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CHAPTER I 

 

INTRODUCTION 

 

Objective 

Cystic Fibrosis (CF) is the most common lethal autosomal recessive disease in the 

Caucasian population, occurring in roughly 1 in 2000-3000 live births [1]. In African 

Americans, CF occurs in approximately 1 in 15,000-20,000 births [2], whereas in Asian 

populations, disease incidence has been estimated to be as rare as 1 in 350,000 births [3]. 

CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator 

(CFTR) gene, leading to lack of functional CFTR protein at the apical surface of 

secretory epithelia [4-6]. There is currently no cure for CF, and in spite of improved 

screening and treatment, the US Cystic Fibrosis Foundation estimates the life expectancy 

of CF patients to be only 37 years [7].  

Numerous studies have revealed the presence of alterations in polyunsaturated 

fatty acid (PUFA) composition in CF patients as well as in CF mouse and cell culture 

models [8-16]. From these findings, several reproducible fatty acid changes have 

emerged as dominant: decreased linoleic acid (18:2 n-6, LA), decreased docosahexaenoic 

acid (22:6 n-3, DHA) and variably increased arachidonic acid (20:4 n-6, AA) (Figure 1). 

These PUFA alterations are independent of nutritional status and pancreatic insufficiency 

[12, 17-20]. Additionally, the magnitude of these changes has been shown to correlate 

with disease severity. For example, LA and DHA levels tend to be lower in CF patients 

with more severe disease [21, 22]. Previous studies have also shown that high-dose DHA 
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treatment leads to normalization of fatty acid levels in the lung, pancreas and intestine of 

two different CF mouse models, and reverses the pathological manifestations of CF [13, 

14]. It is therefore believed that CF fatty acid alterations play a key role in 

pathophysiology of the disease. However, the mechanism(s) of the PUFA changes, their 

connection to CFTR gene mutations and how they contribute to a CF phenotype is 

currently unknown. We hypothesized that the fatty acid alterations seen in CF are caused 

by altered PUFA metabolism, contributing to increased levels of AA and increased 

metabolism of AA to pro-inflammatory eicosanoids. The research presented in this 

dissertation focuses on understanding the mechanisms underlying PUFA alterations in 

CF, and the role they play in the pathogenesis of disease. 

 

 

Figure 1: Diagram of polyunsaturated fatty acid metabolism through the n-6 and   

n-3 pathways. Specific omega-6 (n-6) and omega-3 (n-3) fatty acid changes have been 

described in cystic fibrosis patients, mice and cell culture models. These include 

decreased levels of linoleic acid (LA) and docosahexaenoic acid (DHA), and increased 

levels of arachidonic acid (AA).  
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Molecular structure and function of the Cystic Fibrosis Transmembrane 

Conductance Regulator (CFTR) 

 

CF is a life-shortening genetic disorder that affects multiple organs in the body. It 

is caused by a defective gene encoding a protein known as the cystic fibrosis 

transmembrane conductance regulator (CFTR) [4-6]. The CFTR gene encompasses 

approximately 180,000 base pairs and is located on the long arm of chromosome 7. It 

encodes a 1,480 amino acid membrane protein that functions as an epithelial chloride ion 

channel and regulates the absorption and secretion of salt and water in various tissues 

such as the lung, sweat glands, gastrointestinal tract and pancreas [23]. 

 CFTR is a member of the adenosine triphosphate (ATP)-binding cassette 

transporter superfamily of proteins, which utilize nucleotide hydrolysis to transport 

substrates across the membrane bilayer [24]. CFTR protein is composed of five distinct 

domains: two homologous transmembrane spanning domains (TMD1 and TMD2), each 

containing six transmembrane segments that form the hydrophilic channel through which 

anions are transported; two nucleotide binding domains (NBD1 and NBD2) that are 

exposed to the cytosol and are involved in ATP binding and hydrolysis; and a regulatory 

R domain whose phosphorylation by protein kinase A (PKA) regulates channel gating 

[25] (Figure 2). Chloride transport by CFTR requires interaction between the multiple 

domains. Phosphorylation of the R domain by cAMP-dependent PKA is necessary for 

channel activation and induces a conformational change in the protein, leading to reduced 

interaction between the R domain and NBD1[26]. This allows for the NBDs to dimerize 

and interact in a head-to-tail manner, enclosing two ATP molecules within the interfacial 

composite sites. ATP binding signals conformational changes in the TMDs and causes 
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the ion channel to open. Following channel opening, hydrolysis of one ATP molecule 

disrupts the NBD interface, triggers NBD dimer dissociation and leads to closing of the 

channel [27]. 

  

 

Figure 2: Diagram showing the different domains of the CFTR protein. CFTR is a 

member of the ATP-binding cassette (ABC) superfamily of proteins. It is made up of five 

domains: two six-membrane spanning domains that form the chloride channel (TMDs), 

two nucleotide binding domains (NBDs) that bind and hydrolyze ATP, as well as a 

unique regulatory domain (R domain) that can be phosphorylated by protein kinase A. 

Diagram adapted from the cystic fibrosis mutation database, 2012. 
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CFTR possesses other functions, in addition to being a chloride channel. CFTR is 

known to act as an inhibitor of the epithelial sodium channel (ENaC) [28]. The absence 

of functional CFTR in the apical membrane leads to unregulated, excessive sodium and 

water absorption. This promotes dehydration of the airway surface liquid, causing a 

collapse of the periciliary layer, loss of mucociliary clearance and concentration of mucus 

within the airway surface [29]. CFTR can also transport bicarbonate (HCO3
-
) ions [30]. 

This function is important in regulating mucus thickness, as well as the pH of the external 

environment of epithelial cells and of intracellular organelles. Highly compacted mucins 

found in intracellular granules are held together by high concentrations of calcium (Ca
2+

) 

and hydrogen (H
+
) cations. HCO3

-
 can complex with, and sequester, the Ca

2+
 and H

+
 

cations away from the mucin anions, thus promoting mucin unfolding and expansion 

[31]. In CF, loss of HCO3
- 
transport through CFTR leads to a HCO3

-
 poor extracellular 

milieu. This results in impaired Ca
2+

 removal, hinders normal mucin expansion and 

promotes the accumulation of mucus on luminal surfaces and in ducts of CF-affected 

organs. Lack of HCO3
- 
transport also decreases local pH and impairs bacterial killing 

[32].   

Furthermore, CFTR is involved in the transport of larger anions, such as the 

antioxidant glutathione (GSH) and thiocyanate. CFTR-mediated GSH transport regulates 

redox reactions at the airway surface and can reduce mucus viscosity by disrupting 

disulfide bonds in mucin proteins [33]. Thiocyanate, on the other hand, is needed for the 

production of antimicrobial hypothiocyanite. Failure to transport thiocyanate anions to 

the surface of airway epithelium, as seen in CF, leads to a shortage of hypothiocyanite 

and allows for Staphylococcus aureus and Pseudomonas aeruginosa bacterial 
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colonization [34]. Lastly, CFTR can regulate other membrane channels, including the 

outwardly rectifying chloride channel, inwardly rectifying potassium channels and ATP 

channels [35-38].  

 

CFTR gene class mutations 

More than 1800 CFTR gene mutations have been described to date, all with the 

potential to cause disease [39]. The most common mutation is the F508del-CFTR, which 

is caused by deletion of a phenylalanine codon at position 508 and accounts for 

approximately 70% of all CF cases in northern European and North American 

populations [2]. Besides F508del, only four specific mutations reach a frequency of 1% 

to 4%, including G551D, W1282X, G542X and N1303K [39]. The majority of the 

remaining CF mutations are extremely rare and have not been fully functionally 

characterized. CFTR gene mutations can be divided into six separate classes based on the 

primary mechanism responsible for reduced CFTR function. 

 

Class I mutations 

Class I mutations are caused by nonsense, frameshift or splice-site mutations that 

result in premature stop codons. This leads to the termination of mRNA translation and 

consequently, complete absence of CFTR protein. These stop mutations are indicated by 

an X. The W1282X is the most common class I mutation and accounts for slightly >1% 

of worldwide CF mutations but is very frequent in the Israeli Ashkenazi Jewish 

population, where it accounts for approximately 50% of CF cases [40]. Previous studies 

have shown that aminoglycoside antibiotics such as gentamicin induce read-through of 
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premature stop codons, resulting in formation of functional full-length CFTR protein. 

Short-term topical application of gentamicin to the nasal epithelium in CF patients with 

class I mutations has been reported to improve CFTR function [41]. Nevertheless, the 

safety and efficacy of long-term aminoglycosides as a CF therapy still needs to be 

evaluated.  

 

Class II mutations 

Class II mutations are associated with defective protein processing. Normal CFTR 

protein is folded and glycosylated in the endoplasmic reticulum (ER) and Golgi, allowing 

the protein to traffic to the apical cell surface. Class II mutant CFTR protein fails to 

complete these processes correctly and instead, is degraded in the ER. These mutations 

result in little or no mature CFTR at the cell surface. The most common CF mutation, 

F508del, falls within this class. The F508del mutation impairs the conformational 

maturation of nascent CFTR and arrests it in an early folding intermediate. As a result, 

the mutated protein is misfolded, is recognized by the ER quality control system, and is 

targeted for degradation via the ubiquitin-proteasome pathway [42, 43]. A small fraction 

of F508del CFTR can escape the ER degradation pathway, exit the ER and make it to the 

cell surface. However, this mutated protein is not stable and has aberrant channel gating 

as reflected in reduced channel open probability [44]. The F508del mutation affects the 

majority of CF patients and is therefore the most important CF therapeutic target. 

Numerous attempts have been made to increase levels of functional F508del CFTR 

protein at the cell surface. These include:  1) Use of small molecules known as correctors 

to rescue the folding and/or trafficking of F508del CFTR and increase its cell surface 
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density. Such correctors include 4-phenylbutyrate (4-PBA) and curcumin [45-48]; 2) low 

temperature rescue to promote trafficking of F508del CFTR from the ER to the cell 

surface [49]; 3) suppression of the protein degradation process using either protein 

chaperones or deubiquitinating enzymes [50, 51]; and 4) use of pharmacological agents 

called potentiators, including sulfonamides, tetrahydrobenzothiophenes and 

phenylglycine, to increase stability and channel gating of mutant CFTR [52, 53].  

 

Class III mutations 

Class III mutations are characterized by defective CFTR regulation. The CFTR 

protein is properly processed and traffics to the plasma membrane, but cannot be 

activated by ATP or cAMP. G551D is an example of a class III mutation, and it occurs in 

approximately 3-4% of CF patients. Since this mutation involves impaired channel 

gating, CF potentiators are an attractive therapeutic option. Vertex Pharmaceuticals Inc. 

has developed a compound known as VX-770 that has been shown to increase CFTR 

open probability and improve clinical outcomes such as lung function and sweat chloride 

concentrations in G551D patients [54, 55]. This compound is now FDA approved under 

the names Ivacaftor or Kalydeco™. 

 

Class IV mutations 

Class IV mutations involve altered chloride ion conductance, leading to CFTR 

protein at the apical cell surface that exhibits a reduced rate of chloride transport. R117H 

is among the common class IV mutations and is found in approximately 0.5% of CF 

patients [39]. These mutations tend to result in mild disease manifestations. 
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Class V mutations 

Class V mutations include promoter and splice-site mutations that affect the 

efficiency of normal mRNA splicing and reduce the amount of normally processed and 

functional CFTR at the cell surface. These mutations produce some correctly spliced 

mRNA transcripts. The levels of these transcripts vary among different CF patients and 

are inversely correlated with disease severity, such that lower levels of correctly spliced 

transcripts are associated with more severe disease and vice versa [56-58]. The 3849 + 

10kb C to T mutation is an example of a class V mutation. Therapeutic options for these 

mutations include the use of antisense oligonucleotides or small molecules such as 

sodium butyrate to decrease abnormal splicing and increase the levels of correctly spliced 

transcripts [59, 60]. 

 

Class VI mutations 

Class VI mutations are associated with defective CFTR stability at the cell surface 

and accelerated protein turnover. 

 

Clinical features of Cystic Fibrosis 

 CF is a multi-organ disease that is characterized by elevated sweat chloride 

concentrations (which is the main diagnostic CF test), recurrent pulmonary infections and 

chronic bronchiectasis, pancreatic insufficiency, intestinal malabsorption, and male 

infertility [61]. The extent and severity of disease is inversely proportional to the degree 

of CFTR function in the affected organs.  
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 Recurrent pulmonary infections that lead to respiratory failure are the primary 

cause of morbidity and mortality in CF patients. CFTR dysfunction in airway epithelia 

causes impaired chloride ion efflux, as well as excessive sodium and water reabsorption. 

This results in dehydration of the airway surface liquid, loss of mucociliary clearance and 

increased production of thickened, viscous mucus [29, 62]. These conditions are 

conducive for the growth and retention of bacteria, with bacterial colonization of airways 

in CF patients beginning shortly after birth [63, 64]. The most common infecting bacteria 

in infants with CF include Haemophilus influenzae and Staphylococcus aureus, while 

older patients tend to be colonized by Pseudomonas aeruginosa [65, 66]. Increased 

production of thickened mucus leads to airway obstruction and perpetuates a vicious 

cycle of phlegm retention, infection and inflammation. This leads to bronchiectasis, air 

trapping and progressive lung damage, and is ultimately responsible for at least 80% of 

all CF-related deaths [7].  

Exocrine pancreatic insufficiency is another clinical manifestation of CF. It is 

present in roughly 85-90% of all CF patients [67], with symptoms such as failure to 

thrive, greasy and bulky stool, abdominal bloating and poor absorption of fat-soluble 

vitamins. Pancreatic insufficiency is triggered by destruction of pancreatic acinar cells as 

well as obstruction of pancreatic ducts by thick mucus secretions, resulting in an inability 

of the pancreas to supply digestive enzymes to the intestine [68, 69]. This brings about 

intestinal malabsorption and contributes to the malnutrition seen in CF patients. 

Additional gastrointestinal problems associated with CF include meconium ileus, distal 

intestinal obstruction syndrome (DIOS), and constipation. These are all consequences of 

increased viscosity of intestinal mucus and prolonged intestinal transit time [70-72]. 
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Approximately 13-17% of all CF patients experience complete intestinal obstruction 

during the neonatal period and present with meconium ileus at birth [73], while DIOS 

and chronic constipation are commonly found in older patients [74, 75].  

Approximately one third of CF patients will develop liver disease [76]. CF-related 

liver disease usually develops before puberty, but it is often asymptomatic and progresses 

slowly. The characteristic liver lesion in CF is focal biliary cirrhosis, caused by bile duct 

plugging/obstruction and progressive periportal fibrosis [77]. Although liver cirrhosis is 

not very common, it remains the single most important non-pulmonary cause of death 

among CF patients [78].  

CF also affects the reproductive system. Infertility occurs in about 97% of all 

male CF patients and is attributable to congenital bilateral absence of the vas deferens, 

with subsequent obstructive azoospermia [79]. Female fertility may be reduced due to 

dehydrated cervical mucus that acts as a barrier to sperm passage [80], but reproductive 

function is largely normal. 

 

Fatty acid abnormalities in Cystic Fibrosis 

Fatty acid abnormalities in CF patients 

Alterations in PUFA composition were first identified in CF patients in 1962, 

when serum chylomicrons of children with CF were found to contain decreased amounts 

of linoleic acid (LA) compared to healthy controls [8]. Subsequent reports confirmed this 

finding and reported decreased plasma LA levels in all the main lipid classes in CF 

patients [9, 81]. Lower LA levels were also observed in red blood cells, platelets [82], 

and in nasal tissue from CF patients [12]. These fatty acid changes were present in both 
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infant and adult CF patients [83]. In 1972, Underwood et al. reported that, in addition to 

decreased LA, low docosahexaenoic acid (DHA) concentrations were present in different 

tissues of CF patients [84]. Similar findings were shown in later studies describing 

decreased plasma DHA levels in pre-adolescent CF children compared to healthy 

children [18, 19]. One study found that serum phospholipid DHA concentrations were 

significantly lower in patients with severe CFTR mutations, suggesting a possible 

connection between the basic gene defect and abnormal fatty acid metabolism in CF 

patients [20]. These fatty acid changes are very consistent, such that measurement of 

plasma LA and DHA levels is adequate to distinguish CF from non-CF patients [85]. A 

third PUFA alteration that has been noted in CF patients is increased arachidonic acid 

(AA). This finding is less consistent than the decreased LA and DHA.  In most reports, 

there is an increase in AA in association with a decrease in LA. For example, increased 

AA concentrations were described in nasal biopsy tissues from CF patients compared to 

healthy controls [12], and an increase in AA mole fraction was reported in most 

phospholipid classes in bronchial secretions of patients with CF [86]. However, some 

studies showed little or no increase in the amount of AA in CF patients [10, 20]. When 

these fatty acid changes were first described, it was believed that they were a 

consequence of fat malabsorption. However, studies comparing well-nourished CF 

patients to healthy controls found that the CF fatty acid alterations are independent of 

nutritional status [11, 18] and diet [21].  In addition to PUFA alterations, fatty acid 

changes involving monounsaturated fatty acids in the omega-7 (n-7) and omega-9 (n-9) 

pathways have been observed in red blood cells, platelets and plasma of CF patients. 

These include increased palmitoleic acid (16:1n-7), increased oleic acid (18:1n-9) and 
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increased mead acid (20:3n-9) [11, 18, 82], and are an indication of essential fatty acid 

deficiency.  

 

Fatty acid abnormalities in CF model systems 

Genetically modified CF mice provide a good model to study CF pathogenesis 

and experimental therapeutics. CF mice exhibit many features in common with CF 

patients, including failure to thrive and growth retardation [87], impaired gastrointestinal 

physiology leading to a high incidence of intestinal obstruction [88, 89], bacterial 

overgrowth [90], and inflammation [91]. Fatty acid abnormalities are also present in CF 

mouse models. Freedman et al. showed that there was a change in the fatty acid 

composition of cftr
-/-

 knockout mice (cftr
tm1Unc

), characterized by increased phospholipid-

bound AA and decreased phospholipid-bound DHA. These changes were present in the 

lung, pancreas and ileum of the knockout mice compared to wildtype controls [13]. A 

further study using the same mouse model demonstrated a decrease in LA in 

phospholipids from pancreatic homogenates of cftr
-/-

 mice, as well as an increase in fatty 

acid flux from AA to docosapentaenoic acid (DPA n-6) [92]. Lipid abnormalities 

including higher levels of AA and decreased LA have also been reported in the 

duodenum, jejunum, ileum and pancreas of CF mice homozygous for the F508del 

mutation [14]. Although the link between these PUFA changes and the pathophysiology 

of CF is unclear, there is evidence from a cftr
-/-

 knockout mouse model to suggest that 

correcting the lipid imbalances can reverse the pathologic manifestations of CF [13, 93]. 

Daily treatment of CF knockout mice with large amounts of DHA resulted in increased 

DHA and decreased AA concentrations in lung, pancreas and intestine tissue. Moreover, 
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the treated animals exhibited reversal of CF-related pathology, including relief of 

pancreatic duct dilation, decrease in stimulated neutrophil accumulation in 

bronchoalveolar lavage (BAL) fluid, and normalization of ileal histology [13]. These 

findings imply that the use of lipid supplementation may represent a potential therapeutic 

avenue to correct the CF fatty acid alterations and alleviate disease symptoms.  

