactive in that subtype. 
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Methods 
Protein-Protein Interaction Network 
 The PPI network was downloaded from High-quality INTeractomes191 (HINT, 
http://hint.yulab.org/) in May 2017. The largest connected component was extracted using 
igraph192 in R and consisted of 11,711 nodes and 110,838 edges. The nodes were 
normalized by degree. 
 
Starting Probabilities 
 Non-silent mutation data were downloaded for 806 breast cancer samples from 
cBioPortal and processed as in Chapter 3. Mutation data for individual samples were 
normalized by total number of mutations within a sample, summed across all samples 
within a PAM50 subtype, and averaged. Nodes with higher probability indicated more 
samples with that mutation. Genes were randomly permutated 1000 times for statistical 
analysis. 
 
Driver Subnetwork Extraction 
 Starting probabilities for all mutated nodes in a subtype and the permuted 
probabilities were submitted to the NetWalker190 algorithm implemented in R. The restart 
probability was set to 0.5. Local p values were calculated as the rank of the gene in the 
real run across all permuted runs. Global p values were calculated as the rank of the gene 
across all scores. Nodes were considered significant with both a global and local p < 0.05. 
Networks were generated by filtering for edges in the HINT network between significant 
nodes. Additional subnetworks were extracted using edges between significant nodes 
that were unique to a subtype. 
 
Driver Subnetwork Pathway Enrichment 
 Overrepresentation enrichment analysis of significant nodes in each network was 
performed using WebGestaltR and WikiPathways193. The minimum overlap was set to be 
10 and the maximum was 500. The background was all possible nodes in the HINT 
network and pathways were considered significant with FDR < 0.05. 
 
Differential Phosphorylation Site Abundance 
 Phosphorylation sites were processed as in Chapter 3. Log2 ratios were converted 
to z score. The z scores for each subtype were compared to the samples of all other 
subtypes using the Wilcoxon signed rank test. P values were adjusted using the 
Benjamini-Hochberg method and significance was assigned as FDR < 0.05.  
 
Evaluation of the DNA Damage Response in the Basal Subnetwork 
 The number of nodes with significant differential phosphorylation were counted for 
each significant pathway. The pathways with the highest number of these nodes were 
explored. The DNA damage response pathway (WP707) in the basal subnetwork had the 
highest number of significant differentially phosphorylated nodes. Pathway direction was 
inferred from the regulatory effect of phosphorylation on those nodes. 
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Differential Substrate Phosphorylation 
 The kinases, defined as in Chapter 2, were extracted from each subnetwork. For 
every kinase in an individual subnetwork with at least 1 substrate in the 
phosphoproteomic data, the z score phosphorylation levels of the substrates were 
compared between samples in a single subtype and all other samples using a Wilcoxon 
rank sum test. P values were adjusted using the Benjamini-Hochberg method and were 
considered significant at FDR < 0.05. 
 
Software Packages 

The R computing environment was used to perform all analyses. The Venn 
diagram was created using Venny v2.1. Cytoscape194 was used for network visualization 
and the R package pheatmap was used to create the heatmap.  
 
Results 
Generation of Driver Subnetworks  
 Subtype-specific driver subnetworks were created using network propagation from 
mutated genes in that subtype. There were 145 basal samples, 66 Her2, 416 luminal A, 
and 179 luminal B. The mutations in each sample were normalized by number of 
mutations in the sample and were combined within a subtype. For all subtypes, the 
network propagation started from about 4000 mutated nodes. Approximately 600 nodes 
in each subtype had statistically significant steady state probability after propagation. 
Over 50% of the nodes for each subtype were unique to that subtype (Figure 13). Only 
29 genes were significant in all four networks and only 6.5% of the genes were present 
in at least 3 of the 4 networks, indicating subtypes had uniquely altered pathways.  
 

 
Figure 13. Venn diagram of significant nodes in subtype-specific driver subnetworks. 

 
I filtered for edges between all significant nodes in a subtype and extracted the 

largest connected component for each network. The basal subnetwork had 287 nodes 
and 468 edges, the Her2 subnetwork had 239 nodes and 407 edges, luminal A had 321 

Basal

Her2 Luminal A

Luminal B
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nodes and 509 edges, and luminal B had 299 nodes and 458 edges. All networks can be 
found in Appendix C. 

Using WikiPathways, I performed pathway enrichment for each of the driver 
subnetworks. The basal subnetwork was enriched for alpha 6 beta 4 signaling, DNA 
damage response, FasL pathway and stress induction of HSP, and striated muscle 
contraction (Table D1, FDR < 0.05). The Her2 subnetwork was enriched for signaling of 
hepatocyte growth factor receptor, rac1/pak1/p38/MMP-2 pathway, PDGF pathway, and 
focal adhesion (Table D2, FDR < 0.05). Both the luminal A and luminal B subnetworks 
had a large number of enriched pathways. In addition to several of the pathways enriched 
in basal and Her2, luminal A also had enrichment of ErbB signaling, estrogen signaling, 
MAPK, and PI3K-AKT-mTOR signaling pathways (Table D3, FDR < 0.05). The luminal B 
subnetwork uniquely had enrichment for regulation of actin cytoskeleton, miRNA targets 
in ECM and membrane receptors, and TGF-beta signaling (Table D4, FDR < 0.05).  
  
Differential Abundance of Phosphorylation Sites Across Subtypes 
 To use phosphoproteomic data to validate driver subnetworks, phosphorylation 
patterns should differ between subtypes. However, few sites were significantly changed 
in one subtype compared to the others. There were no significant sites in Her2 samples 
compared to the others (Figure 14B). In basal, 1338 sites were significant compared to 
the others, 820 were in luminal A, and 20 were in luminal B (Figure 14A,C,D). Only 71 of 
the significant sites were on proteins significant in the basal subnetwork, 41 in the luminal 
A, and 2 in the luminal B. Despite this minimal overlap, phosphoproteomic data might still 
suggest a direction for the pathways. 
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Figure 14. Relative differential phosphorylation abundance in breast cancer subtypes. Normalized 
phosphorylation abundance at each site on nodes in the network was compared between each subtype 
and the remaining samples. Red indicates significantly increased phosphorylation sites and blue indicates 
significantly decreased phosphorylation sites in A) basal, C) luminal A, and D) luminal B subtypes relative 
to all other samples. There was no significant differential phosphorylation in B) Her2 samples. 
  
DNA Damage Response in Basal 
 One interesting enriched pathway in the basal subtype was the DNA damage 
response pathway. Eleven of the nodes in the basal subnetwork were present in the DNA 
damage response pathway. Four of these nodes had phosphorylation sites that were 
significantly increased in the basal subtype compared to all other samples (Figure 3). 
Phosphorylation on TP53 at S315 increases in response to DNA damage and promotes 
TP53 activity in the response to DNA damage195. Phosphorylation of both kinases 
PRKDC and CHEK2 increase their activity and also promote their response to DNA 
damage196,197. Therefore, these phosphorylation sites indicate that the DNA damage 
response is highly active in basal tumors.  
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Subnetworks Unique for Each Subtype 
 To determine what makes each subtype unique, I further filtered the driver 
subnetworks to include only edges between nodes that were unique to an individual 
subtype and overlapped significant changes in phosphorylation. I kept only components 
consisting of more than 3 nodes. 
 The basal subnetwork consisted of 6 components with 63 nodes and 58 edges 
(Figure 16). Most components had at least one node with significantly altered 
phosphorylation in basal samples compared to all other samples. The largest component 
surrounded the protein estrogen receptor beta (ERb) encoded by the ESR2 gene. 
 

 
Figure 16. Nodes unique to the basal subnetwork. Nodes with significantly increased phosphorylation 
sites are colored red, while decreased phosphorylation is indicated by blue. 
  
 The luminal A subtype was the only other network to contain nodes with altered 
phosphorylation levels. It contained 6 components with 43 nodes and 39 edges (Figure 
17). Unlike the basal subnetwork, most of the phosphorylation sites were downregulated. 
Furthermore, it contained a network for ESR1, which encodes ERa, instead of ESR2. 
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Figure 17. Nodes unique to the luminal A subnetwork. Nodes with significantly increased 
phosphorylation sites are colored red, while decreased phosphorylation is indicated by blue. 
 
