THE EVOLUTION OF THE PEACH SPRING TUFF MAGMATIC SYSTEM AS REVEALED BY ACCESSORY MINERAL TEXTURES AND COMPOSITIONS

By

Ayla Susan Pamukcu

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Earth and Environmental Science

August, 2010

Nashville, Tennessee

Approved:

Professor Guilherme A. R. Gualda Professor Calvin F. Miller To Supereruptions

Without you this project would never have been done. No joke.

ACKNOWLEDGEMENTS

I owe much thanks to the many people who have helped this work come to be. I owe particularly considerable gratitude to Dr. Guilherme Gualda and Dr. Calvin Miller, without whose unfailing enthusiasm and patience I would not have completed this work. I can only hope to some day have the level of curiosity and energy that they constantly exude. I have wholeheartedly appreciated their guidance and have learned so very much over the course of this process.

I could also not have completed this work without the extraordinary help of my fellow MESSY students, namely Lily Claiborne, Lindy Colombini, Danny Flanagan, and Tamara Carley. I am also indebted to Mark Rivers, Joe Wooden, and Rosanne Delapp, who were extremely helpful guides in performing the various analyses conducted throughout this project. Funding support from this project came from National Science Foundation grants EAR-0911726 and EAR-0711109.

Thanks are also due to the faculty and staff of the Earth & Environmental Sciences Department at Vanderbilt. My questions were always accepted and answered with interest and excitement. I bow down to Aaron Covey, who made sure I was supplied with the technological means to do this project.

The other graduate students of the EES department were also vital to keeping me going. I would particularly like to thank Andrew Roberts for always being up for an adventure, a walk, or eating outside, and for getting that dead decaying mouse out from under my kitchen sink.

Finally, I could not have done this at all without the love and support of my family, friends, and the PB. I particularly thank my mom, dad, and brother for weathering the trials and tribulations of having a daughter/sister interested in geology, namely for dealing with the fact that she thinks rocks are the coolest things ever and goes gallivanting around the world to look at them. I also give many thanks to the PB, who (foolishly) still thinks I'm smart and who is endlessly curious about the world, which makes me more so. My dearest friends from Blue Bell are also due enormous thanks for always providing me with laughs, amongst many other things. Thank you all for always listening to my ramblings and being ever encouraging of my insanity.

iii

TABLE OF CONTENTS

	Pa	ige
DEDIC	ATION	ii
ACKNO	OWLEDGEMENTS	iii
LIST O	OF TABLES	vi
LIST O	OF FIGURES	. vii
Chapte	er	
I. T	THE PEACH SPRING TUFF	1
	Introduction Geologic Background	1 2
II. N	METHODS	5
	Samples Analytical Methods Bulk density determinations, thin section documentation and crystal separation Differential Absorption X-ray Tomography (DAT) and Crystal Size Distributions (CSD) Scanning Electron Microscope (SEM) Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA ICRMS)	6 7 7 8 .10
	Reverse Geometry Sensitive High Resolution Ion Microprobe (SHRIMP-RG) Whole rock geochemistry	.13 .15
III. F	RESULTS Bulk density determinations Whole rock geochemistry Phenocryst assemblages Trace element compositions Glass and whole rock compositions and trends Zircon and sphene compositions Rare earth elements Trace element variations Ti-in-zircon and Zr-in-sphene thermometry Textures Crystal size distributions Qualitative textural features of minerals in the Peach Spring Tuff	.14 .16 .17 .18 .21 .21 .26 .32 .36 .39
IV. D	DISCUSSION	.44
	Cooling, crystallization, and decompression in the Peach Spring magma system Heating and zoning in the Peach Spring Tuff	.44 .47
V. (CONCLUSIONS	.50

Appendix

A.	WHOLE ROCK GEOCHEMISTRY OF THE PEACH SPRING TUFF	.52
В.	LA-ICPMS ANALYSES FROM THE PEACH SPRING TUFF	.55
C.	TRACE ELEMENT COMPOSITIONS FROM SHRIMP-RG OF ZIRCON GRAINS FROM	
	THE PEACH SPRING TUFF AND CATHODOLUMINESCENCE IMAGES OF ANALYZEI	D
	ZIRCON CRYSTALS	.90
D.	TRACE ELEMENT COMPOSITIONS FROM SHRIMP-RG OF SPHENE GRAINS FROM	
	THE PEACH SPRING TUFF AND CATHODOLUMINESCENCE IMAGES OF ANALYZEI	D
	SPHENE CRYSTALS	208
E.	BLOB3D EXTRACTED DATA USED TO DETERMINE CRYSTAL SIZE	
	DISTRIBUTIONS	270
REFE	ERENCES	301

LIST OF TABLES

Table	P	age
1.	Sample locations, descriptions, analyses performed, and year collected	7
2.	Tomographic run letters with corresponding sample size and image resolution	9
3.	SEM Operating Conditions	11
4.	LA-ICPMS operating conditions (modified from Colombini 2009)	12
5.	Measured bulk densities of pumice clasts and intracaldera fiamme	16
6.	Phenocryst assemblages of PST samples	18
7.	REE compositions of zircon and sphene crystals used for normalization	22

LIST OF FIGURES

Figur	e Page
1.	Areal extent of the Peach Spring Tuff
2.	SiO ₂ vs. Sr in CRW, PSTG01C, WSW1, WSW2A, WSW2B and Kingman19
3.	Whole rock and glass compositions for Kingman (outflow pumice), CRW (intracaldera fiamma), and WSW1 (mafic enclave)
4.	Chondrite-normalized REE plots of zircon and sphene grains used for zircon- and sphene- normalized REE plots
5.	Zircon-normalized rare earth elements in zircon
6.	Sphene-normalized rare earth elements in sphene25
7.	Zircon-normalized Gd vs. Hf in zircon crystals for (a) KPST01A, (b) WSW2A, (c) WSW2B, (d) PSTG01C and (e) CRW27
8.	Zircon-normalized Nd v. Hf in zircon for (a) KPST01A, (b) WSW2A, (c) WSW2B, (d) PSTG01C, and (e) CRW
9.	Zircon-normalized Yb v. Hf in zircon for (a) KPST01A, (b) WSW2A, (c) WSW2B, (d) PSTG01C, and (e) CRW
10.	Sphene-normalized Nd v. Gd in sphene for (a) KPST01A, (b) WSW2A, (c) WSW2B and (d) PSTG01C
11.	Sphene-normalized Yb and Gd in sphene for (a) KPST01A, (b) WSW2A, (c) WSW2B, and (d) PSTG01C
12.	Ti-in-zircon temperatures
13.	Zr-in-sphene temperatures
14.	Crystal size distributions of (a) zircon, (b) sphene, (c) allanite+chevkinite and (d) magnetite
15.	Phenocryst textures in thin section and crystal separates40
16.	Tomograms and reconstructions of phenocrysts in outflow pumice (a) and intracaldera fiamma (b)41
17.	3D rendition of sphene (yellow), allanite+chevkinite (red) and zircon (white) crystals from tomography43

CHAPTER I

THE PEACH SPRING TUFF

Introduction

An eruption is deemed a "supereruption" if it is one that deposits a large volume of material (Sparks et al. 2005, Self 2006) over a relatively short time interval. The tuffs that result from these eruptions are of great interest to the field of Earth Science, as their existence is striking evidence that large magma reservoirs exist within the Earth's crust. Studying these tuffs can provide important insight into the evolution of such large magma bodies, which is fundamental to understanding the stability and longevity of such systems, as well as the mechanism(s) that do (or do not) trigger a supereruption. In addition, they may hold meaningful information about processes that form and alter the continental crust.

On a broader scale, studying these tuffs is essential for understanding how and why supereruptions are (or are not) comparable to eruptions of lesser volume, and to what extent these giant systems are similar to those that form large batholiths. We can relatively easily monitor and study small ongoing volcanic systems, but we are not able to do this for rare and short supereruptions. Consequently, by finding and understanding similarities between small and giant systems we will be better able to prepare for future supereruptions. Volcanic eruptions of all sizes impact life and society, but supereruptions have the ability to wreak havoc at much larger scales than smaller eruptions. Thus, despite the fact that such large eruptions are rare, they do deserve study.

The Peach Spring Tuff (PST) is an example of an enormous pyroclastic deposit formed by a supereruption (e.g. (Smith & Bailey 1966, Christiansen & Blank 1972, Bailey et al. 1976). Relative to other known tuffs that are products of super eruptions, such as Oranui or the Bishop Tuff (Wilson 2001, Wilson & Hildreth 1997), the PST is unusual in its abundance of accessory minerals like sphene, zircon, and allanite. These minerals are major reservoirs for trace elements, particularly U, Th, and REE, and can serve as useful geochronometers,

geothermometers and monitors of magmatic evolution trends. Study of these minerals can place useful constraints on the conditions in the magma chamber, and their ability to record important compositional stages of the melt (e.g. via compositional zoning) can be used to understand the development of the PST system over time.

This primary aim of this study was to assess the history and evolution of the PST system by using textures and compositions of accessory minerals (sphene, zircon, allanite, chevkinite) and glasses in pumice clasts and fiamme from various regions of the PST outflow and intracaldera deposits. This study complements work done by Carley (2010), who used MELTS modeling and bulk compositions of the same set of pumice clasts and fiamme to investigate the mechanisms involved in bringing the PST system to an eruptive state.

Geologic Background

The Peach Spring Tuff is a large Miocene ignimbrite located in the southwestern United States. It was first recognized by Young & Brennan (1974), who described it in the western Colorado Plateau. Glazner et al. (1986) broadened its known extent to the Mojave Desert, where field observations and phenocryst assemblages were used to correlate tuff outcrops with the PST. It has since been found discontinuously in outcrops over a radius of ~360 km (Buesch 1992) around the triple junction of Arizona, Nevada, and California (figure 1). Based upon outflow exposures known at the time, Buesch (1992) estimated that the PST covered an area of at least $32,000 \text{ km}^2$ and had a volume $\geq 640 \text{ km}^3$.

The PST represents a geologically instantaneous eruptive event that occurred within a period of significant regional extension. This, in addition to having an expansive presence throughout the region, makes the PST an important stratigraphic horizon in a region that generally lacks similarly useful marker beds.

Originally, the PST was thought to record a single cooling unit (e.g. Young & Brennan, 1976; Glazner et al, 1986); however, recently it has been proposed that two cooling units may exist (Varga et al. 2004). Sanidine crystals in the PST dated by Ar/Ar have been reported to have an age of 18.5±0.2 Ma (Nielson et al. 1990, Miller & 1998), but a revised age of 18.66±0.03 Ma

(using the most recent accepted Fish Canyon sanidine standard age) has recently been obtained for the PST (Ferguson & McIntosh in prep.).

Figure 1. Areal extent of the Peach Spring Tuff. Red dots indicate sample locations. White circle indicates the approximate location of the source caldera (Silver Creek Caldera).

The PST is typically strongly welded and varies in thickness (Glazner et al. 1986) from 10-15 m in distal portions (e.g. Barstow, CA) to 60-130 m in more proximal localities (e.g. Kingman, AZ; Piute Mountains, CA). Young & Brennan (1974) were first to describe the rock and deemed it a trachyte; however, recent work indicates that the PST outflow is rhyolitic in composition (Gaudio et al. 2003, Carley 2010). Previous workers have characterized the PST as containing 4-20% phenocrysts (Young & Brennan 1974) of primarily feldspar (sanidine and plagioclase), biotite more abundant than hornblende and pyroxene, and rare quartz. Large sanidine is the predominant feldspar (Glazner et al. 1986)..Accessory minerals include relatively abundant sphene, zircon and allanite, as well as some possible monazite and chevkinite.

Given the volume of the PST, it is expected that a sizeable caldera (15-20 km diameter) (Smith 1979) would have been produced from eruption; however, the precise location of the PST

source has been an issue of contention. Various studies have considered the problem, and the Black (AZ) or Newberry (NV) Mountains have generally been thought to be the best candidates to contain the caldera: Young & Brennan (1974) suggested that outcrop thinning in locations distal from Black Mountains were evidence of a source in the Black Mountains. Glazner et al (1986) supported this idea based on similar thickness patterns between distal outcrops in the Mojave Desert and locations more proximal to the Black Mountains. In contrast, Hillhouse & Wells (1991) showed that the intersection of magnetic lineations and patterns of magnetic imbrications suggested a source region in the Newberry Mountains.

Until recently, a source caldera was never located in either of these areas, but it was thought that this was due to regional extension and younger deposits disjointing and burying the vent (Buesch 1992). New detailed mapping of the area around Oatman, AZ (southern Black Mountains) by Pearthree et al. (2008) has, however, revealed a portion of a caldera. Ferguson (2008) investigated the ash-flow tuff found within this remnant and noted it was characterized by a nearly identical phenocryst assemblage to the PST and was of the same age (Ferguson and McIntosh in prep.). Known as the Silver Creek caldera (Ferguson 2008), this is now thought to be the source of the PST.

CHAPTER II

METHODS

The primary goal of this work was to study the history and evolution of the PST magmatic system as recorded by the relatively abundant accessory mineral phases present. To achieve this, geochemical data from glasses and accessory minerals were combined with data garnered on textural features of these minerals.

Textures and trace element compositions of accessory minerals and glasses in outflow and intracaldera pumice clasts and fiamme were characterized using a number of methods: Textures were quantitatively and qualitatively analyzed using differential absorption x-ray tomography, optical and electron microscopy of thin sections and handpicked crystal separates. Trace element compositions of glasses were analyzed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICPMS), and trace element compositions of zircon and sphene crystals were analyzed by Reverse Geometry Sensitive High Resolution Ion Microprobe (SHRIMP-RG). SHRIMP-RG results were also used to calculate temperatures recorded in zircon and sphene crystals, using the re-calibrated Ti-in-zircon thermometer (Ferry & Watson 2007) and Zr-in-sphene thermobarometer (Hayden et al, 2008.

Additional information was collected on whole rock geochemistry, bulk densities, and phenocryst assemblages of the samples. Whole rock determinations were conducted by ACTLABS (Ontario, Canada). Bulk densities of samples were measured using an immersion method described by Gualda (2007). Phenocryst assemblages were determined by optical microscopy and, where possible, by x-ray tomography and electron microscopy.

Four accessory mineral phases were the main focus of this work: zircon (ZrSiO₄), sphene ([Ca, MREE, Ce]₄TiSiO₅), allanite ([Ca, LREE]₂[Al,Fe]₃[SiO₄]₃[OH]), and chevkinite ([Ca, LREE]₂[Ti, Fe]₃Ti₂Si₄O₂₂), where MREE and LREE are middle and light rare earth elements, respectively. Both allanite and chevkinite have been positively identified in these samples; however, they are generally difficult or, in the case of x-ray tomography, impossible to distinguish

and have thus been characterized together as allanite+chevkinite. No attempt was made to distinguish between chevkinite and perrierite, which can only be done by x-ray diffraction (Macdonald & Belkin 2002), and we refer to it as chevkinite for convenience. Textures and crystal size distributions for magnetite were also studied by x-ray tomography.

Samples

Samples studied in this work were collected on three separate occasions from locations representing different facies of the PST. Table 1 provides GPS locations and descriptions of samples collected and studied. The map in Figure 1 depicts the known extents of the PST with sample locations noted.

Eleven samples were selected for detailed study: 8 pumice clasts from different localities in the outflow sheet (KPST01A-E, WSW2A-B, WSW3A), 2 intracaldera fiamme (PSTG01C, CRW) and a mafic enclave (WSW1). Qualitative observations were also made on five additional samples (WSW4B,D, GJ1A-C, PTB). Glass analyses were also conducted on these samples; however, results showed large intrasample variation and glass in thin section appeared to be substantially altered. Thus, glass results from these samples were not included in the primary dataset. Glass analyses from WSW2A, WSW2B, and PSTG01C were similarly problematic and are also not included. All glass data collected can be found in Appendix B.

For the most part, samples were large enough to cut thin sections, create mounts of small (~1 cm³) chips, cut multiple small cylinders (largest diameter 1 cm) for tomographic analysis, and obtain whole rock geochemistry. In the case of WSW3A, however, the sample was too small to permit tomographic analysis and whole rock geochemistry.

Given restrictions on time, tomography was only performed on nine of the eleven samples: KPST01A-E, WSW2A-B, PSTG01C, and CRW. Similarly, SHRIMP-RG analysis was only conducted for zircon and sphene crystals from KPST01A, WSW2A-B, PSTG01C, and CRW.

Sample Name	Map Location Name	Easting	Northing	Location within tuff	Sample Description	Analyses Performed	Year Collected
KPST01A	Kingman	0769890	3897793	do	pc	x.t.i.s	2007
KPST01B	Kingman	0769890	3897793	do	pc	x. t. i. s	2007
KPST01C	Kingman	0769890	3897793	do	pc	x. t. i. s	2007
KPST01D	Kingman	0769890	3897793	do	pc	x, t, i, s	2007
KPST01E	Kingman	0769890	3897793	do	pc	x, t, i, s	2007
GJ1A	Grasshopper Junction	0739361	3902329	do	pc	t, i	2009
GJ1B	Grasshopper Junction	0739361	3902329	do	pc	t, i	2009
GJ1C	Grasshopper Junction	0739361	3902329	do	pc	t	2009
PT1B	Piute Mountains	0670678	3848191	do	f	t	2009
WSW1	Warm Springs West	0740155	3864385	ро	me	t, i	2009
WSW2A	Warm Springs West	0740155	3864007	ро	рс	x, t, i, s	2009
WSW2B	Warm Springs West	0740155	3864007	ро	рс	x, i, s	2009
WSW2D	Warm Springs West	0740155	3864007	ро	рс	t, i	2009
WSW2F	Warm Springs West	0740155	3864007	ро	рс	i	2009
WSW2G	Warm Springs West	0740155	3864007	ро	рс	t	2009
WSW3A	Warm Springs West	0740405	3863908	ро	рс	t	2009
WSW4B	Warm Springs West	0740173	3864203	ро	f	t, i	2009
WSW4D	Warm Springs West	0740173	3864203	ро	f	t, i	2009
CRW	Cathedral Rock	0731653	3882577	ic	f	x, t, i, s	2009
PSTG01C	Times Gulch	0730332	3881149	ic	f	x, t, i, s	2008

Table 1. Sample locations, descriptions, analyses performed, and year collected.

All Waypoints are UTM zone 11S, NAD 27 unless otherwise indicated

x: x-ray tomography	do: distal outflow	pc: pumice clast
t: thin section analysis	po: proximal outflow	f: fiamme
i: LA-ICPMS	ic: intracaldera	me: mafic enclave

s: SHRIMP-RG

Analytical Methods

Bulk Density Determinations, Thin Section Documentation and Crystal Separation

Bulk densities were determined using an immersion technique based on Archimedes' Principle appropriate for porous samples, described in detail by Gualda (2007). Bulk densities were obtained for all samples in the primary sample set, except WSW1 and WSW3A.

Polished thin sections were prepared by Idaho Petrographics and were examined under a Zeiss petrographic microscope equipped with a digital camera for photomicrography. Phenocryst assemblages and textural features of crystals were documented and photographed.

Zircon and sphene crystals were separated from pumice and fiamme by a modified version of the physical separation technique outlined and used by Gualda et al. (2004) and Gualda (2007), which consists of lightly crushing pumice, sieving, and separating glass-rich from crystal-rich material by winnowing in water. In this work, winnowing sieved separates in water was unsuccessful, due to the fact that the density of the glass-rich particles is closer to that of feldspar phenocrysts than in the Bishop pumice studied by Gualda (2007). Despite the fact that zircon and sphene are much denser than feldspar, the crystal population in these rocks is dominated by feldspar and it is difficult to winnow feldspar+glass without risking significant loss of other crystals, particularly in the small size fractions. Therefore, heavy liquid separation was performed instead, using methylene iodide (MEI) to separate zircon and sphene crystals ≤800 µm in size from the sieved fractions. Magnetite was removed from the heavy separate fraction with a strong magnet.

Zircon and sphene crystals were picked under the petrographic microscope in 1.54 refractive index oil and photographed.

Differential Absorption X-ray Tomography (DAT) and Crystal Size Distributions (CSD)

X-ray tomography has been shown to be a useful technique to study pumice, particularly because it provides 3D images of samples, with which crystals can be characterized *in situ* and textural features (e.g. fragmentation, clustering, shapes) can be documented (e.g. Gualda & Rivers 2006, Song et al, 2001). Differential absorption x-ray tomography (Gualda et al., in press) has been introduced as a more refined method for studying minerals rich in high-Z elements, particularly Zr and rare earth elements (REE). Unlike conventional x-ray tomography, in which all phases appear and need to be distinguished based on differences in linear attenuation coefficients, this method results in elemental maps such that only phases rich in a given element

appear. As such, DAT is suitable for studying zircon (Zr), sphene (Ce), and allanite+chevkinite (Ce) in PST pumice and fiamme.

All tomographic imaging was performed on the bending magnet beamline of the GeoSoilEnvironCARS at the Advanced Photon Source (APS) at Argonne National Laboratory (Chicago, IL) (Rivers et al. 1999, Sutton et al. 2002, Gualda & Rivers 2006). Samples were prepared in the manner described by Pamukcu & Gualda (in press). Three cylinders of systematically varying size were cut from each sample (10 mm, 4.5 mm, 2 mm). Each cylinder was imaged at five different energies: above and below the Zr absorption edge (17.9, 18.1 KeV), above and below the Ce absorption edge (40.34, 40.54 KeV), and at an ideal energy (20-30 KeV, dependent on sample density). A total of 720 frames (692 x 520 pixels each) were collected for runs using above and below edge energies, and 900 frames (1392 x 1040 pixels each) were collected for runs performed at ideal energy. As a result, voxel (volume element) size in above and below edge tomograms is twice that of a tomogram taken at ideal energy in each linear dimension.

Each run was given a letter to designate cylinder size and image resolution. A, B, and C were given to above and below edge analyses of cylinders of different sizes. X, Y, and Z were given to ideal energy analyses of cylinders of different sizes. See table 2 for run letters and corresponding cylinder size and image resolution.

Run Letter	Cylinder Size (mm)	Resolution (µm/voxel)
Run A	10	17.58
Run X	10	8.79
Run B	4.5	8.74
Run Y	4.5	4.37
Run C	2	4.70
Run Z	2	2.35

Table 2. Tomographic run letters with corresponding sample size and image resolution.

Image processing was performed using Blob3D (Ketcham 2005) and vol_tools (Rivers & Gualda 2009), as outlined by Gualda & Rivers (2006) and Gualda et al. (in press). Typically, crystals in pumice clasts are independent of each other (not touching) and can be measured automatically by Blob3D. Accessory minerals in the PST, however, have a tendency to cluster together and automatic measurement of these clusters can skew resultant size distributions. This problem can be avoided during image processing using tools available in Blob3D that allow for manual separation of touching crystals such that they can be measured individually. In samples where such clustering was prevalent, this manual separation technique was used.

A total of four minerals have been analyzed by x-ray tomography: zircon, sphene, allanite+chevkinite, and magnetite. Zircon and allanite+chevkinite results were obtained from Zrand Ce-maps, respectively. Even though important qualitative information can be retrieved on sphene from Ce maps, Ce contents in PST sphene crystals were low enough that sphene crystals could not be quantitatively measured using Ce-maps, and ideal energy tomograms were used instead, Magnetite results were also determined from ideal energy tomograms. Unfortunately, this latter approach requires significantly more time for processing (Gualda & Rivers 2006), and due to time restrictions, sphene and magnetite data were obtained for only two of the five Kingman samples. The decision to use two samples as representative was supported by the fact that Kingman samples are quite similar to each other in various respects, including zircon and allanite+chevkinite size distributions and geochemistry. Finally, it should also be noted that the density of the highly compressed fiamma PSTG01C was too high to be successfully imaged at the lowest resolution used (A Run), but zircon data were garnered from the low resolution ideal energy tomograms (X Run) of this sample.

Scanning Electron Microscope (SEM)

Small rock chips were mounted in epoxy and carbon coated for use in the SEM, as well as for LA-ICPMS (see below). The Hitachi S-4200 Scanning Electron Microscope with an energy

dispersive system (EDS) from Oxford Instruments, located in the Electron Optics Laboratory of the Vanderbilt Institute of Nanoscale Science and Engineering, was used to observe and characterize phenocrysts and examine locations of ICPMS laser spots. Back-Scattered Electron (BSE) images were used to select areas for standard-less quantitative analysis of minerals and glasses, which were performed using the INCA software and EDS detector. See table 3 for detailed operating conditions.

Table 3. SEM Operating Conditions

SEM Operating Conditions

Accelerating Voltage	15-20 kV
Objective Aperture	#2
Emissions	6-10 uA
Working Distance	15 mm
Condenser Lens	#10

Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LA-ICPMS)

The New Wave 213 Laser Ablation system connected to a Perkin-Elmer Sciex ELAN 6100 DRCII ICPMS at Vanderbilt University was used to measure trace element compositions of glasses in mounted rock chips on two separate occasions. In 2008, Dr. Calvin Miller and Tim Peters analyzed KPST01B,D. In 2009, all remaining samples were analyzed. Table 4 outlines operating conditions.

Approximately 10 spots were analyzed on each sample and were bracketed on both ends by analyses of NIST610 (primary) and NIST612 (secondary) standards. An example set is as follows: 3 analyses of NIST610, 2 analyses of NIST612, 10 analyses of unknown, 2 analyses of NIST612, 3 analyses of NIST610. Attempts were made to choose spot locations at a distance from other spots to avoid analysis of material sputtered previously.

The GLITTER data reduction package (GEMOC, Australia) was used for data processing (Griffin et al. 2008). Each block of analyses (10 standards and 10 unknowns) was processed independently, using Si as an internal standard and linear interpolation of standards.

Measurements of NIST612 show that measured values are within 10% of the expected values of Pearce et al. (1997) for most elements, between 10% and 15% for Sc, Fe, Nb, Cs, near 25% for P, Ti, Cr, Ta, and close to 50% for Mg. For elements of most interest here, namely Rb, Sr, Ba, Zr, Hf, REE, reproducibility is typically close to or better than 5%.

Table 4. LA-ICPMS operating conditions (modified from Colombini 2009)

Perkin-Elmer Sciex ELAN 6100 DRCII Inductively Couple	d Plasma Mass Spectrometer
Forward power	1350-1400 W
Gas flow rate	
Nebulizer	0.75 L/min
Auxiliary	0.65-1.00 L/min
Plasma	~ 15.0 L/min
Lens voltage	10.5 V
Auto lens	OFF
New Wave 213 Laser Ablation System	
Wavelength	213 nm
Fluence (26-30 kV, 10 Hz)	~ 6 J/cm²
Laser frequency	10 Hz
Laser output	80%
Spot size	60 μm
He-Carrier gas flow	0.85 L/min
Pulse duration	20 ns
Data Acquisition	
Data acquisition protocol	Time resolved analysis
Scanning mode	Peak hopping, 1 pt/peak
Background (blank) acquisition time	~ 60 s
Analysis (ablation) time	60 s
Flush time	~ 60 s
Dwell time per reading	20 ms for Ti, 10 ms for all others
Replicates	1

LA-ICPMS Operating Conditions

Reverse Geometry Senstive High Resolution Ion Microprobe (SHRIMP-RG)

Trace element compositions of zircon and sphene crystals were analyzed at the USGS-Stanford SHRIMP-RG at Stanford University. Zircon and sphene crystals were picked from crystal separates using the method described above and sent to the SHRIMP-RG laboratory. Crystals were mounted, polished, and gold coated by Lily Claiborne, Danny Flanagan, and Dr. Joe Wooden. Cathodoluminescence (CL) images of mounted zircon and sphene crystals were obtained on the Stanford JEOL 5600LV SEM equipped with a custom-built panchromatic CL detector. CL images were used to select locations for analytical spots. The sample was analyzed using a focused 3-6 nA primary beam of ¹⁶O₂⁻ (Grimes et al, 2009) and an ~15 μm spot size. The basic operating parameters and trace element routines described by Claiborne et al.(2010) and Mazdab et al.(2007) were employed for this work. Standards R33 and BLR were included in zircon and sphene mounts, respectively, and used as secondary standards. Typical errors are 10%, but significantly higher for LREE (except for Ce) in zircon. La values in zircon, in particular, can be strongly affected by analysis of volumes containing small inclusions of LREE-rich minerals.

Zircon and sphene crystals of KPST01A, WSW2A, WSW2B, and PSTG01C were analyzed for this work. Sphene crystals could not be found in CRW separates, thus only zircon was analyzed for CRW. Lindy Colombini performed analyses on zircon and sphene from PSTG01C in June 2008 and on sphene from the Kingman locality in January 2009, and the remaining samples were analyzed in December 2009. Efforts were made to analyze cores and edges of crystals, as well as sector zones and zones of conspicuously different brightness in CL. However, some of the zoning includes features that are smaller than the beam size used, such that analyses average out the properties of these regions. CL images with spots locations noted can be found in Appendices C and D.

Ti-in-Zircon and Zr-in-Sphene Thermometry

Temperature histories recorded in zircon and sphene crystals can be estimated using the re-calibrated Ti-in-zircon thermometer (Ferry & Watson 2007) and the Zr-in-sphene thermobarometer (Hayden et al. 2008):

$$T_{zircon}(^{\circ}C) = \frac{-4800 \pm 86}{\log Ti(ppm) + \log a_{Si0} - \log a_{Ti0} - (5.711 \pm 0.072)} - 273$$

$$T_{sphene}(^{\circ}C) = \frac{7708 + 960P(GPa)}{10.52 - \log a_{TiO_{2}} - \log a_{SiO_{2}} - \log Zr(ppm)} - 273$$

An important caveat to applying these thermometers to real systems is that activity values of TiO₂, SiO₂ and, in the case of sphene, ZrSiO₄ must be constrained. The reader is referred to Claiborne et al. (2010) for an in-depth discussion of the complications in determining a_{TiO_2} and a_{SiO_2} for the Ti-in-zircon thermometer and the errors due to over- or under-estimating these activities. Additional discussions of a_{TiO_2} values in magmatic systems that are rutile-undersaturated but do contain a titaniferous phase can be found in Watson et al. (2006), Hayden & Watson (2007), and Ferry & Watson (2007). In the case of sphene, as Hayden et al. (2008) explain, a_{ZrSiO_2} can generally be taken as 1, given that natural zircon is typically nearly pure.

In the case of the PST, which is rutile-undersaturated but does contain sphene, a value of $a_{TiO_2} = 0.7$ was assumed. In terms of quartz, it is unknown if and when the system was quartz-saturated and if zircon and sphene were in equilibrium with the host melt at the time, but a value of $a_{SiO_2} = 1$ has been used in this work. Finally, the sphene thermobarometer includes a pressure component. Best estimates of crystallization pressures are in the range 200-250 MPa for PST samples (see Carley, 2010), and thus P = 0.25 GPa was used in the temperature calculations here. Importantly, changing a_{TiO_2} or a_{SiO_2} by ±0.1 leads to differences in temperature of ~10-15 °C. In the case of sphene, a ±0.05 GPa change in pressure results in a temperature difference of ~5-10 °C. These differences are small relative to the range of temperatures recorded on zircon and sphene.

Despite these complexities, it is important to note that the qualitative relationships that are found on plots of Ti and Zr contents do not change with changing activity values. These

relative relationships are the primary focus here. Plots do contain reference temperature lines using the above values; however, it must be stressed that these should be taken as *estimated* temperatures rather than measured temperatures, and the specific choice of activities does not significantly change any of our conclusions.

Whole Rock Geochemistry

Whole rock geochemistry determinations were performed by ACTLABS. Pieces of pumice and fiamme of ~5-20 g were sent for analysis. Analytical methods used by ACTLABS include ICPMS and Instrumental Neutron Activation Analysis (INAA).

CHAPTER III

RESULTS

Bulk Density Determinations

Bulk densities of pumice clasts (average = 1.37 g/cm^3) and intracaldera fiamme (average = 2.55 g/cm^3) differ significantly. Among the seven pumice clasts alone, bulk densities vary considerably, from 1.14 to 1.59 g/cm³ (see table 5 for specific samples). Bulk densities of Kingman pumice clasts (KPST01A-E) cover a relatively wide range (1.14-1.41 g/cm³), but are somewhat lower than WSW2A and WSW2B, which are similar to each other (1.49 and 1.59 g/cm³ respectively). Intracaldera fiamme, PSTG01C and CRW, have much higher densities (2.53 g/cm³ and 2.57 g/cm³, respectively). This trend may reflect varying degrees of welding of the samples, and the high densities (>1 g/cm³) of pumice clasts suggest they were welded but to a lesser extent than the fiamme.

Sample name	Sample Density (g/cm ³)
KPST01A	1.41
KPST01B	1.41
KPST01C	1.23
KPST01D	1.35
KPST01E	1.14
WSW2A	1.49
WSW2B	1.59
CRWPST	2.53
PSTG01C	2.57

Table 5. Measured bulk densities of pumice clasts and intracaldera fiamme.

Whole Rock Geochemistry

Pumice clasts and fiamme range considerably in whole rock composition, from high-silica rhyolite to trachyte (Carley, 2010). Kingman samples are high silica rhyolite (75 wt. % SiO₂) and display little compositional variability (e.g. 12-13 wt. % Al₂O₃, 1 wt. % Fe₂O₃). WSW2A is similar to Kingman (75 wt. % SiO₂, 13 wt. % Al₂O₃, 1 wt. % Fe₂O₃), but WSW2B is considerably more mafic (71 wt. % SiO₂, 15 wt. % Al₂O₃, 2 wt. % Fe₂O₃). Intracaldera fiamme (PSTG01C and CRW) are both trachytes (66-68 wt. % SiO₂. 16-17 wt. % Al₂O₃, 2-3 wt. % Fe₂O₃). The enclave, WSW1, is distinctly more mafic (57 wt. % SiO₂, 17 wt. % Al₂O₃, 7 wt. % Fe₂O₃). For the full suite of major element compositional data, see Appendix A.

Phenocryst Assemblages

Phenocryst assemblages were determined by optical microscopy and complemented by information from x-ray tomography and electron microscopy. Quantitative abundances of phenocrysts have not been determined from thin sections, but feldspar is much more abundant than other mineral phases, and sanidine is predominant over plagioclase. A summary of phenocryst assemblages for each sample can be found in table 6.

Most outflow pumice and fiamme samples contain feldspar (alkali feldspar>>plagioclase), zircon, sphene, magnetite and biotite. Amphibole is found in all pumice clasts, and in the mafic enclave, but it is not readily found in thin sections of most fiamme. Amphibole is absent in thin sections of some pumice clasts, but is found in tomograms of all analyzed samples. Allanite+chevkinite is found sparingly in thin sections of both pumice and fiamme, but has been identified in tomography of all analyzed pumice clasts. Abundant clinopyroxene and sparse orthopyroxene are present in the mafic enclave (WSW1). Clinopyroxene has also been identified in the WSW3A pumice clast and as a large (~500 µm) singe crystal in the WSW4B fiamme. Single grains of quartz (~250-400 µm) were found in WSW2D and GJ1B thin sections.

The intracaldera fiamme contain alkali feldspar, zircon, sphene, allanite+chevkinite, magnetite and biotite. Amphibole is found in both samples, but it is typically present as small

fragments in thin section. Some euhedral to subhedral grains of amphibole can be identified in tomographic images. Biotite in both intracaldera samples is commonly rimmed by or entirely altered to chlorite. CRW is distinct from all other samples in that it contains a population of abundant apatite, which has not been found in other samples.

Sample Name	Alkali Feldspar	Plagioclase	Quartz	Zircon	Sphene	Allanite + Chevkinite	Amphibole	Biotite	Orthopyroxene	Clinopyroxene	Apatite
KPSTUIA	0	_		0	0	0	0				
KPST01B	0	0		x	0	0	0	x			
KPS101C	0	0		0	0	x	0	0			
KPS101D	0	0		x	0	x	x	0			
KPST01E	0	0		0	0	x	0	0			
GJ1A	0	o		0	0			0			
GJ1B	0		0	0	0			0			
GJ1C											
PT1B				0	0			о			
WSW1		о					0		x	о	
WSW2A	o	о		0	0	о	ο	о			
WSW2D	o	о	0	0	0	о	ο	о			
WSW2G	o	о		0	ο		о	ο			
WSW3A	o	о		0	ο	о	о	ο		o	
WSW4B	o	о		0	ο	о	о	ο		o	
WSW4D	o	о		0	0	ο		о			
CRW	o	о		0	x	ο	x	о			ο
PSTG01C	o			o	o	o	o	o			

Table 6. Phenocryst assemblages of PST samples.

x: x-ray tomography only

o: thin section analysis + x-ray tomography and/or SEM

Trace Element Compositions

Glass and Whole Rock Compositions and Trends

Glass and whole rock geochemistry results are provided in figures 2 and 3 for Kingman (outflow), CRW (intracaldera), and WSW1 (mafic enclave). Glasses in all other outflow samples were significantly altered and/or overwhelmed by microlites, and results for these samples were deemed unreasonable. Intrasample variability of elemental concentrations and shapes of REE

patterns (e.g. positive Eu anomalies indicative of feldspar analysis) were used to distinguish acceptable and unacceptable analyses. Additionally, some analyses resulted in disjointed REE patterns and were thus discarded.

The focus of this work is on trace element data, but in figure 2, a plot of Sr v. SiO₂ has been provided to show how these trends relate to changes in the major element composition of the samples. All plots are relative to Sr, which acts as an indicator of fractionation in this feldsparrich system. Ba, Hf, Gd, La, Nb, and Yb are considered here as they readily enter into the structures of feldspar, zircon, sphene, allanite, and chevkinite, and can elucidate crystallization and fractionation trends. Additionally, Hf, Gd, La, Nb, and Yb will also be utilized as indicators of differentiation in zircon and sphene.

Figure 2. SiO_2 vs. Sr in CRW, PSTG01C, WSW1, WSW2A, WSW2B and Kingman. SiO_2 increases with decreasing Sr. Kingman and WSW2A are high-silica rhyolites, and WSW2B is a low-silica rhyolites. CRW and PSTG01C are trachytes. WSW1 is notably more mafic in composition.

Figure 3. Whole rock and glass compositions for Kingman (outflow pumice), CRW (intracaldera fiamma), and WSW1 (mafic enclave). Filled symbols are whole rock analyses, open symbols are glass analyses. Sr is positively correlated with Ba (a), Hf (b), Gd (c), La (d), and Nd (f), showing fractionation of the system by crystallization of feldspar (Ba, Sr), zircon (Hf), sphene (Gd) and allanite+chevkinite (La, Nd). Yb (e) remains relatively constant.

Outflow and intracaldera samples show similar trends in the trace elements considered here. Ba, Hf, Gd, La, and Nd contents in both glasses and whole rock of outflow and intracaldera samples are positively correlated with Sr, such that Kingman samples appear to be the most evolved. Yb contents of glasses in both samples show no correlation with Sr, but Yb contents of whole rocks are negatively correlated, such that CRW is most depleted in Yb.

Glasses in the mafic enclave (WSW1) are also enriched in Sr, Ba, Hf, Gd, La, and Nd, relative to other samples, but show no difference in Yb contents. Whole rock Ba, Hf, Gd, La, Nd, and Yb are nearly all depleted relative to glass—one glass analysis is more depleted in Yb relative to whole rock. Whole rock Ba, Hf, Gd, La, Nd, and Sr in WSW1 are enriched relative to Kingman, but depleted relative to CRW. Yb in WSW1 is lower than in both Kingman and CRW.

Zircon and Sphene Compositions

Rare Earth Elements

Rare earth element plots for zircon and sphene, in which cores, interiors, and edges of crystals have been distinguished, are shown in figures 5 and 6. REE plots are typically displayed as chondrite-normalized; however, this significantly reduces the ability to see subtle differences between analyses. REE plots shown and discussed here are normalized to a zircon or sphene from the PST, which enhances these differences. Single zircon and sphene analyses used for this normalization were chosen from analyses of KPST01A grains because Kingman samples are similar to each other and likely represent the bulk of the PST. Furthermore, as discussed below, geochemical data indicate that Kingman samples follow a simple fractionation history and represent some of the most evolved magmas in the system. Thus these samples include some of the most evolved zircon and sphene grains in the PST.

The compositions of the selected grains are in table 7, and chondrite-normalized plots of these crystals are included in figure 4. As usually the case in zircon, the grain selected shows enrichment in HREEs relative to other REEs. Ce is a notable exception, resulting in a considerable positive Ce-anomaly. Notice that La concentration is very low, in sub-ppm levels.

The sphene grain selected displays depletion in HREE relative to MREE and LREE, with much higher REE concentrations than zircon, particularly for MREE and LREE. A moderate negative Eu-anomaly is apparent.

	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Но	ть	Dy	Er	Tm	Yb	Lu	Hf
Zircon	0.016	71.7		1.3		3.6	1.0	31.9	40.5	10.1	111.6	165.9	33.8	255.5	43.4	9914.8
Sphene	4824.6	171235	2416.1	10689.5		2160	181.9	1852.3	248.1	1395.9	271.8	720.8	92.1	489.7	57.9	

Table 7. REE compositions of zircon and sphene crystals used for normalization.

Figure 4. Chondrite-normalized REE plots of zircon and sphene grains used for zircon- and sphene-normalized REE plots.

Zircon

Zircon REEs (fig. 5) of outflow pumice follow two different sets of patterns. In general, edges of KPST01A and WSW2A zircon crystals are depleted in MREE relative to the normalizing zircon, and WSW2A cores are enriched in LREE (except for Ce). In contrast, WSW2B REEs are similar to the normalizing zircon, but show core-to-edge reduction in total REE concentration.

Intracaldera samples display patterns similar to those of WSW2B in that they resemble the normalizing zircon. However, both PSTG01C and CRW are enriched in LREE (except Ce). PSTG01C also shows a core-to-edge reduction in total REE contents, but CRW does not.

Sphene

Sphene REEs for outflow pumice clasts can also be split into two sets of patterns. KPST01A and WSW2A cores are generally enriched in MREE relative to the normalizing sphene, while edges are similar to it. Cores and interiors of WSW2B grains are similar to the normalizing sphene, though some cores show a significant enrichment in MREE. Edges, however, are considerably more enriched in MREE than cores. PSTG01C REE patterns are similar to those of WSW2B.

Figure 5. Zircon-normalized rare earth elements in zircon. REEs in all samples except CRW show core-to-edge depletion of REEs, indicative of fractionation. KPST01A (a) and WSW2A (b) are depleted in MREE relative to the normalizing zircon, while WSW2B (c), PSTG01C (d), and CRW (e) resemble the normalizing zircon.

Figure 6. Sphene-normalized rare earth elements in sphene. KPST01A (a) and WSW2A (b) show depletion in REE from core to edge, indicative of fractionation. WSW2B (c) and PSTG01C (d) show this depletion as well, from core to interior, but show a significant enrichment in MREE in edges. This may reflect a heating event that caused resorption of sphene.

Trace element variations

Representative trace element concentrations in zircon and sphene have also been plotted (figs. 7, 8, 9, 10, 11), displaying core, interior, and edge compositions. Hf and Gd are used for zircon and sphene, respectively, as indicators of fractionation. Yb, Gd and Nd were also chosen for variation diagrams as each is readily taken into the structures of zircon, sphene, and allanite+chevkinite, respectively.

Zircon

Similar to REE plots, trace element variation plots (figs. 7, 8, 9) display two sets of trends in outflow pumice clasts. KPST01A and WSW2A both show the same patterns: Gd and Nd are negatively correlated with Hf; Gd and Nd are enriched in cores relative to edges, while Hf is depleted in cores relative to edges. There is no substantial difference in Yb contents between cores and edges. WSW2B shows a considerably different pattern. Gd, Nd, and Yb all decrease from core to edge. However, Hf is depleted in some edges relative to cores, but is enriched in other edges relative to cores. Intracaldera samples display patterns that are comparatively reversed from those of KPST01A and WSW2A. For the most part, intracaldera edges are depleted in Hf, Gd and Yb relative to cores.

Sphene

Trace element trends in sphene crystals (figs. 10, 11) are similar to those seen in zircon. KPST01A and WSW2A both display a core-to-edge trend of decreasing Yb with decreasing Gd. A similar trend is seen for Nd in WSW2A. KPST01A shows a decrease in Nd contents from core to edge, but this is not associated with a trend in Gd contents. WSW2B displays a reversed pattern, such that Yb, Nd, and Gd all increase from core to edge, though some cores and interiors are considerably enriched in these elements. The intracaldera sample, PSTG01C, also displays this reversed pattern, but cores and edges are separated into more discrete groups than in WSW2B, making the pattern more distinct in this sample.

Figure 7. Zircon-normalized Gd vs. Hf in zircon crystals for (a) KPST01A, (b) WSW2A, (c) WSW2B, (d) PSTG01C and (e) CRW. Gd and Hf are negatively correlated in (a) and (b), suggestive of fractionation of sphene and zircon. Higher Gd contents in zircon cores of these samples suggests that zircon growth may have begun prior to sphene. Intracaldera samples (d, e) show reverse trends, indicating that some event, likely a heating and resorption event, occurred between the time of core and edge crystallization. WSW2B shows a decrease in Gd from core to edge, but Hf stays the same.

Figure 8. Zircon-normalized Nd v. Hf in zircon for (a) KPST01A, (b) WSW2A, (c) WSW2B, (d) PSTG01C, and (e) CRW. Nd and Hf are negatively correlated in (a) and (b), indicative of allanite+chevkinite fractionation. Higher Nd contents in zircon cores of these samples also suggests that zircon crystallization may have begun prior to allanite+chevkinite crystallization. Reverse trends are seen in (d) and (e). Core to edge trends are not clear in WSW2B.

Figure 9. Zircon-normalized Yb v. Hf in zircon for (a) KPST01A, (b) WSW2A, (c) WSW2B, (d) PSTG01C, and (e) CRW. KPST01A and WSW2A do not show much change in Yb contents from core to edge, but intracaldera trachytes show core-to-edge depletion in both Yb and Hf. WSW2B does not show a clear trend.

Figure 10. Sphene-normalized Nd v. Gd in sphene for (a) KPST01A, (b) WSW2A, (c) WSW2B and (d) PSTG01C. Nd is positively correlated with Gd in (a) and (b) such that edges are depleted relative to cores, indicative of fractionation by allanite+chevkinite crystallization. WSW2B (c) and PSTG01C (d) show the opposite trend which, similar to zircon trends, support a heating event that occurred between core and edge crystallization that caused resorption of allanite+chevkinite.

Figure 11. Sphene-normalized Yb and Gd in sphene for (a) KPST01A, (b) WSW2A, (c) WSW2B, and (d) PSTG01C. Trends are similar to those seen in Nd v. Gd plots, and suggest fractionation by zircon in (a) and (b), while a heating event that resulted in zircon resorption may be recorded by the enrichment in MREE and HREE in edges of (c) and (d).

Ti-in-Zircon and Zr-in-Sphene Thermometry

Ti and Zr contents in cores and edges of zircon and sphene crystals are plotted in figures 12 and 13. Increasing Ti in zircon and Zr in sphene are associated with increasing temperature (Ferry & Watson 2007; Hayden et al. 2008; see Methods). Reference temperatures, which are calculated using the parameters stated in Methods, are also plotted.

Zircon

In rhyolites from the outflow, Ti contents are generally in the range ~5-35 pm and are inversely correlated with Hf contents (fig. 11). In KPST01A, zircon cores extend from ~5 to 25 ppm, but fall primarily between ~5 and 15 ppm. Zircon cores in WSW2A and WSW2B cover a wider temperature range (~5-30 ppm and ~10-35 ppm Ti, respectively).

Edges of zircon crystals (fig. 11b) from these outflow samples show much more limited ranges of temperatures. KPST01A and WSW2A edges record notably cooler temperatures (~5-10 ppm Ti and ~10500-12500 ppm Hf), while WSW2B edges suggest generally warmer temperatures (~20-35 ppm Ti, ~8500-10000 ppm Hf).

The temperature trends in intracaldera trachytes are similar to those seen in the low-silica rhyolite, WSW2B. Cores of intracaldera fiamme display a similarly wide range of temperatures as outflow samples (~9-38 ppm Ti). Edges of intracaldera zircons, in contrast, record much higher temperatures than most outflow samples (~20-50 ppm Ti). As a result, there is a clear gap between temperatures in edges of intracaldera trachytes and those of KPST01A and WSW2A. WSW2B edge temperatures bridge this gap. It is also worth noting that a population of cooler rims (~10-15 ppm Ti) is also found in CRW edges.

Sphene

Zr concentrations in cores of outflow sphene crystals also suggest a wide spectrum of temperatures (~800-2100 ppm Zr), with WSW2A and KPST01A recording the highest temperatures and WSW2B recording the lowest temperatures. Higher Zr is associated with higher Gd contents.

Edges of outflow sphene crystals show the same relationships as seen in zircon edges. WSW2A records cooler temperatures, clustering tightly between ~700 and 900 ppm Zr and

~2000 ppm Gd. A number of KPST01A edges also fall into this group, but others show higher Zr and Gd (up to ~1400 ppm Zr and ~4000 ppm Gd). In turn, WSW2B edges have between ~1200 and 1500 ppm Zr and much higher Gd contents (~5500-8500 ppm).

Sphene crystals were not found in CRW (except for small, ragged remnants identified by tomography, see below), but PSTG01C trends follow those found in intracaldera zircons and are similar to patterns seen in WSW2B. Cores indicate a variety of temperatures (~1000-1500 ppm Zr, ~1800-6700 ppm Gd), while edges cluster at notably higher temperatures (~1400-1600 ppm Zr) and high Gd contents (~5500-7000 ppm).

In both the outflow and intracaldera samples, zircon shows a much wider temperature range than sphene. Zircon temperatures cover a range of ~160-180 °C, while sphene crystals record a ~30-60 °C temperature interval. In both zircon and sphene, the same core-to-edge trends (figs. 11a,b, 12a,b) are found for each sample: KPST01A and WSW2A show decreasing temperatures while WSW2B, PSTG01C, and CRW show increasing temperatures. This can be seen in individual zircon and sphene grains (figs. 11c, 12c).

Figure 12. Ti-in-zircon temperatures. Reference temperatures are calculated using TiO_2 and SiO_2 activites of 0.7 and 1, respectively. (a) Temperatures recorded in cores show a wide spread of temperatures. (b) Edges of zircon from outflow rhyolites record cooler temperatures than cores, which is consistent with fractionation. Intracaldera trachytes record higher temperatures in edges than cores, consistent with a heating event also implied by other chemical and textural data. WSW2B temperatures span the gap between intracaldera fiamme and other outflow pumices, recording some very high temperatures. (c) Core-to-edge temperature trends of single grains illustrates that intracaldera trachytes and WSW2B get warmer, while KPST01A and WSW2A cool.

Figure 13. Zr-in-sphene temperatures. Reference temperatures have been calculated using activities of TiO_2 , SiO_2 , and Zr_2SiO_4 of 0.7, 1, and 1, respectively. Sphene temperature trends are similar to those in zircon, but record a smaller range of temperatures thereby suggesting that sphene had a shorter history of crystallization than did zircon.

Textures

Crystal Size Distributions

Crystal size distributions in this work (fig. 14) are plotted as semi-log plots of crystal size versus population density (# crystals counted/bin size [µm]/mass [g]), as is typical of many CSD studies (Marsh 1998, 1988). Bin sizes used increase by a factor of two with size (e.g. 17-35 µm, 35-70 µm), due to the overall trend of decreasing numbers of crystals with size (Gualda, 2006). Population densities are calculated as a function of mass instead of volume, due to the high porosity of pumice (Gualda 2006). Crystal size (µm) is taken here to be the maximum dimension of a best fit ellipsoid determined by Blob3D (Ketcham, 2005). Errors are based on counting statistics and are equal to $2\sqrt{N}$, where N is the number of objects in a particular size bin (Gualda, 2006).

Marsh (1998) shows that exponential CSDs (which appear linear on semi-log plots) are typical of igneous rocks and can be modeled using simple nucleation and growth regimes. As a result, the focus in description and discussion of CSD results here will be on distinctions from this "typical" shape. We characterize some of the distributions found here as "kinked", in which two exponential segments can be recognized: a shallow-sloped tail characteristic of large crystal sizes and a steeply-sloped section showing enrichment (one or more orders of magnitude) in small crystals. Power-law, or fractal, size distributions are concave-up distributions in semi-log plots, but appear linear on log-log plots.

Unless otherwise noted, size distributions describe crystals ~17.5-840 µm in size. For the sake of simplicity, sizes given, unless otherwise noted, are the centers of bins and not maximum or minimum crystal size in a given bin. Crystal size distribution data can be found in Appendix E.

Figure 14. Crystal size distributions of (a) zircon, (b) sphene, (c) allanite+chevkinite and (d) magnetite. Upper x-axis shows bin centers. Zircon size distributions follow a linear trend, which is consistent with a simple nucleation and growth model. Sphene and magnetite size distributions of some outflow pumices are kinked, which may be indicative of a decompression event marking onset of eruption. Sphene size distributions in intracaldera fiamme are also kinked but show lower population densities than other phases, as well as a concave-down segment describing small crystals, which potentially reflects sphene resorption.

Zircon

Zircon size distributions (ZSD) of outflow pumice (fig. 14a) can be best described as following a simple linear trend that shows enrichment in small crystals and a comparative depletion in large crystals. In Kingman samples, this trend extends from crystals 26.25 to 840 μ m in size. ZSDs of WSW samples differ from those of Kingman in that they do not contain crystals >210 μ m. WSW2B is also distinct in that it contains a population of crystals <26.25 μ m in size.

The ZSDs of both intracaldera fiamme (fig. 14a) contain crystals 26.25-420 μ m in size and follow a kinked pattern. In both distributions, the kink occurs in the 52.5 μ m bin and results in

a notable enrichment in smaller crystals. Population densities in all bins are not significantly different from those seen in outflow pumices.

Sphene

Sphene size distributions (SSD) of outflow pumice display two patterns (fig. 14b). KPST01C (#1) follows a concave-up pattern, while the SSDs of KPST01B, WSW2A, and WSW2B (#2) are kinked with a sharp enrichment in smaller crystals. The kink occurs in different bins for the distributions (52.5 µm for WSW2B, 105 µm for KPST01B and WSW2A).

SSDs of intracaldera fiamme are similar to each other but differ significantly from outflow SSDs (fig. 14b). Intracaldera SSDs show a distinctive kinked pattern, in which the distribution follows a linear pattern with shallow slope for crystals >210 μ m, and a concave-down pattern for smaller crystals. They do show the typical enrichment in small sizes and depletion of large crystals; however, the intracaldera SSDs are shifted downward by 1-2 orders of magnitude for crystals >210 μ m.

Allanite+Chevkinite

All allanite+chevkinite size distributions (ACSD) from outflow pumice (fig. 14c) show concave-up patterns that can be reasonably described by power law (or fractal) functions; however, there are some notable distinctions between them. First, WSW2A, KPST01C, and KPST01E follow each other closely and do not contain crystals >420 μ m. Second, the KPST01A, KPST01B, and KPST01D distributions include the gamut of crystal sizes, but KPST01A is more enriched than all outflow distributions for crystals >52.5 μ m. WSW2B follows closely with the KPST01A pattern for crystals >105 μ m, but shows a steep increase in crystals of smaller size, resulting in a kinked shape for the overall distribution. Finally, KPST01B and KPST01D follow each other closely and are the most depleted in large crystals.

The ACSDs of intracaldera fiamme also display power-law relationships (fig. 14c). Both distributions follow the WSW2B pattern closely, though neither contains the <52.5 µm population seen in the outflow pumice.

Magnetite

Magnetite size distributions (MSD) of outflow pumice clasts show both linear and kinked shapes (fig. 14d). KPST01C follows a linear trend, but does not contain crystals >420 μ m. The remaining three distributions follow a kinked pattern. The kink occurs in the 105 μ m bin in WSW distributions, and occurs at smaller sizes (52.5 μ m) in KPST01B.

In contrast to the outflow MSDs, the MSDs of intracaldera fiamme (fig. 14d) follow a very simple linear pattern and are noticeably depleted in small crystals. Neither fiamme includes any crystals <52.5 μm, and CRW does not contain any crystals >420 μm.

Qualitative textural features of minerals in the PST

In the process of quantitatively detailing textures and phenocryst assemblages of samples, qualitative observations on textures of phenocrysts were also recorded. In thin sections of outflow pumice clasts, crystals of all phases tend to be euhedral, with intact cores and no reaction rims. Some crystals are fragmented, but fragmentation is not a widespread phenomenon. Zoning patterns in feldspars are generally undisturbed: contacts between zones are sharp, and zone edges do not show embayments (fig. 15a). Physically separated crystals of zircon and sphene are generally euhedral, as well (fig. 15c, d). Tomographic images from outflow pumice clasts corroborate these observations (fig. 16a). An important exception is pumice clast WSW3A, in which many feldspar phenocrysts are fragmented, and large crystals show mild embayments and rounded edges. These features are similar to what is seen in the outflow fiamme (GJ1A-C, WSW4B,D), in which many phenocrysts of feldspar are fragmented and anhedral with rounded edges. Some feldspar crystals are also embayed significantly, such that glass has infilled from the edge to the core. Intracaldera fiamme, particularly CRW, display striking evidence of resorption and reaction. In PSTG01C, many feldspar phenocrysts are moderately embayed and/or have corroded cores. In CRW, nearly all feldspars are heavily embayed, a feature that is visible in both thin section and in tomographic images (figs. 15b,e,

16b). Additionally, biotite crystals in thin section and in crystal separates from intracaldera fiamme are rimmed by or entirely altered to chlorite.

Figure 15. Phenocryst textures in thin section and crystal separates. Textures of phenocrysts are considerably different between outflow pumice clasts (a, c, d) and intracaldera fiamme (b, e). In outflow pumice clasts, feldspar (a), sphene (c) and zircon (d) crystals are generally euhedral. In intracaldera fiamme, feldspar (b) crystals are often embayed and zircon crystals (e) are rounded. Sphene is difficult, if not impossible, to find in thin sections and crystal separates of intracaldera samples. Textures of intracaldera fiamme are suggestive of a heating and resorption event.

Figure 16. Tomograms and reconstructions of phenocrysts in outflow pumice (a) and intracaldera fiamma (b). Phenocrysts in outflow pumices are typically euhedral, while those in intracaldera fiamme are embayed or holey (likely due to resorption). Reconstructions of sphene and magnetite crystals (yellow and green, respectively) display the clustering tendency of accessory minerals.

Zircon crystals found in thin section and separated from PSTG01C and CRW are generally rounded (fig. 15f). Sphene could not be found in thin section or crystal separates from CRW, but tomography provides striking images of sphene crystals that are mostly skeletal (fig. 16b). Small anhedral crystals of sphene can also be found in tomographic images of PSTG01C and CRW. Similarly, small anhedral crystals of amphibole are found in tomographic images, though small euhedral crystals can also be found. Amphibole does not have the same holey texture as seen in sphene.

An additional intriguing textural feature in the PST is a strong tendency for accessory minerals to cluster together (fig. 16). In outflow samples, it is most common to find large magnetite crystals with smaller zircon, allanite+chevkinite, and sphene crystals attached to the edges of or included within them (fig. 16a), but the same phenomenon occurs with zircon and allanite+chevkinite in and around sphene crystals. It is also relatively common, particularly in Kingman samples, to find accessory minerals included in or attached to amphibole crystals.

This texture can be seen in thin sections of outflow samples, but is perhaps most strikingly illustrated in 3D renditions of accessory minerals derived from tomography. For example, fig. 17 shows the suite of accessory minerals rendered from KPST01C. Note that when the sphene (yellow) and magnetite (green) crystals are hidden, it becomes clear that most of the zircon in the sample is concentrated in clusters in and around the sphene and magnetite crystals (see Gualda et al., in press).

Clustering of accessory minerals also occurs in intracaldera fiamme, but it is less common than in outflow samples. In thin sections of intracaldera fiamme, clusters of magnetite, zircon, and allanite+chevkinite are found. In tomography of these samples, sphene can also be found in conjunction with allanite+chevkinite, zircon, and/or magnetite (fig. 16b).

Figure 17. 3D rendition of sphene (yellow), allanite+chevkinite (red) and zircon (white) crystals from tomography. (a) 3D reconstruction of all three phases. (b) Same rendition with sphene crystals hidden. As evident from these renditions, accessory minerals in the PST tend to cluster together.

CHAPTER IV

DISCUSSION

Preserved in the textures and compositions of accessory minerals is an intriguing story of the pre- and syn-eruptive evolution of the PST system. Phenocrysts in the high-silica rhyolites (Kingman, WSW2A) record a simple cooling and crystallization history, as well as the possibility of a late-stage decompression event marking the onset of eruption. The low-silica rhyolite (WSW2B) and the trachytes (PSTG01C, CRW) record this cooling and crystallization history as well; however, they also provide evidence for a late-stage heating event that may have had a considerable impact on the PST system. The focus of this discussion will be on these two segments of the evolution of the PST, as evidenced by textures and compositions.

Cooling, crystallization, and decompression in the Peach Spring magma system

Textures and compositional variations in accessory minerals from the rhyolites show a pre-eruptive history of relatively uninterrupted cooling and crystallization. This is supported by qualitative observations of textures, in that phenocrysts are typically euhedral (fig. 15) and show no evidence of impact by widespread fragmentation, resorption, or mixing events. Fig. 16 depicts this well, showing a number of perfectly formed sphene crystals, as does fig. 15 in showing pristine zoning patterns in feldspar and large euhedral zircon and sphene grains.

Considering textures and compositions in greater detail, however, reveals significant evidence for cooling of the system and a distinct sequence of accessory mineral crystallization. First, core-to-edge temperature trends in zircon and sphene crystals from the rhyolites are clear evidence of overall cooling in this portion of the PST magma, as rims record notably cooler temperatures than cores (figs. 12, 13). This is consistent with basic differentiation of the system due to crystallization, which is also displayed in trace element variations. In particular, the relatively continuous core-to-edge depletion in REE contents with increasing Hf in zircon and with decreasing Gd in sphene is indicative of fractionation by zircon, allanite+chevkinite, and sphene

crystallization. REEs act compatibly with these phases and continual growth of them depletes the melt in HREE, LREE, and MREE, respectively.

Textures and compositions of accessory minerals in rhyolites suggest that the onset and duration of crystallization of individual accessory minerals differed. Broadly, temperatures recorded by zircon and sphene grains differ significantly (figs. 12, 13), showing a spread of ~180-190 °C in zircon and ~50-60 °C in sphene, making it clear that zircon had a more protracted history of crystallization.

A closer look at trace elements also suggests differences in the onset of crystallization of the various accessory mineral phases. In particular, Gd and Nd in zircon show that cores grew from melt of higher Gd and Nd contents than did edges. These results suggest the possibility that zircon crystallization began prior to sphene and allanite+chevkinite, as crystallization of these phases would deplete the melt in Gd and Nd, respectively. The data, however, are insufficient to demonstrate this conclusively. Nonetheless, the data do permit zircon saturation prior to other accessory mineral phases, and necessitate co-crystallization of accessories.

At the same time, the prevalence of accessory minerals (magnetite, sphene, allanite+chevkinite, and zircon) as clusters rather than independently (fig 17) suggests that not only was crystallization of these phases relatively coeval, but that crystallization of one accessory phase may have caused growth of the others (Bacon 1989). On the whole, these results imply that while the onset of growth of these phases may have differed, the bulk of their crystallization was largely coeval.

Crystal size distributions also lend interesting insight into the crystallization history in the PST and have implications for the onset of the PST eruption. As mentioned above (Results), expected distributions are exponential (Marsh 1998), lognormal (Eberl et al. 2002), or fractal (Bindeman 2005). Exponential size distributions, which are linear on semi-log plots, are typically representative of a simple nucleation and growth history, and many of the CSDs of accessory minerals in the rhyolites follow linear trends. This is consistent with the simple cooling and crystallization history that has been discussed.

A number of the size distributions here, particularly for allanite+chevkinite, are concaveup, or fractal, in shape. Fractal distributions are typically considered to be the result of widespread fragmentation of a phase (Bindeman 2005); however, this does not appear to be the case in the PST, where outflow crystals tend to be euhedral. Fragmentation is therefore a nonunique explanation for fractal distributions; however, their origin in PST samples remains puzzling.

More interesting, however, are the kinked distributions displayed by magnetite and sphene in some rhyolite samples. In our work on quartz+feldspar size distributions in the Bishop Tuff (Pamukcu et al, in press, in prep), we found similar kinks, which we attributed to syn-eruptive depressurization of the system, marking a change in the crystallization regime from growth-dominated to nucleation-dominated. We also calculated timescales of crystallization from Bishop quartz+feldspar CSD slopes and crystal growth rates, which indicate that this decompression event began at most on the order of 1-10 years prior to final eruption. Similarly, the kinked sphene and magnetite size distributions seen in the PST rhyolite may record a similar decompression event in the PST system, which may be an indicator of the onset of the PST eruption.

Timescales of sphene crystallization could not be calculated due to the fact that sphene growth rates have not been determined. Timescales of magnetite crystallization were calculated using the CSD slopes we observe here and the magnetite phenocryst and groundmass growth rates $(10^{-14}-10^{-15} \text{ m/s} \text{ and } 10^{-11}-10^{-14} \text{ m/s}, \text{ respectively})$ estimated by Cashman (1988, 1992). Results show that the small crystal population grew on the order of <1-100 years prior to eruption, as compared to the large crystal population which grew 100s-1000s of years before eruption. These results are in good agreement with those obtained by Pamukcu et al (in prep) using CSDs, and by Gualda et al. (2007, in prep) using relaxation of Ti zoning profiles and faceting of melt inclusions in quartz of the Bishop Tuff.

Interestingly, these kinks are not found in zircon and allanite+chevkinite distributions. This may merely be due to a difference in growth rates. Unfortunately, growth rates are also not well constrained for these phases, but they are thought to be quite slow in zircon (10⁻¹⁷-10⁻²¹ m/s,

(Watson 1996). As a result, small populations of crystals that nucleated due to a decompression event that occurred near to the time of eruption may not have had the requisite time to grow to a resolvable size before the final eruption, thereby not recording the event.

Heating and zoning in the Peach Spring Tuff

Textures and compositions of accessory minerals in the PST trachytes introduce an additional facet into the history of the PST (figs. 5-11). Core-to-edge REE patterns in zircon, as well as core-to-interior REE trends in sphene, record a similar fractionation trend as seen in the rhyolites. However, edge compositions, general textural features, and core-to-edge temperature variations suggest that an important event occurred between the time of core and edge crystallization and that this event did not affect the entire PST system to the same extent. More specifically, evidence points to a heating event that affected the trachytes, possibly due to rejuvenation of the system by basaltic or andesitic magma.

Trace element compositions of sphene provide compelling evidence that an influential event occurred between the time of core and edge crystallization. Unlike in the rhyolites, edges of sphene crystals in the trachytes are significantly enriched in REEs relative to cores, particularly MREE (figs. 5, 6). This suggests that an event occurred between core and edge crystallization that replenished the MREE content. The positive correlation from core-to-edge between Gd and Nd or Yb in sphene supports this conclusion; however, the increase in Nd and Yb in edges also implies that the event increased HREE and LREE contents in the melt as well.

Release of REEs into the melt by resorption of zircon, sphene, and allanite+chevkinite is a possible mechanism to explain these REE enrichments, and textures provide evidence that this was the case. Qualitatively, textures of phenocrysts seen in thin sections, crystal separates, and tomography of CRW and PSTG01C show extensively resorbed feldspar, sphene, and zircon (figs. 15 and 16). The 3D reconstruction of sphene in CRW (fig. 16b) is particularly striking, as it shows a sphene crystal with only remnants of the original crystal remaining. Although separated zircons are rounded, they do not appear to have the same skeletal textures as sphene grains and are

relatively common in trachytes as compared to sphene, which could not be found in CRW separates. This suggests that resorption of sphene was more extensive than zircon resorption.

CSDs also support the interpretation of resorption of accessories in general, and of sphene in particular. First, population densities of large sphene crystals in PSTG01C and CRW are considerably lower than those of other accessory phases, probably because sphene was resorbed more extensively than other phases. The SSDs also show kinks similar to those seen in rhyolites; however, unlike those in rhyolites, the kinks in these trachytes result in a concave-down segment in the small crystal sizes. The full implications of this pattern are still unclear, but it is possible that trachyte SSDs were originally (at least qualitatively) similar to those of rhyolites, and were then modified by preferential resorption of small sphene crystals.

One way to cause resorption of crystals is heating. Edge temperatures recorded in zircon and sphene grains are generally higher than cores in PSTG01C and CRW, suggesting that the system was, in fact, heated at some point between core and edge crystallization. Furthermore, as in rhyolites, zircon records higher temperatures and a larger range of temperatures than sphene (160-180 °C in zircon, as compared to 30-55 °C in sphene). This again implies a longer crystallization history for zircon, but also suggests an explanation for why sphene resorption is more extensive than zircon resorption, given that resorption of sphene would begin at lower temperatures (and possibly would go on for a longer period of time) than resorption of zircon.

Maximum edge temperatures of zircon are ~900 °C in intracaldera fiamme, requiring the presence of a sizable source of heat. The presence of mafic magmatic enclaves in the PST supports an argument for mafic input into the system, which may have provided the heat necessary to raise the temperature to the observed levels. A lack of significant chemical or textural evidence for mixing (lack of reaction rims or widespread xenocrysts) indicates that chemical interaction between mafic and felsic magmas was limited, suggesting that this event may have occurred close to the time of eruption and may have even acted as a trigger for the start of the eruptive process.

Importantly, textures and compositions of the outflow low-silica rhyolite (WSW2B) are notably different from the outflow pumice and the intracaldera fiamme. More specifically, they are

interesting in that trace element trends in WSW2B are similar to those in the intracaldera trachytes, but the textures show no indication of resorption and are much more akin to those seen in rhyolites. In terms of temperatures, edges of zircon and sphene in this sample record temperatures that span from the high temperatures recorded by intracaldera fiamme to the low temperatures in outflow pumices. These results suggest that the heating event did not affect the entire PST system to the same extent.

There is significant evidence to suggest that the PST magma chamber was zoned. For one, there is a clear range in silica and crystal contents, from relatively crystal-poor high-silica rhyolites in the outflow to crystal-rich trachytes in the outflow and intracaldera deposits, which is consistent with zoning in composition and crystal content. Temperature trends are similar, such that crystal-rich intracaldera trachytes record the highest temperatures and crystal-poor outflow rhyolites record the lowest temperatures. Again, this suggests that the heat anomaly did not reach all regions of the magma chamber, which further implies that the heating event took place close to the time of eruption as there was not enough time for heat to spread throughout the system. This is also consistent with a zoned magma chamber as outflow samples, which were presumably in a higher region of the chamber and thus relatively crystal-poor and expelled early in the eruption (Smith 1979), may have been erupted before being affected by the heating event that is evidently recorded by the last erupted, and likely deeper, intracaldera samples.

These results also suggest that the heating and decompression events may have been linked. For one, evidence implies that both events occurred close to the time of eruption. Heating of a magmatic system by a mafic recharge event has been suggested as a possible eruptive trigger (Pallister et al. 1992). If, in fact, heating of the PST did act as an eruption trigger, decompression of the system would naturally follow as the eruptive process began. In this context, the timescales of magnetite crystallization (<1-100 years) record the timescale available after triggering for decompression and eruption. These timescales are short enough to prevent the heat input to diffuse through the whole system.

CHAPTER V

CONCLUSIONS

Whole rock compositions of pumice and fiamme from Peach Spring Tuff range from highsilica rhyolite to trachyte (66-76 wt. % SiO₂). High-silica outflow pumice clasts (distal: Kingman, proximal: WSW2A) are relatively crystal-poor, while intracaldera fiamme (PSTG01C, CRW) are crystal-rich and trachytic in composition (66-68 wt. % SiO₂). Proximal outflow pumice and fiamme span most of the compositional range (69-76 wt. % SiO₂).

High-silica rhyolites record a relatively simple history of cooling and crystallization, as evidenced by overall textural features, accessory mineral CSDs, core-to-edge trends in REEs and Ti-in-zircon and Zr-in-sphene temperatures. Sphene and magnetite size distributions in outflow pumice are kinked, suggesting growth of small crystals in conditions of increased nucleation during eruptive decompression.

Core-to-edge trends in REEs, as well as Ti-in-zircon and Zr-in-sphene temperatures, suggest a late-stage heating event occurred that had a marked effect only on the deeper parts of the PST system. Textures corroborate these results, as phenocrysts are typically euhedral in outflow pumice but display clear resorption features in intracaldera fiamme. Sphene size distributions in intracaldera fiamme are also kinked, but the CSDs for small crystals are concave-down, possibly modified by resorption. On the whole, textural features, geochemical trends, and estimated crystallization temperatures show that zircon had a much more protracted growth history than other accessory phases.

Overall, results of this study suggest the PST magma chamber was zoned, with crystalpoor high-silica rhyolites in the upper parts of the system, and crystal-rich trachytes in the deeper regions. Late-stage heating may have been caused by input of mafic magma (as suggested by the presence of mafic enclaves in the PST), which may have triggered eruption and induced decompression of the PST system. Calculated timescales of magnetite crystallization suggest

that eruptive decompression, and thus the onset of the eruptive process, likely took place on the order of 1-100 years prior to eruption.

APPENDIX A:

Whole Rock Geochemistry of the Peach Spring Tuff

Lappen 0.05 FUSAME 72.1 72.1 64.3 69.2 69 17.3 17.3 11.1 74.3 11.1 P ppin 0.1 FUSAME 17.3 11.3 13.4 13.4 13.5 13.6 38.7 35.6 33.8 33.6 32.7 13.6 33.6 33.7 13.6 33.6 33.7 13.6 33.6 33.7 13.6 33.8 33.8 33.8 33.7 13.6 33.8 33.8 13.8 <	Analyte	Detectior Limit	n Analysis Method	PST01A	PST01B	PST01C	PST01D	PST01E	PSTG01A	PSTG01C	WSWPST1	WSWPST2A	WSWPST2B
cc ppm 0.1 PTOPM 0.27 0.131 1.24 1.21 3.36 1.38 2.38 1.45 1.31 PPpm 0.05 FUSAMS 4.22 8.44 8.86 8.7 1.7 1.19 1.06 1.04 4.23 1.07 Singpm 0.05 FUSAMS 4.22 8.44 8.86 8.7 1.77 1.97 1.06 1.04 4.23 1.07 Singpm 0.05 FUSAMS 1.02 1.05 6.11 1.02 1.11 1.04 1.03 6.46 1.53 Grappm 0.01 FUSAMS 1.06 0.10 0.89 1.02 1.13 1.03 1.31 1.29 1.41 1.04 1.23 1.41 1.31 1.29 1.41 1.31 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 <	la nnm	0.05	ELIS-MS	70.1	72 1	68.8	69.7	69	173	173	151	78.3	115
Prom 0.02 PLS-MS 1.7 1.52 1.53 <t< th=""><th>Ce ppm</th><th>0.1</th><th>FUS-MS</th><th>127</th><th>131</th><th>124</th><th>124</th><th>121</th><th>336</th><th>338</th><th>238</th><th>141</th><th>231</th></t<>	Ce ppm	0.1	FUS-MS	127	131	124	124	121	336	338	238	141	231
Né prop. 0.65 FUS-MS 42.2 43.4 38.6 38.7 41.7 109 106 104 42.2 107 Simpan 0.00 FUS-MS 0.53 0.631 6.57 7.57 11.1 109 11 6.43 9.20 Grappin 0.01 FUS-MS 1.66 1.68 0.57 6.51 6.42 5.61 6.43 1.62 1.43 1.43 1.64 1.53 1.63 1.13 1.33 1.44 1.13 2.43 1.33 2.43 1.33 2.43 3.43 3.44 3.44 3.45 3.46 4.66 6.83 Typin 0.01 FUS-MS 1.37 3.51 3.37 3.18 3.24 3.24 3.24 0.238 0.46 4.66 Luppin 0.026 FUS-MS 1.41 1.22 1.44 1.41 1.33 3.14 3.24 3.24 3.24 0.22 0.238 0.46 0.42 0.22 0.24	Pr ppm	0.02	FUS-MS	14.7	15.2	13.9	13.9	14.5	38.7	35.6	30.8	15.6	30
Ipp 0.01 PDM-ME 7.22 7.32 F.52 7.52 T.52 T.52 T.53 B.11 D <thd< th=""> <thd< th=""> <thd< th=""> <</thd<></thd<></thd<>	Nd ppm	0.05	FUS-MS	42.2	43.4	38.6	38.7	41.7	109	106	104	48.2	107
She ppin Dot 00 PDM MD LAB 7.43 D.54 D.75 D.75 <thd.75< th=""> D.75 <thd.75< th=""></thd.75<></thd.75<>	(Pm)						6.80				0	0	0
ct pp 0.00 Picket 0.63 0.63 0.53 0.64 0.53 0.64 0.51 0.64 0.53 0.64 0.53 0.64 0.53 0.64 0.53 0.64 0.53 0.64 0.53 0.64 0.53 0.64 0.53 0.64 0.53 0.64 0.53 0.54 0.52 0.57 7.44 7.6 5.64 5.85 1.4 Hepp 0.61 FUSMS 3.4 3.5 3.29 3.17 3.36 3.89 3.93 2.74 3.47 6.35 0.55 0.	Sm ppm	0.01	FUS-MS	7.82	7.93	6.81	6.72	7.52	17.6	18.1	15.8	8.5	22.3
The pain Coli TUSE-NC Line	Eu ppm Gd ppm	0.005	FUS-IVIS	6.51	6.62	5.66	5.51	6.48	3.23	3.14	3.38	6.48	1.55
Dr.ppm 0.02 PUSANS 6.07 6.47 5.44 5.2 5.71 7.44 7.6 5.44 5.85 14 Hoppm 0.01 FUSANS 3.43 3.55 3.29 3.17 3.36 3.89 3.31 2.37 3.36 3.89 3.31 2.355 0.6353 0.6353 0.6353 0.6353 0.6353 0.6353 0.6353 0.531 0.337 1.18 3.24 3.12 3.44 2.35 1.44 4.46 Mage 0.01 FUS-KNS 0.472 0.501 0.441 0.421 1.24 1.14 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.23 1.24 0.26 0.23 0.24 0.22 7.38 1.23 1.22 7.38 1.23 1.24 7.38 7.30 7.34 7.20 7.38 7.33 7.31 7.20	Tb ppm	0.01	FUS-MS	1.06	1.08	0.91	0.89	1.02	1.45	1.45	1.2	1.03	2.63
Ho ppm 0.01 FUS-MS 1.27 1.09 1.07 1.03 1.11 1.39 1.41 1.01 1.19 2.49 Tm ppm 0.005 FUS-MS 0.531 0.555 0.531 0.531 0.521 0.545 0.572 0.532 0.572 0.533 0.573 0.571 0.545 0.572 0.583 0.572 0.583 0.572 0.583 0.572 0.583 0.572 0.583 0.573 0.571 0.533 0.571 0.551 0.511 0.451 0.453 0.571 0.533 0.571 0.533 0.571 0.531 0.511 0.511 0.521 0.511 0.521 0.511 0.521 0.511 0.521 0.511 0.521 0.511 0.513 0.521 0.561 0.571 0.583 0.571 0.583 0.571 0.583 0.571 0.583 0.571 0.583 0.513 0.521 0.561 0.57 0.53 0.513 0.531 0.521 0.513 0.512	Dy ppm	0.02	FUS-MS	6.07	6.17	5.44	5.2	5.71	7.44	7.6	5.64	5.85	14
Fr ppm 0.01 FUS-MS 3.4 3.5 3.29 3.17 3.36 3.89 3.91 2.74 3.47 6.52 Yn ppm 0.01 FUS-MS 3.37 3.13 3.37 3.18 3.24 3.22 3.44 2.32 3.46 4.86 Lippm 0.02 FUS-MS 1.41 1.44 1.42 1.44 1.44 1.42 0.65 0.73 0.65 0.73 0.65 0.73 0.64 0.2 0.114 SO2X 0.01 FUS-FC 1.25 1.14 1.14 1.26 1.24 1.23 1.24 1.24 1.23 1.33 3.23 3.24 2.23 7.38 1.31 1.33 1.33 3.23 3.24 3.20 3.34 1.28 1.33 1.33 3.23 3.24 3.20 3.34 3.34 3.34 3.34 3.34 3.34 3.34 3.34 3.34 3.34 3.34 3.34 3.34 3.34 3.34 <	Ho ppm	0.01	FUS-MS	1.17	1.19	1.07	1.03	1.1	1.39	1.41	1.01	1.19	2.49
Tm pm 0.005 FUS-MS 0.531 0.555 0.518 0.521 0.545 0.572 0.585 0.573 0.581 0.571 0.571 0.551 0.517 0.551 0.517 0.551 0.517 0.551 0.517 0.551 0.571 0.551 0.571 0.551 0.571 0.551 0.571 0.551 0.571 0.551 0.571 0.551 0.571 0.551 0.571 0.551 0.571 0.551 0.571 0.551 0.571 0.551 0.571 <	Er ppm	0.01	FUS-MS	3.4	3.5	3.29	3.17	3.36	3.89	3.93	2.74	3.47	6.32
Yh ppm 0.01 PUS-MS 3.37 3.38 3.37 3.38 3.34 0.32 0.44 0.32 0.32 0.44 0.32 0.33 0.324 0.34 0.32 0.34 0.32 0.34 0.32 0.33 0.48 0.42 0.4 0.02 0.33 0.48 0.42 0.44	Tm ppm	0.005	FUS-MS	0.531	0.555	0.518	0.508	0.521	0.545	0.572	0.365	0.553	0.882
Li pipm O.022 FOS-MS L121 L131 L141 L141 L271 O.531 O.149 O.341 O.243 O.243 <thol17< th=""> <thol1< th=""><th>Yb ppm</th><th>0.01</th><th>FUS-MS</th><th>3.37</th><th>3.51</th><th>3.37</th><th>3.18</th><th>3.24</th><th>3.32</th><th>3.49</th><th>2.35</th><th>3.46</th><th>4.86</th></thol1<></thol17<>	Yb ppm	0.01	FUS-MS	3.37	3.51	3.37	3.18	3.24	3.32	3.49	2.35	3.46	4.86
In part Lis Lis <thlis< th=""> Lis <thlis< th=""> <thlis< t<="" th=""><th>Lu ppm</th><th>0.002</th><th>FUS-IVIS</th><th>0.472</th><th>0.501</th><th>0.482</th><th>0.471</th><th>0.451</th><th>0.498</th><th>0.501</th><th>0.328</th><th>0.47</th><th>0.619</th></thlis<></thlis<></thlis<>	Lu ppm	0.002	FUS-IVIS	0.472	0.501	0.482	0.471	0.451	0.498	0.501	0.328	0.47	0.619
SiO2% 0.01 FUS-FC 72.67 73.46 73.57 73.81 72.03 68.26 68.26 68.29 72.13 67.19 F40203% 0.01 FUS-FC 1.15 1.14 1.06 1.04 1.13 2.23 1.234 0.23 0.066 0.066 0.066 0.064 0.079 0.075 0.076 0.072 0.023 0.088 0.48 0.42 1.4 0.19 0.23 0.26 <t< th=""><th>ii ppin</th><th>0.05</th><th>FU3-1VI5</th><th>1.41</th><th>1.52</th><th>1.4</th><th>1.14</th><th>2.27</th><th>0.05</th><th>0.78</th><th>0.54</th><th>0.2</th><th>0.14</th></t<>	ii ppin	0.05	FU3-1VI5	1.41	1.52	1.4	1.14	2.27	0.05	0.78	0.54	0.2	0.14
Al203 % 0.01 FUS-CP 12.29 12.29 12.21 11.94 12.85 12.36 15.97 15.97 15.28 12.28 12.38 13.41 Pre201T % 0.001 FUS-CP 0.076 0.071 0.068 0.060 0.064 0.079 0.072 G0 % 0.01 FUS-CP 0.05 0.074 0.022 0.068 0.064 0.22 2.4 0.05 0.04 0.040 0.05 0.03 0.03 0.02 0.401 1.38 1.38 1.38 1.38 1.34 1.36 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.34 6.32 6.26 6.34 6.44 1.4 1.4 6.1 0.21 0.41 0.47 0.21 0.21 0.41 0.467 1.21 0.1 0.4 1.02 0.4 1.4 1.5 0.4 1.4 <	SiO2 %	0.01	FUS-ICP	72.62	73.46	73.57	73.81	72.03	68.26	68.08	55.29	72.13	67.19
Feb20ft % 0.01 FUS-ICP 1.15 1.14 1.06 1.04 1.13 2.31 2.22 7.18 1.14 1.85 MnO % 0.001 FUS-ICP 0.076 0.077 0.068 0.066 0.066 0.069 0.071 0.088 0.088 0.085 0.064 0.079 0.08 CaO % 0.01 FUS-ICP 1.09 0.65 1.22 0.73 0.48 0.48 0.42 2.4 0.19 0.32 N20 % 0.01 FUS-ICP 0.23 0.02 0.13 0.032 0.01 0.1 0.13 0.03 0.03 0.02 0.01 0.01 0.02 0.02 0.03 0.02 0.01 0.01 1.01 1.04 1.04 1.06 1.04 <t< th=""><th>AI2O3 %</th><th>0.01</th><th>FUS-ICP</th><th>12.29</th><th>12.52</th><th>11.94</th><th>12.85</th><th>12.36</th><th>15.97</th><th>15.99</th><th>16.28</th><th>12.33</th><th>13.91</th></t<>	AI2O3 %	0.01	FUS-ICP	12.29	12.52	11.94	12.85	12.36	15.97	15.99	16.28	12.33	13.91
Mp0 % 0.001 FUS-CP 0.076 0.072 0.068 0.071 0.068 0.064 0.079 0.079 0.079 Mp0 % 0.01 FUS-CP 0.16 0.25 0.34 0.23 0.48 0.42 2.4 0.19 0.22 Go % 0.01 FUS-CP 1.10 0.66 1.12 0.73 0.88 1.38 1.28 5.19 0.59 0.83 N20 % 0.01 FUS-CP 0.67 7 6.65 6.52 6.52 6.52 6.52 6.54 4.44 5.63 6.41 N000 FUS-CP 0.02 0.02 0.02 0.03 0.03 0.02 0.11 0.1 0.53 0.02 0.02 sum oxides TUS-CP 0.01 FUS-CP 0.22 0.02 0.02 0.02 0.02 0.02 0.02 0.02 sum oxides TUS-CP 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0	Fe2O3(T) %	0.01	FUS-ICP	1.15	1.14	1.06	1.04	1.13	2.31	2.22	7.18	1.34	1.85
Meg N: 0.01 FUS-ICP 0.16 0.25 0.34 0.2 0.23 0.48 0.42 2.4 0.19 0.22 CaO X: 0.01 FUS-ICP 1.03 0.65 1.12 0.73 0.08 1.33 1.28 5.19 0.59 0.38 K2O X: 0.01 FUS-ICP 0.23 0.20 0.19 0.192 0.02 0.48 0.44 5.63 6.41 5.64 5.64 6.44 5.63 6.41 5.63 6.25 6.62	MnO %	0.001	FUS-ICP	0.076	0.07	0.072	0.068	0.071	0.068	0.066	0.064	0.079	0.075
GaO % 0.01 FUS-(CP 1.09 0.6 1.12 0.73 0.98 1.38 1.38 5.19 0.59 0.88 Na20 % 0.01 FUS-(CP 2.15 2.57 2.56 2.66 2.19 4.13 3.96 3.36 3.49 3.86 T02 % 0.001 FUS-(CP 0.22 0.02 0.02 0.03 0.02 0.11 0.1 0.53 0.02 0.02 sum oxides 0.001 FUS-(CP 0.22 0.03 0.03 0.02 0.11 0.1 0.53 0.02 0.02 J/sum 1 NAA 1.2 1.03 1.01 1.01 1.04 1.04 1.06 Auppb 1 NAA 0.5 C.5 <0.5	MgO %	0.01	FUS-ICP	0.16	0.25	0.34	0.2	0.23	0.48	0.42	2.4	0.19	0.22
Na20 % 0.01 FUS-ICP 2.15 2.25 2.266 2.19 4.13 3.36 3.36 3.49 3.82 N20 % 0.001 FUS-ICP 0.22 0.206 0.19 0.192 0.207 0.487 0.447 1.271 0.219 0.334 P205 % 0.001 FUS-ICP 0.22 0.202 0.020 0.03 0.047 0.1	CaO %	0.01	FUS-ICP	1.09	0.6	1.12	0.73	0.98	1.38	1.28	5.19	0.59	0.8
LCD X DUIL FUS-LP DE/J J BE/J BU/L C/I C/I C/I C/I C/I C/I C/I D/I B/J B/J B/J B/J B/J B/J B/J D/J D/J <thd j<="" th=""> D/J D/J</thd>	Na2O %	0.01	FUS-ICP	2.15	2.57	2.55	2.66	2.19	4.13	3.96	3.36	3.49	3.82
House Local Pace K Out Pace K Out Pace K Out	K20 %	0.01		0.07	0 206	0.05	0.25	0.02	0.20	0.34	4.41	5.03	0.224
Sum oxides Join Los Los <thlos< th=""> Los <thlos< th=""> <thlo< th=""><th>P2O5 %</th><th>0.001</th><th>FUS-ICP</th><th>0.223</th><th>0.200</th><th>0.15</th><th>0.132</th><th>0.207</th><th>0.487</th><th>0.407</th><th>0.53</th><th>0.02</th><th>0.02</th></thlo<></thlos<></thlos<>	P2O5 %	0.001	FUS-ICP	0.223	0.200	0.15	0.132	0.207	0.487	0.407	0.53	0.02	0.02
sum oxides96.44997.83697.52297.8399.83899.45598.92399.57596.01894.6291/uppb11.041.021.031.021.031.021.011.011.011.041.041.06Au ppb1MULTINAA TD-CPC1<1	. 200 //	0.01		0.02	0.02	0.00	0.00	0.02	0.11	0.1	0.00	0.02	0.02
1/sum1.041.021.031.021.041.011.011.041.041.041.04Au ppb1INAA TD-ICP<1	sum oxides			96.449	97.836	97.522	97.83	95.838	99.455	98.923	95.975	96.018	94.629
Au ppb 1 INAA MULTINAA/ Ag ppm <1	1/sum			1.04	1.02	1.03	1.02	1.04	1.01	1.01	1.04	1.04	1.06
Ag ppm 0.5 MULTINAA TD-ICP C1 C1 <thc1< th=""> C1 <thc1< th=""> <thc1< th=""></thc1<></thc1<></thc1<>	Auroph	1	INAA	~ 1	<i>z</i> 1	< 1	~ 1	2	< 1	< 1	~ 1	~ 1	~ 1
Asppm 0.5 TO-LCP <0.5	Au ppb	1	MULT INAA /	< 1 	< I 	< 1 	< 1 	5	<1	< 1 	< 1 	<1 	<1
As ppm 1 INAA 9 8 8 8 10 3 2 70 5 <1	Ag ppm	0.5	TD-ICP	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Ba ppm 1 FUS-FCP 32 51 34 40 48 1066 1016 1943 40 75 Be ppm 0.1 FUS-FCP 5 4 5 4 33 33 4 3 Bi ppm 0.1 FUS-FKP 0.2 0.4 0.4 0.3 0.3 0.4 0.2 <0.1	As ppm	1	INAA	9	8	8	8	10	3	2	70	5	< 1
Be ppm 0.1 FUS-MS 0.2 0.4 0.4 0.3 0.3 0.4 0.2 (0.1 (0.1) Br ppm 0.5 INAA 2.9 2.9 3.9 2.7 3.2 <0.5	Ba ppm	1	FUS-ICP	32	51	34	40	48	1066	1016	1943	40	75
Bippm 0.1 FUS-MS 0.2 0.4 0.4 0.3 0.4 0.2 <0.1	Be ppm	1	FUS-ICP	5	4	5	4	4	3	3	3	4	3
bit pin 0.5 TM-H 2.9 2.9 2.9 2.9 2.9 2.7 3.2 C0.3 C0.5 C0.5 <thc0.5< th=""> <thc0.5< <="" th=""><th>Bi ppm</th><th>0.1</th><th>FUS-IVIS</th><th>0.2</th><th>0.4</th><th>0.4</th><th>0.3</th><th>0.3</th><th>0.4</th><th>0.2</th><th>< 0.1</th><th>< 0.1</th><th>0.1</th></thc0.5<></thc0.5<>	Bi ppm	0.1	FUS-IVIS	0.2	0.4	0.4	0.3	0.3	0.4	0.2	< 0.1	< 0.1	0.1
Coppm D1 INAA 1.8 1.6 2.2 1.7 2.7 3.2 2.5 1.44 1.8 1.5 Cr ppm 0.5 INAA <0.5	Cd ppm	0.5	TD-ICP	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.5	< 0.5	< 0.5
Cr ppm 0.5 INAA <0.5	Co ppm	0.1	INAA	1.8	1.6	2.2	1.7	2.7	3.2	2.5	14.4	1.8	1.5
Cs ppm 0.1 FUS-MS 3.5 3.8 3.9 3.3 3.3 1.2 1.5 6.3 1.5 1.4 Cu ppm 1 FUS-MS 19 2 2 2 5 10 33 10 4 Ga ppm 0.5 FUS-MS 1.3 1.5 1.4 1.3 1.3 2.2 1.9 1.9 1.8 2.1 Hg pm 0.1 FUS-MS 8.6 9.1 8.7 8.8 7.9 13.1 13.3 9 8.1 2.1 Hg pm 1 INAA <1	Cr ppm	0.5	INAA	< 0.5	2.1	< 0.5	< 0.5	< 0.5	12.1	16.1	123	29.8	8
Cu ppm 1 TD-CP 1 1 3 2 2 5 10 33 10 4 Ga ppm 0.5 FUS-MS 13 1.3 1.3 1.3 1.3 2.2 19 19 22 18 19 Ge ppm 0.1 FUS-MS 8.6 9.1 8.7 8.8 7.9 13.1 13.3 9 8.1 12.2 Hg ppm 0.1 FUS-MS 8.6 9.1 8.7 8.8 7.9 13.1 13.3 9 8.1 12.2 Hg ppm 0.1 FUS-MS <0.1	Cs ppm	0.1	FUS-MS	3.5	3.8	3.9	3.3	3.3	1.2	1.5	6.3	1.5	1.4
Gappm 1 FUS-MS 19 22 21 20 18 20 21 22 18 19 Geppm 0.5 FUS-MS 1.3 1.5 1.4 1.3 1.3 2.2 19 19 18 2.1 Hfppm 0.1 FUS-MS 8.6 9.1 8.7 8.8 7.9 13.1 13.3 9 18.8 2.1 Hgppm 1 INAA <1	Cu ppm	1	TD-ICP	1	1	3	2	2	5	10	33	10	4
Hf ppm 0.1 FUS-MS 1.3 1.3 1.4 1.3 1.3 1.2 1.4 1.3 1.3 1.4 1.3 1.3 1.4 1.3 1.3 1.4 1.3 1.3 1.4 1.3 1.3 1.4 1.3 1.3 1.4 1.3 1.3 1.4 1.3 1.3 1.4 1.3 1.3 1.3 1.4 1.3 1.3 1.3 1.4 1.1 1	Ga ppm	1	FUS-MS	19	22	21	20	18	20	21	22	18	19
Hippin O.1 FUS-MS 6.0 5.1 6.7 6.0 7.9 15.1 15.1 15.3 9 6.1 12.2 Hg ppm 1 INAA <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	Ge ppm	0.5	FUS-IVIS	1.3	1.5	1.4	1.3	1.3	2.2	1.9	1.9	1.8	2.1
In ppm 1 FUS-NS C1	Hg nnm	1	INAA	0.0 < 1	9.1 < 1	0.7 < 1	0.0 < 1	7.9 < 1	15.1 < 1	15.5 < 1	9 < 1	0.1 ≤ 1	12.2 < 1
Ir ppm 1 INAA <1	In ppm	0.1	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Mo ppm 2 FUS-MS 5 5 4 <2	Ir ppm	1	INAA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Nb ppm 0.2 FUS-MS 37.8 44.5 43.4 39.4 38.4 21.7 21.8 21.5 34.3 31 Ni ppm 1 TD-ICP <1 <1 <1 <1 <1 2 51 4 3 Pb ppm 5 TD-ICP 30 34 23 24 26 131 140 46 24 25 Rb ppm 2 FUS-MS 201 217 221 198 194 30 39 96 195 178 S % 0.001 TD-ICP 0.006 0.013 0.043 0.01 0.283 0.002 0.008 0.035 0.006 0.044 S ppm 0.1 INAA 3.63 3.42 3.43 3.48 3.59 6.55 6.05 12.2 3.63 3.58 S ppm 0.5 INAA 3.63 3.42 3.43 3.48 3.59 6.55 6.05 1.22 3.63	Mo ppm	2	FUS-MS	5	5	5	5	4	< 2	< 2	< 2	< 2	< 2
Ni ppm 1 TD-ICP <1	Nb ppm	0.2	FUS-MS	37.8	44.5	43.4	39.4	38.4	21.7	21.8	21.5	34.3	31
Pb ppm 5 TD-ICP 30 34 23 24 26 131 140 46 24 25 Rb ppm 2 FUS-MS 201 217 221 198 194 30 39 96 195 178 S% 0.001 TD-ICP 0.006 0.018 0.043 0.01 0.283 0.002 0.008 0.035 0.006 0.006 Sb ppm 0.1 INAA 1 0.9 1 0.9 1 0.5 0.4 83.6 1 0.6 Sc ppm 0.01 INAA 3.63 3.42 3.43 3.48 3.59 6.55 6.05 12.2 3.63 3.58 Se ppm 0.5 INAA <0.5	Ni ppm	1	TD-ICP	< 1	< 1	< 1	< 1	< 1	< 1	2	51	4	3
Rb ppm 2 FUS-MS 201 217 221 198 194 30 39 96 195 178 S % 0.001 TD-ICP 0.006 0.018 0.003 0.002 0.008 0.035 0.006 0.004 Sb ppm 0.1 INAA 1 0.9 1 0.9 1 0.5 0.4 83.6 1 0.6 Sc ppm 0.01 INAA 3.63 3.42 3.43 3.48 3.59 6.55 6.05 12.2 3.63 3.58 Se ppm 0.5 INAA <0.5	Pb ppm	5	TD-ICP	30	34	23	24	26	131	140	46	24	25
S% 0.001 10-1CP 0.006 0.018 0.011 0.283 0.002 0.008 0.035 0.006 0.004 Sb ppm 0.1 INAA 1 0.9 1 0.9 1 0.5 0.4 83.6 1 0.6 Sc ppm 0.01 INAA 3.63 3.42 3.43 3.48 3.59 6.55 6.05 12.2 3.63 3.58 Se ppm 0.5 INAA <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <	Rb ppm	2	FUS-MS	201	217	221	198	194	30	39	96	195	178
So ppm 0.1 INAA 1 0.9 1 0.9 1 0.5 0.4 83.6 1 0.6 Sc ppm 0.01 INAA 3.63 3.42 3.43 3.48 3.59 6.55 6.05 1.2.2 3.63 3.58 Se ppm 0.5 INAA <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.3 <0.3 24.5 20 <0.3 24.5 20	5 %	0.001	ID-ICP	0.006	0.018	0.043	0.01	0.283	0.002	0.008	0.035	0.006	0.004
Seppin 0.01 INAA 0.05 0.14 0.42 0.43 0.45 0.05 0.05 0.05 1.12 1.05 0.15 1.12 1.05 0.15 1.12 1.05 1.1 1.05 1.1 1.05 1.1 1.05 1.1 1.05 <	So ppm	0.1		3 63	3.42	3 13	3.48	3 50	0.5	0.4	83.0 12.2	3 63	0.6
Sn ppm 1 FUS-MS 2 3 3 2 2 2 1 3 2 2 5 Sr ppm 2 FUS-MS 2 3 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2 2 1 3 2 2 3 3 2 2 2 1 3 2 3 3 2 2 2 1 1 3 2 3 3 3 2 2 1 1 1 1 3 2 2 2 1 1 1 1 3 2 2 2 3 <th>Se ppm</th> <th>0.5</th> <th>INAA</th> <th>< 0.5</th> <th>< 0.5</th> <th>< 0.5</th> <th>< 0.5</th> <th>< 0.5</th> <th>< 0.55</th> <th>< 0.5</th> <th>< 0.5</th> <th>2.05</th> <th>< 0.5</th>	Se ppm	0.5	INAA	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.55	< 0.5	< 0.5	2.05	< 0.5
Sr ppm 2 FUS-ICP 17 14 17 17 18 208 199 1514 18 23 Ta ppm 0.1 FUS-ICP 17 14 17 17 18 208 199 1514 18 23 Th ppm 0.05 FUS-MS 2.5 2.8 2.8 2.5 2.5 1.4 1.4 1.27 2.43 2.18 U ppm 0.05 FUS-MS 6.06 6.3 6.69 6.18 5.69 3.83 4.11 4.15 4.1 2.77 V ppm 5 FUS-ICP 6 6 7 <5	Sn ppm	1	FUS-MS	2	3	3	2	2	2	<1	3	2	5
Ta ppm 0.1 FUS-MS 2.5 2.8 2.8 2.5 2.5 1.4 1.4 1.27 2.43 2.18 Th ppm 0.05 FUS-MS 32.2 34.4 35.3 32.9 30.2 19.4 19.8 20.3 24.5 20 U ppm 0.05 FUS-MS 6.06 6.3 6.69 6.18 5.69 3.83 4.11 4.15 4.1 2.77 V ppm 5 FUS-ICP 6 6 7 <5	Sr ppm	2	FUS-ICP	17	14	17	17	18	208	199	1514	18	23
Th ppm 0.05 FUS-MS 32.2 34.4 35.3 32.9 30.2 19.4 19.8 20.3 24.5 20 U ppm 0.05 FUS-MS 6.06 6.3 6.69 6.18 5.69 3.83 4.11 4.15 4.1 2.77 V ppm 5 FUS-ICP 6 6 7 <5	Ta ppm	0.1	FUS-MS	2.5	2.8	2.8	2.5	2.5	1.4	1.4	1.27	2.43	2.18
U ppm 0.05 FUS-MS 6.06 6.3 6.69 6.18 5.69 3.83 4.11 4.15 4.1 2.77 V ppm 5 FUS-ICP 6 6 7 <5	Th ppm	0.05	FUS-MS	32.2	34.4	35.3	32.9	30.2	19.4	19.8	20.3	24.5	20
V ppm 5 FUS-ICP 6 6 7 <5	U ppm	0.05	FUS-MS	6.06	6.3	6.69	6.18	5.69	3.83	4.11	4.15	4.1	2.77
w ppm i INAA 5 5 5 3 5 <1	V ppm	5	FUS-ICP	6	6	7	< 5	9	21	16	109	< 5	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	vv ppm V ppm	1		5 22	36	5	3	5 22	< 1 22	< 1 24	/ 21	< 1	< 1
Zn ppm 1 TD-ICP 50 58 52 50 37 65 70 87 46 55 Zr ppm 1 FUS-MS 221 239 223 221 200 579 576 400 257 513 Mass g INAA 1.414 1.566 1.471 1.607 1.091 1.331 1.36 1.53 1.468 1.661	- 19900		MULT INAA /	30	50			50		34	21		57
Zr ppm 1 FUS-MS 221 239 223 221 200 579 576 400 257 513 Mass g INAA 1.414 1.566 1.471 1.607 1.091 1.331 1.36 1.53 1.468 1.661	Zn ppm	1	TD-ICP	50	58	52	50	37	65	70	87	46	55
Mass g INAA 1.414 1.566 1.471 1.607 1.091 1.331 1.36 1.53 1.468 1.661	Zr ppm	1	FUS-MS	221	239	223	221	200	579	576	400	257	513
	Mass g		INAA	1.414	1.566	1.471	1.607	1.091	1.331	1.36	1.53	1.468	1.661

Table A1. Whole rock geochemistry of Peach Spring Tuff samples.