In addition, fatty acid abnormalities have been described in cell culture models of 

CF. A study done in cultured pancreatic epithelial cells with or without the CFTR gene 

product revealed a decrease in LA levels in phospholipids of CF cells, particularly in 

phosphatidylcholine, phosphatidylinositol and phosphatidylethanolamine [94].This was 

accompanied by increased conversion of LA to AA, as well as increased flux of LA into 

triglycerides (TG). Cultured human respiratory epithelial cells also exhibit the 

characteristic fatty acid alterations [15, 16], indicating that the defect is intrinsic and not 

due to malabsorption. 

 

Rationale for current studies 

PUFA alterations have long been described in CF. Furthermore, several studies 

have demonstrated that the magnitude of these alterations correlates with disease severity 

[20, 82], suggesting that the fatty acid changes play an important role in the 

pathophysiology of CF. However, the precise mechanisms underlying the fatty acid 

abnormalities are unknown. The link between these fatty acid changes and CFTR 

mutations, as well as the mechanism by which DHA can reverse the alterations also 

remains unclear. We believe that improving our understanding of the mechanisms 

behind, and the role of, fatty acid alterations in CF may assist us in identifying novel drug 
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targets and lipid-based therapies for treatment of the disease. The research presented in 

this thesis is aimed at uncovering the mechanisms of PUFA alterations in CF, examining 

how DHA works to correct these fatty acid changes and reverse the CF phenotype in a 

knockout mouse model, and lastly, investigating the connection between fatty acid 

changes and CFTR gene mutations. 
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CHAPTER II 

 

FATTY ACID CHANGES IN CYSTIC FIBROSIS RESULT FROM 

INCREASED EXPRESSION AND ACTIVITY OF DESATURASE METABOLIC 

ENZYMES 

 

Introduction 

Three main PUFA changes have been described in CF, including decreased LA 

and DHA, and increased AA (Figure 1). We hypothesized that these fatty acid changes 

are brought about by altered PUFA metabolism through the n-6 and n-3 pathways. Since 

mammals are unable to synthesize PUFAs from acetyl CoA, they must obtain essential 

fatty acids such as LA and LNA from their diet [95]. Once ingested, these essential fatty 

acids can be converted to longer and more desaturated products through parallel 

metabolic pathways that include desaturation, elongation, and β-oxidation (Figure 1). 

These modifications are carried out by the same set of desaturase and elongase enzymes 

in both pathways. Δ5 and Δ6-desaturase enzymes catalyze the addition of a double bond 

to the fatty acid chain, with the Δ number indicating the position at which the double 

bond is introduced. Δ6-desaturase has been shown to catalyze the first and rate-limiting 

step of PUFA synthesis [95]. Fatty acid elongation involves the addition of two carbon 

units to a fatty acyl-CoA, using malonyl-CoA as the donor and NADPH as the reducing 

agent. Elongase 2 (Elovl2) specifically elongates 22-carbon fatty acids while elongase 5 

(Elovl5) is involved in the elongation of 18-20 carbon fatty acids [96]. The activities of 

the enzymes involved in fatty acid desaturation and elongation appears to be regulated 

primarily at the transcriptional level, and not by post-translational protein modifications 
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[97, 98]. Together, the desaturase and elongase enzymes generate end products of PUFA 

synthesis such as AA and DHA. We set out to determine whether changes in n-6 and n-3 

metabolism could account for the fatty acid alterations in CF. To this end, we evaluated 

fatty acid metabolic flux in a cell culture model of CF. Additionally, we determined the 

expression (mRNA and protein) and activity of the PUFA metabolic enzymes in our cell 

culture model, as well as in a cftr
-/-

 knockout mouse model. 

 

Experimental Procedures 

Materials 

Human bronchial epithelial cells (16HBE cells) were a kind gift from Dr. Pamela 

Davis (Case Western University, Cleveland, OH). These cells were stably transfected 

with plasmids containing the first 131 nucleotides of CFTR in the sense or antisense 

orientation. Sense (WT) cells were shown to express normal, functional CFTR while 

antisense (CF) cells did not express CFTR and could not transport chloride [99]. IB3 and 

C38 bronchial epithelial cells were obtained from ATCC (Manassas, VA). Fatty acid 

methyl ester (FAME) standards were purchased from NuChek Prep (Elysian, MN) and 

24:5 n-3 and 24:6 n-3 standards were purchased from Larodan Fine Chemicals (Malmö, 

Sweden). Radiolabeled fatty acids (
14

C-LA, 
14

C-LNA, 
14

C-AA, 
14

C-EPA and 
14

C-22:5 n-

3) were purchased from American Radiolabeled Chemicals, Inc (St. Louis, MO). All 

solvents used on the HPLC instrument were purchased from Fisher Scientific (Pittsburgh, 

PA), while the IN-flow 2:1 scintillation cocktail was purchased from LabLogic Systems, 

Inc (Brandon, FL). 
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Cell culture 

16HBE cells were cultured as described previously [15, 16]. Briefly, cells were 

grown in 6-well plates pre-coated with LHC Basal media (Invitrogen, Carlsbad, CA) 

containing human fibronectin (10 µg/mL; Sigma), vitrogen (3 µg/mL; Angiotech 

Biomaterials, Palo Alto, CA) and BSA (0.1 mg/mL; Sigma). Sense and antisense cells 

were plated at a density of 3×10
5
 and 1×10

5
 cells/well respectively. IB3 and C38 cells 

were plated at a density of 1×10
5 

cells/well. All cells were grown in minimum essential 

medium + glutamax (Invitrogen) with 100 μg/mL streptomycin, 100 U/mL penicillin, and 

10% horse serum (Omega Scientific, Tarzana, CA). Horse serum was used because it 

contains a high concentration of LA, which allows for the PUFA changes in CF cells to 

be manifested. Media was changed every two days and experiments carried out in cells 

two days post-confluence.  

 

Mice 

CFTR heterozygous mice on a C57BL/6J genetic background (B6.129P2-

Cftr
tm1Unc

/J, stock number 002196) were purchased from The Jackson Laboratory (Bar 

Harbor, Maine). The mice were housed within a specific pathogen-free (SPF) barrier 

facility with a 12-h light/dark cycle. Cftr heterozygotes were bred to obtain both wild-

type (WT) and cftr
-/-

 (CF) mice. Ear-clip samples of 14-day old mice were used for 

genotype analysis. WT and CF mice were weaned at 23 days of age and placed on a 

liquid diet known as Peptamen (Nestle Clinical Nutrition, Deerfield, IL) with access to 

water ad libitum for 14 days. Peptamen is a complete liquid enteral formulation 

composed mainly of medium-chain triglycerides, carbohydrates and hydrolyzed protein. 
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The liquid diet was used to prevent intestinal obstruction in the CF mice. The mice were 

monitored daily for clinical signs that could indicate distress, including coat quality, 

posture, ambulation and porphyrin staining, and any mice that appeared severely 

distressed were euthanized before completion of the experiment. The mice also received 

fresh peptamen every day, at which time their body weight was measured. The mice were 

sacrificed two weeks post-weaning, and blood as well as various organs (lung, pancreas, 

ileum, liver, kidney, heart and brain) collected. All experiments were carried out under 

protocols approved by the Vanderbilt Division of Animal Care, and by the Institutional 

Animal Care and Use Committee. 

 

Total fatty acid analysis 

Fatty acids were extracted and methylated from cells two days post-confluence 

using a modified Folch method [100]. Briefly, the cells were washed twice in ice-cold 

PBS, scraped using a rubber policeman and pelleted by centrifugation at 100 g for 8 min. 

The pellet was resuspended in PBS and heptadecanoic acid (17:0) was added as an 

internal standard. Six volumes of chloroform-methanol (2:1) was added to the cells, 

vortexed and incubated on ice for 10 min. The mixture was then centrifuged at 1100 g for 

10 min, and the lower organic phase transferred to a new glass tube and dried down 

completely under nitrogen gas. To methylate the fatty acids, 0.5 mL of 0.5 N methanolic 

NaOH (Acros Organics, Geel, Belgium) was added to the dried-down lipids, vortexed 

and heated at 100ºC for 3 min. Following this, 0.5 mL boron trifluoride (BF3-methanol; 

Sigma) was added to the mixture and incubated at 100ºC for 1 min. The resulting FAMEs 

were extracted using 1 mL hexane, followed by 6.5 mL of saturated NaCl solution. The 
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mixture was vortexed and centrifuged at 500 g for 4 min, and the upper hexane layer 

transferred to a new glass tube. Total FAMEs contained in the hexane layer were 

analyzed by gas chromatography (GC) using an Agilent 7980A GC system (Agilent 

Technologies, Santa Clara, CA) equipped with a Supelcowax SP-10 capillary column 

(Supelco, Bellefonte, PA) coupled to a mass spectrometer (model 5975c, Agilent 

Technologies). The mass of the FAMEs was determined by comparing areas of unknown 

FAMEs to that of the 17:0 internal standard. Results were expressed as the molar 

percentage (mol %) of each FAME relative to the total FAME mass of the sample.  

Fatty acids were also extracted from different mouse tissues and plasma. For lung 

tissue, cell suspensions were made to enrich for epithelial cells as previously described 

[13]. Briefly, the lung was flushed with Krebs-Henseleit buffer (KHB) containing 0.5% 

BSA and then minced and transferred to a tube containing 10 mL KHB with 2,000 units 

DNase (Sigma), 0.5 units thermolysin (Sigma) and 1,000 units collagenase (Sigma). The 

tissue was incubated in a shaker at 37
o
C for 30 min. Following incubation, KHB 

containing 4% BSA was added to the cell suspension and centrifuged at 500 g for 10 min. 

The supernatant was removed and the cells washed once in KHB and resuspended in 

PBS. Pancreatic cell suspensions were prepared by mechanical dissociation and addition 

of collagenase as described by Bruzzone et al [101]. Briefly, Krebs-Ringer Hepes (KRB-

Hepes) buffer, adjusted to pH 7.4, containing 12.5 mM Hepes, 135 mM NaCl, 4.8 mM 

KCl, 1.0 mM CaCl2, 1.2 mM KH2PO4, 1.2 mM MgSO4, 5.0 mM NaHCO3, 5 mM 

glucose and 0.01 mg of aprotinin / mL was used as the dissociation medium. The 

pancreas was chopped into small pieces and transferred to a glass tube. Two mL KRB-

Hepes containing 1 mg collagenase per mL was added to the tube and shaken vigorously 



21 

 

until the tissue suspension appeared homogenous. Fresh KRB-Hepes with 0.1% human 

serum albumin (HSA) was added and the tissue centrifuged at 500 g for 5 min. The 

digested tissue was washed twice with repeated centrifugations, resuspended in fresh 

KRB-Hepes-HSA and filtered consecutively through a 300 µm and then a 70 µm filter. 

The pancreatic cells that passed through the filter were centrifuged and resuspended in 

PBS. For ileal cells, the ileum was rinsed with PBS, sliced open and cells obtained by 

scraping the inner mucosal surface. Additionally, tissue homogenates were prepared from 

the kidney, heart, liver and brain by mincing and homogenizing the tissue samples in 

PBS. FAMEs were prepared from the pancreas and lung cell suspensions, tissue 

homogenates and plasma as described above, and total lipid levels analyzed by GC-MS.  

 

Fatty acid radiolabeling experiments 

For fatty acid metabolic flux experiments, the cells were grown until two days 

post-confluence. 
14

C radiolabeled fatty acids were dried down under nitrogen gas and 

resuspended in media containing 10% reduced-lipid fetal bovine serum (Hyclone, Logan, 

UT) by thorough vortexing and sonication. The final concentration of radiolabeled fatty 

acids was 4.1µM. The media supplemented with radiolabeled fatty acids was added to the 

cells for 4 h, washed off twice with PBS and replaced with complete media for an 

additional 20 h. The cells were then harvested and lipids extracted and methylated as 

described above. To measure metabolic flux, the extracted FAMEs were dried down 

under nitrogen, redissolved in 50 µL acetonitrile and analyzed by high-performance 

liquid chromatography (HPLC) (Agilent 1200 series; Agilent Technologies, Santa Clara, 

CA) using an Agilent Zorbax Eclipse XDB-C18 column, 4.6×250 mm, 5 μm. A guard 
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column of 4.6×12.5 mm, 5 μm was used in conjunction with the analytical column. 

Quantification of the radiolabeled peaks was performed by a scintillation detector (β-

RAM Model 4, IN/US Systems) coupled to the HPLC. The counting efficiency of this 

detector is > 90% for 
14

C with 5 CPM background. A binary solvent system was used to 

separate the fatty acids at a flow rate of 1 mL/min. Solvent A comprised HPLC grade 

H2O with 0.02% H2PO4, and solvent B comprised 100% HPLC grade acetonitrile. For 

separation of n-3 fatty acids, the solvent program started with 76% solvent B and 24% 

solvent A for 0.5 min, followed by a linear gradient from 76% to 86% solvent B over 10 

min, a hold for 20 min, an additional linear gradient from 86% to 100% solvent B over 2 

min, and a hold for 18 min, followed by reconstitution of the starting conditions. For n-6 

fatty acids, the solvent program began with 58% solvent B and 42% solvent A for 25 

min, followed by a linear gradient from 58% to 61% solvent B over 2 min, a hold for 8 

min, another linear gradient from 61% to 100% solvent B over 15 min, and a hold for 20 

min, followed by reconstitution of the original conditions. The peaks were identified by 

ultraviolet detection at 205 nm and confirmed by comparison with retention times of 

unlabeled standards.  

 

Quantitative real-time PCR 

Total RNA was isolated from homogenized mouse tissues or from cultured cells 

using TRIzol reagent (Invitrogen), following the manufacturer’s instructions. 

Complementary DNA was generated from 2 µg of total RNA with random hexamers 

using TaqMan reverse transcription reagents (Applied Biosystems, Foster City, CA). 

Quantitative real-time PCR (qRT-PCR) was done on mouse cDNA using Taqman gene 
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expression assays, universal PCR master mix, and a CFX96 Real-Time PCR system (Bio-

rad) with Taqman commercial primers and probes (Applied Biosystems). Data was 

analyzed using CFX Manager software (Bio-rad). The relative expression of each target 

gene was calculated using the comparative CT method and normalized to a reference 

gene, GAPDH. For gene expression analysis of cultured cells, qRT-PCR was performed 

in a reaction containing 50 ng of reverse-transcribed total RNA, 156 nM forward and 

reverse primers, and 10 μL 2× SYBR Green PCR Master Mix (Applied Biosystems) in a 

total volume of 20 μL. Each PCR reaction was performed in triplicate in 96-well plates 

and RPLP0 was used as an endogenous control. Primer sequences used for the cell 

culture experiments are listed in Table 1.  

 

Table 1: Primer sequences used for quantitative real-time PCR 

Gene 

Name 

Product Sequence of Forward and Reverse 

Primers (5’ to 3’) 

GenBank 

Accession 

No. 

RPLP0 Ribosomal Protein, 

Large, P0 

ATGGCAGCATCTACAACCC 

GACAGACACTGGCAACATTG 

NM_001002 

FADS1 Fatty acid                 

Δ5-desaturase 

CCTGGAAAGCAACTGGTTTGTG 

GAAGGCAGACTTGTGGACATTG 

NM_013402 

FADS2 Fatty acid                 

Δ6-desaturase 

GCCAAGCCTAACATCTTCCACAAG 

GTATTCGTGCTGGTGATTGTAGGG 

NM_004265 

ELOVL2 Fatty acid          

elongase 2 

CTGCTCTCAATATGGCTGGGTAAC 

CACTGTAAGTTGTAGCCTCCTTCC 

NM_017770 

ELOVL5 Fatty acid         

elongase 5 

TCCCTCTTGGTTGGTTGTATTTCC 

GCCCCTTTCTTGTTGTAGGTCTG 

NM_021814 

PTGS1 Cyclooxygenase-1 

(COX-1) 

CTTGACCGCTACCAGTGTG 

GTGAGTGAGCAGGAAGTGG 

NM_000962 

PTGS2 Cyclooxygenase-2 

(COX-2) 

TGAAACCCACTCCAAACACAG 

GCCATAGTCAGCATTGTAAGTTG 

NM_000963 

ALOX5 5-lipoxygenase          

(5-LOX) 

CCCGAGATGACCAAATTCACATTC 

AGGGTTCCACTCCATCCATCG 

NM_000698 
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Western blotting 

Membrane fractions of 16HBE cells were prepared using a subcellular protein 

fractionation kit (Thermo Fisher Scientific, Rockford, IL) according to the 

manufacturer’s recommendations. Protein samples were run on a 7.5% pre-cast SDS-

PAGE gel and transferred to Immobilon-P PVDF filters. Blots were stained using a 

polyclonal Δ6-desaturase antibody (Santa Cruz) and a polyclonal anti-calnexin antibody 

(StressGen). After washing, bound antibodies were visualized with a peroxidase-

conjugated goat anti-rabbit secondary antibody using the SuperSignal West Pico substrate 

system (Thermo Fisher Scientific) and exposed to CL-X Posure film (Thermo Fisher 

Scientific).  

 

Eicosanoid ELISA 

Culture media was collected from 16HBE cells two days post-confluence and the 

levels of prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) measured by ELISA 

(Cayman Chemicals, Ann Arbor, MI). Per cell eicosanoid production was calculated by 

dividing the eicosanoid level in the total media sample by the number of cells in the 

corresponding well. 

 

Cyclooxygenase-2 (COX-2) inhibition 

To inhibit COX-2, 16HBE cells were grown until almost confluent and then 

treated with a COX-2 specific small molecule inhibitor known as NS-398 (Sigma) or 

DMSO control (vehicle) for 48 h. Alternatively, COX-2 expression in the cells was 

abolished by use of a small interfering RNA (siRNA) directed against COX-2. For these 
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experiments, 16HBE cells were transfected with 250 nM silencer select COX-2 siRNA or 

250 nM silencer select negative control siRNA (Invitrogen) using Lipofectamine 

RNAiMax transfection reagent (Invitrogen) according to the manufacturer’s instructions. 

Following COX-2 inhibition or knockdown, the cells were either incubated with 
14

C-

radiolabeled precursor fatty acids for PUFA metabolic flux assays or harvested and RNA 

isolated for PUFA metabolic gene expression studies.  