Altered Kinase Substrates 
 The networks for both basal and luminal A contained a few kinases. To assess the 
differences in kinase signaling in these networks, I compared the phosphorylation levels 
of substrates of kinases in each subtype to the other subtypes. Approximately 50 kinases 
were present in each subtype driver subnetwork and slightly over half had substrates in 
the phosphoproteomic data. For each subtype, a fraction of the kinases had altered 
phosphorylation of its substrates in that subtype compared to the others (Figure 18). 
 Interestingly, some of the kinases identified in the unique basal and luminal A 
subnetworks had substrate data. A single kinase, CSNK1E, was unique to the basal 
subtype. Phosphorylation of CSNK1E substrates was higher in the basal samples 
compared to others. The unique luminal A subnetworks had 8 kinases, 5 of which had 
phosphorylation data. The substrates of ARAF were significantly increased, while the 
substrates of MAPK10 and BCR were significantly decreased. 
 The best validation of the identified subnetworks would be if the kinases in the 
subnetworks were dysregulated only in those subtypes. This was not the case, as the 
substrates of about 10 kinases not identified in each driver subnetwork were also 
significantly dysregulated in that subtype.   
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Figure 18. Relative phosphorylation of substrates of kinases. Red indicates significantly increased 
phosphorylation, blue indicates significantly decreased phosphorylation, and white indicates no change in 
phosphorylation. Color is based on -log10(FDR). Gray indicates kinases that were not significantly altered 
in the driver subnetworks. Grey indicates the kinase is not present in that driver subnetwork. 
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Discussion 
 Overall, genomic mutations converged on distinct subnetworks in breast cancer 
molecular subtypes. While phosphoproteomic data had limited utility in validation due to 
minimal phosphorylation differences and low signal, the data provided interesting insights 
into the function of these networks. 
 The driver subnetworks extracted for each subtype covered known dysregulated 
pathways. For example, the estrogen receptor signaling pathway was enriched in the 
luminal A subnetwork. Luminal A samples are typically ERa-positive and respond well to 
endocrine therapy198. Furthermore, PI3K is most frequently mutated in ER-positive 
luminal tumors and this pathway was also enriched in the luminal A subnetwork199. 
Another signaling pathway, the signaling of the hepatocyte growth factor receptor (also 
known as MET), was enriched in both the luminal A and Her2 subnetworks. Interestingly, 
MET downregulation increases ERBB2 (also known as Her2) activation200, which is the 
defining characteristic of the Her2 subtype. Furthermore, low expression of MET is seen 
in both the luminal A and Her2 subtypes201. Finally, although the ErbB signaling pathway 
was not enriched in the Her2 subnetwork, ERBB2 was one of the most connected nodes. 
 The basal subtype is compelling because it has the worst prognosis and is 
enriched with tumors lacking expression of hormone receptors or ERBB2, which results 
in the fewest treatment options202. The basal driver subnetwork was enriched for genes 
related to the DNA damage response and this subtype is known to have defects in DNA 
repair203. The phosphoproteomic data indicated high phosphorylation levels of several 
proteins in this pathway and phosphorylation of substrates of the known DNA repair 
kinases ATM and PRKDC was upregulated. This might indicate a compensatory 
mechanism of the kinases in this pathway to regulate DNA damage.  

The other pathway enriched in the basal subnetwork was the alpha 6 beta 4 
signaling pathway. The alpha 6 beta 4 integrin is highly upregulated in basal breast 
cancer204, so mutations in this pathway might be driving integrin expression. 

Finally, an interesting area of future exploration for the basal subtype is the ESR2 
pathway. ESR2 was uniquely present in the basal driver subnetwork and any of its 
protein-interaction partners were highly phosphorylated. ERa has known functions in 
breast cancer and it is rarely expressed in basal breast cancer, unlike in the other 
subtypes. Much less is known about the function of ERb in breast cancer, although reports 
suggest it represses EMT. Since some basal breast cancers have expression of ERb, 
treatment with an ERb agonist might have a positive effect.   
 The main limitation of this study was validation and phosphoproteomic 
significance, likely due to sample size. Only 12 Her2 samples out of the total 77 had 
phosphoproteomic data, which likely limited the significance. Increasing the sample size, 
better phosphoproteomic resolution, and comparison to normal samples might produce a 
better signal-to-noise ratio. Furthermore, the heterogeneity within a subtype might 
contribute to the overall noise and reduce the signal that can be extracted. Exploring 
sample-specific driver subnetworks might ameliorate this problem. Finally, it is important 
to note that this analysis was performed comparing one subtype relative to others. While 
a particular pathway might be downregulated in one subtype compared to the others, it 
may still be overactive compared to normal and could then still be a target for therapy. 
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CHAPTER 5 
 

PHOSPHOPROTEOMIC DATA REVEAL A DUAL ROLE FOR RB1 IN COLON 
CANCER 

 
Introduction 
 Colorectal cancer is one of the leading causes of cancer and cancer-related deaths 
in the United States205. It consists primarily of adenocarcinomas arising from colon and 
rectal epithelial cells. Usual treatments include surgery for early stage cancer. For more 
advanced tumors, chemotherapy with or without targeted therapy is often used in 
combination with surgery. Chemotherapy consists of some combination of leucovorin, 5-
fluorouracil, oxaliplatin, irinotecan, and capecitabine, which all disrupt proper cell division. 
Additionally, targeted anti-VEGF therapies, such as bevacizumab or aflibercept, or anti-
EGFR therapies, such as cetuximab or panitumumab, are used206. 
 While the survival rate for colon cancer is high for early stages (> 90% five-year 
survival), patients with later stages still have poor survival and few targeted therapy 
options205. Global genomic studies on colorectal cancer tried to find new targets by 
providing frequently mutated genes, identification of fusion genes, and alterations in 
transcription factor activity207. However, these targets have yet to become clinically 
relevant, partly because the effect of many mutations on protein functions are not yet 
known. 
 Proteins are the primary targets in cancer and therefore studying global changes 
at the protein level should help identify new therapeutic targets. Previously, CPTAC 
generated proteomic and phosphoproteomic datasets for three cancer types. They then 
extended the colorectal cancer study by generating data for a new cohort of colon cancer 
patients with the addition of phosphoproteomic data and matched normal samples for 
both the proteomic and phosphoproteomic datasets. This allows for removal of baseline 
protein expression and shows alterations specific to tumor samples.    
 This new phosphoproteomic data allows colon cancer kinase signaling to be 
probed. As in most cancers, kinase signaling in colon cancer is dysregulated. Ras and 
BRAF are both kinases that are highly mutated in colon cancer208. Together with 
upregulation of EGFR, these mutations result in activation of the MAPK pathway209. There 
are also mutations in the PI3K pathway and SRC is known to be overexpressed210,211.  
 Furthermore, we used the phosphoproteomic data to explore the effect of 
phosphorylation on substrates and clarify a contradiction in the colon cancer literature. 
The tumor suppressor gene retinoblastoma 1 (RB1) produces a protein that is a master 
cell cycle regulator. In normal cells, RB1 is monophosphorylated and bound to the 
transcription factor E2F212. Upon phosphorylation by members of the CDK family of 
kinases, RB1 releases E2F to drive transcription of cell-cycle related genes.  

In many cancers, RB1 is mutated or deleted, supporting its role in cancer 
proliferation213–215. However, RB1 is rarely mutated in colon cancer and it has been 
reported to be amplified in about 30% of colon cancer tumors with minimal deletion in 
other samples216,217. Additionally, RB1 mRNA expression and protein was increased in 
more than 80% of operable colorectal cancer cases218. Meanwhile in normal tissue, RB1 
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expression is confined to a small set of epithelial cells in the transition zone219. 
Furthermore, using western blot, several groups also showed that RB1 is phosphorylated 
in tumor tissue compared to normal220,221. We hypothesized that RB1 might be inactivated 
by phosphorylation rather than mutation or deletion in colorectal cancer. We used 
phosphoproteomic data to explore this idea. 
 
Methods 
Data 
 Data were obtained from the CPTAC consortium. The data consisted of 197 
individual samples, which included 96 matched tumor-normal colon adenocarcinoma 
pairs, with copy number, TMT global proteomic, and TMT phosphoproteomic data. Six 
hundred eighty-eight human kinases and 255 phosphatases were defined as in Chapter 
2.   
 
Processing Phosphoproteomic Data 
 Phosphopeptide identification was performed using MS-GF+222,223 to match 
against the RefSeq database (version April 2017). Site localization was performed using 
the Ascore algorithm224. Identified peptides were mapped to UniProt sequences (version 
July 2017) and named according to the canonical UniProt sequence. If the peptide 
matched multiple canonical UniProt sequences, the best ID was chosen based on 
presence of the protein in the proteomic data. If no canonical IDs had proteomic data, or 
if more than one protein was present in the quantified proteomics data, an ID was chosen 
at random. For peptides not matching a canonical protein sequence, a matching protein 
isoform ID was chosen. Peptides were filtered to those with an Ascore of ≥ 19 in at least 
one scan and a Q value < 0.01. Peptide abundances were log2 transformed and zero-
centered for each gene. Data were re-centered across all samples to achieve a common 
median of 0. Phosphorylation site levels were determined by the median level for all 
peptides matching that site. Quantified sites and proteins were defined as those 
containing non-missing values in at least 50% of the matched samples. Data quality was 
assessed using principal component analysis (PCA) with the prcomp function in R.  
 