Table A1, cont.

Analyte	Detection Limit	Analysis Method	WSWPST2D	WSWPST2F	WSWPST2G	WSWPST4B	WSWPST4D	PSTG01C	GJPST1A	GJPST1C	CRWPST
la nnm	0.05		75.2	60.1	79.2	154	00 7	100	109	07.1	172
Ce nnm	0.05	FUS-IVIS	127	117	136	254	00.2 185	100	202	97.1	294
Pr ppm	0.02	FUS-MS	14.4	13.2	15.1	31	24.7	39.2	26.7	24.6	34.2
Nd ppm	0.05	FUS-MS	43.9	41.8	45.1	108	96.3	129	98.6	90.4	113
(Pm)			0	0	0	0	0	0	0	0	0
Sm ppm	0.01	FUS-MS	8.01	7.35	8.01	16.5	20.8	19.4	20.3	18	16
Eu ppm	0.005	FUS-MS	0.598	0.588	0.629	2.52	1.53	3.12	1.54	1.42	3.77
Gd ppm	0.02	FUS-MS	6.08	5.45	6.53	10.3	15.7	14.5	14.1	12.6	12
Tb ppm	0.01	FUS-MS	0.99	0.91	1.01	1.39	2.5	1.67	2.18	1.84	1.29
Dy ppm	0.02	FUS-MS	5.66	5.21	5.62	6.8	13.2	8.12	11.1	9.09	6.13
Ho ppm	0.01	FUS-MS	1.12	1.08	1.15	1.26	2.45	1.49	1.96	1.62	1.1
Er ppm	0.01	FUS-IVIS	3.18	3.14	3.37	3.43	6.16	4.04	4.88	4.06	3.08
Yh nnm	0.005	FUS-IVIS	2 17	2 21	2 47	2.02	4 70	0.576	2 92	2 4 2	0.415
Luppm	0.01	FUS-MS	0.437	0.46	0.482	0.445	4.75	0 504	0.509	0.45	0.404
Ti ppm	0.05	FUS-MS	0.33	0.38	0.41	0.12	0.24	0.24	0.32	0.33	0.45
SiO2 %	0.01	FUS-ICP	73.46	74.9	72.34	66.34	70.75	65.96	71.42	71.47	64.2
Al2O3 %	0.01	FUS-ICP	12.25	13.37	13.19	15.52	14.55	15.46	14.62	13.76	16.52
Fe2O3(T) %	0.01	FUS-ICP	1.05	1.27	1.28	1.9	1.66	2.65	1.81	1.76	3.17
MnO %	0.001	FUS-ICP	0.052	0.044	0.05	0.052	0.05	0.075	0.037	0.078	0.057
MgO %	0.01	FUS-ICP	0.09	0.13	0.12	0.58	0.34	0.44	0.17	0.19	0.79
CaO %	0.01	FUS-ICP	0.49	0.6	0.63	1.14	0.9	1.22	0.55	0.6	1.18
Na2O %	0.01	FUS-ICP	3.18	3.46	3.46	3.6	3.8	3.78	3.86	3.65	3.39
K2O %	0.01	FUS-ICP	5.78	6.18	5.89	6.4	5.93	6.42	6.27	5.82	7.12
TiO2 %	0.001	FUS-ICP	0.184	0.21	0.218	0.377	0.334	0.553	0.357	0.322	0.557
P2O5 %	0.01	FUS-ICP	0.02	0.02	0.02	0.04	0.03	0.1	0.06	0.06	0.19
sum oxides			96.556	100.184	97.198	95.949	98.344	96.658	99.154	97.71	97.174
1/sum			1.04	1.00	1.03	1.04	1.02	1.03	1.01	1.02	1.03
Aumah	1		- 1	F	- 1	~ 1	- 1	-	F	- 1	- 1
Au ppo	1		<1	5	<1	<1	<1	5	5	<1	<1
Ag ppm	0.5	/ TD-ICP	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
As ppm	1	INAA	5	5	7	52	65	2	5	5	2
Ba ppm	1	FUS-ICP	70	60	65	222	59	934	87	209	2850
Be ppm	1	FUS-ICP	4	4	4	2	3	3	3	3	2
Bi ppm	0.1	FUS-MS	< 0.1	< 0.1	0.1	0.1	< 0.1	0.2	0.1	< 0.1	0.2
Br ppm	0.5	INAA	< 0.5	0.8	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Cd ppm	0.5	TD-ICP	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Co ppm	0.1	INAA	1.2	1.9	1.6	2.3	2	2.4	2.5	2.2	3.3
Cr ppm	0.5		39.6	5.4	29.6	4.6	39.7	3.9	48.1	2.8	52.2
Cuppm	1		1.4	1.4	1.7	1.9	2.1	1.2	0.9	1	1.0
Ga nnm	1	FUS-MS	17	, 18	18	, 17	20	19	20	18	10
Ge ppm	0.5	FUS-MS	1.7	2	1.7	2	1.8	2.1	1.9	1.7	1.7
Hf ppm	0.1	FUS-MS	7.6	7.5	7.6	11	11.8	14.5	11.4	11	14.9
Hg ppm	1	INAA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
In ppm	0.1	FUS-MS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Ir ppm	1	INAA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Mo ppm	2	FUS-MS	3	< 2	2	< 2	4	< 2	4	< 2	5
Nb ppm	0.2	FUS-MS	30.9	34	33.9	24.1	30.8	32	28.3	31.8	18.5
Ni ppm	1	TD-ICP	6	3	4	2	3	2	4	2	6
Pb ppm	5	TD-ICP	20	16	18	25	25	30	25	20	28
Rb ppm	2	FUS-MS	196	213	211	157	162	125	142	138	149
5%	0.001	TD-ICP	0.012	0.015	0.007	0.016	0.002	0.003	< 0.001	0.018	0.002
Sb ppm	0.1	INAA	0.9	1.1	1.5	9.3	6.2	0.6	0.6	0.6	1.4
Sc ppm	0.01		2.71	3.15	3.31	5.3	3.28	0.77	3.22	3.31	7.30
Se ppm	0.5		2.7	2.4	< 0.5 2	< 0.5 2	< 0.5 2	5.5	0.5	1.9	< 0.5 2
Sr ppm	2	FUS-ICP	21	26	19	67	27	177	22	37	437
Ta ppm	0.1	FUS-MS	2.23	2.33	2.53	1.61	2.29	2.52	2.22	2.48	1.18
Th ppm	0.05	FUS-MS	27.6	28.4	29	19	20.8	21.1	22.2	20.6	16.7
U ppm	0.05	FUS-MS	4.89	4.07	4.62	2.53	2.91	3.27	2.82	2.5	2.39
V ppm	5	FUS-ICP	6	< 5	< 5	12	9	23	19	12	32
W ppm	1	INAA	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Y ppm	1	FUS-ICP	33	32	33	30	61	38	47	38	30
Zn ppm	1	MULT INAA	27	36	39	54	49	62	46	40	62
71	1	/ TD-ICP	240	252	120	500	475	670	470	AAE	750
∠r ppm Macc α	T		249	252	238 1 / E1	500 1 206	4/5	0/9	4/ð 1 ⊑9	445	1 740
iviass g		INAA	1.504	1.5/9	1.451	1.300	1.527	1.098	1.58	1.557	1.749

APPENDIX B:

LA-ICPMS Analyses From the Peach Spring Tuff

	PSTG01C										
Spot #	7	8	9	10	11	12	13	14	15	16	17
Analyte											
Mg24	686.8	397.05	1158.64	1158.64	1440.77	338.88	237.8	199.26	1326.7	345.73	185.22
Al27	76504.43	60038.46	71025.71	71025.71	77347.97	65946.61	80966.89	67398.13	67019.6	87583.45	78888.15
Si29	350579.56	350579.56	350579.59	350579.59	350579.56	350579.56	350579.56	350579.56	350579.56	350579.56	350579.53
P31	184.05	107.03	119.1	119.1	186.95	115	52.78	125.84	139.21	111.78	442.58
Ca42	6333.52	3655.03	4777.26	4777.26	3811.27	2505.74	4965.79	2906.34	6407.24	4900.42	4358.7
Sc45	1.81	3.06	3.13	3.13	1.76	1.58	2.57	2.27	10.66	2.08	2.5
Ti49	990.26	993.93	1737.16	1737.16	1592.32	1345.71	1028.35	1242.17	2719.35	850.82	1725
V51	4.49	3.99	5.89	5.89	5.89	4.38	2.94	4.32	9.16	2.19	6.16
Cr52	2.79	<1.44	3.15	3.15	<2.08	1.98	3.1	2.57	<1.43	<2.07	2.78
Mn55	146.68	56.31	281.16	281.16	522.77	434.55	83.83	68.05	162.56	175.61	628.56
Fe57	8143.52	9467.4	9953.96	9953.96	12309.23	6934.63	4827.39	8346.86	9628.16	5121.19	9781.18
Co59	0.44	<0.20	0.93	0.93	0.66	0.39	<0.28	0.35	1.04	<0.41	0.6
Ni60	<1.28	<1.15	<1.52	<1.52	1.75	1.2	<1.51	<1.63	<1.19	<1.46	<2.32
Cu65	4.86	3.65	3.54	3.54	2.72	2.44	<1.34	3.56	2.84	3.44	<2.04
Zn66	13.52	<4.61	20.82	20.82	27.65	19.36	9.82	7.4	22.41	12.48	25.57
Ga71	20.2	14.2	17.99	17.99	18.87	15.44	18.4	14.37	20.75	19.1	18.57
Rb85	139.14	119.66	125.14	125.14	169.92	162.08	130.13	166	176.43	81.28	180.48
Sr88	218.35	115.46	119.45	119.45	116.51	123.21	128.46	108.22	123.04	176.26	137.09
Y89	43.43	24.54	17.91	17.91	30.2	25.04	20.37	33.63	38.95	20.37	14.03
Zr90	516.35	165.25	92.29	92.29	239.33	367.91	143.94	222.74	244.36	245.33	305.86
Nb93	19.78	17.2	23.32	23.32	21.84	21.38	19.17	26.92	33.06	14.8	13.15
Cs133	1.218	0.819	0.9	0.9	1.06	1.36	0.877	1.01	1.38	0.767	1.17
Ba137	805.14	647.06	601.86	601.86	688.29	676.36	418.83	505.79	726.47	429.64	716.27
La139	20.99	38.54	36.6	36.6	15.96	18.28	26.82	23.27	152.26	17.25	50.74
Ce140	56.02	77.57	80.29	80.29	42.21	41.78	55.84	55.8	291.74	36.2	84.18
Pr141	7.95	9.42	9.76	9.76	5.84	5.33	7.3	8.13	33.04	5.38	8.13
Nd143	36.76	40.27	39.12	39.12	26.98	30.23	29.89	38.94	120.01	23.99	31.23
Pm											
Sm147	10.51	8.5	7.04	7.04	6.14	7.6	6.91	10.29	18.02	6.06	4.7
Eu151	1.82	1.64	2.3	2.3	1.44	1.12	2.75	1.86	4.81	2	1.54
Gd155	6.98	7.74	5.63	5.63	6.54	5.38	5.72	7.62	13.79	4.55	4.08
Tb159	1.137	0.963	0.654	0.654	0.91	1.037	0.671	1.26	1.89	0.803	0.385
Dy163	8.04	5.13	4.28	4.28	4.73	5.24	3.68	6.97	10	4.07	2.57
Ho165	1.57	1.007	0.483	0.483	1.1	1.135	0.961	1.49	1.61	0.803	0.78
Er166	4.98	2.52	2.05	2.05	3.12	2.61	2.24	4.39	4.56	1.81	1.73
Tm169	0.741	0.357	0.332	0.332	0.439	0.475	0.335	0.342	0.638	0.251	0.332
Yb173	6.6	2.68	2.18	2.18	3.35	2.69	2.27	2.54	3.53	2.22	1.35
Lu175	0.733	0.305	0.171	0.171	0.433	0.423	0.351	0.497	0.576	0.343	0.285
Lu176	5.71	2.59	1.48	1.48	3.27	3.5	2.03	3.35	3.65	2.47	3.19
Hf179	9.55	3.74	2.28	2.28	4.76	8.18	3.56	4.8	5.37	7.68	5.95
Ta181	1.03	1.019	1.01	1.01	0.883	1.218	0.987	1.29	1.61	0.647	0.646
Pb208	38.25	23.18	24.61	24.61	38.26	48.04	27.22	49.37	30.99	35.44	84.57
Th232	39.74	18.94	11.21	11.21	28.05	22.38	15.49	29.54	24.47	13.27	12.91
U238	8.53	3.27	2.62	2.62	4.82	5.97	3.12	7.23	5.02	2.96	1.96

Table B1. Glass compositions from LA-ICPMS analyses of Peach Spring Tuff samples.

Spot #	PSTG01C	PSTG01C	PSTG01C	PSTG01C	PSTG01C
Analyte	10	Avg	StDev/Avg	StDev	StErr
Mg24	1029.37	667.84	0.72	482.31	145.42
AI27	70177.53	72990.63	0.11	7992.28	2409.76
Si29	350579.56	350579.56	0.00	0.01	0.00
P31	202.46	162.43	0.63	102.38	30.87
Ca42	4225.95	4440.66	0.28	1233.49	371.91
Sc45	5.08	3.32	0.79	2.62	0.79
Ti49	1337.49	1414.78	0.37	529.04	159.51
V51	6.26	5.06	0.38	1.90	0.57
Cr52	<1.59	2.73	0.16	0.43	0.13
Mn55	199.68	250.89	0.77	194.26	58.57
Fe57	10960.29	8679.44	0.27	2316.86	698.56
Co59	0.6	0.63	0.40	0.25	0.07
Ni60	1.68	1.54	0.19	0.30	0.09
Cu65	2.7	3.31	0.22	0.74	0.22
Zn66	33.68	19.27	0.44	8.43	2.54
Ga71	16.56	17.68	0.13	2.24	0.67
Rb85	142.82	144.83	0.21	29.93	9.02
Sr88	143.57	137.24	0.24	32.68	9.85
Y89	31.95	27.31	0.34	9.16	2.76
Zr90	689.15	293.86	0.59	174.32	52.56
Nb93	20.37	21.00	0.26	5.54	1.67
Cs133	0.97	1.05	0.20	0.21	0.06
Ba137	607.81	620.32	0.20	123.97	37.38
La139	24.5	38.66	1.01	39.16	11.81
Ce140	56.65	79.84	0.90	72.08	21.73
Pr141	7.37	9.79	0.80	7.85	2.37
Nd143	40.1	41.59	0.64	26.62	8.03
Pm					
Sm147	8.34	0.00		6.02	3.01
Eu151	1.97	0.00		1.50	0.75
Gd155	7.02	7.36	0.61	4.48	2.24
Tb159	0.9	0.99	0.64	0.64	0.32
Dy163	6.43	5.77	0.56	3.24	1.62
Ho165	1.42	1.15	0.37	0.42	0.21
Er166	3.62	2.93	0.48	1.39	0.70
Tm169	0.509	0.43	0.40	0.17	0.09
Yb173	3.38	2.62	0.39	1.03	0.51
Lu175	0.701	0.48	0.41	0.20	0.10
Lu176	6.97	4.07	0.49	1.99	1.00
Hf179	20.92	9.98	0.74	7.36	3.68
Ta181	0.96	0.97	0.47	0.45	0.23
Pb208	64.06	53.77	0.47	25.23	12.61
Th232	23.7	18.59	0.34	6.36	3.18
U238	6.39	4.08	0.49	2.00	1.00

Table B1, cont.

Table B1, cont.

	WSWPST1	WSWPST1								
C	20	27	20	20	20	24	22	22	24	25
Spot #	26	27	28	29	30	31	32	33	34	35
Analyte										
Mσ24	8009 16	7708 72	14780 08	13261 85	8623 77	18626 16	35195 57	10983 91	8058 27	11284 67
ΔI27	91240 97	104946 59	103395 5	107366 97	118701 27	83367 15	59246.63	96043 38	105706 39	96952.23
Si29	350579 53	350579 56	350579 53	350579 53	350579 53	350579 53	350579 53	350579 53	350579 53	350579 56
P31	2169 12	2072 57	2497 42	3386 94	2566.86	3579.04	236 32	2252 56	3101 91	5177 34
Ca42	41574 74	36254 29	34590 71	37315 34	40894 7	31534 63	21685.07	33966.05	39030.82	38782 30
Sc45	13 33	11 91	22 91	23 94	12 68	33 34	65 74	12 92	14.83	15 30
Ti49	8313.83	7128 57	12472 34	10550.26	8562.7	9411 64	6116 17	10040 42	9317 28	8683 73
V51	72 1	26.86	183 21	170 59	127 52	51.9	34 68	91 42	58 86	63 64
Cr52	15.65	13 76	125.81	27.84	60.99	148 46	286 10	17.62	15 17	58.98
Mn55	356.86	304 79	557.03	519.26	399.69	889.25	1015 52	451 62	394 56	421 34
Fe57	46054 24	34876 54	84566.49	73687 25	57362 67	124767.83	198821 48	54346.88	41033.03	52399 55
Co59	8.09	6 13	11 41	9 19	7 82	16 48	28.06	9 5 3	×1055.05 8 55	9 23
Ni60	39.21	27 94	59.67	55.95	40.41	97.48	215 70	37 70	28.08	42.23
Cu65	26.38	27.34	29.39	28 74	20.68	50.87	44.00	30.45	20.00	26.33
7n66	190.73	199 58	303 52	264.93	180.04	658.85	1144 20	255.99	27.52	20.55
Ga71	34.61	28 75	38 25	30 72	31 93	46.65	69.03	32 79	31.02	34.63
Rh85	125 54	118 1	1/18 77	158.03	172.2	40.05	838.25	1/2 71	124 54	1/6 03
Sr88	1969 73	2080 77	1660 39	1767 42	2305.03	1104 04	173 38	1811 59	2017 60	1755 58
789	41 52	38.84	44.61	34.7	35 55	41 96	2 56	44 35	57 16	A1 97
7r90	41.52	474.6	610.94	490.73	466 33	632.24	166.40	565 54	596 14	474 98
Nh93	26.62	22 32	36 59	33.96	24 69	24 44	4 20	37.83	31 20	28 76
Cc122	8 5 3	7.65	13.07	0.38	0 13	24.44	581 33	11 50	9 73	12 04
C3133 Ba127	3123.64	7.05	2672 51	2006 48	2736 74	1025 52	70.34	2751 50	2711 20	2781.02
12139	184.09	189 74	2072.51	205 16	182.81	197.48	12 12	2751.55	2711.20	2701.02
Ce140	291.09	287 11	324.06	332.21	274 39	314 1	18.06	342 30	364.80	343.84
Pr141	39.81	37 15	42 45	43	34 68	41 88	2 27	44 30	50 27	46 64
Nd143	140.87	141 31	164 95	155 99	130.88	147.02	8 16	168 95	186 30	172 67
Pm	110107	1.1.01	10 1100	100.00	100100	11/102	0120	100.00	100.00	1, 1, 0,
Sm147	19.8	20.48	22	22.57	18.35	22.29	1.22	24.92	26.65	23.71
Fu151	5.13	4.23	4.47	4.34	4.21	4.92	0.09	5.45	5.09	5.50
Gd155	12.27	12.71	14.03	14.29	12.31	12.03	0.68	15.58	18.80	16.43
Tb159	1.44	1.61	1.59	1.49	1.21	1.49	0.15	1.71	1.93	1.97
Dv163	7.1	8.87	9,99	8.07	7.32	9.8	0.52	8.28	10.75	8.09
Ho165	1.43	1.33	1.65	1.26	1.18	1.69	0.13	1.63	1.51	1.63
Er166	3.37	3.53	5.63	3.99	2.89	4.1	0.30	4.21	5.18	3.80
Tm169	0.572	0.408	0.442	0.573	0.479	0.497	< 0.045	0.54	0.75	0.54
Yb173	3.12	3.99	4.3	2.07	3.56	4.93	0.53	3.64	4.22	3.87
Lu175	0.475	0.599	0.68	0.404	0.538	0.758	0.06	0.60	0.67	0.45
Lu176	5.6	6.22	5.47	4.77	4.83	7.1	1.58	5.55	6.88	5.57
Hf179	11.75	11.66	16.24	11.47	10.69	16.64	6.62	14.61	14.54	12.86
Ta181	0.97	1.27	1.75	1.44	0.89	1.15	0.24	1.34	1.36	1.14
Pb208	181.54	171.39	188.61	167.65	166.76	135.54	6.26	208.96	186.13	188.46
Th232	27.05	26.87	30.78	27.79	25.65	28.31	1.45	34.30	31.94	27.15
U238	5.36	5.59	5.98	5.66	4.49	6.74	2.24	6.26	6.07	5.49

|--|

	WSWPST1	WSWPST1	WSWPST1	WSWPST1
Spot #				
Analyte	Avg	StDev/Avg	StDev	StErr
Mg24	13653.22	0.61	8345.01	2638.92
Al27	96696.71	0.17	16338.80	5166.78
Si29	350579.54	0.00	0.01	0.00
P31	2704.01	0.47	1271.37	402.04
Ca42	35562.87	0.16	5800.64	1834.32
Sc45	22.69	0.73	16.61	5.25
Ti49	9059.69	0.20	1775.08	561.33
V51	88.08	0.62	54.81	17.33
Cr52	77.04	1.14	87.76	27.75
Mn55	530.99	0.44	235.61	74.51
Fe57	76791.60	0.65	50243.46	15888.38
C059	11.45	0.56	6.46	2.04
N160	64.44	0.88	56.90	17.99
Cu65	30.85	0.30	9.31	2.94
Zn66	369.95	0.83	305.28	96.54
Ga71	37.84	0.32	12.07	3.82
Rb85	237.70	0.98	233.42	/3.82
Sr88	1664.55	0.37	612.78	193.78
Y89	38.32	0.37	14.01	4.43
Zr90	491.28	0.27	133.58	42.24
ND93	26.56	0.34	9.11	2.88
CS133	93.32	2.04	189.91	60.06
Ba13/	2450.29	0.36	891.65	281.96
La139	187.04	0.34	00.41	20.29
Ce140	289.20	0.34	99.41	31.44
PT141	38.25	0.35	13.40	4.24
NG145	141.71	0.35	49.91	15.78
FIII Sm147	0.00		12.00	6.00
5111147	0.00		2.62	0.00
Gd155	12.87	0.64	8.24	1.52
Th150	1 //	0.04	0.24	4.12
Dv163	6.91	0.60	4.43	2 21
Ho165	1 22	0.60	0.73	0.37
Fr166	3 37	0.63	2 13	1.06
Tm169	0.61	0.05	0.12	0.06
Vh173	3.07	0.56	1 71	0.85
Lu175	0.45	0.62	0.28	0.14
Lu176	4.90	0.47	2.30	1.15
Hf179	12.16	0.31	3.78	1.89
Ta181	1 02	0.51	0.53	0.26
Pb208	147.45	0.64	94.69	47,34
Th232	23.71	0.64	15.14	7.57
U238	5.02	0.37	1.88	0.94
0100	3.02	0.57	1.00	0.54

	GJPST1B	GJPST1B	GJPST1B	GJPST1B	GJPST1B	GJPST1B
Spot #	43	44	45	46	47	48
Analyte	45		45	40	-1	40
Mg24	197.94	642.73	353.1	396.65	535.31	170.17
AI27	57830.13	26628.27	45416.15	55239.96	69519.44	63971.55
Si29	350579.53	350579.53	350579.53	350579.53	350579.53	350579.53
P31	<73.61	<35.61	90.54	97.36	70.57	60.04
Ca42	2121.3	1175.27	1636.54	2119.14	1407.74	2445.18
Sc45	<1.10	2.53	2.93	2.94	1.73	2.61
Ti49	597.47	919.61	811.26	853.77	646.09	502.34
V51	4.14	16.27	5.79	5.7	4.05	3.15
Cr52	<2.76	<1.58	1.91	2.24	1.86	<1.06
Mn55	108.1	107.21	179.15	87.26	121.49	90.83
Fe57	4407.88	12036.06	7531.75	5189.73	5729.19	3913.6
Co59	0.78	1	0.76	0.79	0.47	0.23
Ni60	<2.10	2.1	1.01	2.42	<1.11	0.88
Cu65	<2.08	1.71	3.55	2.43	<0.77	<0.93
Zn66	26.34	23.94	49.81	20.12	20.66	17.36
Ga71	13.71	9.56	18.03	18.84	27.27	25.55
Rb85	150.53	84.6	152.15	173.42	319.96	263.81
Sr88	14.1	18.89	7.03	10.02	4.52	5.79
Y89	28.08	4.13	32.51	20.75	11.43	14.13
Zr90	136.49	44.53	144.5	106.34	92.39	85.23
Nb93	26.39	15.89	20.81	25.06	21.51	10.25
Cs133	0.82	0.676	0.93	0.938	1.66	0.633
Ba137	51.94	59.8	38.71	48.8	22.94	30.77
La139	77.48	12.61	86.19	63.86	36.94	52.31
Ce140	157.92	23.33	176.92	127.81	63.22	103.83
Pr141	18.33	2.4	21.57	14.61	6.64	10.54
Nd143	66.74	8.3	78.01	56.61	24.3	38.46
Pm						
Sm147	13.93	1.69	17.17	12.23	5.58	8.23
Eu151	0.63	0.126	0.63	0.664	0.378	0.83
Gd155	9.26	1.43	12.39	7.98	3.8	6.23
Tb159	1.52	0.134	1.87	1.129	0.554	0.835
Dy163	7.18	1.01	8.47	5.48	2.52	4.23
Ho165	1.31	0.184	1.23	0.986	0.567	0.614
Er166	2.4	0.481	3.24	1.9	0.93	1.57
Tm169	0.404	< 0.053	0.336	0.206	0.101	0.15
Yb173	2.18	0.37	2.23	1.31	0.72	0.95
Lu175	0.256	< 0.032	0.23	0.177	0.095	0.083
Lu176	2.4	0.66	2.14	2.05	1.63	1.99
Ht179	4.95	2.62	5.41	4.06	4.76	4.25
Ta181	1.56	1.221	1.46	1.51	1.48	1.021
Pb208	20	12.37	21.63	19.78	27.07	29.34
In232	29.06	4.15	18.63	18.34	16.13	36.52
0238	3.06	0.808	2.05	2.7	2.25	1.18

Table B1, cont.

	GJPST1B	GJPST1B	GJPST1B	GJPST1B
Spot #				
Analyte	Avg	StDev/Avg	StDev	StErr
14-24	202.65	0.40	105.00	75.50
IVIGZ4	382.65	0.48	185.08	/5.50
AIZ7 5120	250570.52	0.29	15520.00	0257.09
D21	70.62	0.00	17 21	0.00
Co42	1917 52	0.22	17.51	100.20
Cd4Z	2 55	0.27	467.95	199.20
3C43 Ti40	2.55	0.19	162.65	66.91
1149	6.52	0.25	1 90	1 00
V31 CrE3	2.00	0.75	4.09 0.21	1.33
Mn55	2.00	0.10	22 52	13.69
Fo57	6468.04	0.29	33.32 2002 70	1225 80
Co59	0406.04	0.40	0.27	1223.00 0 11
Ni60	1.60	0.41	0.27	0.32
CUEE	2.00	0.40	0.77	0.52
Cu05	2.50	0.30	0.93	0.38
21100 Co71	20.37	0.45	6 77	4.00
	10.05	0.50	0.77	2.70
KD85 C=00	190.75	0.45	85.08	34.98
2122	10.06	0.55	5.52	2.25
189	18.51	0.58	10.66	4.35
Zr90	101.58	0.36	36.58	14.93
ND93	19.99	0.30	6.02	2.46
CS133	0.94	0.40	0.37	0.15
Ba137	42.16	0.33	13.87	5.66
La139	54.90	0.49	27.15	11.09
Ce140	108.84	0.53	58.00	23.68
Pr141	12.35	0.58	7.22	2.95
Na143 Pm	45.40	0.58	26.51	10.82
Sm147	0.00		5.05	2.52
Eu151	0.00		0.19	0.09
Gd155	7.60	0.48	3.62	1.81
Tb159	1.10	0.52	0.57	0.28
Dv163	5.18	0.48	2.51	1.25
Ho165	0.85	0.37	0.32	0.16
Fr166	1.91	0.51	0.97	0.10
Tm169	0.20	0.51	0.10	0.45
Yh173	1.30	0.51	0.66	0.05
10175	0.15	0.48	0.07	0.03
Lu176	1 95	0.11	0.22	0.05
Hf170	1.55	0.11	0.22	0.11
To181	4.02	0.13	0.00	0.50
Dh209	24.46	0.17	1 10	2.25
FU200 Th222	24.40	0.10	4.49 Q /Q	2.23 171
111232	22.41	0.42	9.40 0.64	4.74
0230	2.05	0.51	0.04	0.52

Table B1, cont.

	GJPST1A	GJPST1A	GJPST1A	GJPST1A	GJPST1A	GJPST1A	GJPST1A	GJPST1A	GJPST1A	GJPST1A	GJPST1A	GJPST1A
Spot #	8	9	10	11	12	13	14	15	16	17	18	19
Analyte												
Mg24	2021.26	2317.47	1606.74	5419.21	2138.12	3613.46	3519.13	2364.41	4166.09	2390.1	722.63	397.35
Al27	49206.29	65110.54	63853.01	62502.14	68385.45	95442.3	90789.08	62001.16	88959.93	89781.52	52073.14	35765.96
Si29	350579.56	350579.53	350579.53	350579.53	350579.53	350579.53	350579.53	350579.53	350579.53	350579.53	350579.53	350579.53
P31	79.01	86.02	71.2	52.7	77.66	107.07	103.86	87.11	112.23	202.48	163.6	46.45
Ca42	3578.4	4580.84	3823.86	6524.82	4060.45	6092.79	6013.63	4544.76	6353.49	4166.56	2749.86	2003.97
SC45	3.46	4.25	3.61	7.06	3.46	5.61	5.47	4.36	6.73	5.8	3.68	2.94
1149	466.92	380.74	481.5	325.89	568.29	1438.25	348.15	739.94	1153.7	178.20	1000.26	1201.99
V51 CrE2	/.32	8.74	8.30 3.50	20.91	15.00	45.38	15.02	23.12	31.38	17.0	1 10	4.39
MnEE	11.04	2.30	3.35	24 72	21 22	4.72	<2.45 10.77	2.35	~2.29	<0.05	1.19	2.01
E057	11.94	6220.2	5202.20	24.75	6957 22	10709 52	7566 21	700/ 01	33.0 12490 27	0155 55	23.90	2025.05
Co59	4373.32 2 71	2 09	1.62	5 73	2.68	19798.52	3.09	2 38	3 72	2 11	1 3/	0.67
Ni60	7.09	10.5	4.85	16 99	3.83	13.82	6 33	9.95	7.93	6.01	1.54	3 54
Cu65	7.69	5.09	3 42	17.65	4 25	9 15	6.24	6 79	5.26	8 34	4 86	47
Zn66	14.27	13.15	13.21	37.29	29.49	76.35	27.88	23.1	27.69	53.79	17.6	9.09
Ga71	16.81	26.88	24.55	29.55	19.32	31.33	25.76	27.58	31.2	35.76	22.42	9.64
Rb85	97.86	223.84	193.74	205.29	144.04	206.64	211.09	191.29	213.65	201.11	149.95	75.81
Sr88	25.64	15.73	14.67	29.62	21.78	28.01	24.4	19.87	31.77	18.61	11.66	5.64
Y89	2.44	11.41	9.66	2.99	5.62	20.14	6.31	10.99	10.59	13.92	36.47	11.88
Zr90	15.06	143.38	48.05	16.55	34.24	66.5	33.74	77.26	72.96	45.44	115.76	67.47
Nb93	4.98	4.22	6.44	2.87	3.74	15.97	3.06	8.35	12.39	9.34	19.34	15.05
Cs133	1.21	1.65	1.28	1.3	0.83	1.33	1.39	1.54	1.7	0.95	0.83	0.56
Ba137	89.63	49.24	38.14	63.79	79.85	58.77	55.39	45.08	86.23	46.84	27.1	13.56
La139	17.45	26.07	58.82	22.44	29.06	107.81	44.47	60.04	48.78	90	186.91	67.53
Ce140	27.48	40.28	104.96	38.11	48.86	195.09	73.01	111.74	82.47	163.41	374.34	127.41
Pr141	2.61	3.49	10.82	3.55	4.48	21.4	6.96	11.37	8.85	18.81	41.31	13.3
Nd143	7.75	11.29	41.88	11.26	17.02	79.26	25.59	43.01	30.65	57.92	152.18	48.15
Pm												
Sm147	1.31	1.39	6.28	1.83	2.77	13.57	3.95	4.82	5.66	12.25	23.74	7.56
Eu151	0.63	0.63	0.78	0.58	0.91	1.44	0.71	0.74	1.02	1.15	2.21	0.61
Gd155	0.79	1.86	3.94	0.96	1.5	7.36	1.97	3.41	4.05	7.01	16.76	4.15
10159	0.104	0.271	0.566	0.158	0.228	0.89	0.125	0.57	0.349	0.56	1.98	0.643
Dy163	0.33	1.28	2.51	0.47	0.89	3.67	1.32	2.63	2.1	3.23	10.43	2.92
H0105	0.140	0.292	1.02	0.147	0.119	1.97	0.241	1.04	0.534	0.62	1.5	1.04
E1100 Tm160	<0.22	0.285	0.110	0.55	<0.74	1.07	0.37	0.151	0.8	0.124	0.275	0.146
Vh172	<0.087	1 74	0.119	0.040	0.085	1 60	0.075	0.131	0.037	1 1 2	2 5 1	1 21
10175	<0.38	0.304	0.05	0.45	0.44	0 191	0.20	0.04	0.07	0.17	0.254	0.116
Hf179	0.59	4 48	2 31	1 15	0.96	2 52	1.8	3.5	2 76	<1 28	4 22	2 36
Ta181	0.83	0.399	0.548	0.221	0.438	1.36	0.311	0.81	1.03	0.81	1.224	1.28
Pb208	19.41	28.94	27.72	30.42	22.73	36.97	31.95	30.28	36.75	63.8	27.15	14.67
Th232	5.04	10.76	11.65	3.82	10.22	31.07	11.41	24.14	13.68	18.8	23.38	10.73
U238	0.12	1.95	0.922	0.363	0.307	1.77	0.494	1.11	0.65	0.74	2.01	0.583

Table B1, cont.

Spot #	GJPST1A 20	GJPST1A	GJPST1A	GJPST1A	GJPST1A
Analyte	20	Avg	StDev/Avg	StDev	StErr
Mg24	1885.79	2504.75	0.55	1377.05	381.92
Al27	75732.09	69200.20	0.26	18177.47	5041.52
Si29	350579.5	350579.53	0.00	0.01	0.00
P31	75.34	97.29	0.45	43.31	12.01
Ca42	4636	4548.42	0.31	1392.36	386.17
Sc45	4.19	4.66	0.29	1.33	0.37
Ti49	899.08	752.54	0.48	363.96	100.94
V51	12.54	17.34	0.64	11.14	3.09
Cr52	3.24	3.08	0.33	1.01	0.28
Mn55	15.31	22.73	0.54	12.22	3.39
Fe57	6485.7	8294.43	0.53	4374.50	1213.27
Co59	1.07	2.57	0.54	1.38	0.38
Ni60	<1.66	7.71	0.58	4.46	1.24
Cu65	2.21	6.59	0.59	3.86	1.07
Zn66	16.01	27.61	0.69	19.04	5.28
Ga71	26.22	25.16	0.27	6.89	1.91
Rb85	182.34	176.67	0.26	46.36	12.86
Sr88	15.8	20.25	0.37	7.59	2.10
Y89	27.9	13.10	0.75	9.83	2.73
Zr90	259.51	76.61	0.86	66.12	18.34
Nb93	17.91	9.51	0.63	5.96	1.65
Cs133	1.11	1.21	0.28	0.34	0.09
Ba137	46.48	53.85	0.41	22.21	6.16
La139	61.91	63.18	0.72	45.57	12.64
Ce140	116.19	115.64	0.80	92.48	25.65
Pr141	12.49	12.26	0.86	10.49	2.91
Nd143	46.84	44.06	0.88	38.59	10.70
Pm					
Sm147	8.49	7.20	0.88	6.31	1.75
Eu151	1.08	0.96	0.47	0.45	
Gd155	5.17	4.53	0.94	4.24	1.18
Tb159	0.94	0.57	0.89	0.51	0.14
Dy163	4.87	2.82	0.94	2.64	0.73
Ho165	0.938	0.51	0.76	0.39	0.11
Er166	3.58	1.35	0.75	1.01	0.28
Tm169	0.372	0.19	0.64	0.12	0.03
Yb173	3.04	1.21	0.73	0.88	0.24
Lu175	0.417	0.19	0.52	0.10	0.03
Hf179	6.57	2.77	0.62	1.71	0.47
Ta181	1.46	0.82	0.51	0.42	0.12
Pb208	29.63	30.80	0.38	11.71	3.25
Th232	22.94	15.20	0.54	8.16	2.26
U238	4.18	1.17	0.94	1.10	0.31

Table B1, cont.

Table B1, cont.

	GJPST1B									
Spot #	29	30	31	32	33	34	35	36	37	38
Analyte										
Mg24	193.06	1046.56	1578.07	454.7	783.16	299.8	10475.87	411.21	6650.55	677.71
AI27	50788.96	86087.75	74450.24	64966.23	34163.75	72758.39	77700.76	74589.83	102596.55	75321.33
Si29	350579.53	350579.53	350579.53	350579.53	350579.53	350579.53	350579.53	350579.53	350579.53	350579.47
P31	191.36	209.81	146.38	183.16	58.08	75.22	40.58	82.09	<47.62	85.06
Ca42	2445.08	2699.55	4495.08	3589.34	1587.74	2893.98	20083.03	3069.5	23292.36	2568.53
Sc45	2.07	3.54	3.41	4.18	2.27	3.19	36.97	2.91	13.05	2.51
Ti49	1662.61	394.55	521.17	909.3	580.85	534.01	165.94	762	277.88	457.97
V51	12.37	8.29	11.3	10.18	13.46	4.64	209.06	5.61	58.49	6.65
Cr52	<1.90	3.43	<4.30	<2.18	3.49	2.17	2.69	2.2	<2.77	2.88
Mn55	165.54	160.71	238.23	91.84	93.45	75.35	376.08	57.84	440.62	97.49
Fe57	17383.59	6212.17	7593.22	9389.71	7263.7	4279.34	11934.92	4684.4	7439.48	4635.1
Co59	4.29	1.42	1.87	1.43	1.3	<0.28	4.55	0.81	3.08	1.14
Ni60	4.41	6.05	5.94	1.57	51.87	<1.26	8.55	1.67	2.52	4.82
Cu65	1.9	9.5	5.13	1.97	4.19	1.23	8.12	<1.26	8.37	2.99
Zn66	186.08	59.6	41.79	48.98	23.59	<5.01	87.07	15.77	92.38	24.6
Ga71	16.72	43.91	24.94	19.35	15.62	23.54	51.83	23.75	38.75	21.83
Rb85	138.31	295.14	192.19	132.14	96.03	221.26	30.86	203.34	19.56	188.6
Sr88	17.54	10.87	23.89	12.59	15.24	7.97	104.51	11.58	77.5	15.38
Y89	15.56	9.74	18.48	40.17	3.04	22.49	3.13	25.35	0.81	11.36
Zr90	79.91	102.77	156.24	166.25	39.73	151.04	8.09	93.98	7.45	82.09
Nb93	22.21	10.9	14.24	25.11	10.77	23.49	0.93	20.7	3.21	13.06
Cs133	0.572	2.26	1.24	0.58	0.949	1.65	0.13	0.78	<0.164	1.03
Ba137	51.43	49.89	118.14	40.03	48.22	34.02	89.09	32.56	96.84	60.14
La139	48.5	36.3	56.32	106.48	11.29	62.24	28.22	85.92	26.47	33.14
Ce140	90.72	63.33	106.11	212.81	19.92	121.62	47.09	164.94	31.77	63.07
Pr141	9.75	6.93	11.32	24.84	1.61	13.7	4.48	18.28	2.64	6.97
Nd143	40.89	26.95	56.42	94.96	6.43	50.84	16.47	65.7	7.11	25
Pm										
Sm147	8.36	4.71	10.76	19.64	1.38	11.25	3.55	15.37	0.92	5.28
Eu151	0.48	0.7	0.62	1.15	0.133	0.84	1.97	0.84	2.77	0.5
Gd155	5.38	3.2	7.51	12.88	0.99	6.51	1.86	11.47	0.78	2.66
Tb159	0.747	0.65	0.68	1.99	0.128	0.912	0.328	1.31	0.08	0.366
Dy163	4.54	2.14	4.96	10.6	0.84	5.27	1.5	6.7	0.28	2.44
Ho165	0.604	0.32	0.8	1.87	0.1	0.99	0.181	0.99	<0.070	0.404
Er166	1.57	0.8	2.03	4.73	0.358	2.42	0.5	2.47	<0.126	1.54
Tm169	0.223	0.262	0.334	0.672	0.054	0.247	0.061	0.396	<0.066	0.224
Yb173	1.22	0.75	1.89	3.14	0.196	2.13	<0.27	2.62	<0.28	1.27
Lu175	0.084	0.2	0.209	0.438	0.473	0.306	0.039	0.299	< 0.063	0.16
Hf179	4.49	4.27	6.17	6.35	1.87	7.61	0.87	4.54	< 0.43	5.2
Ta181	1.43	1.38	1.55	1.72	1.014	1.82	0.141	1.42	0.222	0.91
Pb208	28.3	26.59	29.22	24.22	14.55	25.42	12.17	26.02	21.11	20.35
Th232	9.83	12.7	22.4	31.18	4.23	24.39	1.91	22.31	0.8	13.9
0238	0.89	1.19	2.43	2.9	1.3	3.12	0.128	1.94	0.074	1.54

	GJPST1B	GJPST1B	GJPST1B	GJPST1B
Spot #				
Analyte	Avg	StDev/Avg	StDev	StErr
Mg24	2257.07	1.54	3467.17	1096.41
AI27	71342.38	0.26	18613.22	5886.02
5129	350579.52	0.00	0.02	0.01
P31	119.08	0.54	63.88	20.20
Ca42	6672.42	1.20	/985.55	2525.25
Sc45	7.41	1.47	10.87	3.44
Ti49	626.63	0.67	422.88	133.73
V51	34.01	1.87	63.50	20.08
Cr52	2.81	0.20	0.57	0.18
Mn55	179.72	0.74	132.62	41.94
Fe57	8081.56	0.50	4024.61	1272.69
Co59	2.21	0.64	1.41	0.44
Ni60	9.71	1.64	15.97	5.05
Cu65	4.82	0.65	3.14	0.99
Zn66	64.43	0.82	53.02	16.77
Ga71	28.02	0.44	12.37	3.91
Rb85	151.74	0.57	86.16	27.24
Sr88	29.71	1.12	33.21	10.50
Y89	15.01	0.81	12.18	3.85
Zr90	88.76	0.65	58.03	18.35
Nb93	14.46	0.58	8.38	2.65
Cs133	1.02	0.62	0.64	0.20
Ba137	62.04	0.47	29.22	9.24
La139	49.49	0.59	29.19	9.23
Ce140	92.14	0.66	61.00	19.29
Pr141	10.05	0.72	7.29	2.30
Nd143	39.08	0.72	28.32	8.96
Pm				
Sm147	8.12	0.76	6.15	1.94
Eu151	1.00	0.79	0.79	
Gd155	5.32	0.80	4.27	1.35
Tb159	0.72	0.81	0.58	0.18
Dy163	3.93	0.80	3.16	1.00
Ho165	0.70	0.79	0.55	0.17
Er166	1.82	0.73	1.34	0.42
Tm169	0.27	0.68	0.19	0.06
Yb173	1.65	0.59	0.98	0.31
Lu175	0.25	0.60	0.15	0.05
Ht179	4.60	0.46	2.13	0.67
Ta181	1.16	0.51	0.59	0.19
Pb208	22.80	0.25	5.73	1.81
Th232	14.37	0.73	10.42	3.29
U238	1.55	0.68	1.06	0.33

Table B1, cont.
— ·		D 4	
Tab	le	В1	cont.

	CRWPST	CRWPST	CRWPST	CRWPST	CRWPST	CRWPST	CRWPST	CRWPST	CRWPST	CRWPST
Spot #	48	49	50	51	52	53	54	55	56	57
Analyte										
Ma24	2120 01	1176 21	1142 61	2024 66	4117 OF	1720.96	2172 67	2220.02	2026 20	1527.24
1VIB24	5420.04	4170.51 90426 4	72707.26	2054.00	4117.05	1/20.00	00500 /9	5259.05	2030.39	1527.24
Si20	250570.6	250570.6	2505706	250570.6	250570.6	250570.6	2505706	250570.6	250570.6	250570.6
D21	105 11	20273.0	276 10	02 04	276	150 11	101 01	260 07	220279.0	112 70
F31 Ca42	193.11 5075 07	1000 21	370.19 4617.20	J2.54	520 1771 15	2755 26	401.01	200.97 1921 07	1219.0	413.79
Ca42 Sc/15	5675.67	4090.34 6 /	4017.35	4003.2	4771.4J 5.65	5755.20	10940.75 6 42	4031.97	2 00	14955.05 7 1
3C43 Ti40	2.2	1011 5	2100 07	0.65	151/02	1170.69	0.42 1121 06	1605 71	1609.06	7.1 1712 57
1143	10 96	15 72	15.06	7 /	1/ /0	11/9.00	15 50	15.06	12 01	12 0/
V31 CrE2	10.00 <1.92	13.72 <1.96	13.90	7.4 2.25	14.40 20.27	2.62	2.05	1 47	13.01 ~2.20	13.94 27.51
MnEE	192.05	<1.00 CT CTC	202.01	3.33 171 92	NZ.37	3.05 116	102 70	105 5	100 57	NZ.JI 11/ 21
Eo57	16872.04	16827.08	11265 67	5083.2	1/076 66	12005 12	12720 61	12020 7/	15728 05	17082 71
Co59	2 05	2 / 2	1 82	2003.2	2 7	1 22	2 10	2 2 2 2	2 7/	1 05
NIGO	5.05	J.40 1.67	1.02	1 22	2.7	2.52	5.19	2.22	2.74	2.05
Cu65	16 77	16.88	9.92	6.97	13 5/	10.07	13.57	1/1 79	13.51	10.98
7n66	/3.81	/1 28	20.11	27 22	10.88	27.15	12.24	29.28	11.51	22.22
Ga71	19 36	21 58	20.11	16 11	18 85	19 57	21.45	19.01	16 59	22.23
Rh85	193.99	247 59	262.36	202.47	190.86	266 11	242.88	195 53	180.55	259.45
Sr88	304.98	347.55	340 53	562.47	336 53	339 71	348 49	294.99	258.07	239.45
V89	28 78	38.04	35 22	10.3	30.65	34 65	36.06	32 19	230.07	34 17
7r90	551 69	716 49	652.48	194 11	614 68	680 17	690 79	609 56	503.88	625
Nb93	17.97	14.86	19.91	6.51	15.76	9.95	16.61	14.17	15.37	14.48
Cs133	2.36	2.75	2.89	1.48	2.13	3.1	2.71	2.42	1.96	2.99
Ba137	1752.03	1904.76	2033.13	4665.64	1426.86	1924.68	2042.52	1564.42	1619.24	1798.08
La139	96.53	128.19	103.17	29.9	88.93	95.28	155.73	104.93	48.36	128.15
Ce140	165.64	219.54	183.37	43.86	162.6	162.31	257.14	184.99	88.81	216.33
Pr141	17.05	22.36	18.52	4.54	17.34	15.46	23.89	18.83	9.23	21.43
Nd143	60.79	77.54	69.68	15.62	60.27	56.78	84.48	65.52	38.2	76.29
Pm										
Sm147	9.56	10.6	11.58	3.13	11.03	8.52	11.22	9.76	6.81	11.47
Eu151	2.16	2.42	2.74	3.64	2.2	1.94	2.62	1.91	1.4	2.78
Gd155	7.45	8.84	8.38	2.88	8.44	8.13	8.24	6.91	5.92	8.92
Tb159	0.82	1.36	1.13	0.418	1.171	1.073	1.13	1.14	0.802	1.24
Dy163	6.64	7.2	7.53	2.03	6.34	7.55	7.89	6.56	5.52	6.97
Ho165	1.05	1.62	1.52	0.433	1.199	1.31	1.32	1.32	1.032	1.31
Er166	3	4.23	3.8	0.91	3.21	3.74	4.48	3.45	2.74	3.33
Tm169	0.443	0.502	0.442	0.155	0.545	0.584	0.352	0.403	0.424	0.416
Yb173	2.37	3.85	3.86	1.17	3.06	3.4	2.86	2.45	2.99	3.21
Lu175	0.344	0.586	0.414	0.132	0.463	0.512	0.551	0.502	0.4	0.504
Hf179	12.54	13.82	14.47	3.87	13.19	14.73	13.5	13.96	10.76	14.37
Ta181	0.94	0.619	1.041	0.39	0.852	0.512	0.89	0.73	0.626	0.85
Pb208	29.85	48.09	55.04	44.76	33.95	48.83	44.5	31.83	36.87	51.4
Th232	18.7	22.19	22.46	5.9	19.81	23.68	24.04	20.54	16.41	22.52
U238	2.81	3.25	3.22	0.537	3.26	3.3	3.26	2.71	2.56	3.34

	CRWPST	CRWPST	CRWPST	CRWPST
Spot #				
Analyte	Avg	StDev/Avg	StDev	StErr
Mg24	2534.22	0.35	895.01	516.73
Al27	67450.28	0.07	4505.90	2601.48
Si29	350579.58	0.00	0.02	0.01
P31	307.52	0.30	93.18	53.80
Ca42	8004.83	0.75	6007.77	3468.59
Sc45	5.92	0.28	1.68	0.97
Ti49	1702.44	0.01	9.69	5.59
V51	14.00	0.07	1.03	0.59
Cr52	1.47			
Mn55	166.76	0.27	45.58	26.31
Fe57	14214.47	0.10	1394.44	805.08
Co59	2.00	0.43	0.87	0.50
Ni60	3.39	0.03	0.11	0.06
Cu65	13.12	0.15	1.95	1.13
Zn66	34.34	0.31	10.55	6.09
Ga71	18.95	0.12	2.33	1.34
Rb85	211.91	0.20	41.83	24.15
Sr88	297.66	0.14	40.99	23.66
Y89	30.40	0.16	4.91	2.83
Zr90	579.48	0.11	65.93	38.06
Nb93	14.67	0.04	0.62	0.36
Cs133	2.46	0.21	0.52	0.30
Ba137	1660.58	0.07	122.19	70.55
La139	93.81	0.44	41.04	23.69
Ce140	163.38	0.41	66.45	38.37
Pr141	16.50	0.39	6.43	3.71
Nd143	60.00	0.33	19.64	11.34
Pm				
Sm147	9.35	0.25	2.36	1.36
Eu151	2.03	0.34	0.70	
Gd155	7.25	0.21	1.53	0.88
Tb159	1.06	0.22	0.23	0.13
Dy163	6.35	0.12	0.75	0.43
Ho165	1.22	0.13	0.16	0.09
Er166	3.17	0.12	0.38	0.22
Tm169	0.41	0.03	0.01	0.01
Yb173	2.88	0.14	0.39	0.23
Lu175	0.47	0.13	0.06	0.03
Hf179	13.03	0.15	1.98	1.14
Ta181	0.74	0.15	0.11	0.06
Pb208	40.03	0.25	10.16	5.87
Th232	19.82	0.16	3.12	1.80
U238	2.87	0.14	0.41	0.24

Table B1, cont.

	PSTG01C	PSTG01C	PSTG01C
Spot #	67	68	69
Analyte			
Mg24	626.45	548.76	438.38
Al27	45415.39	59121.48	51966.19
Si29	350579.5	350579.47	350579.5
P31	93.27	136.28	182.94
Ca42	5130.81	4144.49	5956.57
Sc45	3.57	2.79	3.43
Ti49	1821.84	1661.13	1429.29
V51	5.96	6.11	4.3
Cr52	<1.11	<1.46	1.98
Mn55	133.36	261.7	470.96
Fe57	9628.42	10372.78	7079.79
Co59	0.33	0.58	0.44
Ni60	1	<0.92	0.8
Cu65	3.22	3.37	0.93
Zn66	16.28	29.03	38.33
Ga71	18.92	16.97	18.89
Rb85	141.13	117.73	126.08
Sr88	174.3	116.81	125.95
Y89	41.19	48.39	25.65
Zr90	404.03	325.82	154.72
Nb93	24.56	35.51	21.94
Cs133	1.27	0.9	1.02
Ba137	883.21	480.35	529.25
La139	14.83	22.29	48.61
Ce140	50.06	67.82	97.87
Pr141	7.18	11.14	10.91
Nd143	40.39	59.13	46.86
Pm	0.64	45.00	7 50
Sm147	9.61	15.03	7.52
Eu151	2.76	2.57	1.49
G0155	7.09	12.25	0.75
10159	1.10	2.07	0.95
Dy163	7.24	9.99	4.76
H0165	1.41	2.27	1
Er166	4.23	5.38	2.86
1m169	0.781	0.709	0.505
101/3	4.40	20.5	2.5
LU1/5	0.024	0.487	0.41/
HT1/9	9.62	0.96	3.13
19191	1.59	2.08 77 77	1.3
PU208	33.29 20 11	42.//	20.42
111232	20.44	54.17 Q OE	20.42
0238	5.55	0.90	0.03

	PSTG01C	PSTG01C	PSTG01C	PSTG01C
Spot #				
Analyte	Average	StDev/Average	StDev	StErr
Mg24	537.86	0.18	94.51	54.56
Al27	52167.69	0.13	6855.27	3957.89
Si29	350579.49	0.00	0.02	0.01
P31	137.50	0.33	44.85	25.89
Ca42	5077.29	0.18	907.22	523.79
Sc45	3.26	0.13	0.42	0.24
Ti49	1637.42	0.12	197.35	113.94
V51	5.46	0.18	1.00	0.58
Cr52	1.98			
Mn55	288.67	0.59	170.41	98.39
Fe57	9027.00	0.19	1726.91	997.03
Co59	0.45	0.28	0.13	0.07
Ni60	0.90	0.16	0.14	0.08
Cu65	2.51	0.55	1.37	0.79
Zn66	27.88	0.40	11.07	6.39
Ga71	18.26	0.06	1.12	0.65
Rb85	128.31	0.09	11.86	6.85
Sr88	139.02	0.22	30.89	17.84
Y89	38.41	0.30	11.62	6.71
Zr90	294.86	0.43	127.51	73.62
Nb93	27.34	0.26	7.20	4.16
Cs133	1.06	0.18	0.19	0.11
Ba137	630.94	0.35	219.84	126.92
La139	28.58	0.62	17.75	10.25
Ce140	71.92	0.34	24.17	13.95
Pr141	9.74	0.23	2.22	1.28
Nd143	48.79	0.20	9.52	5.50
Pm				
Sm147	10.72	0.36	3.88	2.24
Eu151	2.27	0.30	0.69	
Gd155	8.70	0.35	3.08	1.78
Tb159	1.39	0.43	0.60	0.34
Dy163	7.33	0.36	2.62	1.51
Ho165	1.56	0.42	0.65	0.37
Er166	4.16	0.30	1.26	0.73
Tm169	0.67	0.22	0.14	0.08
Yb173	4.20	0.38	1.59	0.92
Lu175	0.51	0.21	0.11	0.06
Hf179	6.57	0.50	3.26	1.88
Ta181	1.66	0.24	0.39	0.23
Pb208	45.94	0.32	14.50	8.37
Th232	27.68	0.25	6.91	3.99
U238	7.04	0.25	1.75	1.01

Table B1, cont.

Table B1, cont.

	WSWPST2A	WSWPST2A	WSWPST2A	WSWPST2A	WSWPST2A	WSWPST2A	WSWPST2A
Spot #	10	11	12	13	14	15	16
Analyte							
14-24	1708.02	1700 77	822.05	4090 27	2050.82	1747.00	2154.11
IVIGZ4	1798.02	1/89.//	833.05	4080.27	2050.82	1/4/.83	2154.11
AIZ7	52001.06	48104.6	50824.41	70357.74	/1264.22	63131.64	80921.03
5129	350579.47	350579.47	350579.5	350579.47	350579.5	350579.5	350579.5
P31	<108.44	<95.87	<157.00	<420.62	<598.78	90.44	193.96
Ca42	1694.24	1068.19	2163.67	4056.35	5150.57	2419.26	2968.4
5645	<2.27	<2.33	<3.88	<9.77	<13.72	2.59	<2.74
1149	227.46	202.26	228.9	488.93	168.12	265.51	337.06
V51	<2.73	<2.74	4.12	<10.78	<15.02	3.73	<2.99
Cr52	<5.49	6.34	10.71	<23.96	<32.42	<4.75	12.41
IVIN55	35.17	73.14	118.72	86.39	98.55	64.96	199.98
Fe57	1418.3	2140.29	2424.75	3932.36	2983.13	1/2/.63	4110.2
C059	<1.13	<1.03	<1.55	4.63	<5.31	<0.88	1.96
NI6U	8.84	12.27	<5.39	67.9	<20.98	6.86	26.83
Cu65	7.79	7.13	<5.18	34.7	29.81	5.3	25.98
2066	18.77	15.15	<18.57	<66.80	<82.76	22.45	34.52
Ga/1	17.77	17.11	13.78	21.29	28.23	21.8	25.41
KD85	194.24	215.45	101.27	216.34	201.91	231.80	340.72
Sr88	7.81	10.26	11.08 F 12	20.42	11.17	13.03	13.82
189	1.32	0.98	5.13	4.95	2.31	3.21	4.54
2190	37.94	39.6	41.08	74.27	52.9	64.74	90.32
ND93	2.58	2.38	5.92	7.97	3.53	4.44	7.65
CS133	1.2	1.33	1.17	1.8	<2.02	1.57	1.5
Ba137	19.82	27.14	27.72	39.78	29.11	33.57	55.93
La139	16.23	16.23	19.13	25.4	21.17	27.84	27.44
Ce140	15.52	1 29	20.75	45.44	22.14	20.07	35.01
P1141	0.94	1.20	1.77	5.00	0.81	2.19	2.00
Dm	1.12	5.27	4.27	\$4.25	<3.99	0.75	15.24
Sm147	<0.72	<0.99	<1 /7	3 /0	3.02	1	0.83
511147 Fu151	<0.72	<0.55	0.27	1.06	<1.60	0.24	0.03
Gd155	<0.23	0.91	<1 52	<2.82	<3.99	0.24	1.05
Th159	<0.089	0.11	0 138	<0.44	<0.62	0.106	<0.071
Dv163	0.39	<0.45	<0.77	<1.75	<2.02	0.57	1 11
Ho165	<0.091	0.103	0.17	0.46	<0.81	0.078	0.233
Er166	< 0.30	0.24	<0.48	<0.73	<2.06	< 0.37	0.82
Tm169	<0.146	<0.130	<0.258	<0.75	<0.83	<0.100	0.197
Yb173	0.45	0.33	1.24	<3.19	<3.19	0.41	1.84
Lu175	0.23	0.339	<0.169	2.55	<0.63	0.342	0.61
Hf179	1.77	1.41	<1.50	3.52	<3.52	4.07	4.32
Ta181	0.401	0.59	0.71	3.21	1.09	1.16	1.95
Pb208	26.33	25.47	22.1	44.85	46.46	28.36	40.31
Th232	13.27	21.67	13.5	18.72	31.75	30.91	31.37
U238	0.92	0.71	1.79	3.51	<0.71	1.52	2.51

	WSWPST2A	WSWPST2A	WSWPST2A	WSWPST2A	WSWPST2A	WSWPST2A	WSWPST2A
Spot #	17	18	19				
Analyte				Avg	StDev/Avg	StDev	StErr
N4-24	1260.47	2601.0		2406.00	0.60	1426 46	454.25
11924	1209.47	2091.9	2023.73	2406.90	0.60	1430.40	454.25
AI27	31230.24	31703.00	75559.79	39317.00	0.25	14997.74	4/42.70
5129	350579.47	350579.5	350579.47	350579.49	0.00	0.02	0.01
P31	3.84</th <th>< 381.35</th> <th>115.11</th> <th>133.17</th> <th>0.41</th> <th>54.07</th> <th>17.10</th>	< 381.35	115.11	133.17	0.41	54.07	17.10
Ca42	1523.97	<4104.65	3428.44	2/19.23	0.48	1316.63	416.36
SC45	<1.60	<13.85	<2.74	2.59			
1149	169.59	130.95	354.85	257.36	0.42	108.49	34.31
V51	<1.82	<15.24	3.59	3.81	0.07	0.27	0.09
Cr52	<3.85	<30.45	7.83	9.32	0.29	2.74	0.87
Mn55	26.99	73.37	209.12	98.64	0.63	62.02	19.61
Fe57	1160.11	2299.27	7194.34	2939.04	0.61	1786.50	564.94
Co59	0.73	<6.05	2.47	2.45	0.67	1.63	0.51
Ni60	3.13	<23.67	9.98	19.40	1.17	22.66	7.17
Cu65	6.32	48.72	14.8	20.06	0.77	15.48	4.90
Zn66	<9.44	<84.37	48.52	27.88	0.49	13.64	4.31
Ga71	17.36	11.5	25.13	19.94	0.27	5.37	1.70
Rb85	211.36	89.33	225.11	215.36	0.31	65.88	20.83
Sr88	7.93	17.81	14.74	12.81	0.32	4.06	1.29
Y89	1.05	2.21	4.38	3.01	0.55	1.65	0.52
Zr90	36.32	28.29	48.08	51.41	0.38	19.45	6.15
Nb93	2.03	<1.39	7.45	4.88	0.49	2.41	0.76
Cs133	1.2	3.8	1.2	1.64	0.51	0.84	0.26
Ba137	19.69	18	33.86	30.46	0.37	11.36	3.59
La139	16	11.89	21.12	20.25	0.26	5.36	1.70
Ce140	19.19	17.33	29.36	25.45	0.37	9.52	3.01
Pr141	1.18	<0.81	1.92	1.76	0.50	0.88	0.28
Nd143	2.46	7.4	4.66	5.64	0.70	3.95	1.25
Pm							
Sm147	0.65	<4.97	1.14	1.69	0.73	1.23	0.39
Fu151	<0.215	<1.43	0.33	0.46	0.73	0.34	0.11
Gd155	<0.46	<3.26	<0.62	0.89	0.19	0.17	0.05
Th159	<0.10	<0.20	0.119	0.03	0.13	0.01	0.00
Dv163	0.25	1 38	<0.90	0.12	0.12	0.01	0.00
Ho165	<0.23	<0.36	<0.50	0.74	0.05	0.40	0.15
Fr166	<0.055	0.74	0.115	0.57	0.75	0.15	0.05
Tm160	<0.20	<0.74	<0.47	0.37	0.47	0.20	0.00
Vh172	0.120	<0.50	<0.137	0.20	0.82	0.62	0.20
10175	0.34	<0.13	0.74	0.77	1 72	0.03	0.20
Lu175	2 40	<0.01	1 40	0.00	1.25	1.05	0.20
To101	2.49	\2.49 0 °⊑	1.49	2.72	0.45	1.24	0.39
14101	0.471	0.05	0.95	1.14	0.75	0.05	0.27
FU2U8	21.21	17.03	20.30	50.55 21 42	0.33	3.90	5.15
111232	20.09	1.52	10.44	21.42	0.54	/.34	2.32
0238	1.15	1.33	1.41	1.05	0.53	0.87	0.28

Table B1, cont.

	WSWPST2B	WSWPST2B	WSWPST2B	WSWPST2B	WSWPST2B	WSWPST2B	WSWPST2B	WSWPST2B
Spot #	29	30	31	32	33	34	35	36
Analyte								
Mg24	602.1	1080.66	805.57	1501.27	323.17	923.76	566.56	525.49
AI27	82146.55	74056.88	76624.52	71395.35	36372.06	81657.47	92503.27	71355.72
Si29	350579.53	350579.53	350579.53	350579.5	350579.53	350579.53	350579.53	350579.53
P31	<1228.23	<166.01	<225.92	303.76	<160.24	<121.48	<756.58	488.62
Ca42	6426.55	6208.18	7912.95	10105.78	4166.68	3536.19	5867.65	3882.38
Sc45	<19.41	4.08	<4.77	<3.51	<3.56	3.19	<16.63	<11.45
Ti49	2215.26	1055.26	446.48	786.99	554.13	1160.22	948.48	725.67
V51	<20.83	4.01	<5.69	7.12	<4.04	<3.04	<19.54	<12.46
Cr52	<53.06	<8.57	<12.66	14.64	14.58	<6.82	<41.15	<27.31
Mn55	248.85	602.44	97.38	403.75	62.2	162.82	302.92	105.57
Fe57	5307.4	18435 98	2156 71	8383 28	1841 98	3076	7638.07	2126 34
Co59	<8.02	1 89	<2 19	<1 79	<1 41	<1 22	< 8.05	<4.84
Ni60	<31.28	11 29	<8.63	24.7	17 77	<4.75	<35 12	20.48
Cu65	<27.36	5 95	6.05	9.4	7 38	<3.60	<25.08	<13 33
2n66	<106.48	52.4	<29.95	105.09	/8.2/	< 3.00 23.26	<101 71	<72.60
Co71	10 57	24 24	24.01	20.64	17 / 2	23.20	20 74	29.74
Dher	252.80	24.34	228.25	29.04	17.42	22.78	202.14	265.00
C-00	332.83	270.03	238.33	323.37	127.73	302	292.14	203.33
3100	50.1 110.27	21.00	15.55	52.70 19 EE	15.1	25.50	20.00	29.71
7-00	162.11	122.07	17.40	10.55	20.49	152.02	206.14	17.99
2190	102.11	132.81	04.50	92	97.04	153.55	206.14	90.7
ND95	17.55	32.94	10.17	19.01	17.02	33.40	20.3	18.2
CS133	<2.36	1.34	1.16	1.48	0.54	1.67	<2.64	2.28
Ba137	154.2	33.30	22.68	83.97	18.35	49.55	42.19	43.02
La139	115.97	45.48	40.4	27.45	26.61	40.11	35.74	28.2
Ce140	253.91	96.77	63.74	57.51	58.38	82.13	73.54	47.67
Pr141	30.37	11.64	5.56	5.05	6.73	9.97	7.35	7.45
Nd143	102.35	39.74	24.58	25.65	17.68	32.19	23.32	14.51
Pm								
Sm147	27.83	7.51	<2.37	3.17	3.85	9.77	7.53	5.42
Eu151	2.05	0.43	<0.71	0.51	<0.34	0.54	<1.74	0.15
Gd155	18.96	6.06	6.42	3.48	4.02	6.65	<4.56	4.13
Tb159	4.19	1.5	0.32	<0.22	0.42	1.43	<1.00	0.9
Dy163	26.71	6.67	2.73	3.83	4.51	7.32	5.85	4.76
Ho165	4.35	1.51	0.64	0.63	0.76	1.25	1.37	0.96
Er166	8.82	4.48	1.22	1.36	2.15	2.8	5.48	2.73
Tm169	2.02	0.63	0.46	<0.23	<0.162	0.33	<0.95	<0.85
Yb173	10.93	4.19	1.97	3.41	<1.53	2.12	5.68	3.09
Lu175	1.72	0.66	<0.25	1.11	0.87	0.68	1.21	1.91
Hf179	<6.91	5.81	3.3	3.74	3.11	7.18	<6.01	<4.41
Ta181	3.63	1.37	1.14	1.8	1.27	2.84	3.36	2.96
Pb208	80.59	29.02	46.93	57.79	24.97	32.57	43.99	72.19
Th232	33.48	18.63	10.7	12.31	10.01	19.22	22.06	10.14
U238	3.67	2.3	0.97	1.86	3.03	3.23	5.65	2.49

Table B1, cont.

Та	bl	е	B	1.	со	nt.
	~ .	-	-	••	~~	

	WSWPST2B	WSWPST2B	WSWPST2B	WSWPST2B	WSWPST2B	WSWPST2B	WSWPST2B
Spot #	37	38	39				
Analyte				Avg	StDev/Avg	StDev	StErr
Mg24	732.32	2275.66	1218.68	959.57	0.58	553.14	166.78
Al27	56048.54	79516.87	65820.62	71590.71	0.21	15032.12	4532.35
Si29	350579.53	350579.53	350579.53	350579.53	0.00	0.01	0.00
P31	<251.72	<131.07	<627.99	396.19	0.33	130.72	39.41
Ca42	4894.44	13074.28	<4382.59	6607.51	0.46	3023.10	911.50
Sc45	<5.90	3.96	<13.10	3.74	0.13	0.48	0.15
Ti49	508.99	2306.22	916.85	1056.78	0.60	636.62	191.95
V51	<5.96	11.22	<14.34	7.45	0.49	3.62	1.09
Cr52	<13.76	<6.97	60.83	30.02	0.89	26.69	8.05
Mn55	108.95	610.14	360.06	278.64	0.71	197.58	59.57
Fe57	3835.72	15776.58	8469.43	7004.32	0.80	5606.96	1690.56
Co59	<2.51	1.35	<6.33	1.62	0.24	0.38	0.12
Ni60	11.07	8	31.33	17.81	0.47	8.38	2.53
Cu65	<7.17	7.93	<18.23	7.51	0.17	1.28	0.39
Zn66	<34.99	71.02	<96.29	60.00	0.51	30.42	9.17
Ga71	18.39	27.7	22.89	28.83	0.33	9.50	2.86
Rb85	200.47	291.59	257.84	265.91	0.23	61.62	18.58
Sr88	16.17	33.76	32.53	26.11	0.31	8.07	2.43
Y89	21.23	88.88	17.55	38.67	0.82	31.68	9.55
Zr90	164.6	307.94	191.77	151.20	0.46	68.90	20.78
Nb93	15.69	77.89	13.74	31.09	0.78	24.22	7.30
Cs133	1.23	1.49	<1.99	1.40	0.35	0.49	0.15
Ba137	22.01	147.15	42.19	59.88	0.81	48.33	14.57
La139	18.57	73.73	30.16	43.86	0.64	27.98	8.43
Ce140	40.41	183.24	52.59	91.81	0.72	66.56	20.07
Pr141	4.67	22.66	6.45	10.72	0.77	8.26	2.49
Nd143	19.35	85.76	13.04	36.20	0.82	29.84	9.00
Pm							
Sm147	6.32	14.94	7.66	9.40	0.77	7.27	2.19
Eu151	<0.56	0.46	<1.88	0.69	0.99	0.68	0.21
Gd155	<2.53	14.95	<3.49	8.08	0.71	5.70	1.72
Tb159	0.43	2.93	0.85	1.44	0.91	1.31	0.40
Dy163	4.28	17.84	4.41	8.08	0.92	7.40	2.23
Ho165	0.59	3.38	0.87	1.48	0.83	1.24	0.37
Er166	1.92	9.64	3.21	3.98	0.73	2.89	0.87
Tm169	0.34	1.32	<1.03	0.85	0.80	0.68	0.21
Yb173	<2.02	11.11	3.88	5.15	0.68	3.51	1.06
Lu175	1.57	1.89	1.39	1.30	0.36	0.47	0.14
Hf179	5.67	10.19	<5.32	5.57	0.46	2.54	0.76
Ta181	1.35	3.43	1.3	2.22	0.46	1.01	0.31
Pb208	32.41	32.98	36.56	44.55	0.41	18.32	5.52
Th232	16.36	35.42	30.31	19.88	0.47	9.42	2.84
U238	5.19	5.57	3.8	3.43	0.45	1.54	0.46

	WSWPST2D	WSWPST2D	WSWPST2D	WSWPST2D	WSWPST2D	WSWPST2D	WSWPST2D
Spot #	49	50	51	52	53	54	55
Analyte							
N4~24	202 56		680.02	100 50	147 50	252.62	E 20 1 E
IVIGZ4	592.50 66962.91	477.07	009.05	400.32	147.33 47620 EE	555.05	526.15
AI27	250570.5	46055.15	250570 5	250520.71	47029.55	250570 5	250570 5
5125	550579.5 ~E4 E7	330379.3	550579.5 EQ 11	330379.47 A1 EA	-27 12	21 62	21 09
F31 Ca42	2200 70	24.00	2065 1	41.54	<57.12 1610 72	51.05	2020.25
Cd4Z	2299.79	2178.00	2005.1	3333.12	1010.72	2255.15	5020.25 <0.50
5C45	177 27	226.02	210.74	222.27	140.3	1.13	218 25
V51	<1.05	1 51	2 06	5 16	<0.84	2 26	1 29
051 Cr52	24.58	8 3 2	2.00	11 3	<0.04 0 17	8.69	5 77
Mn55	63.28	189 56	106 56	207 50	72.65	117.06	181 /0
Fe57	1716.09	1780 67	2062 61	8146 7	1268.02	1981 9	2352 72
Co59	2.86	1 71	6.82	1 4	0.44	15	1 49
Ni60	<1.66	<1.04	<1.02	3.6	<1 55	<0.73	1 38
Cu65	11.88	7 64	16 12	3.07	2 36	10.64	5.83
Zn66	7.28	7.2	6.63	16.4	9.92	8.52	7.26
Ga71	18.93	19.81	20.74	29.53	18.62	15.64	20.37
Rb85	274.8	289.71	290.87	364.56	232.36	249.41	313.88
Sr88	19.2	20.7	13.95	19.1	13.46	13.33	26.84
Y89	2.21	2.6	2.39	2.32	0.8	7.95	3.83
Zr90	38.17	42.53	32.94	25.73	27.28	38.56	50.25
Nb93	3.21	4.45	2.86	52.59	1.64	16.6	8.49
Cs133	1.05	1.4	1.54	1.26	1.17	1.35	1.82
Ba137	49.21	92.1	47.64	61.96	44.82	41.42	116.29
La139	25.39	24.84	21.96	23.73	21.13	25.99	29.95
Ce140	26.77	28.12	18.76	19.15	36.98	30.96	21.82
Pr141	2.13	2.4	1.59	1.93	1.52	3.35	2.77
Nd143	12.11	6.6	3.9	4.39	5.53	10.52	6.03
Pm							
Sm147	0.92	0.59	0.44	0.99	0.58	1.37	0.7
Eu151	0.054	0.11	0.057	0.236	0.219	0.189	0.109
Gd155	<0.37	0.97	<0.29	0.4	0.51	1.59	0.58
Tb159	<0.036	0.063	0.028	0.113	<0.049	0.141	0.049
Dy163	0.23	0.43	0.23	0.17	<0.17	1.17	0.38
Ho165	0.146	0.081	<0.035	0.087	0.111	0.307	0.081
Er166	0.156	0.254	0.22	0.096	0.134	1.25	0.182
Tm169	0.051	0.068	0.04	0.036	<0.0233	0.094	0.088
Yb173	<0.32	0.63	<0.19	0.44	<0.22	0.98	0.32
Lu175	0.082	0.043	0.068	0.034	<0.025	0.082	0.064
Hf179	2.06	2.47	2.2	1.52	1.87	3.31	2.55
Ta181	0.432	0.568	0.43	0.298	0.276	1.01	0.72
Pb208	40.47	33.36	35.22	49.44	32.87	31.6	45.84
Th232	<0.05	16.18	17.92	24.42	30.36	22.43	26.77
U238	0.627	0.538	0.59	0.516	0.55	1.09	0.98

Table B1, cont.

	WSWPST2D	WSWPST2D	WSWPST2D	WSWPST2D	WSWPST2D	WSWPST2D	WSWPST2D
Spot #	56	57	58				
Analyte				Avg	StDev/Avg	StDev	StErr
	470 57	642.47		472.40	0.00	454.40	47.00
Mg24	4/0.5/	612.17	5/5.66	4/3.49	0.32	151.48	47.90
AIZ/	52374.34	65844.5	47015.86	55684.87	0.15	81/8.66	2586.32
Si29	350579.5	350579.47	350579.5	350579.49	0.00	0.01	0.00
P31	41.74	43.7	<124.96	38.97	0.28	11.07	3.50
Ca42	3335.54	2753.28	1532.05	2436.10	0.27	651.33	205.97
Sc45	1.83	1	<2.82	1.34	0.26	0.35	0.11
Ti49	235.32	208.04	229.28	246.98	0.39	96.80	30.61
V51	3.92	2.7	4.14	2.92	0.50	1.45	0.46
Cr52	7.84	11.09	14.32	11.57	0.46	5.36	1.69
Mn55	86.26	152.96	151.49	141.89	0.49	70.10	22.17
Fe57	2674.62	2337.66	2435.48	2675.65	0.73	1965.50	621.55
Co59	11.55	11.27	2.12	4.12	1.02	4.21	1.33
Ni60	<1.06	<1.24	28.35	11.11	1.35	14.97	4.73
Cu65	45.11	309.17	9.87	42.17	2.24	94.61	29.92
Zn66	7.37	5.46	42.76	11.88	0.95	11.27	3.56
Ga71	28.04	25.6	13.99	21.13	0.24	5.09	1.61
Rb85	354.47	362.14	225.43	295.76	0.18	52.21	16.51
Sr88	17.7	24.76	20.41	18.95	0.24	4.59	1.45
Y89	3.16	3.19	2.05	3.05	0.62	1.90	0.60
Zr90	33.77	57.66	40	38.69	0.25	9.81	3.10
Nb93	4.66	5	3.37	10.29	1.50	15.47	4.89
Cs133	1.53	1.49	0.86	1.35	0.20	0.28	0.09
Ba137	51.39	144.62	68.66	71.81	0.49	34.90	11.04
La139	28.66	37.87	20.71	26.02	0.20	5.15	1.63
Ce140	22.94	33.47	22.54	26.15	0.24	6.18	1.95
Pr141	6.38	3.22	2.77	2.81	0.50	1.40	0.44
Nd143	6.06	8.33	7.2	7.07	0.37	2.60	0.82
Pm							
Sm147	0.7	1.25	<1.02	0.84	0.38	0.32	0.10
Eu151	0.235	0.203	1.85	0.33	1.66	0.54	0.17
Gd155	0.59	0.62	1.16	0.80	0.51	0.41	0.13
Tb159	0.075	0.053	<0.115	0.07	0.53	0.04	0.01
Dy163	0.76	0.44	<0.73	0.48	0.71	0.34	0.11
Ho165	0.128	0.087	0.158	0.13	0.54	0.07	0.02
Er166	0.157	0.31	<0.53	0.31	1.17	0.36	0.11
Tm169	0.056	0.065	<0.23	0.06	0.34	0.02	0.01
Yb173	0.37	0.7	<0.89	0.57	0.43	0.25	0.08
Lu175	<0.027	0.044	0.93	0.17	1.83	0.31	0.10
Hf179	1.53	3.84	1.42	2.28	0.35	0.80	0.25
Ta181	0.438	0.882	1.02	0.61	0.47	0.28	0.09
Pb208	43.09	49.34	44.28	40.55	0.17	6.86	2.17
Th232	<0.01	41.66	16.74	24.56	0.35	8.54	2.70
U238	0.483	0.86	2.16	0.84	0.61	0.51	0.16
	1 000	0.00		0.0.	0.01	0.01	0.20

Table B1, cont.

	W/S/W/DST2E	W/S/W/DST2E	\\/\\$\\/D\$T2E	\\/\\$\\/D\$T2E	W/S/W/DST2E	\\/S\\/DST2E	\\/S\\/DST2E	W/S/W/DST2E	\M/S\M/DST2E
0	0	40	w3wr312i	40	40	w3wr312i	45	40	47
Spot #	9	10	11	12	13	14	15	16	17
Analyte									
Mg24	127.33	406.79	360.66	181.69	479.88	343.86	1233.67	424.33	974
AI27	80459.78	43177.98	58744.09	76332.63	68111.16	47214.32	72445.2	86988.31	58847.91
Si29	350579.47	350579.47	350579.47	350579.5	350579.47	350579.5	350579.5	350579.5	350579.47
P31	<105.51	<109.06	<221.40	175.87	509.03	<126.29	<288.64	<44.84	166.56
Ca42	2617.2	1239.66	3067.79	2064.5	<3396.02	1433.98	5457.94	2691.43	3003.79
Sc45	<1.99	2.21	<4.56	<1.23	<8.52	<2.53	<6.07	2	2.6
Ti49	181.54	190.15	252.04	284.46	1045.53	188.46	707	482.74	269.06
V51	<2.26	<2.68	<5.00	<1.45	<9.88	<3.07	<6.74	2.44	<2.28
Cr52	<5.48	10.9	<12.03	5.74	<22.67	<6.55	<15.84	<2.45	19.51
Mn55	13.82	84.46	165.62	47.51	87.25	74.68	151.95	289.65	142.48
Fe57	1600.45	2186.43	4395.84	1880.72	3254.64	1280.6	5276.38	5318.25	2984.14
Co59	1.09	1.04	<2.37	0.95	<3.45	<1.40	3.08	0.52	2.81
Ni60	7.64	13.03	10.36	11.46	19.14	<4.30	63.57	<1.73	38.4
Cu65	3.95	<3.36	20.52	4.43	<15.35	<3.76	40.72	2.51	12.71
Zn66	13.19	<14.27	32.26	27.02	<65.80	<16.54	<33.84	18.63	51.41
Ga71	32.65	13.91	19.16	21.36	28.72	12.97	28.02	24.96	24.49
Rb85	312.18	154.56	225.15	312.72	247.05	157.4	322.7	322.61	234.42
Sr88	12.36	10.65	13.69	17.56	13.63	14.84	24.15	25.69	17.35
Y89	1.26	1.41	6.93	2.21	36.29	2.46	2.45	4.46	4.48
Zr90	42.81	34.17	53.09	73.98	115.37	42.73	46.5	83.41	70.07
Nb93	1.89	2.62	5.82	3.85	41.34	3.58	4.86	8.71	34.63
Cs133	1.09	1.79	2.6	1.14	2.87	1.44	1.02	1.97	1.37
Ba137	11.18	9.45	18.04	22.96	30.37	18.96	77.53	46.74	19.97
La139	21.41	13.67	26.04	22.93	46.6	14.85	17.33	27.9	16.22
Ce140	16.62	14.86	32.47	25.11	90.91	15.65	25.64	35.47	22.99
Pr141	0.99	0.85	2.5	1.62	8.85	1.07	3.28	1.97	1.31
Nd143	2.88	<1.34	7.76	4.76	19.73	1.69	5.98	4.42	4.17
Pm	0.04	0.60		0.74	E 47	.0.00	5.64	0.04	.0.01
Sm147	0.81	0.68	1.41	0.71	5.17	<0.99	5.01	0.84	< 0.91
CHILL	0.18	<0.24	0.0	0.48	<1.05	<0.32	<0.35	0.158	1.29
GU155 Th150	<0.02	1.14	<0.85	0.82	0.75	<1.20	<1.00	0.56	0.52
Dv162	<0.147	<0.084 0.22	<0.23	0.28	6.73	<0.138	<0.33	0.1	0.131
Ho165	<0.32	0.33 <0.149	0.33	0.2	-0.22 -0.54	<0.30 0.203	<1.00	0.13	<0.34 0.56
Fr166	<0.081	<0.145	1.81	0.10	<0.54 5.07	0.205	<0.30	0.61	<0.50 <0.17
Tm169	<0.20	<0.24 0.1	<0.22	0.33	0.83	<0.30	<0.24	<0.01	<0.17
Yh173	0.130	<0.1	<1 44	<0.12	3 01	0.170	<27.24	0.007	1 52
10175	0.57	0.55	0.44	0 33	0.48	0.229	1 99	0.08	56.85
Hf179	1.35	2.98	3.05	5.28	4.15	2.31	3.47	4.11	2.78
Ta181	0.61	0.6	0.91	0.99	2.05	0.67	3,17	1.02	6 53
Pb208	33.39	20.76	52,23	42.02	57.3	17,98	44,73	38.38	44.9
Th232	17.23	14.45	22.23	22.79	38.41	12.83	19.96	26.91	22.97
U238	0.75	0.64	2.15	1.54	2.74	1.12	8.08	2.19	5.9
	0.70	0.0.	_ 0	2.0 .			0.00	_ y	0.0

Table B1, cont.

Tab	ble	B1	. CO	nt.
100		• •	,	

	WSWPST2F	WSWPST2F	WSWPST2F	WSWPST2F
Spot #				
Analyte	Avg	StDev/Avg	StDev	StErr
Mg24	503.58	0.72	364.29	121.43
Al27	65813.49	0.23	14914.71	4971.57
Si29	350579.48	0.00	0.02	0.01
P31	283.82	0.69	195.09	65.03
Ca42	2697.04	0.49	1308.21	436.07
Sc45	2.27	0.13	0.30	0.10
Ti49	400.11	0.74	297.22	99.07
V51	2.44			
Cr52	12.05	0.58	6.96	2.32
Mn55	117.49	0.69	81.59	27.20
Fe57	3130.83	0.50	1551.02	517.01
Co59	1.58	0.68	1.08	0.36
Ni60	23.37	0.88	20.52	6.84
Cu65	14.14	1.04	14.71	4.90
Zn66	28.50	0.52	14.77	4.92
Ga71	22.92	0.29	6.69	2.23
Rb85	254.31	0.27	67.77	22.59
Sr88	16.66	0.31	5.18	1.73
Y89	6.88	1.62	11.17	3.72
Zr90	62.46	0.41	25.85	8.62
Nb93	11.92	1.26	15.00	5.00
Cs133	1.70	0.39	0.67	0.22
Ba137	28.36	0.76	21.53	7.18
La139	22.99	0.44	10.15	3.38
Ce140	31.08	0.76	23.56	7.85
Pr141	2.49	1.01	2.51	0.84
Nd143	6.42	0.88	5.68	1.89
Pm				
Sm147	2.18	1.02	2.21	0.74
Eu151	0.54	0.85	0.46	0.15
Gd155	1.69	1.23	2.09	0.70
Tb159	0.32	0.95	0.30	0.10
Dy163	1.73	1.74	3.00	1.00
Ho165	0.29	0.68	0.20	0.07
Er166	1.64	1.23	2.01	0.67
Tm169	0.35	1.19	0.42	0.14
Yb173	1.22	0.89	1.09	0.36
Lu175	6.79	2.76	18.78	6.26
Hf179	3.28	0.35	1.15	0.38
Ta181	1.83	1.06	1.95	0.65
Pb208	39.08	0.34	13.20	4.40
Th232	21.98	0.35	7.61	2.54
U238	2.79	0.91	2.54	0.85

	WSWPST4B	WSWPST4B	WSWPST4R	WSWPST4B	WSWPST4R	WSWPST4R	WSWPST4B	WSWPST4R	WSWPST4R	WSWPST4B	WSWPST4R
0	20							20		20	
Spot # Analyte	29	30	31	32	33	34	35	30	37	38	39
Analyte											
Mg24	6817.89	5751.64	3073.03	5011.12	4226.13	898.39	3839.82	2968.39	3559.78	2156.28	3409.88
Al27	59392.32	87138.09	61022.44	88471.29	86859.59	41602.75	72638.43	55926.91	92477.03	64561.24	86612.1
Si29	350579.44	350579.44	350579.44	350579.47	350579.44	350579.47	350579.44	350579.47	350579.47	350579.47	350579.5
P31	44.6	63.4	85.78	63.29	111.61	41.54	77.73	59.93	50.14	54.42	79.14
Ca42	5664.77	7070	42982.73	14500.02	16808.01	1573.24	40730.55	4457.26	6440.09	29911.08	6378.99
Sc45	6.79	4.91	2.89	5.99	2.79	<0.75	4.52	6.38	3.16	2.67	3.89
Ti49	1467.38	1479.04	730.24	1280.29	926.58	354.38	1032.78	1122.79	772.49	1073.28	1162.37
V51	6.58	5.91	6.89	4.77	4.54	1.99	3.94	4.95	8.95	2.91	5.13
Cr52	1.62	3.15	<1.31	3.86	<2.22	<2.07	<1.60	<2.45	<2.19	<1.12	3.78
Mn55	481.7	439.81	157.73	369.97	221.22	59.13	230.51	247.99	138.1	207.47	334.7
Fe57	14447.57	13584.77	6015.1	9892.48	6570.44	2063.01	//48.23	/196.5	5356	6298.32	9422.72
C059	0.76	0.81	0.6	0.87	0.46	<0.44	0.66	0.47	0.51	0.52	1.17
NI60	4.39	2.77	2.42	3.14	<1.72	2.3	1.00	<2.09	1.39	2.34	3.90
Cu05 7n66	0.40 72.27	3.32	26.14	4.01	4.2	12 75	3.23	2.25	4.65	2.4	<1.76
Ga71	72.37	25.8	20.14	28 47	21 71	10.13	28.55	17.98	23.06	20.64	23 21
8h85	265.43	23.0	221.51	20.47	244 37	138 31	25.52	166 35	23.00	235.86	25.21
Sr88	48.1	44 39	85 24	52.95	72 85	12 11	76.47	24 79	91 59	67.91	50 73
Y89	12.79	12.08	10.77	15.96	11.84	3.75	16.31	17.01	10.72	7.55	18.4
Zr90	155.23	148.42	96.73	186.21	118.97	41.08	176.34	164.79	90.88	78.67	177.85
Nb93	12.74	11.2	8.7	13.98	10.1	2.86	14.49	16.99	9.04	11.15	14.75
Cs133	3.38	2.98	2.13	3.98	2.44	1.65	2.99	2.19	2.08	2.51	2.46
Ba137	52.12	49.09	194.37	59.52	217.44	26.24	198.71	34.05	514.92	223.69	106.6
La139	83.58	85.13	105.37	105.86	100.87	23.43	78.03	221.79	97.26	44.56	102.94
Ce140	105.73	102.85	119.5	132.58	111.67	33.06	104.65	386.82	124.01	59.38	135
Pr141	14.19	13.04	17.03	17.76	15.65	3.26	13.18	36.29	15.53	7.26	18.15
Nd143	43.38	41.9	54.73	59.95	50.36	9.7	48.8	117.89	50.56	24.5	61.63
Pm											
Sm147	6.99	7.11	6.33	7.27	6.56	2.22	6.39	14.49	6.48	3.17	9.24
Eu151	0.96	1.28	2.28	1.9	2.67	0.86	2.22	1.08	2.85	1.99	1.84
Gd155	5.96	4.77	3.1	5.74	3.77	1.6	4.93	8.59	3.2	2.66	6.51
16159	0.513	0.476	0.481	0.69	0.472	0.275	0.601	0.89	0.466	0.348	0.68
Dy163	2.66	2.86	2.24	2.97	2.57	0.8	3.08	4.45	1.88	2.21	4.13
H0105	0.791	0.487	0.4	0.596	0.558	0.21	0.788	0.749	0.46	0.353	1.08
Tm160	0.205	0.171	1.10	1.45	1.56	<0.46	1.4	2.1	<0.052	0.08	1.96
Vh173	1.08	0.171	0.2	1 21	0.24	0.045	1 /1	1 75	1.69	0.101	13
10175	0.158	0.55	0.097	0 305	0.55	0.20	0 195	0.178	0 154	0.12	0 502
Hf179	6.02	4.78	3.29	6.41	2.88	1.83	5.27	7.33	2.03	2.49	4.41
Ta181	0.688	0.749	0.419	0.64	0.44	0.285	0.626	0.89	0.407	0.493	0.798
Pb208	32.53	34.41	32.77	42.84	37.84	18.04	33.94	25.74	35.17	35.72	38.75
Th232	15.38	16.13	10.13	13.31	11.31	3.01	15.39	27.63	9.6	7.67	18.5
U238	1.39	1.68	1.26	1.78	1.37	0.635	1.79	1.24	1.58	1.024	2.67

	WSWPST4B	WSWPST4B	WSWPST4B	WSWPST4B	WSWPST4B	WSWPST4B	WSWPST4B	WSWPST4B	WSWPST4B	WSWPST4B
Snot #	40	41	42	43	44	45				
Analvte	40			45		45	Avg	StDev/Avg	StDev	StErr
							0			
Mg24	4204.33	90.56	1247.81	3976.32	392.98	2148.81	3163.13	0.59	1854.47	449.77
Al27	72837.42	10624.35	31537.86	64730.97	46643.5	67633.98	64159.43	0.35	22285.47	5405.02
Si29	350579.5	350579.5	350579.5	350579.47	350579.5	350579.5	350579.47	0.00	0.02	0.01
P31	131.5	23.81	111.53	174.55	77.29	193.63	84.93	0.55	46.45	11.27
Ca42	17046.88	628.57	1672.26	91404.7	2244.91	3195.66	17218.22	1.35	23324.38	5656.99
Sc45	4.25	0.64	<0.85	4.23	0.74	3.17	3.80	0.48	1.81	0.44
Ti49	1926.09	311.2	531.1	1364.87	195.01	971.1	982.41	0.47	464.34	112.62
V51	8	0.84	3.02	7.93	1.27	4.36	4.82	0.49	2.37	0.58
Cr52	<1.51	1.06	<2.19	1.56	<1.60	<2.96	2.51	0.49	1.24	0.30
Mn55	487.25	10.34	132.57	376.72	24.59	243.66	244.91	0.62	151.19	36.67
Fe57	15570.24	482.79	4103.22	11325.62	1462.9	8032.82	7621.93	0.58	4405.68	1068.53
Co59	0.93	<0.110	<0.32	1.19	<0.35	0.96	0.76	0.33	0.25	0.06
Ni60	<1.14	<0.59	1.52	<0.88	3.19	<2.80	2.64	0.37	0.97	0.24
Cu65	4.49	0.71	<1.29	5.03	<0.91	2.5	4.33	0.46	2.00	0.48
Zn66	73.1	3.72	25.34	63.78	13.85	41.92	40.76	0.55	22.33	5.42
Ga71	23.25	2.32	7.32	24.06	16.66	19.25	19.53	0.35	6.90	1.67
Rb85	244.29	28.28	93.82	313.58	139.42	208.53	212.37	0.36	75.90	18.41
Sr88	42.95	3.18	8.45	102.11	12.04	18.01	47.87	0.65	31.33	7.60
Y89	29.75	2.28	6.14	20.06	2.6	20.71	12.87	0.57	7.30	1.77
Zr90	186.07	13.96	28.06	187.1	10.09	97.84	115.19	0.55	63.75	15.46
Nb93	21.09	3	2.63	14.2	0.28	7.18	10.26	0.55	5.68	1.38
Cs133	2.4	0.865	1.4	3.67	3	2.56	2.51	0.32	0.79	0.19
Ba137	42.93	4.56	16.53	81.51	30.84	32.67	110.93	1.16	128.26	31.11
La139	68.73	5.82	25.86	96.83	19.03	59.05	77.89	0.64	50.06	12.14
Ce140	121.49	15.69	38.66	136.81	27.63	117.77	110.19	0.75	82.28	19.96
Pr141	15.31	1.523	4.65	17.3	2.68	13.82	13.33	0.62	8.22	1.99
Nd143	67.6	5.17	13.06	63.85	7.87	48.87	45.28	0.62	27.98	6.79
Pm										
Sm147	14.06	0.91	1.42	10.44	2.04	8.7	6.70	0.60	4.00	0.97
Eu151	1.14	0.126	0.65	1.7	0.88	1.14	1.50	0.50	0.75	0.18
Gd155	7.37	0.82	1.55	6.82	1.36	6.91	4.45	0.54	2.40	0.58
Tb159	1.05	0.049	0.219	0.838	0.1/1	1.11	0.55	0.55	0.30	0.07
Dy163	7.75	0.48	1.4	4.91	1.13	4.19	2.92	0.61	1.78	0.43
H0165	1.25	0.146	0.221	0.832	0.068	0.86	0.56	0.56	0.31	0.08
Er166	2.78	0.149	0.46	2.11	0.31	2.04	1.32	0.56	0.74	0.18
1m169	0.32	0.04	<0.069	0.244	<0.033	0.265	0.22	0.37	0.08	0.02
101/3	2.07	<0.124	<0.32	1.26	<0.127	0.35	1.14	0.45	0.51	0.12
LU1/5	0.310	0.03	0.041	0.217	<0.035	0.113	0.18	0.67	0.12	0.03
HT1/9	5.43	0.51	1	0.38	1.02	2.51	3.74	0.58	2.10	0.52
19705	1.4	0.001	0.244	0.752	<0.047	0.357	0.58	0.55	0.32	0.08
PU208	33.20	4.47	13.08	37.23	20.00	30.37	30.29	0.55	9.92	2.41
11232	2.07	0.16	0.176	1 07	1.35	9.04 0.01	1 20	0.01	0.97	0.17
0230	2.07	0.10	0.170	1.72	0.135	0.91	1.23	0.55	0.71	0.17

	WSWPST3A							
Spot # Analyte	56	57	58	59	60	61	62	63
Mg24	6460.25	7650.18	6299	4198.79	4102.87	5584.06	4444.32	6017.37
Al27	61056.66	60764.8	76481.75	69249.12	68831.06	74122.34	69766.31	66198.09
Si29	350579.56	350579.56	350579.56	350579.56	350579.56	350579.56	350579.56	350579.56
P31	391.58	307.09	257.83	267.41	903.43	302.76	1433.7	768.35
Ca42	24875.54	22149.38	17244.92	13785.08	12721.09	16588.92	17986.63	17379.28
Sc45	5.11	6.34	6.8	6.94	5.43	8.57	<8.74	6.71
Ti49	1907.24	2007.51	2179.8	2040.03	1984	2062.07	2185.43	1922.53
V51	9.98	16.85	9.36	8.67	9.95	11.66	<10.39	17.2
Cr52	12.82	16.39	<6.87	<3.29	7.47	<5.38	<25.12	20.45
Mn55	720.23	808.75	496	369.07	432.72	474.28	557.49	570.3
Fe57	15271.79	17437.42	11194.79	8380.46	11507.52	11441.94	12504.05	12505.92
Co59	1.47	1.9	<1.03	1.09	0.95	<1.08	<4.21	3.89
Ni60	7.24	2.84	6.47	6.26	3.77	12.55	<16.04	173.25
Cu65	20.07	18.73	24.05	14.54	8.52	19.43	<17.99	34.81
Zn66	81.2	69.48	118.45	75.77	57.62	113.92	135.08	134.34
Ga71	33.61	23.42	36.19	32.68	27.33	35.7	41.01	36.81
Rb85	287.44	282.51	255.77	241.36	221.93	257.31	255.92	243.87
Sr88	321.19	279.4	287.36	242.17	188.41	269.74	280.6	263.64
Y89	22.38	28.29	30.05	28.71	35	26.78	32.21	25.99
Zr90	406.35	408.36	446.51	437.54	440.93	431.73	432.73	367.58
Nb93	20.44	20.8	22.96	23.84	22.89	23.46	21.83	20.44
Cs133	5.1	4.95	5.57	3.56	3.02	3.73	6.26	4.86
Ba137	435.68	418.66	513.86	526.75	527.07	455.9	559.02	491.72
La139	136.42	169.8	155.92	153.04	167	159.74	173.4	124.59
Ce140	268.01	306.57	279.27	291.45	291.29	286.94	312.37	252.2
Pr141	26.65	33.08	31.11	30.98	31.25	31.51	32.1	26.09
Nd143	91.25	120.59	109.61	112.01	107.06	111.24	104.12	88.52
Pm								
Sm147	13.01	17.26	13.37	13.64	14.8	16.51	16.87	12.41
Eu151	3.01	3.92	2.4	1.87	1.6	2.62	2.89	2.58
Gd155	8	10.05	9.33	10.2	8.41	8.03	10.75	8.38
Tb159	0.98	1.3	1.2	1.15	1.6	0.77	2.31	0.91
Dy163	4.34	6.82	6.56	6.32	9.14	4.71	11.37	5.13
Ho165	0.93	1.069	1.06	1.47	1.35	0.81	0.98	1.3
Er166	2.38	3.17	3.14	2.95	4	2.79	3.81	3.06
Tm169	0.263	0.356	0.52	0.55	0.71	0.56	<0.39	0.346
Yb173	2.32	3.35	2.95	2.57	3.64	2.88	3.16	1.72
Lu175	0.507	0.471	0.42	0.57	0.81	0.84	1.25	1.54
Hf179	10.11	10.87	9.26	10.97	12.79	12.15	18.19	7.98
Ta181	1.07	0.99	1.3	1.04	1.08	1.85	1.46	1.52
Pb208	67.4	52.29	83.84	74.45	53.62	77.28	96.69	79.65
Th232	17.38	20.33	21.74	20.99	18.4	21.28	25.15	17.52
U238	2.75	2.36	3.28	4.1	2.66	3.42	3.09	4.51

Table B1, cont.