 

Results 

To determine whether the characteristic PUFA abnormalities were present in our 

CF cell culture system, we measured the relative n-3 and n-6 fatty acid levels in sense 

(WT) and antisense (CF) cells. Antisense cells exhibited significantly lower levels of LA, 

with associated increases in the downstream metabolites 18:3 n-6, 20:3 n-6 and AA. In 

addition, levels of DHA were markedly decreased in antisense cells compared to sense 

cells (Figure 3). To confirm these findings, we measured the fatty acid composition in a 

cell line derived from a CF patient. The IB3 cell line is a compound heterozygote 

bronchial epithelial cell line from a CF patient with a ∆F508 mutation and a W1282X 

nonsense mutation [102]. The CF phenotype in the IB3 cells has been corrected in the 

C38 cell line using WT CFTR in an adenoviral vector. Similar to antisense cells, the IB3 

cells were found to have decreased levels of LA and increased AA levels relative to C38 

cells (Figure 4).  
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Figure 3: Fatty acid composition of Sense (WT) and Antisense (CF) bronchial epithelial cells. Total fatty acid levels were 

analyzed by GC-MS and data represented as molar percentage of total fatty acids (mol %). Levels of linoleic acid (LA) and 

docosahexaenoic acid (DHA) were significantly lower in CF cells, while levels of arachidonic acid (AA) were significantly higher in 

CF cells compared to WT cells. * P < 0.05; ** P < 0.01; *** P < 0.001; (n = 3). 
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Figure 4: Fatty acid composition of C38 (WT) and IB3 (CF) bronchial epithelial cells. Total fatty acid levels were analyzed by 

GC-MS and data represented as molar percentage of total fatty acids (mol %). Levels of linoleic acid (LA) were significantly lower in 

CF cells, while levels of arachidonic acid (AA) were significantly higher in CF cells compared to WT cells. There was no difference 

in DHA levels between WT and CF cells. * P < 0.05; ** P < 0.01; *** P < 0.001; (n = 3). 
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Higher levels of the downstream metabolites of LA in CF cells suggest that there 

is increased metabolism of LA to AA. To evaluate this hypothesis, sense and antisense 

cells were incubated with 
14

C radiolabeled LA and incorporation into downstream 

metabolites measured. Significant increases in metabolism of LA to downstream products 

up to and including AA was observed in antisense cells compared to sense cells (Figure 

5A). It is known that metabolism through the n-6 and n-3 pathways is carried out by the 

same set of enzymes [95]. Therefore we performed a parallel comparison of metabolic 

flux through the n-3 pathway. Sense and antisense cells were incubated with 
14

C 

radiolabeled LNA and its conversion to downstream metabolites was measured. Similar 

to the n-6 pathway, there was a significant increase in metabolism of LNA to 18:4 n-3, 

20:4 n-3 and EPA (Figure 5B). However, a closer look at the magnitude of conversion of 

LNA to EPA vs. LA to AA revealed greater metabolic flux when LNA was used as the 

substrate, resulting in a much higher EPA/LNA ratio than AA/LA ratio in both sense and 

antisense cells. This is consistent with previous studies reporting that PUFA metabolic 

enzymes have a preference for n-3 fatty acids over n-6 fatty acids [103-105].  

The increased metabolism in the early steps of the n-3 and n-6 pathways provides 

a plausible explanation for the low LA and high AA levels in CF. However, this does not 

explain the low DHA levels present in CF. To investigate this, we incubated sense and 

antisense cells with 
14

C radiolabeled AA and 
14

C radiolabeled EPA and measured 

conversion to downstream metabolites. There was a significant decrease in metabolism of 

both AA and EPA to 22:5n-6 and DHA respectively (Figure 6), indicating a lower rate of 

DHA production from precursor fatty acids in CF cells. 
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Figure 5: Metabolism of LA and LNA through the n-6 and n-3 pathways in 16HBE 

cells. Sense and antisense cells were incubated with 4.1 μM [
14

C] LA (A) or [
14

C] LNA 

(B) in reduced-lipid cell culture medium for 4 h as described in the experimental 

procedures. Levels of radiolabeled LA (18:2n-6), 18:3n-6, 20:3n-6 and AA (20:4n-6) (A) 

or radiolabeled LNA (18:3n-3), 18:4n-3, 20:4n-3 and EPA (20:5n-3) (B) were determined 

by HPLC and data presented as percent of total counts. Metabolism of both LA and LNA 

was shown to be revved up in antisense (CF) cells compared to sense (WT) cells. Bars 

represent mean ± SEM (n = 3). * P<0.05, ** P< 0.01, *** P<0.001 for sense vs. 

antisense cells. 
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Figure 6: Metabolism of AA and EPA through the n-6 and n-3 pathways in 16HBE 

cells. Sense and antisense cells were incubated with 4.1 μM [
14

C] AA (A) or [
14

C] EPA 

(B) in reduced-lipid cell culture medium for 4 h as described in the experimental 

procedures. Levels of radiolabeled AA (20:4n-6), 22:4n-6 and 22:5n-6 (A) or 

radiolabeled EPA (20:5n-3), 22:5n-3, 24:5n-3, 24:6n-3 and DHA (22:6n-3) (B) were 

determined by HPLC and data presented as percent of total counts. Both AA and EPA 

metabolism was decreased in antisense (CF) cells compared to sense (WT) cells. Bars 

represent mean ± SEM (n = 3). * P<0.05, ** P< 0.01, *** P<0.001 for sense vs. 

antisense cells. 
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PUFA metabolism through the n-3 and n-6 pathways is controlled by desaturase 

and elongase enzymes (Figure 1), and regulation of these enzymes influences the 

production of end products of PUFA synthesis such as AA and DHA. Thus it is possible 

that differential expression of these enzymes in sense and antisense cells causes the 

PUFA alterations commonly found in CF. To test this, the mRNA expression of all four 

enzymes involved (Δ5-desaturase, Δ6-desaturase, elovl2 and elovl5) was measured by 

qRT-PCR. Both Δ5-desaturase and Δ6-desaturase were expressed at significantly higher 

levels in antisense cells (Figure 7A), while there was no difference in the mRNA levels of 

either elovl2 or elovl5 between sense and antisense cells. Protein levels of the rate-

limiting enzyme, Δ6-desaturase, were also increased in antisense cells (Figure 7B). These 

findings were confirmed in the IB3/C38 cell line, which showed similar elevations in 

desaturase expression in CF cells (Figure 7C). This suggests that the altered levels of LA 

and AA in CF are brought about by differences in the transcriptional regulation of 

desaturase enzymes.  

Although increased expression and activity of the metabolic enzymes can explain 

the differences seen in the early steps of PUFA metabolism, it does not explain the 

decreased metabolism of AA and EPA. A conceivable explanation for this is decreased β-

oxidation at the second to last step in PUFA metabolism (Figure 1). However, this 

explanation cannot account for the decreased metabolism of earlier AA and EPA 

metabolites such as 22:4n-6 and 22:5n-3 (Figure 6).  
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Figure 7: Relative mRNA and protein expression of PUFA metabolic enzymes in the n-6 

and n-3 pathways. RNA was extracted and cDNA synthesized from sense and antisense 

cells (A) or from IB3/C38 cells (C) as described in the experimental procedures. qRT-PCR 

was performed using primers for the mRNA sequences of Δ5-desaturase (FADS1), Δ6-

desaturase (FADS2), elongase 2 (ELOVL2), and elongase 5 (ELOVL5). Relative expression 

was determined by the ΔΔCT method using ribosomal protein RPLP0 as a control. Both Δ5-

desaturase and Δ6-desaturase expression levels were significantly increased in CF cells 

(antisense and IB3) compared to WT cells (sense and C38). Bars represent mean ± SEM (n = 

3). * P<0.05, ** P< 0.01, for sense vs. antisense cells. (B) Relative protein expression of Δ6-

desaturase was determined in sense and antisense cells by western blot using an anti-FADS2 

(Δ6-desaturase) polyclonal antibody (1:200). An anti-calnexin polyclonal antibody (1:1000) 

was used as a loading control. Data shown are representative of a minimum of three different 

experiments.  
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Another potential explanation is that AA and EPA are being metabolized via an 

alternative pathway, thereby reducing the amount of substrate available for conversion to 

22:5n-6 and DHA. This hypothesis is supported by the fact that metabolism of 
14

C- 

radiolabeled 22:5n-3 to DHA was approximately equal in sense and antisense cells 

(Figure 8). This indicates that decreased metabolism of EPA (and AA by inference) likely 

occurs at the first metabolic step and is perhaps due to metabolism of EPA and AA by a 

different pathway.  

 

 

 

 

Figure 8: Metabolism of 
14

C 22:5n-3 in 16HBE cells. Sense and antisense cells were 

incubated with 4.1 μM [
14

C] 22:5n-3 in reduced-lipid cell culture medium for 4 h as 

described in the experimental procedures. Levels of radiolabeled 22:5n-3, 24:5n-3, 24:6n-

3 and DHA (22:6n-3) were determined by HPLC and data presented as percent of total 

counts (cpm). 22:5n-3 was metabolized fairly equally in both sense and antisense cells, 

with the exception of 24:6n-3. Bars represent mean ± SEM (n = 3).  ** P< 0.01 for sense 

vs. antisense cells. 

 

 



34 

 

A possible alternative pathway for AA and EPA metabolism is oxidation to 

eicosanoids such as prostaglandins and leukotrienes. This is facilitated by 

cyclooxygenase (COX-1 and COX-2) and lipoxygenase (5-LOX) enzymes. Several well 

studied prostaglandins produced from AA are pro-inflammatory, while several of those 

synthesized from EPA are by comparison less pro-inflammatory, or even anti-

inflammatory (Figure 9). Previous studies have shown that pro-inflammatory eicosanoids 

including prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) are increased in CF patients 

[106-110]. This correlates with increased expression of cyclooxygenase and lipoxygenase 

in sinonasal tissue from CF patients [111, 112].  

 

 

 

 

Figure 9: Diagram of the oxidative metabolism of Arachidonic Acid (AA), 

Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA). Eicosanoids 

produced from AA, with the exception of lipoxins, have pro-inflammatory effects. On the 

other hand, EPA and DHA-derived eicosanoids and resolvins have potent anti-

inflammatory properties. 
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To determine whether this alternative eicosanoid synthesis pathway was 

upregulated in antisense cells, we measured both the expression and activity of COX and 

LOX enzymes (Figure 10). COX-1 is constitutively expressed and is responsible for 

housekeeping prostaglandin synthesis, and its mRNA levels were similar in sense and 

antisense cells. Conversely, both COX-2 and 5-LOX were markedly overexpressed in 

antisense cells and this was accompanied by increased production of PGE2 and LTB4 in 

antisense cells compared to sense cells. That the pathways leading to the synthesis of 

 

 

 

 

 

Figure 10: A. Relative mRNA expression of eicosanoid synthesis enzymes in 16HBE 

cells. RNA was extracted and cDNA synthesized from sense and antisense cells as 

described in the experimental procedures. qRT-PCR was performed using primers for the 

mRNA sequences of cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and 5-

lipoxygenase (LOX-5). Relative expression was determined by the ΔΔCT method using 

ribosomal protein RPLP0 as a control. Both COX-2 and 5-LOX expression levels were 

significantly increased in antisense cells compared to sense cells. B. Eicosanoid 

production. Prostaglandin E2 (PGE2) and Leukotriene B4 (LTB4) concentrations were 

measured in culture media from sense and antisense cells by ELISA. Results are 

expressed as total media eicosanoid per 10
6
 cells. PGE2 and LTB4 production was 

significantly higher in antisense cells. Bars represent mean ± SEM (n = 3). ** P< 0.01,           

*** P<0.001 for sense vs. antisense cells. 
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eicosanoids from AA and EPA are increased in antisense cells suggests that perhaps these 

pathways divert some of the substrate available for metabolism to 22:5n-6 and DHA.    

 Since PGE2 levels were increased in antisense cells, we decided to measure the 

expression levels of the corresponding PGE2 receptors. PGE2 exerts its actions by acting 

on specific G-protein coupled receptors including EP1, EP2, EP3 and EP4 receptors 

[113]. The mRNA expression levels of the EP2 receptor were greatly upregulated in 

antisense cells compared to sense cells (Figure 11). EP2 is linked to stimulation of cAMP 

and PKA signaling through activation of Gαs and its overexpression in CF cells may help 

promote the inflammatory actions of PGE2.  

 

 

 

Figure 11: Relative mRNA expression of PGE2 receptor subtypes in 16HBE cells. 
RNA was extracted and cDNA synthesized from sense and antisense cells as described in 

the experimental procedures. qRT-PCR was performed using commercially available 

Taqman primers (Applied Biosystems) for the EP1, EP2, EP3 and EP4 receptors. 
Relative expression was determined by the ΔΔCT method using ribosomal protein RPLP0 

as an invariant control. The EP2 receptor was the most differentially expressed, with 

much higher expression in antisense cells compared to sense cells. Bars represent mean ± 

SEM (n = 3). * P<0.05, ** P< 0.01, *** P<0.001 for sense vs. antisense cells. 
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To determine whether increased eicosanoid production was responsible for the 

decreased metabolism of AA and EPA to 22:5n-6 and DHA, we chose to inhibit 

prostaglandin synthesis in our cells and determine if this would normalize PUFA 

metabolism. Sense and antisense cells were treated with a COX-2 specific small molecule 

inhibitor known as NS-398 [114], or with an siRNA directed against COX-2 (Figure 12). 

 

 

 

 

Figure 12: Relative COX-2 mRNA expression in 16HBE cells following COX-2 

siRNA knockdown. RNA was extracted and cDNA synthesized from sense and 

antisense cells (control, treated with a scrambled siRNA) along with antisense cells 

treated with an siRNA directed against COX-2 as described in the experimental 

procedures. qRT-PCR was performed using primers for the mRNA sequences of 

cyclooxygenase-2 (COX-2). Relative expression was determined by the ΔΔCT method 

using ribosomal protein RPLP0 as a control. The COX-2 siRNA treatment was very 

effective and reduced COX-2 mRNA expression in the antisense cells to sense levels.  

Bars represent mean ± SEM (n = 3), *** P<0.001. 
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 Metabolism of 
14

C radiolabeled AA to downstream fatty acids was then 

measured. Neither COX-2 inhibition nor knockdown had any effect on AA to 22:5n-6 

metabolism, which remained decreased in antisense cells compared to sense cells (Figure 

13). Additionally, COX-2 inhibition did not attenuate the difference in metabolism of 

14
C-EPA to DHA (Figure 14) or 

14
C-LA to AA (data not shown) between sense and 

antisense cells. To determine whether the expression levels of the metabolic enzymes 

correlated with the observed PUFA metabolism, we measured desaturase mRNA 

expression following COX-2 inhibition. Both Δ5 and Δ6-desaturase remained 

overexpressed in antisense cells compared to sense cells even after inhibition of 

prostaglandin synthesis (Figure 15).  
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Figure 13: Metabolism of AA through the n-6 pathway in 16HBE cells following 

COX-2 inhibition. Sense and antisense cells were treated with vehicle (control), COX-2 

inhibitor (10 uM NS-398) or COX-2 siRNA, and then incubated with 4.1 μM [
14

C] AA in 

reduced-lipid cell culture medium for 4 h as described in the experimental procedures. 

Levels of radiolabeled AA (20:4n-6), 22:4n-6 and 22:5n-6 were determined by HPLC 

and data presented as percent of total counts (cpm). Conversion of AA to downstream 

fatty acids was decreased in the control antisense (CF) cells compared to sense (WT) 

cells, and this was unchanged by COX-2 chemical inhibition or siRNA knockdown. Bars 

represent mean ± SEM (n = 3).  
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Figure 14: Metabolism of EPA through the n-3 pathway in 16HBE cells following 

COX-2 inhibition. Sense and antisense cells were treated with vehicle (control) or COX-

2 inhibitor (10 uM NS-398), and then incubated with 4.1 μM [
14

C] EPA in reduced-lipid 

cell culture medium for 4 h as described in the experimental procedures. Levels of 

radiolabeled EPA (20:5n-3), 22:5n-3, 24:5n-3, 24:6n-3 and DHA (22:6n-3) were 

determined by HPLC and data presented as percent of total counts (cpm). Conversion of 

EPA to downstream fatty acids was decreased in the control antisense (CF) cells 

compared to sense (WT) cells, and this was unchanged by COX-2 chemical inhibition. 

Bars represent mean ± SEM (n = 3).  
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Figure 15: Relative mRNA expression of Δ5 and Δ6-desaturase enzymes in 16HBE 

cells following COX-2 inhibition. RNA was extracted and cDNA synthesized from 

sense and antisense cells treated with vehicle (control), 10 uM NS-398 or COX-2 siRNA 

as described in the experimental procedures. qRT-PCR was performed using primers for 

the mRNA sequences of Δ5-desaturase (FADS1) and Δ6-desaturase (FADS2). Relative 

expression was determined by the ΔΔCT method using ribosomal protein RPLP0 as a 

control. Both Δ5-desaturase and Δ6-desaturase expression levels were significantly 

increased in antisense (CF) cells compared to sense (WT) cells, even after COX-2 

inhibition or knockdown. Bars represent mean ± SEM (n = 3). * P<0.05, ** P< 0.01 for 

sense vs. antisense cells. n.s (not significant).  
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To complement our in vitro cell culture experiments, we studied PUFA 

metabolism in a well-characterized CF knockout mouse model. This model (cftr
tm1Unc

) 

was developed by introducing a stop codon in exon 10 of CFTR, thus disrupting the gene 

[115]. These mice share many features with human CF patients including failure to 

thrive, intestinal obstruction, small intestine bacterial overgrowth [90] and altered 

gastrointestinal motility [116], making them an appropriate model to use. Failure to 

thrive, indicated by consistently lower body weight and higher post-natal mortality, was 

noted in our CF knockout mice, compared to WT mice (Figure 16).  

 

 

 

 

 

Figure 16: Total body weight and percent survival in cftr
tm1Unc

 mice. CF mice 

weighed less than WT mice throughout the course of the study, indicative of failure to 

thrive. Additionally, CF mice had higher mortality rates within the first few days post-

weaning compared to WT mice.  
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To examine if PUFA abnormalities existed in the CF mice, fatty acids were 

extracted and methylated from organs clinically affected in CF as well as from organs not 

affected in CF, and analyzed by GC-MS as described in the experimental procedures. 

Fatty acid alterations including decreased LA and DHA, and increased AA were found 

specifically in CF-related organs such as the lung, pancreas and ileum of CF mice (Table 

2). This correlated with increased metabolism of LA to AA in these organs, as evidenced 

by the higher AA / LA ratios, and corresponded to increased mRNA expression of Δ5 

and Δ6-desaturase and elovl5 enzymes in CF mice compared to WT (Figure 17).  