Tumor vs Normal Analysis 
 Log fold change was calculated as the log2 peptide ratios for normal samples 
subtracted from the log2 peptide ratios for tumor samples. Differential expression was 
performed using the paired Wilcoxon rank sum test. P values were adjusted using the 
Benjamini-Hochberg correction and an FDR < 0.05 was deemed significant. 
Phosphorylation site tumor markers were defined as sites upregulated more than 2x fold 
with an FDR < 0.01. 
 
Term and Pathway Enrichment 
 Overrepresentation analysis to describe proteins with upregulated and 
downregulated sites was performed using WebGestaltR with default parameters 
(minimum overlap 10, maximum 500). The background was the full list of proteins with 
phosphorylation data passing the same filters. The database for enrichment was Gene 
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Ontology Biological Process (GO BP). Results were considered significant with FDR < 
0.05. 
 
Biomarker Comparison 
 Proteins containing phosphorylation sites upregulated > 2x fold were compared 
with protein biomarkers (upregulated > 2x fold and FDR < 0.01 in tumor compared to 
normal) and genes identified as having mutations and activity relevant to cancer in the 
Cancer Gene Census (CGC)225. Proteome data were quantified using unshared peptides 
and had non-missing values in at least 50% of tumor-normal samples. 
 
Kinase Activity Prediction Using GSEA 
 Unique phosphorylation sites were identified as a thirteenmer sequence. 
Phosphorylation sites of kinases were determined by a union of kinase-substrate 
interactions in PhosphoSitePlus (version May 2018), HPRD (version 9.0), and Swiss-Prot 
(version May 2018). The median log2 fold change of sites with at least 50% non-missing 
values was used to rank the phosphorylation sites and was submitted to the pre-ranked 
GSEA function in WebGestaltR. A minimum set size of 3 substrates was required and 
1000 permutations was used to determine significance. Kinases were considered over-
active with NES > 0 and FDR < 0.05. Kinases were considered under-active with an NES 
< 0 and FDR < 0.05. 

 
Kinase Activity Prediction Using Regulatory Sites 
 Regulatory sites with known effect on kinase activity were downloaded from 
Signor. Differentially upregulated sites in tumor vs normal (FDR < 0.05) that were known 
to activate kinase activity were used to predict increased activity and differentially 
downregulated activating sites were used to predict decreased activity.  
 
RB1 Characteristics 
 RB1 CNA and protein data were downloaded from CPTAC. The lollipop plot 
diagram was created using the R package trackViewer226.   
 
ssGSEA Activity Scores 
 Protein activity in individual samples was determined using ssGSEA in the GSVA 
package in R. Substrate sets for kinases from the GSEA method were used to determine 
enrichment of phosphorylation sites of kinases. Substrate sets for E2F were downloaded 
from ENCODE227 and Hallmark sets were downloaded from MSigDB228. For enrichment 
of E2F targets and the Hallmark pathways, log2 fold change of proteins was used as the 
ranking method. Ten substrates were required for each analysis.  
 
Correlation of RB1 Features to Cell Line Drug Sensitivity 
 mRNA expression and cell line drug response were downloaded from the 
Genomics of Drug Sensitivity in Cancer (GDSC) project229. Response to CDK inhibitors 
was compared between cell lines with the lowest mRNA expression of RB1 (expression 
< 3) and the highest mRNA expression (expression > 6) using the student’s t-test. 
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Reverse phase protein array (RPPA) phosphorylation data for a subset of these cell lines 
were downloaded from the MD Anderson Cell Lines Project (MCLP)230. RB1 
phosphorylation at S807/S811 was correlated with CDK inhibitor response using Pearson 
correlation.   
 
Results 
Phosphorylation Changes in Colon Cancer 
 The colon cancer dataset consisted of 197 samples (96 tumor samples with 
matched-normal tissue) with phosphoproteomic data. There were 71,504 unique 
identified peptides in the mass spectrometry data (Table 10). After filtering for high quality 
peptides, 31,339 unique phosphorylation sites could be identified. Of these sites, 7,298 
sites on over 2,500 proteins were present in at least 50% of the matched tumor-normal 
pairs. Most of these sites (98%) have been identified in other experiments and reported 
in PhosphoSitePlus. 
  

Feature Number 
Identified peptides 71,504 
Filtered peptides 42,790 
Phosphorylation sites 31,339 
50% paired non-missing 7,295 
Phosphorylated serine 6,444 
Phosphorylated threonine 786 
Phosphorylated tyrosine 65 

Table 10. Colon phosphoproteomic data by the numbers. 
 
 The phosphorylation patterns differed between tumor and normal samples. PCA 
analysis showed good discrimination between the two tissue types in the first component 
(Figure 19A). Additionally, median phosphorylation levels across all of the sites were 
lower in tumor samples compared to normal (Figure 19B). 
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Figure 19. Difference between phosphorylation in colon tumor and normal samples. A) PCA for tumor 
(red) and normal (black) samples. B) Median log2 phosphorylation site levels in normal and tumor samples.  
 

To assess changes in phosphorylation levels in individual tumors compared to 
normal tissue, the log2 peptide ratio for normal samples was subtracted from the log2 
peptide ratio for cancer samples. Out of the 7,298 quantified sites, 5,895 of these sites 
also had TMT mass spectrometry protein data. The tumor log fold change in protein 
abundance and the tumor log fold change in phosphorylation levels were highly correlated 
(Figure 20A, Pearson correlation = 0.81, p value < 2.2x10-16). Using the signed rank 
Wilcoxon test, differential abundance of phosphorylation sites was determined. Out of the 
7,298 quantified sites, 2,363 sites were significantly upregulated in tumor compared to 
normal, while 3,338 were downregulated (Figure 20B). Proteins with phosphorylation site 
abundance higher in normal were enriched for stromal-related proteins. The top 10 
enriched terms for downregulated sites in tumor were all related to cytoskeleton 
organization and cell locomotion (Appendix E, Table E1, FDR < 3x10-10 for all 10 terms). 
This indicated that normal samples likely contained a higher percentage of stromal and 
muscle cells, while tumor sample composition was primarily epithelial cells. Top 
enrichment terms for proteins with upregulated sites included RNA processing and 
splicing and chromatin organization (Appendix E, Table E2, FDR < 5x10-12). 

There was no enrichment for the 42 proteins with hypophosphorylated sites 
(indicated in blue in Figure 20A), but the 62 proteins with hyperphosphorylated sites 
(indicated in red in Figure 20A) were related to muscle structure and contraction and 
cytoskeleton. 
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Figure 20. Characterization of phosphorylation sites in colon cancer. A) Median log2 tumor-normal 
fold change of proteins and sites on those proteins. Phosphorylation levels are highly correlated with protein 
abundance (Pearson correlation = 0.81, p < 2.2x10-16). The dashed red line shows the linear regression 
between abundances. Red colored points are sites 2x fold above the 45-degree line, while blue colored 
points are sites 2x fold below the 45-degree line. B) Differential expression of phosphorylation sites in tumor 
vs normal. Sites are colored based on significance (FDR < 0.01, blue = higher in normal, pink = higher in 
tumor. Darker color indicates absolute fold change ³ 2).    
 
Comparison with Proteomic and Genomic Data 
 There were 63 sites on 50 proteins with > 2x fold change and FDR < 0.01 in tumor 
samples compared to normal (Appendix F). Six genes identified in the CGC as important 
in cancer based on mutations had highly upregulated phosphorylation sites (DEK, NPM1, 
PML, RB1, TFRC, CDK12). Four proteins (DDX21, RSL1D1, S100A11, TOP2A) were 
highly abundant in tumor compared to normal and also had high phosphorylation site 
levels. No protein existed in all three, suggesting that each type of data added new 
information about proteins involved in colon cancer (Figure 21). Using GO enrichment 
analysis, the proteins with highly upregulated sites were primarily related to cell cycle and 
general DNA/RNA processes (Appendix E, Table E3).  

While the functions of most sites of these sites are unknown, a few highly 
upregulated sites have been studied in relation to cancer. Phosphorylation of the protein 
product of gene NOLC1 at site S563 inhibits the kinase CK2, which might prevent its pro-
apoptotic function231. Topoisomerase II alpha (TOP2A) is upregulated in proliferating cells 
and controls the structure of DNA during the cell cycle232. Phosphorylation of TOP2A at 
S1106 enhances its activity233. Furthermore, phosphorylation of microtubule-associated 
protein 4 (MAP4) at S787 promotes its dissociation from tubulin, which results in 
depolymerization of microtubules234.  Phosphorylation of this site further associates with 
resistance to the chemotherapy taxol235.  
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Figure 21. Overlap of cancer-associated genes and colon cancer-associated proteins and 
phosphoproteins. Number of proteins in the CGC, increased 2x fold in the protein data, or with sites 
increased 2x fold in the phosphoproteomic data. 
 
Kinase Activity in Colon Cancer 
 Kinase activity was inferred using enrichment of phosphorylation sites of specific 
kinases. Out of 78 kinase sets with at least 3 substrates in the colon data, 7 had increased 
activity and 7 had relatively decreased activity in tumor compared to normal (Figure 22A). 
The kinases with increased activity were primarily cell cycle related proteins (CDK1, 
CDK2, CDK3, CDK4, CDK6, CDK7, and CDC7). The kinases with relatively decreased 
activity in tumor were GSK3A and GSK3B, CDK5, MAPK12, DYRK1A, CK1, and PDPK1. 

