Elemental and isotopic geochemistry of crystal-melt systems: Elucidating the construction and evolution of silicic magmas in the shallow crust, using examples from southeast Iceland and southwest USA

By

Abraham De Jesus Padilla

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Environmental Engineering

August, 2015

Nashville, Tennessee

Approved:

Calvin F. Miller, Ph.D. Guilherme A.R. Gualda, Ph.D. David J. Furbish, Ph.D. James H. Clarke, Ph.D. George M. Hornberger, Ph.D. Para mi mamá y mi papá

Por introducirme a un mundo con amor incondicional.

ACKNOWLEDGEMENTS

I owe an immense and very special thank you to Calvin Miller and Guilherme Gualda. I could not have asked for better mentors. They challenged me to see the world from a different perspective, and provided the necessary guidance to help me succeed along this path in science. Without them, many of my accomplishments would not have been possible.

I am incredibly grateful to have the unconditional support of my family in every endeavor of life. Thank you for being a never-ending source of encouragement and inspiration.

I thank my best friend, Beverly Walker, who has been there with me every step of the way. If not for her company, encouragement, and support, I may have lost my mind long ago.

Life and work at Vanderbilt would not have been as enjoyable were it not for my EES colleagues and new Nashville family. Special thanks to my Ph.D. committee, David Furbish, Jim Clarke, and George Hornberger, for their guidance, Tenley Banik and Tamara Carley for helping drive Team Iceland research, Teri Pugh for always adding a spark to my days, Aaron Covey for his master-of-all-trades support, and to my fellow graduate students for making life great.

Many collaborators contributed a great deal of time and expertise to my work. I thank, in particular Rita Economos (UCLA/SMU), who opened the doors that led me on this scientific quest. I am glad I can continue calling her a mentor, a colleague, and a friend. I also thank Axel Schmitt (UCLA), Joe Wooden and Matt Cobble (Stanford-USGS), Ilya Bindeman (U. of Oregon), and Chris Fisher (WSU) for their extensive help with analytical work.

This research would not have been possible without the financial support of the National Science Foundation (grants NSF-EAR-1220523, Iceland Zircon; NSF-EAR-07-39496, Peach Spring Tuff), the Vanderbilt University Discovery Grant Program (awarded to G. Gualda), and Vanderbilt's Department of Earth and Environmental Sciences.

TABLE OF CONTENTS

	Page
DEDICATION	ii
ACKNOWLEDGEMENTS	iii
LIST OF TABLES	viii
LIST OF FIGURES	ix
Chapter	
I. Introduction	1
 Crystal-Melt Systems Dissertation Components 	2 5
II. Crystal-Melt Elemental Partitioning in Silicic Magmatic Systems: an Example from Peach Spring Tuff High-Silica Rhyolite, Southwest USA	the 9
Abstract	
1. Introduction	
2. Background & Methods	
2.1. Sample Osed	
2.2. Sumple preparation	
2.4. LA-ICP-MS analysis	
2.5. Data reduction	
3. Results	
3.1. Titanite	
3.2. Chevkinite	
3.3. Zircon	
3.4. Apatite	
3.5. Amphibole (Hornblende)	
3.6. Biotite	
5./. Sanidine	
3.6. riagiociase	

4. Discussion	35
4.1. Controls on REE distribution	35
4.2. Controls on high field strength element (HFSE) distribution (Th, U, Nb, Hf)	36
4.3. Controls on large ion lithophile element (LILE) distribution (Rb, Sr, Ba)	38
4.4. Crystallographic controls on partitioning	38
4.4.a. Rare Earth Elements (REE) Fits	41
4.4.b. Large Ion Lithophile Elements (LILE), High Field Strength Elements	
(HFSE), and other Onuma fits	52
4.4.c. Estimating Ce^{4+} and Eu^{2+} proportions in silicic melts	55
5. Conclusions	58
III Elucidating the magmatic history of the Austurborn Silicic Intrusive Complex (SE Icel	and)
using zircon elemental and isotonic geochemistry and geochronology	61
using zheon elementar and isotopic geoenemistry and geoenemonology	01
Abstract	61
1. Introduction	63
2. Geological Background	64
2.1. The Austurhorn Intrusive Complex, SE Iceland	64
2.2. The Mafic-Silicic Composite Zone (MSCZ)	69
2.3. Current Views on Silicic Magma Petrogenesis at Austurhorn	69
3. Methods	
3.1. Fieldwork	
3.2. Whole-Rock Analyses	
3.2.a. Petrography and Elemental Geochemistry	
3.2.b. Solution MC-ICP-MS Hf Isotope Analyses	
3.3. Zircon and Imaging	
3.3.a. Separation and Imaging	
3.3.b. U-Pb Age and Trace Element Analyses	
3.5.C. Oxygen Isotope Analyses	80
5.5.d. Lu-HI Isolope Analyses	00
4. Results	
4.1. Field Observations	
4.2. Tetrography	
4.3. Major Oxides	
4.3 b Rare Earth Elements (REE)	95 94
4.3 c Other Trace Elements	97
4.3 d Hf Isotonic Compositions	
4.4 Zircon Results	99
4 4 a Samples Investigated	99
4.4 b Abundance Zoning and Morphology	99
4.4.c. General Elemental Characteristics	103
4.4.d. Rare Earth Elements (REE)	103
4.4.e. Oxygen and Hafnium Isotopic Compositions	104
4.4.f. U-Pb Geochronology	109

5. Discussion	109
5.1. Field Interpretations	109
5.2. Zircon Abundance, Size, and Morphology	112
5.3. Zircon Elemental & Isotopic Compositions	113
5.3.a. Trace Elements	113
5.3.b. Ti-in-Zircon Thermometry	114
5.3.c. Oxygen and Hafnium Isotopes	117
5.4. U-Pb Geocrhonology	121
6. Conclusions	122

Ab	stract	124
1.	Introduction	126
2.	Geological Background: The Austurhorn Intrusive Complex	128
3.	Methods	129
4.	Results	131
5.	Discussion & Conclusions	141

1. Introduction	
2. Geologic Background	
2.1. Austurhorn Intrusive Complex	
2.2. Reyðarártindur Intrusive Complex	
2.3. Slaufrudalur Intrusive Stock	
2.4. Vesturhorn Intrusive Complex	
2.5. Lýsuskarð Intrusive Complex	
2.6. Sandfell Laccolith	
3. Methods	
3.1. Whole-Rock Geochemistry	
3.2. Zircon Geochemistry	
4. Preliminary results	
5. Summary	
-	

VI. Conclusions170

Appendix

A: Elemental Partitioning in Silicic Magmatic Systems	173
	174
A.1. Reference Material NIST-612 Analyses (20 μ m)	1/4
A.2. Reference Material NIST-612 Analyses (40 μ m)	1/3
A.3. Reference Material NIST-612 Analyses (80 μm)	1/0
A.4. Reference Material NIS1-014 Analyses (120 μ III)	1//
A.5. K_d Kelefences	1/8
A.O. Λ_d Literature Values	1/9
A. /. Onuma Curve Fitting Method	180
B: Austurhorn Intrusive Complex	
B.1. Zircon U-Pb Geochronology	
B.2. Zircon TE Compositions (Atomic Number <22)	
B.3. Zircon TE Compositions (Atomic Number 22-71)	207
B.4. Zircon TE Compositions (Atomic Number >71), Crystallization Temperatures	
B.5. Zircon Oxygen Isotope Compositions	
B.6. Zircon Lu-Hf Isotope Compositions	231
B.7. Compositional Groups for Geochemical Comparison in Chapter IV	
B.8. Whole-Rock Elemental Geochemistry for Samples from the HSG Zone	
B.9. Bulk Oxygen Isotope Compositions	
C: Icelandic Silicic Composite Intrusions	238
C.1. Zircon U-Pb Geochronology	239
C.2. Zircon TE Compositions (Atomic Number <22)	
C.3. Zircon TE Compositions (Atomic Number 22-71)	
C.4. Zircon TE Compositions (Atomic Number >71), Crystallization Temperatures	
C.5. Zircon Oxygen Isotope Compositions	
C.6. Zircon Lu-Hf Isotope Compositions	
D: Additional Datasets (Not Discussed)	
D.1. Whole-Rock Hf Isotope Compositions	271
D.2. Whole-Rock Nd Isotope Compositions	
D.3. Whole-Rock Pb Isotope Compositions	
REFERENCES	274

LIST OF TABLES

Table	Page
CHAPTER II	
1. Average Concentrations and Partition Coefficients for Sample KPST01A	15
2. Coordination and Ionic Radii for all Cations	40
3. Abundances of Eu^{2+} and Ce^{3+} Relative to Total Eu and Ce	57
CHAPTER III	
1. Sample Locations, Descriptions, and Petrography	74
2. Whole-Rock Major Oxide and Trace Element Compositions	75
3. Whole-Rock Hf Isotopic Compositions	79
4. Zircon <i>In-Situ</i> Trace Element Compositions	80
5. Zircon In-Situ Oxygen and Hafnium Isotopic Compositions	
CHAPTER V	
1. Summary of Icelandic Silicic Composite Intrusions	149
2. Sample Locations and Descriptions	158
3. Whole-Rock Major Oxide and Trace Element Compositions	

LIST OF FIGURES

Figure	Page
CHAPTER II	
1. Summary of Measured K_d in KPST01 Mineral Phases	19
2. Elemental Abundances in KPST01 Glass	
3. <i>K_d</i> Comparison Plot: Titanite	
4. <i>K_d</i> Comparison Plot: Chevkinite	
5. <i>K</i> _d Comparison Plot: Zircon	
6. <i>K_d</i> Comparison Plot: Apatite	
7. <i>K</i> _d Comparison Plot: Amphibole	
8. <i>K_d</i> Comparison Plot: Biotite	
9. <i>K_d</i> Comparison Plot: Sanidine	
10. <i>K</i> _d Comparison Plot: Plagioclase	
11. K_d Comparison Plot: REE, LILE, and HFSE for all KPST01 Mineral Phases	
12. Onuma Plot: Titanite	
13. Onuma Plot: Chevkinite	
14. Onuma Plot: Zircon	
15. Onuma Plot: Apatite	
16. Onuma Plot: Amphibole	
17. Onuma Plot: Biotite	
18. Onuma Plot: Sanidine	49
19. Onuma Plot: Plagioclase	50
20. Onuma Plot: REE for all KPST01 Mineral Phases	

21. Onuma Plot: LILE for all KPST01 Mineral Phases	53
22. Onuma Plot: HFSE for all KPST01 Mineral Phases	54
CHAPTER III	
1. Regional Map of Southeast Iceland	66
2. Geologic Map of the Austurhorn Intrusive Complex	67
3. Field Photographs: Magmatic Interactions in the Mafic-Silicic Composite Zone	68
4. Whole-Rock Major Oxide Geochemistry	
5. Whole-Rock REE Geochemistry	96
6. Whole-Rock Trace Element Geochemistry	
7. Zircon Cathodoluminescence (CL) Images	102
8. Zircon Trace Element Compositions	105
9. Zircon REE Compositions	107
10. Zircon In-Situ Oxygen and Hafnium Isotopic Compositions	108
11. Zircon In-Situ U-Pb Geochronology	111
12. Zircon Trace Element Global Discrimination Plots	115
13. Comparison of Zircon Saturation and Crystallization Model Temperatures	116
14. Comparison of Whole-Rock And In-Situ Hafnium Isotopic Compositions	120
CHAPTER IV	
1. Field Photographs: HSG Exposures	130
2. Whole-Rock Major Oxide Geochemistry	133
3. Whole-Rock Trace Element Geochemistry	134
4. Whole-Rock REE Geochemistry	135
5. Zircon Trace Element Compositions	137

6. Zircon Cathodoluminescence (CL) and Secondary Electron (SE) Images	138
7. Zircon In-Situ Oxygen Isotopic Compositions	140
8. Comparison of Zircon and Bulk Mineral Oxygen Isotopic Compositions	142
CHAPTER V	
1. Regional Map of Southeast Iceland	150
2. Geologic Maps of major Icelandic Silicic Intrusions	151
3. Field Photographs: Major Icelandic Silicic Intrusions	152
4. Zircon In-Situ U-Pb Geochronology	157
5. Comparison of Zircon Trace Element Compositions by Intrusion	165
6. Comparison of Zircon REE Compositions by Intrusion	166
7. Comparison of Zircon In-Situ Oxygen and Hafnium Isotopic Compositions	167

CHAPTER I

Introduction

Silicic magmatism is fundamentally important on two levels: on a human timescale, silicic magmas (>65 wt.% SiO₂) generate the most explosive volcanic eruptions on the planet (e.g. Bryan *et al.*, 2010; Miller & Wark, 2008; Bindeman, 2006). Not only are such eruptions instantaneously devastating to their surroundings, they also have longer-term global climatic effects that greatly affect and can threaten human civilization (e.g. Thordarson & Self, 2003; Robock, 2002; Rampino & Ambrose, 2000). On a geologic timescale, silicic rocks make up a major fraction of the continental crust, and thus silicic magmatism plays an integral role in creating permanent crust and continental landmasses (e.g. Hawkesworth & Kemp, 2006; Rudnick, 1995). It is therefore important to investigate how silicic magmatic systems evolve in order to gain a better understanding of the processes that control whether these explosive magmas remain trapped within the Earth's crust, solidifying into silicic plutons, or whether they ultimately reach the Earth's surface, culminating in violent volcanic eruptions, often with catastrophic results.

Of particular interest to my research are magmatic systems in the shallow crust, where buoyant silicic magmas commonly accumulate, regularly stalling, cooling, and evolving over hundreds of thousands to millions of years. Because they often form part of large, complex, inter-connected systems that involve both intrusive (plutonic) complexes as well as active extrusive (volcanic) centers, these silicic magmas are frequently rejuvenated, remobilized, and incorporated by younger, hotter magmas as they make their way to the Earth's surface for eruption (e.g. Claiborne *et al.*, 2010b; Fohey-Breting *et al.*, 2010; Shane *et al.*, 2008; Lipman,

2007; Walker *et al.*, 2007). Many investigators have suggested that such magmatic recharge events play a vital role not only in the longevity of magmatic systems but also in the eruptive behavior of their associated volcanic centers (e.g. Ruprecht & Bachmann, 2010; Wiebe & Hawkins, 2004; Wark *et al.*, 2007; Sparks *et al.*, 1977). Complex magmatic interactions are commonly preserved in solidified intrusions (e.g. Harper *et al.*, 2004; Frost & Mahood, 1987; Marshall & Sparks, 1984), and can reveal a wealth of information about the different processes involved in their formation. With the proper tools, we can investigate and begin to decipher the complex stories written in these composite intrusions, and assess their importance in the formation of highly destructive eruptible magmas, as well as permanent continental crust. This idea forms the fundamental motivation for the research that I present in this dissertation.

1. Crystal-Melt Systems

As magmatic systems evolve, they inevitably reach a point at which they begin to cool, and thus to crystallize mineral phases. The crystallization assemblage of a magmatic system, and in turn the geochemical composition of those minerals, is not only dependent on the geochemical composition of the source magmas and the physical conditions (e.g. pressure and temperature) under which they exist, but importantly also on the different processes that influence the system as it evolves (e.g. rapid decompression, crustal contamination, fractional crystallization, etc.). As minerals grow throughout the life of a system, they have the ability record information related to their crystallizing conditions and to those processes that influence the system at different stages of magma evolution. The crystallization of different mineral phases, in turn, modifies the composition of their coexisting melt, and consequently can affect the geochemical evolution of the whole system. Thus, crystals and their chemistry are fundamental tools that can help us better understand the major processes that influence how magmatic systems evolve, and in particular what factors drive magmas toward more evolved (silicic) compositions in in different crustal environments (e.g. Wiebe *et al.*, 2007; Marsh, 2006; Loomis & Welber, 1987).

An important aspect of interpreting the information found in minerals is to understand the way geochemical elements behave in different magmatic systems, and, importantly, how they are partitioned between coexisting phases, solid and liquid alike. The behavior of trace elements, such as the rare earth elements (REE), is of major interest, as their abundance or scarcity can inform us about the crystallization of accessory minerals, the main repositories for elements that behave incompatibly in all other major mineral phases, from which we can extract information regarding their conditions of crystallization and magmatic evolution. The refractory nature of many accessory minerals makes them ideal for preserving information about magmatic processes (cf. Robinson & Miller, 1999). Among them, zircon has been widely recognized as a valuable tool for elucidating both the environmental and the temporal record of the magmatic system(s) from which it crystallizes (Fig. 4). Though it is a minor constituent, it is present in most rocks and sediment in and on the Earth's crust. Its low solubility in almost all melt and fluid compositions, its stability at Earth's surface, and its physical durability during transport enable it to survive many crustal processes during which most or all other minerals are destroyed. In addition, elemental diffusion in zircon is extremely slow (Cherniak & Watson, 2003), which allows it to retain its geochemical composition and zoning patterns far longer than any other mineral phase. Importantly, because it incorporates abundant U and Th during crystallization, age information is also preserved allowing us to determine temporal relationships pertaining to those processes and environments it records (e.g. Hoskin and Schaltegger, 2003).

In my dissertation research, I utilized a range of crystal-melt geochemical systems (elemental and isotopic alike, particularly in zircon) to address the primary aims of my research regarding the role of crystals in their parental magmatic systems:

- 1) In what ways does the crystallization of particular mineral phases (e.g. accessory minerals) influence the geochemical evolution of the magma(s) from which they crystallize?
- 2) Can we distinguish the signature of magmatic events from post-magmatic events in crystals from the same magmatic system using various geochemical characteristics?
- *3)* How robust is the zircon geochemical fingerprint for deciphering and interpreting the evolution of composite magmatic systems?

While the geochemical characteristics of minerals can tell us a lot about the magmatic processes they experienced, it is important to note that looking at products of volcanic eruptions may yield information that is different from what is preserved in intrusive rocks. Namely, crystals in volcanic rocks may preserve information more pertinent to eruptive timescales (*cf.* Pamukcu *et al.*, 2012; Wark *et al.*, 2007; Bindeman, 2006) that is absent in their intrusive counterparts, though crystals from intrusive rocks are likely to yield a longer and more complete geochemical record of their magmatic system as a whole (magmatic timescales; e.g., Wiebe *et al.*, 2007). Thus, it is important to pay attention to both systems, as they provide complementary information about magmatic processes in general (e.g. Bachmann *et al.*, 2005), and the overarching topic they seek to address remain fundamentally the same: *How do large volumes of explosive (silicic) and eruptible magmas originate, evolve, and accumulate in the shallow crust, and how long do they last*?

2. Dissertation Components

In the following chapters, I present the results of my dissertation research, encompassing two diverse projects investigating complementary aspects of silicic magmatism, one utilizing the record of silicic volcanic products in northern Arizona, and the other that of silicic intrusive rocks in Iceland. Within each chapter, I address the different research objectives of each individual study, as well as the relevance and importance of my results toward better understanding silicic magmatic systems. The four components of this dissertation work are:

- <u>Chapter II</u>: Crystal-melt elemental partitioning in silicic magmatic systems: an example from the Peach Spring Tuff high-silica rhyolite, N. Arizona
- <u>Chapter III</u>: Elucidating the complex magmatic history of the Austurhorn Silicic Intrusive Complex (SE Iceland) using zircon elemental and isotopic geochemistry and geochronology
- <u>Chapter IV</u>: Generating the world's lowest magmatic $\delta^{18}O$ zircon signature: melting of intensely hydrothermally altered crust beneath the Austurhorn magmatic system, SE Iceland
- <u>Chapter V</u>: The varied personalities of silicic intrusions in Iceland: a spatial and temporal comparison of shallow magmatic systems preserved in the zircon geochemical record

In Chapter II, I present a focused geochemical study of the crystal cargo in one of the most evolved pumice samples from The Peach Spring Tuff (PST), a well-studied Miocene high-silica rhyolite eruption in southern Nevada, USA (Pamukcu *et al.*, 2013, 2015; Colombini *et al.*, 2011; Gualda *et al.*, 2010). The well-preserved pumice glass (groundmass) in the PST allowed for measurements of what we believe to be the most representative composition of the melt with which its crystalline cargo coexisted at the time of the eruption. Coupled with the composition of crystal rims, the glass compositions permitted the calculation of partition coefficients (K_d) for high-SiO₂ rhyolites from the PST system, presenting an excellent opportunity to directly and

quantitatively address the effect that each crystallizing mineral phase had, relative to the rest of the mineral assemblage, on the abundance and distribution of elements in silicic magmas within the PST magmatic system. I present an extensive high-quality and internally consistent K_d dataset that accurately represents the PST magmatic system at or near the time of eruption, and provide a thorough assessment of the crystallographic controls that each mineral phase exerts on the distribution of dispersed elements in their parental melt.

Chapter III is the first of three related studies investigating the zircon geochemical record in silicic and composite intrusions of Iceland. In her dissertation research investigating Icelandic silicic rocks, Carley (Vanderbilt, 2014) found that zircon populations in volcanic rocks are typically sparse, despite the abundance of highly evolved rock compositions. In contrast, most intrusive rocks of all compositions typically contain vastly more abundant zircon populations. Thus, it is likely that silicic intrusions are the dominant repository for zircons in the Icelandic crust, and as such, intrusive zircons should provide a much more complete geochemical record of the dominant magmatic processes related to the generation of silicic magmas in the Icelandic crust. However, there have been few investigations of zircon in Icelandic rocks (e.g. Bindeman et al., 2012; Martin et al., 2011; Carley et al., 2011), and almost none focusing on intrusive rocks. In this chapter, as an effort to thoroughly characterize what we believe to be the dominant Icelandic zircon population, I present an in-depth zircon investigation of rocks from the maficfelsic composite zone (MSCZ) at the Austurhorn Intrusive Complex (AIC; Furman et al., 1992a,b; Mattson et al., 1986; Blake, 1966), in SE Iceland, the first detailed geochemical study of intrusive Icelandic zircons. The AIC presents a suite of rocks that best exemplifies the complex array of mafic-felsic magmatic interactions typical of silicic systems in Iceland, providing an ideal location to investigate the importance of magma recharge and mixing events

in the evolution of silicic systems, and importantly to assess the extent to which those events can be preserved in the zircon geochemical record. Using a combination of zircon elemental and isotopic geochemistry and geochronology, along with supporting field observations and wholerock geochemistry, I demonstrate that MSCZ zircons clearly preserve a record of open system magmatic processes, as well as evidence, in their isotopic compositions, for crustal recycling and mixing of mantle components in the production and accumulation of their parental silicic magmas within the Austurhorn magmatic system.

In Chapter IV, I present a focused study of the oxygen isotopic (δ^{18} O, ∞) variability in different mineral phases from rocks of the Austurhorn Intrusive Complex. This study is a continuation of the work presented in Chapter III, but the focus is largely on a unique subset of samples that preserve geochemical characteristics that are not commonplace across the MSCZ. Namely, I report zircons from two very fine-grained high-silica granophyres (~78 wt.% SiO₂) that preserve geochemical compositions that fall outside the fields for the typical composition of Austurhorn zircons, and Icelandic zircons in general, including the lowest oxygen isotopic values yet measured in primary (magmatic) zircons from any rocks in Iceland or the rest of the world, extending to as low as -11.3 %. In magmatic products, such low oxygen isotopic compositions are typically indicative of extensive recycling of intensely hydrothermally (meteoric) altered low- δ^{18} O crust. Using the oxygen isotopic compositions of primary minerals (quartz, feldspar) from the same samples along with supporting field evidence, I demonstrate that these low- $\delta^{18}O$ zircons are indeed preserving a magmatic signature, rather than secondary alteration, and thus represent products of partial melting of variably altered crust. In addition, based on the extreme δ^{18} O variability in these zircons, the greater δ^{18} O homogeneity of coexisting major minerals and whole-rocks, and the disequilibrium between major minerals and zircons, I conclude that the

parental magmas for these samples were amalgamated from multiple batches of melts with extremely diverse oxygen compositions. This focused study provides a unique example of the geochemical record for one of the end-member processes by which silicic magmas are generated in the Earth's crust: pure partial-melting of altered pre-existing crust.

Lastly, in Chapter V, I present an overview of the geochemistry of six different silicic and composite Icelandic intrusions, spanning nearly 10 M.y. of Icelandic magmatic history, from ~2 Ma to ~12 Ma: the Lýsuskarð intrusion in western Iceland, the Sandfell laccolith in eastern Iceland, and the Austurhorn, Reyðarártindur, Slaufrudalur, and Vesturhorn intrusions in southeastern Iceland. Though each has some unique attributes, certain shared characteristics among most of these intrusions make them ideal candidates for investigating systematic processes related to the generation of silicic magmas in the shallow Icelandic crust: voluminous silicic material, an associated mafic intrusive complex, and composite zones displaying intimate association (mixing and mingling) of mafic and silicic magmas. In this study, I use a similar approach as that presented in Chapter III and compare the elemental and isotopic geochemical signatures of zircons from a range of rock compositions in each intrusion. I present a general assessment of how silicic composite magmatic systems have varied in the shallow Icelandic crust through space and time.

CHAPTER II

Crystal-Melt Elemental Partitioning in Silicic Magmatic Systems: an Example from the Peach Spring Tuff High-Silica Rhyolite, Southwest USA

Abstract

Partition coefficients (K_d) are critical for the quantitative modeling of the evolution of magmatic systems. High-silica rhyolites (HSR) are characterized by saturation in numerous phases, such that a comprehensive K_d database is necessary. While there exists a large body of published K_d values, various methods have been used and studies focus on different compositions and conditions, and most studies are limited to small suites of elements (e.g. rare earth elements - REE) typically in few (2-3) mineral phases. In this study, we present K_d values for a suite of 45 elements in 8 mineral phases from a HSR of the Peach Spring Tuff (PST): sanidine, plagioclase, biotite, amphibole, titanite, apatite, zircon, and chevkinite.

We determine K_d by measuring crystal rim compositions and unaltered glass from a single volcanic sample, which reflect equilibration between crystals and melt in the system at or near the time of eruption. We measure compositions using a combination of SEM-EDS and LA-ICP-MS analysis.

We show that titanite strongly partitions REE from the melt, with a significant preference for middle (MREE) over light (LREE) and heavy-REE (HREE). Apatite and amphibole share a similar MREE-enriched pattern, though with absolute K_d values more than an order of magnitude lower than titanite; while apatite displays a slight preference for LREE over HREE, amphibole shows a higher affinity for HREE than LREE. Zircon strongly partitions HREE, Hf, and U, with little affinity for LREE. Chevkinite concentrates LREE and Th significantly more than any other

phase we analyzed. Biotite K_d are generally low (<10), with the highest values for transition metals and Ba. Sanidine and plagioclase display a strong preference for Sr, Ba, and Eu.

Our dataset is largely consistent with published studies that use similar (*in situ*) techniques in samples of similar composition (HSR). We observe a large variation in other studies that we attribute in part to contamination from inclusions in crystals, particularly when measuring compositions by whole-crystal methods. Our dataset suggests that accessory minerals play a dominant role in the partitioning of trace elements. They collectively control the distribution of REE and high field strength elements (HFSE) in the system. On the other hand, large ion lithophile elements (LILE) are most dominantly influenced by feldspars, but, if abundant, phases such as biotite and apatite may also influence the partitioning of LILE from the melt.

We analyze our data in light of the theoretical crystal lattice strain model (LSM), by fitting our data to curves that have the expected form in $Ln(K_d)$ versus ionic radius space (*Onuma* diagrams). The fact that we are successful in finding good fits for much of our data, especially the REE, reinforces the idea that mineral-melt equilibrium was attained and analytical data are of appropriate quality. Additionally, we use the fitted curves to estimate Ce^{3+}/Ce and Eu^{2+}/Eu ratios in the melt, which are controlled by the oxidation state of the magma. We estimate that >97% of all Ce in the PST melt existed as Ce^{3+} . The proportion of Eu^{2+} in the melt is not as well constrained; we estimate Eu^{2+} ranges mainly from ~10 to ~50% of the total Eu.

1. Introduction

Partition coefficients (K_d) are widely used in quantitative modeling of the evolution of magmatic systems (e.g. Bea *et al.*, 1994; Dall'Agnol *et al.*, 1999; Deering and Bachmann, 2010; Halliday *et al.*, 1991; Mahood and Hildreth, 1983; Miller and Mittlefehldt, 1984; many others). Of particular interest is the highly debated petrogenesis of high-silica rhyolites, whether by fractional crystallization of mafic parental magmas or partial melting of pre-existing crust, a subject that has been the focus of many recent studies (e.g. Bachmann and Bergantz, 2004; Bachmann and Bergantz, 2008; Glazner *et al.*, 2008; Michael, 1983; Miller and Mittlefehldt, 1984; Streck, 2002; many others). Having a good understanding of the way elements are partitioned among coexisting phases in a magma is essential for any quantitative model.

Over the years, there have been major efforts by many investigators to determine partition coefficients for diverse systems, spanning a wide range of compositions and tectonic settings, employing both controlled experiments (e.g. Blundy *et al.*, 1998; Gaetani and Grove, 1995; Prowatke and Klemme, 2006; Watson, 1976; Watson, 1980; many others) and measurements in natural samples by both bulk crystal or whole-crystal analysis (e.g. Bacon and Druitt, 1988; Luhr and Carmichael, 1980; Mahood and Hildreth, 1983; Nagasawa, 1970; many others) and *in situ* techniques (e.g. Anderson *et al.*, 2000; Bachmann *et al.*, 2005; Bea *et al.*, 1994; Colombini *et al.*, 2011; Sano *et al.*, 2002; Severs *et al.*, 2009; many others). However, because of the difficulty, complexity, and the high cost associated with many approaches, studies have been generally limited to small suites of elements (e.g. REEs, HFSEs) in few (2-3) mineral phases. An additional common obstacle is the lack of a corresponding "melt" composition for the natural system under study: unaltered glass (closest to a "melt" composition) is commonly unavailable, crystalline groundmass in volcanic and rapidly quenched intrusive rocks is not

typically a reliable representation of host melt, and whole-rock compositions of plutonic rocks are even less likely to reflect melt compositions. As a result, many published K_d datasets are likely not representative of natural magmatic systems, and much less of equilibrium conditions between crystals and their host melt.

In this study, we use a systematic approach and relatively fast method to measure compositions and calculate partition coefficients for a large number of elements and several mineral phases in a single volcanic rock. We focus on a high-silica rhyolite from the Peach Spring Tuff, a well-studied Miocene volcanic deposit in southwestern USA (Colombini *et al.*, 2011; Gualda *et al.*, 2010; Pamukcu *et al.*, 2013, 2015). Our approach involves measuring as many elements as possible with a combination of laser ablation ICP mass spectrometry (LA-ICP-MS) and quantitative energy-dispersive spectrometry (EDS) analysis on an analytical scanning electron microscope (SEM) in unaltered glass and in as many mineral phases as we could identify and separate from a single PST pumice sample. While there is some uncertainty regarding the exact conditions of crystallization (Pamukcu *et al.*, 2015), partition coefficients measured in this way correspond to conditions that are relevant for natural systems and avoid some of the problems typically encountered in experimental studies related to slow kinetics of growth and equilibration in highly silicic melt, particularly for accessory minerals.

2. Background & Methods

2.1. Sample Used

We used crystal separates from a single, non-welded, high-silica rhyolite pumice clast from the Peach Spring Tuff (PST, sample KPST01A) collected from a distal outflow outcrop near Kingman, AZ (see Gualda *et al.*, 2010; Pamukcu *et al.*, 2013, 2015). This pumice clast is

among the most evolved PST samples studied by Pamukcu et al. (2013). It is relatively dense $(1.41 \text{ g} \cdot \text{cm}^{-3})$, with a phenocryst assemblage that consists of sanidine, plagioclase, quartz, titanite, biotite, amphibole, Fe-Ti oxides (mostly magnetite), apatite, allanite, chevkinite, and zircon. Estimates for the system conditions of the Kingman distal outflow magma prior to eruption are on the order of ~220 MPa of pressure (full range of 185-230 MPa; these are thoroughly discussed by Pamukcu *et al.*, 2015), and Zr-in-titanite temperatures fall in the range of 760° to 779°C (see Pamukcu et al., 2013, for detailed discussion). Though little work has been done toward estimating redox conditions of the magma, it can be generally constrained by the phase assemblage of the PST to the QTMAI (quartz-titanite-magnetite-amphibole-ilmenite) buffer (Wones, 1989), closely above the FMQ buffer, indicating relatively oxidizing conditions. Pamukcu et al. (2013) report whole-rock (75.3 wt.% SiO₂, anhydrous basis) and glass (76.7 wt.% SiO₂, anhydrous basis) compositions for KPST01, as well as compositions of titanite and zircon measured using the SHRIMP-RG. In addition, Colombini et al. (2011) report separate zircon, titanite, and glass compositions (accessory minerals also measured by SHRIMP-RG; glass by LA-ICP-MS) from the same pumice sample (KPST01), and discuss derived partition coefficients for zircon and titanite. We compare our own K_d results to those of Colombini et al. (2011), and expand on that dataset by including K_d for all phases (except Fe-Ti oxides and allanite, as we were unable to find allanite in our crystal separates) measured with LA-ICP-MS and EDS.

2.2. Sample preparation

We obtained crystal separates by lightly crushing the sample using a baseball bat, followed by sieving, with additional crushing and sieving until all material had been crushed to sizes that would clear a 2 mm sieve. Crystals were then separated from glass fragments by winnowing in water and then by heavy liquid separation using methylene iodide (MEI), followed

by magnetic separation using a small hand-held magnet (Gualda *et al.*, 2004; Pamukcu *et al.*, 2013).

Using a stereomicroscope, we hand-picked individual crystals for each mineral phase found in the crystal-rich fractions (both heavy and light fraction of MEI separation), as well as PST glass pieces from the glass-rich fraction. To the extent possible, we picked crystals with glass attached to their edges so as to better ensure that these were phases growing in the melt rather than as inclusions within larger crystals, which is particularly important in the case of the smaller accessory phases. We obtained grains from seven different mineral phases: titanite, chevkinite, zircon, amphibole, biotite, sanidine, and plagioclase; although we weren't able to separate apatite crystals, we later found apatite as large inclusions within biotite crystals during LA-ICP-MS analysis.

Lastly, we mounted all the separated crystals, along with large glass particles, in epoxy, polished them by hand to expose the grain interiors, and imaged them using reflected light with a Zeiss Stemi 2000-C microscope with an attached Zeiss AxioCam MRc 5 camera at Vanderbilt University.

2.3. SEM analysis

With the goal of documenting variations in the abundances of Na, K, and Ca for some of the major minerals (sanidine, plagioclase, and amphibole), we obtained analyses for major elements in these phases by quantitative EDS analysis using a LaB₆ Tescan Vega 3 LM variable pressure SEM equipped with an Oxford X-max 50 mm² EDS system installed at Vanderbilt University (see Table 1).

Phase →	Glass	Titan	Titanite Chevkinite Zircon		n	Apatite			
Element ↓	\overline{c}_m (ppm)	\overline{c}_{s} (ppm)	K_d	\overline{c}_{s} (ppm)	K_d	\overline{c}_{s} (ppm)	K_d	\overline{c}_{s} (ppm)	K_d
Li ¹⁺	14	20	1.41					3984	277
B ³⁺	50	141	2.82						
Na ¹⁺	18597	406	0.022	69	0.004			156606	8.42
Mg^{2+}	539	614	1.14	5226#	9.70			3303300*	
Al ³⁺	50701	8318	0.164	14862	0.293	2086	0.041	1599830*	
Si ^{4+&}	359928	142008#&	0.395	93488 ^{#&}	0.260	147571 ^{#&}	0.410	3387040*	
K ¹⁺	59870							2270994*	
Ca ²⁺	2452	192500#&	79	44595	18			393086 ^{#&}	160
Sc ³⁺	2.52	47	19	2429	964	296	117	383	152
Ti ⁴⁺	722	181600 ^{#&}	251	119023#	165	1485	2.06	415278	575
V ⁵⁺	1.14	244	214	218	192			1035	909
Mn ²⁺	341	2133	6.26	1948	5.72			111035*	
Co ²⁺	0.460							517*	
Ni ²⁺	3.99							643*	
Cu ²⁺	11			7.54	0.705			367*	
Zn ²⁺	43	119	2.75	61	1.42			17934*	
Ga ³⁺	20	12	0.598	21	1.05			891	45
Ge ⁴⁺	1.93	30	15	118	61				
Rb ¹⁺	252	3.74	0.015					12491*	
Sr ²⁺	3.72	3.36	0.904	32	8.62			213	57
Y ³⁺	19	6499	344	2646	140	1508	80	2550	135
Zr ⁴⁺	118	1022	8.66	6775	57	431400 ^{#&}	3653	192	1.62
Nb ⁵⁺	33	2033	61	700	21	8.90	0.267	1793	54
Cs ¹⁺	3.88							326	84
Ba ²⁺	4.91	45	9.08	652	133	1.02	0.207	2404	489
La ³⁺	45	3386	75	156926#	3484	3.38	0.075	4928	109
Ce ³⁺	79	12681	160	261983#	3310	56	0.703	10508	133
Pr ³⁺	6.97	2004	288	14110	2025			1179	169
Nd ³⁺	20	8839	438	46887	2326	6.86	0.340	4824	239
Sm ³⁺	2.85	2089	733	4576	1607	9.30	3.26	721	253
Eu ³⁺	0.277	153	551	285	1028	2.43	8.75	42	152
Gd ³⁺	2.57	1534	596	2132	829	29	11	592	230
Tb ³⁺	0.353	256	727	184	523	10	29	99	280
Dy ³⁺	2.14	1401	655	754	352	127	59	497	232
H0 ³⁺	0.601	262	437	112	186	48	80	101	168
Er ³⁺	1.76	634	361	275	157	215	122	194	111
Tm ³⁺	0.337	77	229	40	120	43	128	27	80
Yb ³⁺	2.35	430	183	371	158	391	166	181	77
Lu ³⁺	0.364	46	126	73	200	75	207	15	42
Hf ⁴⁺	4.00	64	16	416	104	9278	2317		
Ta ⁵⁺	1.55	118	76	20	13	1.62	1.05	23	15
T1 ³⁺	1.50							96	64
Pb ² +	32	4.61	0.143	30	0.916	3.88	0.120	173	5.36
Th ⁴⁺	29	262	9.08	7826 [#]	271	212	7.33	148	5.13
U ⁴⁺	6.31	23	3.65	43	6.82	139	22	13	2.07

Table 1. Average concentrations (\bar{c}) and partition coefficients (K_d)¹ for sample KPST01A².

 $^{{}^{1}}K_{d} = \frac{\overline{c_{s}}}{\overline{c_{m}}}$, where $\overline{c_{s}}$ and $\overline{c_{m}}$ denote average concentration in the solid (s) and melt (m) phases, respectively 2 Note: essential structural constituents (ESCs) for each phase are denoted by [#]; values constrained by stoichiometry are denoted by [&]; ESCs in biotite are omitted from apatite K_{d} , denoted by *, as these are likely problematic due to their enriched concentrations in biotite and our non-conventional method of obtaining apatite data

Phase →	Amphibole		Biotite		Sanidine		Plagioclase	
Element↓	\overline{c}_{s} (ppm)	K_d	\overline{c}_{s} (ppm)	K_d	\overline{c}_{s} (ppm)	K_d	\overline{c}_{s} (ppm)	K_d
Li ¹⁺	20	1.40	90	6.30	1.99	0.139	4.80	0.334
B ³⁺	o/-				0/-			
Na ¹⁺	14600 [%]	0.785	4046	0.218	35700 [%]	1.92	65529 ^{%#}	3.52
Mg^{2+}		162	140200.0 ^{&#</sup></th><th>260</th><th>5.70</th><th>0.011</th><th>43</th><th>0.079</th></tr><tr><th>Al<sup>3+</sup></th><td>32600%</td><td>0.643</td><td>61619#</td><td>1.22</td><td>102200%#</td><td>2.02</td><td>129757%</td><td>2.56</td></tr><tr><th>Si<sup>4+&</sup></th><td>224800 ***</td><td>0.625</td><td>194361<sup>&#</sup></td><td>0.540</td><td>306700<sup>%#</sup></td><td>0.852</td><td>346900<sup>%#</sup></td><td>0.964</td></tr><tr><th>K<sup>1+</sup></th><td>6000%</td><td>0.100</td><td>82249#</td><td>1.37</td><td>80400<sup>%#</sup></td><td>1.34</td><td>13543<sup>%</sup></td><td>0.226</td></tr><tr><th>Ca<sup>2+</sup></th><td>86500<sup>%#</sup></td><td>35</td><td>673</td><td>0.274</td><td>3400<sup>%</sup></td><td>1.39</td><td>26629<sup>%</sup></td><td>11</td></tr><tr><th>Sc<sup>3+</sup></th><td>198</td><td>79</td><td>16</td><td>6.34</td><td>1.35</td><td>0.537</td><td>1.17</td><td>0.466</td></tr><tr><th>Ti<sup>4+</sup></th><td>8500<sup>%</sup></td><td>12</td><td>17694</td><td>24</td><td>100</td><td>0.138</td><td>92</td><td>0.127</td></tr><tr><th>V<sup>5+</sup></th><td>35</td><td>31</td><td>46</td><td>40</td><td></td><td></td><td>0.320</td><td>0.281</td></tr><tr><th>Mn<sup>2+</sup></th><td><math>2600^{\%}</math></td><td>7.64</td><td>4440</td><td>13</td><td>1.33</td><td>0.004</td><td>15</td><td>0.043</td></tr><tr><th>Co<sup>2+</sup></th><td>11</td><td>25</td><td>19</td><td>41</td><td></td><td></td><td></td><td></td></tr><tr><th>Ni<sup>2+</sup></th><td></td><td></td><td>16</td><td>3.88</td><td></td><td></td><td></td><td></td></tr><tr><th>Cu<sup>2+</sup></th><td></td><td></td><td>3.72</td><td>0.348</td><td></td><td></td><td>0.610</td><td>0.057</td></tr><tr><th>Zn<sup>2+</sup></th><td>563</td><td>13</td><td>790</td><td>18</td><td></td><td></td><td>6.68</td><td>0.155</td></tr><tr><th>Ga<sup>3+</sup></th><td>16</td><td>0.832</td><td>39</td><td>1.98</td><td>19</td><td>0.960</td><td>26</td><td>1.31</td></tr><tr><th>Ge<sup>4+</sup></th><td>5.58</td><td>2.89</td><td>2.79</td><td>1.44</td><td>1.22</td><td>0.629</td><td>0.966</td><td>0.500</td></tr><tr><th>Rb<sup>1+</sup></th><td>2.93</td><td>0.012</td><td>395</td><td>1.57</td><td>98</td><td>0.391</td><td>4.43</td><td>0.018</td></tr><tr><th>Sr<sup>2+</sup></th><td>1.64</td><td>0.442</td><td>1.14</td><td>0.307</td><td>21</td><td>5.60</td><td>52</td><td>14</td></tr><tr><th>Y<sup>3+</sup></th><td>127</td><td>6.72</td><td>0.889</td><td>0.047</td><td></td><td></td><td>0.212</td><td>0.011</td></tr><tr><th>Zr<sup>4+</sup></th><td>47</td><td>0.397</td><td>6.20</td><td>0.052</td><td>0.544</td><td>0.005</td><td>0.487</td><td>0.004</td></tr><tr><th>Nb<sup>5+</sup></th><td>36</td><td>1.07</td><td>52</td><td>1.56</td><td></td><td></td><td></td><td></td></tr><tr><th>Cs<sup>1+</sup></th><td></td><td></td><td>1.67</td><td>0.430</td><td>0.049</td><td>0.013</td><td>0.065</td><td>0.017</td></tr><tr><th>Ba<sup>2+</sup></th><td>2.33</td><td>0.475</td><td>46</td><td>9.44</td><td>59</td><td>12</td><td>22</td><td>4.50</td></tr><tr><th>La<sup>3+</sup></th><td>47</td><td>1.04</td><td>0.944</td><td>0.021</td><td>3.71</td><td>0.082</td><td>14</td><td>0.307</td></tr><tr><th>Ce<sup>3+</sup></th><td>158</td><td>1.99</td><td>2.57</td><td>0.032</td><td>2.45</td><td>0.031</td><td>15</td><td>0.189</td></tr><tr><th>Pr<sup>3+</sup></th><td>25</td><td>3.53</td><td>0.247</td><td>0.036</td><td>0.097</td><td>0.014</td><td>0.828</td><td>0.119</td></tr><tr><th>Nd<sup>3+</sup></th><td>104</td><td>5.16</td><td>2.38</td><td>0.118</td><td>0.510</td><td>0.025</td><td>1.85</td><td>0.092</td></tr><tr><th>Sm<sup>3+</sup></th><td>23</td><td>8.10</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><th>Eu<sup>3+</sup></th><td>1.75</td><td>6.32</td><td></td><td></td><td>0.645</td><td>2.33</td><td>0.932</td><td>3.36</td></tr><tr><th>Gd<sup>3+</sup></th><td>19</td><td>7.33</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><th>Tb<sup>3+</sup></th><td>3.43</td><td>9.74</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><th>Dy<sup>3+</sup></th><td>23</td><td>11</td><td>1.29</td><td>0.603</td><td></td><td></td><td></td><td></td></tr><tr><th>Ho<sup>3+</sup></th><td>4.36</td><td>7.26</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><th>Er<sup>3+</sup></th><td>11</td><td>6.52</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><th>Tm<sup>3+</sup></th><td>1.73</td><td>5.13</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><th>Yb<sup>3+</sup></th><td>11</td><td>4.60</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><th>Lu<sup>3+</sup></th><td>1.53</td><td>4.21</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><th>Hf <sup>4+</sup></th><td>3.29</td><td>0.821</td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><th>Ta<sup>5+</sup></th><td>0.661</td><td>0.427</td><td>0.690</td><td>0.445</td><td></td><td></td><td></td><td></td></tr><tr><th>Tl<sup>3+</sup></th><th></th><th></th><th>1.52</th><th>1.01</th><th>0.354</th><th>0.236</th><th></th><th></th></tr><tr><th><math>Pb^{2}+</math></th><th>2.13</th><th>0.066</th><th>4.91</th><th>0.152</th><th>32</th><th>0.988</th><th>20</th><th>0.620</th></tr><tr><th>Th<sup>4+</sup></th><td>1.03</td><td>0.036</td><td>0.460</td><td>0.016</td><td></td><td></td><td></td><td></td></tr><tr><th>U<sup>4+</sup></th><td>0.460</td><td>0.073</td><td></td><td></td><td></td><td></td><td></td><td></td></tr></tbody></table>}					

 Table 1. Continued³

³ Note: values constrained by quantitative SEM-EDS analysis are denoted by %

We analyzed small areas on rims of grains of each mineral, under conditions of 15 kV electron beam acceleration and maximum beam intensity, resulting in absorbed currents of ~10 nA. Data acquisition and processing was performed with the Oxford software Aztec. Values determined using SEM-EDS are indicated in Table 1; because these elements are essential structural constituents (ESC) of these phases, which control the stability of the said phases, the reported K_d values are of more limited use.

2.4. LA-ICP-MS analysis

We determined concentrations of dispersed elements (those found in trace amounts) in glass and minerals by LA-ICP-MS using a New Wave/Merchant UP-213 nm Laser Ablation unit connected to a PerkinElmer Elan 6100 DRC II ICP-MS installed at Vanderbilt University. We set the laser settings to yield a fluence of 4.8-5.0 J/cm², at a repetition rate of 5 Hz, with He (0.9 min⁻¹) as the carrier gas. Each analysis began with 30 s of blank acquisition, followed by 60 s of ablation and 30 s of wash-out time to allow the measured values to return to blank levels.

We measured a total of 54 analytes (Table 1; Fig. 1) during each analysis. For every 10-20 measurements of unknowns, we analyzed 3-5 primary (for calibration) and secondary (treated as unknowns) standards to evaluate the precision and accuracy of the results (see Appendix A). We used *NIST 610* and *NIST 612* glasses (Pearce *et al.*, 1997) as the primary and secondary standards, respectively, for analyses done with a laser spot size of 20 μ m (titanite, chevkinite, zircon), 40 μ m (amphibole, apatite), and 80 μ m (glass, biotite), and *NIST 612* and *NIST 614* (Kurosawa *et al.*, 2002) glasses for analyses with a spot size of 120 μ m (sanidine, plagioclase). We chose Si as the internal standard for glass and minerals, with the exception of apatite (for which we used Ca). We selected the laser spot sizes according to the size of the grains for each mineral phase (smaller for accessory minerals, larger for major minerals), and analyzed glass with all laser spot sizes to find the best balance between measuring low-concentration elements (e.g. HREE) and avoiding crystals within the glass (Fig. 2). We analyzed all mineral phases at or as near as possible to the rim of the grains.

During biotite analyses we identified ablation intervals over which the measured Si and K concentrations were abnormally low, and Ca and P concentrations were uncharacteristically high. We identified these intervals as large apatite inclusions within biotite. For some analyses these intervals were long enough to permit quantitative analysis of apatite. Our apatite data are reliable only for elements with high concentration in apatite and low concentration in biotite, due to the memory effect resulting from long wash-out times in the instrument used. We omitted all analyses in which we encountered apatite inclusions from our biotite dataset when calculating average elemental concentrations for biotite, such that we are confident our biotite dataset has not been affected by any inclusions.

2.5. Data reduction

We used *Glitter* (Griffin *et al.*, 2008) to reduce the LA-ICP-MS data. To the extent possible, we also removed analyses that appeared contaminated by inclusions, which we typically identified by spikes in non-essential elements during the course of ablation. Lastly, we reviewed the data for each analyte in each phase to identify and remove analyses that were clear outliers; we then averaged remaining values to yield our best value for the concentration of each element in each phase. In addition, we note that, because measurements of essential structural constituents by LA-ICP-MS are often not reliable, we either (1) use ideal values constrained by stoichiometry for the essential structural constituents in some of our mineral phases; or (2) use results from quantitative SEM-EDS analyses (identified in Table 1).

Partition coefficients (K_d) measured in minerals from sample KPST01A. Essential structural components (ESC) for each mineral are denoted by circular symbols, whereas diamonds represent dispersed elements. (a) Major minerals (amphibole, biotite, sanidine, plagioclase). (b) Accessory minerals (titanite, chevkinite, zircon, apatite).

Chondrite-normalized elemental concentrations in KPST01A glass, measured with different laser spot sizes (20, 40, and 80 μ m) to assess the accuracy and reproducibility of each laser spot size. (a) All elements measured. (b) REE elements only; values from Colombini *et al.* (2011) are also shown. Values for HREE using a 20 μ m beam are below detection.

The concentrations (\bar{c}) used for partition coefficient calculation correspond to averages of at least 3 and up to 25 individual measurements per element. We calculated an average glass composition using our 80 µm measurements, as it was the most consistent, reliable, and extensive of our glass datasets (see Fig. 2; note in particular that, for some elements, the 20 µm dataset deviates significantly from the rest, especially for HREE; this is a result of attempting to measure glass concentrations that are lower than the detection limit of LA-ICP-MS analyses using a 20 µm spot). The partition coefficients (K_d) for each element are then calculated by dividing the average element concentration in each mineral phase by the average concentration of that element in the glass.

3. Results

We compare our calculated K_d values for each mineral phase with those of previously published studies available in the *Geochemical Earth Reference Model* ("GERM") partition coefficient database ([earthref.org/kdd], see Appendix A.5-A.6; Bacon and Druitt, 1988; Bea *et al.*, 1994; Ewart and Griffin, 1994; Leeman and Phelps, 1981; Mahood and Hildreth, 1983; Nagasawa, 1970; Nash and Crecraft, 1985; Schnetzler and Philpotts, 1970; Sisson, 1994; Stix and Gorton, 1990; Streck and Grunder, 1997) as well as some values not currently listed on *GERM* (Anderson *et al.*, 2000; Bachmann *et al.*, 2005; Colombini *et al.*, 2011; Sano *et al.*, 2002; Troll *et al.*, 2003). For simplicity, we collectively refer to all published studies as the "literature data." In addition, because the focus of our study is the Peach Spring Tuff, a high-silica rhyolite (HSR), we have primarily selected studies that investigated natural systems of similar character (rhyolite and HSR) for comparison. At first glance, we note that other published studies reporting partition coefficients typically focus on fewer mineral phases (2-3 at most) or a smaller array of studied elements.

3.1. Titanite

The K_d patterns that we observe in titanite are generally in agreement with those of literature data (Fig. 3). In particular, the REE are highly concentrated in titanite, and they display their typical higher affinity for middle REE (MREE), relative to light and heavy REE (LREE and HREE, respectively), observed by others (e.g. Bachmann *et al.*, 2005; Colombini *et al.*, 2011); our K_d values are on the same order of magnitude as other published K_d values. We note that Troll *et al.* (2003) report lower values for the REE, but they display the same overall pattern, and we attribute the differences in these values to the different rock compositions used in their study (peralkaline rhyolite). For other elements (non-REE), K_d values from the literature data are generally within a half order of magnitude of our reported values.

3.2. Chevkinite

Notably, and to the best of our knowledge, the only published study that reports partition coefficients for chevkinite is that of Troll *et al.* (2003), though they report only a small suite of elements (Fig. 4). We point out the agreement in the K_d pattern for the LREE and MREE, displaying a strong preference for LREE over HREE. As we previously noted, the contrast in rock composition (peralkaline rhyolite) likely accounts for the half order of magnitude difference between our K_d values and those of Troll *et al.* (2003).

Figure 3

Comparison plot of partition coefficients (K_d) calculated for titanite vs. published literature data: Colombini *et al.* (2011), Bachmann *et al.* (2005), and Troll *et al.* (2003). Data symbols correspond to the studied rock type as follows: square = high-silica rhyolite; diamond = rhyolite.

Figure 4

Comparison plot of partition coefficients (K_d) calculated for chevkinite vs. published literature data: Troll *et al.* (2003). Data symbols correspond to the studied rock type as follows: square = high-silica rhyolite; diamond = rhyolite.