	WSWPST3A	WSWPST3A	WSWPST3A	WSWPST3A	WSWPST3A	WSWPST3A	WSWPST3A	WSWPST3A
Spot #	64	65	66	67				
Analyte					Avg	StDev/Avg	StDev	StErr
Mg24	/368.6/	/19/.//	4/11.05	5485.83	5793.35	0.22	1249.82	360.79
AI27	60917.61	61489.32	71580.21	55/30.07	66348.95	0.10	6337.52	1829.48
5129	350579.56	350579.56	350579.56	350579.59	350579.56	0.00	0.01	0.00
P31	301.75	447.05	479.63	420.6	523.43	0.67	350.25	101.11
Ca42	18512.18	2/5//.16	16678.65	18914.68	18/01.13	0.23	4282.50	1236.25
Sc45	6.3	5.36	7.78	4.87	6.38	0.18	1.15	0.33
1149	2061.6	2044.11	2122.06	1882.76	2033.26	0.05	99.18	28.63
V51	10.24	11.74	15.65	10.67	12.00	0.26	3.09	0.89
Cr52	11.73	11.65	13.15	20.05	14.21	0.31	4.46	1.29
IVIN55	/32.1/	/82.56	490.59	559.88	582.84	0.25	144.44	41.70
Fe57	14889.38	15454.78	10316.66	12193.11	12/58.15	0.20	2546.67	/35.16
059	2.74	1.87	3.51	1.48	2.10	0.50	1.05	0.30
NI60	1.71	8.17	28.37	14.57	24.11	2.07	50.02	14.44
Cu65	19.34	20.84	23.61	14.81	19.89	0.33	6.64	1.92
2066	49.34	62.66	113.97	55.44	88.94	0.36	32.03	9.25
Ga/1	22.35	30.42	32.61	30.11	31.85	0.17	5.50	1.59
KD85	295.16	278.82	255.61	239.5	259.60	0.09	22.13	6.39
Sr88	269.11	340.55	264.8	308.34	276.28	0.14	38.84	11.21
189	28.57	26.52	30.53	25.7	28.39	0.12	3.32	0.96
2190	439.14	414.05	444.71	350.54	418.35	0.07	31.07	8.97
Cc122	22.04	23.24	23.01	18.7	22.02	0.07	1.01	0.47
CS135 Bo127	4.71	4.79	4.07	4.54	4.00	0.19	0.69	0.20
Dd157	457.70	457.55	461.05	124 55	405.00	0.10	47.51	15.00
Ce1/0	296.4	260.82	288 52	256.03	283.24	0.10	19.47	5.47
Dr1/11	230.4	205.82	200.52	250.05	203.24	0.07	2 52	0.73
Nd1/2	11/ 78	96.4	10/ 87	89.03	104 12	0.08	10 50	3.06
Pm	114.70	50.4	104.07	05.05	104.12	0.10	10.55	5.00
Sm147	16.3	13.26	15.79	11.82	14.59	0.13	1.90	0.55
Eu151	3.55	3.31	2.22	3.13	2.76	0.25	0.68	0.20
Gd155	9.39	7.45	11	7.62	9.05	0.14	1.24	0.36
Tb159	1.139	1	1.08	0.67	1.18	0.37	0.43	0.12
Dy163	5.46	6.17	7.24	5.65	6.58	0.30	1.98	0.57
Ho165	1.107	1.04	1.14	0.72	1.08	0.20	0.22	0.06
Er166	2.55	2.62	3.48	2.33	3.02	0.18	0.54	0.15
Tm169	0.3	0.464	0.564	0.44	0.46	0.29	0.14	0.04
Yb173	3.41	1.67	2.67	3.09	2.79	0.23	0.63	0.18
Lu175	0.461	0.551	1.86	1.3	0.88	0.55	0.49	0.14
Hf179	10.99	11.28	10.13	6.73	10.95	0.26	2.83	0.82
Ta181	1.08	1.12	1.48	1.05	1.25	0.21	0.27	0.08
Pb208	48.8	61.18	63.97	67.22	68.87	0.21	14.19	4.10
Th232	20.44	19.62	21.95	15.39	20.02	0.13	2.58	0.74
U238	2.79	2.88	3.57	2.98	3.20	0.19	0.62	0.18

	WSWPST4D	WSWPST4D	WSWPST4D
Spot #	77	78	79
Analyte			
Mg24	40.88	3515.71	1014.5
Al27	61869.36	56704.81	66534.43
Si29	350579.47	350579.47	350579.44
P31	<28.64	99.03	64.29
Ca42	4162.15	5778.95	2528.93
Sc45	0.49	6.74	2.06
Ti49	138.99	3087.19	700.15
V51	<0.40	18.62	8.62
Cr52	1 78	4.2	<1 71
Mn55	4 74	538.04	276 11
Fe57	1527.2	10774 96	8408 96
Co59	<0.19	1 25	0.48
Ni60	<0.15	1.25	<1.78
Cu65	<0.57	3 29	1
2065 7n66	<3.02	62.45	27 79
Ga71	18 79	26.52	21.75
0071 Ph95	120.25	20.52	251 67
Sr88	12.5	213.13	10.68
3100	12.5	20.33	10.00
103	0.549	200.54	34.02
2190	2.04	433.33	405.52
Ce122	0.82	147.00	9.04
CS133	0.171	2.03	1.99
Ba137	40.15	38.UZ	15.32
La139	8.01	99.5	34.05
Ce140	8.07	350.65	84.01
Pr141	0.777	40.12	6.46
Na143	2.65	185.75	25.5
PM Cm 147	-0.101	47.24	F 04
5m147	<0.191	47.34	5.84
EUISI	1.69	0.98	0.62
Galss	<0.115	33.57	4.51
10159	<0.0217	7.03	0.95
Dy163	<0.071	37.32	4.48
H0165	<0.018	8.08	1.2
Er166	0.051	19.02	4.1
1m169	0.0084	2.28	0.75
101/3	<0.112	14.50	4.9
LU1/5	0.027	1.99	1.09
HT1/9	<0.152	15.14	14.37
19181	0.056	8.57	0.81
PD208	29.37	41.82	37.24
10232	0.387	35.88	29.52
0238	0.13	11.34	6.79

Table B1, cont.

	WSWPST4D	WSWPST4D	WSWPST4D	WSWPST4D
Spot #				
Analyte	Avg	StDev/Avg	StDev	StErr
<u> </u>				
Mg24	1523.70	1.18	1792.50	1034.90
Al27	61702.87	0.08	4916.92	2838.79
Si29	350579.46	0.00	0.02	0.01
P31	81.66	0.30	24.56	14.18
Ca42	4156.68	0.39	1625.02	938.20
Sc45	3.10	1.05	3.25	1.88
Ti49	1308.78	1.20	1565.50	903.84
V51	13.62	0.52	7.07	4.08
Cr52	2.99	0.57	1.71	0.99
Mn55	272.80	0.98	266.92	154.10
Fe57	6903.71	0.70	4804.12	2773.66
Co59	0.87	0.63	0.54	0.31
Ni60	4.37			
Cu65	2.15	0.75	1.62	0.93
Zn66	45.12	0.54	24.51	14.15
Ga71	23.17	0.17	3.97	2.29
Rb85	202.39	0.33	66.58	38.44
Sr88	17.39	0.58	10.09	5.82
Y89	81.17	1.37	111.47	64.36
Zr90	306.30	0.86	263.55	152.16
Nb93	52.84	1.56	82.41	47.58
Cs133	1.40	0.76	1.06	0.61
Ba137	31.16	0.44	13.76	7.95
La139	47.39	0.99	46.89	27.07
Ce140	147.58	1.22	179.92	103.88
Pr141	15.79	1.35	21.26	12.28
Nd143	71.30	1.40	99.77	57.60
Pm				
Sm147	26.59	1.10	29.34	16.94
Eu151	1.10	0.50	0.54	0.31
Gd155	19.04	1.08	20.55	11.86
Tb159	3.99	1.08	4.30	2.48
Dy163	20.90	1.11	23.22	13.41
Ho165	4.64	1.05	4.86	2.81
Er166	7.72	1.29	9.99	5.77
Tm169	1.01	1.14	1.16	0.67
Yb173	9.73	0.70	6.83	3.94
Lu175	1.04	0.95	0.98	0.57
Hf179	14.76	0.04	0.54	0.31
Ta181	3.15	1.50	4.71	2.72
Pb208	36.14	0.17	6.30	3.64
Th232	21.93	0.86	18.93	10.93
U238	6.09	0.93	5.64	3.26

Table B1, cont.

	WSWPST1	WSWPST1	WSWPST1
Spot #	80	81	82
Analyte		-	-
Mg24	12659.28	7846.61	9474.33
AI27	100821.27	81244.11	90146.68
Si29	350579.44	350579.44	350579.44
P31	4357.77	2187.07	3761.91
Ca42	31185.98	38500.36	37529.2
Sc45	16.37	12.89	13.16
Ti49	8493.07	7661.68	9383.82
V51	61.61	30.6	87.21
Cr52	84.39	31.62	20.13
Mn55	350.14	354.91	403.68
Fe57	47005.48	34596.2	51215.84
Co59	11.67	8.24	7.01
Ni60	122.6	27.95	39.62
Cu65	94.14	24.86	27.54
Zn66	288.84	205.04	195
Ga71	35.41	30.88	29.62
Rb85	168.33	114.27	130.1
Sr88	1499.71	2182.27	1929.62
Y89	32.13	44.6	47.05
Zr90	482.68	500.92	576.03
Nb93	24.04	23.47	28.42
Cs133	15.1	6.95	9.07
Ba137	2496.87	2639.88	2666.68
La139	172.06	192.78	208.89
Ce140	325	315.29	325.12
Pr141	34.69	39.64	43.13
Nd143	120.38	146.42	154.72
Pm			
Sm147	17.63	20.13	24.2
Eu151	4.75	4.64	4.66
Gd155	12.55	12.59	15.73
Tb159	1.18	1.56	1.86
Dy163	7.07	8.65	9.06
Ho165	1.12	1.64	1.36
Er166	3.03	4	4.39
Tm169	0.248	0.395	0.554
Yb173	3.31	3.6	4.52
Lu175	4.65	0.532	0.796
Ht179	12.3	13.02	13.39
18181	2.26	1.34	1.54
Pb208	161.96	155.53	185.15
10232	22.72	28./1	31.02
0238	9.5	5.3	5.95

Table B1, cont.

	WSWPST1	WSWPST1	WSWPST1	WSWPST1
Spot #				
Analyte	Avg	StDev/Avg	StDev	StErr
,	Ŭ			
Mg24	9993.41	0.24	2447.96	1413.33
AI27	90737.35	0.11	9801.94	5659.15
Si29	350579.44	0.00	0.00	0.00
P31	3435.58	0.33	1121.54	647.52
Ca42	35738.51	0.11	3972.40	2293.47
Sc45	14.14	0.14	1.94	1.12
Ti49	8512.86	0.10	861.24	497.24
V51	59.81	0.47	28.35	16.37
Cr52	45.38	0.76	34.27	19.79
Mn55	369.58	0.08	29.63	17.11
Fe57	44272.51	0.20	8640.31	4988.49
Co59	8.97	0.27	2.42	1.39
Ni60	63.39	0.81	51.61	29.80
Cu65	48.85	0.80	39.25	22.66
Zn66	229.63	0.22	51.53	29.75
Ga71	31.97	0.10	3.05	1.76
Rb85	137.57	0.20	27.79	16.05
Sr88	1870.53	0.18	345.09	199.24
Y89	41.26	0.19	8.00	4.62
Zr90	519.88	0.10	49.48	28.57
Nb93	25.31	0.11	2.71	1.56
Cs133	10.37	0.41	4.23	2.44
Ba137	2601.14	0.04	91.29	52.71
La139	191.24	0.10	18.46	10.66
Ce140	321.80	0.02	5.64	3.26
Pr141	39.15	0.11	4.24	2.45
Nd143	140.51	0.13	17.92	10.34
Pm				
Sm147	20.65	0.16	3.32	1.91
Eu151	4.68	0.01	0.06	0.03
Gd155	13.62	0.13	1.82	1.05
Tb159	1.53	0.22	0.34	0.20
Dy163	8.26	0.13	1.05	0.61
Ho165	1.37	0.19	0.26	0.15
Er166	3.81	0.18	0.70	0.40
Tm169	0.40	0.38	0.15	0.09
Yb173	3.81	0.17	0.63	0.36
Lu175	1.99	1.16	2.31	1.33
Hf179	12.90	0.04	0.55	0.32
Ta181	1.71	0.28	0.48	0.28
Pb208	167.55	0.09	15.58	9.00
Th232	27.48	0.16	4.28	2.47
U238	6.92	0.33	2.26	1.31

Table B1, cont.

Figure B1. Photomicrograph of sample CRWPST with LA-ICPMS spot locations noted.

Figure B2. Photomicrograph of sample PSTG01C with LA-ICPMS spot locations noted.

Figure B3. Photomicrograph of sample WSWPST1 with LA-ICPMS spot locations noted.

Figure B4. Photomicrograph of sample WSWPST3A with LA-ICPMS spot locations noted.

Figure B5. Photomicrograph of sample WSWPST4B with LA-ICPMS spot locations noted.

Figure B6. Photomicrograph of sample WSWPST4D with LA-ICPMS spot locations noted.

Figure B7. Photomicrograph of sample GJPST1A with LA-ICPMS spot locations noted.

Figure B8. Photomicrograph of sample GJPST1B with LA-ICPMS spot locations noted.

APPENDIX C:

Trace Element Compositions From SHRIMP-RG of Zircon Grains From the Peach Spring Tuff and

Cathodoluminescence Images of Analyzed Zircon Crystals

	KPST01A_3.1C	KPST01A_4.3C	KPST01A_6.1C	KPST01A_5.1C	KPST01A_11.1C	KPST01A_7.1C	KPST01A_9.1C
Element							
Li7	0.00002	0.00000	0.00010	0.00001	0.00001	0.00000	0.00001
Be9	0.00010	0.00009	0.00011	0.00000	0.00004	0.00000	0.00004
B11	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00000
F19	0.00025	0.00024	0.00017	0.00014	0.00014	0.00011	0.00022
Na23	0.00860	0.00692	0.01194	0.01058	0.00893	0.00738	0.00857
Al27	0.02716	0.03850	0.02975	0.02436	0.02545	0.02508	0.02339
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00281	0.00457	0.00224	0.00486	0.00553	0.00413	0.00227
К39	0.00404	0.00321	0.00372	0.00355	0.00354	0.00276	0.00297
Ca40	0.01573	0.00940	0.01487	0.01923	0.01487	0.01099	0.01119
Sc45	0.04900	0.07233	0.07839	0.06161	0.06507	0.06709	0.05600
Ti48	0.00468	0.00824	0.00458	0.00228	0.00757	0.00311	0.00358
Ti49	0.00036	0.00059	0.00033	0.00017	0.00056	0.00024	0.00026
Fe56	0.00077	0.00068	0.00075	0.00070	0.00080	0.00078	0.00072
Y89	0.74097	0.31043	0.37793	0.33470	0.77927	0.29793	0.82387
Nb93	0.00048	0.00032	0.00105	0.00095	0.00131	0.00071	0.00071
Zr94H	0.00934	0.00869	0.00860	0.00866	0.00866	0.00826	0.00782
Zr96	2.36952	2.39216	2.39999	2.41408	2.35514	2.39783	2.37113
La139	0.00001	0.00002	0.00001	0.00000	0.00001	0.00000	0.00001
Ce140	0.01078	0.00779	0.00959	0.00758	0.02421	0.00767	0.01270
Nd146	0.00035	0.00015	0.00008	0.00004	0.00028	0.00004	0.00031
Sm147	0.00058	0.00025	0.00017	0.00008	0.00062	0.00012	0.00055
Eu153	0.00055	0.00029	0.00016	0.00004	0.00045	0.00009	0.00035
Gd155	0.00143	0.00060	0.00048	0.00028	0.00165	0.00029	0.00129
Ho165	0.01251	0.00522	0.00579	0.00484	0.01425	0.00458	0.01316
TbO175	0.00260	0.00122	0.00098	0.00066	0.00322	0.00074	0.00246
DyO179	0.00629	0.00276	0.00257	0.00199	0.00756	0.00183	0.00604
ErO182	0.01088	0.00496	0.00580	0.00522	0.01115	0.00469	0.01231
TmO185	0.00547	0.00258	0.00352	0.00306	0.00548	0.00288	0.00651
YbO188	0.00770	0.00352	0.00504	0.00477	0.00643	0.00428	0.00886
LuO191	0.00762	0.00389	0.00602	0.00559	0.00633	0.00466	0.00963
Zr2O	0.01579	0.01656	0.01723	0.01754	0.01691	0.01732	0.01727
HfO196	0.16498	0.16021	0.17044	0.19410	0.15123	0.18473	0.17704
Pb206	0.00003	0.00002	0.00003	0.00003	0.00003	0.00003	0.00004
207/206	0.58824	0.31250	0.76923	0.19231	0.17857	0.66667	0.27778
ThO248	0.03068	0.01043	0.01527	0.01763	0.03436	0.01405	0.04137
UO254	0.01759	0.00707	0.01588	0.02010	0.01642	0.01558	0.02340
	38394.00	38394.02	38394.06	38394.06	38394.08	38394.10	38394.12
206/238 Age	32 99	51 15	37 48	29.61	38 36	33 18	35 38
Linnm Est	0.01	0.00	0.06	0.01	0.00	0.00	0.01
Be9 ppm	0.32	0.27	0.35	0.00	0.14	0.01	0.12
B11 ppm	0.05	0.10	0.06	0.07	0.06	0.09	0.03
F19 ppm	33.01	31.69	22.75	17.90	18.33	14.23	28.86
Na ppm Est.	2.04	1.64	2.83	2.50	2.11	1.75	2.03
Al27 ppm Est.	18.08	25.63	19.80	16.22	16.94	16.69	15.57
Si30							
P31 ppm	239.17	388.89	190.70	413.56	470.92	351.40	193.16
K39 Rel.	0.70	0.55	0.64	0.61	0.61	0.48	0.51
Ca40 ppm Est.	2.05	1.23	1.94	2.51	1.94	1.43	1.46
Sc45 ppm	43.10	63.63	68.96	54.19	57.24	59.02	49.26
48/49	13.03	13.92	13.94	13.05	13.43	13.22	13.60
Ti48 ppm	13.46	23.69	13.16	6.55	21.77	8.94	10.31
Ti49 pnm	13 74	22.00	12 55	6.67	21.77	8.99	10.07
Fe56 nnm	1.12	0.99	1.10	1.01	1.17	1.13	1.04
Y89 ppm	1748 75	732 63	891 96	789 92	1839 15	703 14	1944 40
Nb93 npm	4.86	3.28	10.70	9.68	13,35	7.25	7.20
Zr94H Rel	0.91	0.85	0.84	0.84	0.84	0.80	0.76
Zr96/Si30 nnm	2.37	2.39	2.40	2.41	2.36	2.40	2.37
	<i>.</i>						

Table C1. SHRIMP-RG trace element analyses of zircon grains from KPST01A.

Tal	ᆸ	~	~ 1		
ı a	DI	e	ιJ	١.	cont.

	KPST01A_3.1C	KPST01A_4.3C	KPST01A_6.1C	KPST01A_5.1C	KPST01A_11.1C	KPST01A_7.1C	KPST01A_9.1C
La139 ppm	0.08	0.14	0.03	0.00	0.06	0.02	0.04
Ce140 ppm	78.16	56.47	69.52	54.91	175.52	55.58	92.05
Nd146 ppm	4.92	2.15	1.08	0.54	3.82	0.61	4.32
Sm147 ppm	8.03	3.41	2.35	1.05	8.49	1.67	7.59
Eu153 ppm	2.66	1.42	0.75	0.20	2.17	0.46	1.68
Gd155 ppm	58.46	24.68	19.74	11.50	67.29	12.05	52.74
Ho165 ppm	70.64	29.46	32.66	27.35	80.43	25.87	74.29
TbO175 ppm	17.34	8.13	6.56	4.39	21.52	4.93	16.40
DyO179 ppm	186.13	81.54	76.09	58.76	223.56	54.03	178.78
ErO182 ppm	289.66	132.06	154.31	139.07	297.00	124.77	327.71
TmO185 ppm	56.96	26.82	36.69	31.85	57.04	29.99	67.73
YbO188 ppm	472.54	215.92	309.31	293.08	394.65	262.55	543.90
LuO191 ppm	77.10	39.38	60.93	56.54	64.06	47.18	97.39
Zr96/Zr2O	150.03	144.42	139.29	137.62	139.26	138.44	137.31
196/Si30	63.32	60.37	58.04	57.01	59.13	57.73	57.91
Hf ppm	9577.05	9300.31	9894.13	11267.37	8779.08	10723.93	10277.14
Pb7/6 Est	0.59	0.31	0.77	0.19	0.18	0.67	0.28
Th ppm	311.01	105.78	154.85	178.73	348.31	142.40	419.41
U ppm	170.72	68.64	154.09	195.02	159.36	151.21	227.07
Y/Nb	359.82	223.19	83.35	81.63	137.78	96.95	270.04
Th/U	1.82	1.54	1.00	0.92	2.19	0.94	1.85
Yb/Gd	8.08	8.75	15.67	25.49	5.86	21.78	10.31
U/Yb	0.36	0.32	0.50	0.67	0.40	0.58	0.42
Th/Yb	0.66	0.49	0.50	0.61	0.88	0.54	0.77
Ce/Sm	9.73	16.57	29.55	52.53	20.67	33.36	12.13
Ce/Lu	1.01	1.43	1.14	0.97	2.74	1.18	0.95
U/Ce	2.18	1.22	2.22	3.55	0.91	2.72	2.47
Th/Ce	3.98	1.87	2.23	3.25	1.98	2.56	4.56
Y/Yb	3.70	3.39	2.88	2.70	4.66	2.68	3.57
Yb/Nd	96.07	100.43	286.00	542.05	103.19	431.06	125.90
Y/Nb	359.82	223.19	83.35	81.63	137.78	96.95	270.04
Yb/Nb	97.23	65.78	28.90	30.29	29.56	36.20	75.54
Yb/Sc	10.96	3.39	4.49	5.41	6.89	4.45	11.04
Yb/Dy	2.54	2.65	4.06	4.99	1.77	4.86	3.04
Dy/Sm	23.17	23.92	32.35	56.21	26.33	32.43	23.56
Yb/Nd	96.07	100.43	286.00	542.05	103.19	431.06	125.90
Sm/Nd	1.63	1.59	2.18	1.93	2.22	2.74	1.76
U/Li	16459.25	#DIV/0!	2659.21	33661.54	46628.12	129964.24	32502.00
Estimated temperature							
Temp Ti48	763.56	818.19	761.47	701.30	809.66	727.29	739.57
Temp Ti49	765.41	813.53	757.14	702.77	808.63	727.74	737.55
Hfppm	9577.05	9300.31	9894.13	11267.37	8779.08	10723.93	10277.14
Ferry Temp	813.41	869.44	803.85	741.32	863.71	769.95	781.23
Act Ti	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temp. Est.	799.36	850.76	790.55	732.70	845.52	759.24	769.68

chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)							
La Ch (0.319)	0.24	0.45	0.11	0.00	0.18	0.07	0.13
Ce Ch (0.82)	95.32	68.86	84.78	66.97	214.04	67.79	112.26
Pr Ch (0.121)	2.48	1.76	0.69	0.00	1.90	0.41	1.87
Nd Ch (0.615)	8.00	3.50	1.76	0.88	6.22	0.99	7.02
Pm	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	40.16	17.04	11.76	5.23	42.46	8.33	37.95
Eu Ch (0.076)	35.01	18.70	9.89	2.59	28.50	5.99	22.17
Gd Ch (0.267)	218.94	92.44	73.92	43.07	252.04	45.14	197.52
Tb Ch (0.0493)	351.67	164.89	133.16	89.10	436.60	100.07	332.65
Dy Ch (0.33)	564.02	247.09	230.58	178.06	677.47	163.73	541.76
Ho Ch (0.0755)	935.66	390.14	432.63	362.21	1065.31	342.64	984.03
Er Ch (0.216)	1341.04	611.37	714.42	643.84	1374.99	577.66	1517.17
Tm Ch (0.0329)	1731.19	815.17	1115.15	967.94	1733.85	911.65	2058.63
Yb Ch (0.221)	2138.19	977.03	1399.61	1326.14	1785.75	1188.02	2461.09
Lu Ch (0.033)	2336.41	1193.21	1846.33	1713.19	1941.26	1429.68	2951.23
Ce/Ce*	124.09	77.34	310.26	#DIV/0!	369.93	392.57	225.77
Hf ppm	9577.05	9300.31	9894.13	11267.37	8779.08	10723.93	10277.14
Eu/Eu*	0.37	0.47	0.34	0.17	0.28	0.31	0.26
P Molar	7.72	12.56	6.16	13.35	15.21	11.35	6.24
3+ Molar	12.33	66.72	28.09	28.59	16.15	18.84	13.42
3+/P Molar	1.08	1.75	1.79	3.70	2.03	2.61	1.07

KPST01A_3.1C KPST01A_4.3C KPST01A_6.1C KPST01A_5.1C KPST01A_11.1C KPST01A_7.1C KPST01A_9.1C

93

	KPST01A_8.2C	KPST01A_10.2C	KPST01A_12.1C	KPST01A_13.1C	KPST01A_4.2I	KPST01A_11.2I	KPST01A_1.2E
Element							
1:7	0.00000	0.00000	0.02001	0.00000	0.00000	0.00001	0.07712
LI7 Bo0	0.00000	0.00000	0.05001	0.00000	0.00000	0.00001	0.07713
Deg D11	0.00069	0.00002	0.00038	0.00017	0.00003	0.00002	0.00077
B11 F10	0.00001	0.00001	0.00029	0.00002	0.00001	0.0001	0.00234
F19	0.00022	0.00019	0.00020	0.00020	0.00024	0.00015	0.00304
Naza	0.01128	0.01088	3.18800	0.01248	0.00685	0.00832	11.01625
AIZ7	0.02524	0.02252	2.44911	0.02827	0.02362	0.02556	20.17151
5130	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31 K20	0.00935	0.00355	0.00302	0.00202	0.00256	0.00285	0.00041
K39	0.00467	0.00348	1.67958	0.03182	0.00316	0.00316	46.34567
Ca40	0.02399	0.01476	0.10332	0.01360	0.01227	0.01219	0.87593
Sc45	0.06752	0.07035	0.03501	0.04979	0.05937	0.04235	0.00323
1148	0.00853	0.00271	0.00379	0.00218	0.00506	0.00506	0.13357
1149	0.00060	0.00020	0.00030	0.00016	0.00036	0.00036	0.00998
Fe56	0.00081	0.00068	0.01044	0.00137	0.00067	0.00077	0.96178
Y89	2.74597	0.33356	0.47162	0.79436	0.53270	0.41230	0.04822
Nb93	0.00255	0.00086	0.00161	0.00091	0.00052	0.00072	0.00194
Zr94H	0.00867	0.00806	0.00651	0.00767	0.00871	0.00828	0.00236
Zr96	2.38584	2.45365	2.09691	2.41049	2.39224	2.41504	0.14500
La139	0.00005	0.00000	0.00005	0.00001	0.00003	0.00000	0.00328
Ce140	0.05495	0.00825	0.01656	0.01240	0.00965	0.00990	0.00672
Nd146	0.00126	0.00006	0.00013	0.00017	0.00026	0.00009	0.00031
Sm147	0.00311	0.00011	0.00030	0.00034	0.00040	0.00026	0.00005
Eu153	0.00191	0.00009	0.00018	0.00016	0.00037	0.00020	0.00001
Gd155	0.00806	0.00031	0.00086	0.00087	0.00093	0.00078	0.00007
Ho165	0.05265	0.00491	0.00833	0.01153	0.00872	0.00717	0.00075
TbO175	0.01424	0.00073	0.00188	0.00181	0.00170	0.00151	0.00013
DyO179	0.02987	0.00216	0.00445	0.00501	0.00417	0.00377	0.00032
ErO182	0.03882	0.00523	0.00742	0.01206	0.00827	0.00623	0.00080
TmO185	0.01722	0.00318	0.00380	0.00730	0.00457	0.00324	0.00057
YbO188	0.01992	0.00494	0.00484	0.01056	0.00639	0.00416	0.00069
LuO191	0.01815	0.00570	0.00507	0.01209	0.00685	0.00429	0.00092
Zr2O	0.01689	0.01895	0.01472	0.01725	0.01684	0.01804	0.00112
HfO196	0.14606	0.19997	0.17034	0.20824	0.16782	0.17080	0.01425
Pb206	0.00004	0.00002	0.00005	0.00005	0.00002	0.00002	0.00023
207/206	0.75758	0.00000	0.56818	0.00000	0.37037	0.27027	0.72046
ThO248	0.10917	0.02011	0.06050	0.05378	0.02702	0.01072	0.00483
UO254	0.03618	0.01904	0.02514	0.03334	0.01702	0.00817	0.00285
	38394.13	38394.14	38394.15	38394.17	38394.03	38394.08	38363.98
206/238 Age	22.30	21.19	36.82	27.85	17.90	53.07	1615.81
Li ppm Est	0.00	0.00	18.29	0.00	0.00	0.00	47.03
Be9 ppm	2.16	0.06	1.19	0.54	0.16	0.05	2.42
B11 ppm	0.08	0.13	2.81	0.15	0.07	0.06	22.43
F19 ppm	28.68	24.71	26.40	26.81	30.89	19.47	397.98
Na ppm Fst	2.67	2.58	754.90	2.96	1.62	1.97	2608.05
Al27 nnm Fst	16.80	14 99	1630.25	18 82	15 72	17 01	13427 22
Si30	10.00	17.33	1050.25	10.02	10.72	17.01	13727.22
P31 ppm	796.12	302.56	257.08	171.60	218.25	242.68	34,68
K39 Rel	0.81	0.60	289.87	5 49	0.55	0.55	7998 56
Ca40 nnm Fet	2 12	1 93	13 / 8	1 77	1.60	1 59	114 28
Sc45 npm	50.20	61 88	30 80	1.7,7 43 80	52.00	37.25	2 8/
48/49	1/ 12	13 /6	12 79	13 50	14 10	13.86	13 39
40/43 Ti/8 nnm	14.13 24 E1	7 00	10.00	£ 37	14.10	11 5.00	202 07
Ti40 ppm	24.31	7.00	11 22	6.12	13 70	13 0/	381 71
Fe56 nom	23.00	1.00	15 22	1 00	13.70	1 1 2	301.24 1/02 02
Veo ppm	1.19	1.UU 707 24	1112 07	1.99 1074 77	0.98	1.12	112 00
NP03 baa	048U.74	/0/.24 0 77	16.20	10/4.//	E 20	3/3.UD	10 7/
	25.87	ŏ.//	10.39	9.20	5.29	7.32	19.74
2194H Kel.	0.84	U./8	0.03	0.75	0.85	18.0	0.23
2190/5130 ppm	2.39	2.45	2.10	2.41	2.39	2.42	0.15

	KPST01A_8.2C	KPST01A_10.2C	KPST01A_12.1C	KPST01A_13.1C	KPST01A_4.2I	KPST01A_11.2I	KPST01A_1.2E
La139 ppm	0.30	0.03	0.30	0.04	0.18	0.02	21.95
Ce140 ppm	398.26	59.81	120.06	89.90	69.94	71.73	48.71
Nd146 npm	17 54	0.77	1 81	2 33	3 60	1 27	4 30
Sm147 nnm	42 74	1 54	4 17	4 66	5 53	3.61	0.70
Eu152 ppm	9 20	0.45	0.85	4.00	1 76	0.97	0.06
Gd155 ppm	329.40	12 70	35.06	25 / 2	28 10	21.02	2 93
Ho165 ppm	207.26	27.75	47.01	65 12	10 25	40.50	2.95
ThO105 ppm	05 12	1 00	47.01	12.12	49.20	40.50	4.22
DvO175 ppm	95.15	4.00	12.59	12.12	11.50	111 59	0.90
ErO183 nnm	005.70	120.20	107.46	146.22	125.50	111.50	9.59
Tm0185 nnm	170.22	22.14	20 54	76.01	47.62	103.87	21.40
VhO188 mm	179.25	35.14	39.54	70.01	47.05	35.77	5.94
100188 ppm	1223.01	303.03	297.22	048.14	392.20	255.49	42.12
LUO191 ppm	183.62	57.05	51.25	122.28	09.35	43.38	9.27
2r96/2r20	141.29	129.49	142.49	139.74	142.05	133.86	129.36
196/5130	59.22	52.77	67.95	57.97	59.38	55.43	892.09
Ht ppm	84/8.86	11608.38	9888.59	12088.53	9741.92	9914.81	826.94
Pb7/6 Est	0.76	0.00	0.57	0.00	0.37	0.27	0.72
Th ppm	1106.73	203.84	613.35	545.19	273.95	108.64	49.01
U ppm	351.05	184.77	243.97	323.54	165.15	79.25	27.66
Y/Nb	250.49	89.76	67.93	203.68	237.47	133.02	5.77
Th/U	3.15	1.10	2.51	1.69	1.66	1.37	1.77
Yb/Gd	3.71	23.86	8.48	18.29	10.27	8.00	14.38
U/Yb	0.29	0.61	0.82	0.50	0.42	0.31	0.66
Th/Yb	0.90	0.67	2.06	0.84	0.70	0.43	1.16
Ce/Sm	9.32	38.94	28.81	19.30	12.65	19.86	69.87
Ce/Lu	2.17	1.04	2.34	0.74	1.01	1.65	5.26
U/Ce	0.88	3.09	2.03	3.60	2.36	1.10	0.57
Th/Ce	2.78	3.41	5.11	6.06	3.92	1.51	1.01
Y/Yb	5.30	2.60	3.75	2.89	3.21	3.81	2.70
Yb/Nd	69.73	391.05	164.57	278.21	108.91	201.34	9.80
Y/Nb	250.49	89.76	67.93	203.68	237.47	133.02	5.77
Yb/Nb	47.27	34.55	18.14	70.42	74.09	34.93	2.13
Yb/Sc	20.59	4.90	9.65	14.80	7.51	6.86	14.85
Yb/Dv	1.38	4.74	2.26	4.37	3.18	2.29	4.39
Dv/Sm	20.68	41.64	31.56	31.83	22.32	30.90	13.75
Yb/Nd	69.73	391.05	164.57	278.21	108.91	201.34	9.80
Sm/Nd	2.44	1.98	2.31	2.00	1.53	2.85	0.16
U/Li	141806.31	#DIV/0!	13.34	135927.06	#DIV/0!	22271.51	0.59
Estimated temperature							
Temp Ti48	821.68	715.77	744.53	697.84	770.65	770.65	1201.30
Temp Ti49	815.47	714.70	747.97	696.59	765.19	766.75	1199.98
Hf ppm	8478.86	11608.38	9888.59	12088.53	9741.92	9914.81	826.94
Ferry Temp	871.71	754.98	793.25	734.25	813.16	814.96	1340.50
Act Ti	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temp. Est.	852.83	745.37	780.78	726.13	799.13	800.79	1269.25

	KPST01A_8.2C	KPST01A_10.2C	KPST01A_12.1C	KPST01A_13.1C	KPST01A_4.2I	KPST01A_11.2I	KPST01A_1.2E
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)							
La Ch (0.319)	0.95	0.09	0.95	0.11	0.58	0.05	68.81
Ce Ch (0.82)	485.68	72.94	146.41	109.64	85.29	87.47	59.41
Pr Ch (0.121)	9.16	0.52	2.01	1.17	2.71	0.59	14.98
Nd Ch (0.615)	28.52	1.26	2.94	3.79	5.86	2.06	6.99
Pm	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	213.70	7.68	20.84	23.29	27.64	18.06	3.49
Eu Ch (0.076)	121.11	5.86	11.19	9.91	23.18	12.77	0.77
Gd Ch (0.267)	1233.69	47.57	131.32	132.70	143.03	119.60	10.97
Tb Ch (0.0493)	1929.57	99.05	255.28	245.84	230.81	204.70	18.22
Dy Ch (0.33)	2678.05	193.80	398.52	449.16	373.83	338.13	29.05
Ho Ch (0.0755)	3937.18	367.48	622.62	862.57	652.34	536.42	55.88
Er Ch (0.216)	4785.97	644.91	914.18	1486.79	1019.13	767.91	99.06
Tm Ch (0.0329)	5447.80	1007.19	1201.87	2310.26	1447.60	1026.40	180.49
Yb Ch (0.221)	5533.98	1371.20	1344.87	2932.74	1774.93	1156.07	190.61
Lu Ch (0.033)	5564.37	1746.84	1553.00	3705.45	2101.61	1314.41	280.83
Ce/Ce*	164.96	337.48	106.09	305.20	68.17	513.11	1.85
Hf ppm	8478.86	11608.38	9888.59	12088.53	9741.92	9914.81	826.94
Eu/Eu*	0.24	0.31	0.21	0.18	0.37	0.27	0.12
P Molar	25.71	9.77	8.30	5.54	7.05	7.84	1.12
3+ Molar	21.51	14.32	14.37	7.20	16.20	14.16	26.47
3+/P Molar	3.05	2.91	2.51	1.07	2.63	1.06	4.64

	Tab	le	C1,	cont.
--	-----	----	-----	-------

	KPST01A-1.3E	KPST01A_2.2E	KPST01A_3.23E	KPST01A_3.3E	KPST01A_4.1E	KPST01A_6.2E	KPST01A_6.3E
Element							
Li7	0.00000	0.00017	0.00001	0.00000	0.00000	0.00472	0.00001
Be9	0.00002	0.00006	0.00003	0.00007	0.00006	0.00049	0.00017
B11	0.00001	0.00004	0.00000	0.00001	0.00001	0.00097	0.00001
F19	0.00011	0.00018	0.00018	0.00021	0.00019	0.00126	0.00014
Na23	0.06553	0.03421	0.00671	0.00824	0.00786	9.15755	0.01003
Al27	0.02214	1.09476	0.02699	0.02366	0.02345	11.91831	0.02662
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00414	0.00570	0.00289	0.00262	0.00179	0.00244	0.00208
K39	0.01480	1.51720	0.00316	0.00375	0.00319	24.83373	0.00353
Ca40	0.11267	0.01550	0.00817	0.01013	0.00874	0.65494	0.01272
Sc45	0.06032	0.06849	0.05393	0.05849	0.08164	0.02663	0.04935
Ti48	0.00252	0.01264	0.00499	0.00273	0.00301	0.06602	0.00281
Ti49	0.00020	0.00089	0.00036	0.00023	0.00022	0.00477	0.00022
Fe56	0.00068	0.06754	0.00070	0.00060	0.00043	0.36139	0.00070
Y89	0.29580	0.70479	0.39416	0.45502	0.31904	0.15825	0.34412
Nb93	0.00098	0.00125	0.00064	0.00165	0.00111	0.00121	0.00104
Zr94H	0.00609	0.00787	0.00881	0.00842	0.00911	0.00357	0.00870
Zr96	2.44245	2.22091	2.38493	2.34718	2.37443	1.03188	2.44420
La139	0.00001	0.00002	0.00002	0.00000	0.00000	0.00146	0.00000
Ce140	0.00000	0.02389	0.00828	0.01575	0.00880	0.00584	0.01197
Nd146	0.00000	0.00024	0.00013	0.00007	0.00003	0.00014	0.00006
Sm147	0.00008	0.00059	0.00026	0.00014	0.00008	0.00007	0.00012
Eu153	0.00006	0.00044	0.00027	0.00008	0.00007	0.00003	0.00007
Gd155	0.00000	0.00172	0.00071	0.00042	0.00026	0.00012	0.00036
Ho165	0.00432	0.01272	0.00662	0.00650	0.00440	0.00241	0.00501
TbO175	0.00063	0.00285	0.00128	0.00095	0.00066	0.00032	0.00073
Dy0179	0.00165	0.00678	0.00328	0.00280	0.00188	0.00100	0.00225
ErO182	0.00488	0.01048	0.00614	0.00679	0.00511	0.00296	0.00514
TmO185	0.00288	0.00483	0.00334	0.00412	0.00321	0.00173	0.00301
YbO188	0.00442	0.00609	0.00457	0.00611	0.00513	0.00281	0.00459
LuO191	0.00499	0.00607	0.00495	0.00675	0.00623	0.00334	0.00495
Zr2O	0.01802	0.01503	0.01623	0.01603	0.01723	0.00736	0.01792
HfO196	0.20563	0.14300	0.16070	0.19308	0.18207	0.10028	0.19785
Pb206	0.00003	0.00003	0.00001	0.00005	0.00002	0.00006	0.00004
207/206	0.00000	0.30303	0.76923	0.45977	0.25641	0.48780	0.57971
10248	0.01567	0.07299	0.01504	0.06080	0.01803	0.01219	0.03211
00254	0.01868	0.02497	0.01161	0.03946	0.01921	0.01362	0.02522
	38394.58	38303.99	38394.01	38394.02	38394.04	38394.05	38394.04
206/238 Age	32 48	28 10	25 51	24 68	22 42	84 38	31 18
Linnm Fst	0.00	0.10	0.00	0.00	0.00	2.88	0.00
Be9 ppm	0.05	0.20	0.10	0.21	0.17	1.54	0.52
B11 ppm	0.12	0.42	0.05	0.10	0.09	9.32	0.06
F19 ppm	14.50	23.91	23.76	27.73	24.83	164.47	17.83
Na ppm Est.	15.51	8.10	1.59	1.95	1.86	2168.01	2.37
Al27 ppm Est.	14.74	728.73	17.97	15.75	15.61	7933.46	17.72
Si30							
P31 ppm	352.68	485.20	246.18	223.21	152.58	207.76	177.01
K39 Rel.	2.55	261.85	0.55	0.65	0.55	4285.93	0.61
Ca40 ppm Est.	14.70	2.02	1.07	1.32	1.14	85.45	1.66
Sc45 ppm	53.07	60.25	47.44	51.45	71.82	23.43	43.41
48/49	12.70	14.14	13.85	11.91	13.49	13.83	12.52
Ti48 ppm	7.26	36.32	14.33	7.85	8.64	189.79	8.07
Ti49 ppm	7.60	34.14	13.75	8.76	8.51	182.40	8.57
Fe56 ppm	0.99	98.53	1.02	0.87	0.62	527.20	1.01
Y89 ppm	698.12	1663.36	930.26	1073.90	752.97	373.49	812.15
Nb93 ppm	9.95	12.70	6.48	16.80	11.24	12.31	10.60
Zr94H Rel.	0.59	0.77	0.86	0.82	0.89	0.35	0.85
Zr96/Si30 ppm	2.44	2.22	2.38	2.35	2.37	1.03	2.44

Table C1, cont.	
-----------------	--

	KPST01A-1.3E	KPST01A_2.2E	KPST01A_3.23E	KPST01A_3.3E	KPST01A_4.1E	KPST01A_6.2E	KPST01A_6.3E
La139 ppm	0.06	0.13	0.11	0.02	0.03	9.76	0.02
Ce140 ppm	0.00	173.19	59.98	114.15	63.77	42.34	86.79
Nd146 ppm	0.02	3.37	1.76	1.03	0.48	2.00	0.83
Sm147 ppm	1.12	8.10	3.59	1.96	1.05	0.94	1.69
Fu153 ppm	0.27	2.13	1.28	0.40	0.35	0.15	0.34
Gd155 ppm	0.00	70.52	29.01	16.99	10.83	5.02	14.74
Ho165 ppm	24.40	71.81	37.36	36.73	24.85	13.61	28.28
ThO175 nnm	4 24	19.05	8 5 3	6 3 2	4.42	2 17	4.88
Dv0179 ppm	48.80	200.64	97.02	82.86	55.64	29.69	66.44
ErO182 ppm	120 07	270.04	163.47	180.93	135 07	78.86	136 79
TmO185 nnm	30.02	50.28	34 79	42.89	33.43	18.00	31 31
VbO188 nnm	271 10	373.80	280.20	375.03	31/ 9/	172 27	281.02
100100 ppm	50.47	61 29	50 11	69 27	62.02	22 74	50 11
7-06/7-20	125 55	147 77	146.09	146 45	127.02	140.20	126.20
106/5:20	155.55	147.77	140.90 61.62	140.45 62.20	137.05	140.20	150.50
190/3150	35.50	9201 44	01.05	11208 42	105000	155.67	11495 60
HI ppm	11936.79	8301.44	9328.50	11208.42	10569.08	5821.14	11485.02
PD//0 ESt	0.00	0.30	0.77	0.40	0.20	0.49	0.58
in ppm	158.84	739.98	152.48	010.35	182.82	123.02	325.52
U ppm	181.32	242.29	112.68	382.97	186.40	132.20	244.71
Y/Nb	70.19	130.94	143.55	63.92	67.01	30.33	76.64
Th/U	0.88	3.05	1.35	1.61	0.98	0.94	1.33
Yb/Gd	#DIV/0!	5.30	9.66	22.07	29.08	34.31	19.13
U/Yb	0.67	0.65	0.40	1.02	0.59	0.77	0.87
Th/Yb	0.59	1.98	0.54	1.64	0.58	0.72	1.15
Ce/Sm	0.00	21.39	16.70	58.36	60.94	45.21	51.30
Ce/Lu	0.00	2.82	1.20	1.67	1.01	1.25	1.73
U/Ce	#DIV/0!	1.40	1.88	3.35	2.92	3.12	2.82
Th/Ce	#DIV/0!	4.27	2.54	5.40	2.87	2.92	3.75
Y/Yb	2.58	4.45	3.32	2.86	2.39	2.17	2.88
Yb/Nd	17446.21	110.95	159.32	363.32	651.38	86.35	340.76
Y/Nb	70.19	130.94	143.55	63.92	67.01	30.33	76.64
Yb/Nb	27.26	29.43	43.25	22.32	28.03	13.99	26.60
Yb/Sc	5.11	6.20	5.91	7.29	4.39	7.35	6.49
Yb/Dy	5.56	1.86	2.89	4.53	5.66	5.80	4.24
Dy/Sm	43.42	24.78	27.02	42.36	53.17	31.70	39.28
Yb/Nd	17446.21	110.95	159.32	363.32	651.38	86.35	340.76
Sm/Nd	72.33	2.40	2.04	1.90	2.16	0.47	2.04
U/Li	132793.45	2394.50	32557.71	#DIV/0!	#DIV/0!	45.93	53017.70
Estimated temperature							
Temp Ti48	709.75	863.50	769.32	716.28	724.36	1081.04	718.63
Temp Ti49	713.55	856.71	765.50	725.53	723.09	1074.85	723.65
Hf ppm	11936.79	8301.44	9328.56	11208.42	10569.08	5821.14	11485.62
Ferry Temp	753.65	920.19	813.52	767.41	764.60	1183.72	765.25
Act Ti	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temp. Est.	744.14	897.02	799.46	756.89	754.29	1132.62	754.89

chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)							
La Ch (0.319)	0.18	0.42	0.35	0.06	0.08	30.60	0.07
Ce Ch (0.82)	0.00	211.21	73.15	139.21	77.77	51.63	105.84
Pr Ch (0.121)	0.05	2.33	1.41	0.55	0.37	6.85	0.51
Nd Ch (0.615)	0.03	5.48	2.86	1.68	0.79	3.24	1.35
Pm	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	5.62	40.48	17.95	9.78	5.23	4.68	8.46
Eu Ch (0.076)	3.55	28.00	16.86	5.31	4.59	1.92	4.50
Gd Ch (0.267)	0.00	264.10	108.64	63.63	40.57	18.80	55.20
Tb Ch (0.0493)	86.03	386.48	172.93	128.25	89.57	44.01	98.99
Dy Ch (0.33)	147.88	608.01	294.00	251.08	168.59	89.97	201.33
Ho Ch (0.0755)	323.14	951.10	494.90	486.43	329.17	180.20	374.57
Er Ch (0.216)	601.72	1292.23	756.83	837.63	629.50	365.08	633.28
Tm Ch (0.0329)	912.56	1528.13	1057.53	1303.62	1016.14	547.56	951.77
Yb Ch (0.221)	1226.70	1691.42	1268.26	1696.96	1425.05	779.52	1275.64
Lu Ch (0.033)	1529.50	1859.89	1518.55	2068.75	1910.14	1022.57	1518.46
Ce/Ce*	0.00	212.80	104.64	776.89	450.73	3.56	556.51
Hf ppm	11936.79	8301.44	9328.56	11208.42	10569.08	5821.14	11485.62
Eu/Eu*	#DIV/0!	0.27	0.38	0.21	0.32	0.20	0.21
P Molar	11.39	15.67	7.95	7.21	4.93	6.71	5.72
3+ Molar	30.50	16.44	19.49	12.95	15.08	16.39	31.77
3+/P Molar	2.01	2.10	2.79	1.14	2.91	2.31	5.09

KPST01A-1.3E KPST01A_2.2E KPST01A_3.23E KPST01A_3.3E KPST01A_4.1E KPST01A_6.2E KPST01A_6.3E

	KPST01A_5.2E	KPST01A_11.2E	KPST01A_7.2E	KPST01A_9.2E	KPST01A_8.1E	KPST01A_10.1E
Element						
Li7	0.00000	0.00000	0.00001	0.00000	0.00000	0.00000
Be9	0.00009	0.00008	0.00003	0.00000	0.00002	0.00004
B11	0.00001	0.00001	0.00002	0.00001	0.00001	0.00001
F19	0.00025	0.00018	0.00011	0.00011	0.00015	0.00021
Na23	0.00965	0.00906	0.00743	0.01046	0.00914	0.01197
Al27	0.02560	0.02680	0.02601	0.02427	0.02283	0.02260
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00207	0.00254	0.00188	0.00258	0.00245	0.00257
K39	0.00383	0.00482	0.00298	0.00339	0.00391	0.00375
Ca40	0.01411	0.01248	0.01167	0.01343	0.01947	0.01955
Sc45	0.05170	0.06061	0.07110	0.06327	0.05164	0.08369
Ti48	0.00250	0.00284	0.00290	0.00372	0.00378	0.00314
Ti49	0.00019	0.00021	0.00020	0.00028	0.00029	0.00024
Fe56	0.00074	0.00066	0.00082	0.00082	0.00057	0.00079
Y89	0.66934	0.46963	0.34679	0.38939	0.35230	0.49222
Nb93	0.00100	0.00158	0.00133	0.00118	0.00090	0.00217
Zr94H	0.00851	0.00806	0.00843	0.00857	0.00709	0.00793
Zr96	2.36555	2.47484	2.41690	2.43527	2.37901	2.39447
La139	0.00001	0.00000	0.00000	0.00001	0.00000	0.00001
Ce140	0.01239	0.01691	0.00887	0.01393	0.01217	0.01531
Nd146	0.00015	0.00009	0.00004	0.00007	0.00008	0.00007
Sm147	0.00033	0.00014	0.00011	0.00017	0.00017	0.00015
Eu153	0.00018	0.00007	0.00009	0.00015	0.00012	0.00011
Gd155	0.00077	0.00043	0.00033	0.00046	0.00049	0.00046
Ho165	0.00993	0.00657	0.00519	0.00591	0.00565	0.00720
TbO175	0.00162	0.00098	0.00073	0.00097	0.00097	0.00104
Dy0179	0.00430	0.00285	0.00223	0.00263	0.00253	0.00298
ErO182	0.01040	0.00713	0.00559	0.00602	0.00556	0.00773
Tm0185	0.00584	0.00432	0.00346	0.00326	0.00305	0.00481
YDU188	0.00857	0.00622	0.00517	0.00493	0.00437	0.00713
LU0191	0.00941	0.00732	0.00626	0.00538	0.00471	0.00814
	0.01719	0.01838	0.01729	0.01792	0.01808	0.01780
PP206	0.19207	0.21181	0.18815	0.18802	0.17977	0.19455
207/206	0.00004	0.00007	0.52632	0.71429	0.63830	0.31250
ThO248	0.40000	0.16151	0.02032	0.04006	0.03830	0.03709
110240	0.04273	0.00131	0.02052	0.02846	0.01070	0.03705
00254	38394.07	38394 09	38394 10	38394 11	38394 12	38394 15
	5665 1167	0000 1100	5655 1120	0000 1111	0000 1122	0000 1120
206/238 Age	30.54	33.19	32.32	28.53	42.71	23.67
Li ppm Est	0.00	0.00	0.01	0.00	0.00	0.00
Be9 ppm	0.27	0.26	0.11	0.02	0.06	0.11
B11 ppm	0.09	0.10	0.16	0.09	0.05	0.07
F19 ppm	32.24	22.92	14.03	14.74	19.64	27.44
Na ppm Est.	2.29	2.14	1.76	2.48	2.16	2.83
Al27 ppm Est.	17.04	17.84	17.32	16.16	15.19	15.05
5130	170 50	246.07	1.50.40	240.00	202.02	240.20
P31 ppm	1/6.59	216.07	160.40	219.30	208.82	219.20
Ca40 nnm Est	0.00	0.85	0.51	0.56	2.54	2 55
Sc/15 nnm	1.04	52.22	62 55	55.66	15 / 2	73 62
/2///	43.40	13 54	14 76	13.00	43.43	12 07
40/45 Ti48 nnm	7 18	8 16	8 3/	10.68	10.86	9.03
Ti49 nnm	7 1 2	8.01	7,51	10.55	11 04	9,26
Fe56 nnm	1.09	0.96	1.20	1.20	0.84	1.15
Y89 nnm	1579.70	1108.37	818.45	918.99	831.45	1161.69
Nb93 ppm	10.19	16.10	13.51	11.96	9,19	22.03
Zr94H Rel.	0.83	0.78	0.82	0.83	0.69	0.77
Zr96/Si30 ppm	2.37	2.47	2.42	2.44	2.38	2.39

Tabl	le	C1	cont
1 UD		Οι,	oom.

	KPST01A_5.2E	KPST01A_11.2E	KPST01A_7.2E	KPST01A_9.2E	KPST01A_8.1E	KPST01A_10.1E
La139 ppm	0.06	0.01	0.02	0.03	0.02	0.08
Ce140 ppm	89.81	122.60	64.27	100.98	88.22	110.99
Nd146 ppm	2.03	1.21	0.54	1.02	1.13	0.96
Sm147 ppm	4.53	1.97	1.49	2.34	2.40	2.11
Eu153 ppm	0.85	0.33	0.42	0.71	0.56	0.53
Gd155 ppm	31.61	17.64	13.59	18.66	20.22	18.64
Ho165 ppm	56.09	37.10	29.31	33.35	31.92	40.67
TbO175 ppm	10.79	6.53	4.87	6.45	6.49	6.94
DyO179 ppm	127.26	84.34	65.86	77.70	74.81	88.10
ErO182 ppm	276.93	189.95	148.89	160.17	148.17	205.73
TmO185 ppm	60.77	45.01	36.03	33.97	31.77	50.11
YbO188 ppm	525.90	382.09	317.65	302.60	268.06	437.89
LuO191 ppm	95.17	74.01	63.36	54.46	47.70	82.39
Zr96/Zr20	137.64	134.67	139.76	135.86	131.61	134.53
196/Si30	58.19	54.41	57.83	55.79	55.32	56.19
Hf ppm	11149.62	12295.78	10921.23	10914.79	10435.81	11292.52
Pb7/6 Est	0.40	0.18	0.53	0.71	0.64	0.31
Th ppm	433.40	623.54	169.97	406.14	169.88	376.06
ll nnm	270.93	396.83	199.09	276 15	121 42	311.07
o ppin	270.55	550.05	155.65	270.15	121.72	511.07
Y/Nb	155.04	68.85	60.58	76.84	90.46	52.72
Th/U	1.60	1.57	0.85	1.47	1.40	1.21
Yb/Gd	16.64	21.67	23.38	16.22	13.25	23.50
U/Yb	0.52	1.04	0.63	0.91	0.45	0.71
Th/Yb	0.82	1.63	0.54	1.34	0.63	0.86
Ce/Sm	19.82	62.15	43.19	43.08	36.73	52.55
Ce/Lu	0.94	1.66	1.01	1.85	1.85	1.35
U/Ce	3.02	3.24	3.10	2.73	1.38	2.80
Th/Ce	4.83	5.09	2.64	4.02	1.93	3.39
Y/Yb	3.00	2.90	2.58	3.04	3.10	2.65
Yb/Nd	258.98	316.11	592.27	297.92	237.90	457.79
Y/Nb	155.04	68.85	60.58	76.84	90.46	52.72
Yb/Nb	51.62	23.73	23.51	25.30	29.16	19.87
Yb/Sc	11.56	7.17	5.08	5.44	5.90	5.95
Yb/Dy	4.13	4.53	4.82	3.89	3.58	4.97
Dy/Sm	28.09	42.76	44.26	33.15	31.15	41.71
Yb/Nd	258.98	316.11	592.27	297.92	237.90	457.79
Sm/Nd	2.23	1.63	2.77	2.31	2.13	2.21
U/Li	#DIV/0!	#DIV/0!	28164.69	117579.02	52734.18	#DIV/0!
stimated temperature						
Temp Ti48	708.90	719.52	721.35	742.71	744.17	728.16
Temp Ti49	708.17	717.96	712.56	741.66	745.63	730.23
Hf ppm	11149.62	12295.78	10921.23	10914.79	10435.81	11292.52
Ferry Temp	747.50	758.72	752.52	785.97	790.55	772.82
Act Ti	0.70	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00	1.00
Temp. Est.	738.43	748.84	743.10	774.05	778.28	761.89
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)						
--	----------	----------	----------	----------	----------	----------
La Ch (0.319)	0.19	0.04	0.06	0.11	0.06	0.24
Ce Ch (0.82)	109.53	149.51	78.38	123.15	107.58	135.35
Pr Ch (0.121)	1.28	0.53	0.36	0.67	0.58	0.83
Nd Ch (0.615)	3.30	1.97	0.87	1.65	1.83	1.56
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	22.65	9.86	7.44	11.72	12.01	10.56
Eu Ch (0.076)	11.14	4.29	5.58	9.35	7.43	7.00
Gd Ch (0.267)	118.38	66.05	50.89	69.89	75.75	69.80
Tb Ch (0.0493)	218.87	132.46	98.71	130.88	131.64	140.76
Dy Ch (0.33)	385.63	255.59	199.59	235.46	226.69	266.97
Ho Ch (0.0755)	742.92	491.35	388.22	441.69	422.78	538.65
Er Ch (0.216)	1282.08	879.41	689.29	741.54	685.95	952.48
Tm Ch (0.0329)	1847.07	1368.17	1095.14	1032.60	965.72	1523.16
Yb Ch (0.221)	2379.66	1728.92	1437.34	1369.24	1212.93	1981.42
Lu Ch (0.033)	2883.87	2242.79	1920.08	1650.29	1445.51	2496.62
Ce/Ce*	222.37	1042.95	530.33	456.13	577.19	306.23
Hf ppm	11149.62	12295.78	10921.23	10914.79	10435.81	11292.52
Eu/Eu*	0.22	0.17	0.29	0.33	0.25	0.26
P Molar	5.70	6.98	5.18	7.08	6.74	7.08
3+ Molar	14.74	102.81	14.46	21.01	18.93	16.84
3+/P Molar	2.19	4.00	1.48	2.97	2.28	2.61

KPST01A_5.2E KPST01A_11.2E KPST01A_7.2E KPST01A_9.2E KPST01A_8.1E KPST01A_10.1E

Table C1, cont.

	KPST01A_12.2E	KPST01A_13.2E
Element		
1:7	0.00017	0.00001
LI7 Be9	0.00017	0.00001
BE3 B11	0.00001	0.00003
F19	0.00000	0.00002
Na23	0.29753	0.01741
AI27	0.80769	0.02748
Si30	1.00000	1.00000
P31	0.00235	0.00360
K39	1.27510	0.00411
Ca40	0.06352	0.03531
Sc45	0.05063	0.04626
Ti48	0.00920	0.00237
Ti49	0.00067	0.00018
Fe56	0.09575	0.00305
Y89	0.39848	0.29355
Nb93	0.00185	0.00107
Zr94H	0.00590	0.00705
Zr96	2.26472	2.40854
La139	0.00021	0.00018
Ce140	0.01444	0.00779
Nd146	0.00007	0.00013
Sm147	0.00012	0.00014
Eu153	0.00006	0.00014
Gd155	0.00035	0.00027
Ho165	0.00579	0.00392
TbO175	0.00083	0.00058
DyO179	0.00243	0.00173
ErO182	0.00639	0.00435
TmO185	0.00388	0.00289
YbO188	0.00586	0.00423
LuO191	0.00669	0.00512
Zr2O	0.01555	0.01762
HfO196	0.19813	0.21442
Pb206	0.00005	0.00003
207/206	0.27397	1.05263
10248	0.05353	0.01493
00254	0.03725	0.01866
	38394.10	38394.17
206/238 Age	24.52	36.55
Li ppm Est	0.10	0.00
Be9 ppm	0.02	0.17
B11 ppm	0.58	0.15
F19 ppm	21.62	40.57
Na ppm Est.	70.44	4.12
Al27 ppm Est.	537.64	18.29
5130	200.42	206.22
P31 ppm	200.12	300.33
Kay Kel. Call nom Est	220.00 g 20	0.71
Scat nom	0.2J AA 52	4.01
<u>48/49</u>	13 66	13 53
Tids nom	26.45	6.87
Tid9 nnm	20.45	6.70
Fe56 npm	139.68	4.45
Y89 nnm	940.44	692 79
Nb93 ppm	18.80	10.83
Zr94H Rel.	0.57	0.69
Zr96/Si30 ppm	2.26	2.41

Table C1, cont.

KPST01A	12.2E	KPST01A	13.2E
-	-	-	-

La139 ppm	1.38	1.23
Ce140 ppm	104.67	56.44
Nd146 ppm	1.01	1.85
Sm147 ppm	1.71	1.91
Eu153 ppm	0.29	0.67
Gd155 ppm	14.32	11.21
Ho165 ppm	32.71	22.14
TbO175 ppm	5.53	3.90
DyO179 ppm	71.92	51.19
ErO182 ppm	170.14	115.95
TmO185 ppm	40.44	30.08
YbO188 ppm	359.64	259.75
LuO191 ppm	67.71	51.78
Zr96/Zr20	145.60	136.73
196/Si30	64.29	56.77
Hfppm	11501.70	12447.22
Pb7/6 Est	0.27	1.05
Th ppm	542.66	151.32
U ppm	361.52	181.11
Y/Nb	50.03	63.99
Th/U	1.50	0.84
Yb/Gd	25.12	23.16
U/Yb	1.01	0.70
Th/Yb	1.51	0.58
Ce/Sm	61.04	29.50
Ce/Lu	1 55	1.09
U/Ce	3 45	3 21
Th/Ce	5 18	2.68
Y/Yh	2 61	2.60
Vh/Nd	356.26	140 55
V/Nb	50.03	63.99
Vh/Nh	10 12	22.00
Vb/Sc	2 08	6 38
Vh/Dy	5.00	5.07
Du/Sm	J.00	26.76
Vb/Nd	256.26	140 55
Sm /Nd	1 70	140.33
511/1Vu	2566.20	27261 50
0/11	5500.20	57501.55
Estimated temperature		
Temp Tide	879 52	704 64
Tomn Ti40	023.33 876 67	704.04
lenip 1149	020.07	100.17
ni ppm	11201.70	1244/.22
Perry remp	0 70	/41.//
Act II	0.70	0.70
Act Si	1.00	1.00
Temp. Est.	864.82	733.12

KPST01A_12.2E KPST01A_13.2E

chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)		
La Ch (0.319)	4.33	3.84
Ce Ch (0.82)	127.65	68.83
Pr Ch (0.121)	2.27	3.26
Nd Ch (0.615)	1.64	3.01
Pm	0.00	0.00
Sm Ch (0.2)	8.57	9.57
Eu Ch (0.076)	3.76	8.83
Gd Ch (0.267)	53.62	42.00
Tb Ch (0.0493)	112.08	79.05
Dy Ch (0.33)	217.93	155.13
Ho Ch (0.0755)	433.25	293.28
Er Ch (0.216)	787.68	536.82
Tm Ch (0.0329)	1229.18	914.21
Yb Ch (0.221)	1627.35	1175.33
Lu Ch (0.033)	2051.77	1569.16
o /o *		10.11
Ce/Ce*	40.72	19.44
Hfppm	11501.70	12447.22
Eu/Eu*	0.18	0.44
P Molar	6.46	9.89
3+ Molar	12.36	31.19
3+/P Molar	1.25	5.63

	WSWPST2A 1.2C	WSWPST2A 2.1C	WSWPST2A 3.1C	WSWPST2A 4.1C	WSWPST2A 5.1C
Element					
Li7	0.00002	0.00000	0.00002	0.00000	0.00016
Be9	0.02040	0.02095	0.02342	0.00593	0.00002
B11	0.00001	0.00001	0.00002	0.00001	0.00001
F19	0.00022	0.00018	0.00022	0.00011	0.00010
Na23	0.01085	0.00867	0.01218	0.01145	0.01449
AI27	0.02251	0.02387	0.02614	0.02382	0.03023
Si30	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00209	0.00304	0.00231	0.00552	0.00879
К39	0.00509	0.00466	0.00677	0.00375	0.00343
Ca40	0.01937	0.01911	0.02121	0.01842	0.01544
Sc45	0.05657	0.05752	0.05499	0.07722	0.05741
Ti48	0.00404	0.00617	0.00426	0.00363	0.00529
Ti49	0.00031	0.00043	0.00032	0.00027	0.00037
Fe56	0.00069	0.00060	0.00074	0.00077	0.00508
Y89	0.72029	0.76446	0.75068	0.56823	0.58871
Nb93	0.00051	0.00038	0.00058	0.00133	0.00062
Zr94H	0.00640	0.00666	0.00596	0.00605	0.00650
Zr96	2.44455	2.64618	2.37595	2.39943	2.43532
La139	0.00001	0.00001	0.00000	0.00000	0.00003
Ce140	0.01224	0.01326	0.01166	0.01320	0.00881
Nd146	0.00026	0.00042	0.00030	0.00008	0.00010
Sm147	0.00049	0.00084	0.00053	0.00020	0.00034
Eu153	0.00045	0.00081	0.00048	0.00016	0.00025
Gd155	0.00117	0.00220	0.00133	0.00074	0.00103
Ho165	0.01141	0.01373	0.01215	0.00901	0.01027
TbO175	0.00232	0.00358	0.00244	0.00171	0.00222
DyO179	0.00552	0.00758	0.00583	0.00434	0.00546
ErO182	0.01072	0.01132	0.01132	0.00884	0.00896
TmO185	0.00571	0.00542	0.00608	0.00485	0.00420
YbO188	0.00792	0.00676	0.00784	0.00695	0.00524
LuO191	0.00852	0.00681	0.00846	0.00756	0.00550
Zr2O	0.01824	0.01906	0.01651	0.01771	0.01805
HfO196	0.18178	0.18558	0.17324	0.17498	0.16000
Pb206	0.00004	0.00001	0.00003	0.00005	0.00003
207/206	0.00000	0.00000	0.17857	0.14085	0.00000
ThO248	0.03535	0.01903	0.03268	0.03306	0.01400
UO254	0.01990	0.00927	0.01883	0.02444	0.00992
	38394.44	38394.45	38394.46	38394.48	38394.51
206/238 Age	38 76	32 17	36 16	37.06	67 10
Linnm Est	0.01	0.00	0.01	0.00	0.10
Beg nnm	63 59	65.33	73.02	18 50	0.07
B11 nnm	0.06	0.09	0.18	0.13	0.09
F19 ppm	29.20	23.43	28.13	14 14	13 50
Na nnm Est.	25.20	2 05	2 88	2 71	3 43
Al27 nnm Est	14 99	15.89	17.40	15.86	20.12
Si30	11.55	15.65	17.40	15.00	20.12
P31 ppm	177.98	258.65	196.90	469.98	747.96
K39 Rel.	0.88	0.80	1.17	0.65	0.59
Ca40 ppm Est.	2.53	2.49	2.77	2.40	2.01
Sc45 ppm	49.76	50.60	48.37	67.93	50.50
48/49	12.95	14.43	13.49	13.68	14.28
Ti48 ppm	11.61	17.75	12.24	10.42	15,20
Ti49 ppm	11.92	16.34	12.06	10.13	14,15
Fe56 nnm	1.01	0.87	1.07	1.12	7.41
Y89 nnm	1699.95	1804 19	1771.67	1341.07	1389.40
Nb93 ppm	5.21	3.89	5.91	13.48	6.29
Zr94H Rel.	0.62	0.65	0.58	0.59	0.63
Zr96/Si30 ppm	2.44	2.65	2.38	2.40	2.44
			2.00		

Table C2. SHRIMP-RG trace element analyses of zircon grains from WSW2A.

	WSWPSIZA_1.2C	WSWPSIZA_2.1C	W5WP512A_5.1C	WSWPSIZA_4.1C	WSWPSIZA_5.1C
1 a 1 30 nnm	0.08	0.04	0.01	0.01	0.17
Ce140 nnm	88.69	96.08	84 50	95.66	63.87
Nd146 ppm	2 57	5 80	A 22	1 16	1 / 2
Sm147 ppm	5.57	11 58	7 2 2	2.81	1.45
511147 pp11	0.70	2 02	7.32	2.81	4.05
Ed155 ppm	17.60	90.05	2.33 54.27	20.44	1.19
Ho165 ppm	47.09	90.03 77 51	54.27	50.44	42.11
ThO175 npm	15 40	77.51	16.38	11 /1	14.96
Dv0179 ppm	162.29	23.69	10.27	11.41	14.60
5-0182 mm	105.56	224.20	201.26	120.20	101.56
	205.50	501.55	501.50	255.57	256.50
VbO188 mm	59.40 496.16	30.40 41F 10	05.52	50.45	45.77
100188 ppm	480.10	415.18	481.10	420.49	321.47
2-06 (2-20	00.21 124.00	120.09	142.00	10.40	124.00
2196/2120	134.00	138.84	143.88	135.48	134.96
196/5150	54.81	52.47	00.50		55.42
HT ppm	10552.73	10773.29	10056.82	10157.56	9287.84
PD//6 EST	0.00	0.00	0.18	0.14	0.00
In ppm	358.34	192.96	331.27	335.16	141.94
U ppm	193.16	90.00	182.72	237.16	96.24
Y/Nb	326.39	463.63	299.78	99.50	220.76
Th/U	1.86	2.14	1.81	1.41	1.47
Yb/Gd	10.19	4.61	8.87	14.01	7.63
U/Yb	0.40	0.22	0.38	0.56	0.30
Th/Yb	0.74	0.46	0.69	0.79	0.44
Ce/Sm	13 11	8 29	11 55	34.03	13 74
Ce/Lu	1 03	1 39	0.99	1 25	1 15
U/Ce	2.18	0.94	2.16	2.48	1.51
Th/Ce	4.04	2.01	3.92	3.50	2.22
Y/Yb	3.50	4.35	3.68	3.14	4.32
Yb/Nd	136.16	71.60	114.09	367.25	224.42
Y/Nb	326.39	463.63	299.78	99.50	220.76
Yb/Nb	93.34	106.69	81.42	31.64	51.08
Yb/Sc	9.77	8.21	9.95	6.28	6.37
Yb/Dv	2.98	1.85	2.79	3.32	1.99
Dv/Sm	24.16	19.36	23.59	45.63	34.78
Yb/Nd	136.16	71.60	114.09	367.25	224.42
Sm/Nd	1.89	2.00	1.73	2.42	3.24
U/Li	19162.77	65537.22	16491.08	183611.65	958.18
-,					
Estimated temperature					
Temp Ti48	750.10	789.58	754.87	740.55	774.85
Temp Ti49	752.45	781.67	753.53	738.04	768.15
Hf ppm	10552.73	10773.29	10056.82	10157.56	9287.84
Ferry Temp	798.43	832.29	799.67	781.79	816.59
Act Ti	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00
Temp. Est.	785.55	816.72	786.70	770.20	802.28
•					

WSWPST2A_1.2C WSWPST2A_2.1C WSWPST2A_3.1C WSWPST2A_4.1C WSWPST2A_5.1C

chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)					
La Ch (0.319)	0.26	0.11	0.04	0.03	0.53
Ce Ch (0.82)	108.15	117.17	103.05	116.66	77.83
Pr Ch (0.121)	2.06	2.16	1.22	0.46	1.42
Nd Ch (0.615)	5.81	9.43	6.86	1.89	2.33
Pm	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	33.82	57.92	36.58	14.06	23.23
Eu Ch (0.076)	28.38	51.65	30.68	10.08	15.61
Gd Ch (0.267)	178.61	337.28	203.27	114.01	157.72
Tb Ch (0.0493)	314.18	484.52	330.10	231.37	301.34
Dy Ch (0.33)	495.08	679.57	523.11	388.72	489.65
Ho Ch (0.0755)	853.24	1026.68	908.36	674.04	768.09
Er Ch (0.216)	1322.05	1395.98	1395.18	1089.67	1104.17
Tm Ch (0.0329)	1807.32	1714.36	1924.52	1533.48	1330.25
Yb Ch (0.221)	2199.83	1878.65	2177.19	1929.81	1454.60
Lu Ch (0.033)	2612.31	2087.43	2592.38	2316.98	1685.51
Ce/Ce*	147.62	236.63	478.68	1057.05	90.20
Hf ppm	10552.73	10773.29	10056.82	10157.56	9287.84
Eu/Eu*	0.37	0.37	0.36	0.25	0.26
P Molar	5.75	8.35	6.36	15.18	24.15
3+ Molar	16.70	28.11	29.75	18.33	29.07
3+/P Molar	2.95	4.89	3.56	2.71	4.57

Table	e C2,	cont.
-------	-------	-------

WSWPST2A_1.2C WSWPST2A_2.1C WSWPST2A_3.1C WSWPST2A_4.1C WSWPST2A_5.1C

	WSWPST2A_6.1C	WSWPST2A_7.1C	WSWPST2A-9.2C	WSWPST2A_10.1C	WSWPST2A_13.1C	WSWPST2A_14.1C
Element						
Li7	0.00000	0.00002	0.00000	0.00003	0.00001	0.00009
Be9	0.01595	0.01582	0.00073	0.07803	0.01522	0.01482
B11	0.00001	0.00002	0.00001	0.00001	0.00002	0.00002
F19	0.00016	0.00033	0.00012	0.00034	0.00016	0.00029
Na23	0.00731	0.01137	0.01066	0.01668	0.01220	0.01724
Al27	0.02322	0.02160	0.02094	0.02161	0.02688	0.03163
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00273	0.00330	0.00301	0.01365	0.00507	0.00415
K39	0.00286	0.00434	0.00287	0.00399	0.00408	0.01390
Ca40	0.01705	0.02116	0.01745	0.02303	0.01983	0.04052
Sc45	0.08450	0.10600	0.05539	0.08391	0.06098	0.05320
Ti48	0.01072	0.00312	0.01089	0.00882	0.00730	0.00713
Ti49	0.00081	0.00023	0.00080	0.00066	0.00051	0.00050
Fe56	0.00056	0.00066	0.00055	0.00055	0.00067	0.01284
Y89	0.60646	0.56731	0.24859	2.93125	0.81501	0.69260
Nb93	0.00030	0.00161	0.00036	0.01147	0.00196	0.00110
Zr94H	0.00675	0.00624	0.00579	0.00657	0.00614	0.00592
Zr96	2,56184	2.48278	2,44395	2,36233	2 43638	2.38854
La139	0.00003	0.00002	0.00000	0.00000	0.00002	0.00048
Ce140	0.00969	0.01443	0.00000	0.00002	0.00001	0.00000
Nd146	0.00060	0.00007	0.00000	0.00000	0.00000	0.00000
Sm147	0.00072	0.00016	0.00020	0.00184	0.00059	0.00056
Fu153	0.00089	0.00012	0.00019	0.00062	0.00039	0.00035
Gd155	0.00153	0.00047	0.00000	0.00000	0.00000	0.00000
Ho165	0.01045	0.00747	0.00436	0.05268	0.01440	0.01126
ThO175	0.00255	0.00097	0.00095	0.03200	0.00315	0.00236
Dv0179	0.00560	0.00313	0.00216	0.02763	0.00747	0.00561
FrQ182	0.00914	0.00839	0.00393	0.04448	0.01228	0.01038
Tm0185	0.00456	0.00536	0.00208	0.02128	0.00589	0.00532
YhO188	0.00490	0.00330	0.00205	0.02120	0.00365	0.00332
100100	0.00605	0.00977	0.00205	0.02123	0.00702	0.00727
7r20	0.01873	0.01633	0.01863	0.01690	0.01816	0.01699
Hf0196	0 15881	0 19888	0 16487	0 16341	0 17254	0 17753
Ph206	0.00001	0.00004	0.00002	0.00010	0.00005	0.00003
207/206	0.00000	0.00000	0.34483	0.14388	0.27397	0.22727
ThO248	0.01937	0.04156	0.00947	0.26730	0.08403	0.04721
110254	0.00926	0.03461	0.00617	0 10905	0.03822	0.02697
00234	38394.52	38394.53	38394.58	38394.63	38394.66	38394.68
	5005 1152	0000 1100	5055 1150	0000 1100	5655 1166	5655 1166
206/238 Age	24.06	23.20	62.05	17.85	25.73	21.19
Lippm Est	0.00	0.01	0.00	0.02	0.00	0.05
Be9 ppm	49.72	49.31	2.28	243.29	47.46	46.21
B11 ppm	0.12	0.21	0.08	0.12	0.17	0.17
F19 ppm	20.92	42.64	16.34	44.27	21.51	38.52
Na ppm Est.	1.73	2.69	2.52	3.95	2.89	4.08
Al27 ppm Est.	15.46	14.38	13.94	14.39	17.89	21.05
Si30						
P31 ppm	232.67	281.11	256.41	1161.90	431.74	353.15
K39 Rel.	0.49	0.75	0.50	0.69	0.70	2.40
Ca40 ppm Est.	2.22	2.76	2.28	3.00	2.59	5.29
Sc45 ppm	74.33	93.25	48.73	73.81	53.64	46.80
48/49	13.16	13.28	13.57	13.30	14.37	14.13
Ti48 ppm	30.82	8.97	31.31	25.37	20.99	20.51
Ti49 ppm	31.12	8,98	30.67	25.35	19.41	19.29
Fe56 ppm	0.82	0.97	0.80	0.80	0.98	18.73
Y89 ppm	1431.29	1338.91	586.70	6918.01	1923.49	1634.60
Nb93 nnm	3.03	16.35	3,70	116.56	19.94	11,18
Zr94H Rel.	0.66	0.61	0.56	0.64	0.60	0.58
Zr96/Si30 ppm	2.56	2.48	2.44	2,36	2.44	2.39
,	2.35	2		2.00		=

	WSWPST2A_6.1C	WSWPST2A_7.1C	WSWPST2A-9.2C	WSWPST2A_10.1C	WSWPST2A_13.1C	WSWPST2A_14.1C
La139 ppm	0.17	0.15	0.03	0.03	0.13	3.21
Ce140 ppm	70.21	104.58				
Nd146 ppm	8.32	1.00				
Sm147 ppm	9.84	2.19	2.80	25.28	8.14	7.64
Eu153 ppm	4.27	0.60	0.91	2.97	1.89	1.69
Gd155 ppm	62.51	19.13				
Ho165 ppm	59.03	42.15	24.64	297.42	81.28	63.59
TbO175 ppm	17.00	6.49	6.36	78.47	21.05	15.79
DyO179 ppm	165.57	92.62	63.98	817.38	220.95	166.04
ErO182 ppm	243.50	223.30	104.71	1184.47	327.05	276.32
TmO185 ppm	47.47	55.79	21.69	221.49	61.28	55.41
YbO188 ppm	364.89	487.69	180.90	1535.46	469.64	431.78
LuO191 ppm	61.26	98.85	31.01	214.82	71.05	73.53
Zr96/Zr20	136.76	152.04	131.19	139.80	134.15	140.55
196/Si30	53.38	61.24	53.68	59.18	55.06	58.84
Hfppm	9219.22	11545.06	9570.82	9485.98	10016.20	10306.01
Pb7/6 Est	0.00	0.00	0.34	0.14	0.27	0.23
Th ppm	196.40	421.30	95.96	2709.95	851.91	478.62
U ppm	89.82	335.87	59.83	1058.23	370.87	261.74
Y/Nb	472.60	81.87	158.73	59.35	96.47	146.21
Th/U	2.19	1.25	1.60	2.56	2.30	1.83
Yb/Gd	5.84	25.50				
U/Yb	0.25	0.69	0.33	0.69	0.79	0.61
Th/Yb	0.54	0.86	0.53	1.76	1.81	1.11
Ce/Sm	7.13	47.77	0.00	0.00	0.00	0.00
Ce/Lu	1.15	1.06	0.00	0.00	0.00	0.00
U/Ce	1.28	3.21				
Th/Ce	2.80	4.03				
Y/Yb	3.92	2.75	3.24	4.51	4.10	3.79
Yb/Nd	43.88	487.60				
Y/Nb	472.60	81.87	158.73	59.35	96.47	146.21
Yb/Nb	120.48	29.82	48.94	13.17	23.55	38.62
Yb/Sc	4.91	5.23	3.71	20.80	8.76	9.23
Yb/Dy	2.20	5.27	2.83	1.88	2.13	2.60
Dy/Sm	16.82	42.31	22.84	32.33	27.15	21.74
Yb/Nd	43.88	487.60				
Sm/Nd	1.18	2.19				
U/Li	33860.90	28451.19	22394.87	49756.56	90633.95	4853.93
Estimated temperature						
Temp Ti48	845.65	727.56	847.33	825.20	806.02	803.71
Temp Ti49	846.68	727.61	845.12	825.14	798.30	797.66
Hf ppm	9219.22	11545.06	9570.82	9485.98	10016.20	10306.01
Ferry Temp	908.37	769.80	906.52	883.04	851.64	850.90
Act Ti	0.70	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00	1.00
Temp. Est.	886.26	759.10	884.58	863.18	834.47	833.79

Table C2, cont.

chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)						
La Ch (0.319)	0.55	0.47	0.08	0.09	0.39	10.07
Ce Ch (0.82)	85.62	127.54				
Pr Ch (0.121)	4.64	1.08				
Nd Ch (0.615)	13.52	1.63				
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	49.21	10.95	14.01	126.40	40.68	38.19
Eu Ch (0.076)	56.23	7.92	12.02	39.09	24.91	22.24
Gd Ch (0.267)	234.13	71.64				
Tb Ch (0.0493)	344.85	131.62	129.00	1591.77	426.97	320.35
Dy Ch (0.33)	501.71	280.65	193.89	2476.92	669.54	503.14
Ho Ch (0.0755)	781.81	558.28	326.40	3939.37	1076.52	842.24
Er Ch (0.216)	1127.30	1033.78	484.79	5483.65	1514.14	1279.26
Tm Ch (0.0329)	1442.91	1695.64	659.35	6732.24	1862.54	1684.29
Yb Ch (0.221)	1651.10	2206.75	818.53	6947.79	2125.07	1953.74
Lu Ch (0.033)	1856.31	2995.59	939.68	6509.85	2153.00	2228.24
Ce/Ce*	53.67	178.36				
Hf ppm	9219.22	11545.06	9570.82	9485.98	10016.20	10306.01
Eu/Eu*	0.52	0.28				
P Molar	7.51	9.08	8.28	37.52	13.94	11.40
3+ Molar	16.82	14.23	23.29	15.03	23.00	22.83
3+/P Molar	2.67	2.31	1.53	1.24	3.34	0.95

WSWPST2A_6.1C WSWPST2A_7.1C WSWPST2A-9.2C WSWPST2A_10.1C WSWPST2A_13.1C WSWPST2A_14.1C

	WSWPST2A 13.2I	WSWPST2A 11.2I	WSWPST2A 11.1I	WSWPST2A 7.2I	WSWPST2A 4.2I	WSWPST2A 3.2I
Element						
Li7	0.00000	0.00000	0.00001	0.00003	0.00000	0.00001
Be9	0.00097	0.00873	0.00597	0.00998	0.00143	0.00874
B11	0.00000	0.00001	0.00001	0.00002	0.00002	0.00001
F19	0.00011	0.00013	0.00017	0.00014	0.00012	0.00013
Na23	0.01060	0.01558	0.01170	0.01138	0.01341	0.01051
Al27	0.02094	0.02534	0.02344	0.02266	0.02656	0.02477
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00475	0.00290	0.00218	0.00285	0.00440	0.00229
K39	0.00305	0.00477	0.00339	0.00464	0.00420	0.00606
Ca40	0.01799	0.02460	0.02087	0.02526	0.01996	0.02009
Sc45	0.07177	0.08530	0.06190	0.06598	0.05783	0.08856
Ti48	0.00327	0.00330	0.00130	0.00350	0.00758	0.00398
Ti40	0.00027	0.00440	0.00347	0.00200	0.00230	0.00030
EoE6	0.00023	0.00032	0.00024	0.00020	0.00010	0.00030
Ven	0.00008	0.00085	0.00071	0.00003	0.00075	0.00091
103	0.34023	0.43041	0.37933	0.01455	0.33430	0.38341
ND93	0.00073	0.00132	0.00101	0.00200	0.00096	0.00121
2194H	0.00579	0.00641	0.00038		0.00593	0.00611
2196	2.382/4	2.51344	2.41985	2.45813	2.41306	2.38018
La139	0.00004	0.00002	0.00000	0.00000	0.00000	0.00000
Ce140	0.00000	0.00001	0.00000	0.01804	0.00827	0.01029
Nd146	0.00000	0.00000	0.00000	0.00009	0.00004	0.00007
Sm147	0.00014	0.00020	0.00016	0.00012	0.00010	0.00016
Eu153	0.00010	0.00016	0.00013	0.00009	0.00008	0.00014
Gd155	0.00000	0.00000	0.00000	0.00043	0.00035	0.00045
Ho165	0.00521	0.00716	0.00581	0.00721	0.00529	0.00566
TbO175	0.00091	0.00120	0.00099	0.00106	0.00082	0.00090
DyO179	0.00235	0.00324	0.00269	0.00295	0.00231	0.00243
ErO182	0.00570	0.00723	0.00604	0.00795	0.00570	0.00607
TmO185	0.00302	0.00433	0.00347	0.00467	0.00341	0.00364
YbO188	0.00460	0.00632	0.00492	0.00681	0.00524	0.00558
LuO191	0.00518	0.00736	0.00537	0.00777	0.00588	0.00670
Zr2O	0.01740	0.01857	0.01796	0.01749	0.01749	0.01619
HfO196	0.18531	0.19304	0.19918	0.21035	0.19948	0.17697
Pb206	0.00004	0.00003	0.00004	0.00004	0.00003	0.00004
207/206	0.55556	0.22727	0.17857	0.15873	0.41667	0.00000
ThO248	0.01638	0.01994	0.03419	0.05813	0.02073	0.01740
UO254	0.01635	0.02072	0.02560	0.03975	0.02066	0.01828
	38394.67	38394.63	38394.64	38394.54	38394.49	38394.47
206/238 Age	43 03	30.18	30.01	20.03	29 39	46 36
Linnm Est	0.00	0.00	0.01	0.02	0.00	0.01
Be9 nnm	3.03	27.22	18.60	31 11	4 46	27.26
B11 nnm	0.02	0.06	0.08	0.15	0.15	0.09
F19 nnm	14.86	17 14	22.36	18 94	16.08	16 41
Na nnm Est	2 51	3 69	2 77	2.69	3 17	2.49
Al27 nnm Est	13.0/	16.87	15.60	15.08	17.68	16 /0
Si30	13.54	10.07	15.00	15.00	17.00	10.45
D21 nnm	404 50	246 72	195 00	212 80	271 20	105 22
P31 ppin	404.50	240.75	0.50	0.90	0 72	1 05
Call nom Eat	0.00	0.02	פכ.ט רד ר	0.00	2 60	1.UD
Cano ppin Est.	2.55	3.21 75.04	2.72	5.50	2.00	2.02
30/40	03.14	12.04	J4.45	JO.U4	JU.8/	12.10
48/49	14.36	13.82	14./1	13.94	15.69	13.12
1148 ppm	9.40	12.89	9.97	8.05	/.42	11.45
1149 ppm	8.70	12.39	9.01	/.6/	6.28	11.60
Fe56 ppm	0.99	1.21	1.03	0.92	1.07	1.33
Y89 ppm	802.98	10/7.18	895.30	1213.86	836.65	904.89
Nb93 ppm	7.41	13.46	10.28	20.32	9.78	12.25
Zr94H Rel.	0.56	0.62	0.62	0.63	0.58	0.59
Zr96/Si30 ppm	2.38	2.51	2.42	2.46	2.41	2.38

	WSWPST2A_13.2I	WSWPST2A_11.2I	WSWPST2A_11.1I	WSWPST2A_7.2I	WSWPST2A_4.2I	WSWPST2A_3.2I
La139 ppm	0.26	0.10	0.03	0.03	0.03	0.02
Ce140 ppm				130.73	59.93	74.59
Nd146 ppm				1.27	0.52	0.98
Sm147 ppm	1.90	2.71	2.15	1.69	1.36	2.19
Eu153 ppm	0.49	0.78	0.63	0.43	0.38	0.69
Gd155 ppm				17.63	14.17	18.38
Ho165 ppm	29.41	40.41	32.81	40.72	29.88	31.95
TbO175 ppm	6.05	8.03	6.63	7.07	5.47	6.01
DvO179 ppm	69.55	95.80	79.48	87.30	68.37	71.84
ErO182 ppm	151.84	192.64	160.91	211.60	151.66	161.74
TmO185 ppm	31.49	45.11	36.17	48.61	35.49	37.87
YbO188 ppm	282.34	387.86	302.27	417.82	321.43	342.48
LuO191 ppm	52.38	74.47	54.29	78.57	59.51	67.82
Zr96/Zr20	136.97	135.35	134.75	140.55	137.98	146.99
196/5i30	57.48	53.85	55.69	57 18	57 18	61 76
Hfnnm	10757.09	11205 95	11562 53	12210 94	11579 93	10272 95
Ph7/6 Fst	0.56	0.23	0.18	0.16	0.42	0.00
Th nom	166.03	202.12	346 58	580.31	210 11	176 44
	159.64	202.12	240.58	205 72	210.11	177.25
o ppin	136.04	201.08	248.40	363.72	200.47	177.55
Y/Nb	108.37	80.03	87.08	59.73	85.57	73.87
Th/U	1.05	1.01	1.39	1.53	1.05	0.99
Yb/Gd				23.70	22.68	18.63
U/Yb	0.56	0.52	0.82	0.92	0.62	0.52
Th/Yb	0.59	0.52	1.15	1.41	0.65	0.52
Ce/Sm	0.00	0.00	0.00	77.44	44.14	34.10
Ce/Lu	0.00	0.00	0.00	1.66	1.01	1.10
U/Ce				2.95	3.34	2.38
Th/Ce				4.51	3.51	2.37
Y/Yb	2.84	2.78	2.96	2.91	2.60	2.64
Yb/Nd				329.82	612.55	350.75
Y/Nb	108.37	80.03	87.08	59.73	85.57	73.87
Yb/Nb	38.10	28.82	29.40	20.56	32.87	27.96
Yb/Sc	4.47	5.17	5.55	7.20	6.32	4.40
Yh/Dv	4.06	4.05	3.80	4 79	4 70	4 77
Dv/Sm	36 53	35 34	37.03	51 71	50.36	32.84
Vb/Nd	50.55	55.54	57.05	270.97	612 55	250 75
Sm/Nd				1 22	2 50	220.75
U/Li	#DIV/0!	69852.65	44712.14	18841.95	78262.66	23771.67
Estimated temperature						
Temp Ti48	731 60	759 54	736 70	718 37	711 56	748 86
Temn Ti49	724 99	756.01	727 94	714 36	698.00	750.01
Uf nnm	10757.00	11205.05	11562 52	12210 04	11570.02	10272.05
	10/5/.09	11203.93	11302.33	754 50	725 07	10272.95
reny temp	00./9	070	0.70	1 34.39	100.070	192.01
Act II	0.70	0.70	0.70	0.70	0.70	0.70
ACT SI	1.00	1.00	1.00	1.00	1.00	1.00
Temp. Est.	/56.31	789.34	/59.45	745.01	/2/.63	/82.95

-						
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)						
L- Ch (0.210)	0.02	0.22	0.00	0.00	0.00	0.05
La Ch (0.319)	0.82	0.33	0.09	0.08	0.08	0.05
Ce Cn (0.82)				159.42	/3.09	90.97
Pr Cn (0.121)				0.70	0.39	0.51
Na Ch (0.615)	0.00	0.00	0.00	2.06	0.85	1.59
Pm 6 Ch (0, 2)	0.00	0.00	0.00	0.00	0.00	0.00
Sm Cn (0.2)	9.52	13.55	10.73	8.44	6.79	10.94
Eu Ch (0.076)	6.45	10.26	8.24	5.66	5.06	9.12
Gd Ch (0.267)	100 50	4.68.89		66.03	53.07	68.85
Tb Ch (0.0493)	122.69	162.98	134.46	143.31	110.87	121.87
Dy Ch (0.33)	210.76	290.29	240.86	264.54	207.18	217.68
Ho Ch (0.0755)	389.54	535.20	434.51	539.30	395.73	423.15
Er Ch (0.216)	702.96	891.87	744.94	979.65	702.14	748.80
Tm Ch (0.0329)	957.12	1370.98	1099.36	1477.66	1078.86	1150.98
Yb Ch (0.221)	1277.55	1755.01	1367.74	1890.60	1454.44	1549.70
Lu Ch (0.033)	1587.14	2256.73	1645.26	2380.99	1803.30	2055.09
Ce/Ce*				678.90	417.25	564.28
Hf ppm	10757.09	11205.95	11562.53	12210.94	11579.93	10272.95
Eu/Eu*				0.24	0.27	0.33
P Molar	13.06	7.97	6.01	7.84	12.09	6.31
3+ Molar	24.48	20.70	23.95	21.26	16.87	17.22
3+/P Molar	3.26	3.14	2.64	2.71	1.27	2.81

WSWPST2A_13.2I WSWPST2A_11.2I WSWPST2A_11.1I WSWPST2A_7.2I WSWPST2A_4.2I WSWPST2A_3.2I

	WSWPST2A_1.1E	WSWPST2A_2.2E	WSWPST2A_3.3E	WSWPST2A_4.3E	WSWPST2A_5.2E	WSWPST2A_6.2E
Element						
117	0.00001	0.00001	0 00000	0 00002	0.00001	0.00002
Be9	0.00795	0.00768	0.00513	0.00852	0.00590	0.00594
B11	0.00001	0.00002	0.00001	0.00005	0.00001	0.00011
F19	0.000016	0.00017	0.00014	0.00015	0.00007	0.00025
Na23	0.01641	0.01065	0.01261	0.01209	0.01294	0.01046
AI27	0.01041	0.01005	0.01201	0.01205	0.01254	0.01040
5120	1 00000	1 00000	1 00000	1 00000	1 00000	1 00000
D21	0.00206	0.00246	0.00224	0.00251	0.00222	0.00240
F31	0.00200	0.00240	0.00224	0.00231	0.00223	0.00240
K39 C=40	0.00789	0.00651	0.00004	0.00017	0.00572	0.01257
Ca40	0.02970	0.01777	0.01964	0.05554	0.01908	0.07145
5045	0.08293	0.05876	0.04909	0.00485	0.05496	0.05080
1148	0.00319	0.00263	0.00315	0.00599	0.00294	0.01194
Ti49	0.00022	0.00020	0.00022	0.00044	0.00021	0.00092
Fe56	0.00062	0.00071	0.00071	0.00211	0.00065	0.00847
Y89	0.38408	0.43852	0.33920	0.53113	0.41033	0.44109
Nb93	0.00135	0.00145	0.00108	0.00257	0.00144	0.00332
Zr94H	0.00664	0.00601	0.00625	0.00643	0.00601	0.00513
Zr96	2.49553	2.36754	2.42448	2.40107	2.37931	2.37393
La139	0.00000	0.00001	0.00000	0.00067	0.00000	0.00230
Ce140	0.01039	0.01520	0.01184	0.03475	0.01421	0.05254
Nd146	0.00006	0.00006	0.00005	0.00064	0.00007	0.00216
Sm147	0.00011	0.00013	0.00015	0.00037	0.00013	0.00085
Eu153	0.00010	0.00007	0.00011	0.00032	0.00010	0.00077
Gd155	0.00040	0.00040	0.00036	0.00059	0.00041	0.00085
Ho165	0.00565	0.00617	0.00519	0.00753	0.00592	0.00652
TbO175	0.00085	0.00087	0.00092	0.00115	0.00097	0.00130
DvO179	0.00238	0.00259	0.00231	0.00318	0.00267	0.00300
ErO182	0.00631	0.00677	0.00526	0.00825	0.00642	0.00647
TmO185	0.00377	0.00394	0.00318	0.00513	0.00399	0.00378
YbO188	0.00545	0.00614	0.00442	0.00717	0.00568	0.00582
LuO191	0.00657	0.00693	0.00518	0.00837	0.00635	0.00642
7r20	0.01853	0.01649	0.01630	0.01696	0.01734	0.01624
Hf0196	0.19321	0.20619	0 19917	0.21125	0 20995	0.20864
Ph206	0.00003	0.20015	0.00003	0.00005	0.20005	0.00004
207/206	0.00005	0.56229	0.00003	0.00005	0.00005	0.00004
207/200 Th0249	0.47019	0.00006	0.00025	0.00000	0.20310	0.71429
110246	0.01792	0.05290	0.02925	0.00200	0.04790	0.00090
00254	38394.43	38394.45	38394.47	38394.49	38394.55	38394.52
200 /200 4	27.75	22.54	24.02	24.25	20 77	10.52
206/238 Age	27.75	23.51	31.03	24.35	29.77	18.62
Li ppm Est	0.01	0.00	0.00	0.01	0.00	0.01
Be9 ppm	24.78	23.94	16.01	26.58	18.40	18.52
B11 ppm	0.09	0.20	0.09	0.44	0.10	1.02
F19 ppm	20.80	22.12	18.20	19.06	8.76	32.80
Na ppm Est.	3.88	2.52	2.98	2.86	3.06	2.48
Al27 ppm Est. Si30	14.72	17.09	15.60	27.91	15.76	52.98
P31 ppm	175.58	209.08	190.68	213.43	189.88	204.46
K39 Rel.	1.36	1.43	1.15	1.06	0.64	2.17
Ca40 nnm Est	3.88	2.32	2.59	4.35	2.49	9.32
Sc45 nnm	72 95	51 69	43 18	57.05	48 34	49.96
48/49	14 47	12 90	14 23	13 56	13 97	13.00
Ti48 nnm	14.47 0 10	7 57	9 NA	17 21	2.57 8 / C	2/ 22
Ti/l0 nom	2.10 2.10	7.57	9.00 Q /A	16 27	0.45 Q N/	25 10
EoS6 nom	0.45	1.00	1 04	2 00	0.04	17 26
	0.91	1.04 1024 OF	1.04 200 E 4	3.00 1252 51	0.33	1041 02
102 ppm	300.47	1054.95	10.00	1203.01	908.41	1041.0Z
точи в-	13./3	14./5	10.96	20.09	14.01	33./5
2194H Kel.	0.05	0.59	0.01	0.03	0.58	0.50
2190/5130 ppm	2.50	2.37	2.42	2.40	2.38	2.37