Another way to infer kinase activity is to examine relative phosphorylation of 
regulatory sites on kinases and phosphatases. In the data, there were quantified sites on 
185 kinases (160 of which were protein kinases) and 35 phosphatases. Sixty-one of the 
sites on kinases and 8 sites on phosphatases had a known effect on the enzyme. Of 
these sites, activating sites on 5 kinases were upregulated and activating sites on 31 
kinases were downregulated in tumor (Figure 22B). Only 4 kinases (CDK7, GSK3A, 
GSK3B, and DYRK1A) were reported to be significantly over or under-active in colon 
cancer by both methods, while many of the remaining kinases were missing either 
phosphorylation or substrate information. Inhibitors for most of these kinases have 
undergone at least a phase I clinical trial, but only a few kinases are targeted by FDA-
approved inhibitors (Figure 22B).  
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Figure 22. Kinase activity in colon tumor compared to normal. A) Kinase activity inferred using the pre-
ranked GSEA method. The normalized substrate enrichment score is used as an activity score. Kinases 
with significantly different activity in tumor compared to normal are colored and named. Blue indicates 
relatively decreased activity, while red indicates increased activity. B) Summary of kinase activity using two 
different methods. Inferred activity are the significant kinases in (A). Phosphorylation indicates kinases with 
significantly increased (red) or decreased (blue) phosphorylation of their activating sites. White boxes 
indicate no significant difference. Gray boxes indicate kinase activity cannot be inferred for that kinase using 
that method. Kinases targeted by an FDA-approved inhibitor are indicated with black boxes. 
 
RB1 Characteristics in Colon Cancer 
 Because cell cycle kinases were highly active in the colon cancer samples and 
one of the proteins with multiple highly upregulated phosphorylation sites was the master 
cell cycle regulator RB1 (Appendix F), we hypothesized RB1 was being inactivated by 
phosphorylation instead of mutation or deletion. The RB1 gene was amplified in a majority 
of the 96 colon tumor samples (Figure 23A). In comparison to normal, RB1 protein was 
also increased in almost all samples (Figure 23B). Furthermore, eleven sites on RB1 
were identified in the phosphoproteomic data and almost all were increased in tumor 
compared to normal (Figure 23D). Only six of these sites (S37, S249, T373, S807, S811, 
T826) were present in > 50% of the paired tumor-normal samples and five of these were 
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significantly increased in tumor compared to normal (Figure 23C). Unlike the other 5 
sites, S37 is not known to affect RB1 activity so it was excluded from further analysis. 
 

 
Figure 23. RB1 characteristics in colon cancer. RB1 A) CNA, B) protein fold change, and C) 
phosphorylation fold change for five sites (S249, T373, S807, S811, T826) across all 96 samples. Samples 
are ordered by increasing average phosphorylation abundance. D) All identified phosphorylation sites on 
RB1. Color and height indicate median log2 fold change in tumor compared to normal.   
 
 
 

C

● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

−1
0

1
2

3

RB1 Phosphorylation

lo
g2

FC
 T

um
or
−N

or
m

al

RB1 Phosphorylation

B RB1 Protein

lo
g2

FC
 T

um
or
−N

or
m

al

−0
.5

1.
0

2.
0

RB1 Protein

A

11C
O
030

05C
O
003

01C
O
005

11C
O
019

05C
O
026

09C
O
005

11C
O
008

01C
O
006

11C
O
005

01C
O
013

11C
O
033

05C
O
044

16C
O
002

11C
O
036

22C
O
006

01C
O
008

05C
O
039

11C
O
047

11C
O
007

16C
O
003

27C
O
004

21C
O
006

21C
O
007

11C
O
031

01C
O
014

05C
O
037

05C
O
050

09C
O
013

11C
O
021

11C
O
054

11C
O
061

05C
O
049

05C
O
033

05C
O
015

05C
O
048

11C
O
052

11C
O
018

22C
O
004

11C
O
057

11C
O
044

09C
O
006

11C
O
051

11C
O
042

01C
O
019

09C
O
022

11C
O
070

09C
O
019

05C
O
011

16C
O
006

05C
O
045

05C
O
034

05C
O
053

06C
O
002

11C
O
022

11C
O
072

20C
O
007

11C
O
058

11C
O
020

11C
O
045

20C
O
006

11C
O
027

11C
O
062

11C
O
037

20C
O
001

15C
O
001

06C
O
001

11C
O
048

20C
O
004

20C
O
003

11C
O
032

11C
O
079

11C
O
043

11C
O
010

09C
O
011

14C
O
005

05C
O
054

05C
O
032

11C
O
039

09C
O
018

05C
O
006

15C
O
002

05C
O
029

01C
O
022

05C
O
041

11C
O
053

05C
O
020

11C
O
077

05C
O
035

09C
O
008

09C
O
014

16C
O
011

05C
O
047

09C
O
015

05C
O
002

05C
O
028

01C
O
015

15919

−2
−1
0
1
2

11C
O
030

05C
O
003

01C
O
005

11C
O
019

05C
O
026

09C
O
005

11C
O
008

01C
O
006

11C
O
005

01C
O
013

11C
O
033

05C
O
044

16C
O
002

11C
O
036

22C
O
006

01C
O
008

05C
O
039

11C
O
047

11C
O
007

16C
O
003

27C
O
004

21C
O
006

21C
O
007

11C
O
031

01C
O
014

05C
O
037

05C
O
050

09C
O
013

11C
O
021

11C
O
054

11C
O
061

05C
O
049

05C
O
033

05C
O
015

05C
O
048

11C
O
052

11C
O
018

22C
O
004

11C
O
057

11C
O
044

09C
O
006

11C
O
051

11C
O
042

01C
O
019

09C
O
022

11C
O
070

09C
O
019

05C
O
011

16C
O
006

05C
O
045

05C
O
034

05C
O
053

06C
O
002

11C
O
022

11C
O
072

20C
O
007

11C
O
058

11C
O
020

11C
O
045

20C
O
006

11C
O
027

11C
O
062

11C
O
037

20C
O
001

15C
O
001

06C
O
001

11C
O
048

20C
O
004

20C
O
003

11C
O
032

11C
O
079

11C
O
043

11C
O
010

09C
O
011

14C
O
005

05C
O
054

05C
O
032

11C
O
039

09C
O
018

05C
O
006

15C
O
002

05C
O
029

01C
O
022

05C
O
041

11C
O
053

05C
O
020

11C
O
077

05C
O
035

09C
O
008

09C
O
014

16C
O
011

05C
O
047

09C
O
015

05C
O
002

05C
O
028

01C
O
015

15919

−2
−1
0
1
2

RB1 CNA

D

M
ed

ia
n 

lo
g2

FC
 

Tu
m

or
-N

or
m

al



 57 

RB1 Phosphorylation Correlates with Increased Proliferation and Decreased Apoptosis 
To determine the effect of RB1 phosphorylation, I correlated average RB1 

phosphorylation abundance change with other data features. Average RB1 
phosphorylation abundance change in tumor compared to normal was highly correlated 
with CDK2 activity at an individual sample level (Figure 24A, Pearson correlation = 0.54, 
p value = 1.5x10-8). It was also correlated with E2F1 activity (Figure 24B, Pearson 
correlation = 0.36, p value = 3.8x10-4) and tumor vs normal phosphorylation of histone H3 
(Figure 24C, Pearson correlation = 0.45, p value = 7.2x10-4), which is a marker of 
proliferation. Finally, average RB1 phosphorylation was negatively correlated with a set 
of apoptosis proteins (Figure 24D, Pearson correlation = -0.29, p value = 4.6x10-3). 

  

 
 
Figure 24. RB1 correlation with proliferation and apoptosis markers. Correlation of average RB1 
phosphorylation change in tumor compared to normal correlation with A) ssGSEA activity scores for CDK2, 
B) ssGSEA enrichment of protein abundance of targets of E2F1, C) phosphorylation of histone H3.1, and 
D) protein abundance of apoptotic proteins.  
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Unlike tumors where RB1 is deleted or mutated, RB1 inactivation by 
phosphorylation is a possible drug target in colon cancer. RB1 could be re-activated by 
CDK inhibitors. Additionally, RB1 phosphorylation could be used as a marker of response 
to CDK drugs. Therefore, I examined RB1 characteristics in comparison to cell line 
response to CDK inhibitors. Using data from the GDSC, cell lines with higher RB1 mRNA 
expression were significantly more sensitive to two different CDK inhibitors (Figure 25A-
B). One drug (PHA-793887) targeted CDK2/5/7, while the other (palbociclib) targeted 
CDK4/6. CDK2, CDK4, and CDK6 are known to phosphorylate RB1. The MCLP project 
assessed RB1 phosphorylation using RPPA for many of the same cell lines. RB1 
phosphorylation also correlated with cell line sensitivity to these two inhibitors (Figure 
25C-D).   