3.3. Zircon

For the most part, our zircon K_d values are in good agreement with those reported in the literature, and in particular with other studies that focused on high-silica rhyolite compositions (e.g. Bachmann et al., 2005; Colombini et al., 2011). Zircon displays a high affinity for Zr, Hf, and MREE and especially HREE (Fig. 5). Most of our values are within an order of magnitude or less of the values reported in other studies. The most notable difference is in the range of K_d values for the LREE (La-Sm). Some studies report significantly lower K_d values for La and more pronounced Ce and Eu anomalies than ours. We note, in particular, that the LREE K_d patterns reported by Mahood and Hildreth (1983) and Bea et al. (1994) are significantly higher than the results of other studies, displaying a more linear trend than what is typically observed, of increasing K_d values with increasing atomic number. These inconsistencies are likely the result of glass or LREE-rich inclusions in zircon (e.g. chevkinite, allanite, xenotime), which even if small in size can significantly affect concentrations, and therefore K_d values. Lanthanum concentrations in zircon are likely <100 ppb (see Colombini et al., 2011), which is many orders of magnitude lower than the 1,000-100,000 ppm concentrations observed in other accessory minerals such as apatite, chevkinite, and titanite (see Table 1); even rhyolite melt, with 20-100 ppm La, is much enriched (2-3 orders of magnitude) in LREE over zircon. It follows that even minute inclusions of such LREE-rich phases would affect measurements of La (and other LREE) in zircon (Colombini et al., 2011; Michael, 1988). This is consistent with the fact that SHRIMP results for zircon from the same PST HSR presented by Colombini et al. (2011) show lower concentration and K_d for the LREE than what we obtain; because SHRIMP produces much shallower analyzed pits than our LA-ICP-MS spots, this technique is much less likely to encounter inclusions. Results presented here suggest that caution needs to be exercised with
LREE values in zircon obtained via LA-ICPMS; this is particularly important when quantitatively determining the magnitude of the Ce anomaly (Ce/Ce*), which has been suggested as a proxy for the oxidation state of magmas (Trail *et al.*, 2011, 2012, 2015). We find it difficult to fully assess the quality of our non-REE K_d values due to the scarcity of published data for these, but we note that the overall patterns remain in general agreement.

3.4. Apatite

Though there are a number of published studies reporting K_d values for apatite, few report data from natural samples and the available data are essentially limited to the REE. The general patterns observed in our data are similar to those for literature data, but the range in K_d values extends over more than an order of magnitude (Fig. 6). We point out that the pattern observed in our data, displaying slightly higher affinity for MREE than for LREE or HREE, best agrees with the data reported by Sano *et al.* (2002), with our values being less than half an order of magnitude higher. In contrast, the values reported by Bea *et al.* (1994) are higher, especially for HREE, and display a more linear trend for the HREE, which, similar to high LREE in zircon, may be the result of HREE-rich inclusions in their samples (see Michael, 1988). We emphasize that our data for apatite come from inclusions within biotite crystals exposed during ablation, so we urge some caution in the interpretation of these K_d values. Accordingly, we have omitted from our dataset any elements that are typically enriched in biotite (e.g. K, Si, Al, Mg, Co, Ni, Cu, and Zn); on the other hand, we expect our results to be reliable for elements that are more abundant in apatite than in biotite (e.g. REE).

Comparison plot of partition coefficients (K_d) calculated for zircon vs. published literature data: Colombini *et al.* (2011); Bachmann *et al.* (2005); Mahood & Hildreth (1983); Bea *et al.* (1994); Nagasawa (1970); and Sano *et al.* (2002). Data symbols correspond to the studied rock type as follows: square = high-silica rhyolite; diamond = rhyolite; triangle = granite; circle = dacite.

Comparison plot of partition coefficients (K_d) calculated for apatite vs. published literature data: Bea *et al.* (1994); Nagasawa (1970); and Sano *et al.* (2002). Data symbols correspond to the studied rock type as follows: square = high-silica rhyolite; triangle = granite; circle = dacite.

3.5. Amphibole (Hornblende)

The K_d values for amphibole in literature data show some scatter; yet, our K_d values generally fall within half an order of magnitude of literature values (Fig. 7). The overall pattern for the REE, displaying a stronger affinity for MREE and for HREE than for LREE, similar to that observed for titanite, is consistent across all studies. We note, in particular, that our data are most similar to those of Bachmann *et al.* (2005) and Sisson (1994).

3.6. Biotite

Large inclusions of other minerals in biotite are very common and, as we discovered during our analyses, can be very difficult to avoid, especially when the data are collected using a relatively large spot size to improve the quality of the data for elements in low concentrations. Thus, we suspect that a large portion of published K_d values for biotite may be unreliable (see Michael, 1988). To the extent possible, we have filtered our own dataset to exclude any analyses with suspected "contamination" from inclusions, identified chiefly by spikes of non-essential elements in biotite during the course of each analysis, and here we report only what we consider our most reliable K_d values. We observe a large amount of variability in both literature values and our own dataset (Fig. 8), with no evident patterns in any of the studies. We urge caution in the use or interpretation of these values, in particular when considering datasets displaying high REE (especially LREE) K_d values, as these may reflect the occurrence of accessory mineral inclusions (e.g. Mahood and Hildreth, 1983; Nash and Crecraft, 1985).

Comparison plot of partition coefficients (K_d) calculated for amphibole vs. published literature data: Bachmann *et al.* (2005); Ewart & Griffin (1994); Bacon & Druitt (1988); and Sisson (1994). Data symbols correspond to the studied rock type as follows: square = high-silica rhyolite; diamond = rhyolite.

Comparison plot of partition coefficients (K_d) calculated for biotite vs. published literature data: Bachmann *et al.* (2005); Mahood & Hildreth (1983); Bea *et al.* (1994); Ewart & Griffin (1994); Schnetzler & Philpotts (1970); Nash & Crecraft (1985); and Anderson *et al.* (2001). Data symbols correspond to the studied rock type as follows: square = high-silica rhyolite; diamond = rhyolite; triangle = granite.

3.7. Sanidine

Despite the scarcity of data for alkali-feldspar, there is general agreement between literature data and our data, especially for Rb, Sr, Ba and, to a lesser extent, Eu (Fig. 9). There is particularly good agreement between our values and those of Bachmann *et al.* (2005) and Anderson *et al.* (2000), the latter of which were obtained by ion microprobe. Though we were able to measure concentrations of some REE in sanidine, we point out that most of our measurements were of sub-ppm concentrations and all were near the detection limit, and thus we suggest caution in the use and interpretation of these values.

3.8. Plagioclase

The literature dataset for plagioclase displays a large amount of scatter, with K_d for most elements varying over 1-2 orders of magnitude with few noticeable patterns, save for spikes in Sr, Ba, and Eu observed in most studies (Fig. 10). Notably, our data is in best agreement with that of Bachmann *et al.* (2005), save for large differences in Ba and the HREE (Dy-Yb); our data also agree well with those of Anderson *et al.* (2000); it is generally also in good agreement with most other literature values for elements that are strongly partitioned into plagioclase (e.g. Sr, Eu). The elevated K_d values for REE reported by Bea *et al.* (1994) are likely the result of REErich accessory mineral inclusions in plagioclase, and we point out that, similarly to sanidine, all of our measurements in plagioclase yielded sub-ppm REE concentrations (except for Eu), near the detection limit of our instrument, and readers should be cautious in interpreting these values.

Comparison plot of partition coefficients (K_d) calculated for sanidine vs. published literature data: Bachmann *et al.* (2005); Mahood & Hildreth (1983); Ewart & Griffin (1994); Stix & Gorton (1990); Leeman & Phelps (1981); and Anderson *et al.* (2001). Data symbols correspond to the studied rock type as follows: square = high-silica rhyolite; diamond = rhyolite.

Comparison plot of partition coefficients (K_d) calculated for plagioclase vs. published literature data: Bachmann *et al.* (2005); Bea *et al.* (1994); Ewart & Griffin (1994); Bacon & Druitt (1988); Nash & Crecraft (1985); Streck & Grunder (1997); and Anderson *et al.* (2000). Data symbols correspond to the studied rock type as follows: square = high-silica rhyolite; diamond = rhyolite; triangle = granite.

4. Discussion

4.1. Controls on REE distribution

Based on our results, it is evident that accessory minerals (titanite, chevkinite, zircon, and apatite) collectively control the partitioning of all rare earth elements in the PST melt (Fig. 11a; e.g. Arth, 1976; Wark and Miller, 1993). Of the major minerals, amphibole has the highest partition coefficients for REE, though Eu is also partitioned strongly by the feldspars. Since K_d values for amphibole are 1-2 orders of magnitude lower than most accessory minerals, amphibole abundances would have to be higher by that same amount in order for it to play an equal role in REE partitioning (e.g. amphibole would need to be ~80 times more abundant to exert the same control on MREE as titanite). Chevkinite displays the highest affinity for the LREE, with K_d values that are over an order of magnitude higher than any other mineral, particularly for La and Ce. Though it is scarce, chevkinite likely plays the dominant role on the partitioning of LREE, while titanite, which also displays a high affinity for LREE, plays a strong secondary role. It is evident, however, that titanite, which preferentially incorporates MREE over other REE, takes on the primary role of fractionating MREE from the melt, due to its abundance in the PST system coupled with its high MREE K_d values. Interestingly, apatite and amphibole share a similar REE K_d pattern to titanite, displaying a higher affinity (though much lower in magnitude) for MREE; these MREE-rich phases, along with chevkinite, also contribute to fractionating MREE from the melt. In rocks where titanite is absent, amphibole and apatite would have the strongest influence on the partitioning of MREE. Zircon plays a significant role in the partitioning of the HREE, with contributions from titanite, chevkinite, and apatite, which

all have similar K_d values for the HREE. While zircon is a ubiquitous phase, it is also not very abundant; in the PST case, titanite, being by far the most abundant REE-rich accessory, controls the behavior of the HREE.

4.2. Controls on high field strength element (HFSE) distribution (Th, U, Nb, Hf)

Our data suggest that, despite its low abundance, chevkinite holds the primary control on the distribution of Th in the PST. The Th K_d values for titanite and zircon are more than an order of magnitude lower than that for chevkinite (Fig. 11b); but, given the higher abundance of both titanite and zircon, they may also play significant roles in fractionating Th in the PST. These roles are slightly reversed when it comes to the partitioning of U, in which zircon takes on the primary role, with titanite, and to a lesser extent chevkinite, also contributing significantly.

Notably, titanite, apatite, and chevkinite all display a higher affinity for the highly incompatible Nb than the other mineral phases, though titanite, being considerably more abundant, is likely the dominant control on its distribution (Fig. 11b). In contrast, the distribution of Hf is entirely controlled by zircon, which is abundant and whose K_d is more than an order of magnitude larger than for any other mineral phase in the PST (Fig. 11b).

Figure 11

Comparison plot of partition coefficients (K_d) calculated for all mineral phases of the Peach Spring Tuff high silica rhyolite (sample KPST01A). (a) Rare Earth Elements (REE: La-Lu). (b) Large ion lithophile elements (LILE: Rb, Sr, Ba) and high field strength elements (HFSE: Nb, Hf, Th, U).

4.3. Controls on large ion lithophile element (LILE) distribution (Rb, Sr, Ba)

The distribution of Rb, Sr, and Ba in the PST melt, as expected, appears to be largely controlled by feldspar crystallization (sanidine and plagioclase alike; see Fig. 11b), but accessory minerals can play an important role. We find that Sr and Ba are partitioned on roughly the same magnitude by both feldspars, with a slight preference for Sr in plagioclase and for Ba in sanidine (Fig. 11b). The K_d for Sr in apatite and Ba in both apatite and chevkinite are substantially higher than those for feldspars. Yet, the abundance of the feldspars is much greater than that of apatite or chevkinite, such that feldspars should play the dominant role in the behavior of Sr and Ba. The K_d value for Rb in sanidine is more than an order of magnitude greater than that for plagioclase, though substantially <1; the K_d for Rb in biotite is ~4x larger than the K_d in sanidine, such that sanidine and biotite should both control the distribution of Rb.

4.4. Crystallographic controls on partitioning

We interpret the partition coefficient dataset in light of the theoretical considerations of crystal lattice strain by Blundy and Wood (1994, 2003), which predict that cations substituting into a particular crystallographic site will conform to a parabola-like function due to the mismatch in size and valence state between the cations and the site. We fit our data to this function in the form of $y = ax^3 + bx^2 + c$, where y represents K_d in log space (that is, $Ln[K_d]$) and x is the ionic radius; we use a least squares difference method to perform the fitting, and we plot them on *Onuma* diagrams (plots of ionic radius versus $Ln[K_d]$; Figs. 12-19; Onuma *et al.*, 1968) in order to assess how groups of elements partition into various sites within each mineral. We select each group of elements based on their charge and the coordination site they are most likely to occupy within the mineral structure (see Table 2). Using *Onuma* diagrams and best-fit curves calculated from a minimum of 4 cations per group, we are able to constrain the families of cations that are most likely to occupy each site, as well as predict the ideal radius of each crystallographic site, which occurs at the apex of their respective best-fit curves. This type of analysis not only illustrates the crystallographic controls on element partitioning, but it also constitutes an effective test of the quality of the K_d values presented here, and it allows prediction of K_d values for non-analyzed elements; further, we demonstrate that we can calculate the relative abundance of different valence states for some elements, notably Ce and Eu (Colombini *et al.*, 2011).

For some families of cations, we do not have sufficient data to obtain a proper fit, in large part due to their relatively low abundance in some mineral phases (e.g. REE in feldspars), but also because of their relative scarcity in nature (e.g. 1^+ and 5^+ cations). In general, we find wellconstrained fits with at least 5 cations of a given valence in a given crystallographic site. In some cases, when a single cation (or two cations of very similar size) is much more abundant than other cations in the mineral (e.g. Zr^{4+} , Hf^{4+} in zircon), we can force the apex of the parabola-like function to occur at the ionic radius for such cation. This is especially useful for estimating expected concentrations (or K_d values) of cations that are of particular interest in studies of silicic magmas, such as Eu and Ce (see additional discussion below; section 4.4.c). Fits calculated by this method are denoted in our figures by a dashed line. For a more detailed description of this method, see Appendix A.7.

Phase →	Titanite		Chevkinite		Zircon		Apatite		Amphibole		Biotite		Sanidine		Plagioclase	
Element	Cr.	R (Å)	Cr.	R (Å)	Cr.	R (Å)	Cr.	R (Å)	Cr.	R (Å)	Cr.	R (Å)	Cr.	R (Å)	Cr.	R (Å)
↓ <u> </u>		0.7(0		()		()		0.500	1/1	0.7(0		0.7(0		0.500		0.500
L1 ⁻ D ³⁺		0.760					IV	0.590	VI	0.760	VI	0.760	IV	0.590	IV	0.590
D No ¹⁺		0.110	 VIII				 IV		 VII	1 20	 VII	1 20	 IV	1.24	IV	1.24
$M\sigma^{2+}$	VII	0.805	VIII	0.720			17	1.24	VI	0 720	VI	0 720		0.975	IX	0.975
Al^{3+}	VI	0.535	VI	0.535	IV	0 390			IV	0.390	IV	0.390	IV	0.390	IV	0.390
Si ⁴⁺	IV	0.260	IV	0.260	IV	0.260			IV	0.260	IV	0.260	IV	0.260	IV	0.260
K ¹⁺									XII	1.64	XII	1.64	IX	1.55	IX	1.55
Ca ²⁺	VII	1.06	Х	1.23			IX	1.18	VIII	1.12	XII	1.34	IX	1.18	IX	1.18
Sc ³⁺	VII	0.808	VI	0.745	VIII	0.870	VII	0.808	VI	0.745	VI	0.745	IX	0.933	IX	0.933
Ti ⁴⁺	VI	0.605	VI	0.605	IV	0.420	IV	0.420	VI	0.605	VI	0.605	IV	0.420	IV	0.420
V ⁵⁺	VI	0.540	VI	0.540			IV	0.355	VI	0.540	VI	0.540			IV	0.355
Mn ²⁺	VII	0.900	VI	0.830					VI	0.830	VI	0.830	IX	1.03	IX	1.03
Co ²⁺	VII	0.823							VI	0.745	VI	0.745				
Ni ²⁺											VI	0.690				
Cu ²⁺			VI	0.730							VI	0.730			IV	0.570
Zn ²⁺	VII	0.820	VI	0.740					VI	0.740	VI	0.740			IX	0.980
Ga ³⁺	VI	0.620	VI	0.620			VII	0.697	VI	0.620	VI	0.620	IV	0.470	IV	0.470
Ge ⁴⁺	VI	0.530	IV	0.390					VI	0.530	VI	0.530	IV	0.390	IV	0.390
Rb ¹⁺	VII	1.56							XII	1.72	XII	1.72	IX	1.63	IX	1.63
Sr ²⁺	VII	1.21	Х	1.36			IX	1.31	VIII	1.26	XII	1.44	IX	1.31	IX	1.31
Y ³⁺	VII	0.960	VIII	1.02	VIII	1.02	VII	0.960	VIII	1.02	VI	0.900			IX	1.08
Zr ⁻	VII	0.780	VI	0.720	VIII	0.840	VII	0.780	VII	0.780	VI	0.720	IV	0.590	IV	0.590
Nb ³⁺	VII	0.690	VIII	0.740	VIII	0.740	VII	0.690	VIII	0.740	VI	0.640				
Cs^{-1}			 V					1.78			XII	1.88		1.78		1.78
Ва 1 - ³⁺	VII	1.38		1.52	VIII	1.42		1.4/	VIII	1.42		1.01		1.47		1.47
La	VII	1.10	VIII	1.10	VIII	1.10	VII	1.10	VIII	1.10		1.03		1.22		1.22
D _w ³⁺	VII	1.07	VIII	1.14	V 111	1.14	VII	1.07	VIII	1.14	VI	0.000		1.20		1.20
Nd ³⁺	VII	1.00	VIII	1.15	VIII	1 1 1	VII	1.00	VIII	1.15	VI	0.990		1.10	IX	1.10
Sm ³⁺	VII	1.05	VIII	1.11	VIII	1.11	VII	1.05	VIII	1.11	• 1	0.785	17	1.10	17	1.10
Eu ³⁺	VII	1.02	VIII	1.00	VIII	1.00	VII	1.02	VIII	1.00			IX	1 12	IX	1 12
Gd ³⁺	VII	1.01	VIII	1.07	VIII	1.07	VII	1.01								
Tb ³⁺	VII	0.980	VIII	1.03	VIII	1.03	VII	0.980								
Dv ³⁺	VII	0.970	VIII	1.03	VIII	1.03	VII	0.970			VI	0.912				
Ho ³⁺	VII	0.958	VIII	1.02	VIII	1.02	VII	0.958								
Er ³⁺	VII	0.945	VIII	1.00	VIII	1.00	VII	0.945								
Tm ³⁺	VII	0.937	VI	0.880	VIII	0.994	VII	0.937								
Yb ³⁺	VII	0.925	VI	0.868	VIII	0.985	VII	0.925								
Lu ³⁺	VII	0.919	VI	0.861	VIII	0.977	VII	0.919								
Hf ⁴⁺	VII	0.760	VI	0.710	VIII	0.830										
Ta ⁵⁺	VII	0.690	VIII	0.740	VIII	0.740	VII	0.690			VI	0.640				
Tl ³⁺							IX	1.04			VI	0.885	IX	1.04		
$Pb^{2}+$	VII	1.23	Х	1.40	VIII	1.29	IX	1.35	VIII	1.29	XII	1.49	IX	1.35	IX	1.35
Th ⁴⁺	VII	0.995	VI	0.940	VIII	1.05	VII	0.995	VII	0.995						
U ⁴⁺	VII	0.950	VI	0.890	VIII	1.00	VII	0.950	VII	0.950						

Table 2. Coordination (*Cr*.) and corresponding ionic radii (R in Å)⁴ used for each cation in *Onuma* diagrams (Figs. 12-22).

⁴ *Ionic radii* (R) obtained at [http://abulafia.mt.ic.ac.uk/shannon/radius.php], taken from "Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides" (Shannon, 1976)

4.4.a. <u>Rare Earth Elements (REE) Fits</u>

For the most part, REE elements in accessory minerals and amphibole conform very well to an *Onuma* curve (Figs. 12-16, 20). For some cation groups (e.g. 3⁺ cations in zircon and biotite), the REE only define one limb of the parabola, though we point out that the zircon fit is particularly good. The low abundance of REE in sanidine and plagioclase yields incomplete datasets for which true fits cannot be calculated.

Of the few elements that do not conform to the fits, some are easily explained. For example, the low K_d values for Eu (e.g. for titanite, apatite, and amphibole) result from the coexistence of divalent and trivalent Eu (Eu²⁺ and Eu³⁺, respectively) and the relatively high Eu²⁺/Eu³⁺ ratio in silicic magmas. Our K_d reflect total Eu in the melt, and any minerals that preferentially incorporate Eu³⁺ over Eu²⁺ (e.g. titanite) will be deficient in total Eu relative to other REE. The opposite is true for minerals preferentially incorporating Eu²⁺, which results in enriched total Eu relative to the other REE as can be observed in the feldspars (Fig. 18-19). Similarly, anomalies observed in Ce K_d result from the coexistence of Ce³⁺ and Ce⁴⁺. However, with the exception of zircon, which readily accommodates Ce⁴⁺ in the Zr site because of their chemical similarities, Ce anomalies are typically very small or absent. This suggests that Ce³⁺ largely dominates Ce abundances in magmatic systems (see additional discussion below).

Surprisingly, La does not conform to the REE fits in titanite, zircon, or apatite, resulting in apparent positive La anomalies. In addition, amphibole displays a positive Dy anomaly. Previous researchers have also noted similar misfits for some REE in accessory phases (e.g. Colombini *et al.*, 2011). We suggest these misfits are the result of REE-rich micro inclusions in those phases. For example, if we consider the *Onuma* fit for REE in zircon (Fig. 14), the predicted K_d for La would be 0.0026, from which we deduce that the amount of La that can be accommodated in zircon is on the order of ~100 ppb, which contrasts with the measured 3.4 ppm

concentration and resulting $K_d = 0.075$. A small-volume LREE-rich inclusion can easily account for the ~3 ppm of La we measure in zircon. In this context, it becomes clear that the sub-ppm intrinsic abundance of La in zircon presents a substantial obstacle to accurate determination of La concentrations, given that the measurements will invariably be affected by inclusions, particularly for determinations using LA-ICP-MS, which make use of relatively large analyzed volumes. This has important implications for the determination of Ce anomalies in zircon and any derived estimates of oxidation state that make use of such anomalies (Trail *et al.*, 2011, 2012, 2015).

Interestingly, Gd is systematically low in the *Onuma* fits for all REE-rich phases except chevkinite (i.e. titanite, zircon, apatite, amphibole). Similarly, despite having a radius nearly identical to that of Ho, Y, which, along with Sc, is typically associated with the REE due to its chemical similarity, is also systematically low in most phases. We note that Gd concentrations in glass appear to be high in our chondrite-normalized REE pattern (see Fig. 2b). It is thus possible that our K_d for Gd are slightly underestimated, as a consequence. In addition, Pr in chevkinite and biotite as well as Sm in apatite plot below the best-fit curves. The reasons for these misfits are not immediately clear to us, as these elements do not exist in other valence states and cannot be explained by REE-enriched inclusions.

Notably, our data suggest that the REE in chevkinite are partitioned between two crystallographic sites with different coordination (Fig. 13). As expected, the LREE conform to a fit for the (La,Ce)^[VIII] site in chevkinite, but the heaviest REE (Tm-Lu) and Sc, in contrast, occupy the (Ti)^[VI] site along with the HFSE.

Onuma plot $(Ln(K_d) \text{ vs. ionic radius})$ for titanite. For each group of cations, only filled symbols are included in the determination of a best-fit curve $(Eu^{3+} \text{ is excluded from the REE fit})$. The corresponding expected $Ln(K_d)$ values for each cation are plotted as small filled circles. Where the differences are large, vertical dashed arrows connect measured to expected $Ln(K_d)$ values. Roman numerals indicate the coordination of the site that each group of cations occupies.

Onuma plot $(Ln(K_d) \text{ vs. ionic radius})$ for chevkinite. For each group of cations, only filled symbols are included in the determination of a best-fit curve. The corresponding expected $Ln(K_d)$ values for each cation are plotted as small filled circles. Where the differences are large, vertical dashed arrows connect measured to expected $Ln(K_d)$ values. Roman numerals indicate the coordination of the site that each group of cations occupies. For cation groups that do not conform to a best-fit curve, an assumed fit is calculated (see section 4.4 for details) and plotted as a dashed curve (e.g. HFSE, LILE).

Onuma plot $(Ln(K_d)$ vs. ionic radius) for zircon. For each group of cations, only filled symbols are included in the determination of a best-fit curve $(Ce^{3+}$ is excluded from the REE fit). The corresponding expected $Ln(K_d)$ values for each cation are plotted as small filled circles. Where the differences are large, vertical dashed arrows connect measured to expected $Ln(K_d)$ values. Roman numerals indicate the coordination of the site that each group of cations occupies. For cation groups that do not conform to a best-fit curve, an assumed fit is calculated (see section 4.4 for details) and plotted as a dashed curve (e.g. HFSE).

Onuma plot $(Ln(K_d) \text{ vs. ionic radius})$ for apatite. For each group of cations, only filled symbols are included in the determination of a best-fit curve $(Eu^{3+} \text{ is excluded from the REE fit})$. The corresponding expected $Ln(K_d)$ values for each cation are plotted as small filled circles. Roman numerals indicate the coordination of the site that each group of cations occupies. For cation groups that do not conform to a best-fit curve, an assumed fit is calculated (see section 4.4 for details) and plotted as a dashed curve (e.g. LILE).

Onuma plot $(Ln(K_d) \text{ vs. ionic radius})$ for amphibole. For each group of cations, only filled symbols are included in the determination of a best-fit curve $(Eu^{3+} \text{ is excluded from the REE fit)}$. The corresponding expected $Ln(K_d)$ values for each cation are plotted as small filled circles. Where the differences are large, vertical dashed arrows connect measured to expected $Ln(K_d)$ values. Roman numerals indicate the coordination of the site that each group of cations occupies. For cation groups that do not conform to a best-fit curve, an assumed fit is calculated (see section 4.4 for details) and plotted as a dashed curve (e.g. HFSE, LILE).

Onuma plot $(Ln(K_d) \text{ vs. ionic radius})$ for biotite. For each group of cations, only filled symbols are included in the determination of a best-fit curve. The corresponding expected $Ln(K_d)$ values for each cation are plotted as small filled circles. Roman numerals indicate the coordination of the site that each group of cations occupies.

Onuma plot ($Ln(K_d)$ vs. ionic radius) for sanidine. For each group of cations, only filled symbols are included in the determination of a best-fit curve (Eu^{3+} is excluded from the REE fit). The corresponding expected $Ln(K_d)$ values for each cation are plotted as small filled circles. Where the differences are large, vertical dashed arrows connect measured to expected $Ln(K_d)$ values. Roman numerals indicate the coordination of the site that each group of cations occupies. For cation groups that do not conform to a best-fit curve, an assumed fit is calculated (see section 4.4 for details) and plotted as a dashed curve (e.g. REE).

Onuma plot ($Ln(K_d)$ vs. ionic radius) for plagioclase. For each group of cations, only filled symbols are included in the determination of a best-fit curve (Eu^{3+} is excluded from the REE fit). The corresponding expected $Ln(K_d)$ values for each cation are plotted as small filled circles. Where the differences are large, vertical dashed arrows connect measured to expected $Ln(K_d)$ values. Roman numerals indicate the coordination of the site that each group of cations occupies. For cation groups that do not conform to a best-fit curve, an assumed fit is calculated (see section 4.4 for details) and plotted as a dashed curve (e.g. REE, LILE).

Onuma plot ($Ln(K_d)$ vs. ionic radius) for rare earth elements (REE) in all mineral phases. Only filled symbols are included in the determination of a best-fit curve. The corresponding expected $Ln(K_d)$ values for each cation are plotted as small filled circles. Dashed curves indicate an assumed fit (see section 4.4 for details).

4.4.b. <u>Large Ion Lithophile Elements (LILE), High Field Strength Elements (HFSE), and other</u> <u>Onuma fits</u>

Because of the limited number of HFSE and LILE that exist in any given valence state, it is difficult to obtain sufficient data to calculate true Onuma fits in most minerals. In many cases, divalent LILE share a crystallographic site with smaller 2^+ cations, making it possible to calculate an Onuma fit for that group of cations. We see some relatively good fits for groups of 2^+ cations, though such fits are largely limited to the major mineral phases (Fig. 21), as expected since their mineral structures can more readily accommodate LILE, particularly when a dedicated alkali or alkaline earth metal site is present. However, in most phases LILE occupy larger sites than other cations in the same valence (e.g. transition metals), or the phases simply cannot simultaneously accommodate LILE and smaller cations resulting in very low concentrations of one or both groups (e.g. in zircon). We encounter the same issue with HFSE, as few phases can accommodate these in the same site as smaller 4^+ cations (e.g. the Si site), or concentrate enough HFSE to define a proper Onuma fit (see Fig. 22). Notably, we can approximate HFSE fits for chevkinite, zircon, and amphibole by forcing the curves to fit the radius of their host cations (see Figs. 13-14, 16, 22), as previously discussed, but we are unable to do the same for other accessory phases despite the fact that most have relatively elevated concentrations of a sufficient number of HFSE (typically Zr, Hf, Th, and U). The misfit of Th in chevkinite (Fig. 13) suggests that it is partitioned into the larger (La,Ce)^[VIII] site along with the REE, while U is partitioned into the smaller (Ti)^[VI] site with Zr and Hf. This may explain why Th is enriched in chevkinite relative to other accessory minerals. In the same way we do for the HFSE, we can also approximate fits for some groups of 2^+ cations in accessory phases (e.g. chevkinite, see Fig. 13; apatite, see Fig. 15). The value of these forced fits is further discussed below (see section 4.4.c).

Figure 21

Onuma plot $(Ln(K_d) \text{ vs. ionic radius})$ for large ion lithophile elements (LILE) in all mineral phases. The corresponding expected $Ln(K_d)$ values for each cation are plotted as small filled circles. Dashed curves indicate an assumed fit (see section 4.4 for details). (a) monovalent LILE. (b) divalent LILE.

Onuma plot (Ln(K_d) vs. ionic radius) for assumed HFSE fits in zircon, chevkinite, and amphibole (see section 4.4 for details). The corresponding expected Ln(K_d) values for each cation are plotted as small filled circles. Vertical dashed arrows connect measured to expected Ce⁴⁺ Ln(K_d) values in their respective curves for each mineral phase.

We note that the apex of the best-fit curve for 9-fold coordinated 2^+ cations in plagioclase is more closely aligned with the radius of $Eu^{2+[IX]}$ and $Sr^{2+[IX]}$, rather than that of Ca^{2+} (Fig. 19), illustrating the strong affinity and consequent large K_d for Eu^{2+} in plagioclase. Interestingly, we also observe a similar shift for the 1^+ cations curve in sanidine, whose apex is shifted toward a smaller size than the expected $K^{1+[IX]}$ radius, and for the 2^+ and 3^+ curves in titanite whose apexes are aligned at approximately the same radius, though shifted toward a smaller size than the expected $Ca^{2+[VII]}$ radius, and perhaps suggesting that REE are abundant enough in titanite such that the $Ca^{2+[VII]}$ site is truly a $(Ca+REE)^{[VII]}$ site.

With the exception of feldspars, we find that Ba is systematically off in all our mineral datasets, and does not conform to the fit in any group of 2^+ cations in the same coordination to which it should theoretically belong. The reason for this misfit is not immediately clear to us. In contrast, when present in measurable concentrations (such as in major phases), Rb and Sr appear to conform well to best-fit curves with other LILE in their respective valence (e.g. K⁺ and Na⁺ for Rb⁺; Ca²⁺ and Pb²⁺ for Sr²⁺).

4.4.c. Estimating Ce^{4+} and Eu^{2+} proportions in silicic melts

Previous researchers have suggested that Ce^{4+} and Eu^{2+} can be used as indicators of oxidizing (indicated by the existence of Ce^{4+}) vs. reducing (existence of Eu^{2+}) conditions in magmas (e.g. Trail *et al.*, 2011). However, the occurrence of both Ce and Eu anomalies in PST phases is a clear indication that Eu^{2+} , Eu^{3+} , Ce^{3+} , and Ce^{4+} all coexist in the PST melt, particularly in phases like apatite, which contains anomalies in both species. Additional knowledge about the coexistence, and relative proportions, of these species could shed light about their dependence on, or effect of, the oxidation state of their parental magma. With this in mind, from the mathematical definition of partition coefficients and the calculation of expected

partition coefficients from Onuma fits (see above), Colombini *et al.* (2011) derived the following expression to estimate the relative proportion of $\operatorname{Ce}^{3+}(X_{Melt}^{Ce^{3+}})$ to total Ce (*Ce^{tot}*) in silicate melts:

$$X_{Melt}^{Ce^{3+}} = (K_d^{Ce^{tot}} - K_d^{Ce^{4+}}) / (K_d^{Ce^{3+}} - K_d^{Ce^{4+}})$$

where $K_a^{Ce^{3+}}$ and $K_a^{Ce^{4+}}$ represent the calculated expected K_d for Ce³⁺ and Ce⁴⁺, respectively, and $K_a^{Ce^{tot}}$ represents the measured K_d for Ce. This equation can also be used to estimate the relative proportion of Eu²⁺ ($X_{Melt}^{Eu^{2+}}$) to total Eu (Eu^{tot}) in the melt. Using the same approach and the equation above, we calculated the relative proportions of Ce³⁺ and Eu²⁺ for the Peach Spring Tuff (Table 3). We note that these values are best estimated for phases in which we have good fits for both the REE and 4⁺ cations (to estimate Ce proportions) or 2⁺ cations (to estimate Eu proportions), such that we can accurately calculate the ideal K_d values for both valences. However, as previously discussed (see section 4.4.a), fits for some of the 4⁺ and 2⁺ groups of cations require additional assumptions regarding the ionic radius at which the apex in K_d occurs. Nonetheless, reasonable estimates for, $K_d^{Ce^{4+}}$ and $K_d^{Eu^{2+}}$ can be obtained in some cases, especially when the expected Eu²⁺ or Ce⁴⁺ values fall between those of other 2⁺ or 4⁺ cations occupying the same site and coordination. Estimated values for $K_d^{Ce^{3+}}$ and $K_d^{Eu^{3+}}$ are less problematic, given that the REE usually sufficiently constrain the Onuma fits.

	Phase →	Titanite	Chevkinite	Zircon	Apatite	Amphibole	Sanidine	Plagioclase	
LnK _d (Eu ^{Tot})		6.31	6.9		5.0	1.8	0.8	1.2	
Eu ²⁺	Coordination	VII	Х		VIII	VIII	IX	IX	
	Radius	1.20	1.35		1.25	1.25	1.30	1.30	
	Y _{Expected}	-0.21	1.7		3.2	-0.1	1.8	3.0	
Eu ³⁺	Coordination	VII	VIII		VIII	VIII	IX	IX	
	Radius	1.01	1.07		1.07	1.07	1.12	1.12	
	Y _{Expected}	6.67	7.0		5.6	2.2	-7.6	-3.3	
	Eu ²⁺ /Eu ^{Tot}	0.303	0.067		0.525	0.312	0.376	0.173	
LnK _d (Ce ^{Tot})			8.1	-0.4		0.7			
	Coordination		VIII	VIII		VIII			
Ce^{3+}	Radius		1.14	1.14	1.14				
	Y _{Expected}		8.1	-4.1		0.7			
Ce^{4+}	Coordination		VI	VIII		VII			
	Radius		0.87	0.97		0.92			
	Y _{Expected}		2.3	5.4		-1.6			
	Ce ³⁺ /Ce ^{Tot}		0.978	0.997		0.968			

Table 3. Abundances of Eu^{2+} and Ce^{3+} relative to total Eu and Ce, estimated from K_d values and *Onuma* curves.

Based on our HFSE fits for zircon, chevkinite, and amphibole, we calculate that almost all Ce exists in the trivalent state (see Table 3, Fig. 22; estimates range from ~97 to ~99% Ce³⁺), in agreement with estimates of ~99% previously obtained for zircon fits by Colombini *et al.* (2011). In contrast, our estimates for the proportion of Eu²⁺ stretch over a wider range, from ~10 to ~50%, with the majority of phases indicating Eu²⁺ abundances of ~30%. While these first order estimates may vary, they are not inconsistent with each other. One of the many benefits of having extensive K_d datasets such as the one we present here, with as many phases and elements as possible analyzed, is the ability to obtain significantly better constraints on these types of relationships, which would allow us to make useful comparisons between different magmatic systems, and help advance our understanding of their dependence on oxidation conditions and their influence on overall magmatic evolution.

5. Conclusions

We present an extensive dataset of partition coefficients for a high-silica rhyolite from the Peach Spring Tuff. We use the same analytical techniques (LA-ICP-MS for minor and dispersed elements, quantitative SEM-EDS for select essential structural constituents) to measure the concentrations of 54 elements in glass and 7 mineral phases from the same pumice sample (Fig. 1; Table 1). This makes the derived dataset of K_d unique and it provides a high degree of internal consistency between the K_d values for the various minerals present. Our approach is similar to that of Colombini *et al.* (2011) and Bachmann *et al.* (2005), and our results are largely in agreement with those, but we present data for a larger number of elements in a larger number of phases. We believe that coupling compositions of crystal rims with glass compositions from the same sample is likely to yield very reliable partition coefficients that reflect equilibration

between crystals and melt in the volcanic system at or near the time of eruption. In addition, analyzing *in situ* concentrations helps minimize contamination from inclusions, especially in minerals that are commonly hosts to abundant inclusions (e.g. biotite, amphibole, and feldspars). We emphasize, as has been previously noted (e.g. Michael, 1988), that, because of the inability to avoid inclusions, whole-crystal dissolution (e.g. ID-MS) and bulk analysis (e.g. INAA) methods are likely to yield unreliable concentrations, and therefore unreliable K_d values. We highlight that our LA-ICP-MS analyses are very consistent with analyses done on the same sample by other high-precision methods (e.g. Colombini *et al.*, 2011: zircon and titanite data collected by SHRIMP-RG; Sano *et al.*, 2002: zircon and apatite data collected by SHRIMP). Our approach carries the advantage of faster and significantly less expensive analyses, thereby allowing us to analyze a broader suite of elements in more mineral phases and put together an extensive dataset.

We found that, while we were able to obtain good quality data for a large suite of dispersed elements, there are some elements that cannot be reliably measured by the LA-ICP-MS instrumentation we used. In general, the quality of our data is best for the rare earth elements (La-Lu, Y), a majority of high field strength elements (e.g. U, Th, Pb, Nb, Hf, Zr), and large ion lithophile elements (Rb, Sr). In contrast, some important elements (e.g. Fe, Ti and other transition metals) are more difficult to quantify due to isobaric interferences.

For a majority of cation groups in every mineral phase we are able to fit our data to *Onuma* curves (ionic radius vs. $Ln[K_d]$) that conform to the theoretical crystal lattice strain model of Blundy and Wood (1994, 2003). Our fits are particularly good for the REE. For other groups of cations (e.g. HFSE) we can calculate the theoretical fit that would conform to our data fairly well. This approach is especially useful in estimating the expected total concentrations of

multivalent cations that are selectively incorporated by certain phases, resulting in elemental anomalies, as is the case for Eu and Ce. The simultaneous occurrence of Eu and Ce anomalies in some phases of the PST (e.g. apatite) is an indication that both elements coexisted in all valence states in the parental melt. We offer a mathematical expression for estimating the relative proportions of each of these valence species. Our results indicate that >97% of total Ce exists in the Ce³⁺ valence, whereas the relative proportions of Eu species are not as well constrained, with the calculated proportion of Eu²⁺ mainly ranging from ~10 to ~50%.

Lastly, we conclude that, in the PST system, the distribution of REE and HFSE is collectively controlled by chevkinite (LREE, Th), titanite (MREE, Nb), and zircon (HREE, Hf, U), while LILE are mainly partitioned into sanidine (Rb, Sr, Ba) and plagioclase (Sr, Ba), with some likely significant contribution from biotite (Rb, Ba) and apatite (MREE, Nb, Sr, Ba).

Additional datasets like the one presented here would allow better assessment of the potential limitations and caveats of this dataset. More importantly, perhaps, they would very likely provide critical data to enhance our understanding of the effects of composition and crystallization conditions on elemental partitioning. One key component that is missing is the quantitative assessment of mineral abundances, which would allow for computation of bulk distribution coefficients and would make it possible to more rigorously evaluate the relative contributions of the various phases present.

CHAPTER III

Elucidating the magmatic history of the Austurhorn Silicic Intrusive Complex (SE Iceland) using zircon elemental and isotopic geochemistry and geochronology

Abstract

The Austurhorn Intrusive Complex (AIC) in SE Iceland comprises large bodies of granophyre, gabbro, and a mafic-silicic composite zone (MSCZ) that exemplifies magmatic interactions common in Icelandic silicic systems. However, despite being one of Iceland's best-studied intrusions, few studies have included detailed analyses of zircon, a mineral widely recognized as a valuable tracer of the history and evolution of its parental magma(s). In this study, we employ *in situ* zircon elemental and isotopic (hafnium and oxygen) geochemistry, as well as U-Pb geochronology, as tools for elucidating the complex construction and magmatic evolution of Austurhorn's MSCZ.

The trace element compositions of AIC zircons form a broad but coherent array partly overlapping with the zircon geochemical signature for Icelandic silicic volcanic rocks. Hafnium concentrations are low (less than 10,000 ppm), typical of Icelandic zircon, and Ti concentrations range from ~5 to 40 ppm (Ti-in-zircon model temperatures = 750-990°C). Zircon δ^{18} O values vary from +2.2 to +4.8 ‰, consistent with magmatic zircon from other Icelandic silicic rocks and preserving evidence for recycling of hydrothermally altered crust as a significant contributor in the generation of silicic magmas within the Austurhorn system. Zircon epsilon-Hf values generally range from +11 to +15. This range overlaps with that of Icelandic basalts from off-rift settings as well as the least depleted rift basalts, suggesting that the Austurhorn magmatic system developed within a transitional rift environment.
In situ zircon U-Pb ages (SHRIMP-RG) yield a mean of 6.52 ± 0.03 Ma for the entire complex, but span a range of ~300 k.y., from 6.35 ± 0.08 to 6.67 ± 0.06 Ma (2σ SE). Gabbros and the most silicic units (high-SiO₂ granophyres) fall on the older end of this range, while granophyres and intermediate units make up the younger part of the complex. We interpret this to represent the approximate timescale of magmatic construction of the MSCZ, consistent with field evidence suggesting multiple short-lived magmatic intrusion events occurring closely spaced in time, allowing periodic re-melting and rejuvenation of mush-like material and a prolonged lifetime for the complex.

1. Introduction

Silicic rocks make up an estimated 10-13% of Icelandic exposures (Jónasson, 2007; Gunnarsson *et al.*, 1998; Walker, 1966), the largest known concentration in a modern oceanic setting. The petrogenesis of these rocks has received considerable attention, but most investigations have focused on volcanism (e.g. Gunnarsson *et al.*, 1998; Martin and Sigmarsson, 2007; Carley *et al.*, 2011, 2014; Bindeman *et al.*, 2012); less attention has been paid to the more sparsely exposed silicic intrusive rocks. In particular, there has been no detailed study to date of zircon in any Icelandic intrusion. Because of its low solubility in almost all melt and fluid compositions, its stability and resistance to alteration at Earth's surface, and extremely slow elemental diffusion within its crystal lattice at magmatic temperatures (e.g. Cherniak *et al.*, 1997a,b; Watson and Cherniak, 1997; Cherniak and Watson, 2000, 2007), zircon can retain valuable geochemical information about the environments in which it grew, including crystallization temperature, the composition of the melt(s) from which it crystallized, and elapsed time since crystallization (age), making it a powerful tool for investigating the evolution of silicic magmatic systems.

We have selected the relatively well-studied Austurhorn intrusive complex (Blake, 1966; Gale *et al.*, 1966; Mattson *et al.*, 1986; Furman *et al.*, 1992a, 1992b; Thorarinsson and Tegner, 2009) for the first detailed study of zircon from an Icelandic intrusion. In combination with supporting field investigation, petrography, and whole-rock elemental and isotopic geochemistry, we use zircon trace element and U-Pb, Hf, and O isotopic analyses to investigate the petrogenesis of the Austurhorn intrusive complex. In particular, we aim to elucidate (1) the nature of zircon in the rock types commonly associated with shallow Icelandic intrusions, (2) emplacement and magmatic processes within the Austurhorn chamber, and (3) the origin(s) of

63

the AIC magma(s). We present clear geochemical evidence, and supporting field observations, for open-system processes in the Austurhorn magmatic system, including physical exchange of zircons among magmas of contrasting compositions, consistent with previous interpretations based on field relationships (e.g. Furman *et al.*, 1992b; Mattson *et al.*, 1986). We observe varying characteristics in whole-rock as well as zircon elemental and isotopic geochemistry that indicate repeated magmatic input from variable sources into the Austurhorn system. Finally, based on our dataset and observations, we propose that silicic magmas at Austurhorn were generated by assimilation and fractional crystallization (AFC) processes in which a significant portion of the crustal assimilant was generated by partial melting of hydrothermally-altered crust (e.g. Sigmarsson *et al.*, 1991).

2. Geological Background

2.1. The Austurhorn Intrusive Complex, SE Iceland

The Austurhorn intrusive complex (AIC) is a small, Late Miocene composite intrusion located along the coast of southeastern Iceland (Fig. 1). Cropping out over an area of 15 km², the AIC is equivalent in dimension and in diversity and abundance of rock types to modern and Neogene Icelandic central volcanoes. The exposed portion of the AIC (Fig. 2) is surrounded by a ~1 km wide metamorphic thermal areole that includes roof and wall contacts in several locations, where the AIC intrudes predominantly west-dipping basaltic lavas and tuffs from the Álftafjördur and Lón Late-Miocene central volcanoes (Blake, 1970, 1966; Ross & Mussett, 1976). The intrusion comprises granophyre, gabbro, minor felsite, and an extensive mafic-silicic composite zone (MSCZ – previously referred to as the "net-veined complex;" e.g. Furman *et al.*, 1992; Mattson *et al.*, 1986; Blake, 1966) in which there is abundant evidence for open system behavior, including chamber replenishment by dense basaltic and buoyant silicic magmas indicated by commingling textures (Fig. 3; Mattson et al, 1986; Furman, 1992). The exposed gabbro is largely restricted to the peaks Hvalnesfjall and Þúfuhraunstindur (see Fig. 2) in the central part of the complex, and appears to be almost entirely encircled by granophyre (Blake, 1966).

Based on the structure of the intrusion and geochemistry of the mafic and silicic rocks at AIC, previous researchers have suggested that it developed within a short-lived immature transitional rift environment, analogous to the Eyjafjallajökull and Torfajökull central volcanoes in Iceland's modern Eastern Neovolcanic Zone (EVZ; Furman *et al.*, 1992a), which are constructed from both basaltic and silicic eruption products. The AIC is thus interpreted to represent the roots of an exhumed Neogene central volcano. Previous studies have constrained the depth of emplacement to ~2 km, primarily based on field relations and laumontite (zeolite) alteration in basaltic amygdales observed just outside the Austurhorn thermal aureole. The composition of these amygdales has been suggested to constrain the maximum depth to which basalt was buried at the time of alteration from AIC intrusions (Walker, 1960, 1964). The complex has been dated by K-Ar from biotite extracted from aplitic veins in the gabbroic intrusion at 6.6 ±0.4 Ma (Moorbath *et al.*, 1968), and by U-Pb isotope systematics in zircons from gabbro and granophyre at 6.6 ±0.4 and 6.5 ±0.2, respectively (Martin *et al.*, 2011; the only published zircon ages for Austurhorn).

Figure 1

Regional map of Southeast Iceland outlining the four major composite silicic intrusions exposed in the area (black shaded areas; modified after Gale *et al.*, 1966). *Inset:* Overview map of Iceland and its major tectonovolcanic zones (modified after Carley *et al.*, 2011): Northern (NVZ), Eastern (EVZ), and Western Volcanic Zones (WVZ), Snæfellsness Volcanic Belt (SVB), Reykjanes Ridge (RR), Reykjanes Volcanic Belt (RVB), South Iceland Seismic Zone (SISZ), Öræfi Volcanic Belt (ÖVB), Tjornes Fracture Zone (TFZ), Kolbeinsey Ridge (KR), and the Mid-Iceland Belt (MIB). The red dashed lines represent extinct rifts (Martin *et al.*, 2011). The red box indicates the location of the intrusions. The shades of gray indicate age divisions: light gray = Neogene (17-3.3 Ma); medium gray = Plio-Pleistocene (3.3-0.7 Ma); dark gray = Upper Pleistocene to present (0.7-0 Ma); white = Ice caps.

Figure 2

Geologic map of the Austurhorn Intrusive Complex (modified after Furman *et al.*, 1992b). Yellow labeled dots indicate sampling locations. Dark grey zones indicate thick alluvial cover. Light grey zones are talus cover and vegetated areas. Iceland national Route 1 is highlighted in yellow. Coordinates listed are in WGS84 UTM grid zone 28W. Patterned areas within the Mafic-Silicic Composite Zone denote marsh environment.

Figure 3

Diversity of magmatic interactions found within the MSCZ: A) mafic plume-like pillow structures (1, 2) in intermediate host, with a notable silicic core in pillow 2; B) mafic pillow-like enclaves with chilled and crenulate margins (1, 4), and mafic clasts with sharp and angular boundaries (2, 3), in silicic host; C) continuous and undulate dike-like silicic intrusions within a mafic host; D) skialithic pillow (*"pillow within a pillow"*), with dark mafic core (1) surrounded by lighter hybrid zone (2) all within a felsic host (3); E) diversity of mafic enclaves within a silicic host ranging from large clasts with angular boundaries (1) and less mafic enclaves with sharp boundaries (2), to smaller partially hybridized enclaves with diffuse boundaries (3) and abundant small mafic clasts (in matrix); F) silicic pipe-like networks within intermediate host rocks; G) felsic-felsic magmatic mingling; H/I) mafic sheet-like intrusions with margins disaggregating into large pillows and enclaves.

2.2. The Mafic-Silicic Composite Zone (MSCZ)

The Austurhorn composite zone, containing juxtaposed mafic and silicic rock units, occupies the lowest structural levels exposed, from the base of Púfuhraunstindur south to the Hvalnes peninsula, and north to Krossanes point (Fig. 2) where it is bound by the surrounding homogeneous granophyre and intrudes Neogene volcanic rocks. It comprises approximately 30-40% of the AIC in three main areas at the eastern margins of the intrusion (Mattson *et al.*, 1986; Furman *et al.*, 1992). The MSCZ contains abundant mafic to intermediate enclaves (clasts, pillows, tabular bodies) with cuspate, crenulated, or angular boundaries and entirely surrounded by silicic rock, zones of intermediate rock, and sheets of diabasic and basaltic rock. The enclave density within a given outcrop is highly variable, ranging from a few volume percent up to 60 %.

The margins of the MSCZ have been defined by Furman *et al.* (1992) to be where a silicic host rock bearing mafic blocks > 5 cm in dimension is in contact with Hvalnesfjall gabbro or Miocene volcanics, or where mafic blocks disappear abruptly without apparent change in the silicic matrix itself.

2.3. Current Views on Silicic Magma Petrogenesis at Austurhorn

Previous research has addressed the question of magmatic sources for AIC silicic magmas using a range of petrologic and geochemical approaches. However, interpretations differ, with some researchers advocating for the generation of silicic melts at Austurhorn dominantly by fractional crystallization ± assimilation (FC or AFC) of tholeiitic magmas (e.g. Furman *et al.*, 1992b, Bindeman *et al.*, 2012), and others favoring partial melting of altered and hydrated basaltic crust as the central mechanism for generating silicic melts (e.g. Martin & Sigmarsson, 2010). Furman *et al.* (1992b) argue the major element composition of plagioclase and clinopyroxene (Cpx) from mafic units (Hvalnesfjall gabbro and MSCZ mafic pillows)

69

support detailed field relationships between mafic and silicic units indicating fractionation of tholeiitic basalts. Bindeman *et al.* (2012) provide bulk and *in situ* zircon oxygen isotopes from an Austurhorn silicic sample that reflect a homogeneous mantle-like signature, providing further support for an interpretation involving dominantly AFC processes. In contrast, Martin & Sigmarsson (2010) present oxygen isotope evidence for extensive crustal recycling from intermediate silicic samples of the AIC. They advocate partial melting of low- δ^{18} O hydrated metabasaltic crust as the dominant source of low whole-rock δ^{18} O values (-2.1 ‰ for a 53.6 wt.% SiO₂ sample; +0.5 ‰ for a 64.8 wt.% SiO₂ sample), corroborated by the presence of low- δ^{18} O rhyolitic glass and clinopyroxene phenocrysts in Austurhorn samples.

While elemental geochemistry and oxygen isotopes can provide valuable insight toward discerning between fractional crystallization and crustal melting processes (e.g. Bindeman *et al.*, 2012), most previous studies of Austurhorn have focused on few samples (1 or 2) from what is a very diverse and complex intrusion, where it is challenging to find a silicic rock that is representative of the broad range of silicic compositions at Austurhorn. With this study, we build on previous work by others and expand the geochemical dataset available for the Austurhorn system. We present zircon isotopic and elemental data on samples from a comprehensive range of compositions (from gabbros to granophyres), working towards building a more representative geochemical dataset that will, in turn, allow us to more critically assess the sources and mechanism that contributed to the generation of silicic magmas throughout the lifetime of the Austurhorn magmatic system.

3. Methods

3.1. Fieldwork

Our research team spent 15 days investigating the Austurhorn complex, characterizing the diversity of silicic rock units, the distribution and abundance of mafic bodies within the MSCZ, and the contact relationships and the nature of interaction between all units (see section 4.1). Our study built upon field descriptions of the Austurhorn intrusive complex and MSCZ by Furman *et al.* (1992a,b) and Mattson *et al.* (1986). We collected 13 representative samples from well-exposed outcrops of the MSCZ and surrounding gabbro and granophyre units within the AIC (see Fig. 2 and Table 1 for locations and sample descriptions). Silicic samples within the MSCZ were selected to represent the range of textures, grain size and/or mafic phenocryst content, as well as the abundance of mafic material (pillows, enclaves, and/or clasts).