	WSWPST2A_1.1E	WSWPST2A_2.2E	WSWPST2A_3.3E	WSWPST2A_4.3E	WSWPST2A_5.2E	WSWPST2A_6.2E
La139 ppm	0.02	0.05	0.02	4.45	0.02	15.41
Ce140 ppm	75.28	110.15	85.80	251.90	102.99	380.84
Nd146 ppm	0.76	0.80	0.73	8.83	1.01	29.97
Sm147 ppm	1.56	1.78	2.01	5.14	1.72	11.66
Eu153 ppm	0.47	0.33	0.51	1.56	0.47	3.71
Gd155 ppm	16.35	16.51	14.62	24.04	16.56	34.62
Ho165 ppm	31.88	34.82	29.29	42.50	33.45	36.80
TbO175 ppm	5.67	5.82	6.13	7.67	6.47	8.67
DyO179 ppm	70.40	76.50	68.27	94.07	79.07	88.85
ErO182 ppm	168.01	180.35	140.09	219.76	170.95	172.16
TmO185 ppm	39.28	41.05	33.11	53.41	41.51	39.40
YbO188 ppm	334.82	377.04	271.36	440.00	348.80	357.53
LuO191 ppm	66.52	70.15	52.40	84.71	64.26	64.99
Zr96/Zr2O	134.70	143.53	148.76	141.61	137.21	146.20
196/Si30	53.98	60.63	61.36	58.98	57.67	61.59
Hf ppm	11216.23	11969.42	11561.83	12263.38	12187.66	12111.50
Pb7/6 Est	0.48	0.56	0.36	0.00	0.26	0.71
Th ppm	181.72	536.90	296.51	635.20	486.22	617.38
U ppm	183.77	361.71	217.37	395.08	332.99	391.63
Y/Nb	66.03	70.18	73.07	48.05	66.28	30.85
Th/U	0.99	1.48	1.36	1.61	1.46	1.58
Yb/Gd	20.47	22.84	18.56	18.31	21.06	10.33
U/Yb	0.55	0.96	0.80	0.90	0.95	1.10
Th/Yb	0.54	1.42	1.09	1.44	1.39	1.73
Ce/Sm	48.33	62.04	42.64	49.02	59.91	32.66
Ce/Lu	1.13	1.57	1.64	2.97	1.60	5.86
U/Ce	2.44	3.28	2.53	1.57	3.23	1.03
Th/Ce	2.41	4.87	3.46	2.52	4.72	1.62
Y/Yb	2.71	2.74	2.95	2.85	2.78	2.91
Yb/Nd	438.11	473.41	372.01	49.81	346.40	11.93
Y/Nb	66.03	70.18	73.07	48.05	66.28	30.85
Yb/Nb	24.39	25.57	24.77	16.86	23.87	10.59
Yb/Sc	4.59	7.29	6.28	7.71	7.21	7.16
Yb/Dy	4.76	4.93	3.97	4.68	4.41	4.02
Dv/Sm	45.20	43.08	33.93	18.31	45.99	7.62
Yb/Nd	438.11	473.41	372.01	49.81	346.40	11.93
Sm/Nd	2.04	2.23	2.76	0.58	1.71	0.39
U/Li	24173.56	72362.52	86481.67	38365.83	81545.49	32024.50
Estimated temperature						
Temp Ti48	729.57	713.24	728.40	786.60	722.43	857.32
Temp Ti49	722.29	715.73	722.55	784.68	718.22	859.74
Hfppm	11216.23	11969.42	11561.83	12263.38	12187.66	12111.50
Ferry Temp	763.69	756.16	763.99	835.79	759.02	923.77
Act Ti	0.70	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00	1.00
Temp. Fst.	753.44	746.46	753.72	819.93	749.12	900.27
10mp. 250	, 55.77	7-10.40	, 33.72	010.00	7-13.12	555.27

chondrite normalized REE (Anders & Grevesse (1989) (in						
parentheses) * 1.3596						
Korotev Wed Site						
Wash. U)						
La Ch (0.319)	0.07	0.17	0.08	13.96	0.06	48.30
Ce Ch (0.82)	91.80	134.33	104.64	307.19	125.60	464.44
Pr Ch (0.121)	0.47	0.66	0.48	14.23	0.53	48.59
Nd Ch (0.615)	1.24	1.29	1.19	14.36	1.64	48.73
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	7.79	8.88	10.06	25.69	8.60	58.30
Eu Ch (0.076)	6.20	4.29	6.73	20.56	6.16	48.77
Gd Ch (0.267)	61.25	61.82	54.76	90.02	62.04	129.66
Tb Ch (0.0493)	115.03	118.03	124.29	155.48	131.29	175.90
Dy Ch (0.33)	213.34	231.82	206.89	285.07	239.60	269.25
Ho Ch (0.0755)	422.25	461.21	387.91	562.94	443.02	487.41
Er Ch (0.216)	777.80	834.97	648.56	1017.41	791.42	797.04
Tm Ch (0.0329)	1194.03	1247.68	1006.27	1623.42	1261.56	1197.46
Yb Ch (0.221)	1515.03	1706.05	1227.86	1990.93	1578.30	1617.78
Lu Ch (0.033)	2015.72	2125.67	1587.91	2566.83	1947.30	1969.50
Ce/Ce*	525.85	405.13	542.04	21.80	726.04	9.59
Hf ppm	11216.23	11969.42	11561.83	12263.38	12187.66	12111.50
Eu/Eu*	0.28	0.18	0.29	0.43	0.27	0.56
P Molar	5.67	6.75	6.16	6.89	6.13	6.60
3+ Molar	13.95	10.27	87.28	105.55	18.79	15.27
3+/P Molar	1.83	1.24	3.97	2.81	2.36	2.54

WSWPST2A_1.1E WSWPST2A_2.2E WSWPST2A_3.3E WSWPST2A_4.3E WSWPST2A_5.2E WSWPST2A_6.2E

	WSWPST2A_7.3E	WSWPST2A_9.1E	WSWPST2A_10.2E	WSWPST2A_12.1E	WSWPST2A_12.2E	WSWPST2A_13.3E
Element	_	_	_	_	_	_
Li7	0.00000	0.00001	0.00002	0.00002	0.00001	0.00000
Be9	0.00183	0.00280	0.08972	0.00195	0.00082	0.01103
B11	0.00000	0.00001	0.00003	0.00003	0.00001	0.00001
F19	0.00018	0.00017	0.00036	0.00014	0.00014	0.00013
Na23	0.01022	0.01138	0.02289	0.01683	0.01170	0.01146
Al27	0.02221	0.02775	0.02736	0.04407	0.02487	0.02410
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00484	0.00277	0.00800	0.00231	0.00223	0.00223
K39	0.00356	0.00418	0.00557	0.01625	0.00395	0.00378
Ca40	0.02115	0.04217	0.03667	0.02655	0.01581	0.02209
Sc45	0.07225	0.04168	0.04353	0.04069	0.04202	0.10225
Ti48	0.00273	0.00632	0.00374	0.00644	0.01099	0.00341
Ti49	0.00018	0.00032	0.00074	0.00047	0.00083	0.000341
Fe56	0.00010	0.00044	0.00020	0.00047	0.00003	0.00025
1650	0.00007	0.00210	2 11000	0.00474	0.100107	0.00005
103 Nh02	0.00125	0.33713	2.44000	0.29348	0.10915	0.43200
7-0411	0.00135	0.00078	0.00554	0.00074	0.00025	0.00150
Zr94H	0.00050	0.00633	0.00689	0.00581	0.00571	0.00589
2196	2.42287	2.43292	2.39237	2.42212	2.40104	2.38402
La139	0.00001	0.00015	0.00005	0.00017	0.00000	0.00001
Ce140	0.00928	0.00001	0.00001	0.00000	0.00000	0.00000
Nd146	0.00004	0.00000	0.00000	0.00000	0.00000	0.00000
Sm147	0.00009	0.00026	0.00141	0.00020	0.00014	0.00014
Eu153	0.00010	0.00018	0.00045	0.00019	0.00014	0.00011
Gd155	0.00032	0.00000	0.00000	0.00000	0.00000	0.00000
Ho165	0.00565	0.00591	0.04245	0.00471	0.00312	0.00659
TbO175	0.00083	0.00120	0.00869	0.00088	0.00062	0.00102
DyO179	0.00242	0.00294	0.02155	0.00213	0.00162	0.00281
ErO182	0.00654	0.00560	0.03644	0.00438	0.00286	0.00772
TmO185	0.00392	0.00314	0.01751	0.00242	0.00160	0.00462
YbO188	0.00603	0.00419	0.02117	0.00345	0.00210	0.00719
LuO191	0.00663	0.00440	0.01891	0.00373	0.00238	0.00862
Zr2O	0.01807	0.01813	0.01740	0.01699	0.01728	0.01749
HfO196	0.20346	0.18938	0.17761	0.18751	0.16841	0.19201
Pb206	0.00003	0.00003	0.00005	0.00002	0.00001	0.00003
207/206	0.76923	0.47619	0.42254	0.00000	2.85714	0.55556
ThO248	0.02295	0.02182	0.09855	0.01838	0.00785	0.02751
UO254	0.02389	0.01778	0.04997	0.01518	0.00560	0.02602
	38394.55	38394.57	38394.62	38394.65	38394.66	38394.68
206/238 Age	22.31	31.78	19.14	32.88	51.30	26.94
Li ppm Est	0.00	0.01	0.01	0.01	0.01	0.00
Be9 ppm	5.72	8.73	279.74	6.07	2.55	34.40
B11 ppm	0.03	0.12	0.27	0.25	0.13	0.12
F19 ppm	24.06	21.93	46.55	18.77	18.27	17.34
Na ppm Est.	2.42	2.70	5.42	3.98	2.77	2.71
Al27 ppm Est.	14.78	18 47	18.21	29.33	16.56	16.04
Si30						
P31 nnm	411 92	236 19	681 47	196 84	190.23	189 72
K39 Rel	0.61	0.72	0.96	2 81	0.68	0.65
Call nnm Est	2.76	5 50	1 78	3.46	2.06	2.05
Sc45 nnm	63 56	36.66	38.20	35.40	36.97	89.95
78/70	15.30	1/ //	12 74	12 50	12 20	14 77
40/43 Ti/8	10.01 7 OC	19 17	10.74	18 52	21 50	14.72
Ti40 ppm	1.00	16.17	10.70	10.33	21.23	J.0U
1149 ppm	0.82	10./3	1 10	10.13	51.00	0.03
reso ppm	0.97	3.14	1.10	0.91	1.50	0.94
189 ppm	924.85	842.85	5777.69	697.36	446.37	1066.76
ND93 ppm	13.75	7.68	33.98	7.50	2.54	15.82
Zr94H Kel.	0.64	0.62	0.67	0.57	0.56	0.57
Zr96/Si30 ppm	2.42	2.43	2.39	2.42	2.40	2.38

Table C2, cont	-
----------------	---

	WSWPST2A_7.3E	WSWPST2A_9.1E	WSWPST2A_10.2E	WSWPST2A_12.1E	WSWPST2A_12.2E	WSWPST2A_13.
La139 ppm	0.04	0.97	0.36	1.16	0.01	0.05
Ce140 ppm	67.24					
Nd146 ppm	0.49					
Sm147 ppm	1.30	3.60	19.39	2.75	1.94	1.88
Eu153 ppm	0.48	0.85	2.19	0.92	0.66	0.53
Gd155 ppm	13.23					
Ho165 ppm	31.88	33.39	239.66	26.62	17.64	37.21
TbO175 ppm	5.54	8.05	58.02	5.86	4.16	6.80
DvO179 ppm	71.57	86.85	637.64	63.08	47.94	83.20
ErO182 ppm	174.06	149.07	970.41	116.52	76.28	205.65
TmO185 ppm	40.79	32.70	182.30	25.21	16.68	48.14
YbO188 ppm	370.07	256.95	1299.81	211.99	129.13	441.58
LuO191 ppm	67.12	44.53	191.35	37.76	24.06	87.22
Zr96/Zr20	134.08	134.20	137.46	142.56	138.98	136.34
196/Si30	55.34	55.16	57.46	58.86	57.88	57.19
Hfppm	11811.12	10993.76	10310.22	10884.87	9776.30	11146.30
Pb7/6 Fst	0.77	0.48	0.42	0.00	2.86	0.56
Thoom	232.70	221.18	999.13	186.38	79.56	278.90
linnm	231.86	172 58	484.96	147 30	54 31	252.46
• PP	201100	1/2100	10 1100	111.00	01101	202110
Y/Nb	67.26	109.80	170.03	93.04	175.85	67.45
Th/U	1.00	1.28	2.06	1.27	1.47	1.10
Yb/Gd	27.98					
U/Yb	0.63	0.67	0.37	0.69	0.42	0.57
Th/Yb	0.63	0.86	0.77	0.88	0.62	0.63
Ce/Sm	51.90	0.00	0.00	0.00	0.00	0.00
Ce/Lu	1.00	0.00	0.00	0.00	0.00	0.00
U/Ce	3.45					
Th/Ce	3.46					
Y/Yb	2.50	3.28	4.45	3.29	3.46	2.42
Yb/Nd	757.80					
Y/Nb	67.26	109.80	170.03	93.04	175.85	67.45
Yb/Nb	26.91	33.47	38.25	28.28	50.87	27.92
Yb/Sc	5.82	7.01	33.95	5.92	3.49	4.91
Yb/Dv	5.17	2.96	2.04	3.36	2.69	5.31
Dv/Sm	55.24	24.16	32.89	22.96	24.76	44.20
Yh/Nd	757.80	21120	52.05	22.00	2	11120
Sm/Nd	2 65					
11/11	167507.88	21109 59	39/89 /6	1/12/08/68	9806 71	192099.26
0/11	107307.00	21105.55	33-63.40	14200.00	5666.71	152055.20
timated temperature						
Temp Ti48	716.30	791.84	743.34	793.73	848.31	735.17
Temp Ti49	704.61	783.89	743.70	791.61	848.33	726.35
Hfppm	11811.12	10993.76	10310.22	10884.87	9776.30	11146.30
Ferry Temp	743.43	834.86	788.32	843.85	910.31	768.36
Act Ti	0.70	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00	1.00
Temn Est	734.65	819 08	776 23	827 33	888.03	757.76

chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)						
La Ch (0 319)	0.13	3.05	1 11	3 63	0.04	0.16
$C_{\rm e}$ Ch (0.82)	82.00	5.05	1.11	5.05	0.04	0.10
Pr Ch (0.121)	0.43					
Nd Ch (0.615)	0.45					
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	6.48	17.98	96.94	13.74	9.68	9.41
Eu Ch (0.076)	6.34	11.20	28.82	12.13	8.64	6.97
Gd Ch (0.267)	49.53	11120	20102	12:10		0107
Tb Ch (0.0493)	112.28	163.22	1176.92	118.94	84.30	137.86
Dv Ch (0.33)	216.88	263.18	1932.24	191.14	145.26	252.11
Ho Ch (0.0755)	422.25	442.22	3174.30	352.55	233.58	492.86
Er Ch (0.216)	805.85	690.14	4492.63	539.46	353.14	952.06
Tm Ch (0.0329)	1239.79	993.93	5540.90	766.24	507.11	1463.08
Yb Ch (0.221)	1674.52	1162.68	5881.50	959.23	584.30	1998.12
Lu Ch (0.033)	2034.00	1349.53	5798.60	1144.22	728.95	2642.98
Ce/Ce*	347.45					
Hfppm	11811.12	10993.76	10310.22	10884.87	9776.30	11146.30
Eu/Eu*	0.35					
P Molar	13.30	7.63	22.00	6.36	6.14	6.13
3+ Molar	11.55	7.73	30.34	14.13	19.37	25.93
3+/P Molar	1.82	1.26	2.18	1.08	3.16	2.27

WSWPST2A_7.3E WSWPST2A_9.1E WSWPST2A_10.2E WSWPST2A_12.1E WSWPST2A_12.2E WSWPST2A_13.3E

120

Table C2, cont.

	WSWPST2A_14.3E	WSWPST2A_14.2E
Element		
Li7	0.00000	0.00001
Be9	0.00460	0.00474
B11	0.00001	0.00001
F19	0.00018	0.00018
Na23	0.00263	0.01267
Al27	0.00684	0.02286
Si30	1.00000	1.00000
P31	0.00119	0.00196
К39	0.00170	0.00384
Ca40	0.00491	0.01665
Sc45	0.06088	0.06013
Ti48	0.00298	0.00373
Ti49	0.00023	0.00025
Fe56	0.00040	0.00063
Y89	0.27688	0.31546
Nb93	0.00075	0.00083
Zr94H	0.01057	0.00561
Zr96	2.51904	2.39725
La139	0.00006	0.00000
Ce140	0.00001	0.00000
Nd146	0.00000	0.00000
Sm147	0.00013	0.00015
Eu153	0.00009	0.00015
Gd155	0.00000	0.00000
Ho165	0.00421	0.00478
TbO175	0.00066	0.00082
Dv0179	0.00186	0.00224
ErO182	0.00444	0.00530
TmO185	0.00277	0.00317
YbO188	0.00416	0.00467
LuO191	0.00488	0.00513
Zr2O	0.02277	0.01815
HfO196	0.21299	0.20021
Pb206	0.00001	0.00004
207/206	0.00000	0.19608
ThO248	0.01418	0.03372
UO254	0.01380	0.02570
	38394.71	38394.71
206/228 400	10.69	27.80
Linnm Est	0.00	0.00
Beg nnm	1/1 3/1	14 77
B11 nnm	0.05	0.09
F19 nnm	23 /3	23 37
Na nnm Est	0.62	3.00
Al27 nnm Est	4 55	15 22
Si30	4.55	13.22
P31 nnm	101 23	166 96
K39 Rel.	0.29	0.66
Ca40 ppm Est	0.64	2.17
Sc45 nnm	53 56	52.90
48/49	12.83	14.67
Ti48 nnm	8 57	10.72
Ti49 nnm	8 88	9,71
Fe56 nnm	0.58	0.91
Y89 nnm	653 47	744 51
Nh93 nnm	7 60	8.47
7r94H Rol	1 03	0.55
21341 Nel.	1.05	2 10
2130/3120 hhim	2.32	2.40

Table C2, cont.

	WSWPST2A_14.3E	WSWPST2A_14.2E
La139 ppm	0.41	0.00
Ce140 ppm	0.11	0.00
Nd146 npm		
Sm147 nnm	1 77	2 01
Eu153 nnm	0.43	0.71
Gd155 ppm	0.45	0.71
Ho165 npm	22 76	26.08
ThO175 npm	25.70	20.30 E 47
Dv0179 ppm	4.44	5.47
ErO192 nnm	119.26	141.04
	110.20	141.04
VhO188 mm	20.00	32.99
	255.57	280.81
	49.41	51.93
2196/2120	110.64	132.07
196/5130	43.92	55.09
HT ppm	12364.26	11622.06
Pb7/6 Est	0.00	0.20
Th ppm	143.80	341.90
U ppm	133.87	249.41
Y/Nb	85.95	87.90
Th/U	1.07	1.37
Yb/Gd		
U/Yb	0.52	0.87
Th/Yb	0.56	1.19
Ce/Sm	0.00	0.00
Ce/Lu	0.00	0.00
U/Ce		
Th/Ce		
Y/Yb	2.56	2.60
Yb/Nd		
Y/Nb	85.95	87.90
Yb/Nb	33.61	33.86
Yh/Sc	4 77	5 42
Yh/Dy	4 64	4 34
Dv/Sm	31 12	32.96
Yh/Nd	51.12	52.50
Sm/Nd		
11/11	82763 12	58406 51
0/1	02703.12	50400.51
Estimated temperature		
Temp Ti48	723.69	743.03
Temp Ti49	726.69	734.42
Hf ppm	12364.26	11622.06
Ferry Temp	768.74	777.63
Act Ti	0.70	0.70
Act Si	1.00	1.00
Temp. Est.	758.12	766.35

WSWPST2A_14.3E WSWPST2A_14.2E

chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)		
La Ch (0.319)	1.27	0.01
Ce Ch (0.82)		
Pr Ch (0.121)		
Nd Ch (0.615)		
Pm	0.00	0.00
Sm Ch (0.2)	8.85	10.03
Eu Ch (0.076)	5.72	9.40
Gd Ch (0.267)		
Tb Ch (0.0493)	90.05	111.04
Dy Ch (0.33)	166.86	200.42
Ho Ch (0.0755)	314.67	357.39
Er Ch (0.216)	547.51	652.97
Tm Ch (0.0329)	877.72	1002.86
Yb Ch (0.221)	1156.41	1297.79
Lu Ch (0.033)	1497.17	1573.55
Ce/Ce*		
Hf ppm	12364.26	11622.06
Eu/Eu*		
P Molar	3.27	5.39
3+ Molar	11.71	13.17
3+/P Molar	3.58	2.44

	WSWPST2B_1.1C	WSWPST2B_2.1C	WSWPST2B_3.1C	WSWPST2B_4.1C	WSWPST2B_5.1C	WSWPST2B_6.1C
Element						
	0.00001	0.00000	0.00000	0.00000	0.00000	0.00000
LI/	0.00001	0.00000	0.00000	0.00002	0.00000	0.00000
B69	0.00047	0.01025	0.00515	0.07296	0.01130	0.03112
B11	0.00001	0.00002	0.00001	0.00002	0.00000	0.00001
F19	0.00015	0.00022	0.00012	0.00021	0.00023	0.00023
Na23	0.01117	0.01129	0.00913	0.01133	0.01034	0.01530
AI27	0.02439	0.02726	0.02561	0.02023	0.02211	0.02498
\$130	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00193	0.00341	0.00408	0.01259	0.00222	0.00945
к39	0.00588	0.00381	0.00369	0.00368	0.00341	0.00470
Ca40	0.01967	0.01918	0.02698	0.02231	0.01656	0.02005
Sc45	0.03620	0.05968	0.06493	0.13150	0.08335	0.06980
T148	0.00481	0.00514	0.00836	0.01257	0.00393	0.00543
Ti49	0.00036	0.00036	0.00065	0.00087	0.00028	0.00042
Fe56	0.00181	0.00088	0.00057	0.00064	0.00063	0.00091
Y89	0.15401	0.59530	0.48617	2.62691	0.47421	1.46289
Nb93	0.00033	0.00159	0.00062	0.00540	0.00111	0.00317
Zr94H	0.00756	0.00787	0.00745	0.00641	0.00731	0.00732
Zr96	2.42293	2.49683	2.49563	2.42907	2.40263	2.40526
La139	0.00000	0.00001	0.00001	0.00002	0.00002	0.00001
Ce140	0.00220	0.01891	0.01165	0.07487	0.01226	0.03376
Nd146	0.00003	0.00012	0.00016	0.00091	0.00014	0.00029
Sm147	0.00007	0.00033	0.00036	0.00257	0.00022	0.00083
Eu153	0.00003	0.00023	0.00035	0.00127	0.00019	0.00051
Gd155	0.00020	0.00090	0.00099	0.00696	0.00061	0.00266
Ho165	0.00261	0.00970	0.00885	0.05066	0.00723	0.02556
TbO175	0.00041	0.00194	0.00203	0.01341	0.00126	0.00541
DyO179	0.00120	0.00469	0.00455	0.02877	0.00327	0.01275
ErO182	0.00261	0.00894	0.00773	0.03887	0.00775	0.02134
TmO185	0.00154	0.00450	0.00375	0.01703	0.00472	0.01018
YbO188	0.00222	0.00611	0.00505	0.02037	0.00693	0.01277
LuO191	0.00232	0.00657	0.00482	0.01911	0.00815	0.01225
Zr2O	0.01749	0.01830	0.01846	0.01757	0.01872	0.01738
HfO196	0.19265	0.18549	0.15653	0.14379	0.18671	0.15943
Pb206	0.00103	0.00005	0.00001	0.00005	0.00002	0.00006
207/206	0.16346	0.53333	1.25000	0.00000	0.55556	0.00000
ThO248	0.00490	0.05266	0.00940	0.13821	0.02757	0.06885
UO254	0.01198	0.02697	0.00662	0.05283	0.02333	0.04200
	38394.18	38394.19	38394.21	38394.25	38394.23	38394.26
206/238 Age	1718 74	34 97	31.66	19 58	19 79	26.92
Li nom Est	0.01	0.00	0.00	0.01	0.00	0.00
Be9 ppm	1.48	31.96	16.06	227.48	35.22	97.04
B11 ppm	0.08	0.20	0.07	0.22	0.01	0.14
F19 ppm	19.98	28.28	15.38	27.40	30.10	30.64
Na ppm Est.	2.65	2.67	2.16	2.68	2.45	3.62
Al27 ppm Est.	16.24	18.15	17.05	13.47	14.72	16.63
Si30						
P31 ppm	164.37	290.25	347.65	1071.70	189.01	804.73
K39 Rel.	1.01	0.66	0.64	0.64	0.59	0.81
Ca40 ppm Est.	2.57	2.50	3.52	2.91	2.16	2.62
Sc45 ppm	31.84	52.50	57.12	115.68	73.32	61.40
48/49	13.38	14.15	12.78	14.53	14.28	12.99
Ti48 ppm	13.82	14.78	24.04	36.14	11.31	15.62
Ti49 ppm	13.73	13.88	25.00	33.07	10.52	15.99
Fe56 ppm	2.63	1.29	0.83	0.94	0.91	1.33
Y89 ppm	363.49	1404.95	1147.41	6199.74	1119.17	3452.55
Nb93 ppm	3.31	16.13	6.35	54.90	11.24	32.23
Zr94H Rel.	0.74	0.77	0.73	0.62	0.71	0.71
r96/Si30 ppm	2.42	2.50	2.50	2.43	2.40	2.41

Table C3. SHRIMP-RG trace element analyses of zircon grains from WSW2B.

Tal	hle	C3	cor	۱t
ıa		· UU,	COI	π.

	WSWPST2B_1.1C	WSWPST2B_2.1C	WSWPST2B_3.1C	WSWPST2B_4.1C	WSWPST2B_5.1C	WSWPST2B_6.1C
La139 ppm	0.01	0.05	0.10	0.11	0.12	0.08
Ce140 ppm	15.96	137.06	84.46	542.65	88.83	244.68
Pr ppm	0.42	1.64	2.20	12.56	1.97	4.06
Nd146 ppm	0.92	4.48	4.97	35.33	3.06	11.37
Sm147 ppm	0.14	1.12	1.71	6.10	0.90	2.44
Eu153 ppm	8.12	36.84	40.48	284.43	24.82	108.69
Gd155 ppm	14.72	54.79	49.97	286.00	40.84	144.33
Ho165 ppm	2.71	12.93	13.58	89.58	8.44	36.16
TbO175 ppm	35.38	138.83	134.72	851.33	96.87	377.31
DyO179 ppm	69.49	237.97	205.77	1035.09	206.46	568.15
ErO182 ppm	15.99	46.81	39.07	177.32	49.15	105.94
TmO185 ppm	136.22	375.30	310.18	1250.53	425.31	784.20
YbO188 ppm	23.45	66.45	48.77	193.38	82.49	123.99
LuO191 ppm	138.53	136.44	135.17	138.25	128.31	138.41
Zr96/Zr2O	57.18	54.64	54.16	56.91	53.40	57.55
196/Si30	11183.72	10767.70	9086.42	8347.39	10838.42	9255.05
Hfppm	0.16	0.53	1.25	0.00	0.56	0.00
Pb7/6 Est	49.66	533.87	95.33	1401.22	279.47	697.98
Thppm	116.24	261.70	64.27	512.68	226.36	407.58
U ppm						
Y/Nb	109.93	87.11	180.75	112.92	99.61	107.12
Th/U	0.43	2.04	1.48	2.73	1.23	1.71
Yb/Gd	16.78	10.19	7.66	4.40	17.14	7.22
U/Yb	0.85	0.70	0.21	0.41	0.53	0.52
Th/Yb	0.36	1.42	0.31	1.12	0.66	0.89
Ce/Sm	17.36	30.60	17.00	15.36	29.02	21.51
Ce/Lu	0.68	2.06	1.73	2.81	1.08	1.97
U/Ce	7.28	1.91	0.76	0.94	2.55	1.67
Th/Ce	3.11	3.90	1.13	2.58	3.15	2.85
Y/Yb	2.67	3.74	3.70	4.96	2.63	4.40
Yb/Nd	327.82	229.21	140.68	99.53	216.35	193.36
Y/Nb	109.93	87.11	180.75	112.92	99.61	107.12
Yb/Nb	41.20	23.27	48.86	22.78	37.85	24.33
Yb/Sc	4.28	7.15	5.43	10.81	5.80	12.77
Yb/Dy	3.85	2.70	2.30	1.47	4.39	2.08
Dy/Sm	38.47	30.99	27.12	24.10	31.65	33.17
Yb/Nd	327.82	229.21	140.68	99.53	216.35	193.36
Sm/Nd	2.21	2.74	2.25	2.81	1.56	2.80
U/Li	19102.49	205540.95	24215.35	43495.17	87144.21	
Estimated temperature						
Temp Ti48	765.94	772.18	819.68	862.95	747.78	777.40
Temp Ti49	765.35	766.38	823.70	853.24	741.41	779.58
Hf ppm	11183.72	10767.70	9086.42	8347.39	10838.42	9255.05
Ferry Temp	813.35	814.55	881.35	916.09	785.69	829.86
Act Ti	0.70	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00	1.00
Temp. Est.	799.30	800.40	861.64	893.29	773.79	814.49

chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)						
La Ch (0.319)	0.03	0.14	0.30	0.35	0.36	0.25
Ce Ch (0.82)	19.47	167.15	103.00	661.77	108.33	298.39
Pr Ch (0.121)	0.23	1.01	1.57	5.28	1.55	2.22
Nd Ch (0.615)	0.68	2.66	3.59	20.43	3.20	6.59
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	4.60	22.40	24.84	176.64	15.31	56.87
Eu Ch (0.076)	1.90	14.70	22.50	80.32	11.82	32.12
Gd Ch (0.267)	30.41	137.96	151.62	1065.27	92.95	407.07
Tb Ch (0.0493)	55.04	262.30	275.45	1817.10	171.16	733.38
Dy Ch (0.33)	107.21	420.71	408.23	2579.78	293.55	1143.35
Ho Ch (0.0755)	194.96	725.71	661.80	3788.07	540.99	1911.59
Er Ch (0.216)	321.70	1101.72	952.66	4792.09	955.83	2630.33
Tm Ch (0.0329)	486.06	1422.87	1187.52	5389.56	1493.90	3220.03
Yb Ch (0.221)	616.38	1698.19	1403.52	5658.52	1924.46	3548.40
Lu Ch (0.033)	710.59	2013.53	1477.97	5859.94	2499.72	3757.17
Ce/Ce*	258.51	437.65	149.66	485.85	144.74	398.35
Hf ppm	11183.72	10767.70	9086.42	8347.39	10838.42	9255.05
Eu/Eu*	0.16	0.26	0.37	0.19	0.31	0.21
P Molar	5.31	9.37	11.23	34.60	6.10	25.98
3+ Molar	6.73	12.34	23.75	11.39	14.09	19.85
3+/P Molar	1.27	1.37	2.53	1.48	1.57	1.77

WSWPST2B_1.1C WSWPST2B_2.1C WSWPST2B_3.1C WSWPST2B_4.1C WSWPST2B_5.1C WSWPST2B_6.1C

	WSWPST2B_7.1C	WSWPST2B_8.1C	WSWPST2B_9.1C	WSWPST2B_10.1C	WSWPST2B_11.1C	WSWPST2B_12.1C
Element	_	_	_	_	_	_
Li7	0.00003	0.00001	0.00001	0.00000	0.00004	0.00003
Be9	0.09027	0.05619	0.07404	0.04753	0.04075	0.00726
B11	0.00001	0.00001	0.00001	0.00001	0.00002	0.00006
F19	0.00029	0.00024	0.00024	0.00024	0.00029	0.00014
Na23	0.01499	0.01097	0.01071	0.01200	0.01398	0.01499
Al27	0.02865	0.02413	0.02351	0.01977	0.02621	0.02617
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.01306	0.00635	0.00753	0.01033	0.00525	0.00270
К39	0.01589	0.00370	0.00355	0.00326	0.00481	0.00790
Ca40	0.01581	0.01731	0.02219	0.01781	0.02107	0.01955
Sc45	0.07123	0.04061	0.12134	0.06365	0.10075	0.05716
Ti48	0.00543	0.00704	0.01188	0.00694	0.00829	0.00513
Ti49	0.00043	0.00051	0.00094	0.00051	0.00058	0.00038
Fe56	0.00314	0.00071	0.00059	0.00070	0.00096	0.00230
Y89	3.08054	1.79757	1.99885	2.01421	1.30327	0.47683
Nb93	0.00664	0.00107	0.00097	0.00702	0.00106	0.00119
Zr94H	0.00686	0.00630	0.00674	0.00663	0.00684	0.00639
Zr96	2.38995	2.46046	2.39153	2.39935	2.45194	2.41761
La139	0.00002	0.00001	0.00007	0.00001	0.00003	0.00049
Ce140	0.06041	0.02631	0.04815	0.05069	0.03403	0.01274
Nd146	0.00069	0.00084	0.00183	0.00032	0.00101	0.00013
Sm147	0.00182	0.00192	0.00330	0.00112	0.00187	0.00026
Eu153	0.00054	0.00114	0.00340	0.00035	0.00165	0.00018
Gd155	0.00561	0.00490	0.00720	0.00371	0.00390	0.00080
Ho165	0.05387	0.03417	0.03811	0.03563	0.02386	0.00815
TbO175	0.01150	0.00930	0.01149	0.00791	0.00713	0.00154
DvO179	0.02677	0.02023	0.02296	0.01936	0.01425	0.00410
ErO182	0.04405	0.02730	0.03185	0.02990	0.02061	0.00819
TmO185	0.02125	0.01239	0.01483	0.01408	0.00973	0.00417
YbO188	0.02531	0.01461	0.01859	0.01647	0.01245	0.00574
LuO191	0.02255	0.01354	0.01870	0.01512	0.01219	0.00609
Zr20	0.01696	0.01890	0.01733	0.01770	0.01949	0.01844
HfO196	0.17351	0.16367	0.14115	0.17166	0.17438	0.18721
Pb206	0.00009	0.00003	0.00003	0.00007	0.00004	0.00003
207/206	0.07299	0.20000	0.21739	0.09009	0.17544	0.44444
ThO248	0.16713	0.04958	0.09273	0.21406	0.06285	0.01685
U0254	0.07763	0.02036	0.02321	0.08393	0.02090	0.01466
	38394.28	38394.30	38394.31	38394.32	38394.34	38394.37
206/238 Age	22.67	33.98	26.01	17.47	39.30	43.05
Li ppm Est	0.02	0.00	0.01	0.00	0.03	0.02
Be9 ppm	281.47	175.19	230.86	148.18	127.06	22.64
B11 ppm	0.14	0.06	0.06	0.07	0.19	0.56
F19 ppm	37.68	32.02	31.23	30.99	37.57	18.74
Na ppm Est.	3.55	2.60	2.53	2.84	3.31	3.55
Al27 ppm Est.	19.07	16.06	15.65	13.16	17.45	17.42
Si30						
P31 ppm	1112.17	540.34	641.02	879.54	446.85	230.14
K39 Rel.	2.74	0.64	0.61	0.56	0.83	1.36
Ca40 ppm Est.	2.06	2.26	2.90	2.32	2.75	2.55
Sc45 ppm	62.65	35.73	106.74	55.99	88.63	50.28
48/49	12.77	13.85	12.63	13.50	14.29	13.37
Ti48 ppm	15.61	20.22	34.14	19.94	23.84	14.75
Ti49 ppm	16.24	19.41	35.94	19.64	22.17	14.66
Fe56 ppm	4.59	1.04	0.86	1.02	1.40	3.35
Y89 ppm	7270.34	4242.43	4717.45	4753.73	3075.84	1125.37
Nb93 ppm	67.52	10.86	9.90	71.33	10.78	12.05
Zr94H Rel.	0.67	0.61	0.66	0.65	0.67	0.62
Zr96/Si30 ppm	2.39	2.46	2.39	2.40	2.45	2.42

Table C3, cont.

	WSWPST2B_7.1C	WSWPST2B_8.1C	WSWPST2B_9.1C	WSWPST2B_10.1C	WSWPST2B_11.1C	WSWPST2B_12.1C
1 a 1 3 9 nnm	0.10	0.09	0.48	0.06	0.22	3 27
Ce140 ppm	437.85	190 71	348 99	367.43	246.63	92 31
Prnnm	9.61	11 64	25 37	4 43	14.05	1 84
Nd146 ppm	25.01	26.43	45.31	15.37	25.67	3.51
Sm147 nnm	2.60	5 50	16.40	1.68	7 93	0.86
Fu153 ppm	229.49	200.34	294.25	151.81	159.63	32.57
Gd155 ppm	304.13	192.93	215.16	201.19	134.71	45.99
Ho165 ppm	76.83	62.13	76.74	52.81	47.62	10.28
TbO175 ppm	791.88	598.48	679.40	572.75	421.62	121.41
DvO179 ppm	1172.89	726.94	848.01	796.13	548.88	217.96
ErO182 ppm	221.23	128.99	154.40	146.58	101.27	43.36
TmO185 ppm	1554.03	897.23	1141.42	1011.41	764.50	352.16
YbO188 ppm	228.11	137.02	189.24	153.02	123.38	61.64
LuO191 ppm	140.91	130.15	138.03	135.57	125.80	131.13
Zr96/Zr20	58.96	52.90	57.72	56.50	51.31	54.24
196/Si30	10072.55	9501.16	8194.00	9965.13	10122.62	10867.87
Hf ppm	0.07	0.20	0.22	0.09	0.18	0.44
Pb7/6 Est	1694.41	502.62	940.08	2170.19	637.14	170.86
Th ppm	753.31	197.60	225.28	814.44	202.83	142.27
U ppm						
Y/Nb	107.67	390.66	476.33	66.64	285.46	93.39
Th/U	2.25	2.54	4.17	2.66	3.14	1.20
Yb/Gd	6.77	4.48	3.88	6.66	4.79	10.81
U/Yb	0.48	0.22	0.20	0.81	0.27	0.40
Th/Yb	1.09	0.56	0.82	2.15	0.83	0.49
Ce/Sm	17.51	7.21	7.70	23.91	9.61	26.32
Ce/Lu	1.92	1.39	1.84	2.40	2.00	1.50
U/Ce	1.72	1.04	0.65	2.22	0.82	1.54
Th/Ce	3.87	2.64	2.69	5.91	2.58	1.85
Y/Yb	4.68	4.73	4.13	4.70	4.02	3.20
Yb/Nd	161.73	77.08	44.99	228.36	54.41	191.11
Y/Nb	107.67	390.66	476.33	66.64	285.46	93.39
Yb/Nb	23.01	82.62	115.25	14.18	70.95	29.22
Yb/Sc	24.80	25.11	10.69	18.06	8.63	7.00
Yb/Dy	1.96	1.50	1.68	1.77	1.81	2.90
Dy/Sm	31.66	22.64	14.99	37.27	16.42	34.61
Yb/Nd	161.73	77.08	44.99	228.36	54.41	191.11
Sm/Nd	2.60	2.27	1.79	3.47	1.83	1.90
U/Li	44542.72	47010.12	28246.26	609006.69	7722.28	9106.19
Estimated temperature						
Temp Ti48	777.30	802.33	856.70	800.95	818.83	772.01
Temp Ti49	781.07	798.30	862.33	799.42	811.47	771.43
Hf ppm	10072.55	9501.16	8194.00	9965.13	10122.62	10867.87
Ferry Temp	831.59	851.65	926.83	852.96	867.04	820.40
Act Ti	0.70	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00	1.00
Temp. Est.	816.07	834.48	903.04	835.68	848.56	805.79

	WSWPST2B_7.1C	WSWPST2B_8.1C	WSWPST2B_9.1C	WSWPST2B_10.1C	WSWPST2B_11.1C	WSWPST2B_12.1C
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)						
La Ch (0.319)	0.32	0.27	1.50	0.19	0.69	10.24
Ce Ch (0.82)	533.97	232.57	425.60	448.09	300.77	112.57
Pr Ch (0.121)	4.29	4.62	13.66	2.16	7.13	4.51
Nd Ch (0.615)	15.62	18.93	41.25	7.20	22.85	3.00
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	125.07	132.17	226.57	76.84	128.35	17.54
Eu Ch (0.076)	34.18	72.38	215.74	22.12	104.37	11.30
Gd Ch (0.267)	859.53	750.33	1102.05	568.56	597.86	121.98
Tb Ch (0.0493)	1558.35	1260.33	1556.52	1071.14	965.93	208.49
Dy Ch (0.33)	2399.65	1813.56	2058.79	1735.61	1277.65	367.91
Ho Ch (0.0755)	4028.20	2555.34	2849.79	2664.79	1784.21	609.13
Er Ch (0.216)	5430.06	3365.45	3925.95	3685.77	2541.10	1009.10
Tm Ch (0.0329)	6724.36	3920.82	4692.94	4455.47	3078.06	1318.02
Yb Ch (0.221)	7031.80	4059.85	5164.82	4576.51	3459.29	1593.47
Lu Ch (0.033)	6912.53	4152.10	5734.43	4636.92	3738.71	1867.97
Ce/Ce*	454.21	206.39	94.15	693.90	135.32	16.56
Hf ppm	10072.55	9501.16	8194.00	9965.13	10122.62	10867.87
Eu/Eu*	0.10	0.23	0.43	0.11	0.38	0.24
P Molar	35.91	17.45	20.70	28.40	14.43	7.43
3+ Molar	20.37	22.40	101.46	37.67	20.41	11.41
3+/P Molar	2.54	2.22	2.93	2.13	3.34	1.50

	WSWPST2B_13.1C	WSWPST2B_11.2I	WSWPST2B_3.2I	WSWPST2B_2.2I	WSWPST2B_6.2I	WSWPST2B_1.2E
Element						
1:7	0.00005	0.00001	0.00000	0.00000	0.00001	0.00000
LI/	0.00005	0.00001	0.00000	0.00000	0.00001	0.00000
Beg	0.03917	0.00270	0.00737	0.00127	0.00415	0.001/1
B11	0.00001	0.00001	0.00001	0.00000	0.00002	0.00001
F19	0.00046	0.00020	0.00017	0.00013	0.00015	0.00014
Na23	0.01424	0.01373	0.00938	0.01133	0.01149	0.00907
Al27	0.02440	0.02356	0.02387	0.02471	0.02082	0.02122
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.01896	0.00242	0.00291	0.00279	0.00235	0.00327
K39	0.00338	0.00441	0.00361	0.00380	0.00339	0.00432
Ca40	0.01652	0.02059	0.02052	0.01870	0.02069	0.01816
Sc45	0.06504	0.03422	0.06246	0.07918	0.04595	0.05972
Ti48	0.00826	0.00511	0.00294	0.01017	0.00395	0.00856
Ti49	0.00062	0.00040	0.00024	0.00078	0.00027	0.00063
Fe56	0.00154	0.00070	0.00055	0.00071	0.00069	0.00092
Y89	4,92907	0.32513	0.48603	0.24983	0.35054	0.28944
Nb93	0.00906	0.00066	0.00170	0.00023	0.00082	0.00029
7r94H	0.00710	0.00714	0.00740	0.00752	0.00685	0.00745
7r96	2 30731	2 40416	2 /0193	2 18796	2 30010	2 38073
10120	0.00002	2.40410	0.00001	0.0000	0.00000	2.30373
La139	0.00003	0.00000	0.00001	0.00000	0.00000	0.00000
Ce140	0.09190	0.01005	0.01724	0.00978	0.01147	0.00913
N0146	0.00153	0.00009	0.00009	0.00016	0.00006	0.00011
Sm147	0.00403	0.00022	0.00017	0.00026	0.00019	0.00028
EU153	0.00131	0.00016	0.00010	0.00036	0.00013	0.00025
Gd155	0.01180	0.00059	0.00041	0.00068	0.00055	0.00064
Ho165	0.09477	0.00564	0.00728	0.00445	0.00575	0.00522
TbO175	0.02439	0.00118	0.00111	0.00115	0.00106	0.00115
DyO179	0.05471	0.00292	0.00319	0.00242	0.00278	0.00278
ErO182	0.07444	0.00527	0.00766	0.00386	0.00560	0.00458
TmO185	0.03242	0.00252	0.00455	0.00185	0.00311	0.00218
YbO188	0.03563	0.00333	0.00676	0.00264	0.00433	0.00289
LuO191	0.02971	0.00349	0.00751	0.00286	0.00445	0.00322
Zr2O	0.01692	0.01865	0.01867	0.01876	0.01777	0.01749
HfO196	0.16043	0.19228	0.20992	0.14836	0.19020	0.15183
Pb206	0.00008	0.00003	0.00004	0.00002	0.00002	0.00001
207/206	0.36697	0.54054	0.32787	1.07143	0.00000	0.86957
ThO248	0.20900	0.01133	0.05550	0.00435	0.01662	0.00473
UO254	0.08513	0.00844	0.03811	0.00215	0.01263	0.00289
	38394.38	38394.34	38394.22	38394.20	38394.27	38394.19
205/220 4	10.42	60.00	20.24	162.02	24.44	05.40
206/238 Age	18.42	60.90	20.24	103.83	31.14	95.18
LI ppm Est	0.03	0.01	0.00	0.00	0.01	0.00
веэ ррт	122.14	8.41	22.99	3.97	12.92	5.33
B11 ppm	0.13	0.13	0.12	0.04	0.23	0.13
F19 ppm	60.00	25.80	22.25	17.18	19.01	18./2
Na ppm Est.	3.37	3.25	2.22	2.68	2.72	2.15
Al27 ppm Est. Si30	16.24	15.68	15.89	16.45	13.86	14.13
P31 ppm	1614 36	205 82	248 07	237 59	200 23	278 10
K39 Rol	0 58	0.76	0.62	0.66	0 58	0 74
Ca40 nnm Ect	0.50 7 16	2 60	2.02	0.00 7 AA	2 70	2.74
Sc/E nam	2.10	2.03	2.00	2.44 60 65	2.70	2.37
3043 µpm	57.22	12.07	54.94 12 22	20.50	40.42	JZ.JJ
48/49	13.30	12.8/	12.33	13.10	14.80	13.51
1148 ppm	23.76	14.70	8.44	29.25	11.34	24.61
Ti49 ppm	23.63	15.18	9.10	29.68	10.19	24.21
Fe56 ppm	2.24	1.02	0.80	1.03	1.00	1.33
Y89 ppm	11633.04	767.34	1147.07	589.61	827.31	683.12
Nb93 ppm	92.02	6.68	17.24	2.35	8.28	2.97
Zr94H Rel.	0.69	0.70	0.72	0.73	0.67	0.73
			2.40	2.40	2.40	2 20

Та	ble	C3.	con	t.
	~ ~			

	WSWPST2B_13.1C	WSWPST2B_11.2I	WSWPST2B_3.2I	WSWPST2B_2.2I	WSWPST2B_6.2I	WSWPST2B_1.2E
La139 ppm	0.22	0.02	0.05	0.03	0.01	0.02
Ce140 ppm	666.09	72.85	124.97	70.89	83.14	66.16
Pr ppm	21.26	1.22	1.18	2.23	0.89	1.49
Nd146 ppm	55.44	3.01	2.37	3.64	2.62	3.80
Sm147 ppm	6.32	0.76	0.47	1.74	0.63	1.22
Eu153 ppm	482.23	23.95	16.61	27.91	22.65	26.24
Gd155 ppm	535.07	31.82	41.12	25.13	32.47	29.48
Ho165 ppm	162.90	7.88	7.39	7.67	7.06	7.71
TbO175 ppm	1618.76	86.33	94.39	71.58	82.17	82.13
DyO179 ppm	1982.29	140.40	203.91	102.88	149.00	121.83
ErO182 ppm	337.54	26.18	47.41	19.29	32.41	22.70
TmO185 ppm	2187.21	204.44	415.23	162.04	266.03	177.59
YbO188 ppm	300.55	35.29	75.94	28.98	44.98	32.60
LuO191 ppm	141.72	128.92	128.65	132.60	135.02	136.61
Zr96/Zr2O	59.12	53.62	53.56	53.29	56.28	57.17
196/Si30	9313.34	11162.03	12185.95	8612.24	11041.09	8813.64
Hf ppm	0.37	0.54	0.33	1.07	0.00	0.87
Pb7/6 Est	2118.85	114.84	562.63	44.10	168.49	47.98
Th ppm	826.07	81.87	369.78	20.82	122.53	28.06
U ppm						
Y/Nb	126.41	114.87	66.53	250.72	99.87	230.14
Th/U	2.56	1.40	1.52	2.12	1.38	1.71
Yb/Gd	4.54	8.54	25.00	5.81	11.75	6.77
U/Yb	0.38	0.40	0.89	0.13	0.46	0.16
Th/Yb	0.97	0.56	1.35	0.27	0.63	0.27
Ce/Sm	12.01	24.18	52.79	19.47	31.72	17.42
Ce/Lu	2.22	2.06	1.65	2.45	1.85	2.03
U/Ce	1.24	1.12	2.96	0.29	1.47	0.42
Th/Ce	3.18	1.58	4.50	0.62	2.03	0.73
Y/Yb	5.32	3.75	2.76	3.64	3.11	3.85
Yb/Nd	102.86	168.08	351.88	72.74	298.41	119.26
Y/Nb	126.41	114.87	66.53	250.72	99.87	230.14
Yb/Nb	23.77	30.60	24.08	68.90	32.12	59.83
Yb/Sc	38.23	6.79	7.56	2.33	6.58	3.38
Yb/Dy	1.35	2.37	4.40	2.26	3.24	2.16
Dy/Sm	29.20	28.65	39.87	19.66	31.35	21.62
Yb/Nd	102.86	168.08	351.88	72.74	298.41	119.26
Sm/Nd	2.61	2.48	2.01	1.63	2.94	2.55
U/Li	29853.96	9703.25	144432.57	#DIV/0!	23854.23	#DIV/0!
Estimated temperature						
Temp Ti48	818.49	771.68	722.36	840.07	748.06	822.09
Temp Ti49	817.93	774.67	728.76	841.64	738.57	820.42
Hf ppm	9313.34	11162.03	12185.95	8612.24	11041.09	8813.64
Ferry Temp	874.60	824.15	771.12	902.42	782.41	877.50
Act Ti	0.70	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00	1.00
Temp. Est.	855.47	809.24	760.32	880.85	770.77	858.13

chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)						
La Ch (0.319)	0.68	0.07	0.15	0.08	0.03	0.05
Ce Ch (0.82)	812.30	88.84	152.41	86.45	101.39	80.68
Pr Ch (0.121)	9.32	0.66	0.81	1.01	0.38	0.66
Nd Ch (0.615)	34.58	1.98	1.92	3.62	1.45	2.42
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	277.22	15.07	11.84	18.20	13.11	18.99
Eu Ch (0.076)	83.11	9.95	6.19	22.88	8.28	16.01
Gd Ch (0.267)	1806.10	89.70	62.20	104.54	84.81	98.26
Tb Ch (0.0493)	3304.20	159.85	149.93	155.51	143.27	156.29
Dy Ch (0.33)	4905.32	261.59	286.04	216.92	248.99	248.87
Ho Ch (0.0755)	7087.03	421.46	544.60	332.78	430.02	390.50
Er Ch (0.216)	9177.28	650.00	944.04	476.31	689.79	564.01
Tm Ch (0.0329)	10259.46	795.89	1441.05	586.30	985.26	689.89
Yb Ch (0.221)	9896.87	925.07	1878.88	733.22	1203.78	803.56
Lu Ch (0.033)	9107.66	1069.26	2301.10	878.28	1362.98	987.86
Ce/Ce*	323.44	406.62	443.49	306.35	1007.24	442.44
Hf ppm	9313.34	11162.03	12185.95	8612.24	11041.09	8813.64
Eu/Eu*	0.12	0.27	0.23	0.52	0.25	0.37
P Molar	52.13	6.65	8.01	7.67	6.47	8.98
3+ Molar	55.45	14.60	10.02	113.83	49.65	67.76
3+/P Molar	2.13	2.26	1.38	3.17	2.30	3.88

WSWPST2B_13.1C WSWPST2B_11.2I WSWPST2B_3.2I WSWPST2B_2.2I WSWPST2B_6.2I WSWPST2B_1.2E

Element						
Li7	0.00000	0.00001	0.00030	0.00000	0.00000	0.00002
Be9	0.00246	0.00656	0.01436	0.00129	0.00076	0.02283
B11	0.00002	0.00002	0.00000	0.00001	0.00003	0.00003
F19	0.00010	0.00017	0.00014	0.00015	0.00014	0.00014
Na23	0.01002	0.01234	0.01228	0.01187	0.01076	0.03316
Al27	0.02071	0.02187	0.02043	0.02373	0.02423	0.09725
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00326	0.00368	0.00644	0.00277	0.00265	0.00787
К39	0.00343	0.00394	0.00423	0.00392	0.00344	0.10587
Ca40	0.01499	0.01580	0.01920	0.01850	0.01464	0.02839
Sc45	0.04952	0.02595	0.05468	0.07632	0.06371	0.04932
Ti48	0.00802	0.00367	0.00711	0.01128	0.01075	0.00813
Ti49	0.00058	0.00028	0.00055	0.00085	0.00083	0.00063
Fe56	0.00058	0.00059	0.00064	0.00065	0.00072	0.00201
Y89	0.34104	0.59183	0.97394	0.24928	0.21745	1.28611
Nb93	0.00045	0.00214	0.00189	0.00020	0.00023	0.00395
Zr94H	0.00772	0.00758	0.00728	0.00773	0.00699	0.00556
Zr96	2.40900	2.45972	2.45906	2.45202	2.42382	2.39343
La139	0.00001	0.00000	0.00001	0.00001	0.00000	0.00080
Ce140	0.01053	0.01405	0.02821	0.01055	0.01163	0.04291
Nd146	0.00015	0.00008	0.00024	0.00020	0.00012	0.00089
Sm147	0.00030	0.00019	0.00068	0.00035	0.00029	0.00076
Fu153	0.00024	0.00007	0.00033	0.00036	0.00032	0.00049
Gd155	0.00021	0.00077	0.00205	0.00064	0.00062	0.00255
Ho165	0.00627	0.00987	0.01765	0.00458	0.00398	0.02360
ThO175	0.00147	0.00175	0.00414	0.00112	0.00095	0.00531
DvO179	0.00329	0.00175	0.00975	0.00247	0.00202	0.01247
Fr0182	0.00528	0.00896	0.01472	0.00217	0.00347	0.01942
Tm0185	0.00320	0.00050	0.01472	0.00401	0.00347	0.01942
VhO188	0.00247	0.00542	0.00817	0.00267	0.00240	0.01098
100100	0.00336	0.00551	0.00770	0.00284	0.00248	0.01020
7r20	0.00550	0.00351	0.00770	0.00204	0.00240	0.01020
Hf0196	0.15507	0.19366	0 17138	0.15161	0.15101	0.17501
Ph206	0.00003	0.00002	0.00004	0.00002	0.00002	0.00004
207/206	0.24390	0.00002	0.00000	0.00000	0.66667	0.66667
ThO248	0.24550	0.00000	0.00000	0.00000	0.00543	0.06573
110254	0.00070	0.02444	0.07035	0.00313	0.00343	0.00375
00254	38394 21	38394 23	38394 25	38394 24	38394 27	38394 29
	30334.21	50554.25	50554.25	30334.24	50554.27	50554.25
206/238 Age	115.69	23.51	26.80	124.24	144,30	23.77
Lippm Est	0.00	0.01	0.18	0.00	0.00	0.01
Be9 ppm	7.66	20.46	44.77	4.01	2.38	71.18
B11 ppm	0.16	0.15	0.03	0.06	0.30	0.30
F19 ppm	13,19	22.58	18.55	19.77	18.62	17.96
Na ppm Est.	2.37	2.92	2.91	2.81	2.55	7.85
Al27 nnm Est	13 78	14 56	13.60	15.80	16.13	64 73
Si30	10170	1.000	20100	20100	10110	0 11/0
P31 ppm	277.56	313,12	547.91	236.23	225.39	669.69
K39 Rel.	0.59	0.68	0.73	0.68	0.59	18.27
Ca40 ppm Est	1.96	2.06	2.50	2.41	1.91	3,70
Sc45 ppm	43 56	22.83	48 10	67 13	56.04	43 29
48/49	13.50	13 09	12 90	13 31	12 99	12 91
Ti48 ppm	23.07	10 54	20.43	32 42	30 91	23 28
Ti49 npm	23.07	10.70	21.45	32.72	31.62	22.30
Fe56 nnm	0.85	0.86	0 94	0 95	1.05	2 93
V89 nnm	804 89	1396 78	2298 59	588 21	512 21	2.33
102 6611	004.05	10,000	2230.33	200.21	212.21	3033.33

WSWPST2B_2.3E WSWPST2B_3.3E WSWPST2B_4.2E WSWPST2B_5.2E WSWPST2B_6.3E WSWPST2B_7.2E

19.19

0.71

2.46

1.98

0.75

2.45

2.36

0.68

2.42

40.13

0.54

2.39

Nb93 ppm

Zr94H Rel.

Zr96/Si30 ppm

4.53

0.75

2.41

21.74

0.74

2.46

Tab	le	C3.	cont.
100		$\mathbf{v}\mathbf{v}$	00110

	WSWPST2B_2.3E	WSWPST2B_3.3E	WSWPST2B_4.2E	WSWPST2B_5.2E	WSWPST2B_6.3E	WSWPST2B_7.2E
La139 ppm	0.04	0.02	0.04	0.07	0.03	5.37
Ce140 ppm	76.33	101.82	204.44	76.47	84.33	311.02
Pr ppm	2.15	1.08	3.28	2.74	1.64	12.30
Nd146 ppm	4.06	2.58	9.35	4.85	4.00	10.48
Sm147 ppm	1.15	0.34	1.59	1.72	1.54	2.38
Eu153 ppm	31.39	31.40	83.76	26.12	25.25	104.34
Gd155 ppm	35.42	55.73	99.65	25.86	22.47	133.27
Ho165 ppm	9.84	11.71	27.66	7.46	6.37	35.47
TbO175 ppm	97.38	140.70	288.51	73.20	59.69	368.81
DyO179 ppm	140.57	238.50	392.02	106.75	92.46	517.13
ErO182 ppm	25.68	46.23	69.29	20.21	17.07	94.90
TmO185 ppm	209.79	332.78	501.82	164.08	147.36	674.16
YbO188 ppm	34.03	55.73	77.86	28.72	25.10	103.17
LuO191 ppm	136.49	132.99	137.57	131.43	138.38	139.28
Zr96/Zr2O	56.66	54.07	55.94	53.60	57.09	58.19
196/Si30	9001.70	11241.87	9948.50	8800.97	8766.03	10159.30
Hf ppm	0.24	0.00	0.00	0.00	0.67	0.67
Pb7/6 Est	68.57	247.81	776.50	52.04	55.05	666.32
Th ppm	42.17	185.34	285.67	26.22	25.61	337.45
U ppm						
Y/Nb	177.57	64.25	119.80	296.71	217.77	75.63
Th/U	1.63	1.34	2.72	1.98	2.15	1.97
Yb/Gd	6.68	10.60	5.99	6.28	5.84	6.46
U/Yb	0.20	0.56	0.57	0.16	0.17	0.50
Th/Yb	0.33	0.74	1.55	0.32	0.37	0.99
Ce/Sm	18.80	39.49	21.87	15.77	21.08	29.69
Ce/Lu	2.24	1.83	2.63	2.66	3.36	3.01
U/Ce	0.55	1.82	1.40	0.34	0.30	1.08
Th/Ce	0.90	2.43	3.80	0.68	0.65	2.14
Y/Yb	3.84	4.20	4.58	3.59	3.48	4.50
Yb/Nd	97.66	308.35	153.05	59.94	89.94	54.79
Y/Nb	177.57	64.25	119.80	296.71	217.77	75.63
Yb/Nb	46.28	15.31	26.16	82.75	62.53	16.80
Yb/Sc	4.82	14.58	10.43	2.44	2.63	15.54
Yb/Dy	2.15	2.37	1.74	2.24	2.47	1.83
Dy/Sm	23.98	54.57	30.86	15.09	14.92	35.20
Yb/Nd	97.66	308.35	153.05	59.94	89.94	54.79
Sm/Nd	1.89	2.39	2.85	1.77	2.44	0.85
U/Li	16981.18	35669.44	1547.14	#DIV/0!	19923.79	30237.85
Estimated temperature						
Temp Ti48	815.49	741.53	803.32	851.10	845.96	816.85
Temp Ti49	812.16	742.85	806.30	850.92	848.44	819.84
Hfppm	9001.70	11241.87	9948.50	8800.97	8766.03	10159.30
Ferry Temp	867.84	787.34	860.99	913.36	910.44	876.83
Act Ti	0.70	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00	1.00
Temp. Est.	849.29	775.32	843.03	890.80	888.15	857.52
Temp. Lat.	049.29	115.52	040.00	030.00	000.10	057.52

chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)						
La Ch (0.319)	0.12	0.05	0.12	0.23	0.09	16.84
Ce Ch (0.82)	93.09	124.18	249.32	93.26	102.84	379.30
Pr Ch (0.121)	1.12	0.55	1.51	1.66	0.87	18.89
Nd Ch (0.615)	3.49	1.75	5.33	4.45	2.66	20.01
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	20.30	12.89	46.74	24.25	20.00	52.38
Eu Ch (0.076)	15.12	4.46	20.98	22.64	20.26	31.28
Gd Ch (0.267)	117.56	117.60	313.72	97.82	94.57	390.77
Tb Ch (0.0493)	199.66	237.60	560.96	151.36	129.26	719.41
Dy Ch (0.33)	295.08	426.37	874.27	221.83	180.88	1117.59
Ho Ch (0.0755)	469.11	738.19	1319.91	342.48	297.65	1765.20
Er Ch (0.216)	650.79	1104.16	1814.89	494.20	428.04	2394.10
Tm Ch (0.0329)	780.61	1405.20	2106.23	614.16	518.83	2884.44
Yb Ch (0.221)	949.26	1505.78	2270.66	742.44	666.77	3050.51
Lu Ch (0.033)	1031.29	1688.86	2359.40	870.20	760.62	3126.36
Ce/Ce*	258.80	723.59	581.07	151.24	361.59	21.26
Hf ppm	9001.70	11241.87	9948.50	8800.97	8766.03	10159.30
Eu/Eu*	0.31	0.11	0.17	0.46	0.47	0.22
P Molar	8.96	10.11	17.69	7.63	7.28	21.62
3+ Molar	13.86	79.99	14.55	75.88	15.27	52.37
3+/P Molar	1.52	3.86	1.62	2.67	1.62	3.63

WSWPST2B_2.3E WSWPST2B_3.3E WSWPST2B_4.2E WSWPST2B_5.2E WSWPST2B_6.3E WSWPST2B_7.2E

Tal	bl	e	C3.	cor	ηt.
		· •	\mathbf{u}	001	

	WSWPST2B_8.2E	WSWPST2B_9.2E	WSWPST2B_10.1E	WSWPST2B_11.3E	WSWPST2B_12.3E
Element					
Li7	0.00001	0.00000	0.00001	0.00012	0.00001
Be9	0.00157	0.00242	0.00330	0.00785	0.00055
B11	0.00001	0.00002	0.00001	0.00003	0.00001
F19	0.00014	0.00012	0.00014	0.00016	0.00008
Na23	0.01263	0.01001	0.01218	0.03738	0.01089
Al27	0.02402	0.02134	0.02061	0.05228	0.02708
Si30	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00332	0.00327	0.00344	0.00256	0.00261
K39	0.00374	0.00368	0.00427	0.04213	0.00280
Ca40	0.01883	0.01603	0.02087	0.02653	0.01455
Sc45	0.06006	0.06476	0.02813	0.06656	0.06739
Ti48	0.00980	0.00837	0.00565	0.00369	0.01279
Ti49	0.00073	0.00062	0.00043	0.00029	0.00094
Fe56	0.00088	0.00066	0.00080	0.00900	0.00066
Y89	0.31998	0.33860	0.38262	0.53607	0.19178
Nb93	0.00037	0.00040	0.00059	0.00224	0.00017
Zr94H	0.00702	0.00724	0.00641	0.00667	0.00616
Zr96	2.44048	2.42522	2.41084	2.42321	2.43534
La139	0.00000	0.00004	0.00000	0.00017	0.00000
Ce140	0.01279	0.01323	0.01039	0.02169	0.01161
Nd146	0.00019	0.00017	0.00009	0.00019	0.00014
Sm147	0.00031	0.00039	0.00025	0.00017	0.00023
Eu153	0.00032	0.00039	0.00016	0.00011	0.00029
Gd155	0.00083	0.00076	0.00076	0.00049	0.00052
Ho165	0.00587	0.00590	0.00689	0.00792	0.00347
TbO175	0.00142	0.00142	0.00162	0.00113	0.00081
DyO179	0.00307	0.00318	0.00388	0.00338	0.00183
ErO182	0.00525	0.00521	0.00650	0.00892	0.00307
TmO185	0.00256	0.00268	0.00294	0.00540	0.00153
YbO188	0.00350	0.00362	0.00379	0.00769	0.00200
LuO191	0.00352	0.00383	0.00372	0.00893	0.00236
Zr2O	0.01919	0.01768	0.01695	0.02047	0.01829
HfO196	0.16413	0.16673	0.17131	0.22034	0.15129
Pb206	0.00002	0.00001	0.00002	0.00005	0.00002
207/206	3.20000	0.50000	0.00000	0.28169	0.96774
ThO248	0.00916	0.01317	0.01130	0.05950	0.00469
UO254	0.00518	0.00749	0.00731	0.04330	0.00218
	38394.30	38394.32	38394.33	38394.35	38394.36
206/238 Age	65.69	34.96	59.36	23.78	186.83
Li ppm Est	0.01	0.00	0.00	0.07	0.01
Be9 ppm	4.90	7.54	10.30	24.48	1.72
B11 ppm	0.12	0.15	0.10	0.33	0.05
F19 ppm	18.62	15.37	18.86	20.32	11.12
Na ppm Est.	2.99	2.37	2.88	8.85	2.58
Al27 ppm Est. Si30	15.99	14.20	13.72	34.80	18.03
P31 ppm	282.43	278.00	292.65	218.02	222.57
K39 Rel.	0.65	0.64	0.74	7.27	0.48
Ca40 ppm Est.	2.46	2.09	2.72	3.46	1.90
Sc45 ppm	52.83	56.96	24.74	58.55	59.28
48/49	13.45	13.42	13.00	12.53	13.66
Ti48 ppm	28.17	24.07	16.24	10.59	36.77
Ti49 ppm	27.84	23.84	16.60	11.24	35.78
Fe56 ppm	1.29	0.97	1.17	13.12	0.96
Y89 ppm	755.18	799.13	903.02	1265.18	452.63
Nb93 ppm	3.72	4.11	6.02	22.79	1.68
Zr94H Rel.	0.68	0.70	0.62	0.65	0.60
Zr96/Si30 ppm	2.44	2.43	2.41	2.42	2.44

La139 ppm	0.03	0.25	0.02	1.11	0.01
Ce140 ppm	92.73	95.93	75.29	157.23	84.15
Pr ppm	2.62	2.40	1.24	2.67	1.92
Nd146 ppm	4.23	5.37	3.42	2.40	3.18
Sm147 ppm	1.54	1.88	0.79	0.53	1.41
Eu153 ppm	34.04	31.08	31.21	19.99	21.11
Gd155 ppm	33.13	33.30	38.88	44.69	19.58
Ho165 ppm	9.51	9.49	10.80	7.53	5.44
TbO175 ppm	90.82	93.96	114.67	100.09	54.21
DyO179 ppm	139.71	138.80	173.04	237.58	81.84
ErO182 ppm	26.69	27.92	30.56	56.21	15.94
TmO185 ppm	214.64	222.46	232.62	472.24	122.79
YbO188 ppm	35.63	38.73	37.64	90.38	23.87
LuO191 ppm	127.15	137.21	142.19	118.39	133.15
Zr96/Zr20	52.10	56.58	58.98	48.86	54.67
196/Si30	9528.11	9678.97	9944.63	12791.05	8782.52
Hf ppm	3.20	0.50	0.00	0.28	0.97
Pb7/6 Est	92.88	133.51	114.59	603.24	47.51
Th ppm	50.24	72.70	70.95	420.22	21.12
U ppm					
Y/Nb	203.01	194.36	150.12	55.52	269.00
Th/U	1.85	1.84	1.62	1.44	2.25
Yb/Gd	6.31	7.16	7.45	23.63	5.82
U/Yb	0.23	0.33	0.30	0.89	0.17
Th/Yb	0.43	0.60	0.49	1.28	0.39
Ce/Sm	21.94	17.87	21.99	65.48	26.50
Ce/Lu	2.60	2.48	2.00	1.74	3.52
U/Ce	0.54	0.76	0.94	2.67	0.25
Th/Ce	1.00	1.39	1.52	3.84	0.56
Y/Yb	3.52	3.59	3.88	2.68	3.69
Yb/Nd	81.98	92.70	187.19	176.60	63.96
Y/Nb	203.01	194.36	150.12	55.52	269.00
Yb/Nb	57.70	54.10	38.67	20.72	72.97
Yb/Sc	4.06	3.91	9.40	8.07	2.07
Yb/Dy	2.36	2.37	2.03	4.72	2.27
Dy/Sm	21.49	17.50	33.49	41.68	17.07
Yb/Nd	81.98	92.70	187.19	176.60	63.96
Sm/Nd	1.61	2.24	2.76	0.90	1.65
0/Li	9117.31	27408.64	17759.11	5723.11	3180.17
Fatiments of the second second					
Estimated temperature					
Temp Ti48	836.10	819.82	781.05	741.99	864.87
Temp Ti49	834.89	818.83	783.15	747.21	861.87
Hf ppm	9528.11	9678.97	9944.63	12791.05	8782.52
Ferry Temp	894.49	875.64	834.01	792.37	926.28
Act Ti	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00
Temp. Est.	873.62	856.43	818.29	779.97	902.55

WSWPST2B_8.2E WSWPST2B_9.2E WSWPST2B_10.1E WSWPST2B_11.3E WSWPST2B_12.3E
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)					
La Ch (0.319)	0.10	0.79	0.07	3.47	0.03
Ce Ch (0.82)	113.08	116.98	91.82	191.75	102.62
Pr Ch (0.121)	1.22	2.30	0.65	4.03	0.64
Nd Ch (0.615)	4.26	3.90	2.02	4.35	3.12
Pm	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	21.13	26.85	17.12	12.01	15.88
Eu Ch (0.076)	20.21	24.77	10.39	6.95	18.52
Gd Ch (0.267)	127.48	116.40	116.88	74.86	79.05
Tb Ch (0.0493)	192.88	192.47	219.00	152.74	110.26
Dy Ch (0.33)	275.21	284.74	347.49	303.30	164.27
Ho Ch (0.0755)	438.83	441.00	514.92	591.97	259.29
Er Ch (0.216)	646.80	642.58	801.12	1099.91	378.89
Tm Ch (0.0329)	811.34	848.70	928.89	1708.58	484.46
Yb Ch (0.221)	971.22	1006.60	1052.59	2136.84	555.59
Lu Ch (0.033)	1079.72	1173.49	1140.64	2738.91	723.42
Ce/Ce*	324.73	86.63	432.69	51.22	771.87
Hf ppm	9528.11	9678.97	9944.63	12791.05	8782.52
Eu/Eu*	0.39	0.44	0.23	0.23	0.52
P Molar	9.12	8.98	9.45	7.04	7.19
3+ Molar	13.16	22.77	9.10	10.75	19.75
3+/P Molar	1.98	3.23	1.27	1.53	2.66

Tabl	e (23.	cont.
i upi	\sim	$\mathcal{O}_{\mathcal{O}}$	oon.

WSWPST2B_8.2E WSWPST2B_9.2E WSWPST2B_10.1E WSWPST2B_11.3E WSWPST2B_12.3E

Table C3, cont.

	WSWPST2B_12.2E	WSWPST2B_13.2E
Element		
1:7	0.00000	0.00025
LI7 BoQ	0.00000	0.00025
B11	0.00123	0.00832
F19	0.00001	0.00001
Na23	0.01244	0.02853
Al27	0.02658	0.02972
Si30	1.00000	1.00000
P31	0.00256	0.00767
К39	0.00401	0.00663
Ca40	0.02274	0.04175
Sc45	0.08217	0.04215
Ti48	0.01109	0.00419
Ti49	0.00080	0.00034
Fe56	0.00071	0.00140
Y89	0.22738	0.74141
Nb93	0.00019	0.00090
Zr94H	0.00661	0.00588
Zr96	2.36923	2.41452
La139	0.00000	0.00000
Ce140	0.01041	0.01051
Nd146	0.00017	0.00012
Sm147	0.00027	0.00038
Eu153	0.00038	0.00014
Gd155	0.00061	0.00106
Ho165	0.00429	0.01255
TbO175	0.00113	0.00266
Dy0179	0.00237	0.00671
ErO182	0.00363	0.01183
TmO185	0.00175	0.00608
YB0188	0.00249	0.00739
2-20	0.00275	0.00751
	0.01947	0.01729
Ph206	0.14885	0.19017
207/206	1 42857	1 17647
207/200 ThO248	0.00435	0.02086
110240	0.00433	0.02000
00104	38394.36	38394.38
206/238 Age	158.00	31.99
Li ppm Est	0.00	0.15
Be9 ppm	3.89	26.56
B11 ppm	0.07	0.08
F19 ppm	13.90	20.89
Na ppm Est.	2.94	6.75
AI27 ppm Est.	17.69	19.78
Si30	247.07	
P31 ppm	217.97	652.55
K39 Kel.	0.09	1.14
Ca40 ppm Est.	2.31 20 CT	3.43 27 Ng
אס /אס גע אס	13.84	37.00 12 24
40/43 Ti48 nnm	21 29	12.34
Tid9 nnm	30.63	12.05
Fe56 ppm	1.03	2.04
Y89 maa e8Y	536.64	1749.79
Nb93 ppm	1.90	9.12
Zr94H Rel.	0.64	0.57
Zr96/Si30 ppm	2.37	2.41

Table CS, Cont.	Ta	ble	C3,	cont.
-----------------	----	-----	-----	-------

_

WSWPST2B 12.2E	WSWPST2B	13.2E
----------------	----------	-------

	0.00	0.00
La139 ppm	0.03	0.02
Ce140 ppm	75.43	76.15
Pr ppm	2.39	1.70
Nd146 ppm	3.68	5.21
Sm147 ppm	1.85	0.68
Eu153 ppm	24.90	43.51
Gd155 ppm	24.21	70.86
Ho165 ppm	7.55	17.77
TbO175 ppm	70.06	198.43
DyO179 ppm	96.77	315.13
ErO182 ppm	18.24	63.33
TmO185 ppm	152.60	453.45
YbO188 ppm	27.86	75.94
LuO191 ppm	121.71	139.68
Zr96/Zr20	51.37	57.85
196/\$130	8639.75	11039.39
Hf ppm	1.43	1.18
Pb7/6 Est	44.14	211.49
Th ppm	17.75	150.23
U ppm		
Y/Nb	281.75	191.86
Th/U	2.49	1.41
Yb/Gd	6.13	10.42
U/Yb	0.12	0.33
Th/Yb	0.29	0.47
Ce/Sm	20.51	14.63
Ce/Lu	2.71	1.00
U/Ce	0.24	1.97
Th/Ce	0.59	2.78
Y/Yb	3.52	3.86
Yb/Nd	63.72	267.48
Y/Nb	281.75	191.86
Yb/Nb	80.12	49.72
Yb/Sc	2.11	12.23
Yb/Dy	2.18	2.29
Dy/Sm	19.05	38.12
Yb/Nd	63.72	267.48
Sm/Nd	1.54	3.07
U/Li	6368.69	979.45
Estimated temperature		
Temp Ti48	849.33	753.45
Temp Ti49	844.98	760.18
Hf ppm	8639.75	11039.39
Ferry Temp	906.36	807.37
Act Ti	0.70	0.70
Act Si	1.00	1.00
Temp. Est.	884.44	793.79
-		

WSWPST2B_12.2E WSWPST2B_13.2E

chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)		
La Ch (0.319)	0.10	0.06
Ce Ch (0.82)	91.99	92.87
Pr Ch (0.121)	1.15	0.77
Nd Ch (0.615)	3.89	2.76
Pm	0.00	0.00
Sm Ch (0.2)	18.39	26.03
Eu Ch (0.076)	24.28	8.98
Gd Ch (0.267)	93.26	162.96
Tb Ch (0.0493)	153.14	360.38
Dy Ch (0.33)	212.30	601.31
Ho Ch (0.0755)	320.65	938.60
Er Ch (0.216)	448.01	1458.93
Tm Ch (0.0329)	554.37	1924.93
Yb Ch (0.221)	690.51	2051.82
Lu Ch (0.033)	844.10	2301.28
Ce/Ce*	270.07	427.77
Hf ppm	8639.75	11039.39
Eu/Eu*	0.59	0.14
P Molar	7.04	21.07
3+ Molar	182.95	28.46
3+/P Molar	3.51	1.35

	PSTG01C-1.2CDK	PSTG01C-2.1CDK	PSTG01C-3.1CDK	PSTG01C-6.1CDK	PSTG01C-6.2CDK	PSTG01C-8.1CDK
Element						
117	0,00006	0 00007	0 00007	0 00007	0 00000	0.00010
EI7 Re9	0.00000	0.00007	0.00007	0.00007	0.00000	0.00010
B11	0.00007	0.00001	0.00125	0.00037	0.00000	0.00010
E10	0.00001	0.00001	0.00001	0.00001	0.00001	0.00004
Na22	0.00028	0.00020	0.00043	0.00030	0.00018	0.00030
Ma24	0.03734	0.03192	0.04942	0.03239	0.03030	0.08003
NI27	0.01933	0.01703	0.02003	0.01179	0.02381	0.03505
AIZ7 6:20	0.02197	1.00000	1.00000	1.00000	1.00000	0.04018
5150	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31 622	0.00502	0.00298	0.00786	0.00328	0.00263	0.00809
352	0.00001	0.00001	0.00001	0.00000	0.00000	0.00000
(135	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
K39	0.01503	0.01472	0.01355	0.00934	0.01484	0.02394
Ca40	0.04309	0.03008	0.03253	0.02039	0.03169	0.05796
5045	0.07741	0.07560	0.11783	0.04/5/	0.07560	0.04178
T148	0.00702	0.00950	0.00912	0.00450	0.00449	0.00696
Ti49	0.00053	0.00067	0.00068	0.00034	0.00030	0.00051
V51	0.00002	0.00003	0.00004	0.00004	0.00000	0.00001
Cr52	0.00003	0.00006	0.00005	0.00004	0.00002	0.00003
Mn55	0.00017	0.00014	0.00012	0.00008	0.00015	0.00024
Fe56	0.00129	0.00099	0.00106	0.00081	0.00149	0.00242
Ge74	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
Y89	0.83798	0.58147	2.39037	1.15394	0.47610	2.16724
Nb93	0.00157	0.00017	0.00151	0.00092	0.00104	0.00161
Zr94H	0.00408	0.00411	0.00466	0.00499	0.00421	0.00450
Zr96	1.97683	2.00756	1.99933	2.03286	1.99534	2.00349
La139	0.00001	0.00001	0.00006	0.00001	0.00000	0.00002
Ce140	0.02340	0.01199	0.05683	0.01600	0.01097	0.03261
Pr141	0.00009	0.00031	0.00048	0.00013	0.00003	0.00032
Nd146	0.00022	0.00069	0.00187	0.00043	0.00007	0.00092
Sm147	0.00061	0.00102	0.00385	0.00094	0.00021	0.00218
Eu153	0.00044	0.00087	0.00341	0.00065	0.00015	0.00141
Ho165	0.01534	0.01084	0.04568	0.02037	0.00777	0.04254
GdO173	0.00230	0.00246	0.01044	0.00293	0.00086	0.00769
TbO175	0.00421	0.00372	0.01611	0.00545	0.00171	0.01344
DvO179	0.01000	0.00771	0.03361	0.01324	0.00449	0.03103
ErO182	0.01672	0.01117	0.04545	0.02214	0.00923	0.04093
TmO185	0.00789	0.00532	0.02034	0.01071	0.00503	0.01841
YbO188	0.01075	0.00672	0.02670	0.01384	0.00755	0.02144
100100	0.00988	0.00661	0.02481	0.01301	0.00789	0.01825
7r20	0.01660	0.01614	0.01724	0.01895	0.01657	0.01566
Hf0196	0.17363	0 16312	0.16128	0.18974	0.18731	0.16759
Ph206	0.00003	0.00001	0.00004	0.00003	0.00002	0.00004
207/206	0.00003	0.00001	0.00004	0.28846	0.00002	0.00004
ThO249	0.17544	0.00000	0.13333	0.20040	0.23000	0.00000
110248	0.03071	0.01277	0.11792	0.04364	0.01382	0.07907
00234	38163.22	38163.23	38163.24	38163.28	38163.29	38163.34
200 / 220 4	24.00	24.00		16.02	24.02	10.00
200/250 Age	24.00	24.Uð	12.22	10.92	24.82	10.02
Li ppm Est	0.04	0.04	0.04	0.04	0.00	0.06
Bey ppm	0.16	0.03	3.11	1.43	0.01	0.39
B11 ppm	0.11	0.09	0.07	0.07	0.06	0.30
F19 ppm	24.77	22.68	38.18	31.57	16.34	49.62
Na ppm Est.	5.48	4.94	4.70	3.08	4.79	7.62
Mg ppm Est.	1.64	1.45	2.25	1.00	2.01	3.01
Al27 ppm Est. Si30	8.35	7.73	7.91	5.82	8.35	17.55
P31 ppm	465.94	276.40	730.03	304.25	244.52	751.07
S32 Rel.	0.83	0.52	0.96	0.08	0.18	0.32

Table C4. SHRIMP-RG trace element analyses of zircon grains from PSTG01C.

	PSTG01C-1.2CDK	PSTG01C-2.1CDK	PSTG01C-3.1CDK	PSTG01C-6.1CDK	PSTG01C-6.2CDK	PSTG01C-8.1CD
K39 Rel.	1.81	1.77	1.63	1.12	1.78	2.88
Ca40 ppm Est.	4.61	3.22	3.48	2.18	3.39	6.20
Sc45 ppm	64.54	63.03	98.23	39.66	63.03	34.83
48/49						
Ti48 ppm						
Ti49 ppm	18.90	23.84	24.17	12.21	10.76	18.06
V51 ppm Rel.	0.14	0.17	0.23	0.27	0.02	0.04
Cr Rel.	0.04	0.07	0.06	0.05	0.02	0.04
Mn Rel.	0.07	0.06	0.05	0.04	0.07	0.10
Fe56 ppm	1.53	1.17	1.26	0.95	1.76	2.86
Ge74 Rel.	0.31	0.29	0.27	0.39	0.23	0.32
Y89 ppm	2106.57	1461.73	6009.04	2900.83	1196.84	5448.13
Nb93 ppm	21.09	2.31	20.23	12.38	13.96	21.63
Zr94H Rel.	0.79	0.79	0.90	0.96	0.81	0.87
Zr96/Si30 ppm	1.98	2.01	2.00	2.03	2.00	2.00
La139 ppm	0.04	0.03	0.24	0.03	0.02	0.09
Ce140 ppm	182.31	93.39	442.68	124.68	85.44	254.04
Pr ppm	0.16	0.54	0.85	0.23	0.05	0.57
Nd146 ppm	3.07	9.61	25.85	5.97	1.02	12.73
Sm147 ppm	8.24	13.80	52.30	12.72	2.87	29.69
Eu153 ppm	1.91	3.79	14.80	2.83	0.64	6.11
Gd155 ppm	90.35	63.84	269.08	119.98	45.75	250.62
Ho165 ppm	71 56	76 45	324 71	91 17	26.83	239.08
ThO175 npm	23 19	20.47	88.66	30.01	9.42	73 94
Dv0179 ppm	241.96	186.47	813 30	320.35	108 52	750 75
FrO182 nnm	366.81	245.04	996.89	485 54	202.40	897 70
Tm0185 nnm	67.12	15 29	173 13	01 12	12.84	156.69
VhO188 nnm	573 13	277 22	1700.85	673 67	367.40	10/13 / 8
	85.08	56.95	213.65	112.07	67.95	157 12
7r96/7r20	119.06	124.36	115 00	107.26	120.30	127.13
196/5120	60.23	61 95	58.02	52 76	60.34	63.85
150/5150	00.23	97/2 05	9645 22	10170.90	10040 50	00.00
Db7/6 Ect	9507.57	0/45.95	0045.25	0.20	0.25	0.00
PD7/0 ESL	0.10	121.26	0.15	0.29	0.25	751 40
ll nnm	291.00	121.50	221.00	410.05	131.31	200 71
0 ppm	109.01	49.45	551.00	214.01	124.42	500.71
Y/Nb	99.87	632.34	296.99	234.38	85.73	251.82
Th/U	1.72	2.45	3.38	1.94	1.06	2.50
Yb/Gd	7.31	4.28	4.00	7.39	13.70	4.36
U/Yb	170.60	34.04	50.28	112.82	360.61	81.98
Th/Yb	0.32	0.15	0.26	0.32	0.34	0.29
Ce/Sm	0.56	0.37	0.86	0.62	0.36	0.72
Ce/Lu	22.13	6.77	8.46	9.81	29.80	8.56
U/Ce	2.14	1.64	2.07	1.11	1.26	1.62
Th/Ce	0.93	0.53	0.75	1.72	1.46	1.18
Y/Yb	1.60	1.30	2.53	3.34	1.54	2.96
Yb/Nd	4.03	4.47	4.62	4.31	3.26	5.22
Y/Nb	99.87	632.34	296.99	234.38	85.73	251.82
Yb/Nb	24.80	141.60	64.24	54.43	26.32	48.23
Yb/Sc	8.11	5.19	13.23	16.99	5.83	29.96
Yb/Dv	2.16	1.76	1.60	2.10	3.39	1.39
Dv/Sm	29.37	13.51	15.55	25.19	37.86	25.29
Yb/Nd	170.60	34 04	50.28	112.82	360.61	81 98
Sm/Nd	2 69	1.44	2.02	2,13	2,81	2 22
	2.05	T.11	2.02	J	2.01	

	PSTG01C-1.2CDK	PSTG01C-2.1CDK	PSTG01C-3.1CDK	PSTG01C-6.1CDK	PSTG01C-6.2CDK	PSTG01C-8.1CDK
Temp Ti48						
Temp Ti49	795.70	818.86	820.24	754.64	743.40	791.28
Hf ppm	9307.37	8743.95	8645.23	10170.89	10040.59	8983.33
Ferry Temp	848.62	875.68	877.30	800.96	787.98	843.47
Act Ti	0.70	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00	1.00
Temp. Est.	831.70	856.46	857.94	787.88	775.91	826.98
chondrite normalized REE						
(Anders & Grevesse						
(1989) (in parentheses) *						
1.3596 Korotev Wed Site						
Wash. U)						
La Ch (0.319)	0.12	0.08	0.76	0.10	0.06	0.28
Ce Ch (0.82)	222.33	113.89	539.85	152.05	104.19	309.81
Pr Ch (0.121)	1.43	2.70	11.04	2.14	0.54	4.93
Nd Ch (0.615)	4.99	15.63	42.03	9.71	1.66	20.70
Pm						
Sm Ch (0.2)	41.19	69.02	261.51	63.58	14.33	148.44
Eu Ch (0.076)	25.11	49.81	194.69	37.25	8.48	80.33
Gd Ch (0.267)	268.00	286.32	1216.14	341.44	100.47	895.41
Tb Ch (0.0493)	470.42	415.22	1798.41	608.77	191.15	1499.87
Dy Ch (0.33)	733.22	565.05	2464.55	970.75	328.86	2275.00
Ho Ch (0.0755)	1196.75	845.52	3563.97	1589.09	605.95	3319.48
Er Ch (0.216)	1698.18	1134.46	4615.24	2247.87	937.05	4156.04
Tm Ch (0.0329)	2040.26	1376.53	5262.46	2769.69	1302.17	4762.55
Yb Ch (0.221)	2367.10	1481.11	5881.66	3048.29	1662.46	4721.64
Lu Ch (0.033)	2578.12	1725.87	6474.57	3396.03	2059.00	4761.49
Ce/Ce*	545.21	243.42	186.33	321.48	601.81	264.19
Hf ppm	9307.37	8743.95	8645.23	10170.89	10040.59	8983.33
Eu/Eu*	0.24	0.35	0.35	0.25	0.22	0.22
P Molar	15.04	8.92	23.57	9.82	7.90	24.25
3+ Molar	35.26	24.80	98.54	45.99	20.65	85.54
3+/P Molar	2.34	2.78	4.18	4.68	2.62	3.53

	PSTG01C-1.2IDK	PSTG01C-2.1CDK	PSTG01C-3.2IDK	PSTG01C-5.4CDK	PSTG01C-6.3CDK
Element					
Li7	0.00026	0.00010	0.00004	0.00004	0.00007
Be9	0.00005	0.00620	0.00002	0.00156	0.00000
B11	0.00002	0.00002	0.00002	0.00001	0.00001
F19	0.00028	0.00071	0.00026	0.00025	0.00027
Na23	0.06339	0.06291	0.06086	0.05956	0.05428
Mg24	0.01987	0.01491	0.02678	0.01669	0.01854
AI27	0.02735	0.02523	0.02377	0.02066	0.02079
Si30	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00724	0.01220	0.00356	0.00523	0.00225
\$32	0.00001	0.00001	0.00001	0.00000	0.00001
CI35	0.00000	0.00000	0.00000	0.00000	0.00000
K39	0.01626	0.01639	0.01446	0.01467	0.01365
Ca40	0.02695	0.02805	0.02911	0.02923	0.03127
Sc45	0.04588	0.04503	0.06117	0.04755	0.03634
Ti48	0.00525	0.00644	0.00519	0.00664	0.00532
Ti49	0.00041	0.00051	0.00039	0.00049	0.00038
V51	0.00003	0.00014	0.00001	0.00007	0.00006
Cr52	0.00003	0.00014	0.00001	0.00006	0.00006
Mn55	0.00013	0.00014	0.00010	0.00014	0.00024
Fe56	0.00442	0.00011	0.00089	0.00011	0.00221
Ge74	0.000442	0.00002	0.00000	0.00001	0.000200
V89	0.61563	3 45016	0 55495	0.82684	0.49928
Nh93	0.001505	0.00407	0.00119	0.02004	0.45520
7r94H	0.00071	0.00771	0.00115	0.00130	0.00663
Zr96	1 99324	1 94384	1 98145	1 95509	1 99008
La139	0.00000	0.00002	0.00000	0.00000	0.00001
Ce140	0.00000	0.05087	0.00000	0.00000	0.00001
Pr141	0.00009	0.00044	0.00008	0.00013	0.00004
Nd146	0.00011	0.00094	0.00014	0.00020	0.00013
Sm147	0.00042	0.00281	0.00032	0.00064	0.00041
Fu153	0.00072	0.00086	0.00032	0.00040	0.00043
Ho165	0.01125	0.06519	0.00950	0.01489	0.00921
GdO173	0.00157	0.01023	0.00119	0.00228	0.00153
TbO175	0.00306	0.01966	0.00241	0.00426	0.00282
Dv0179	0.00722	0.04604	0.00590	0.01019	0.00642
ErO182	0.01160	0.06421	0.01066	0.01511	0.00940
TmO185	0.00567	0.02890	0.00560	0.00700	0.00465
YbO188	0.00698	0.03314	0.00757	0.00853	0.00585
LuO191	0.00628	0.02770	0.00751	0.00760	0.00577
Zr2O	0.01595	0.01474	0.01604	0.01528	0.01597
HfO196	0.16251	0.15671	0.18236	0.16463	0.18006
Pb206	0.00002	0.00007	0.00003	0.00003	0.00002
207/206	0.57143	0.35398	0.61224	0.00000	0.00000
ThO248	0.01710	0.13093	0.02643	0.03362	0.01265
UO254	0.01238	0.06136	0.01940	0.01967	0.00698
	38161.82	38161.83	38161.86	38161.93	38161.95
206/238 Age	26.58	18.26	23.23	27.41	37.78
Li ppm Est	0.17	0.06	0.03	0.02	0.04
Be9 ppm	0.11	15.47	0.05	3.88	0.00
B11 ppm	0.14	0.15	0.13	0.11	0.12
F19 ppm	24.51	63.07	22.94	22.12	24.27
Na ppm Est.	6.03	5.99	5.79	5.67	5.17
Mg ppm Est.	1.68	1.26	2.27	1.41	1.57
Al27 ppm Est.	10.39	9.59	9.03	7.85	7.90
D31 ppm	672 53	1132.26	330 15	185 58	208 01
537 Pol	072.33	Ω 21	0 56	0.20	0 52
332 NCI.	0.00	0.01	0.50	0.20	0.00

K39 Rel.	1.95	1.97	1.74	1.76	1.64
Ca40 ppm Est.	2.88	3.00	3.11	3.13	3.35
Sc45 ppm	38.25	37.54	51.00	39.64	30.29
48/49	12.90	12.61	13.41	13.51	14.07
Ti48 ppm	14.50	17.76	14.31	18.32	14.67
Ti49 ppm	14.53	18.22	13.79	17.53	13.48
V51 ppm Rel.	0.19	0.89	0.09	0.41	0.39
Cr Rel.	0.09	0.07	0.08	0.08	0.07
Mn Rel.	0.06	0.06	0.05	0.06	0.10
Fe56 ppm	5.23	0.97	1.05	0.96	3.37
Ge74 Rel.	0.18	0.48	0.45	0.33	0.28
Y89 ppm	1547.62	8673.21	1395.08	2078.55	1255.13
Nb93 ppm	9.57	54.64	15.94	18.47	3.19
Zr94H Rel.	1.46	1.49	1.52	1.29	1.28
Zr96/Si30 ppm	1.99	1.94	1.98	1.96	1.99
La139 ppm	0.02	0.08	0.02	0.02	0.04
Ce140 ppm	75.80	396.31	102.38	165.18	75.77
Pr ppm	0.17	0.77	0.14	0.23	0.07
Nd146 ppm	1.56	13.06	1.87	2.70	1.78
Sm147 ppm	5.77	38.24	4.32	8.69	5.61
Eu153 ppm	1.21	3.72	1.05	1.75	1.87
Gd155 ppm	66.30	384.04	55.99	87.70	54.28
Ho165 ppm	48.73	318.19	36.86	70.76	47.42
TbO175 ppm	16.83	108.17	13.25	23.44	15.54
DvO179 ppm	174.70	1114.07	142.75	246.46	155.32
ErO182 ppm	254.40	1408.28	233.86	331.44	206.07
TmO185 nnm	48.25	245 97	47.63	59 55	39 55
YbO188 ppm	339.67	1613.29	368.35	415.09	284.68
LuO191 ppm	54 09	238 57	64 70	65 41	49.68
7r96/7r20	124 96	131 91	123 55	127 92	124 58
196/\$i30	62.69	67.86	62 35	65.43	62 60
Hfppm	8711 33	8400 40	9774 98	8824 97	9652.13
Pb7/6 Est	0.57	0 35	0.61	0.00	0.00
Thoom	162.53	1244.30	251.14	319.47	120.22
U ppm	108.18	536.05	169.49	171.82	60.94
Y/Nb	161.72	158.73	87.53	112.52	393.19
Th/U	1.50	2.32	1.48	1.86	1.97
Yb/Gd	6.97	5.07	9.99	5.87	6.00
U/Yb	217.62	123.54	196.74	153.80	159.57
Th/Yb	0.32	0.33	0.46	0.41	0.21
Ce/Sm	0.48	0.77	0.68	0.77	0.42
Ce/Lu	13.13	10.36	23.71	19.01	13.52
U/Ce	1.40	1.66	1.58	2.53	1.53
Th/Ce	1.43	1.35	1.66	1.04	0.80
Y/Yb	2.14	3.14	2.45	1.93	1.59
Yb/Nd	4.56	5.38	3.79	5.01	4.41
Y/Nb	161.72	158.73	87.53	112.52	393.19
Yb/Nb	35.50	29.53	23.11	22.47	89.18
Yb/Sc	8.88	42.98	7.22	10.47	9.40
Yb/Dy	1.94	1.45	2.58	1.68	1.83
Dy/Sm	30.27	29.13	33.05	28.36	27.71
Yb/Nd	217.62	123.54	196.74	153.80	159.57
Sm/Nd	3.70	2.93	2.31	3.22	3.14
	650.14	0160 17	6021 90	7455 09	1/131 66

PSTG01C-1.2IDK PSTG01C-2.1CDK PSTG01C-3.2IDK PSTG01C-5.4CDK PSTG01C-6.3CDK

	PSTG01C-1.2IDK	PSTG01C-2.1CDK	PSTG01C-3.2IDK	PSTG01C-5.4CDK	PSTG01C-6.3CDK
Temp Ti48	770.39	789.65	769.19	792.64	771.51
Temp Ti49	770.59	792.09	765.80	788.40	763.66
Hfppm	8711.33	8400.40	9774.98	8824.97	9652.13
Ferry Temp	819.42	844.41	813.86	840.12	811.39
Act Ti	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00
Temp. Est.	804.89	827.84	799.78	823.90	797.50
chondrite normalized REE					
(Anders & Grevesse					
(1989) (in parentheses) *					
1.3596 Korotev Wed Site					
Wash. U)					
La Ch (0.319)	0.05	0.25	0.06	0.05	0.11
Ce Ch (0.82)	92.44	483.31	124.85	201.44	92.41
Pr Ch (0.121)	0.70	4.84	0.81	1.01	0.98
Nd Ch (0.615)	2.54	21.23	3.04	4.39	2.90
Pm					
Sm Ch (0.2)	28.86	191.20	21.59	43.46	28.03
Eu Ch (0.076)	15.87	48.98	13.83	22.98	24.61
Gd Ch (0.267)	182.52	1191.73	138.07	265.00	177.59
Tb Ch (0.0493)	341.30	2194.15	268.68	475.47	315.13
Dy Ch (0.33)	529.39	3375.97	432.57	746.85	470.67
Ho Ch (0.0755)	878.12	5086.67	741.54	1161.56	718.90
Er Ch (0.216)	1177.76	6519.83	1082.70	1534.46	954.04
Tm Ch (0.0329)	1466.61	7476.21	1447.66	1809.97	1202.13
Yb Ch (0.221)	1536.97	7299.96	1666.76	1878.23	1288.14
Lu Ch (0.033)	1639.16	7229.28	1960.56	1982.10	1505.49
Ce/Ce*	485.65	438.42	573.19	868.22	279.23
Hf ppm	8711.33	8400.40	9774.98	8824.97	9652.13
Eu/Eu*	0.22	0.10	0.25	0.21	0.35
P Molar	21.72	36.56	10.66	15.68	6.75
3+ Molar	24.83	134.04	23.32	33.28	20.47
3+/P Molar	1.14	3.67	2.19	2.12	3.03