Further evidence that these PUFA alterations were caused by upregulation of PUFA 

metabolic enzymes was found in organs not commonly affected in CF such as the heart, 

kidney and liver. There was no difference in desaturase and elongase expression between 

WT and CF mice in these organs (Figure 18), and consequently PUFA levels were 

similar in WT and CF mice (Table 3). This suggests that PUFA abnormalities in CF are 

indeed associated with increased expression and activity of desaturase and elongase 

enzymes, and confirms the results from our two in vitro cell culture models. Moreover, it 

suggests that the PUFA abnormalities in CF mice may be related to loss of CFTR 

function since they occur specifically in organs that contain high levels of CFTR-

expressing cells. 
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Table 2: Total fatty acid levels in the lung, ileum and pancreas of WT versus CF 

mice 

 

 Lung Ileum Pancreas 

 WT CF WT CF WT CF 

Saturated       

  14:0 2.34±0.12 2.29±0.15 1.11±0.07 0.84±0.12 1.07±0.07 0.74±0.06 

  16:0 30.12±0.62 31.16±0.36 22.20±0.33 19.66±0.06 28.65±0.32 27.45±0.31 

  18:0 13.67±0.25 15.51±1.03 15.38±0.60 21.16±1.18
*
 15.04±0.38 17.04±0.29

*
 

  20:0 0.19±0.01 0.20±0.01 0.19±0.01 0.35±0.05 0.08±0.00 0.09±0.00 

  22:0 0.19±0.02 0.18±0.02 0.15±0.02 0.39±0.10 0.04±0.00 0.05±0.01 

n-3       

  18:3 0.25±0.02 0.25±0.08 0.85±0.19 0.47±0.09 0.32±0.02 0.22±0.02 

  20:3 0.01±0.00 0.02±0.01 n.d. n.d. 0.02±0.00 0.01±0.00 

  20:5 0.21±0.02 0.15±0.02 0.48±0.03 0.58±0.06 1.18±0.04 1.05±0.11 

  22:5 1.29±0.09 1.18±0.10 0.25±0.03 0.33±0.07 0.73±0.01 0.72±0.03 

  22:6 4.32±0.17 2.24±0.14
*
 4.01±0.13 2.06±0.14

*
 3.00±0.08 1.40±0.05

*
 

n-6       

  18:2 8.77±0.72 5.45±0.13
*
 18.95±0.18 15.64±0.53

*
 17.38±0.12 13.69±0.28

*
 

  20:2 0.32±0.05 0.43±0.08 0.28±0.04 0.30±0.10 0.34±0.02 0.46±0.08 

  18:3 0.27±0.02 0.20±0.04 0.22±0.02 0.24±0.01 0.21±0.01 0.32±0.05 

  20:3 1.39±0.09 1.25±0.16 2.03±0.26 2.88±0.13 1.56±0.04 2.20±0.32 

  20:4 7.73±0.30 11.06±0.25
*
 5.56±0.08 9.65±0.50

*
 10.94±0.29 14.91±0.50

*
 

  22:4 2.09±0.14 2.30±0.32 0.34±0.05 0.59±0.07 0.38±0.01 0.53±0.05 

  22:5 0.32±0.02 0.47±0.08 0.09±0.01 0.16±0.02 0.28±0.01 0.44±0.05 

n-7       

  16:1 4.59±0.47 5.72±0.66 4.60±0.27 2.72±0.23
*
 2.97±0.22 1.82±0.22 

  18:1 4.32±0.57 2.74±0.07 4.34±0.37 6.78±0.92 2.95±0.06 3.47±0.09
*
 

  20:1 0.03±0.01 0.04±0.01 0.12±0.02 0.41±0.04 0.04±0.00 0.03±0.00 

n-9       

  18:1 16.79±0.44 16.41±1.35 18.12±0.57 14.11±0.55
*
 12.27±0.37 12.77±0.39 

  20:1 0.48±0.01 0.45±0.04 0.41±0.04 0.41±0.04 0.22±0.01 0.23±0.02 

  22:1 0.18±0.01 0.20±0.03 0.12±0.02 0.24±0.04 0.04±0.00 0.07±0.02 

  20:3 0.13±0.02 0.10±0.02 0.20±0.02 0.29±0.03 0.29±0.06 0.29±0.09 
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Figure 17: A. LA to AA metabolism in CF-related organs of cftr
tm1Unc

 mice. 

Increased metabolism of LA to AA was observed in the lung, pancreas and ileum of CF 

mice compared to WT mice. B. Relative mRNA expression of PUFA metabolic 

enzymes in lung and ileum of cftr
tm1Unc

 mice. RNA was extracted and cDNA 

synthesized from the lung and ileum of WT and CF mice as described in the experimental 

procedures. qRT-PCR was performed using commercial Taqman probes for the mRNA 

sequences of Δ5-desaturase (D5D),  Δ6-desaturase (D6D) and elongase 5 (EL5) . 

Relative expression was determined by the ΔΔCT method using GAPDH as a control. 

Consistent with the increased LA to AA metabolism, Δ5-desaturase, Δ6-desaturase and 

elongase 5 mRNA expression levels were increased in the lung and ileum of CF mice 

compared to WT mice. The expression levels of these enzymes was not studied in the 

pancreas due to insufficient amount of tissue for RNA extraction. Bars represent mean ± 

SEM (n = 6 or 7 mice). 
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Table 3: Total fatty acid levels in the liver, heart and kidney of WT versus CF mice 

 Liver Heart Kidney 

 WT CF WT CF WT CF 

Saturated       

  14:0 0.73±0.11 0.95±0.21 0.68±0.08 0.64±0.13 0.75±0.05 0.74±0.16 

  16:0 23.53±0.22 23.90±1.05 17.42±0.43 16.72±0.87 23.19±0.46 23.05±0.94 

  18:0 11.80±0.53 12.54±1.40 17.88±0.32 19.06±0.69 14.96±0.26 15.80±0.57 

  20:0 0.18±0.03 0.04±0.00
*
 0.15±0.01 0.11±0.01 0.20±0.01 0.19±0.01 

  22:0 n.d. n.d. 0.05±0.01 0.04±0.00 0.05±0.00 0.05±0.00 

n-3       

  18:3 0.73±0.08 0.67±0.11 0.32±0.03 0.23±0.05 0.30±0.03 0.27±0.04 

  20:3 0.04±0.00 0.04±0.00 0.02±0.00 0.03±0.00 0.03±0.01 0.06±0.01 

  20:5 0.49±0.02 0.38±0.03 0.11±0.00 0.09±0.01 0.38±0.02 0.39±0.05 

  22:5 0.45±0.01 0.55±0.14 1.65±0.09 1.46±0.11 1.23±0.07 0.75±0.09
*
 

  22:6 8.20±0.72 8.94±1.14 16.43±0.97 18.89±1.44 15.40±0.26 12.65±0.84 

n-6       

  18:2 14.15±0.39 13.94±0.42 15.38±0.48 14.62±0.42 10.21±0.13 10.62±0.39 

  20:2 0.21±0.01 0.27±0.02 0.50±0.02 0.64±0.10 0.57±0.02 0.63±0.05 

  18:3 0.33±0.02 0.27±0.03 0.20±0.01 0.15±0.01
*
 0.15±0.01 0.12±0.01 

  20:3 1.65±0.09 1.21±0.11 1.27±0.06 1.04±0.06 1.54±0.09 1.10±0.07 

  20:4 9.29±0.72 10.85±1.60 8.97±0.26 9.75±0.48 14.37±0.37 16.52±0.97 

  22:4 0.20±0.01 0.34±0.05 0.57±0.02 0.67±0.03 0.42±0.02 0.46±0.05 

  22:5 0.19±0.01 0.32±0.04 1.04±0.06 1.40±0.13 0.44±0.03 0.41±0.04 

n-7       

  16:1 4.23±0.33 3.63±0.70 1.51±0.28 1.22±.046 1.88±0.21 1.82±0.44 

  18:1 2.76±0.12 2.60±0.19 3.45±0.06 3.41±0.09 2.88±0.04 3.00±0.02 

  20:1 0.09±0.01 0.03±0.01
*
 0.10±0.01 0.06±0.01 0.08±0.01 0.05±0.01

*
 

n-9       

  18:1 20.12±1.33 18.00±2.53 11.67±0.78 9.27±1.20 10.55±0.46 10.92±0.83 

  20:1 0.40±0.03 0.32±0.05 0.40±0.01 0.31±0.03 0.28±0.01 0.27±0.02 

  22:1 0.03±0.00 0.02±0.00 0.07±0.01 0.05±0.01 0.04±0.01 0.04±0.01 

  20:3 0.20±0.01 0.18±0.02 0.16±0.01 0.12±0.03 0.11±0.02 0.09±0.01 
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Figure 18: LA to AA metabolism in non CF-related organs and the corresponding 

PUFA metabolic enzyme expression in cftr
tm1Unc

 mice. Total LA and AA levels were 

measured in the liver, heart and kidney of WT and CF mice by GC-MS as described in 

the experimental procedures. There was no significant difference in the levels of these 

fatty acids in WT or CF mice. Relative mRNA expression of the enzymes involved in the 

metabolism of LA to AA was measured by qRT-PCR using commercial Taqman probes 

for the mRNA sequences of Δ5-desaturase (D5D) and Δ6-desaturase (D6D). Relative 

expression was determined by the ΔΔCT method using GAPDH as a control. In each of 

the three organs examined, the expression levels of both Δ5 and Δ6-desaturase were 

similar in WT and CF mice. Bars represent mean ± SEM (n = 6 or 7 mice). 
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In addition to the classic PUFA alterations, changes in the levels of certain 

saturated and monounsaturated fatty acids were observed in CF mice compared to WT 

mice. The levels of 18:0 were higher in the ileum and pancreas of CF mice, leading to 

higher 18:0 to 16:0 ratios (Figure 19). 18:1n-7 was also increased in CF pancreas and 

ileum, although the increase was only statistically significant in the pancreas (Table 2). 

This suggests that the activity of elongase 6, which is the enzyme responsible for these 

reactions, is increased in the ileum and pancreas of CF mice. Conversely, the ratios of 

16:1n-7 to 16:0 and 18:1n-9 to 18:0 were decreased in the ileum of CF mice, suggesting a 

decrease in the expression and activity of Δ9-desaturase.  

 

 

Figure 19: Metabolism of saturated and monounsaturated fatty acids in the lung, ileum 

and pancreas of cftrtm1Unc mice. Increased metabolism of 16:0 to 18:0, and  16:1n-7 to 

18:1n-7, was observed in the ileum and pancreas of CF mice, suggesting increased elovl6 

activity. Metabolism of 16:0 to 16:1n-7 was decreased in the ileum and pancreas of CF mice, 

while 18:0 to 18:1n-9 metabolism was decreased in the CF ileum, indicating decreased Δ9-

desaturase activity. No significant differences in saturated or monounsaturated fatty acids 

were detected in the lung of CF mice compared to WT mice. Data are expressed as mean ± 

SEM (n = 6 or 7 mice). 
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Analogous to CF bronchial epithelial cells in culture, lung epithelial cells from CF 

mice showed elevated expression levels of COX-2 and 5-LOX. Moreover, the mRNA 

expression of microsomal prostaglandin E2 synthase-1 (mPGES-1) was upregulated in the 

lungs of CF mice compared to WT (Figure 20). mPGES-1 is an inducible terminal 

prostaglandin synthase that works in concert with COX-2 to produce inflammatory PGE2. 

The fact that the expression of these enzymes is increased points to the possibility of 

increased inflammation in the lungs of CF mice. On the other hand, the mRNA 

expression of COX-2, 5-LOX and mPGES-1 did not differ between WT and CF mice in 

organs unaffected by CF including heart and liver (Figure 20). In fact, 5-LOX expression 

in heart tissue of CF mice was downregulated compared to WT mice while in the liver, 

mPGES-1 expression was lower in CF than in WT mice. This suggests that the 

production of pro-inflammatory mediators may be increased in CF mice, and specifically 

in CF-related organs that exhibit the characteristic PUFA abnormalities.   
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Figure 20: Relative mRNA expression of eicosanoid synthesis enzymes in cftr
tm1Unc

 

mice. RNA was extracted and cDNA synthesized from the lung, heart and liver of WT 

and CF mice as described in the experimental procedures. qRT-PCR was performed 

using commercial Taqman probes for the mRNA sequences of cyclooxygenase-2     

(COX-2), 5-lipoxygenase (5-LOX) and microsomal PGE2 synthase-1 (mPGES-1). 

Relative expression was determined by the ΔΔCT method using GAPDH as a control. 

COX-2, 5-LOX and mPGES-1 were all significantly overexpressed in the lungs of CF 

mice compared to WT mice. The expression levels of these enzymes was either similar or 

decreased in the heart and liver of CF mice compared to WT. Bars represent mean ± 

SEM (n = 6 or 7 mice). 
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Discussion 

Mechanisms of PUFA alterations in CF 

It is widely established that there are decreased levels of LA and DHA, and 

increased levels of AA in blood and tissue of CF patients, as well as in CF experimental 

models [8-16]. These fatty acid alterations are independent of nutritional status, and are 

consistent enough such that plasma fatty acid measurements can be used to differentiate 

CF versus non-CF patients [85]. Although PUFA abnormalities have been well studied 

and documented in the CF literature, the underlying mechanisms responsible for the 

PUFA changes are unknown. In this chapter, we show that these changes are caused by 

increased expression and activity of the enzymes that metabolize PUFAs, including Δ5 

and Δ6-desaturase. Increased expression and activity of both Δ5 and Δ6-desaturase 

consume LA in its conversion to AA, leading to the lower LA and increased AA levels 

seen in CF. These findings have been confirmed in two different CF cell culture models 

(16HBE sense and antisense cells in which CFTR expression is modulated by expression 

of a sense or antisense transgene; and IB3 and C38 cells derived from a CF patient with 

the common ΔF508 mutation) and in vivo in the cftr
tm1Unc

 knockout mouse model. In CF 

mice, PUFA abnormalities are found specifically in the organs most affected by CF 

including lung, pancreas and ileum and they correspond to higher desaturase and 

elongase expression (Figure 17). Moreover in organs that express little or no cftr protein 

such as heart, kidney and liver, the mRNA expression of Δ5 and Δ6-desaturase is similar 

in WT and CF mice (Figure 18). Consequently, there are no differences in PUFA levels 

in these organs. This further proves that the fatty acid alterations commonly found in CF 

result from dysregulation of PUFA metabolic enzymes.  
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Through our systematic, parallel comparison of the n-6 and n-3 metabolic 

pathways (Figure 5), we illustrate that metabolism from LA to AA and from LNA to EPA 

is increased in CF cells. The fact that the early metabolic steps in the n-3 pathway are 

upregulated excludes relatively decreased activity of the entire n-3 pathway as an 

explanation for the low DHA levels in CF. However, our experiments demonstrate that 

the later steps of PUFA metabolism from AA to 22:5n-6 and from EPA to DHA are 

significantly decreased in CF (Figure 6). While this may account for the low levels of 

DHA observed in CF, it cannot be explained by the PUFA desaturase and elongase 

expression profiles. The enzymes involved in metabolism in this lower part of the 

pathway are elovl2, elovl5 and Δ6-desaturase (Figure 1). Both elovl2 and 5 are expressed 

at similar levels in WT and CF cells, while Δ6-desaturase is upregulated in CF cells. 

Based on the enzyme expression levels we might expect to see higher DHA levels in CF 

and yet this is not the case.   

To further assess the step at which metabolism from EPA to DHA is altered in 

CF, we studied metabolism of the fatty acid immediately downstream of EPA, 22:5n-3, to 

DHA. The overall metabolism of 22:5n-3 to DHA was equivalent in sense and antisense 

cells (Figure 8), suggesting that the decreased metabolism of EPA to DHA occurs at the 

EPA to 22:5n-3 step. In addition to EPA and AA serving as substrates that can be 

metabolized to longer, more desaturated PUFAs, they can also be metabolized to 

eicosanoids. Thus, we hypothesized that a portion of EPA and AA is diverted towards 

eicosanoid synthesis, reducing the amount of substrate to be converted to DHA and 

22:5n-6. If this pathway leading to eicosanoid biosynthesis is upregulated in CF, that 

could explain why DHA levels are so low. Consistent with this hypothesis, we found that 



53 

 

the enzymes involved in eicosanoid synthesis, COX-2 and 5-LOX, were greatly 

overexpressed in the antisense cells and CF mice (Figures 10 and 20), leading to 

increased production of PGE2 and LTB4 in antisense cells. Furthermore, we observed that 

there was no difference in COX-2 and 5-LOX mRNA levels in the IB3 and C38 cell line 

(data not shown), and this correlated with no difference in DHA levels between IB3 and 

C38 cells. These results suggest a link between increased eicosanoid synthesis and 

decreased metabolism of AA and EPA. We chose to investigate this link and examine the 

effect of modulating eicosanoid synthesis on PUFA metabolism. Prostaglandin synthesis 

was blocked in our cells using either a COX-2 specific inhibitor or a COX-2 siRNA. 

Contrary to the hypothesis, we found that COX-2 inhibition did not correct the decreased 

metabolism of AA and EPA to 22:5n-6 and DHA in antisense cells (Figures 13 and 14). 

It is possible that the AA and EPA that is processed to eicosanoids is in a different 

metabolically active pool than the 
14

C radiolabeled AA and EPA that gets metabolized to 

longer, more desaturated PUFAs. If this is the case, then although inhibition of COX-2 

may have an effect on AA and EPA metabolism, it may not be observed because the fatty 

acids are in the “wrong” fatty acid pools for metabolism to eicosanoids. Alternatively, it 

is possible that COX-2 inhibition has no effect on PUFA metabolism, as some studies 

report that only a small percentage (<5%) of AA and EPA is actually converted to 

eicosanoids upon agonist stimulation [117]. Future studies designed to distinguish the 

different metabolically active pools of AA and EPA are needed to determine whether 

overproduction of eicosanoids contributes to the low levels of DHA in CF. 
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Role of PUFA alterations in CF pathophysiology 

Several studies indicate that the degree of PUFA alterations in CF correlates with 

disease severity [21- 22, 118]. Moreover, it has been reported that correcting the PUFA 

imbalances in a CF knockout mouse model can reverse some of the pathologic 

manifestations of disease [13, 14]. These findings imply that PUFA alterations play a key 

role in CF pathophysiology. One of the common PUFA changes present in CF is 

increased AA levels. In our studies, we show that the increased AA, coupled with 

increased expression and activity of COX-2 and 5-LOX results in increased production of 

pro-inflammatory PGE2 and LTB4 in CF cells (Figure 21). Additionally, expression of the 

EP2 receptor is upregulated in CF cells, which could facilitate the inflammatory actions 

of PGE2. In CF mice, we show that AA is increased in CF-related organs such as the 

lung, and that this is accompanied by increased COX-2, mPGES-1 and 5-LOX 

expression. This points towards increased production of PGE2 and LTB4 in the organs 

most affected in CF. We believe that the increased concentration of pro-inflammatory 

eicosanoids can contribute to CF development as these eicosanoids regulate numerous of 

the physiologic processes that lead to CF, including secretion, gut motility and 

inflammation. Elevated prostaglandin levels contribute to excessive mucus secretion 

[119], which is a hallmark of CF. This creates an environment that fosters abnormal 

bacterial overgrowth and alters gut function. In addition, increased PGE2 levels are 

thought to cause uncoordinated smooth muscle contractions, leading to intestinal 

dysmotility [120-122]. Eicosanoids are also involved in the regulation of inflammation, 

which plays a vital role in CF disease. Early in life, CF patients begin to exhibit 

exaggerated inflammatory profiles, particularly in the lungs [123-125]. Over the course 
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of time, these responses become more persistent and eventually lead to a decline in 

pulmonary function, destruction of lung tissue and respiratory failure. The increased 

conversion of AA to pro-inflammatory eicosanoids may also be responsible for 

stimulating increased metabolism of LA to maintain AA levels, leading to the decreased 

LA and increased AA seen in CF. 

Decreased DHA is another PUFA abnormality found in CF. DHA can be 

metabolized to potent anti-inflammatory mediators (Figure 9) [126]. That DHA levels are 

low in CF means there is less initial substrate to be metabolized into resolvins and 

protectins and this can further shift the inflammatory balance towards a more pro-

inflammatory state and contribute to CF pathogenesis. Additionally, DHA levels can 

influence the eicosanoid profile in CF because DHA competes with pro-inflammatory 

AA for esterification at the sn-2 position of phospholipids. In this way, DHA can act as 

an anti-inflammatory agent by downregulating the levels of phospholipid-bound AA. We 

show that DHA levels are significantly decreased in cultured CF cells as well as in CF-

related organs of CF mice compared to WT mice (Table 2). Further experiments are 

needed to determine the levels of anti-inflammatory eicosanoids synthesized from AA, 

and the levels of DHA-derived resolvins and protectins in CF versus WT mice, in order 

to verify whether these fatty acid abnormalities really do contribute to inflammation in 

CF. Experiments to test the effect of exogenous resolvin or protectin treatment, as well as 

COX-2 and 5-LOX inhibition, on the pathogenesis of CF in our mouse model would also 

help to answer these questions. 
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Figure 21: Diagram of polyunsaturated fatty acid and eicosanoid changes in CF. 