3.2. Whole-Rock Analyses

3.2.a. <u>Petrography and Elemental Geochemistry</u>

We used thin-sections, prepared by Idaho Petrographics (Grangeville, ID), and a Zeiss Axioskop petrographic microscope at Vanderbilt University to examine and characterize the mineral assemblage and textural relations for each sample (Table 1). All samples were analyzed for major and trace element abundances (Table 2) by a combination of wavelength dispersive Xray fluorescence (WD-XRF) and laser ablation inductively-coupled plasma-mass spectrometry (LA-ICP-MS) at the Michigan State University Geological Analytical Services Laboratory (East Lansing, MI). One sample (IA-G-5) was analyzed at the Peter Hooper GeoAnalytical Laboratory at Washington State University (WSU; Pullman, WA), where major elements were determined by WD-XRF and trace element concentrations were determined by solution ICP-MS. International reference materials *RGM-1*, *W-2*, *JA-2*, and *BHVO-1* were used for calibration and quality control.

Based on whole-rock major element compositions and Zr concentrations, we calculated model zircon saturation temperatures (ZSTs) for all samples using the formulation of Watson and Harrison (1983) as revised by Boehnke *et al.* (2013). The saturation equation requires the composition of a melt that was saturated in zircon, and we acknowledge that large uncertainties are introduced because whole-rock compositions do not strictly equal melt compositions, particularly with intrusive rocks. ZSTs provide minima for the initial temperature of the magma represented by the sample, unless inherited and/or accumulated zircon is relatively abundant which would increase calculated model temperatures. For most silicic rocks, calculated ZSTs are likely to be low by a modest amount, whereas for mafic whole-rock compositions ZSTs tend to severely underestimate the temperatures at which zircon actually saturates (e.g. Miller *et al.*, 2003, Harrison *et al.*, 2007; Boehnke *et al.*, 2013; Moecher *et al.*, 2014; McDowell *et al.*, 2014). Given these uncertainties, we use ZSTs as estimates to generally compare model magmatic temperatures for the silicic units of the Austurhorn system, and do not discuss mafic ZSTs.

3.2.b. Solution MC-ICP-MS Hf Isotope Analyses

We determined whole-rock Hf isotopic compositions of AIC samples at the Radiogenic Isotope and Geochronology Laboratory (RIGL) at WSU (Pullman, WA) by solution-multicollector (S-MC) ICP-MS (Table 3). Approximately 0.25 g of each powdered sample were dissolved in Teflon vessels in ~7 mL 10:1 HF:HNO₃, then immediately dried at 120°C to reduce silica. Following dry down, ~7 mL 10:1 HF:HNO₃ was added to the vessels and placed in steeljacketed Parr bombs at 150°C for 5-7 days. The solutions were dried and re-dissolved overnight

72

in a mixture of 6M HCl/H₃BO₃ to convert to chlorides and minimize production of fluoride species. Lastly, samples were dried and re-dissolved in 6M HCl in Parr bombs at 150°C for 24 hours, until sample solutions became clear.

Samples were then dissolved in a mixture of 1M HCl and 0.05M HF. High-field-strength elements (including Hf) were initially separated on single cation exchange columns loaded with AG 50W-X12 resin (200-400 mesh). Following the method of Patchett & Tatsumoto (1981), we eluted Hf at the beginning of the procedure in 1M HCl/0.05M HF. We then removed Ti from the Hf fraction in a second stage chemistry (a crucial step, as excess Ti has been shown to alter the measured Hf isotopic composition; Blichert-Toft *et al.*, 1997). Any remaining Yb and Lu in the Hf aliquot were removed in a third stage of column chemistry using 0.18 mL of AG 50W-X12 resin.

We re-dissolved the purified Hf aliquots in 2% HNO₃ to determine their isotopic compositions on the RIGL ThermoFinnigan Neptune MC-ICP-MS using an Aridus desolvating nebulizer for sample introduction. Samples and standards were analyzed as 25 ppb solutions. Mass fractionation was corrected using ¹⁷⁹Hf/¹⁷⁷Hf = 0.7325 and all sample analyses were normalized using the Hf isotope reference material JMC-475 (accepted ¹⁷⁶Hf/¹⁷⁷Hf = 0.282161; Blichert-Toft *et al.*, 1997). Analyses of JMC-475 were conducted during the course of this study and yield a mean ¹⁷⁶Hf/¹⁷⁷Hf of 0.282135 ± 7 (2SD; n=15). Present day $\varepsilon_{\rm Hf}$ values were calculated using the CHUR parameters reported by Bouvier *et al.* (2008).

Sample ⁵ : Location (UTM) ⁶ :			Mafic	Silicic Rel.	Major ⁹ Minaral Phases (valative abundance)	Accessory ¹⁰
Sample :	Northing	Easting	bodies? ⁷	Abundance ⁸	Major Minieral Fliases (relative abundance)	Mineral Phases
IA-NS-1	524180	7146224	none	100 %	Qz (~30%), Afs+Pl (~60%), Amph (5-7%), Cpx (~7%), Bt (<2%), Alt (<2%)	FeTi, Zrc, Sph, Ap
IA-NS-2	524147	7146097	10 cm - 1 m	~75 %	Qz (30-35%), Afs+Pl (40-45%), Amph (~10%), Bt (<1%), Alt (8-10%)	FeTi, Zrc, Sph, Ap
IA-NS-3	524101	7145946	> 1m	60-70 %	Pl (~75%), Cpx (~10%), Amph (<5%), Qz (<5%), Alt (5-10%)	FeTi, Zrc, Sph
IA-NS-4a	522153	7144490	1-10 cm	~95 %	Qz (~30%), Afs+Pl (~60%), Amph (<2%), Bt (<1%), Alt (<5%)	FeTi, Zrc, Sph
IA-NS-4b*	522153	7144490	none	100 %	Qz (~45%), Afs+Pl (~50%), Alt (<5%)	FeTi, Zrc, Ap, ±Sph
IA-NS-5	522643	7142846	1 cm - 10 m	~30 %	Qz (~35%), Afs+Pl (~45%), Bt (~5%), Amph (~5%), Alt (~15%)	FeTi, Zrc, Sph, Ap
IA-NS-6	522378	7142211	> 1 m	~50 %	Pl±Afs (75-80%), Cpx (~10%), Qz (~5%), Alt (10-15%)	FeTi, Zrc, Sph, Ap
IA-NS-7	522275	7142118	none	100 %	Qz (~20%), Pl+Afs (~45%), Amph (10-15%), Bt (5-10%), Alt (5-10%)	FeTi, Zrc, Sph
IA-NS-8	522087	7141856	1-10 cm	~95 %	Qz (~35%), Pl (~50%), Alt (~10%)	FeTi, Zrc, Sph, Ap
IA-NS-9*	522130	7144385	none	100 %	Qz (~45%), Afs+Pl (~45%), Alt (<5%), Amph (<5%)	FeTi, Zrc, Ap, ±Sph
IA-NS-10*	522083	7144427	none	100 %	Qz (~45%), Afs+Pl (~45%), Alt (<5%), FeTi (<5%)	Zrc, Ap, ±Sph
IA-NS-12*	522115	7144432	none	100 %	Qz (~35%), Afs+Pl (~45%), Amph (~10%), FeTi (<10%)	Zrc, Ap, ±Sph
IA-G-1	521924	7142080	n/a	0 %	Pl (~40%), FeTi (~10%), Cpx (~35%), Amph (<5%), Qz (<5%), Alt (<5%)	Zrc, Sph, Ap
IA-G-3	521149	7142996	n/a	0 %	Pl (~45%), Cpx (~30%), FeTi (15-20%), Amph (<5%), Alt (<5%)	Zr, Ap
IA-G-5	522402	7142368	n/a	0 %	Pl (~45%), FeTi (5-10%), Cpx (~35%), Amph (<5%), Qz (<5%), Alt (<5%)	Zrc, Ap, ±Sph

Table 1. Locations, descriptions, and petrography for samples collected from the AIC

 ⁵ Asterisks denote HSG zone samples: processed for zircon extraction and U-Pb geochronology, but not discussed in this manuscript (see section 4.1)
 ⁶ All coordinates were obtained using the World Geodetic System 1984 (WGS 84), Grid 28W
 ⁷ Refers to non-continuous bodies of mafic material surrounded by silicic host (e.g. mafic pillows, enclaves, and clasts; "n/a" = not applicable for mafic units)

⁸ Relative abundance of silicic (vs. mafic) material within the outcrop where the sample was collected

⁹ Major Minerals: Qz = quartz; Kfs = alkali feldspar; Pl = plagioclase feldspar; Amph = amphibole; Cpx = clinopyroxene; Bt = biotite; Alt = alteration phases ¹⁰ Accessory Minerals: FeTi = Fe-Ti oxides (e.g. magnetite, ilmenite); Zrc = zircon; Ti = titanite; Sph = sphene

Sa	ample ¹¹ :	NS-1	NS-2	NS-3	NS-4a	NS-5	NS-6	NS-7	NS-8	G-1	G-3	G-5
5	SiO ₂	72.4	70.6	63.6	70.4	70.3	61.1	64.9	71.5	47.3	47.5	47.7
%) ¹	TiO ₂	0.31	0.65	1.1	0.39	0.54	1.4	0.87	0.41	4.1	1.8	2.0
wt.	Al ₂ O ₃	13.5	13.0	15.7	13.5	14.3	14.7	15.0	14.3	13.0	19.9	19.3
es (Fe ₂ O ₂	3.6	4.5	6.4	5.0	3.9	7.8	7.1	3.6	16.4	10.0	9.5
xid	MnO	0.07	0.09	0.13	0.15	0.06	0.14	0.15	0.03	0.27	0.11	0.14
It O	MgO	0.11	0.91	13	0.12	0.53	2.4	0.92	0.21	43	44	62
mer	CaO	0.96	21	3.2	1.6	1.8	5.5	27	0.83	8.9	13.1	12.2
Ele	Va O	5.1	2.1 4 4	5.2	5.3	4.2	4.4	53	5.7	3.5	27	2.5
or	Na ₂ O	2.0	т.т 2 7	2.2	2.4	1.2	т.т 2 5	2.5	2.7	0.80	0.27	0.21
Maj	K ₂ O	5.9	5.7	0.29	3.4	4.5	2.3	2.0	3.5	0.69	0.57	0.31
	P_2O_5	0.03	0.07	0.28	0.06	0.10	0.18	0.24	0.06	1.4	0.08	0.24
	LOI (%)	1.18	2.16	1.99	2.43	1.77	2.05	1.79	2.62	2.97	2.06	
	Ni	1	8	3	1	2	17	1		1	55	94
	Си	10	14	23	4	5	26	10	7	33	147	64
	Zn	107	102	90	135	34	110	79	25	133	55	81
	Rb	74	77	51	63	76	40	51	45	16	5.0	4.7
	Sr	90	96	207	146	136	253	243	125	410	462	454
	Y	109 974	106	//	101	83	502	88	916	214	15	124
	Zr Nb	874 107	<u> </u>	58	00	60/	595	54	74	214	09 4 7	124
	Ra	886	481	763	631	669	440	552	662	158	82	84
(mc	V	10	74	44	3 4	28	143	15	73	219	355	233
d)	Ċr	2.1	18	3.2	0.54	1.2	31	0.53	1.7	1.8	44	108
suo	La	76	70	57	69	63	52	57	66	26	7.4	13
rati	Ce	205	172	127	174	154	116	128	168	60	16	29
cent	Pr	22	19	16	20	17	15	16	18	9.4	2.2	4.0
onc	Nd	87	77	65	79	66	61	69	69	48	10	18
ut C	Sm	20	18	15	18	14	14	16	14	13	2.7	4.8
ner	Eu	3.9	2.7	4.1	3.9	2.4	3.5	4.9	3.0	4.6	1.3	1.8
Ele	Gd	20	18	15	18	15	14	17	14	13	3.0	5.1
e -	Tb	3.4	3.2	2.5	3.2	2.4	2.4	2.8	2.3	2.0	0.47	0.83
Tra	Dy Ua	20	19	14	18	14	14	16	13	2.0	2.7	4.9
	H0 En	4.0	3.9	2.8	3.7	2.9	2.8	3.2	2.7	2.0	0.55	0.95
	Er Vh	10	10	8.0	10.0	8.1	7.0	8.5	7.5	4.0	1.4	1.8
	Lu	16	1.5	1.2	1.5	1.2	1.1	1.3	1.1	0.57	0.16	0.28
	Hf	21	18	28	23	17	15	24	20	6.1	2.0	3.3
	Ta	6.2	6.4	3.5	5.4	4.6	3.4	3.5	4.6	1.8	0.33	0.86
	Pb	15	7.1	3.6	6.7	11	5.8	3.6	7.3	1.5	0.91	1.1
	Th	9.2	9.6	7.2	8.6	10	5.7	6.0	9.5	1.8	0.98	1.0
-	U	6.4	4.7	3.0	3.9	4.7	1.9	2.2	4.6	0.56	0.31	0.33
Zr-T	$\operatorname{Cemp}^{13}(^{\circ}\mathrm{C})$	945	886	951	933	905	836	939	942	652	616	660

Table 2. Major oxide and trace element compositions of rocks from the AIC

¹¹ All sample names preceded by the label "IA-" (e.g. "NS-1" = IA-NS-1)
¹² Anhydrous basis, normalized
¹³ Zircon Saturation Temperature: calculated using the formula of Watson & Harrison (1983) (see Section 3.2.a)

3.3. Zircon and Imaging

3.3.a. Separation and Imaging

We separated individual zircon grains from bulk-rock samples at Vanderbilt University, starting with 1-2 kg of each sample. To concentrate zircon grains, we followed standard separation techniques, including crushing, milling, sieving, density separation by water and heavy liquid (lithium heteropolytungstates in water; LST, $\rho \approx 2.8$ g/mL), separation by magnetic susceptibility (Frantz Isodynamic Magnetic Separator), and hand-picking individual zircon grains from the heavy separate fraction under a stereoscope.

The selected zircon grains were mounted in epoxy resin, polished to expose interiors, and imaged by reflected light, using a stereoscope, and cathodoluminescence (CL) using a Tescan Vega 3 LM variable pressure scanning electron microscope (SEM) at Vanderbilt University or a JEOL JSM 5600 SEM at the Stanford-USGS Micro Analytical Center (SUMAC). Zircon reflected light (RL) and CL images were our primary guides in selecting the location of spots on individual grains for ion microprobe analyses.

3.3.b. <u>U-Pb Age and Trace Element Analyses</u>

We measured zircon trace element concentrations and U-Pb isotopes *in situ* using the SUMAC sensitive high-resolution ion microprobe reverse geometry (SHRIMP-RG), using a 1.5-2.5 nA O_2^- ion primary beam with an analytical spot diameter of ~15 µm and sputter depth of ~1 µm for trace elements, and a 5.0-6.8 nA O_2^- ion beam with a spot diameter of ~25 µm and sputter depth of ~2-3 µm for U-Pb analyses. Calculated model U-Pb ages are standardized relative to R33 zircon (419±1 Ma, Black *et al.*, 2004), which were analyzed repeatedly throughout the duration of the analytical session. All data were reduced using the Microsoft Excel add-in

program Squid2.51 (Ludwig, 2009), and we report U-Pb ages with 2σ uncertainty, corrected for common lead (²⁰⁷Pb, assuming concordance) and thorium (²³⁰Th) disequilibrium using the Th/U ratio of each respective whole-rock sample as the assumed magma value (for full U-Pb isotope compositions, see Appendix B.1). We analyzed a large suite of trace elements, with particular emphasis on Ti for thermometry (see below), and U, Th, Hf, and the rare earth elements (REE) for evaluating magma evolution and characterizing zircon populations (Table 4; for full trace element compositions, see Appendix B.2-B.4). Trace element concentrations were standardized relative to well-characterized, homogeneous zircon standards MAD and MADDER (Barth & Wooden, 2010) following methods outlined by Grimes *et al.* (2007) and Claiborne *et al.* (2006, 2010b).

We apply the Ti-in-zircon thermometer of Ferry & Watson (2007) to estimate the range of crystallization temperatures for AIC zircons. Using this method, the accuracy of model crystallization temperatures relies on having accurate Ti measurements in zircon as well as good constraints for the activity of TiO₂ (rutile saturation: $a_{TiO_2} = 1$) and SiO₂ (quartz saturation: $a_{SiO_2} = 1$) in the magmas from which zircon grew.

The external errors (1 σ SE) for Ti concentrations in AIC zircons measured by SHRIMP-RG range from ±2.1 to ±4.8 % (errors decrease with increasing Ti concentrations). Assuming uncertainties for a_{SiO_2} and a_{TiO_2} on the order of ±0.05 and ±0.1, these external errors introduce uncertainties on the order of ± 25-44 °C for a range of ~5-40 ppm Ti, the observed range of AIC zircons (see Table 4). Recent work by Ghiorso and Gualda (2013) suggests a likely range of a_{TiO_2} for silicic magmas of 0.3-0.9. They infer that a_{TiO_2} increases systematically with decreasing temperature during crystallization of magmas such that the difference between the maximum and minimum model Ti-in-zircon temperatures is likely to be an underestimate of the true range of crystallization temperatures. For melts saturated in Fe-Ti oxide phases, a_{TiO_2} is unlikely to vary substantially during crystallization (by more than a few tenths), thus allowing us to hold a_{TiO_2} constant in our calculations and make comparisons between model Ti-in-zircon crystallization temperatures, as well as identify any statistically significant temperature fluctuations in the lifetime of a magma or magmatic system as recorded by zircons (Ghiorso & Gualda 2013; see also McDowell *et al.*, 2014; Pamukcu *et al.*, 2013; Claiborne *et al.*, 2006).

In most silicic rocks from the AIC, Fe-Ti oxides (e.g. ilmenite and titanite) are coexisting accessory phases with zircon (see Table 1), and we can thus reasonably assume that a_{TiO_2} is relatively high (probably ≥ 0.5) during zircon crystallization, and the absence of rutile in all Austurhorn rocks indicates that $a_{TiO_2} < 1$. Furthermore, while some zircon crystallization may have occurred prior to quartz saturation, high silica concentrations in almost all samples and typical abundance of quartz suggests that zircon crystallization occurred at or near silica saturation ($a_{SiO_2} = 1$). We infer that the zircon in the gabbro samples also crystallized in highly evolved melt pockets in which a_{SiO_2} was also high. Using these constraints, we assume uniform values of $a_{TiO_2} = 0.5$ and $a_{SiO_2} = 1.0$ in our estimates of model zircon crystallization temperatures (e.g. McDowell *et al.*, 2014).

Sample	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2SE	¹⁷⁸ Hf/ ¹⁷⁷ Hf	2SE	¹⁸⁰ Hf/ ¹⁷⁷ Hf	2SE	8 _{Hf}	2SE
IA-NS-2	0.283140	7.0E+0	1.467182	1.1E+1	1.886801	2.6E+1	12.6	0.3
IA-NS-6	0.283161	8.0E+0	1.467184	1.6E+1	1.886733	3.2E+1	13.3	0.3
IA-NS-7	0.283182	5.8E+0	1.467189	9.9E+0	1.886814	1.6E+1	14.0	0.2
IA-G-1	0.283138	6.3E+0	1.467179	9.7E+0	1.886861	2.1E+1	12.5	0.2
IA-G-5	0.283128	7.3E+0	1.467163	1.5E+1	1.886663	2.2E+1	12.1	0.3

Table 3. Whole-rock Hf isotope compositions, measured by Solution MC-ICP-MS

Sample Spot	Р	Sc	Ti	Fe	Y	Nb	Hf	Th	U	Temp. (°C) ¹⁵
				IA-NS-	2 (Grano	phyre)				
IA-NS-2_1.1	192	7.9	9.1	0.4	851	5.0	11074	17	50	772
IA-NS-2_2.1	389	13	24	0.3	2260	5.9	8236	34	59	878
IA-NS-2_3.1	1661	18	8.5	0.3	7733	108	10636	351	439	765
IA-NS-2_4.1	272	1.7	9.1	0.9	1849	28	8384	53	107	771
IA-NS-2_4.2	266	2.0	7.3	0.4	2888	15	8863	58	114	750
IA-NS-2_4.3	482	2.3	6.2	0.5	2743	87	10129	158	290	734
IA-NS-2_5.1	1276	62	14	0.4	12914	51	8339	1042	841	816
IA-NS-2_5.2	333	2.7	6.4	0.3	2826	36	9633	62	147	738
IA-NS-2_6.1	985	9.1	11	0.4	5963	224	10204	887	719	789
IA-NS-2_7.1	290	9.2	15	0.4	945	10	9107	28	55	821
IA-NS-2_8.1	1472	17	14	3.8	6280	206	11028	768	695	815
IA-NS-2_9.1	1263	21	11	0.2	4419	95	11882	552	508	789
IA-NS-2_10.1	889	18	10.0	4.2	4905	64	11984	862	1118	780
IA-NS-2_10.2	918	9.5	6.3	0.3	6891	24	11551	656	878	736
IA-NS-2 11.1	297	1.6	5.9	0.3	4072	27	8720	101	177	730
IA-NS-2_11.2	988	15	10	16	5074	299	13044	625	819	785
IA-NS-2_12.1	351	3.3	7.6	0.3	3277	24	8552	75	136	753
IA-NS-2_12.2	387	1.9	7.2	2.6	4548	31	8809	119	200	748
IA-NS-213.1	712	4.5	11	19	7074	106	9548	436	454	793
IA-NS-214.1	646	4.0	9.0	8.7	3713	130	9749	406	529	770
IA-NS-2 ^{14.2}	607	2.3	6.6	0.5	7361	78	8469	263	381	741
IA-NS-2_15.1	441	2.5	9.6	0.4	4519	67	8069	156	263	777
IA-NS-215.2	354	2.8	7.9	0.4	1652	40	9744	93	159	757
IA-NS-2_16.1	240	2.1	7.1	0.6	1398	40	9307	31	99	747
IA-NS-2_16.2	290	0.9	10	4.3	3570	29	8676	94	166	784
IA-NS-2_17.1	363	2.0	6.7	0.3	1942	46	9409	68	145	742
IA-NS-2_17.2	1293	14	7.8	0.4	13749	145	10055	740	774	756
IA-NS-2_18.1	386	1.9	6.1	0.3	4383	32	9094	131	212	733
IA-NS-2_18.2	489	2.7	7.1	0.3	2989	78	9713	113	221	747
IA-NS-2_19.1	419	2.8	6.9	0.4	2701	63	9149	76	166	745
IA-NS-2_19.2	491	1.7	6.3	0.9	5784	49	8995	185	308	736
IA-NS-2_20.1	360	2.0	7.3	6.9	4165	27	8762	100	167	749
IA-NS-2_21.1	628	3.4	6.1	2.1	3478	89	9680	184	299	733
IA-NS-2_21.2	425	2.3	8.2	10	4490	36	8650	135	211	761
IA-NS-2_22.1	151	1.9	8.9	0.2	1829	6.6	8245	32	69	769
IA-NS-2_23.1	290	2.5	7.4	0.3	1729	28	8792	40	94	751
IA-NS-2_23.2	1452	8.1	13	3.3	11495	312	8828	1290	987	809
IA-NS-2_24.1	283	1.8	7.3	0.5	2990	16	8829	62	119	749
IA-NS-2_24.2	1022	11	11	0.2	5570	151	10043	513	606	791
IA-NS-2_25.1	2565	22	24	384	11923	275	10570	1119	841	877
IA-NS-2_25.2	684	5.2	6.1	5.9	3045	146	12820	235	461	733
				IA-N	NS-6 (Dio	rite)				
IA-NS-6 1.1	417	3.2	10	0.4	2098	35	8638	108	162	784
IA-NS-62.1	2309	63	15	0.6	17041	83	7161	1072	956	824
IA-NS-6_3.1	2498	61	13	0.5	17707	82	7708	1082	898	810
IA-NS-6_4.1	1617	86	20	0.4	11322	40	7240	500	449	855

Table 4. Trace element compositions¹⁴ of zircons from the AIC (summary)

¹⁴ All values reported in parts per million (ppm), unless otherwise stated ¹⁵ Model zircon crystallization temperatures (for details see Chapter III, section 3.3.b)

Sample Spot	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	IA-NS-2 (Granophyre)												
IA-NS-2_1.1	0.02	12	0.5	1.9	0.5	21	7.9	90	36	165	33	259	45
IA-NS-2_2.1	0.06	9.0	4.0	10	4.0	87	28	282	98	392	73	566	95
IA-NS-2_3.1	0.09	150	9.0	23	3.7	217	76	836	321	1334	256	1954	312
IA-NS-2_4.1	0.04	31	2.3	5.9	2.0	59	20	220	80	318	61	433	68
IA-NS-2_4.2	0.04	21	4.8	10	2.8	95	32	346	127	512	90	651	104
IA-NS-2_4.3	0.02	56	1.9	7.1	1.4	72	28	309	115	482	91	649	98
IA-NS-2_5.1	0.27	201	30.8	70	7.4	537	166	1613	540	2020	370	2602	393
IA-NS-2_5.2	0.02	46	2.7	7.6	1.8	80	28	311	116	477	89	626	99
IA-NS-2_6.1	0.04	290	6.7	19	3.8	194	65	693	262	1002	189	1347	211
IA-NS-2_7.1	0.01	12	1.0	2.7	1.2	26	9.4	101	40	172	34	256	44
IA-NS-2_8.1	0.32	280	7.9	21	3.9	203	68	737	274	1097	207	1521	238
IA-NS-2_9.1	0.02	151	4.2	13	2.7	129	46	505	187	763	147	1083	175
IA-NS-2_10.1	0.02	178	4.3	12	1.5	120	43	488	196	849	175	1372	224
IA-NS-2_10.2	0.08	100	9.2	20	2.4	189	65	742	282	1224	246	1878	311
IA-NS-2_11.1	0.06	36	5.8	14	3.5	137	46	495	182	715	126	885	139
IA-NS-2_11.2	0.29	151	3.7	11	1.6	116	45	526	208	862	170	1283	200
IA-NS-2_12.1	0.06	29	4.3	10	2.9	107	35	374	141	560	101	695	111
IA-NS-2_12.2	0.07	39	6.3	16	4.3	161	52	557	203	792	141	1003	154
IA-NS-2_13.1	0.86	141	11.7	29	8.4	267	83	859	305	1146	201	1423	215
IA-NS-2_14.1	0.22	96	3.1	9.9	1.9	100	36	410	157	615	119	844	128
IA-NS-2_14.2	0.08	117	10.2	28	5.8	268	90	960	349	1371	244	1698	253
IA-NS-2_15.1	0.04	85	6.8	16	4.9	160	55	548	199	781	137	965	145
IA-NS-2_15.2	0.03	36	1.7	4.6	1.1	47	17	186	71	287	56	408	66
IA-NS-2_16.1	0.23	25	1.4	3.7	0.9	38	14	156	59	260	51	384	64
IA-NS-2_16.2	0.57	34	5.5	12	3.4	123	41	436	159	632	113	786	120
IA-NS-2_17.1	0.02	43	2.1	5.6	1.3	56	20	226	84	343	65	470	73
IA-NS-2_17.2	0.18	301	25.5	60	9.2	533	170	1775	625	2362	421	2920	432
IA-NS-2_18.1	0.03	45	6.6	14	3.7	151	50	533	198	769	138	955	151
IA-NS-2_18.2	0.03	74	3.0	8.2	1.9	87	32	358	130	537	98	726	112
IA-NS-2_19.1	0.03	62	2.9	7.5	1.8	74	27	305	115	463	88	627	96
IA-NS-2_19.2	0.25	64	7.9	19	4.2	190	65	704	256	1009	180	1232	190
IA-NS-2_20.1	0.10	33	6.2	15	3.9	142	49	518	184	727	131	920	144
IA-NS-2_21.1	31	184	44.8	21	2.7	116	38	404	144	580	107	761	117
IA-NS-2_21.2	0.08	50	6.6	16	4.2	159	51	556	199	765	138	972	151
IA-NS-2_22.1	0.02	12	3.8	8.2	2.9	68	22	229	84	332	59	413	67
IA-NS-2_23.1	0.04	32	2.0	5.1	1.5	51	18	198	77	307	57	414	68
IA-NS-2_23.2	44	502	73.4	63	12	463	144	1449	508	1898	333	2308	341
IA-NS-2_24.1	0.07	22	4.8	10	2.8	96	33	355	132	519	94	669	105
IA-NS-2_24.2	0.04	171	5.9	16	2.5	171	63	684	242	998	184	1338	209
IA-NS-2_25.1	27	554	57.0	56	10	433	140	1467	522	2042	374	2715	418
IA-NS-2_25.2	1.00	68	2.6	5.8	0.9	68	28	335	129	567	109	826	130
					IA-NS	5-6 (Dio	rite)						
IA-NS-6_1.1	0.02	38	2.4	6.5	2.0	66	22	238	88	355	68	486	76
IA-NS-6_2.1	0.37	528	45.6	92	14	697	214	2122	731	2741	493	3405	507
IA-NS-6_3.1	0.37	495	39.1	83	12	670	209	2121	733	2796	520	3667	530
IA-NS-6_4.1	0.30	184	40.9	78	21	549	160	1522	490	1761	309	2120	299

Sample Spot	Р	Sc	Ti	Fe	Y	Nb	Hf	Th	U	Temp. (°C)
				IA-NS	-6 (contir	nued)				
IA-NS-6_5.1	1423	41	13	0.7	11160	208	9165	1590	1306	803
IA-NS-6_6.1	441	2.1	11	0.3	3628	89	8191	324	367	788
IA-NS-67.1	211	2.2	8.0	0.3	1473	39	8431	24	95	759
IA-NS-6_9.1	2150	53	15	0.4	15701	74	8501	1182	906	824
IA-NS-6_10.1	813	30	16	0.3	4097	58	9056	497	554	826
IA-NS-6 12.1	206	1.2	6.7	0.5	2326	12	8730	40	87	742
IA-NS-613.1	2187	68	41	0.3	11708	207	7641	3199	1810	944
IA-NS-6 15.1	1349	46	14	0.4	9679	42	7834	512	526	816
IA-NS-6 16.1	902	48	23	0.3	6125	18	8466	294	302	870
IA-NS-6 17.1	562	26	15	6.6	4265	15	8158	320	374	825
IA-NS-6 17.2	1845	62	15	0.3	13992	60	7880	793	686	822
IA-NS-6 18.1	578	33	16	5.6	1372	8.9	8772	34	72	832
IA-NS-6 18.2	213	1.8	7.2	0.5	2156	9.9	8665	42	80	749
IA-NS-6 19.1	1918	66	19	0.4	14369	60	7728	964	777	848
IA-NS-6 20.2	1329	52	23	0.5	9805	38	8730	513	442	871
IA-NS-6 21.1	219	2.4	10	0.3	1409	28	8218	50	107	782
IA-NS-6_22_1	165	2.0	77	0.4	1430	12	8719	40	89	754
IA-NS-6_22.2	454	35	21	0.4	1635	12	8476	49	93	861
IA-NS-6_23_1	274	42	15	2.8	1693	18	7702	79	114	826
IA-NS-6_24_1	305	19	18	0.2	1779	82	8668	43	80	846
IA-NS-6_24.2	303	1.5	13	113	3904	40	8221	93	156	811
IA-NS-6 24.3	259	2.5	10.0	12	1410	10	8627	35	81	780
IA-NS-6_26.1	1693	48	13	0.4	14934	73	8056	1088	993	806
	1075	10	15	[A-NS-7	Granod	liorite)	0020	1000	,,,,	000
IA NS 7 1 1	500	26	18	2.0	4001	12	7026	122	100	842
1A - NS - 7 - 1.1	2063		17	3.0	1/503	12	10200	3760	2002	835
IA-NS-7_2.1	1027	40	20	5.0 4.6	14303	433 270	6780	1008	1342	855
IA-NS-7_3.1	267	25	14	4.0	1921	219 16	0709 8106	1096	1342	815
$IA-INS-7_4.1$	1207	40	14	3.0	6407	4.0	7190	1000	1003	813 810
IA-NS-7_4.2	765	40	14	5.0 2.1	0497 7780	155	7100	250	1095	019 951
$IA-INS-7_3.1$	703	09 15	19	5.1 25	12165	22	/411	238	284	831 720
IA-NS-7_0.1	275	22	0.3	23	12103	90	13423 9266	3000	3230 91	/39
IA-NS-7_7.1	275	32	13	108	18/0	8.0 8.0	8300	4/	81 1(2	809
IA-NS-7_8.1	4/0	43	10	3.0 2.1	4291	8.9	8140	108	103	831
IA-NS-7_8.2	14/2	86	18	3.1	8984	239	/162	1305	1270	840
IA-NS-7_9.1	158/	56	9.4	3.5	15451	82	6353	523	/04	//4
IA-NS-/_10.1	2350	84	29	3.6	15246	394	6127	2682	2243	899
IA-NS-/_11.1	459	45	1/	130	3/52	12	8042	99	156	839
IA-NS-7_11.2	2455	19	15	32	15666	718	13324	5164	5933	825
IA-NS-7_12.1	1861	104	37	3.5	12385	299	6807	2247	1684	930
IA-NS-7_12.2	1830	78	27	4.6	11714	254	6986	2430	1763	890
IA-NS-7_13.1	1179	34	9.3	4.1	9942	58	7550	482	606	773
IA-NS-7_13.2	954	42	20	2.9	8564	24	7323	306	316	856
IA-NS-7_14.1	474	26	17	2.9	4247	9.4	7923	117	178	839
IA-NS-7_15.1	2586	51	9.2	3.8	20787	107	8825	1444	1331	772
IA-NS-7_16.1	423	42	17	3.4	3982	7.4	7969	116	175	838
IA-NS-7_16.2	2255	70	20	3.7	15396	342	9135	3190	2057	854
IA-NS-7 17.1	2313	100	29	3.6	15022	435	6355	2428	2117	901

Sample Spot	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	IA-NS-6 (continued)												
IA-NS-6_5.1	0.13	300	16.6	43	3.0	384	125	1296	475	1801	333	2364	366
IA-NS-6_6.1	0.03	96	4.4	12	3.5	122	42	444	161	611	111	751	114
IA-NS-6_7.1	0.02	18	1.3	3.4	1.1	36	14	160	64	276	56	423	72
IA-NS-6 9.1	0.37	451	38.8	80	11	625	194	1970	684	2606	476	3391	500
IA-NS-6_10.1	0.04	87	4.6	13	1.9	131	43	463	167	693	135	970	159
IA-NS-6_12.1	0.02	18	3.5	8.7	2.5	79	27	286	102	404	71	513	81
IA-NS-6_13.1	0.13	594	29.4	69	11	509	153	1461	504	1881	341	2365	353
IA-NS-6 15.1	0.17	222	25.0	47	8.2	372	117	1174	414	1568	288	2051	306
IA-NS-6_16.1	0.12	75	14.8	32	8.8	247	78	787	276	1077	203	1491	241
IA-NS-6 ^{17.1}	0.11	81	10.3	23	5.0	181	59	599	215	854	160	1178	183
IA-NS-6_17.2	0.32	328	36.6	73	13	565	174	1723	604	2279	415	2922	440
IA-NS-6_18.1	0.03	16	0.9	2.8	1.0	31	11	135	54	236	48	382	67
IA-NS-6_18.2	0.02	17	3.4	8.6	2.6	77	26	277	98	382	71	501	79
IA-NS-6_19.1	0.48	376	49.9	91	16	642	196	1888	649	2366	433	3006	442
IA-NS-6_20.2	0.21	132	23.3	52	12	397	119	1206	425	1595	294	2086	325
IA-NS-6_21.1	0.02	18	1.4	3.9	1.5	39	14	159	60	260	51	371	62
IA-NS-6_22.1	0.03	16	1.7	4.7	1.6	50	16	187	68	269	51	377	62
IA-NS-6_22.2	0.02	20	1.4	3.6	1.2	37	14	165	68	303	61	505	87
IA-NS-6_23.1	12	50	13.5	7.6	2.7	53	18	198	74	280	57	415	65
IA-NS-6_24.1	0.01	18	2.7	6.3	1.8	55	18	201	77	312	61	458	77
IA-NS-6_24.2	0.56	41	5.8	15	4.5	139	46	472	179	667	123	841	134
IA-NS-6_24.3	0.15	24	1.9	4.3	1.4	44	15	164	62	253	47	346	58
IA-NS-6_26.1	0.33	293	37.3	74	6.2	586	186	1876	647	2454	450	3204	486
				IA	A-NS-7	(Grano	diorite)					
IA-NS-7 1.1	0.08	24	9.0	23	8.0	187	59	592	213	810	150	1136	182
IA-NS-7_2.1	0.08	559	14.3	46	3.1	440	157	1673	597	2352	433	3123	455
IA-NS-7_3.1	0.14	451	18.5	47	4.0	403	135	1401	481	1901	348	2488	370
IA-NS-7_4.1	0.02	12	3.4	7.7	2.4	60	20	217	79	313	62	455	78
IA-NS-7_4.2	0.02	217	9.7	26	2.4	222	77	792	273	1082	203	1465	230
IA-NS-7_5.1	0.22	58	25.7	48	15	346	107	1044	342	1275	226	1643	251
IA-NS-7_6.1	0.98	220	7.2	18	1.6	174	71	911	400	1860	434	3657	558
IA-NS-7_7.1	0.36	14	2.8	7.1	2.0	58	20	204	74	313	60	467	76
IA-NS-7_8.1	0.07	21	8.8	20	6.6	161	51	510	174	669	125	942	151
IA-NS-7_8.2	0.08	339	13.9	38	3.3	331	108	1110	388	1467	272	1954	295
IA-NS-7_9.1	0.26	290	28.3	62	5.5	499	162	1662	569	2210	397	2847	428
IA-NS-7_10.1	0.20	787	37.2	94	7.5	694	214	2028	658	2410	409	2952	421
IA-NS-7_11.1	0.74	19	7.7	17	5.9	141	46	460	164	655	122	935	150
IA-NS-7_11.2	0.13	361	6.5	22	1.7	262	114	1406	564	2506	520	3973	568
IA-NS-7_12.1	0.15	539	30.1	78	7.6	588	175	1652	532	1978	338	2349	344
IA-NS-7_12.2	0.14	525	22.9	61	5.7	501	155	1524	497	1888	332	2354	345
IA-NS-7_13.1	0.89	150	13.5	36	3.5	341	113	1223	434	1694	319	2308	359
IA-NS-7_13.2	0.13	48	18.9	46	16	372	116	1145	382	1464	266	1952	301
IA-NS-7_14.1	0.08	15	6.5	18	6.5	155	51	525	185	746	138	1030	170
IA-NS-7_15.1	0.42	462	40.2	89	8.6	732	244	2518	875	3300	590	4183	610
IA-NS-7_16.1	0.10	22	9.6	20	6.3	160	51	508	177	688	125	928	150
IA-NS-7_16.2	0.14	700	21.0	61	5.5	560	189	1949	681	2634	475	3410	503
IA-NS-7 ^{17.1}	0.11	769	30.7	78	6.2	655	202	1941	638	2375	422	2953	426

Sample Spot	Р	Sc	Ti	Fe	Y	Nb	Hf	Th	U	Temp. (°C)
				IA-NS	-7 (contin	nued)				
IA-NS-7_17.2	1193	61	8.7	3.3	10735	64	6342	457	579	767
IA-NS-7_18.1	977	98	38	3.4	6067	59	6523	697	650	935
IA-NS-7_19.1	1058	32	9.7	96	8780	52	7008	385	545	778
IA-NS-7_19.2	841	80	20	3.8	7941	23	7181	242	283	853
				IA-G	G-1 (Gabb	oro)				
IA-G-1 1.1	298	23	15	4.3	2178	1.4	9519	97	144	823
IA-G-1_2.1	303	18	13	4.0	2445	1.7	9767	108	158	811
IA-G-1_3.1	321	37	17	3.8	1119	2.3	9393	33	100	834
IA-G-1_4.1	514	18	21	3.8	4000	3.2	8629	220	237	862
IA-G-1_5.1	270	24	21	3.8	1900	0.89	9059	59	92	861
IA-G-1_6.1	250	23	9.1	3.6	1735	0.96	9917	85	137	771
IA-G-1_6.2	209	19	11	4.0	1350	1.1	10347	44	77	794
IA-G-1_7.1	301	20	15	3.6	2072	1.0	9728	76	119	823
IA-G-1_8.1	315	21	17	4.0	2261	1.5	9155	73	106	839
IA-G-1_9.1	298	29	20	3.7	1980	1.4	8733	48	74	855
IA-G-1_10.1	328	19	14	3.6	2440	1.4	9781	93	139	817
IA-G-1_11.1	390	21	19	4.1	2863	1.7	9269	108	144	850
IA-G-1_12.1	693	28	21	3.9	5003	3.7	8823	197	216	862
IA-G-1_13.1	229	20	17	3.7	1467	0.76	9640	36	61	835
IA-G-1_14.1	602	44	33	3.7	2273	2.6	8418	222	187	916
IA-G-1_15.1	250	19	12	2.9	2157	1.4	9573	94	143	802
IA-G-1_16.1	217	25	18	3.6	1278	0.63	9026	31	51	843
IA-G-1_17.1	747	31	25	3.6	5197	4.2	8536	198	204	882
IA-G-1_18.1	680	19	23	2.3	5227	3.8	8592	234	242	874
IA-G-1_19.1	350	20	19	3.6	2446	1.6	9078	82	115	848
IA-G-1_20.1	243	20	14	3.0	1572	1.1	10002	41	72	816
IA-G-1_21.1	284	21	18	2.9	1981	1.1	9301	59	93	843
IA-G-1_22.1	891	78	16	3.3	5021	9.0	9973	1143	1123	831
IA-G-1_22.2	919	58	10	3.4	7450	4.9	10149	798	755	784
IA-G-1_23.1	608	21	24	3.5	3976	2.4	8656	131	160	876
IA-G-1_24.1	285	19	12	3.5	2152	1.4	9797	100	150	795
IA-G-1_24.2	897	56	9.2	3.6	4/31		11878	846	1247	772
IA-G-1_25.1	318	23	8.2	3.7	2061	1.0	10938	129	204	761
IA-G-1_26.1	6//	53	33	2.7	2455	3.2	8256	231	197	915
IA-G-1_27.1	289	24	14	2.9	2288	1.3	9837	101	155	817
	1			IA-G	6-5 (Gabb	oro)				
IA-G-5_2.1		88	37	5.3	7919	36	6786	1768	1232	931
IA-G-5_4.1		91	31	2.7	8302	50	7813	1516	1072	907
IA-G-5_6.1		75	24	1.5	9149	26	7712	893	651	878
IA-G-5_7.1		45	19	0.1	6244	12	6860	276	316	850
IA-G-5_8.1	1667	99	38	2.6	7440	53	8715	2857	1471	935
IA-G-5_9.1	1652	86	12	2.9	13075	16	9060	3573	1423	798
IA-G-5_10.1	861	33	5.4	4.0	4681	4.0	9127	906	1088	721
IA-G-5_11.1	1376	60	23	3.8	7882	12	6518	471	415	872
IA-G-5_12.1	1075	58	18	4.2	6527	8.9	7399	373	410	844
IA-G-5_13.1	1743	88	20	3.9	9393	22	7182	1721	939	853
IA-G-5_14.1	1663	78	36	4.2	6768	31	8011	871	783	926

Sample Spot	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
]	IA-NS-	7 (conti	nued)						
IA-NS-7_17.2	0.20	204	22.5	49	3.8	397	129	1326	470	1772	320	2304	348
IA-NS-7_18.1	0.09	105	12.3	38	11	298	90	846	265	954	162	1126	158
IA-NS-7_19.1	1.0	136	13.5	32	3.0	278	94	1009	375	1437	275	1984	315
IA-NS-7_19.2	0.20	57	23.7	51	16	364	111	1070	348	1252	218	1528	228
					IA-G-	-1 (Gab	bro)						
IA-G-1_1.1	0.03	11	3.7	7.6	3.1	70	24	257	91	392	75	558	91
IA-G-1_2.1	0.04	12	3.5	7.4	3.1	70	25	278	102	424	81	615	102
IA-G-1_3.1	0.01	8.9	0.9	2.5	1.1	24	8.9	105	45	208	44	358	66
IA-G-1_4.1	0.09	13	4.5	8.5	4.0	104	40	474	183	788	147	1097	177
IA-G-1_5.1	0.04	5.6	2.7	6.1	3.4	61	22	229	82	348	65	512	84
IA-G-1_6.1	0.01	13	2.7	6.6	1.7	56	20	209	75	319	59	446	70
IA-G-1_6.2	0.01	8.4	1.6	5.0	1.7	36	13	139	52	211	42	321	54
IA-G-1_7.1	0.02	11	3.2	6.4	2.5	61	22	239	85	365	69	527	85
IA-G-1_8.1	0.05	10	3.7	7.7	3.5	77	25	263	94	393	72	531	87
IA-G-1_9.1	0.02	9.5	3.8	8.3	3.7	69	23	229	82	326	63	470	77
IA-G-1_10.1	0.03	12	3.5	7.0	2.7	70	24	262	100	414	79	591	94
IA-G-1_11.1	0.08	11	4.0	9.0	4.2	88	31	334	123	508	96	726	118
IA-G-1_12.1	0.13	20	6.5	18	7.9	175	58	606	215	862	159	1177	186
IA-G-1_13.1	0.03	6.9	2.4	5.4	2.4	46	16	170	62	255	50	379	61
IA-G-1_14.1	0.03	20	3.1	7.4	3.6	70	24	253	94	390	72	548	89
IA-G-1_15.1	0.05	11	3.5	7.5	3.0	63	21	237	90	370	69	512	85
IA-G-1_16.1	0.02	4.6	2.3	5.0	2.6	42	14	152	53	223	42	334	57
IA-G-1_17.1	0.08	22	7.6	21	9.8	190	62	634	218	870	162	1184	190
IA-G-1_18.1	0.09	17	5.3	12	6.0	152	55	602	222	914	167	1227	196
IA-G-1_19.1	0.05	9.1	3.8	7.9	3.7	81	28	297	106	431	81	606	101
IA-G-1_20.1	0.01	8.9	2.2	5.2	2.1	46	15	162	61	243	48	355	57
IA-G-1_21.1	0.06	8.9	3.2	6.6	3.0	60	21	232	83	342	65	496	81
IA-G-1_22.1	0.05	89	3.9	13	4.3	142	53	569	210	888	170	1297	205
IA-G-1_22.2	0.14	56	11.0	28	9.2	252	86	903	316	1298	244	1815	276
IA-G-1_23.1	0.08	13	4.4	12	5.9	126	42	432	155	643	116	880	139
IA-G-1_24.1	0.05	12	3.1	6.3	2.5	63	22	233	89	3/1	/0	527	86
IA-G-1_24.2	0.04	116	3.9	12	1.8	121	45	514	192	836	166	1224	186
IA-G-1_25.1	0.15	11	2.7	6.6	2.3	59	22	236	8/	385	72 70	561	91
IA-G-1_20.1	0.03	26 7.8	2.7	7.0 6.8	3./ 2.2	/S 60	26 22	282 240	102 01	424	79 72	588 564	96 02
IA-0-1_2/.1	0.03	7.0	2.0	0.0			23 hra)	249	91	383	12	504	92
IA-G-5 2 1	0.07	273	13.8	35	93	293		868	312	1165		1503	217
IA-G-5_2.1	0.07	304	15.8	31	63	279		921	337	1229		1645	217
IA-G-5 61	0.15	189	16.1	37	11	320		1082	385	1370		1769	270
$IA-G-5_0.1$	0.17	84	10.1	27	77	206		629	245	898		1252	192
IA-G-5 8 1	0.15	330	12.7	42	,., 8.0	302	104	1020	327	1248	232	1613	232
IA-G-5 91	0.00	428	29.7	82	13	496	173	1713	581	1987	359	2488	347
IA-G-5 10.1	0.47	<u>2</u> 0 85	56	15	29	141	53	585	214	880	164	1166	166
IA-G-5 11 1	0.03	150	23.0	49	14	350	116	1127	392	1394	251	1785	255
IA-G-5 12 1	0.09	102	143	29	85	227	88	883	294	1186	231	1595	235
IA-G-5 13 1	0.09	281	26.8	53	13	391	132	1284	442	1581	222	2293	307
IA-G-5_14.1	0.08	217	12.1	30	8.5	244	91	940	339	1331	243	1746	267

3.3.c. Oxygen Isotope Analyses

We measured oxygen isotopic ratios on individual spots in zircon by secondary ion mass spectrometry (SIMS) in dual Faraday cup multi-collection mode using the CAMECA ims1270 ion microprobe at the University of California-Los Angeles' (UCLA) W.M. Keck Foundation Center for Isotope Geochemistry (Los Angeles, CA), following the methods outlined by Trail *et al.* (2007). We used a ~5 nA Cs⁺ beam with an analytical spot size of 15-20 µm and sputter depth of ~1 µm, generating secondary ions at 20 keV total impact energy. We used R33 ($\delta^{18}O = 5.55 \pm$ 0.08 ‰, 2 σ , Valley, 2003) as our calibrating reference to correct for instrumental mass fractionation. All SIMS oxygen isotope data are reported in the $\delta^{18}O$ notation relative to Vienna Standard Mean Ocean Water (VSMOW), with 2 σ uncertainties (calculated in quadrature using both the analytical uncertainty of individual analyses and the external reproducibility of reference materials), in Table 5, and full oxygen isotope data are reported in Appendix B.5.

3.3.d. <u>Lu-Hf Isotope Analyses</u>

The Lu-Hf isotopic compositions of AIC zircons were measured *in situ* at the Memorial University of Newfoundland (MUN) Micro Analysis Facility (St. John's, Canada) and the Radiogenic Isotope and Geochronology Laboratory (RIGL) at WSU by laser ablation-multi-collector (LA-MC) ICP-MS. Analyses conducted at MUN utilized a ThermoFinnigan Neptune mass spectrometer attached to a Geolas Pro 193 nm Ar-F excimer laser with a spot size of ~50 μ m, a laser fluence of 5 J/cm², and repetition rate of 10 Hz. Methods followed those of Fisher *et al.* (2011), with the exception that N₂ gas was added for increased sensitivity. Each analysis consisted of 30 s of gas background followed by 60 s of ablation. Analyses done at WSU utilized a ThermoFinnigan Neptune MC-ICP-MS attached to a New Wave 213 nm Nd-YAG laser with a spot size of 40 μ m. We follow the instrument configuration, operating parameters, and data

reduction methods outlined by Fisher et al. (2014), with the exception that U-Pb ages were not simultaneously determined. We use Mud Tank zircons (176 Hf/ 177 Hf = 0.282507 ± 6, Woodhead & Hergt, 2005) as the quality control reference material and to normalize all samples at WSU. We use MUNZirc 2 and 4 (S-MC-ICPMS 176 Hf/ 177 Hf = 0.282135 ± 17, Fisher *et al.*, 2011) as the reference material and to normalize all samples at MUN. Analyses conducted at MUN did not require correction to an external standard. Additional ("secondary") reference zircons were analyzed interspersed with unknowns at both MUN and WSU. Given the narrow range of Hf isotope compositions present in Icelandic rocks, and large range of (Lu+Yb)/Hf present in AIC zircon samples, combined with the importance of highly accurate correction for the isobaric interference of ¹⁷⁶Yb and ¹⁷⁶Lu on ¹⁷⁶Hf, quality control zircons used in this study covered the range of (Lu+Yb)/Hf of the samples studied. Analyses of FC-1 (S-MC-ICPMS 176 Hf/ 177 Hf = 0.282186 ± 16, Woodhead & Hergt, 2005) and MUNZirc 2 and 4 at MUN yield LA-MC-ICP-MS 176 Hf/ 177 Hf of 0.282173 ± 36 (2SD; n=9) and 0.282144 ± 52 (2SD; n=16; 176 Yb/ 176 Hf ~0.07 to 0.22), respectively. Analyses of GJ-1 (S-MC-ICPMS 176 Hf/ 177 Hf = 0.282000 ± 23, Morel *et al.*, 2008) and MUNZirc 4 at WSU yield LA-MC-ICPMS 176 Hf/ 177 Hf of 0.282002 ± 32 (2SD; n=15) and 0.282131 ± 18 (2SD; n=13; 176 Yb/ 176 Hf ~0.08 to 0.26), respectively. Analyses of quality control zircons from both laboratories agree well with published S-MC-ICP-MS isotope compositions of purified Hf from these zircons. Present day $\varepsilon_{\rm Hf}$ values were calculated using the CHUR parameters reported by Bouvier *et al.* (2008). Laser ε_{Hf} values are reported with 2SE uncertainty in Table 5, and full Lu-Hf isotopic data are reported in Appendix B.6.