	PSTG01C-7.3CDK	PSTG01C-8.1IDK	PSTG01C-9.2IDK	PSTG01C-10.2IDK	PSTG01C-11.2IDK
Element					
1:7	0.00016	0 00008	0,00003	0.00004	0 00006
LI7 BoQ	0.00010	0.00008	0.00003	0.00004	0.00000
B11	0.00210	0.00001	0.00003	0.00000	0.00003
E10	0.00002	0.00002	0.00001	0.00001	0.00003
F13	0.00027	0.00034	0.00020	0.00022	0.00021
INd23	0.05871	0.06609	0.05317	0.05916	0.06912
IVIg24	0.02088	0.01855	0.01631	0.01702	0.02209
AIZ7	0.02149	0.02956	0.02125	0.02185	0.02463
5130	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00765	0.00234	0.00337	0.00254	0.00311
532	0.00000	0.00002	0.00002	0.00001	0.00001
C135	0.00000	0.00000	0.00000	0.00000	0.00000
K39	0.01530	0.01490	0.01420	0.01798	0.01534
Ca40	0.03210	0.03002	0.02811	0.02848	0.02564
Sc45	0.07900	0.04778	0.04597	0.03609	0.06381
Ti48	0.01081	0.00623	0.00552	0.00555	0.00710
Ti49	0.00081	0.00044	0.00040	0.00043	0.00051
V51	0.00008	0.00017	0.00005	0.00002	0.00003
Cr52	0.00006	0.00004	0.00007	0.00022	0.00005
Mn55	0.00015	0.00019	0.00008	0.00011	0.00012
Fe56	0.00086	0.00256	0.00083	0.00171	0.00085
Ge74	0.00001	0.00001	0.00000	0.00001	0.00001
Y89	1.15324	0.24339	0.43950	0.28631	0.41773
Nb93	0.00181	0.00023	0.00068	0.00040	0.00055
Zr94H	0.00676	0.00595	0.00617	0.00653	0.00605
Zr96	1.98345	1.97837	1.99946	2.04343	1.98417
La139	0.00001	0.00000	0.00000	0.00000	0.00000
Ce140	0.03525	0.00255	0.01178	0.00871	0.01391
Pr141	0.00012	0.00006	0.00005	0.00006	0.00009
Nd146	0.00043	0.00004	0.00012	0.00008	0.00016
Sm147	0.00114	0.00009	0.00033	0.00021	0.00039
Eu153	0.00077	0.00008	0.00028	0.00017	0.00037
Ho165	0.02167	0.00410	0.00787	0.00514	0.00744
GdO173	0.00389	0.00040	0.00130	0.00074	0.00122
TbO175	0.00696	0.00090	0.00227	0.00133	0.00218
DyO179	0.01556	0.00234	0.00520	0.00322	0.00497
ErO182	0.02122	0.00541	0.00854	0.00563	0.00807
TmO185	0.00930	0.00315	0.00439	0.00295	0.00412
YbO188	0.01105	0.00483	0.00560	0.00381	0.00537
LuO191	0.00980	0.00488	0.00553	0.00397	0.00527
Zr2O	0.01576	0.01536	0.01601	0.01594	0.01556
HfO196	0.15405	0.19847	0.17941	0.18928	0.17256
Pb206	0.00005	0.00236	0.00002	0.00001	0.00001
207/206	0.11905	0.08845	0.00000	0.00000	0.00000
ThO248	0.13758	0.00986	0.01616	0.00904	0.01871
UO254	0.04229	0.01986	0.01177	0.00714	0.01146
	38161.98	38162.00	38162.03	38162.04	38162.06
206/238 Age	19.06	1883.94	24.98	22,62	19.04
Linnm Fst	0.10	0.05	0.02	0.02	0.04
Be9 nnm	5 24	0.03	0.23	0.01	0.09
B11 nnm	0 13	0.15	0.07	0.10	0.22
F19 nnm	24 20	29.94	17 76	19 80	18 3/
Na nnm Fst	5 59	6 29	5.06	5 62	6 58
Mg nnm Est	1 77	1 57	1 28	1 44	1.87
Alan num Fet	1.77 8 16	11 72	2.30 8.07	8 30	0.36
Si30	0.10	11.43	0.07	0.50	5.50
P31 ppm	709.71	217.42	312.65	236.03	288.97
S32 Rel.	0.00	1.35	1.31	0.62	0.61

	PSTG01C-7.3CDK	PSTG01C-8.1IDK	PSTG01C-9.2IDK	PSTG01C-10.2IDK	PSTG01C-11.2IDK
K39 Rel.	1.84	1.79	1.71	2.16	1.84
Ca40 ppm Est.	3.43	3.21	3.01	3.05	2.74
Sc45 ppm	65.86	39.83	38.32	30.09	53.20
48/49	13.29	14.31	13.87	12.82	14.02
Ti48 ppm	29.83	17.18	15.22	15.33	19.59
Ti49 ppm	29.01	15.52	14.19	15.46	18.06
V51 ppm Rel.	0.52	1.03	0.28	0.12	0.21
Cr Rel.	0.08	0.05	0.08	0.27	0.06
Mn Rel.	0.06	0.08	0.04	0.05	0.05
Fe56 ppm	1.02	3.03	0.98	2.03	1.01
Ge74 Rel.	0.51	0.36	0.10	0.46	0.45
Y89 ppm	2899.07	611.85	1104.84	719.74	1050.12
Nb93 ppm	24.32	3.15	9.14	5.42	7.40
Zr94H Rel.	1.31	1.15	1.19	1.26	1.17
Zr96/Si30 ppm	1.98	1.98	2.00	2.04	1.98
La139 ppm	0.04	0.00	0.01	0.01	0.02
Ce140 ppm	274.63	19.90	91.78	67.84	108.34
Propm	0.21	0.11	0.09	0.11	0.17
Nd146 ppm	5.91	0.50	1.70	1.08	2.27
Sm147 ppm	15.53	1.28	4.54	2.89	5.37
Eu153 ppm	3.34	0.33	1.21	0.72	1.59
Gd155 ppm	127.65	24.16	46.34	30.26	43.83
Ho165 ppm	121.00	12 34	40.27	22.98	37 91
ThO175 nnm	38 30	4 93	12 51	7 30	11 99
DvO179 ppm	376 56	56 71	125 77	78.02	120.26
FrO182 nnm	465 44	118 61	187 32	123 49	176.90
TmO185 ppm	79 14	26.84	37 38	25.07	35.08
YbO188 ppm	538.09	235.20	272.54	185.58	261.46
LuO191 ppm	84.40	42.02	47.59	34,19	45.39
Zr96/Zr20	125.89	128.77	124.86	128.16	127.53
196/Si30	63.47	65.09	62.45	62.72	64.28
Hf ppm	8257.74	10638.84	9617.36	10146.11	9249.91
Pb7/6 Est	0.12	0.09	0.00	0.00	0.00
Th ppm	1307.48	93.73	153.62	85.93	177.77
U ppm	369.44	173.49	102.79	62.38	100.08
- FF					
Y/Nb	119.20	194.04	120.90	132.77	141.97
Th/U	3.54	0.54	1.49	1.38	1.78
Yb/Gd	4.45	19.06	6.77	8.07	6.90
U/Yb	91.08	474.66	160.22	171.12	115.25
Th/Yb	0.69	0.74	0.38	0.34	0.38
Ce/Sm	2.43	0.40	0.56	0.46	0.68
Ce/Lu	17.69	15.52	20.21	23.44	20.18
U/Ce	3.25	0.47	1.93	1.98	2.39
Th/Ce	1.35	8.72	1.12	0.92	0.92
Y/Yb	4.76	4.71	1.67	1.27	1.64
Yb/Nd	5.39	2.60	4.05	3.88	4.02
Y/Nb	119.20	194.04	120.90	132.77	141.97
Yb/Nb	22.12	74.59	29.82	34.23	35.35
Yb/Sc	8.17	5.90	7.11	6.17	4.91
Yb/Dy	1.43	4.15	2.17	2.38	2.17
Dy/Sm	24.25	44.23	27.70	26.96	22.40
Yb/Nd	91.08	474.66	160.22	171.12	115.25
Sm/Nd	2.63	2.59	2.67	2.67	2.37
U/Li	3664.66	3630.10	4673.68	2732.83	2448.26

	PSTG01C-7.3CDK	PSTG01C-8.1IDK	PSTG01C-9.2IDK	PSTG01C-10.2IDK	PSTG01C-11.2IDK
Temp Ti48	842.17	786.46	774.95	775.59	799.18
Temp Ti49	839.21	776.77	768.40	776.39	791.25
Hf ppm	8257.74	10638.84	9617.36	10146.11	9249.91
Ferry Temp	899.57	826.60	816.88	826.15	843.43
Act Ti	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00
Temp. Est.	878.26	811.49	802.55	811.08	826.94
chondrite normalized REE					
(Anders & Grevesse					
(1989) (in parentheses) *					
1.3596 Korotev Wed Site					
Wash. U)					
La Ch (0.319)	0.11	0.00	0.03	0.04	0.05
Ce Ch (0.82)	334.91	24.27	111.93	82.73	132.12
Pr Ch (0.121)	2.19	0.00	0.61	0.50	0.86
Nd Ch (0.615)	9.61	0.81	2.77	1.76	3.69
Pm					
Sm Ch (0.2)	77.64	6.41	22.71	14.47	26.84
Eu Ch (0.076)	43.97	4.36	15.93	9.47	20.99
Gd Ch (0.267)	453.22	46.22	150.81	86.08	141.98
Tb Ch (0.0493)	776.80	99.93	253.73	148.07	243.20
Dy Ch (0.33)	1141.08	171.85	381.12	236.43	364.43
Ho Ch (0.0755)	1690.71	320.02	613.77	400.76	580.59
Er Ch (0.216)	2154.81	549.10	867.22	571.70	818.98
Tm Ch (0.0329)	2405.50	815.73	1136.11	762.12	1066.20
Yb Ch (0.221)	2434.78	1064.23	1233.23	839.73	1183.07
Lu Ch (0.033)	2557.71	1273.23	1442.07	1035.96	1375.43
Ce/Ce*	670.40	#DIV/0!	843.04	585.86	655.72
Hf ppm	8257.74	10638.84	9617.36	10146.11	9249.91
Eu/Eu*	0.23	0.25	0.27	0.27	0.34
P Molar	22.92	7.02	10.10	7.62	9.33
3+ Molar	47.14	11.00	18.56	12.29	18.19
3+/P Molar	2.06	1.57	1.84	1.61	1.95

	Та	ble	C4,	cont.
--	----	-----	-----	-------

	PSTG01C-12.3CDK	PSTG01C-12.4CDK	PSTG01C-4.1IM	PSTG01C-4.2ILT	PSTG01C-7.2IM	PSTG01C-7.3IDK
Element						
Li7	0.00003	0.00004	0.00002	0.00003	0.00000	0.00000
Be9	0.00107	0.00003	0.00001	0.00000	0.00001	0.00000
B11	0.00000	0.00000	0.00002	0.00001	0.00001	0.00000
F19	0.00028	0.00023	0.00024	0.00018	0.00013	0.00016
Na23	0.04862	0.06228	0.06147	0.04226	0.04715	0.04170
Mg24	0.01361	0.01522	0.02238	0.01684	0.01667	0.03308
Al27	0.01502	0.02077	0.02801	0.02030	0.01974	0.01919
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00357	0.00281	0.00251	0.00232	0.00239	0.00239
S32	0.00001	0.00001	0.00000	0.00000	0.00001	0.00001
Cl35	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
К39	0.01480	0.01625	0.01645	0.01199	0.01328	0.01286
Ca40	0.02988	0.02856	0.03935	0.02907	0.02723	0.02566
Sc45	0.03703	0.04146	0.09008	0.07936	0.08040	0.08939
Ti48	0.00551	0.00559	0.01050	0.01036	0.00996	0.01021
Ti49	0.00042	0.00045	0.00074	0.00079	0.00075	0.00077
V51	0.00012	0.00003	0.00012	0.00004	0.00001	0.00002
Cr52	0.00003	0.00004	0.00007	0.00005	0.00005	0.00003
Mn55	0.00016	0.00013	0.00016	0.00012	0.00013	0.00008
Fe56	0.00159	0.00060	0.00166	0.00108	0.00119	0.00190
Ge74	0.00000	0.00000	0.00001	0.00001	0.00000	0.00001
Y89	0.97137	0.36072	0.43679	0.21677	0.21014	0.45272
Nb93	0.00049	0.00049	0.00012	0.00013	0.00019	0.00010
Zr94H	0.00616	0.00567	0.00451	0.00415	0.00389	0.00498
Zr96	1.97692	1.96691	2.06075	2.03728	2.00088	2.05578
La139	0.00002	0.00000	0.00004	0.00001	0.00000	0.00001
Ce140	0.01320	0.01088	0.01216	0.00914	0.00859	0.01200
Pr141	0.00017	0.00003	0.00027	0.00006	0.00003	0.00018
Nd146	0.00043	0.00010	0.00070	0.00013	0.00015	0.00063
Sm147	0.00106	0.00027	0.00099	0.00028	0.00027	0.00099
Eu153	0.00065	0.00023	0.00126	0.00040	0.00036	0.00122
Ho165	0.01806	0.00636	0.00825	0.00399	0.00395	0.00844
GdO173	0.00310	0.00093	0.00207	0.00079	0.00067	0.00214
TbO175	0.00562	0.00163	0.00300	0.00119	0.00124	0.00303
DyO179	0.01254	0.00413	0.00612	0.00264	0.00264	0.00621
ErO182	0.01769	0.00694	0.00821	0.00428	0.00396	0.00865
TmO185	0.00829	0.00317	0.00398	0.00224	0.00197	0.00400
YbO188	0.01007	0.00476	0.00516	0.00291	0.00296	0.00531
LuO191	0.00925	0.00459	0.00518	0.00308	0.00312	0.00530
Zr2O	0.01559	0.01544	0.01739	0.01862	0.01766	0.01943
HtO196	0.1/305	0.18071	0.16009	0.15492	0.15636	0.15827
PD206	0.00002	0.00002	0.00000	0.00000	0.00000	0.00001
207/206	0.34483	0.30303	1.11111	2.22222	0.00000	0.00000
ThO248	0.02859	0.01594	0.00901	0.00447	0.00407	0.00909
00254	0.01528	0.01115	0.00320	0.00231	0.00193	0.00329
	38162.09	38162.09	38163.25	38163.25	38163.31	38163.32
206/238 Age	18 22	28 94	22 50	29 39	24 37	32 73
Li ppm Est	0.02	0.03	0.01	0.02	0.00	0.00
Be9 ppm	2.68	0.08	0.04	0.01	0.02	0.00
B11 ppm	0.02	0.02	0.20	0.08	0.10	0.04
F19 ppm	24.49	20.54	21.74	15.65	11.85	14.43
Na ppm Est.	4.63	5.93	5.85	4.02	4.49	3.97
Mg ppm Est.	1.15	1.29	1.89	1.42	1.41	2.80
Al27 ppm Est.	5.71	7.89	10.64	7.71	7.50	7.29
Si30			-			-
P31 ppm	331.19	260.85	232.74	215.68	221.90	222.25
S32 Rel.	0.78	0.60	0.16	0.31	0.48	0.47

Table (C4, c	cont.
---------	-------	-------

	PSTG01C-12.3CDK	PSTG01C-12.4CDK	PSTG01C-4.1IM	PSTG01C-4.2ILT	PSTG01C-7.2IM	PSTG01C-7.3IDK
K39 Rel.	1.78	1.95	1.98	1.44	1.60	1.55
Ca40 ppm Est.	3.20	3.06	4.21	3.11	2.91	2.75
Sc45 ppm	30.87	34.56	75.10	66.16	67.03	74.52
48/49	13.15	12.41				
Ti48 ppm	15.20	15.42				
Ti49 ppm	14.94	16.07	26.51	28.35	26.61	27.49
V51 ppm Rel.	0.74	0.16	0.72	0.26	0.07	0.14
Cr Rel.	0.04	0.05	0.09	0.06	0.06	0.04
Mn Rel.	0.07	0.06	0.07	0.05	0.06	0.04
Fe56 ppm	1.88	0.71	1.97	1.28	1.41	2.25
Ge74 Rel.	0.11	0.15	0.18	0.37	0.15	0.26
Y89 ppm	2441.89	906.81	1098.02	544.92	528.25	1138.07
Nb93 ppm	6.62	6.60	1.67	1.79	2.52	1.37
7r94H Rel	1 19	1 10	0.87	0.80	0.75	0.96
7r96/Si30 nnm	1.19	1.10	2.06	2.04	2 00	2.06
1 a 1 3 9 nnm	0.06	0.01	0.17	0.02	0.02	0.04
Co140 ppm	102.00	0.01	0.17	71 22	66.02	0.04
Dr nnm	0.20	0.05	0.49	0.11	00.92	0.22
Pr ppm	0.30	0.05	0.48	0.11	0.06	0.32
Na146 ppm	5.98	1.43	9.64	1.80	2.06	8.70
Sm147 ppm	14.44	3.72	13.40	3.82	3.70	13.46
Eu153 ppm	2.83	1.02	5.48	1.75	1.55	5.28
Gd155 ppm	106.42	37.49	48.63	23.50	23.25	49.70
Ho165 ppm	96.52	28.78	64.46	24.42	20.83	66.48
TbO175 ppm	30.90	8.96	16.50	6.56	6.82	16.68
DyO179 ppm	303.47	99.86	148.16	63.89	63.98	150.36
ErO182 ppm	387.97	152.29	180.08	93.85	86.93	189.71
TmO185 ppm	70.57	27.02	33.87	19.07	16.81	34.06
YbO188 ppm	490.09	231.81	251.35	141.55	144.01	258.66
LuO191 ppm	79.66	39.49	44.58	26.49	26.87	45.63
Zr96/Zr20	126.83	127.40	118.47	109.40	113.27	105.79
196/Si30	64.16	64.77	57.49	53.70	56.61	51.46
Hf ppm	9276.44	9686.82	8581.68	8304.50	8381.35	8484.05
Pb7/6 Est	0.34	0.30	1.11	2.22	0.00	0.00
Th ppm	271.74	151.46	85.59	42.45	38.65	86.43
U ppm	133.52	97.38	27.94	20.19	16.85	28.71
Y/Nb	368.79	137.34	656.47	304.09	209.30	831.87
Th/U	2.04	1.56	3.06	2.10	2.29	3.01
Yh/Gd	5.08	8.06	3 90	5.80	6.91	3.89
II/Vh	81.96	161 61	26.07	76 13	69.92	29 51
Th/Vh	0.27	0.42	0.11	0 14	0.12	0.11
Ce/Sm	0.27	0.42	0.11	0.14	0.12	0.33
Co/Lu	7 12	22 76	7.07	19.67	19.07	6.94
	1.12	22.70	7.07	2 60	2 /0	2.05
	1.29	2.15	2.12	2.09	2.45	2.05
rn/ce	1.30	1.15	0.29	0.28	0.25	0.31
1/10	2.64	1.79	0.90	0.60	0.58	0.92
YD/Na	4.98	3.91	4.37	3.85	3.67	4.40
Y/ND	368.79	137.34	656.47	304.09	209.30	831.87
Yb/Nb	/4.02	35.11	150.27	/8.99	57.06	189.07
Yb/Sc	15.88	6.71	3.35	2.14	2.15	3.47
Yb/Dy	1.61	2.32	1.70	2.22	2.25	1.72
Dy/Sm	21.02	26.81	11.05	16.75	17.27	11.17
Yb/Nd	81.96	161.61	26.07	76.13	69.92	29.51
Sm/Nd	2.41	2.60	1.39	2.05	1.80	1.54
U/Li	7467.59	3745.05	2387.83	1117.17	#DIV/0!	#DIV/0!

	PSTG01C-12.3CDK	PSTG01C-12.4CDK	PSTG01C-4.1IM	PSTG01C-4.2ILT	PSTG01C-7.2IM	PSTG01C-7.3IDK
Temp Ti48	774.80	776.15	#NUM!	#NUM!	#NUM!	#NUM!
Temp Ti49	773.19	780.05	829.75	836.78	830.18	833.55
Hf ppm	9276.44	9686.82	8581.68	8304.50	8381.35	8484.05
Ferry Temp	822.44	830.40	888.45	896.71	888.95	892.92
Act Ti	0.70	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00	1.00
Temp. Est.	807.67	814.98	868.12	875.65	868.58	872.19
chondrite normalized REE						
(Anders & Grevesse (1989)						
(in parentheses) * 1.3596						
Korotev Wed Site Wash. U)						
La Ch (0.319)	0.20	0.02	0.53	0.08	0.06	0.12
Ce Ch (0.82)	125.37	103.39	115.52	86.86	81.61	113.98
Pr Ch (0.121)	2.65	0.50	5.07	0.89	0.86	2.86
Nd Ch (0.615)	9.72	2.33	15.67	3.02	3.35	14.25
Pm						
Sm Ch (0.2)	72.19	18.62	67.02	19.08	18.52	67.29
Eu Ch (0.076)	37.29	13.39	72.16	23.03	20.37	69.47
Gd Ch (0.267)	361.50	107.78	241.43	91.46	78.03	248.99
Tb Ch (0.0493)	626.82	181.71	334.63	132.96	138.26	338.28
Dy Ch (0.33)	919.62	302.61	448.97	193.62	193.87	455.65
Ho Ch (0.0755)	1409.51	496.53	644.05	311.31	307.90	658.32
Er Ch (0.216)	1796.14	705.04	833.69	434.50	402.46	878.30
Tm Ch (0.0329)	2144.89	821.35	1029.59	579.72	510.80	1035.29
Yb Ch (0.221)	2217.58	1048.90	1137.32	640.49	651.62	1170.40
Lu Ch (0.033)	2413.99	1196.72	1350.98	802.61	814.23	1382.75
Ce/Ce*	173.12	958.04	70.32	329.94	373.52	198.13
Hfppm	9276.44	9686.82	8581.68	8304.50	8381.35	8484.05
Eu/Eu*	0.23	0.30	0.57	0.55	0.54	0.54
P Molar	10.69	8.42	7.51	6.96	7.17	7.18
3+ Molar	38.39	15.33	19.60	10.53	10.27	20.16
3+/P Molar	3.59	1.82	2.61	1.51	1.43	2.81

	PSTG01C-9.1ILT	PSTG01C-9.2IM	PSTG01C-9.3ILT	PSTG01C-6.2IDK	PSTG01C-1.1ELT	PSTG01C-2.2ELT
Element						
Li7	0.00003	0.00003	0.00005	0.00006	0.00004	0.00003
Be9	0.00000	0.00001	0.00000	0.00001	0.00001	0.00000
B11	0.00001	0.00001	0.00001	0.00003	0.00002	0.00002
F19	0.00023	0.00022	0.00039	0.00026	0.00024	0.00017
Na23	0.04681	0.04871	0.05324	0.07169	0.05017	0.04865
Mg24	0.01508	0.01415	0.01679	0.02702	0.01882	0.01734
Al27	0.03524	0.02540	0.03372	0.03091	0.02692	0.02329
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00258	0.00230	0.00180	0.00231	0.00268	0.00261
S32	0.00000	0.00001	0.00001	0.00002	0.00000	0.00001
Cl35	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
K39	0.01263	0.01447	0.01599	0.01887	0.01436	0.01383
Ca40	0.02999	0.03037	0.03149	0.03427	0.03144	0.03120
Sc45	0.08094	0.06297	0.06164	0.07718	0.07499	0.07495
Ti48	0.01488	0.00980	0.01233	0.01097	0.01188	0.01287
Ti49	0.00106	0.00071	0.00088	0.00080	0.00089	0.00096
V51	0.00004	0.00001	0.00002	0.00006	0.00003	0.00005
Cr52	0.00003	0.00005	0.00004	0.00010	0.00009	0.00006
Mn55	0.00008	0.00013	0.00011	0.00013	0.00012	0.00012
Fe56	0.00102	0.00115	0.00108	0.00116	0.00175	0.00154
Ge74	0.00000	0.00001	0.00001	0.00001	0.00000	0.00001
Y89	0.15194	0.16547	0.10026	0.18239	0.19200	0.19098
Nb93	0.00013	0.00014	0.00007	0.00011	0.00018	0.00016
Zr94H	0.00426	0.00376	0.00396	0.00669	0.00422	0.00452
Zr96	2.01636	1.95504	1.94936	1.99284	1.96761	2.05087
La139	0.00001	0.00000	0.00000	0.00001	0.00000	0.00001
Ce140	0.00830	0.00838	0.00709	0.00821	0.01015	0.01150
Pr141	0.00007	0.00003	0.00002	0.00004	0.00009	0.00006
Nd146	0.00012	0.00010	0.00007	0.00013	0.00016	0.00016
Sm147	0.00022	0.00022	0.00014	0.00023	0.00032	0.00031
Eu153	0.00042	0.00028	0.00019	0.00032	0.00041	0.00042
Ho165	0.00263	0.00287	0.00169	0.00323	0.00350	0.00348
GdO173	0.00059	0.00054	0.00031	0.00068	0.00075	0.00070
TbO175	0.00091	0.00088	0.00045	0.00101	0.00109	0.00112
DyO179	0.00179	0.00194	0.00113	0.00229	0.00258	0.00241
ErO182	0.00286	0.00319	0.00197	0.00359	0.00362	0.00363
Tm0185	0.00145	0.00170	0.00096	0.00182	0.00188	0.00188
YbO188	0.00222	0.00226	0.0014/	0.00266	0.00243	0.002/1
LuO191	0.00230	0.00230	0.00153	0.00291	0.00259	0.00270
Zr20	0.01/08	0.01665	0.01575	0.01527	0.01668	0.01/38
Hf0196	0.15481	0.15311	0.14890	0.15527	0.15378	0.15936
PD206	0.00000	0.00001	0.00000	0.00001	0.00001	0.00001
20//206	0.00000	0.00000	0.00000	5.00000	0.00000	0.00000
InO248	0.00427	0.00456	0.00200	0.00342	0.00484	0.00545
00254	0.00205	0.002/1	0.00120	0.00167	0.00261	0.00263
	38163.35	38163.36	38163.37	38161.95	38163.21	38163.22
206/238 Age	22.23	77.55	64.36	57.50	32.27	44.26
Li ppm Est	0.02	0.02	0.03	0.04	0.02	0.02
Be9 ppm	0.00	0.01	0.01	0.03	0.02	0.01
B11 ppm	0.07	0.11	0.08	0.27	0.14	0.19
F19 ppm	20.63	19.85	34.40	23.36	21.00	14.69
Na ppm Est.	4.46	4.64	5.07	6.82	4.78	4.63
Mg ppm Est.	1.28	1.20	1.42	2.29	1.59	1.47
Al27 ppm Est.	13.39	9.65	12.81	11.74	10.23	8.85
Si30						
P31 ppm	239.05	213.64	166.80	214.73	249.21	242.28
S32 Rel.	0.31	0.63	0.35	0.98	0.31	0.51

	PSTG01C-9.1ILT	PSTG01C-9.2IM	PSTG01C-9.3ILT	PSTG01C-6.2IDK	PSTG01C-1.1ELT	PSTG01C-2.2ELT
K39 Rel.	1.52	1.74	1.92	2.27	1.73	1.66
Ca40 ppm Est.	3.21	3.25	3.37	3.67	3.36	3.34
Sc45 ppm	67.48	52.50	51.39	64.35	62.52	62.48
48/49				13.72		
Ti48 ppm				30.27		
Ti49 ppm	37.82	25.25	31.33	28.52	31.68	34.08
V51 ppm Rel.	0.22	0.08	0.12	0.37	0.19	0.33
Cr Rel.	0.03	0.06	0.04	0.13	0.11	0.08
Mn Rel.	0.04	0.06	0.05	0.06	0.05	0.05
Fe56 ppm	1.21	1.36	1.27	1.37	2.07	1.82
Ge74 Rel.	0.09	0.23	0.39	0.25	0.06	0.25
Y89 ppm	381.95	415.97	252.04	458.50	482.66	480.10
Nb93 ppm	1.76	1.94	0.92	1.54	2.40	2.21
Zr94H Rel.	0.82	0.73	0.77	1.29	0.81	0.87
Zr96/Si30 ppm	2.02	1.96	1.95	1.99	1.97	2.05
La139 ppm	0.02	0.01	0.00	0.03	0.02	0.04
Ce140 ppm	64.69	65.31	55.25	63.93	79.05	89.59
Pr ppm	0.13	0.06	0.04	0.06	0.15	0.10
Nd146 ppm	1.65	1.44	0.96	1.82	2.25	2.16
Sm147 ppm	2.93	3.03	1.89	3.12	4.33	4.28
Eu153 ppm	1.84	1.22	0.82	1.38	1.80	1.82
Gd155 ppm	15.50	16.92	9.98	19.02	20.60	20.47
Ho165 ppm	18.37	16.65	9.66	21.06	23.19	21.89
TbO175 ppm	5.01	4.84	2.50	5.56	6.00	6.15
DyO179 ppm	43.35	46.94	27.43	55.45	62.44	58.20
ErO182 ppm	62.82	69.91	43.20	78.71	79.43	79.56
TmO185 ppm	12.32	14.44	8.21	15.47	16.04	15.98
YbO188 ppm	108.23	109.90	71.35	129.34	118.07	131.70
LuO191 ppm	19.83	19.79	13.16	25.05	22.31	23.26
Zr96/Zr2O	118.05	117.43	123.75	130.53	117.97	117.98
196/Si30	58.55	60.06	63.48	65.50	59.96	57.52
Hf ppm	8298.23	8207.06	7981.41	8323.15	8243.26	8542.34
Pb7/6 Est	0.00	0.00	0.00	5.00	0.00	0.00
Th ppm	40.62	43.38	19.03	32.48	45.98	51.80
U ppm	17.90	23.67	10.49	14.56	22.77	22.99
Y/ND	217.12	214.89	2/3.40	297.02	201.22	217.15
In/U	2.27	1.83	1.81	2.23	2.02	2.25
Yb/Gd	5.89	6.60	7.39	6.14	5.09	6.02
U/Yb	65.56	76.25	74.35	70.89	52.46	61.00
Th/Yb	0.17	0.22	0.15	0.11	0.19	0.17
Ce/Sm	0.38	0.39	0.27	0.25	0.39	0.39
Ce/Lu	22.12	21.54	29.29	20.46	18.25	20.94
U/Ce	3.26	3.30	4.20	2.55	3.54	3.85
Th/Ce	0.28	0.36	0.19	0.23	0.29	0.26
Y/Yb	0.63	0.66	0.34	0.51	0.58	0.58
Yb/Nd	3.53	3.78	3.53	3.54	4.09	3.65
Y/Nb	217.12	214.89	273.40	297.02	201.22	217.15
Yb/Nb	61.52	56.77	77.40	83.79	49.22	59.57
Yb/Sc	1.60	2.09	1.39	2.01	1.89	2.11
Yb/Dy	2.50	2.34	2.60	2.33	1.89	2.26
Dy/Sm	14.82	15.48	14.54	17.74	14.42	13.60
Yb/Nd	65.56	76.25	74.35	70.89	52.46	61.00
Sm/Nd	1.77	2.10	1.97	1.71	1.92	1.98
U/Li	1107.81	1429.14	367.35	368.48	973.45	1154.02

	PSTG01C-9.1ILT	PSTG01C-9.2IM	PSTG01C-9.3ILT	PSTG01C-6.2IDK	PSTG01C-1.1ELT	PSTG01C-2.2ELT
Tomp Tid9	#5111541	#51115.41	#NULINA	942 72	#NU IN 41	#50.004
Tomp Ti40	#NON!	#NOIVI! 824 74	#NON!	045.72 927 12	#NON!	#INUIVI:
Hf nnm	007.33	824.74	7091 41	037.42	040.35	050.55
Forry Tomp	0290.25	8207.00	000 22	807 47	010 62	010 07
	933.33	0.70	0.70	0.70	0.70	0.70
Act Si	0.70	0.70	0.70	0.70	0.70	0.70
Temp. Est.	909 12	862 76	887.04	876 34	888 31	896.82
chondrite normalized RFF	505.12	002.70	007.04	070.34	000.51	050.02
(Anders & Grevesse (1989)						
(in narentheses) * 1.3596						
Korotev Wed Site Wash.						
U)						
La Ch (0.319)	0.07	0.03	0.01	0.08	0.05	0.14
Ce Ch (0.82)	78.89	79.65	67.37	77.97	96.40	109.25
Pr Ch (0.121)	0.78	0.55	0.25	0.90	0.90	1.19
Nd Ch (0.615)	2.68	2.34	1.56	2.97	3.66	3.51
Pm						
Sm Ch (0.2)	14.63	15.16	9.43	15.62	21.65	21.39
Eu Ch (0.076)	24.17	16.11	10.83	18.18	23.66	24.01
Gd Ch (0.267)	68.82	62.36	36.18	78.89	86.84	81.97
Tb Ch (0.0493)	101.53	98.08	50.70	112.75	121.76	124.80
Dy Ch (0.33)	131.35	142.25	83.11	168.02	189.23	176.36
Ho Ch (0.0755)	205.26	224.14	132.20	251.87	272.79	271.15
Er Ch (0.216)	290.85	323.68	200.01	364.39	367.71	368.35
Tm Ch (0.0329)	374.40	438.88	249.55	470.28	487.65	485.57
Yb Ch (0.221)	489.74	497.29	322.86	585.24	534.23	595.93
Lu Ch (0.033)	600.81	599.71	398.74	759.22	676.03	704.96
Ce/Ce*	347.22	610.12	1619.01	284.15	435.29	268.73
Hfppm	8298.23	8207.06	7981.41	8323.15	8243.26	8542.34
Eu/Eu*	0.76	0.52	0.59	0.52	0.55	0.57
P Molar	7.72	6.90	5.39	6.93	8.05	7.82
3+ Molar	8.00	8.13	5.50	9.17	9.51	9.61
3+/P Molar	1.04	1.18	1.02	1.32	1.18	1.23

	PSTG01C-4.3ELT	PSTG01C-6.3ELT	PSTG01C-9.4EM	PSTG01C-5.1CDK	PSTG01C-5.2I	PSTG01C-3.1ELT	PSTG01C-2.2ELT
Element							
Li7	0.00001	0.00002	0.00002	0.00010	0.00016	0.00000	0.00001
Be9	0.00000	0.00000	0.00000	0.00042	0.00064	0.00000	0.00001
B11	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
F19	0.00017	0.00014	0.00013	0.00048	0.00034	0.00025	0.00017
Na23	0.05055	0.05100	0.04722	0.35674	0.09310	0.05354	0.03005
Mg24	0.02060	0.02459	0.02735	0.07909	0.39281	0.01806	0.07849
Al27	0.04536	0.02308	0.02097	0.20212	0.03026	0.02173	0.01780
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00262	0.00247	0.00234	0.00419	0.00470	0.00250	0.00251
S32	0.00001	0.00002	0.00000	0.00001	0.00008	0.00000	0.00001
Cl35	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
К39	0.01412	0.01406	0.01465	0.06647	0.01779	0.01291	0.00936
Ca40	0.03166	0.02907	0.03005	0.13106	0.03001	0.02469	0.01945
Sc45	0.07692	0.08856	0.05097	0.03938	0.08068	0.05472	0.05013
Ti48	0.01162	0.01098	0.00799	0.01148	0.00911	0.00910	0.00925
Ti49	0.00087	0.00085	0.00064	0.00085	0.00066	0.00068	0.00067
V51	0.00001	0.00002	0.00002	0.00072	0.00006	0.00004	0.00006
Cr52	0.00005	0.00006	0.00003	0.00006	0.00009	0.00007	0.00007
Mn55	0.00015	0.00014	0.00013	0.00459	0.00013	0.00014	0.00008
Fe56	0.00171	0.00176	0.00148	0.03941	0.00574	0.00079	0.00343
Ge74	0.00001	0.00001	0.00000	0.00001	0.00002	0.00001	0.00000
V89	0 12975	0 20952	0 22146	1 15230	0 59261	0 22534	0 23232
Nh93	0.00008	0.00014	0.00026	0.00064	0.00063	0.00018	0.00018
7r94H	0.00388	0.00014	0.00399	0.00458	0.00609	0.00688	0.00722
Zr96	1 98918	2 01966	1 99697	1 99931	1 95147	1 97507	2 01515
12130	0.00000	0.00000	0.00000	0.00015	0.00001	0.00000	0.00001
Co140	0.00000	0.00000	0.00000	0.00015	0.00001	0.00000	0.00001
Dr1/1	0.00474	0.00905	0.00005	0.01703	0.01303	0.00943	0.01005
Nd1/6	0.00004	0.00000	0.00003	0.00027	0.00015	0.00008	0.00008
Nu140	0.00011	0.00010	0.00008	0.00002	0.00010	0.00010	0.00010
511147	0.00010	0.00027	0.00020	0.00129	0.00010	0.00020	0.00024
E0155	0.00030	0.00040	0.00018	0.00085	0.00030	0.00020	0.00020
CdO172	0.00210	0.00380	0.00400	0.02243	0.01008	0.00423	0.00410
GUO175	0.00044	0.00073	0.00074	0.00393	0.00173	0.00081	0.00008
100175	0.00065	0.00120	0.00117	0.00700	0.00316	0.00125	0.00120
Dy0179	0.00150	0.00263	0.00272	0.01573	0.00745	0.00289	0.00290
EI 0102 Tm0195	0.00233	0.00391	0.00439	0.02192	0.01190	0.00438	0.00403
VE0189	0.00140	0.00207	0.00222	0.00982	0.00364	0.00225	0.00222
100100	0.00208	0.00296	0.00329	0.01228	0.00754	0.00305	0.00300
7-20	0.00215	0.00310	0.00332	0.01110	0.00722	0.00308	0.00307
2120	0.01050	0.01042	0.01071	0.01700	0.01455	0.01479	0.01373
HIU190	0.15966	0.15566	0.10238	0.17272	0.15580	0.10205	0.10352
P0200	0.00001	0.00001	0.00001	0.00002	0.00001	0.00001	0.00001
207/206	0.00000	0.00000	2.00000	0.00000	0.00000	0.00000	0.00000
10248	0.00153	0.00373	0.00583	0.04246	0.01835	0.00547	0.00587
00254	0.00107	0.00186	0.00395	0.02014	0.00950	0.00309	0.00353
	38163.26	38163.30	38163.38	38163.27	38161.91	38161.85	38161.84
206/229 400	09.20	66.20	20 50	16.06	10 00	25.27	E0 E1
Linnm Ect	0.01	0.30	0.01	10.90	0.10	0.00	0.00
Ei ppili Est Boû nom	0.01	0.01	0.01	1.06	1.60	0.00	0.00
Bes ppin	0.00	0.00	0.01	1.00	1.00	0.00	0.02
511 ppm	0.00	12.27	11.25	0.00	0.00	0.12	15.00
PIJ ppm	14.7U A 01	12.37 A OE	11.20	42.75	23.9U 8 0C	5 10	13.00
Ma pom Est.	4.01	4.00	4.49	55.90	0.00	5.10	2.00
Nig ppili Est.	17 72	2.00 77	2.31	76 70	33.22 11 EO	1.33 1.33	6 76
Si20	17.23	0.//	1.97	10.19	11.50	0.20	0.70
P31 nnm	243 63	229 31	216.85	388 57	435 99	231 76	233 45
\$32 Rol	0.49	1 08	0.16	0 32	4 88	0.00	0.40
332 NCh	0.40	1.00	0.10	0.04		0.00	0.40

	PSTG01C-4.3ELT	PSTG01C-6.3ELT	PSTG01C-9.4EM	PSTG01C-5.1CDK	PSTG01C-5.2I	PSTG01C-3.1ELT	PSTG01C-2.2ELT
K39 Rel.	1.70	1.69	1.76	7.99	2.14	1.55	1.12
Ca40 ppm Est.	3.39	3.11	3.21	14.02	3.21	2.64	2.08
Sc45 ppm	64.12	73.83	42.49	32.83	67.26	45.62	41.79
48/49					13.81	13.33	13.82
Ti48 ppm					25.13	25.11	25.53
Ti49 ppm	30.94	30.18	22.69	30.23	23.53	24.36	23.89
V51 ppm Rel.	0.05	0.10	0.12	4.45	0.39	0.26	0.37
Cr Rel.	0.06	0.07	0.04	0.07	0.11	0.09	0.08
Mn Rel.	0.06	0.06	0.06	1.99	0.06	0.06	0.03
Fe56 ppm	2.02	2.08	1.75	46.58	6.78	0.94	4.06
Ge74 Rel.	0.18	0.43	0.12	0.30	0.64	0.22	0.04
Y89 ppm	326.18	526.70	556.72	2896.71	1489.75	566.49	584.01
Nb93 ppm	1.03	1.82	3.50	8.62	8.40	2.43	2.41
Zr94H Rel.	0.75	0.78	0.77	0.88	1.18	1.33	1.39
Zr96/Si30 ppm	1.99	2.02	2.00	2.00	1.95	1.98	2.02
La139 ppm	0.01	0.02	0.01	0.61	0.06	0.01	0.03
Ce140 ppm	36.91	70.54	69.06	137.46	117.27	73.46	78.30
Pr ppm	0.07	0.11	0.09	0.47	0.27	0.14	0.14
Nd146 ppm	1.47	2.17	1.17	8.56	2.25	1.45	1.34
Sm147 ppm	2.17	3.69	2.72	17.57	1.39	3.55	3.22
Eu153 ppm	1.31	1.74	0.79	3.69	1.58	1.13	1.13
Gd155 ppm	12.73	22.74	23.95	132.10	62.89	25.25	24.15
Ho165 ppm	13.71	23.42	23.01	122.25	54.34	25.12	21.21
TbO175 ppm	3.58	6.58	6.46	38.52	17.40	6.87	6.96
DvO179 ppm	37.67	63.52	65.89	380.53	180.22	69.89	70.14
FrO182 ppm	55.92	85.79	100.60	480.80	262.23	95.99	101.58
TmO185 npm	11.92	17.59	18.93	83.60	49.68	19.17	18.86
YbO188 ppm	101.03	144 14	160.03	597.77	366.82	148.26	145.93
LuO191 ppm	18 51	26.70	28.56	95.56	62.18	26.52	26.39
Zr96/Zr20	122.03	122.98	119.50	113.62	134 33	133 58	127.94
196/Si30	61.35	60.89	59.84	56.83	68.84	67.63	63 49
Hfppm	8558.60	8356.02	8704.18	9258.33	8354.85	8686.46	8765.54
Pb7/6 Est	0.00	0.00	2.00	0.00	0.00	0.00	0.00
Th nnm	14 55	35.44	55 43	403.48	174 36	52.01	55 79
Uppm	9.33	16 29	34.50	175.97	82.98	26.96	30.87
• pp	5155	10125	0 1100	270.07	02130	20100	56167
Y/Nb	317.70	289.14	159.28	335.95	177.41	232.78	242.35
Th/U	1.56	2.18	1.61	2.29	2.10	1.93	1.81
Yb/Gd	7.37	6.15	6.95	4.89	6.75	5.90	6.88
U/Yb	68.55	66.51	136.62	69.86	163.26	102.09	108.72
Th/Yb	0.09	0.11	0.22	0.29	0.23	0.18	0.21
Ce/Sm	0.14	0.25	0.35	0.67	0.48	0.35	0.38
Ce/Lu	17.02	19.11	25.43	7.82	84.08	20.69	24.28
U/Ce	1.99	2.64	2.42	1.44	1.89	2.77	2.97
Th/Ce	0.25	0.23	0.50	1.28	0.71	0.37	0.39
Y/Yb	0.39	0.50	0.80	2.94	1.49	0.71	0.71
Yb/Nd	3.23	3.65	3.48	4.85	4.06	3.82	4.00
Y/Nb	317.70	289.14	159.28	335.95	177.41	232.78	242.35
Yb/Nb	98.40	79.13	45.79	69.33	43.68	60.93	60.56
Yb/Sc	1.58	1.95	3.77	18.21	5.45	3.25	3.49
Yb/Dv	2.68	2.27	2.43	1.57	2.04	2.12	2.08
Dv/Sm	17.37	17.21	24.27	21.66	129.21	19.69	21.75
Yb/Nd	68.55	66.51	136.62	69.86	163.26	102.09	108.72
Sm/Nd	1.47	1.70	2.32	2.05	0.62	2.44	2.40
U/Li	1447.71	1260.82	2307.06	2822.22	812.55	20482.20	7801.76
-,							

	PSTG01C-4.3ELT	PSTG01C-6.3ELT	PSTG01C-9.4EM	PSTG01C-5.1CDK	PSTG01C-5.2I	PSTG01C-3.1ELT	PSTG01C-2.2ELT
Temp Ti48	#NUM!	#NUM!	#NUM!	#NUM!	824.24	824.16	825.87
Temp Ti49	846.06	843.40	813.83	843.59	817.49	821.03	819.03
Hf ppm	8558.60	8356.02	8704.18	9258.33	8354.85	8686.46	8765.54
Ferry Temp	907.63	904.50	869.79	904.73	874.08	878.22	875.88
Act Ti	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temp. Est.	885.59	882.75	851.09	882.95	855.00	858.78	856.65
chondrite normalized REE (Anders & Grevesse							
(1989) (in parentheses) *							
1.3596 Korotev Wed Site							
Wash. U)							
La Ch (0.319)	0.04	0.05	0.04	1.92	0.17	0.05	0.09
Ce Ch (0.82)	45.01	86.02	84.22	167.63	143.02	89.58	95.49
Pr Ch (0.121)	0.64	0.85	0.52	7.20	1.32	0.64	0.77
Nd Ch (0.615)	2.40	3.52	1.90	13.91	3.65	2.36	2.18
Pm							
Sm Ch (0.2)	10.84	18.45	13.58	87.86	6.97	17.75	16.12
Eu Ch (0.076)	17.23	22.89	10.43	48.51	20.82	14.92	14.84
Gd Ch (0.267)	51.33	87.73	86.19	457.87	203.51	94.09	79.44
Tb Ch (0.0493)	72.71	133.55	131.09	781.38	352.90	139.35	141.11
Dy Ch (0.33)	114.16	192.49	199.67	1153.12	546.12	211.80	212.55
Ho Ch (0.0755)	168.59	301.23	317.16	1749.74	832.99	334.41	319.86
Er Ch (0.216)	258.87	397.16	465.74	2225.91	1214.02	444.41	470.30
Tm Ch (0.0329)	362.25	534.62	575.46	2540.97	1509.95	582.72	573.22
Yb Ch (0.221)	457.14	652.20	724.13	2704.85	1659.83	670.87	660.34
Lu Ch (0.033)	560.84	809.00	865.47	2895.85	1884.24	803.73	799.85
Ce/Ce*	266.92	422.55	599.59	45.05	298.33	516.44	355.61
Hf ppm	8558.60	8356.02	8704.18	9258.33	8354.85	8686.46	8765.54
Eu/Eu*	0.73	0.57	0.30	0.24	0.55	0.37	0.41
P Molar	7.87	7.40	7.00	12.55	14.08	7.48	7.54
3+ Molar	6.91	10.44	10.27	46.03	25.41	10.43	10.57
3+/P Molar	0.88	1.41	1.47	3.67	1.80	1.39	1.40

	PSTG01C-7.1ELT	PSTG01C-5.3ILT	PSTG01C-12.2IMED	PSTG01C-11.1ILT	PSTG01C-10.1ELT	PSTG01C-9.1ELT
Element						
Li7	0.00000	0.00002	0.00003	0.00004	0.00004	0.00005
Be9	0.00000	0.00004	0.00003	0.00000	0.00001	0.00000
B11	0.00001	0.00002	0.00001	0.00001	0.00002	0.00002
F19	0.00019	0.00020	0.00021	0.00014	0.00026	0.00020
Na23	0.04688	0.05883	0.05460	0.03916	0.06394	0.06424
Mg24	0.01538	0.01818	0.01668	0.01221	0.02147	0.02104
Al27	0.01923	0.02422	0.02788	0.02257	0.02731	0.03401
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00216	0.00221	0.00267	0.00217	0.00357	0.00254
S32	0.00001	0.00001	0.00000	0.00001	0.00001	0.00000
Cl35	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
К39	0.01092	0.01596	0.01584	0.01128	0.01868	0.01629
Ca40	0.02328	0.02746	0.02872	0.02069	0.03069	0.03102
Sc45	0.05612	0.06257	0.07234	0.06061	0.12446	0.06549
Ti48	0.01023	0.01104	0.01160	0.01104	0.01310	0.01197
Ti49	0.00075	0.00079	0.00086	0.00078	0.00100	0.00088
V51	0.00006	0.00007	0.00009	0.00004	0.00006	0.00008
Cr52	0.00008	0.00006	0.00006	0.00003	0.00010	0.00007
Mn55	0.00008	0.00008	0.00011	0.00009	0.00012	0.00014
Fe56	0.00080	0.00099	0.00103	0.00076	0.00109	0.00103
Ge74	0.00000	0.00001	0.00001	0.00001	0.00001	0.00001
Y89	0.17463	0.16195	0.18281	0.15711	0.28216	0.14641
Nb93	0.00018	0.00015	0.00015	0.00012	0.00020	0.00009
7r94H	0.00010	0.00664	0.00540	0.00012	0.00576	0.00596
Zr96	2 02175	1 961/15	2 00011	2 03212	1 97040	1 9793/
12139	0.00000	0.00000	0.00000	0.00000	0.00001	0.00001
Ce1/0	0.00000	0.00000	0.00000	0.00000	0.00001	0.00001
Dr1/1	0.00005	0.00007	0.00007	0.00075	0.01010	0.00055
FI 141	0.00000	0.00007	0.00007	0.00003	0.00012	0.00000
Nu140	0.00007	0.00010	0.00014	0.00010	0.00027	0.00011
511147	0.00018	0.00017	0.00027	0.00018	0.00042	0.00019
EU155	0.00022	0.00027	0.00039	0.00028	0.00064	0.00032
H0105	0.00309	0.00291	0.00336	0.00272	0.00494	0.00255
GdO173	0.00055	0.00061	0.00076	0.00055	0.00110	0.00051
160175	0.00094	0.00088	0.00108	0.00083	0.00159	0.00082
Dy0179	0.00203	0.00193	0.00237	0.00189	0.00340	0.00169
Er0182	0.00329	0.00322	0.00355	0.00295	0.00570	0.00283
Tm0185	0.001/8	0.00162	0.00190	0.00153	0.00301	0.00143
YbO188	0.00247	0.00216	0.00252	0.00230	0.00435	0.00205
LuO191	0.00253	0.00226	0.00268	0.00229	0.00463	0.00234
Zr2O	0.01618	0.01567	0.01516	0.01580	0.01437	0.01482
HfO196	0.16074	0.15326	0.16017	0.15790	0.14242	0.15096
Pb206	0.00001	0.00000	0.00000	0.00000	0.00001	0.00000
207/206	0.00000	0.00000	1.42857	0.00000	0.00000	0.00000
ThO248	0.00421	0.00410	0.00485	0.00364	0.00544	0.00315
UO254	0.00233	0.00207	0.00248	0.00220	0.00320	0.00173
	38161.96	38161.92	38162.08	38162.05	38162.03	38162.02
206/238 Age	81.34	33.45	27.08	17.92	27.63	43.55
Li ppm Est	0.00	0.02	0.02	0.02	0.02	0.03
Be9 ppm	0.00	0.09	0.08	0.00	0.02	0.01
B11 ppm	0.09	0.17	0.10	0.09	0.15	0.20
F19 ppm	16.75	17.74	18.83	12.14	23.12	17.69
Na ppm Est.	4.46	5.60	5.20	3.73	6.09	6.11
Mg ppm Est.	1.30	1.54	1.41	1.03	1.82	1.78
Al27 ppm Est.	7.31	9.20	10.59	8.57	10.38	12.92
P31 ppm	200.76	205.37	247.42	201.67	331.41	235.60
S32 Rel.	0.61	0.81	0.20	0.40	0.80	0.00

	PSTG01C-7.1ELT	PSTG01C-5.3ILT	PSTG01C-12.2IMED	PSTG01C-11.1ILT	PSTG01C-10.1ELT	PSTG01C-9.1ELT
K39 Rel.	1.31	1.92	1.90	1.36	2.24	1.96
Ca40 ppm Est.	2.49	2.94	3.07	2.21	3.28	3.32
Sc45 ppm	46.78	52.16	60.31	50.53	103.76	54.59
48/49	13.66	13.99	13.53	14.13	13.10	13.55
Ti48 ppm	28.21	30.46	32.00	30.45	36.14	33.03
Ti49 ppm	26.71	28.14	30.59	27.85	35.67	31.51
V51 ppm Rel.	0.35	0.42	0.57	0.24	0.37	0.48
Cr Rel.	0.09	0.07	0.07	0.04	0.12	0.09
Mn Rel.	0.03	0.04	0.05	0.04	0.05	0.06
Fe56 ppm	0.94	1.17	1.21	0.89	1.29	1.22
Ge74 Rel.	0.11	0.41	0.29	0.44	0.37	0.28
Y89 nnm	439.00	407.13	459 57	394 95	709 32	368.04
Nh93 nnm	2 45	1 96	1 98	1 59	2 66	1 20
7r9/H Rol	1 26	1.50	1.50	1.55	1 11	1.20
7r96/Si30 nnm	2.02	1.20	2.00	2.03	1.11	1.15
1 21 20 21 20 21 20 21 20 21 20 21 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	0.01	0.01	2.00	2.05	0.02	1.56
Co140 nnm	74.24	70.05	0.02	69.10	79.60	0.03
Certeo ppin	74.24	70.95	77.65	00.19	78.09	54.40
Pr ppm	0.10	0.12	0.13	0.05	0.21	0.11
Na146 ppm	1.03	1.39	1.98	1.33	3./5	1.46
Sm147 ppm	2.50	2.27	3.70	2.41	5.72	2.56
Eu153 ppm	0.95	1.16	1.70	1.20	2.79	1.37
Gd155 ppm	18.22	17.12	19.77	16.01	29.08	15.04
Ho165 ppm	17.20	18.83	23.55	17.17	34.18	15.94
TbO175 ppm	5.17	4.85	5.95	4.55	8.77	4.51
DyO179 ppm	49.21	46.78	57.39	45.79	82.36	40.81
ErO182 ppm	72.15	70.62	77.93	64.78	125.01	62.15
TmO185 ppm	15.13	13.79	16.16	13.02	25.62	12.17
YbO188 ppm	120.35	105.22	122.87	112.06	211.57	99.70
LuO191 ppm	21.82	19.45	23.04	19.72	39.88	20.11
Zr96/Zr2O	124.98	125.21	131.96	128.62	137.16	133.56
196/Si30	61.82	63.83	65.98	63.29	69.61	67.48
Hf ppm	8616.47	8215.60	8585.57	8463.93	7634.25	8092.06
Pb7/6 Est	0.00	0.00	1.43	0.00	0.00	0.00
Th ppm	40.00	38.98	46.13	34.57	51.67	29.94
U ppm	20.32	18.08	21.68	19.20	27.95	15.13
Y/Nb	179.27	208.10	232.03	248.92	266.18	307.06
Th/U	1.97	2.16	2.13	1.80	1.85	1.98
Yh/Gd	7.00	5 59	5 22	6 53	6.19	6.26
U/Yh	117 25	75.66	62.09	84 04	56 44	68.42
Th/Vh	0.17	0.17	0.18	0 17	0.13	0.15
Co/Sm	0.17	0.17	0.10	0.17	0.15	0.15
Co/lu	20.33	21 20	0.58	20.31	12 75	21 21
	23.74	2.65	21.04	20.50	107	21.51
U/Ce	3.40	3.05	3.38	3.40	1.97	2.71
N/Vh	0.27	0.25	0.28	0.28	0.50	0.28
Y/YD	0.54	0.55	0.59	0.51	0.66	0.55
YD/NO	3.65	3.87	3./4	3.52	3.35	3.69
Y/ND	1/9.2/	208.10	232.03	248.92	266.18	307.06
Yb/Nb	49.15	53.78	62.03	70.63	79.39	83.18
Yb/Sc	2.57	2.02	2.04	2.22	2.04	1.83
Yb/Dy	2.45	2.25	2.14	2.45	2.57	2.44
Dy/Sm	19.72	20.57	15.51	19.01	14.39	15.97
Yb/Nd	117.25	75.66	62.09	84.04	56.44	68.42
Sm/Nd	2.43	1.64	1.87	1.81	1.53	1.75
U/Li	15340.92	1145.39	1131.91	862.16	1188.58	524.58

Table	e C4,	cont.
-------	-------	-------

	PSTG01C-7.1ELT	PSTG01C-5.3ILT	PSTG01C-12.2IMED	PSTG01C-11.1ILT	PSTG01C-10.1ELT	PSTG01C-9.1ELT
Temp Ti48	836.28	844.40	849.69	844.35	862.95	853.12
Temp Ti49	830.54	836.02	844.84	834.93	861.51	848.03
Hf ppm	8616.47	8215.60	8585.57	8463.93	7634.25	8092.06
Ferry Temp	889.37	895.81	906.19	894.54	925.86	909.95
Act Ti	0.70	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00	1.00
Temp. Est.	868.96	874.83	884.29	873.67	902.16	887.71
chondrite normalized REE						
(Anders & Grevesse (1080) (in paranthasas) *						
(1989) (in parentneses)						
1.5550 KOIOLEV WEU SILE						
Wash. 0)	0.02	0.04	0.06	0.02	0.09	0.09
Ce Ch (0.82)	90.53	86 53	94 91	83.15	95.97	66.41
Pr Ch (0.121)	0.40	0.58	0.86	0.48	1 47	0.80
Nd Ch (0.615)	1.67	2.26	3.22	2.17	6.10	2.37
Pm	1107	2120	0.22	E 127	0120	2107
Sm Ch (0.2)	12.48	11.37	18.50	12.05	28.62	12.78
Eu Ch (0.076)	12.46	15.23	22.40	15.74	36.66	18.05
Gd Ch (0.267)	64.42	70.51	88.21	64.32	128.03	59.69
Tb Ch (0.0493)	104.79	98.48	120.63	92.30	177.97	91.53
Dy Ch (0.33)	149.13	141.74	173.90	138.75	249.59	123.67
Ho Ch (0.0755)	241.35	226.73	261.81	212.08	385.16	199.14
Er Ch (0.216)	334.04	326.93	360.77	299.89	578.75	287.71
Tm Ch (0.0329)	459.91	419.11	491.15	395.72	778.80	369.80
Yb Ch (0.221)	544.57	476.09	555.97	507.06	957.34	451.11
Lu Ch (0.033)	661.13	589.27	698.18	597.46	1208.56	609.33
Ce/Ce*	926.22	571.82	415.77	785.47	270.62	248.92
Hf ppm	8616.47	8215.60	8585.57	8463.93	7634.25	8092.06
Eu/Eu*	0.44	0.54	0.55	0.57	0.61	0.65
P Molar	6.48	6.63	7.99	6.51	10.70	7.61
3+ Molar	8.43	8.04	9.18	7.83	14.24	7.39
3+/P Molar	1.30	1.21	1.15	1.20	1.33	0.97

	PSTG01C-6.1FLT	PSTG01C-5.1FLT	PSTG01C-1.1FLT	PSTG01C-7.2ILT	PSTG01C-12.1FLT
Element					
Li7	0.00003	0.00007	0.00005	0.00005	0.00001
Be9	0.00000	0.00000	0.00000	0.00000	0.00000
B11	0.00001	0.00002	0.00001	0.00001	0.00001
F19	0.00022	0.00030	0.00033	0.00014	0.00017
Na23	0.05754	0.07220	0.05690	0.05258	0.04909
Mg24	0.01884	0.03007	0.04731	0.01432	0.02016
Al27	0.03934	0.03715	0.05146	0.04722	0.04575
Si30	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00248	0.00327	0.00247	0.00213	0.00259
S32	0.00000	0.00001	0.00001	0.00001	0.00002
CI35	0.00000	0.00000	0.00000	0.00000	0.00000
K39	0.01432	0.01829	0.01967	0.01332	0.01407
Ca40	0.02791	0.03937	0.02983	0.02566	0.02640
Sc45	0.08696	0.05396	0.07968	0.06092	0.06555
Ti48	0.01319	0.00835	0.01386	0.01465	0.01470
Ti49	0.00105	0.00064	0.00101	0.00109	0.00105
V51	0.00006	0.00005	0.00007	0.00007	0.00006
Cr52	0.00008	0.00011	0.00009	0.00008	0.00005
Mn55	0.00010	0.00021	0.00015	0.00014	0.00010
Fe56	0.00097	0.00122	0.00178	0.00098	0.00124
Ge74	0.00000	0.00001	0.00000	0.00000	0.00000
Y89	0.16696	0.27999	0.26891	0.10345	0.12850
Nb93	0.00009	0.00020	0.00009	0.00009	0.00007
7r9/H	0.00793	0.00676	0.00747	0.00654	0.00703
2r96	1 98510	2 03025	1 97//7	2 01636	2 03/07
10120	0.00001	0.00000	0.00000	0.00001	0.00000
Co140	0.00001	0.00000	0.00000	0.00001	0.00000
Ce140 D=141	0.00560	0.01040	0.00559	0.00329	0.00464
PT141	0.00007	0.00005	0.00012	0.00008	0.00008
Nu140	0.00012	0.00013	0.00029	0.00008	0.00008
Sm147	0.00024	0.00006	0.00048	0.00013	0.00015
EU153	0.00042	0.00027	0.00091	0.00027	0.00033
H0165	0.00294	0.00501	0.00490	0.00188	0.00225
GdO1/3	0.00063	0.00098	0.00122	0.00037	0.00046
1001/5	0.00095	0.00152	0.00174	0.00059	0.00069
DyO179	0.00209	0.00359	0.00363	0.00127	0.00151
ErO182	0.00307	0.00557	0.00488	0.00195	0.00244
TmO185	0.00150	0.00291	0.00248	0.00107	0.00129
YbO188	0.00225	0.00391	0.00334	0.00149	0.00180
LuO191	0.00238	0.00407	0.00343	0.00163	0.00196
Zr2O	0.01624	0.01530	0.01591	0.01572	0.01582
HfO196	0.13695	0.17015	0.14229	0.14904	0.14967
Pb206	0.00000	0.00001	0.00000	0.00001	0.00000
207/206	0.00000	0.00000	0.00000	0.00000	0.00000
ThO248	0.00256	0.00882	0.00377	0.00229	0.00246
UO254	0.00123	0.00514	0.00159	0.00130	0.00134
	38161.94	38161.91	38161.82	38161.97	38162.07
206/238 Age	59.21	25.33	47.11	87.19	56.32
Li ppm Est	0.02	0.04	0.03	0.03	0.01
Be9 ppm	0.00	0.01	0.01	0.00	0.00
B11 ppm	0.12	0.19	0.11	0.09	0.11
F19 ppm	19.20	26.96	28.95	12.68	15.12
Na ppm Fst.	5.48	6.87	5.42	5.01	4.67
Mg ppm Est	1 59	2.54	4,00	1.21	1.71
Al27 ppm Est.	14.95	14.11	19.55	17.94	17.38
5130 P31 ppm	230.15	303.90	228.92	197.40	240.07
S32 Rel.	0.00	0.41	0.77	0.58	1.16

	PSTG01C-6.1ELT	PSTG01C-5.1ELT	PSTG01C-1.1ELT	PSTG01C-7.2ILT	PSTG01C-12.1ELT
K39 Rel.	1.72	2.20	2.36	1.60	1.69
Ca40 ppm Est.	2.99	4.21	3.19	2.75	2.82
Sc45 ppm	72.50	44.98	66.43	50.78	54.65
48/49	12.56	13.12	13.76	13.40	14.05
Ti48 ppm	36.39	23.02	38.24	40.42	40.56
Ti49 ppm	37.45	22.68	35.92	39.00	37.32
V51 ppm Rel.	0.36	0.31	0.40	0.43	0.35
Cr Rel.	0.10	0.13	0.11	0.09	0.06
Mn Rel.	0.04	0.09	0.06	0.06	0.04
Fe56 ppm	1 15	1 44	2 11	1 16	1 47
Ge74 Rel.	0.17	0.38	0.11	0.14	0.18
Y89 nnm	419 72	703.86	676.00	260.05	323.04
Nh93 nnm	1 19	2 66	1 17	1 25	0.88
	1.15	1 21	1.17	1.25	1.36
Zr 3411 Nel.	1.00	2.02	1.44	2.02	2.02
La120 nnm	1.99	2.03	1.97	2.02	2.05
Co140 norm	0.05	0.02	0.02	0.03	0.01
Ce140 ppm	45.15	81.46	43.54	41.19	37.67
Pr ppm	0.13	0.09	0.21	0.11	0.11
Nd146 ppm	1.62	1.81	3.95	1.14	1.17
Sm147 ppm	3.29	0.77	6.54	1.79	2.06
Eu153 ppm	1.82	1.18	3.97	1.18	1.45
Gd155 ppm	17.30	29.51	28.87	11.07	13.26
Ho165 ppm	19.63	30.62	37.97	11.54	14.27
TbO175 ppm	5.25	8.37	9.60	3.24	3.81
DyO179 ppm	50.64	86.94	87.76	30.75	36.44
ErO182 ppm	67.25	122.19	106.97	42.83	53.44
TmO185 ppm	12.77	24.76	21.14	9.12	10.96
YbO188 ppm	109.39	190.27	162.75	72.52	87.77
LuO191 ppm	20.52	35.06	29.50	14.07	16.88
Zr96/Zr2O	122.22	132.73	124.09	128.30	128.66
196/Si30	61.57	65.38	62.85	63.63	63.22
Hf ppm	7341.02	9120.75	7627.08	7988.92	8022.67
Pb7/6 Est	0.00	0.00	0.00	0.00	0.00
Th ppm	24.36	83.85	35.80	21.72	23.42
U ppm	10.78	44.94	13.93	11.34	11.75
Y/Nb	353 47	264 33	578 89	207 59	365 91
Th/U	2.26	1.87	2.57	1.92	1.99
Yb/Gd	5.57	6.21	4.29	6.29	6.15
II/Yh	67 55	104 99	41 25	63.80	75 29
Th/Yh	0.10	0.24	0.09	0.16	0.13
Ce/Sm	0.10	0.44	0.05	0.10	0.15
Co/Lu	12 71	10E 22	6.65	22.02	10.27
	15.71	105.25	0.03	23.05	10.55
U/Ce	2.20	2.52	1.40	2.95	2.25
V/Vh	0.24	0.55	0.52	0.28	0.51
	0.54	1.03	0.82	0.55	0.62
YD/NO	3.84	3.70	4.15	3.59	3.68
Y/IND	353.47	264.33	578.89	207.59	365.91
Yb/Nb	92.12	/1.45	139.37	57.89	99.42
Yb/Sc	1.51	4.23	2.45	1.43	1.61
Yb/Dy	2.16	2.19	1.85	2.36	2.41
Dy/Sm	15.38	112.29	13.41	17.19	17.73
Yb/Nd	67.55	104.99	41.25	63.80	75.29
Sm/Nd	2.03	0.43	1.66	1.57	1.76
U/Li	492.94	1053.39	413.08	392.99	1865.79

	PSTG01C-6.1ELT	PSTG01C-5.1ELT	PSTG01C-1.1ELT	PSTG01C-7.2ILT	PSTG01C-12.1ELT
Temp Ti48	863.72	815.30	869.21	875.44	875.82
Temp Ti49	866.89	813.78	862.29	871.43	866.50
Hf ppm	7341.02	9120.75	7627.08	7988.92	8022.67
Ferry Temp	932.22	869.73	926.78	937.60	931.77
Act Ti	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00
Temp. Est.	907.94	851.03	903.00	912.81	907.52
chondrite normalized REE					
(Anders & Grevesse (1989)					
(in parentheses) * 1.3596					
Korotev Wed Site Wash.					
U)					
La Ch (0.319)	0.10	0.05	0.06	0.10	0.04
Ce Ch (0.82)	55.06	99.35	53.09	50.24	45.94
Pr Ch (0.121)	0.89	0.74	1.35	0.69	0.54
Nd Ch (0.615)	2.63	2.95	6.41	1.85	1.90
Pm					
Sm Ch (0.2)	16.46		32.72	8.94	10.28
Eu Ch (0.076)	23.95	15.47	52.25	15.58	19.12
Gd Ch (0.267)	73.52	114.69	142.20	43.21	53.46
Tb Ch (0.0493)	106.40	169.85	194.64	65.67	77.37
Dy Ch (0.33)	153.46	263.44	265.94	93.19	110.41
Ho Ch (0.0755)	229.14	390.92	382.43	146.63	175.62
Er Ch (0.216)	311.32	565.71	495.24	198.28	247.41
Tm Ch (0.0329)	388.22	752.61	642.61	277.24	333.16
Yb Ch (0.221)	494.98	860.94	736.42	328.14	397.16
Lu Ch (0.033)	621.74	1062.45	894.07	426.42	511.43
Ce/Ce*	183.58	527.53	187.54	193.82	293.57
Hf ppm	7341.02	9120.75	7627.08	7988.92	8022.67
Eu/Eu*	0.69	#DIV/0!	0.77	0.79	0.82
P Molar	7.43	9.81	7.39	6.37	7.75
3+ Molar	8.50	12.66	12.38	5.54	6.56
3+/P Molar	1.14	1.29	1.67	0.87	0.85

Table C4, cont

	PSTG01C-8.2ELT	PSTG01C-7.1ELT	PSTG01C-4.2ILT	PSTG01C-4.1ELT
Element				
Li7	0.00003	0.00002	0.00002	0.00001
Be9	0.00000	0.00000	0.00002	0.00001
B11	0.00001	0.00001	0.00002	0.00001
F19	0.00025	0.00017	0.00027	0.00020
Na23	0.05371	0.04624	0.05021	0.05486
Mg24	0.01958	0.02125	0.01285	0.01743
Al27	0.03773	0.06679	0.05671	0.07828
Si30	1.00000	1.00000	1.00000	1.00000
P31	0.00164	0.00266	0.00300	0.00289
S32	0.00001	0.00000	0.00001	0.00001
Cl35	0.00000	0.00000	0.00000	0.00000
K39	0.01323	0.01380	0.01353	0.01395
Ca40	0.02382	0.02821	0.02536	0.02438
Sc45	0.06913	0.08218	0.09679	0.08346
Ti48	0.01211	0.01762	0.01945	0.01885
Ti49	0.00086	0.00127	0.00145	0.00135
V51	0.00006	0.00001	0.00004	0.00012
Cr52	0.00008	0.00009	0.00005	0.00006
Mn55	0.00006	0.00013	0.00009	0.00009
Fe56	0.00000	0.00210	0.00074	0.00118
Ge74	0.00001	0.00210	0.0000	0.000110
V89	0.00001	0.13905	0.00000	0.00001
NHO2	0.13035	0.13303	0.00005	0.13033
7-0411	0.00005	0.00008	0.00005	0.00007
21940	0.00826	0.00405	0.00730	0.00711
2196	2.03538	1.96742	2.01417	1.96555
La139	0.00000	0.00001	0.00003	0.00000
Ce140	0.00440	0.00360	0.00453	0.00290
Pr141	0.00004	0.00010	0.00024	0.00007
Nd146	0.00008	0.00012	0.00055	0.00010
Sm147	0.00017	0.00022	0.00064	0.00018
Eu153	0.00035	0.00050	0.00140	0.00042
Ho165	0.00240	0.00250	0.00545	0.00228
GdO173	0.00044	0.00052	0.00142	0.00043
TbO175	0.00071	0.00082	0.00202	0.00067
DyO179	0.00157	0.00167	0.00387	0.00158
ErO182	0.00262	0.00272	0.00554	0.00245
TmO185	0.00135	0.00142	0.00289	0.00124
YbO188	0.00193	0.00185	0.00379	0.00172
LuO191	0.00212	0.00200	0.00373	0.00187
Zr2O	0.01802	0.01794	0.01613	0.01541
HfO196	0.14654	0.13308	0.13289	0.12920
Pb206	0.00001	0.00000	0.00000	0.00000
207/206	0.00000	0.00000	0.00000	1.66667
ThO248	0.00168	0.00180	0.00407	0.00134
UO254	0.00114	0.00097	0.00160	0.00070
	38162.01	38163.31	38161.88	38161.87
206/228 4	01.60		22.20	70.07
200/238 Age	91.00	00.00	23.29	/9.8/
LI ppm Est	0.02	0.02	0.01	0.01
Beg ppm	0.01	0.01	0.05	0.02
B11 ppm	0.09	0.07	0.16	0.10
F19 ppm	22.15	15.01	24.03	18.11
Na ppm Est.	5.11	4.40	4.78	5.22
Mg ppm Est.	1.66	1.80	1.09	1.47
Al27 ppm Est.	14.33	25.37	21.54	29.74
P31 ppm	152.17	247.17	278.47	268.57
S32 Rel.	0.53	0.16	0.38	0.57

K39 Rel.	1.59	1.66	1.63	1.68
Ca40 ppm Est.	2.55	3.02	2.71	2.61
Sc45 ppm	57.63	68.51	80.69	69.58
48/49	14.05		13.45	13.95
Ti48 ppm	33.41		53.66	52.01
Ti49 ppm	30.74	45.44	51.57	48.20
V51 ppm Rel.	0.35	0.08	0.22	0.73
Cr Rel.	0.10	0.11	0.06	0.07
Mn Rel.	0.03	0.05	0.04	0.04
Fe56 ppm	1.27	2.48	0.88	1.39
Ge74 Rel.	0.26	0.18	0.11	0.46
Y89 ppm	347.89	349.55	777.41	329.29
Nb93 ppm	0.74	1.11	0.61	1.01
Zr94H Rel.	1.60	0.78	1.41	1.37
Zr96/Si30 ppm	2.04	1.97	2.01	1.97
La139 ppm	0.02	0.04	0.12	0.02
Ce140 ppm	34.25	28.02	35.26	22.62
Pr ppm	0.08	0.18	0.42	0.13
Nd146 ppm	1.14	1.67	7.60	1.34
Sm147 ppm	2.24	3.01	8.68	2.48
Eu153 ppm	1.51	2.16	6.07	1.82
Gd155 ppm	14.12	14.75	32.08	13.45
Ho165 ppm	13.81	16.26	44 27	13 24
ThO175 npm	3 89	4 4 9	11 11	3 67
DvO179 nnm	37.96	40 39	93 57	38.16
FrO182 nnm	57 39	59.69	121 55	53 70
TmO185 nnm	11 49	12.05	24.63	10 52
VhO188 nnm	93.80	90.30	184 32	83.63
	18 26	17.22	22.00	16 14
7r96/7r20	112 98	109.69	12/ 90	127 56
196/5120	55 51	55 76	62 01	64.90
190/3130	55.51 70EE 17	7122.00	7122.01	602E E4
Db7/6 Ect	0.00	0.00	0.00	1 67
Th nom	15.00	17 11	0.00	1.07
in ppm	15.99	17.11	30.72 12.09	12.70 6.15
0 ppm	9.94	0.47	13.96	0.15
Y/Nb	472.45	313.99	1283.00	327.27
Th/U	1.61	2.02	2.77	2.07
Yb/Gd	6.79	5.55	4.16	6.32
U/Yb	82.44	54.00	24.27	62.32
Th/Yb	0.11	0.09	0.08	0.07
Ce/Sm	0.17	0.19	0.21	0.15
Ce/Lu	15.27	9.31	4.06	9.11
U/Ce	1.88	1.63	1.10	1.40
Th/Ce	0.29	0.30	0.40	0.27
Y/Yb	0.47	0.61	1.10	0.56
Yb/Nd	3.71	3.87	4.22	3.94
Y/Nb	472.45	313.99	1283.00	327.27
Yb/Nb	127.39	81.11	304.20	83.12
Yb/Sc	1.63	1.32	2.28	1.20
Yb/Dy	2.47	2.24	1.97	2.19
Dy/Sm	16.92	13.43	10.78	15.36
Yb/Nd	82.44	54.00	24.27	62.32
Sm/Nd	1.97	1.80	1.14	1.85
U/H	537 71	539.01	1025.24	986.79

PSTG01C-8.2ELT PSTG01C-7.1ELT PSTG01C-4.2ILT PSTG01C-4.1ELT

	PSTG01C-8.2ELT	PSTG01C-7.1ELT	PSTG01C-4.2ILT	PSTG01C-4.1ELT
Temp Ti48	854.35	#NUM!	908.29	904.59
Temp Ti49	845.37	888.80	903.57	895.63
Hfppm	7855.17	7133.88	7123.62	6925.54
Ferry Temp	906.82	958.20	975.79	966.33
Act Ti	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00
Temp. Est.	884.86	931.47	947.35	938.81
chondrite normalized REE				
(Anders & Grevesse (1989)				
(in parentheses) * 1.3596				
Korotev Wed Site Wash.				
U)				
La Ch (0.319)	0.06	0.13	0.36	0.06
Ce Ch (0.82)	41.77	34.17	43.00	27.59
Pr Ch (0.121)	0.57	0.99	3.81	0.66
Nd Ch (0.615)	1.85	2.72	12.35	2.18
Pm				
Sm Ch (0.2)	11.22	15.04	43.40	12.42
Eu Ch (0.076)	19.86	28.41	79.84	23.95
Gd Ch (0.267)	51.71	60.90	165.82	49.58
Tb Ch (0.0493)	78.84	91.03	225.28	74.37
Dy Ch (0.33)	115.03	122.40	283.54	115.64
Ho Ch (0.0755)	187.00	195.31	424.85	178.12
Er Ch (0.216)	265.68	276.35	562.71	248.62
Tm Ch (0.0329)	349.28	366.37	748.64	319.79
Yb Ch (0.221)	424.46	408.58	834.05	378.43
Lu Ch (0.033)	553.27	521.99	972.34	489.21
Ce/Ce*	235.26	94.93	36.65	139.81
Hf ppm	7855.17	7133.88	7123.62	6925.54
Eu/Eu*	0.82	0.94	0.94	0.97
P Molar	4.91	7.98	8.99	8.67
3+ Molar	6.96	7.22	14.19	6.83
3+/P Molar	1.42	0.90	1.58	0.79

	CRWPST-1.1C	CRWPST-2.2C	CRWPST-3.1C	CRWPST-4.1C	CRWPST-5.1C	CRWPST-6.1C
Element						
Li7	0.00006	0.00004	0.00003	0.00002	0.00000	0.00003
Be9	0.00002	0.00001	0.00003	0.00001	0.00004	0.00011
B11	0.00001	0.00001	0.00001	0.00001	0.00001	0.00001
F19	0.00016	0.00019	0.00015	0.00009	0.00011	0.00016
Na23	0.00661	0.00841	0.00788	0.00850	0.01079	0.01050
Al27	0.01658	0.02645	0.02277	0.02323	0.02397	0.02528
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00492	0.00671	0.00175	0.00398	0.00343	0.00620
К39	0.00215	0.00382	0.00798	0.00352	0.00338	0.00398
Ca40	0.01020	0.01121	0.01022	0.01092	0.01835	0.02004
Sc45	0.08224	0.03676	0.06284	0.04450	0.05313	0.08800
Ti48	0.00918	0.00432	0.00329	0.00586	0.00664	0.00828
Ti49	0.00065	0.00033	0.00023	0.00042	0.00049	0.00062
Fe56	0.00063	0.00107	0.00343	0.00072	0.00069	0.00076
Y89	0.72814	0.74211	0.26258	0.50559	0.42741	0.99124
Nb93	0.00122	0.00080	0.00080	0.00087	0.00068	0.00193
7r94H	0.00122	0.01152	0.01110	0.01117	0.01126	0.01094
Zr96	2 43639	2 46476	2 40855	2 42376	2 42058	2 44248
La139	0.00001	0.00000	0.00001	0.00000	0.00000	0.00001
Ce140	0.02616	0.01007	0.00877	0.01452	0.01372	0.03558
Nd146	0.00030	0.00017	0.00004	0.001432	0.001372	0.00039
Sm147	0.00064	0.00046	0.00009	0.00015	0.00014	0.00087
Fu153	0.0004	0.00040	0.00009	0.00030	0.00030	0.00069
Gd155	0.00045	0.00030	0.00003	0.00023	0.00020	0.00005
Ho165	0.00105	0.00135	0.00022	0.00107	0.00000	0.00250
ThO105	0.01288	0.01200	0.00373	0.00311	0.00730	0.01/50
Dv0179	0.00312	0.00274	0.00000	0.00200	0.00100	0.00455
Er0182	0.00701	0.00041	0.00100	0.00488	0.00507	0.00500
Tm0185	0.01001	0.01033	0.00420	0.00784	0.00033	0.01477
Vb0188	0.00512	0.00515	0.00202	0.00370	0.00330	0.00037
100100	0.00040	0.00010	0.00400	0.00492	0.00414	0.00876
7r20	0.00054	0.00013	0.00480	0.00483	0.00430	0.00870
Hf0196	0.01035	0 16888	0.19076	0.16597	0.01713	0.01092
Ph206	0.00003	0.00002	0.00003	0.10007	0.00002	0.00003
207/206	0.00000	0.83333	0.21739	0.00002	0.66667	0.67797
ThO248	0.06737	0.03355	0.0173/	0.00000	0.00007	0.06189
110254	0.00737	0.01330	0.01734	0.02125	0.02323	0.00105
00254	38363 63	38363 65	38363 66	38363 67	38363 69	38363 70
206/238 Age	24 74	42 63	32.02	27.65	28.06	29 11
Li nnm Est	0.03	0.02	0.02	0.01	0.00	0.02
Beg nnm	0.05	0.02	0.02	0.01	0.00	0.34
B11 nnm	0.00	0.04	0.05	0.04	0.11	0.54
519 ppm	20.34	24 70	10 12	11 52	14 66	20.57
Na nom Est	1 56	1 00	1 87	2 01	2 55	20.57
Al27 nnm Est	11.03	17.61	15 16	15 /6	15 95	16.83
B21 nnm	/18 05	571 17	1/0 06	220 16	201 62	528.24
K30 Bol	0.27	0.66	1 28	0.61	0.58	0.69
Call nom Est	1 22	0.00	1.30	0.01	2 20	2.61
Sc/E nnm	1.55	22.24	1.55	20.14	2.35	2.01
۸۵ /۷۵ ۲۵	14.02	32.34 12.07	14 02	12 00	40.74 12 /E	//.4⊥ 12.27
40/43 Ti10 nnm	14.UZ 26.20	12.97	14.UZ 0 16	16.00	10.45	13.32 72.01
Ti/0 ppm	20.33	12.43	9.40 9.07	16.05	19.09	23.01
EoEC name	23.02	1 5 6	0.37 E 00	1 05	1 00	23.70
reso ppm	0.92	1.30	5.00	1.05	1.00	1.11

Table C5. SHRIMP-RG trace element analyses of zircon grains from CRWPST.

	CRWPST-1.1C	CRWPST-2.2C	CRWPST-3.1C	CRWPST-4.1C	CRWPST-5.1C	CRWPST-6.1C
Y89 ppm	1718.48	1751.45	619.71	1193.23	1008.72	2339.41
Nb93 ppm	12.37	8.16	8.12	8.88	6.93	19.63
Zr94H Rel.	1.14	1.12	1.08	1.09	1.10	1.06
Zr96/Si30 ppm	2.44	2.46	2.41	2.42	2.42	2.44
La139 ppm	0.06	0.02	0.05	0.03	0.02	0.07
Ce140 ppm	189.60	73.01	63.60	105.23	99.43	257.88
Pr ppm	200100	/0101	00100	100120	55110	207100
Nd146 ppm	4.16	2.39	0.52	2.13	1.88	5.37
Sm147 ppm	8.82	6.27	1.22	4.99	5.00	11.94
Eu153 ppm	2.34	1.44	0.41	1.22	1.26	3.34
Gd155 ppm	68.99	56.69	8.97	43.64	36.96	97.44
Ho165 ppm	72.72	71.49	21.18	51.46	41.58	101.05
TbO175 ppm	20.81	18.32	4.01	13.87	11.11	30.26
DyO179 ppm	207.51	189.74	47.26	144.45	114.52	291.81
ErO182 ppm	282.62	275.71	113.53	208.64	169.12	393.33
TmO185 ppm	53.34	53.45	27.30	39.14	35.18	72.61
YbO188 ppm	397.62	374.45	245.43	302.07	254.10	537.75
LuO191 ppm	66.16	62.18	49.22	48.92	44.16	88.62
Zr96/Zr2O	131.48	140.78	141.32	146.76	140.84	144.39
196/Si30	53.96	57.12	58.67	60.55	58.19	59.12
Hf ppm	8556.73	9803.47	11073.66	9634.73	9162.15	9266.48
Pb7/6 Est	0.00	0.83	0.22	0.91	0.67	0.68
Th ppm	683.00	136.82	175.80	215.41	236.08	627.41
U ppm	222.54	95.91	156.70	132.23	116.69	229.87
Y/Nb	138.90	214.70	76.32	134.34	145.57	119.20
Th/U	3.07	1.43	1.12	1.63	2.02	2.73
Yb/Gd	5.76	6.61	27.37	6.92	6.87	5.52
U/Yb	0.56	0.26	0.64	0.44	0.46	0.43
Th/Yb	1.72	0.37	0.72	0.71	0.93	1.17
Ce/Sm	21.49	11.65	52.15	21.08	19.90	21.59
Ce/Lu	2.87	1.17	1.29	2.15	2.25	2.91
U/Ce	1.17	1.31	2.46	1.26	1.17	0.89
Th/Ce	3.60	1.87	2.76	2.05	2.37	2.43
Y/Yb	4.32	4.68	2.52	3.95	3.97	4.35
Yb/Nd	95.62	156.87	473.65	141.73	135.19	100.07
Y/Nb	138.90	214.70	76.32	134.34	145.57	119.20
Yb/Nb	32.14	45.90	30.22	34.01	36.67	27.40
Yb/Sc	5.50	11.58	4.44	7.72	5.44	6.95
Yb/Dy	1.92	1.97	5.19	2.09	2.22	1.84
Dy/Sm	23.52	30.27	38.75	28.93	22.92	24.43
Yb/Nd	95.62	156.87	473.65	141.73	135.19	100.07
Sm/Nd	2.12	2.63	2.35	2.34	2.66	2.22
U/Li	6455.83	4046.83	8097.88	12709.52	51224.08	10791.56
Estimated temperature						
Temp Ti48	829.30	756.29	732.13	784.49	796.64	818.71
Temp Ti49	823.77	758.53	727.52	780.91	795.50	818.50
Hf ppm	8556.73	9803.47	11073.66	9634.73	9162.15	9266.48
Ferry Temp	881.43	805.45	769.69	831.40	848.38	875.26
Act Ti	0.70	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00	1.00
Temp. Est.	861.72	792.03	759.00	815.90	831.48	856.08

	CRWPST-1.1C	CRWPST-2.2C	CRWPST-3.1C	CRWPST-4.1C	CRWPST-5.1C	CRWPST-6.1C
chondrite normalized REE						
(Anders & Grevesse (1989)						
(in parentheses) * 1.3596						
Korotev Wed Site Wash.						
U)						
La Ch (0.319)	0.18	0.07	0.15	0.10	0.05	0.21
Ce Ch (0.82)	231.22	89.04	77.56	128.32	121.25	314.49
Pr Ch (0.121)	2.01	1.03	0.48	1.05	0.76	2.51
Nd Ch (0.615)	6.76	3.88	0.84	3.47	3.06	8.74
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	44.12	31.34	6.10	24.96	24.98	59.72
Eu Ch (0.076)	30.78	18.99	5.45	16.12	16.59	43.89
Gd Ch (0.267)	258.39	212.32	33.59	163.43	138.44	364.93
Tb Ch (0.0493)	422.11	371.60	81.33	281.31	225.41	613.82
Dy Ch (0.33)	628.82	574.97	143.20	437.72	347.05	884.28
Ho Ch (0.0755)	963.15	946.88	280.56	681.57	550.72	1338.41
Er Ch (0.216)	1308.43	1276.45	525.62	965.92	782.97	1820.95
Tm Ch (0.0329)	1621.32	1624.59	829.88	1189.71	1069.38	2206.89
Yb Ch (0.221)	1799.18	1694.35	1110.55	1366.82	1149.79	2433.27
Lu Ch (0.033)	2004.79	1884.33	1491.45	1482.39	1338.18	2685.57
Ce/Ce*	386.40	323.09	287.26	405.84	641.04	435.26
Hfppm	8556.73	9803.47	11073.66	9634.73	9162.15	9266.48
Eu/Eu*	0.29	0.23	0.38	0.25	0.28	0.30
P Molar	13.53	18.44	4.81	10.95	9.42	17.06
3+ Molar	29.36	27.57	11.71	20.17	17.35	39.63
3+/P Molar	2.17	1.50	2.43	1.84	1.84	2.32

Tahla	C5	cont
rable	UD,	cont.