Increased expression and activity of Δ5 and Δ6-desaturase enzymes leads to increased 

metabolism of LA to AA in CF (dark arrows indicate increased metabolism while light 

arrows indicate decreased metabolism). This increase in AA levels, coupled with 

increased expression and activity of COX-2, mPGES-1 and 5-LOX, leads to increased 

synthesis of pro-inflammatory PGE2 and LTB4. This in turn promotes excessive mucus 

secretion, bacterial overgrowth and increased inflammation, all of which are hallmarks of 

CF disease. In addition, metabolism of EPA to DHA is decreased in CF, leading to low 

levels of DHA. This results in less substrate available for conversion to anti-

inflammatory resolvins and protectins, as well as less DHA available to compete with AA 

for phospholipid esterification. Taken together, the above PUFA and eicosanoid 

alterations contribute to increased inflammation in CF, and may play an important role in 

CF pathophysiology. 

 

 

 

 

 

 



57 

 

CHAPTER III 

 

EFFECT OF DHA AND EPA SUPPLEMENTATION ON PUFA 

METABOLISM AND THE PATHOGENESIS OF CYSTIC FIBROSIS  

 

Introduction 

DHA deficiency has been suggested to contribute to the pathophysiology of CF 

partly because supplementing CF mice with large amounts of DHA leads to reversal of 

CF-related pathology, including relief of pancreatic duct dilation, decrease in stimulated 

neutrophil accumulation into BAL fluid and normalization of ileal histology. DHA 

supplementation also corrects the fatty acid abnormalities in lung, pancreas and intestine 

tissue of CF mice [13]. In the same study, the authors show that this beneficial effect is 

only apparent when the mouse diet is enriched with DHA and not other PUFAs such as 

EPA or LNA. Therefore it is possible that certain phenotypic manifestations of CF result 

from decreased levels of DHA, and that rectifying this by increasing DHA levels and 

decreasing AA levels leads to normalization of CF phenotype. Nevertheless, the 

mechanism through which DHA corrects CF fatty acid abnormalities and ultimately 

reverses the CF phenotype in cftr
-/-

 mice remains unknown.  Additionally, it is unclear 

whether other fatty acids besides DHA can elicit a similar therapeutic effect.  

The aim of the experiments described in this chapter was to investigate potential 

mechanisms by which DHA might correct PUFA alterations in CF and reverse the CF 

phenotype, and compare this effect to that of other PUFAs. We examined the effect of 

DHA supplementation on PUFA metabolism in 16HBE cells. The effect of additional 

fatty acids including EPA, AA, LNA, a monounsaturated fatty acid, oleic acid (OA) and a 
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saturated fatty acid, palmitic acid (PA) were also tested. To address the in vivo 

mechanism of DHA function, we studied the effect of DHA and EPA supplementation on 

PUFA metabolism and CF pathology in cftr
tm1Unc

 mice. In these experiments, the mouse 

diet was enriched with DHA in free fatty acid (FFA) form or as a triglyceride (TG) in 

combination with EPA. 

 

Experimental Procedures 

Fatty acid supplementation 

16HBE sense (WT) and antisense (CF) cells were seeded onto 6-well plates at a 

density of 3×10
5
 and 1×10

5
 cells/well respectively. The cells were grown until confluent, 

then supplemented with 0, 5, 10 or 20 µM fatty acid for 24 h. The fatty acids used for 

supplementation included FFA DHA, EPA, AA, LNA, OA and PA. To prepare the 

supplementation media, the FFAs were placed in a glass tube and dried down completely 

under nitrogen gas. The dried fatty acids were then resuspended in media containing 10% 

reduced-lipid fetal bovine serum by vortexing and sonication, and added to the cells. 

After 24 h incubation with or without fatty acid supplementation, the cells were 

harvested, lipids extracted and methylated and fatty acid composition analyzed by GC-

MS. In addition, total RNA was isolated from fatty acid supplemented cells and qRT-

PCR used to assess the expression levels of PUFA metabolic enzymes using the primers 

shown in Table 1. Fatty acid radiolabeling experiments were also performed in cells 

following FFA supplementation. In these studies, after 24 h fatty acid supplementation, 

16HBE cells were incubated with 4.1µM 
14

C-LA, 
14

C-LNA, 
14

C-AA or 
14

C-EPA for 4h 

and then harvested. Metabolism of the radiolabeled fatty acids was analyzed by HPLC 
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coupled to a β-RAM scintillation detector. The methods used for fatty acid extraction, 

methylation, HPLC or GC-MS analysis and qRT-PCR are outlined in the previous 

chapter.  

 

Mice 

Cftr
tm1Unc

 WT and CF mice were weaned at 23 days of age and placed on one of 

the two fatty acid supplementation diets described below: 

Diet 1: Peptamen + DHA diet (n = 6 or 7 per group). After weaning, the mice were 

maintained on Peptamen (Nestle Clinical Nutrition, Deerfield, IL) and had access to 

water ad libitum for seven days. On day 30, the mice were continued on the Peptamen 

diet with or without 40 mg per day of FFA DHA, prepared as a stable emulsion in 

Peptamen. The mice were maintained on the Peptamen + DHA diet for seven days and 

then sacrificed.  

Diet 2: Peptamen AF diet (n = 6 or 7 per group). After weaning, the mice were placed on 

either the Peptamen diet (control) or on a variation of Peptamen containing a combination 

of TG DHA and EPA (Peptamen Advanced Formulation, AF) (Nestle Clinical Nutrition, 

Deerfield, IL) for 14 days then sacrificed.  

WT and CF mice were housed individually to ensure each mouse received the 

correct dosage of the fatty acid supplement. Fresh peptamen was provided daily, at which 

time the weight of the mice as well as the volume of Peptamen consumed was measured. 

Mice were sacrificed two weeks post-weaning and various organs as well as plasma 

collected for fatty acid and gene expression analysis as described in the previous chapter. 
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 Histopathology  

 For sample preparation, lung and ileum tissues were submerged in 10% neutral 

buffered formalin and fixed overnight. The tissues were processed routinely, embedded 

in paraffin, sectioned at 4 microns, and stained with hematoxylin and eosin. Slides were 

evaluated on an Olympus BX41 microscope by a pathologist blinded to the composition 

of the treatment groups. To analyze impaction of paneth cell secretions in the intestinal 

villi, the slides were scanned on an Aperio Scanscope CS2 (Aperio, Vista, CA) and 

scored according to the following criteria: 

0 - no impaction of secretory products in the crypts 

1 - impacted secretory material in the deep portion of the crypts in <10% of the crypts 

2 - impaction of secretory material in the deep portion of the crypts in 10-30% of crypts, 

with rare accumulation of material in the bottom third of the villus 

3 - impaction of secretory material in 30-70% of the crypts, with accumulation of 

material commonly observed up to the top third of the crypt 

4 - impaction of secretory material in >70% of the crypts, with frequent dilation of the 

crypts and presence of material in the top third of the villus 

Additionally, periodic acid schiff staining was performed to identify goblet cells in the 

small intestine. The presence (marked, moderate or mild), or absence of goblet cell 

hyperplasia was recorded. 
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Results 

16HBE sense (WT) and antisense (CF) cells were treated with 20 µM DHA for   

24 h and total fatty acid composition measured by GC-MS. The common PUFA 

alterations were present in untreated CF cells (Figure 22). These included decreased LA 

with increased 18:3n-6, 20:3n-6, AA and EPA, suggestive of increased metabolism of LA 

to AA and LNA to EPA. Levels of 22:4n-6, 22:5n-6 and DHA were also significantly 

decreased in CF cells compared to WT cells, indicating decreased metabolism in the later 

steps of the n-3 and n-6 pathways. The higher levels of 22:5n-3 observed in CF cells were 

likely explained by the fact that the initial substrate, EPA, was much higher in CF cells 

and not because of increased metabolism. Accordingly, the 22:5n-3/EPA ratio was 

markedly lower in CF cells than in WT cells (2.0 ± 0.03 versus 10.5 ± 0.6; P < 0.001). 

DHA-treatment caused an increase in DHA levels in both WT and CF cells, but more so 

in CF cells. Moreover, supplementing the cells with DHA led to a significant decrease in 

AA levels in CF cells, decreasing them to WT levels.  

To assess whether this change in AA levels was caused by decreased metabolism 

of LA to AA, DHA-treated cells were incubated with 
14

C-LA and metabolism of LA to 

AA measured (Figure 23A). DHA treatment caused a dose-dependent decrease in the 

production of radiolabeled AA, accompanied by a dose-dependent increase in LA. This 

was observed in both WT and CF cells, with a greater effect seen in CF cells and 

indicated that DHA could suppress the metabolism of LA to AA. Metabolism of 
14

C-

LNA to EPA was also decreased following DHA supplementation (Figure 23B).  
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Figure 22: Total fatty acid composition of 16HBE cells with or without DHA 

supplementation. WT and CF cells were incubated with or without 20 µM DHA for 24 

h, then harvested and total fatty acid composition measured by GC-MS as described in 

the experimental procedures. Individual fatty acid concentrations are expressed as molar 

percentage (mol %) of total fatty acids. Supplementation with DHA caused an increase in 

DHA levels in both WT and CF cells, as well as an increase in EPA levels specifically in 

CF cells. A significant decrease in AA levels was also noted in CF cells. Bars represent 

mean ± SEM (n = 3), and unlike letters indicate significant differences in pair-wise 

comparisons. 
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Figure 23: Metabolism of LA and LNA through the n-6 and n-3 pathways in 16HBE 

cells supplemented with DHA. WT and CF cells were supplemented with 0, 5, 10, or 20 

µM DHA for 24 h. Following DHA supplementation, the cells were incubated with 4.1 

µM 
14

C-LA (A) or 4.1 µM 
14

C-LNA (B) for 4 h and then harvested. Levels of 

radiolabeled LA and AA (A) or LNA and EPA (B) were determined by HPLC as 

described in the experimental procedures. Data are expressed as percentage of total 

counts (cpm). DHA supplementation suppressed metabolism of LA and LNA in WT and 

CF cells, but more so in CF cells. Each point represents mean ± SEM (n = 3). 
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DHA treatment did not correct the decreased metabolism of AA and EPA in CF 

cells. Instead it caused a minimal decline in the already low levels of 22:5n-6 (DPA) and 

DHA (Figure 24). Additionally, metabolism of 
14

C-AA to DPA was significantly reduced 

in WT cells, with the greatest effect seen after treatment with 20 µM DHA. 

 

 

Figure 24: Metabolism of AA and EPA through the n-6 and n-3 pathways in 16HBE 

cells supplemented with DHA. WT and CF cells were supplemented with 0, 5, 10, or 20 

µM DHA for 24 h. Following DHA supplementation, the cells were incubated with 4.1 

µM 
14

C-AA (A) or 4.1 µM 
14

C-EPA (B) for 4 h and then harvested. Levels of 

radiolabeled AA and DPA (A) or EPA and DHA (B) were determined by HPLC as 

described in the experimental procedures. Data are expressed as percentage of total 

counts (cpm). DHA supplementation caused a modest decline in AA and EPA 

metabolism in CF cells while metabolism of AA to DPA was drastically reduced in WT 

cells. Each point represents mean ± SEM (n = 3). 
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Unexpectedly, we observed that the levels of EPA increased significantly in CF, 

but not in WT cells following DHA treatment (Figure 22). In contrast, in the 

corresponding n-6 part of the pathway, levels of AA were decreased following DHA 

treatment. The change in EPA levels could not be explained by increased metabolism of 

LNA to EPA as this part of the pathway was suppressed by DHA treatment (Figure 23B). 

Previous reports have described a process known as DHA retroconversion whereby DHA 

is converted to EPA through a series of enzymatic reactions [127-129]. To determine 

whether DHA retroconversion was responsible for the increased EPA levels, we 

measured retroconversion in our cells [ΔEPA / (ΔEPA + ΔDHA)] and found that this 

process was 20X greater in CF than in WT cells.  

To investigate the specificity of the DHA effect, 16HBE cells were also 

supplemented with increasing concentrations of EPA and fatty acid composition and 

metabolism measured. EPA treatment led to an increase in EPA levels in both WT and 

CF cells, albeit more so in CF cells (Figure 25). This was accompanied by an increase in 

downstream metabolites of EPA including 22:5n-3 and DHA. However, these increases 

were more significant in WT compared to CF cells such that the levels of DHA remained 

lower in CF cells following EPA supplementation. EPA treatment also caused a decrease 

in AA levels in WT and CF cells. In terms of PUFA metabolism, EPA supplementation 

resulted in a dose-dependent decrease in conversion of 
14

C-LA to AA and 
14

C-LNA to 

EPA (Figure 26). This effect was greater in CF than in WT cells and was similar to what 

was observed following DHA treatment.  
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Figure 25: Total fatty acid composition of 16HBE cells with or without EPA 

supplementation. WT and CF cells were incubated with or without 20 µM EPA for 24 h, 

then harvested and total fatty acid composition measured by GC-MS as described in the 

experimental procedures. Individual fatty acid concentrations are expressed as molar 

percentage (mol %) of total fatty acids. Supplementation with EPA caused an increase in 

EPA levels in both WT and CF cells, as well as an increase in downstream metabolites of 

EPA including 22:5n-3 and DHA. A significant decrease in AA levels was also noted in 

both WT and CF cells. Bars represent mean ± SEM (n = 3), and unlike letters indicate 

significant differences in pair-wise comparisons. 
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Figure 26: Metabolism of LA and LNA through the n-6 and n-3 pathways in 16HBE 

cells supplemented with EPA. WT and CF cells were supplemented with 0, 5, 10, or 20 

µM EPA for 24 h. Following EPA supplementation, the cells were incubated with 4.1 

µM 
14

C-LA (A) or 4.1 µM 
14

C-LNA (B) for 4 h and then harvested. Levels of 

radiolabeled LA and AA (A) or LNA and EPA (B) were determined by HPLC as 

described in the experimental procedures. Data are expressed as percentage of total 

counts (cpm). EPA supplementation suppressed metabolism of LA and LNA in WT and 

CF cells, but more so in CF cells. Each point represents mean ± SEM (n = 3). 
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Metabolism of 
14

C-AA to 
14

C-DPA was significantly reduced in EPA-treated WT 

cells, with only a modest decrease observed in CF cells (Figure 27). The effect of EPA 

supplementation on metabolism of 
14

C-EPA to 
14

C-DHA appeared to be concentration-

dependent. Specifically, metabolism was increased in both WT and CF cells at low EPA 

concentrations (5 µM), but returned to baseline levels when the cells were supplemented 

with higher concentrations of EPA (20 µM). From these experiments, we concluded that 

there was little difference in the effect of DHA versus EPA on PUFA metabolism. The 

action of additional fatty acids (AA, LNA, OA and PA) on PUFA metabolism was tested. 

We discovered that AA and LNA supplementation had a similar effect on metabolism as 

DHA and EPA, but to a much lesser extent. In contrast, OA and PA did not have any 

effect on PUFA metabolism (data not shown). This suggests there is a hierarchy in terms 

of the effect of these fatty acids on PUFA metabolism. PUFAs such as DHA and EPA 

have the greatest ability to suppress LA to AA metabolism, followed by AA, LNA, OA 

and lastly, PA. This order [DHA and EPA > AA > LNA > OA > PA] implies that the 

effect of these fatty acids on PUFA metabolism may be regulated by the number of 

double bonds in the supplemented fatty acid. 

We postulated that the mechanism through which DHA and EPA affected PUFA 

metabolism in CF cells was by acting on the expression and/or activity of PUFA 

metabolic enzymes. The mRNA expression levels of Δ5 and Δ6 desaturase, elovl2 and 

elovl5 were measured in WT and CF cells after DHA and EPA supplementation. In the 

absence of DHA or EPA, the expression levels of both Δ5 and Δ6 desaturase were 

upregulated in CF cells (Figure 28A and B). However, as little as 5 µM DHA or EPA was 

sufficient to reduce desaturase expression in CF cells to the level of WT cells, while 
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elovl2 and 5 expression levels were either slightly decreased or unchanged (Figure 28C 

and D). AA and LNA supplementation also reduced the expression of the desaturase 

enzymes but to a lesser degree than DHA and EPA (for instance, AA and LNA reduced 

Δ6-desaturase mRNA by 48% and 45% respectively, whereas DHA and EPA reduced 

expression by 68% and 73% respectively), while OA and PA had no significant effect on 

desaturase expression (Figure 28E). Thus we established that the suppression of PUFA 

metabolism following DHA and EPA supplementation is attributable to downregulation 

of Δ5 and Δ6 desaturase gene expression.  

 

 

Figure 27: Metabolism of AA and EPA through the n-6 and n-3 pathways in 16HBE 

cells supplemented with EPA. WT and CF cells were supplemented with 0, 5, 10, or 20 

µM EPA for 24 h. Following EPA supplementation, the cells were incubated with 4.1 

µM 
14

C-AA (A) or 4.1 µM 
14

C-EPA (B) for 4 h and then harvested. Levels of 

radiolabeled AA and DPA (A) or EPA and DHA (B) were determined by HPLC as 

described in the experimental procedures. Data are expressed as percentage of total 

counts (cpm). EPA supplementation caused a minimal decline in AA and EPA 

metabolism in CF cells while metabolism of AA to DPA was significantly reduced in WT 

cells. Each point represents mean ± SEM (n = 3). 
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Figure 28: PUFA metabolic enzyme gene expression following DHA, EPA and PA 

supplementation. WT and CF cells were supplemented with 0, 5, 10 or 20 µM DHA (A-

D, left) or EPA (A-D, right) or 20 µM PA (E) for 24 h. Total RNA was isolated and 

cDNA synthesized from the cells as described in the experimental procedures. qRT-PCR 

was performed using primers for the mRNA sequences of Δ5-desaturase (FADS1), Δ6-

desaturase (FADS2), elongase 2 (ELOVL2), and elongase 5 (ELOVL5). Relative 

expression was determined by the ΔΔCT method using ribosomal protein RPLP0 as a 

control. Both DHA and EPA supplementation reduced the expression of desaturase genes 

in CF cells to WT levels. There was no significant effect on gene expression after PA 

supplementation. Data points represent mean ± SEM (n = 3). 
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In addition to our in vitro cell culture experiments, we studied the mechanism of 

DHA and EPA action on PUFA metabolism in the cftr
tm1Unc

 mouse model. Previous 

studies have shown that feeding CF mice a diet containing large amounts of FFA DHA 

can decrease AA and increase DHA levels in the mice [13]. We set out to investigate the 

mechanisms through which DHA worked to correct PUFA abnormalities in CF mice and 

reverse the CF phenotype. To minimize intestinal obstruction and maintain long-term 

viability, the mice were weaned onto a peptamen liquid diet. Peptamen served as the 

vehicle for fatty acid supplementation. In addition to FFA DHA (Peptamen + DHA), the 

cftr
tm1Unc

 mice were also supplemented with a combination of DHA and EPA in TG form 

(Peptamen AF). The main difference between the fatty acid composition of peptamen 

versus peptamen + DHA diet was the amount of DHA (0 % in peptamen, 32.5 % in 

peptamen + DHA). The peptamen AF diet contained much less DHA (3.8 %) than the 

peptamen + DHA diet, and it was the only diet out of the three that contained a 

significant amount of EPA (8.2 %) (Table 4). 