Sample Name	Mount	δ ¹⁸ Ο (‰)	2σ SE Total	٤ _{Hf}	2σ SE
	IA-NS	8-2 (Granop	hyre)		
IA-NS-2_1.1	JW498	4.1	0.7	13.6	1.1
IA-NS-2_2.1	JW498	4.0	0.7	12.5	0.8
IA-NS-2_3.1	JW498	4.1	0.7	12.8	1.0
IA-NS-2_4.1	JW498	3.3	0.7	12.3	0.7
IA-NS-2_4.2	JW498	3.8	0.7	-	
IA-NS-2_5.1	JW498	4.2	0.7	-	
IA-NS-2_5.2	JW498	4.5	0.7	-	
IA-NS-2_6.1	JW498	4.3	0.7	11.7	1.3
IA-NS-2_7.1	JW498	4.0	0.7	12.9	0.8
IA-NS-2_8.1	JW498	3.9	0.7	13.1	1.1
IA-NS-2_9.1	JW498	3.0	0.7	12.9	2.3
IA-NS-2_10.1	JW498	3.5	0.7	12.7	1.0
IA-NS-2_10.2	JW498	3.8	0.7	-	
IA-NS-2_11.1	JW498	3.5	0.7	13.2	0.7
IA-NS-2_12.1	JW498	3.7	0.7	-	-
IA-NS-2_12.2	JW498	3.8	0.7	12.1	1.2
IA-NS-2_13.1	JW498	3.7	0.7	-	-
IA-NS-2_14.1	JW498	3.2	0.7	-	-
IA-NS-2_15.1	JW498	3.6	0.7	11.6	1.4
IA-NS-2_17.2	JW498	3.7	0.7	14.3	1.4
IA-NS-2_18.1	JW498	4.4	0.7	11.8	1.4
IA-NS-2_20.1	JW498	4.2	0.7	13.1	0.8
IA-NS-2_23.1	JW498	3.5	0.7	13.5	0.7
IA-NS-2_24.1	JW498	3.7	0.7	12.9	1.5
IA-NS-2_25.1	JW498	3.4	0.7	14.7	1.7
IA-NS-2_26.1	JW498			13.8	0.7

Sample Name	Mount	δ ¹⁸ O (‰)	2σ SE Total	٤ _{Hf}	2σ SE
	IA	-NS-6 (Diori	te)		
IA-NS-6_1.1	JW498	3.5	0.7	13.9	1.0
IA-NS-6_2.1	JW498	3.3	0.7	-	
IA-NS-6_3.1	JW498	4.0	0.7	13.5	1.4
IA-NS-6_4.1	JW498	3.8	0.7	12.6	1.9
IA-NS-6_5.1	JW498	3.7	0.7	-	
IA-NS-6_6.1	JW498	3.5	0.7	13.1	0.7
IA-NS-6_6.2	JW498			12.4	1.0
IA-NS-6_7.1	JW498	3.4	0.7	13.4	1.2
IA-NS-6_8.1	JW498	3.5	0.7	-	
IA-NS-6_9.1	JW498	3.7	0.7	14.1	2.0
IA-NS-6_10.1	JW498	3.6	0.7	12.8	1.5
IA-NS-6_11.1	JW498	4.5	0.7	14.6	1.0
IA-NS-6_12.1	JW498	3.3	0.7	13.8	0.9
IA-NS-6_13.1	JW498	4.1	0.7	12.5	1.9
IA-NS-6_14.1	JW498	3.2	0.7	-	
IA-NS-6_15.1	JW498	4.2	0.7	-	
IA-NS-6_16.1	JW498	2.7	0.7	-	
IA-NS-6_17.1	JW498	3.4	0.7	-	
IA-NS-6_17.2	JW498	4.2	0.7	-	
IA-NS-6_18.1	JW498	3.9	0.7	12.3	0.8
IA-NS-6_19.1	JW498	4.2	0.7	-	
IA-NS-6_21.1	JW498	3.6	0.7	13.3	1.4
IA-NS-6_22.1	JW498	3.7	0.7	13.3	1.0
IA-NS-6_23.1	JW498	3.4	0.7	-	
IA-NS-6_24.1	JW498	3.8	0.7	12.4	1.2
IA-NS-6_24.2	JW498	3.3	0.7	-	
IA-NS-6_26.1	JW498	3.8	0.7	12.9	2.4

 Table 5. In-situ zircon oxygen and Lu-Hf isotope compositions¹⁶

¹⁶ For full oxygen isotope compositions, see *Appendix B.5*. For full Lu-Hf isotopes, see *Appendix B.6*.

 Table 5. Continued

Sample Name	Mount	δ ¹⁸ Ο (‰)	2σ SE Total	٤ _{Hf}	2σ SE
	IA-NS	5-7 (Granodi	orite)		
IA_NS-7_1.1	JW510	3.8	0.5	13.1	1.1
IA_NS-7_2.1	JW510	3.9	0.4	-	-
IA_NS-7_3.1	JW510	2.9	0.5	13.5	1.5
IA_NS-7_4.1	JW510	4.3	0.5	12.5	1.1
IA_NS-7_6.1	JW510	3.6	0.5	-	-
IA_NS-7_7.1	JW510	4.1	0.5	-	-
IA_NS-7_9.1	JW510	3.6	0.5	12.6	1.3
IA_NS-7_10.1	JW510	4.4	0.5	10.9	1.7
IA_NS-7_11.1	JW510	4.0	0.4	13.7	1.3
IA_NS-7_12.1	JW510	3.7	0.5	12.4	1.5
IA_NS-7_13.1	JW510	3.8	0.5	13.1	1.1
IA-NS-7_14.1	JW510	3.7	0.5	13.1	1.2
IA-NS-7_15.1	JW510	4.1	0.5	-	-
IA-NS-7_16.1	JW510			15.1	1.0
IA-NS-7_17.1	JW510	4.1	0.5	12.7	1.2
IA-NS-7_19.1	JW510	4.2	0.5	13.1	1.7
IA-NS-7_20.1	JW510			12.3	1.7
IA-NS-7_22.1	JW510			12.6	1.2
IA-NS-7 23.1	JW510			12.2	1.5
IA-NS-7_25.1	JW510			13.0	1.1
	IA	-G-1 (Gabbı	.0)		
IA-G-1_1.1	JW510	4.3	0.4	13.2	1.0
IA-G-1_2.1	JW510	4.5	0.5	12.2	0.9
IA-G-1_3.1	JW510			12.9	1.2
IA-G-1_4.1	JW510			13.0	1.0
IA-G-1_6.1	JW510	4.7	0.5	13.1	1.2
IA-G-1_7.1	JW510	4.5	0.5	12.1	1.4

Sample Name	Mount	δ ¹⁸ O (‰)	2σ SE Total	8 _{Hf}	2σ SE
IA-G-1 (continued)					
IA-G-1_8.1	JW510	4.3	0.5	12.7	0.9
IA-G-1_10.1	JW510			11.2	1.1
IA-G-1_11.1	JW510			15.9	1.6
IA-G-1_12.1	JW510	4.7	0.4	12.4	1.3
IA-G-1_14.1	JW510			13.1	1.1
IA-G-1_15.1	JW510	4.2	0.4	12.4	1.0
IA-G-1_17.1	JW510			13.0	1.1
IA-G-1_18.1	JW510	4.4	0.4	13.9	1.4
IA-G-1_19.1	JW510			13.8	1.0
IA-G-1_22.1	JW510	4.9	0.5		
IA-G-1_23.1	JW510	4.9 0.5			
IA-G-1_24.1	JW510	4.5	0.5	12.9	1.1
IA-G-1_25.1	JW510	4.8	0.5	12.5	0.8
IA-G-1_26.1	JW510	4.2	0.5	13.9	1.3
IA-G-1_27.1	JW510	4.6	0.5	12.1	1.1
IA-G-1_28.1	JW510	4.9	0.5	13.2	1.1
IA-G-5 (Gabbro)					
IA-G-5_2.1	AJP01	2.8	0.7		
IA-G-5_3.1	AJP01	4.5	0.8		
IA-G-5_4.1	AJP01	2.2	0.7		
IA-G-5_6.1	AJP01	3.2	0.7		
IA-G-5 7.1	AJP01	4.7	0.7	12.9	1.8
IA-G-5 8.1	AJP02	4.2	0.7		
IA-G-5_9.1	AJP02	4.0	0.7		
IA-G-5 10.1	AJP03	4.3	0.7	-	
IA-G-5_11.1	AJP03	4.8	0.7	13.0	1.8
IA-G-5 12.1	AJP03			13.0	1.8

4. Results

4.1. Field Observations

The main focus of our study is to use zircon to quantify the complex magmatic processes suggested by exposures of the Mafic-Silicic Composite Zone. We recognize two types of mafic enclaves found throughout the MSCZ (Fig. 3) and distinguish these using the terms *pillows*, light to dark gray masses ranging in size from a few centimeters to meters in the long dimension that we interpret to represent melt-rich mafic magma enclosed by silicic magma, and *clasts*, which have the same range in size but which we interpret to represent fragments of solidified magma within silicic magma. Pillows commonly have cuspate or crenulated margins, sometimes chilled, or diffuse boundaries, whereas clasts typically have very sharp and angular edges (see Fig. 3a,b,d,e). Some enclaves are partially bounded by angular edges and partially by diffuse or crenulated margins. Double pillows or "pillows within other pillows" (see Mattson *et al.*, 1986), usually a chilled dark mafic pillow surrounded by a lighter intermediate gradational outer zone, which is commonly also chilled, all surrounded by the host silicic rock, are also present throughout the MSCZ (see Fig. 3d). Some large pillows are disaggregated into smaller enclaves at the margins.

In addition to mafic enclaves (both pillows and clasts), there are large uniform bodies of fine-grained, homogeneous mafic rock within the MSCZ that have a sill-like morphology (Fig. 3h,i), a feature also recognized by Furman *et al.* (1992a). The edges of these sill-like bodies are commonly found disaggregated into mafic clasts with veins of silicic material intruding as apophyses, and in some locations we find wide areas of clast- and pillow-free silicic rock between mafic sills. Groups of small mafic clasts are often concentrated along the edges of sills,

90

and can be reconstructed in the manner of a jigsaw puzzle into the larger structures from which they disaggregated, indicating they were not transported very far by the host magma.

Silicic rocks in the MSCZ are typically fined-grained, and can be grouped into general "units" based on distinctive characteristics that extend over 10s of meters (or more) of outcrop. These units range in appearance from very large, homogeneous, and clast- and pillow-free bodies extending over 10s of meters, to extensively mingled composite bodies of silicic material with abundant mafic clasts and pillows of all types and sizes (see above for types; sizes range from cm to m-wide bodies). We refer to the latter as *heterogeneous* silicic units. These units commonly contain microenclaves (<1 cm across) with a thoroughly diffuse character (gradational contacts and generally becoming more mafic in composition than the host rock toward the center of the enclave), which are typically interpreted to represent magmatic hybridization (see Fig. 3e; e.g. Vernon, 1984; Wiebe *et al.*, 2002). Some of the less silicic rocks contain distinctive acicular amphibole crystals and are generally clast-free and pillow-free.

Near the structural top of the MSCZ there is a zone of nearly enclave-free granophyre that is widely intruded by small-volume dikes and pods of high-SiO₂ granophyre (HSG). These HSG units are volumetrically insignificant relative to the rest of the rocks in the MSCZ, making up far less than 1% of exposed silicic rocks. They display geochemical trends, both in their whole-rock and zircon composition, that differ significantly from those of other associated silicic rocks, and likely represent magmatic processes that may not be commonplace in the AIC (Padilla *et al.*, 2014). Because of their magmatic association with other units of the MSCZ, we include 4 samples from this HSG zone in our U-Pb zircon age determination for the entire Austurhorn complex (samples IA-NS-4b, IA-NS-9, IA-NS-10, and IA-NS-12; see section *4.4.f.*) in order to

91

maximize age resolution, but these samples are not the focus of this study (see Padilla *et al.*, 2014), and are therefore not discussed in this paper.

A zone of homogeneous fine-grained granophyre, free of mafic enclaves and clasts, surrounds the MSCZ. This granophyre intrudes the country rock basalts marking the northern boundary of the AIC. In a few locations, the MSCZ is also in contact with the coarse-grained Hvalnesfjall gabbro (sample IA-G-3; see Fig. 2; Furman *et al.*, 1992a). A small body of gabbro that we refer to as the "coastal" MSCZ gabbro is exposed within the MSCZ at Hvalneskrókur Point, and unlike the mafic sheets elsewhere in the MSCZ it is coarse-grained and gradational with the surrounding silicic units (sample locality IA-G-1). Dikes, apophyses, and thin veins of silicic rock intruded into the coastal MSCZ gabbro. We refer to all other gabbroic units within the MSCZ as "sheet" gabbros (e.g. sample IA-G-5).

4.2. Petrography

All silicic and intermediate samples from the MSCZ display micrographic intergrowths of quartz and feldspar, with individual large (dominantly plagioclase) feldspar crystals and quartz ranging from ~500 to ~1000 μ m across also present and common in the same matrix. In addition, minor amounts of prismatic clinopyroxene (Cpx) and amphibole are present in most silicic samples, and zircon and titanite are common accessory minerals in all units. One heterogeneous granophyre sample (IA-NS-2) contains abundant microenclaves with diffuse boundaries, and abundant large (>1cm in length) amphibole crystals.

Gabbro samples have the same mineral assemblage, composed mainly of very coarse plagioclase and Cpx (1-2 cm across), as well as Fe-Ti oxides, and minor amounts of biotite. Amphibole is also present, though typically as a secondary phase. Some Fe-Ti oxides from the coastal MSCZ gabbro (sample IA-G-1) display an acicular habit, a feature that is absent in the sheet gabbros of the MSCZ. The Hvalnesfjall gabbro (IA-G-3) is distinctively coarser than all MSCZ gabbros and displays the least alteration.

A small proportion of amphibole crystals, particularly in the intermediate and silicic samples, are fibrous and often occur as rims surrounding primary Cpx cores. We interpret these as secondary amphibole growth resulting from sub-solidus hydrothermal alteration of Cpx. Most samples (of all compositions) contain other secondary phases such as epidote, chlorite, and sericite, in minor amounts, also indicating that some sub-solidus alteration has occurred throughout the AIC.

4.3. Whole-Rock Geochemistry

We obtained whole-rock major oxide and trace element abundances from 11 representative samples in order to characterize the rock types found within the AIC (see Table 2). Of the 11 samples, three are most representative of gabbroic rocks present throughout the AIC (the coastal and sheet gabbros within the MSCZ, and the adjacent Hvalnesfjall gabbro), while the rest encompass the range of silicic compositions and textures that are most common within the MSCZ as well as the homogeneous granophyre zone that surrounds the MSCZ.

4.3.a. Major Oxides

Major oxides in the silicic samples show a general increase in K_2O and decrease in TiO_2 , Al_2O_3 , $Fe_2O_3(Tot)$, MnO, MgO, CaO and P_2O_5 with increasing SiO_2 content (Fig. 4). SiO_2 concentrations range from 61 to 73 wt.% for the silicic samples, and the mafic samples are all near 47 wt.%. The mafic samples differ significantly from each other in their major oxide abundances. The coastal MSCZ gabbro (sample IA-G-1) has substantially higher TiO_2 , $Fe_2O_3(Tot)$, K_2O , and P_2O_5 abundances, as well as lower CaO concentrations and Mg#, than the

Hvalnesfjall gabbro (sample IA-G-3) or MSCZ sheet gabbro (IA-G-5). With the exception of MgO, the Hvalnesfjall and MSCZ sheet gabbro have nearly identical major element compositions. The sheet gabbro is enriched in Mg relative to the other gabbros. The chemical characteristics of the Hvalnesfjall and sheet gabbro are more cumulate-like in character, relative to the coastal gabbro.

4.3.b. <u>Rare Earth Elements (REE)</u>

All intermediate to silicic AIC samples display LREE-enriched REE patterns with negative Eu anomalies (Fig. 5). The most silicic samples (e.g. granophyres) also have discernible positive Ce anomalies. All gabbro samples also have overall negative slopes, with LREE enrichment relative to HREE, but they have much lower REE concentrations than the intermediate to silicic samples. Both the coastal (IA-G-1) and sheet (IA-G-5) MSCZ gabbros display elevated MREE concentrations and slight positive Eu anomalies. The Hvalnesfjall gabbro (IA-G-3) has lower REE concentrations than MSCZ gabbros and a more noticeable positive Eu anomaly.

Whole-rock major oxide geochemistry for samples from the Austurhorn intrusive complex. Silicic samples not processed for zircon extraction are plotted as group "Other MSCZ."

Whole-rock Rare Earth element (REE) geochemistry for samples from the Austurhorn Intrusive Complex. Silicic samples not processed for zircon extraction are plotted as group "Other MSCZ."

4.3.c. Other Trace Elements

Whole-rock trace element abundances within the AIC generally display trends that are common for silicic rocks (Fig. 6). For example, Sr concentrations fall as rock compositions become more silicic (consistent with its compatibility in feldspars), Zr and Hf generally increase as SiO₂ and other indicators of magma evolution rise but fall in the most evolved samples (as a consequence of zircon saturation), Ba follows a similar trend (apparent response to late saturation in alkali feldspar), and U, Th, and Rb appear to behave incompatibly throughout the full range of silica concentrations. The coastal MSCZ gabbro (IA-G-1) is distinctly evolved compared to the other gabbros, with higher Zr, Hf, Ba, and Rb concentrations, as well as lower Sr. As with major oxide compositions for the coastal gabbro, these characteristics reflect a fractionated tholeiitic melt. In contrast, the lower concentrations of incompatible trace elements along with depleted REE in the Hvalnesfjall (IA-G-3) and sheet (IA-G-5) gabbros reflect more of a cumulate character.

4.3.d. <u>Hf Isotopic Compositions</u>

Measured Hf isotopic compositions of AIC whole-rock samples range from +12 to +14 $\varepsilon_{\rm Hf}$ (see Table 3). The gabbro samples and the granophyre make up the lower range of isotope compositions at +12.1 ± 0.3 (sheet gabbro IA-G-5), +12.5 ± 0.2 (coastal gabbro IA-G-1), and +12.6 ± 0.3 ε -units (granophyre IA-NS-2). The intermediate silicic units both have slightly higher $\varepsilon_{\rm Hf}$ compositions at +13.3 ± 0.3 (diorite IA-NS-6) and +14.0 ± 0.2 (granodiorite IA-NS-7).

Whole-rock trace element geochemical comparison plots for samples from the Austurhorn intrusive complex. Silicic samples not processed for zircon extraction (i.e. excluding the Hvalnesfjall gabbro) are plotted as group "Other MSCZ." a) SiO_2 vs. Zr; b) SiO_2 vs. Eu/Eu* (Eu anomaly); c) Rb vs. Sr; and d) Ba vs. Sr.

4.4. Zircon Results

4.4.a. <u>Samples Investigated</u>

We extracted zircon from 9 MSCZ samples for elemental geochemistry, U-Pb geochronology, and O and Hf isotopic analyses. As previously noted (section 4.1), we report ages for all 9 samples in this study (see section 4.4.f.), but only discuss the 5 samples that are volumetrically significant and therefore representative of widespread magmatic processes in the MSCZ. The silicic samples encompass the range of textures and rock-types found within the MSCZ: a heterogeneous granophyre (IA-NS-2) that contains all mafic enclave types and displays extensive interactions between mafic input and silicic host; a homogeneous, fine-grained diorite (IA-NS-6) that hosts abundant mafic enclaves, both large, diffuse pillows, as well as smaller angular clasts; and a homogeneous, medium-grained and enclave-free micrographic granodiorite (IA-NS-7) characterized by abundant acicular amphibole crystals. We mechanically removed mafic enclaves and clasts from the silicic host matrix prior to processing all silicic samples for whole-rock geochemistry and zircon extraction. The selected mafic samples are from relatively homogeneous and voluminous exposures of gabbro within the MSCZ, and include a coarsegrained sample from the coastal gabbroic complex (IA-G-1) and a finer-grained sheet gabbro from the interior of the MSCZ (IA-G-5).

4.4.b. Abundance, Zoning, and Morphology

A simple qualitative assessment of zircon yields from Icelandic silicic volcanic rocks (Carley *et al.*, 2011) and MSCZ rocks reveals that zircons are significantly more abundant in intrusive rocks than in volcanic products. Carley *et al.* (2011) report that zircon populations in 7 samples from different silicic volcanic systems were sparse (generally <10 grains/kg of starting

whole-rock material), including one sample from Askja volcano that did not yield any zircons by the same standard separation techniques used in this study. In contrast, we find that every MSCZ rock, including gabbros and samples of intermediate compositions, yields abundant zircons (>>100 grains/kg, except for the sheet gabbro, IA-G-5, which yielded ~20 grains/kg).

Grain morphology and zoning patterns vary widely throughout all MSCZ samples, including complex oscillatory, patchy, sector, and simple zoning. Oscillatory-zoned euhedral and prismatic crystals, ranging from acicular to subequant, are common in all MSCZ rock types, though slightly rounded grains are also present in all samples (Fig. 7). A small number of grains preserve evidence of resorption and subsequent crystallization events in the form of irregular cores with truncated internal zoning surrounded by prismatic zircon overgrowth (Fig. 7).

The heterogeneous granophyre (IA-NS-2) has the highest proportion of oscillatory-zoned euhedral crystals, although there is a small proportion of grains that contain simple zoning (characterized by broad bands that appear homogeneous in CL intensity; see Fig. 7) and resemble zircon grains from Icelandic volcanic rocks. Crystals in the intermediate samples (IA-NS-6 and IA-NS-7) display the greatest amount of rounding and resorption, and a large proportion of grains from the diorite (IA-NS-6) are anhedral (Fig. 7).

Zircons from the coastal MSCZ gabbro (IA-G-1) are larger than those from silicic samples, and they display diverse internal patterns, including oscillatory, sector, and patchy zoning (characterized by irregular and discontinuous patches of high CL intensity) and largely un-zoned homogeneous interiors (Fig. 7). In contrast, zircons from the sheet MSCZ gabbro (IA-G-5) are typically small, generally exhibiting euhedral crystal shapes, bright in CL intensity, and commonly either sector-zoned or lacking visible zoning (see Fig. 7).

100

Figure 7 (caption on next page)

SEM cathodoluminescence images of representative zircons from Austurhorn rocks. *Granophyre*: morphologies include large (1,7) and small (6,8-11) euhedral, acicular (2,15), and slightly rounded (12,15) grains; zoning includes simple (1-7), oscillatory (8-10), and some anhedrally-shaped cores surrounded by zircon overgrowth (11-15). *Diorite*: morphologies include rounded (1-2, 9-12), acicular (4-8), and anhedral (13-16) grains; zoning includes simple/unzoned (1-3), sector (4-8,12), striped (3,5-6), and oscillatory (10,14), and anhedrally-shaped cores surrounded by zircon overgrowth are common (9-13), sometimes containing multiple anhedral zones (13). *Granodiorite*: morphologies include mainly acicular (1-5,11-14), and small euhedral (6-10) grains, some with slightly resorbed/rounded edges (2,4,7,9-10,13); zoning includes sector (3), simple (1-2,4,14), and oscillatory (5-13). *Coastal Gabbro*: grains are generally larger than those from silicic units; morphologies include acicular (1-2,5,10), euhedral (3-4,6-9,11), and occasionally resorbed (1) grains; zoning includes simple (1-3,9), sector (10-11), and oscillatory (5-8, 11). *Sheet Gabbro*: morphologies include acicular (1,5), small euhedral (6-9), and rounded/resorbed (2-4,11-15) grains; zoning includes CL-dark and simple (1-4,10-15), sector (6,8-9), and occasionally oscillatory (7).

For each sample, we targeted both rim and interior zones, including cores, during zircon trace element analyses so as to document any geochemical differences between earlier and later stages of zircon growth.

4.4.c. <u>General Elemental Characteristics</u>

The elemental compositions of most AIC zircons are generally consistent with what has been observed for zircons from other Icelandic silicic rocks (Carley *et al.*, 2011, 2014). Uranium and thorium abundances range from ~50 to ~6000 ppm and ~15 to ~5000 ppm, respectively (Fig. 8b). Despite this wide range of concentrations, they form a well-defined array with a Th/U ratio that varies systematically from ~0.5 to ~2 with increasing U and Th. Hafnium concentrations mainly fall between ~6000 and ~12,000 ppm, and Ti abundances range from ~5 to ~40 ppm in all samples, similar to those in other Icelandic zircons (Fig. 8d). We also observe a general trend of decreasing Ti with increasing Hf concentrations, as is observed in most co-genetic zircon populations (e.g. Claiborne *et al.*, 2006). A majority of zircons from mafic samples, particularly the coastal gabbro (IA-G-1), have some elemental signatures that differ from the silicic array, most noticeably lower Nb concentrations and higher Eu/Eu* (Fig. 8a,c).

4.4.d. <u>Rare Earth Elements (REE)</u>

With few exceptions, all zircons from the AIC have REE patterns that are broadly typical for zircon from silicic rocks (Carley *et al.*, 2011; Grimes *et al.*, 2007; Cavosie *et al.*, 2006; Hoskin & Schaltegger, 2003; Belousova *et al.*, 2002; Hoskin & Ireland, 2000), displaying chondrite-normalized trends of extreme enrichment in heavy rare earth elements (HREE) relative to light rare earth elements (LREE) and positive Ce and negative Eu anomalies (Fig. 9). A few zircon analyses from the heterogeneous granophyre (IA-NS-2) and the diorite (IA-NS-6) show distinct LREE enrichment. These are probably the result of encountering LREE-rich inclusions, such as glass or minerals that concentrate LREE (e.g. chevkinite, monazite), during analyses, and are omitted from our plots.

4.4.e. Oxygen and Hafnium Isotopic Compositions

Oxygen isotopic values (δ^{18} O) for AIC zircons range from +2.2 to +4.8 ‰ (see Table 5, Fig. 10a). All δ^{18} O values are depleted relative to zircon mantle values (+5.3 ± 0.6 ‰, 2 σ ; Valley *et al.*, 1998). Mean δ^{18} O for individual silicic samples are indistinguishable within error: +3.8 ±0.7 ‰ (all uncertainties are 2 σ) for the granophyre (IA-NS-2), +3.7 ±0.8 ‰ for the diorite (IA-NS-6), and +3.9 ±0.7 ‰ for the granodiorite (IA-NS-7). The gabbros show oxygen values that are distinct from one another, with the coastal gabbro (IA-G-1) being the most reproducible and having the highest mean δ^{18} O (+4.5 ±0.5 ‰) and the sheet gabbro (IA-G-5) displaying the largest variability of any of the samples (from +2.2 to +4.8 ‰, with a mean of +3.8 ±1.8 ‰; Fig. 10a).

Measured hafnium isotope ratios (reported as ε_{Hf}) for zircon from analyzed samples range from +11 to +16 ε -units (see Table 5; Fig. 10b; average 2 SE for individual analyses is ~1.3 ε units). When all units are pooled together, they yield a population weighted mean of +12.98 ± 0.18 ε -units (2 σ , n = 74, MSWD = 2.0).

Trace element abundances and ratios for zircons from the Austurhorn Intrusive Complex. The "All Iceland" data group (gray symbols) refers to the Vanderbilt Iceland zircon database (includes volcanic, plutonic, and detrital Icelandic samples, for reference; see Carley *et al.*, 2014). **a)** Nb vs. Sc; **b)** Th vs. U; the solid line indicates a Th/U ratio of 1; the dashed lines indicate Th/U ratios of 0.5 (top) and 2 (bottom); **c)** Ce/Ce* (Ce anomaly) vs. Eu/Eu* (Eu anomaly); **d)** Hf vs. Ti; the colored lines indicate Ti-correlated zircon crystallization temperatures, calculated using the Ti-in-zircon thermometer of Ferry & Watson (2007).

(Fig. 8 continued on next page)

Figure 8 (continued)

Trace element abundances and ratios for zircons from the Austurhorn Intrusive Complex. The "All Iceland" data group (gray symbols) refers to the Vanderbilt Iceland zircon database (includes volcanic, plutonic, and detrital Icelandic samples, plotted for comparison; see Carley *et al.*, 2014). **e)** Nb/Yb vs. U/Yb; **f)** Sc/Yb vs. Ce/Nb; **g)** Nb/Yb vs. Gd/Yb; **h)** Sc/Yb vs. Ti.

Chondrite-normalized zircon rare earth element (REE) abundances in samples from the Austurhorn Intrusive Complex. The grey shadow in each individual sample plot represents the range of REE abundances found in zircons from all other analyzed volcanic, plutonic, and detrital Icelandic samples (see Carley *et al.*, 2014), plotted for comparison to AIC zircons.

Isotopic compositions of zircons from the Austurhorn Intrusive Complex. All errors are plotted as 2σ . **a)** Hf (ppm) vs. δ^{18} O; the red zone indicates the measured δ^{18} O range of mantle zircons (+5.3 ±0.6 ‰, Valley *et al.*, 1998). **b)** $\varepsilon_{\rm Hf}$ vs. δ^{18} O; the blue zone indicates the range of Hf isotopic compositions of Icelandic *on-rift* basalts (from the Northern and Western Volcanic Zones; Peate *et al.*, 2010); the green zone indicates the range of Hf isotopic compositions of Icelandic Zone, Snæfellsnes Peninsula, Vestmannæyjar, andSnæfell volcano; Peate *et al.*, 2010).

4.4.f. <u>U-Pb Geochronology</u>

Weighted mean zircon U-Pb ages span a range of approximately 300 k.y. (Fig. 11). The uncertainty for individual analyses is on average 9.8 %, but the precision generally decreases with increasing U concentration and/or common Pb. The gabbros and HSG-zone granophyres make up the older part of this range (granophyres & HSG: *IA-NS-4b*, 6.67 \pm 0.06 Ma [all uncertainties are 2σ SE], MSWD = 2.3, n = 19; *IA-NS-9*, 6.53 \pm 0.07 Ma, MSWD = 1.5, n = 17; *IA-NS-10*, 6.57 \pm 0.24 Ma, MSWD = 1.3, n = 15; *IA-NS-12*, 6.61 \pm 0.22 Ma, MSWD = 0.68, n = 17; sheet gabbro *IA-G-5*, 6.56 \pm 0.05 Ma, MSWD = 2.2, n = 10; and coastal gabbro *IA-G-1*, 6.42 \pm 0.09 Ma, MSWD = 0.81, n = 20). The younger ages are for granophyre IA-NS-2 (6.40 \pm 0.12 Ma, MSWD = 1.3; n = 9), granodiorite IA-NS-7 (6.36 \pm 0.08 Ma, MSWD = 1.4; n = 16), and diorite IA-NS-6 (6.35 \pm 0.08 Ma, MSWD = 0.78; n = 14). All zircon data when pooled yield a mean age of 6.52 \pm 0.03 Ma (MSWD = 1.8, n = 137, 25 rejected; see Fig. 11).

5. Discussion

5.1. Field Interpretations

Evidence for open system processes, including repeated mafic magmatic replenishment, is ubiquitous within the MSCZ. The contacts between different silicic rock units within the MSCZ are typically gradational. They are primarily identified by an increase or decrease in the amount and type of mafic material present (e.g. abundant small clasts vs. large pillows or sheets) or observable changes in texture. In some instances, contacts between units are identified by changes in mineral assemblage (e.g. presence of acicular amphiboles or abundance of Fe-Ti oxides). Crenulated and chilled margins on some mafic enclaves indicate that they were a product of fluid-fluid magmatic interactions. Furthermore, enclaves with both angular and

crenulated margins against what looks like the same silicic host rock suggest that quenched pillows can subsequently fracture within the same host magma after intrusion, an indication that the host silicic magma remained mobile after the mafic magma completely solidified. In some areas of the MSCZ large sheet-like mafic bodies are preserved, and their edges are commonly disaggregated into enclaves and clasts within the surrounding silicic rock (see Fig. 3h,i) suggesting that a common form of mafic recharge into the system may be through intrusion of mafic sheets that disaggregate into the host magma (e.g. Harper *et al.*, 2004; Wiebe *et al.*, 2004; Wiebe & Collins, 1998). Areas of what we interpret to be remobilized silicic material are often in intimate association with voluminous mafic rock, also indicative of magma replenishment events.

We interpret the field relationships to indicate a mush-like environment for the AIC in which the partially solidified silicic host material was continually reheated, revived, and remobilized within the MSCZ by the repeated intrusion of hotter mafic magmas, which provided new heat and energy and in turn prolonged the longevity of the Austurhorn magmatic system (e.g. Claiborne *et al.*, 2010a).

Zircon ²⁰⁶Pb/²³⁸Pb ages for MSCZ units from the AIC, corrected for initial ²³⁸U-²³⁰Th disequilibrium. Each green bar represents a single zircon age. Red bars represent outlier analyses (>2 standard deviations from sample mean), analyses with high common-²⁰⁶Pb (>20%), or analyses with high or low UO/U (>2 standard deviations from sample mean), and are therefore excluded. For each sample, the weighted mean age is plotted as a light blue horizontal box. The dark blue line represents the pooled population age for the entire AIC (6.52 ± 0.03 Ma). All errors are reported as 2σ standard errors (box heights for both individual and pooled ages are adjusted to represent error). The range in mean individual unit ages suggests a timescale of peak magmatic construction of the AIC of ~300 kyr. *Inset:* Probability density distribution and histogram for all AIC zircon ages in this study (n = 137).

5.2. Zircon Abundance, Size, and Morphology

Carley *et al.* (2011, 2014) demonstrated that zircons from silicic volcanic rocks from Holocene Icelandic eruptions record relatively brief, high-temperature histories that reflect magmatic conditions just prior to, and leading up to, eruptive events. These volcanic rocks are rich in Zr, mostly ranging from ~600 to ~800 ppm (Carley *et al.*, 2011), and yet zircon is extremely sparse. In contrast, we have found that both mafic and silicic rocks from the MSCZ at Austurhorn contain a vastly greater abundance of zircon, generally larger and with more complex zoning (see Fig. 7), likely reflecting slow and full crystallization of their parent magmas and suggesting that most zircon in Iceland may be stored and preserved within rocks from silicic intrusive complexes.

The complex morphology and zoning features observed in many AIC zircons have been interpreted by zircon studies on other volcanic systems to indicate thermal and chemical fluctuations of the melt within an open and dynamic system during the time of zircon crystallization (Hoskin & Schaltegger, 2003; Corfu *et al.*, 2003; Claiborne *et al.*, 2006, 2010b). Based on these observations, we suggest textures in the diorite (IA-NS-6) and granodiorite (IA-NS-7) samples likely reflect repeated stages of mafic magma replenishment into the silicic pluton throughout the history of the complex, consistent with the field interpretations described above.

112

5.3. Zircon Elemental & Isotopic Compositions

5.3.a. <u>Trace Elements</u>

Following the work of Grimes *et al.* (2007), Carley *et al.* (2014) established compositional fields for zircon formed in silicic rocks from a range of tectonic settings, based on the abundance of Hf, U, REE, and Ti in zircon (Fig. 12). Though Hf concentrations in AIC zircons fall within the field for zircons from silicic rocks from continental-type environments, they are mostly restricted to the lower end of the range at <12,000 ppm (see Fig. 8d). Zircon incompatible element abundances and ratios show that AIC silicic magmas, and Icelandic silicic magmas in general, are less evolved relative to continental arc-type silicic environments, and most closely resemble silicic magmas from modern evolving continental rift and continental hotspot environments (e.g. higher Gd/Yb and U/Yb ratios, lower Hf abundances; see Fig. 12; e.g. Carley *et al.*, 2014; Claiborne *et al.*, 2010), with a few zircons (mostly from granodiorite IA-NS-7) falling outside of these fields.

The zircon population from the coastal gabbro (IA-G-1) generally forms the most coherent individual geochemical array. This zircon population likely reflects crystallization within internally fractionating parental melts that experienced little to no interactions with other magmas after zircon saturation. Zircons from the granophyre (IA-NS-2) display a large spread in composition, which may reflect sampling of different zone populations in the complex zircon. The geochemical variability in zircon zones may be a consequence of mixing and assimilation of magmas prior to zircon saturation and growth in the parental melt. In contrast, the granodiorite (IA-NS-7), and to a lesser extent also the diorite (IA-NS-6), has a geochemically bimodal zircon population best identified by their Eu/Eu* and Nb/Yb compositions (see Fig. 8c,g; for IA-NS-6, roughly identifiable by Th, Sc, Ce/Nb and Sc/Yb; see Fig. 8a,b,f). A substantial number of grains

113

from the diorite, and some in the granodiorite, are anhedral, often with truncated CL-zoning surrounded by oscillatory overgrowth zones (Fig. 7), indicating resorption as a consequence of disequilibrium between zircon and melt. These features, along with the zircon geochemistry, support the open-system interactions suggested by field relationships between mafic and silicic rocks at the location where the samples were collected (see Table 1). We thus interpret these units to represent hybridized magmas, resulting from mixing of multiple compositionally different magma batches from which diverse zircon populations were incorporated.

5.3.b. <u>Ti-in-Zircon Thermometry</u>

Our estimated zircon crystallization temperatures range from ~750 to ~990°C (5-40 ppm; Fig. 8d). Maximum Ti-in-zircon temperatures in the most silicic sample for which zircons were analyzed (granophyre IA-NS-2) approximately equal zircon saturation temperatures (ZSTs) for their host rock (~850°C; Fig. 13). The majority of zircon crystallization temperatures for the granodiorite (IA-NS-7) also fall near or below the ZST for their host rock (~900°C). Minimum Ti-in-zircon temperatures are similar for all silicic samples (~760 to 770°C). The diorite sample (IA-NS-6) has a lower ZST than the silicic samples (~760°C), but its range of Ti-in-zircon temperatures is very similar (~760 to 990°C), especially to the granodiorite. These data taken together suggest that zircon saturation occurred at roughly 900°C and zircon crystallization continued to the solidus at <760°C. As previously mentioned, the diorite sample likely represents a hybridized magma whose ZST of ~760°C is therefore not meaningful (elemental composition is far from melt composition). Ti-in-zircon crystallization temperatures in MSCZ gabbros range from 750 to 980°C. This likely represents the approximate temperature range from zircon saturation to the solidus for these internally fractionating mafic magmas.

Discrimination plots for zircon from different tectonic settings (e.g. Grimes *et al.*, 2007) based on trace element geochemistry. The dashed regions represent the range of zircon geochemistry for different tectonic settings from around the world (modified after Carley *et al.*, 2014): blue = Mid-Ocean Ridge Basalt (MORB); black = evolving continental rift (Alid, E. Africa; Salton Sea, N. America); orange = continental hot spot (Yellowstone, N. America); green = continental arc (N. America: Mt. Saint Helens, Three Sisters, McCoy Mountain Complex). **a)** Hf vs. U/Yb. **b)** Sm vs. Gd/Yb.

Estimated whole-rock zircon saturation temperatures (ZST), calculated using the formula derived by Watson & Harrison (1983) as revised by Boehnke *et al.* (2013), plotted against model zircon crystallization temperatures, calculated using the Ti-in-zircon thermometer of Ferry & Watson (2007), for silicic units of the Austurhorn Intrusive Complex. The large filled symbols represent the mean Ti-in-zircon crystallization temperature for each sample. Error bars are 1σ . The dashed line indicates a ratio of 1. The diorite sample likely represents a hybrid whose ZST is meaningless.

5.3.c. Oxygen and Hafnium Isotopes

Zircon populations in all but one of our samples (coastal gabbro IA-G-1) preserve a range in δ^{18} O that is beyond analytical uncertainty, which we interpret to reflect the open-system processes that affected the MSCZ. Generating such low and variable δ^{18} O in MSCZ zircons (+2.2 to +4.8 %; Fig. 10a and Table 5) appears to require substantial but variable contribution from pre-existing crust that had been hydrothermally altered in the presence of meteoric (isotopically-light) fluids, given that expected values for zircon equilibrated with mantle-derived magmas are generally accepted to be in the range of +5.3 ± 0.6 ‰ (e.g. Drew *et al.*, 2013, Bindeman *et al.*, 2008). For example, if we assume a zircon-equivalent δ^{18} O value of 0 ‰ for altered Icelandic crust and 5.3 ‰ for mantle-derived magma, it would require a nearly 60% crustal mass fraction in a hybrid magma to crystallize zircon with δ^{18} O of +2.2 ‰. If the altered crust were as low as -5 ‰, the crustal fraction would be 30%.

Recent oxygen isotopic studies suggest that the δ^{18} O signature of the Iceland mantle plume may be substantially lighter than that of typical mantle, and that δ^{18} O of primary olivines from uncontaminated basaltic magmas may extend to values as low as +3.2 to +4.0 ‰ (Maclennan *et al.*, 2003; Thirlwall *et al.*, 2006). Such a primary magma composition would require a smaller crustal fraction in low- δ^{18} O silicic magma; a magma crystallizing olivine with δ^{18} O of +3.2 to +4.0 ‰ would permit crystallization of zircon with values as low as ~3.5 ‰ to ~4.3 ‰ (based on ¹⁸O magmatic fractionation differences $\Delta^{18}O_{zrc-OI} = +0.2$ to +0.3 ‰; Valley *et al.*, 1998). Even assuming such low primary values, there remains ~80% of our dataset (~95% when gabbros are excluded) that is below mantle zircon values if we extend the range down to +4.3 ‰, and ~20% (~25%, gabbros excluded) if extended down to +3.5 ‰, which would still require an interpretation that involves variable contributions from altered low- δ^{18} O crust for the observed range of δ^{18} O in AIC zircons.

Notably, zircons from the coastal gabbro (IA-G-1) have the least variability in oxygen values, with a range of +4.2 to +4.9 ‰ (see Fig. 10a). The facts that the coastal gabbro is, geochemically, the most consistent with closed-system fractionation and that it lacks field evidence for extensive interactions with silicic magmas suggest that its zircon δ^{18} O range represents the range for the parental mafic magmas of the AIC, and reflects a mantle plume signature of δ^{18} O > +4.2 ‰. Bindeman *et al.* (2012) present zircon δ^{18} O values for an intermediate silicic sample (\sim 65 wt.% SiO₂) from Austurhorn that range from +4.4 to +5.6 ‰, which they interpret to reflect fractional crystallization of mantle plume magmas. This is consistent with our interpretation (above) for the δ^{18} O signature of the source magmas for the AIC. Furthermore, taking into consideration the fraction of zircons with lower than normal δ^{18} O in the silicic units (~85% if we assume the normal source magmas are > +4.2 %, per our gabbro data above), this would indicate that incorporation of hydrothermally altered low- δ^{18} O crust plays a major role in the petrogenesis of silicic melts with lower and more variable δ^{18} O (down to +2.2 ‰) throughout the MSCZ. The intruding mafic magmas likely encountered strongly hydrothermally altered country rock during ascent in the shallow crust, resulting in melting and variable assimilation of low- δ^{18} O crust, and subsequently facilitating the generation, accumulation, and emplacement of silicic melts in the MSCZ (e.g. Sigmarsson et al., 1991; Bindeman et al., 2008, 2012; Gurenko et al., 2015). The elemental data of zircons from the granophyre suggest that contamination of altered crust occurred prior to zircon saturation in the initial magma(s), and was followed by fractionation and zircon crystallization from a compositionally variable melt. In contrast, the multiple populations of zircon in the diorite (IA-NS-6) and granodiorite (IA-NS-7) indicate that some zircon growth had taken place in a range of different melts prior to contamination and mechanical mixing of their host magmas, and

continued down to the solidus. The wide range of δ^{18} O in zircons from the sheet gabbro (IA-G-5) suggests they are in part derived from the host silicic magma through mechanical interactions during intrusion.

In conjunction with oxygen isotopes, hafnium isotope ratios in zircon provide an additional constraint for identifying the mantle and/or crustal contributions to the Austurhorn magmatic system (e.g. Kemp *et al.*, 2007). The Hf isotopic compositions of MSCZ zircons cluster around a mean of +13 ɛ-units, with very minor and expected variability (Fig. 10b). These values fall within the lower, less-depleted portion of the Hf isotopic range of Icelandic basalts, including the off-rift and lowest end of the on-rift range (Peate *et al.*, 2010; see Fig. 10b and Table 5). The observed range in whole-rock Hf compositions for our samples also overlaps with that of zircons from all MSCZ units (Fig. 14). This suggests that MSCZ magmas were sourced from an off-rift or propagating rift environment, consistent with previous interpretations of a transitional rift, away from the main rift axis and significantly influenced by the Iceland plume, in southeast Iceland at the time of intrusion (*cf.* Martin *et al.*, 2011).

In-situ zircon vs. whole-rock ε_{Hf} compositions for units of the Austurhorn Intrusive Complex. The larger open symbols for each sample represent the mean *in-situ* ε_{Hf} , plotted against WR values and their errors (2 σ). The red and green zones and arrows indicate the ε_{Hf} range of Icelandic *on-rift* basalts (from the Northern and Western Volcanic Zones: $\varepsilon_{\text{Hf}} = +13.5$ to +18.9; Peate *et al.*, 2010) and *off-rift* basalts (from the Eastern Volcanic Zone, Snæfellsnes Peninsula, Vestmannæyjar, and Snæfell volcano: $\varepsilon_{\text{Hf}} = +11.3$ to +13.8; Peate *et al.*, 2010), respectively. The dashed line indicates a ratio of 1.

5.4. U-Pb Geocrhonology

In situ U-Pb zircon geochronology data permit two interpretations regarding the construction and longevity of the Austurhorn magmatic system. When all samples are pooled together, they yield an age of 6.52 ± 0.03 Ma for the MSCZ (Fig. 11), which is consistent with the previously published K-Ar age of 6.6 ± 0.4 Ma (Moorbath *et al.*, 1968) for gabbro, as well as LA-ICP-MS U-Pb zircon ages of 6.6 ± 0.4 and 6.5 ± 0.2 Ma for granophyre and gabbro, respectively (Martin et al., 2011). The pooled age data permit a single coherent population that represents one age for the entire complex. However, the MSWD for the number of individual zircon analyses (MSWD = 1.8; n = 137) exceeds the upper limit of the 95% confidence interval (Mahon, 1996), suggesting scatter beyond what would be expected for a single statistically coherent population. Alternatively, weighted mean ages for individual samples are statistically distinguishable at 2σ uncertainties, and suggest zircon crystallized in the AIC for up to ~300 k.y. from repeated magmatic intrusions (from approximately 6.67 to 6.35 Ma; Fig. 11), which may be interpreted to represent the approximate timescale of construction. We favor this interpretation, which is consistent with the composite field relationships that are preserved, indicating that the AIC system was periodically rejuvenated by repeated intrusions of hotter mafic magmas, thereby prolonging the window of zircon crystallization and longevity of the Austurhorn magmatic system.

6. Conclusions

With this study, we present the first detailed characterization of what is likely Iceland's dominant zircon population: plutonic zircon. In comparison to Iceland's silicic volcanic rocks, both mafic and silicic rocks from the mafic-silicic composite zone at the Austurhorn intrusive complex contain a significantly greater abundance of zircon. These plutonic zircons are generally larger and display more distinct and complex zoning than volcanic zircon. Grain morphology is varied, and oscillatory-zoned euhedral grains are common in all samples. However, a large number of zircon grains retain evidence, as irregular cores and truncated internal zoning, for thermal and chemical fluctuations that mark repeated mafic-silicic magma interactions in the history of the complex.

The elemental composition of AIC zircons form a broad but coherent array that mostly overlaps with the well-constrained signature of zircons from Icelandic silicic volcanic rocks (Carley *et al.*, 2011, 2014). Titanium concentrations range from 6 to 40 ppm (Ti-in-zircon temperatures ~750-990°C, assuming $a_{TiO_2} = 0.5$ and $a_{SiO_2} = 1.0$), and Hf concentrations are relatively low (below 12,000 ppm), typical of Iceland zircons. Oxygen isotope (δ^{18} O) values extend from +2.2 to +4.8 ‰, consistent with the δ^{18} O range of other Icelandic magmatic zircon from silicic volcanic centers (Bindeman *et al.*, 2012; Carley *et al.*, 2014), and provide strong evidence for the influence of meteoric water, hydrothermal processes, and recycling of hydrothermally-altered crust as a major contributor to silicic magmas within the AIC system. Epsilon-Hf values, clustering around +13.0 ± 1.6 (2 σ SD), are toward the lower end of previously measured values for Iceland basalts, similar to those from off-rift settings and the least depleted (lowest ϵ_{Hf}) on-rift basalts, suggesting that Austurhorn likely developed in a transitional rift environment.

In situ U-Pb zircon dating yields an age of 6.52 ± 0.03 Ma for the entire complex. However, the spread in average ages for each unit suggests that the construction and evolution of the Austurhorn intrusive complex extended over ~300 k.y., with multiple short-lived intrusion events occurring closely spaced in time from ~6.67 to ~6.35 Ma, allowing for periodic rejuvenation and a prolonged lifetime for the crystallizing mush.

The Austurhorn intrusive complex reveals extensive interaction between mafic and silicic magmas, as part of a very complex silicic magmatic system characterized by multiple episodes of mafic magmatic replenishment that is well preserved in the zircon record. It provides a useful example of the manifestation and consequences of mafic recharge in silicic systems at shallow depths, and an additional dimension in helping us better understand the accumulation of silicic magmas, and the subsequent evolution of silicic magmatic systems within the Earth's crust.

CHAPTER IV

Generating the world's lowest magmatic zircon δ^{18} O: Melting of intensely hydrothermally altered crust beneath the Austurhorn magmatic system, SE Iceland

Abstract

The 6.52 Ma Austurhorn intrusion, a shallowly emplaced (\sim 2 km) complex exposed over \sim 15 km² in SE Iceland, comprises large bodies of granophyre, gabbro, and a mafic-silicic composite zone (MSCZ) that exemplifies magma interactions common in Icelandic silicic systems.

Oxygen isotopic analyses of zircon and primary quartz, feldspar, and pyroxene from samples representing the range of compositions in the MSCZ, from gabbros to high-silica granophyres (HSG), reveal extreme oxygen variability but small mineral-mineral fractionation, consistent with a hydrothermal-magmatic transition (>600°C). In most samples, individual zircon δ^{18} O falls between +2.2 and +4.9 ‰. These values suggest modest to major contributions from meteoric-hydrothermally altered crust in generating their parental magmas. A subset of *in situ* zircon analyses, all from HSG, preserve lower values (down to -11.3 ‰, the lowest δ^{18} O yet measured in Icelandic zircon). HSG whole rocks and major mineral separates also display low and variable δ^{18} O (e.g. +6.0 to -2.9 ‰ in quartz), consistent with a magmatic origin for the lower δ^{18} O zircons, making it also the lowest magmatic zircon δ^{18} O signature in the world.

We interpret zircon δ^{18} O diversity to indicate construction of the intrusion from multiple, isotopically diverse magma increments. The HSG with the lowest magmatic δ^{18} O zircon values comprise nearly pure granophyric quartz and feldspar (+ zircon). We interpret these to represent batches of small volume melts generated entirely by melting of intensely altered crust that

124

underwent nearly complete (large water/rock ratio) high-T exchange with \sim -10 to -14 ‰ hydrothermal meteoric fluids.

Heterogeneity in δ^{18} O in zircon and major minerals is consistent with field relationships at Austurhorn, suggesting that sustained melting activity, as a consequence of continuous mafic recharge, was a primary mechanism contributing to the generation and accumulation of silicic magmas throughout the lifetime of the Austurhorn system. Diverse δ^{18} O in zircons and other minerals provide important insights into magmatic-hydrothermal transition zones as well as physical mechanisms of shallow magma petrogenesis by amalgamation of diverse melts.

1. Introduction

Iceland has become a strong focus in studies of silicic magma petrogenesis because of the unusual abundance of silicic rocks (\geq 10% of exposed rocks) associated with Icelandic central volcanoes and composite intrusions (e.g. Bindeman *et al.*, 2012; Carley *et al.*, 2011, 2014; Charreteur *et al.*, 2013; Gunnarsson *et al.*, 1998; Gurenko, *et al.*, 2015; Jonasson, 2007; Marsh *et al.*, 1991; Martin and Sigmarsson, 2007, 2010; Thordarson and Larsen, 2007). The magmas feeding volcanic activity in Iceland are interpreted to be juvenile, derived either by direct partial melting of the mantle beneath Iceland, or by extensive recycling of altered juvenile Icelandic crust (Bindeman *et al.*, 2012; Gurenko, *et al.*, 2015; e.g. Marsh *et al.*, 1991; Sigmarsson *et al.*, 1007; Zellmer *et al.*, 2008).

Oxygen isotopic compositions of minerals and rocks can distinguish between magmatic and non-magmatic processes, such as sub-solidus hydrothermal alteration and metamorphism (e.g. Bindeman *et al.*, 2008; Bindeman *et al.*, 2010; Bindeman and Valley, 2001; Drew *et al.*, 2013; Elders *et al.*, 2011; Genske *et al.*, 2013; Hollis *et al.*, 2014; Wotzlaw *et al.*, 2012; Zheng *et al.*, 2004). Furthermore, in Iceland in particular, they can be especially useful in assessing the relative contributions to magmas from juvenile, mantle-derived melts and partial melts of altered crust (e.g. Bindeman *et al.*, 2012; Carley *et al.*, 2014; Gurenko, *et al.*, 2015; Marsh *et al.*, 1991; Martin and Sigmarsson, 2005; Reimink *et al.*, 2014; Sigmarsson *et al.*, 1991). Thus, much of the debate about the petrogenesis of silicic magmas in Iceland has focused on the δ^{18} O variation observed in volcanic products, either from bulk rock and bulk minerals (e.g. Bindeman *et al.*, 2012; Hattori and Muehlenbachs, 1982; Pope *et al.*, 2013; Schattel *et al.*, 2014; Thirlwall *et al.*, 2006) or from individual crystal separates (e.g. zircon: Bindeman *et al.*, 2012; Carley *et al.*, 2014; olivine: Eiler *et al.*, 2000; Maclennan *et al.*, 2003).

The occurrence of primitive lavas in active Icelandic rift systems with δ^{18} O below typical mantle values (mantle zircons: $+5.3 \pm 0.6$ ‰; Valley *et al.*, 1998) suggests incorporation of a hydrothermally altered crustal component into the magmas. Based on the extent of ¹⁸O depletion in some of these lavas (down to ~ +1.8 ‰; e.g. Muehlenbachs *et al.*, 1974), some researchers advocate for partial melting of hydrothermally altered Icelandic crust as the dominant mechanism producing silicic melts in Iceland (e.g. Bindeman et al., 2012; Gurenko, et al., 2015; Martin and Sigmarsson, 2010; Pope et al., 2013; Schattel et al., 2014). However, others argue that some geochemical signatures in low- δ^{18} O lavas cannot be produced by assimilation of crustal material alone (e.g. high-Mg# primary olivines with δ^{18} O as low as +3.2 ‰), and therefore advocate for an alternative interpretation that involves fractional crystallization of mantle source that includes ¹⁸O-depleted material (e.g. Maclennan *et al.*, 2003; Thirlwall *et al.*, 2006). Combining isotopic data from multiple coexisting magmatic phases (e.g. pyroxene + olivine, or pyroxene + zircon) may allow us to more critically assess the origin of variable δ^{18} O lavas, especially for silicic magmatic systems, whether by partial melting alone or by assimilation processes.

In this study, we investigate the generation and accumulation of silicic magmas at the Austurhorn intrusive complex using an extensive oxygen isotopic dataset for zircon (*in-situ* analyses), whole-rocks, and major mineral separates. Zircons and major minerals in the most evolved rocks preserve a wide range of δ^{18} O, including extremely low values that extend to -2.9 ‰ in quartz and -11.3 ‰ in zircon. We propose that these rocks represent the products of pure crustal melting of intensely and variably altered Icelandic crust, a unique end-member example of magmatic processes that can help us better understand the relative contributions of partial melting and fractional crystallization in the petrogenesis of silicic magmas.