	CRWPST-7.1C	CRWPST-8.1C	CRWPST-9.1C	CRWPST-10.1C	CRWPST-11.1C
Element					
Li7	0.00001	0.00002	0.00000	0.00003	0.00019
Be9	0.00000	0.00001	0.00000	0.00009	0.00019
B11	0.00002	0.00001	0.00001	0.00001	0.00001
F19	0.00014	0.00018	0.00008	0.00019	0.00018
Na23	0.00778	0.00955	0.00835	0.01116	0.02051
Al27	0.02645	0.02431	0.02361	0.02552	0.03433
Si30	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00349	0.00570	0.00290	0.00484	0.00352
К39	0.00354	0.00393	0.00339	0.00415	0.00379
Ca40	0.01640	0.01429	0.01753	0.02146	0.02198
Sc45	0.08770	0.07924	0.08732	0.03713	0.03186
Ti48	0.01069	0.00786	0.01051	0.00544	0.01252
Ti49	0.00079	0.00056	0.00080	0.00043	0.00093
Fe56	0.00084	0.00092	0.00063	0.00087	0.01542
Y89	0.25611	0.92090	0.38923	1.33539	0.70577
Nb93	0.00022	0.00184	0.00014	0.00093	0.00051
Zr94H	0.01050	0.01055	0.00962	0.00978	0.00947
Zr96	2.40251	2.48319	2.41411	2.39108	2.40475
La139	0.00001	0.00001	0.00002	0.00002	0.00000
Ce140	0.00978	0.02848	0.01172	0.01833	0.00513
Nd146	0.00021	0.00034	0.00065	0.00062	0.00014
Sm147	0.00038	0.00076	0.00079	0.00128	0.00027
Eu153	0.00049	0.00048	0.00089	0.00083	0.00012
Gd155	0.00079	0.00213	0.00131	0.00323	0.00083
Ho165	0.00456	0.01657	0.00712	0.02519	0.01158
TbO175	0.00117	0.00395	0.00199	0.00604	0.00197
DyO179	0.00247	0.00888	0.00398	0.01387	0.00535
ErO182	0.00385	0.01336	0.00606	0.02022	0.01158
TmO185	0.00205	0.00645	0.00277	0.00905	0.00656
YbO188	0.00278	0.00791	0.00352	0.01084	0.00969
LuO191	0.00305	0.00784	0.00410	0.01054	0.01071
Zr2O	0.01660	0.01774	0.01699	0.01639	0.01622
HfO196	0.13580	0.16314	0.14100	0.16128	0.19539
Pb206	0.00001	0.00002	0.00001	0.00003	0.00893
207/206	2.00000	0.00000	0.00000	0.20408	0.11251
ThO248	0.00460	0.04267	0.00778	0.04326	0.05774
UO254	0.00232	0.02047	0.00264	0.01941	0.09628
	38363.73	38363.75	38363.77	38363.78	38363.82
206/238 Age	99.05	23.85	80.23	29.70	1861.55
Li ppm Est	0.01	0.01	0.00	0.02	0.11
Be9 ppm	0.01	0.04	0.01	0.29	0.59
B11 ppm	0.17	0.11	0.07	0.07	0.11
F19 ppm	17.95	22.90	10.74	25.31	23.42
Na ppm Est.	1.84	2.26	1.98	2.64	4.86
Al27 ppm Est.	17.61	16.18	15.72	16.98	22.85
P31 ppm	297.11	485.56	246.71	411.83	299.29
K39 Rel.	0.61	0.68	0.58	0.72	0.65
Ca40 ppm Est.	2.14	1.86	2.29	2.80	2.87
Sc45 ppm	77.14	69.71	76.82	32.66	28.02
48/49	13.47	14.03	13.11	12.55	13.44
Ti48 ppm	30.73	22.59	30.21	15.63	35.98
Ti49 ppm	30.31	21.40	30.64	16.55	35.59
Fe56 ppm	1.23	1.35	0.92	1.27	22.49

	CRWPST-7.1C	CRWPST-8.1C	CRWPST-9.1C	CRWPST-10.1C	CRWPST-11.1C
Y89 ppm	604.44	2173.41	918.62	3151.65	1665.68
Nb93 ppm	2.27	18.69	1.41	9.43	5.16
Zr94H Rel.	1.02	1.03	0.94	0.95	0.92
Zr96/Si30 ppm	2.40	2.48	2.41	2.39	2.40
La139 ppm	0.04	0.05	0.11	0.12	0.02
Ce140 ppm	70.88	206.41	84.92	132.89	37.20
Pr ppm					
Nd146 ppm	2.93	4.73	9.00	8.57	1.92
Sm147 ppm	5.19	10.46	10.88	17.61	3.77
Eu153 ppm	2.38	2.29	4.30	4.00	0.56
Gd155 ppm	32.40	87.16	53.71	132.12	33.95
Ho165 ppm	25 74	93 54	40 19	142 19	65 39
ThO175 nnm	7 79	26 41	13 31	40.32	13 18
Dv0179 ppm	73.02	262.41	117 78	410.27	158 18
ErO182 nnm	102 54	255.86	161 /3	528 52	308.25
Tm0185 nnm	21 20	67.18	28 70	94.26	68.25
Vb0189 ppm	170 54	107.10	20.75	54.20 665 45	504 70
	20.99	403.33	210.37	106.69	109 27
z-06/2-20	30.00 144 7F	120.06	41.52	145.09	149.37
2190/2120	144.75	159.90	142.07	145.00 61.01	140.25 61.65
190/5150	7002 50	0470 42	20.02 9195 10	01.01	11242 54
ni ppm	7883.58	9470.43	8185.10	9362.49	11342.54
PD//6 ESt	2.00	0.00	0.00	0.20	0.11
in ppm	46.67	432.62	78.92	438.60	585.34
U ppm	22.48	198.66	25.61	188.34	934.30
Y/ND	266.83	116.27	651.62	334.13	322.55
Th/U	2.08	2.18	3.08	2.33	0.63
Yb/Gd	5.26	5.57	4.03	5.04	17.52
U/Yb	0.13	0.41	0.12	0.28	1.57
Th/Yb	0.27	0.89	0.36	0.66	0.98
Ce/Sm	13.67	19.74	7.80	7.55	9.86
Ce/Lu	2.30	2.60	2.05	1.25	0.34
U/Ce	0.32	0.96	0.30	1.42	25.12
Th/Ce	0.66	2.10	0.93	3.30	15.74
Y/Yb	3.54	4.48	4.25	4.74	2.80
Yb/Nd	58.11	102.50	24.04	77.66	309.22
Y/Nb	266.83	116.27	651.62	334.13	322.55
Yb/Nb	75.28	25.96	153.48	70.55	115.16
Yb/Sc	2.21	6.96	2.82	20.37	21.22
Yb/Dy	2.34	1.85	1.84	1.62	3.76
Dy/Sm	14.08	25.12	10.82	23.29	41.94
Yb/Nd	58.11	102.50	24.04	77.66	309.22
Sm/Nd	1.77	2.21	1.21	2.06	1.96
U/Li	3870.16	18304.26	21499.55	10539.28	8207.63
Estimated temperature					
Temp Ti48	845.34	813.38	843.52	777.45	862.46
Temp Ti49	843.87	807.95	845.02	782.88	861.26
Hfppm	7883.58	9470.43	8185.10	9362.49	11342.54
Ferry Temp	905.06	862.92	906.41	833.69	925.56
Act Ti	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00
Temp. Est.	883.25	844.80	884.48	818.01	901.89
	CRWPST-7.1C	CRWPST-8.1C	CRWPST-9.1C	CRWPST-10.1C	CRWPST-11.1C
---------------------------	-------------	-------------	-------------	--------------	--------------
chondrite normalized REE					
(Anders & Grevesse					
(1989) (in parentheses) *					
1.3596 Korotev Wed Site					
Wash. U)					
La Ch (0.319)	0.13	0.15	0.33	0.37	0.05
Ce Ch (0.82)	86.44	251.72	103.56	162.06	45.36
Pr Ch (0.121)	1.44	2.07	4.14	4.15	0.78
Nd Ch (0.615)	4.77	7.70	14.64	13.93	3.13
Pm	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	25.94	52.29	54.41	88.06	18.86
Eu Ch (0.076)	31.30	30.17	56.64	52.68	7.39
Gd Ch (0.267)	121.34	326.45	201.18	494.84	127.16
Tb Ch (0.0493)	157.98	535.73	270.04	817.86	267.33
Dy Ch (0.33)	221.28	795.95	356.92	1243.26	479.32
Ho Ch (0.0755)	340.86	1238.98	532.36	1883.36	866.03
Er Ch (0.216)	474.72	1647.51	747.35	2493.21	1427.11
Tm Ch (0.0329)	647.46	2041.89	874.99	2864.97	2074.34
Yb Ch (0.221)	771.66	2196.07	979.04	3011.11	2690.96
Lu Ch (0.033)	935.78	2403.30	1258.03	3233.00	3283.80
Ce/Ce*	198 09	452 66	88.26	130.88	233 32
Hf ppm	7883 58	9470 43	8185 10	9362 49	11342 54
Eu/Eu*	0.56	0.23	0.54	0.25	0.15
P Molar	9.59	15.68	7.97	13.30	9.66
3+ Molar	11.85	36.28	16.82	50.04	27.65
3+/P Molar	1.24	2.31	2.11	3.76	2.86

Table C5, co	ont.
--------------	------

	CRWPST-12.1C	CRWPST-13.1C	CRWPST-14.1C	CRWPST-15.2I	CRWPST-2.1E
Element					
Li7	0.00002	0.00002	0.00003	0.00004	0.00001
Be9	0.00000	0.00001	0.00005	0.00002	0.00000
B11	0.00001	0.00001	0.00002	0.00001	0.00000
F19	0.00005	0.00014	0.00020	0.00010	0.00013
Na23	0.01239	0.05275	0.01130	0.00920	0.00390
Al27	0.02773	0.02665	0.02788	0.02232	0.01317
Si30	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00261	0.00331	0.00310	0.00429	0.00330
K39	0.00452	0.01604	0.00427	0.00330	0.00226
Ca40	0.01696	0.07935	0.01369	0.01251	0.00546
Sc45	0.05984	0.06499	0.03788	0.08279	0.06429
Ti48	0.01156	0.00325	0.00630	0.00315	0.00833
Ti49	0.00086	0.00026	0.00047	0.00023	0.00064
Fe56	0.00097	0.00081	0.00362	0.00074	0.00056
Y89	0.18310	0.56743	0.88587	0.33903	0.32866
Nb93	0.00019	0.00079	0.00139	0.00086	0.00035
7r94H	0.00890	0.00888	0.00948	0.00895	0.01359
Zr96	2 44482	2 38803	2 39049	2 45754	2 46889
12139	0.00001	0.00001	0.00001	0.00000	0.00000
Ce140	0.00001	0.00001	0.00001	0.00000	0.00000
Nd146	0.00110	0.01000	0.01005	0.00000	0.00001
Sm147	0.00011	0.00010	0.00023	0.00004	0.00014
511147	0.00020	0.00029	0.00033	0.00009	0.00031
	0.00029	0.00020	0.00027	0.00009	0.00028
G0155	0.00051	0.00075	0.00150	0.00036	0.00082
H0105	0.00319	0.00880	0.01628	0.00498	0.00584
1001/5	0.00087	0.00147	0.00308	0.00072	0.00131
Dy0179	0.00186	0.00389	0.00788	0.00207	0.00307
Er0182	0.00279	0.00869	0.01439	0.00525	0.00497
ImO185	0.00142	0.00500	0.00726	0.00317	0.00248
YbO188	0.00200	0.00703	0.00940	0.00513	0.00318
LuO191	0.00226	0.00776	0.00950	0.00617	0.00361
Zr2O	0.01757	0.01675	0.01681	0.01716	0.01962
HfO196	0.15105	0.18971	0.19095	0.18906	0.14810
Pb206	0.00002	0.00003	0.00003	0.00002	0.00002
207/206	1.14286	0.22727	0.42553	0.64516	1.11111
ThO248	0.00463	0.03140	0.05713	0.02221	0.00551
UO254	0.00206	0.02305	0.02947	0.02086	0.00319
	38363.84	38363.85	38363.87	38363.90	38363.64
206/238 Age	204.79	22.43	19.07	17.70	97.46
Li ppm Est	0.01	0.01	0.02	0.02	0.01
Be9 ppm	0.01	0.02	0.14	0.08	0.00
B11 ppm	0.08	0.09	0.15	0.10	0.04
F19 ppm	5.91	18.00	26.11	12.81	17.66
Na ppm Est.	2.93	12.49	2.68	2.18	0.92
Al27 ppm Est.	18.46	17.74	18.56	14.86	8.77
P31 ppm	222.58	281.92	264.08	365.03	280.89
K39 Rel.	0.78	2.77	0.74	0.57	0.39
Ca40 ppm Est.	2.21	10.35	1.79	1.63	0.71
Sc45 ppm	52.64	57.17	33.32	72.83	56.55
48/49	13.41	12.51	13.48	13.49	12.99
Ti48 ppm	33.24	9.35	18.10	9.04	23.94
Ti49 ppm	32.95	9.93	17.85	8.91	24.49
Fe56 ppm	1.42	1.18	5.28	1.08	0.82

	CRWPST-12.1C	CRWPST-13.1C	CRWPST-14.1C	CRWPST-15.2I	CRWPST-2.1E
chondrite normalized REE					
(Anders & Grevesse (1989)					
(in parentheses) * 1.3596					
Korotev Wed Site Wash.					
U)					
La Ch (0.319)	0.14	0.17	0.19	0.09	0.08
Ce Ch (0.82)	98.12	95.47	165.25	76.02	86.70
Pr Ch (0.121)	0.96	1.31	1.99	0.42	0.93
Nd Ch (0.615)	2.51	3.63	6.50	0.91	3.11
Pm	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	17.59	19.66	36.39	6.39	21.00
Eu Ch (0.076)	18.26	12.63	16.82	5.58	18.04
Gd Ch (0.267)	78.17	114.29	228.98	55.12	125.32
Tb Ch (0.0493)	117.98	199.39	417.93	97.82	177.45
Dy Ch (0.33)	166.56	349.07	706.49	185.23	274.92
Ho Ch (0.0755)	238.47	658.00	1217.70	372.37	436.99
Er Ch (0.216)	343.53	1071.11	1773.90	647.38	612.16
Tm Ch (0.0329)	448.51	1583.09	2298.31	1002.66	785.19
Yb Ch (0.221)	554.26	1953.40	2611.15	1425.06	882.82
Lu Ch (0.033)	691.55	2379.89	2912.49	1892.56	1107.32
Ce/Ce*	269.02	200.76	270.22	398.24	308.67
Hf ppm	8768.36	11013.04	11084.67	10975.05	8597.47
Eu/Eu*	0.49	0.27	0.18	0.30	0.35
P Molar	7.19	9.10	8.53	11.79	9.07
3+ Molar	8.63	22.85	34.45	14.96	13.85
3+/P Molar	1.20	2.51	4.04	1.27	1.53

Table C5, co	ont.
--------------	------

	CRWPST-3.2E	CRWPST-4.2E	CRWPST-5.2E	CRWPST-6.2E	CRWPST-6.3E
Element					
Li7	0.00001	0.00003	0.00000	0.00000	0.00001
Be9	0.00000	0.00003	0.00000	0.00006	0.00001
B11	0.00000	0.00000	0.00001	0.00001	0.00001
F19	0.00014	0.00012	0.00015	0.00013	0.00014
Na23	0.00711	0.00739	0.01194	0.01216	0.00956
Al27	0.02403	0.02314	0.03980	0.02804	0.04166
Si30	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00273	0.00286	0.00310	0.00308	0.00314
К39	0.00248	0.00297	0.00338	0.00422	0.00376
Ca40	0.01052	0.01032	0.02055	0.02203	0.02042
Sc45	0.07315	0.04403	0.08103	0.08904	0.07844
Ti48	0.01074	0.00418	0.01346	0.01387	0.01365
Ti49	0.00078	0.00032	0.00095	0.00109	0.00099
Fe56	0.00066	0.00076	0.00086	0.00081	0.00069
Y89	0.22316	0.40759	0.17679	0.36788	0.17390
Nb93	0.00021	0.00084	0.00015	0.00010	0.00017
Zr94H	0.01153	0.01078	0.01077	0.01102	0.01089
Zr96	2.43741	2.36462	2.45411	2.41871	2.44961
La139	0.00000	0.00000	0.00000	0.00001	0.00001
Ce140	0.01024	0.01233	0.00572	0.00742	0.00679
Nd146	0.00017	0.00009	0.00016	0.00053	0.00018
Sm147	0.00028	0.00020	0.00024	0.00071	0.00025
Eu153	0.00038	0.00017	0.00044	0.00131	0.00043
Gd155	0.00063	0.00064	0.00046	0.00134	0.00054
Ho165	0.00392	0.00713	0.00309	0.00670	0.00310
TbO175	0.00102	0.00142	0.00079	0.00191	0.00079
DyO179	0.00212	0.00347	0.00163	0.00377	0.00165
ErO182	0.00346	0.00654	0.00264	0.00542	0.00252
TmO185	0.00172	0.00349	0.00138	0.00266	0.00133
YbO188	0.00220	0.00461	0.00191	0.00329	0.00175
LuO191	0.00251	0.00481	0.00208	0.00364	0.00197
Zr2O	0.01768	0.01628	0.01669	0.01792	0.01824
Hf0196	0.14287	0.17652	0.13510	0.13210	0.13654
Pb206	0.00001	0.00002	0.00001	0.00001	0.00001
207/206	0.52632	0.48780	0.00000	0.50000	1.11111
ThO248	0.00478	0.01758	0.00264	0.00557	0.00289
00254	0.00212	0.01247	0.00136	0.00190	0.00136
200/220 4	38363.67	38363.68	38363.70	38363.71	38363.72
200/250 Age	101.55	57.15	177.65	0.00	76.21
Bog nom	0.01	0.02	0.00	0.00	0.00
Beg ppin B11 ppm	0.01	0.08	0.01	0.17	0.02
E19 nnm	18 79	15.83	19.87	16 56	18 39
Na nnm Est	1 68	1 75	2 82	2 88	2 26
Al27 nnm Est	15 99	15.70	2.85	18 66	2.20
P31 nnm	232.11	2/13 33	264.04	262.23	267.06
K39 Rel	0.43	0 51	0 58	0.73	0.65
Ca40 nnm Est	1 37	1 35	2.68	2.87	2.66
Sc45 nnm	64 34	38 73	71 28	78 32	69.01
48/49	13.74	13.21	14.24	12.78	13.79
Ti48 npm	30.86	12.00	38.70	39.87	39.24
Ti49 ppm	29.85	12.08	36.13	41.48	37.81
Fe56 ppm	0.96	1.11	1.26	1.19	1.00
- F F				-	

	CRWPST-3.2E	CRWPST-4.2E	CRWPST-5.2E	CRWPST-6.2E	CRWPST-6.3E
Y89 ppm	526.68	961.94	417.23	868.24	410.42
Nb93 ppm	2.18	8.52	1.55	1.01	1.77
Zr94H Rel.	1.12	1.05	1.05	1.07	1.06
Zr96/Si30 ppm	2.44	2.36	2.45	2.42	2.45
La139 ppm	0.02	0.03	0.02	0.10	0.05
Ce140 ppm	74.23	89.37	41.45	53.78	49.23
Pr ppm	-		-		
Nd146 ppm	2.42	1.24	2.28	7.40	2.48
Sm147 ppm	3.90	2.73	3.31	9.72	3.42
Eu153 ppm	1.85	0.82	2.12	6.30	2.08
Gd155 ppm	25.87	26.18	18.90	54.76	22.05
Ho165 ppm	22.10	40.27	17.43	37.84	17.51
TbO175 ppm	6.82	9.46	5.27	12.78	5.30
DvO179 ppm	62.83	102.65	48.18	111.48	48.91
ErO182 ppm	92.25	174.24	70.35	144.24	67.03
TmO185 ppm	17.92	36.36	14.33	27.64	13.86
YbO188 ppm	134.79	283.25	117.51	201.85	107.51
LuO191 ppm	25 39	48 70	21.02	36.87	19 97
7r96/7r20	137.89	145 22	147.08	134.96	134 27
196/5i30	56 57	61 41	59.93	55 80	54 81
Hf npm	8293 55	10247.06	7842 66	7668 57	7926 17
Pb7/6 Fst	0.53	0.49	0.00	0 50	1 11
Th nnm	48.46	178 20	26.81	56 51	29.28
II nnm	20.53	120.20	13 18	18 41	13 19
Y/Nb	20.55	112 91	268.66	859 75	232.07
Th/U	2 36	1 47	2.03	3 07	2 22
Yh/Gd	5 21	10.82	6.22	3.69	4 88
U/Yh	0.15	0.43	0.11	0.09	0.12
Th/Yb	0.36	0.63	0.23	0.28	0.27
Ce/Sm	19.04	32 69	12 53	5 53	14 40
Ce/Lu	2.92	1.84	1.97	1.46	2.47
U/Ce	0.28	1.35	0.32	0.34	0.27
Th/Ce	0.65	1.99	0.65	1.05	0.59
Y/Yb	3.91	3.40	3.55	4.30	3.82
Yb/Nd	55.62	229.12	51.55	27.27	43.33
Y/Nb	242.12	112.91	268.66	859.75	232.07
Yb/Nb	61.96	33.25	75.67	199.88	60.79
Yb/Sc	2.09	7.31	1.65	2.58	1.56
Yb/Dv	2.15	2.76	2.44	1.81	2.20
Dv/Sm	16.12	37.55	14.56	11.47	14.31
Yb/Nd	55.62	229.12	51.55	27.27	43.33
Sm/Nd	1.61	2.21	1.45	1.31	1.38
U/Li	3586.04	6224.39	5658.40	16103.77	3772.27
Estimated temperature					
Temp Ti48	845.81	753.13	870.55	873.89	872.10
Temp Ti49	842.25	753.70	862.92	878.36	867.96
Hfppm	8293.55	10247.06	7842.66	7668.57	7926.17
Ferry Temp	903.15	799.87	927.52	945.81	933.49
Act Ti	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00
Temp. Est.	881.51	786.88	903.67	920.25	909.09

	CRWPST-3.2E	CRWPST-4.2E	CRWPST-5.2E	CRWPST-6.2E	CRWPST-6.3E
chondrite normalized REE					
(Anders & Grevesse					
(1989) (in parentheses) *					
1.3596 Korotev Wed Site					
Wash. U)					
La Ch (0.319)	0.06	0.08	0.06	0.31	0.14
Ce Ch (0.82)	90.52	108.99	50.55	65.58	60.04
Pr Ch (0.121)	0.97	0.69	0.94	3.54	1.33
Nd Ch (0.615)	3.94	2.01	3.71	12.04	4.03
Pm	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	19.49	13.67	16.55	48.60	17.09
Eu Ch (0.076)	24.36	10.77	27.93	82.90	27.35
Gd Ch (0.267)	96.88	98.06	70.78	205.11	82.57
Tb Ch (0.0493)	138.40	191.86	106.90	259.26	107.53
Dy Ch (0.33)	190.40	311.07	146.00	337.81	148.22
Ho Ch (0.0755)	292.77	533.37	230.85	501.20	231.89
Er Ch (0.216)	427.07	806.67	325.68	667.78	310.30
Tm Ch (0.0329)	544.54	1105.16	435.66	840.12	421.16
Yb Ch (0.221)	609.91	1281.67	531.73	913.35	486.49
Lu Ch (0.033)	769.43	1475.81	636.93	1117.14	605.09
Ce/Ce*	377.66	455.09	212.80	62.89	136.97
Hf ppm	8293.55	10247.06	7842.66	7668.57	7926.17
Eu/Eu*	0.56	0.29	0.82	0.83	0.73
P Molar	7.49	7.86	8.53	8.47	8.62
3+ Molar	10.25	16.63	8.49	15.79	8.35
3+/P Molar	1.37	2.12	1.00	1.87	0.97

Tabl	e C5,	cont.
------	-------	-------

	CRWPST-7.2E	CRWPST-8.2E	CRWPST-9.1E	CRWPST-10.2E	CRWPST-11.2E
Element					
Li7	0.00000	0.00003	0.00000	0.00007	0.00008
Be9	0.00000	0.00000	0.00000	0.00006	0.00002
B11	0.00001	0.00001	0.00001	0.00006	0.00001
F19	0.00012	0.00013	0.00011	0.00023	0.00013
Na23	0.00659	0.00802	0.01061	0.00634	0.03050
AI27	0.02409	0.02455	0.02776	0.02004	0.03156
Si30	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00292	0.00332	0.00290	0.00561	0.00181
К39	0.00301	0.00331	0.00371	0.00642	0.00783
Ca40	0.01283	0.01642	0.01893	0.01368	0.00937
Sc45	0.09459	0.04149	0.09482	0.09464	0.02845
Ti48	0.01423	0.00516	0.01315	0.00537	0.00474
Ti49	0.00113	0.00041	0.00096	0.00038	0.00036
Fe56	0.00051	0.00076	0.00060	0.00108	0.00222
Y89	0.37158	0.49869	0.40947	2.23403	0.15386
Nb93	0.00011	0.00097	0.00011	0.00277	0.00036
Zr94H	0.01089	0.01013	0.01076	0.01083	0.01015
Zr96	2.45821	2.41856	2.55327	2.46592	2.54891
La139	0.00002	0.00000	0.00001	0.00004	0.00000
Ce140	0.00778	0.01383	0.00830	0.04510	0.00214
Nd146	0.00064	0.00010	0.00069	0.00064	0.00001
Sm147	0.00077	0.00031	0.00080	0.00114	0.00004
Eu153	0.00128	0.00022	0.00129	0.00055	0.00004
Gd155	0.00140	0.00087	0.00143	0.00333	0.00017
Ho165	0.00670	0.00889	0.00751	0.03523	0.00248
TbO175	0.00184	0.00179	0.00217	0.00658	0.00034
DyO179	0.00390	0.00433	0.00451	0.01685	0.00108
ErO182	0.00542	0.00762	0.00629	0.03246	0.00277
TmO185	0.00253	0.00384	0.00311	0.01728	0.00178
YbO188	0.00326	0.00489	0.00384	0.02328	0.00277
LuO191	0.00362	0.00505	0.00433	0.02414	0.00350
Zr2O	0.01849	0.01743	0.01808	0.01692	0.01767
HfO196	0.13414	0.17347	0.14377	0.17405	0.21183
Pb206	0.00001	0.00002	0.00002	0.00006	0.00260
207/206	0.95238	0.00000	1.28205	0.21505	0.08858
ThO248	0.00550	0.01836	0.00679	0.13881	0.01095
UO254	0.00202	0.01301	0.00239	0.06264	0.03136
	38363.73	38363.76	38363.77	38363.79	38363.83
206/238 Age	120.42	27.86	202.91	17.74	1665.70
Li ppm Est	0.00	0.02	0.00	0.04	0.05
Be9 ppm	0.02	0.01	0.01	0.18	0.07
B11 ppm	0.08	0.09	0.10	0.57	0.07
F19 ppm	16.25	17.35	14.20	29.98	16.71
Na ppm Est.	1.56	1.90	2.51	1.50	7.22
Al27 ppm Est.	16.04	16.34	18.48	13.34	21.01
P31 ppm	248.70	282.75	247.28	477.80	154.35
K39 Rel.	0.52	0.57	0.64	1.11	1.35
Ca40 ppm Est.	1.67	2.14	2.47	1.78	1.22
Sc45 ppm	83.21	36.50	83.41	83.25	25.02
48/49	12.61	12.55	13.67	14.14	13.33
Ti48 ppm	40.92	14.82	37.79	15.44	13.63
Ti49 ppm	43.11	15.69	36.74	14.51	13.59
Fe56 ppm	0.74	1.11	0.88	1.58	3.24

Tab	le	C5.	cont.
	•••		

	CRWPST-7.2E	CRWPST-8.2E	CRWPST-9.1E	CRWPST-10.2E	CRWPST-11.2E
Y89 ppm	876.97	1176.96	966.40	5272.51	363.12
Nb93 ppm	1.14	9.82	1.09	28.11	3.69
Zr94H Rel.	1.06	0.99	1.05	1.05	0.99
Zr96/Si30 ppm	2.46	2.42	2.55	2.47	2.55
La139 ppm	0.15	0.02	0.06	0.28	0.02
Ce140 nnm	56 38	100 21	60.17	326.88	15 53
Pr nnm	50.50	100.21	00.17	520.00	15.55
Nd146 nnm	8 93	1 11	9.61	8 8/	0.12
Sm147 npm	10 58	1.44	11.06	15 69	0.56
Fu152 ppm	6 17	1.04	6 20	2 66	0.30
Gd155 ppm	57.36	25 / 8	58.20	125.00	6.75
Ho165 ppm	27.82	50.48	12 12	102 01	12 08
	17 27	11 07	42.42	1201	2 20
Dv0179 ppm	115 20	179.16	122.20	43.94	2.25
ErO192 norm	113.39	128.10	155.29	490.07	32.01
	26 20	202.80	22.20	170.90	19.70
VhO188 mm	20.50	39.95	32.39	1/9.09	10.49
	200.07	500.26	235.58	1429.25	170.21
Z-00 (Z-20	30.00	51.12	43.77	244.28	35.43
2196/2120	132.93	138.78	141.18	145.78	144.26
196/5130	54.08	57.38	55.30	59.12	56.60
	//86.84	10069.94	8346.19	10103.46	12297.07
PD//6 Est	0.95	0.00	1.28	0.22	0.09
In ppm	55.74	186.12	68.87	1407.26	111.04
U ppm	19.62	126.24	23.22	607.86	304.28
Y/Nb	//2.53	119.80	884.33	187.57	98.32
Th/U	2.84	1.47	2.97	2.32	0.36
Yb/Gd	3.49	8.46	4.04	10.51	25.22
U/Yb	0.10	0.42	0.10	0.43	1.79
Th/Yb	0.28	0.62	0.29	0.98	0.65
Ce/Sm	5.33	23.20	5.44	20.83	27.90
Ce/Lu	1.54	1.96	1.37	1.34	0.44
U/Ce	0.35	1.26	0.39	1.86	19.59
Th/Ce	0.99	1.86	1.14	4.31	7.15
Y/Yb	4.38	3.92	4.10	3.69	2.13
Yb/Nd	22.41	209.16	24.50	161.69	1476.52
Y/Nb	772.53	119.80	884.33	187.57	98.32
Yb/Nb	176.24	30.56	215.57	50.85	46.09
Yb/Sc	2.40	8.23	2.82	17.17	6.80
Yb/Dy	1.73	2.34	1.77	2.87	5.32
Dy/Sm	10.91	29.67	12.05	31.78	57.49
Yb/Nd	22.41	209.16	24.50	161.69	1476.52
Sm/Nd	1.19	3.01	1.15	1.77	4.83
U/Li	8356.29	7863.44	9209.83	13957.00	6161.92
Estimated temperature					
Temp Ti48	876.82	772.47	867.90	776.30	764.72
Temp Ti49	882.76	777.84	864.78	770.48	764.43
Hf ppm	7786.84	10069.94	8346.19	10103.46	12297.07
Ferry Temp	951.03	827.83	929.72	819.30	812.28
Act Ti	0.70	0.70	0.70	0.70	0.70
Act Si	1.00	1.00	1.00	1.00	1.00
Temp. Est.	924.98	812.62	905.67	804.78	798.32

	CRWPST-7.2E	CRWPST-8.2E	CRWPST-9.1E	CRWPST-10.2E	CRWPST-11.2E
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)					
La Ch (0.319)	0.47	0.07	0.18	0.87	0.07
Ce Ch (0.82)	68.76	122.21	73.37	398.63	18.94
Pr Ch (0.121)	4.64	0.73	3.54	5.65	0.13
Nd Ch (0.615)	14.52	2.33	15.63	14.37	0.19
Pm	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	52.90	21.60	55.31	78.45	2.78
Eu Ch (0.076)	81.18	13.72	81.52	35.05	2.77
Gd Ch (0.267)	214.82	132.90	218.31	509.33	25.28
Tb Ch (0.0493)	249.87	242.87	293.37	891.28	46.43
Dy Ch (0.33)	349.67	388.35	403.91	1511.11	97.01
Ho Ch (0.0755)	501.07	664.45	561.91	2634.56	185.12
Er Ch (0.216)	668.48	938.88	775.32	4001.14	341.20
Tm Ch (0.0329)	799.42	1213.67	984.49	5467.77	561.86
Yb Ch (0.221)	905.28	1358.63	1065.95	6467.21	770.19
Lu Ch (0.033)	1108.98	1549.24	1326.27	7402.43	1073.54
Ce/Ce*	46.43	537.00	91.27	179.27	203.96
Hf ppm	7786.84	10069.94	8346.19	10103.46	12297.07
Eu/Eu*	0.76	0.26	0.74	0.18	0.33
P Molar	8.03	9.13	7.98	15.43	4.98
3+ Molar	16.05	19.68	17.67	84.99	6.83
3+/P Molar	2.00	2.16	2.21	5.51	1.37

Tab	le	C5,	cont.
-----	----	-----	-------

	CRWPST-12.2E	CRWPST-13.2E	CRWPST-14.2E	CRWPST-14.3E	CRWPST-15.1E
Element					
Li7	0.00002	0.00004	0.00002	0.00001	0.00001
Be9	0.00000	0.00000	0.00000	0.00000	0.00010
B11	0.00001	0.00002	0.00002	0.00001	0.00000
F19	0.00007	0.00020	0.00008	0.00013	0.00015
Na23	0.01137	0.07903	0.01087	0.01036	0.00735
Al27	0.04610	0.02794	0.02876	0.04363	0.01709
Si30	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00289	0.00315	0.00338	0.00260	0.00338
К39	0.00379	0.02654	0.00321	0.00335	0.00292
Ca40	0.01397	0.10447	0.01390	0.01386	0.01478
Sc45	0.06582	0.06028	0.07419	0.06132	0.07862
Ti48	0.01418	0.00927	0.01134	0.01347	0.01132
Ti49	0.00104	0.00070	0.00085	0.00097	0.00086
Fe56	0.00109	0.00100	0.00086	0.00129	0.00063
Y89	0.14968	0.52102	0.23098	0.12881	0.60898
Nb93	0.00014	0.00019	0.00022	0.00010	0.00035
Zr94H	0.00895	0.00876	0.00910	0.00917	0.00900
Zr96	2.43463	2.39627	2.41893	2.44852	2.40763
La139	0.00001	0.00001	0.00000	0.00000	0.00002
Ce140	0.00592	0.01197	0.01178	0.00554	0.01215
Nd146	0.00012	0.00035	0.00025	0.00006	0.00066
Sm147	0.00017	0.00070	0.00030	0.00013	0.00089
Eu153	0.00035	0.00071	0.00039	0.00026	0.00106
Gd155	0.00044	0.00166	0.00062	0.00031	0.00182
Ho165	0.00263	0.00963	0.00402	0.00229	0.01115
TbO175	0.00064	0.00260	0.00100	0.00056	0.00282
DyO179	0.00151	0.00548	0.00222	0.00124	0.00628
ErO182	0.00226	0.00804	0.00350	0.00203	0.00925
TmO185	0.00116	0.00389	0.00173	0.00103	0.00469
YbO188	0.00154	0.00478	0.00245	0.00149	0.00602
LuO191	0.00173	0.00487	0.00276	0.00170	0.00617
Zr2O	0.01683	0.01637	0.01655	0.01795	0.01625
HfO196	0.13896	0.15005	0.14627	0.14184	0.14559
Pb206	0.00002	0.00001	0.00002	0.00001	0.00001
207/206	0.24390	0.00000	1.15385	1.42857	0.86957
ThO248	0.00283	0.00993	0.00752	0.00240	0.01759
UO254	0.00133	0.00369	0.00359	0.00128	0.00749
	38363.84	38363.86	38363.87	38363.89	38363.89
206/238 Age	368.99	41.71	86.50	199.51	36.05
Li ppm Est	0.01	0.02	0.01	0.01	0.01
Be9 ppm	0.00	0.01	0.01	0.00	0.33
B11 ppm	0.14	0.17	0.15	0.09	0.01
F19 ppm	9.36	26.59	10.51	17.38	19.51
Na ppm Est.	2.69	18.71	2.57	2.45	1.74
AIZ7 ppm Est.	30.68	18.60	19.14	29.04	11.38
P31 ppm	246.15	268.17	287.48	221.47	287.94
K39 Kel.	0.65	4.58	0.55	0.58	0.50
	1.82	13.03	1.01	1.01	1.93
3045 ppm	57.90	53.U3	05.20	23.95	12 12
46/49 T:40 mm	13.03	15.17	15.32	15.84	15.12
1148 ppm	40.70	20.00	52.59 27 E2	30./3 27.10	52.54 22.00
Foss num	59.09 1 50	1 16	32.33 1 76	1 20	0 01
Leoo hhiii	1.33	1.40	1.20	1.05	0.91

CRWPST-12.2E CRWPST-13.2E CRWPST-14.2E CRWPST-14.3E CRWPST-15.1E

Y89 ppm	353.27	1229.65	545.14	303.99	1437.24
Nb93 ppm	1.45	1.94	2.24	0.98	3.57
Zr94H Rel.	0.87	0.85	0.89	0.89	0.88
Zr96/Si30 ppm	2.43	2.40	2.42	2.45	2.41
La139 ppm	0.04	0.09	0.02	0.02	0.14
Ce140 ppm	42.90	86.75	85.41	40.18	88.04
Pr ppm					
Nd146 ppm	1.72	4.89	3.52	0.88	9.12
Sm147 ppm	2.34	9.61	4.10	1.74	12.25
Eu153 ppm	1.67	3.40	1.90	1.28	5.13
Gd155 ppm	17.92	67.85	25.29	12.75	74.34
Ho165 ppm	14.85	54.40	22.69	12.94	62.94
TbO175 ppm	4.28	17.37	6.66	3.74	18.81
DyO179 ppm	44.64	162.01	65.54	36.80	185.75
ErO182 ppm	60.27	214.09	93.23	54.15	246.33
TmO185 ppm	12.09	40.47	18.01	10.70	48.79
YbO188 ppm	94.83	293.65	150.30	91.66	369.86
LuO191 ppm	17.51	49.26	27.96	17.23	62.48
Zr96/Zr2O	144.63	146.39	146.18	136.41	148.16
196/Si30	59.41	61.09	60.43	55.71	61.54
Hf ppm	8066.98	8710.76	8491.15	8233.72	8451.51
Pb7/6 Est	0.24	0.00	1.15	1.43	0.87
Th ppm	28.72	100.63	76.27	24.30	178.32
U ppm	12.91	35.77	34.83	12.38	72.66
Y/Nb	242.87	635.12	243.70	309.61	403.11
Th/U	2.23	2.81	2.19	1.96	2.45
Yb/Gd	5.29	4.33	5.94	7.19	4.98
U/Yb	0.14	0.12	0.23	0.14	0.20
Th/Yb	0.30	0.34	0.51	0.27	0.48
Ce/Sm	18.36	9.02	20.81	23.04	7.19
Ce/Lu	2.45	1.76	3.05	2.33	1.41
U/Ce	0.30	0.41	0.41	0.31	0.83
Th/Ce	0.67	1.16	0.89	0.60	2.03
Y/Yb	3.73	4.19	3.63	3.32	3.89
Yb/Nd	55.00	60.02	42.67	104.18	40.57
Y/Nb	242.87	635.12	243.70	309.61	403.11
Yb/Nb	65.20	151.67	67.19	93.36	103.73
Yb/Sc	1.64	5.54	2.30	1.70	5.35
Yb/Dv	2.12	1.81	2.29	2.49	1.99
Dv/Sm	19.10	16.85	15.97	21.11	15.17
Yb/Nd	55.00	60.02	42.67	104.18	40.57
Sm/Nd	1.36	1.97	1.17	1.98	1.34
U/Li	1331.04	1659.32	3600.67	1441.03	12228.84
Estimated temperature					
Temp Ti48	876 37	830 34	851 66	870 65	851 49
Temp Ti49	873 40	831 30	851 45	866 13	852.45
Hfppm	8066 98	8710 76	8491 15	8233 72	8451 51
Ferry Temp	939 93	890 27	912 99	931 32	915 7 <i>/</i>
Act Ti	0.70	0 70	0 70	0 70	0.70
Act Si	1 00	1 00	1 00	1 00	1 00
ACC 31	1.00	1.00	1.00	1.00	1.00

chondrite normalized REE					
(Anders & Grevesse (1989)					
(in parentheses) * 1.3596					
Korotev Wed Site Wash.					
U)					
La Ch (0.319)	0.13	0.27	0.07	0.06	0.43
Ce Ch (0.82)	52.32	105.80	104.16	49.00	107.37
Pr Ch (0.121)	0.99	2.58	1.35	0.51	4.55
Nd Ch (0.615)	2.80	7.96	5.73	1.43	14.82

CRWPST-12.2E CRWPST-13.2E CRWPST-14.2E CRWPST-14.3E CRWPST-15.1E

(in parentheses) * 1.3596					
Korotev Wed Site Wash.					
U)					
La Ch (0.319)	0.13	0.27	0.07	0.06	0.43
Ce Ch (0.82)	52.32	105.80	104.16	49.00	107.37
Pr Ch (0.121)	0.99	2.58	1.35	0.51	4.55
Nd Ch (0.615)	2.80	7.96	5.73	1.43	14.82
Pm	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	11.69	48.07	20.52	8.72	61.24
Eu Ch (0.076)	22.00	44.73	25.03	16.79	67.51
Gd Ch (0.267)	67.11	254.10	94.73	47.77	278.43
Tb Ch (0.0493)	86.87	352.35	135.02	75.82	381.50
Dy Ch (0.33)	135.28	490.95	198.60	111.53	562.88
Ho Ch (0.0755)	196.68	720.51	300.52	171.37	833.68
Er Ch (0.216)	279.02	991.15	431.61	250.69	1140.40
Tm Ch (0.0329)	367.52	1230.09	547.33	325.31	1483.02
Yb Ch (0.221)	429.11	1328.73	680.08	414.77	1673.56
Lu Ch (0.033)	530.74	1492.70	847.27	522.11	1893.25
	1/18 28	126 21	377 57	273 57	76 77
	240.20	9710 76	9/01 15	273.37	9/E1 E1
пі ррін с., /с.,*	0.70	0.40	0 57	0233.72	0431.31
Eu/Eu	0.79	0.40	0.57	0.82	0.52
P Molar	7.95	8.66	9.28	7.15	9.30
3+ Molar	7.19	21.11	10.69	6.36	24.88
3+/P Molar	0.90	2.44	1.15	0.89	2.68

Figure C1. Cathodoluminescence images of sphene grains and approximate locations of SHRIMP-RG spots. Spot sizes are to scale.

APPENDIX D:

Trace Element Compositions From SHRIMP-RG of Sphene Grains From the Peach Spring Tuff and

Cathodoluminescence Images of Analyzed Sphene Crystals

	K01A-1.1C	K01A-2.1C	K01A-4.1C	K01A-6.1C	K01A-7.1C	K01A-9.1C	K01A-9.2I	K01A-5.2I
Element								
F19	0.08600	0.12133	0.07247	0.12533	0.10269	0.13519	0.12483	0.10009
Na23	1.42145	1.48743	1.88287	1.27999	1.47282	1.30343	1.25028	1.70260
Mg26	0.13240	0.13611	0.10288	0.15171	0.11757	0.14474	0.12779	0.12782
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00257	0.00224	0.00291	0.00206	0.00210	0.00217	0.00213	0.00253
K39	0.00947	0.00650	0.00540	0.00618	0.00587	0.00937	0.00675	0.00570
Ca43	0 54290	0 52992	0.52530	0 55884	0 53766	0.55550	0 55110	0 53892
AIO	0.02989	0.03830	0.02936	0.03530	0.03031	0.03786	0.03190	0.03174
Ti47	10 90470	10 28268	10 65754	10 93384	10 66253	10 82029	10 77761	10 69604
V51	0 17535	0 10201	0 07247	0 20235	0 12165	0 20433	0 15524	0 12968
Cr52	0.00247	0.00018	0.00054	0.00191	0.00054	0.00400	0.00175	0.00051
Mn55	0.98853	1 37489	1 42039	0.97725	1 24167	1 03990	1 08669	1 25831
Fe57	0.20986	0.24765	0.20280	0.23966	0.20406	0.23691	0.21250	0.20761
Sr86	0.06939	0.06604	0.06760	0.06947	0.06738	0.07242	0.06812	0.06669
V89	2 65617	3 89713	2 61763	3 39768	2 14561	3 02935	2 27618	2 51892
7r90	0 15273	0 17696	0 12478	0 12626	0 11713	0 15508	0 13962	0 13117
Z130 7r91	0.03232	0.03760	0.02651	0.02717	0.02456	0.03277	0.03000	0.02748
 Nb93	0 23428	0 12143	0 17504	0 17727	0 22528	0 13143	0 16088	0 19872
Ba137	0.00092	0.00110	0.00125	0.00143	0.00135	0.00243	0.00122	0.00161
12139	0.65272	0.44509	0.61246	0.45473	0.66183	0 51308	0 54433	0.61831
Ce140	2 12755	1 74984	2 06791	1 67332	2 06484	1 82556	1 79267	2 05301
Pr 141	0 49866	0 49541	0 50443	0 44181	0 45442	0.47569	0.42935	0.48933
Nd146	0 40932	0 49133	0 42249	0 40298	0 34729	0 43647	0.36226	0 40849
Sm147	0 11202	0 18365	0 11803	0 13423	0.08527	0 13723	0.09639	0 11466
Fu153	0.03895	0.06025	0.04045	0.03934	0.03063	0.05467	0.04333	0.04144
Gd1570	0.07817	0 14268	0.08307	0 10133	0.05821	0 10333	0.06873	0.07974
Th1590	0.06165	0 11308	0.06491	0.08322	0.04659	0.08132	0.05340	0.06166
Dv1630	0.07238	0 12598	0.07391	0.09727	0.05539	0.09283	0.06150	0.07132
Ho1650	0.04430	0.07244	0.04413	0.05918	0.03493	0.05525	0.03831	0.04276
Fr1660	0.03234	0.04688	0.03080	0.04176	0.02601	0.03883	0.02791	0.02982
Tm1690	0.01034	0.01308	0.00933	0.01307	0.00831	0.01203	0.00897	0.00897
Yh1720	0.00912	0.01062	0.00820	0.01148	0.00782	0.01058	0.00789	0.00801
Lu1750	0.00406	0.00419	0.00350	0.00480	0.00367	0.00434	0.00379	0.00345
Hf1780	0.00066	0.00070	0.00056	0.00069	0.00064	0.00078	0.00059	0.00058
Ta1810	0.00331	0.00151	0.00231	0.00213	0.00274	0.00167	0.00174	0.00236
Pb206	0.00006	0.00006	0.00005	0.00006	0.00007	0.00007	0.00007	0.00009
Pb208	0.00016	0.00015	0.00015	0.00019	0.00018	0.00018	0.00016	0.00018
Th2320	0.02814	0.01258	0.01618	0.02244	0.02369	0.01968	0.01697	0.01991
U2380	0.00164	0.00094	0.00079	0.00173	0.00134	0.00166	0.00139	0.00122
	39884.11	39884.12	39884.15	39884.18	39884.19	39884.34	39884.33	39884.16
Corr. 91Zr	3893.82	4693.57	3343.99	3247.32	2994.21	3702.82	3594.64	3410.52
Corr. 90Zr	17848.39	21514.30	15328.11	14884.98	13724.82	16972.89	16477.03	15633.06
Corr. 89Y	322105.02	489575.95	332272.59	407541.62	263917.75	344798.52	273618.81	315509.09
Corr. 93Nb	28465.73	15265.01	22247.43	21272.44	27779.09	14978.23	19358.73	24946.13
90ZrC/Si	0.15	0.17	0.12	0.12	0.11	0.15	0.14	0.12
91ZrC/Si	0.03	0.04	0.03	0.03	0.02	0.03	0.03	0.03
93Ycr/Si	2.65	3.89	2.61	3.40	2.14	3.02	2.27	2.51
93NbC/Si	0.23	0.12	0.17	0.18	0.23	0.13	0.16	0.20
90Zr Cr	1626.59	1894.09	1335.40	13/3.81	1232.43	1648.27	1516.52	13/8.65
91Zr Cr	1626.59	1894.09	1335.40	13/3.81	1232.43	1648.27	1516.52	13/8.65
Y Cr	8837.07	129/5.55	8/14.6/	11323.52	/134.3/	10080.26	/581.36	83/6.32
	2989.45	1548.68	2233.54	2262.48	2874.50	16/6.20	2053.22	2535.14
Est. P	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P Zr90 Corr.	804.29	814.03	/91.92	/93.68	/86.97	805.13	/99.86	/93.90
Temp./w P Zr91 Corr.	804.29	814.03	791.92	793.68	786.97	805.13	799.86	793.90
Age Ma 206/238	171.20	279.20	283.20	169.68	241.13	186.49	245.05	327.94
Age Ma 208/232	72.30	150.35	112.68	106.70	92.01	111.51	113.48	108.75

Table D1. SHRIMP-RG trace element analyses of sphene grains from KPST01A.

Table D1, cont.

	K01A-1.1C	K01A-2.1C	K01A-4.1C	K01A-6.1C	K01A-7.1C	K01A-9.1C	K01A-9.2I	K01A-5.2I
E19	5520.26	7800.94	1650 35	8058 62	6602 67	8602.20	8026 35	6/35 50
Na23	135 24	155 15	576 53	301 03	450.97	300 10	387.83	521 22
Na25	433.24	433.43	715 20	1054.91	430.37	1006.25	302.03	321.33
s:20	120282.00	120282.00	120282.00	1004.01	120292.00	120282.00	120282.00	120292.00
5150	159565.00	159565.00	159565.00	159565.00	159565.00	159565.00	159565.00	159565.00
P31	310.64	269.87	350.75	248.39	252.92	201.30	257.23	305.88
K39	2.97	2.04	1.70	1.94	1.84	2.94	2.12	1.79
Ca43	194696.59	190041.05	188385.19	200410.09	192817.47	199212.64	197635.03	193267.93
AIO	8414.21	10780.53	8264.04	9937.95	8531.39	10656.55	8980.69	8935.52
Ti47	224087.37	211305.05	219008.24	224686.17	219110.70	222352.65	221475.60	219799.36
V51	274.46	159.66	113.42	316.71	190.40	319.81	242.97	202.97
Cr52	5.37	0.39	1.17	4.16	1.17	8.69	3.80	1.10
Mn55	1842.58	2562.74	2647.55	1821.55	2314.43	1938.33	2025.55	2345.43
Fe57	21186.19	25001.92	20473.75	24195.04	20601.40	23917.66	21452.71	20959.06
Sr86	49.12	46.75	47.85	49.17	47.69	51.26	48.21	47.20
Y89	8809.90	12925.85	8682.08	11269.31	7116.48	10047.65	7549.54	8354.68
Zr90	1623.29	1880.74	1326.15	1341.91	1244.84	1648.21	1483.96	1394.13
Zr91	1625.81	1890.95	1333.23	1366.31	1235.34	1648.26	1508.87	1382.28
Nb93	2989.91	1549.68	2233.84	2262.25	2875.00	1677.24	2053.19	2535.98
Ba137	6.21	7.40	8.40	9.61	9.06	16.39	8.20	10.87
La139	5509.22	3756.75	5169.40	3838.13	5586.13	4330.61	4594.35	5218.78
Ce140	20446.49	16816.52	19873.32	16081.17	19843.85	17544.27	17228.14	19730.10
Pr	3110.53	3090.25	3146.49	2755.87	2834.56	2967.21	2678.15	3052.29
Nd146	14743.09	17697.11	15217.53	14514.90	12508.84	15721.34	13048.25	14713.27
Sm147	3520.81	5772.19	3709.86	4218.98	2680.02	4313.15	3029.62	3603.66
Eu153	256.66	397.07	266.58	259.26	201.89	360.26	285.57	273.11
Gd1570	3006.28	5487.53	3194.88	3897.12	2238.81	3973.90	2643.45	3066.90
Tb159O	402.41	738.12	423.72	543.21	304.13	530.81	348.54	402.46
Dy1630	2158.93	3757.77	2204.57	2901.51	1652.10	2768.95	1834.32	2127.42
Ho165O	396.24	647.88	394.66	529.28	312.44	494.13	342.65	382.39
Er1660	950.15	1377.22	904.80	1227.04	764.07	1140.73	819.87	876.12
Tm169O	111.47	140.99	100.58	140.89	89.53	129.63	96.73	96.73
Yb172O	555.76	647.07	499.67	699.26	476.49	644.76	480.70	488.04
Lu1750	60.36	62.28	51.96	71.38	54.61	64.48	56.27	51.34
Hf1780	70.32	74.55	59.99	74.06	68.07	83.73	63.38	62.09
Ta1810	285.47	130.15	199.15	183.26	235.87	143.56	150.10	203.24
Pb206	0.37	0.34	0.29	0.38	0.42	0.40	0.44	0.52
Pb208	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Th2320	619.61	277.04	356.28	494.26	521.66	433 43	373 74	438 48
U2380	33.84	19.38	16.30	35.73	27.62	34.20	28.65	25.07
90ZrC ppm	1626.59	1894.09	1335.40	1373.81	1232.43	1648.27	1516.52	1378.65
91ZrC ppm	1626.59	1894.09	1335.40	1373.81	1232.43	1648.27	1516.52	1378.65
Ycr ppm	8837.07	12975.55	8714.67	11323.52	7134.37	10080.26	7581.36	8376.32
NbC ppm	2989.45	1548.68	2233.54	2262.48	2874.50	1676.20	2053.22	2535.14
Estimated Temperature								
Est. P	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P	804.29	814.03	791.92	793.68	786.97	805.13	799.86	793.90
Temp./w P	804.29	814.03	791.92	793.68	786.97	805.13	799.86	793.90
Y89	8837.07	12975.55	8714.67	11323.52	7134.37	10080.26	7581.36	8376.32
Sum REE	55228.41	60388.76	55158.02	51678.01	49547.48	54984.23	47486.60	54082.62
Al+Fe	29600.40	35782.45	28737.78	34132.99	29132.79	34574.21	30433.41	29894.58
Sm/La	0.64	1.54	0.72	1.10	0.48	1.00	0.66	0.69
Yb/Gd	0.18	0.12	0.16	0.18	0.21	0.16	0.18	0.16
Th/U	18.31	14.30	21.86	13.83	18.89	12.67	13.05	17.49
Y/Nb	2.95	8.34	3.89	4.98	2.48	5.99	3.68	3.29
Zr/Hf	23.09	25.23	22.10	18.12	18.29	19.68	23.41	22.45
Nb/Ta	10.47	11.91	11.22	12.34	12.19	11.68	13.68	12.48

	K01A-1.1C	K01A-2.1C	K01A-4.1C	K01A-6.1C	K01A-7.1C	K01A-9.1C	K01A-9.2I	K01A-5.2I
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) *								
1.5550 Korotev wed Site Wash. Of								
La Ch (0.319)	17270.30	11776.66	16205.02	12031.77	17511.37	13575.57	14402.35	16359.81
Ce Ch (0.82)	24934.74	20507.96	24235.75	19611.18	24199.81	21395.45	21009.93	24061.10
Pr Ch (0.121)	25706.83	25539.26	26004.08	22775.77	23426.11	24522.42	22133.44	25225.54
Nd Ch (0.615)	23972.51	28775.79	24743.94	23601.47	20339.58	25563.15	21216.67	23924.01
Pm	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	17604.07	28860.94	18549.31	21094.90	13400.08	21565.73	15148.08	18018.32
Eu Ch (0.076)	3377.15	5224.59	3507.64	3411.36	2656.48	4740.24	3757.47	3593.52
Gd Ch (0.267)	11259.49	20552.54	11965.84	14595.94	8385.07	14883.54	9900.56	11486.51
Tb Ch (0.0493)	8162.54	14972.08	8594.69	11018.39	6168.95	10766.92	7069.69	8163.46
Dy Ch (0.33)	6542.20	11387.19	6680.52	8792.47	5006.37	8390.77	5558.55	6446.73
Ho Ch (0.0755)	5248.21	8581.26	5227.31	7010.33	4138.23	6544.71	4538.40	5064.81
Er Ch (0.216)	4398.83	6376.00	4188.90	5680.72	3537.38	5281.17	3795.68	4056.12
Tm Ch (0.0329)	3388.25	4285.45	3057.18	4282.46	2721.36	3940.22	2940.13	2940.22
Yb Ch (0.221)	2514.74	2927.91	2260.96	3164.08	2156.08	2917.48	2175.13	2208.33
Lu Ch (0.033)	1829.23	1887.35	1574.46	2163.17	1654.91	1953.97	1705.22	1555.74
Ce/Ce*	1.05	1.05	1.06	1.06	1.06	1.05	1.05	1.05
Eu/Eu*	0.24	0.21	0.24	0.19	0.25	0.26	0.31	0.25
Ca Site Total ppm	64691.76	73611.02	64212.68	63477.31	57213.24	65499.52	55438.53	62900.85
Ti Site Total ppm	34849.21	39577.63	32671.52	38315.33	33748.13	38455.45	34430.79	34294.08
Ti/Ca Site Substitution	0.54	0.54	0.51	0.60	0.59	0.59	0.62	0.55
Ti/Ti Site All Wt%	0.87	0.84	0.87	0.85	0.87	0.85	0.87	0.87
Ca/Ca site	0.75	0.72	0.75	0.76	0.77	0.75	0.78	0.75

Table D1, cont.

Table D1, cont.

	K01A-5.3I	K01A-4.2I	K01A-2.2I	K01A-8.2I	K01A-1.2E	K01A-2.3E	K01A-4.3
Element							
F19	0.12861	0.09876	0.07819	0.13018	0.14170	0.15952	0.10968
Na23	1.17410	1.47911	2.36281	1.21966	1.15170	1.09700	1.30279
Mg26	0.12312	0.10254	0.13425	0.14259	0.12170	0.12951	0.10883
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00204	0.00217	0.00320	0.00198	0.00186	0.00160	0.00230
K39	0.01008	0.00493	0.00603	0.00823	0.00838	0.00452	0.00485
Ca43	0.53569	0.54038	0.54165	0.56611	0.54935	0.52694	0.53150
AIO	0.03394	0.03317	0.03367	0.03699	0.03345	0.03411	0.03395
Ti47	10.55847	10.74367	10.83507	10.87300	10.58570	10.11995	10.42973
V51	0.14045	0.07306	0.09816	0.21179	0.13514	0.08472	0.06683
Cr52	0.00146	0.00078	0.00016	0.00407	0.00099	0.00023	0.00021
Mn55	1.16119	1.47752	1.39047	0.96489	1.18378	1.59921	1.53230
Fe57	0 21051	0 21529	0 23481	0 24023	0 21917	0 23857	0 22518
Sr86	0.06737	0.06780	0.07075	0.07158	0.06842	0.06314	0.06648
V89	2 23192	2 75562	4 07866	3 04814	2 04614	2 28094	3 10268
7r90	0 12867	0 11985	0 19113	0 15769	0 12153	0.09276	0 12253
Zr91	0.12007	0.02508	0.13113	0.13705	0.02596	0.03270	0.12233
Nhoa	0.02771	0.12965	0.10560	0.12502	0.17041	0.18241	0.02317
Ro127	0.14730	0.12903	0.19509	0.13505	0.00167	0.10241	0.12237
Da137	0.00190	0.00121	0.00117	0.00113	0.00107	0.00132	0.00123
Co140	1 70606	1 20066	0.36135	1 96546	1 79177	1 61042	1 70902
Ce140	1.79000	1.80000	2.10790	1.80340	1.76177	0.25208	1.70602
Pr 141	0.42762	0.40355	0.00480	0.48405	0.38734	0.35298	0.44811
Nd146	0.35587	0.41494	0.57781	0.44049	0.29677	0.20153	0.40541
Sm147	0.09156	0.12881	0.20809	0.13750	0.06872	0.06574	0.13189
EUISS	0.03959	0.04507	0.06724	0.05443	0.02760	0.01768	0.03831
Gd1570	0.06633	0.09419	0.15478	0.10366	0.04816	0.04915	0.10041
161590	0.05088	0.07218	0.12125	0.08058	0.03800	0.04110	0.07955
Dy1630	0.05890	0.08162	0.13318	0.09113	0.04680	0.05273	0.09091
H01650	0.03724	0.04867	0.07500	0.05494	0.03039	0.03552	0.05360
Er1660	0.02687	0.03283	0.04815	0.03///	0.02453	0.02746	0.03669
Tm1690	0.00852	0.00989	0.01330	0.01180	0.00855	0.00936	0.01084
Yb1720	0.00793	0.00848	0.01047	0.01010	0.00804	0.00885	0.00920
Lu1750	0.00367	0.00373	0.00423	0.00454	0.00390	0.00396	0.00398
Hf1780	0.00063	0.00059	0.00082	0.00067	0.00066	0.00053	0.00058
Ta1810	0.00153	0.00144	0.00324	0.00163	0.00163	0.00159	0.00126
Pb206	0.00005	0.00009	0.00006	0.00007	0.00008	0.00007	0.00008
Pb208	0.00016	0.00017	0.00015	0.00016	0.00012	0.00017	0.00016
Th2320	0.01655	0.01198	0.01669	0.01977	0.01912	0.01807	0.01112
U238O	0.00132	0.00075	0.00098	0.00144	0.00161	0.00147	0.00084
	39884.16	39884.15	39884.13	39884.35	39884.12	39884.13	39884.14
Corr. 917r	3497 38	3043 67	4875 70	3956 42	3236 90	2434 17	3184 58
Corr. 907r	16031 21	13951 50	22349 13	18135 33	14837.26	11157 71	14597 4
Corr. 89Y	282462.96	337884 34	488361 53	353151 17	256326.07	297461.05	398608 5
Corr 93Nh	18655.47	15921 93	23448 89	15648 57	21377 48	23854 30	15774 41
907rC/Si	0.13	0 11	0 19	0.16	0 12	0.09	0 11
917rC/Si	0.03	0.02	0.04	0.03	0.03	0.02	0.02
93Ycr/Si	2 23	2 75	4 07	3.05	2.05	2 27	3 09
93NbC/Si	0.15	0.13	0.20	0.14	0.17	0.18	0.12
90Zr Cr	1401.88	1257.34	2065.23	1733.36	1309.81	944.42	1254.64
91Zr Cr	1401.88	1257.34	2065.23	1733.36	1309.81	944.42	1254.64
Y Cr	7436.01	9167.08	13585.68	10161.49	6812.06	7579.74	10313.86
Nb Cr	1879.93	1653.55	2497.01	1723.57	2174.70	2326.74	1562.38
Est. P	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P Zr90 Corr.	794.94	788.20	819.64	808.33	790.73	770.88	788.07
Temp./w P Zr91 Corr.	794.94	788.20	819.64	808.33	790.73	770.88	788.07
Age Ma 206/238	163.86	541.55	272.46	224.97	220.08	224.74	412.07
Age Ma 208/232	117.92	176.36	111.22	102.50	79.87	114.98	181.15
-							
	K01A-5.3I	K01A-4.2I	K01A-2.2I	K01A-8.2I	K01A-1.2E	K01A-2.3E	K01A-4.3E
-----------------------	-----------	---------------	---------------	-----------	---------------	---------------	-------------------------
F19	8269.00	6349.99	5027.61	8370.10	9110.96	10256.45	7052.39
Na23	359.50	452.90	723.48	373.46	352.65	335.90	398.91
Mg26	856.03	712.91	933.41	991.37	846.16	900.46	756.66
si30	139383.00	139383.00	139383.00	139383.00	139383.00	139383.00	139383 00
P31	245 99	262 51	386.80	239 35	224 12	193.06	277.83
K39	3 17	1 55	1 90	255.55	2 63	1 / 2	1 52
Ca42	102100.00	102790 02	104247 62	2.30	107000 20	100072 24	100607.1
Ca43	192109.00	193769.92	0470.20	205018.91	0415 72	0602.26	190007.13
AIO	9553.75	9338.73	9479.30	10413.00	9415.73	9003.30	9558.20
1147	216972.43	220778.13	222656.34	223435.76	21/531.8/	207960.94	214326.88
V51	219.83	114.35	153.63	331.49	211.52	132.60	104.61
Cr52	3.17	1.70	0.35	8.83	2.15	0.50	0.45
Mn55	2164.41	2754.03	2591.78	1798.52	2206.52	2980.86	2856.14
Fe57	21252.40	21734.91	23705.46	24252.61	22126.87	24084.70	22733.64
Sr86	47.68	47.99	50.08	50.67	48.43	44.69	47.06
Y89	7402.76	9139.74	13527.96	10109.95	6786.55	7565.34	10290.84
Zr90	1367.48	1273.83	2031.34	1675.98	1291.68	985.87	1302.30
Zr91	1393.80	1261.21	2057.27	1719.88	1305.55	954.16	1265.84
Nb93	1879.80	1654.61	2497.33	1723.26	2174.78	2327.86	1564.24
Ba137	12.79	8.14	7.87	7.72	11.27	10.23	8.44
La139	4578.04	4231.46	4906.71	4410.08	4824.59	4298.39	3935.85
Ce140	17260.74	17304.93	21027.27	17927.71	17123.46	15563.14	16414.64
Pr	2667.35	2891.50	3772.98	3023.14	2416.14	2201.82	2795.17
Nd146	12818.16	14945.85	20812.10	15866.14	10689.49	9419.90	14602.45
Sm147	2877.62	4048.71	6540.36	4321.54	2160.00	2066.38	4145.45
Fu153	260.88	297 03	443 14	358 71	181 90	116 50	252 44
Gd1570	2551 11	3622 53	5952 58	3986 77	1852 30	1890.09	3861.85
Th1590	332.09	171 11	791 /6	525.96	2/18 07	268.26	519.26
Dv1630	1756.05	2/2/ 5/	2072 52	2718 25	1205 02	1572.81	2711 75
Ho1650	222.05	425.24	670.76	401.40	271 75	217 62	470.27
H01050	333.05	435.20	0/0.70	491.40	2/1./5	317.03	4/9.3/
E11660	/89.31	964.60	1414.54	1109.75	/20.78	806.70	1077.94
1m1690	91.87	106.59	143.33	127.20	92.13	100.92	116.86
¥61720	482.88	516.39	637.92	615.56	489.70	539.36	560.25
Lu1750	54.52	55.46	62.89	67.41	57.90	58.81	59.12
Hf1780	66.80	62.93	87.34	71.90	70.50	56.49	62.01
Ta1810	132.13	124.39	279.40	140.11	140.12	136.98	108.20
Pb206	0.28	0.53	0.35	0.42	0.46	0.43	0.45
Pb208	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Th232O	364.52	263.75	367.57	435.42	421.03	398.05	244.88
U238O	27.14	15.51	20.12	29.71	33.15	30.32	17.24
90ZrC ppm	1401.88	1257.34	2065.23	1733.36	1309.81	944.42	1254.64
91ZrC ppm	1401.88	1257.34	2065.23	1733.36	1309.81	944.42	1254.64
Ycr ppm	7436.01	9167.08	13585.68	10161.49	6812.06	7579.74	10313.86
NbC ppm	1879.93	1653.55	2497.01	1723.57	2174.70	2326.74	1562.38
Estimated Temperature							
Est. P	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P	794.94	788.20	819.64	808.33	790.73	770.88	788.07
Temp./w P	794.94	788.20	819.64	808.33	790.73	770.88	788.07
Y89	7436.01	9167.08	13585.68	10161.49	6812.06	7579.74	10313.86
Sum REE	46854.58	52325.99	71148.57	55549.60	42524.13	39220.70	51532.39
Al+Fe	30806 15	31073 64	33184 76	34665.67	31542 60	33688.06	32291 90
Sm/La	0.63	0.96	1 33	0.98	0.45	0.48	1 05
Vh/Gd	0.10	0.50	0.11	0.55	0.45	0.70	0.15
Th/II	12 /2	17.00	18 27	1/ 66	12 70	13 12	1/ 21
V/NF	2 04	17.00	5 10.27	5 07	2 1 2	2 75	14.21 2 EQ
7,110	3.34	J.JZ 20.24	J.42	3.07	3.12 10.22	J.ZJ 17 /E	0.00
Nh/Ta	20.47	20.24	23.20 8 Q/	23.31	10.32	16 99	21.00 1 <i>1 1</i> 6
110/10	14.20	10.00	0.34	12.30	10.04	10.33	14.40

	K01A-5.3I	K01A-4.2I	K01A-2.2I	K01A-8.2I	K01A-1.2E	K01A-2.3E	K01A-4.3E
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)							
La Ch (0.319)	14351.21	13264.77	15381.55	13824.69	15124.10	13474.59	12338.07
Ce Ch (0.82)	21049.68	21103.57	25643.02	21863.06	20882.27	18979.44	20017.85
Pr Ch (0.121)	22044.22	23896.68	31181.66	24984.63	19968.10	18196.85	23100.61
Nd Ch (0.615)	20842.53	24302.20	33840.81	25798.60	17381.29	15316.90	23743.82
Pm	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	14388.12	20243.53	32701.82	21607.68	10800.02	10331.90	20727.23
Eu Ch (0.076)	3432.60	3908.35	5830.75	4719.88	2393.39	1532.94	3321.60
Gd Ch (0.267)	9554.73	13567.54	22294.32	14931.71	6937.44	7079.00	14463.86
Tb Ch (0.0493)	6736.06	9556.56	16053.90	10668.48	5031.85	5441.31	10532.64
Dy Ch (0.33)	5324.09	7377.38	12037.94	8237.12	4230.05	4766.08	8217.41
Ho Ch (0.0755)	4411.32	5765.06	8884.19	6508.65	3599.37	4207.05	6349.33
Er Ch (0.216)	3654.23	4465.74	6548.78	5137.73	3336.92	3734.71	4990.47
Tm Ch (0.0329)	2792.43	3239.77	4356.56	3866.16	2800.17	3067.35	3551.86
Yb Ch (0.221)	2184.99	2336.59	2886.51	2785.34	2215.86	2440.53	2535.07
Lu Ch (0.033)	1652.15	1680.71	1905.88	2042.79	1754.69	1782.21	1791.55
	1.05	1.06	1.06	1.05	1.05	1.07	1.06
	0.29	0.24	0.22	0.26	0.28	0.18	0.19
Ca Site Total ppm	54649.01	61744.99	85064.21	66124.69	49764.85	47214.42	62085.35
Ti Site Total ppm	34475.37	34305.45	38234.17	38617.24	35433.34	37328.38	35433.71
Ti/Ca Site Substitution	0.63	0.56	0.45	0.58	0.71	0.79	0.57
Ti/Ti Site All Wt%	0.86	0.87	0.85	0.85	0.86	0.85	0.86
Ca/Ca site	0.78	0.76	0.70	0.75	0.80	0.80	0.75

Table D1, cont.

	K01A-6.2E	K01A-7.1E	K01A-8.1E	K01A-8.3E
Flement				
F19	0 14584	0 15797	0 15053	0 09589
Na23	1.35173	1.45616	1,24939	1.75127
Mg26	0.12901	0.12816	0.13166	0.14383
Si30	1.00000	1.00000	1.00000	1.00000
P31	0.00155	0.00152	0.00130	0.00298
К39	0.00544	0.00683	0.01190	0.01044
Ca43	0.54709	0.55151	0.54247	0.55181
AIO	0.03360	0.03470	0.03418	0.03364
Ti47	10.62733	10.63696	10.44466	11.07329
V51	0.10301	0.08022	0.10187	0.19677
Cr52	0.00051	0.00038	0.00088	0.00309
Mn55	1.47400	1.72366	1.47263	0.93756
Fe57	0.22588	0.23465	0.23020	0.21980
Sr86	0.06678	0.06799	0.06627	0.07351
Y89	2.44674	2.37023	2.45700	2.86908
Zr90	0.10296	0.09214	0.10239	0.16058
Zr91	0.02124	0.01922	0.02129	0.03366
Nb93	0.19252	0.21668	0.17552	0.18431
Ba137	0.00118	0.00123	0.00130	0.00262
La139	0.52813	0.52533	0.52153	0.59421
Ce140	1.71199	1.69518	1.69599	2.06506
Pr 141	0.38872	0.36693	0.38736	0.53236
Nd146	0.30366	0.27298	0.30640	0.47838
Sm147	0.08295	0.06948	0.08149	0.14293
Eu153	0.02541	0.01831	0.02507	0.05691
Gd157O	0.06110	0.05049	0.06124	0.10363
Tb159O	0.05026	0.04261	0.04985	0.07949
Dy163O	0.06072	0.05388	0.06072	0.08880
Ho165O	0.03896	0.03611	0.03915	0.05217
Er166O	0.02908	0.02797	0.02949	0.03523
Tm1690	0.00930	0.00974	0.00947	0.01050
Yb172O	0.00886	0.00940	0.00890	0.00927
Lu1750	0.00412	0.00419	0.00390	0.00385
Hf1780	0.00045	0.00052	0.00055	0.00083
Ta1810	0.00183	0.00205	0.00171	0.00250
Pb206	0.00007	0.00006	0.00007	0.00006
Pb208	0.00018	0.00020	0.00013	0.00016
Th2320	0.01673	0.01821	0.01751	0.02370
U2380	0.00135	0.00137	0.00134	0.00157
	39884.17	39884.18	39884.19	39884.34
Com. 017.	2620.21	2222.45	2620.00	2007.07
Corr. 912r	2620.21	2322.45	2039.00	3807.87
Corr. 902r	12010.40	10045.59	12090.57	222607 71
Corr 02Nh	202970.07	269022.99	22057.06	21412 60
007rC/Si	24154.60	20527.54	22037.90	0.15
9021C/31	0.10	0.03	0.10	0.13
93Vcr/Si	2 44	2 36	2.45	2.86
93NbC/Si	0.19	0.22	0.18	0.18
551166,51	0.15	0.22	0.10	0.10
90Zr Cr	1060.57	962.84	1065.59	1689.03
91Zr Cr	1060.57	962.84	1065.59	1689.03
Y Cr	8133.74	7885.91	8171.73	9539.06
Nb Cr	2455.91	2764.84	2239.15	2350.83
Est. P	0.10	0.10	0.10	0.10
Temp./w P Zr90 Corr.	777.83	772.03	778.12	806.68
Temp./w P Zr91 Corr	777.83	772.03	778.12	806.68
Age Ma 206/238	240 62	210 70	236.48	181 /1
Age Ma 200/230	2 4 3.02	210.70	230.40	101.41
Age IVIA 208/232	131.09	133.06	91.23	85.22

	K01A-6.2E	K01A-7.1E	K01A-8.1E	K01A-8.3E
F19	9377.25	10157.18	9678.72	6165.39
Na23	413.89	445.87	382.56	536.23
Mg26	897.00	891.09	915.40	1000.05
Si30	139383.00	139383.00	139383.00	139383.00
P31	187.14	182.97	157.25	359.50
K39	1.71	2.14	3.74	3.28
Ca43	196196.85	197784.86	194542.06	197890.76
AIO	9458.82	9768.69	9621.74	9469.99
Ti47	218387.38	218585.39	214633.68	227551.75
V51	161.23	125.56	159.44	307.98
Cr52	1.11	0.82	1.91	6.71
Mn55	2747.47	3212.84	2744.92	1747.57
Fe57	22803.52	23688.78	23240.08	22189.57
Sr86	47.27	48.12	46.91	52.03
Y89	8115.26	7861.49	8149.30	9516.07
Zr90	1094.29	979.27	1088.22	1706.64
 7r91	1068 49	966.70	1070 91	1693 17
Nb93	2456 91	2765.20	2239.96	2352.10
Ba137	7 97	8 29	8 78	17 64
Dalor	7.57	0.25	0.70	17.01
La139	4457.64	4434.04	4401.96	5015.42
Ce140	16452.79	16291.31	16299.08	19845.91
00140	10132.75	10251.51	10255.00	15015.51
Pr	2424.74	2288.84	2416.25	3320.71
Nd146	10937.45	9832.28	11036.32	17230.64
Sm147	2607.05	2183.78	2561.39	4492.27
Eu153	167.48	120.68	165.19	375.05
Gd157O	2349.86	1941.98	2355.44	3985.49
Tb159O	328.05	278.12	325.37	518.87
Dy163O	1811.19	1607.17	1811.23	2648.87
Ho165O	348.46	322.95	350.15	466.60
Er166O	854.37	821.75	866.51	1035.13
Tm1690	100.19	105.00	102.03	113.16
Yb172O	539.66	572.55	541.95	564.62
Lu1750	61.19	62.26	57.97	57.17
Hf1780	47.69	55.13	58.45	88.39
Ta181O	158.16	176.35	147.08	215.55
Pb206	0.44	0.38	0.41	0.37
Pb208	0.00	0.00	0.00	0.00
Th232O	368.36	400.93	385.63	522.01
U238O	27.73	28.20	27.62	32.27
007-0	1000 57	062.84		1680.02
902rC ppm	1060.57	902.04	1065.59	1680.03
Sizic ppin	1000.57	302.04	1005.59	1069.05
YCr ppm NbC nnm	8133.74 2455.01	7885.91	81/1./3 2220.15	2250 82
мыс ррт	2455.91	2704.84	2239.15	2350.83
Estimated Temperature				
Est. P	0.10	0.10	0.10	0.10
Temp./w P	777.83	772.03	778.12	806.68
Temp./w P	777.83	772.03	778.12	806.68
Y89	8133.74	7885.91	8171.73	9539.06
Sum REE	43440.14	40862.71	43290.83	59669.89
Al+Fe	32262.34	33457.47	32861.82	31659.56
Sm/La	0.58	0.49	0.58	0.90
Yb/Gd	0.23	0.29	0.23	0.14
Th/U	13.28	14.22	13.96	16.18
Y/Nb	3.30	2.84	3.64	4.05
Zr/Hf	22.94	17.76	18.62	19.31
Nb/Ta	15.53	15.68	15.23	10.91

Table D1, cont.

	K01A-6.2E	K01A-7.1E	K01A-8.1E	K01A-8.3E
bondrito normalized DEC (Anders				
R Crowesso (1080) (in				
& Grevesse (1969) (III				
Wed Site Wash 11)				
wed site wash. Of				
La Ch (0.319)	13973.78	13899.81	13799.25	15722.30
Ce Ch (0.82)	20064.38	19867.45	19876.93	24202.33
Pr Ch (0.121)	20039.17	18916.04	19969.00	27443.88
Nd Ch (0.615)	17784.48	15987.45	17945.23	28017.29
Pm	0.00	0.00	0.00	0.00
Sm Ch (0.2)	13035.27	10918.89	12806.95	22461.33
Eu Ch (0.076)	2203.72	1587.90	2173.58	4934.85
Gd Ch (0.267)	8800.98	7273.32	8821.86	14926.95
Tb Ch (0.0493)	6654.06	5641.36	6599.87	10524.73
Dy Ch (0.33)	5488.47	4870.23	5488.57	8026.89
Ho Ch (0.0755)	4615.41	4277.46	4637.78	6180.13
Er Ch (0.216)	3955.41	3804.39	4011.61	4792.25
Tm Ch (0.0329)	3045.40	3191.48	3101.08	3439.37
Yb Ch (0.221)	2441.92	2590.72	2452.24	2554.83
Lu Ch (0.033)	1854.26	1886.74	1756.68	1732.51
	1.06	1.06	1.06	1.05
	0.21	0.18	0.20	0.27
Ca Site Total ppm	51951.49	49153.33	51853.39	69740.24
Ti Site Total ppm	36181.74	37559.80	36556.89	36336.93
Ti/Ca Site Substitution	0.70	0.76	0.71	0.52
Ti/Ti Site All Wt%	0.96	0.95	0.95	0.86
	0.80	0.65	0.85	0.80

	WSW2AS_2.1C	WSW2AS_3.2C	WSW2AS-10.1C	WSW2AS-4.3C	WSW2AS-5.1C	WSW2AS-6.2C
Flement						
F19	0 12068	0 11769	0 13627	0 11823	0 12507	0 10853
Na23	1 29264	1 36893	1 22287	1 27418	1 73970	1 91435
Mg26	0.12761	0.11160	0.11919	0.11582	0.16754	0.15150
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00224	0.00198	0.00173	0.00201	0.00213	0.00216
К39	0.00670	0.00724	0.00761	0.00699	0.00699	0.00849
Ca43	0.55015	0.52751	0.53122	0.52958	0.50799	0.51806
AIO	0.03332	0.03376	0.03497	0.03072	0.03830	0.03514
Ti47	10.80248	10.48304	10.42191	10.38161	9.96441	10.35545
V51	0.16052	0.07780	0.11871	0.11949	0.06628	0.05659
Cr52	0.00187	0.00022	0.00074	0.00084	0.00014	0.00013
Mn55	1.06037	1.50795	1.32916	1.26446	1.59643	1.74790
Fe57	0.21107	0.21911	0.21740	0.20406	0.28804	0.26041
Sr86	0.07096	0.06546	0.06683	0.06442	0.06267	0.06452
Y89	2.33964	2.48771	2.21042	2.16224	6.11807	5.29869
Zr90	0.14144	0.12745	0.11285	0.10883	0.19266	0.15176
Zr91	0.03030	0.02654	0.02366	0.02263	0.04072	0.03126
Nb93	0.16035	0.15363	0.19612	0.18757	0.13461	0.18158
Ba137	0.00119	0.00107	0.00142	0.00097	0.00113	0.00103
La139	0.54937	0.50224	0.54352	0.52636	0.31174	0.37122
Ce140	1.82040	1.71033	1.73323	1.71989	1.37825	1.54666
Pr 141	0.43906	0.41773	0.38396	0.38709	0.44765	0.45329
Nd146	0.37562	0.34945	0.29850	0.30767	0.47391	0.44127
Sm147	0.10118	0.10148	0.07736	0.07976	0.23397	0.18926
Eu153	0.04531	0.03285	0.02678	0.02878	0.03709	0.02747
Gd1570	0.07162	0.07377	0.05494	0.05840	0.20593	0.16180
Tb159O	0.05555	0.05922	0.04442	0.04644	0.18051	0.14196
Dy1630	0.06405	0.06899	0.05418	0.05513	0.20557	0.16624
Ho165O	0.03970	0.04237	0.03474	0.03541	0.11713	0.09753
Er1660	0.02872	0.03010	0.02623	0.02654	0.07447	0.06438
Im1690	0.00932	0.00962	0.00842	0.00869	0.01945	0.01766
YB1720	0.00841	0.00842	0.00845	0.00819	0.01517	0.01385
Lu1750	0.00389	0.00371	0.00361	0.00377	0.00581	0.00551
T-1810	0.00068	0.00060	0.00055	0.00058	0.00075	0.00075
Ph206	0.00180	0.00137	0.00207	0.00183	0.00172	0.00227
P 5200	0.00005	0.00005	0.00007	0.00003	0.00007	0.00007
Th2320	0.01723	0.01374	0.01721	0.01745	0.00990	0.01068
U2380	0.00137	0.00105	0.00147	0.00131	0.00084	0.00079
	39856.89	39856.91	39884.07	39856.98	39857.00	39884.01
Corr. 91Zr	3670.66	3306.68	2955.26	2791.45	5105.48	3846.91
Corr. 90Zr	16825.50	15157.09	13546.26	12795.41	23402.40	17633.41
Corr. 89Y	284488.83	313319.94	278638.27	269739.31	773278.36	662050.74
Corr. 93Nb	19519.29	19394.52	24778.21	23461.52	17016.82	22710.83
90ZrC/Si	0.14	0.12	0.11	0.10	0.18	0.14
91ZrC/Si	0.03	0.03	0.02	0.02	0.04	0.03
93Ycr/Si	2.34	2.48	2.20	2.15	6.11	5.29
93NbC/Si	0.16	0.15	0.20	0.19	0.13	0.18
90Zr Cr	1530.61	1328.83	1187.15	1132.50	2048.41	1559.95
91Zr Cr	1530.61	1328.83	1187.15	1132.50	2048.41	1559.95
Y Cr	7791.02	8269.39	7351.22	7187.20	20376.25	17631.81
Nb Cr	2046.21	1959.40	2502.34	2392.93	1716.42	2315.24
Est. P	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P Zr90 Corr.	800.44	791.62	784.68	781.81	819.11	801.64
Temp./w P Zr91 Corr.	800.44	791.62	784.68	781.81	819.11	801.64
Age Ma 206/238	156.80	231.12	226.17	118.37	373.27	390.01
Age Ma 208/232	110.48	131.70	107.97	99.07	185.05	219.46

Table D2. SHRIMP-RG trace element analyses of sphene grains from WSW2A.

	WSW2AS_2.1C	WSW2AS_3.2C	WSW2AS-10.1C	WSW2AS-4.3C	WSW2AS-5.1C	WSW2AS-6.2C
F19	7759.19	7567.08	8761.46	7601.63	8041.86	6977.99
Na23	395.80	419.16	374.44	390.15	532.69	586.16
Mg26	887.23	775.96	828.68	805.29	1164.88	1053.38
Si30	139383.00	139383.00	139383.00	139383.00	139383.00	139383.00
P31	270.60	239.45	209.28	243.02	257.19	260.90
К39	2.10	2.27	2.39	2.20	2.20	2.67
Ca43	197295.65	189175.29	190506.96	189919.92	182176.54	185788.93
AIO	9379.19	9503.51	9843.91	8647.48	10781.61	9890.90
Ti47	221986.62	215422.27	214166.04	213338.04	204764.70	212800.45
V51	251.23	121.78	185.79	187.02	103.74	88.57
Cr52	4.07	0.48	1.61	1.83	0.31	0.28
Mn55	1976.49	2810.76	2477.50	2356.91	2975.68	3258.01
Fe57	21308.91	22119.93	21948.13	20601.25	29079.70	26290.02
Sr86	50.23	46.34	47.30	45.59	44.36	45.67
Y89	7760.02	8251.15	7331.45	7171.65	20292.20	17574.52
Zr90	1503.25	1354.53	1199.40	1156.64	2047.60	1612.89
Zr91	1524.18	1334.87	1190.03	1138.17	2048.22	1572.39
Nb93	2046.33	1960.65	2502.92	2393.78	1717.83	2317.27
Ba137	7.99	7.24	9.57	6.53	7.61	6.95
La139	4636.89	4239.12	4587.56	4442.71	2631.21	3133.29
Ce140	17494.69	16436.81	16656.90	16528.72	13245.44	14863.93
Pr	2738.71	2605.69	2395.01	2414.58	2792.31	2827.49
Nd146	13529.39	12586.64	10751.73	11081.78	17069.64	15893.94
Sm147	3180.00	3189.53	2431.48	2506.75	7353.82	5948.50
Eu153	298.61	216.52	176.46	189.67	244.46	181.04
Gd1570	2754.49	2837.08	2113.01	2245.86	7919.94	6222.87
Tb1590	362.57	386.58	289.96	303.16	1178.27	926.64
Dv1630	1910.55	2057.95	1616.16	1644.29	6131.82	4958.73
Ho1650	355.03	378 92	310.67	316.67	1047 52	872 25
Fr1660	843.88	884.19	770.67	779.83	2187.91	1891.58
Tm1690	100.44	103.69	90.72	93.66	209.60	190.39
Yb1720	512.34	512.94	514.77	498.77	924.13	843.82
Lu1750	57.77	55.06	53.68	56.06	86.32	81.93
Hf1780	72.82	64.60	56.12	62.32	79.86	77.64
Ta1810	160.39	135.47	178.37	159.35	147.92	195.34
Pb206	0.28	0.32	0.43	0.20	0.41	0.40
Pb208	0.00	0.00	0.00	0.00	0.00	0.00
Th2320	379.43	302.67	379.03	384.25	217.97	235.29
U238O	28.27	21.70	30.38	26.93	17.39	16.34
90ZrC ppm	1530.61	1328.83	1187.15	1132.50	2048.41	1559.95
91ZrC ppm	1530.61	1328.83	1187.15	1132.50	2048.41	1559.95
Ycr ppm	7791.02	8269.39	7351.22	7187.20	20376.25	17631.81
NbC ppm	2046.21	1959.40	2502.34	2392.93	1716.42	2315.24
Estimated Temperature						
Est. P	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P	800.44	791.62	784.68	781.81	819.11	801.64
Temp./w P	800.44	791.62	784.68	781.81	819.11	801.64
Y89	7791.02	8269.39	7351.22	7187.20	20376.25	17631.81
Sum REE	48775.36	46490.73	42758.77	43102.52	63022.40	58836.39
Al+Fe	30688.10	31623.44	31792.05	29248.72	39861.31	36180.92
Sm/La	0.69	0.75	0.53	0.56	2.79	1.90
Yb/Gd	0.19	0.18	0.24	0.22	0.12	0.14
Th/U	13.42	13.95	12.48	14.27	12.53	14.40
Y/Nb	3.79	4.21	2.93	3.00	11.81	7.58
Zr/Hf	20.64	20.97	21.37	18.56	25.64	20.77
Nb/Ta	12.76	14.47	14.03	15.02	11.61	11.86

	WSW2AS_2.1C	WSW2AS_3.2C	WSW2AS-10.1C	WSW2AS-4.3C	WSW2AS-5.1C	WSW2AS-6.2C
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)						
La Ch (0.319)	14535.72	13288.78	14381.06	13926.99	8248.32	9822.22
Ce Ch (0.82)	21334.98	20044.90	20313.30	20156.98	16152.97	18126.75
Pr Ch (0.121)	22633.96	21534.65	19793.45	19955.24	23076.97	23367.67
Nd Ch (0.615)	21999.01	20466.08	17482.48	18019.16	27755.51	25843.80
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	15900.02	15947.66	12157.39	12533.76	36769.10	29742.48
Eu Ch (0.076)	3929.03	2848.89	2321.81	2495.64	3216.61	2382.12
Gd Ch (0.267)	10316.43	10625.76	7913.90	8411.47	29662.70	23306.64
Tb Ch (0.0493)	7354.43	7841.46	5881.56	6149.27	23900.06	18796.03
Dy Ch (0.33)	5789.56	6236.23	4897.46	4982.69	18581.26	15026.46
Ho Ch (0.0755)	4702.43	5018.78	4114.84	4194.36	13874.46	11552.94
Er Ch (0.216)	3906.86	4093.46	3567.90	3610.32	10129.22	8757.30
Tm Ch (0.0329)	3052.87	3151.64	2757.54	2846.72	6370.83	5786.97
Yb Ch (0.221)	2318.28	2321.02	2329.28	2256.87	4181.58	3818.18
Lu Ch (0.033)	1750.50	1668.49	1626.52	1698.82	2615.77	2482.63
Ce/Ce*	1.04	1.06	1.05	1.05	1.09	1.08
Eu/Eu*	0.31	0.22	0.24	0.24	0.10	0.09
Ca Site Total ppm	56943.09	55066.25	50499.64	50685.36	83549.96	76662.55
Ti Site Total ppm	34726.18	35260.95	35916.27	33209.67	43958.57	40472.92
Ti/Ca Site Substitution	0.61	0.64	0.71	0.66	0.53	0.53
Ti/Ti Site All Wt%	0.86	0.86	0.86	0.87	0.82	0.84
Ca/Ca site	0.78	0.77	0.79	0.79	0.69	0.71

	WSW2AS-7.1C	WSW2AS-8.1C	WSW2AS-9.2C	WSW2AS-9.1I	WSW2AS-7.2I	WSW2AS-4.4I	WSW2AS-4.2I
Flement							
F19	0 11905	0 10246	0 13368	0 12203	0 12706	0 13859	0 10325
Na23	1 25369	1 80515	1 20585	1 31349	1 01277	1 12680	1 48037
Mg26	0.12723	0.12303	0.12173	0.11541	0.11699	0.11871	0.11738
Si30	1 00000	1 00000	1 00000	1 00000	1 00000	1 00000	1 00000
P31	0.00213	0.00200	0.00213	0.00165	0.00178	0.00217	0.00258
К39	0.00624	0.00606	0.00649	0.01590	0.00625	0.00779	0.00991
Ca43	0.53324	0.52362	0.55476	0.54098	0.52044	0.53131	0.52872
AIO	0.03094	0.03169	0.03347	0.03046	0.03309	0.02959	0.02956
Ti47	10.57614	10.53996	10.98421	10.49230	10.40850	10.42282	10.56543
V51	0.15458	0.07237	0.13967	0.10955	0.13982	0.11190	0.10663
Cr52	0.00183	0.00019	0.00103	0.00053	0.00132	0.00054	0.00043
Mn55	1.02944	1.49977	1.17404	1.28311	1.07996	1.27104	1.24752
Fe57	0.21426	0.22859	0.21482	0.20711	0.21078	0.21176	0.19884
Sr86	0.06662	0.06606	0.06977	0.06679	0.06567	0.06505	0.06586
Y89	2.12227	3.84682	2.02191	1.97885	2.05179	1.95824	2.02931
Zr90	0.13782	0.14882	0.12960	0.10322	0.12826	0.10883	0.11176
Zr91	0.02891	0.03152	0.02715	0.02115	0.02714	0.02318	0.02344
Nb93	0.16234	0.16960	0.19268	0.21569	0.15055	0.20040	0.24838
Ba137	0.00124	0.00100	0.00129	0.00103	0.00104	0.00206	0.00101
La139	0.55531	0.42129	0.58807	0.53801	0.54762	0.53030	0.65832
Ce140	1.80181	1.64305	1.84425	1.69284	1.76997	1.64279	1.99354
Pr 141	0.42224	0.45648	0.40388	0.36546	0.40459	0.35391	0.42548
Nd146	0.34750	0.43179	0.30981	0.27429	0.32721	0.26248	0.31559
Sm147	0.09026	0.15850	0.07312	0.06605	0.08089	0.06260	0.07324
Eu153	0.03865	0.04460	0.02931	0.02304	0.03421	0.02213	0.02518
Gd1570	0.06303	0.12380	0.05024	0.04655	0.05686	0.04548	0.05155
Tb159O	0.04885	0.10219	0.04018	0.03821	0.04452	0.03724	0.04184
Dy1630	0.05744	0.11719	0.04857	0.04663	0.05224	0.04693	0.05021
Ho1650	0.03589	0.06774	0.03193	0.03043	0.03351	0.03102	0.03268
Er1660	0.02584	0.04463	0.02468	0.02372	0.02530	0.02446	0.02480
Tm1690	0.00849	0.01252	0.00872	0.00813	0.00845	0.00844	0.00797
481720	0.00787	0.00974	0.00819	0.00771	0.00783	0.00843	0.00774
Lu1/30	0.00349	0.00392	0.00383	0.00344	0.00354	0.00388	0.00350
Ta1810	0.00007	0.00000	0.00003	0.00030	0.00007	0.00003	0.00002
Ph206	0.00193	0.00204	0.00207	0.00233	0.00133	0.00197	0.00017
Ph208	0.00020	0.00015	0.00016	0.00017	0.00015	0.00016	0.00014
Th2320	0.01894	0.01111	0.01989	0.01786	0.01799	0.01896	0.02496
U2380	0.00138	0.00085	0.00157	0.00145	0.00140	0.00161	0.00139
	39884.03	39884.04	39884.06	39884.05	39884.02	39856.97	39856.98
Corr. 91Zr	3650.64	3990.95	3279.60	2651.27	3459.47	2937.03	2947.73
Corr. 90Zr	16733.71	18293.65	15032.97	12152.85	15857.44	13462.70	13511.75
Corr. 89Y	270229.48	490700.56	246338.18	251711.39	263278.87	249461.77	257462.71
Corr. 93Nb	20726.45	21653.69	23543.28	27539.20	19356.25	25568.22	31593.41
90ZrC/Si	0.13	0.14	0.12	0.10	0.12	0.11	0.11
91ZrC/Si	0.03	0.03	0.03	0.02	0.03	0.02	0.02
93Ycr/Si	2.11	3.84	2.01	1.97	2.05	1.95	2.02
93NbC/Si	0.16	0.17	0.19	0.22	0.15	0.20	0.25
90Zr Cr	1450.75	1586.24	1362.02	1053.68	1365.41	1168.59	1176.29
91Zr Cr	1450.75	1586.24	1362.02	1053.68	1365.41	1168.59	1176.29
Y Cr	/052.89	12809.05	6/19.00	65/0.01	6824.64	6518.76	6/47.58
Nb Cr	2070.70	2163.67	2458.09	2751.52	1920.63	2557.52	3169.48
EST. P	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P Zr90 Corr.	/97.08	802.70	/93.15	///.44	/93.30	/83.72	/84.12
Temp./w P Zr91 Corr.	797.08	802.70	793.15	777.44	793.30	783.72	784.12
Age Ma 206/238	238.32	396.90	254.64	141.35	158.56	199.93	218.69
Age Ma 208/232	127.74	165.49	101.68	119.21	100.16	106.04	70.08

Та	ble	D2	. CO	nt.
	210		,	

	WSW2AS-7.1C	WSW2AS-8.1C	WSW2AS-9.2C	WSW2AS-9.1I	WSW2AS-7.2I	WSW2AS-4.4I	WSW2AS-4.2I
F19	7654.35	6587.64	8594.97	7846.32	8169.37	8910.99	6638.75
Na23	383.87	552.73	369.23	402.18	310.11	345.02	453.28
Mg26	884.62	855.40	846.38	802.41	813.42	825.37	816.15
Si30	139383.00	139383.00	139383.00	139383.00	139383.00	139383.00	139383.00
P31	257.41	241.71	257.33	199.17	215.16	261.51	311.44
К39	1.96	1.90	2.04	4.99	1.96	2.45	3.11
Ca43	191231.57	187781.66	198949.79	194006.00	186639.07	190539.37	189609.25
AIO	8709.50	8922.35	9421.91	8573.49	9315.28	8329.68	8320.94
Ti47	217335 44	216592.09	225721 13	215612 68	213890 54	214184 79	217115 34
V51	241.94	113.27	218.60	171.47	218.84	175.15	166.90
Cr52	3.97	0.41	2.25	1.16	2.87	1.17	0.93
Mn55	1918.83	2795.51	2188.35	2391.66	2013.00	2369.16	2325.33
Fe57	21630.49	23077.41	21687.74	20909.39	21279.82	21378.72	20073.78
Sr86	47.15	46.76	49.38	47.27	46.48	46.05	46.62
Y89	7039.06	12759.00	6706.21	6563.37	6805.29	6495.03	6730.73
Zr90	1464.82	1581.71	1377.36	1097.07	1363.19	1156.66	1187.78
Zr91	1454.06	1585.18	1365.63	1063.88	1364.89	1165.78	1178,99
Nb93	2071.75	2164.36	2458.94	2752.64	1921.24	2557.47	3169.79
Ba137	8 36	6 76	8 69	6 91	7 02	13 90	6 78
La139	4687.05	3555.84	4963.59	4541.05	4622.17	4475.93	5556.52
Ce140	17316.03	15790 24	17723 92	16268 81	17010 00	15787 73	19158.65
Pr	2633.81	2847.39	2519.27	2279.62	2523.74	2207.61	2654.04
Nd146	12516 45	15552 45	11159.03	9879 50	11785 71	9454 26	11367 20
Sm147	2836.93	4981 75	2298 23	2076.06	2542 53	1967 50	2301.89
Eu153	254.70	293.96	193.14	151.84	225.48	145.86	165.97
Gd1570	2424.24	4761.37	1932.27	1790.40	2186.75	1749.06	1982.67
Tb159O	318.88	667.07	262.25	249.41	290.60	243.08	273.13
Dv1630	1713.20	3495.56	1448.62	1390.93	1558.16	1399.82	1497.64
Ho165O	320.96	605.81	285.53	272.18	299.71	277.47	292.25
Fr1660	759 22	1311 27	725 10	696 96	743 32	718 53	728 62
Tm1690	91.52	134.90	94.00	87.68	91.08	90.92	85.90
Yb1720	479.69	593.34	498.91	469.81	476.90	513.78	471.53
Lu1750	51.80	58.32	56.95	51.08	52.62	57.68	52.08
Hf1780	71.07	70.25	73.58	60.21	71.42	69.15	66.33
Ta1810	166.07	175.68	178.77	202.38	131.85	169.79	273.51
Pb206	0.43	0.44	0.52	0.27	0.29	0.42	0.40
Pb208	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Th232O	417.02	244.67	438.01	393.26	396.16	417.44	549.58
U2380	28.52	17.59	32.42	29.89	28.77	33.12	28.68
90ZrC ppm	1450.75	1586.24	1362.02	1053.68	1365.41	1168.59	1176.29
91ZrC ppm	1450.75	1586.24	1362.02	1053.68	1365.41	1168.59	1176.29
Ycrppm	7052.89	12809.05	6719.00	6570.01	6824.64	6518.76	6747.58
NbC ppm	2070.70	2163.67	2458.09	2751.52	1920.63	2557.52	3169.48
Estimated Temperature							
Est. P	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P	797.08	802.70	793.15	777.44	793.30	783.72	784.12
Temp./w P	797.08	802.70	793.15	777.44	793.30	783.72	784.12
Y89	7052.89	12809.05	6719.00	6570.01	6824.64	6518.76	6747.58
Sum REE	46404.48	54649.26	44160.82	40205.34	44408.76	39089.24	46588.10
Al+Fe	30339.99	31999.76	31109.65	29482.88	30595.10	29708.40	28394.73
Sm/La	0.61	1.40	0.46	0.46	0.55	0.44	0.41
Yb/Gd	0.20	0.12	0.26	0.26	0.22	0.29	0.24
Th/U	14.62	13.91	13.51	13.16	13.77	12.60	19.16
Y/Nb	3.40	5.90	2.73	2.38	3.54	2.54	2.12
Zr/Hf	20.61	22.52	18.72	18.22	19.09	16.73	17.91
Nb/Ta	12.47	12.32	13.75	13.60	14.57	15.06	11.59

	WSW2AS-7.1C	WSW2AS-8.1C	WSW2AS-9.2C	WSW2AS-9.1I	WSW2AS-7.2I	WSW2AS-4.4I	WSW2AS-4.2I
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)							
La Ch (0.319)	14692.96	11146.82	15559.85	14235.27	14489.57	14031.14	17418.56
Ce Ch (0.82)	21117.12	19256.39	21614.54	19840.01	20743.90	19253.33	23364.20
Pr Ch (0.121)	21767.03	23532.17	20820.38	18839.85	20857.39	18244.70	21934.20
Nd Ch (0.615)	20351.94	25288.53	18144.76	16064.23	19163.75	15372.78	18483.25
Pm	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	14184.66	24908.74	11491.16	10380.31	12712.65	9837.52	11509.46
Eu Ch (0.076)	3351.29	3867.88	2541.36	1997.91	2966.80	1919.21	2183.78
Gd Ch (0.267)	9079.53	17832.86	7236.96	6705.60	8190.08	6550.78	7425.73
Tb Ch (0.0493)	6468.11	13530.74	5319.39	5059.11	5894.47	4930.68	5540.07
Dy Ch (0.33)	5191.52	10592.61	4389.77	4214.95	4721.69	4241.88	4538.31
Ho Ch (0.0755)	4251.08	8023.94	3781.91	3605.01	3969.65	3675.05	3870.89
Er Ch (0.216)	3514.93	6070.67	3356.93	3226.68	3441.28	3326.51	3373.26
Tm Ch (0.0329)	2781.79	4100.24	2857.28	2665.06	2768.43	2763.61	2611.07
Yb Ch (0.221)	2170.55	2684.80	2257.52	2125.82	2157.90	2324.80	2133.64
Lu Ch (0.033)	1569.60	1767.22	1725.76	1547.86	1594.61	1747.93	1578.25
	1.05	1.07	1.05	1.06	1.05	1.06	1.06
	0.30	0.18	0.28	0.24	0.29	0.24	0.24
Ca Site Total ppm	53889.08	67670.52	51337.45	47191.86	51638.98	46034.82	53897.09
Ti Site Total ppm	34359.62	36105.43	35419.15	33767.80	34304.51	33837.79	33259.97
Ti/Ca Site Substitution	0.64	0.53	0.69	0.72	0.66	0.74	0.62
Ti/Ti Site All Wt%	0.86	0.86	0.86	0.86	0.86	0.86	0.87
Ca/Ca site	0.78	0.74	0.79	0.80	0.78	0.81	0.78

	WSW2AS-10.2I	WSW2AS-10.3I	WSW2AS_1.3I	WSW2AS_2.2I	WSW2AS_2.4I	WSW2AS_3.1I
Element						
Element	0 11979	0 11 216	0 12620	0 12611	0.00122	0.09255
Na23	1 55222	1 82580	1 997/2	1 26/85	1 54445	1 9/396
Mg26	0 12049	0 12865	0 13386	0 11603	0 12158	0 11378
Si30	1 00000	1 00000	1 00000	1 00000	1 00000	1 00000
P31	0.00230	0.00258	0.00241	0.00160	0.00329	0.00351
K30	0.00230	0.00200	0.00241	0.00100	0.00529	0.00331
Ca43	0 53246	0.53387	0.55160	0.53257	0.52877	0.54880
	0.03/133	0.03071	0.03165	0.03267	0.03148	0.03065
Ti47	10 44299	10 59031	10 82272	10 38533	10 61654	10 93120
V51	0.09387	0.09004	0.09638	0.11591	0.14498	0.07696
Cr52	0.00033	0.00049	0.00188	0.00063	0.00112	0.00015
Mn55	1.47051	1.52075	1.52686	1.22866	1.02547	1.51920
Fe57	0.22983	0.21523	0.20960	0.20517	0.19428	0.21650
Sr86	0.06667	0.06742	0.06787	0.06590	0.06729	0.07038
Y89	3.26974	2.48979	2.37071	2.01605	2.09568	2.77641
Zr90	0.13179	0.10623	0.10058	0.10806	0.13709	0.13774
Zr91	0.02796	0.02228	0.02073	0.02227	0.02880	0.02966
Nb93	0.17494	0.26317	0.24667	0.19251	0.18819	0.21417
Ba137	0.00125	0.00098	0.00371	0.00118	0.00096	0.00176
La139	0.47892	0.65506	0.61037	0.53450	0.67584	0.67549
Ce140	1.72955	2.04008	1.94134	1.68811	2.12970	2.22654
Pr 141	0.44829	0.44430	0.42476	0.37810	0.48727	0.52557
Nd146	0.39735	0.33336	0.31966	0.28957	0.39882	0.43105
Sm147	0.12903	0.08374	0.08244	0.07178	0.10018	0.11986
Eu153	0.03893	0.02382	0.02415	0.02650	0.04430	0.03868
Gd1570	0.09897	0.05999	0.06102	0.05148	0.06848	0.08481
Tb159O	0.08084	0.05077	0.05091	0.04172	0.05121	0.06676
Dy1630	0.09404	0.06041	0.06202	0.05055	0.05902	0.07775
Ho165O	0.05654	0.03949	0.04002	0.03266	0.03495	0.04698
Er1660	0.03854	0.02916	0.03013	0.02508	0.02534	0.03261
Tm1690	0.01194	0.00954	0.00970	0.00860	0.00784	0.00997
Yb1720	0.00984	0.00885	0.00921	0.00797	0.00719	0.00908
Lu1/50	0.00424	0.00396	0.00423	0.00367	0.00352	0.00387
HT1780	0.00059	0.00060	0.00067	0.00055	0.00060	0.00069
191910	0.00190	0.00316	0.00311	0.00205	0.00259	0.00287
PD200	0.00007	0.00005	0.00008	0.00007	0.00008	0.00008
Th2220	0.00015	0.00020	0.00017	0.00015	0.00014	0.00014
112320	0.00097	0.02482	0.02470	0.00140	0.02044	0.001020
01000	0100007	0.00117	0.00100	0.001.0	0.00111	0.00100
	39884.07	39884.08	39856.85	39856.88	39856.90	39856.90
Corr. 91Zr	3477.15	2780.36	2274.23	2795.32	3553.86	3590.43
Corr. 90Zr	15938.49	12744.53	10424.55	12813.12	16290.11	16457.75
Corr. 89Y	409322.29	313623.24	263710.51	256348.76	260632.83	337037.62
Corr. 93Nb	21922.46	33213.78	27514.04	24561.75	23468.18	26016.78
90ZrC/Si	0.13	0.10	0.09	0.10	0.13	0.14
91ZrC/Si	0.03	0.02	0.02	0.02	0.03	0.03
93Ycr/Si	3.26	2.48	2.36	2.01	2.09	2.77
93NbC/Si	0.17	0.26	0.25	0.19	0.19	0.21
90Zr Cr	1408.30	1118.27	1034.77	1111.67	1446.13	1500.60
91Zr Cr	1408.30	1118.27	1034.77	1111.67	1446.13	1500.60
Y Cr	10887.94	8284.44	7880.36	6695.53	6965.37	9251.35
Nb Cr	2232.17	3358.39	3147.25	2455.68	2400.78	2733.62
Est. P	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P Zr90 Corr.	795.23	781.04	776.35	780.68	796.88	799.20
Temp./w P Zr91 Corr.	795.23	781.04	776.35	780.68	796.88	799.20
Age Ma 206/238	327.28	160.00	211.11	242.37	200.53	374.81
Age Ma 208/232	139.89	100.61	86.05	105.79	86.03	88.47

	WSW2AS-10.2I	WSW2AS-10.3I	WSW2AS_1.3I	WSW2AS_2.2I	WSW2AS_2.4I	WSW2AS_3.1I
F19	7637.24	7211.70	8120.31	8108.38	5872.16	5307.64
Na23	475.62	559.05	611.60	387.29	472.90	595.23
Mg26	837.73	894.47	930.71	806.73	845.31	791.11
Si30	139383.00	139383.00	139383.00	139383.00	139383.00	139383.00
P31	277.27	312.00	290.94	193.32	396.90	423.72
K39	2.20	2.22	1.19	1.85	1.85	2.52
Ca43	190950.25	191458.12	197814.61	190990.39	189628.43	196812.39
AIO	9663.41	8645.39	8908.75	9197.62	8861.75	8628.08
Ti47	214599.32	217626.74	222402.61	213414.53	218165.74	224631.74
V51	146.92	140.93	150.85	181.42	226.92	120.45
Cr52	0.71	1.05	4.09	1.37	2.43	0.34
Mn55	2740.96	2834.61	2846.00	2290.18	1911.43	2831.72
Fe57	23202.58	21728.58	21160.61	20712.69	19613.76	21856.46
Sr86	47.19	47.72	48.04	46.65	47.63	49.82
Y89	10844.96	8258.04	7863.08	6686.75	6950.88	9208.70
Zr90	1400.72	1128.99	1068.97	1148.49	1457.03	1463.93
Zr91	1406.52	1120.79	1042.81	1120.32	1448.69	1491.98
Nb93	2232.58	3358.55	3147.98	2456.80	2401.62	2733.22
Ba137	8.42	6.63	25.00	7.95	6.45	11.88
La139	4042.33	5528.97	5151.79	4511.44	5704.38	5701.40
Ce140	16621.61	19605.91	18656.90	16223.33	20467.11	21397.86
Pr	2796.34	2771.42	2649.55	2358.50	3039.47	3278.33
Nd146	14312.25	12007.40	11513.72	10429.96	14365.03	15525.93
Sm147	4055.46	2632.14	2591.27	2256.15	3148.56	3767.28
Eu153	256.55	156.97	159.17	174.67	291.98	254.90
Gd1570	3806.18	2307.04	2346.67	1979.78	2633.62	3261.64
Tb159O	527.69	331.40	332.31	272.35	334.24	435.75
Dy163O	2805.17	1801.96	1850.07	1507.92	1760.36	2319.08
Ho1650	505.67	353.14	357.91	292.07	312.56	420.17
Er1660	1132.43	856.74	885.22	736.87	744.55	958.02
Tm1690	128.71	102.79	104.52	92.74	84.49	107.45
Yb172O	599.57	539.15	561.12	485.29	438.17	553.23
Lu1750	63.08	58.92	62.85	54.51	52.35	57.46
Hf1780	62.72	64.15	71.61	58.91	64.04	74.22
Ta1810	163.89	272.26	267.84	177.00	223.65	247.30
Pb206	0.41	0.31	0.37	0.44	0.37	0.49
Pb208	0.00	0.00	0.00	0.00	0.00	0.00
Th2320	294.95	546.60	545.78	393.05	450.17	424.26
02380	20.02	30.21	27.90	28.82	29.08	20.62
90ZrC ppm	1408.30	1118.27	1034.77	1111.67	1446.13	1500.60
912rC ppm	1408.30	1118.27	1034.77		1446.13	1500.60
	10887.94	8284.44	7880.30	0095.53	2400 79	9251.35
Noc ppm	2252.17	5556.59	5147.25	2455.06	2400.78	2/55.02
Estimated Temperature						
Est. P	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P	795.23	781.04	776.35	780.68	796.88	799.20
Temp./w P	795.23	781.04	776.35	780.68	796.88	799.20
Y89	10887.94	8284.44	7880.36	6695.53	6965.37	9251.35
Sum REE	51653.04	49053.93	47223.05	41375.58	53376.85	58038.50
Al+Fe	32865.99	30373.96	30069.36	29910.31	28475.50	30484.54
Sm/La	1.00	0.48	0.50	0.50	0.55	0.66
Yb/Gd	0.16	0.23	0.24	0.25	0.17	0.17
Th/U	14.73	18.09	19.57	13.64	15.48	20.58
Y/Nb	4.86	2.46	2.50	2.72	2.89	3.37
Zr/Hf	22.33	17.60	14.93	19.50	22.75	19.72
Nb/Ta	13.62	12.34	11.75	13.88	10.74	11.05

	WSW2AS-10.2I	WSW2AS-10.3I	WSW2AS_1.3I	WSW2AS_2.2I	WSW2AS_2.4I	WSW2AS_3.1I
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)						
La Ch (0.319)	12671.88	17332.18	16149.81	14142.44	17882.06	17872.74
Ce Ch (0.82)	20270.26	23909.65	22752.31	19784.55	24959.88	26094.95
Pr Ch (0.121)	23110.22	22904.26	21897.08	19491.75	25119.55	27093.66
Nd Ch (0.615)	23271.95	19524.23	18721.50	16959.29	23357.77	25245.42
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	20277.31	13160.69	12956.33	11280.76	15742.80	18836.39
Eu Ch (0.076)	3375.70	2065.34	2094.34	2298.31	3841.81	3353.99
Gd Ch (0.267)	14255.35	8640.59	8789.01	7414.90	9863.76	12215.86
Tb Ch (0.0493)	10703.69	6722.09	6740.58	5524.33	6779.65	8838.73
Dy Ch (0.33)	8500.52	5460.49	5606.28	4569.44	5334.42	7027.52
Ho Ch (0.0755)	6697.55	4677.41	4740.53	3868.48	4139.92	5565.15
Er Ch (0.216)	5242.74	3966.38	4098.25	3411.42	3446.97	4435.27
Tm Ch (0.0329)	3912.20	3124.22	3176.78	2818.73	2568.05	3265.90
Yb Ch (0.221)	2712.98	2439.58	2539.00	2195.89	1982.66	2503.29
Lu Ch (0.033)	1911.44	1785.47	1904.44	1651.87	1586.28	1741.19
	1.06	1.06	1.06	1.06	1.04	1.06
	0.20	0.19	0.20	0.25	0.31	0.22
Ca Site Total ppm Ti Site Total ppm Ti (Ca Site Subatitudian	62812.97 36873.54	57888.78 35339.90	55659.81 34780.70	48484.20 33934.31	60806.97 32851.20	67692.07 35124.01
Ti/Ti Site All Wt% Ca/Ca site	0.85 0.85 0.75	0.81 0.86 0.77	0.82 0.86 0.78	0.70 0.86 0.80	0.54 0.87 0.76	0.52 0.86 0.74