 

Table 4: Fatty acid composition of the different mouse liquid diets 

Feed Peptamen Peptamen + DHA Peptamen AF 

 mMol/mL Mol% mMol/mL Mol% mMol/mL Mol% 

14:0 0.82 2.5% 0.73 1.7% 2.24 6.2% 

16:0 5.22 16.1% 4.75 10.9% 5.81 16.0% 

18:0 2.26 7.0% 2.05 4.7% 2.23 6.1% 

18:3n-3 2.31 7.1% 2.14 4.9% 1.97 5.4% 

20:5n-3 n.d. n.d. n.d. n.d. 2.98 8.2% 

22:6n-3 n.d. n.d. 14.19 32.5% 1.38 3.8% 

18:2n-6 13.14 40.6% 12.12 27.5% 9.00 24.8% 

16:1n-7 0.21 0.6% 0.23 0.5% 1.79 4.9% 

18:1n-7 0.44 1.3% 0.40 0.9% 0.46 1.3% 

18:1n-9 7.50 23.2% 6.79 15.5% 7.11 19.6% 
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The cftr
tm1Unc

 mice on the peptamen + DHA diet received peptamen for one week 

post-weaning followed by a week of peptamen supplemented with 40 mg/day FFA DHA. 

The peptamen contained antioxidants including 3 mg of vitamin E and 34 mg of vitamin 

C per 100 mL, which helped to minimize oxidation of the FFA DHA in the diet. 

Alternatively, some mice were placed on the peptamen AF diet for two weeks post-

weaning then sacrificed. Fatty acid analysis was performed on cell preparations from the 

lung, pancreas and ileum, which are the principal organs clinically affected in CF. At 

baseline (peptamen diet), the characteristic PUFA alterations including decreased LA and 

DHA and increased AA were present in all three organs of CF mice (Figure 29). 

Supplementation with DHA led to a significant increase in DHA levels in both WT and 

CF mice such that the levels of DHA in the CF mice were at or above WT levels (Figure 

29). A > 50% decrease in AA levels was also observed in the CF mice, normalizing AA 

to WT levels. Additionally, a slight increase in LA levels was observed in CF mice 

following DHA supplementation. To ensure there was no difference in intestinal 

absorption of DHA, we measured plasma DHA levels in mice receiving the peptamen + 

DHA diet. The levels of DHA in plasma of WT and CF mice were comparable, 

signifying normal intestinal absorption in the CF mice (data not shown). Similar to DHA 

supplementation, peptamen AF reversed PUFA abnormalities in the lung, pancreas and 

ileum of CF mice. Administration of peptamen AF increased DHA levels in CF mice to 

WT levels, although the overall increase was less than with the peptamen + DHA diet 

(Figure 29). A reciprocal decrease in AA and increase in LA levels was also observed. 

From these experiments we concluded that peptamen AF worked just as well as 

peptamen + DHA to normalize PUFA abnormalities in CF mice.  
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Figure 29: Fatty acid composition of CF-related organs in cftr
tm1Unc

 mice fed 

peptamen, peptamen + DHA or peptamen AF. Total LA, AA and DHA levels were 

measured in the lung, pancreas and ileum of WT and CF mice by GC-MS as described in 

the experimental procedures. Individual fatty acid concentrations are expressed as molar 

percentage (mol %) of total fatty acids. PUFA abnormalities in CF mice were reversed in 

the mice receiving the peptamen + DHA or the peptamen AF diet. Bars represent mean ± 

SEM (n = 6 or 7 mice). * P < 0.05, ** P < 0.01, *** P < 0.001. 
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Unlike the peptamen or peptamen + DHA diet, peptamen AF contained a 

significant amount of EPA (Table 4). Hence a substantial increase in EPA levels was 

seen in both WT and CF mice maintained on the peptamen AF diet (Figure 30). 

Interestingly, there was an increase in EPA levels in the lung and ileum of WT and CF 

mice fed the peptamen + DHA diet. This increase was brought about by retroconversion 

of the supplemented DHA to EPA. However, there was little difference in the amount of 

retroconversion between WT and CF mice, which was different from what we observed 

in cultured 16HBE cells, where retroconversion was 20X greater in CF compared to WT 

cells. It is possible that species or cell-type differences can explain these dissimilar 

observations. No retroconversion was observed in the pancreas of cftr
tm1Unc

 mice. 

 The effect of peptamen + DHA or peptamen AF supplementation was also 

evaluated in organs not clinically affected in CF. An increase in DHA concentrations 

along with a decrease in AA levels was observed in the heart, kidney and liver of WT and 

CF mice, similar to what was seen in CF-related organs (data not shown). However, the 

brain of WT and CF mice appeared resilient to change, with AA levels remaining 

unchanged and only a minimal increase in DHA levels following supplementation 

(Figure 31).   
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Figure 30: Levels of EPA in CF-related organs of cftr
tm1Unc

 mice fed peptamen, 

peptamen + DHA or peptamen AF. Total EPA levels were measured in the lung, 

pancreas and ileum of WT and CF mice by GC-MS as described in the experimental 

procedures. Fatty acid concentrations are expressed as molar percentage (mol %) of total 

fatty acids. There was no difference in EPA levels in WT and CF mice fed the control 

diet (peptamen). Supplementation with peptamen AF caused a significant increase in 

EPA levels in WT and CF mice while retroconversion of DHA to EPA was observed in 

the lung and ileum of mice fed the Peptamen + DHA diet. Bars represent mean ± SEM  

(n = 6 or 7 mice), and unlike letters indicate significant differences in pair-wise 

comparisons. 
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Figure 31: Brain fatty acid composition of cftr
tm1Unc

 mice fed peptamen, peptamen + 

DHA or peptamen AF. Total AA and DHA levels were measured in the brain of WT 

and CF mice by GC-MS as described in the experimental procedures. Fatty acid 

concentrations are expressed as molar percentage (mol %) of total fatty acids. There was 

no difference in AA or DHA levels in WT and CF mice fed the control diet (peptamen). 

Supplementation with peptamen + DHA or peptamen AF caused a significant increase in 

DHA levels in both WT and CF mice. No change was observed in AA levels following 

supplementation with either diet. Bars represent mean ± SEM (n = 6 or 7 mice). ** P < 

0.01. 
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PUFA alterations in CF mice are associated with increased expression and 

activity of desaturase and elongase enzymes. We hypothesized that both the peptamen + 

DHA and peptamen AF diets worked to correct CF PUFA abnormalities by suppressing 

these enzymes. The mRNA expression levels of Δ5-desaturase, Δ6-desaturase and elovl5 

were measured in the lung, ileum and liver of WT and CF mice with and without 

supplementation (Figure 32). All three enzymes were upregulated in lung tissue of CF 

mice fed the control peptamen diet compared to WT mice. Unexpectedly, 

supplementation with peptamen + DHA did not alter desaturase or elongase expression in 

the CF lung. Moreover, supplementation with peptamen AF led to a further increase in 

enzyme expression in both WT and CF mice. These results differed from what we 

observed in cultured 16HBE cells, where DHA and EPA supplementation led to 

downregulation of desaturase enzyme expression. In contrast, supplementation with 

peptamen + DHA or peptamen AF caused suppression of Δ5 and Δ6-desaturase in the 

ileum of CF mice, normalizing desaturase expression to WT levels. Elovl5 expression 

was also slightly decreased following supplementation. A similar pattern was seen in the 

liver, whereby supplementation with peptamen + DHA or peptamen AF had a 

suppressive effect on desaturase and elongase expression (Figure 32).  
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Figure 32: PUFA metabolic enzyme gene expression in lung, ileum and liver of      

cftr
tm1Unc

 mice fed peptamen, peptamen + DHA or peptamen AF. RNA was extracted 

and cDNA synthesized from the lung, ileum and liver of WT and CF mice as described in 

the experimental procedures. qRT-PCR was performed using commercial Taqman probes 

for the mRNA sequences of Δ5-desaturase ,  Δ6-desaturase  and elongase 5 (Elovl5) . 

Relative expression was determined by the ΔΔCT method using GAPDH as a control. 

Desaturase and elongase expression levels were increased in the lung and ileum of CF 

mice fed the control peptamen diet. While the peptamen + DHA and peptamen AF diets 

caused suppression of PUFA metabolic enzymes in the ileum and liver of the mice, the 

expression levels of these enzymes in the lung either remained the same or increased in 

mice on these two diets. Bars represent mean ± SEM (n = 6 or 7 mice), and unlike letters 

indicate significant differences in pair-wise comparisons. 
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The effect of peptamen + DHA and peptamen AF on the phenotypic expression of 

CF was also studied in cftr
tm1Unc 

mice. Histological analysis of the small intestine was 

performed using hematoxylin and eosin staining (Figure 33). WT mice maintained on 

peptamen, peptamen + DHA or peptamen AF displayed normal intestinal morphology, 

characterized by narrow crypts without apparent impaction of secretory products. In 

contrast, the crypts of peptamen-fed CF mice were dilated and filled with secretory 

material that appeared to emanate from paneth cells at the base of the crypts. Impaction 

of secretory material was found in 30-70% of the crypts and was present along the entire 

length of the villus. Supplementation with peptamen AF did not correct the intestinal 

phenotype in the CF mice, as accumulation of secretory material remained apparent in 

majority of the crypts examined. However, CF mice on the peptamen + DHA diet 

exhibited partial correction of the intestinal phenotype, with less accumulation of material 

in the crypts, no crypt dilation and fewer affected crypts (10-30%). Additional 

investigations of the intestinal phenotype revealed marked goblet cell hyperplasia in the 

CF, but not WT, mice (Figure 34). Supplementation with peptamen + DHA almost 

completely reversed the goblet cell hyperplasia in CF mice, while peptamen AF treatment 

caused only a slight decrease in goblet cell hyperplasia. Our results suggest that there is 

altered gut motility and secretion in CF compared to WT mice, and that supplementation 

with DHA partially corrects this intestinal phenotype while peptamen AF has little effect.   

We found no evidence of altered lung morphology in CF mice fed the different 

diets compared to WT mice (Figure 35). This was an expected finding as previous studies 

have reported that CF
 
mice show normal lung histology and do not develop spontaneous 

lung disease [13]. 
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Figure 33: Histological appearance and morphometry of the small intestine of cftrtm1Unc 

mice fed peptamen, peptamen + DHA or peptamen AF. Tissue was embedded in paraffin 

and stained with hematoxylin and eosin (representative images shown, n = 6 or 7 mice). 

There was no impaction of secretory products in the crypts of WT mice fed peptamen, 

peptamen + DHA or peptamen AF (top row). In contrast, CF mice on the peptamen or 

peptamen AF diet exhibited dilated crypts containing secretory product (arrows). Treatment 

of CF mice with DHA resulted in less accumulation of secretions in the deep portion of the 

crypts as well as a lower percentage of affected crypts. Crypt impaction was scored from 0-4:  
0- no impaction of secretory products in the crypts. 

1- impacted secretory material in the deep portion of the crypts in <10% of the crypts. 

2- impaction of secretory material in the deep portion of the crypts in 10-30% of crypts, 

with rare accumulation of material in the bottom third of the villus.  

3-impaction of secretory material in 30-70% of the crypts, with accumulation of material 

commonly observed up to the top third of the crypt. 

4-impaction of secretory material in >70% of the crypts, with frequent dilation of the 

crypts and presence of material in the top third of the villus. 
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Figure 34: Detection of goblet cells in the small intestine of cftr
tm1Unc

 mice fed 

peptamen, peptamen + DHA or peptamen AF. Tissue was embedded in paraffin and 

periodic acid schiff staining used to detect goblet cells (bright pink). Goblet cell 

hyperplasia was scored as marked, moderate, or mild. WT mice fed the three different 

diets exhibited normal numbers of goblet cells (no goblet cell hyperplasia), while marked 

goblet cell hyperplasia was observed in the peptamen-fed CF mice. Treatment of CF mice 

with DHA resulted in mild goblet cell hyperplasia whereas supplementation with 

peptamen AF resulted in moderate goblet cell hyperplasia. Representative images shown 

(n = 6 or 7 mice). 
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Figure 35: Hematoxylin and eosin-stained lung sections obtained from cftr
tm1Unc

 

mice fed peptamen, peptamen + DHA or peptamen AF. A, C and E were obtained 

from WT mice, while B, D and F were obtained from CF mice, treated with peptamen, 

peptamen + DHA and peptamen AF respectively. Lung sections revealed normal 

architecture with no pathological abnormalities found in either the WT or CF mice fed 

the different diets. Representative images shown (20X magnification, n = 6 or 7 mice). 
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Discussion 

 DHA and EPA supplementation in cultured CF cells 

 Previous studies have shown that DHA treatment can correct PUFA abnormalities 

in CF patients and animal models [13, 14, 130-135]. However, the exact mechanism by 

which DHA works remains unclear. In this chapter, we show that supplementing cultured 

CF cells with exogenous DHA causes suppression of Δ5 and Δ6-desaturase expression 

and activity. This leads to reduced conversion of LA to AA, thus reversing the PUFA 

abnormalities. Moreover we demonstrate that a comparable n-3 fatty acid, EPA, has the 

same effect as DHA on PUFA metabolism. EPA supplementation leads to a decrease in 

desaturase gene expression and normalizes LA to AA, and LNA to EPA metabolism in 

CF cells to WT levels. These findings differ from those of Freedman et al [13], which 

showed a favorable effect of DHA treatment on CF pathology but no effect with EPA 

treatment. It is possible that our experiments produced different results because they were 

performed in cultured human CF cells and not in CF mice, as species differences may 

play a role. Additional PUFAs including AA and LNA also decrease desaturase activity 

in CF cells but not to the same extent as EPA and DHA, while monounsaturated and 

saturated fatty acids such as OA and PA do not have any effect on PUFA metabolism.  

This suggests that the degree of saturation of the supplemented fatty acid determines its 

effect on desaturase expression and PUFA metabolism. Since Δ5 and Δ6-desaturase are 

membrane-bound enzymes, it is possible that highly unsaturated fatty acids such as DHA 

and EPA effectively suppress these enzymes by altering membrane fluidity and 

flexibility. Further work needs to be done to evaluate the impact of exogenous DHA and 
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EPA on the physical properties of cell membranes and how this relates to desaturase 

activity.  

In addition to reducing conversion of LA to AA and LNA to EPA, DHA and EPA 

also reduced metabolism of AA to 22:5n-6. This reduction was likely caused by 

decreased Δ6-desaturase and elongase activity and was seen mainly in WT cells, perhaps 

due to the fact that AA metabolism was significantly diminished in CF cells to begin 

with. Interestingly, DHA and EPA did not reduce metabolism of EPA in the n-3 pathway. 

At low concentrations (5 µM exogenous DHA or EPA), metabolism of EPA to DHA was 

actually increased. A plausible explanation for this is that the increased concentrations of 

these fatty acids may stimulate activity in their own metabolic pathway, which may 

effectively negate their suppressive effects on desaturase enzyme expression. 

Our experiments demonstrate that DHA and EPA suppress desaturase gene 

expression in WT and CF cells, although the effect is much greater in CF cells. It is 

conceivable that this differential effect is caused by differences in uptake, as CF cells 

seem to incorporate higher amounts of both DHA and EPA compared to WT cells 

(Figures 22 and 25). Although the reason behind the increased uptake of exogenous 

PUFAs in CF cells is unclear, it could point to increased fatty acid transport into CF cells.  

 

Retroconversion of DHA to EPA 

The DHA supplementation experiments reveal a potential mechanism that can 

account for the increased EPA and decreased DHA levels in CF. This mechanism 

involves the retroconversion of DHA to EPA through a modified peroxisomal β-

oxidation process in which DHA loses two carbons and becomes desaturated [127-129]. 
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This is a regulated process that requires saturation of the Δ4 double bond by Δ4 enoyl 

CoA reductase and rearrangement of the double bond structure by Δ3, Δ2 enoyl CoA 

isomerase (Figure 36). We showed that treating CF cells with exogenous DHA led to an 

increase in EPA levels, and that the calculated retroconversion [ΔEPA / (ΔEPA + 

ΔDHA)] was much higher in CF cells (20%) than in WT cells (1%). Retroconversion of 

DHA to EPA was also observed in vivo, after supplementing cftr
tm1Unc

 mice with large 

amounts of DHA. In these experiments, we found that treating the mice with DHA led to 

an increase in EPA levels in several organs including lung and ileum.  However, unlike 

our cell culture experiments, there was no difference in DHA retroconversion levels 

between WT and CF mice. DHA retroconversion is an important process that may have 

clinical implications for n-3 dietary therapies used in many diseases, including CF. Future 

investigation into the factors that affect retroconversion, including regulation of the 

enzymes that catalyze these reactions, may enhance our understanding of this process.  

 

DHA and EPA supplementation in cftr
tm1Unc

 mice 

PUFA alterations are present in CF mice and specifically in clinically affected 

organs such as the lung, pancreas and ileum. These fatty acid changes are associated with 

increased desaturase and elongase expression and activity. CF mice placed on either the 

peptamen + DHA or peptamen AF diet for two weeks exhibited reversal of PUFA 

abnormalities. Based on our in vitro cell culture experiments, we hypothesized that the 

mouse diets enriched with FFA DHA (peptamen + DHA) or a combination of TG DHA 

and EPA (peptamen AF) worked to correct PUFA abnormalities by suppressing 

desaturase expression and activity. To evaluate this, desaturase and elongase gene  
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Figure 36: Diagram of the biosynthesis and retroconversion of docosahexaenoic acid 

(DHA). DHA is synthesized from EPA through a series of elongation and desaturation 

steps. DHA can also be retroconverted back to EPA through a modified β-oxidation 

process that involves a different set of enzymes. 

 

 

 

 

expression was measured in the lung, ileum and liver of WT and CF mice following 

supplementation. In the ileum and liver, expression of Δ5 and Δ6-desaturase and elovl5 

was decreased in CF mice to the level of WT mice. This corresponded with normalization 

of PUFA levels in the ileum of CF mice. Interestingly, even though PUFA alterations 

were reversed in the lungs of CF mice after DHA and EPA supplementation, the 

expression levels of desaturase and elongase enzymes still remained upregulated.  This 

unexpected result can be explained first by noting the source of DHA or EPA that gets to 

the different organs, and second, by examining the overall principal source of PUFAs for 

each of these organs. Once ingested, the supplemented DHA and EPA is digested in the 
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small intestine of the mice. FFA DHA in the peptamen + DHA diet can be absorbed as is, 

whereas the TG DHA and EPA in peptamen AF has to be hydrolyzed by pancreatic 

lipase to release FFAs and monoacylglycerols (MAG). The FFAs and MAGs are 

absorbed into the enterocytes and resynthesized into TGs, which then get packaged into 

chylomicrons and released into the lymphatic system to be taken to different organs of 

the body. Therefore the source of DHA and EPA for the ileum is FFAs or MAGs. In the 

liver, the source is mainly intermediate density lipoproteins (IDL) or low density 

lipoproteins (LDL) which contain majority of their fatty acids as phospholipids. In the 

lung, the main source of DHA and EPA is as TGs from chylomicrons and very low 

density lipoproteins (VLDL). Thus, it is feasible that the ileum, liver and lung each 

receive a different pool of DHA and EPA, and this may explain why the effect of DHA 

and EPA on desaturase expression varies among these organs. Moreover, the primary 

source of PUFAs for these organs is different. Our results demonstrate that DHA and 

EPA supplementation reduces the expression of desaturase and elongase enzymes in the 

liver and ileum of CF mice, where most PUFA metabolism occurs. Therefore because 

desaturase and elongase expression is decreased, the synthesis of PUFAs including AA is 

also decreased in these organs. Unlike the liver and ileum, the primary source of PUFAs 

in the lung is fatty acid uptake from lipoproteins that originate in the GI tract 

(chylomicrons) and liver (VLDL). Thus, PUFA levels in the lung tend to be a reflection 

of metabolism and synthesis in the liver and ileum, irrespective of metabolic enzyme 

expression. This may explain why although desaturase and elongase expression is still 

increased in CF lung tissue, the overall AA to LA ratio is decreased. 
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 It is also possible that cell-type differences can explain the differential effects of 

DHA and EPA supplementation in our in vitro and in vivo experiments. The cell culture 

experiments were performed in a population consisting of 100% 16HBE cells, whereas 

the mouse experiments were carried out in lung cell preparations enriched for epithelial 

cells. While the majority of the mouse lung cells may have been epithelial in nature, there 

were likely other cell types present. This mixed population of cells could dampen the 

suppressive effect on desaturase expression that would otherwise be observed in a pure 

epithelial population following DHA and EPA supplementation.   