   

 
 
Figure 25. RB1 effect on cell line sensitivity to CDK inhibitors. Comparison of cell line sensitivity to A) 
PHA-793887 and B) palbociclib between cell lines with low RB1 mRNA expression (RSEM < 3) and high 
RB1 mRNA expression (RSEM  ³ 6). C) Correlation of RB1 phosphorylation at pS807/S811 and response 
to PHA-793887 or D) palbociclib.  
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Summary of RB1 in Colon Cancer 
Together, in colon cancer RB1 was amplified at the gene level and this 

amplification persisted at the protein level (Figure 26). Furthermore, RB1 was 
hyperphosphorylated by active CDK2. This released E2F to drive proliferation but also 
contributed to inhibition of apoptosis, which gave RB1 two different ways to promote 
tumor progression and survival. 

 
Figure 26. Summary of RB1 activity in colon cancer. RB1 is amplified at the DNA level and also the 
proteomic level. High levels of CDK2 activity results in increased RB1 phosphorylation, releasing E2F1 to 
drive proliferation. Furthermore, RB1 contributes to apoptosis suppression. 
 
Discussion 
 Overall, phosphoproteomic data provided both a complementary and unique 
perspective of colon cancer compared to other data types. Phosphoproteomic data 
confirmed some of the colon cancer targets known by genomic or proteomic data. High 
phosphorylation was found on DDX21, RSL1D1, S100A11, and TOP2A, which were 
proteins also highly over-expressed in tumor samples compared to normal. TOP2A is 
involved in the cell cycle and is frequently overexpressed in cancers, including colon 
cancer236,237. DDX21 is an RNA helicase that is also upregulated in cancer, correlates 
with proliferation, and drives rRNA processing238. RSL1D1 is involved in cellular 
senescence and apoptosis and has also been associated with prostate cancer severity239. 
Finally, S100A11 is a calcium binding protein that helps repair damaged cell 
membranes240. While all of these proteins are upregulated in cancer, they are not 
frequently mutated and are therefore not known as cancer drivers. 
 Interestingly, although many of the proteins with highly upregulated 
phosphorylation sites in cancer were also upregulated at the protein level, some highly 
abundant sites were on proteins with low abundance in cancer. Tubulin alpha-1B chain 
(TUBA1B) and its associated protein MAP4 were both highly phosphorylated but 
downregulated at the protein level in cancer. These phosphorylation sites likely result in 
destabilized microtubules  and promote motility in colon cancer241. Sterile a motif and HD 
domain containing protein 1 (SAMHD1), a nucleotide phosphatase, regulates dNTP 
homeostasis, has a role in genome stability, and has tumor suppressor functions242. In 
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our study, SAMHD1 was slightly downregulated 1.13x fold, but phosphorylated at T592 
2.24x fold. Phosphorylation at this site might further reduce its activity by reducing protein 
stability242. Finally, the kinase MAP3K20, also known as ZAK, had a 3.2x fold increase of 
phosphorylation at S637, although the protein was downregulated 1.6x fold. ZAK can act 
as a cell fate switch and its downregulation in lung cancer leads to increased tumor cell 
survival243. However, nothing is known about the phosphorylation at S637, so it could be 
an interesting topic for future exploration.      
 Phosphorylation was also high on six known cancer drivers: CDK12, DEK, PML, 
NPM1, RB1, and TFRC. RB1 in particular was interesting because it is a known tumor 
suppressor and is unusually amplified in colon cancer. The phosphorylation levels of RB1 
explain the mechanism of RB1 inactivation in colon cancer. Furthermore, average RB1 
phosphorylation was negatively correlated with apoptosis. RB1 has been linked to 
apoptosis in the literature244. Although its role is not clearly defined, hyperphosphorylated 
RB1 possibly binds specifically to E2F on apoptotic gene promoters while releasing E2F 
on cell proliferation gene promoters245. It might also control the subcellular localization of 
the cell survival protein Bag-1246.  
  Finally, phosphoproteomic data showed dysregulation of several kinases in colon 
cancer. As expected, cell cycle regulating kinases are highly active in cancer compared 
to normal. However, increased phosphorylation of kinase activating sites also suggested 
dysregulation of a few other kinases. Some of these kinases have been linked to cancer. 
For example, SRPK1 expression is increased in several cancers and this promotes 
cancer stemness, angiogenesis, and metastasis247. PFKFB3 is also high in proliferating 
cells and is linked to proliferation and glycolysis248. However, these findings should be 
more carefully validated. MELK appeared to be a good cancer target as it was highly 
correlated with proliferation and small molecule inhibitors were developed as anti-cancer 
agents. However, complete knock-down of MELK had no effect on cell survival or 
proliferation rates and therefore is unlikely to have an effect on cancer patients249. 
  



 61 

CHAPTER 6 
 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

Summary 
 Throughout this thesis, I have described the ways phosphoproteomic data can be 
used to identify single interesting kinases, altered signaling pathways, and ultimately 
pathway dysregulation at the disease level. Phosphoproteomic data provides 
complementary information, extends that information, and occasionally contradicts the 
information generated by genomic, transcriptomic, and proteomic data. Furthermore, 
phosphoproteomic data validates existing knowledge, generates new areas of 
exploration, and highlights possible therapeutic targets. This chapter summarizes the 
findings from this work and provides future research directions. 
   
Evaluation of Technology 
 While this work was clearly limited by sample size and signal resolution above 
noise, mass spectrometry technology continues to rapidly improve. Ten years ago, most 
experiments generated around 1000 phosphorylation sites250–252. Now, improvements in 
machine sensitivity, algorithms, and enrichment methods have expanded this 10x fold to 
over 10,000 quantifiable sites per experiment. Most kinases and phosphatases can 
already be identified using mass spectrometry and with the continued interest in this 
technology, the methods and analysis tools will only improve. One current extension is 
the enrichment and identification of kinases using kinase inhibitors attached to beads253. 
This allows for focused analysis on kinase signaling using small amounts of sample. 
 Improvements in bioinformatics tools for phosphoproteomic analysis will also 
promote future discoveries. Tools have thus far focused on very specific areas of kinase 
signaling. Future work should integrate phosphatases and combine various methods. For 
example, tools could be developed that assess phosphorylation abundance after 
mutations or that allow users to visualize changes over entire signaling pathways rather 
than at the individual kinase level.  

Additionally, while many databases have collected information on kinases and 
phosphatases, programmatic use of this information is challenging. There are no standard 
terms for functions or regulation and most databases do not have downloadable data. 
Future work to identify phosphorylation sites on kinases that affect enzymatic activity and 
characterization of the regulatory mechanisms of each kinase’s activity will help improve 
kinase activity inference.  Furthermore, new tools could integrate the various mechanisms 
for kinase activity inference, such as prediction from substrate phosphorylation and 
altered phosphorylation of regulatory sites. In my study, these two methods were 
complementary, and many kinases could only be identified using one of the methods. The 
combination might improve inference for kinases with few substrates or for kinases 
lacking information on their regulatory sites. 
 Standardization is also a challenge for phosphorylation site identification. 
Phosphorylation sites are usually identified by their position in the protein sequence. 
However, protein sequences vary across databases and are frequently updated. 
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Additionally, position varies based on the splice isoform and the species. Identifying 
phosphorylation sites is a challenge when using multiple databases or analyzing different 
phosphoproteomic datasets generated using different protein sequence databases. 
Using the sequence surrounding a site helps, but the sequence can be identical for related 
proteins and slight variations can occur due to polymorphisms.  

Finally, the methods used here can easily be extended to study other PTMs or 
signaling pathways. Other PTMs are just as important as phosphorylation in both 
understanding cell signaling status and protein function. Additionally, many can affect the 
phosphorylation levels of cells. For example, a bacteria acetyltransferase can acetylate 
MAP2K and prevent its activating phosphorylation254. Finally, this work focused 
specifically on kinase signaling. However, other types, such as response to calcium or 
GPCR signaling are both important and frequently integrate with kinases. To understand 
the overall picture of cell signaling, future work could better integrate these pathways. 
  
Kinase Signaling in Cancer 
 One overall result from this work was the acknowledgement that kinase signaling 
clearly differs among subgroups of patients. These data could be used to stratify patients 
and understand their response to treatment. For example, patients with high levels of 
phosphorylated RB1 will likely respond well to CDK inhibitors, while patients with low 
levels of RB1 phosphorylation or protein may have little effect. Additionally, patients with 
kinases predicted to be highly active based on substrate phosphorylation might respond 
well to inhibitors of those kinases.  

Moreover, genomic mutations drive alterations in signaling pathways and these 
might be used to predict alterations to kinase signaling. Conversely, phosphorylation of 
kinase substrates could be used to predict the effect of understudied protein mutations. 
These can help predict how a patient will respond to therapy. Ideally, future work will 
connect kinase activity predictions from phosphoproteomic data with response to inhibitor 
treatment to help validate the activity predictions.  
 