	WSW2AS_11.1GI	WSW2AS_12.DI	WSW2AS_1.4E	WSW2AS_2.3E	WSW2AS_3.3E	WSW2AS-10.4E
Flement						
F19	0.16651	0.13481	0.12469	0.14566	0.14832	0.15585
Na23	1.40292	1.60444	1.20857	1.43679	1.25221	1.46588
Mg26	0.13025	0 11238	0 12919	0 11646	0 12533	0 12462
5130	1 00000	1 00000	1 00000	1 00000	1 00000	1 00000
P31	0.00143	0.00196	0.00192	0.00159	0.00150	0.00165
K39	0.00599	0.00150	0.00132	0.00133	0.00136	0.01072
Ca43	0.53787	0.53275	0.54157	0.53863	0 53144	0.53195
AIO	0.03540	0.03200	0.03338	0.03218	0.03225	0.03349
Ti47	10.44066	10 48249	10 69504	10 37048	10 26175	10 49640
V51	0.08919	0.06869	0 16381	0.07123	0.07898	0.07218
Cr52	0.00033	0.00000	0.10301	0.00125	0.07030	0.00210
Mn55	1 61606	1 66569	1 00601	1 77967	1 65919	1 77204
Fe57	0 22328	0 19625	0 20534	0 21850	0 22748	0 22374
Sr86	0.06596	0.15025	0.20354	0.21050	0.22740	0.06505
V00	2 27970	2 07212	2 24001	2 19776	2 21/72	0.00505
7:00	2.27870	2.07213	0 12212	2.18770	2.21472	0.08605
2150	0.09030	0.07945	0.13212	0.07978	0.08733	0.08003
2191	0.01920	0.01000	0.02601	0.01051	0.01841	0.01622
Pa127	0.19050	0.27625	0.14579	0.22058	0.21295	0.22246
Dd137	0.00155	0.00104	0.00080	0.00092	0.00095	0.00117
La159	0.46957	0.54227	0.55196	0.47765	1.50042	0.49911
CE140	1.56294	1.00994	1.77500	1.51004	1.59020	1.50510
Pr 141	0.34080	0.34810	0.42530	0.32601	0.34268	0.33529
Na146	0.25984	0.24235	0.350//	0.23454	0.25222	0.24102
5m147	0.06752	0.05/77	0.09534	0.05832	0.06263	0.06027
EU153	0.01944	0.01476	0.04183	0.01481	0.01705	0.01509
G01570	0.05088	0.04167	0.06871	0.04488	0.04681	0.04475
101590	0.04283	0.03589	0.05265	0.03844	0.03961	0.03883
Dy1630	0.05350	0.04539	0.06196	0.04923	0.05009	0.05006
H01650	0.03531	0.03023	0.03916	0.03330	0.03317	0.03343
Er1660	0.02778	0.02432	0.02843	0.02666	0.02652	0.02692
Im1690	0.00922	0.00839	0.00911	0.00918	0.00895	0.00939
YD1/20	0.00891	0.00800	0.00862	0.00898	0.00848	0.00911
LU1750	0.00414	0.00387	0.00392	0.00426	0.00408	0.00423
HT1/80	0.00046	0.00045	0.00068	0.00052	0.00051	0.00048
131810	0.00183	0.00287	0.00159	0.00188	0.00198	0.00192
PD206	0.00007	0.00005	0.00003	0.00007	0.00007	0.00006
Pb208	0.00013	0.00018	0.00014	0.00012	0.00013	0.00014
102320	0.01674	0.01872	0.01794	0.01629	0.01676	0.01765
02380	0.00134	0.00124	0.00144	0.00138	0.00145	0.00139
	38422.55	38422.56	39856.87	39856.88	39856.92	39884.09
Corr. 91Zr	2436.17	2183.74	3398.27	2026.77	2338.88	2322.00
Corr. 90Zr	11166.88	10009.78	15576.93	9290.27	10720.90	10643.51
Corr. 89Y	290936.73	270264.26	274514.98	276466.81	284050.16	288599.51
Corr. 93Nb	25099.21	36074.94	17826.41	27924.04	27357.48	28602.81
90ZrC/Si	0.09	0.08	0.13	0.07	0.08	0.08
91ZrC/Si	0.02	0.02	0.03	0.02	0.02	0.02
93Ycr/Si	2.28	2.07	2.24	2.18	2.21	2.24
93NbC/Si	0.20	0.28	0.15	0.22	0.21	0.22
90Zr Cr	967.57	848.96	1410.36	811.79	924.14	916.88
91Zr Cr	967.57	848.96	1410.36	811.79	924.14	916.88
Y Cr	7588.94	6900.54	7482.48	7272.65	7371.14	7484.40
Nb Cr	2506.11	3525.80	1859.95	2811.81	2717.53	2839.41
Est. P	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P Zr90 Corr.	772.33	764.58	795.32	761.95	769.59	769.12
Temp./w P Zr91 Corr	772.33	764.58	795.32	761.95	769.59	769.12
Age Ma 206/238	225.70	183.00	90.30	241.05	232.28	196.89
Age Ma 208/232	93.88	118.80	95.75	91.31	93.25	99.43
J						

	WSW2AS_11.1GI	WSW2AS_12.DI	WSW2AS_1.4E	WSW2AS_2.3E	WSW2AS_3.3E	WSW2AS-10.4E
F19	10706.11	8667.92	8017.46	9365.25	9536.34	10020.69
Na23	429.57	491.27	370.06	439.94	383.42	448.85
Mg26	905.62	781.33	898.26	809.70	871.39	866.48
Si30	139383.00	139383.00	139383.00	139383.00	139383.00	139383.00
P31	172.77	237.04	232.00	192.48	180.80	199.77
К39	1.88	1.44	1.34	1.32	2.59	3.37
Ca43	192892.13	191054.93	194217.08	193164.27	190585.70	190767.39
AIO	9964.94	9009.49	9397.15	9059.15	9077.99	9426.78
Ti47	214551.50	215411.02	219778.94	213109.32	210874.98	215696.78
V51	139.60	107.51	256.38	111.49	123.61	112.98
Cr52	0.71	0.44	38.39	0.57	0.65	0.80
Mn55	3012.26	3104.77	1875.15	3317.23	3092.65	3303.01
Fe57	22540.99	19812.64	20730.06	22059.26	22965.71	22587.91
Sr86	46.69	45.69	49.24	47.19	45.81	46.04
Y89	7557.91	6872.76	7458.77	7256.28	7345.71	7455.13
Zr90	959.75	844.36	1404.14	847.97	930.90	914.56
Zr91	965.73	847.88	1408.90	820.29	925.73	916.34
Nb93	2505.98	3525.25	1860.53	2812.49	2717.63	2839.23
Ba137	9.08	7.00	5.41	6.22	6.25	7.86
La139	4130.52	4576.98	4490.14	4033.23	4223.75	4212.70
Ce140	15212.56	16048.74	17039.69	14575.40	15282.90	15041.18
Pr	2163.63	2171.35	2653.27	2033.59	2137.56	2091.42
Nd146	9359.15	8729.02	12850.47	8447.73	9084.78	8681.24
Sm147	2122.29	1815.59	2996.65	1833.01	1968.54	1894.20
Eu153	128.12	97.27	275.69	97.62	112.34	99.48
Gd1570	1956.90	1602.69	2642.51	1726.15	1800.25	1721.11
Tb159O	279.55	234.26	343.70	250.92	258.54	253.45
Dy1630	1595.75	1353.77	1848.27	1468.40	1494.00	1493.18
Ho165O	315.78	270.34	350.25	297.80	296.63	299.00
Er166O	816.18	714.39	835.15	783.34	779.02	791.04
Tm169O	99.39	90.44	98.24	98.98	96.52	101.20
Yb172O	542.69	487.36	525.36	547.19	516.86	555.18
Lu1750	61.46	57.47	58.20	63.29	60.66	62.93
Hf1780	49.14	48.10	72.65	55.45	54.54	51.35
Ta181O	157.75	247.46	136.67	161.95	170.89	165.82
Pb206	0.39	0.30	0.17	0.43	0.44	0.36
Pb208	0.00	0.00	0.00	0.00	0.00	0.00
Th232O	368.59	412.34	395.11	358.69	369.18	388.59
U2380	27.66	25.53	29.74	28.42	29.88	28.74
90ZrC ppm	967.57	848.96	1410.36	811.79	924.14	916.88
91ZrC ppm	967.57	848.96	1410.36	811.79	924.14	916.88
Ycr ppm	7588.94	6900.54	7482.48	7272.65	7371.14	7484.40
NbC ppm	2506.11	3525.80	1859.95	2811.81	2/1/.53	2839.41
Estimated Temperature						
Est. P	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P	772.33	764.58	795.32	761.95	769.59	769.12
Temp./w P	772.33	764.58	795.32	761.95	769.59	769.12
Y89	7588.94	6900.54	7482.48	7272.65	7371.14	7484.40
Sum REE	38783.97	38249.69	47007.60	36256.64	38112.33	37297.29
Al+Fe	32505.93	28822.13	30127.21	31118.41	32043.70	32014.69
Sm/La	0.51	0.40	0.67	0.45	0.47	0.45
Yb/Gd	0.28	0.30	0.20	0.32	0.29	0.32
Th/U	13.33	16.15	13.28	12.62	12.36	13.52
Y/Nb	3.02	1.95	4.01	2.58	2.70	2.63
Zr/Hf	19.53	17.56	19.33	15.29	17.07	17.81
Nb/Ta	15.89	14.25	13.61	17.37	15.90	17.12

	WSW2AS_11.1GI	WSW2AS_12.DI	WSW2AS_1.4E	WSW2AS_2.3E	WSW2AS_3.3E	WSW2AS-10.4E
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)						
La Ch (0.319)	12948.35	14347.91	14075.68	12643.36	13240.59	13205.97
Ce Ch (0.82)	18551.91	19571.63	20780.11	17774.87	18637.68	18342.90
Pr Ch (0.121)	17881.21	17945.05	21927.88	16806.49	17665.76	17284.44
Nd Ch (0.615)	15218.14	14193.53	20895.07	13736.14	14772.00	14115.84
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	10611.45	9077.94	14983.27	9165.03	9842.69	9471.00
Eu Ch (0.076)	1685.73	1279.90	3627.48	1284.46	1478.14	1308.90
Gd Ch (0.267)	7329.22	6002.60	9897.05	6464.98	6742.52	6446.09
Tb Ch (0.0493)	5670.33	4751.82	6971.60	5089.73	5244.29	5141.06
Dy Ch (0.33)	4835.61	4102.34	5600.82	4449.70	4527.27	4524.79
Ho Ch (0.0755)	4182.47	3580.68	4639.05	3944.37	3928.85	3960.22
Er Ch (0.216)	3778.63	3307.36	3866.46	3626.57	3606.56	3662.20
Tm Ch (0.0329)	3021.04	2748.94	2986.02	3008.42	2933.60	3075.91
Yb Ch (0.221)	2455.60	2205.27	2377.20	2475.99	2338.71	2512.12
Lu Ch (0.033)	1862.43	1741.66	1763.61	1918.00	1838.12	1906.97
	1.06	1.08	1.05	1.08	1.06	1.07
	0.19	0.17	0.30	0.17	0.18	0.17
Ca Site Total ppm	46738.13	45560.32	54891.21	43900.03	45857.10	45169.75
Ti Site Total ppm	36318.86	33595.25	33895.98	35108.33	36041.92	36099.43
Ti/Ca Site Substitution	0.78	0.74	0.62	0.80	0.79	0.80
Ti/Ti Site All Wt%	0.86	0.87	0.87	0.86	0.85	0.86
Ca/Ca site	0.80	0.81	0.78	0.81	0.81	0.81

	WSW2AS-4.1E	WSW2AS-5.2E	WSW2AS-6.1E	WSW2AS-7.3E	WSW2AS-8.2E	WSW2AS-9.3E
Element						
F19	0.14746	0.10715	0.11133	0.13946	0.13612	0.13813
Na23	1.42386	1.91523	1.85965	1.24155	1.49093	1.63221
Mg26	0.13068	0.12701	0.13173	0.12188	0.11965	0.11717
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00169	0.00183	0.00204	0.00162	0.00138	0.00134
К39	0.01092	0.00504	0.00719	0.00644	0.00979	0.00648
Ca43	0.54115	0.53233	0.49923	0.51156	0.51582	0.54083
AIO	0.03172	0.03205	0.03336	0.03220	0.03111	0.03082
Ti47	10 58635	10 31678	10 18645	10 30006	10 19470	10 80651
V51	0.08/11	0.05838	0.05936	0.07835	0.07601	0.07235
Cr52	0.00036	0.00011	0.00015	0.00043	0.00033	0.00041
MpEE	1 64112	1 91210	1 91712	1 60001	1 62762	1 76029
1011135	1.04115	0.24107	1.01/12	1.00091	1.05205	1.70058
FE37	0.22078	0.24107	0.24370	0.22148	0.20880	0.21078
Sr8b	0.06653	0.06564	0.06442	0.06437	0.06342	0.06585
Y89	2.23858	3.98397	3.97962	2.23464	2.16598	2.21264
Zr90	0.09131	0.09191	0.10602	0.08543	0.08098	0.07928
Zr91	0.01884	0.01908	0.02267	0.01782	0.01717	0.01667
Nb93	0.22105	0.21664	0.22180	0.19334	0.21468	0.24244
Ba137	0.00123	0.00110	0.00112	0.00108	0.00107	0.00160
La139	0.49960	0.45259	0.45321	0.49978	0.49436	0.49763
Ce140	1.58715	1.67617	1.66770	1.60089	1.56470	1.59175
Pr 141	0.34667	0.43556	0.43338	0.34871	0.33875	0.33893
Nd146	0.25392	0.38593	0.37181	0.25872	0.24850	0.24213
Sm147	0.06383	0.13287	0.13023	0.06477	0.06279	0.06190
Eu153	0.01762	0.02104	0.02034	0.01711	0.01655	0.01549
Gd1570	0.04776	0.11016	0.10499	0.04839	0.04590	0.04560
Tb1590	0.04104	0.09522	0.09146	0.04099	0.03933	0.03868
Dv1630	0.05119	0.11480	0.10998	0.05185	0.04928	0.04942
Ho165O	0.03468	0.07016	0.06696	0.03459	0.03311	0.03339
Fr1660	0.02730	0.04870	0.04708	0.02777	0.02591	0.02661
Tm1690	0.00913	0.01437	0.01406	0.00934	0.00881	0.00903
Yh1720	0.00889	0.01215	0.01151	0.00898	0.00821	0.00871
101750	0.00406	0.00503	0.00470	0.00416	0.00391	0.00400
Hf1780	0.00400	0.000005	0.00470	0.00410	0.00001	0.00400
Ta1910	0.00000	0.00040	0.00001	0.00034	0.00048	0.000001
Db206	0.00200	0.00243	0.00271	0.00170	0.00198	0.00229
PU200	0.00007	0.00007	0.00007	0.00000	0.00007	0.00007
PD208	0.00017	0.00013	0.00016	0.00017	0.00020	0.00015
In2320	0.01770	0.01292	0.01336	0.01798	0.01/15	0.01664
02380	0.00144	0.00089	0.00096	0.00148	0.00135	0.00138
	39856.99	39884.00	39884.01	39884.03	39884.04	39884.05
Corr. 91Zr	2352.88	2324.75	2926.81	2274.73	2263.25	2106.24
Corr. 90Zr	10785.10	10656.15	13415.87	10426.88	10374.22	9654.54
Corr. 89Y	283443.86	492104.66	516395.99	288520.85	287553.21	282273.53
Corr. 93Nb	28059.80	26787.31	28794.78	25010.06	28535.43	30977.17
90ZrC/Si	0.08	0.09	0.10	0.08	0.08	0.08
91ZrC/Si	0.02	0.02	0.02	0.02	0.02	0.02
93Ycr/Si	2.23	3.98	3.98	2.23	2.16	2.21
93NbC/Si	0.22	0.22	0.22	0.19	0.21	0.24
90Zr Cr	940.69	954.22	1144.55	892.54	864.42	836.85
917r Cr	940.69	954.22	1144.55	892 54	864 42	836.85
Y Cr	7442 53	13265.95	13262 74	7435 04	7213 03	7365 76
Nh Cr	2820 21	276/ 19	2830 88	2467.05	2739 95	309/19
Est. P	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P Zr90 Corr.	770.65	771.50	782.45	767.53	765.64	763.73
Temp./w P Zr91 Corr	770.65	771.50	782.45	767.53	765.64	763 73
Age Ma 206/238	230.50	381.21	336.99	196.19	221.99	245.11
Age Ma 208/232	119.60	123.79	144.26	118.22	140.99	109.03
			2.1.20		2.0.00	200.00

Tab	le	D2,	cont.
-----	----	-----	-------

	WZA5-4.1L	W3W2A3-3.2L	W5W2A5-0.1L	W3W2A3-7.3L	W3W2A3-0.2L	W3W2A3-5.5L
F19	9480.99	6889.69	7158.17	8966.70	8751.93	8881.55
Na23	435.98	586.44	569.42	380.16	456.52	499.78
Mg26	908.56	883.10	915.86	847.38	831.93	814.65
Si30 1	39383.00	139383.00	139383.00	139383.00	139383.00	139383.00
P31	204.33	221.48	246.18	195.86	165.99	161.66
К39	3.43	1.58	2.26	2.02	3.07	2.04
Ca43 1	94067.11	190903.13	179033.01	183457.95	184984.88	193952.99
AIO	8930.64	9023.12	9392.18	9065.91	8759.16	8676.93
Ti47 2	17545.40	212005.66	209327.54	211662.16	209497.05	222069.45
V51	131.64	91.37	92.91	122.63	118.97	113.23
Cr52	0.78	0.25	0.33	0.93	0.72	0.89
Mn55	3059.01	3379.54	3387.04	2984.03	3043.15	3281.28
Fe57 2	22289.12	24337.10	24603.15	22359.26	21085.80	21279.42
Sr86	47.09	46.46	45.59	45.56	44.89	46.61
Y89	7424.84	13213.88	13199.48	7411.78	7184.03	7338.80
Zr90	970.46	976.84	1126.76	907.96	860.67	842.61
Zr91	947.69	959.54	1140.37	896.16	863.54	838.20
Nb93	2820.95	2764.70	2830.56	2467.43	2739.72	3094.04
Ba137	8.27	7.41	7.54	7.25	7.22	10.81
La139	4216.86	3820.07	3825.29	4218.34	4172.62	4200.21
Ce140 1	15253.09	16108.55	16027.13	15385.09	15037.29	15297.29
Pr	2162.46	2716.91	2703.33	2175.19	2113.02	2114.13
Nd146	9145.88	13900.73	13392.02	9318.76	8950.79	8721.44
Sm147	2006.33	4176.04	4093.24	2035.82	1973.64	1945.54
Eu153	116.12	138.66	134.03	112.77	109.10	102.08
Gd157O	1836.90	4236.73	4038.00	1860.94	1765.28	1753.93
Tb159O	267.87	621.51	597.02	267.58	256.73	252.46
Dy163O	1526.96	3424.32	3280.51	1546.52	1469.99	1474.07
Ho165O	310.13	627.45	598.88	309.34	296.11	298.65
Er166O	802.08	1430.87	1383.09	815.86	761.24	781.69
Tm1690	98.41	154.89	151.60	100.67	94.95	97.34
Yb172O	541.30	740.29	700.97	547.05	500.34	530.50
Lu1750	60.28	74.69	69.85	61.80	58.16	59.51
Hf1780	59.22	49.57	65.17	57.79	51.75	54.84
Ta181O	172.64	209.71	233.78	151.72	170.63	197.74
Pb206	0.43	0.44	0.42	0.38	0.39	0.44
Pb208	0.00	0.00	0.00	0.00	0.00	0.00
Th232O	389.85	284.45	294.32	395.96	377.64	366.36
U238O	29.67	18.42	19.85	30.51	27.84	28.47
90ZrC ppm	940.69	954.22	1144.55	892.54	864.42	836.85
91ZrC ppm	940.69	954.22	1144.55	892.54	864.42	836.85
Ycr ppm	7442.53	13265.95	13262.74	7435.04	7213.03	7365.76
NbC ppm	2820.31	2764.19	2830.88	2467.05	2739.95	3094.19
Estimated Temperature						
Estimated Temperature Est. P	0.10	0.10	0.10	0.10	0.10	0.10
Estimated Temperature Est. P Temp./w P	0.10 770.65	0.10 771.50	0.10 782.45	0.10 767.53	0.10 765.64	0.10 763.73
Estimated Temperature Est. P Temp./w P Temp./w P	0.10 770.65 770.65	0.10 771.50 771.50	0.10 782.45 782.45	0.10 767.53 767.53	0.10 765.64 765.64	0.10 763.73 763.73
Estimated Temperature Est. P Temp./w P Temp./w P Y89	0.10 770.65 770.65 7442.53	0.10 771.50 771.50 13265.95	0.10 782.45 782.45 13262.74	0.10 767.53 767.53 7435.04	0.10 765.64 765.64 7213.03	0.10 763.73 763.73 7365.76
Estimated Temperature Est. P Temp./w P Temp./w P Y89 Sum REE 3	0.10 770.65 770.65 7442.53 38344.65	0.10 771.50 771.50 13265.95 52171.71	0.10 782.45 782.45 13262.74 50994.97	0.10 767.53 767.53 7435.04 38755.73	0.10 765.64 765.64 7213.03 37559.26	0.10 763.73 763.73 7365.76 37628.85
Estimated Temperature Est. P Temp./w P Temp./w P Y89 Sum REE 3 Al+Fe 3	0.10 770.65 770.65 7442.53 38344.65 31219.76	0.10 771.50 771.50 13265.95 52171.71 33360.22	0.10 782.45 782.45 13262.74 50994.97 33995.33	0.10 767.53 767.53 7435.04 38755.73 31425.16	0.10 765.64 765.64 7213.03 37559.26 29844.97	0.10 763.73 763.73 7365.76 37628.85 29956.35
Estimated Temperature Est. P Temp./w P Temp./w P Y89 Sum REE 3 Al+Fe 3 Sm/La	0.10 770.65 770.65 7442.53 38344.65 31219.76 0.48	0.10 771.50 771.50 13265.95 52171.71 33360.22 1.09	0.10 782.45 782.45 13262.74 50994.97 33995.33 1.07	0.10 767.53 767.53 7435.04 38755.73 31425.16 0.48	0.10 765.64 765.64 7213.03 37559.26 29844.97 0.47	0.10 763.73 763.73 7365.76 37628.85 29956.35 0.46
Estimated Temperature Est. P Temp./w P Temp./w P Y89 Sum REE 3 Al+Fe 3 Sm/La Yb/Gd	0.10 770.65 770.65 7442.53 38344.65 31219.76 0.48 0.29	0.10 771.50 771.50 13265.95 52171.71 33360.22 1.09 0.17	0.10 782.45 782.45 13262.74 50994.97 33995.33 1.07 0.17	0.10 767.53 767.53 7435.04 38755.73 31425.16 0.48 0.29	0.10 765.64 765.64 7213.03 37559.26 29844.97 0.47 0.28	0.10 763.73 763.73 7365.76 37628.85 29956.35 0.46 0.30
Estimated Temperature Est. P Temp./w P Temp./w P Y89 Sum REE 3 Al+Fe 3 Sm/La Yb/Gd Th/U	0.10 770.65 770.65 7442.53 38344.65 31219.76 0.48 0.29 13.14	0.10 771.50 771.50 13265.95 52171.71 33360.22 1.09 0.17 15.45	0.10 782.45 782.45 13262.74 50994.97 33995.33 1.07 0.17 14.83	0.10 767.53 767.53 7435.04 38755.73 31425.16 0.48 0.29 12.98	0.10 765.64 765.64 7213.03 37559.26 29844.97 0.47 0.28 13.57	0.10 763.73 763.73 7365.76 37628.85 29956.35 0.46 0.30 12.87
Estimated Temperature Est. P Temp./w P Temp./w P Y89 Sum REE 3 Al+Fe 3 Sm/La Yb/Gd Th/U Y/Nb	0.10 770.65 770.65 7442.53 38344.65 31219.76 0.48 0.29 13.14 2.63	0.10 771.50 771.50 13265.95 52171.71 33360.22 1.09 0.17 15.45 4.78	0.10 782.45 782.45 13262.74 50994.97 33995.33 1.07 0.17 14.83 4.66	0.10 767.53 767.53 7435.04 38755.73 31425.16 0.48 0.29 12.98 3.00	0.10 765.64 765.64 7213.03 37559.26 29844.97 0.47 0.28 13.57 2.62	0.10 763.73 763.73 7365.76 37628.85 29956.35 0.46 0.30 12.87 2.37
Estimated Temperature Est. P Temp./w P Y89 Sum REE 3 Al+Fe 3 Sm/La Yb/Gd Th/U Y/Nb Zr/Hf	0.10 770.65 770.65 7442.53 38344.65 31219.76 0.48 0.29 13.14 2.63 16.39	0.10 771.50 771.50 13265.95 52171.71 33360.22 1.09 0.17 15.45 4.78 19.70	0.10 782.45 782.45 13262.74 50994.97 33995.33 1.07 0.17 14.83 4.66 17.29	0.10 767.53 767.53 7435.04 38755.73 31425.16 0.48 0.29 12.98 3.00 15.71	0.10 765.64 765.64 7213.03 37559.26 29844.97 0.47 0.28 13.57 2.62 16.63	0.10 763.73 763.73 7365.76 37628.85 29956.35 0.46 0.30 12.87 2.37 15.36

WSW2AS-4.1E WSW2AS-5.2E WSW2AS-6.1E WSW2AS-7.3E WSW2AS-8.2E WSW2AS-9.3E

	WSW2AS-4.1E	WSW2AS-5.2E	WSW2AS-6.1E	WSW2AS-7.3E	WSW2AS-8.2E	WSW2AS-9.3E
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)						
La Ch (0.319)	13219.01	11975.15	11991.51	13223.65	13080.32	13166.80
Ce Ch (0.82)	18601.33	19644.57	19545.28	18762.30	18338.16	18655.23
Pr Ch (0.121)	17871.56	22453.83	22341.61	17976.75	17462.99	17472.15
Nd Ch (0.615)	14871.35	22602.81	21775.64	15152.46	14554.13	14181.20
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	10031.65	20880.22	20466.21	10179.12	9868.22	9727.72
Eu Ch (0.076)	1527.88	1824.44	1763.57	1483.80	1435.47	1343.21
Gd Ch (0.267)	6879.77	15867.91	15123.58	6969.82	6611.55	6569.03
Tb Ch (0.0493)	5433.37	12606.78	12109.94	5427.52	5207.50	5120.95
Dy Ch (0.33)	4627.15	10376.74	9940.93	4686.42	4454.51	4466.87
Ho Ch (0.0755)	4107.63	8310.58	7932.14	4097.18	3921.93	3955.69
Er Ch (0.216)	3713.31	6624.39	6403.21	3777.14	3524.26	3618.94
Tm Ch (0.0329)	2991.04	4707.87	4607.94	3060.00	2885.97	2958.62
Yb Ch (0.221)	2449.32	3349.71	3171.83	2475.36	2263.98	2400.46
Lu Ch (0.033)	1826.57	2263.28	2116.76	1872.64	1762.56	1803.24
	1.07	1.07	1.08	1.07	1.07	1.07
	0.18	0.10	0.10	0.18	0.18	0.17
Ca Site Total ppm	46189.00	65688.46	64508.62	46593.98	45148.78	45362.48
Ti Site Total ppm	35375.47	37452.66	38344.84	35133.62	33787.43	34259.70
Ti/Ca Site Substitution	0.77	0.57	0.59	0.75	0.75	0.76
Ti/Ti Site All Wt%	0.86	0.85	0.85	0.86	0.86	0.87
Ca/Ca site	0.81	0.74	0.74	0.80	0.80	0.81

	WSW2B-1.1C	WSW2B-2.1C	WSW2B-3.1C	WSW2B-4.1C	WSW2B-5.2C	WSW2BS-6.1C	WSW2BS-7.3DC	WSW2BS-8.2DC
Element								
F19	0.08699	0.12643	0.14416	0.10329	0.11957	0.11313	0.12159	0.12156
Na23	2.43654	1.81840	1.33008	1.96475	1.31266	1.81446	1.81383	1.92054
Mg26	0.13119	0.15576	0.12774	0.13545	0.14103	0.14699	0.11640	0.13185
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00269	0.00221	0.00183	0.00178	0.00220	0.00280	0.00226	0.00287
K39	0.00937	0.00673	0.00957	0.00871	0.00576	0.00488	0.00605	0.00512
Ca43	0.53595	0.53007	0.55618	0.54268	0.55425	0.52702	0.53604	0.56292
AIO	0.03222	0.03869	0.03411	0.03520	0.03510	0.03577	0.02976	0.03191
Ti47	10.66086	10.24670	10.70195	10.73699	10.72176	10.33066	10.43267	10.87574
V51	0.05594	0.05953	0.11655	0.06607	0.19131	0.12875	0.07357	0.08068
Cr52	0.00009	0.00015	0.00051	0.00019	0.00339	0.00049	0.00028	0.00041
Mn55	1.82099	1.78131	1.33639	1.66310	0.94062	1.32237	1.68545	1.72238
Fe57	0.24875	0.28280	0.22820	0.25176	0.22235	0.23212	0.21207	0.22104
Sr86	0.06693	0.06362	0.06830	0.06622	0.07056	0.06518	0.06516	0.06876
Y89	5.10166	5.64166	2.04946	4.41/41	2.83517	3.21328	2.33905	2.51056
Zr90	0.15755	0.14002	0.12150	0.11858	0.16040	0.16704	0.09101	0.09720
2191	0.03337	0.02994	0.02545	0.02475	0.03387	0.03547	0.01884	0.02016
ND93	0.23243	0.14988	0.22077	0.16250	0.13072	0.16416	0.26710	0.27349
Ba13/	0.00149	0.00173	0.00137	0.00156	0.00165	0.00092	0.00115	0.00187
La139	1 69270	0.35439	1 92671	1 69222	1 92014	1 96927	0.50909	0.03537
Ce140 Dr 1/1	1.08270	0.45722	0.20479	0.47499	0.47570	1.00057	0.27007	2.02557
FT 141	0.47030	0.45722	0.39478	0.47488	0.47570	0.49597	0.37507	0.43071
Nu140 Sm147	0.44652	0.43223	0.28833	0.45159	0.43020	0.40039	0.27024	0.51459
511147 Fu153	0.18135	0.13780	0.02472	0.17508	0.15230	0.15725	0.00808	0.07734
Gd1570	0.02791	0.02555	0.02472	0.14542	0.09708	0.03347	0.01760	0.05550
Tb1590	0.13541	0 15231	0.03925	0 12365	0.07392	0.09032	0.04229	0.04623
Dv1630	0 15951	0 17932	0.04862	0 14199	0.08345	0 10167	0.05327	0.05872
Ho1650	0.09295	0.10608	0.03215	0.08238	0.04932	0.05840	0.03552	0.03905
Er1660	0.06156	0.06938	0.02524	0.05338	0.03398	0.03812	0.02817	0.02976
Tm1690	0.01673	0.01920	0.00896	0.01479	0.01046	0.01105	0.00942	0.01007
Yb172O	0.01344	0.01519	0.00832	0.01168	0.00883	0.00905	0.00895	0.00966
Lu1750	0.00510	0.00594	0.00410	0.00458	0.00399	0.00371	0.00403	0.00427
Hf1780	0.00084	0.00069	0.00063	0.00057	0.00074	0.00069	0.00057	0.00057
Ta1810	0.00328	0.00171	0.00244	0.00182	0.00164	0.00211	0.00295	0.00317
Pb206	0.00006	0.00007	0.00007	0.00005	0.00006	0.00007	0.00007	0.00007
Pb208	0.00017	0.00014	0.00013	0.00015	0.00014	0.00016	0.00016	0.00020
Th232O	0.01308	0.01047	0.02166	0.01042	0.01684	0.01570	0.02111	0.02586
U238O	0.00070	0.00079	0.00166	0.00069	0.00131	0.00101	0.00135	0.00142
	39884.23	39884.26	39884.27	39884.29	39884.32	39884.39	38422.44	38422.46
Corr. 91Zr	3943.44	3582.59	2976.22	2880.50	3874.61	4535.23	2415.56	2428.17
Corr. 90Zr	18075.84	16421.79	13642.34	13203.56	17760.34	20788.48	11072.41	11130.19
Corr. 89Y	60/54/./1	6/8564.46	241/95.28	520253.56	326/31.06	413320.44	303865.54	306198.53
007*C/S	27700.89	18030.64	20119.28	19154.30	15088.11	21141.78	34780.89	33431.45
9021C/31 017rC/Si	0.13	0.14	0.12	0.11	0.13	0.10	0.08	0.09
9121C/31	5 10	5.64	2.04	0.02	2.03	2 21	0.02	2.50
93NbC/Si	0.23	0.15	0.22	4.41	2.83	0.16	0.27	0.27
907r Cr	1679 40	1511 53	1276 75	1239.96	1702 92	1786 96	941 57	1008 27
91Zr Cr	1679.40	1511.53	1276.75	1239.96	1702.92	1786.96	941.57	1008.27
Y Cr	16992.94	18802.66	6812.34	14708.31	9431.18	10695.73	7779.01	8350.42
Nb Cr	2965.79	1912.48	2816.87	2072.88	1667.13	2094.22	3408.33	3489.94
Est. P	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P Zr90 Corr.	806.32	799.66	789.15	787.35	807.20	810.28	770.70	774.79
Temp./w P Zr91 Corr.	806.32	799.66	789.15	787.35	807.20	810.28	770.70	774.79
Age Ma 206/238	406.60	383.49	203.04	320.31	195.71	305.34	246.16	228.68
Age Ma 208/232	156.53	161.94	75.95	173.54	101.64	128.34	94.39	96.74

Table D3. SHRIMP-RG trace element analyses of sphene grains from WSW2B.

	Tab	le	D3.	cont.
--	-----	----	-----	-------

	WSW2B-1.1C	WSW2B-2.1C	WSW2B-3.1C	WSW2B-4.1C	WSW2B-5.2C	WSW2BS-6.1C	WSW2BS-7.3DC	WSW2BS-8.2DC
F19	5593.00	8129.15	9268.90	6641.48	7688.04	7273.68	7817.57	7816.05
Na23	746.06	556.79	407.26	601.60	401.93	555.58	555.39	588.06
Mg26	912.15	1082.94	888.12	941.76	980.56	1022.03	809.28	916.72
Si30	139383.00	139383.00	139383.00	139383.00	139383.00	139383.00	139383.00	139383.00
P31	325.12	267.11	221.45	214.71	265.36	337.49	273.34	346.62
К39	2.94	2.11	3.01	2.73	1.81	1.53	1.90	1.61
Ca43	192203.04	190094.23	199458.13	194618.28	198765.27	188999.41	192235.30	201874.75
AIO	9069.15	10892.11	9601.49	9910.31	9879.71	10069.36	8378.62	8981.94
Ti47	219076.47	210565.60	219920.80	220640.99	220327.91	212290.88	214387.15	223492.23
V51	87.55	93.18	182.41	103.40	299.43	201.52	115.14	126.28
Cr52	0.20	0.32	1.10	0.40	7.35	1.07	0.61	0.90
Mn55	3394.26	3320.29	2490.98	3099.95	1753.28	2464.84	3141.60	3210.44
Fe57	25112.85	28550.04	23038.38	25416.68	22447.68	23433.35	21409.52	22315.06
Sr86	47.37	45.03	48.34	46.87	49.94	46.14	46.12	48.67
Y89	16921.00	18712.05	6797.59	14651.50	9403.59	10657.71	7758.07	8326.94
Zr90	1674.51	1488.15	1291.34	1260.31	1704.81	1775.37	967.26	1033.05
Zr91	1678.25	1506.03	1280.18	1244.74	1703.37	1784.23	947.61	1014.09
Nb93	2966.27	1912.72	2817.49	2073.87	1668.27	2094.97	3408.66	3490.29
Ba137	10.03	11.68	9.23	10.48	11.09	6.21	7.76	12.63
La139	3573.20	2991.18	5022.86	3632.85	4370.52	4307.32	4808.47	5531.59
Ce140	16171.31	14456.45	17651.39	16177.23	17578.62	17955.69	17137.04	19464.49
Pr	2934.01	2852.00	2462.51	2962.17	2967.30	3093.70	2364.53	2686.66
Nd146	16155.15	16289.41	10392.44	16265.75	15713.66	16806.19	9949.69	11331.36
Sm147	5699.80	6217.07	2136.31	5521.76	4158.33	4941.66	2139.82	2430.75
Eu153	183.92	197.36	162.93	202.55	390.46	352.41	116.38	133.25
Gd1570	5956.93	6705.76	1838.54	5592.67	3733.49	4454.26	1908.35	2134.62
ТЬ159О	883.89	994.16	256.17	807.12	482.54	589.55	276.03	301.76
Dy1630	4757.97	5348.76	1450.18	4235.42	2489.08	3032.55	1589.02	1751.57
Ho1650	831.27	948.77	287.51	736.81	441.10	522.27	317.70	349.27
Er1660	1808.74	2038.45	/41.69	1568.20	998.40	1120.05	827.60	8/4.31
Tm1690	180.32	206.91	96.54	159.42	112.79	119.09	101.57	108.52
Y61720	818.66	925.33	506.91	/11.40	537.80	551.33	545.24	588.40
LU1/50	75.80	88.33	60.91	68.07	59.29	55.09	59.95	63.50
H11/80	89.79	74.21	07.52	61.05	79.16	/3.95	00.53	00.81
191910	282.50	147.81	210.29	150.95	141.45	181.78	254.20	2/3.05
PD200	0.37	0.39	0.44	0.29	0.55	0.40	0.43	0.42
Th2200	288 11	220.40	477.00	220 12	270.96	245.68	464.99	560 58
112320	14 52	16 27	3/ 18	1/ 29	26.99	20.88	27.82	20 38
907rC nnm	1679 /0	1511 53	1276 75	1239.96	1702.92	1786.96	9/1 57	1008 27
917rC ppm	1679 40	1511.55	1276.75	1239.96	1702.92	1786.96	941.57	1008.27
Ycr ppm	16992 94	18802.66	6812 34	14708 31	9431 18	10695 73	7779 01	8350 42
NbC ppm	2965.79	1912.48	2816.87	2072.88	1667.13	2094.22	3408.33	3489.94
Estimated Temperature								
Est. P	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P	806.32	799.66	789.15	787.35	807.20	810.28	770.70	774.79
Temp./w P	806.32	799.66	789.15	787.35	807.20	810.28	770.70	774.79
Y89	16992.94	18802.66	6812.34	14708.31	9431.18	10695.73	7779.01	8350.42
Sum REE	60030.95	60259.94	43066.88	58641.43	54033.37	57901.18	42141.38	47750.04
Al+Fe	34182.00	39442.15	32639.86	35326.99	32327.39	33502.71	29788.14	31297.00
Sm/La	1.60	2.08	0.43	1.52	0.95	1.15	0.45	0.44
Yb/Gd	0.14	0.14	0.28	0.13	0.14	0.12	0.29	0.28
Th/U	19.84	14.16	13.95	16.06	13.74	16.56	16.72	19.39
Y/Nb	5.70	9.78	2.41	7.06	5.64	5.09	2.28	2.39
Zr/Hf	18.65	20.05	19.13	20.64	21.54	24.01	15.98	16.99
Nb/Ta	10.50	12.94	13.40	13.21	11.79	11.52	13.41	12.78

	WSW2BS_10.3GC	WSW2BS_9.1GI	WSW2BS-7.4DI	WSW2BS-8.1DI	WSW2BS_10.2LI	WSW2BS-6.2I
Element						
F19	0.09647	0.14464	0.13096	0.17390	0.09059	0.10916
Na23	2 17870	1 26924	1 74970	1 38693	2 19081	1 75991
Mg26	0.13191	0.12230	0.12478	0.14303	0.13117	0.11595
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00233	0.00186	0.00162	0.00168	0.00197	0.00201
K39	0.00233	0.00604	0.00102	0.00100	0.00390	0.00727
Ca43	0 54719	0 55026	0 53229	0 54660	0.54506	0 55438
AIO	0.03461	0.03354	0.03222	0.03706	0.03574	0.03291
Ti47	10,73839	10.53864	10,17485	10.50898	10.71985	10.77719
V51	0.06541	0.13217	0.06590	0.09034	0.07796	0.11572
Cr52	0.00024	0.00089	0.00034	0.00033	0.00021	0.00061
Mn55	1.71437	1,22073	1.84222	1.67519	1.51237	1.28720
Fe57	0.24488	0.21645	0.21838	0.24874	0.25067	0.19763
Sr86	0.06827	0.06645	0.06465	0.06599	0.06761	0.06888
V89	4 40778	1 98930	2 60082	2 34313	4 75461	2 00522
7r90	0 11506	0 11799	0.07776	0.09634	0 13834	0 10421
2190 7r91	0.02381	0.02522	0.01625	0.02024	0.13834	0.10421
NP03	0.02381	0.02522	0.01025	0.02024	0.02047	0.02100
Ro127	0.10440	0.10755	0.00100	0.20100	0.13033	0.22333
La120	0.00184	0.00101	0.00199	0.00107	0.00110	0.00113
Co140	1 60726	1 71200	1 59221	1 64940	1 72217	2 12/06
Dr 141	0.47044	0.27509	0.25067	0.26125	1.72317	2.12490
PI 141	0.47944	0.37396	0.55007	0.30125	0.50778	0.45007
N0146 Sm147	0.45438	0.28790	0.20728	0.20981	0.51302	0.34016
5152	0.17597	0.00945	0.07598	0.00647	0.21450	0.07950
EU153	0.03024	0.02005	0.01572	0.01801	0.04135	0.02801
G01570	0.14534	0.04901	0.05057	0.05111	0.1/7/3	0.05535
101590	0.12396	0.03884	0.04919	0.04318	0.14/1/	0.04343
Dy1630	0.14133	0.04742	0.060/1	0.05392	0.16598	0.05107
H01650	0.05264	0.03063	0.04012	0.03621	0.09160	0.03210
Er1660	0.05361	0.02350	0.03089	0.02806	0.05758	0.02465
Im1690	0.01467	0.00800	0.01013	0.00964	0.01558	0.00795
¥61720	0.01177	0.00764	0.00943	0.00922	0.01181	0.00731
	0.00458	0.00360	0.00437	0.00434	0.00470	0.00341
Hf1/80	0.00053	0.00060	0.00044	0.00047	0.00063	0.00045
131810	0.00196	0.00196	0.00217	0.00192	0.00224	0.00283
Pb206	0.00006	0.00004	0.00007	0.00006	0.00005	0.00007
Pb208	0.00013	0.00017	0.00016	0.00017	0.00012	0.00017
Th2320	0.01084	0.01810	0.01652	0.01879	0.01028	0.02218
02380	0.00068	0.00149	0.00111	0.00168	0.00076	0.00131
	38422.53	38422.51	38422.45	38422.45	38422.52	39884.40
Corr. 91Zr	2849.85	3223.34	2087.69	2529.35	3525.41	2565.50
Corr. 90Zr	13063.07	14775.09	9569.51	11593.97	16159.70	11759.69
Corr. 89Y	535001.26	255425.27	338019.89	295486.67	572377.02	241709.69
Corr. 93Nb	19973.90	24114.76	30110.10	25512.04	18136.01	27807.52
90ZrC/Si	0.11	0.11	0.07	0.09	0.13	0.10
91ZrC/Si	0.02	0.03	0.02	0.02	0.03	0.02
93Ycr/Si	4.40	1.99	2.60	2.34	4.75	2.00
93NbC/Si	0.16	0.19	0.23	0.20	0.15	0.23
90Zr Cr	1190.05	1272.63	814.25	1016.33	1485.68	1076.64
91Zr Cr	1190.05	1272.63	814.25	1016.33	1485.68	1076.64
Y Cr	14672.58	6623.20	8658.52	7797.83	15841.83	6661.94
Nb Cr	2096.88	2393.56	2952.37	2577.14	1921.42	2933.78
Est. P	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P Zr90 Corr.	784.83	788.95	762.13	775.27	798.57	778.74
Temp./w P Zr91 Corr.	784.83	788.95	762.13	775.27	798.57	778.74
Age Ma 206/238	397.78	130.79	299.39	166.67	311.91	244.99
Age Ma 208/232	147.75	115.54	119.26	109.36	149.71	94.42

	WSW2BS_10.3GC	WSW2BS_9.1GI	WSW2BS-7.4DI	WSW2BS-8.1DI	WSW2BS_10.2LI	WSW2BS-6.2I
F19	6202.41	9299.76	8420.00	11181.43	5824.79	7018.60
Na23	667.11	388.64	535.75	424.67	670.82	538.88
Mg26	917.15	850.31	867.54	994.45	911.99	806.16
Si30	139383.00	139383.00	139383.00	139383.00	139383.00	139383.00
P31	280.91	224.30	196.08	202.65	237.75	243.07
К39	1.48	1.90	1.56	1.61	1.22	2.28
Ca43	196235.49	197333.48	190889.91	196022.07	195469.88	198813.61
AIO	9742.19	9440.85	9068.99	10433.50	10060.63	9263.73
Ti47	220669.75	216564.82	209089.12	215955.36	220288.76	221466.90
V51	102.38	206.87	103.14	141.40	122.01	181.13
Cr52	0.53	1.94	0.73	0.71	0.46	1.32
Mn55	3195.51	2275.40	3433.82	3122.48	2818.99	2399.29
Fe57	24722.43	21851.43	22046.45	25112.18	25306.86	19952.26
Sr86	48.32	47.03	45.76	46.71	47.86	48.76
Y89	14619.55	6598.05	8626.32	7771.63	15769.93	6650.85
7r90	1222 90	1254 02	826.45	1023.96	1470 29	1107.60
2r91	1197 77	1268 25	817 12	1018 12	1482.06	1083 91
Nh93	2098 11	2393 51	2952 41	2577.41	1921.83	2934 55
Ba137	12 38	10.84	13 30	7 22	7 39	7 63
12139	3672 58	10.04	4085.25	1100 02	3572 92	6023 74
Co140	16212.30	16462.26	15215 15	15842 55	16560 21	20421.60
CE140	2000 62	2245 20	2107.26	13042.33	2167 41	20421.00
PI Nd146	16366 20	2545.29	2107.30	2255.50	10/70 52	2040.00
N0140	10300.29	10372.09	9027.24	9/18.20	184/8.52	12252.18
Sm147	5530.83	2182.30	2325.16	2152.10	0/3/.51	2492.35
EU153	199.27	1/5.03	103.63	122.66	272.48	188.52
G01570	5589.49	1884.80	21/5.80	1965.56	6835.20	2128.75
101590	809.12	253.54	321.05	281.88	960.65	283.48
Dy1630	4215.51	1414.41	1810.81	1608.48	4950.90	1523.43
H01650	/30.49	2/3.9/	358.81	323.86	819.23	287.08
Er1660	1575.09	692.25	907.65	824.29	1691.57	/24.16
Tm1690	158.09	86.20	109.15	103.88	167.99	85.67
Yb1720	716.86	465.68	574.29	561.38	719.40	445.35
Lu1750	68.07	53.45	64.97	64.53	69.83	50.72
Hf1780	56.41	64.13	46.94	49.71	67.57	48.04
Ta1810	169.26	169.15	187.35	165.19	192.85	243.76
Pb206	0.35	0.25	0.43	0.36	0.31	0.42
Pb208	0.00	0.00	0.00	0.00	0.00	0.00
Th232O	238.68	398.51	363.87	413.72	226.39	488.56
U238O	14.07	30.70	22.88	34.55	15.61	26.92
90ZrC ppm	1190.05	1272.63	814.25	1016.33	1485.68	1076.64
91ZrC ppm	1190.05	1272.63	814.25	1016.33	1485.68	1076.64
Ycr ppm	14672.58	6623.20	8658.52	7797.83	15841.83	6661.94
NbC ppm	2096.88	2393.56	2952.37	2577.14	1921.42	2933.78
stimated Temperature						
Est. P	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P	784.83	788.95	762.13	775.27	798.57	778.74
Temp./w P	784.83	788.95	762.13	775.27	798.57	778.74
Y89	14672.58	6623.20	8658.52	7797.83	15841.83	6661.94
Sum REE	58934.52	41260.32	39866.32	40222.76	65003.81	49755.58
Al+Fe	34464.62	31292.28	31115.45	35545.68	35367.49	29215.98
Sm/La	1.51	0.47	0.57	0.49	1.89	0.41
Yb/Gd	0.13	0.25	0.26	0.29	0.11	0.21
Th/U	16.96	12.98	15.90	11.98	14.50	18.15
Y/Nb	6.97	2.76	2.92	3.02	8.21	2.27
Zr/Hf	21.68	19.55	17.61	20.60	21.76	23.06
Nb/Ta	12.40	14.15	15.76	15.60	9.97	12.04

	WSW2BS_10.3GC	WSW2BS_9.1GI	WSW2BS-7.4DI	WSW2BS-8.1DI	WSW2BS_10.2LI	WSW2BS-6.2I
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)						
La Ch (0.319)	11512.80	14411.76	12806.43	13793.17	11200.38	18883.20
Ce Ch (0.82)	19892.95	20077.26	18555.06	19320.19	20195.38	24904.39
Pr Ch (0.121)	24715.85	19382.55	18077.32	18622.78	26176.91	23541.78
Nd Ch (0.615)	26611.85	16865.19	15654.05	15801.95	30046.38	19922.24
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	27654.15	10911.50	11625.80	10760.50	33687.55	12461.77
Eu Ch (0.076)	2621.92	2310.97	1363.57	1613.93	3585.24	2480.46
Gd Ch (0.267)	20934.43	7059.16	8149.06	7361.66	25600.02	7972.85
Tb Ch (0.0493)	16412.09	5142.85	6512.24	5717.62	19485.77	5750.08
Dy Ch (0.33)	12774.28	4286.10	5487.30	4874.18	15002.73	4616.46
Ho Ch (0.0755)	9675.32	3628.70	4752.50	4289.53	10850.66	3802.41
Er Ch (0.216)	7292.08	3204.88	4202.09	3816.18	7831.35	3352.59
Tm Ch (0.0329)	4805.18	2620.06	3317.49	3157.50	5105.98	2604.07
Yb Ch (0.221)	3243.71	2107.16	2598.60	2540.17	3255.21	2015.14
Lu Ch (0.033)	2062.59	1619.63	1968.67	1955.49	2115.92	1536.96
Ce/Ce*	1.18	1.20	1.22	1.21	1.18	1.18
Eu/Eu*	0.11	0.26	0.14	0.18	0.12	0.25
Ca Site Total ppm Ti Site Total ppm	73806.82 38114.21	48287.58 35381.90	48879.39 35232.48	48442.65 39504.07	81015.75 39142.50	56921.92 33732.38
Ti/Ca Site Substitution	0.52	0.73	0.72	0.82	0.48	0.59
Ti/Ti Site All Wt%	0.85	0.86	0.86	0.85	0.85	0.87
Ca/Ca site	0.73	0.80	0.80	0.80	0.71	0.78

	WSW2B-5.1I	WSW2B-4.2I	WSW2B-3.2I	WSW2B-1.4I	WSW2B-2.3I	WSW2BS-6.3I
Element						
F19	0.08354	0.06275	0.12673	0.12199	0.10601	0.15435
Na23	1.81175	2.36391	1.78538	1.90047	1.89112	1.42719
Mg26	0.13560	0.13040	0.13156	0.13277	0.14167	0.13042
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00318	0.00302	0.00201	0.00174	0.00191	0.00129
К39	0.00616	0.00785	0.00824	0.00884	0.01099	0.00650
Ca43	0.55129	0.56083	0.54835	0.53116	0.53787	0.53415
AIO	0.03090	0.03391	0.03260	0.03363	0.03470	0.03404
Ti47	10.74729	11.02604	10,72992	10.33113	10.51710	10.34562
V51	0.17939	0.08362	0.08723	0.05989	0.05930	0.08776
Cr52	0.00249	0.00017	0.00044	0.00011	0.00020	0.00022
Mn55	0.93313	1.52837	1.63313	1.84940	1.89778	1.59674
Fe57	0.21120	0.25633	0.22572	0.25246	0.25798	0.22399
Sr86	0.07044	0.07023	0.06807	0.06491	0.06584	0.06334
V89	2 65656	5 28282	2 /1271	3 95502	4 23247	2 17854
7:90	0 15/31	0 160/18	0.00780	0.09400	0 10/30	0.00308
Zr91	0.13431	0.10048	0.03780	0.03400	0.10433	0.03308
NP02	0.05255	0.05505	0.02024	0.01922	0.02202	0.01905
Ro127	0.10858	0.20338	0.23323	0.19925	0.23233	0.21895
Ba137	0.00130	0.00101	0.00137	0.00113	0.00122	0.00113
La139	0.02456	0.52507	0.57555	0.44077	0.49417	0.49669
Ce140	2.12057	2.06434	1.83822	1.64724	1.79602	1.58244
Pr 141	0.53813	0.60118	0.40593	0.42699	0.46312	0.34309
Nd146	0.48491	0.60261	0.30356	0.37671	0.40584	0.25597
Sm147	0.14396	0.25014	0.07775	0.13129	0.13995	0.06411
Eu153	0.06215	0.04774	0.02217	0.02099	0.02206	0.01812
Gd1570	0.10079	0.20503	0.05752	0.10754	0.11442	0.04783
Tb1590	0.07600	0.16969	0.04861	0.09287	0.09879	0.04014
Dy1630	0.08420	0.18805	0.05948	0.11176	0.11994	0.05057
Ho165O	0.04886	0.10421	0.03971	0.06817	0.07418	0.03350
Er1660	0.03275	0.06431	0.02971	0.04747	0.05205	0.02666
Tm1690	0.00944	0.01703	0.01012	0.01401	0.01558	0.00898
Yb172O	0.00815	0.01322	0.00921	0.01172	0.01268	0.00868
Lu1750	0.00350	0.00463	0.00418	0.00473	0.00522	0.00399
Hf1780	0.00063	0.00084	0.00047	0.00052	0.00060	0.00051
Ta181O	0.00282	0.00320	0.00257	0.00204	0.00285	0.00204
Pb206	0.00007	0.00008	0.00006	0.00005	0.00010	0.00008
Pb208	0.00017	0.00016	0.00017	0.00016	0.00014	0.00013
Th232O	0.02233	0.01398	0.02093	0.01252	0.01549	0.01759
U238O	0.00110	0.00069	0.00147	0.00097	0.00104	0.00144
	39884.32	39884.29	39884.28	39884.23	39884.25	38422.41
Corr. 91Zr	3754.58	3713.68	2343.07	2316.87	2596.69	2499.64
Corr. 90Zr	17210.15	17022.71	10740.11	10620.04	11902.66	11457.78
Corr. 89Y	311271.30	588141.58	283078.75	485293.28	503708.54	279351.05
Corr. 93Nb	19845.39	22884.58	27432.20	24479.21	27673.01	28117.71
90ZrC/Si	0.15	0.15	0.09	0.09	0.10	0.09
91ZrC/Si	0.03	0.03	0.02	0.02	0.02	0.02
93Ycr/Si	2.65	5.27	2.41	3.95	4.23	2.17
93NbC/Si	0.17	0.21	0.23	0.20	0.23	0.22
90Zr Cr	1621.90	1691.17	1011.10	956.82	1106.71	987.97
91Zr Cr	1621.90	1691.17	1011.10	956.82	1106.71	987.97
YCr	8831 04	17590 33	8022.80	13162 61	14099 47	7251 49
Nh Cr	2155 21	2619 95	2976 02	2541 52	2965 09	2793 92
Fst D	0 10	0 10	0 10	0 10	0 10	0 10
emp./w P Zr90 Corr	804.10	806.76	774.96	771.66	780.41	773.57
emp./w P Zr91 Corr	804.10	806.76	774.96	771.66	780.41	773.57
Are Ma 206/229	201.10	525 76	107 1/	247 70	157 22	750 07
Age IVIA 200/238	291.80	353.70	197.14	247.70	437.22	238.82
Age Ma 208/232	96.56	142.//	99.16	154.60	108.88	88.90

Table D3,	cont.
-----------	-------

	WSW2B-5.1I	WSW2B-4.2I	WSW2B-3.2I	WSW2B-1.4I	WSW2B-2.3I	WSW2BS-6.3I
F19	5371.31	4034.39	8148.39	7843.63	6816.08	9924.19
Na23	554.75	723.82	546.67	581.92	579.05	437.00
Mg26	942.77	906.63	914.72	923.15	984.98	906.81
Si30	139383.00	139383.00	139383.00	139383.00	139383.00	139383.00
P31	383.87	364.62	242.08	210.08	230.48	156.12
К39	1.93	2.47	2.59	2.78	3.45	2.04
Ca43	197705.23	201123.69	196648.35	190483.56	192890.21	191558.51
AIO	8697.53	9546.27	9177.65	9466.53	9767.23	9582.60
Ti47	220852 55	226580 71	220495 63	212300 54	216122 30	212598.46
V51	280 78	130.88	136 52	93 73	92.81	137 35
Cr52	5 40	0.37	0.96	0.23	0.44	0.48
Mn55	1739 32	2848 81	3044.08	3447 21	3537 38	2976.26
Fe57	21322.06	25878 40	22787 79	25487.66	26044 36	22612.68
Sr86	19 86	23878.40 /10 71	18 18	15 94	20044.30 16.61	11 81
V90	9911 10	17521 97	40.10	12117 99	140.01	7775 77
7:00	1640.02	1705 56	1020.44	13117.88	14038.10	000 22
2190	1640.05	1/05.50	1039.44	999.08	1109.45	909.25
7(21	1020.10	1094.55	1017.70	900./5	1107.35	300.2/
IND93	2150.50	2021.04	29/0.00	2042.59	2302.18	2/93.93
Ba13/	10.53	10.81	9.23	1.12	8.23	1.15
La139	52/0.02	4420.02	4856.00	3/20.27	41/1.00	4210.89
Ce140	20379.43	19839.04	17665.89	15830.52	17260.38	15207.83
Pr	3356.70	3750.02	2532.10	2663.48	2888.79	2140.12
Nd146	17465.99	21705.51	10934.06	13568.61	14617.88	9219.68
Sm147	4524.65	7862.09	2443.58	4126.52	4398.57	2015.15
Eu153	409.56	314.60	146.13	138.34	145.41	119.43
Gd1570	3876.50	7885.45	2212.35	4135.99	4400.49	1839.50
Tb159O	496.10	1107.64	317.27	606.23	644.82	261.99
Dy1630	2511.55	5609.13	1774.11	3333.60	3577.56	1508.54
Ho165O	436.97	931.97	355.17	609.67	663.44	299.60
Er1660	962.05	1889.53	872.77	1394.78	1529.18	783.38
Tm1690	101.72	183.62	109.07	151.02	167.94	96.85
Yb172O	496.56	805.47	561.37	713.91	772.25	528.49
Lu1750	52.08	68.82	62.13	70.26	77.55	59.22
Hf1780	67.44	89.88	50.67	55.44	63.85	54.06
Ta1810	242.70	275.65	221.65	176.23	245.82	175.91
Pb206	0.42	0.48	0.38	0.31	0.62	0.48
Pb208	0.00	0.00	0.00	0.00	0.00	0.00
Th232O	491.76	307.83	460.83	275.72	341.06	387.38
U238O	22.58	14.14	30.36	20.04	21.54	29.65
90ZrC ppm	1621.90	1691.17	1011.10	956.82	1106.71	987.97
91ZrC ppm	1621.90	1691.17	1011.10	956.82	1106.71	987.97
Ycr ppm	8831.04	17590.33	8022.80	13162.61	14099.47	7251.49
NbC ppm	2155.21	2619.95	2976.03	2541.52	2965.09	2793.92
Estimated Temperature						
Est. P	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P	804.10	806.76	774.96	771.66	780.41	773.57
Temp./w P	804.10	806.76	774.96	771.66	780.41	773.57
Y89	8831.04	17590.33	8022.80	13162.61	14099.47	7251.49
Sum REE	60339.90	76372.90	44842.00	51063.20	55315.27	38290.67
Al+Fe	30019.59	35424.67	31965.43	34954.19	35811.59	32195.28
Sm/La	0.86	1.78	0.50	1.11	1.05	0.48
Yb/Gd	0.13	0.10	0.25	0.17	0.18	0.29
Th/U	21.78	21.76	15.18	13.76	15.83	13.07
Y/Nb	4.09	6.69	2.69	5.16	4.73	2.59
Zr/Hf	24.32	18.98	20.52	18.02	17.38	18.30
Nb/Ta	8.89	9.51	13.43	14.43	12.06	15.88
• •						

	WSW2B-5.1I	WSW2B-4.2I	WSW2B-3.2I	WSW2B-1.4I	WSW2B-2.3I	WSW2BS-6.3I
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)						
La Ch (0.319)	16520.43	13855.87	15222.58	11662.28	13075.24	13200.28
Ce Ch (0.82)	24852.97	24193.95	21543.76	19305.52	21049.24	18546.13
Pr Ch (0.121)	27741.33	30991.91	20926.41	22012.22	23874.30	17686.98
Nd Ch (0.615)	28399.98	35293.51	17778.96	22062.78	23768.91	14991.36
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	22623.25	39310.44	12217.92	20632.59	21992.84	10075.75
Eu Ch (0.076)	5388.93	4139.42	1922.80	1820.26	1913.32	1571.48
Gd Ch (0.267)	14518.74	29533.51	8285.97	15490.61	16481.22	6889.49
Tb Ch (0.0493)	10062.96	22467.29	6435.42	12296.72	13079.54	5314.16
Dy Ch (0.33)	7610.77	16997.38	5376.09	10101.83	10841.11	4571.33
Ho Ch (0.0755)	5787.72	12344.01	4704.17	8075.07	8787.34	3968.25
Er Ch (0.216)	4453.94	8747.81	4040.58	6457.30	7079.56	3626.75
Tm Ch (0.0329)	3091.87	5581.04	3315.26	4590.22	5104.53	2943.70
Yb Ch (0.221)	2246.88	3644.67	2540.15	3230.37	3494.35	2391.37
Lu Ch (0.033)	1578.25	2085.38	1882.74	2129.21	2350.07	1794.54
Ce/Ce*	1.16	1.17	1.21	1.20	1.19	1.21
Eu/Eu*	0.30	0.12	0.19	0.10	0.10	0.19
Ca Site Total ppm	69665.43	94216.75	53335.57	64476.84	69715.98	45933.42
Ti Site Total ppm	34412.45	40248.05	36391.33	38821.49	40289.13	36346.23
Ti/Ca Site Substitution	0.49	0.43	0.68	0.60	0.58	0.79
Ti/Ti Site All Wt%	0.87	0.85	0.86	0.85	0.84	0.85
Ca/Ca site	0.74	0.68	0.79	0.75	0.73	0.81

	WSW2BS-7.2GI	WSW2B-1.2E	WSW2B-1.3E	WSW2B-2.2E	WSW2B-3.3E	WSW2B-4.3E
Element						
510	0 12270	0 10015	0.00000	0.00074	0.00420	0.10055
F19 No22	0.12270	0.10815	0.06260	0.09074	0.08438	0.10055
Nd25 Mg26	1.60005	1.71190	2.71076	1.50504	2.02561	0.11402
IVIG20	1.00000	1 00000	1.00000	1.00000	1 00000	1.00000
5150	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00180	0.00225	0.00312	0.00200	0.00218	0.00207
K39 Co42	0.00432	0.01030	0.00977	0.01450	0.00756	0.00870
	0.34724	0.32722	0.50559	0.33735	0.52749	0.34670
AIO Ti47	10 41576	10 21201	11 52012	10 51074	10 50/10	10 71 / 1 2
1147	0.06650	0.08404	0.09567	0.09727	0.07405	0.07552
V51 C=E2	0.00050	0.06494	0.06507	0.06727	0.07495	0.07552
CI32 MpEE	1 71415	1 44045	1 54907	1.45660	1 52021	1 59216
FoE7	0.25274	0.26400	0.25000	0.24552	0.22507	0.24464
FE37 5r96	0.23374	0.20499	0.23888	0.24332	0.23307	0.24404
2180 V90	0.00803	4 02/01	0.07201 E 44797	4 92611	0.00703	1 21544
7:00	4.39248	4.92491	0.15136	4.83011	4.31413	4.21344
2190 7r91	0.11825	0.13330	0.13130	0.12708	0.11723	0.12209
Nhas	0.02480	0.02850	0.03238	0.02707	0.02437	0.02083
Ro127	0.13011	0.12380	0.20245	0.13730	0.13122	0.00120
Da137	0.00128	0.00098	0.00194	0.00118	0.00133	0.00130
Co1/0	1 66808	1 50173	2 08870	1 64638	1 65560	1 61518
Dr 1/1	0.45883	0.47256	0.60585	0.40753	0.48528	0.44533
Nd146	0.43883	0.47230	0.00385	0.49733	0.48328	0.44555
Sm147	0.15685	0.40305	0.25174	0.21842	0.40201	0.15850
511147 Fu153	0.13003	0.03947	0.04769	0.0/1335	0.13300	0.13030
Gd1570	0.13121	0.03347	0.20045	0.18081	0.16060	0.13127
Th1590	0.113121	0.14688	0.16583	0.15094	0.13423	0.11352
Dv1630	0.13117	0 16746	0.18613	0 16844	0.15160	0.13185
Ho1650	0.07885	0.09409	0 10145	0.09288	0.08441	0.07750
Fr1660	0.05308	0.05908	0.06365	0.05761	0.05362	0.05188
Tm1690	0.01488	0.01582	0.01644	0.01575	0.01454	0.01472
Yb1720	0.01205	0.01253	0.01287	0.01160	0.01135	0.01156
Lu1750	0.00484	0.00486	0.00486	0.00443	0.00455	0.00466
Hf1780	0.00054	0.00062	0.00061	0.00053	0.00050	0.00056
Ta1810	0.00158	0.00153	0.00299	0.00162	0.00183	0.00196
Pb206	0.00005	0.00005	0.00009	0.00005	0.00006	0.00007
Pb208	0.00015	0.00011	0.00017	0.00011	0.00015	0.00016
Th232O	0.01142	0.01023	0.01407	0.00940	0.00940	0.01122
U2380	0.00082	0.00074	0.00067	0.00062	0.00060	0.00083
	38422.43	39884.24	39884.24	39884.26	39884.27	39884.30
Corr. 917r	3022.30	3460.79	3656.70	3155.22	2908.88	3154.15
Corr. 90Zr	13853.56	15863.49	16761.50	14462.85	13333.66	14457.93
Corr. 89Y	540808.16	603693.56	618441.89	567356.80	545743.91	494723.23
Corr. 93Nb	19233.62	15188.69	22990.58	16136.08	18295.76	20155.75
90ZrC/Si	0.11	0.13	0.15	0.12	0.11	0.12
91ZrC/Si	0.02	0.03	0.03	0.03	0.02	0.03
93Ycr/Si	4.39	4.92	5.44	4.83	4.51	4.22
93NbC/Si	0.16	0.12	0.20	0.14	0.15	0.17
90Zr Cr	1244.72	1431.71	1634.52	1364.56	1219.73	1365.21
91Zr Cr	1244.72	1431.71	1634.52	1364.56	1219.73	1365.21
Y Cr	14628.07	16402.32	18155.47	16114.85	15029.18	14063.31
Nb Cr	1991.42	1579.67	2583.55	1754.39	1928.66	2193.22
Est. P	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P Zr90 Corr.	787.58	796.26	804.60	793.26	786.34	793.29
Temp./w P Zr91 Corr.	787.58	796.26	804.60	793.26	786.34	793.29
Age Ma 206/238	283.20	336.87	597.24	357.47	466.27	399.05
Age Ma 208/232	158.06	132.89	150.85	145.62	198.15	180.78

	WSW2BS-7.2GI	WSW2B-1.2E	WSW2B-1.3E	WSW2B-2.2E	WSW2B-3.3E	WSW2B-4.3E
F19	7889 36	6953 39	4025.07	5834 14	5425 36	6850 56
Na23	571.37	524.19	830.03	479.39	620.29	555.14
Mg26	903.68	885.98	923 36	839 37	834.26	792 76
Si30	139383.00	139383.00	139383.00	139383.00	139383.00	139383.00
P31	217.33	269.12	376.31	241.58	263.64	249.84
K39	1.36	3.23	3.07	4.55	2.38	2.73
Ca43	196250.19	189070.63	202762.23	192704.52	189168.37	196797.63
AIO	9825.24	10481.66	9536.25	9867.86	9926.65	9809.95
Ti47	214039.79	211928.37	236898.51	216176.52	217704.62	220170.91
V51	104.08	132.94	134.09	136.58	117.31	118.21
Cr52	0.34	0.41	0.36	0.45	0.77	0.33
Mn55	3195.10	2701.71	2887.21	2715.21	2869.21	2949.08
Fe57	25616.24	26752.29	26135.64	24786.87	23731.94	24697.44
Sr86	48.17	45.56	50.97	47.75	47.46	48.16
Y89	14568.83	16334.75	18069.31	16040.24	14972.31	13981.61
Zr90	1256.52	1440.13	1608.67	1350.60	1245.91	1297.57
Zr91	1247.50	1433.69	1628.44	1361.28	1225.88	1349.31
Nb93	1992.23	1580.74	2583.61	1754.77	1929.82	2192.12
Ba137	8.59	6.61	13.09	7.95	10.30	8.77
La139	3609.15	3253.12	4410.25	3324.57	3460.38	3488.65
Ce140	16030.86	15297.09	20073.08	15822.27	15911.74	15522.39
Pr	2862.06	2947.68	3779.15	3103.46	3027.05	2777.86
Nd146	15206.95	17429.13	21742.77	18301.95	17379.54	15051.96
Sm147	4929.87	6512.23	7912.15	6865.01	6257.05	4981.59
Eu153	178.02	260.12	314.29	285.70	256.83	199.06
Gd1570	5046.21	6696.88	7709.30	6953.80	6176.51	5048.41
Tb159O	738.80	958.72	1082.41	985.26	876.15	740.96
Dy163O	3912.44	4994.92	5551.96	5024.34	4522.07	3932.94
Ho165O	705.25	841.51	907.31	830.72	754.96	693.11
Er1660	1559.55	1735.67	1869.89	1692.61	1575.35	1524.17
Tm1690	160.41	170.49	177.16	169.75	156.70	158.72
Yb1720	734.38	763.29	783.97	706.42	691.16	703.99
Lu1750	71.98	72.23	72.26	65.78	67.59	69.21
Ht1780	58.06	66.68	64./1	56.78	52.94	60.29
Ta1810	136.60	131.87	257.66	139.92	157.44	168.83
PD206	0.30	0.33	0.52	0.29	0.37	0.43
PD208	0.00	0.00	0.00	0.00	0.00	0.00
112320	251.48	225.33	309.81	12.96	207.07	247.11
02560 907rC nnm	10.01	10.00	1624 52	12.00	12.47	1265 21
90ZIC ppm	1244.72	1431.71	1624.52	1304.50	1219.75	1265 21
Vcr npm	1/628.07	1431.71	1034.32	16114 85	1219.75	14063 31
NbC ppm	1991.42	1579.67	2583.55	1754.39	1928.66	2193.22
Estimated						
Temperature		0.40	0.40			
Est. P	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P	/8/.58	796.26	804.60	793.26	786.34	793.29
Temp./w P	/8/.58	/96.26	804.60	/93.26	/86.34	/93.29
109 Sum PEE		104UZ.3Z	10100.47	10114.85 64121 CE	12029.18	14003.31 54903.01
	25/11 10	27722 05	25671 90	24131.03	336E0 E0 01112'01	34653.01
Sm/la	33441.40 1 27	21233.93 2 M	1 70	24034.75 2 AR	1 21	1/2
Vh/Gd	0.15	2.00	0 10	2.00	0 11	1.43 0.14
Th/U	1/ 06	14 70	22 20	16.00	16 60	14 50
Y/Nh	7 21	10 33	6 99	9 1 <i>1</i>	7 76	6 38
Zr/Hf	21.64	21.60	24.86	23.79	23.54	21.52
Nb/Ta	14.58	11.99	10.03	12.54	12.26	12.98
	1.00					

	WSW2BS-7.2GI	WSW2B-1.2E	WSW2B-1.3E	WSW2B-2.2E	WSW2B-3.3E	WSW2B-4.3E
chondrite normalized						
REE (Anders &						
Grevesse (1989) (in						
parentheses) * 1.3596						
Korotev Wed Site						
Wash. U)						
La Ch (0.319)	11313.96	10197.87	13825.22	10421.85	10847.58	10936.22
Ce Ch (0.82)	19549.83	18654.99	24479.37	19295.45	19404.56	18929.75
Pr Ch (0.121)	23653.41	24360.98	31232.64	25648.42	25016.98	22957.49
Nd Ch (0.615)	24726.75	28340.05	35354.10	29759.26	28259.41	24474.74
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	24649.34	32561.17	39560.75	34325.07	31285.25	24907.95
Eu Ch (0.076)	2342.43	3422.60	4135.44	3759.20	3379.29	2619.20
Gd Ch (0.267)	18899.66	25081.96	28873.77	26044.19	23132.99	18907.89
Tb Ch (0.0493)	14985.89	19446.57	21955.55	19985.02	17771.85	15029.63
Dy Ch (0.33)	11855.89	15136.12	16824.12	15225.27	13703.25	11918.01
Ho Ch (0.0755)	9341.03	11145.87	12017.32	11002.97	9999.43	9180.24
Er Ch (0.216)	7220.14	8035.51	8656.89	7836.17	7293.30	7056.33
Tm Ch (0.0329)	4875.74	5182.14	5384.68	5159.58	4762.86	4824.24
Yb Ch (0.221)	3323.00	3453.79	3547.38	3196.47	3127.41	3185.46
Lu Ch (0.033)	2181.07	2188.66	2189.62	1993.48	2048.08	2097.21
Ce/Ce*	1.20	1.18	1.18	1.18	1.18	1.19
Eu/Eu*	0.11	0.12	0.12	0.13	0.13	0.12
Ca Site Total ppm	70583.06	78508.49	94778.89	80391.77	76304.93	69138.78
Ti Site Total ppm	38989.32	40586.72	40320.99	38093.83	37162.77	38344.74
Ti/Ca Site Substitution	0.55	0.52	0.43	0.47	0.49	0.55
Ti/Ti Site All Wt%	0.85	0.84	0.85	0.85	0.85	0.85
Ca/Ca site	0.74	0.71	0.68	0.71	0.71	0.74

	WSW2B-5.3E	WSW2B-5.4E	WSW2B-5.4E2	WSW2BS-6.4E	WSW2BS-7.1E	WSW2BS-8.3LE
Element						
F19	0.14231	0.10861	0.09555	0.09525	0.12355	0.10916
Na23	1.57295	1.58854	2.03377	1,79763	1.63554	1.73986
Mg26	0.12880	0.15517	0.12575	0.11339	0.12116	0.12628
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00164	0.00132	0.00221	0.00208	0.00203	0.00214
K39	0.01149	0.17420	0.00717	0.00594	0.00597	0.00531
Ca43	0.56030	0.47763	0.55676	0.52977	0.52916	0.52937
AIO	0.03353	0.03301	0.03252	0.03362	0.03703	0.03388
Ti47	10.79885	9.16634	10.80850	10.41829	10.27398	10.36675
V51	0.08453	0.05941	0.06761	0.08130	0.08367	0.06266
Cr52	0.00029	0.00051	0.00035	0.00023	0.00019	0.00020
Mn55	1.67119	1.46525	1.68561	1.48412	1.49400	1.66273
Fe57	0.23004	0.20870	0.24397	0.23808	0.26822	0.24047
Sr86	0.06709	0.05755	0.07003	0.06491	0.06489	0.06430
Y89	2.32093	3.37348	4.56277	4.52124	4.58804	4.22292
Zr90	0.09133	0.09615	0.11785	0.11995	0.13144	0.10221
Zr91	0.01953	0.02121	0.02486	0.02531	0.02813	0.02160
Nb93	0.22501	0.17141	0.17429	0.15842	0.12957	0.15355
Ba137	0.00133	0.00120	0.00109	0.00323	0.00109	0.00148
La139	0.52776	0.38315	0.44528	0.37670	0.39664	0.40950
Ce140	1.66017	1.39198	1.73812	1.54037	1.57203	1.58998
Pr 141	0.36223	0.36899	0.48828	0.45299	0.45301	0.44557
Nd146	0.26636	0.33040	0.46457	0.44470	0.43683	0.41932
Sm147	0.06706	0.11912	0.18079	0.18814	0.17939	0.16319
Eu153	0.01870	0.02260	0.03295	0.03603	0.03389	0.02866
Gd1570	0.04958	0.09625	0.14896	0.15682	0.14881	0.13496
Tb1590	0.04265	0.08127	0.12680	0.13286	0.12614	0.11466
Dv1630	0.05364	0.09477	0.14607	0.15268	0.14403	0.13168
Ho1650	0.03582	0.05615	0.08358	0.08537	0.08230	0.07675
Er1660	0.02837	0.03681	0.05475	0.05487	0.05356	0.05021
Tm1690	0.00941	0.01080	0.01527	0.01514	0.01500	0.01453
Yb1720	0.00934	0.00886	0.01251	0.01200	0.01178	0.01152
Lu1750	0.00437	0.00363	0.00510	0.00459	0.00469	0.00441
Hf1780	0.00055	0.00050	0.00053	0.00053	0.00059	0.00051
Ta1810	0.00205	0.00176	0.00185	0.00172	0.00172	0.00175
Pb206	0.00009	0.00003	0.00008	0.00006	0.00007	0.00006
Pb208	0.00018	0.00011	0.00015	0.00013	0.00013	0.00015
Th232O	0.01853	0.01196	0.01074	0.00967	0.01035	0.01001
U238O	0.00150	0.00129	0.00068	0.00070	0.00078	0.00070
	39884.31	39884.30	39884.39	38422.42	38422.42	38422.47
Corr. 91Zr	2301.82	2090.27	2921.93	3132.27	3574.37	2768.94
Corr. 90Zr	10551.05	9581.34	13393.48	14357.66	16384.13	12692.23
Corr. 89Y	274962.20	331534.88	541152.84	564361.21	585775.88	545900.62
Corr. 93Nb	26680.74	16840.80	20683.66	19785.98	16546.57	19860.01
90ZrC/Si	0.09	0.10	0.11	0.11	0.13	0.10
91ZrC/Si	0.02	0.02	0.02	0.03	0.03	0.02
93Ycr/Si	2.32	3.38	4.56	4.52	4.58	4.22
93NbC/Si	0.22	0.17	0.17	0.16	0.13	0.15
90Zr Cr	985.56	1080.57	1249.56	1272.72	1420.59	1086.56
91Zr Cr	985.56	1080.57	1249.56	1272.72	1420.59	1086.56
Y Cr	7731.99	11256.15	15198.99	15060.43	15290.02	14068.94
Nb Cr	2871.93	2188.67	2223.72	2021.14	1653.26	1959.23
Est. P	0.10	0.10	0,10	0.10	0.10	0.10
Temp./w P Zr90 Corr.	773.43	778.96	787.82	788.95	795.77	779.30
Temp./w P Zr91 Corr.	773.43	778.96	787.82	788.95	795.77	779.30
Age Ma 206/238	287.41	90.18	510.72	391.45	389.03	403.67
Age Ma 208/232	120.98	115.77	176.94	168.74	158.93	181.40

Table DS, Cont.	Tab	le	D3.	cont.
-----------------	-----	----	-----	-------

	WSW2B-5.3E	WSW2B-5.4E	WSW2B-5.4E2	WSW2BS-6.4E	WSW2BS-7.1E	WSW2BS-8.3LE
F19	9150.36	6983.25	6143.43	6124.16	7943.94	7018.69
Na23	481.63	486.40	622.73	550.43	500.79	532.74
Mg26	895.51	1078.85	874.29	788.39	842.43	877.98
Si30	139383.00	139383.00	139383.00	139383.00	139383.00	139383.00
P31	197.96	159.13	266.84	251.28	245.47	258.69
K39	3.61	54.71	2.25	1.86	1.87	1.67
Ca43	200935.29	171287.15	199666.49	189987.11	189768.34	189842.51
AIO	9439.55	9292.19	9154.37	9463.73	10425.55	9538.83
Ti47	221912.11	188364.66	222110.48	214091.70	211126.19	213032.59
V51	132.31	92.99	105.82	127.24	130.96	98.07
Cr52	0.63	1.12	0.76	0.50	0.40	0.44
Mn55	3115.04	2731.16	3141.91	2766.34	2784.76	3099.25
Fe57	23223.78	21069.82	24630.06	24035.20	27078.48	24276.61
Sr86	47.49	40.74	49.57	45.94	45.93	45.51
Y89	7697.98	11189.03	15133.63	14995.89	15217.43	14006.44
Zr90	970.62	1021.89	1252.51	1274.88	1396.97	1086.31
Zr91	982.05	1066.78	1250.25	1273.22	1415.04	1086.50
Nb93	2871.50	2187.51	2224.23	2021.73	1653.50	1959.60
Ba137	8.96	8.09	7.36	21.79	7.37	9.94
La139	4454.51	3233.97	3758.33	3179.55	3347.82	3456.33
Ce140	15954.85	13377.39	16703.96	14803.47	15107.79	15280.23
Pr	2259.48	2301.67	3045.73	2825.65	2825.73	2779.33
Nd146	9594.08	11900.65	16733.29	16017.78	15734.12	15103.54
Sm147	2107.71	3743.85	5682.40	5913.34	5638.38	5129.28
Eu153	123.22	148.94	217.16	237.46	223.37	188.88
Gd1570	1906.89	3701.68	5729.00	6031.15	5723.22	5190.48
Tb1590	278.37	530.50	827.66	867.22	823.35	748.45
Dy1630	1600.02	2826.93	4356.90	4554.21	4296.05	3927.77
H01650	320.35	502.19	/4/.4/	/63.52	/36.09	686.46
Er1660	833.41	1081.49	1608.55	1612.07	15/3.60	1475.05
1m1690	101.48	116.42	164.55	163.19	161.65	156.61
101/20	569.01	539.66	762.05	/30.9/	/1/./5	/01.51
LU1750	64.95	53.98	75.81	08.28	69.71	5.57
Ta1910	58.74 176.00	23.95	50.33 150.70	50.77 149.1E	03.33 149 EE	54.33
Ph206	0.56	0.15	0.45	0.26	148.55	0.27
P 5200	0.50	0.15	0.45	0.50	0.35	0.00
Th2320	407.99	263.36	236 50	213.04	227 94	220.38
U2380	30.99	26.50	13.93	14.39	16.06	14.38
90ZrC ppm	985.56	1080.57	1249.56	1272.72	1420.59	1086.56
91ZrC ppm	985.56	1080.57	1249.56	1272.72	1420.59	1086.56
Ycr ppm	7731.99	11256.15	15198.99	15060.43	15290.02	14068.94
NbC ppm	2871.93	2188.67	2223.72	2021.14	1653.26	1959.23
Estimated						
Temperature						
Est. P	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P	773.43	778.96	787.82	788.95	795.77	779.30
Temp./w P	773.43	778.96	787.82	788.95	795.77	779.30
Y89	7731.99	11256.15	15198.99	15060.43	15290.02	14068.94
Sum REE	40168.34	44059.30	60412.86	57767.86	56978.65	54889.50
Al+Fe	32663.33	30362.01	33784.43	33498.93	37504.03	33815.44
Sm/La	0.47	1.16	1.51	1.86	1.68	1.48
Yb/Gd	0.30	0.15	0.13	0.12	0.13	0.14
Th/U	13.17	9.94	16.97	14.80	14.20	15.33
Y/Nb	2.68	5.11	6.80	7.42	9.20	7.15
Zr/Hf	16.52	18.94	22.24	22.46	21.98	20.00
Nb/Ta	16.23	14.46	13.93	13.65	11.13	12.99

	WSW2B-5.3E	WSW2B-5.4E	WSW2B-5.4E2	WSW2BS-6.4E	WSW2BS-7.1E	WSW2BS-8.3LE
chondrite normalized						
REE (Anders &						
Grevesse (1989) (in						
parentheses) * 1.3596						
Korotev Wed Site						
Wash. U)						
La Ch (0.319)	13963.99	10137.84	11781.59	9967.25	10494.74	10834.90
Ce Ch (0.82)	19457.13	16313.89	20370.68	18053.02	18424.13	18634.43
Pr Ch (0.121)	18673.38	19022.08	25171.32	23352.50	23353.15	22969.71
Nd Ch (0.615)	15600.13	19350.64	27208.61	26045.17	25583.94	24558.60
Pm	0.00	0.00	0.00	0.00	0.00	0.00
Sm Ch (0.2)	10538.56	18719.25	28411.98	29566.68	28191.92	25646.39
Eu Ch (0.076)	1621.35	1959.69	2857.31	3124.47	2939.13	2485.30
Gd Ch (0.267)	7141.91	13863.96	21456.94	22588.58	21435.28	19439.99
Tb Ch (0.0493)	5646.44	10760.61	16788.24	17590.63	16700.85	15181.63
Dy Ch (0.33)	4848.55	8566.44	13202.73	13800.64	13018.33	11902.34
Ho Ch (0.0755)	4243.01	6651.50	9900.33	10112.79	9749.58	9092.22
Er Ch (0.216)	3858.38	5006.89	7446.99	7463.31	7285.18	6828.93
Tm Ch (0.0329)	3084.44	3538.64	5001.56	4960.30	4913.35	4760.06
Yb Ch (0.221)	2574.72	2441.92	3448.18	3307.55	3247.73	3174.27
Lu Ch (0.033)	1968.29	1635.65	2297.36	2068.95	2112.51	1986.96
Ce/Ce*	1 20	1 17	1 18	1 18	1 18	1 18
Eu/Eu*	0.19	0.12	0.12	0.12	0.12	0.11
	40205 20	55530.40	75706.00	72004 40	72440.07	60120 70
Ca Site Total ppm	48305.29	55538.19	75796.93	72991.19	/2440.0/	69130.70 27164.09
in Site Total ppm	308/4.02	338/0.75	3/383./8	3/128.19	40897.97	37104.98
Ti/Ca Site Substitution	0.76	0.61	0.50	0.51	0.56	0.54
Ti/Ti Site All Wt%	0.86	0.85	0.86	0.85	0.84	0.85
Ca/Ca site	0.81	0.76	0.72	0.72	0.72	0.73

	WSW2BS_9.1GE	WSW2BS_10.1GE
Element		
F19	0 12/132	0 12668
Na23	1 83895	1 68389
Mg26	0 11674	0 12195
5130	1 00000	1 00000
P31	0.00158	0.00172
K39	0.00645	0.00407
Ca43	0.52628	0.55480
AIO	0.03173	0.03784
Ti47	10.48979	10.89250
V51	0.06340	0.08320
Cr52	0.00022	0.00015
Mn55	1.72270	1.57756
Fe57	0.19099	0.26070
Sr86	0.06565	0.06854
Y89	2.11296	4.35253
Zr90	0.06974	0.12554
Zr91	0.01463	0.02594
Nb93	0.26390	0.13888
Ba137	0.00102	0.00115
La139	0.56682	0.42488
Ce140	1.73770	1.65935
Pr 141	0.36227	0.45732
Nd146	0.25378	0.43150
Sm147	0.06093	0.16535
Eu153	0.01477	0.03182
Gd157O	0.04340	0.13589
Tb159O	0.03760	0.11693
Dy1630	0.04767	0.13618
Ho1650	0.03219	0.07955
Er1660	0.02466	0.05242
Tm1690	0.00843	0.01480
Yb172O	0.00806	0.01230
Lu1750	0.00377	0.00488
Hf1780	0.00035	0.00055
Ta1810	0.00281	0.00159
Pb206	0.00007	0.00005
Pb208	0.00010	0.00013
Th232O	0.01817	0.01099
U238O	0.00123	0.00070
	38422.50	38422.52
Corr. 91Zr	1885.23	3024.02
Corr. 90Zr	8641.47	13861.45
Corr. 89Y	275069.93	514869.49
Corr. 93Nb	34407.68	16443.01
90ZrC/Si	0.07	0.12
91ZrC/Si	0.01	0.03
93Ycr/Si	2.11	4.34
93NbC/Si	0.26	0.14
90Zr Cr	734.06	1295.36
91Zr Cr	734.06	1295.36
Y Cr	7034.31	14484.76
Nb Cr	3368.15	1770.73
Est. P	0.10	0.10
Temp./w P Zr90 Corr.	756.09	790.04
Temp./w P Zr91 Corr.	756.09	790.04
Age Ma 206/238	269.13	342.92
Age Ma 208/232	69.14	147.10

	WSW2BS_9.1GE	WSW2BS_10.1GE
F19	7993.10	8145.16
Na23	563.08	515.60
Mg26	811.70	847.91
Si30	139383.00	139383.00
P31	190.51	207.38
K39	2.03	1.28
Ca43	188735.44	198962.87
AIO	8933.03	10653.67
Ti47	215561.05	223836.59
V51	99.23	130.23
Cr52	0.48	0.33
Mn55	3211.03	2940.50
Fe57	19281.48	26319.56
Sr86	46.47	48.52
Y89	7008.20	14436.32
Zr90	741.18	1334.28
Zr91	735.74	1304.51
Nb93	3367.83	1772.35
Ba137	6.87	7.71
La139	4784.17	3586.14
Ce140	16699.90	15946.93
Pr	2259.72	2852.65
Nd146	9140.89	15542.07
Sm147	1915.09	5196.96
Eu153	97.35	209.69
Gd1570	1669.15	5226.12
Tb159O	245.42	763.25
Dy163O	1421.77	4061.89
Ho165O	287.86	711.49
Er166O	724.62	1540.19
Tm1690	90.83	159.48
Yb1720	491.03	749.23
Lu1750	56.06	72.45
Hf1780	37.03	59.13
Ta1810	242.30	136.84
Pb206	0.43	0.31
Pb208	0.00	0.00
Th2320	400.11	242.00
U238O	25.41	14.44
90ZrC ppm	734.06	1295.36
91ZrC ppm	734.06	1295.36
Ycr ppm	7034.31	14484.76
NbC ppm	3368.15	1770.73
Estimated		
Temperature		
Est. P	0.10	0.10
Temp./w P	756.09	790.04
Temp./w P	756.09	790.04
Y89	7034.31	14484.76
Sum REE	39883.87	56618.52
Al+Fe	28214.51	36973.23
Sm/La	0.40	1.45
Yb/Gd	0.29	0.14
Th/U	15.74	16.76
Y/Nb	2.08	8,15
Zr/Hf	20.01	22.57
Nb/Ta	13.90	12.95
-,		
WSW2BS_9.1GE WSW2BS_10.1GE

chondrite normalized		
REE (Anders &		
Grevesse (1989) (in		
parentheses) * 1.3596		
Korotev Wed Site		
Wash. U)		
La Ch (0.319)	14997.41	11241.80
Ce Ch (0.82)	20365.74	19447.47
Pr Ch (0.121)	18675.34	23575.61
Nd Ch (0.615)	14863.23	25271.65
Pm	0.00	0.00
Sm Ch (0.2)	9575.45	25984.81
Eu Ch (0.076)	1280.98	2759.05
Gd Ch (0.267)	6251.50	19573.48
Tb Ch (0.0493)	4978.18	15481.67
Dy Ch (0.33)	4308.41	12308.76
Ho Ch (0.0755)	3812.67	9423.72
Er Ch (0.216)	3354.70	7130.50
Tm Ch (0.0329)	2760.81	4847.35
Yb Ch (0.221)	2221.85	3390.18
Lu Ch (0.033)	1698.83	2195.57
Ce/Ce*	1.22	1.19
Eu/Eu*	0.17	0.12
Ca Site Total ppm	47317.60	71311.28
Ti Site Total ppm	32702.56	40406.39
Ti/Ca Site Substitution	0.69	0.57
Ti/Ti Site All Wt%	0.87	0.85
Ca/Ca site	0.80	0.74

	PSTG01C-1.3LOWZ	PSTG01C-5.2LOZ	PSTG01C-6.3MODZ	PSTG01C-1.2HVZ	PSTG01C-2.2LOW
Element					
Li7	0.00290	0.00330	0.00309	0.00529	0.00346
Be9	0.00003	0.00002	0.00001	0.00004	0.00001
B11	0.00002	0.00001	0.00000	0.00000	0.00001
F19	0.22105	0.22907	0.17364	0.10087	0.24233
Na23	2.87058	1.95127	2.35131	4.05771	2.52304
Mg26	0.19581	0.16553	0.13667	0.14729	0.16525
Si30	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00207	0.00165	0.00247	0.00335	0.00175
C135	0.00002	0.00001	0.00003	0.00003	0.00001
K30	0.00002	0.00001	0.00005	0.00003	0.00001
Co/2	0.60090	0.00520	0.60303	0.69521	0.00314
Cd45	0.06000	0.71665	0.06750	0.06551	0.09290
AIU	0.04598	0.04401	0.04280	0.04443	0.04393
3045	0.05461	0.08318	0.05633	0.02993	0.06415
28511601H	0.13373	0.11410	0.11186	0.12424	0.12353
Ti47	11.14613	11.68138	11.38174	11.82380	11.39184
V51	0.07080	0.13455	0.08489	0.08719	0.08440
Cr52	0.00013	0.00073	0.00061	0.00011	0.00028
Mn55	2.41255	1.59251	1.87032	1.95069	2.26007
Fe57	0.33597	0.29687	0.27984	0.28413	0.29544
Co59	0.00009	0.00010	0.00008	0.00005	0.00007
Ni60	0.00005	0.00005	0.00004	0.00004	0.00005
Zn66	0.00005	0.00003	0.00004	0.00004	0.00004
Ga69	0.00330	0.00292	0.00294	0.00298	0.00292
Ge74	0.00013	0.00010	0.00009	0.00008	0.00010
40Ca40Ca	0.18853	0.20480	0.19076	0.18945	0.20242
40Ca42Ca	0.00275	0.00277	0.00248	0.00264	0.00259
Sr86	0.00033	0.00108	0.00056	0.00034	0.00039
V89	3 /3/77	1 80901	2 36797	3 86837	2 02737
7:00	0.09062	0.00192	0.10110	0 10099	0.06954
2150	0.08002	0.09182	0.10110	0.10088	0.00934
2191	0.01704	0.01905	0.02112	0.02100	0.01452
ND93	0.16457	0.13914	0.11294	0.16584	0.17263
Sn117	0.00276	0.00254	0.001/1	0.00259	0.00229
Ba137	0.00008	0.00003	0.00002	0.00006	0.00006
La139	0.39020	0.49319	0.43413	0.47171	0.44059
Ce140	1.39230	1.51975	1.48453	1.76394	1.38252
Pr 141	0.37687	0.34634	0.39350	0.51487	0.31013
Nd146	0.32931	0.26502	0.34301	0.49937	0.22956
Sm147	0.11985	0.06748	0.10871	0.20997	0.06209
Eu153	0.02008	0.02650	0.04031	0.04079	0.01682
Gd1570	0.12909	0.06341	0.10333	0.21138	0.06095
Tb159O	0.11354	0.05122	0.08168	0.17566	0.05261
Dy1630	0.13955	0.06479	0.09758	0.19767	0.06808
Ho165O	0.08810	0.04259	0.05958	0.10914	0.04617
Er1660	0.06239	0.03362	0.04174	0.06710	0.03671
Tm1690	0.01887	0.01170	0.01299	0.01835	0.01252
Yb1720	0.01636	0.01144	0.01190	0.01437	0.01236
Lu1750	0.00685	0.00527	0.00514	0 00547	0.00575
Hf1790	0.00003	0.00327	0.00314	0.00347	0.00075
Ta1910	0.00005	0.00000	0.00000	0.00009	0.00050
141010	0.00198	0.00157	0.00147	0.00275	0.00103
PU200	0.00009	0.00011	0.00008	0.00010	0.00010
PD208	0.00006	0.00007	0.00006	0.00009	0.00008
Th2320	0.01502	0.02102	0.01323	0.01289	0.01864
U238O	0.00120	0.00165	0.00102	0.00072	0.00165
	38163.96	38164.09	38164.15	38163.95	38163.99
Corr. 91Zr	1724.56	1906.97	2210.15	1964.09	1525.95
Corr. 90Zr	7904.99	8741.12	10130.86	9002.97	6994.64
Corr. 89Y	350519.68	183508.46	250384.93	366374.22	219306.52
Corr. 93Nb	16805.30	14153.83	11960.24	15721.73	18714.33
90ZrC/Si	0.08	0.09	0.10	0.09	0.06
91ZrC/Si	0.02	0.02	0.02	0.02	0.01
93Ycr/Si	3.43	1.80	2.36	3.86	2.02
93NbC/Si	0.16	0.14	0.11	0.17	0.17
90Zr Cr	1148.88	1274.73	1418.87	1408.94	957.41
91Zr Cr	1148.88	1274.73	1418.87	1408.94	957.41
Y Cr	12366 79	6496 51	8512.85	13918 86	7287 13
Nh Cr	29/0 50	2492.51	2022.05	2971 22	3003 /1
	2549.50	2472.02	2022.00	23/1.23	0 10
	0.10	0.10	0.10	0.10	0.10
Temp./w P Zr90 Corr.	782.68	789.05	795.69	795.26	771.70
Temp./w P Zr91 Corr.	782.68	789.05	795.69	795.26	771.70
Age Ma 206/220	268 02	722 71	261 76	185 33	212 OF
Age IVIA 200/200	200.07	233./1	204.70	403.32	213.03
Age Ma 208/232	86.24	63.75	97.31	148.22	83.60

Table D4. SHRIMP-RG trace element analyses of sphene grains from PSTG01C.