In contrast to the other mouse organs, minimal fatty acid changes were observed 

in brain tissue from mice fed the peptamen + DHA or peptamen AF diet. Previous studies 

have reported that the brain is more resistant to changes in dietary fatty acids and 

possesses inherent mechanisms to maintain lipid homeostasis in situ [136]. It has also 

been proposed that brain AA and DHA profiles are highly protected, perhaps by active 

transport of these fatty acids from the circulation or by increased chain elongation and 

desaturation to maintain the appropriate levels [137]. 

Additionally, the effect of peptamen + DHA and peptamen AF supplementation 

on the phenotypic expression of CF disease was evaluated in cftr
tm1Unc

 mice. CF mice 

maintained on the peptamen diet exhibited intestinal disease, characterized by marked 

goblet cell hyperplasia and dilated crypts filled with secretory material. Interestingly, 

supplementation with peptamen + DHA appeared more effective at correcting the 

intestinal phenotype in CF mice than the peptamen AF diet (Figures 33 and 34). 

Peptamen AF contains a combination of EPA and DHA, with significantly less DHA than 

is found in the peptamen + DHA diet (Table 4). Therefore, although both peptamen + 
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DHA and peptamen AF work to decrease AA and increase DHA levels in the ileum, the 

increase in DHA is much greater in the peptamen + DHA group (Figure 29). In addition, 

the EPA present in peptamen AF may compete with DHA and actually decrease its 

incorporation. It is possible that the intestinal phenotype seen in CF mice is mainly a 

result of decreased DHA levels rather than increased AA levels, and this may explain 

why a beneficial effect is seen only in the CF mice on the peptamen + DHA diet. Further 

studies are needed to determine whether increasing the concentration of supplemented 

DHA and/or the length of time might help to completely reverse the CF intestinal 

phenotype.  

There was no evidence of lung pathology in either the WT or CF mice receiving 

the different diets (Figure 35). This differs significantly from CF human disease, where 

the most significant impact in affected individuals is progressive lung disease that is 

characterized by mucus obstruction and goblet cell hyperplasia, excessive airway 

inflammation, spontaneous development of bacterial infection and progression to chronic 

infection [61]. Several factors may explain the relative absence of lung pathology in CF 

mice. It is believed that bacterial colonization of the airways of CF patients plays an 

important role in the development of significant lung disease. Thus, the failure of CF 

mice to develop lung pathology could be due, at least in part, to the fact that they are 

housed in a sterile barrier facility. It is possible that older CF mice raised in a less sterile 

environment may exhibit lung disease. In addition, these mice may have modifier genes 

which can directly or indirectly partially correct the abnormalities in epithelial ion 

transport. These include the presence of non-CFTR chloride conductance genes that can 

compensate for loss of CFTR function and prevent the development of lung pathology. 
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Ours is not the first study looking at the effect of DHA supplementation on the 

fatty acid profile and phenotype of CF mice. Freedman et al. [13] showed that feeding 

cftr
tm1Unc

 mice a diet supplemented with 40 mg/day free or esterified DHA for 7 days 

decreased AA levels and increased DHA levels in the lung, pancreas and ileum of the 

mice. DHA supplementation also caused a reversal of pancreatic duct dilation and ileal 

hypertrophy in the CF mice. A separate study examined the effect of supplementing 

F508del mice with liposomes containing glycerophospholipids enriched with DHA by 

gavage (60 mg DHA/kg daily, i.e. at maximum 1.4 mg DHA/d) for 6 wk. This treatment 

led to an increase in LA and DHA levels, a decrease in elevated AA, and an increase in 

(n-6)/(n-3) fatty acid ratio, depending on the tissue [14]. However, not all published 

studies reported a beneficial effect with DHA supplementation. Congenic B6 cftr
tm1Unc

 

mice supplemented with 40 mg/day free DHA for 7, 30 or 60 days failed to show a 

significant improvement in lung, pancreas or ileum morphology [138]. A similar study 

using congenic B6 cftr
tm1Unc

 mice fed 40 mg/day free DHA showed no significant 

difference in the survival rates of WT and CF mice inoculated with P. aeruginosa-coated 

agarose beads [139]. Therefore, it is possible that the response to DHA is dependent, at 

least in part, on the genetic background of the various mouse strains used in the different 

studies. 
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CHAPTER IV 

 

NEW FINDINGS AND CONCLUSIONS 

 

Introduction 

The data presented in the preceding chapters provides a mechanistic explanation 

for the PUFA alterations in CF and establishes that these alterations play an important 

role in CF pathophysiology. However, the connection between mutations in the CFTR 

gene and abnormalities in PUFA metabolism is still unknown. Preliminary experiments 

in our lab have shown that treatment of 16HBE sense (WT) cells with a small molecule 

inhibitor of CFTR (CFTRinh-172, 20 µM) [140] leads to a significant increase in Δ5 and 

Δ6-desaturase gene expression compared to untreated cells, with no change in elovl2 and 

elovl5 expression. That similar effects on desaturase gene expression are present in both 

antisense cells and CFTRinh-172-treated cells suggests that loss of CFTR function can 

regulate desaturase expression and lead to PUFA abnormalities. Moreover, studies in CF 

mice show that PUFA alterations are found solely in CF mouse organs that contain a 

significant number of CFTR-expressing cells including the lung, pancreas and ileum. 

This implies that loss of CFTR function is related to abnormalities in fatty acid 

metabolism. We hypothesize that CFTR mutations activate pathways leading to increased 

desaturase expression and activity, resulting in altered PUFA metabolism in CF. A 

potential pathway that can link CFTR mutations to altered desaturase activity involves 

the overproduction of reactive oxygen species.  
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CF is characterized by elevated oxidative stress and impaired antioxidant/oxidant 

balance [141]. Mutations in CFTR contribute to abnormal generation of reactive oxygen 

species (ROS), in part by altering fluid and electrolyte composition of secretions, leading 

to the production of thick, viscous mucus. The accumulation of viscous mucus in the CF 

lung causes airway obstruction, bacterial colonization and compromised pathogen 

clearance, leading to repetitive infections and chronic inflammation. The hallmark of 

chronic inflammatory lung disease in CF is the release of chemokines, including IL-8 

[142, 143], and the excessive recruitment of neutrophils to the bronchial lumen [144]. 

These neutrophils, along with the bacterial pathogens such as Pseudomonas aeruginosa 

present in the lung, release large amounts of ROS, including the superoxide anion O2
-
, 

hydrogen peroxide H2O2, and the hydroxyl free radical OH. Elevated levels of lipid and 

protein oxidation products found in BAL fluid, exhaled breath condensate, and sputum of 

CF patients provide evidence of a pro-oxidative imbalance in CF airways [145-148]. In 

addition to increased oxidant production, antioxidant defenses are dramatically reduced 

in CF patients compared to healthy subjects [141, 149-151]. Exocrine pancreatic 

insufficiency is a common feature in CF which causes malabsorption of fat-soluble 

vitamins such as Vitamin A, E and carotenoids. Moreover, CFTR in addition to its role as 

a chloride channel can also transport reduced glutathione (GSH) [152-154]. GSH is an 

anionic tripeptide (γ-glutamyl-cysteinyl-glycine) that is considered one of the most 

important extracellular antioxidants in the lung [155, 156]. Defects in CFTR impair GSH 

transport and lead to markedly decreased GSH concentrations in CF patients and mouse 

models [157, 158]. Some studies have also shown that at the cellular level, CFTR 

mutations can cause mitochondrial depletion of GSH [159, 160]. Taken together, the 
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increased production of oxidants and decreased antioxidant protection bring about 

compromised redox homeostasis in CF. PUFAs have been reported to act as potent 

antioxidants [161], and therefore it is possible that in response to increased oxidative 

stress arising from CFTR mutations, cells respond by upregulating desaturase expression 

and activity in an attempt to generate more PUFAs to counteract the oxidative burden. 

We set out to determine whether ROS production was increased in our CF cell culture 

model and whether treating CF cells with various antioxidants could normalize PUFA 

metabolism. 

 

Experimental Procedures 

HPLC superoxide (O2
-
) measurements 

16HBE sense (WT) and antisense (CF) cells were cultured until two days post-

confluence as described in the previous chapters. On the day of the study, the cells were 

rinsed three times with 3 mL chilled KRB-Hepes buffer and exposed to 10 µM 

dihydroethidium (DHE) for 20 min at 37
o
C in KRB-Hepes buffer containing 0.1% 

DMSO. DHE was then washed off from the cells to avoid absorption of any extracellular 

oxyethidium formed by autoxidation of DHE. The cells were incubated in KRB-Hepes 

buffer at 37
o
C for an hour, after which the cells were harvested for HPLC analysis of O2

- 

anions. The cells were scraped on ice and placed in cold methanol, homogenized and 

filtered using a 0.22 µm filter. DHE reacts with O2
- 
to form oxyethidium and this can be 

separated from its parent DHE and ethidium by HPLC. The resulting peak intensity of 

oxyethidium reflects intracellular production of O2
-
. Separation of ethidium, oxyethidium 

and DHE was carried out using a Beckman HPLC System Gold model with a C-18 
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reverse phase column (Nucleosil 250, 4.5 mm; Sigma-Aldrich, St. Louis, MO), equipped 

with UV and fluorescence detectors. Fluorescence detection at 580 nm (emission) and 

480 nm (excitation) was used to monitor oxyethidium production. UV absorption at 355 

nm was used for the detection of DHE. The mobile phase was composed of a gradient 

containing 60% acetonitrile and 0.1% trifluoroacetic acid. DHE, ethidium, and 

oxyethidium were separated by a linear increase in acetonitrile concentration from 37% 

to 47% over 23 min at a flow rate of 0.5 mL/min.  

 

Antioxidant treatment 

16HBE cells were treated with three different antioxidants, namely N-acetyl 

cysteine (NAC), trolox (TX) and mito-TEMPO (mT). NAC is an antioxidant that 

effectively reduces free radical species directly and also facilitates GSH biosynthesis. TX 

is a water soluble derivative of vitamin E, while mT is a mitochondria specific 

superoxide scavenger. For NAC treatments, confluent cells were incubated with 10 mM 

NAC for 24 h. TX (400 µM) and mT (25 µM) treatments were carried out over a 5 day 

period beginning on day 2 post-seeding. Following antioxidant treatment, the cells were 

either harvested immediately for RNA isolation or incubated with 4.1 µM 
14

C-LA for 4 h 

followed by a 20 h chase with complete media for metabolic flux experiments. Total 

RNA was isolated from antioxidant-treated cells and cDNA synthesized for assessment 

of desaturase, elongase and superoxide dismutase mRNA expression by qRT-PCR. Fatty 

acids were extracted and methylated from 
14

C-LA radiolabeled cells, and conversion of 

radiolabeled LA to downstream metabolites measured by HPLC coupled to a β-RAM 

scintillation detector, as described previously.  
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Western blotting 

Untreated and antioxidant-treated 16HBE cells were washed twice in ice-cold 

PBS and protein extracted using RIPA buffer. Samples were loaded on a 4-12 % gradient 

Bis-Tris SDS-PAGE gel (Invitrogen, Carlsbad, CA), run for 15 min at 100 V and 90 min 

at 120 V and transferred to Immobilon-P PVDF membranes. Blots were stained using a 

primary antibody to Cu/Zn-SOD1 (1:5000) (Cayman chemicals, Ann Arbor, MI), Mn-

SOD2 (1:5000) (Abcam, Cambridge, MA) or β-actin (1:5000) (Sigma, St.Louis, MO). 

The bound antibodies were visualized with a secondary HRP-conjugated goat anti-rabbit 

antibody using the SuperSignal West Pico substrate system (Thermo Fisher Scientific) 

and exposed to CL-X Posure film (Thermo Fisher Scientific). 

 

Results 

To determine whether CF cells exhibited increased ROS production, we chose to 

measure O2
-
 levels in WT and CF 16HBE cells. CF cells produced more than double the 

amount of O2
-
 found in WT cells (Figure 37), indicating that there was increased 

oxidative stress in the CF cells. To assess if increased O2
-
 production was driving 

overexpression of desaturase enzymes, 16HBE cells were pretreated with various 

antioxidants and mRNA expression of desaturase and elongase enzymes measured. Both 

Δ5 and Δ6-desaturase levels were higher in control CF cells (untreated) compared to WT 

cells. Treatment of CF cells with NAC significantly decreased Δ5 and Δ6-desaturase 

expression to WT levels (Figure 38). A similar decrease in desaturase mRNA levels was 

observed in CF cells treated with TX and the superoxide scavenger mT (Figures 39 and 

40). Antioxidant treatment had no effect on elovl2 or 5 expression levels (data not 
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shown). The effect of antioxidants on desaturase activity was evaluated by measuring the 

metabolism of 
14

C-LA to AA. Increased conversion of LA to AA was seen in untreated 

CF cells compared to WT cells, but treatment with NAC, TX and mT normalized LA to 

AA metabolism, resulting in increased levels of LA and decreased AA in CF cells.  

 

 

Figure 37: Detection of intracellular superoxide production in 16HBE cells. WT and 

CF cells were exposed to 10 µM DHE and levels of oxyethidium measured by HPLC as 

an indicator of superoxide levels, as described in the experimental procedures. WT cells 

produced much less superoxide compared to CF cells. Bars represent mean ± SEM         

(n = 3), *** P<0.001. 
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Figure 38: Relative desaturase mRNA expression and PUFA composition of 16HBE 

cells with or without NAC treatment. RNA was extracted and cDNA synthesized from 

WT and CF cells (A) as described in the experimental procedures. qRT-PCR was 

performed using primers for the mRNA sequences of Δ5-desaturase (FADS1) and Δ6-

desaturase (FADS2). Relative expression was determined by the ΔΔCT method using 

ribosomal protein RPLP0 as a control. Both Δ5-desaturase and Δ6-desaturase expression 

levels were significantly increased in CF compared to WT cells at baseline. NAC 

treatment resulted in a significant decrease in CF desaturase expression, bringing Δ5 and 

Δ6-desaturase expression to WT levels. (B) Metabolism of LA to AA was determined in 

WT and CF cells. Treating CF cells with NAC antioxidant resulted in an increase in LA 

and decrease in AA levels, normalizing PUFA metabolism in these cells. Bars represent 

mean ± SEM (n = 3). * P<0.05, *** P<0.001 for WT vs. CF cells. 
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Figure 39: Relative desaturase mRNA expression and PUFA composition of 16HBE 

cells with or without trolox treatment. RNA was extracted and cDNA synthesized from 

WT and CF cells (A) as described in the experimental procedures. qRT-PCR was 

performed using primers for the mRNA sequences of Δ5-desaturase (FADS1) and Δ6-

desaturase (FADS2). Relative expression was determined by the ΔΔCT method using 

ribosomal protein RPLP0 as a control. Both Δ5-desaturase and Δ6-desaturase expression 

levels were significantly increased in CF compared to WT cells at baseline. Trolox 

treatment resulted in a significant decrease in CF desaturase expression, bringing Δ6-

desaturase expression to WT levels. (B) Metabolism of LA to AA was determined in WT 

and CF cells. Treating CF cells with trolox antioxidant resulted in an increase in LA and 

decrease in AA levels, normalizing PUFA metabolism in these cells. Bars represent mean 

± SEM (n = 3). * P<0.05, for WT vs. CF cells. 
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Figure 40: Relative desaturase mRNA expression and PUFA composition of 16HBE 

cells with or without mito-TEMPO treatment. RNA was extracted and cDNA 

synthesized from WT and CF cells (A) as described in the experimental procedures. qRT-

PCR was performed using primers for the mRNA sequences of Δ5-desaturase (FADS1) 

and Δ6-desaturase (FADS2). Relative expression was determined by the ΔΔCT method 

using ribosomal protein RPLP0 as a control. Both Δ5-desaturase and Δ6-desaturase 

expression levels were significantly increased in CF compared to WT cells at baseline. 

mito-TEMPO treatment resulted in a significant decrease in CF desaturase expression, 

bringing Δ6-desaturase expression to WT levels. (B) Metabolism of LA to AA was 

determined in WT and CF cells. Treating CF cells with a mitochondrial-specific 

superoxide scavenger mito-TEMPO resulted in an increase in LA and decrease in AA 

levels, normalizing PUFA metabolism in these cells. Bars represent mean ± SEM (n = 3).           

* P<0.05, ** P<0.01, *** P<0.001 for WT vs. CF cells. 
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Superoxide anions can be detoxified by enzymes known as superoxide dismutases 

(SODs). SODs are a family of metalloenzymes that efficiently catalyze the dismutation of 

the O2
- 
anion to H2O2 and molecular oxygen [162]. Three forms of SOD enzymes are 

present in mammals, each having distinct metal cofactors. SOD1 complexes with copper 

and zinc and is found in the cytoplasm, while SOD2 binds manganese and is found in the 

mitochondria. SOD3 is extracellular and can bind to cell surfaces by its interaction with 

polyanions such as heparin sulfate. We measured the mRNA and protein levels of SOD1 

and SOD2 in 16HBE cells and found that while SOD1 was expressed at similar levels in 

both WT and CF cells, SOD2 was overexpressed in CF cells (Figure 41). This is likely a 

result of the elevated O2
-
 levels in CF cells, which may trigger increased SOD2 

expression and activity in order to break down the O2
- 
. Following antioxidant treatment, 

the levels of SOD2 in CF cells were significantly decreased.  

These experiments suggest that there is a connection between PUFA alterations 

and increased O2
-
 production in CF. When O2

-
 levels are elevated in CF cells, there is 

increased conversion of LA to AA. However, the altered PUFA metabolism can be 

corrected by treating the cells with different antioxidants. We believe that loss of CFTR 

function leads to overproduction of ROS such as O2
-
 in CF cells. This leads to activation 

of Δ5 and Δ6-desaturase expression and activity which in turn causes increased 

metabolism of LA to AA. Since Δ5- and Δ6-desaturases are regulated at the 

transcriptional level, it is plausible that increased ROS production triggers increased 

activity of a transcriptional activator of the desaturase genes. Several transcription factors 

are known to participate in the PUFA-mediated regulation of Δ5- and Δ6-desaturase 

expression [97, 163]. Two of these transcription factors, sterol regulatory element-
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binding protein (SREBP)-1 and peroxisome proliferator-activated receptor (PPAR)α, 

exhibit altered expression and activity in CF [164-166]. Further experiments are needed 

to determine if these transcription factors play a role, as identification of the relevant 

transcription factor may help to identify specific signaling pathways linking altered 

PUFA metabolism to CFTR. Detailed studies looking at pathways such as the AMP-

activated protein kinase (AMPK) signaling pathway, which is activated by ROS and is 

known to be involved in fatty acid metabolism, will allow us to develop a complete 

mechanistic framework linking CFTR mutations, ROS production and PUFA alterations 

in CF. 