2. Geological Background: The Austurhorn Intrusive Complex

The Austurhorn intrusive complex (AIC), in southeastern Iceland, is a small composite intrusion comprising granophyre, gabbro, and an extensive mafic-silicic composite zone (MSCZ) that preserves abundant evidence for extensive mingling and mixing of magmas (e.g. Padilla et al., in review; Blake, 1966; Furman et al., 1992; Mattson et al., 1986). The structure of the shallowly emplaced AIC (~2 km; Walker, 1960, 1964), together with its geochemical characteristics, suggest that it developed in a transitional rift environment, similar to the Torfajökull central volcano in Iceland's modern Eastern Volcanic Zone (Padilla et al., in review; Furman et al., 1992b; Gunnarsson et al., 1998; Martin et al., 2011). The intrusion is well dated by U-Pb geochronology in-situ using zircon from 9 samples that span the compositional spectrum of exposed rocks in the AIC, from ~47% to ~79% SiO₂ (Padilla *et al.*, in review). Pooled together, zircons from the entire complex yield a mean age of 6.52 ± 0.03 Ma. However, the spread in individual unit ages, from 6.35 to 6.67 Ma, suggests construction of the Austurhorn intrusive complex extended over ~300 k.y., with multiple short-lived intrusion events occurring closely spaced in time allowing for periodic rejuvenation and a prolonged lifetime for the crystallizing mush.

The MSCZ occupies the lowest structural levels exposed and comprises 30-40% of the AIC. The mafic enclave density is highly variable from outcrop to outcrop, ranging from a few volume percent up to 60%. Near the structural top of the MSCZ there is a zone of enclave-poor granophyre that is heavily intruded by small-volume dikes and pods of high-SiO₂ granophyre (HSG). These HSG units are leucocratic, very fine-grained, and most typically preserved as centimeters- to decimeters-wide dikes that are often folded, indicating that they were intruded into the MSCZ while the host granophyre was still hot, ductile (Fig. 1). The smaller dikes are

only locally continuous within exposed outcrops in the HSG zone, often fragmented into individual pods, but some of the largest dikes can be traced for tens of meters across multiple outcrops. Furthermore, some dikes and pods of HSG are disaggregated and mingled with the coarser host granophyre into which they intruded, preserving evidence of silicic-silicic magmatic interactions, particularly in the form of diffuse boundaries (Fig. 1).

With the exception of the high-SiO₂ granophyres, the whole-rock and zircon geochemistry of MSCZ rocks and their significance are discussed by Padilla *et al.* (in review). Here we present a more focused discussion of the HSG samples, which, though volumetrically small, in our view represent important end-member magmatic processes that may be commonplace across the rest of the Austurhorn system, and likely many other silicic magmatic systems, yet not typically preserved in the rock record.

3. Methods

Prior to analytical work, all zircons were mounted on epoxy and imaged by cathodoluminescence (CL) using a Tescan Vega 3 LM variable pressure SEM, at the Vanderbilt University Department of Earth Sciences. We use CL images to characterize zoning patterns and internal structures, and to guide us in the placement of analytical spots on individual grains.

We used the SHRIMP-RG at the Stanford-USGS Microanalytical Center to measure trace element and U-Pb isotopic abundances of spots on individual zircon grains from 9 representative samples of the MSCZ. We follow the methods of Grimes *et al.* (2007) and Claiborne *et al.* (2010; 2006), using R33 zircons (419±1 Ma, Black *et al.*, 2004), and MAD and MADDER (Barth and Wooden, 2010), as our U-Pb geochronology and trace element reference materials, respectively, to correct for instrumental mass fractionation (IMF).

Exposures of high-SiO₂ granophyre (HSG) within the mafic-silicic composite zone (MSCZ) at the Austurhorn Intrusive Complex. They are found near the structural top of the MSCZ as fine-grained cm-wide to dm-wide dikes and pods intruded into enclave-poor granophyres. (a) Folded HSG dike section, continuous for only a few meters, surrounded by other fragments and pods of smaller disaggregated dikes. Sledge hammer (yellow handle) for scale. (b) Outcrop of fine-grained ~78 wt.% HSG mingled with coarser-grained ~70 wt.% granophyre. Bic pen for scale. (c) Mechanically mixed HSG (finer-grained, tan/reddish) and granophyre (coarser-grained, white/grayish), with diffuse boundaries between both units. Bic pen for scale.

We measured in-situ oxygen isotope ratios in the same zircons by SIMS at the UCLA W.M. Keck Foundation Center for Isotope Geochemistry, following the methods outlined by Trail *et al.* (2007) and using R33 ($\delta^{18}O = 5.55$ %; Valley, 2003) as the reference material.

Lastly, we measured bulk oxygen isotopes in mineral separates (~1.2 mg aliquots, treated with HF to remove alteration) of major phases (quartz, feldspar, amphibole, pyroxene) and bulk granophyre (intergrown quartz and feldspars) using laser fluorination ICP-MS at the University of Oregon Stable Isotope laboratory, following the method of Bindeman (2008). We analyzed aliquots of Gore Mountain garnet (UOG, $\delta^{18}O = 6.52$ ‰; Bindeman *et al.*, 2014) as the reference material along with the unknowns to correct for IMF.

4. Results

High-SiO₂ granophyres from the MSCZ preserve unique features that differ markedly from those observed in all other MSCZ samples (see Padilla *et al.*, in review, for a thorough discussion of non-HSG AIC samples). These HSGs and associated silicic units are among the oldest rocks in the MSCZ, with individual mean zircon ages clustering around 6.6 Ma (Padilla *et al.*, in review; for full U-Pb geochronology data see Appendix B.1). In contrast to other silicic rocks, which contain typical granitic mineral assemblages (quartz, feldspars, amphibole, accessory sphene, opaque oxides, and zircon, \pm biotite), HSGs are composed of ~99% quartz and feldspar in very well developed micrographic intergrowths, with abundant accessory zircon (\pm minor sphene, apatite, and FeTi oxides). These rocks contain the lowest TiO₂ (<0.2 wt.%), Al₂O₃ (<13 wt.%), MgO (<0.05 wt.%), and CaO (<0.5 wt.%) concentrations of all rocks in the MSCZ, and also generally contain higher K₂O (mostly >4 wt.%; Fig. 2; for full whole-rock geochemistry, see Appendix B.8). They are depleted in light and middle REE, Sr (~ 20-50 ppm), Ba (<420 and down to 20 ppm), and Zr (~ 350-450 ppm), relative to all other silicic rocks (for all others: Sr > 95 ppm; Ba > 440 ppm; Zr > 580; see Figs. 3, 4), and have larger negative Eu anomalies.

Zircons from the HSGs can be divided into two geochemical groups (Fig. 5). The elemental compositions of the first group (which make up ~60% of the HSG zircon population) are similar to those of zircons from all other MSCZ rocks as well as other Icelandic silicic rocks (Padilla *et al.*, in review; Carley *et al.*, 2011, 2014). Uranium and Th concentrations mostly range from ~50 to ~1000 ppm and ~15 to ~1000 ppm, respectively, Hf concentrations are characteristically low (<12,000 ppm), and Ti ranges from ~5 to ~40 ppm (Carley *et al.*, 2011; Cavosie *et al.*, 2006; Grimes *et al.*, 2007; Hoskin and Schaltegger, 2003).

The second group of HSG zircons is generally distinguished either by dark CL or convolute zoning, and commonly by abundant CL-bright inclusions (Fig. 6). These zircons are commonly enriched in U and Th (mostly >1000 ppm; up to ~5800 ppm U and ~9000 ppm Th), and contain much higher Hf than any other analyzed Icelandic zircon (>12,000 ppm, up to ~28,000 ppm). In addition, they have distinctly lower Ti abundances (~ 2-10 ppm), and are more strongly depleted in Eu than other MSCZ zircons (Eu/Eu* <0.06, down to 0.02, compared to >0.07 for all others; see Fig. 5; for full zircon trace element data, see Appendix B.2-B.4). Despite significant differences in concentrations, some elemental ratios (e.g. Th/U and Ce/Ce*) remain similar to those of more typical MSCZ zircons.

Whole-rock major element geochemical comparison plots for samples from the Austurhorn intrusive complex. **a)** SiO₂ vs. Al₂O₃; **b)** SiO₂ vs. MgO; **c)** SiO₂ vs. K₂O; and **d)** SiO₂ vs. CaO. For a list of the individual samples in each compositional group (e.g. "Silicic" group), see Appendix B.7.

Whole-rock trace element geochemical comparison plots for samples from the Austurhorn intrusive complex. **a**) Ba vs. Sr; **b**) Rb vs. Sr; **c**) SiO₂ vs. Zr; and **d**) SiO₂ vs. Eu/Eu* (Eu anomaly).

Whole-rock Rare Earth element (REE) geochemistry for samples from the Austurhorn Intrusive Complex.

The oxygen isotopic compositions (δ^{18} O) of all HSG zircons are low relative to mantle zircons (+5.3 \pm 0.6 ‰, 2 σ ; Valley *et al.*, 1998). The majority fall within the +2.2 to +4.9 ‰ range of zircons from the other MSCZ units, which we hereafter refer to as "normal- δ^{18} O." This range is also consistent with Icelandic magmatic zircon compositions in general (Padilla et al., in review; Bindeman et al., 2012; Carley et al., 2014). However, the full range of HSG zircons extends to far more depleted oxygen compositions, with ~30% of zircons depleted below 0 ‰ (Fig. 7; for full zircon oxygen isotopes data, see Appendix B.5). The most variable HSG sample contains zircons with oxygen compositions that span over ~16 ‰, from +4.5 to as low as -11.3 ‰. This is the largest known δ^{18} O range in zircons from any Icelandic sample, and to the best of our knowledge includes the lowest δ^{18} O value yet measured in any magmatic zircon in the world. Low- δ^{18} O zircons (δ^{18} O < 2.2 ‰) can often be correlated with characteristics of the second geochemical zircon group described above, including higher Hf, U, and Th abundances, deeper Eu anomalies, and lower Ti concentrations (Fig. 5). Convolute zoning and abundant inclusions are also common features in low- δ^{18} O zircons, though the occurrence of low δ^{18} O values in normal-zoned crystals as well as normal δ^{18} O values in convolute-zoned crystals indicates that these are not mutually inclusive characteristics. Furthermore, pre- and post-analysis imaging of convolute-zoned zircons reveals variable and low δ^{18} O in HSG zircons regardless of the abundance (or absence) of inclusions in a grain (Fig. 6).

Trace element abundances and ratios for zircons from the Austurhorn Intrusive Complex. Gray symbols are data for the Vanderbilt Iceland zircon database (includes zircon data from volcanic, plutonic, and detrital samples; see Carley *et al.*, 2014), plotted for comparison. **a)** Y/Nb vs. Ce/Nb; **b)** Th vs. U abundances; the solid line indicates a Th/U ratio of 1; the dashed lines indicate Th/U ratios of 0.5 (top) and 2 (bottom); **c)** Ce/Ce* (Ce anomaly) vs. Eu/Eu* (Eu anomaly); **d)** Hf vs. Ti abundances; the dashed lines indicate zircon model crystallization temperatures, calculated using the Ti-in-zircon thermometer of Ferry & Watson (2007).

Figure 6 (caption on next page)

Scanning electron microscope (SEM) images of representative zircons from high-SiO₂ granophyres (HSG) of the Austurhorn intrusive complex, and their corresponding oxygen isotope (δ^{18} O) compositions. Dashed circles indicate the locations of *in-situ* analyses. (a) Observed cathodoluminescence (CL) zoning patterns for the range of δ^{18} O values in HSGs includes typical magmatic oscillatory growth zoning (bottom row, left 3 grains) as well as convolute zoning (top left grain, right-most grains in both rows), and grains with multiple zoning patterns (top row, middle 2 grains). (b) Comparison of analyzed spots in CL (top row) and secondary electron microscopy (bottom row). Low δ^{18} O values occur in grains with mixed as well as normal magmatic zoning (e.g. left and middle grains), and convolute-zoned grains can have normal δ^{18} O signatures (e.g. right grain), indicating that the observed variability in zircon δ^{18} O is magmatic in origin.

Isotopic compositions of zircons from the Austurhorn Intrusive Complex. **a**) Hf vs. δ^{18} O; the orange zone indicates the measured δ^{18} O range of mantle zircons (+5.3 ±0.6 ‰, 2 σ error; Valley et al., 1998). **b**) Ti vs. δ^{18} O.

Major mineral phases from all samples, as well as bulk HSG, also preserve variable δ^{18} O values (Fig. 8; for full bulk oxygen isotopes data see Appendix B.9). The whole-rock, quartz, and feldspar δ^{18} O bulk compositions of HSGs are universally depleted relative to all other units, ranging from -2.9 to +0.02 ‰. In contrast, quartz compositions in other silicic units are in the range of +2.2 to +6.0 ‰. Feldspar compositions in the more intermediate rocks as well as one of the gabbros cluster around -0.5 ‰ (low- δ^{18} O feldspar in gabbro likely reflects secondary alteration), but are higher in granophyre (+2.6 ‰) and other gabbros (+3.2 ‰). Pyroxene and amphibole values mostly fall between +3.3 and +4.7 ‰, except for an intermediate sample with bulk amphibole δ^{18} O of +0.9 ‰, which may also reflect secondary alteration.

5. Discussion & Conclusions

Based on field relationships, whole-rock geochemistry, and zircon elemental and isotopic compositions, Padilla *et al.* (in review) determined that the Austhurhorn magmatic system was developed in a transitional rift environment, strongly influenced by the Iceland plume. They interpret the range of normal- δ^{18} O MSCZ zircons (+2.2 to +4.9 ‰) to indicate significant recycling and assimilation of hydrothermally-altered crust in the petrogenesis of silicic magmas at Austurhorn, followed by fractional crystallization of magmas (AFC), down to the solidus, in the shallow Icelandic crust (*cf.* Sigmarsson *et al.*, 1991).

Bulk oxygen isotope compositions (δ^{18} O) in major mineral phases from rocks of the Austurhorn intrusive complex. Right graph shows all measured in-situ zircon δ^{18} O compositions. "Zircon*" denotes the average δ^{18} O of all zircons in each group. The "equilibrium sequence" (white squares) shows the relative ¹⁸O fractionation that would be expected, based on experimental and empirical data, for the listed minerals if they crystallized in equilibrium from the same silicate magma with a theoretical whole-rock δ^{18} O value of +7.8 ‰ at 850°C (Bindeman, 2008).

The high-SiO₂ granophyres from the MSCZ, on the other hand, present a strongly contrasting geochemical record of magmatic processes to that observed in all other analyzed samples from Austurhorn. Given their relatively small abundance, they likely represent more extreme magmatic processes that may be taking place throughout the Austurhorn system. In order to relate their unique geochemical signatures to magmatic processes, it is important to establish that the distinctive compositional characteristics of these rocks are magmatic in origin, rather than products of sub-solidus/hydrothermal alteration. Their association with other silicic intrusive rocks of the MSCZ lends first order support to this interpretation, as there is abundant field evidence for ductile-magmatic behavior of the HSGs during intrusion into their granophyric host (e.g. mingling and disaggregation of dikes; evidence for mechanical mixing; diffuse and gradational boundaries between pods of intruding HSG and the host granophyre; see Fig. 1).

Because of its refractory nature, zircon provides an additional tool by which to distinguish between magmatic and hydrothermal origins. Well-developed growth (oscillatory) zoning is one of the more typical features of magmatic zircon (Corfu *et al.*, 2003; Hanchar and Miller, 1993; Hoskin and Schaltegger, 2003). All MSCZ rocks, including HSGs, contain zircons with this characteristic zoning (Padilla *et al.*, in review) as well as geochemical signatures that reflect magmatic crystallization (Bindeman *et al.*, 2012; Carley *et al.*, 2014; Hoskin and Schaltegger, 2003). In the case of the HSGs, a substantial fraction of zircons are convolute-zoned and contain abundant inclusions. It would be reasonable to conclude that these features may be the result of different, and perhaps non-magmatic, processes. However, some of the more distinct geochemical features of these grains, such as enrichment in Th, U, and Hf and extremely depleted δ^{18} O (see Fig. 6), are not unique to convolute-zoned grains. The occurrence of unaltered, growth-zoned, and inclusion-free zircons with the same geochemical characteristics

143

indicates that these reflect magmatic processes rather than secondary alteration. Similarly, inclusions would not be able to account for many of these characteristics, especially high Hf abundances, given that no other magmatic phases concentrate > 1-2 % Hf, or δ^{18} O, since few coexisting silicate phases, in equilibrium with zircon, fractionate oxygen with significantly lower ¹⁸O/¹⁶O ratios than zircon (e.g. Δ^{18} O_{zircon-sphene} \approx -1 ‰; Δ^{18} O_{zircon-magnetite} \approx -3 ‰; (Bindeman, 2008; Zheng, 1993). Even if low- δ^{18} O minerals were encountered as inclusions during oxygen analyses, these would be volumetrically insignificant relative to the analyzed in-situ zircon volumes, and their effect on the oxygen signature would be negligible. Furthermore, the full range of measured δ^{18} O in zircon (-11.3 to +4.9 ‰; Fig. 7) far exceeds any differences in fractionation between zircon and other coexisting minerals, such that we can dismiss inclusions as the source of the observed distinctive HSG zircon oxygen signatures.

Bulk major mineral oxygen compositions from MSCZ samples also reveal extreme oxygen variability but small mineral-mineral fractionation (Fig. 8), consistent with a hydrothermal-magmatic transition (>600°C), and disequilibrium in δ^{18} O among major minerals and zircon suggests that some of these magmas, especially the HSGs, are composed of multiple batches of isotopically diverse melts.

Individual *in situ* zircon δ^{18} O values in most samples suggest that there are significant contributions from altered crust in the genesis of their parental silicic magmas (*cf.* Bindeman *et al.*, 2012). In the HSGs, the extreme variation in zircon δ^{18} O, which includes the largest known range of δ^{18} O (~ 16 ‰) and to the best of our knowledge also the lowest value yet measured in any magmatic zircon in the world (-11.3 ‰), requires considerable O-isotope heterogeneity in the magma and extreme levels of meteoric-hydrothermal alteration of the source. Modern hydrothermal fluids reported by Pope *et al.* (2013) for the Krafla central volcano in Iceland range

between -10 and -14‰. They also report whole-rock δ^{18} O from altered basalts ranging from -3 to -11 ‰, and estimate that basalts that undergo heavy meteoric-hydrothermal alteration in Icelandic rift systems end up with approximately -10‰ δ^{18} O. Using these values, both the large range and the lowest measured δ^{18} O values in HSG zircons can be explained by amalgamation of multiple batches of small volume magmas generated by pure melting of intensely but variably altered crust, some of which underwent nearly complete (large water/rock ratio), hightemperature exchange with ~ -10 to -14 ‰ meteorically-derived hydrothermal fluids. The observed heterogeneity in δ^{18} O in zircon and major minerals is also consistent with field relationships at Austurhorn, suggesting that sustained melting activity, as a consequence of continuous mafic recharge, was the primary mechanism in the generation and accumulation of the most evolved magmas (HSGs) throughout the lifetime of the Austurhorn system. These HSG magmas likely also represent the assimilant component in A/FC processes suggested by the rest of the silicic (non-HSG) rocks found in the MSCZ.

The HSGs found in the Austurhorn intrusive complex provide an excellent example of the pure partial melting end-member of magmatic processes related to the production of silicic magmas in the shallow crust. Understanding their origin can provide better insight into processes that may be significant and commonplace, both in the generation as well as the accumulation of silicic magmas, but are seldom preserved in the rock and geochemical records. The diverse δ^{18} O in zircons and other minerals from these rocks are useful for understanding the context of other geochemical markers, and provide important insights into the physical mechanisms of shallow magma petrogenesis by amalgamation of diverse melts.

CHAPTER V

The varied personalities of silicic intrusions in Iceland: a spatial and temporal comparison of shallow magmatic systems preserved in the zircon geochemical record

1. Introduction

In the preceding chapters of this dissertation, I have presented three case studies in which I investigated different geochemical characteristics of silicic magmatic systems in southeast Iceland and northern Arizona, largely based on the ability of mineral phases to influence and record the evolution the magmas from which they crystallize. In addition to these case studies, I conducted a larger-scale survey of zircon from Icelandic intrusions to assess the temporal and spatial evolution of shallow crustal magmatism in Iceland. Because of the significant volumes of silicic material, as well as their composite zones displaying intimate association (mixing and mingling) of mafic and silicic magmas that hold clues regarding the construction and evolution of their magmatic systems, Icelandic intrusions are ideal candidates for investigating systematic processes related to the generation of silicic magmas in the Icelandic crust.

In this chapter, I present preliminary results of this comparative study between shallow Icelandic intrusions. I investigated six intrusive complexes with varying amounts of composite relationships, silicic material, and ages spanning ~10 M.y. of Icelandic geologic history, from ~11.7 to ~1.1 Ma (Table 1, Figs. 1-3). Different intrusions are better suited to address different questions regarding evolution of silicic magmas. A subset of them are part of a group of closely related intrusions, all located in close proximity to each other along the coast of southeast Iceland (Fig. 1), which I collectively refer to as the Southeast Iceland Intrusives Suite (SIIS): Austurhorn, Reyðarártindur, Slaufrudalur, and Vesturhorn. These major intrusions are generally thought to be coeval (e.g. Furman *et al.*, 1992a,b; Moorbath *et al.*, 1968), which presents an

146

exceptional opportunity to address the spatial variability of Icelandic intrusive magmatic systems. Furthermore, I explore the temporal differences in magmatism by comparing the SIIS to spatially unrelated intrusions elsewhere in Iceland: Lýsuskarð intrusion, a younger intrusion in Western Iceland, and Sandfell laccolith, an older intrusion in Eastern Iceland.

2. Geologic Background

2.1. Austurhorn Intrusive Complex

The Austurhorn Intrusive Complex (e.g. Padilla *et al.*, in review; Thorarinsson and Tegner, 2009; Furman *et al.*, 1992a,b; Mattson *et al.*, 1986; Blake, 1966), in southeast Iceland, presents a suite of rocks that best exemplifies the complex array of mafic-felsic magmatic interactions typical of silicic systems in Iceland (Fig. 2a, 3a). It has been previously dated using *in-situ* U-Pb zircon geochronology at 6.5-6.6 Ma (\pm 0.4; Martin *et. al.*, 2011) and 6.52 \pm 0.03 Ma (Padilla *et al.*, in review; see Chapter III). The intrusion comprises voluminous granophyre, gabbros, and a mafic-felsic composite zone (MFCZ) that makes up 30-40% of the exposed rocks. Because of its location along the coast, where constant wave-action helps expose and polish rock surfaces, and the abundance of mafic-felsic interactions it preserves, Austurhorn provides an ideal location to investigate the importance of magma recharge and mixing events in the evolution of silicic systems.

2.2. Reyðarártindur Intrusive Complex

The Reyðarártindur intrusion, located less than 10 km to the west of Austurhorn in southeast Iceland contains abundant silicic rocks, associated gabbros, and a MFCZ with extensive evidence for mixing and mingling preserved as hybrid rocks, though these interactions

147

are largely confined to the lowest exposed sections of the intrusion in the Reyðará valley (Fig. 2b, 3b). Because of its proximity and similarity to other intrusions, Reyðarártindur is assumed to be coeval with the rest of the SIIS (e.g. Moorbath *et al.*, 1968), though it has not been previously dated, and no information about it has been published since it was first mapped by Cargill *et al.* (1928). Though smaller in size it contains similar characteristics, particularly in the MFCZ, and voluminous granophyres that make Reyðarártindur highly appropriate for geochemical comparison to the Austurhorn and other composite intrusions.

2.3. Slaufrudalur Intrusive Stock

With an area of roughly 20 km², the Slaufrudalur intrusive stock is perhaps the largest silicic intrusion exposed in Iceland (Fig. 2c, 3c; Burchardt et al., 2011). Previous researchers have distinguished a textural spectrum of silicic rocks, with compositions ranging from granodiorite to granite making up the bulk of the intrusion in subhorizontal layers (e.g. Carmody, 1991; Beswick, 1965). Notably, there are MFCZ-type exposures confined to the lowest sections of the intrusion, but at the current level of exposure there are no significant gabbros associated with the Slaufrudalur intrusion. The only published ages for this complex are whole-rock K-Ar ages reported by Gale *et al.* (1966), which reflect two main stages of intrusion at 9.0-10.0 (± 2.7) Ma and 6.5-6.6 (± 0.8) Ma. Carmody (1991) distinguished two major groups of silicic units at Slaufrudalur, based on their mineralogy and whole-rock geochemistry, indicating the potential existence of two magma sources in the Slaufrudalur magmatic system, providing an opportunity to test the robustness of zircon as a reliable geochemical tracer of magmatic sources. Furthermore, the absence of gabbros in the Slaufrudalur system provides a contrasting geochemical comparison to the rest of the SIIS, helping further assess the effects of mafic magma replenishment on the evolution of silicic systems.

Intrusion Name	Location	Age (Ma) ¹⁷	Exposure (km ²)	Compositional Character
Austurhorn	SE Iceland (SIIS)	6.5-6.6 ^[A]	~15	Composite
Reyðarártindur	SE Iceland (SIIS)	n/a	15-20	Composite
Slaufrudalur	SE Iceland (SIIS)	6.5-10.0 ^[B]	~20	Composite (silicic dominated)
Vesturhorn	SE Iceland (SIIS)	3.7-6.6 ^[A]	~19	Composite (mafic dominated)
Lýsuskarð	Snæfellsness Peninsula	1.1-2.1 ^[B]	~1	Composite
Sandfell	E Iceland	11.7 ^[A]	<5	Silicic Only

 Table 1. Summary of Icelandic silicic composite intrusions

 ¹⁷ Previously published ages from literature:
 ^[A]Martin *et al.*, 2011: zircon U-Pb geochronology
 ^[B]Gale *et al.*, 1966: whole-rock K-Ar geochronology

Regional map of southeast Iceland outlining the four major composite silicic intrusions exposed in the area (black shaded areas; modified after Gale *et al.*, 1966). *Inset:* Overview map indicating the location of two other silicic intrusions, as well as the major tectonovolcanic zones in Iceland (modified after Carley *et al.*, 2011): Northern (NVZ), Eastern (EVZ), and Western Volcanic Zones (WVZ), Snæfellsness Volcanic Belt (SVB), Reykjanes Ridge (RR), Reykjanes Volcanic Belt (RVB), South Iceland Seismic Zone (SISZ), Öræfi Volcanic Belt (ÖVB), Tjornes Fracture Zone (TFZ), Kolbeinsey Ridge (KR), and the Mid-Iceland Belt (MIB). The red dashed lines represent extinct rifts (Martin *et al.*, 2011). The red box indicates the location of the intrusions. The shades of gray indicate age divisions: light gray = Neogene (17-3.3 Ma); medium gray = Plio-Pleistocene (3.3-0.7 Ma); dark gray = Upper Pleistocene to present (0.7-0 Ma); white = Ice caps.

Simplified geologic maps of Icelandic silicic intrusions. All boundaries are inferred from previously published maps and fieldwork conducted in the course of this study. Orange zones indicate exposures that are dominantly silicic (e.g. silicic units, silicic-hosted composite zones); blue zones indicate exposures that are dominantly mafic. Labeled dots are sampling locations. The dark grey zones indicate thick alluvial cover. Light grey zones are talus cover and vegetated areas. White zones are water. Coordinates listed are all in WGS84 UTM grid. **a)** Austurhorn Intrusive Complex (modified after Furman *et al.*, 1992b); **b)** Reyðarártindur Intrusive Complex (modified after Gale *et al.*, 1966); **c)** Slaufrudalur Stock (modified after Burchardt *et al.*, 2011); **d)** Vesturhorn Intrusive Complex (modified after Roobol, 1974); **e)** Lýsuskarð Intrusive Complex (modified after Upton & Wright, 1961); **f)** Sandfell Laccolith (modified after Hawkes and Hawkes, 1932).

The exposed edifices (top) and sample magmatic interactions (bottom) preserved in some of Iceland's most well-known silicic and composite intrusions. The nature of interactions varies widely and differs greatly from intrusion to intrusion. **a)** Austurhorn Intrusive Complex (southeast Iceland); **b)** Reyðarártindur Intrusive Complex (southeast Iceland); **c)** Slaufrudalur Stock (southeast Iceland); **d)** Vesturhorn Intrusive Complex (southeast Iceland); **e)** Lýsuskarð Intrusive Complex (Snæfellsness Peninsula, western Iceland); **f)** Sandfell Laccolith (Fáskrúðsfjördur, eastern Iceland).

2.4. Vesturhorn Intrusive Complex

The Vesturhorn intrusion, at the southern end of Lón Bay in southeast Iceland, is exposed over an area of $\sim 19 \text{ km}^2$, comprising two large gabbroic complexes and a central core of granophyric rocks (Fig. 2d, 3d; Roobol, 1974), with MFCZ-like exposures occurring along the margins of the intrusion, particularly where the central silicic complex is in contact with the gabbros. Notably, the gabbroic complexes are also composite, preserving evidence in the form of compositional layering and magmatic mingling for the input from and interaction of different batches of mafic magmas during construction of the intrusion. The complex has been dated at 3.7-3.9 (±0.1) Ma by U-Pb zircon geochronology (Martin et. al., 2011). Field relationships suggest that the three main complexes of Vesturhorn were emplaced sequentially, with the voluminous granophyre core, which is exposed mainly at the highest stratigraphic levels, intruding first, closely followed by the sequence of gabbros that also generated the MFCZ upon contact with the earlier granophyre magma (Roobol, 1974). Unlike the MFCZ at Austurhorn, the composite zone in Vesturhorn comprises less than 10% of the exposed rocks (Mattson et al., 1986), adding an important geochemical contrast to the rest of the SIIS in investigating the spatial variability of magmatic systems.

2.5. Lýsuskarð Intrusive Complex

Lýsuskarð, the youngest well-exposed silicic intrusion in Iceland, is located on the southern part of the Snæfellsness Peninsula, in western Iceland (Fig. 2e, 3e). It comprises gabbros, granophyres, and hybrid intermediates exposed over $\sim 1 \text{ km}^2$. The granophyres and hybrids are intimately associated in what resembles a MFCZ. Dioritic rocks and gabbros contribute substantially to the contamination and hybridization of granophyres (Upton & Wright, 1961). The exposed units have been dated by whole-rock K-Ar at 1.2-2.1 ±0.7 Ma (Gale *et al.*,

153

1966). These rocks and their associations bear a close resemblance to those of the SIIS, in particular units of the Austurhorn and Vesturhorn intrusions. A careful study of the geochemical characteristics of Lýsuskarð permits the comparison between similar silicic magmatic systems from different tectonic regimes in Iceland, and provides a young perspective for addressing temporal variations in the dynamics of silicic magmatism.

2.6. Sandfell Laccolith

Located along the southern edge of Fáskrúðsfjördur, in eastern Iceland, the Sandfell laccolith is an aphanitic silicic porphyry that intrudes Tertiary lavas of the Icelandic plateau (Fig. 2f, 3f). Aside from small changes along the contact of the intrusion, there is no textural or compositional variation in the character of the exposures (Hawkes & Hawkes, 1932), suggesting it is an entirely-silicic and largely homogeneous intrusion. It has been dated at 11.7 ± 0.1 Ma by Ar-Ar using single groundmass rock fragments (Martin *et. al.*, 2011), making it one of the oldest exposed shallow intrusions in Iceland. Composite interactions between mafic and silicic magmas, typical of silicic systems in Iceland, are completely absent at Sandfell. As such, it provides an excellent contrast to the composite intrusions of the SIIS, as well as a unique perspective on the evolution of silicic magmatic systems in the absence of mafic recharge and magma mixing, and insight into the character of early silicic magmatism in Iceland.

3. Methods

3.1. Whole-Rock Geochemistry

We analyzed 27 representative samples from all intrusions (see Table 2; data for Austurhorn samples are presented in Chapter III, Tables 1 and 2, and excluded from tables in this chapter) for major and trace element abundances at the Peter Hooper GeoAnalytical Laboratory at Washington State University (WSU; Pullman, WA), where major elements were determined by WD-XRF and trace element concentrations were determined by solution ICP-MS. International reference materials *RGM-1*, *W-2*, *JA-2*, and *BHVO-1* were used for calibration and quality control. Whole-rock geochemistry is presented in Table 3.

3.2. Zircon Geochemistry

I separated individual zircon grains from bulk-rock samples at Vanderbilt University, following standard separation techniques, including crushing, milling, sieving, density separation by water and heavy liquid (lithium heteropolytungstates in water; LST, $\rho \approx 2.8$ g/mL), separation by magnetic susceptibility, and lastly hand-picking individual zircon grains from the heavy separate fraction under a stereoscope. The selected zircon grains were mounted in epoxy, polished, and imaged by cathodoluminescence (CL) using a Tescan Vega 3 LM variable pressure scanning electron microscope (SEM) at Vanderbilt University.

Trace element and U-Pb isotopic abundances of spots on individual zircons were measured using the reverse geometry sensitive high-resolution ion microprobe (SHRIMP-RG) at the Stanford-USGS microanalytical center. I used R33 zircon (419±1 Ma, Black *et al.*, 2004) as the calibrating U-Pb geochronology standard, and in-house standards MAD and MADDER (Barth & Wooden, 2010) as trace element standards, and followed the basic operating parameters and technique employed for SHRIMP-RG elemental suite analyses as outlined by Grimes *et al.* (2007) and Claiborne *et al.* (2006, 2010b). A summary of all weighted mean U-Pb ages is presented in Fig. 4, and full U-Pb isotopic data are reported in Appendix C.1. Zircon trace element compositions are reported in Appendix C.2-C.4.

Oxygen isotope ratios on individual spots in zircon were measured by secondary ion mass spectrometry (SIMS) using the CAMECA ims1270 ion microprobe at the University of California-Los Angeles' (UCLA) W.M. Keck Foundation Center for Isotope Geochemistry (Los Angeles, CA), following the methods for zircon oxygen isotope determination outlined by Trail *et al.* (2007), using R33 ($\delta^{18}O = 5.55 \%$, Black *et al.*, 2004) as the calibrating standard to correct for instrumental mass fractionation. All zircon oxygen isotope data are reported in Appendix C.5.

In situ hafnium isotopic compositions of AIC zircons were obtained at the WSU Peter Hooper GeoAnalytical Laboratory (Pullman, WA) by laser ablation multi-collector inductivelycoupled plasma mass spectrometry (LA-MC-ICP-MS), following the instrument configuration, operating parameters, and data reduction methods outlined by Fisher *et al.* (2011), and using Mud Tank (Woodhead & Hergt, 2005) as the primary calibrating standard, and R33 and 91500 as secondary standards. All zircon Lu-Hf isotopic compositions are reported in Appendix C.6.

Zircon ${}^{206}\text{Pb}/{}^{238}\text{Pb}$ ages for Icelandic intrusions, corrected for initial ${}^{238}\text{U}-{}^{230}\text{Th}$ disequilibrium. Each green bar represents a single zircon age. Red bars represent outlier analyses (>2 standard deviations from sample mean), analyses with high common- ${}^{206}\text{Pb}$ (>20%), or analyses with high or low UO/U (>2 standard deviations from sample mean), and are therefore excluded. For each intrusion, the weighted mean age is plotted as a light blue horizontal box. The dark blue line is the age of the Austurhorn Intrusive Complex for comparison (Padilla *et al.*, in review; see also Chapter III). All errors are reported as 2σ standard errors (box heights for both individual and pooled ages are adjusted to represent error). *Lower figures:* zircon age probability density distribution and histogram for each Intrusion.

Sample ¹⁸	Location (UTM) ¹⁹		Mafic	Silicic Rel.	Nature of outcrop / Notes		
Sampic	Northing	Easting	Bodies ²⁰	Abundance ²¹	Wature of outer op / Notes		
IIV-03a	500765	7126998	none	100 %	Fine-grained granophyre, continuous for 10s of meters, no visible mafic component		
IIV-08c	504000	7128345	n/a	0 %	Gabbro, gradational from Px-dominated to Plag-dominated, no visible silicic component		
IIV-15	503977	7128334	n/a	5-10 %	Gabbro outcrop, cross-cut by abundant silicic dikes and veins		
IIV-16	503995	7128238	10 cm - 1 m	40 %	Edge of gabbro complex, extensively intruded by silicic units		
IIV-18	503354	7128536	n/a	0 %	Coarse gabbro, no visible silicic component		
IISlau-08a	498954	7132107	< 1 cm	100 %	Poorly exposed small (< 1 m ²) outcrops, v.f.g. unit, no visible interactions with other units		
IISlau-08b	498954	7132107	n/a	0 %	Poorly exposed small (< 1 m ²) outcrops, v.f.g. unit, no visible interactions with other units		
IISlau-12	498493	7132374	none	100 %	Homogeneous exposure on Mosfell (~230 m elevation), no visible mafic component		
IISlau-22	497544	7132624	none	100 %	Homogeneous exposure on Mosfell (~550 m elevation), no visible mafic component		
IISlau-25	499082	7133242	none	100 %	Homogeneous exposure on Bleikitindur (~245 m elevation), no visible mafic component		
IISlau-26	499038	7133267	none	100 %	Silicic exposure on Bleikitindur (~265 m elev.), variable coarseness, no mafic component visible		
IISlau-27	498893	7133487	none	100 %	Continuous exposure on Bleikitindur (~375 m elevation and upward), no visible mafic component		
IISlau-34	499066	7134707	none	100 %	Homogeneous silicic exposure on Skeggtindar, no visible mafic component		
IISlau-42	497815	7133416	1 cm - 1 m	55 %	Silicic-hosted composite outcrop, abundant mafic enclaves, gradational mixing zones present		
IISlau-45	498536	7132895	< 1 cm	100 %	Continuous and isolated exposure of coarse silicic rock		

Table 2. Locations and descriptions for samples collected from Icelandic composite intrusions

 ¹⁸ Sample prefixes refer to the Intrusive Complex where sample was collected: IIV = Vesturhorn; IISlau = Slaufrudalur
 ¹⁹ All coordinates were obtained using the World Geodetic System 1984 (WGS 84)
 ²⁰ Refers to non-continuous bodies of mafic material surrounded by silicic host (e.g. mafic pillows, enclaves, and clasts; "n/a" = not applicable for mafic units)
 ²¹ Relative abundance of silicic (vs. mafic) material within the outcrop where the sample was collected

Table 2. Continued

Sample ²²	Location (UTM)		Mafic	Silicic Rel.	Nature of outcron / Notes		
Sample	Northing	Easting	Bodies	Abundance	Trature of outer op / Trotes		
IIR-01	511265	7145105	none	100 %	Contact between granophyre and hornfels at edge of complex, no visible mafic interactions		
IIR-03a	511457	7145995	1 cm - 10 m	40-50 %	Composite zone, extensive mafic-silicic interactions preserved, including mixing		
IIR-03b	511457	7145995	1 cm - 10 m	40-50 %	Composite zone, extensive mafic-silicic interactions preserved, including mixing		
IIR-09	512163	7146587	none	100 %	Isolated exposure of homogeneous silicic rock, no visible mafic component		
IIR-10	511885	7146506	1 cm - 1 m	60-70 %	Composite zone, extensive interactions, gradational and mixing zones common		
IIR-13	511289	7146677	none	100 %	Silicic exposure along the roof contact, no mafic component or interactions with roof unit visible		
IISand-01	553444	7195202	none	100 %	Homogenous exposure of aphanitic silicic rock, coarse Plag porphyries, no visible mafic component		
IILys-01	395260	7194130	n/a	< 10 %	Fine-grained silicic dike intruded into hornfels along edge of intrusion		
IILys-02	395265	7194185	none	100 %	Fine-grained granophyre exposure continuous for a few meters, no mafic component visible		
IILys-04	395469	7194053	none	100 %	Coarse diorite, variable texture and mineral assemblage, pockets of large amph phenocrysts present		
IILys-07a	394506	7193076	none	100 %	Isolated exposure, homog. silicic rock, strong hydrothermal alteration, no visible mafic component		
IILys-07b	394506	7193076	none	100 %	Isolated exposure of homog. silicic rock, strong hydrothermal alteration, no visible mafic component		

²² Sample prefixes refer to the Intrusive Complex where sample was collected: IIR = Reyðarártindur; IISsand = Sandfell; IILys = Lýsuskarð

Sampla			REYE	DARÁRT	INDUR	VESTURHORN (IIV-)						
Sa	imple:	01	03a	03b	9	10	13	03a	08c	15	16	18
3	SiO ₂	73.9	67.0	69.6	73.2	72.5	73.7	75.8	49.1	45.5	65.6	46.2
%) ²	TiO ₂	0.21	0.70	0.38	0.25	0.28	0.24	0.17	2.1	4.6	0.98	3.2
wt.	Al_2O_3	13.7	15.6	15.2	14.1	14.4	13.6	13.1	23.2	16.9	15.6	18.5
les	Fe ₂ O ₃	2.2	4.3	3.2	2.4	2.2	2.2	1.7	5.8	12.6	5.2	10.4
Dxic	MnO	0.06	0.10	0.07	0.04	0.05	0.06	0.05	0.10	0.16	0.11	0.12
nt (MgO	0.13	1.1	0.38	0.03	0.22	0.15	0.06	3.1	5.0	1.2	5.1
eme	CaO	0.82	2.2	1.4	0.43	0.76	1.2	0.26	12.9	12.5	3.5	13.7
Ē	Na ₂ O	4.0	5.2	5.2	4.8	4.8	3.7	4.4	3.0	2.4	4.8	2.2
ajor	K ₂ O	4.9	3.6	4.5	4.8	4.7	5.1	4.4	0.37	0.33	2.7	0.32
Σ	P_2O_5	0.02	0.19	0.07	0.03	0.04	0.03	0.02	0.31	0.10	0.25	0.13
Ι	LOI (%)	3.02	•••->				2.07					
	Sc	4.7	7.4	5.8	4.1	4.4	3.9	2	17	36	10	34
	Rb	112	86	97	110	101	119	93	5.7	5.8	60	7
	Sr	39	174	104	44	73	49	39	672	500	306	501
	Y	78	58	64	67	66	72	69	18	21	66	16
	Zr	375	706	566	434	415	446	318	104	117	608	74
	Nb	42	29	35	39	38	41	60	16	13	33	7.0
	Cs	0.67	0.81	0.60	0.87	0.40	0.55	0.39	0.05	0.08	0.37	0.14
	Ba	505	497	720	520	535	521	395	93	73	490	63
bm	La	67	50	58	58	68	60	51	9.2	7.4	46	6.5
s (p	Ce	143	104	125	127	141	126	105	22	18	101	16
ion	Pr	17	13	15	15	17	15	13	3.2	2.8	13	2.3
trat	Nd	64	50	57	58	64	59	49	15	14	55	11
cen	Sm	14	12	13	13	14	14	12	4.2	4.3	13	3.4
Con	Eu	1.5	2.7	2.6	1.7	1.8	1.7	1.3	2.5	1.9	3.9	1.5
int (Gd	14	11	12	13	13	13	12	4.6	4.8	13	3.8
eme	Tb	2.4	1.9	2.1	2.2	2.3	2.3	2.2	0.71	0.81	2.3	0.63
Ele	Dy	15	11	13	13	13	14	13	4.0	4.8	13	3.7
ace	H0 E	3.0	2.2	2.4	2.6	2.6	2.8	2.7	0.74	0.89	2.6	0.68
Ţ	Er	7.7	5.7	6.3	6.8	6.7	7.4	7.0	1.8	2.2	6.7	1.7
	l m Vl	1.2	0.81	0.90	0.99	0.99	1.1	0.99	0.22	0.29	0.96	0.22
	YD	/.0	5.1	5.5	5.9	5.8	6.5	6.0	1.2	1.7	5.8	1.2
		1.0	0.77	0.83	0.89	0.87	0.99	0.85	0.18	0.24	0.88	0.17
	HJ T -	12	17	15	13	12	14		2.6	3.2	15	2.1
	1 <i>a</i> D1-	3.0	2.2	2.4	2.8	2./	3.0	4.4	1.1	0.94	2.2	0.54
	ΓU Th	8.9 12	4.ð	5.5 10.0	/.0	9.4	0.5	5.5	0.82	5.9 0.47	4.5	0.90
	U	4 2	8.7 2.6	10.0	12 3 5	32	37	2.8	0.00	0.47	2.3	0.26

Table 3. Major oxide and trace element compositions of rocks from Icelandic silicic intrusions

²³ Anhydrous basis, normalized

Samula		SLAUFRUDALUR (IISlau-)											
Sa	mple:	08a	08b	12	22	25	26	27	34	42	45		
_	SiO ₂	71.1	49.8	73.6	74.0	73.9	73.7	77.2	76.3	74.6	73.6		
(%:	TiO ₂	0.51	4.0	0.36	0.25	0.33	0.36	0.12	0.14	0.28	0.34		
(wt	Al_2O_3	13.6	13.1	13.7	12.7	13.7	13.8	12.1	12.4	13.3	13.6		
des	Fe ₂ O ₃	3.5	14.8	2.1	4.1	2.0	1.9	1.8	1.9	1.8	2.1		
Dxi	MnO	0.07	0.28	0.04	0.03	0.03	0.03	0.02	0.06	0.03	0.04		
ent (MgO	1.1	4.9	0.36	0.04	0.45	0.32	0.01	0.05	0.25	0.34		
eme	CaO	2.2	8.9	0.92	0.59	0.94	1.1	0.27	1.1	0.98	1.1		
r El	Na ₂ O	4.1	3.0	4.3	4.6	4.1	4.1	4.4	4.2	4.2	4.4		
lajo	K ₂ O	3.6	0.55	4.5	3.7	4.5	4.6	4.1	3.8	4.6	4.5		
Z	P_2O_5	0.07	0.66	0.05	0.02	0.03	0.05	0.01	0.01	0.03	0.05		
L	OI (%)			0.20		(· · ·				
	Sc	7	31	3	3	3	3	0.6	0.7	3	3.4		
	Rb	72	16	99	73	94	103	102	76	97	96		
	Sr	124	343	96	95	109	90	23	52	79	98		
	Y	75	51	56	142	58	53	108	131	78	64		
	Zr	374	272	350	639	264	336	504	477	302	369		
	Nb	39	23	34	62	35	34	95	73	43	34		
	Cs	0.35	0.18	0.73	0.51	0.38	0.88	0.57	0.31	0.60	0.51		
	Ba	489	132	540	574	561	515	388	529	568	501		
udc	La	57	23	55	121	57	43	75	74	67	54		
IS (J	Ce	123	57	119	149	124	91 10	145	169	143	115		
tion	Pr NJ	16	8.2	14	33	14	10	22	22	17	14		
ıtra	Na S-m	63	39	53	135	55	41	89	93	68 16	53		
leor	Sm E	15	11		32	12	9.7	22	24	16	12		
Col	Eu	2.6	3.9	l./ 11	5.6	1.9	1./	3.0	4.4	2.2	1.9		
ent	Gu Th	15	12	11 19	52 50	11	9.3 1.7	20	25 4 4	15	12		
em	TU Dv	2.3	1.9	1.0 11	3.0 20	1.9	1./ 10	3.0 22	4.4 27	2.0 15	2.0		
еE	Dy Ho	20	21	11 22	20 5.2	12	10 2 1	4.2	21 50	13	15		
rac	Er	2.9	2.1 5.1	2.2 5.8	5.2 12	2.3 6.0	2.1 5.5	4.2	5.2 13	3.0 7 7	2.3 6.4		
Η	Tm	1.1	0.68	0.82	12	0.0	0.82	16	19	1.1	0.4		
	Yb	6.5	3.9	5.1	9.4	5.2	5 0	9.6	1.5	67	5.6		
	Lu	0.95	0.56	0.73	14	0.75	0.75	14	16	0.98	0.81		
	Ηf	12	7.0	11	19	9.1	11	19	17	10	11		
	Ta	2.8	1.6	2.6	4.3	2.6	2.6	6.4	5.1	3.2	2.6		
	Pb	5.2	3.5	6.4	4.4	4.1	6.5	5.1	4.5	5.5	4.9		
	Th	9.5	1.8	11	10	10	11	8.4	10	12	11		
	U	2.8	0.58	2.9	3.2	2.8	3.3	4.0	3.1	3.0	3.1		

Table 3. Continued

Table 3. Continued

	mple:	HEard 01	1	LÝSUSKARÐ (IILys-)							
) ¹	<i>a</i>	115and-01	01	02	04	07a	07b				
	S_1O_2	74.2	72.6	67.3	57.5	72.2	71.6				
(wt.%)	TiO ₂	0.13	0.32	0.69	2.6	0.31	0.32				
	Al_2O_3	13.8	13.5	14.5	15.4	13.5	13.6				
des	Fe ₂ O ₃	2.7	3.0	5.6	9.6	4.1	3.8				
Oxio	MnO	0.10	0.04	0.22	0.25	0.14	0.10				
ent (MgO	0.25	0.15	0.52	2.8	0.01	0.04				
eme	CaO	0.91	0.99	2.0	4.1	0.03	0.49				
гEl	Na ₂ O	4.0	3.2	5.0	4.3	4.7	4.8				
lajo	K ₂ O	3.9	6.1	4.1	2.6	4.9	5.2				
Σ	P_2O_5	0.02	0.03	0.12	0.87	0.02	0.02				
L	OI (%)	2.45		0.21		1.04	0.89				
	Sc	3.6	4.6	8.3	18	1.4	1.3				
	Rb	81	121	96	57	110	121				
	Sr	91	184	200	398	17	31				
	Y	125	81	70	49	78	94				
	Zr	402	809	671	414	863	851				
	Nb	83	176	145	116	182	180				
	Cs	0.96	0.26	0.76	0.36	0.35	2.1				
_	Ba	828	738	1061	802	1322	1390				
m	La	97	114	98	66	64	121				
s (p	Ce	209	227	194	136	213	216				
ions	Pr	26	26	22	17	15	28				
trat	Nd	100	92	83	67	52	104				
cen	Sm	23	17	16	13	11	20				
Con	Eu	4.0	2.1	3.8	4.0	2.2	3.9				
nt (Gd	22	15	13	11	9.6	18				
sme	Tb	3.9	2.5	2.3	1.8	2.1	3.0				
Ele	Dy	24	16	14	10	14	18				
ace	Ho	4.9	3.2	2.8	2.0	3.2	3.7				
Tr	Er	13	8.9	7.7	5.2	9.3	10				
	Tm N/	1.9	1.4	1.2	0.73	1.5	1.5				
	Y D	12	8.7	7.3	4.5	9.2	9.5				
		1.8	1.4	1.2	0.70	1.4	1.5				
	Hf Tu	13	19	16	9.8	20	20				
	1a D ¹	5.5	11	9.0	6.9						
		8.2	2.8	4.8	3.6	6.2	5.2				
	1 N 17	12	16	12	7.5	15	15				

4. Preliminary results

Based on the elemental and isotopic compositions of zircons from the Austurhorn Intrusive Complex, Padilla et al. (in review; see Chapter III) establish general compositional fields for intrusive zircons from Austurhorn. These fields are generally consistent with what is observed in zircons from other Icelandic silicic rocks (e.g. Carley et al., 2011, 2014). Using a combination of field observations, whole-rock geochemistry, and zircon geochemistry, they demonstrate that the trends observed in Austurhorn zircons reflect assimilation of altered Icelandic crust into the magmatic system, followed by fractional crystallization processes (AFC) throughout the history of the intrusion, with some notable exceptions coming from zircons in high-SiO₂ granophyres (HSG). These HSG record more extreme processes, reflecting pure partial melting of variably altered crust (for detailed discussion on this, see Dissertation Chapter IV). Moreover, the extreme melts that these HSGs represent are likely the assimilant component in the AFC processes that are recorded by the rest of the silicic rocks at Austurhorn. With these results in mind, we compare other Icelandic intrusions to the extensive geochemical record presented for the Austurhorn intrusion (Padilla et al., in review; see Chapters III and IV) in order to assess if and how magmatic systems in the shallow Icelandic crust have varied in space and time.

With few exceptions, the elemental geochemistry of zircons from other Icelandic intrusions is consistent with the geochemical array of Austurhorn and other silicic Icelandic rocks (Fig. 5). Notably, few grains in other intrusions share any of the extreme geochemical signatures observed in HSGs from Austurhorn. Abundances of U and Th range from ~20 to ~7000 ppm, and follow the same systematic increase in Th/U ratios, from ~0.5 to ~2, with increasing U and Th abundances that is observed in Austurhorn zircons (Fig. 5b). Hafnium

163

concentrations are characteristically low, mostly falling between ~6000 and ~13,000 ppm, and Ti abundances range from ~3 to ~45 ppm in all samples, with some suspect grains (<5) extending up to ~95 ppm. Rare Earth element (REE) patterns are typical for zircon from silicic rocks (Fig. 5d; Carley *et al.*, 2014; Hoskin & Schaltegger, 2003; Hanchar & Miller, 1993), displaying chondrite-normalized trends of extreme enrichment in heavy rare earth elements (HREE) relative to light rare earth elements (LREE) and positive Ce and negative Eu anomalies (Fig. 6). Zircons from the Reyðarártindur intrusion have the lowest REE abundances, while those from Lýsuskarð have both the highest and the largest range of abundances. These elevated REE abundances in Lýsuskarð zircons are similar in magnitude to the elevated REE abundances in HSG zircons from Austurhorn.

Oxygen isotopic values (δ^{18} O) for all zircons range from +0.5 to +5.7 ‰ (Fig. 7). Only zircons from the Vesturhorn intrusion extend into the accepted range for zircon mantle values (+5.3 ± 0.6 ‰, 2 σ ; Valley *et al.*, 1998), with a total range of +3.1 to +5.7 ‰. For all other intrusions, δ^{18} O falls below +4.8 ‰. The range of oxygen compositions from Reyðarártindur zircons best resembles what is observed for Austurhorn (excluding low- δ^{18} O zircons from HSG), with values extending continuously from +1.5 to +4.8 ‰ (compared to +2.2 to +4.8 ‰ for Austurhorn). Zircons from Lýsuskarð span the narrowest oxygen range, 2.7 to 3.2 ‰, with only a single value falling outside this range at 2.0 ‰.

In situ zircon hafnium isotope ratios (ϵ_{Hf}) for all intrusions span a significant range, extending from +7 to +16 ϵ -units (Fig. 7). Lýsuskarð falls on the lower end of this range, with all zircons having ϵ_{Hf} < +12, and zircons from Slaufrudalur preserve the largest range in ϵ_{Hf} .