	PSTG01C-1.3LOWZ	PSTG01C-5.2LOZ	PSTG01C-6.3MODZ	PSTG01C-1.2HVZ	PSTG01C-2.2LOWZ
Li7	2.89	3.29	3.08	5.28	3.45
Be9	5.88	4.92	2.83	8.97	2.77
B11	0.32	0.23	0.04	0.05	0.13
F19	9145.58	9477.41	7183.82	4173.41	10025.94
Na23	518.29	352.31	424.53	732.63	455.54
Mg26	998.15	843.76	696.67	750.78	842.36
Si30	139383.00	139383.00	139383.00	139383.00	139383.00
P31	229.22	182.85	274.33	371.40	194.41
CI35	6.74	5.07	12.18	11.79	5.55
K39	1.86	1.71	2.69	3.16	1.68
Ca43	198026.49	209095.53	199934.29	199339.62	201546.67
AIO	9828.68	9407.70	9148.87	9496.43	9389.71
Sc45	73 56	112.06	75.89	40 31	86.41
28516018	0.99	0.85	0.83	0.92	0.97
Ti47	217722.24	220170 50	22225 51	220060 62	222522 70
VE1	112.15	220170.30	125.69	120.25	12/ 01
V31 C=52	0.25	215.00	1 20	159.55	154.91
Cr52	0.25	1.43	1.20	0.22	0.50
IVIN55	4072.30	2688.10	3157.03	3292.69	3814.92
Fe57	19221.56	16984.58	16010.22	16255.56	16902.88
Co59	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Ni60	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Zn66	0.02	0.01	0.01	0.01	0.01
Ga69	5.19	4.60	4.64	4.69	4.59
Ge74	1.54	1.12	1.05	0.97	1.19
Sr86	2.63	8.63	4.50	2.71	3.16
Y89	12301.91	6479.20	8481.21	13855.06	7261.30
Zr90	1129.37	1286.20	1416.26	1413.21	974.17
Zr91	1144.23	1277.46	1418.24	1409.96	961.40
Nb93	2949 10	2493 47	2023.80	2971 83	3093.60
Ro127	19 65	7 02	5.62	12 91	14.27
Daiji	10.05	7.02	5.02	15.01	14.27
La139	3843.07	4857.41	4275.73	4645.84	4339.37
Ce140	15125.05	16509.60	16127.00	19162.31	15018.77
Pr	2561 20	2353 74	2674 25	3499.09	2107 69
Nd146	12665 56	10192 71	13192.25	19206.01	8829.19
Sm147	2602.20	2079 90	22/0 21	6469 54	1012 74
5153	120.00	150.53	242.21	245.60	101.27
Cd153	2724.02	1920.60	242.71	243.00	1759.90
Gu1570	5724.92	1029.09	2901.54	860 50	1/36.60
101590	302.05	233.33	404.55	009.30	200.42
Dy1630	3077.34	1428.61	2151.79	4358.77	1501.25
H01650	585.66	283.13	396.09	725.49	306.93
Er1660	1363.56	734.89	912.37	1466.63	802.29
Tm1690	150.94	93.60	103.92	146.77	100.17
Yb172O	726.99	508.63	528.81	638.57	549.23
Lu1750	74.46	57.34	55.84	59.47	62.51
Hf1780	42.34	44.84	44.19	46.70	37.69
Ta181O	224.85	177.88	166.29	311.26	207.64
Pb206	0.37	0.44	0.31	0.40	0.41
Pb208	0.00	0.00	0.00	0.00	0.00
Th232O	286.84	401.31	252.51	246.06	355.84
U238O	21.89	30.13	18.50	13.16	30.11
90ZrC ppm	1148.88	1274.73	1418.87	1408.94	957.41
91ZrC ppm	1148.88	1274.73	1418.87	1408.94	957.41
Ycr ppm	12366.79	6496.51	8512.85	13918.86	7287.13
NbC ppm	2949.50	2492.62	2022.85	2971.23	3093.41
timated Temperature					
Est. P	0.22	0.22	0.22	0.22	0.22
Temp./w P	797 34	803.80	810 54	810.09	786 21
Temp./w P	797 34	803.80	810 54	810.09	786 21
V80	12366 70	6496 51	8517.85	13918 86	7227 12
Sum PEE	12300.73	412/1 22	47205 05	£7502.00	27650 62
SUM KEE	482/3.96	41341.32	4/395.85	0/092.02	3/050.03
AI+Fe	29050.24	26392.28	25159.10	25751.99	26292.59
Sm/La	0.96	0.43	0.78	1.39	0.44
Yb/Gd	0.20	0.28	0.18	0.10	0.31
Th/U	13.10	13.32	13.65	18.70	11.82
Y/Nb	4.17	2.60	4.19	4.66	2.35
Zr/Hf	26.68	28.68	32.05	30.26	25.85
Nb/Ta	13.12	14.02	12.17	9.55	14.90

	PSTG01C-1.3LOWZ	PSTG01C-5.2LOZ	PSTG01C-6.3MODZ	PSTG01C-1.2HVZ	PSTG01C-2.2LOWZ
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)					
La Ch (0.319)	12047.23	15227.00	13403.55	14563.77	13603.03
Ce Ch (0.82)	18445.19	20133.66	19667.07	23368.67	18315.58
Pr Ch (0.121)	21166.92	19452.42	22101.27	28918.06	17418.91
Nd Ch (0.615)	20594.41	16573.51	21450.82	31229.28	14356.41
Pm					
Sm Ch (0.2)	18461.43	10394.46	16746.05	32342.71	9563.68
Eu Ch (0.076)	1590.84	2099.15	3193.52	3231.55	1332.55
Gd Ch (0.267)	13951.01	6852.79	11166.82	22844.30	6587.28
Tb Ch (0.0493)	11400.14	5142.98	8201.49	17636.95	5282.27
Dy Ch (0.33)	9325.27	4329.11	6520.58	13208.40	4549.24
Ho Ch (0.0755)	7757.04	3750.04	5246.22	9609.15	4065.32
Er Ch (0.216)	6312.80	3402.26	4223.93	6789.94	3714.31
Tm Ch (0.0329)	4587.73	2844.96	3158.53	4461.16	3044.66
Yb Ch (0.221)	3289.54	2301.49	2392.81	2889.45	2485.22
Lu Ch (0.033)	2256.31	1737.61	1692.23	1802.18	1894.29
Ce/Ce*	1.16	1.17	1.14	1.14	1.19
Eu/Eu*	0.10	0.25	0.23	0.12	0.17
Ca Site Total ppm	60884.60	48251.96	56148.06	81706.29	45297.88
Ti Site Total ppm	33509.30	30611.16	28946.50	30634.55	30741.14
Ti/Ca Site Substitution	0.55	0.63	0.52	0.37	0.68
Ti/Ti Site All Wt%	0.87	0.88	0.88	0.88	0.88
Ca/Ca site	0.76	0.81	0.78	0.71	0.82

	PSTG01C-2.3MODZ	PSTG01C-3.1LOWZ	PSTG01C-4.2LOWZ	PSTG01C-5.3HIZ	PSTG01C-6.2HIZ	PSTG01C-7.2LOZ
Element						
Element						
117	0 00222	0.00132	0.00636	0.00592	0 00293	0.00435
Be9	0.00222	0.00132	0.00030	0.000392	0.00293	0.00433
B11	0.00000	0.00001	0.00008	0.00007	0.00003	0.00002
E19	0 19174	0.24820	0.00869	0.17953	0.13174	0.25952
Na23	2 68049	2 29951	3 86350	3 13640	2 98262	1 84048
Mg26	0.15730	0.18082	0 1/368	0 17316	0 132/0	0 17221
5:20	1 00000	1 00000	1 00000	1 00000	1 00000	1 00000
D21	0.00185	0.00161	0.00272	0.00262	0.00284	0.00205
(125	0.00105	0.00101	0.00272	0.00202	0.00204	0.00203
K30	0.00001	0.00002	0.00002	0.00001	0.00002	0.00002
Co42	0.71064	0.69076	0.60662	0.60420	0.00408	0.00304
Ca45	0.04110	0.08570	0.03003	0.03435	0.03028	0.71404
AIO Sc/IE	0.04119	0.04601	0.04517	0.05945	0.05761	0.04498
3045	0.03032	0.00043	0.03147	0.00055	0.00044	0.09240
283110018	11 65642	0.12825	11 00277	11 47025	11 56576	11 64702
1147	0.09164	11.45446	11.00577	0 10575	0.07761	0 15641
V31	0.00104	0.09030	0.00714	0.10575	0.07761	0.15041
Cr52	0.00034	0.00035	0.00015	0.00045	0.00046	0.00096
101055	2.08321	2.21106	1.90064	1.80957	1.84609	1.48537
Fe57	0.26230	0.30539	0.28743	0.27781	0.26590	0.30500
059	0.00007	0.00007	0.00005	0.00009	0.00005	0.00011
N160	0.00005	0.00004	0.00003	0.00004	0.00003	0.00006
2066	0.00005	0.00004	0.00003	0.00003	0.00003	0.00003
Gaby	0.00264	0.00301	0.00297	0.00272	0.00275	0.00300
Ge/4	0.00008	0.00012	0.00009	0.00009	0.00009	0.00012
40Ca40Ca	0.19949	0.19170	0.18835	0.19576	0.19001	0.20015
40Ca42Ca	0.00282	0.00255	0.00264	0.00269	0.00251	0.00240
5786	0.00048	0.00049	0.00032	0.00067	0.00056	0.00140
189	1.96934	2.10444	4.19260	2.2/386	2.19196	1.86655
2r90	0.06776	0.07120	0.09869	0.08662	0.10165	0.10829
2r91	0.01380	0.01485	0.02065	0.01808	0.02157	0.02246
Nb93	0.20934	0.14/83	0.14306	0.19362	0.13360	0.12815
Sn117	0.00264	0.00249	0.00252	0.00268	0.00209	0.00234
Ba137	0.00003	0.00014	0.00005	0.00003	0.00002	0.00001
La139	0.52574	0.43824	0.38673	0.55204	0.52680	0.50466
Ce140	1.60195	1.40895	1.54194	1.74234	1.72084	1.56704
Pr 141	0.35935	0.32068	0.4/438	0.41183	0.43/5/	0.36436
Nd146	0.26281	0.24270	0.48072	0.32346	0.36957	0.28296
Sm147	0.06820	0.06/11	0.21666	0.09299	0.10636	0.07276
Eu153	0.02002	0.01965	0.04409	0.02981	0.04091	0.03130
Gd1570	0.06377	0.06603	0.23112	0.08955	0.09757	0.06679
161590	0.05417	0.05/32	0.19408	0.07382	0.07640	0.05406
Dy1630	0.06864	0.07432	0.22138	0.09052	0.09017	0.06754
H01650	0.04546	0.05092	0.12269	0.05689	0.05529	0.04439
Er1660	0.03532	0.03982	0.07610	0.04187	0.03927	0.03494
Im1690	0.01176	0.01373	0.02046	0.01349	0.01228	0.01186
101/20	0.01133	0.01331	0.01613	0.01228	0.01086	0.01191
Lu1750	0.00509	0.00616	0.00587	0.00547	0.00468	0.00548
Hf1780	0.00052	0.00065	0.00068	0.00066	0.00072	0.00080
131810	0.00285	0.00161	0.00234	0.00287	0.00213	0.00157
Pb208	0.00008	0.00010	0.00010	0.00009	0.00008	0.00009
FD206	0.00008	0.00008	0.00007	0.00008	0.00007	0.00008
112320	0.01300	0.01942	0.00169	0.02302	0.01030	0.02230
02380	28164.00	20164 02	29164.07	2016/ 11	29164 12	29164 17
Corr 917r	1404.60	1/11 20	2002.80	1069 /0	2225 00	2204.12
Corr 907r	6429 77	6460.10	0190 40	0022 12	10245 14	10561.64
Corr 89V	20/091 01	202255.64	A11332.64	250207 37	2245.14	10301.04
Corr 92Nb	21752 14	14220 12	1/0// 21	21260 65	12055 92	12222 24
907rC/Si	0.06	0.07	0.00	21500.05	0 10	0 10
917rC/Si	0.00	0.07	0.03	0.08	0.10	0.10
92Vcr/Si	1.06	2 10	4.10	2 27	2 10	1.96
93NbC/Si	0.21	0.15	4.15	0.19	0.13	0.13
907r Cr	0.21	997.26	1387 30	1213 70	1/55 39	1505 47
017r Cr	910 /5	997.20	1387 20	1213.70	1455 20	1505.47
V C+	707/ 01	7568 06	1500.35	8176.27	7886.04	6700.10
Nh Cr	3751 26	7500.50	2562 11	3460 74	730/ 11	2295 1/
Fet D	0.10	0 10	0.10	0 10	0.10	0 10
	700.20	0.10	704.20	700.04	707.20	700.40
remp./w P Zr90 Corr.	/09.29	//4.13	794.29	780.04	/9/.28	799.40
Temp./w P Zr91 Corr.	769.29	774.13	794.29	786.04	797.28	799.40
Age Ma 206/238	213.99	213.37	483.70	211.24	264.21	162.05
Age Ma 208/232	83.93	88.18	113.29	63.42	84.57	72.80
J				· · · · ·		

	PSTG01C-2.3MODZ	PSTG01C-3.1LOWZ	PSTG01C-4.2LOWZ	PSTG01C-5.3HIZ	PSTG01C-6.2HIZ	PSTG01C-7.2LOZ
Li7	2.22	1.32	6.34	5.90	2.93	4.34
Be9	12.03	2.08	16.81	14.96	10.06	4.80
B11	0.04	0.10	0.14	0.13	0.04	0.09
F19	7932.76	10268.58	4083.10	7427.66	5450.37	10737.19
Na23	483.97	415.18	697.56	566.28	538.52	332.30
Mg26	801.82	921.71	/32.39	882.65	6/5.36	877.83
5130	205 49	139383.00	201 66	139383.00	215 29	139383.00
C135	5 79	6 70	7 01	6.24	8 65	10.33
K39	1 95	2.86	2 20	1 15	2 50	2 69
Ca43	206707.53	200632.93	202630.57	201978.81	200783.35	207696.51
AIO	8805.00	9833.80	9227.01	8431.37	8039.83	9615.08
Sc45	76.14	89.50	42.40	81.58	74.68	124.56
28Si16O1H	0.90	0.95	0.86	0.78	0.79	0.80
Ti47	227691.13	223355.66	232131.90	224230.19	225920.13	227524.99
V51	130.49	144.64	139.28	169.03	124.04	249.99
Cr52	0.66	0.68	0.30	0.88	0.91	1.89
Mn55	3516.38	3732.20	3208.20	3155.77	3116.14	2507.25
Fe57	15006.58	17472.14	16444.25	15893.86	15212.88	17449.42
Co59	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Ni60	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Zn66	0.01	0.01	0.01	0.01	0.01	0.01
Ga69	4.17	4.74	4.68	4.28	4.33	4.72
Ge/4	0.96	1.37	1.02	1.04	1.07	1.43
Sr86	3.82	3.92	2.52	5.34	4.49	11.19
189	7053.40	/53/.33	12010.30	8144.13	1422 02	1517.01
Z190 7r91	976 53	997.43	1386.23	1213.38	1423.33	1508.22
Nb93	3751 38	2649 17	2563.65	3469.66	2394 15	2296 44
Ba137	8.02	33.38	12.12	7.55	5.70	3.43
La139	51/7.93	4316.23	3808.86	5436.96	5188.43	4970.32
Ce140	17402.52	15305.93	16750.61	18927.71	18694.14	1/023.30
PT Nd146	2442.18	21/9.33	3223.93	2798.85	29/3./8	2470.22
NU140 Sm147	2100.00	2067.49	10400.97	2864 74	2276 52	2241.65
501147 Fu153	120 52	118 32	265.42	179.46	246 31	188 44
Gd1570	1840 18	1905 22	6669 24	2583.89	2815 46	1927 34
Tb1590	268.16	283.72	960.66	365.41	378.18	267.59
Dy1630	1513.64	1638.91	4881.74	1995.97	1988.44	1489.43
Ho1650	302.21	338.49	815.61	378.20	367.53	295.06
Er1660	772.08	870.28	1663.27	915.07	858.29	763.64
Tm1690	94.08	109.82	163.62	107.91	98.22	94.84
Yb172O	503.65	591.48	717.13	545.87	482.85	529.20
Lu1750	55.36	66.94	63.79	59.51	50.88	59.54
Hf1780	35.25	43.78	45.96	44.77	48.48	53.91
Ta1810	323.41	182.62	265.58	325.11	240.86	177.67
Pb206	0.33	0.39	0.38	0.35	0.30	0.34
Pb208	0.00	0.00	0.00	0.00	0.00	0.00
112320	374.24	370.80	12 26	477.58	312.28	430.08
02380	24.45	20.07	12.30	23.98	10.15	33.32
90ZrC ppm	919.45	997.26	1387.39	1213.70	1455.39	1505.47
91ZrC ppm	919.45	997.26	1387.39	1213.70	1455.39	1505.47
Ycr ppm	7074.91	7568.96	15090.44	8176.27	7886.04	6700.19
NbC ppm	3751.26	2649.12	2563.11	3469.74	2394.11	2295.14
Estimated Temperature						
Est. P	0.22	0.22	0.22	0.22	0.22	0.22
Temp./w P	783.77	788.68	809.12	800.74	812.15	814.30
Temp./w P	783.77	788.68	809.12	800.74	812.15	814.30
Y89	7074.91	7568.96	15090.44	8176.27	7886.04	6700.19
Sum REE	42701.29	39126.66	65147.47	49600.18	51633.02	43209.39
Al+Fe	23811.59	27305.94	25671.26	24325.22	23252.71	27064.50
Sm/La	0.41	0.48	1.75	0.53	0.63	0.45
Yb/Gd	0.27	0.31	0.11	0.21	0.17	0.27
Th/U	15.31	12.84	18.37	18.38	17.22	12.92
Y/Nb	1.88	2.85	5.86	2.35	3.28	2.91
Zr/Hf	26.93	22.78	30.08	27.10	29.37	28.14
Nb/Ta	11.60	14.51	9.65	10.67	9.94	12.93

	PSTG01C-2.3MODZ	PSTG01C-3.1LOWZ	PSTG01C-4.2LOWZ	PSTG01C-5.3HIZ	PSTG01C-6.2HIZ	PSTG01C-7.2LOZ
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)						
La Ch (0.319)	16231.75	13530.50	11939.99	17043.77	16264.67	15580.94
Ce Ch (0.82)	21222.59	18665.77	20427.58	23082.57	22797.73	20760.12
Pr Ch (0.121)	20183.27	18010.99	26644.03	23131.01	24576.68	20464.66
Nd Ch (0.615)	16435.45	15178.06	30063.36	20228.70	23112.17	17695.62
Pm						
Sm Ch (0.2)	10504.97	10337.40	33373.11	14323.68	16382.67	11208.27
Eu Ch (0.076)	1585.85	1556.86	3492.42	2361.26	3240.93	2479.51
Gd Ch (0.267)	6892.05	7135.65	24978.41	9677.50	10544.80	7218.51
Tb Ch (0.0493)	5439.25	5754.93	19486.07	7411.89	7670.90	5427.75
Dy Ch (0.33)	4586.77	4966.38	14793.16	6048.38	6025.57	4513.42
Ho Ch (0.0755)	4002.74	4483.32	10802.74	5009.23	4867.94	3908.08
Er Ch (0.216)	3574.44	4029.08	7700.31	4236.46	3973.54	3535.39
Tm Ch (0.0329)	2859.56	3338.02	4973.38	3279.94	2985.28	2882.64
Yb Ch (0.221)	2278.97	2676.37	3244.94	2470.00	2184.85	2394.57
Lu Ch (0.033)	1677.55	2028.57	1932.99	1803.31	1541.77	1804.38
Ce/Ce*	1.17	1.20	1.15	1.16	1.14	1.16
Eu/Eu*	0.19	0.18	0.12	0.20	0.25	0.28
Ca Site Total ppm	50153.44	47063.66	80403.23	58247.87	59814.23	50358.67
Ti Site Total ppm	29001.97	31324.28	30068.52	29548.06	27485.08	31361.41
Ti/Ca Site Substitution	0.58	0.67	0.37	0.51	0.46	0.62
Ti/Ti Site All Wt%	0.89	0.88	0.89	0.88	0.89	0.88
Ca/Ca site	0.80	0.81	0.72	0.78	0.77	0.80

	PSTG01C-1.1MOD	PSTG01C-2.1HVZ	PSTG01C-3.2HVZ	PSTG01C-4.1HVZ	PSTG01C-5.1MODZ	PSTG01C-6.1LOZ	PSTG01C-7.1HIZ
Element							
Li7	0.00305	0.00342	0.00271	0.00646	0.00390	0.00799	0.00640
Be9	0.00003	0.00004	0.00005	0.00006	0.00003	0.00005	0.00007
B11	0.00001	0.00001	0.00001	0.00000	0.00001	0.00000	0.00000
F19	0.14865	0.12600	0.15990	0.10742	0.22615	0.22461	0.21276
Na23	2.89847	3.20946	2.98231	4.01525	2.37241	2.98122	3.09925
Mg26	0.15839	0.16395	0.16915	0.14359	0.17764	0.15652	0.16273
Si30	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000
P31	0.00212	0.00241	0.00574	0.00306	0.00179	0.00162	0.00192
Cl35	0.00003	0.00002	0.00002	0.00001	0.00003	0.00002	0.00001
K39	0.00733	0.00429	0.00484	0.00321	0.00424	0.02103	0.00431
Ca43	0.70851	0.69283	0.68068	0.68910	0.71918	0.70438	0.68844
AIO	0.04745	0.04425	0.04671	0.03968	0.04601	0.04004	0.04566
Sc45	0.04212	0.04383	0.04574	0.03408	0.07038	0.05533	0.04743
28Si16O1H	0.12932	0.12119	0.12162	0.11229	0.11703	0.10727	0.11540
Ti47	11.87324	11.74816	11.56465	11.79977	11.81494	11.64497	11.65880
V51	0.09122	0.08042	0.07941	0.08694	0.11502	0.07969	0.07354
Cr52	0.00021	0.00067	0.00023	0.00015	0.00071	0.00061	0.00016
Mn55	2.04409	2.06744	2.13251	1.89866	1.98261	2.34413	2.16828
Fe57	0.35137	0.31517	0.32818	0.30190	0.30977	0.27813	0.32805
Co59	0.00006	0.00006	0.00007	0.00004	0.00007	0.00009	0.00008
Ni60	0.00005	0.00004	0.00005	0.00004	0.00003	0.00004	0.00005
Zn66	0.00003	0.00004	0.00003	0.00004	0.00003	0.00005	0.00003
Ga69	0.00355	0.00333	0.00321	0.00319	0.00301	0.00268	0.00351
Ge74	0.00009	0.00007	0.00008	0.00010	0.00009	0.00013	0.00013
40Ca40Ca	0.20208	0.19847	0.20376	0.19825	0.20293	0.20177	0.19089
40Ca42Ca	0.00287	0.00275	0.00272	0.00258	0.00279	0.00291	0.00265
Sr86	0.00031	0.00041	0.00040	0.00032	0.00076	0.00035	0.00032
Y89	4.35238	4.27524	4.30635	4.17877	2.36361	2.05464	3.95838
Zr90	0.11210	0.10394	0.09827	0.10787	0.08766	0.06590	0.09558
Zr91	0.02335	0.02167	0.02045	0.02241	0.01823	0.01393	0.02016
Nb93	0.11402	0.11768	0.10566	0.15276	0.14636	0.19334	0.12451
Sn117	0.00294	0.00226	0.00241	0.00314	0.00250	0.00261	0.00288
Ba137	0.00005	0.00009	0.00009	0.00004	0.00003	0.00006	0.00008
La139	0.38073	0.37363	0.36399	0.43136	0.47185	0.46335	0.36869
Ce140	1.50474	1.46998	1.44097	1.68155	1.56148	1.46157	1.41689
Pr 141	0.45352	0.45917	0.44451	0.49938	0.38003	0.32875	0.41545
Nd146	0.44772	0.46759	0.44739	0.48356	0.30931	0.24594	0.39462
Sm147	0.19688	0.21015	0.19851	0.20811	0.09295	0.06712	0.16277
Eu153	0.03914	0.04255	0.03865	0.04242	0.03028	0.01781	0.03097
Gd1570	0.21418	0.23019	0.22290	0.21958	0.09415	0.06521	0.18414
Tb1590	0.18498	0.19477	0.19049	0.18564	0.07759	0.05579	0.15857
Dy1630	0.21449	0.22625	0.22453	0.21276	0.09541	0.07237	0.19009
Ho165O	0.12406	0.12445	0.12841	0.12005	0.06110	0.04837	0.11174
Er1660	0.07975	0.07872	0.08276	0.07468	0.04522	0.03785	0.07416
Tm169O	0.02246	0.02157	0.02304	0.02029	0.01485	0.01292	0.02123
Yb1720	0.01769	0.01756	0.01840	0.01589	0.01373	0.01221	0.01734
Lu1750	0.00698	0.00661	0.00711	0.00603	0.00613	0.00563	0.00677
Hf1780	0.00075	0.00067	0.00067	0.00071	0.00074	0.00055	0.00067
Ta1810	0.00152	0.00165	0.00146	0.00250	0.00169	0.00220	0.00163
Pb206	0.00010	0.00009	0.00007	0.00009	0.00007	0.00011	0.00010
Pb208	0.00010	0.00006	0.00008	0.00007	0.00005	0.00005	0.00007
Th232O	0.01257	0.01095	0.01099	0.01433	0.01959	0.01870	0.01176
U238O	0.00093	0.00084	0.00085	0.00077	0.00156	0.00149	0.00078
	38163.94	38163.98	38164.03	38164.05	38164.08	38164.12	38164.16
Corr. 91Zr	2224.01	2214.98	2109.34	2374.85	1854.89	1457.45	1992.20
Corr. 90Zr	10194.38	10152.98	9668.73	10885.79	8502.43	6680.61	9131.80
Corr. 89Y	419809.04	442307.81	449925.44	448724.46	243483.68	216735.28	394589.80
Corr. 93Nb	11003.43	12180.93	11043.59	16417.65	15103.10	20417.83	12417.54
90ZrC/Si	0.11	0.10	0.09	0.10	0.08	0.06	0.09
91ZrC/Si	0.02	0.02	0.02	0.02	0.02	0.01	0.02
93Ycr/Si	4.35	4.27	4.30	4.17	2.36	2.05	3.95
93NbC/Si	0.11	0.12	0.11	0.15	0.15	0.19	0.12
90Zr Cr	1566.60	1454.82	1371.93	1502.48	1222.41	938.96	1358.56
91Zr Cr	1566.60	1454.82	1371.93	1502.48	1222.41	938.96	1358.56
Y Cr	15661.00	15385.49	15497.95	15034.93	8497.96	7394.92	14250.85
Nb Cr	2041.99	2107.78	1892.35	2736.47	2622.22	3465.54	2230.94
Est. P	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Temp./w P Zr90 Corr.	801.91	797.26	793.60	799.28	786.47	770.54	792.99
Temp./w P Zr91 Corr.	801.91	797.26	793.60	799.28	786.47	770.54	792.99
Age Ma 206/238	349 19	345 54	290 49	393 54	160 51	252 40	447 24
Ago Ma 200/200	165.04	120.21	145.22	104 27	50.33	EQ 77	110.76
Age IVIA 208/232	105.94	120.21	145.23	104.37	50.32	50.//	113.10

	PSTG01C-1.1MOD	PSTG01C-2.1HVZ	PSTG01C-3.2HVZ	PSTG01C-4.1HVZ	PSTG01C-5.1MODZ	PSTG01C-6.1LOZ	PSTG01C-7.1HIZ
Li7	3.04	3.41	2.71	6.44	3.89	7.96	6.38
Be9	6.73	8.69	9.57	11.17	6.30	10.90	13.54
B11	0.10	0.22	0.22	0.04	0.22	0.00	0.00
F19	6149.89	5213.01	6615.59	4444.37	9356.44	9292.89	8802.50
Na23	523.32	579.47	538.46	724.96	428.34	538.26	559.57
Mg26	807.37	835.73	862.22	731.96	905.51	797.87	829.52
Si30	139383.00	139383.00	139383.00	139383.00	139383.00	139383.00	139383.00
P31	235.48	266.76	636.09	339.31	198.95	179.27	212.98
Cl35	12.47	7.48	9.87	6.40	13.33	6.93	4.74
К39	3.91	2.29	2.58	1.71	2.26	11.22	2.30
Ca43	206085.89	201526.78	197992.14	200440.09	209189.74	204887.01	200249.43
AIO	10142.47	9457.72	9983.49	8481.17	9834.15	8558.60	9759.12
Sc45	56.75	59.05	61.62	45.92	94.81	74.54	63.89
28Si16O1H	0.96	0.90	0.90	0.83	0.87	0.80	0.86
Ti47	231926.23	229483.02	225898.45	230491.12	230787.47	227467.39	227737.60
V51	145.80	128.54	126.93	138.96	183.84	127.36	117.53
Cr52	0.41	1.32	0.46	0.31	1.41	1.21	0.31
Mn55	3450.35	3489.76	3599.59	3204.87	3346.58	3956.80	3659.97
Fe57	20102.51	18031.48	18775.83	17272.25	17722.59	15912.63	18768.46
Co59	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Ni60	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Zn66	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Ga69	5.60	5.24	5.06	5.03	4.74	4.22	5.53
Ge74	1.04	0.83	0.90	1.12	1.08	1.54	1.49
Sr86	2.47	3.27	3.17	2.56	6.12	2.78	2.56
Y89	15588.61	15312.34	15423.74	14966.82	8465.57	7358.97	14177.44
Zr90	1570.31	1455.98	1376.54	1511.08	1227.93	923.17	1338.90
Zr91	1567.48	1455.09	1373.03	1504.53	1223.72	935.20	1353.88
Nb93	2043.31	2108.83	1893.49	2737.45	2622.76	3464.65	2231.24
Ba137	12.32	20.69	21.62	9.96	8.07	14.65	17.90
1-120	2740 75	2670.00	2504.07	1210 12	4647.24	4562.54	2624.24
La139	3749.75	30/9.89	3584.87	4248.43	4047.24	4503.54	3031.21
Ce140	16346.52	15968.98	15653.80	18267.29	16962.91	158/7.59	15392.19
Pr	3082.17	3120.52	3020.89	3393.84	2582.68	2234.23	2823.44
Nd146	1/219./2	1/983.76	1/206.90	18597.88	11896.37	9459.19	151/7.15
5m147	0005.22	04/4.07	0115.40	0411.33	2803.55	2067.82	5014.42
EU153	235.62	256.17	232.67	255.41	182.27	107.22	186.44
G01570	6180.27	6642.27	6432.08	018.02	2716.80	1881.54	5313.60
Dv1630	915.02	4080.02	942.09	910.91	304.00	270.15	764.69 4101.65
Dy1630	4729.77	4969.05	4951.15	4091.39	2105.92	221 50	4191.05
H01630	024.09	027.52	000.05	796.06	400.14	521.50	1620.04
Er 1660	1745.14	1720.01	1000.07	1632.19	900.27	027.10	1620.94
111690	1/9.64	1/2.53	184.25	102.20	118.74	103.35	109.78
101/20	780.49	780.63	817.94	706.19	610.47	542.08	770.79
Lu1730	75.69	/1.65	//.20	47.05	50.71 50.15	27.06	/5.5/ /E 20
To1810	172.27	45.50	45.56	47.95	30.15	37.00	43.30
Ph206	0.27	0.24	0.29	203.03	0.20	0.42	184.30
Ph208	0.00	0.04	0.20	0.00	0.25	0.45	0.40
Th2200	240.06	200 12	200.78	272 56	274.09	256.06	224.44
112320	16.85	15 36	15 //5	14.02	28.34	27 12	14 26
02300	10.05	15.50	13.45	14.02	20.34	27.12	14.20
90ZrC ppm	1566.60	1454.82	1371.93	1502.48	1222.41	938.96	1358.56
91ZrC ppm	1566.60	1454.82	1371.93	1502.48	1222.41	938.96	1358.56
Ycr ppm	15661.00	15385.49	15497.95	15034.93	8497.96	7394.92	14250.85
NbC ppm	2041.99	2107.78	1892.35	2736.47	2622.22	3465.54	2230.94
Estimated Temperature							
Est. P	0.22	0.22	0.22	0.22	0.22	0.22	0.22
Temp./w P	816.84	812.12	808.41	814.17	801.19	785.03	807.79
Temp./w P	816.84	812.12	808.41	814.17	801.19	785.03	807.79
Y89	15661.00	15385.49	15497.95	15034.93	8497.96	7394.92	14250.85
Sum REE	62134.51	63651.70	61882.67	66485.01	46530.14	39919.25	55892.86
Al+Fe	30244.99	27489.20	28759.32	25753.42	27556.74	24471.23	28527.58
Sm/La	1.62	1.76	1.71	1.51	0.62	0.45	1.38
Yb/Gd	0.13	0.12	0.13	0.11	0.22	0.29	0.15
Th/U	14.24	13.61	13.57	19.52	13.20	13.16	15.74
Y/Nb	7.63	7.26	8.15	5.47	3.23	2.12	6.35
Zr/Hf	30.83	32.14	30.20	31.51	24.49	24.91	29.51
Nb/Ta	11.85	11.31	11.45	9.65	13.68	13.91	12.11

	PSTG01C-1.1MOD	PSTG01C-2.1HVZ	PSTG01C-3.2HVZ	PSTG01C-4.1HVZ	PSTG01C-5.1MODZ	PSTG01C-6.1LOZ	PSTG01C-7.1HIZ
chondrite normalized REE (Anders & Grevesse (1989) (in parentheses) * 1.3596 Korotev Wed Site Wash. U)							
La Ch (0.319)	11754.71	11535.71	11237.84	13317.97	14568.14	14305.78	11383.10
Ce Ch (0.82)	19934.78	19474.36	19090.00	22277.19	20686.48	19362.92	18770.97
Pr Ch (0.121)	25472.49	25789.43	24966.05	28048.23	21344.45	18464.74	23334.19
Nd Ch (0.615)	27999.54	29241.89	27978.70	30240.46	19343.69	15380.79	24678.30
Pm							
Sm Ch (0.2)	30326.08	32370.34	30577.31	32056.64	14317.74	10339.10	25072.11
Eu Ch (0.076)	3100.24	3370.67	3061.41	3360.70	2398.35	1410.74	2453.20
Gd Ch (0.267)	23147.08	24877.41	24090.20	23730.41	10175.30	7046.96	19901.12
Tb Ch (0.0493)	18572.46	19555.41	19125.54	18639.15	7790.69	5601.49	15920.72
Dy Ch (0.33)	14332.64	15118.27	15003.42	14216.95	6375.51	4836.08	12701.98
Ho Ch (0.0755)	10923.09	10957.87	11306.42	10570.57	5379.30	4259.30	9838.17
Er Ch (0.216)	8070.07	7965.80	8374.41	7556.46	4575.32	3829.53	7504.34
Tm Ch (0.0329)	5460.04	5244.22	5600.25	4931.89	3609.12	3141.31	5160.62
Yb Ch (0.221)	3558.80	3532.25	3701.09	3195.43	2762.29	2455.56	3487.75
Lu Ch (0.033)	2299.79	2177.16	2341.89	1987.32	2021.44	1856.69	2229.27
Ce/Ce*	1.15	1.13	1.14	1.15	1.17	1.19	1.15
Eu/Eu*	0.12	0.12	0.11	0.12	0.20	0.17	0.11
Ca Site Total ppm	77980.04	79188.53	77531.63	81739.40	55398.14	47662.29	70309.00
Ti Site Total ppm	34228.12	31415.60	32367.75	30472.79	31834.53	29273.77	32445.24
Ti/Ca Site Substitution	0.44	0.40	0.42	0.37	0.57	0.61	0.46
Ti/Ti Site All Wt%	0.87	0.88	0.87	0.88	0.88	0.89	0.88
Ca/Ca site	0.73	0.72	0.72	0.71	0.79	0.81	0.74

Figure D1. Cathodoluminescence images of sphene grains and approximate locations of SHRIMP-RG spots. Spot sizes are to scale.

APPENDIX E:

Blob3D Extracted Data Used to Determine Crystal Size Distributions

Combined R	uns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	1	0.091399324	0.182798647	0.091399323	
17.5	35	26.25	4	0.365597295	0.365597295	0.365597294	
35	70	52.5	51	7.032542747	1.96950591	1.969505909	
70	140	105	223	1.917026288	0.256747151	0.25674715	
140	280	210	88	0.378247339	0.080642604	0.080642603	
280	560	420	4	0.00859653	0.00859653	0.008596529	
560	1120	840	0	0	0	0	
Run A							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	2	0.068772244	0.09725864	0.068772243	
17.5	35	26.25	0	0	0	0	
35	70	52.5	356	6.120729674	0.648796048	0.648796047	
70	140	105	223	1.917026288	0.256747151	0.25674715	
140	280	210	88	0.378247339	0.080642604	0.080642603	
280	560	420	4	0.00859653	0.00859653	0.008596529	
560	1120	840	0	0	0	0	
		chip mass (g)	1.6618				
Run B							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sgrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	20	5.515719801	2.466704884	2.466704883	
35	70	52.5	51	7.032542747	1.96950591	1.969505909	
70	140	105	26	1.792608935	0.703119072	0.703119071	
140	280	210	3	0.103419746	0.119418837	0.103419745	
280	560	420	0	0	0	0	
560	1120	840	0	0	0	0	
		chip mass (g)	0.2072				
Run C							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	1	0.091399324	0.182798647	0.091399323	
17.5	35	26.25	4	0.365597295	0.365597295	0.365597294	
35	70	52.5	10	0.456996618	0.289030039	0.289030038	
70	140	105	6	0.137098985	0.111940853	0.111940852	
140	280	210	2	0.022849831	0.032314541	0.02284983	
280	560	420	0	0	0	0	
560	1120	840	0	0	0	0	
		chin mass (g)	0.63	č	č	č	

Table E1. Zircon size distribution data

KPST01A Zircon Size Distribution

KPST01B Zir	con Size Dis	tribution					
Combined R	luns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	2	3.088803089	4.36822722	3.088803088	Run C
17.5	35	26.25	13	20.07722008	11.13683792	11.13683792	Run C
35	70	52.5	36	4.886325076	1.628775025	1.628775024	Run B
70	140	105	12	0.814387513	0.47018685	0.470186849	Run B
140	280	210	28	0.11004732	0.041593977	0.041593976	Run A
280	560	420	6	0.011790784	0.009627135	0.009627134	Run A
560	1120	840	0	0	0	0	Run A
Run A							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	25	0.393026144	0.157210458	0.157210457	
70	140	105	65	0.510933987	0.126747123	0.126747122	
140	280	210	28	0.11004732	0.041593977	0.041593976	
280	560	420	6	0.011790784	0.009627135	0.009627134	
560	1120	840	0	0	0	0	
		chip mass (g)	1.8174				
Run B							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	6	1.628775025	1.329889239	1.329889238	
35	70	52.5	36	4.886325076	1.628775025	1.628775024	
70	140	105	12	0.814387513	0.47018685	0.470186849	
140	280	210	2	0.067865626	0.095976489	0.067865625	
280	560	420	0	0	0	0	
560	1120	840	0	0	0	0	
		chip mass (g)	0.2105				
Run C							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	2	3.088803089	4.36822722	3.088803088	
17.5	35	26.25	13	20.07722008	11.13683792	11.13683792	
35	70	52.5	9	6.94980695	4.633204633	4.633204632	
70	140	105	3	1.158301158	1.337490971	1.158301157	
140	280	210	0	0	0	0	
280	560	420	0	0	0	0	
560	1120	840	0	0	0	0	
		chip mass (g)	0.04				

Table E1, cont.

(PST01C Zircon Size Distribution									
Combined R	uns								
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)			
8.75	17.5	13.125	0	0	0	0			
17.5	35	26.25	19	7.426226304	3.407386315	3.407386314	Run E		
35	70	52.5	68	13.28903654	3.223064785	3.223064784	Run E		
70	140	105	67	0.898219648	0.219469991	0.21946999	Run A		
140	280	210	31	0.207797083	0.074642916	0.074642915	Run A		
280	560	420	4	0.013406263	0.013406263	0.013406262	Run A		
560	1120	840	0	0	0	0	Run A		
Run A									
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)			
8.75	17.5	13.125	0	0	0	0			
17.5	35	26.25	0	0	0	0			
35	70	52.5	26	0.697125697	0.273435195	0.273435194			
70	140	105	67	0.898219648	0.219469991	0.21946999			
140	280	210	31	0.207797083	0.074642916	0.074642915			
280	560	420	4	0.013406263	0.013406263	0.013406262			
560	1120	840	0	0	0	0			
		chip mass (g)	1.0656						
Run B									
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)			
8.75	17.5	13.125	0	0	0	0			
17.5	35	26.25	19	7.426226304	3.407386315	3.407386314			
35	70	52.5	68	13.28903654	3.223064785	3.223064784			
70	140	105	25	2.4428376	0.97713504	0.977135039			
140	280	210	1	0.048856752	0.097713504	0.048856751			
280	560	420	0	0	0	0			
560	1120	840	0	0	0	0			
		chip mass (g)	0.1462						
≀un C									
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)			
8.75	17.5	13.125							
17.5	35	26.25							
35	70	52.5							
70	140	105							
140	280	210							
280	560	420							
560	1120	840							
		chip mass (g)							

Table E1, cont.

KPST01D Zir	(PST01D Zircon Size Distribution										
Combined R	luns										
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)					
8.75	17.5	13.125	0	0	0	0	Run C				
17.5	35	26.25	17	12.55075674	6.08801126	6.088011259	Run B				
35	70	52.5	56	20.67183463	5.524780195	5.524780194	Run B				
70	140	105	112	1.852924146	0.350169749	0.350169748	Run A				
140	280	210	23	0.190255604	0.079342072	0.079342071	Run A				
280	560	420	5	0.020679957	0.018496716	0.018496715	Run A				
560	1120	840	0	0	0	0	Run A				
Run A											
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)					
8.75	17.5	13.125	0	0	0	0					
17.5	35	26.25	0	0	0	0					
35	70	52.5	80	2.647034494	0.591894907	0.591894906					
70	140	105	112	1.852924146	0.350169749	0.350169748					
140	280	210	23	0.190255604	0.079342072	0.079342071					
280	560	420	5	0.020679957	0.018496716	0.018496715					
560	1120	840	0	0	0	0					
		chip mass (g)	0.8635								
Run B											
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)					
8.75	17.5	13.125	0	0	0	0					
17.5	35	26.25	17	12.55075674	6.08801126	6.088011259					
35	70	52.5	56	20.67183463	5.524780195	5.524780194					
70	140	105	34	6.275378368	2.152437023	2.152437022					
140	280	210	3	0.276854928	0.319684534	0.276854927					
280	560	420	0	0	0	0					
560	1120	840	0	0	0	0					
		chip mass (g)	0.0774								
Run C											
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)					
8.75	17.5	13.125	0	0	0	0					
17.5	35	26.25	0	0	0	0					
35	70	52.5	3	7.585335019	8.75879043	7.585335018					
70	140	105	13	16.43489254	9.116438117	9.116438116					
140	280	210	16	10.11378003	5.056890013	5.056890012					
280	560	420	4	1.264222503	1.264222503	1.264222502					
560	1120	840	0	0	0	0					
		chip mass (g)	0.01								

Table E1, cont.

KPST01E Zir	(PST01E Zircon Size Distribution										
Combined Runs											
Bin start 8.75	Bin end 17.5	Bin center 13.125	# crystals 0	#/bin size/mass 0	sqrt(#)/bin size/mass (+) 0	sqrt(#)/bin size/mass (-) 0	Run C				
17 5	35	26.25	2	10 2960103	14 5607574	10 2960103	Run C				
35	70	52.5	65	21 37103403	5 301501067	5 301501066	Run B				
70	140	105	162	2.179997847	0.342553613	0.342553612	Run A				
140	280	210	30	0.201851652	0.073705802	0.073705801	Run A				
280	560	420	3	0.010092583	0.011653911	0.010092582	Run A				
560	1120	840	0	0	0	0	Run A				
Run A											
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)					
8.75	17.5	13.125	0	0	0	0					
17.5	35	26.25	0	0	0	0					
35	70	52.5	144	3.875551728	0.645925288	0.645925287					
70	140	105	162	2.179997847	0.342553613	0.342553612					
140	280	210	30	0.201851652	0.073705802	0.073705801					
280	560	420	3	0.010092583	0.011653911	0.010092582					
560	1120	840	0	0	0	0					
		chip mass (g)	1.0616								
Run B											
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)					
8.75	17.5	13.125	0	0	0	-0.00000001					
17.5	35	26.25	73	48.00263028	11.23656583	11.23656583					
35	70	52.5	65	21.37103403	5.301501067	5.301501066					
70	140	105	5	0.821962847	0.735185921	0.73518592					
140	280	210	0	0	0	0					
280	560	420	0	0	0	0					
560	1120	840	0	0	0	0					
		chip mass (g)	300								
Run C											
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)					
8.75	17.5	13.125	0	0	0	0					
17.5	35	26.25	2	10.2960103	14.5607574	10.2960103					
35	70	52.5	1	2.574002574	5.148005148	2.574002573					
70	140	105	0	0	0	0					
140	280	210	0	0	0	0					
280	560	420	0	0	0	0					
560	1120	840	0	0	0	0					
		chip mass (g)	0.01								

Table E1, cont.

WSW2A Ziro	con Size Dist	ribution					
Combined R	luns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	1	2.390914525	4.78182905	2.390914524	Run C
17.5	35	26.25	2	4.78182905	6.762527495	4.781829049	Run C
35	70	52.5	42	6.511123169	2.009376234	2.009376233	Run B
70	140	105	8	0.620106968	0.438481842	0.438481841	Run B
140	280	210	26	0.082003924	0.032164585	0.032164584	Run A
280	560	420	0				Run A
560	1120	840	0				Run A
Run A							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	37	0.466791565	0.153480121	0.15348012	
70	140	105	58	0.365863659	0.096080504	0.096080503	
140	280	210	26	0.082003924	0.032164585	0.032164584	
280	560	420	0	0	0	0	
560	1120	840	0	0	0	0	
		chip mass (g)	2.26				
Run B							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	19	5.8910162	2.70298361	2.702983609	
35	70	52.5	42	6.511123169	2.009376234	2.009376233	
70	140	105	8	0.620106968	0.438481842	0.438481841	
140	280	210	1	0.038756686	0.077513371	0.038756685	
280	560	420	0	0	0	0	
560	1120	840	0	0	0	0	
		chip mass (g)	0.18				
Run C							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	1	2.390914525	4.78182905	2.390914524	
17.5	35	26.25	2	4.78182905	6.762527495	4.781829049	
35	70	52.5	5	5.977286312	5.346247406	5.346247405	
70	140	105	2	1.195457262	1.690631874	1.195457261	
140	280	210	0	0	0	0	
280	560	420	0	0	0	0	
560	1120	840	0	0	0	0	
		chip mass (g)	0.02				

Table E1, cont.

NSW2B Zircon Size Distribution									
Combined R	luns								
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)			
8.75	17.5	13.125	5	9.367681499	8.378709049	8.378709048	Run C		
17.5	35	26.25	11	20.6088993	12.42763387	12.42763387	Run C		
35	70	52.5	34	9.304871374	3.191544551	3.19154455	Run B		
70	140	105	72	0.866311319	0.204191536	0.204191535	Run A		
140	280	210	25	0.150401271	0.060160508	0.060160507	Run A		
280	560	420	1	0	0	0	Run A		
560	1120	840	0	0	0	0	Run A		
Run A									
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)			
8.75	17.5	13.125	0	0	0	0			
17.5	35	26.25	0	0	0	-0.00000001			
35	70	52.5	35	0.842247115	0.284731493	0.284731492			
70	140	105	72	0.866311319	0.204191536	0.204191535			
140	280	210	25	0.150401271	0.060160508	0.060160507			
280	560	420	1	0	0	0			
560	1120	840	0	0	0	0			
		chip mass (g)	1.19						
Run B									
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)			
8.75	17.5	13.125	0	0	0	0			
17.5	35	26.25	12	6.568144499	3.792119995	3.792119994			
35	70	52.5	34	9.304871374	3.191544551	3.19154455			
70	140	105	36	4.926108374	1.642036125	1.642036124			
140	280	210	10	0.684181719	0.432714513	0.432714512			
280	560	420	1	0.034209086	0.068418172	0.034209085			
560	1120	840	0	0	0	0			
		chip mass (g)	0.10						
Run C									
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)			
8.75	17.5	13.125	5	9.367681499	8.378709049	8.378709048			
17.5	35	26.25	11	20.6088993	12.42763387	12.42763387			
35	70	52.5	8	7.494145199	5.299160889	5.299160888			
70	140	105	4	1.8735363	1.8735363	1.873536299			
140	280	210	2	0.468384075	0.662395111	0.468384074			
280	560	420	0	0	0	0			
560	1120	840	0	0	0	0			
		chip mass (g)	0.03						

Table E1, cont.

PSTG01C Zir	con Size Dis	tribution					
Combined R	uns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	Run C
17.5	35	26.25	9	10.18387553	6.789250354	6.789250353	Run C
35	70	52.5	10	2.06291903	1.304704553	1.304704552	Run B
70	140	105	8	0.825167612	0.583481614	0.583481613	Run B
140	280	210	184	0.283673073	0.041825313	0.041825312	Run X
280	560	420	25	0.019271269	0.007708507	0.007708506	Run X
560	1120	840	0	0	0	0	Run X
Run X							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	2	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	220	1.356697305	0.182937027	0.182937026	
70	140	105	388	1.196360351	0.121471989	0.121471988	
140	280	210	184	0.283673073	0.041825313	0.041825312	
280	560	420	25	0.019271269	0.007708507	0.007708506	
560	1120	840	0	0	0	0	
		chip mass (g)	4.63				
Run B							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	7	2.888086643	2.183188292	2.183188291	
35	70	52.5	10	2.06291903	1.304704553	1.304704552	
70	140	105	8	0.825167612	0.583481614	0.583481613	
140	280	210	1	0.051572976	0.103145952	0.051572975	
280	560	420	1	0.025786488	0.051572976	0.025786487	
560	1120	840	0	0	0	0	
		chip mass (g)	0.1385				
Run C							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	9	10.18387553	6.789250354	6.789250353	
35	70	52.5	6	3.394625177	2.77169985	2.771699849	
70	140	105	5	1.414427157	1.265102109	1.265102108	
140	280	210	3	0.424328147	0.48997194	0.424328146	
280	560	420	0	0	0	0	
560	1120	840	0	0	0	0	
		chip mass (g)	0.05				

Table E1, cont.

CRW Zircon	Size Distrib	ution					
Combined R	luns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sgrt(#)/bin size/mass (+)	sgrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	Run C
17.5	35	26.25	7	9.456264775	7.148264265	7.148264264	Run C
35	70	52.5	20	2.194426158	0.981377212	0.981377211	Run B
70	140	105	18	0.987491771	0.465508085	0.465508084	Run B
140	280	210	214	0.453555109	0.062008778	0.062008777	Run A
280	560	420	25	0.026492705	0.010597082	0.010597081	Run A
560	1120	840	0	0	0	0	Run A
Run A							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	93	0.7884229	0.163511292	0.163511291	
70	140	105	413	1.750637944	0.172286523	0.172286522	
140	280	210	214	0.453555109	0.062008778	0.062008777	
280	560	420	25	0.026492705	0.010597082	0.010597081	
560	1120	840	0	0	0	0	
		chip mass (g)	3.37				
Run B							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	11	2.413868773	1.455617639	1.455617638	
35	70	52.5	20	2.194426158	0.981377212	0.981377211	
70	140	105	18	0.987491771	0.465508085	0.465508084	
140	280	210	11	0.301733597	0.181952205	0.181952204	
280	560	420	0	0	0	0	
560	1120	840	0	0	0	0	
		chip mass (g)	0.26				
Run C							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	7	9.456264775	7.148264265	7.148264264	
35	70	52.5	8	5.403579872	3.82090797	3.820907969	
70	140	105	3	1.013171226	1.16990936	1.013171225	
140	280	210	2	0.337723742	0.477613496	0.337723741	
280	560	420	0	0	0	0	
560	1120	840	0	0	0	0	
		chip mass (g)	0.04				

Table E1, cont.

Combined R	uns					
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)
8.75	17.5	13.125	0			
17.5	35	26.25	380	103.1557516	10.5835568	10.5835568
35	70	52.5	302	40.99083814	4.717515357	4.717515356
70	140	105	44	0.345863007	0.10428162	0.104281619
140	280	210	59	0.231885425	0.060377822	0.060377821
280	560	420	36	0.070744706	0.023581569	0.023581568
560	1120	840	6	0.005895392	0.004813568	0.004813567
Run X						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)
8.75	17.5	13.125	0	0	0	0
17.5	35	26.25	0	0	0	0
35	70	52.5	18	0.282978824	0.133397497	0.133397496
70	140	105	44	0.345863007	0.10428162	0.104281619
140	280	210	59	0.231885425	0.060377822	0.060377821
280	560	420	36	0.070744706	0.023581569	0.023581568
560	1120	840	6	0.005895392	0.004813568	0.004813567
		chip mass (g)	1.82			
Run Y						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)
8.75	17.5	13.125	1	0.271462504	0.542925008	0.271462503
17.5	35	26.25	380	103.1557516	10.5835568	10.5835568
35	70	52.5	302	40.99083814	4.717515357	4.717515356
70	140	105	96	6.515100102	1.329889239	1.329889238
140	280	210	9	0.305395317	0.203596878	0.203596877
280	560	420	4	0.067865626	0.067865626	0.067865625
560	1120	840	0	0	0	0
		chip mass (g)	0.21			
Run Z						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)
8.75	17.5	13.125	0	0	0	0
17.5	35	26.25	37	57.14285714	18.78845569	18.78845569
35	70	52.5	13	10.03861004	5.568418958	5.568418957
70	140	105	3	1.158301158	1.337490971	1.158301157
140	280	210	3	0.579150579	0.668745486	0.579150578
280	560	420	2	0.193050193	0.273014201	0.193050192
560	1120	840	0	0	0	0
		chin mass (g)	-	-	-	-

Table E2. Sphene size distribution data.

KPST01B Sphene Size Distribution

Table E2, cont.

KPST01C Sp	hene Size D	istribution					
Combined R	tuns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	81	31.6591753	7.035372288	7.035372287	Run Y
17.5	35	26.25	720	281.4148915	20.97542758	20.97542758	Run Y
35	70	52.5	329	64.29548564	7.089449735	7.089449734	Run Y
70	140	105	70	6.83994528	1.635059657	1.635059656	Run Y
140	280	210	20	0.97713504	0.436988075	0.436988074	Run Y
280	560	420	15	0.36642564	0.189221387	0.189221386	Run Y
560	1120	840	3	0.036642564	0.042311188	0.036642563	Run Y
Run X							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125					
17.5	35	26.25					
35	70	52.5					
70	140	105					
140	280	210					
280	560	420					
560	1120	840					
		chip mass (g)					
Run Y							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	81	31.6591753	7.035372288	7.035372287	
17.5	35	26.25	720	281.4148915	20.97542758	20.97542758	
35	70	52.5	329	64.29548564	7.089449735	7.089449734	
70	140	105	70	6.83994528	1.635059657	1.635059656	
140	280	210	20	0.97713504	0.436988075	0.436988074	
280	560	420	15	0.36642564	0.189221387	0.189221386	
560	1120	840	3	0.036642564	0.042311188	0.036642563	
		chip mass (g)	0.15				
Run Z							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125					
17.5	35	26.25					
35	70	52.5					
70	140	105					
140	280	210					
280	560	420					
560	1120	840					
		chip mass (g)					
	Tab	le	E2,	cor	۱t.		
--	-----	----	-----	-----	-----		
--	-----	----	-----	-----	-----		

WSW2A Sph	iene Size Di	stribution					
Combined R	uns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0				Run X
17.5	35	26.25	1840	570.498411	26.59962557	26.59962557	Run '
35	70	52.5	952	147.5854585	9.566544374	9.566544373	Run '
70	140	105	156	0.984047083	0.157573643	0.157573642	Run
140	280	210	47	0.148237862	0.043245429	0.043245428	Run 2
280	560	420	30	0.047309956	0.017275153	0.017275152	Run 2
560	1120	840	14	0.01103899	0.005900588	0.005900587	Run 2
≀un X							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	325	4.100196179	0.454875925	0.454875924	
70	140	105	156	0.984047083	0.157573643	0.157573642	
140	280	210	47	0.148237862	0.043245429	0.043245428	
280	560	420	30	0.047309956	0.017275153	0.017275152	
560	1120	840	14	0.01103899	0.005900588	0.005900587	
		chip mass (g)	2.26				
Run Y							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	1840	570.498411	26.59962557	26.59962557	
35	70	52.5	952	147.5854585	9.566544374	9.566544373	
70	140	105	69	5.348422603	1.287748835	1.287748834	
140	280	210	12	0.465080226	0.268514194	0.268514193	
280	560	420	3	0.058135028	0.067128548	0.058135027	
560	1120	840	1	0.009689171	0.019378343	0.00968917	
		chip mass (g)	0.18				
tun C							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125					
17.5	35	26.25					
35	70	52.5					
70	140	105					
140	280	210					
280	560	420					
560	1120	840					
		chip mass (g)					

Table E2, cont.

WSW2B Spł	iene Size Di	stribution					
Combined R	uns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0				Run (
17.5	35	26.25	48	89.92974239	25.96048049	25.96048049	Run (
35	70	52.5	11	3.010399562	1.815339239	1.815339238	Run ۱
70	140	105	17	2.326217843	1.128381397	1.128381396	Run V
140	280	210	157	0.944519979	0.150761802	0.150761801	Run)
280	560	420	62	0.186497576	0.047370432	0.047370431	Run)
560	1120	840	4	0.006016051	0.006016051	0.00601605	Run)
≀un X							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	246	5.91979401	0.754864561	0.75486456	
70	140	105	218	2.622998159	0.355303704	0.355303703	
140	280	210	157	0.944519979	0.150761802	0.150761801	
280	560	420	62	0.186497576	0.047370432	0.047370431	
560	1120	840	4	0.006016051	0.006016051	0.00601605	
		chip mass (g)	1.19				
Run Y							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	21	11.49425287	5.016503224	5.016503223	
35	70	52.5	11	3.010399562	1.815339239	1.815339238	
70	140	105	17	2.326217843	1.128381397	1.128381396	
140	280	210	6	0.410509031	0.33517922	0.335179219	
280	560	420	3	0.102627258	0.11850375	0.102627257	
560	1120	840	0	0	0	0	
		chip mass (g)	0.10				
≀un C							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	48	89.92974239	25.96048049	25.96048049	
35	70	52.5	10	9.367681499	5.924641986	5.924641985	
70	140	105	4	1.8735363	1.8735363	1.873536299	
140	280	210	2	0.468384075	0.662395111	0.468384074	
280	560	420	1	0.117096019	0.234192037	0.117096018	
560	1120	840	0	0	0	0	
		chip mass (g)	0.04				

Table E2, cont.

PSTG01C Sp	hene Size D	istribution					
Combined F	Runs						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	2	2.263083451	3.200483309	2.26308345	Run C
17.5	35	26.25	677	766.0537482	58.88367448	58.88367448	Run C
35	70	52.5	247	50.95410005	6.484263495	6.484263494	Run Y
70	140	105	96	9.902011346	2.021239602	2.021239601	Run Y
140	280	210	27	0.04162594	0.016021832	0.016021831	Run X
280	560	420	19	0.014646164	0.006720121	0.00672012	Run X
560	1120	840	1	0.000385425	0.000770851	0.000385424	Run X
Run X							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	9	0.055501253	0.037000836	0.037000835	
70	140	105	20	0.061668059	0.027578795	0.027578794	
140	280	210	27	0.04162594	0.016021832	0.016021831	
280	560	420	19	0.014646164	0.006720121	0.00672012	
560	1120	840	1	0.000385425	0.000770851	0.000385424	
		chip mass (g)	4.63				
Run Y							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	269	110.9850438	13.5337551	13.5337551	
35	70	52.5	247	50.95410005	6.484263495	6.484263494	
70	140	105	96	9.902011346	2.021239602	2.021239601	
140	280	210	34	1.753481176	0.601439081	0.60143908	
280	560	420	3	0.077359464	0.089327014	0.077359463	
560	1120	840	0	0	0	0	
		chip mass (g)	0.14				
Run C							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	2	2.263083451	3.200483309	2.26308345	
17.5	35	26.25	677	766.0537482	58.88367448	58.88367448	
35	70	52.5	326	184.4413013	20.43051778	20.43051778	
70	140	105	124	35.07779349	6.300157695	6.300157694	
140	280	210	23	3.253182461	1.356670869	1.356670868	
280	560	420	4	0.282885431	0.282885431	0.28288543	
560	1120	840 chip mass (g)	0 0.05	0	0	0	

Table E2, cont.

CRW Sphen	e Size Distri	bution					
Combined R	luns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	14	18.91252955	10.10917227	10.10917227	Run C
17.5	35	26.25	17	22.96521445	11.13976528	11.13976528	Run C
35	70	52.5	21	14.18439716	6.190578446	6.190578445	Run C
70	140	105	9	3.039513678	2.026342452	2.026342451	Run C
140	280	210	3	0.006358249	0.007341874	0.006358248	Run X
280	560	420	4	0.004238833	0.004238833	0.004238832	Run X
560	1120	840	1	0.000529854	0.001059708	0.000529853	Run X
Run X							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	0	0	0	0	
70	140	105	0	0	0	0	
140	280	210	3	0.006358249	0.007341874	0.006358248	
280	560	420	4	0.004238833	0.004238833	0.004238832	
560	1120	840	1	0.000529854	0.001059708	0.000529853	
		chip mass (g)	3.37				
Run Y							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	2	0.438885232	0.620677447	0.438885231	
35	70	52.5	1	0.109721308	0.219442616	0.109721307	
70	140	105	0	0	0	0	
140	280	210	4	0.109721308	0.109721308	0.109721307	
280	560	420	2	0.027430327	0.03879234	0.027430326	
560	1120	840	0	0	0	0	
		chip mass (g)	0.26				
Run C							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	14	18.91252955	10.10917227	10.10917227	
17.5	35	26.25	17	22.96521445	11.13976528	11.13976528	
35	70	52.5	21	14.18439716	6.190578446	6.190578445	
70	140	105	9	3.039513678	2.026342452	2.026342451	
140	280	210	2	0.337723742	0.477613496	0.337723741	
280	560	420	0	0	0	0	
560	1120	840	0	0	0	0	
		chip mass (g)	0.04				

uns Dia and	Die saats	#	#/h:= === / === ==			
Bin end	Bin center	# crystals	#/DIN SIZE/Mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	5
17.5	13.125	6	10.74787282	8.775601407	8.775601406	RU
35	26.25	4	7.165248545	7.165248545	7.165248544	RL
70	52.5	20	2.757859901	1.233352442	1.233352441	RL
140	105	120	1.031583653	0.188340546	0.188340545	Ru
280	210	69	0.2965803	0.071408145	0.071408144	Ru
560	420	30	0.064473978	0.023542568	0.023542567	Ru
1120	840	4	0.004298265	0.004298265	0.004298264	Ru
Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
17.5	13.125	0	0	0	0	
35	26.25	0	0	0	0	
70	52.5	50	0.859653044	0.243146599	0.243146598	
140	105	120	1.031583653	0.188340546	0.188340545	
280	210	69	0.2965803	0.071408145	0.071408144	
560	420	30	0.064473978	0.023542568	0.023542567	
1120	840	4	0.004298265	0.004298265	0.004298264	
	chip mass (g)	1.6618				
Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
17.5	13.125	0	0	0	0	
35	26.25	5	1.37892995	1.233352442	1.233352441	
70	52.5	20	2.757859901	1.233352442	1.233352441	
140	105	24	1.65471594	0.675534954	0.675534953	
280	210	11	0.379205736	0.228669663	0.228669662	
560	420	2	0.034473249	0.048752536	0.034473248	
1120	840	0	0	0	0	
	chip mass (g)	0.2072				
Bin end	Bin center	# crystals	#/bin size/mass	sort(#)/bin size/mass (+)	sgrt(#)/bin size/mass (-)	
17.5	13,125	6	10.74787282	8.775601407	8.775601406	
35	26.25	4	7,165248545	7.165248545	7.165248544	
70	52.5	3	2 686968204	3 102643632	2 686968203	
140	105	1	0 447828034	0.895656068	0 447828033	
280	210	<u> </u>	0	0	0	
560	420	0	0	0	0	
500	420	U	0	U	U	
1120	840	Ο	0	0	0	
	uns Bin end 17.5 35 70 140 280 560 1120 Bin end 17.5 35 70 140 280 560 1120 Bin end 17.5 35 70 140 280 560 1120 Bin end 17.5 35 70 140 280 560 1120	Bin end Bin center 17.5 13.125 35 26.25 70 52.5 140 105 280 210 560 420 1120 840 Bin end Bin center 17.5 13.125 35 26.25 70 52.5 140 105 280 210 560 420 1120 840 280 210 560 420 1120 840 chip mass (g) Bin end Bin center 17.5 17.5 13.125 35 26.25 70 52.5 140 105 280 210 560 420 1120 840 chip mass (g) 1120 8in end Bin center 17.5 13.125 35 26.25	Bin end Bin center # crystals 17.5 13.125 6 35 26.25 4 70 52.5 20 140 105 120 280 210 69 560 420 30 1120 840 4 Bin end Bin center # crystals 17.5 13.125 0 35 26.25 0 70 52.5 50 140 105 120 280 210 69 560 420 30 1120 280 210 69 560 420 30 1120 840 4 chip mass (g) 1.6618 Bin end Bin center # crystals 17.5 13.125 0 35 26.25 5 5 70 52.5 20 140 105 24 280 210 11 560 420	Bin end Bin center # crystals #/bin size/mass 17.5 13.125 6 10.74787282 35 26.25 4 7.165248545 70 52.5 20 2.757859901 140 105 120 1.031583653 280 210 69 0.2965803 560 420 30 0.064473978 1120 840 4 0.004298265 Bin end Bin center # crystals #/bin size/mass 17.5 13.125 0 0 35 26.25 0 0 70 52.5 50 0.859653044 140 105 120 1.031583653 280 210 69 0.2965803 560 420 30 0.064473978 1120 840 4 0.004298265 chip mass (g) 1.6618 2 2.757859901 140 105 24 1.65471594 28	Bin end Bin center # crystals #/bin size/mass sqrt(#)/bin size/mass <t< td=""><td>uns sqrt(#)/bin size/mass sqrt(#)/bin size/mass (+) sqrt(#)/bin size/mass (+) sqrt(#)/bin size/mass (+) 35 26.25 4 7.165248545 7.165248545 7.165248544 70 52.5 20 2.75789901 1.233352442 1.233352441 140 105 120 1.031583653 0.188340546 0.188340545 280 210 69 0.2965803 0.071408145 0.071408145 560 420 30 0.064473978 0.023542568 0.023542568 1120 840 4 0.004298265 0.004298265 0.004298265 117.5 13.125 0 0 0 0 0 35 26.25 0 0 0 0 0 70 52.5 50 0.859653044 0.243145599 0.243146598 0.023542567 140 105 120 1.031583653 0.18340546 0.188340545 0.071408144 280 210 69 0.2965803 0.071408</td></t<>	uns sqrt(#)/bin size/mass sqrt(#)/bin size/mass (+) sqrt(#)/bin size/mass (+) sqrt(#)/bin size/mass (+) 35 26.25 4 7.165248545 7.165248545 7.165248544 70 52.5 20 2.75789901 1.233352442 1.233352441 140 105 120 1.031583653 0.188340546 0.188340545 280 210 69 0.2965803 0.071408145 0.071408145 560 420 30 0.064473978 0.023542568 0.023542568 1120 840 4 0.004298265 0.004298265 0.004298265 117.5 13.125 0 0 0 0 0 35 26.25 0 0 0 0 0 70 52.5 50 0.859653044 0.243145599 0.243146598 0.023542567 140 105 120 1.031583653 0.18340546 0.188340545 0.071408144 280 210 69 0.2965803 0.071408

Table E3. Allanite+Chevkinite size distribution data.

PST01A Allanite+Chevkinite Size Distribution

Table I	E3, c	ont
---------	-------	-----

PST01B AIIC	hev Size Dis	tribution					
Combined F	luns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sgrt(#)/bin size/mass (+)	sgrt(#)/bin size/mass (-)	
8.75	17.5	13.125	2	3.088803	4.368227	3.088803	Run C
17.5	35	26.25	2	3.088803	4.368227	3.088803	Run C
35	70	52.5	18	2.443162538	1.151717866	1.151717865	Run B
70	140	105	49	0.385165621	0.11004732	0.110047319	Run A
140	280	210	22	0.086465752	0.03686912	0.036869119	Run A
280	560	420	7	0.013755915	0.010398494	0.010398493	Run A
560	1120	840	1	0.000982565	0.001965131	0.000982564	Run A
Run A							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	27	0.424468236	0.1633779	0.163377899	
70	140	105	49	0.385165621	0.11004732	0.110047319	
140	280	210	22	0.086465752	0.03686912	0.036869119	
280	560	420	7	0.013755915	0.010398494	0.010398493	
560	1120	840	1	0.000982565	0.001965131	0.000982564	
		chip mass (g)	1.8174				
Run B							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	1	0.271462504	0.542925008	0.271462503	
35	70	52.5	18	2.443162538	1.151717866	1.151717865	
70	140	105	8	0.542925008	0.383905955	0.383905954	
140	280	210	5	0.169664065	0.151752153	0.151752152	
280	560	420	1	0.016966407	0.033932813	0.016966406	
560	1120	840	0	0	0	0	
		chip mass (g)	0.2105				
Run C							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	2	3.088803	4.368227	3.088803	
17.5	35	26.25	2	3.088803	4.368227	3.088803	
35	70	52.5	2	1.544402	2.184114	1.544402	
70	140	105	3	1.158301	1.337491	1.158301	
140	280	210	2	0.386100	0.546028	0.386100	
280	560	420	1	0.096525	0.193050	0.096525	
560	1120	840	0	0.000000	0.000000	0.000000	
		chip mass (g)	0.04				

PST01C AllC	hev Size Dis	tribution					
Combined R	luns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0.000000	0.000000	0.000000	Run C
17.5	35	26.25	5	1.95427008	1.747952298	1.747952297	Run B
35	70	52.5	19	3.713113152	1.703693158	1.703693157	Run B
70	140	105	51	0.683719434	0.191479741	0.19147974	Run A
140	280	210	27	0.180984556	0.069660988	0.069660987	Run A
280	560	420	8	0.026812527	0.01895932	0.018959319	Run A
560	1120	840	0				Run A
Run A							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	39	1.045688546	0.334888353	0.334888352	
70	140	105	51	0.683719434	0.191479741	0.19147974	
140	280	210	27	0.180984556	0.069660988	0.069660987	
280	560	420	8	0.026812527	0.01895932	0.018959319	
560	1120	840	0	0	0	0	
		chip mass (g)	1.0656				
Run B							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	5	1.95427008	1.747952298	1.747952297	
35	70	52.5	19	3.713113152	1.703693158	1.703693157	
70	140	105	9	0.879421536	0.586281024	0.586281023	
140	280	210	2	0.097713504	0.138187763	0.097713503	
280	560	420	3	0.073285128	0.084622377	0.073285127	
560	1120	840	0	0	0	0	
		chip mass (g)	0.1462				
Run C							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125					
17.5	35	26.25					
35	70	52.5					
70	140	105					
140	280	210					
280	560	420					
560	1120	840					
		chip mass (g)					

Table E3, cont.

Table I	E3, c	ont
---------	-------	-----

PST01D AllC	hev Size Dis	stribution					
Combined F	luns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sgrt(#)/bin size/mass (+)	sgrt(#)/bin size/mass (-)	
8.75	17.5	13.125	1	5.056890	10.113780	5.056890	Run C
17.5	35	26.25	5	25.284450	22.615100	22.615100	Run C
35	70	52.5	5	1.84569952	1.650843837	1.650843836	Run B
70	140	105	45	0.744478451	0.22196059	0.221960589	Run A
140	280	210	13	0.107535776	0.059650116	0.059650115	Run A
280	560	420	2	0.008271983	0.01169835	0.008271982	Run A
560	1120	840	1	0.002067996	0.004135991	0.002067995	Run A
Run A							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	29	0.959550004	0.356367925	0.356367924	
70	140	105	45	0.744478451	0.22196059	0.221960589	
140	280	210	13	0.107535776	0.059650116	0.059650115	
280	560	420	2	0.008271983	0.01169835	0.008271982	
560	1120	840	1	0.002067996	0.004135991	0.002067995	
		chip mass (g)	0.8635				
Run B							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	1	0.738279808	1.476559616	0.738279807	
35	70	52.5	5	1.84569952	1.650843837	1.650843836	
70	140	105	1	0.184569952	0.369139904	0.184569951	
140	280	210	2	0.184569952	0.261021329	0.184569951	
280	560	420	1	0.046142488	0.092284976	0.046142487	
560	1120	840	0	0	0	0	
		chip mass (g)	0.0774				
Run C							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	1	5.056890	10.113780	5.056890	
17.5	35	26.25	5	25.284450	22.615100	22.615100	
35	70	52.5	5	12.642225	11.307550	11.307550	
70	140	105	5	6.321113	5.653775	5.653775	
140	280	210	2	1.264223	1.787881	1.264223	
280	560	420	0	0.000000	0.000000	0.000000	
560	1120	840	0	0.000000	0.000000	0.000000	
		chip mass (g)	0.01				

	Tabl	e	E3,	cor	٦t.
--	------	---	-----	-----	-----

PST01E AllC	hev Size Dis	tribution					
Combined F	luns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sgrt(#)/bin size/mass (+)	sgrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0.000000	0.000000	0.000000	Run C
17.5	35	26.25	0	0.000000	0.000000	0.000000	Run B
35	70	52.5	17	5.589347361	2.711231712	2.711231711	Run B
70	140	105	69	0.928517601	0.223560767	0.223560766	Run A
140	280	210	34	0.228765206	0.078465818	0.078465817	Run A
280	560	420	8	0.026913554	0.019030756	0.019030755	Run A
560	1120	840	0				Run A
Run A							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	31	0.834320164	0.29969665	0.299696649	
70	140	105	69	0.928517601	0.223560767	0.223560766	
140	280	210	34	0.228765206	0.078465818	0.078465817	
280	560	420	8	0.026913554	0.019030756	0.019030755	
560	1120	840	0	0	0	0	
		chip mass (g)	1.0616				
Run B							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	13	8.548413612	4.741806708	4.741806707	
35	70	52.5	17	5.589347361	2.711231712	2.711231711	
70	140	105	6	0.986355417	0.805355825	0.805355824	
140	280	210	0	0	0	-0.00000001	
280	560	420	0	0	0	-0.00000001	
560	1120	840	0	0	0	0	
		chip mass (g)	0.0869				
Run C							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125					
17.5	35	26.25					
35	70	52.5					
70	140	105					
140	280	210					
280	560	420					
560	1120	840					
		chip mass (g)					

Table	E3,	cont.
-------	-----	-------

WSW2A Allo	Chev Size Di	stribution					
Combined F	luns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0.000000	0.000000	0.000000	Run C
17.5	35	26.25	2	4.781829	6.762527	4.781829	Run C
35	70	52.5	17	2.635454616	1.278383265	1.278383264	Run B
70	140	105	98	0.618183424	0.124891912	0.124891911	Run A
140	280	210	52	0.164007847	0.045487592	0.045487591	Run A
280	560	420	16	0.025231976	0.012615988	0.012615987	Run A
560	1120	840	0				Run A
Run A							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	54	0.681263365	0.185416403	0.185416402	
70	140	105	98	0.618183424	0.124891912	0.124891911	
140	280	210	52	0.164007847	0.045487592	0.045487591	
280	560	420	16	0.025231976	0.012615988	0.012615987	
560	1120	840	0	0	0	0	
		chip mass (g)	2.26				
Run B							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	17	2.635454616	1.278383265	1.278383264	
70	140	105	15	1.162700566	0.60041599	0.600415989	
140	280	210	9	0.34881017	0.232540113	0.232540112	
280	560	420	4	0.077513371	0.077513371	0.07751337	
560	1120	840	0	0	0	0	
		chip mass (g)	0.18				
Run C							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0.000000	0.000000	0.000000	
17.5	35	26.25	2	4.781829	6.762527	4.781829	
35	70	52.5	1	1.195457	2.390915	1.195457	
70	140	105	1	0.597729	1.195457	0.597729	
140	280	210	0	0.000000	0.000000	0.000000	
280	560	420	0	0.000000	0.000000	0.000000	
560	1120	840	0	0.000000	0.000000	0.000000	
		chip mass (g)	0.02				

WSW2B All	Chev Size Di	stribution					
Combined F	Runs						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	22	41.217799	17.575328	17.575328	Run C
17.5	35	26.25	7	13.114754	9.913822	9.913822	Run C
35	70	52.5	32	8.757525999	3.09625301	3.096253009	Run B
70	140	105	95	1.143049656	0.234548841	0.23454884	Run A
140	280	210	57	0.342914897	0.090840375	0.090840374	Run A
280	560	420	14	0.042112356	0.022510001	0.02251	Run A
560	1120	840	3	0.004512038	0.005210053	0.004512037	Run A
Run A							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	37	0.890375522	0.292753668	0.292753667	
70	140	105	95	1.143049656	0.234548841	0.23454884	
140	280	210	57	0.342914897	0.090840375	0.090840374	
280	560	420	14	0.042112356	0.022510001	0.02251	
560	1120	840	3	0.004512038	0.005210053	0.004512037	
		chip mass (g)	1.19				
Run B							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	1	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	32	8.757525999	3.09625301	3.096253009	
70	140	105	32	4.378762999	1.548126505	1.548126504	
140	280	210	33	2.257799672	0.786064949	0.786064948	
280	560	420	12	0.410509031	0.2370075	0.237007499	
560	1120	840	7	0.119731801	0.090508734	0.090508733	
		chip mass (g)	0.10				
Run C							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	22	41.217799	17.575328	17.575328	
17.5	35	26.25	7	13.114754	9.913822	9.913822	
35	70	52.5	4	3.747073	3.747073	3.747073	
70	140	105	2	0.936768	1.324790	0.936768	
140	280	210	2	0.468384	0.662395	0.468384	
280	560	420	0	0.000000	0.000000	0.000000	
560	1120	840	1	0.058548	0.117096	0.058548	
		chip mass (g)	0.03				

Tab	le	E3,	cont.
-----	----	-----	-------

PSTG01C AllChev Size Distribution

combined Runs	
Bin start Bin end Bin center # crystals #/bin size/mass sqrt(#)/bin size/mass (+) sqrt(#)/bin size/mass (-)	
8.75 17.5 13.125 14 15.841584 8.467683 8.467683	Run C
17.5 35 26.25 59 66.760962 17.383074 17.383074	Run C
35 70 52.5 53 10.93347086 3.003655447 3.003655446	Run B
70 140 105 368 1.134692292 0.118299849 0.118299848	Run A
140 280 210 278 0.428593012 0.051410601 0.0514106	Run A
280 560 420 110 0.084793582 0.016169502 0.016169501	Run A
560 1120 840 11 0.004239679 0.002556623 0.002556622	Run A
Run A	
Bin start Bin end Bin center # crystals #/bin size/mass sort(#)/bin size/mass (+) sort(#)/bin size/mass (-)	
8.75 17.5 13.125 0 0 0 0 0 0 0	
17.5 35 26.25 0 0 0 0	
35 70 52.5 202 1.245694799 0.17529356 0.175293559	
70 140 105 368 1.134692292 0.118299849 0.118299848	
140 280 210 278 0.428593012 0.051410601 0.0514106	
280 560 420 110 0.084793582 0.016169502 0.016169501	
560 1120 840 11 0.004239679 0.002556623 0.002556622	
chip mass (g) 4.6331	
Run B	
Bin start Bin end Bin center # crvstals #/bin size/mass sart(#)/bin size/mass (+) sart(#)/bin size/mass (-)	
8.75 17.5 13.125 0 0 0 -0.00000001	
17.5 35 26.25 31 12.79009799 4.594338824 4.594338823	
35 70 52.5 53 10.93347086 3.003655447 3.003655446	
70 140 105 19 1.959773079 0.899205558 0.899205557	
140 280 210 0 0 0 -0.00000001	
280 560 420 0 0 0 -0.00000001	
560 1120 840 0 0 0 -0.00000001	
chip mass (g) 0.14	
Run C	
Bin start Bin end Bin center # crystals #/bin size/mass sqrt(#)/bin size/mass (+) sqrt(#)/bin size/mass (-)	
8.75 17.5 13.125 14 15.841584 8.467683 8.467683	
17.5 35 26.25 59 66.760962 17.383074 17.383074	
35 70 52.5 55 31.117397 8.391738 8.391738	
70 140 105 3 0.848656 0.979944 0.848656	
140 280 210 3 0.424328 0.489972 0.424328	
280 560 420 0 0.000000 0.000000 0.000000	
560 1120 840 0 0.000000 0.000000 0.000000	
chip mass (g) 0.05	

Tal	ble	E3,	cont.
-----	-----	-----	-------

CRW AllChev Size Distribution

Combined R	uns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	1	1.350895	2.701790	1.350895	Run C
17.5	35	26.25	18	24.316109	11.462724	11.462724	Run C
35	70	52.5	29	3.181917928	1.181734652	1.181734651	Run B
70	140	105	191	0.809617064	0.117163669	0.117163668	Run A
140	280	210	168	0.356061955	0.054941552	0.054941551	Run A
280	560	420	71	0.075239282	0.01785852	0.017858519	Run A
560	1120	840	14	0.007417957	0.003965065	0.003965064	Run A
Run A							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sgrt(#)/bin size/mass (+)	sgrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	53	0.449316276	0.123436674	0.123436673	
70	140	105	191	0.809617064	0.117163669	0.117163668	
140	280	210	168	0.356061955	0.054941552	0.054941551	
280	560	420	71	0.075239282	0.01785852	0.017858519	
560	1120	840	14	0.007417957	0.003965065	0.003965064	
		chip mass (g)	3.37				
Run B							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	10	2.194426158	1.387876963	1.387876962	
35	70	52.5	29	3.181917928	1.181734652	1.181734651	
70	140	105	21	1.152073733	0.502806199	0.502806198	
140	280	210	16	0.438885232	0.219442616	0.219442615	
280	560	420	11	0.150866798	0.090976102	0.090976101	
560	1120	840	0	0	0	0	
		chip mass (g)	0.26				
Run C							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	1	1.350895	2.701790	1.350895	
17.5	35	26.25	18	24.316109	11.462724	11.462724	
35	70	52.5	4	2.701790	2.701790	2.701790	
70	140	105	3	1.013171	1.169909	1.013171	
140	280	210	2	0.337724	0.477613	0.337724	
280	560	420	0	0.000000	0.000000	0.000000	
560	1120	840	0	0.000000	0.000000	0.000000	
		chip mass (g)	0.04				

Dia at set	Diacond	Dia antes	44 mm - 1 - 1	#/him air - /	a aut (4) / latin at / /)	$a_{\rm mult}(4)$ / $b_{\rm mult}(a_{\rm mult})$	
Bin start		Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	-
8.75	17.5	13.125	0	E 4 E 7 7 0 7 E 04	2 266555246	2 2000000	RL
17.5	35	26.25	19	5.15//8/581	2.366555246	2.366555245	RL
35	70	52.5	110	14.93043773	2.847122764	2.847122763	Ru
70	140	105	146	1.14/636341	0.189958119	0.189958118	Ru
140	280	210	78	0.306560392	0.069422258	0.069422257	Ru
280	560	420	34	0.066814444	0.022917165	0.022917164	Ru
560	1120	840	6	0.005895392	0.004813568	0.004813567	Ru
Run X							
Bin start	Bin end	Bin center	# crystals				
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	128	2.012293858	0.355726658	0.355726657	
70	140	105	146	1.147636341	0.189958119	0.189958118	
140	280	210	78	0.306560392	0.069422258	0.069422257	
280	560	420	34	0.066814444	0.022917165	0.022917164	
560	1120	840	6	0.005895392	0.004813568	0.004813567	
		chip mass (g)	1.82				
Run Y							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sgrt(#)/bin size/mass (+)	sgrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	19	5.157787581	2.366555246	2.366555245	
35	70	52.5	110	14.93043773	2.847122764	2.847122763	
70	140	105	57	3.868340685	1.024748481	1.02474848	
140	280	210	22	0.746521887	0.318318002	0.318318001	
280	560	420	2	0.033932813	0.047988244	0.033932812	
560	1120	840	0	0	0	0	
		chip mass (g)	0.21				
Run Z							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	37	57.14285714	18.78845569	18.78845569	
35	70	52.5	13	10.03861004	5.568418958	5.568418957	
70	140	105	3	1.158301158	1.337490971	1.158301157	
140	280	210	3	0.579150579	0.668745486	0.579150578	
280	560	420	2	0.193050193	0.273014201	0.193050192	
560	1120	840	-	0	0	0	
0.00				5	5	5	

Table E4. Magnetite size distribution data.

KPST01B Magnetite Size Distribution

Table E4, cont.

KPST01C Ma	ignetite Size	e Distribution					
Combined R	uns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	33	12.89818253	4.490570761	4.49057076	Run Y
17.5	35	26.25	292	114.1293727	13.35783271	13.35783271	Run Y
35	70	52.5	191	37.32655853	5.401709971	5.40170997	Run Y
70	140	105	83	8.110220833	1.780424776	1.780424775	Run Y
140	280	210	30	1.46570256	0.535198903	0.535198902	Run Y
280	560	420	7	0.170998632	0.129262816	0.129262815	Run Y
560	1120	840	0				Run Y
Run X							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125					
17.5	35	26.25					
35	70	52.5					
70	140	105					
140	280	210					
280	560	420					
560	1120	840					
Run Y							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sort(#)/bin size/mass (+)	sort(#)/bin size/mass (-)	
8.75	17.5	13.125	33	12.89818253	4.490570761	4.49057076	
17.5	35	26.25	292	114.1293727	13.35783271	13.35783271	
35	70	52.5	191	37.32655853	5.401709971	5.40170997	
70	140	105	83	8.110220833	1.780424776	1.780424775	
140	280	210	30	1.46570256	0.535198903	0.535198902	
280	560	420	7	0.170998632	0.129262816	0.129262815	
560	1120	840	0	0	0	-0.000000001	
		chip mass (g)	0.21				
Run Z							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	-				
17.5	35	26.25					
35	70	52.5					
70	140	105					
140	280	210					
280	560	420					
560	1120	840					
		chip mass (g)					

Table E4, cont.

WSW2A Ma	gnetite Size	Distribution					
Combined R	luns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	1	0.310053484	0.620106968	0.310053483	Run Y
17.5	35	26.25	389	120.6108054	12.23042116	12.23042116	Run Y
35	70	52.5	281	43.56251453	5.197443489	5.197443488	Run Y
70	140	105	252	1.589614518	0.200272605	0.200272604	Run X
140	280	210	196	0.618183424	0.088311918	0.088311917	Run X
280	560	420	91	0.143506866	0.030087214	0.030087213	Run X
560	1120	840	3	0.002365498	0.002731442	0.002365497	Run X
Run X							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	194	2.447501719	0.351440765	0.351440764	
70	140	105	252	1.589614518	0.200272605	0.200272604	
140	280	210	196	0.618183424	0.088311918	0.088311917	
280	560	420	91	0.143506866	0.030087214	0.030087213	
560	1120	840	3	0.002365498	0.002731442	0.002365497	
		chip mass (g)	2.26				
Run Y							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	1	0.310053484	0.620106968	0.310053483	
17.5	35	26.25	389	120.6108054	12.23042116	12.23042116	
35	70	52.5	281	43.56251453	5.197443489	5.197443488	
70	140	105	47	3.64312844	1.062809798	1.062809797	
140	280	210	10	0.387566855	0.245118802	0.245118801	
280	560	420	1	0.019378343	0.038756686	0.019378342	
560	1120	840	0	0	0	0	
		chip mass (g)	0.18				
Run Z							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125					
17.5	35	26.25					
35	70	52.5					
70	140	105					
140	280	210					
280	560	420					
560	1120	840					
		chip mass (g)					

Table E4, cont.

WSW2B Ma	gnetite Size	Distribution					
Combined F	Runs						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sgrt(#)/bin size/mass (+)	sgrt(#)/bin size/mass (-)	
8.75	17.5	13.125	1	1.8735363	3.7470726	1.873536299	Run Z
17.5	35	26.25	389	212.9173508	21.59067643	21.59067643	Run Y
35	70	52.5	281	76.90202518	9.175180413	9.175180412	Run Y
70	140	105	443	5.33022103	0.506492887	0.506492886	Run X
140	280	210	153	0.920455776	0.148828878	0.148828877	Run X
280	560	420	55	0.165441398	0.044616227	0.044616226	Run X
560	1120	840	8	0.012032102	0.008507981	0.00850798	Run X
Run X							
Bin start	Bin end	chip mass (g)	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	204	4.909097472	0.687411142	0.687411141	
70	140	105	443	5.33022103	0.506492887	0.506492886	
140	280	210	153	0.920455776	0.148828878	0.148828877	
280	560	420	55	0.165441398	0.044616227	0.044616226	
560	1120	840	8	0.012032102	0.008507981	0.00850798	
		chip mass (g)	1.19				
Run Y							
Bin start	Bin end	chip mass (g)	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	1	0.547345375	1.09469075	0.547345374	
17.5	35	26.25	389	212.9173508	21.59067643	21.59067643	
35	70	52.5	281	76.90202518	9.175180413	9.175180412	
70	140	105	47	6.431308155	1.876205419	1.876205418	
140	280	210	10	0.684181719	0.432714513	0.432714512	
280	560	420	1	0.034209086	0.068418172	0.034209085	
560	1120	840	0	0	0	0	
		chip mass (g)	0.10				
Run Z							
Bin start	Bin end	chip mass (g)	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	1	1.8735363	3.7470726	1.873536299	
17.5	35	26.25	9	16.8618267	11.2412178	11.2412178	
35	70	52.5	12	11.2412178	6.490120122	6.490120121	
70	140	105	1	0.468384075	0.93676815	0.468384074	
140	280	210	7	1.639344262	1.23922778	1.239227779	
280	560	420	1	0.117096019	0.234192037	0.117096018	
560	1120	840	0	0	0	0	
		chip mass (g)	0.03				

Tab	le	E4,	CO	nt	t.
-----	----	-----	----	----	----

PSTG01C Magnetite Size Distribution

Combined R	uns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0				Run Y
17.5	35	26.25	3	1.237751418	1.429232229	1.237751417	Run Y
35	70	52.5	13	2.68179474	1.487592068	1.487592067	Run X
70	140	105	682	2.102880823	0.161046937	0.161046936	Run X
140	280	210	508	0.783184354	0.069496373	0.069496372	Run X
280	560	420	351	0.27056861	0.028883768	0.028883767	Run X
560	1120	840	53	0.020427545	0.005611878	0.005611877	Run X
Run X							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	12	0.148003342	0.08544977	0.085449769	
17.5	35	26.25	0	0	0	0	
35	70	52.5	512	3.157404638	0.279077779	0.279077778	
70	140	105	682	2.102880823	0.161046937	0.161046936	
140	280	210	508	0.783184354	0.069496373	0.069496372	
280	560	420	351	0.27056861	0.028883768	0.028883767	
560	1120	840	53	0.020427545	0.005611878	0.005611877	
1120	2240	1680	0	0	0	0	
		chip mass (g)	4.63				
Run Y							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	3	1.237751418	1.429232229	1.237751417	
35	70	52.5	13	2.68179474	1.487592068	1.487592067	
70	140	105	20	2.06291903	0.922565437	0.922565436	
140	280	210	7	0.36101083	0.272898536	0.272898535	
280	560	420	2	0.051572976	0.072935202	0.051572975	
560	1120	840	0	0	0	0	
		chip mass (g)	0.14				
Run Z							
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125					
17.5	35	26.25					
35	70	52.5					
70	140	105					
140	280	210					
280	560	420					
560	1120	840					
		chip mass (g)					

	Tabl	e	E4,	cont	
--	------	---	-----	------	--

Combined R	uns						
Bin start	Bin end	Bin center	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0				Run
17.5	35	26.25	13	2.852754005	1.582423206	1.582423205	Run
35	70	52.5	63	6.912442396	1.741771765	1.741771764	Run
70	140	105	449	1.903235925	0.179638513	0.179638512	Run
140	280	210	323	0.684571496	0.076181154	0.076181153	Run
280	560	420	216	0.228896971	0.031148932	0.031148931	Run
560	1120	840	39	0.02066431	0.006617876	0.006617875	Run
≀un X							
Bin start	Bin end	chip mass (g)	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0	0	0	0	
17.5	35	26.25	0	0	0	0	
35	70	52.5	363	3.077392609	0.323042446	0.323042445	
70	140	105	449	1.903235925	0.179638513	0.179638512	
140	280	210	323	0.684571496	0.076181154	0.076181153	
280	560	420	216	0.228896971	0.031148932	0.031148931	
560	1120	840	39	0.02066431	0.006617876	0.006617875	
		chip mass (g)	3.37				
Run Y							
Bin start	Bin end	chip mass (g)	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125	0				
17.5	35	26.25	13	2.852754005	1.582423206	1.582423205	
35	70	52.5	63	6.912442396	1.741771765	1.741771764	
70	140	105	60	3.291639236	0.849897596	0.849897595	
140	280	210	25	0.685758174	0.27430327	0.274303269	
280	560	420	2	0.027430327	0.03879234	0.027430326	
560	1120	840	0	0	0	0	
		chip mass (g)	0.26				
Run Z							
Bin start	Bin end	chip mass (g)	# crystals	#/bin size/mass	sqrt(#)/bin size/mass (+)	sqrt(#)/bin size/mass (-)	
8.75	17.5	13.125					
17.5	35	26.25					
35	70	52.5					
70	140	105					
140	280	210					
280	560	420					
560	1120	840					
		chip mass (g)					

REFERENCES

- Bacon, C. R. (1989) Crystallization of accessory phases in magmas by local saturation adjacent to phenocrysts. *Geochimica et Cosmochimica Acta*, 53, 1055-1066.
- Bailey, R. A., G. B. Dalrymple & M. A. Lanphere (1976) Volcanism, structure, and geochronology of Long-Valley Caldera, Mono-County, California. *Journal of Geophysical Research*, 81, 725-744.
- Bindeman, I. N. (2005) Fragmentation phenomena in populations of magmatic crystals. *American Mineralogist*, 90, 1801-1815.
- Buesch, D. C. (1992) Incorporation and redistribution of locally derived lithic fragments within a pyroclastic flow — Geological Society of America Bulletin. *Geological Society of America Bulletin*, 104, 1193-1207.
- Carley, T. L. 2010. Studies of the evolution of felsic magma systems: I. Zircon in historic eruptions, Iceland; II. Modeling magma chamber evolution leading to the Peach Spring Tuff supereruption, Arizona, Nevada and California. In *Earth and Environmental Sciences*. Nashville: Vanderbilt University.
- Christiansen, R. L. & H. R. Blank (1972) Volcanic stratigraphy of the Quaternary rhyolite plateau in Yellowstone National Park. US Geological Survey Professional Paper, 729-B.
- Claiborne, L. L., C. F. Miller & J. L. Wooden (2010) Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. *Contributions to Mineralogy and Petrology*.
- Colombini, L. L. 2009. Mid-Miocene Rhyolite Sequence, Highland Range, NV: Record of magma evolution and eruption from the Searchlight Pluton magma chamber. In *Earth and Environmental Sciences*. Nashville: Vanderbilt University.
- Eberl, D. D., D. E. Kile & V. A. Drits (2002) On geological interpretations of crystal size distributions: Constant vs. proportionate growth. *American Mineralogist*, 87, 1235-1241.
- Ferguson, C. A. (2008) Silver Creek caldera, probable source of the Miocene Peach Spring Tuff, Oatman Mining District, Arizona. *Geological Society of America Abstracts with Programs*, 40, 33.
- Ferguson, C. A. & W. McIntosh (in prep.) Peach Spring Tuff and Silver Creek Caldera, Neopolitan sandwiches in the Mohave Desert near Oatman, Arizona.
- Ferry, J. M. & E. B. Watson (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. *Contributions to Mineralogy and Petrology*, 154, 429-437.
- Glazner, A. F., J. E. Nielson, K. A. Howard & D. M. Miller (1986) Correlation of the Peach Springs Tuff, a large-volume Miocene ignimbrite sheet in California and Arizona — Geology. *Geology*, 14, 840-843.
- Griffin, W. L., W. J. Powell, N. J. Pearson & S. Y. O'Reilly. 2008. Appendix A2: GLITTER: Data Reduction Software for Laser Ablation ICP-MS. In *Mineralogical Association of Canada Short Course*, 308-311. Vancouver, B. C.

- Gualda, G. A. R. (2006) Crystal size distributions derived from 3D datasets: Sample size versus uncertainties. *Journal of Petrology*, 47, 1245-1254.
- Gualda, G. A. R. & A. T. Anderson (2007) Magnetite scavenging and the buoyancy of bubbles in magmas. Part 1: Discovery of a pre-eruptive bubble in Bishop rhyolite. *Contributions to Mineralogy and Petrology*, 153, 733-742.
- Gualda, G. A. R., D. L. Cook, R. Chopra, L. P. Qin, A. T. Anderson & M. Rivers (2004) Fragmentation, nucleation and migration of crystals and bubbles in the Bishop Tuff rhyolitic magma. *Transactions of the Royal Society of Edinburgh-Earth Sciences*, 95, 375-390.
- Gualda, G. A. R., A. S. Pamukcu, L. L. Claiborne & M. L. Rivers (in press) Quantitative 3D petrography using x-ray tomography. 3. Documenting accessory phases with differential absorption tomography. *Geosphere*.
- Gualda, G. A. R. & M. Rivers (2006) Quantitative 3D petrography using X-ray tomography: Application to Bishop Tuff pumice clasts. *Journal of Volcanology and Geothermal Research*, 154, 48-62.
- Hayden, L. A. & E. B. Watson (2007) Rutile saturation in hydrous siliceous melts and its bearing on Ti-thermometry of quartz and zircon. *Earth and Planetary Science Letters*, 258, 561-568.
- Hayden, L. A., E. B. Watson & D. A. Wark (2008) A thermobarometer for sphene (titanite). *Contributions to Mineralogy and Petrology*, 155, 529-540.
- Hillhouse, J. W. & R. E. Wells (1991) Magnetic fabric, flow directions, and source area of the lower Miocene Peach Springs Tuff in Arizona, California, and Nevada. *Journal of Geophysical Research*, 96, 12443-12460.
- Ketcham, R. A. (2005) Computational methods for quantitative analysis of three-dimensional features in geological specimens. *Geosphere*, **1**, 32-41.
- Macdonald, R. & H. E. Belkin (2002) Compositional variation in minerals of the chevkinite group. *Mineralogical Magazine,* 66, 1075-1098.
- Marsh, B. D. (1988) Crystal size distributions (CSD) in rocks and the kinetics and dynamics of crystallization. 1. Theory. *Contributions to Mineralogy and Petrology*, 99, 277-291.
- --- (1998) On the interpretation of crystal size distributions in magmatic systems. *Journal of Petrology*, 39, 553-599.
- Mazdab, F. K., J. L. Wooden & A. P. Barth (2007) Trace element variability in titanite from diverse geologic environments. *Geological Society of America Abstracts with Programs*, 39, 406.
- Miller, J. S., M. T. Heizler & C. F. Miller (1998) Timing of magmatism, basin formation, and tilting at the west edge of the Colorado River Extensional Corridor: Results from single-crystal 40Ar/39Ar geochronology of Tertiary rocks in the Old Woman Mountains Area, Southeastern California. *Journal of Geology*, 106, 195-209.
- Nielson, J. E., D. R. Lux, G. B. Dalrymple & A. F. Glazner (1990) Age of the Peach Springs Tuff, Southeastern California and Western Arizona. *Journal of Geophysical Research*, 95, 571-580.

- Pallister, J. S., R. P. Hoblitt & A. G. Reyes (1992) A basalt trigger for the 1991 eruptions of Pinatubo volcano? *Nature*, 356, 426-428.
- Pamukcu, A. S. & G. A. R. Gualda (in press) Quantitative 3D petrography using x-ray tomography. 2. Combining information at various resolutions. *Geosphere*.
- Pearce, N. J. G., W. T. Perkins, J. A. Westgate, M. P. Gorton, S. E. Jackson, C. R. Neal & S. P. Chenery (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. *Geostandards and Geoanalytical Research*, 21, 115-144.
- Pearthree, P. A., C. A. Ferguson, B. J. Johnson & J. Guynn. 2008. Geologic map and report for the proposed State Route 95 Realignment Corridor, Mohave County, Arizona, version 1.0., ed. A. G. Survey.
- Rivers, M. L. & G. A. R. Gualda (2009) 'tomo_display' and 'vol_tools': IDL VM Packages for Tomography Data Reconstruction, Processing, and Visualization. *Eos Transactions AGU*, 90.
- Rivers, M. L., S. R. Sutton & P. J. Eng. 1999. Geoscience applications of x-ray computed microtomography. In SPIE: Developments in x-ray tomography II, 78.
- Self, S. (2006) The Effects and Consequences of Very Large Explosive Volcanic Eruptions. *Philosophical Transactions: Mathematical, Physical and Engineering Sciences*, 364, 2073-2097.
- Smith, R. L. (1979) Ash flow magmatism. *Geological Society of America Special Paper 1749*, 180, 5-27.
- Smith, R. L. & R. A. Bailey (1966) The Bandelier Tuff: A study of ash-flow eruption cycles from zoned magma chambers. *Bulletin Volcanologique*, 29, 83-104.
- Song, S.R., Jones, K. W., Lindquist, W. B., Dowd, B. A., Sahagian, D. L. (2001) Synchotron X-ray computed microtomography: studies on vesiculated basaltic rocks. *Bulletin of Volcanology*, 63, 252-263.
- Sparks, S., S. Self, J. Grattan, C. Oppenheimer, D. Pyle & H. Rymer. 2005. Super-eruptions: global effects and future threats. *Geological Scoeity of London Working Group*, 1-24...
- Sutton, S. R., P. M. Bertsch, M. Newville, M. Rivers, A. Lanzirotti & P. Eng (2002) Microfluorescence and Microtomography Analyses of Heterogeneous Earth and Environmental Materials. *Reviews in Mineralogy and Geochemistry*, 49, 429.
- Varga, R. J., J. E. Faulds, L. W. Snee, S. S. Harlan & L. Bettison-Varga (2004) Miocene extension and extensional folding in an anticlinal segment of the Black Mountains accommodation zone, Colorado River extensional corridor, southwestern United States. *Tectonics*, 23.
- Watson, E. B. (1996) Dissolution, growth and survival of zircons during crustal fusion: Kinetic principles, geological models and implications for isotopic inheritance. *Transactions of the Royal Society of Edinburgh-Earth Sciences*, 87, 43-56.
- Watson, E. B., D. A. Wark & J. B. Thomas (2006) Crystallization thermometers for zircon and rutile. *Contributions to Mineralogy and Petrology*, 151, 413-433.

- Wilson, C. J. N. (2001) The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview. *Journal of Volcanology and Geothermal Research*, 112, 133-174.
- Wilson, C. J. N. & W. Hildreth (1997) The Bishop Tuff: New insights from eruptive stratigraphy. *Journal of Geology*, 105, 407-439.
- Young, R. A. & W. J. Brennan (1974) Peach Springs Tuff: Its Bearing on Structural Evolution of the Colorado Plateau and Development of Cenozoic Drainage in Mohave County, Arizona. *GSA Bulletin*, 85, 83-90.