Kinase Signaling Comparison Among Tissues 
 The addition of normal tissue greatly improves the signal-to-noise ratio. Normal 
tissue helps remove the general background level for an individual patient. Furthermore, 
stoichiometric analyses of phosphorylation are an exciting future direction. In this work, 
increased phosphorylation could result from increased protein abundance and/or hyper-
phosphorylation of that individual site. Increasing phosphorylation regardless of protein 
abundance more clearly shows the actual activity of that protein. While all of these studies 
did have proteomic data, correcting for protein abundance is a challenge. Correction for 
protein abundance in the colon cancer dataset showed mostly altered abundance on 
cytoskeletal and stromal proteins. This might be due to tissue composition affecting 
normalization. Mechanisms to improve standardization, quantification, and normalization 
might ameliorate these effects. 
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APPENDIX A 
 

ROC CURVE FOR SUBSTRATE PREDICTION OF PKC 
 

 
Figure S1. ROC curve for substrate prediction of PKC. The false positive and true positive rates for 
PKC substrate prediction. The AUC for each tool is listed next to the tool name. 
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APPENDIX B 
 

WEBSITE URLS FOR BIOINFORMATICS TOOLS 
 

Name Website URL 

14-3-3-Pred http://www.compbio.dundee.ac.uk/1433pred 
ANIA https://ania-1433.lifesci.dundee.ac.uk/prediction/webserver/index.py 
CEASAR http://www.phosphonetworks.org 
CellNOpt http://www.cellnopt.org 
CLUE https://cran.r-project.org/web/packages/ClueR/index.html 
CPhos https://hpcwebapps.cit.nih.gov/CPhos/ 
CrossCheck http://www.proteinguru.com/toolbox/crosscheck/ 
dbPAF http://dbpaf.biocuckoo.org 
dbPTM http://dbptm.mbc.nctu.edu.tw 
DEPOD http://depod.bioss.uni-freiburg.de 
DrugKiNET http://www.drugkinet.ca 
DynaPho http://140.112.52.89/dynapho/?p=100&tid=none 
eFIP http://research.bioinformatics.udel.edu/eFIPonline/index.php 
EKPD http://ekpd.biocuckoo.org 
GPS http://gps.biocuckoo.org 
GPS-Polo http://polo.biocuckoo.org 
HMMpTM http://aias.biol.uoa.gr/HMMpTM/ 
HPRD http://hprd.org 
HuPho http://hupho.uniroma2.it 
iGPS http://igps.biocuckoo.org 
IKAP https://github.com/marcel-mischnik/IKAP 
K-Map http://tanlab.ucdenver.edu/kMap 
KANPHOS https://kanphos.neuroinf.jp 
KEA2 http://www.maayanlab.net/KEA2 
KIDFamMap http://gemdock.life.nctu.edu.tw/KIDFamMap/ 
Kin-Driver http://kin-driver.leloir.org.ar/index.php 
Kinannote https://sourceforge.net/projects/kinannote/ 
KinaseNET http://www.kinasenet.ca 
KinasePA http://www.maths.usyd.edu.au/u/pengyi/software/KinasePA.html 
KinasePhos2.0 http://kinasephos2.mbc.nctu.edu.tw 
KinBase http://kinase.com/web/current/ 
KinConform https://github.com/esbg/kinconform 
KinG http://king.mbu.iisc.ernet.in 
KinMap http://www.kinhub.org/kinmap/ 
KinMutBase http://structure.bmc.lu.se/idbase/KinMutBase/ 
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Kinome NetworkX https://bioinfo.uth.edu/kinomenetworkX/ 
Kinomer http://www.compbio.dundee.ac.uk/kinomer/ 
KinomeSelector http://kinomeselector.jensenlab.org/index.html 
KinWeb http://www.itb.cnr.it/kinweb/index.htm 
KLIFS http://klifs.vu-compmedchem.nl 
KSD http://sequoia.ucsf.edu/ksd/ 
KSEA https://casecpb.shinyapps.io/ksea/ 
KSP-PUEL https://github.com/PengyiYang/KSP-PUEL 
MIMP http://mimp.baderlab.org 
MOKCa http://strubiol.icr.ac.uk/extra/mokca/ 
Musite http://musite.net 
MusiteDeep https://github.com/duolinwang/MusiteDeep 
NetPhorest http://netphorest.info 
NetPhos http://www.cbs.dtu.dk/services/NetPhos/ 
NetworKIN http://networkin.info/index.shtml 
phos_pred http://bioinformatics.ustc.edu.cn/phos_pred/ 
Phos3D http://phos3d.mpimp-golm.mpg.de 
PhoScan http://bioinfo.au.tsinghua.edu.cn/phoscan/ 
PhosD http://comp-sysbio.org/phosd/ 
PhosFox https://bitbucket.org/phintsan/phosfox 
PHOSIDA http://141.61.102.18/phosida/index.aspx 
Phosphatome http://phosphatome.net/3.0/ 
Phospho.ELM http://phospho.elm.eu.org/index.html 
Phospho3D http://www.phospho3d.org 
PhosphoAtlas http://cancer.ucsf.edu/phosphoatlas 
PhosphoLogo https://hpcwebapps.cit.nih.gov/PhosphoLogo/ 
PhosphoNET http://www.phosphonet.ca 
PhosphoNetworks http://www.phosphonetworks.org 
PhosphoPep http://www.phosphopep.org 
PhosphoPICK http://bioinf.scmb.uq.edu.au/phosphopick/phosphopick 
PhosphoPICK-SNP http://bioinf.scmb.uq.edu.au/phosphopick/snpanalysis 
PhosphoPredict http://phosphopredict.erc.monash.edu/webserver.html 
PhosphoSitePlus http://www.phosphosite.org 
PhosphoSVM http://sysbio.unl.edu/PhosphoSVM/ 
PhosPred-RF http://server.malab.cn/PhosPred-RF/index.jsp 
PhosSNP http://phossnp.biocuckoo.org 
PHOXTRACK http://phoxtrack.molgen.mpg.de 
pkaPS http://mendel.imp.ac.at/pkaPS/ 
PKIS http://bioinformatics.ustc.edu.cn/pkis/ 
PPSP http://ppsp.biocuckoo.org 
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Predikin http://predikin.biosci.uq.edu.au 
ProKinO http://vulcan.cs.uga.edu/prokino/about/browser 
ProteomeScout https://proteomescout.wustl.edu/ 
PSEA http://bioinfo.ncu.edu.cn/PKPred_Home.aspx 
PTMfunc http://ptmfunc.com 
PyTMs https://pymolwiki.org/index.php/Pytms 
RegPhos http://regphos.mbc.nctu.edu.tw/  
RegPhos2.0 http://csb.cse.yzu.edu.tw/RegPhos2/  
ReKINect http://rekinect.info/home 
RLIMS-P http://research.bioinformatics.udel.edu/rlimsp/ 
Scansite http://scansite4.mit.edu/#home 
SELPHI http://rothwebprod.mshri.on.ca:8081 
Signor http://signor.uniroma2.it 
Sorad http://research.cs.aalto.fi/csb/software/sorad/ 
SubPhosDB http://bioinfo.ncu.edu.cn/SubPhosDB.aspx 
Swiss-Prot http://www.uniprot.org 
wKinMut2 http://kinmut2.bioinfo.cnio.es/KinMut2 
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APPENDIX C 
 

BREAST CANCER SUBTYPE DRIVER SUBNETWORKS 
 

Basal Driver Subnetwork 
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Her2 Driver Subnetwork 
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APPENDIX D 

 
WIKIPATHWAYS ENRICHMENT RESULTS FOR SUBTYPE DRIVER 

SUBNETWORKS 
 
Table D1. WikiPathways enrichment in the basal driver subnetwork. 

Gene 
Set Description Overlap Enrichment 

Score 

Normalized 
Enrichment 

Score 
P Value FDR 

WP3651 Pathways Affected in Adenoid Cystic Carcinoma 15 3.2 4.7 2.7E-07 7.2E-05 
WP244 Alpha 6 Beta 4 signaling pathway 8 1.7 4.7 1.9E-04 2.6E-02 
WP314 Fas Ligand (FasL) pathway and Stress induction 

of Heat Shock Proteins (HSP) regulation 
9 2.4 3.7 5.1E-04 3.5E-02 

WP2377 Integrated Pancreatic Cancer Pathway 22 10.5 2.1 6.2E-04 3.5E-02 
WP2118 Arrhythmogenic Right Ventricular 

Cardiomyopathy 
10 3.1 3.2 7.6E-04 3.5E-02 

WP383 Striated Muscle Contraction 8 2.1 3.9 7.8E-04 3.5E-02 
WP707 DNA Damage Response 11 3.8 2.9 1.1E-03 4.1E-02 
WP710 DNA Damage Response (only ATM dependent) 14 5.6 2.5 1.2E-03 4.1E-02 

 
Table D2. WikiPathways enrichment in the Her2 driver subnetwork. 