Trace element abundances and ratios for zircons from Icelandic silicic intrusions. **a)** Y/Nb vs. U/Yb; **b)** Th vs. U; the solid line indicates a Th/U ratio of 1; the dashed lines indicate Th/U ratios of 0.5 (top) and 2 (bottom); **c)** Th/U vs. Eu/Eu* (Eu anomaly). **d)** Hf vs. Ti; the colored lines indicate Ti-correlated model zircon crystallization temperatures, calculated using the Ti-in-zircon thermometer of Ferry & Watson (2007) using $a_{TiO2} = 0.5$ and $a_{SiO2} = 1.0$.

Chondrite-normalized zircon rare earth element (REE) abundances in samples from different Icelandic intrusions.

Isotopic compositions of zircons from silicic and composite Icelandic intrusions. Left: Oxygen isotope compositions (δ^{18} O) plotted by sample. The light red zone indicates the δ^{18} O range of mantle zircons (+5.3 ±0.6 ‰, Valley *et al.*, 1998). **Right**: Hafnium isotope compositions (ϵ_{Hf}) plotted by sample. The light red zone (upper) denotes the range of ϵ_{Hf} values observed in lavas from active rift environments in Iceland. The light green zone (lower) denotes the range of ϵ_{Hf} values in Icelandic lavas from off-rift and propagating-rift environments (Peate *et al.*, 2010).

High-precision zircon U-Pb geochronology yields an age of 6.38 ± 0.05 Ma (MSWD = 3.4, n = 32; all reported age uncertainties are 2σ SE) for the Slaufrudalur intrusion (see Fig. 4), consistent with the younger intrusion stage identified by Gale *et al.* (1966). The Vesturhorn intrusion, to the south, is the youngest in the SIIS, with a weighted mean age of 4.02 ± 0.03 Ma (MSWD = 1.9, n = 34), within error of the previously published zircon age of Martin *et al.* (2011). I obtained an age of 7.30 ± 0.06 Ma (MSWD = 4.3, n = 30) for the Reyðarártindur intrusion, the first reported age for this intrusion. Zircons from the Lýsuskarð intrusion yield an age of 1.43 ± 0.02 Ma (MSWD = 4.9, n = 10). Lastly, the mean age for the Sandfell laccolith is 11.90 ± 0.12 Ma (MSWD = 2.5, n = 13), indistinguishable from the most recent zircon age reported by Martin *et al.* (2011).

5. Summary

My preliminary results show that most Icelandic intrusions share the same general geochemical characteristics as other silicic rocks from Iceland, intrusive as well as extrusive (e.g. Padilla *et al.*, in review, see Dissertation Chapters III and IV; Carley *et al*, 2011, 2014). No correlations are observed between age of intrusion and the zircon elemental geochemical record, perhaps suggesting that magmatic processes in the shallow crust have not changed considerably throughout Iceland's geologic history. However, some differences in the isotopic compositions of zircons may be preserving shifts in the tectonic setting at the time of intrusion. Zircons from Sandfell as well as two of the intrusions from the SIIS, Slaufrudalur and Reyðarártindur, preserve δ^{18} O variability that is similar to what is observed in non-HSG zircons from the Austurhorn intrusion (Fig. 7), perhaps suggesting considerable incorporation of hydrothermally altered crust into their parental magmas prior to zircon crystallization. In contrast, zircons from

Vesturhorn preserve, on average, the highest δ^{18} O values of all intrusions in this study, and many of these values overlap with the expected δ^{18} O range of mantle zircons. This is likely an indication that silicic magmas at Vesturhorn are generated dominantly by fractional crystallization (FC) of mantle melts, with little to no crustal contamination or assimilation. Similarly, the narrow range of δ^{18} O values in Lýsuskarð zircons may be indicative of the predominance of FC processes. However, the lower average values in those zircons requires a lower δ^{18} O source than that for Vesturhorn, which may be explained by either crustal assimilation followed by extensive hybridization and homogenization of magmas prior to zircon growth, or by a homogeneous low- δ^{18} O source beneath Lýsuskarð at the time of intrusion.

A more detailed and rigorous evaluation of the zircon geochemical dataset from Icelandic intrusions presented in this chapter, including sample-to-sample geochemical comparisons between whole-rock compositions (from which zircons were extracted) for each intrusion, may allow for a better assessment of individual magmatic histories. In conjunction with geochronology, the elemental and isotopic geochemistry of zircons from each intrusion may also provide insight about the regional tectonic environment during the lifetime of each magmatic system (*cf.* Martin *et al.*, 2011).
CHAPTER VI

Conclusions

Below, I provide a summary of the main conclusions and insights gained from the different studies that make up my doctorate dissertation research, which are presented in full in the preceding 3 chapters of this document.

In Chapter II, I present an extensive dataset of partition coefficients for 7 mineral phases from a single sample of Peach Spring Tuff high-silica rhyolite. The method employed, which involves measuring crystal rim compositions and unaltered glass by LA-ICP-MS, provides a high degree of internal consistency and yields a very reliable K_d dataset reflecting equilibration conditions between crystals and melt in the volcanic system at or near the time of eruption. In addition, I demonstrate that, using the theoretical crystal lattice strain model of Blundy & Wood (1994, 2003), one can estimate the relative abundances of Eu and Ce in their multivalent states (2+, 3+, and 4+), with PST results indicating that >97% of total Ce exists as Ce³⁺ whereas the relative proportions of Eu are less constrained, with ~50 to ~90% of Eu existing as Eu³⁺. These results may have implications for estimating the oxidation state of magmas based on the occurrence Ce and Eu anomalies (*cf.* Trail *et al.*, 2012, 2015).

Chapter III presents the first detailed elemental and isotopic geochemical study of zircon from Icelandic intrusive rocks. The elemental compositions of AIC zircons form a broad but coherent array that mostly overlaps with the signature of zircons from Icelandic silicic volcanic rocks. I demonstrate that the diversity in oxygen isotopes (δ^{18} O), from +2.2 to +4.8 ‰, provides strong evidence for the influence of meteoric-hydrothermal processes and recycling of hydrothermally-altered crust as a major contributor to silicic magmas within the AIC system.

170

Based on the geochemical evidence, I establish that that silicic magmas at Austurhorn were generated by assimilation and fractional crystallization (AFC) processes in which a significant portion of the crustal assimilant was generated by partial melting of variably hydrothermallyaltered crust in a transitional rift environment (*cf.* Sigmarsson *et al.*, 1991). Zircons from the Austurhorn intrusive complex preserve a useful geochemical record of the manifestation and consequences of multiple episodes of mafic magmatic recharge into silicic systems at shallow depths, and an additional dimension in helping us better understand the accumulation of silicic magmas and subsequent evolution of silicic magmatic systems within the Earth's crust.

In Chapter IV, I present a case study of oxygen isotopes in zircon and bulk major minerals from rocks of the Austurhorn intrusion. This study builds on the work presented in Chapter III, and focuses on high-SiO₂ granophyres (HSG), the most evolved rocks at Austurhorn. Zircons in these HSG units preserve geochemical signatures that differ significantly from the general geochemical characteristics of zircons in other silicic rocks of Austurhorn as well as the rest of Iceland. I demonstrate that the extreme oxygen variability in HSG zircons, extending from +4.9 to as low as -11.3 ‰, reflect true δ^{18} O heterogeneity in the source magmas rather than postmagmatic alteration. As such, these samples preserve both the largest range (~ 16 ‰) and the lowest δ^{18} O value (-11.3 ‰) yet measured in any magmatic zircon. Based on the isotopic evidence, as well as evidence from modern Icelandic volcanic systems with low- δ^{18} O rocks, I interpret HSGs at Austurhorn to represent batches of small volume melts generated entirely by melting of variably altered crust, some of which underwent nearly complete (large water/rock ratio), high-T exchange with ~ -10 to -14 ‰ hydrothermal meteoric fluids. These are an excellent example of the pure partial melting end-member of magmatic processes seldom preserved in the geologic record, and an important geochemical marker for better understanding the production of silicic magmas in the shallow crust.

Lastly, Chapter V contains preliminary results from a large-scale assessment of zircon in six different Icelandic intrusive centers. I find that there are general zircon geochemical characteristics that are consistent across all studied Icelandic intrusive centers. However, in some intrusions (e.g. Austurhorn, Slaufrudalur, Reyðarártindur) zircons record oxygen variability that reflects assimilation of hydrothermally-altered crust into the magmas from which they crystallized, whereas in other intrusions (e.g. Vesturhorn and Lýsuskarð) the narrower range of δ^{18} O compositions suggests dominant fractional crystallization processes in the petrogenesis of their parental magmas, but in some cases (e.g. Lýsuskarð) still require homogenization of the magma or incorporation of a lower- δ^{18} O magma source prior to zircon crystallization. More detailed evaluation of other zircon isotopic data from these intrusions (e.g. $\varepsilon_{\rm Hf}$ compositions) may provide additional insights into the tectonic setting and magmatic evolution of each individual Intrusion, and would permit more rigorous assessment of the magmatic processes that contributed to the generation of silicic magmas in their respective tectonic environments throughout Iceland's geologic history. APPENDIX A

ELEMENTAL PARTITIONING IN SILICIC MAGMATIC SYSTEMS

Element:	C _{Expected} (ppm)	C _{Measured} (ppm)	Rel. Accuracy	Rel. Error ²⁵
Li ¹⁺	42	55	32%	26%
B ³⁺	35	226	551%	34%
Na ¹⁺	103719	96113	7.3%	2.5%
Mg^{2+}	77	60	22%	11%
Al^{3+}	11165	10233	8.3%	3.4%
K ¹⁺	66	262	295%	15%
Ca ²⁺	85263	84199	1.2%	4.4%
Sc ³⁺	41	39	6.1%	24%
Ti ⁴⁺	48	220	357%	
V^{5+}	39	37	6.1%	14%
Cr ³⁺	40	92	130%	22%
Mn ²⁺	38	38	0.758%	15%
Co ²⁺	35	36	0.989%	14%
Ni ²⁺	38	44	14%	26%
Cu ²⁺	37	35	5.8%	34%
Zn ²⁺	38	132	249%	23%
Ga ³⁺	36	35	3.1%	24%
Ge ⁴⁺	35	37	5.9%	27%
Rb ¹⁺	32	31	0.755%	7.3%
Sr ²⁺	76	75	2.1%	6.1%
Y ³⁺	38	37	2.9%	13%
\mathbf{Zr}^{4+}	36	36	0.124%	10%
Nb ⁵⁺	38	34	10%	9.8%
Cs ¹⁺	42	40	3.6%	7.1%
Ba ²⁺	38	36	3.5%	9.3%
La ³⁺	36	36	1.3%	9.2%
Ce ³⁺	38	37	2.8%	7.9%
Pr ³⁺	37	34	7.2%	9.0%
Nd ³⁺	35	35	0.192%	24%
Sm ³⁺	37	37	0.441%	19%
Eu ³⁺	34	35	2.4%	15%
Gd ³⁺	37	34	7.4%	23%
Tb ³⁺	36	37	2.1%	10%
Dy ³⁺	36	34	5.2%	22%
Ho ³⁺	38	38	0.693%	9.6%
Er ³⁺	37	35	7.1%	16%
Tm ³⁺	38	35	6.0%	9.9%
Yb ³⁺	40	39	1.7%	24%
Lu ³⁺	38	36	4.9%	11%
$\mathbf{Hf}_{\mathbf{f}^{+}}^{4^{+}}$	35	36	3.1%	23%
	40	31	21%	9.3%
	15	14	8.3%	19%
Pb ² +	39	38	2.7%	16%
Th ⁴⁺	37	37	0.098%	9%
U ⁴⁺	37	38	1.6%	10%

Appendix A.1. Instrument reproducibility (relative accuracy and error)²⁴ for secondary geochemical glass standard NIST-612 (Pearce et al., 1997), analyzed as unknown at 20 µm

²⁴ Rel. accuracy = $(C_{measured-average} - C_{expected}) \div (C_{expected})$; Rel. Error = $(\sigma_{measured}) \div (C_{measured-average})$ ²⁵ "--" denotes that we obtained only one analysis at the specified laser spot size and are unable to calculate rel. error

Element:	C _{Expected} (ppm)	C _{Measured} (ppm)	Rel. Accuracy	Rel. Error
Li ¹⁺	42	44	6.9%	17%
B ³⁺	35	65	86%	21%
Na ¹⁺	103719	96515	6.9%	2.1%
Mg^{2+}	77	61	22%	7.9%
Al ³⁺	11165	10183	8.8%	2.1%
K ¹⁺	66	68	2.6%	22%
Ca ²⁺	85263	84997	0.311%	2.4%
Sc ³⁺	41	36	12%	6.4%
Ti ⁴⁺	48	51	5.2%	26%
V^{5+}	39	38	3.1%	7.3%
Cr ³⁺	40	38	5.3%	31%
Mn ²⁺	38	38	1.9%	4.8%
Co ²⁺	35	34	2.7%	7.4%
Ni ²⁺	38	38	1.0%	14%
Cu ²⁺	37	37	1.4%	6.8%
Zn^{2+}	38	39	2.7%	30%
Ga ³⁺	36	38	6.1%	7.1%
Ge ⁴⁺	35	37	6.5%	13%
Rb ¹⁺	32	32	1.6%	3.5%
Sr ²⁺	76	75	1.1%	3.0%
Y ³⁺	38	37	2.9%	6.2%
Zr ⁴⁺	36	37	2.1%	5.8%
Nb ⁵⁺	38	34	9.9%	3.1%
Cs ¹⁺	42	41	0.367%	3.9%
Ba ²⁺	38	37	0.818%	3.5%
La ³⁺	36	37	2.7%	3.8%
Ce ³⁺	38	39	0.914%	3.8%
Pr ³⁺	37	37	1.5%	3.2%
Nd ³⁺	35	34	4.5%	10%
Sm ³⁺	37	37	0.449%	8.6%
Eu ³⁺	34	36	5.6%	6.2%
Gd ³⁺	37	35	4.0%	13%
	36	37	3.7%	4.3%
Dy ³⁺	36	34	6.8%	7.8%
	38	37	1.3%	4.1%
Er ³⁺	37	36	4.3%	5.8%
Tm ³⁺	38	35	7.1%	3.3%
Yb^{3+}	40	40	0.006%	7.5%
	38	36	3.9%	4.7%
HI m 5+	35	36	2.6%	7.3%
1 a Tu ³⁺	40	30	24%	5.5%
	15	15	0.382%	8.1%
rb ⁻⁺	39	5/ 27	0.1%	0.9%
1 h	57	37	0./15%	4.4%
U	37	38	2.2%	4.4%

Appendix A.2. Instrument reproducibility (relative accuracy and error) for secondary geochemical glass standard NIST-612 (Pearce *et al.*, 1997), analyzed as unknown at **40** μm

Element:	C _{Expected} (ppm)	C _{Measured} (ppm)	Rel. Accuracy	Rel. Error
Li ¹⁺	42	41	1%	7%
B ³⁺	35	35	1.28%	36%
Na ¹⁺	103719	94285	9.1%	1.5%
Mg^{2+}	77	58	25%	4%
Al ³⁺	11165	9354	16.2%	2.5%
K ¹⁺	66	61	8.31%	27%
C a ²⁺	85263	78240	8.2%	2.5%
Sc ³⁺	41	33	19.6%	4%
Ti ⁴⁺	48	38	20.1%	15%
V^{5+}	39	37	6.1%	4%
Cr ³⁺	40	34	14.62%	9%
Mn ²⁺	38	36	6.335%	2%
Co ²⁺	35	34	4.661%	4%
Ni ²⁺	38	36	7%	5%
Cu ²⁺	37	37	1.7%	7%
Zn ²⁺	38	32	15.2%	16%
Ga ³⁺	36	36	1.2%	5%
Ge ⁴⁺	35	36	5.3%	5%
Rb ¹⁺	32	32	0.276%	2.6%
Sr ²⁺	76	71	7.3%	3.0%
Y ³⁺	38	33	12.4%	5%
Zr ⁴⁺	36	34	5.855%	5%
Nb ⁵⁺	38	32	17%	4.4%
Cs ¹⁺	42	40	5.0%	2.6%
Ba ²⁺	38	35	6.8%	3.5%
La ³⁺	36	34	5.7%	2.8%
Ce ³⁺	38	36	6.1%	1.7%
Pr ³⁺	37	33	10.1%	3.0%
Nd ³⁺	35	33	6.911%	8%
Sm ³⁺	37	34	8.187%	6%
Eu ³⁺	34	33	3.7%	4%
Gd ³⁺	37	32	13.6%	9%
Tb ³⁺	36	33	7.7%	5%
Dy ³⁺	36	31	15.1%	5%
Ho ³⁺	38	33	11.652%	4.1%
Er ³⁺	37	32	14.3%	4%
Tm ³⁺	38	32	15.1%	2.7%
Yb ³⁺	40	35	12.4%	9%
	38	33	13.7%	4%
	35	31	12.1%	7%
'fa''	40	28	30%	4.1%
	15	15	0.0%	5%
Pb*+	39	35	9.7%	5%
ſ ħ *'	37	33	10.485%	5%
U^{4+}	37	36	4.2%	3%

Appendix A.3. Instrument reproducibility (relative accuracy and error) for secondary geochemical glass standard NIST-612 (Pearce *et al.*, 1997), analyzed as unknown at **80 μm**

		C measurea (ppm)	Ren / Recuracy	Rei. Error
Li ¹⁺	1.69	1.83	8%	43%
B ³⁺	4.83	6.86	41.93%	4%
Na ¹⁺		103430		2.1%
Mg^{2+}	35	35	1%	24%
Al ³⁺		10913		2.5%
K ¹⁺		50		79%
Ca ²⁺		84769		2.2%
Sc ³⁺	1.53	1.66	8.4%	24%
Ti ⁴⁺	3.37	14	307%	41%
V^{5+}	1.00	0.959	4.1%	27%
Cr ³⁺	1.23	2.71	120%	
Mn ²⁺	1.35	1.40	3.981%	19%
Co ²⁺	0.680	0.718	5.588%	25%
Ni ²⁺	1.04	1.30	25%	35%
Cu ²⁺	1.19	1.67	40.7%	26%
Zn^{2+}	2.16	3.23	49.4%	18%
Ga ³⁺	1.19	1.36	14.4%	17%
Ge ⁴⁺	0.880	1.06	20.8%	30%
Rb ¹⁺	0.870	1.04	19.310%	20.1%
Sr ²⁺	45	44	2.9%	2.3%
V ³⁺	0 790	0 789	0.1%	12%
Zr ⁴⁺	0.770	0.791	2 727%	12%
Nh ⁵⁺	0.780	0.765	2.72770	19.4%
Cs^{1+}	0.590	0.702	18.9%	13.2%
Ba ²⁺	3.15	3.08	2 1%	6.5%
La ³⁺	0.750	0.687	8.3%	6.1%
Ce ³⁺	0.780	0.772	1.0%	16.7%
Pr ³⁺	0.760	0.772	4.6%	8 4%
Nd ³⁺	0.700	0.723	1 443%	38%
Sm ³⁺	0.790	0.694	12 152%	32%
5111 Fu ³⁺	0.790	0.732	6 2%	10%
Cd^{3+}	0.700	0.807	0.270	20%
Си Ть ³⁺	0.300	0.695	8.6%	29%
Dv^{3+}	0.830	0.636	23 4%	230/2
Бу Но ³⁺	0.810	0.050	6.086%	5.6%
\mathbf{Fr}^{3+}	0.810	0.774	1 4%	230/0
Е1 Тт ³⁺	0.810	0.774	16.0%	2370
Vh ³⁺	0.840	0.072	10.070	200/
10 1 11 ³⁺	0.040	0.749	9.6%	27/0 110/2
ыи Пf ⁴⁺	0.000	0.724	7.070 7.70/	11/0 250/-
пп Та ⁵⁺	0.740	0.730	2.270 70/	2370 0.50/
і а ті ³⁺	0.830	0.708	/ 7⁄0 1_00/	7.3% 220/
$\mathbf{D}\mathbf{h}^2$	0.240	0.238	1.0%	23%0 150/
го + ть ⁴⁺	2.07	2.30	13.9%	13%
1 N TT4+	0.830	0./30	11.289%	13%

Appendix A.4. Instrument reproducibility (relative accuracy and error) for secondary geochemical glass standard NIST-614 (Kurosawa *et al.*, 2002), analyzed as unknown at **120 μm**

²⁶ "--" denotes elements for which there is no reference data available and we are unable to calculate rel. accuracy

Reference #	Published Study	Rock Type	Code	Symbol ²⁷	Analytical Method(s) ²⁸
[1]	Colombini et al. 2011	High-Si Rhyolite	(A)		SHRIMP (titanite, zircon), LA-ICP-MS
[2]	Bachmann et al. 2005	High-Si Rhyolite	(A)		LA-ICP-MS
[3]	Troll <i>et al.</i> 2003	Peralkaline Rhyolite	(D)	\diamond	SYXRF-MP
[4]	Mahood & Hildreth 1983	High-Si Rhyolite	(A)		INAA
[5]	Nagasawa 1970	Granite	(E)	\bigtriangleup	ID-MS
[6]	Bea et al. 1994	Per-aluminous Ganite	(F)	\bigtriangleup	LA-ICP-MS
[7]	Sano et al. 2002	Dacite	(G)	0	SHRIMP
[8]	Ewart & Griffin 1994	High-Si Rhyolite, Low-Si Rhyolite	(A), (C)	□,◊	PMP, EMP (glass/matrix)
[9]	Sisson 1994	Rhyolite	(B)	\diamond	SIMS
[10]	Bacon & Druitt 1988	Rhyolite	(B)	\diamond	ARL-SEMQ (Whole- Rock/glass), XRF (glass), INAA
[11]	Anderson et al. 2000	High-Si Rhyolite	(A)		SIMS
[12]	Nash & Crecraft 1985	Rhyolite	(B)	\diamond	INAA, XRF
[13]	Schnetzler & Philpotts 1970	Rhyolite	(B)	\diamond	ID-MS
[14]	Stix & Gorton 1990	High-Si Rhyolite	(A)		INAA, ICP-MS (glass)
[15]	Leeman & Phelps 1981	Rhyolite	(A)		INAA
[16]	Streck & Grunder 1997	High-Si Rhyolite	(A)		INAA
[17]	Severs et al. 2009	Dacite	(G)	0	LA-ICP-MS

Appendix A.5. Partition coefficient (K_d) references and rock types for literature data used in GERM comparison plots (see Figs. 3-10, Chapter II)

²⁷ These symbols correspond to those used in Chapter II, Figs. 3-10
²⁸ Methods:

SHRIMP: sensitive high-resolution ion microprobe

LA-ICP-MS: laser ablation inductively-coupled plasma mass-spectrometry

SYXRF-MP: synchrotron radiation X-ray fluorescence microprobe

INAA: instrument neutron activation analysis

ID-MS: isotope dilution mass spectrometry

PMP: proton microprobe

EMP: electron microprobe

SIMS: secondary ion mass spectrometry

ARL-SEMQ MP: scanning electron microprobe quantometer

XRF: X-ray fluorescence

Mineral:	Titanite	Titanite	Titanite	Titanite	Chevkinite	Zircon	Zircon
Reference ²⁹ :	[1],(A)	[1],(A)	[2],(A)	[3],(D)	[3],(D)	[1],(A)	[1],(A)
Notes ³⁰ :	KPST01	HRL 21		- 1 1 1		KPST01	HRL 21
Li			0.04				
Mg	0.74	1.7		- 			
Al	0.15	0.15		1			
Ca	63	53		1			
Sc	23	36	5.9	1		15	44
Ti	269	358				0.01	0.01
V	39	89		1			
Mn	6.2	8.9					
Со		1		1	1		
Ni							
Cu				1			
Zn		1 1 1		1 1 1			
Ga							
Ge		- - 		- 	1		
Rb			< 0.01				
Sr	0.85	0.56	0.37	8.5	84		
Y	315	601	633	99	74	42	121
Zr	7	11	9.64	3.1	3.55	3406	6160
Nb	73	109	129	46	15	0.34	1.4
Cs							
Ba	0.73	0.83		1			
La	79	123	113	28	988	0.0025	0.0024
Ce	161	267	223	86	806	0.84	2.5
Pr	280	419		98	626		
Nd	412	750	639	134	615	0.05	0.08
Sm	614	1208	930	240	392	0.64	1.1
Eu	553	647	661	50	225	2.5	2.5
Gd	648	1332	855	96	142	5.8	13
Tb	619	1231		1		14	34
Dy	480	1048	935	82	72	24	68
Но	404	884		1	1	45	134
Er	352	678	636			77	219
Tm	256	456		1		105	293
Yb	166	316	393	1 1 1		112	359
Lu	117	237				131	475
Hf	10	19	18.7	1 1 1		1829	3850
Та	112	145	153				
Tl	0.00		0.10	1 1			
Pb	0.08	0.12	0.10			-	
Th	8.3	13	18.7	1 1 1		8.1	50
U	3	4.8	7	1	1	29	148

Appendix A.6. Partition coefficients (K_d) used in literature comparison (Figs. 3-10, Chapter II)

 ²⁹ See Table A.5 for references (numbers in brackets"[]") and sample compositions (letters in parentheses "()")
³⁰ KPST01 & HRL21: Sample names (see reference [1] for sample descriptions)

Mineral:	Zircon	Zircon	Zircon	Zircon	Zircon	Zircon	Apatite
Reference:	[1],(B)	[2],(A)	[4],(A)	[5],(E)	[6],(F)	[7],(G)	[5],(E)
Notes ³¹ :	HRL 27		AVG	AVG			
Li		- 	1				
Mg							
Al							
Ca		I I I					1
Sc	24	161	68.65				
Ti	0.02						
V							
Mn							
Со							1 1 1
Ni							
Cu							
Zn							
Ga							
Ge				1 1 1			1
Rb							
Sr							
Y	46	181			71.4		1
Zr	1778	1043		1230			
Nb	0.18	2.09					
Cs							1
Ba		< 0.01					
La	0.00052	0.1	16.9		1.3	0.00046	1
Ce	0.37	1.1	16.75		2.04	0.36	29.6
Pr		l I I					1
Nd	0.05	0.41	13.3	0.405	3.35	0.077	57.1
Sm	0.61	3.28	14.4	2.055	3.79	0.8	84.8
Eu	2.4	4.35	16	0.875	0.45	1.22	9.22
Gd	6.2	19.8			9.21	8	
Tb	14		37	1	24.8	20.7	
Dy	26	106	101.5	65.1	38.8	45.9	246
Ho	50				74.5	80	
Er	81	274		265.75	165	136	275
Tm	122				282	197	
Yb	125	465	527	534	278	277	232
Lu	172		641.5		923	325	199
Hf	997	3580	3193.5				
Ta		1.29	47.5				1 1 1
Tl							
Pb		0.05			7.5	- - 	
Th	4.5	10.6			22.1		
U	16	48.6			254		1

Appendix A.6. Continued

 $^{3^{31}}$ AVG = average of reported values for studies that report multiple K_d values or the max. and min. of their study

Mineral:	Apatite	Apatite	Amphibole	Amphibole	Amphibole	Amphibol
Reference:	[6],(F)	[7],(G)	[2],(A)	[8],(A)	[8],(C)	[9],(B)
Notes:			 	AVG	AVG	AVG
Li			0.3			
Mg						
Al			1 1 1		1	1
Ca						
Sc			45		1	117
Ti						15.8
V						19.5
Mn				19.55	10.45	
Со						
Ni			1 1 1		1	1
Cu				0.6	4.0	
Zn			1 1 1	9.6	4.8	1 1 1
Ga				1.46		
Ge				2.95	1.9	1 1
KD Sw			0.4	0.0335	0.199	1 075
Sr V	1(2		0.4	12.55	0.69	1.275
Y Zr	162		13.5	13.55	24.0	9.04
Zr			0.5	0.723	0.72	0.45
			2	2.39	4.1	
CS Ba			0.08	2 30	0.54	
Da La	456	36	1.4	2.39	0.34	1 30
La Ce	569	48	3.2			3.18
Pr	764	64	5.2		1 1 1	5.10
Nd	855	77	9.7			6.945
Sm	1105	93	15.5			9.53
Eu	23.8	55	10.8			
Gd	2133	127	14.9		1	1
Tb	3643	102				, , , ,
Dy	3257	76	17.6			11.25
Но	3143	62				
Er	4231	57	13.2			7.53
Tm	3769	53				1 1 1
Yb	2216	48	9.6			4.955
Lu	2981	33				
Hf			0.9			1
Та			0.5			
Tl						1 1
Pb	0.03		0.1	0.255	0.43	
Th	41		0.01			1 1
U	43.7		0.01	1 1	1	1

Appendix A.6. Continued

Mineral:	Amphibole	Biotite	Biotite	Biotite	Biotite	Biotite	Biotite
Reference:	[10],(B)	[2],(A)	[4],(A)	[6],(F)	[8],(A)	[8],(C)	[11],(A)
Notes:		1 1 1 1	AVG				
Li		1.2		45.4			
Mg		1 1 1					
Al		, , , ,					
Ca							
Sc	14	3.4	15.6	42.4			
Ti		1 1 1					
V		, , , ,		79.5			
Mn		1 1 1	10.65		15.5	5.7	
Со	37		90				
Ni		92		9.66		15.1	
Cu		1 1 1		• •	20.3	72.4	
Zn	2.3	1 1	16	2.8	31.6	11.4	
Ga		1 1 1			3.1	1.7	
Ge	0.4		4.15	(00	0.6	1.5	1.42
Rb	0.4	2	4.15	6.98	9.6	2.46	1.43
Sr V	0.01	0.1	- - 	0.01	7.2	0.25	0.003
Y 7r	0.5	0.02		0.1	2.4	2.5	
Zr Nb	0.5	0.05	1 	24.5	0.47	0.19	
		2.9	2.15	24.5	9.1	4.0	
CS Ra	0.3	0.5	5 35	20.8		6.4	71
La	0.36		3.07	0.05		0.4	/.1
Ce	0.50	0.01	2.82	0.00			
ec Pr	0.00	0.01	2.02	0.07			
Nd	1.6	0.01	2.25	0.08		1 1 1	
Sm	2.3	1 1 1					
Eu	3.2						
Gd		1 1 1					
Tb	2.4	1 1	- - 				
Dy		0.01	0.775	0.17			
Ho							
Er		1 1 1					
Tm		1 1					
Yb	1.8	1 1 1					
Lu	1.8	1 1					
Hf	0.52						
Та	0.43	1	1.335	29.1			
Tl				8.6			
Pb		0.1		0.04	2.1	0.21	
Th	0.16	< 0.01	1.1255	0.01			
U		1 1					

Appendix A.6. Continued

Mineral:	Biotite	Biotite	Sanidine	Sanidine	Sanidine	Sanidine	Sanidine
Reference:	[12],(B)	[13],(B)	[2],(A)	[4],(A)	[8],(A)	[8],(C)	[11],(A)
Notes:	AVG			AVG	AVG	AVG	
Li			0.01		·		
Mg							
Al			1 1 1 1				
Ca		I I I	1 1 1				
Sc	12.45		0.5	0.0415			
Ti			1 1				
V			1 1 1				
Mn	109.3			0.023	0.177	0.114	
Со							
Ni							
Cu							
Zn	136		, , , ,				
Ga					0.95	1.225	
Ge					1.02	1.45	
Rb	3.2	1	0.7	0.525	0.415	0.415	0.593
Sr	0.41		7.4		12.105	4.94	11.3
Ŷ	1.2		-0.01		0.1075	0.0425	
Zr	1.295		<0.01		0.1075	0.0435	
ND Ca	0.75		0.02	0.025			
Cs Da	2.8		0.02	0.035	11.0	0.25	201
Da	20.8		17.1	5.65	11.0	9.55	20.4
La	5.03	0.234	0.00	0.074			
Pr	5.75	0.234	0.02	0.005			
Nd	33	0 339	< 0.01	0.053			
Sm	5.5	0.559	0.01	0.000			
Eu			2.9	2.75			
Gd							
Tb			1 1 1 1				
Dy	2.08	0.2					
Ho			1 1 1				
Er			1 1				
Tm			1 1 1				
Yb			1 1				
Lu			1 1 1				
Hf		1	1 1 1			1	
Та	1.55		1 1 1 1				
Tl		I I	1 1 1			I I	
Pb	0.85		1.1		0.75	0.475	
Th	1.135	I I	1 1 1	- - -	- - -	I I	
U			1 1 1			1 1 1	

Appendix A.6. Continued

Appendix	A.6.	Continued
----------	------	-----------

Mineral:	Sanidine	Sanidine	Plagioclase	Plagioclase	Plagioclase	Plagioclase
Reference:	[14],(A)	[15],(A)	[2],(A)	[6],(F)	[8],(A)	[8],(C)
Notes:	AVG				AVG	AVG
Li			0.2	0.72		1
Mg						
Al			 			- -
Ca	0.49					
Sc		0.029	0.5	1.62		
Ti						
V			1 1	0.13		
Mn					0.295	0.15
Co						
Ni			1 1 1	0.1.4	0.05	0.005
Cu			1 1	0.14	0.95	0.805
Ln Ca			1 1 1	0.07	U.1/5	0.365
Ga					1.145	1./8
Ge Dh	0.40	0.4	<0.01	0.06	0.02	0.975
KU Sr	0.49	0.4	<0.01 12.5	0.00	0.02 8.12	6.815
V	4		0.02	0.78	0.053	0.3165
1 7r		0.36	<0.02	0.78	0.033	0.14
Nh		0.50	<0.01		0.090	0.14
Cs	0.0315	0.024	<0.01	0 44		
Ba	22.5	22	0.61	0.19	1.4	0.375
La	0.088	0.129	0.4	4.61		
Ce	0.056	0.065	0.3	3.87		1
Pr	0.051			4.22		
Nd		0.054	0.2	2.56		
Sm						1 1 1
Eu	5.6	9.06	3.1	2.99		
Gd			1 1			-
Tb						
Dy			 			- 1 1
Но						
Er			1 1			-
Tm						
Yb						- -
Lu			 			
Hf			1 1			1 1
Ta						
TI			0.5	0.77	0.00	0.505
Рb ть			0.5	0.77	0.66	0.595
I N T			, 1 1 1			1 1 1
U	1	1	1			I. Contraction of the second se

Mineral:	Plagioclase	Plagioclase	Plagioclase	Plagioclase	Plagioclase
Reference:	[10],(B)	[11],(A)	[12],(B)	[16],(A)	[17],(G)
Notes:			AVG	AVG	1
Li			 		
Mg					
Al			- 1 1		- 1 1
Ca					
Sc	0.01		0.04		
Ti					0.043
V					
Mn			0.44	0.0155	0.06
Со					
Ni			1		1
Cu	0.40		2.55		
Zn	0.48		3.55		1
Ga					
Rh	0.3	0.084	0.125	0.235	
Sr	0.3 4 4	14.6	19.9	0.233	- 1 1
Y	0.2	11.0	0.125	11.0	0.012
Zr	•		0.2		0.005
Nb					
Cs	0.03		0.1	0.0545	
Ba	0.48	1.69	1.93	13.25	0.186
La	0.3		0.375	0.12	0.088
Ce	0.22		0.275	0.068	
Pr			- 1 1		- 1 1
Nd	0.19		0.215		0.054
Sm	2		5.05	4 605	0.007
Eu	2		5.85	4.685	0.397
Gđ Th					
			- - 		- -
Бу Но					
Er					
Tm					
Yb					
Lu					
Hf					
Та					
Tl			1		1
Pb			1.31		0.134
Th			- - - 		- - -
U					

Appendix A.6. Continued

Appendix A.7. Mathematical method for forcing the apex of an *Onuma* curve to occur at a specific ionic radius.

The *Onuma* function relates the K_d of an element and its ionic radius (r) to those of its host crystallographic site with the following equation (from Blundy & Wood, 1994):

(1.1)
$$K_d = K_d^* \times \exp\left(\frac{-4\pi E_M\left(\frac{r^*(r-r^*)^2}{2} + \frac{(r-r^*)^3}{3}\right)}{kT}\right)$$
, which, in logarithmic space, simplifies to

(1.2)
$$Ln(K_d) = Ln(K_d^*) - \left(\left(\frac{2\pi E_M r^*}{kT}\right)(r-r^*)^2\right) - \left(\left(\frac{4\pi E_M}{3kT}\right)(r-r^*)^3\right).$$

Thus, the *Onuma* function has the polynomial form of: $y = ax^3 + bx^2 + c$, where y is the K_d of a particular element of interest in logarithmic space $(Ln[K_d])$, x is the difference in ionic radius between that element and the ideal radius of the crystallographic site it occupies $(r-r^*)$, c is the ideal partition coefficient in logarithmic space $(Ln[K_d^*])$ of that site, and a and b are negative constants reflecting the elastic response of the crystallographic site $\left(\frac{4\pi E_M}{3kT}\right)$ and $\left[\frac{2\pi E_M r^*}{kT}\right]$, respectively), which take into account its ideal radius (r^*) and Young's modulus (E_M), as well as the temperature (*T*) and Boltzmann's constant (*k*). For each group of elements, the *Onuma* (or best-fit) curve represents how they conform to the ideal radius of the crystallographic site they occupy, which occurs at the apex of the curve. This value (x_{max}) can be calculated by setting the first derivative of the *Onuma* function to zero (equation 1.5) and solving for x_{max} (equations 1.6-1.8). In simplified polynomial form:

(1.3) $y' = 3ax^2 + 2bx$

$$(1.4) \quad 0 = 3a(x_{max})^2 + 2b(x_{max})$$

(1.5) $x_{max} = -\frac{2b}{3a}$ and $b = \frac{-3a(x_{max})}{2}$

Thus, we can fit any parabola to a particular r^* , where $x_{max} = r^*$, using a least-squares fit and fixing the *b* constant using formula 1.5 above.

APPENDIX B

AUSTURHORN INTRUSIVE COMPLEX

Spot Name	Mount	²⁰⁴ Pb/ ²⁰⁶ Pb	% error	²⁰⁶ Pb/ ²³⁸ U	% error	U (ppm)	Th (ppm)	²³² Th/ ²³⁸ U	% error	Total ²³⁸ U/ ²⁰⁶ Pb	% error	Total ²⁰⁷ Pb/ ²⁰⁶ Pb	% error	²⁰⁷ Pb-corr ²⁰⁴ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb-corr % ²⁰⁶ Pb _C
							IA-NS-2	(Granopl	nyre)						~
IA-NS-2 2.1	JW498	3.0E-2	71	0.0016	8.6	44	22	0.51	0.64	1185	7.1	0.0843	28	2.6E-3	4.83
IA-NS-2 1.1	JW498		100	0.0017	6.5	65	30	0.48	1.21	1079	4.5	0.0554	26	6.2E-4	1.17
IA-NS-28.1	JW498	4.1E-3	50	0.0018	5.4	597	624	1.08	0.68	1041	2.6	0.0600	9	9.4E-4	1.75
IA-NS-2 7.1	JW498	-6.3E-3	100	0.0018	5.5	89	43	0.50	0.46	1055	3.9	0.0479	23	1.2E-4	0.22
IA-NS-2_3.1	JW498	2.3E-3	100	0.0019	8.2	232	140	0.62	0.94	1016	5.4	0.0562	14	6.8E-4	1.26
IA-NS-2_6.1	JW498	3.1E-3	58	0.0019	4.3	558	441	0.82	1.00	1012	2.1	0.0554	9	6.3E-4	1.17
IA-NS-2_5.1	JW498	2.8E-3	50	0.0020	4.6	781	847	1.12	0.20	1016	1.8	0.0445	9	-1.2E-4	-0.22
IA-NS-2_9.1	JW498		100	0.0020	2.4	498	523	1.08	0.93	973	2.4	0.0547	10	5.8E-4	1.08
IA-NS-2_10.1	JW498	2.1E-3	41	0.0020	4.9	1480	1437	1.00	0.10	977	2.4	0.0488	6	1.8E-4	0.33
IA-NS-2_4.1	JW498	-5.3E-3	71	0.0020	3.5	208	105	0.52	0.30	978	4.7	0.0373	20	-6.0E-4	-1.13
						IA-NS	8-4b (Higl	h-SiO ₂ Gi	ranophyr	e)					
IA-NS-4b 15.1	JW498	1.5E-2	24	0.0019	6.3	676	518	0.79	0.71	1014	1.9	0.0924	12	3.1E-3	5.85
IA-NS-4b 10.1	JW498	5.2E-3	100	0.0019	4.9	115	46	0.41	0.45	1022	3.8	0.0748	19	1.9E-3	3.63
IA-NS-4b 8.1	JW498	1.8E-3	100	0.0020	3.1	346	186	0.55	1.29	1023	5.3	0.0615	12	1.0E-3	1.94
IA-NS-4b 16.1	JW498	1.9E-2	58	0.0018	5.5	96	35	0.38	0.50	1040	5.7	0.0391	26	-4.8E-4	-0.90
IA-NS-4b_5.1	JW498	2.1E-2	50	0.0018	4.9	118	61	0.53	0.41	1004	5.9	0.0611	19	1.0E-3	1.89
IA-NS-4b 53.1	AJP05	1.8E-3	65	0.0021	2.9	3327	1316	0.41	0.94	988	1.5	0.0676	6	0.0014	2.71
IA-NS-4b 18.1	JW498	2.7E-3	45	0.0020	3.9	1126	1421	1.30	3.53	994	1.4	0.0538	7	5.2E-4	0.96
IA-NS-4b_2.1	JW498			0.0018	8.6	123	65	0.55	0.39	992	9.6	0.0574	19	7.6E-4	1.42
IA-NS-4b_14.1	JW498	2.1E-3	45	0.0019	6.4	1595	1215	0.79	0.76	996	2.0	0.0533	6	4.8E-4	0.90
IA-NS-4b_6.1	JW498	2.0E-2	71	0.0019	6.9	62	25	0.42	1.20	929	9.3	0.1059	20	4.0E-3	7.56
IA-NS-4b_4.1	JW498	9.1E-3	20	0.0022	1.1	1581	1010	0.66	2.54	883	2.2	0.1398	16	6.3E-3	11.86
IA-NS-4b_51.1	AJP05	-6.1E-3	62	0.0020	3.4	1149	1594	1.43	1.34	970	1.6	0.0580	7	8.0E-4	1.50
IA-NS-4b_12.1	JW498	3.1E-3	45	0.0020	5.5	985	2095	2.20	0.22	965	1.5	0.0558	7	6.5E-4	1.22
IA-NS-4b_17.1	JW498	3.9E-3	30	0.0021	1.4	1484	1496	1.04	4.54	939	1.4	0.0787	23	2.2E-3	4.11
IA-NS-4b_1.1	JW498	9.2E-4	71	0.0020	5.7	1271	777	0.63	0.78	978	2.5	0.0473	7	7.3E-5	0.14
IA-NS-4b_9.1	JW498	8.5E-4	58	0.0021	4.8	2055	4579	2.30	0.66	964	1.4	0.0498	5	2.4E-4	0.45
IA-NS-4b_7.1	JW498	2.5E-3	27	0.0021	6.3	3430	5242	1.58	0.41	967	1.8	0.0476	4	9.2E-5	0.17
IA-NS-4b_11.1	JW498		100	0.0021	3.1	263	171	0.67	0.24	981	0.7	0.0399	17	-4.2E-4	-0.79
IA-NS-4b_55.1	AJP05	-2.9E-3	71	0.0026	4.6	1261	693	0.57	1.06	917	2.3	0.0756	5	2.0E-3	3.73
IA-NS-4b_57.1	AJP05	-7.3E-4	91	0.0024	2.8	3666	11224	3.16	5.54	879	0.9	0.0830	3	2.5E-3	4.66
IA-NS-4b_3.1	JW498	4.3E-3	22	0.0021	9.2	2045	2655	1.34	23.28	863	4.1	0.1011	10	3.7E-3	6.95
IA-NS-4b_13.1	JW498	7.9E-3	71	0.0020	4.2	144	85	0.61	0.35	939	3.9	0.0382	21	-5.4E-4	-1.01
IA-NS-4b 49.1	AJP05	9.4E-3	46	0.0026	7.9	1297	21800	17.36	0.95	849	3.0	0.0522	22	4.1E-4	0.76

Appendix B.1. Zircon U-Pb Geochronology³², measured *in-situ* by SHRIMP-RG

 $[\]frac{1}{3^2}$ Errors (%) are all 1 σ ; *Pb_C* denotes proportion of common Pb; *Pb-corr* indicates correction made using the corresponding (labeled) measured Pb values

Spot Name	Mount	²⁰⁴ Pb-corr ²⁰⁷ Pb*/ ²³⁵ U	% error	²⁰⁴ Pb-corr ²⁰⁶ Pb*/ ²³⁸ U	% error	Error Corr.	²⁰⁷ Pb-corr ³⁴ ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	lσ error	²³⁰ Th-corr ³⁵ ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	2σ error	Reason for excluding?
						IA-NS-2	(Granophyre)				
IA-NS-2 2.1	JW498	0.045	174	3.7E-4	92	0.53	5.2	0.40	5.26	0.80	High comm-Pb, low U, outlier (>2SD)
IA-NS-2 1.1	JW498	0.007	26	9.3E-4	4	0.17	5.9	0.28	5.99	0.57	
IA-NS-28.1	JW498	0.000	848	8.9E-4	5	0.01	6.1	0.16	6.13	0.33	
IA-NS-2_7.1	JW498	0.019	58	1.1E-3	11	0.19	6.1	0.25	6.18	0.50	
IA-NS-2_3.1	JW498	0.003	189	9.4E-4	7	0.04	6.3	0.34	6.34	0.68	
IA-NS-2_6.1	JW498	0.001	360	9.3E-4	4	0.01	6.3	0.14	6.36	0.28	
IA-NS-2_5.1	JW498	0.000	8083	9.3E-4	3	0.00	6.4	0.12	6.41	0.23	
IA-NS-2_9.1	JW498	0.008	10	1.0E-3	2	0.24	6.6	0.16	6.60	0.33	
IA-NS-2_10.1	JW498	0.002	88	9.8E-4	3	0.03	6.6	0.16	6.63	0.32	
IA-NS-2_4.1	JW498	0.017	44	1.1E-3	8	0.18	6.7	0.32	6.74	0.63	
					IA-N	S-4b (High	-SiO2 Granoph	yre)			
IA-NS-4b 15.1	JW498	0.019	21	7.1E-4	9	0.44	6.0	0.15	6.07	0.29	Younger grain, Outlier (>2SD)
IA-NS-4b 10.1	JW498	0.001	980	8.8E-4	12	0.01	6.1	0.26	6.17	0.52	
IA-NS-4b_8.1	JW498	0.004	86	9.4E-4	6	0.07	6.2	0.33	6.26	0.67	
IA-NS-4b 16.1	JW498	0.034	87	6.2E-4	32	0.37	6.3	0.36	6.35	0.73	
IA-NS-4b 5.1	JW498	0.036	77	6.1E-4	32	0.42	6.3	0.38	6.39	0.76	
IA-NS-4b 53.1	AJP05	0.005	46	9.8E-4	3	0.06	6.3	0.10	6.44	0.21	
IA-NS-4b 18.1	JW498	0.002	164	9.6E-4	3	0.02	6.4	0.09	6.48	0.19	
IA-NS-4b 2.1	JW498	0.008	22	1.0E-3	10	0.44	6.4	0.62	6.49	1.24	
IA-NS-4b 14.1	JW498	0.003	68	9.7E-4	3	0.04	6.4	0.13	6.49	0.27	
IA-NS-4b_6.1	JW498	0.030	86	6.8E-4	42	0.49	6.4	0.63	6.50	1.25	
IA-NS-4b 4.1	JW498	0.000	1135	9.4E-4	5	0.00	6.4	0.24	6.52	0.49	
IA-NS-4b_51.1	AJP05	0.022	33	1.1E-3	7	0.20	6.5	0.11	6.60	0.22	
IA-NS-4b_12.1	JW498	0.001	273	9.8E-4	3	0.01	6.6	0.11	6.62	0.21	
IA-NS-4b_17.1	JW498	0.003	143	9.9E-4	3	0.02	6.6	0.18	6.66	0.37	
IA-NS-4b_1.1	JW498	0.005	31	1.0E-3	3	0.09	6.6	0.17	6.66	0.33	
IA-NS-4b_9.1	JW498	0.005	21	1.0E-3	2	0.08	6.7	0.10	6.68	0.19	
IA-NS-4b_7.1	JW498	0.001	125	9.9E-4	2	0.02	6.7	0.12	6.70	0.25	
IA-NS-4b_11.1	JW498	0.006	17	1.0E-3	1	0.04	6.6	0.07	6.71	0.15	
IA-NS-4b_55.1	AJP05	0.018	23	1.1E-3	4	0.18	6.8	0.16	6.85	0.32	
IA-NS-4b_57.1	AJP05	0.015	10	1.2E-3	2	0.15	7.0	0.07	6.98	0.14	
IA-NS-4b_3.1	JW498	0.005	52	1.1E-3	5	0.09	6.9	0.30	7.01	0.60	Older grain, outlier
IA-NS-4b_13.1	JW498	0.013	54	9.1E-4	13	0.24	6.9	0.28	7.02	0.56	Older grain, outlier
IA-NS-4b_49.1	AJP05	0.015	34	9.7E-4	10	0.30	7.5	0.25	7.02	0.50	Older grain, outlier

Appendix B.1. Continued³³

³³ Pb* denotes proportion of radiogenic Pb; discarded ages are listed in red strikethrough font
³⁴ Corrected for common Pb assuming ²⁰⁶Pb/²³⁸U-²⁰⁷Pb/²³⁵U age concordance
³⁵ Corrected for initial ²³⁸U-²³⁰Th disequilibrium using whole-rock Th/U for each sample

Spot Name	Mount	²⁰⁴ Pb/ ²⁰⁶ Pb	% error	²⁰⁶ Pb/ ²³⁸ U	% error	U (ppm)	Th (ppm)	²³² Th/ ²³⁸ U	% error	Total ²³⁸ U/ ²⁰⁶ Pb	% error	Total ²⁰⁷ Pb/ ²⁰⁶ Pb	% error	²⁰⁷ Pb-corr ²⁰⁴ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb-corr % ²⁰⁶ Pb _C
							IA-NS	-6 (Diorit	e)						
IA-NS-6 14.1	JW498	6.2E-3	100	0.0015	5.2	108	56	0.54	0.40	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3.57		
IA-NS-6 1.1	JW498	6.7E-3	100	0.0017	9.3	94	43	0.47	0.47	1071	6.3	0.0776	19	2.1E-3	3.98
IA-NS-6_5.1	JW498	4.3E-3	45	0.0018	7.4	697	565	0.84	1.28	1062	3.6	0.0521	10	4.0E-4	0.75
IA-NS-6 3.1	JW498	8.4E-4	100	0.0019	5.6	759	704	0.96	0.25	1040	1.4	0.0621	8	1.1E-3	2.02
IA-NS-6_8.1	JW498	3.8E-3	50	0.0019	2.1	681	660	1.00	0.14	1029	4.0	0.0582	9	8.1E-4	1.52
IA-NS-6_4.1	JW498	2.6E-3	71	0.0018	5.1	523	601	1.19	0.42	1035	3.4	0.0512	12	3.4E-4	0.64
IA-NS-6_7.1	JW498	3.1E-2	45	0.0018	11.4	93	43	0.47	0.46	1035	8.9	0.0471	23	6.3E-5	0.12
IA-NS-6_9.1	JW498	2.2E-3	58	0.0019	6.6	855	974	1.18	0.48	1016	2.6	0.0567	8	7.1E-4	1.33
IA-NS-6_17.1	JW498	3.4E-3	50	0.0019	6.5	709	730	1.06	0.75	1011	1.8	0.0508	9	3.1E-4	0.58
IA-NS-6_13.1	JW498	8.3E-3	30	0.0018	2.1	844	1043	1.28	0.24	1008	2.8	0.0514	8	3.5E-4	0.66
IA-NS-6_10.1	JW498	1.0E-2	33	0.0019	2.3	505	409	0.84	0.32	1014	1.1	0.0479	11	1.1E-4	0.21
IA-NS-6_2.1	JW498	2.7E-3	38	0.0017	6.0	1888	2502	1.37	0.79	1010	1.7	0.0476	11	9.5E-5	0.18
IA-NS-6_16.1	JW498	5.6E-3	50	0.0021	2.6	346	388	1.16	0.60	1005	1.8	0.0518	12	3.8E-4	0.71
IA-NS-6_15.1	JW498	-2.2E-3	71	0.0019	2.2	556	538	1.00	0.60	1002	2.6	0.0476	10	9.8E-5	0.18
IA-NS-6_11.1	JW498	4.7E-3	100	0.0019	10.1	113	74	0.68	0.71	994	7.3	0.0499	20	2.5E-4	0.47
IA-NS-6_12.1	JW498		100	0.0020	8.8	88	36	0.43	0.50	969	6.5	0.0485	23	1.5E-4	0.29
IA-NS-6_6.1	JW498	-5.2E-3	71	0.0020	3.4	204	127	0.64	1.11	951	1.4	0.0377	19	-5.8E-4	-1.08
							IA-NS-7	(Granodi	orite)						
IA-NS-7 17.1	JW510	4.2E-3	100	0.0013	4.9	129	92	0.74	0.34	1140	4.8	0.0507	21	3.0E-4	0.57
IA-NS-726.1	JW510	4.9E-3	71	0.0021	13.3	91	90	1.03	4.16	977	10.7	0.1358	20	6.1E-3	11.34
IA-NS-7 18.1	JW510	3.7E-3	58	0.0016	2.6	354	173	0.50	1.30	1088	2.3	0.0531	12	4.7E-4	0.88
IA-NS-7 25.1	JW510	2.1E-3	100	0.0019	3.5	167	121	0.75	0.52	1088	6.0	0.0442	17	-1.4E-4	-0.25
IA-NS-7_24.1	JW510		100	0.0018	4.8	102	61	0.62	1.54	1077	7.6	0.0474	19	8.4E-5	0.16
IA-NS-7_1.1	JW510	3.0E-3	71	0.0018	2.9	236	187	0.82	0.56	1077	3.1	0.0431	14	-2.1E-4	-0.39
IA-NS-7_23.1	JW510	1.1E-3	100	0.0019	2.5	289	306	1.09	0.74	1061	3.6	0.0512	11	3.4E-4	0.64
IA-NS-7_21.1	JW510		100	0.0017	5.6	296	267	0.93	0.43	1053	4.8	0.0427	14	-2.3E-4	-0.44
IA-NS-7_19.1	JW510	2.4E-2	15	0.0038	4.9	382	375	1.01	0.34	513	3.4	0.4485	7	2.7E-2	50.93
IA-NS-7_4.1	JW510	4.2E-4	100	0.0022	5.0	1328	1395	1.08	0.38	1038	2.0	0.0491	6	2.0E-4	0.367
IA-NS-7_27.1	JW510	2.0E-3	71	0.0020	2.3	348	355	1.06	0.26	1025	2.2	0.0409	12	-3.6E-4	-0.66
IA-NS-7_2.1	JW510	5.7E-4	50	0.0020	1.8	2476	3088	1.29	0.11	1003	1.1	0.0526	4	4.4E-4	0.81
IA-NS-7_9.1	JW510	1.2E-3	41	0.0020	1.7	1891	2157	1.18	0.15	1001	1.7	0.0508	5	3.1E-4	0.58
IA-NS-7_14.1	JW510	2.1E-2	28	0.0024	10.1	173	115	0.68	0.26	792	9.8	0.2157	23	1.1E-2	21.46
IA-NS-7_16.1	JW510	9.2E-4	100	0.0019	4.2	381	433	1.18	4.31	990	4.0	0.0557	10	6.4E-4	1.20
IA-NS-7_15.1	JW510		100	0.0025	3.6	1203	1177	1.01	0.51	998	1.9	0.0469	13	4.9E-5	0.092
IA-NS-7_12.2	JW510	6.7E-3	19	0.0021	3.4	1389	1054	0.78	1.35	882	5.0	0.1290	25	5.6E-3	10.48
IA-NS-7_20.1	JW510	5.0E-4	100	0.0021	3.1	683	560	0.85	0.24	984	2.9	0.0433	8	-2.0E-4	-0.37
IA-NS-7_22.1	JW510	-6.6E-3	50	0.0019	6.0	207	156	0.78	1.92	994	6.3	0.0331	19	-8.9E-4	-1.66