 

Figure 41: Relative SOD mRNA and protein expression in 16HBE cells with or without 

mito-TEMPO (mT) treatment. RNA was extracted and cDNA synthesized from WT and 

CF cells (A) as described in the experimental procedures. qRT-PCR was performed using 

primers for the mRNA sequences of SOD1 and SOD2. Relative expression was determined 

by the ΔΔC
T
 method using ribosomal protein RPLP0 as a control. There was no difference in 

SOD1 levels between WT and CF cells with or without mT treatment. SOD2 mRNA levels 

were significantly higher in CF than WT cells at baseline, and mT decreased SOD2 levels in 

CF cells. Bars represent mean ± SEM (n = 3). *** P<0.001, for WT vs. CF cells. (B) SOD2 

activity was determined by looking at protein expression levels. SOD2 protein levels were 

higher in untreated CF cells and mT treatment resulted in a significant decrease in SOD2, 

although not to WT levels. Data shown are representative of three different experiments. 
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Conclusions 

The data presented in this dissertation focuses on understanding the mechanisms 

of PUFA alterations in CF, uncovering how DHA works to correct these alterations and 

determining the link between the PUFA changes and CFTR gene mutations. Previous 

studies have shown that three main PUFA alterations occur in CF, namely decreased LA 

and DHA and increased AA. In this dissertation, we provide a mechanistic explanation 

for the PUFA alterations in CF. We show that these changes are a consequence of 

increased expression and activity of the enzymes that metabolize PUFAs, including Δ5 

and Δ6-desaturase. This leads to increased metabolism in the upper part of the n-3 and   

n-6 pathways, and consumes LA in its conversion to AA, resulting in the decreased LA 

and increased AA levels that are classically observed in CF. Our findings also 

demonstrate that there is greater conversion of LNA to EPA than there is of LA to AA, 

indicating that Δ6-desaturase has a higher affinity for n-3 fatty acids over n-6 fatty acids. 

That metabolism of LNA to EPA is increased in CF cells rules out the possibility of 

relatively decreased activity of the n-3 pathway specifically as an explanation for the low 

DHA levels in CF. The decreased DHA levels can potentially be explained by two things. 

First, only a small % of LNA that is incorporated into CF cells gets metabolized to DHA. 

This, coupled with the decrease in metabolism of EPA to DHA, may account for the low 

levels of DHA seen in CF. Second, DHA can undergo a process known as 

retroconversion wherein it gets shortened and desaturated back to EPA. DHA 

retroconversion is distinctly upregulated in CF cells compared to WT cells and this 

contributes to the increased EPA and decreased DHA levels in CF. Additionally, our 

studies show that the decrease in metabolism of EPA to DHA occurs at the first 
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metabolic step from EPA to 22:5n-3. It is feasible that reduced metabolism at this step 

stems from shunting of EPA to eicosanoid biosynthesis, thus reducing the amount of 

substrate available for metabolism to DHA. In support of this theory, both the expression 

and activity of the rate-limiting enzymes of eicosanoid synthesis, COX-2 and 5-LOX are 

increased in CF cells and in CF knockout mice. Further studies are necessary to confirm 

whether increased eicosanoid synthesis contributes to the decreased DHA levels in CF.   

With regard to the mechanism by which DHA works to correct PUFA 

abnormalities and CF phenotype, we show that treatment of CF cells with exogenous 

DHA reverses the PUFA metabolic changes by suppressing expression and activity of Δ5 

and Δ6-desaturase enzymes. This leads to decreased conversion of LA to AA and 

increases DHA levels, reversing all three PUFA abnormalities found in CF. Moreover, 

the related n-3 fatty acid EPA is just as effective as DHA in downregulating desaturase 

expression and activity and normalizing PUFA metabolism in CF. Similar effects on 

desaturase suppression are observed after supplementing CF mice with high levels of 

DHA or a combination of DHA and EPA. The noted benefit of n-3 fatty acid therapy in 

CF mice is likely due to its ability to normalize AA levels and subsequently reduce 

excessive production of pro-inflammatory eicosanoids. Additionally, n-3 fatty acids can 

be metabolized to potent anti-inflammatory resolvins and protectins to help combat the 

inflammation present in CF.   

 

Proposed mechanism linking CFTR mutations to PUFA alterations 

Loss of CFTR function as seen in CF can result in mitochondrial dysfunction, 

characterized by elevated oxygen consumption, increased activity of the mitochondrial 
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electron transport chain (ETC) and altered kinetics of complex I of the mitochondrial 

electron transport system [167,168]. Although the mitochondrial ETC is a very efficient 

system, electron leakage is common due to the nature of the alternating one-electron 

redox reactions that it catalyzes. Thus, electrons can pass to oxygen directly instead of to 

the next electron carrier in the chain, leading to the production of superoxide anions. It is 

commonly believed that mitochondrial generation of O2
- 
represents the major intracellular 

source of ROS under physiological conditions, with complex I and III of the ETC 

producing majority of the O2
-
 [169]. Previous studies report that increased activity of the 

ETC leads to increased ROS production while inhibition of certain ETC complexes 

decreases ROS production [169-172]. Consequently, increased activity of the 

mitochondrial ETC caused by dysfunctional CFTR can result in elevated intracellular 

ROS levels. This was confirmed in our CF cell culture system with CF cells producing 

much higher levels of O2
-
 compared to WT cells. We hypothesize that increased ROS 

production, including increased mitochondrial O2
-
, may bring about the PUFA alterations 

commonly seen in CF through the mechanism outlined below (Figure 42).   

Increased O2
-
 levels can activate the AMPK signaling pathway by ROS-mediated 

opening of calcium release-activated calcium (CRAC) channels [173]. O2
-
 triggers 

intracellular calcium release from the ER, which in turn initiates CRAC channel 

organization at the plasma membrane. This allows for extracellular calcium entry, leading 

to increases in cytosolic calcium that activate the calcium/calmodulin-dependent protein 

kinase kinase beta (CaMKKβ). CaMKKβ can then phosphorylate and activate AMPK.  

AMPK is a ubiquitous Ser/Thr kinase that exists as a heterotrimer composed of a 

catalytic α subunit and regulatory β and γ subunits [174]. The activity of AMPK increases 
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Figure 42: Proposed mechanism detailing ROS-mediated AMPK stimulation of Δ5 

and Δ6-desaturase expression and activity. Mutations in CFTR can lead to increased 

ROS production through increasing mitochondrial respiration or initiating the unfolded 

protein response in the case of ΔF508 mutations. This leads to increased O2
-
 production, 

which can activate AMPK via CaMKKβ-phosphorylation. In addition to this pathway, 

nitroxidative stress can also activate AMPK through NO and ONOO
–
, which activate 

CaMKKβ and LKB1 respectively. When activated, AMPK can phosphorylate and inhibit 

ACC, thereby reducing malonyl-CoA levels and disinhibiting CPT-1. AMPK can also 

phosphorylate histone H2B, leading to increased transcription of CPT-1. This increases 

fatty acid oxidation and ROS production, generating a positive-feedback loop with 

AMPK. Active AMPK can also phosphorylate and activate downstream target proteins 

including NO synthase and PPARα. NO synthase phosphorylation induces NO 

production and creates a positive-feedback loop with NO through CaMKKβ. PPARα 

activation can result in increased transcription of Δ5 and Δ6-desaturase genes, leading to 

increased LA to AA metabolism as seen in CF. 
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during conditions of metabolic stress, in response to elevated intracellular [AMP]/[ATP] 

ratios [175,176]. Additionally, AMPK can be activated by phosphorylation of the α 

subunit at Thr-172 of its activation loop by upstream AMPK kinases, including liver 

kinase B1 (LKB1) and CaMKKβ [177,178]. As a cellular metabolic sensor, AMPK acts 

on a wide variety of substrates and cellular pathways, switching on catabolic pathways 

that generate ATP and switching off ATP-consuming processes. 

In CF cells, CaMKKβ-activation of AMPK in response to increased ROS 

production can lead to increased mitochondrial fatty acid oxidation as well as increased 

mitochondrial biogenesis. Once activated, AMPK can phosphorylate and inactivate the 

mitochondrial-associated isoform of acetyl-CoA carboxylase (ACC2), resulting in 

decreased malonyl-CoA levels. Malonyl-CoA inhibits carnitine palmitoyl transferase 

(CPT-1), therefore a decrease in malonyl-CoA levels relieves CPT-1 inhibition and 

allows for long chain fatty acids to enter the mitochondria for β-oxidation [179]. AMPK 

can also phosphorylate histone H2B at serine 36, leading to transcriptional activation of 

CPT-1 [180]. With increased fatty acid β-oxidation, the delivery of reducing equivalents 

(NADH and FADH2) to the ETC and the generation of ROS such as O2
- 
is increased from 

either complex I or III of the ETC [181]. This creates a positive feedback loop in which 

increased ROS levels activate AMPK, which promotes mitochondrial biogenesis [182] 

and fatty acid oxidation, resulting in the production of more ROS and perpetuating the 

cycle. Activated AMPK also increases the transcriptional activity of PPARα [183], which 

in turn increases the expression of PPARα target genes including both Δ5 and Δ6-

desaturase. In this way, we postulate that increased AMPK activation, via PPARα, leads 

to increased metabolism of LA to AA and results in the PUFA abnormalities found in CF. 



107 

 

The ROS measurements we performed focus solely on O2
- 
production.  However, 

it is important to mention that other pro-oxidant molecules may be involved in the 

activation of AMPK and subsequent upregulation of desaturase expression and activity. 

Nitro-oxidative stress generated by nitric oxide (NO) and peroxynitrite (ONOO
-
) can also 

activate CaMKKβ and LKB1 respectively [184, 185], leading to AMPK activation. 

Conversely, AMPK can regulate the levels of reactive nitrogen species by inducing NO 

production through phosphorylation and activation of NO synthase [186], generating a 

positive feedback loop with NO through CaMKKβ. Several studies establish that the 

activity of NO synthase is elevated in lung tissue of CF patients [187], and the 

concentration of NO metabolites such as nitrate and peroxynitrite is increased in CF 

[188-190]. 

Mutations in CFTR can also lead to increased ROS production by initiating ER 

stress. This mainly applies to the ΔF508 mutation, which is the most common mutation in 

CF and is characterized by defective protein processing and misfolding. Deletion of 

phenylalanine at position 508 results in accumulation of misfolded ΔF508 protein in the 

ER and causes ER stress. The cells respond to the buildup of misfolded protein and adapt 

themselves to the stress condition by activating the unfolded protein response (UPR) 

[191]. The UPR integrates pathways aimed at improving the ER capacity to effectively 

process proteins, either by inducing the transcription of genes encoding ER chaperones, 

or by activating ERAD to degrade misfolded proteins [192-194]. It is well documented 

that ROS including mitochondrial O2
-
 are generated during ER stress and the UPR, 

through enzymatic mechanisms involving mitochondrial electron transport, ER 

oxidoreductases and the Nox4 NADPH oxidase complex [195]. Therefore it is likely that 
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induction of the UPR in ΔF508 CF cells contributes to the production of ROS. This can 

then trigger phosphorylation of AMPK and result in the PUFA abnormalities seen in CF, 

as described above. However, the increase in O2
-
 levels in our cell culture experiments is 

probably not due to the UPR since loss of CFTR expression in our culture system is not 

caused by ΔF508 protein misfolding. 

If our hypothesis is correct and increased ROS production is central to the altered 

PUFA metabolism in CF, then reducing ROS levels should help correct the abnormal 

PUFA levels. In keeping with this, we observed that treatment of cultured CF cells with 

three different antioxidants reduced O2
-
 levels and normalized LA to AA metabolism to 

WT levels. Additionally, it is possible that one of the ways through which dietary DHA 

and EPA supplementation reversed PUFA alterations in the CF mice was through 

decreasing O2
-
 production in these animals. This theory is supported by previous studies 

that have reported n-3 fatty acid supplementation results in a decrease in O2
-
 generation 

[196, 197].  

In addition to altering cellular ROS levels by antioxidant or PUFA 

supplementation, there are numerous other ways to test this proposed mechanism. 

According to our hypothesis, activation of the AMPK signaling pathway by ROS is 

needed to initiate increased transcription of desaturase genes via PPARα. To determine if 

this is indeed the case, we can inhibit AMPK in CF cells using the small molecule 

inhibitor Compound C or siRNA against the AMPKα catalytic subunit. AMPK inhibition 

should result in normalization of Δ5 and Δ6-desaturase expression and activity in CF 

cells. Moreover, AMPK inhibition should decrease fatty acid oxidation and activation of 

NO synthase, and thus prevent the positive feedback loop responsible for augmenting 
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ROS production in CF cells. The reverse experiment involving the activation of AMPK 

in WT cells can be performed to assess if this contributes to altered PUFA metabolism. 

To determine if oxidant signals mediate an increase in AMPK activation via CaMKKβ, 

we can abrogate CaMKKβ expression using siRNA or pharmacological inhibition with 

STO-609. Knockdown of CaMKKβ should prevent activation of AMPK and abolish the 

AMPK-PUFA response. Alternatively, we can explore the role of CaMKKβ in ROS-

mediated AMPK activation by modifying Ca
2+

 levels in CF cells. Because entry of 

extracellular Ca
2+

 is needed to activate CaMKKβ and phosphorylate AMPK, we would 

predict that removal of extracellular Ca
2+

 by growing CF cells in calcium-free media 

should prevent CaMKKβ activation and decrease AMPK phosphorylation. This would be 

consistent with a signaling pathway that requires Ca
2+

 influx for AMPK activation. The 

role of LKB1 in activating AMPK can also be evaluated using siRNA against LKB1. We 

also propose that AMPK activation leads to increased desaturase expression and activity 

via the PPARα transcription factor. This part of the mechanism can be assessed through 

siRNA-mediated PPARα knockdown in CF cells or by treating WT cells with the PPARα 

activator fenofibrate. If PPARα expression induces increased desaturase expression and 

activity, then knocking it down in CF cells should normalize PUFA metabolism while 

activating it in WT cells should result in increased LA to AA metabolism. The 

contribution of ER stress and the UPR towards increased ROS production and altered 

PUFA metabolism in ΔF508 cells can be tested by culturing the cells at low temperature 

(26
o
C) or by treating the cells with 4-PBA. These strategies work to correct the folding 

defect and allow for ΔF508-CFTR to exit the ER and traffic to the cell surface. If ΔF508 

misfolding leads to ER stress thus triggering the UPR and increasing ROS production, 
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then correcting the folding defect should decrease ROS levels and correct the PUFA 

abnormalities in ΔF508 cells.  

More work is needed to validate and dissect our proposed model in order to 

determine whether the link between CFTR mutations and PUFA abnormalities involves 

ROS-mediated signaling. Further examination of the contribution of ROS and the AMPK 

signaling pathway to PUFA abnormalities and CF pathogenesis will allow us to 

determine if these are potential therapeutic targets for the disease and assist us in the 

development of better drug regimens to treat CF patients.  

 

Potential impact on therapy 

The data presented in this dissertation details in vitro experiments using n-3 fatty 

acid supplementation, antioxidants and COX-2 inhibitors to correct PUFA abnormalities 

in cultured CF cells. DHA and EPA were found to suppress desaturase expression and 

activity, and normalize PUFA metabolism in CF cells to WT levels. Antioxidant 

treatment using NAC, TX and mT was found to have a similar effect. In addition, DHA 

supplementation on its own or in combination with EPA was shown to drastically 

decrease AA levels and increase DHA levels in CF knockout mice. This data suggests 

that correction of PUFA alterations in CF using either of these treatments may be 

beneficial in ameliorating some of the pathologic manifestations of CF. Several clinical 

trials have been carried out to evaluate the effect of antioxidant therapy, non-steroidal 

anti-inflammatory drugs (NSAIDs), or n-3 fatty acid supplementation in CF patients 

(Tables 5-7). In these trials, pulmonary function tests including forced expiratory volume 
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in 1 second (FEV1) and forced vital capacity (FVC) were the primary clinical measures 

used to assess the outcome of the various treatments.  

 

Table 5: Clinical trials using antioxidant therapy for treatment of CF 
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Table 6: Clinical trials using NSAID therapy for treatment of CF 

 

 

The trials involving antioxidant therapy made use of antioxidants such as β-

carotene, vitamin E, selenium, GSH and NAC (Table 5). Although most trials resulted in 

increased plasma antioxidant levels, there was no significant improvement in lung 

function parameters. Only one study by Cobanoglu et al. [198] reported improvement in 

FEV1 after 6 months β-carotene treatment. Similarly, clinical trials involving NSAID use 

produced mixed results (Table 6). Some studies reported a decrease in the annual rate of 

FEV1 and FVC decline, while other studies showed no benefit in relation to lung 

function. Konstan et al. [199] described some adverse effects including an increased risk 

of gastrointestinal bleeding in the CF patients receiving ibuprofen compared to placebo. 

In the clinical trials utilizing n-3 fatty acids, the supplemented fatty acids comprised 
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DHA, EPA or a combination of both DHA and EPA (Table 7). The majority of these 

trials described an increase in plasma n-3 fatty acid levels in the treatment group over the 

controls. However, these trials resulted in little to no improvement in lung function 

parameters. Consequently, we concluded that to the best of our knowledge, none of the 

CF clinical trials using antioxidants, NSAIDs or n-3 fatty acids have been very 

successful.  

 

Table 7: Clinical trials using fish oil (DHA and EPA) therapy for treatment of CF 
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Treatment of CF is quite complex due to the fact that various factors can 

contribute to disease progression. Therefore instead of targeting a single causative factor, 

it may be more beneficial to target several factors at once. To this end, we propose that a 

combined drug ‘cocktail’ may be more efficacious than the use of single drug therapy as 

in the clinical trials described above. For example, based on our data we believe that 

excessive production of pro-inflammatory eicosanoids and ROS contribute to CF disease. 

Hence, we suggest the use of combination drug therapy that includes ibuprofen, n-3 fatty 

acids and antioxidants.  The purpose of ibuprofen is to inhibit COX enzymes and 

decrease the production of AA-derived eicosanoids. Additionally, n-3 fatty acid 

supplementation can be given to decrease the production of pro-inflammatory 

eicosanoids by decreasing desaturase expression and activity and therefore decreasing 

AA levels. DHA and EPA can also compete with AA for esterification at sn-2 position of 

phospholipids, thereby decreasing AA levels and reducing the amount of substrate 

available to be converted to pro-inflammatory eicosanoids. DHA and EPA can 

themselves be metabolized to potent anti-inflammatory mediators such as resolvins and 

protectins. Lastly, antioxidants such as vitamin E, NAC or β-carotene can be given to 

neutralize the excessive production of free radicals and decrease the levels of ROS. 

Together, it is possible that the combination of these three drugs may have a greater 

effect at ameliorating CF disease symptoms and improving lung function parameters than 

any one of them singly. 
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