Gene 
Set Description Overlap Enrichment 

Score 

Normalized 
Enrichment 

Score 
P Value FDR 

WP2261 Signaling Pathways in Glioblastoma 17 4.8 3.5 3.2E-06 0.001 
WP3303 Rac1/Pak1/p38/MMP-2 pathway 14 3.8 3.7 1.4E-05 0.002 
WP306 Focal Adhesion 24 9.6 2.5 2.0E-05 0.002 
WP3651 Pathways Affected in Adenoid Cystic 

Carcinoma 
12 3.2 3.7 5.9E-05 0.004 

WP2377 Integrated Pancreatic Cancer Pathway 23 10.6 2.2 2.9E-04 0.013 
WP2526 PDGF Pathway 9 2.3 3.9 3.1E-04 0.013 
WP3680 Association Between Physico-Chemical 

Features and Toxicity Associated Pathways 
11 3.3 3.3 3.3E-04 0.013 

WP313 Signaling of Hepatocyte Growth Factor 
Receptor 

8 2.0 3.9 7.0E-04 0.024 

 
Table D3. WikiPathways enrichment in the luminal A driver subnetwork. 

Gene 
Set Description Overlap Enrichment 

Score 

Normalized 
Enrichment 

Score 
P Value FDR 

WP3651 Pathways Affected in Adenoid Cystic 
Carcinoma 

21 3.6 5.8 6.1E-12 1.7E-09 

WP710 DNA Damage Response (only ATM dependent) 21 6.3 3.3 6.0E-07 8.1E-05 
WP3844 PI3K-AKT-mTOR signaling pathway and 

therapeutic opportunities 
11 1.9 5.7 1.1E-06 9.8E-05 

WP2118 Arrhythmogenic Right Ventricular 
Cardiomyopathy 

14 3.5 4.0 4.2E-06 2.8E-04 

WP2377 Integrated Pancreatic Cancer Pathway 28 11.8 2.4 1.0E-05 5.5E-04 
WP3915 Angiopoietin Like Protein 8 Regulatory Pathway 21 8.2 2.6 4.4E-05 1.6E-03 
WP481 Insulin Signaling 24 10.1 2.4 4.7E-05 1.6E-03 
WP422 MAPK Cascade 9 1.9 4.8 5.0E-05 1.6E-03 
WP2261 Signaling Pathways in Glioblastoma 16 5.3 3.0 5.2E-05 1.6E-03 
WP3303 Rac1/Pak1/p38/MMP-2 pathway 13 4.2 3.1 1.9E-04 5.2E-03 
WP314 Fas Ligand (FasL) pathway and Stress 

induction of Heat Shock Proteins (HSP) 
regulation 

10 2.7 3.7 2.5E-04 6.3E-03 

WP306 Focal Adhesion 23 10.7 2.2 3.0E-04 6.4E-03 
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WP1971 Integrated Cancer Pathway 10 2.8 3.6 3.1E-04 6.4E-03 
WP2034 Leptin signaling pathway 14 5.0 2.8 3.3E-04 6.4E-03 
WP23 B Cell Receptor Signaling Pathway 16 6.3 2.6 3.8E-04 6.8E-03 
WP673 ErbB Signaling Pathway 11 3.4 3.2 4.0E-04 6.8E-03 
WP437 EGF/EGFR Signaling Pathway 22 10.4 2.1 5.3E-04 8.4E-03 
WP1984 Integrated Breast Cancer Pathway 20 9.1 2.2 6.0E-04 9.1E-03 
WP2526 PDGF Pathway 9 2.5 3.6 6.6E-04 9.4E-03 
WP2380 Brain-Derived Neurotrophic Factor (BDNF) 

signaling pathway 
20 9.3 2.2 7.3E-04 9.9E-03 

WP383 Striated Muscle Contraction 8 2.3 3.4 1.7E-03 2.2E-02 
WP615 Senescence and Autophagy in Cancer 15 6.5 2.3 1.8E-03 2.2E-02 
WP1545 miRNAs involved in DNA damage response 5 1.0 5.0 2.2E-03 2.5E-02 
WP195 IL-1 signaling pathway 10 3.5 2.8 2.2E-03 2.5E-02 
WP2203 Thymic Stromal LymphoPoietin (TSLP) 

Signaling Pathway 
9 3.0 3.0 2.4E-03 2.5E-02 

WP712 Estrogen signaling pathway 6 1.5 4.1 2.5E-03 2.5E-02 
WP2018 RANKL/RANK (Receptor activator of NFKB 

(ligand)) Signaling Pathway 
10 3.6 2.8 2.5E-03 2.5E-02 

WP3680 Association Between Physico-Chemical 
Features and Toxicity Associated Pathways 

10 3.7 2.7 2.9E-03 2.8E-02 

WP1544 MicroRNAs in cardiomyocyte hypertrophy 12 5.0 2.4 3.5E-03 3.3E-02 
WP1403 AMP-activated Protein Kinase (AMPK) 

Signaling 
10 3.8 2.6 3.8E-03 3.4E-02 

WP2857 Mesodermal Commitment Pathway 15 7.1 2.1 3.9E-03 3.4E-02 
WP3668 Hypothesized Pathways in Pathogenesis of 

Cardiovascular Disease 
6 1.6 3.8 4.0E-03 3.4E-02 

WP382 MAPK Signaling Pathway 20 10.7 1.9 4.4E-03 3.7E-02 
WP2036 TNF related weak inducer of apoptosis 

(TWEAK) Signaling Pathway 
8 2.7 2.9 4.8E-03 3.7E-02 

WP2032 Human Thyroid Stimulating Hormone (TSH) 
signaling pathway 

10 3.9 2.5 4.9E-03 3.7E-02 

WP2870 Extracellular vesicle-mediated signaling in 
recipient cells 

6 1.7 3.6 5.0E-03 3.7E-02 

WP75 Toll-like Receptor Signaling Pathway 13 6.0 2.2 6.0E-03 4.2E-02 
WP1433 Nucleotide-binding Oligomerization Domain 

(NOD) pathway 
7 2.3 3.1 6.1E-03 4.2E-02 

WP313 Signaling of Hepatocyte Growth Factor 
Receptor 

7 2.3 3.1 6.1E-03 4.2E-02 

WP2643 Nanoparticle-mediated activation of receptor 
signaling 

6 1.8 3.3 7.4E-03 4.9E-02 

WP585 Interferon type I signaling pathways 9 3.5 2.5 7.4E-03 4.9E-02 

 
Table D4. WikiPathways enrichment in the luminal B driver subnetwork. 

Gene 
Set Description Overlap Enrichment 

Score 

Normalized 
Enrichment 

Score 
P Value FDR 

WP1544 MicroRNAs in cardiomyocyte hypertrophy 18 4.8 3.8 5.2E-07 0.0001 
WP306 Focal Adhesion 25 10.1 2.5 1.6E-05 0.0022 
WP2261 Signaling Pathways in Glioblastoma 16 5.1 3.2 2.8E-05 0.0025 
WP437 EGF/EGFR Signaling Pathway 23 9.9 2.3 9.3E-05 0.0063 
WP2911 miRNA targets in ECM and membrane 

receptors 
6 0.9 6.8 1.2E-04 0.0064 

WP2795 Cardiac Hypertrophic Response 11 3.2 3.4 2.6E-04 0.0117 
WP244 Alpha 6 Beta 4 signaling pathway 8 1.8 4.4 3.1E-04 0.0119 
WP2380 Brain-Derived Neurotrophic Factor (BDNF) 

signaling pathway 
20 8.8 2.3 3.8E-04 0.0129 

WP3651 Pathways Affected in Adenoid Cystic 
Carcinoma 

11 3.4 3.2 4.4E-04 0.0132 

WP2377 Integrated Pancreatic Cancer Pathway 23 11.2 2.1 6.3E-04 0.0167 
WP2572 Primary Focal Segmental Glomerulosclerosis 

FSGS 
11 3.6 3.0 7.1E-04 0.0167 
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WP51 Regulation of Actin Cytoskeleton 18 7.9 2.3 7.4E-04 0.0167 
WP2032 Human Thyroid Stimulating Hormone (TSH) 

signaling pathway 
11 3.7 2.9 9.7E-04 0.0201 

WP3844 PI3K-AKT-mTOR signaling pathway and 
therapeutic opportunities 

7 1.8 3.8 1.8E-03 0.0339 

WP2526 PDGF Pathway 8 2.4 3.3 2.1E-03 0.0367 
WP2828 Bladder Cancer 7 1.9 3.7 2.2E-03 0.0367 
WP1528 Physiological and Pathological Hypertrophy of 

the Heart 
6 1.5 4.1 2.5E-03 0.0391 

WP366 TGF-beta Signaling Pathway 17 8.2 2.1 2.8E-03 0.0419 
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APPENDIX E 
 

GO BP ENRICHMENT FOR PROTEINS WITH ALTERED PHOSPHORYLATION IN 
COLON CANCER 

 
Table E1. GO BP Enrichment for Proteins with Downregulated Phosphorylation Sites in Tumor. 