Appendix B.1. Continued

Spot Name	Mount	²⁰⁴ Pb-corr ²⁰⁷ Pb*/ ²³⁵ U	% error	²⁰⁴ Pb-corr ²⁰⁶ Pb*/ ²³⁸ U	% error	Error Corr.	²⁰⁷ Pb-corr ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	1σ error	²³⁰ Th-corr ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	2σ error	Reason for excluding?
						IA-NS-	6 (Diorite)				
IA-NS-6_14.1	JW498	0.002	232	7.2E-4	13	0.06	5.0	0.19	5.12	0.39	Younger grain, outlier (>2SD)
IA-NS-6_1.1	JW498	0.003	183	8.2E-4	16	0.09	5.8	0.38	5.87	0.76	Younger grain, outlier (>2SD)
IA-NS-6_5.1	JW498	0.002	106	8.7E-4	5	0.05	6.0	0.22	6.10	0.44	
IA-NS-6_3.1	JW498	0.006	27	9.5E-4	2	0.08	6.1	0.09	6.14	0.19	
IA-NS-6_8.1	JW498	0.000	4077	9.0E-4	5	0.00	6.2	0.25	6.24	0.50	
IA-NS-6_4.1	JW498	0.002	253	9.2E-4	5	0.02	6.2	0.22	6.25	0.43	
IA-NS-6_7.1	JW498	0.058	120	4.1E-4	63	0.52	6.2	0.56	6.31	1.12	
IA-NS-6_9.1	JW498	0.003	89	9.4E-4	4	0.04	6.3	0.17	6.32	0.34	
IA-NS-6 17.1	JW498	0.000	1491	9.3E-4	4	0.00	6.3	0.12	6.40	0.24	
IA-NS-6_13.1	JW498	0.011	18	8.4E-4	6	0.35	6.3	0.18	6.41	0.36	
IA-NS-6 10.1	JW498	0.016	29	7.9E-4	8	0.28	6.3	0.08	6.42	0.16	
IA-NS-6 2.1	JW498	0.001	336	9.4E-4	3	0.01	6.4	0.11	6.42	0.23	
IA-NS-6 16.1	JW498	0.005	24	8.9E-4	6	0.25	6.4	0.13	6.43	0.25	
IA-NS-6_15.1	JW498	0.011	28	1.0E-3	4	0.14	6.4	0.17	6.49	0.34	
IA-NS-6 11.1	JW498	0.003	110	9.2E-4	12	0.11	6.5	0.48	6.53	0.95	
IA-NS-6 12.1	JW498	0.007	24	1.0E-3	7	0.27	6.6	0.44	6.72	0.88	
IA-NS-6 6.1	JW498	0.017	43	1.2E-3	6	0.15	6.9	0.12	6.94	0.23	Older grain, outlier (>2SD)
						IA-NS-7 (Granodiorite)				
IA-NS-7 17.1	JW510	0.002	233	8.1E-4	10	0.04	5.62	0.28	5.70	0.56	Low UO/U, outlier (>2SD)
IA-NS-7 26.1	JW510	0.008	98	9.3E-4	13	0.13	5.85	0.67	5.92	1.34	
IA-NS-7 18.1	JW510	0.001	609	8.6E-4	5	0.01	5.87	0.15	5.96	0.29	
IA-NS-7 25.1	JW510	0.001	283	8.8E-4	7	0.03	5.94	0.36	6.01	0.72	
IA-NS-7 24.1	JW510	0.006	21	9.3E-4	8	0.36	5.97	0.46	6.06	0.91	
IA-NS-7_1.1	JW510	0.001	684	8.8E-4	5	0.01	6.01	0.19	6.08	0.38	
IA-NS-7 23.1	JW510	0.004	54	9.2E-4	4	0.08	6.03	0.22	6.10	0.45	
IA-NS-7 21.1	JW510	0.006	14	9.5E-4	5	0.33	6.15	0.30	6.22	0.59	
IA-NS-7 19.1	JW510	0.021	73	1.1E-3	12	0.17	6.16	0.53	6.23	1.06	High comm-Pb (>20%)
IA-NS-7_4.1	JW510	0.006	16	9.6E-4	2	0.13	6.2	0.13	6.25	0.25	
IA-NS-7 27.1	JW510	0.001	221	9.4E-4	4	0.02	6.33	0.15	6.39	0.29	
IA-NS-7 2.1	JW510	0.006	11	9.9E-4	1	0.11	6.37	0.07	6.43	0.14	
IA-NS-7_9.1	JW510	0.004	23	9.8E-4	2	0.08	6.40	0.11	6.46	0.22	
IA-NS-7 14.1	JW510	0.018	54	7.8E-4	20	0.37	6.39	0.81	6.47	1.63	High comm-Pb (>20%)
IA-NS-7 16.1	JW510	0.006	36	9.9E-4	4	0.12	6.43	0.26	6.49	0.52	
IA-NS-7 15.1	JW510	0.006	13	1.0E-3	2	0.15	6.4	0.13	6.52	0.26	
IA-NS-7 12.2	JW510	0.004	153	9.9E-4	6	0.04	6.54	0.44	6.62	0.87	
IA-NS-7 20.1	JW510	0.005	24	1.0E-3	3	0.13	6.57	0.19	6.65	0.39	
IA-NS-7_22.1	JW510	0.019	34	1.1E-3	8	0.25	6.59	0.42	6.67	0.83	

Appendix B.1. Continued

Spot Name	Mount	²⁰⁴ Pb/ ²⁰⁶ Pb	% error	²⁰⁶ Pb/ ²³⁸ U	% error	U (ppm)	Th (ppm)	²³² Th/ ²³⁸ U	% error	Total ²³⁸ U/ ²⁰⁶ Pb	% error	Total ²⁰⁷ Pb/ ²⁰⁶ Pb	% error	²⁰⁷ Pb-corr ²⁰⁴ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb-corr % ²⁰⁶ Pb _C
						IA-N	S-9 (High	∎-SiO₂ Gr	anophyre	e)					
IA-NS-9 12.1	AJP03	1.7E-2	65	0.0017	6.2	147	120	0.84	5.05	1062	3.5	0.0675	16	1.4E-3	2.71
IA-NS-9 20.1	AJP03	8.4E-3	120	0.0019	3.0	69	27	0.40	0.40	1055	4.1	0.0539	21	5.2E-4	0.98
IA-NS-9 11.1	AJP03	-2.5E-3	129	0.0019	3.6	222	121	0.56	0.71	1016	3.3	0.0780	11	2.2E-3	4.03
IA-NS-9_9.1	AJP03	-2.1E-3	183	0.0021	3.8	113	54	0.49	0.29	999	2.8	0.0902	13	3.0E-3	5.58
IA-NS-9_10.1	AJP03	1.0E-2	77	0.0020	3.7	137	79	0.59	0.24	1043	2.6	0.0516	16	3.7E-4	0.69
IA-NS-9_8.1	AJP03	3.7E-3	158	0.0020	4.3	86	42	0.51	0.33	1020	2.8	0.0677	19	1.5E-3	2.73
IA-NS-9_5.1	AJP03	1.2E-2	85	0.0021	2.6	88	39	0.45	0.91	1028	2.4	0.0503	18	2.8E-4	0.52
IA-NS-9_22.1	AJP02	4.7E-3	120	0.0022	2.1	152	78	0.53	1.70	981	3.4	0.0774	25	2.1E-3	3.96
IA-NS-9_4.1	AJP03	9.2E-3	95	0.0022	2.5	87	45	0.54	0.31	1000	2.0	0.0572	20	7.4E-4	1.39
IA-NS-9_7.1	AJP03	-4.5E-3	129	0.0021	2.3	95	50	0.55	0.45	991	3.0	0.0551	18	6.0E-4	1.13
IA-NS-9_16.1	AJP03	7.2E-3	100	0.0020	2.3	121	69	0.58	0.49	997	2.6	0.0491	19	2.0E-4	0.37
IA-NS-9_21.1	AJP03	1.9E-4	141	0.0023	2.8	2088	718	0.36	0.66	1000	1.2	0.0463	4	9.8E-6	0.02
IA-NS-9_15.1	AJP03	8.3E-3	120	0.0022	2.9	63	30	0.49	0.38	995	2.8	0.0485	22	1.6E-4	0.29
IA-NS-9_18.1	AJP03	1.1E-3	58	0.0020	5.5	2017	2028	1.04	0.73	982	0.9	0.0509	6	3.2E-4	0.60
IA-NS-9_6.1	AJP03	2.2E-2	61	0.0025	11.5	73	39	0.55	0.33	886	8.5	0.1250	34	5.3E-3	9.98
IA-NS-9_2.1	AJP03	-2.7E-4	183	0.0022	2.0	848	291	0.35	0.20	977	1.1	0.0475	6	8.7E-5	0.16
IA-NS-9_1.1	AJP03	-2.1E-3	183	0.0023	3.8	100	61	0.63	0.58	954	2.9	0.0502	19	2.7E-4	0.50
IA-NS-9_19.1	AJP03	1.6E-2	21	0.0029	3.0	763	7339	9.94	1.09	672	2.2	0.2488	8	1.4E-2	25.65
IA-NS-9_13.1	AJP03		100	0.0023	5.9	87	53	0.63	0.30	930	4.4	0.0614	18	1.0E-3	1.92
IA-NS-9_17.1	AJP03	2.1E-2	20	0.0038	1.2	2174	1793	0.85	1.86	523	4.2	0.3871	8	2.3E-2	43.15
IA-NS-9_14.1	AJP03	3.6E-3	37	0.0028	4.9	3322	4159	1.29	0.90	861	2.5	0.0761	3	2.0E-3	3.79
IA-NS-9_3.1	AJP03	1.6E-2	37	0.0037	22.9	872	1587	1.88	0.11	557	25.5	0.2965	21	1.7E-2	31.68
						IA-NS	8-10 (Hig	h-SiO ₂ Gi	ranophyr	e)					
IA-NS-10 25.1	AJP05	2.6E-2	62	0.0052	17.6	91	63	0.706	2.83	413	19.4	0.5882	22	3.7E-2	68.63
IA-NS-10 17.1	AJP05			0.0021	8.2	86	39	0.470	0.50	1019	5.2	0.1351	18	6.0E-3	11.26
IA-NS-10 19.1	AJP05	3.0E-2	75	0.0020	9.5	141	93	0.677	0.62	988	6.4	0.1538	12	7.3E-3	13.63
IA-NS-10 8.1	AJP05	1.1E-1	51	0.0026	3.9	67	20	0.301	0.67	858	6.4	0.2429	35	1.3E-2	24.90
IA-NS-10_16.1	AJP05			0.0023	13.3	82	34	0.425	0.62	923	8.8	0.1605	32	7.7E-3	14.48
IA-NS-10 23.1	AJP05	1.4E-1	46	0.0024	6.5	71	28	0.408	0.65	987	7.2	0.0737	19	1.9E-3	3.48
IA-NS-10_22.1	AJP05	-5.1E-2	71	0.0021	9.0	96	44	0.471	0.48	946	10.4	0.0802	27	2.3E-3	4.30
IA-NS-10 5.1	AJP05	-2.6E-2	75	0.0025	2.3	130	78	0.617	0.84	970	5.3	0.0578	20	7.8E-4	1.47
IA-NS-10_24.1	AJP05	1.9E-2	44	0.0036	2.3	345	328	0.981	1.88	816	3.3	0.1752	12	8.7E-3	16.34
IA-NS-10_27.1	AJP05	-4.2E-2	79	0.0022	15.6	74	32	0.441	0.54	828	12.0	0.1637	18	8.0E-3	14.87
IA-NS-10_14.1	AJP05	4.6E-2	65	0.0025	2.7	116	70	0.630	1.02	945	7.0	0.0602	21	9.5E-4	1.77
IA-NS-10_10.1	AJP05	6.7E-2	54	0.0022	7.8	114	58	0.527	1.11	905	9.4	0.0881	18	2.8E-3	5.31
IA-NS-10_9.1	AJP05	-3.6E-3	224	0.0029	6.2	95	48	0.524	0.75	699	6.4	0.2478	30	1.4E-2	25.52
IA-NS-10 21.1	AJP05	-8.5E-2	60	0.0026	3.6	65	28	0.445	0.67	800	5.9	0.1550	21	7.4E-3	13.78

Appendix B.1. Continued

Spot Name	Mount	²⁰⁴ Pb-corr ²⁰⁷ Pb*/ ²³⁵ U	% error	²⁰⁴ Pb-corr ²⁰⁶ Pb*/ ²³⁸ U	% error	Error Corr.	²⁰⁷ Pb-corr ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	lσ error	²³⁰ Th-corr ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	2σ error	Reason for excluding?
					IA-N	S-9 (High-	SiO2 Granoph	yre)			
IA-NS-9 12.1	AJP03	0.025	77	6.5E-4	29	0.38	5.9	0.22	5.98	0.44	Low UO/U, outlier
IA-NS-9_20.1	AJP03	0.010	64	8.0E-4	23	0.35	6.0	0.26	6.14	0.52	
IA-NS-9_11.1	AJP03	0.016	39	1.0E-3	7	0.17	6.1	0.22	6.17	0.43	
IA-NS-9_9.1	AJP03	0.017	44	1.0E-3	7	0.17	6.1	0.20	6.18	0.40	
IA-NS-9_10.1	AJP03	0.014	61	7.8E-4	18	0.30	6.1	0.17	6.22	0.35	
IA-NS-9_8.1	AJP03	0.001	882	9.1E-4	12	0.01	6.1	0.20	6.23	0.40	
IA-NS-9_5.1	AJP03	0.018	80	7.6E-4	24	0.30	6.2	0.17	6.32	0.34	
IA-NS-9_22.1	AJP02	0.000	2749	9.3E-4	12	0.00	6.3	0.27	6.39	0.54	
IA-NS-9_4.1	AJP03	0.012	57	8.3E-4	20	0.35	6.4	0.16	6.44	0.31	
IA-NS-9_7.1	AJP03	0.017	64	1.1E-3	10	0.16	6.4	0.21	6.51	0.42	
IA-NS-9_16.1	AJP03	0.009	44	8.7E-4	16	0.36	6.4	0.18	6.52	0.37	
IA-NS-9_21.1	AJP03	0.006	10	1.0E-3	1	0.12	6.4	0.08	6.54	0.15	
IA-NS-9_15.1	AJP03	0.011	74	8.5E-4	22	0.30	6.5	0.20	6.54	0.40	
IA-NS-9_18.1	AJP03	0.005	31	1.0E-3	2	0.05	6.5	0.06	6.58	0.12	
IA-NS-9_6.1	AJP03	0.035	86	6.6E-4	45	0.52	6.5	0.68	6.64	1.36	
IA-NS-9_2.1	AJP03	0.007	15	1.0E-3	1	0.09	6.6	0.07	6.68	0.15	
IA-NS-9 1.1	AJP03	0.012	67	1.1E-3	8	0.11	6.7	0.21	6.80	0.43	
IA-NS-9 19.1	AJP03	0.001	1036	1.0E-3	9	0.01	7.1	0.30	6.81	0.59	High comm-Pb (>20%)
IA-NS-9 13.1	AJP03	0.009	19	1.1E-3	4	0.24	6.8	0.31	6.88	0.63	
IA-NS-9 17.1	AJP03	0.018	97	1.2E-3	13	0.14	7.0	0.56	7.08	1.11	High comm-Pb (>20%)
IA-NS-9 14.1	AJP03	0.003	104	1.1E-3	4	0.04	7.2	0.18	7.25	0.36	High UO/U, outlier (>2SD)
IA-NS-9_3.1	AJP03	0.010	282	1.2E-3	30	0.11	7.9	2.21	7.93	4 .42	High comm-Pb (>20%)
					IA-N	S-10 (High	-SiO2 Granoph	yre)			
IA-NS-10 25.1	AJP05	0.060	126	1.2E-3	62	0.50	4.9	2.75	4.98	5.50	High comm-Pb (>20%), outlier (>2SD)
IA-NS-10 17.1	AJP05	0.018	19	9.8E-4	5	0.27	5.6	0.35	5.70	0.71	
IA-NS-10 19.1	AJP05	0.044	163	4.5E-4	95	0.58	5.6	0.39	5.72	0.79	
IA-NS-10 8.1	AJP05	-0.227	113	-1.1E-3	104	0.92	5.6	0.89	5.74	1.78	High comm-Pb (>20%)
IA-NS-10 16.1	AJP05	0.024	33	1.1E-3	9	0.26	6.0	0.70	6.07	1.39	
IA-NS-10 23.1	AJP05	-0.287	81	-1.6E-3	76	0.94	6.3	0.47	6.39	0.93	
IA-NS-10 22.1	AJP05	0.128	47	2.1E-3	36	0.77	6.5	0.71	6.61	1.41	
IA-NS-10 5.1	AJP05	0.067	48	1.5E-3	25	0.53	6.5	0.36	6.64	0.73	
IA-NS-10 24.1	AJP05	0.022	32	7.8E-4	25	0.80	6.6	0.31	6.68	0.61	
IA-NS-10 27.1	AJP05	0.137	47	2.2E-3	37	0.79	6.6	0.84	6.72	1.69	
IA-NS-10 14.1	AJP05	0.097	648	1.4E-4	428	0.66	6.7	0.48	6.78	0.97	
IA-NS-10 10.1	AJP05	-0.146	346	-2.7E-4	273	0.79	6.7	0.65	6.83	1.30	
IA-NS-10 9.1	AJP05	0.060	40	1.5E-3	16	0.39	6.9	0.98	6.96	1.96	High comm-Pb (>20%)
IA-NS-10_21.1	AJP05	0.255	41	3.2E-3	37	0.91	6.9	0.53	7.03	1.05	

Appendix B.1. Continued

Spot Name	Mount	²⁰⁴ Pb/ ²⁰⁶ Pb	% error	²⁰⁶ Pb/ ²³⁸ U	% error	U (ppm)	Th (ppm)	²³² Th/ ²³⁸ U	% error	Total ²³⁸ U/ ²⁰⁶ Pb	% error	Total ²⁰⁷ Pb/ ²⁰⁶ Pb	% error	²⁰⁷ Pb-corr ²⁰⁴ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb-corr % ²⁰⁶ Pb _C
							IA-NS-1	0 (continu	ued)						
IA-NS-10 26.1	AJP05	4.4E-2	62	0.0020	4.2	159	93	0.603	0.36	852	5.3	0.1084	14	4.2E-3	7.88
IA-NS-10 18.1	AJP05	-1.3E-2	129	0.0025	8.9	91	45	0.510	0.47	840	9.7	0.1161	15	4.7E-3	8.84
IA-NS-10 13.1	AJP05	2.9E-2	75	0.0024	8.6	139	84	0.621	1.10	840	8.1	0.1141	15	4.6E-3	8.59
IA-NS-10 28.1	AJP05	1.2E-2	112	0.0024	3.9	143	71	0.516	1.95	882	5.3	0.0706	17	1.6E-3	3.08
IA-NS-10_11.1	AJP05	2.6E-2	100	0.0028	10.8	70	29	0.436	0.57	769	9.0	0.0800	18	2.3E-3	4.27
						IA-NS	8-12 (High	n-SiO ₂ Gr	anophyr	e)					
IA-NS-12 14.1	AJP05	1.1E-1	38	0.0036	12.9	81	39	0.49	1.09	601	15.4	0.4256	43	2.6E-2	48.04
IA-NS-12 15.1	AJP05	-1.5E-2	79	0.0025	18.1	187	169	0.93	0.42	888	12.3	0.2220	71	1.2E-2	22.26
IA-NS-12 9.1	AJP05	-8.9E-3	158	0.0021	6.5	116	57	0.51	2.12	992	9.1	0.1254	42	5.4E-3	10.03
IA-NS-12 17.1	AJP05	-1.3E-2	100	0.0021	5.0	182	107	0.61	0.89	1021	5.9	0.0871	27	2.8E-3	5.18
IA-NS-12_26.1	AJP05	2.1E-2	112	0.0022	3.7	81	37	0.47	2.10	937	2.5	0.1461	31	6.8E-3	12.64
IA-NS-12_20.1	AJP05	1.4E-2	75	0.0031	1.7	218	144	0.68	1.26	846	5.4	0.2004	14	1.0E-2	19.52
IA-NS-12_28.1	AJP05	-5.6E-3	224	0.0024	8.6	76	34	0.46	1.96	929	7.7	0.1325	16	5.8E-3	10.92
IA-NS-12_16.1	AJP05	8.3E-2	60	0.0028	12.2	64	27	0.44	0.98	877	9.7	0.1473	18	6.8E-3	12.80
IA-NS-12_13.1	AJP05	4.3E-2	75	0.0025	5.9	82	41	0.51	1.35	851	6.8	0.1599	13	7.7E-3	14.40
IA-NS-12_21.1	AJP05	-3.1E-2	112	0.0027	3.8	49	13	0.28	1.86	815	1.1	0.1876	18	9.6E-3	17.91
IA-NS-12_11.1	AJP05	-2.3E-2	91	0.0023	5.3	117	64	0.57	0.95	943	4.1	0.0718	22	1.7E-3	3.24
IA-NS-12_22.1	AJP05			0.0024	5.9	151	73	0.50	0.37	903	6.8	0.0941	14	3.2E-3	6.06
IA-NS-12_6.1	AJP05	-4.6E-2	85	0.0021	7.0	74	32	0.45	0.56	909	6.3	0.0880	19	2.8E-3	5.30
IA-NS-12_18.1	AJP05	-2.1E-2	91	0.0027	2.8	111	57	0.53	0.42	817	5.7	0.1591	12	7.6E-3	14.29
IA-NS-12_3.1	AJP05	-4.8E-3	224	0.0028	10.5	82	43	0.54	1.05	785	8.4	0.1834	12	9.3E-3	17.37
IA-NS-12_24.1	AJP05	1.8E-2	112	0.0027	2.9	80	39	0.50	1.31	884	4.6	0.0986	21	3.5E-3	6.63
IA-NS-12_10.1	AJP05	1.8E-2	100	0.0025	5.4	104	58	0.57	0.40	858	6.1	0.1070	29	4.1E-3	7.70
IA-NS-12_23.1	AJP05	7.2E-2	33	0.0060	15.4	111	46	0.43	1.21	368	13.9	0.5156	5	3.2E-2	59.42
IA-NS-12_27.1	AJP05	-3.6E-2	91	0.0025	9.1	67	32	0.50	1.30	846	9.6	0.0816	19	2.4E-3	4.48
IA-NS-12_19.1	AJP05	-2.0E-2	85	0.0024	7.8	139	70	0.52	0.67	857	9.1	0.0493	22	2.1E-4	0.39
							IA-G-	1 (Gabbr	0)						
IA-G-1 14.1	JW510	1.4E-2	58	0.0020	10.6	65	39	0.62	0.43	1040	10.1	0.0685	19	1.5E-3	2.83
IA-G-1 3.1	JW510	6.7E-3	58	0.0017	5.8	161	122	0.79	1.25	1043	6.1	0.0647	14	1.3E-3	2.35
IA-G-1 19.1	JW510	9.6E-3	50	0.0017	3.6	149	78	0.54	0.30	1066	3.2	0.0476	17	9.3E-5	0.17
IA-G-1_1.1	JW510	1.0E-2	41	0.0019	3.1	197	152	0.80	0.23	1046	3.2	0.0583	14	8.2E-4	1.54
IA-G-1_2.1	JW510		100	0.0017	4.1	128	85	0.69	0.30	1060	5.5	0.0459	18	-1.8E-5	-0.03
IA-G-1_23.1	JW510	2.7E-3	100	0.0017	3.9	143	102	0.73	1.87	1052	6.0	0.0495	19	2.3E-4	0.43
IA-G-1_22.1	JW510	3.3E-3	38	0.0019	3.5	695	785	1.17	0.31	1034	2.5	0.0605	7	9.7E-4	1.82
IA-G-1_17.1	JW510	2.4E-3	100	0.0022	3.4	212	206	1.00	2.13	1046	3.8	0.0432	18	-2.0E-4	-0.373
IA-G-1_15.1	JW510	-5.1E-3	58	0.0018	3.1	210	172	0.85	0.62	1053	3.5	0.0305	20	-1.1E-3	-1.99

Appendix B.1. Continued

Spot Name	Mount	²⁰⁴ Pb-corr ²⁰⁷ Pb*/ ²³⁵ U	% error	²⁰⁴ Pb-corr ²⁰⁶ Pb*/ ²³⁸ U	% error	Error Corr.	²⁰⁷ Pb-corr ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	1σ error	²³⁰ Th-corr ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	2σ error	Reason for excluding?
						IA	-NS-10				
IA-NS-10_26.1	AJP05	0.094	443	2.1E-4	287	0.65	7.0	0.39	7.05	0.79	
IA-NS-10_18.1	AJP05	0.053	63	1.5E-3	27	0.43	7.0	0.70	7.08	1.40	
IA-NS-10_13.1	AJP05	0.056	166	5.4E-4	90	0.54	7.0	0.59	7.10	1.18	
IA-NS-10_28.1	AJP05	0.019	88	8.7E-4	34	0.38	7.1	0.39	7.17	0.79	
IA-NS-10_11.1	AJP05	0.058	192	6.8E-4	93	0.48	8.0	0.74	8.11	1.47	Outlier (>2SD)
					IA-N	S-12 (High	-SiO2 Granoph	yre)			
IA-NS-12_14.1	AJP05	-0.291	81	-1.7E-3	76	0.94	5.6	2.61	5.66	5.21	High comm-Pb (>20%)
IA-NS-12_15.1	AJP05	0.071	47	1.4E-3	21	0.45	5.6	1.61	5.72	3.22	High comm-Pb (>20%)
IA-NS-12_9.1	AJP05	0.037	68	1.2E-3	24	0.36	5.8	0.68	5.93	1.36	
IA-NS-12_17.1	AJP05	0.040	55	1.2E-3	21	0.38	6.0	0.40	6.07	0.80	
IA-NS-12_26.1	AJP05	0.027	123	6.5E-4	73	0.59	6.0	0.42	6.10	0.84	
IA-NS-12_20.1	AJP05	0.004	523	8.6E-4	28	0.05	6.1	0.43	6.21	0.86	
IA-NS-12_28.1	AJP05	0.033	72	1.2E-3	22	0.31	6.2	0.51	6.27	1.01	
IA-NS-12_16.1	AJP05	-0.181	196	-6.3E-4	168	0.86	6.4	0.67	6.50	1.34	
IA-NS-12_13.1	AJP05	0.084	496	2.2E-4	324	0.65	6.5	0.48	6.57	0.97	
IA-NS-12_21.1	AJP05	0.115	57	1.9E-3	41	0.72	6.5	0.34	6.59	0.68	
IA-NS-12_11.1	AJP05	0.063	56	1.5E-3	28	0.49	6.6	0.30	6.70	0.61	
IA-NS-12_22.1	AJP05	0.014	15	1.1E-3	7	0.45	6.7	0.47	6.79	0.93	
IA-NS-12_6.1	AJP05	0.122	54	2.0E-3	39	0.73	6.7	0.45	6.81	0.90	
IA-NS-12_18.1	AJP05	0.081	44	1.7E-3	26	0.59	6.8	0.43	6.85	0.86	
IA-NS-12_3.1	AJP05	0.045	52	1.4E-3	20	0.39	6.8	0.61	6.87	1.23	
IA-NS-12_24.1	AJP05	0.029	124	7.5E-4	57	0.46	6.8	0.37	6.90	0.73	
IA-NS-12_10.1	AJP05	0.028	103	7.8E-4	51	0.49	6.9	0.51	7.02	1.03	
IA-NS-12_23.1	AJP05	-0.229	146	-9.5E-4	130	0.89	7.1	1.11	7.19	2.23	High comm-Pb (>20%)
IA-NS-12_27.1	AJP05	0.106	58	2.0E-3	38	0.66	7.3	0.71	7.37	1.43	
IA-NS-12_19.1	AJP05	0.059	56	1.6E-3	25	0.45	7.5	0.69	7.58	1.38	
						IA-G-1	(Gabbro)				
IA-G-1_14.1	JW510	0.020	58	7.1E-4	23	0.40	6.0	0.62	6.11	1.24	
IA-G-1_3.1	JW510	0.005	38	8.4E-4	10	0.27	6.0	0.38	6.12	0.75	
IA-G-1_19.1	JW510	0.013	40	7.7E-4	11	0.28	6.0	0.20	6.12	0.40	
IA-G-1_1.1	JW510	0.013	30	7.7E-4	10	0.34	6.1	0.20	6.15	0.41	
IA-G-1_2.1	JW510	0.006	19	9.4E-4	6	0.29	6.1	0.34	6.16	0.68	
IA-G-1_23.1	JW510	0.001	525	9.0E-4	8	0.02	6.1	0.37	6.18	0.75	
IA-G-1_22.1	JW510	0.001	222	9.1E-4	4	0.02	6.1	0.16	6.18	0.31	
IA-G-1_17.1	JW510	0.001	777	9.1E-4	6	0.01	6.2	0.25	6.26	0.49	
IA-G-1 15.1	JW510	0.015	38	1.0E-3	6	0.16	6.2	0.22	6.32	0.44	

Appendix B.1. Continued

Spot Name	Mount	²⁰⁴ Pb/ ²⁰⁶ Pb	% error	²⁰⁶ Pb/ ²³⁸ U	% error	U (ppm)	Th (ppm)	²³² Th/ ²³⁸ U	% error	Total ²³⁸ U/ ²⁰⁶ Pb	% error	Total ²⁰⁷ Pb/ ²⁰⁶ Pb	% error	²⁰⁷ Pb-corr ²⁰⁴ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb-corr % ²⁰⁶ Pb _C
							IA-G-1	(continu	ed)						
IA-G-1 18.1	JW510	3.6E-3	71	0.0019	5.3	194	177	0.94	0.68	1018	5.5	0.0546	14	5.7E-4	1.07
IA-G-1 8.1	JW510	-2.5E-3	100	0.0019	3.8	129	93	0.75	0.29	1032	5.4	0.0442	19	-1.3E-4	-0.25
IA-G-1_27.1	JW510	4.1E-3	71	0.0019	5.5	157	108	0.71	1.26	1032	5.5	0.0426	17	-2.4E-4	-0.45
IA-G-1_6.1	JW510	6.1E-3	71	0.0019	4.2	107	67	0.65	1.36	1017	3.3	0.0479	19	1.2E-4	0.22
IA-G-1_11.1	JW510		100	0.0022	7.1	151	109	0.74	0.30	1006	5.1	0.0532	17	4.7E-4	0.885
IA-G-1_25.1	JW510	-3.2E-3	100	0.0019	4.3	108	62	0.60	0.78	1007	7.0	0.0434	20	-1.9E-4	-0.36
IA-G-1_4.1	JW510	1.9E-3	100	0.0019	3.3	173	143	0.86	0.24	1002	3.3	0.0449	16	-8.5E-5	-0.16
IA-G-1_24.1	JW510	1.6E-4	100	0.0021	2.0	1940	2665	1.42	0.11	992	1.8	0.0484	4	1.5E-4	0.28
IA-G-1_7.1	JW510	-3.3E-3	100	0.0019	4.3	103	64	0.64	0.35	1006	5.6	0.0376	21	-5.8E-4	-1.09
IA-G-1_10.1	JW510	-2.8E-3	100	0.0023	3.6	160	106	0.68	0.29	998	1.8	0.0411	18	-3.4E-4	-0.643
IA-G-1_12.1	JW510	4.8E-3	58	0.0020	3.0	210	197	0.97	0.21	992	1.6	0.0383	16	-5.4E-4	-1.00
IA-G-1_26.1	JW510		100	0.0024	3.7	148	146	1.02	0.27	963	5.0	0.0420	18	-2.8E-4	-0.526
							IA-G-	5 (Gabbr	0)						
IA-G-5_6.1	AJP01	3.1E-3	41	0.0022	3.4	638	874	1.41	0.30	1062	2.2	0.0456	7	-3.8E-5	-0.07
IA-G-5_7.1	AJP01	1.4E-3	100	0.0019	4.4	309	270	0.90	0.76	1039	3.1	0.0439	12	-1.6E-4	-0.29
IA-G-5_4.1	AJP01	3.4E-4	100	0.0021	4.9	1051	1484	1.46	0.25	1025	2.6	0.0482	5	1.4E-4	0.26
IA-G-5_13.1	AJP03	-1.4E-3	75	0.0023	2.1	1050	1451	1.43	0.32	988	0.9	0.0500	6	2.6E-4	0.49
IA-G-5_2.1	AJP01	-3.0E-4	100	0.0022	1.2	1209	1730	1.48	0.14	991	0.5	0.0468	5	4.2E-5	0.08
IA-G-5_8.1	AJP02	2.0E-3	71	0.0020	2.1	1124	1575	1.45	0.24	985	1.0	0.0492	7	2.0E-4	0.38
IA-G-5_14.1	AJP03	-2.0E-4	183	0.0022	2.1	1216	2240	1.90	0.24	982	0.8	0.0464	6	1.3E-5	0.02
IA-G-5_10.1	AJP03	4.0E-4	158	0.0023	3.0	806	1253	1.61	0.31	977	1.3	0.0461	7	-7.9E-6	-0.01
IA-G-5_12.1	AJP03	3.7E-3	71	0.0025	2.4	365	319	0.90	0.34	928	1.8	0.0803	14	2.3E-3	4.32
IA-G-5_11.1	AJP03	-7.7E-4	183	0.0023	2.5	301	259	0.89	0.80	968	1.6	0.0408	12	-3.6E-4	-0.68
IA-G-5 9.1	AJP02	-3.0E-4	105	0.0023	1.1	2889	2150	0.77	0.06	937	1.1	0.0473	4	7.7E-5	0.14

Appendix B.1. Continued

Spot Name	Mount	²⁰⁴ Pb-corr ²⁰⁷ Pb*/ ²³⁵ U	% error	²⁰⁴ Pb-corr ²⁰⁶ Pb*/ ²³⁸ U	% error	Error Corr.	²⁰⁷ Pb-corr ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	lσ error	²³⁰ Th-corr ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	2σ error	Reason for excluding?
						IA-G-1 (Continued)				
IA-G-1 18.1	JW510	0.000	2420	9.2E-4	7	0.00	6.3	0.35	6.34	0.69	
IA-G-1_8.1	JW510	0.011	44	1.0E-3	7	0.16	6.3	0.34	6.35	0.69	
IA-G-1 27.1	JW510	0.003	72	8.9E-4	8	0.11	6.3	0.35	6.36	0.70	
IA-G-1_6.1	JW510	0.006	23	8.7E-4	10	0.42	6.3	0.22	6.41	0.44	
IA-G-1 11.1	JW510	0.007	18	9.9E-4	5	0.29	6.4	0.33	6.43	0.66	
IA-G-1_25.1	JW510	0.013	50	1.1E-3	9	0.18	6.4	0.46	6.51	0.92	
IA-G-1_4.1	JW510	0.002	204	9.6E-4	5	0.02	6.4	0.22	6.52	0.45	
IA-G-1_24.1	JW510	0.006	7	1.0E-3	2	0.25	6.5	0.12	6.54	0.23	
IA-G-1_7.1	JW510	0.012	54	1.1E-3	8	0.15	6.5	0.37	6.56	0.73	
IA-G-1_10.1	JW510	0.012	47	1.1E-3	5	0.11	6.5	0.13	6.58	0.26	
IA-G-1_12.1	JW510	0.005	18	9.2E-4	6	0.32	6.6	0.12	6.64	0.23	
IA-G-1_26.1	JW510	0.006	19	1.0E-3	5	0.27	6.7	0.34	6.80	0.68	Older grain, outlier (>2SD)
						IA-G-5	(Gabbro)				
IA-G-5 6.1	AJP01	0.000	483	8.9E-4	3	0.01	6.1	0.14	6.13	0.28	
IA-G-57.1	AJP01	0.003	97	9.4E-4	4	0.04	6.2	0.20	6.30	0.39	
IA-G-5_4.1	AJP01	0.006	13	9.7E-4	3	0.20	6.3	0.17	6.33	0.33	
IA-G-5_13.1	AJP03	0.010	21	1.0E-3	2	0.10	6.5	0.06	6.55	0.12	
IA-G-5 2.1	AJP01	0.007	10	1.0E-3	1	0.08	6.5	0.04	6.55	0.08	
IA-G-5_8.1	AJP02	0.002	123	9.8E-4	3	0.02	6.5	0.07	6.58	0.14	
IA-G-5 14.1	AJP03	0.007	12	1.0E-3	1	0.09	6.6	0.06	6.60	0.11	
IA-G-5_10.1	AJP03	0.006	25	1.0E-3	2	0.07	6.6	0.09	6.65	0.18	
IA-G-5_12.1	AJP03	0.003	185	1.0E-3	6	0.03	6.6	0.15	6.72	0.31	
IA-G-5_11.1	AJP03	0.008	40	1.0E-3	3	0.08	6.7	0.12	6.78	0.23	
IA-G-5 9.1	AJP02	0.008	10	1.1E-3	1	0.13	6.9	0.08	6.95	0.15	Older grain, outlier (>2SD)

Appendix B.1. Continued

Sample	Rock Type	Grain #	Mount ¹	Date	Li	Be	В	F	Na	Al	Р	K	Ca	Sc
IA-NS-2	Granophyre	IA-NS-2-1.1	JW498	Dec. '10	0.0024	0.022	0.035	15	2	15	192	0.66	3.05	8
IA-NS-2	Granophyre	IA-NS-2-2.1	JW498	Dec. '10	0.0041	0.2	0.080	18	2	15	389	0.75	4.57	13
IA-NS-2	Granophyre	IA-NS-2-3.1	JW498	Dec. '10	0.02	4	0.1	38	2	14	1661	0.85	4.00	18
IA-NS-2	Granophyre	IA-NS-2-4.1	JW498	Dec. '10	0.0039	0.067	0.060	24	2	12	272	0.76	2.92	1.67
IA-NS-2	Granophyre	IA-NS-2-4.2	JW498	Dec. '10	0.0033	0.1	0.079	48	2	14	266	0.88	3.56	1.95
IA-NS-2	Granophyre	IA-NS-2-4.3	JW498	Dec. '10	0.02	0.043	0.080	31	3	18	482	0.93	3.72	2.26
IA-NS-2	Granophyre	IA-NS-2-5.1	JW498	Dec. '10	0.06	26	0.1	87	2	18	1276	0.76	4.46	62
IA-NS-2	Granophyre	IA-NS-2-5.2	JW498	Dec. '10	0.01	0.7	0.062	32	3	17	333	1.00	4.72	2.68
IA-NS-2	Granophyre	IA-NS-2-6.1	JW498	Dec. '10	0.05	0.7	0.081	54	2	15	985	0.74	2.95	9
IA-NS-2	Granophyre	IA-NS-2-7.1	JW498	Dec. '10	0.0040	0.025	0.035	16	2	15	290	0.68	2.40	9
IA-NS-2	Granophyre	IA-NS-2-8.1	JW498	Dec. '10	0.07	0.6	0.3	49	6	25	1472	46	7	17
IA-NS-2	Granophyre	IA-NS-2-9.1	JW498	Dec. '10	0.01	0.2	0.1	21	2	11	1263	0.85	3.92	21
IA-NS-2	Granophyre	IA-NS-2-10.1	JW498	Dec. '10	0.09	0.7	0.1	23	3	15	889	1.38	3.76	18
IA-NS-2	Granophyre	IA-NS-2-10.2	JW498	Dec. '10	0.06	2	0.1	28	2	16	918	1.13	2.69	9
IA-NS-2	Granophyre	IA-NS-2-11.1	JW498	Dec. '10	0.0090	0.4	0.044	52	0.9	9	297	0.51	1.95	1.57
IA-NS-2	Granophyre	IA-NS-2-11.2	JW498	Dec. '10	0.07	0.2	0.095	39	41	313	988	449	11	15
IA-NS-2	Granophyre	IA-NS-2-12.1	JW498	Dec. '10	0.02	0.3	0.1	45	3	14	351	1.08	4.83	3.32
IA-NS-2	Granophyre	IA-NS-2-12.2	JW498	Dec. '10	0.0067	0.5	0.064	67	2	15	387	0.99	3.97	1.91
IA-NS-2	Granophyre	IA-NS-2-13.1	JW498	Dec. '10	0.0008	3	0.2	127	6	27	712	3.78	4.43	4.53
IA-NS-2	Granophyre	IA-NS-2-14.1	JW498	Dec. '10	0.07	0.2	0.4	49	4	60	646	3.56	13	4.05
IA-NS-2	Granophyre	IA-NS-2-14.2	JW498	Dec. '10	0.04	0.7	0.2	102	3	21	607	1.12	6	2.33
IA-NS-2	Granophyre	IA-NS-2-15.1	JW498	Dec. '10	0.01	2	0.061	44	2	18	441	0.81	2.95	2.52
IA-NS-2	Granophyre	IA-NS-2-15.2	JW498	Dec. '10	0.0072	0.071	0.2	23	3	18	354	0.97	3.81	2.77
IA-NS-2	Granophyre	IA-NS-2-16.1	JW498	Dec. '10	0.0059	0.032	0.045	16	3	14	240	0.90	4.92	2.10
IA-NS-2	Granophyre	IA-NS-2-16.2	JW498	Dec. '10	0.01	0.5	0.1	67	17	53	290	28	8	0.91
IA-NS-2	Granophyre	IA-NS-2-17.1	JW498	Dec. '10	0.0032	0.1	0.1	19	2	15	363	0.76	3.07	1.99
IA-NS-2	Granophyre	IA-NS-2-17.2	JW498	Dec. '10	0.03	40	0.5	189	2	16	1293	0.87	4.13	14
IA-NS-2	Granophyre	IA-NS-2-18.1	JW498	Dec. '10	0.0089	1	0.087	56	2	13	386	0.72	2.58	1.93
IA-NS-2	Granophyre	IA-NS-2-18.2	JW498	Dec. '10	0.0084	0.1	0.055	35	2	15	489	0.73	3.09	2.67
IA-NS-2	Granophyre	IA-NS-2-19.1	JW498	Dec. '10	0.02	0.039	0.1	39	2	17	419	0.72	2.77	2.80
IA-NS-2	Granophyre	IA-NS-2-19.2	JW498	Dec. '10	0.02	3	0.089	103	4	21	491	3.99	3.89	1.68

Appendix B.2. Zircon Trace Element Compositions (ppm), measured *in situ* by SHRIMP-RG (Atomic Number < 22)

Appendix	B.2 .	Continued	
----------	--------------	-----------	--

Sample	Rock Type ³⁶	Grain #	Mount	Date	Li	Be	В	F	Na	Al	Р	К	Ca	Sc
IA-NS-2	Granophyre	IA-NS-2-20.1	JW498	Dec. '10	0.02	0.2	0.045	50	4	27	360	15	3.64	1.97
IA-NS-2	Granophyre	IA-NS-2-21.2	JW498	Dec. '10	0.0049	2	0.044	50	2	16	425	18	4.32	2.32
IA-NS-2	Granophyre	IA-NS-2-22.1	JW498	Dec. '10	0.0008	0.033	0.043	30	2	16	151	0.99	4.30	1.92
IA-NS-2	Granophyre	IA-NS-2-23.1	JW498	Dec. '10	0.0008	0.1	0.052	18	2	14	290	0.71	3.05	2.52
IA-NS-2	Granophyre	IA-NS-2-24.1	JW498	Dec. '10	0.0082	0.7	0.1	54	5	27	283	10	3.60	1.84
IA-NS-2	Granophyre	IA-NS-2-24.2	JW498	Dec. '10	0.04	1	0.083	49	2	17	1022	0.85	3.47	11
IA-NS-2	Granophyre	IA-NS-2-25.2	JW498	Dec. '10	0.02	0.2	0.065	81	7	31	684	172	184	5
IA-NS-2	Granophyre	IA-NS-2-21.1	JW498	Dec. '10	0.03	0.045	0.018	52	8	17	628	0.97	277	3.38
IA-NS-2	Granophyre	IA-NS-2-23.2	JW498	Dec. '10	0.09	32	0.073	407	4	15	1452	1.43	414	8
IA-NS-2	Granophyre	IA-NS-2-25.1	JW498	Dec. '10	0.22	6	2	337	943	2809	2565	5274	1109	22
IA-NS-4b	HSG	IA-NS-4b-1.1	JW498	Dec. '10	0.35	2	0.2	155	5	19	819	2.75	9	23
IA-NS-4b	HSG	IA-NS-4b-1.2	JW498	Dec. '10	1	13	1	367	5	19	814	0.71	2.85	26
IA-NS-4b	HSG	IA-NS-4b-2.1	JW498	Dec. '10	0.02	0.082	0.083	25	2	13	214	0.90	2.72	1.76
IA-NS-4b	HSG	IA-NS-4b-4.1	JW498	Dec. '10	2	2	0.1	247	460	15	728	426	16	30
IA-NS-4b	HSG	IA-NS-4b-6.1	JW498	Dec. '10	0.01	0.020	0.1	15	2	14	154	0.90	3.40	4.08
IA-NS-4b	HSG	IA-NS-4b-7.1	JW498	Dec. '10	0.68	32	0.5	449	2	13	1249	4.03	2.29	78
IA-NS-4b	HSG	IA-NS-4b-9.1	JW498	Dec. '10	0.36	0.2	0.088	53	2	14	661	1.32	3.79	40
IA-NS-4b	HSG	IA-NS-4b-9.2	JW498	Dec. '10	0.47	1	0.3	312	13	47	705	37	6	27
IA-NS-4b	HSG	IA-NS-4b-10.1	JW498	Dec. '10	0.12	0.042	0.025	23	1	12	615	0.63	2.08	10
IA-NS-4b	HSG	IA-NS-4b-11.1	JW498	Dec. '10	0.07	0.5	0.044	83	2	15	403	0.69	2.25	1.49
IA-NS-4b	HSG	IA-NS-4b-12.1	JW498	Dec. '10	0.14	8	0.3	86	2	16	1020	0.81	2.56	49
IA-NS-4b	HSG	IA-NS-4b-14.1	JW498	Dec. '10	0.39	2	0.2	161	1	11	788	0.52	1.21	24
IA-NS-4b	HSG	IA-NS-4b-15.1	JW498	Dec. '10	0.46	7	0.1	900	10	32	612	28	1.85	3.39
IA-NS-4b	HSG	IA-NS-4b-18.1	JW498	Dec. '10	0.26	0.5	0.074	185	20	17	707	25	2.66	44
IA-NS-4b	HSG	IA-NS-4b-19.1	JW498	Dec. '10	0.0059	0.063	0.036	24	1	12	147	0.85	2.79	1.75
IA-NS-4b	HSG	IA-NS-4b-20.1	JW498	Dec. '10	0.02	0.088	0.045	40	2	15	207	1.21	3.68	1.60
IA-NS-4b	HSG	IA-NS-4b-22.1	JW498	Dec. '10	0.20	0.3	0.080	77	5	21	293	16	4.80	13
IA-NS-4b	HSG	IA-NS-4b-23.1	JW498	Dec. '10	0.15	0.4	0.090	183	1	11	658	11	1.74	43
IA-NS-4b	HSG	IA-NS-4b-23.2	JW498	Dec. '10	0.46	2	0.2	110	1	13	1124	0.76	1.70	54

 $\frac{1}{36}$ HSG = High-SiO₂ Granophyre (> 75 wt.% SiO₂)

A	pp	endix	B.2 .	Continued	
	F F				

Sample	Rock Type	Grain #	Mount	Date	Li	Be	В	F	Na	Al	Р	K	Ca	Sc
IA-NS-4b	HSG	IA-NS-4b-24.1	JW498	Dec. '10	0.02	0.043	0.045	61	2	15	215	10	1.94	8
IA-NS-4b	HSG	IA-NS-4b-25.1	JW498	Dec. '10	0.42	27	0.2	78	3	17	1028	0.79	2.64	53
IA-NS-4b	HSG	IA-NS-4b-25.2	JW498	Dec. '10	0.39	11	0.1	73	3	17	1284	1.14	2.74	50
IA-NS-4b	HSG	IA-NS-4b-26.1	JW498	Dec. '10	0.02	0.011	0.075	24	2	13	296	0.85	1.75	13
IA-NS-4b	HSG	IA-NS-4b-27.1	JW498	Dec. '10	0.01	0.050	0.059	35	1	12	230	0.83	1.53	1.69
IA-NS-4b	HSG	IA-NS-4b-28.1	JW498	Dec. '10	0.02	0.008	0.035	23	2	16	205	0.89	2.01	6
IA-NS-4b	HSG	IA-NS-4b-29.1	JW498	Dec. '10	0.92	5	0.7	452	2	18	350	2.92	1.89	2.63
IA-NS-4b	HSG	IA-NS-4b-40	AJP05	Feb. '15	3	1	0.5	400	514	23	325	2018	14	9
IA-NS-4b	HSG	IA-NS-4b-43	AJP05	Feb. '15	0.96	4	0.3	916	21	5	1054	43	74	21
IA-NS-4b	HSG	IA-NS-4b-44	AJP05	Feb. '15	0.26	0.4	0.1	100	2	4	332	3.69	1.69	19
IA-NS-4b	HSG	IA-NS-4b-45	AJP05	Feb. '15	0.46	7	0.8	548	18	10	783	55	5	17
IA-NS-4b	HSG	IA-NS-4b-49	AJP05	Feb. '15	4	10	6	1194	3	4	1436	1.61	2.71	0.39
IA-NS-4b	HSG	IA-NS-4b-50	AJP05	Feb. '15	4	6	0.8	565	1	3	617	0.89	2.16	1.30
IA-NS-4b	HSG	IA-NS-4b-51	AJP05	Feb. '15	0.17	0.050	0.058	91	4	5	469	5	3.24	31
IA-NS-4b	HSG	IA-NS-4b-52	AJP05	Feb. '15	0.67	3	0.4	258	6	6	702	53	3.17	42
IA-NS-4b	HSG	IA-NS-4b-53	AJP05	Feb. '15	0.64	1	0.2	269	29	10	692	80	4.04	50
IA-NS-4b	HSG	IA-NS-4b-55	AJP05	Feb. '15	0.34	0.2	0.100	95	27	4	115	61	3.94	2.17
IA-NS-4b	HSG	IA-NS-4b-56	AJP05	Feb. '15	0.30	0.6	0.1	145	50	7	253	113	4.70	5
IA-NS-4b	HSG	IA-NS-4b-57	AJP05	Feb. '15	0.89	24	2	1139	38	28	968	335	14	56
IA-NS-4b	HSG	IA-NS-4b-58	AJP05	Feb. '15	0.41	7	0.3	295	5	3	654	3.32	2.71	22
IA-NS-4b	HSG	IA-NS-4b-59	AJP05	Feb. '15	0.41	0.5	0.1	104	4	4	682	2.36	3.51	39
IA-NS-4b	HSG	IA-NS-4b-3.1	JW498	Dec. '10	0.37	2	0.1	178	27	20	500	2752	42	19
IA-NS-4b	HSG	IA-NS-4b-14.2	JW498	Dec. '10	3	0.3	0.2	232	667	24	301	642	24	8
IA-NS-4b	HSG	IA-NS-4b-21.1	JW498	Dec. '10	1	3	0.4	1063	254	616	138	744	3.73	0.52
IA-NS-4b	HSG	IA-NS-4b-21.2	JW498	Dec. '10	11	4	5	411	1276	389	142	1660	123	1.01
IA-NS-4b	HSG	IA-NS-4b-27.2	JW498	Dec. '10	0.39	3	0.1	655	40	110	802	93	464	8
IA-NS-4b	HSG	IA-NS-4b-41	AJP05	Feb. '15	2	2	0.9	970	59	11	1096	132	203	18
IA-NS-4b	HSG	IA-NS-4b-42	AJP05	Feb. '15	0.66	3	0.4	1673	38	14	738	135	488	31
IA-NS-4b	HSG	IA-NS-4b-46	AJP05	Feb. '15	3	1	0.6	466	251	10	915	924	16	11
IA-NS-4b	HSG	IA-NS-4b-47	AJP05	Feb. '15	2	0.6	0.4	456	19	9	804	269	53	27
IA-NS-4b	HSG	IA-NS-4b-48	AJP05	Feb. '15	5	9	9	3825	463	37	1469	580	227	29