Gene Set Description Overlap Enrichment 
Score 

Normalized 
Enrichment Score P Value FDR 

GO:0006928 movement of cell or 
subcellular component 

253 181.395349 1.39474359 0 0 

GO:0007010 cytoskeleton organization 261 176.22739 1.48104106 0 0 
GO:0030029 actin filament-based 

process 
179 110.594315 1.61852804 0 0 

GO:0030036 actin cytoskeleton 
organization 

157 97.1576227 1.61593085 0 0 

GO:0032970 regulation of actin filament-
based process 

87 51.1627907 1.70045455 6.44E-15 3.28E-12 

GO:1902589 single-organism organelle 
organization 

298 226.356589 1.31650685 1.18E-14 4.99E-12 

GO:0032956 regulation of actin 
cytoskeleton organization 

74 42.8940568 1.72518072 1.40E-13 5.10E-11 

GO:0007015 actin filament organization 95 58.9147287 1.6125 4.60E-13 1.34E-10 
GO:0003008 system process 161 111.627907 1.44229167 4.73E-13 1.34E-10 
GO:0040011 locomotion 213 156.072351 1.36475166 7.95E-13 2.02E-10 

 
Table E2. GO BP Enrichment for Proteins with Upregulated Phosphorylation Sites in Tumor. 

Gene Set Description Overlap Enrichment 
Score 

Normalized 
Enrichment Score P Value FDR 

GO:0006396 RNA processing 216 109.10422 1.97975843 0 0 
GO:0006397 mRNA processing 135 71.2265289 1.89536121 0 0 
GO:0008380 RNA splicing 115 60.5219638 1.90013662 0 0 
GO:0016071 mRNA metabolic 

process 
157 87.6950904 1.79029407 0 0 

GO:0022613 ribonucleoprotein 
complex biogenesis 

89 46.5236865 1.91300404 0 0 

GO:0034470 ncRNA processing 71 31.7019811 2.23960767 0 0 
GO:0034660 ncRNA metabolic 

process 
92 43.6416882 2.1080761 0 0 

GO:0042254 ribosome biogenesis 59 27.1731266 2.17126284 2.22E-16 7.07E-14 
GO:0006364 rRNA processing 49 21.4091301 2.28874316 3.33E-16 8.48E-14 
GO:0016072 rRNA metabolic process 49 21.4091301 2.28874316 3.33E-16 8.48E-14 

 
Table E3. GO BP Enrichment for Proteins with Highly Upregulated Phosphorylation Sites in Tumor. 

Gene Set Description Overlap Enrichment 
Score 

Normalized 
Enrichment Score P Value FDR 

GO:0042254 ribosome biogenesis 10 1.36434109 7.32954545 4.79E-07 0.00122032 
GO:0051052 regulation of DNA 

metabolic process 
11 1.88113695 5.84752747 1.25E-06 0.00158957 

GO:0022613 ribonucleoprotein 
complex biogenesis 

11 2.33591731 4.7090708 1.10E-05 0.00932361 

GO:0006364 rRNA processing 7 1.0749354 6.51201923 6.80E-05 0.03464428 
GO:0016072 rRNA metabolic 

process 
7 1.0749354 6.51201923 6.80E-05 0.03464428 

GO:0006259 DNA metabolic 
process 

13 4.13436693 3.144375 0.00012511 0.04759933 

GO:0034470 ncRNA processing 8 1.59173127 5.02597403 0.00013087 0.04759933 
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APPENDIX F 
 

 COLON CANCER-ASSOCIATED PHOSPHORYLATION SITES 
 

HGNC Symbol UniProt ID Site Median Log2(Tumor)-Log2(Normal) FDR -Log10(FDR) 

CLDN2 P57739 S208 1.868 2.59E-09 8.586238901 
RSL1D1 O76021 S427 1.704 1.85E-14 13.73308206 
RSL1D1 O76021 S443 1.6875 4.69E-12 11.32846341 
MAP3K20 Q9NYL2 S637 1.6645 2.42E-13 12.6155395 
PARP1 P09874 S257 1.547 1.11E-09 8.953587331 
NOP2 P46087 S67 1.4895 1.00E-12 11.99799569 
UBE2M P61081 S28 1.466 4.30E-12 11.36608691 
DDX21 Q9NR30 S121 1.415 6.59E-15 14.18100695 
NCL P19338 S67 1.4035 7.17E-15 14.14464472 
FOXK1 P85037 S223 1.401 1.79E-11 10.74712642 
NPM1 P06748 S260 1.384 2.31E-13 12.63704785 
TOP2A P11388 S1106 1.36775 4.44E-14 13.35281059 
TCOF1 Q13428 S156 1.351 1.97E-13 12.70597241 
TFRC P02786 S34 1.349 1.55E-13 12.80929415 
SRRM2 Q9UQ35 T2599 1.325 3.18E-10 9.496918431 
RPL4 P36578 S295 1.3135 6.59E-15 14.18100695 
TNS4 Q8IZW8 S350 1.293 8.32E-13 12.07968007 
PNPLA2 Q96AD5 S428 1.28 1.33E-11 10.87632875 
TOP2A P11388 S1247 1.2795 4.48E-12 11.34870137 
FOSL2 P15408 S17 1.2595 1.86E-11 10.72961408 
LIG3 P49916 S913 1.243 1.61E-14 13.79312313 
RSL1D1 O76021 S392 1.219 2.51E-08 7.600505014 
NUP153 P49790 S192 1.2175 6.59E-15 14.18100695 
NOP2 P46087 S732 1.216 1.33E-10 9.875157307 
NOLC1 Q14978 S538 1.20525 1.92E-14 13.71671823 
CDK13 Q14004 S340 1.16825 2.25E-10 9.647615714 
SAMHD1 Q9Y3Z3 T592 1.162 1.93E-09 8.714899114 
NOC2L Q9Y3T9 S49 1.141 1.22E-14 13.91287263 
ILF3 Q12906 S382 1.1355 2.04E-11 10.68932899 
SUB1 P53999 S19 1.135 1.15E-11 10.9375928 
RB1 P06400 T826 1.131 1.40E-12 11.853356 
RPP30 P78346 S251 1.125 5.66E-13 12.24683109 
PML P29590 S512 1.122 5.57E-09 8.253812672 
S100A11 P31949 S6 1.122 2.99E-10 9.52434254 
MAP4 P27816 S787 1.118 5.12E-08 7.291009472 
CDK12 Q9NYV4 S303 1.111 4.13E-08 7.384294752 
CDK2 P24941 Y15 1.101 2.17E-14 13.66453617 
TMPO P42166 S184 1.098 1.96E-13 12.70724838 
NUP93 Q8N1F7 S767 1.095 2.30E-12 11.6390753 
NOLC1 Q14978 S563 1.0935 3.45E-10 9.462403982 
MYBBP1A Q9BQG0 S1267 1.09175 6.59E-15 14.18100695 
RIF1 Q5UIP0 S782 1.091 2.35E-14 13.62859382 
SPP1 P10451 S234 1.088 2.61E-05 4.582709325 
RB1 P06400 S807 1.082 4.87E-10 9.312207505 
OSBPL3 Q9H4L5-2 S251 1.08 1.22E-09 8.913524704 
MKI67 P46013 S2505 1.068 2.08E-11 10.68172081 
SSFA2 P28290 S759 1.0655 3.80E-09 8.420183162 
SMC3 Q9UQE7 S1065 1.06525 2.31E-13 12.63704785 
DEK P35659 S306 1.06375 1.26E-12 11.89895398 
TUBA1B P68363 S48 1.0445 1.83E-10 9.738036853 
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AMPD2 Q01433 S190 1.0445 1.63E-10 9.788566187 
CDK13 Q14004 S342 1.043 2.12E-09 8.67438279 
CDK2 P24941 T14 1.03075 1.95E-11 10.70913932 
DEK P35659 S307 1.03 5.36E-14 13.27111673 
NOM1 Q5C9Z4 S321 1.029 3.59E-12 11.44443685 
SRSF9 Q13242 S204 1.0285 4.79E-12 11.31930057 
WDR4 P57081 S391 1.02525 1.34E-12 11.8724523 
NOC2L Q9Y3T9 S56 1.02225 3.70E-14 13.43162797 
NOM1 Q5C9Z4 S320 1.022 2.62E-12 11.58204193 
NOM1 Q5C9Z4 S317 1.0185 3.47E-12 11.45970211 
NCAPG Q9BPX3 S674 1.018 2.56E-11 10.59101817 
BMS1 Q14692 S552 1.014 1.44E-12 11.8427087 
DEK P35659 S303 1.001 1.15E-13 12.93857546 
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