Appendix B.2. Continued

Sample	Rock Type	Grain #	Mount	Date	Li	Be	В	F	Na	Al	Р	K	Ca	Sc
IA-NS-4b	HSG	IA-NS-4b-54	AJP05	Feb. '15	7	4	2	1570	616	35	2311	845	211	19
IA-NS-4b	HSG	IA-NS-4b-60	AJP05	Feb. '15	3	3	1.0	881	233	25	558	551	130	13
IA-NS-6	Diorite	IA-NS-6-1.1	JW498	Dec. '10	0.0079	0.052	0.077	29	2	16	417	0.70	3.27	3.18
IA-NS-6	Diorite	IA-NS-6-2.1	JW498	Dec. '10	0.04	0.5	0.7	43	2	15	2309	0.87	4.02	63
IA-NS-6	Diorite	IA-NS-6-3.1	JW498	Dec. '10	0.05	0.4	0.3	73	2	15	2498	1.09	4.31	61
IA-NS-6	Diorite	IA-NS-6-4.1	JW498	Dec. '10	0.01	0.3	0.084	26	2	14	1617	0.99	4.60	86
IA-NS-6	Diorite	IA-NS-6-5.1	JW498	Dec. '10	0.04	4	0.037	116	3	12	1423	1.08	5	41
IA-NS-6	Diorite	IA-NS-6-6.1	JW498	Dec. '10	0.0092	0.1	0.075	37	2	10	441	0.78	3.62	2.12
IA-NS-6	Diorite	IA-NS-6-7.1	JW498	Dec. '10	0.0016	0.019	0.043	17	2	14	211	1.05	4.00	2.23
IA-NS-6	Diorite	IA-NS-6-9.1	JW498	Dec. '10	0.05	0.8	0.3	41	2	14	2150	1.01	5	53
IA-NS-6	Diorite	IA-NS-6-10.1	JW498	Dec. '10	0.03	0.2	0.052	17	2	12	813	0.93	3.33	30
IA-NS-6	Diorite	IA-NS-6-12.1	JW498	Dec. '10	0.0017	0.023	0.045	33	2	15	206	1.11	6	1.18
IA-NS-6	Diorite	IA-NS-6-13.1	JW498	Dec. '10	0.07	0.3	0.2	29	2	14	2187	0.65	2.92	68
IA-NS-6	Diorite	IA-NS-6-15.1	JW498	Dec. '10	0.03	0.2	0.072	19	2	11	1349	0.69	2.04	46
IA-NS-6	Diorite	IA-NS-6-16.1	JW498	Dec. '10	0.02	0.1	0.052	19	2	12	902	0.95	2.86	48
IA-NS-6	Diorite	IA-NS-6-17.1	JW498	Dec. '10	0.01	0.009	0.063	12	2	13	562	1.53	3.06	26
IA-NS-6	Diorite	IA-NS-6-17.2	JW498	Dec. '10	0.02	0.2	0.048	27	2	15	1845	0.86	3.08	62
IA-NS-6	Diorite	IA-NS-6-18.1	JW498	Dec. '10	0.02	0.018	0.075	11	3	27	578	17	8	33
IA-NS-6	Diorite	IA-NS-6-18.2	JW498	Dec. '10	0.0041	0.031	0.062	28	2	17	213	0.96	3.77	1.82
IA-NS-6	Diorite	IA-NS-6-19.1	JW498	Dec. '10	0.02	0.4	0.1	26	2	14	1918	0.95	4.22	66
IA-NS-6	Diorite	IA-NS-6-20.2	JW498	Dec. '10	0.06	0.014	0.036	25	54	163	1329	3.59	7	52
IA-NS-6	Diorite	IA-NS-6-21.1	JW498	Dec. '10	0.0017		0.027	9	3	15	219	1.18	4.37	2.39
IA-NS-6	Diorite	IA-NS-6-22.1	JW498	Dec. '10	0.0040	0.047	0.069	22	4	19	165	3.22	3.54	2.05
IA-NS-6	Diorite	IA-NS-6-22.2	JW498	Dec. '10	0.0066	0.020	0.098	15	3	16	454	1.23	4.02	35
IA-NS-6	Diorite	IA-NS-6-24.1	JW498	Dec. '10	0.0016		0.009	7	0.7	11	305	0.84	0.82	19
IA-NS-6	Diorite	IA-NS-6-24.2	JW498	Dec. '10	0.0008	0.4	0.1	86	28	94	303	63	8	1.49
IA-NS-6	Diorite	IA-NS-6-24.3	JW498	Dec. '10	0.0008	0.016	0.009	14	2	14	259	0.74	2.96	2.46
IA-NS-6	Diorite	IA-NS-6-26.1	JW498	Dec. '10	0.03	1	0.010	62	2	13	1693	0.97	4.00	48
IA-NS-6	Diorite	IA-NS-6-23.1	JW498	Dec. '10	0.0050	0.006	0.045	22	2	16	274	0.99	149	4.21
IA-NS-7	Granodiorite	IA-NS-7-1.1	JW510	Feb. '11	0.01	0.1	0.2	13	5	1	509	1.29	2.64	36
IA-NS-7	Granodiorite	IA-NS-7-2.1	JW510	Feb. '11	0.23	6	0.2	126	6	4	2063	1.54	4.38	46

Appendix B	.2. Continued
-------------------	---------------

Sample	Rock Type	Grain #	Mount	Date	Li	Be	В	F	Na	Al	Р	K	Ca	Sc
IA-NS-7	Granodiorite	IA-NS-7-3.1	JW510	Feb. '11	0.83	0.6	0.6	56	9	31	1937	2.48	6	66
IA-NS-7	Granodiorite	IA-NS-7-4.1	JW510	Feb. '11	0.02	0.033	0.1	7	7	2	267	1.59	3.16	35
IA-NS-7	Granodiorite	IA-NS-7-4.2	JW510	Feb. '11	0.15	0.3	0.1	25	9	2	1302	3.09	2.89	40
IA-NS-7	Granodiorite	IA-NS-7-5.1	JW510	Feb. '11	0.04	5	0.4	64	7	2	765	1.72	3.33	89
IA-NS-7	Granodiorite	IA-NS-7-6.1	JW510	Feb. '11	2	1	1	351	87	42	741	337	17	15
IA-NS-7	Granodiorite	IA-NS-7-7.1	JW510	Feb. '11	0.77	0.026	0.2	19	58	238	275	22	9	32
IA-NS-7	Granodiorite	IA-NS-7-8.1	JW510	Feb. '11	0.02	0.3	0.7	12	8	2	476	1.99	3.18	43
IA-NS-7	Granodiorite	IA-NS-7-8.2	JW510	Feb. '11	0.12	2	0.5	33	9	2	1472	2.04	6	86
IA-NS-7	Granodiorite	IA-NS-7-9.1	JW510	Feb. '11	0.11	2	0.3	221	33	58	1587	7	3.35	56
IA-NS-7	Granodiorite	IA-NS-7-10.1	JW510	Feb. '11	0.60	6	3	111	10	3	2350	2.38	3.51	84
IA-NS-7	Granodiorite	IA-NS-7-11.1	JW510	Feb. '11	0.44	0.2	0.8	75	19	975	459	680	8	45
IA-NS-7	Granodiorite	IA-NS-7-11.2	JW510	Feb. '11	0.93	2	0.7	236	45	281	2455	129	33	19
IA-NS-7	Granodiorite	IA-NS-7-12.1	JW510	Feb. '11	0.40	2	0.3	82	11	2	1861	2.53	6	104
IA-NS-7	Granodiorite	IA-NS-7-12.2	JW510	Feb. '11	0.45	0.7	0.9	71	11	15	1830	6	4.69	78
IA-NS-7	Granodiorite	IA-NS-7-13.1	JW510	Feb. '11	0.16	0.4	0.5	131	23	19	1179	17	7	34
IA-NS-7	Granodiorite	IA-NS-7-13.2	JW510	Feb. '11	0.05	0.3	0.4	48	8	2	954	1.46	4.15	42
IA-NS-7	Granodiorite	IA-NS-7-14.1	JW510	Feb. '11	0.02	0.075	0.5	15	8	2	474	1.50	3.49	26
IA-NS-7	Granodiorite	IA-NS-7-15.1	JW510	Feb. '11	0.56	5	0.8	244	16	3	2586	3.35	13	51
IA-NS-7	Granodiorite	IA-NS-7-16.1	JW510	Feb. '11	0.0057	0.1	0.1	10	9	5	423	2.16	4.00	42
IA-NS-7	Granodiorite	IA-NS-7-16.2	JW510	Feb. '11	0.22	0.7	0.3	180	9	4	2255	1.63	4.27	70
IA-NS-7	Granodiorite	IA-NS-7-17.1	JW510	Feb. '11	0.17	29	0.3	109	8	2	2313	2.76	8	100
IA-NS-7	Granodiorite	IA-NS-7-17.2	JW510	Feb. '11	0.06	3	0.3	31	4	2	1193	1.18	2.26	61
IA-NS-7	Granodiorite	IA-NS-7-18.1	JW510	Feb. '11	0.06	0.4	0.4	18	10	9	977	4.31	4.65	98
IA-NS-7	Granodiorite	IA-NS-7-19.2	JW510	Feb. '11	0.03	0.4	0.086	53	10	3	841	2.30	5.00	80
IA-NS-7	Granodiorite	IA-NS-7-19.1	JW510	Feb. '11	4	0.6	0.7	146	137	571	1058	97	10	32
IA-NS-9	HSG	IA-NS-9_01.1	AJP03	Jan. '14	0.03	0.023	0.088	12	8	10	319	1.36	3.85	10
IA-NS-9	HSG	IA-NS-9_02.1	AJP03	Jan. '14	0.13	0.6	0.1	250	11	14	114	1.25	3.77	0.46
IA-NS-9	HSG	IA-NS-9_04.1	AJP03	Jan. '14	0.03	0.057	0.074	46	7	9	276	0.97	2.31	8
IA-NS-9	HSG	IA-NS-9_05.1	AJP03	Jan. '14	0.03	0.043	0.053	47	10	10	328	1.28	2.61	8
IA-NS-9	HSG	IA-NS-9_06.1	AJP03	Jan. '14	0.02	0.048	0.092	46	15	17	240	1.63	4.35	12
IA-NS-9	HSG	IA-NS-9_07.1	AJP03	Jan. '14	0.05	0.081	0.089	134	20	13	421	1.83	3.89	9

. Commuea	

Sample	Rock Type	Grain #	Mount	Date	Li	Be	В	F	Na	Al	Р	K	Ca	Sc
IA-NS-9	HSG	IA-NS-9_08.1	AJP03	Jan. '14	0.01	0.006	0.069	16	10	10	161	1.10	3.46	11
IA-NS-9	HSG	IA-NS-9_09.2	AJP03	Jan. '14	0.02	0.023	0.012	25	9	10	287	4.73	2.81	8
IA-NS-9	HSG	IA-NS-9_10.2	AJP03	Jan. '14	0.08	0.028	0.078	8	31	17	276	1.31	22	10
IA-NS-9	HSG	IA-NS-9_11.1	AJP03	Jan. '14	0.05	0.2	0.067	92	15	12	290	1.45	4.18	10
IA-NS-9	HSG	IA-NS-9_12.2	AJP03	Jan. '14	0.06	0.2	0.2	32	5	8	387	0.70	2.15	15
IA-NS-9	HSG	IA-NS-9_13.1	AJP03	Jan. '14	0.03	0.1	0.068	113	9	11	229	2.41	3.42	7
IA-NS-9	HSG	IA-NS-9_14.2	AJP03	Jan. '14	1	7	0.2	570	20	23	645	35	2.76	33
IA-NS-9	HSG	IA-NS-9_15.1	AJP03	Jan. '14	0.03	0.011	0.045	23	8	9	230	1.21	3.84	10
IA-NS-9	HSG	IA-NS-9_16.1	AJP03	Jan. '14	0.03	0.068	0.051	29	12	12	301	1.38	3.71	11
IA-NS-9	HSG	IA-NS-9_17.2	AJP03	Jan. '14	0.37	1.0	0.1	285	10	20	330	28	4.79	1.70
IA-NS-9	HSG	IA-NS-9_18.1	AJP03	Jan. '14	0.30	1	0.2	246	9	11	862	1.37	2.56	7
IA-NS-9	HSG	IA-NS-9_18.2	AJP03	Jan. '14	0.46	2	0.2	675	20	33	1191	20	17	7
IA-NS-9	HSG	IA-NS-9_20.1	AJP03	Jan. '14	0.03	0.1	0.088	94	22	29	271	10	5	12
IA-NS-9	HSG	IA-NS-9_21.1	AJP03	Jan. '14	0.38	0.4	0.2	277	24	14	175	67	5	0.48
IA-NS-9	HSG	IA-NS-9_22.1	AJP02	Jan. '14	0.0076	0.006	0.1	43	4	5	178	2.36	2.29	9
IA-NS-9	HSG	IA-NS-9_27	AJP05	Feb. '15	1.00	2	1	648	21	24	432	131	11	14
IA-NS-9	HSG	IA-NS-9_29	AJP05	Feb. '15	1	7	8	1237	150	136	1101	2589	3.04	53
IA-NS-9	HSG	IA-NS-9_30	AJP05	Feb. '15	3	2	4	1112	299	17	636	1520	50	16
IA-NS-9	HSG	IA-NS-9_31	AJP05	Feb. '15	2	13	5	1868	21	4	1590	1.43	2.11	40
IA-NS-9	HSG	IA-NS-9_32	AJP05	Feb. '15	0.46	0.2	0.2	201	7	7	205	463	7	11
IA-NS-9	HSG	IA-NS-9_33	AJP05	Feb. '15	0.03	0.003	0.2	18	3	3	238	2.09	3.30	12
IA-NS-9	HSG	IA-NS-9_34	AJP05	Feb. '15	0.29	0.028	0.1	43	4	4	296	7	2.36	7
IA-NS-9	HSG	IA-NS-9_35	AJP05	Feb. '15	0.07	0.3	0.1	43	3	3	384	1.63	2.76	21
IA-NS-9	HSG	IA-NS-9_36	AJP05	Feb. '15	0.0023		0.069	24	3	2	236	1.18	2.34	13
IA-NS-9	HSG	IA-NS-9_37	AJP05	Feb. '15	0.03	0.2	0.2	62	10	5	188	3.38	2.80	9
IA-NS-9	HSG	IA-NS-9_38	AJP05	Feb. '15	0.02	0.1	0.1	36	2	2	230	1.17	1.81	10
IA-NS-9	HSG	IA-NS-9_03.1	AJP03	Jan. '14	0.34	7	0.7	1096	21	14	1478	22	4.51	39
IA-NS-9	HSG	IA-NS-9_03.2	AJP03	Jan. '14	1	6	2	826	2924	12	881	638	89	34
IA-NS-9	HSG	IA-NS-9_14.1	AJP03	Jan. '14	96	4	2	2882	179	477	1109	1390	1180	30
IA-NS-9	HSG	IA-NS-9_17.1	AJP03	Jan. '14	2	1	1	2293	84	516	1028	108	146	7
IA-NS-9	HSG	IA-NS-9_19.1	AJP03	Jan. '14	3	64	1	3671	1079	207	628	379	414	0.05

Appendix B	3.2 . Continued
-------------------	------------------------

Sample	Rock Type	Grain #	Mount	Date	Li	Be	В	F	Na	Al	Р	K	Ca	Sc
IA-NS-9	HSG	IA-NS-9_19.2	AJP03	Jan. '14	5	20	18	3132	1083	229	1024	663	463	0.05
IA-NS-9	HSG	IA-NS-9_21.2	AJP03	Jan. '14	7	0.3	0.2	1075	2070	111	704	1352	149	10
IA-NS-9	HSG	IA-NS-9_25	AJP05	Feb. '15	5	5	2	1921	42	11	545	143	333	33
IA-NS-9	HSG	IA-NS-9_26	AJP05	Feb. '15	5	5	2	7914	71	82	741	1288	1283	29
IA-NS-9	HSG	IA-NS-9_28	AJP05	Feb. '15	3	3	3	4143	278	9	963	789	892	4.98
IA-NS-10	HSG	IA-NS-10_1.1	AJP05	Feb. '15	0.13	8	0.2	122	4	3	1151	1.84	3.11	39
IA-NS-10	HSG	IA-NS-10_3.1	AJP05	Feb. '15	0.02	0.062	0.4	36	28	17	294	87	5	10
IA-NS-10	HSG	IA-NS-10_4.1	AJP05	Feb. '15	0.0098		0.1	24	3	4	217	1.31	3.04	10
IA-NS-10	HSG	IA-NS-10_5.1	AJP05	Feb. '15	0.01	0.025	0.2	19	4	4	310	2.52	4.03	12
IA-NS-10	HSG	IA-NS-10_6.1	AJP05	Feb. '15	0.01	0.040	0.3	25	4	3	434	1.82	4.15	28
IA-NS-10	HSG	IA-NS-10_7.1	AJP05	Feb. '15	0.17	4	0.6	539	38	147	619	27	16	13
IA-NS-10	HSG	IA-NS-10_8.1	AJP05	Feb. '15	0.0092	0.4	0.3	38	3	5	162	6	3.77	15
IA-NS-10	HSG	IA-NS-10_9.1	AJP05	Feb. '15	0.03	0.2	0.2	33	3	3	216	3.11	3.22	9
IA-NS-10	HSG	IA-NS-10_10.1	AJP05	Feb. '15	0.02	0.3	0.2	45	5	4	203	17	3.54	7
IA-NS-10	HSG	IA-NS-10_11.1	AJP05	Feb. '15	0.01		0.085	18	3	3	250	1.86	2.90	12
IA-NS-10	HSG	IA-NS-10_12.1	AJP05	Feb. '15	0.0086	0.017	0.099	17	2	2	218	1.84	2.57	11
IA-NS-10	HSG	IA-NS-10_13.1	AJP05	Feb. '15	0.02	0.060	0.3	543	32	12	349	24	13	11
IA-NS-10	HSG	IA-NS-10_14.1	AJP05	Feb. '15	0.02	0.015	0.1	21	3	4	402	1.92	3.14	37
IA-NS-10	HSG	IA-NS-10_16.1	AJP05	Feb. '15	0.0083	0.006	0.069	31	3	3	207	1.94	2.49	9
IA-NS-10	HSG	IA-NS-10_17.1	AJP05	Feb. '15	0.0081	0.006	0.1	11	2	3	271	1.10	1.95	10
IA-NS-10	HSG	IA-NS-10_18.1	AJP05	Feb. '15	0.02	0.2	0.048	27	2	3	331	1.53	2.57	27
IA-NS-10	HSG	IA-NS-10_19.1	AJP05	Feb. '15	0.04	0.083	0.2	16	4	4	358	1.91	3.61	18
IA-NS-10	HSG	IA-NS-10_20.1	AJP05	Feb. '15	0.0097	0.007	0.2	86	18	24	240	17	12	16
IA-NS-10	HSG	IA-NS-10_21.1	AJP05	Feb. '15	0.0057		0.2	120	9	15	290	13	8	13
IA-NS-10	HSG	IA-NS-10_22.1	AJP05	Feb. '15	0.01	0.024	0.2	121	5	4	292	5	3.13	11
IA-NS-10	HSG	IA-NS-10_23.1	AJP05	Feb. '15	0.0025	0.013	0.092	44	2	4	178	1.73	2.47	12
IA-NS-10	HSG	IA-NS-10_24.1	AJP05	Feb. '15	0.02		0.2	36	6	4	223	7	3.83	11
IA-NS-12	Granophyre	IA-NS-12_4.1	AJP05	Feb. '15	0.18	0.1	0.5	36	3	4	645	2.44	3.28	40
IA-NS-12	Granophyre	IA-NS-12_6.1	AJP05	Feb. '15	0.02	0.005	0.1	18	3	4	200	2.03	3.58	11
IA-NS-12	Granophyre	IA-NS-12_8.1	AJP05	Feb. '15	0.01	0.009	0.1	28	3	3	222	1.80	3.06	10
IA-NS-12	Granophyre	IA-NS-12_10.1	AJP05	Feb. '15	0.02	0.018	0.3	163	23	12	210	7	8	13

Appendix I	B.2 . Co	ontinued
------------	-----------------	----------

Sample	Rock Type	Grain #	Mount	Date	Li	Be	В	F	Na	Al	Р	К	Ca	Sc
IA-NS-12	Granophyre	IA-NS-12_11.1	AJP05	Feb. '15	0.03	0.003	0.2	23	3	4	263	1.53	2.77	26
IA-NS-12	Granophyre	IA-NS-12_12.1	AJP05	Feb. '15	0.26	5	3	92	6	12	786	4.66	3.59	47
IA-NS-12	Granophyre	IA-NS-12_13.1	AJP05	Feb. '15	0.02	0.037	0.2	43	3	4	239	1.42	3.52	26
IA-NS-12	Granophyre	IA-NS-12_14.1	AJP05	Feb. '15	0.04	0.007	0.2	42	4	6	263	2.39	3.07	12
IA-NS-12	Granophyre	IA-NS-12_15.1	AJP05	Feb. '15	0.07	0.041	0.4	41	14	9	419	3.88	3.03	20
IA-NS-12	Granophyre	IA-NS-12_16.1	AJP05	Feb. '15	0.03	0.034	0.4	232	19	12	267	65	13	13
IA-NS-12	Granophyre	IA-NS-12_17.1	AJP05	Feb. '15	0.01	0.003	0.1	16	4	4	233	1.85	3.04	14
IA-NS-12	Granophyre	IA-NS-12_18.1	AJP05	Feb. '15	0.02	0.019	0.2	43	4	5	262	2.68	4.10	16
IA-NS-12	Granophyre	IA-NS-12_19.1	AJP05	Feb. '15	0.01	0.018	0.2	24	6	5	216	1.98	4.44	14
IA-NS-12	Granophyre	IA-NS-12_20.1	AJP05	Feb. '15	0.05	0.1	0.1	78	4	3	427	1.98	2.81	10
IA-NS-12	Granophyre	IA-NS-12_21.1	AJP05	Feb. '15	0.02	0.014	0.2	21	7	5	274	3.16	3.45	17
IA-NS-12	Granophyre	IA-NS-12_22.1	AJP05	Feb. '15	0.0069		0.069	15	7	4	258	2.71	4.15	12
IA-NS-12	Granophyre	IA-NS-12_23.1	AJP05	Feb. '15	0.24	0.007	0.2	13	6	4	273	3.96	4.02	13
IA-NS-12	Granophyre	IA-NS-12_24.1	AJP05	Feb. '15	0.02	0.013	0.2	21	3	3	270	2.19	2.60	12
IA-NS-12	Granophyre	IA-NS-12_25.1	AJP05	Feb. '15	0.02	0.009	0.6	241	15	9	330	40	8	18
IA-NS-12	Granophyre	IA-NS-12_26.1	AJP05	Feb. '15	0.02	0.033	0.5	758	24	8	426	14	10	12
IA-NS-12	Granophyre	IA-NS-12_27.1	AJP05	Feb. '15	0.02	0.054	0.064	32	4	3	284	2.02	2.36	30
IA-NS-12	Granophyre	IA-NS-12_1.1	AJP05	Feb. '15	9	3	2	3855	333	134	789	2129	637	11
IA-NS-12	Granophyre	IA-NS-12_3.1	AJP05	Feb. '15	0.03	0.031	0.098	424	7	4	469	2.11	259	19
IA-NS-12	Granophyre	IA-NS-12_9.1	AJP05	Feb. '15	0.65	37	1	2687	41	52	1023	856	170	9
IA-G-1	Gabbro	IA-G-1-1.1	JW510	Feb. '11	0.0096		0.035	7	8	5	298	1.72	3.77	23
IA-G-1	Gabbro	IA-G-1-2.1	JW510	Feb. '11	0.0014		0.047	8	7	4	303	1.85	6	18
IA-G-1	Gabbro	IA-G-1-3.1	JW510	Feb. '11			0.1	11	8	3	321	1.79	2.50	37
IA-G-1	Gabbro	IA-G-1-4.1	JW510	Feb. '11	0.04	0.008	0.1	26	7	2	514	2.11	3.80	18
IA-G-1	Gabbro	IA-G-1-5.1	JW510	Feb. '11	0.02	0.004	0.080	9	8	4	270	1.94	3.69	24
IA-G-1	Gabbro	IA-G-1-6.1	JW510	Feb. '11	0.0040		0.045	7	7	10	250	1.60	5	23
IA-G-1	Gabbro	IA-G-1-6.2	JW510	Feb. '11	0.0054		0.080	8	7	3	209	1.81	3.05	19
IA-G-1	Gabbro	IA-G-1-7.1	JW510	Feb. '11	0.01		0.1	11	6	2	301	1.90	4.28	20
IA-G-1	Gabbro	IA-G-1-8.1	JW510	Feb. '11	0.01	0.012	0.092	10	9	4	315	2.17	12	21
IA-G-1	Gabbro	IA-G-1-9.1	JW510	Feb. '11	0.0014	0.004	0.058	10	6	2	298	1.45	2.78	29
IA-G-1	Gabbro	IA-G-1-10.1	JW510	Feb. '11	0.03	0.004	0.068	12	7	2	328	2.13	3.89	19
Sample	Rock Type	Grain #	Mount	Date	Li	Be	В	F	Na	Al	Р	K	Ca	Sc
--------	-----------	-------------	-------	----------	--------	-------	-------	----	----	-----	------	------	------	----
IA-G-1	Gabbro	IA-G-1-11.1	JW510	Feb. '11	0.0027	0.051	0.070	10	6	5	390	1.66	3.55	21
IA-G-1	Gabbro	IA-G-1-12.1	JW510	Feb. '11	0.0028		0.048	12	7	3	693	1.93	4.91	28
IA-G-1	Gabbro	IA-G-1-13.1	JW510	Feb. '11	0.0014	0.012	0.1	8	6	2	229	1.77	3.73	20
IA-G-1	Gabbro	IA-G-1-14.1	JW510	Feb. '11	0.0066	0.008	0.078	9	7	6	602	2.16	3.69	44
IA-G-1	Gabbro	IA-G-1-15.1	JW510	Feb. '11	0.0041		0.035	4	1	0.9	250	0.47	0.74	19
IA-G-1	Gabbro	IA-G-1-16.1	JW510	Feb. '11		0.011		8	7	22	217	1.75	2.66	25
IA-G-1	Gabbro	IA-G-1-17.1	JW510	Feb. '11	0.01	0.004	0.1	12	9	2	747	1.63	3.03	31
IA-G-1	Gabbro	IA-G-1-18.1	JW510	Feb. '11	0.0024	0.003	0.020	21	3	1	680	0.71	1.32	19
IA-G-1	Gabbro	IA-G-1-19.1	JW510	Feb. '11		0.003	0.072	9	11	7	350	4.00	2.93	20
IA-G-1	Gabbro	IA-G-1-20.1	JW510	Feb. '11	0.0023	0.003	0.1	8	8	3	243	1.84	2.69	20
IA-G-1	Gabbro	IA-G-1-21.1	JW510	Feb. '11	0.02		0.1	10	10	4	284	2.45	2.37	21
IA-G-1	Gabbro	IA-G-1-22.1	JW510	Feb. '11	0.16	0.038	0.091	8	6	7	891	1.31	1.80	78
IA-G-1	Gabbro	IA-G-1-22.2	JW510	Feb. '11	0.14	0.2	0.1	23	8	3	919	1.81	3.60	58
IA-G-1	Gabbro	IA-G-1-23.1	JW510	Feb. '11	0.06	0.021	0.2	16	6	3	608	1.57	3.06	21
IA-G-1	Gabbro	IA-G-1-24.1	JW510	Feb. '11	0.0095	0.014	0.091	10	8	3	285	1.55	2.51	19
IA-G-1	Gabbro	IA-G-1-24.2	JW510	Feb. '11	0.11	0.059	0.1	12	7	2	897	1.52	2.73	56
IA-G-1	Gabbro	IA-G-1-25.1	JW510	Feb. '11	0.03	0.031	0.1	13	13	8	318	3.49	6	23
IA-G-1	Gabbro	IA-G-1-26.1	JW510	Feb. '11	0.03	0.003	0.2	10	10	2	677	2.23	3.46	53
IA-G-1	Gabbro	IA-G-1-27.1	JW510	Feb. '11	0.02	0.044	0.1	13	12	6	289	2.10	3.97	24
IA-G-5	Gabbro	IA-G-5-2.1	AJP01	May '13										88
IA-G-5	Gabbro	IA-G-5-4.1	AJP01	May '13										91
IA-G-5	Gabbro	IA-G-5-6.1	AJP01	May '13										75
IA-G-5	Gabbro	IA-G-5-7.1	AJP01	May '13										45
IA-G-5	Gabbro	IA-G-5_8.1	AJP02	Jan. '14	0.05	0.015	0.6	11	3	5	1667	1.31	1.15	99
IA-G-5	Gabbro	IA-G-5_9.1	AJP02	Jan. '14	0.06	0.016	0.8	83	10	41	1652	15	5	86
IA-G-5	Gabbro	IA-G-5_10.1	AJP03	Jan. '14	0.02	0.012	0.2	4	12	9	861	1.72	4.92	33
IA-G-5	Gabbro	IA-G-5_11.1	AJP03	Jan. '14	0.0096	0.019	0.2	10	9	9	1376	1.86	4.31	60
IA-G-5	Gabbro	IA-G-5_12.1	AJP03	Jan. '14	0.0099	0.017	0.2	8	7	9	1075	1.00	2.32	58
IA-G-5	Gabbro	IA-G-5_13.1	AJP03	Jan. '14	0.01	0.019	0.8	11	7	8	1743	0.76	2.38	88
IA-G-5	Gabbro	IA-G-5_14.1	AJP03	Jan. '14	0.02	0.009	0.2	10	10	11	1663	1.90	2.81	78

Sample ³⁷	Grain #	Ti	Fe	Y	Nb	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
IA-NS-2	IA-NS-2-1.1	9	0.36	851	5	0.02	12	0.5	1.92	0.50	21	8	90	36	165	33	259	45
IA-NS-2	IA-NS-2-2.1	24	0.27	2260	6	0.06	9	4.0	10	3.97	87	28	282	98	392	73	566	95
IA-NS-2	IA-NS-2-3.1	9	0.34	7733	108	0.09	150	9	23	3.66	217	76	836	321	1334	256	1954	312
IA-NS-2	IA-NS-2-4.1	9	0.86	1849	28	0.04	31	2.3	6	1.98	59	20	220	80	318	61	433	68
IA-NS-2	IA-NS-2-4.2	7	0.43	2888	15	0.04	21	4.8	10	2.78	95	32	346	127	512	90	651	104
IA-NS-2	IA-NS-2-4.3	6	0.48	2743	87	0.02	56	1.9	7	1.38	72	28	309	115	482	91	649	98
IA-NS-2	IA-NS-2-5.1	14	0.41	12914	51	0.27	201	31	70	7	537	166	1613	540	2020	370	2602	393
IA-NS-2	IA-NS-2-5.2	6	0.33	2826	36	0.02	46	2.7	8	1.84	80	28	311	116	477	89	626	99
IA-NS-2	IA-NS-2-6.1	11	0.37	5963	224	0.04	290	7	19	3.82	194	65	693	262	1002	189	1347	211
IA-NS-2	IA-NS-2-7.1	15	0.37	945	10	0.01	12	1.0	2.70	1.18	26	9	101	40	172	34	256	44
IA-NS-2	IA-NS-2-8.1	14	3.76	6280	206	0.32	280	8	21	3.92	203	68	737	274	1097	207	1521	238
IA-NS-2	IA-NS-2-9.1	11	0.21	4419	95	0.02	151	4.2	13	2.66	129	46	505	187	763	147	1083	175
IA-NS-2	IA-NS-2-10.1	10	4.19	4905	64	0.02	178	4.3	12	1.46	120	43	488	196	849	175	1372	224
IA-NS-2	IA-NS-2-10.2	6	0.30	6891	24	0.08	100	9	20	2.43	189	65	742	282	1224	246	1878	311
IA-NS-2	IA-NS-2-11.1	6	0.28	4072	27	0.06	36	6	14	3.47	137	46	495	182	715	126	885	139
IA-NS-2	IA-NS-2-11.2	10	16	5074	299	0.29	151	3.7	11	1.58	116	45	526	208	862	170	1283	200
IA-NS-2	IA-NS-2-12.1	8	0.35	3277	24	0.06	29	4.3	10	2.92	107	35	374	141	560	101	695	111
IA-NS-2	IA-NS-2-12.2	7	2.62	4548	31	0.07	39	6	16	4.28	161	52	557	203	792	141	1003	154
IA-NS-2	IA-NS-2-13.1	11	19	7074	106	0.86	141	12	29	8	267	83	859	305	1146	201	1423	215
IA-NS-2	IA-NS-2-14.1	9	9	3713	130	0.22	96	3.1	10	1.86	100	36	410	157	615	119	844	128
IA-NS-2	IA-NS-2-14.2	7	0.50	7361	78	0.08	117	10	28	6	268	90	960	349	1371	244	1698	253
IA-NS-2	IA-NS-2-15.1	10	0.41	4519	67	0.04	85	7	16	4.88	160	55	548	199	781	137	965	145
IA-NS-2	IA-NS-2-15.2	8	0.39	1652	40	0.03	36	1.7	4.58	1.11	47	17	186	71	287	56	408	66
IA-NS-2	IA-NS-2-16.1	7	0.58	1398	40	0.23	25	1.4	3.68	0.86	38	14	156	59	260	51	384	64
IA-NS-2	IA-NS-2-16.2	10	4.30	3570	29	0.57	34	5	12	3.42	123	41	436	159	632	113	786	120
IA-NS-2	IA-NS-2-17.1	7	0.33	1942	46	0.02	43	2.1	6	1.31	56	20	226	84	343	65	470	73
IA-NS-2	IA-NS-2-17.2	8	0.44	13749	145	0.18	301	26	60	9	533	170	1775	625	2362	421	2920	432
IA-NS-2	IA-NS-2-18.1	6	0.27	4383	32	0.03	45	7	14	3.73	151	50	533	198	769	138	955	151
IA-NS-2	IA-NS-2-18.2	7	0.31	2989	78	0.03	74	3.0	8	1.88	87	32	358	130	537	98	726	112

Appendix B.3. Zircon Trace Element Compositions (ppm), measured *in situ* by SHRIMP-RG (Atomic Numbers 22-71)

³⁷ See **Appendix B.2** for mount names and analysis dates

Appendix B.3. Continued

Sample	Grain #	Ti	Fe	Y	Nb	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
IA-NS-2	IA-NS-2-19.1	7	0.45	2701	63	0.03	62	2.9	7	1.78	74	27	305	115	463	88	627	96
IA-NS-2	IA-NS-2-19.2	6	0.86	5784	49	0.25	64	8	19	4.24	190	65	704	256	1009	180	1232	190
IA-NS-2	IA-NS-2-20.1	7	7	4165	27	0.10	33	6	15	3.90	142	49	518	184	727	131	920	144
IA-NS-2	IA-NS-2-21.2	8	10	4490	36	0.08	50	7	16	4.19	159	51	556	199	765	138	972	151
IA-NS-2	IA-NS-2-22.1	9	0.25	1829	7	0.02	12	3.8	8	2.88	68	22	229	84	332	59	413	67
IA-NS-2	IA-NS-2-23.1	7	0.26	1729	28	0.04	32	2.0	5	1.53	51	18	198	77	307	57	414	68
IA-NS-2	IA-NS-2-24.1	7	0.46	2990	16	0.07	22	4.8	10	2.83	96	33	355	132	519	94	669	105
IA-NS-2	IA-NS-2-24.2	11	0.23	5570	151	0.04	171	6	16	2.54	171	63	684	242	998	184	1338	209
IA-NS-2	IA-NS-2-25.2	6	6	3045	146	1.00	68	2.6	6	0.90	68	28	335	129	567	109	826	130
IA-NS-2	IA-NS-2-21.1	6	2.13	3478	89	31	184	45	21	2.71	116	38	404	144	580	107	761	117
IA-NS-2	IA-NS-2-23.2	13	3.35	11495	312	44	502	73	63	12	463	144	1449	508	1898	333	2308	341
IA-NS-2	IA-NS-2-25.1		384	11923	275	27	554	57	56	10	433	140	1467	522	2042	374	2715	418
IA-NS-4b	IA-NS-4b-1.1	5	3.22	5457	300	1.2	50	26	49	1.15	274	119	1241	401	1593	325	2353	308
IA-NS-4b	IA-NS-4b-1.2		9	12779	3272	2.2	418	123	183	4.36	880	317	3056	921	3218	601	3947	492
IA-NS-4b	IA-NS-4b-2.1	8	0.36	3046	15	0.04	20	5	12	4.48	117	37	383	137	536	95	670	107
IA-NS-4b	IA-NS-4b-4.1	2.6	5	4156	643	1.8	111	4.8	17	0.70	159	80	988	355	1545	339	2665	368
IA-NS-4b	IA-NS-4b-6.1	12	0.27	1132	11	0.02	7	1.4	3.61	1.59	34	11	122	47	199	39	302	51
IA-NS-4b	IA-NS-4b-7.1	3.0	1.22	15985	1087	0.29	385	41	116	3.70	777	370	4015	1274	4840	977	7140	924
IA-NS-4b	IA-NS-4b-9.1	3.9	0.55	3008	497	0.03	82	2.8	12	0.66	114	62	771	283	1322	310	2554	376
IA-NS-4b	IA-NS-4b-9.2	6	2.10	5422	634	0.25	96	8	25	0.86	198	102	1245	467	2052	469	3720	535
IA-NS-4b	IA-NS-4b-10.1	10	0.25	3731	97	0.02	94	4.2	12	2.15	123	44	462	166	664	128	926	146
IA-NS-4b	IA-NS-4b-11.1	8	0.28	5777	40	0.07	58	9	22	7	219	70	734	255	990	176	1191	185
IA-NS-4b	IA-NS-4b-12.1	6	2.15	9637	329	0.51	129	51	107	2.85	575	228	2283	705	2616	524	3769	488
IA-NS-4b	IA-NS-4b-14.1	7	1.30	7907	905	0.22	145	31	75	1.79	443	176	1750	532	1978	376	2619	333
IA-NS-4b	IA-NS-4b-15.1	12	2.30	14492	1373	0.18	951	15	46	15	452	163	1777	625	2297	407	2675	354
IA-NS-4b	IA-NS-4b-18.1	3.2	1.08	5826	449	0.20	94	9	28	1.13	224	115	1417	510	2243	504	3955	566
IA-NS-4b	IA-NS-4b-19.1	8	0.24	1991	7	0.03	12	3.6	8	2.80	67	22	239	89	343	62	435	70
IA-NS-4b	IA-NS-4b-20.1	8	0.37	2595	11	0.04	14	4.0	9	3.00	84	29	297	108	436	79	544	87
IA-NS-4b	IA-NS-4b-22.1	1.9	15	1291	191	0.21	35	0.9	3.31	0.22	33	18	250	111	516	125	1044	169
IA-NS-4b	IA-NS-4b-23.1	2.5	0.85	4753	316	0.10	90	6	22	0.88	187	94	1179	450	2005	465	3736	556
IA-NS-4b	IA-NS-4b-23.2	2.3	0.51	9885	651	0.08	213	17	54	1.91	419	203	2405	834	3473	738	5624	771

Appendix B.3. Continued

Sample	Grain #	Ti	Fe	Y	Nb	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
IA-NS-4b	IA-NS-4b-24.1	11	0.30	2532	10	0.07	13	4.3	10	2.81	89	31	324	117	472	86	626	103
IA-NS-4b	IA-NS-4b-25.1	5	4.09	9612	505	0.93	132	60	119	2.79	596	233	2249	627	2287	441	3109	393
IA-NS-4b	IA-NS-4b-25.2	7	2.08	9209	491	0.35	107	33	76	2.24	461	197	2059	673	2572	528	3783	505
IA-NS-4b	IA-NS-4b-26.1	12	0.20	1602	25	0.01	16	1.7	4.12	1.04	42	15	166	65	288	57	432	71
IA-NS-4b	IA-NS-4b-27.1	9	0.26	2736	20	0.04	22	3.9	9	3.15	91	31	320	120	476	86	603	95
IA-NS-4b	IA-NS-4b-28.1	15	0.26	1129	11	0.02	9	1.5	3.38	1.49	34	12	128	50	200	40	292	48
IA-NS-4b	IA-NS-4b-29.1	8	2.93	31162	973	0.74	1763	26	52	6	435	185	2337	927	4129	969	8453	1225
IA-NS-4b	IA-NS-4b-40	3.4	46	2309	339	1.4	65	9	12	0.27	56	27	307	123	553	134	1126	160
IA-NS-4b	IA-NS-4b-43	1.7	12	6527	505	0.21	204	12	41	1.07	258	126	1451	485	1922	387	2842	344
IA-NS-4b	IA-NS-4b-44	3.2	0.82	3222	751	0.02	99	3.6	15	0.46	110	50	640	214	859	181	1393	188
IA-NS-4b	IA-NS-4b-45	2.4	52	4245	310	0.32	112	8	21	0.55	139	70	991	354	1629	370	3221	468
IA-NS-4b	IA-NS-4b-49		1.66	39007	2947	3.0	2291	216	376	55	2017	555	4671	1202	3637	627	3916	436
IA-NS-4b	IA-NS-4b-50		1.27	31020	1264	0.99	2106	81	177	28	1048	335	2925	916	3152	641	4654	597
IA-NS-4b	IA-NS-4b-51	3.4	1.12	1956	261	0.09	27	1.3	6	0.25	56	30	455	189	962	221	2057	300
IA-NS-4b	IA-NS-4b-52	6	10	7740	2020	0.09	212	16	51	1.45	326	154	1749	551	2239	460	3342	443
IA-NS-4b	IA-NS-4b-53		19	2809	309	1.9	66	3.0	6	0.20	40	25	401	193	1068	302	2837	466
IA-NS-4b	IA-NS-4b-55	2.6	6	788	115	0.51	36	0.6	0.97	0.06	7	6	91	40	232	63	540	86
IA-NS-4b	IA-NS-4b-56	2.8	4.98	1649	218	0.80	59	2.5	3.25	0.10	18	10	159	74	412	106	924	144
IA-NS-4b	IA-NS-4b-57	3.8	38	9681	1312	0.66	293	28	82	2.70	508	221	2450	753	2816	534	3784	476
IA-NS-4b	IA-NS-4b-58	2.5	0.79	4900	377	0.05	87	6	24	0.76	168	92	1224	444	2004	447	3634	537
IA-NS-4b	IA-NS-4b-59	2.4	0.73	3517	822	0.01	80	3.8	14	0.47	103	52	670	255	1112	251	2199	340
IA-NS-4b	IA-NS-4b-3.1		106	2983	594	15	83	3.5	6	0.24	48	28	371	165	815	197	1631	235
IA-NS-4b	IA-NS-4b-14.2	3.3	33	3156	496	4.3	124	25	35	0.85	144	46	440	149	546	110	803	106
IA-NS-4b	IA-NS-4b-21.1	7	34	12095	369	0.45	591	7	17	3.38	169	77	1007	436	2062	448	3373	467
IA-NS-4b	IA-NS-4b-21.2		829	8153	1423	17	272	4.9	4.99	0.62	44	26	404	235	1355	381	3569	595
IA-NS-4b	IA-NS-4b-27.2	15	2.62	8783	445	42	669	57	40	7	280	94	1033	384	1528	285	2014	294
IA-NS-4b	IA-NS-4b-41	4.1	32	3574	345	8.9	80	10	7	0.30	54	38	701	355	1853	476	4093	626
IA-NS-4b	IA-NS-4b-42		92	7438	1215	16	180	24	42	1.30	250	102	1238	508	1877	456	3737	544
IA-NS-4b	IA-NS-4b-46	5	101	2807	178	8.0	74	9	6	0.19	35	21	382	181	1001	265	2166	347
IA-NS-4b	IA-NS-4b-47	3.4	67	3785	390	17	130	16	14	0.41	83	50	731	293	1452	345	2805	408
IA-NS-4b	IA-NS-4b-48		346	22774	822	9.8	842	75	173	4.39	1062	374	3793	1434	4403	883	6573	832

Appendix B.3. Continued

Sample	Grain #	Ti	Fe	Y	Nb	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
IA-NS-4b	IA-NS-4b-54		293	7369	651	12	86	12	11	0.39	98	64	1063	496	2178	516	4217	589
IA-NS-4b	IA-NS-4b-60		328	2982	297	18	154	25	25	1.02	115	48	590	242	1068	260	2194	316
IA-NS-6	IA-NS-6-1.1	10	0.37	2098	35	0.02	38	2.4	6	1.96	66	22	238	88	355	68	486	76
IA-NS-6	IA-NS-6-2.1	15	0.56	17041	83	0.37	528	46	92	14	697	214	2122	731	2741	493	3405	507
IA-NS-6	IA-NS-6-3.1	13	0.50	17707	82	0.37	495	39	83	12	670	209	2121	733	2796	520	3667	530
IA-NS-6	IA-NS-6-4.1	20	0.38	11322	40	0.30	184	41	78	21	549	160	1522	490	1761	309	2120	299
IA-NS-6	IA-NS-6-5.1	13	0.74	11160	208	0.13	300	17	43	2.96	384	125	1296	475	1801	333	2364	366
IA-NS-6	IA-NS-6-6.1	11	0.35	3628	89	0.03	96	4.4	12	3.52	122	42	444	161	611	111	751	114
IA-NS-6	IA-NS-6-7.1	8	0.34	1473	39	0.02	18	1.3	3.40	1.14	36	14	160	64	276	56	423	72
IA-NS-6	IA-NS-6-9.1	15	0.42	15701	74	0.37	451	39	80	11	625	194	1970	684	2606	476	3391	500
IA-NS-6	IA-NS-6-10.1	16	0.28	4097	58	0.04	87	4.6	13	1.86	131	43	463	167	693	135	970	159
IA-NS-6	IA-NS-6-12.1	7	0.55	2326	12	0.02	18	3.5	9	2.55	79	27	286	102	404	71	513	81
IA-NS-6	IA-NS-6-13.1	41	0.32	11708	207	0.13	594	29	69	11	509	153	1461	504	1881	341	2365	353
IA-NS-6	IA-NS-6-15.1	14	0.45	9679	42	0.17	222	25	47	8	372	117	1174	414	1568	288	2051	306
IA-NS-6	IA-NS-6-16.1	23	0.31	6125	18	0.12	75	15	32	9	247	78	787	276	1077	203	1491	241
IA-NS-6	IA-NS-6-17.1	15	7	4265	15	0.11	81	10	23	4.99	181	59	599	215	854	160	1178	183
IA-NS-6	IA-NS-6-17.2	15	0.27	13992	60	0.32	328	37	73	13	565	174	1723	604	2279	415	2922	440
IA-NS-6	IA-NS-6-18.1	16	6	1372	9	0.03	16	0.9	2.82	0.97	31	11	135	54	236	48	382	67
IA-NS-6	IA-NS-6-18.2	7	0.45	2156	10	0.02	17	3.4	9	2.56	77	26	277	98	382	71	501	79
IA-NS-6	IA-NS-6-19.1	19	0.38	14369	60	0.48	376	50	91	16	642	196	1888	649	2366	433	3006	442
IA-NS-6	IA-NS-6-20.2	23	0.45	9805	38	0.21	132	23	52	12	397	119	1206	425	1595	294	2086	325
IA-NS-6	IA-NS-6-21.1	10	0.35	1409	28	0.02	18	1.4	3.91	1.48	39	14	159	60	260	51	371	62
IA-NS-6	IA-NS-6-22.1	8	0.37	1430	12	0.03	16	1.7	4.71	1.57	50	16	187	68	269	51	377	62
IA-NS-6	IA-NS-6-22.2	21	0.35	1635	12	0.02	20	1.4	3.64	1.25	37	14	165	68	303	61	505	87
IA-NS-6	IA-NS-6-24.1	18	0.20	1779	8	0.01	18	2.7	6	1.79	55	18	201	77	312	61	458	77
IA-NS-6	IA-NS-6-24.2	13	113	3904	40	0.56	41	6	15	4.47	139	46	472	179	667	123	841	134
IA-NS-6	IA-NS-6-24.3	10	1.24	1410	19	0.15	24	1.9	4.34	1.37	44	15	164	62	253	47	346	58
IA-NS-6	IA-NS-6-26.1	13	0.37	14934	73	0.33	293	37	74	6	586	186	1876	647	2454	450	3204	486
IA-NS-6	IA-NS-6-23.1	15	2.79	1693	18	12	50	13	8	2.65	53	18	198	74	280	57	415	65
IA-NS-7	IA-NS-7-1.1	18	3.00	4901	12	0.08	24	9	23	8	187	59	592	213	810	150	1136	182
IA-NS-7	IA-NS-7-2.1	17	3.80	14503	453	0.08	559	14	46	3.08	440	157	1673	597	2352	433	3123	455

Appendix B.3. Continued

Sample	Grain #	Ti	Fe	Y	Nb	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
IA-NS-7	IA-NS-7-3.1	20	4.58	11321	279	0.14	451	19	47	3.96	403	135	1401	481	1901	348	2488	370
IA-NS-7	IA-NS-7-4.1	14	2.97	1899	4.6	0.02	12	3.4	8	2.37	60	20	217	79	313	62	455	78
IA-NS-7	IA-NS-7-4.2	14	3.04	6497	153	0.02	217	10	26	2.38	222	77	792	273	1082	203	1465	230
IA-NS-7	IA-NS-7-5.1	19	3.13	7789	22	0.22	58	26	48	15	346	107	1044	342	1275	226	1643	251
IA-NS-7	IA-NS-7-6.1	6	25	12165	90	0.98	220	7	18	1.62	174	71	911	400	1860	434	3657	558
IA-NS-7	IA-NS-7-7.1	13	108	1870	8	0.36	14	2.8	7	1.97	58	20	204	74	313	60	467	76
IA-NS-7	IA-NS-7-8.1	16	3.00	4291	9	0.07	21	9	20	7	161	51	510	174	669	125	942	151
IA-NS-7	IA-NS-7-8.2	18	3.07	8984	239	0.08	339	14	38	3.30	331	108	1110	388	1467	272	1954	295
IA-NS-7	IA-NS-7-9.1	9	3.50	13451	82	0.26	290	28	62	5	499	162	1662	569	2210	397	2847	428
IA-NS-7	IA-NS-7-10.1	29	3.63	15246	394	0.20	787	37	94	8	694	214	2028	658	2410	409	2952	421
IA-NS-7	IA-NS-7-11.1	17	130	3752	12	0.74	19	8	17	6	141	46	460	164	655	122	935	150
IA-NS-7	IA-NS-7-11.2	15	32	15666	718	0.13	361	7	22	1.72	262	114	1406	564	2506	520	3973	568
IA-NS-7	IA-NS-7-12.1	37	3.48	12385	299	0.15	539	30	78	8	588	175	1652	532	1978	338	2349	344
IA-NS-7	IA-NS-7-12.2	27	4.63	11714	254	0.14	525	23	61	6	501	155	1524	497	1888	332	2354	345
IA-NS-7	IA-NS-7-13.1	9	4.06	9942	58	0.89	150	14	36	3.46	341	113	1223	434	1694	319	2308	359
IA-NS-7	IA-NS-7-13.2	20	2.91	8564	24	0.13	48	19	46	16	372	116	1145	382	1464	266	1952	301
IA-NS-7	IA-NS-7-14.1	17	2.95	4247	9	0.08	15	6	18	6	155	51	525	185	746	138	1030	170
IA-NS-7	IA-NS-7-15.1	9	3.76	20787	107	0.42	462	40	89	9	732	244	2518	875	3300	590	4183	610
IA-NS-7	IA-NS-7-16.1	17	3.37	3982	7	0.10	22	10	20	6	160	51	508	177	688	125	928	150
IA-NS-7	IA-NS-7-16.2	20	3.65	15396	342	0.14	700	21	61	6	560	189	1949	681	2634	475	3410	503
IA-NS-7	IA-NS-7-17.1	29	3.64	15022	435	0.11	769	31	78	6	655	202	1941	638	2375	422	2953	426
IA-NS-7	IA-NS-7-17.2	9	3.27	10735	64	0.20	204	23	49	3.79	397	129	1326	470	1772	320	2304	348
IA-NS-7	IA-NS-7-18.1	38	3.36	6067	59	0.09	105	12	38	11	298	90	846	265	954	162	1126	158
IA-NS-7	IA-NS-7-19.2	20	3.78	7941	23	0.20	57	24	51	16	364	111	1070	348	1252	218	1528	228
IA-NS-7	IA-NS-7-19.1	10	96	8780	52	1.0	136	13	32	2.96	278	94	1009	375	1437	275	1984	315
IA-NS-9	IA-NS-9_01.1	12	4.45	1436	19	0.05	19	1.6	4.46	1.18	39	15	162	64	261	50	379	62
IA-NS-9	IA-NS-9_02.1	6	4.24	5200	193	0.07	194	2.5	7	1.51	75	35	460	201	923	192	1458	202
IA-NS-9	IA-NS-9_04.1	9	4.26	2717	11	0.03	14	4.5	8	2.23	77	28	311	113	465	84	624	100
IA-NS-9	IA-NS-9_05.1	9	4.27	2695	12	0.02	14	4.2	9	2.17	78	26	272	111	423	77	577	89
IA-NS-9	IA-NS-9_06.1	12	3.91	1948	6	0.05	12	4.7	8	2.36	65	23	242	83	348	67	498	78
IA-NS-9	IA-NS-9_07.1	11	4.27	2819	16	0.11	32	4.3	12	2.38	137	49	528	194	746	141	1023	155

Appendix B.3. Continued

Sample	Grain #	Ti	Fe	Y	Nb	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
IA-NS-9	IA-NS-9_08.1	11	4.20	1034	6	0.01	7	1.3	3.66	1.12	33	12	133	49	209	40	310	50
IA-NS-9	IA-NS-9_09.2	12	4.35	1301	18	0.10	17	1.6	3.94	0.99	34	13	153	59	247	48	381	60
IA-NS-9	IA-NS-9_10.2	12	4.37	1103	13	0.01	12	1.3	3.11	0.78	28	12	123	48	202	40	294	51
IA-NS-9	IA-NS-9_11.1	12	4.77	2630	10	0.05	13	3.6	6	1.76	49	20	202	71	284	49	404	63
IA-NS-9	IA-NS-9_12.2	13	4.26	4739	33	0.06	40	9	18	6	150	57	580	196	783	139	1035	151
IA-NS-9	IA-NS-9_13.1	10	3.85	2078	11	0.13	14	3.9	9	2.34	66	24	256	94	396	69	508	83
IA-NS-9	IA-NS-9_14.2	7	4.28	9853	1785	0.40	193	42	90	1.57	380	193	1992	614	2360	498	3882	486
IA-NS-9	IA-NS-9_15.1	12	3.89	1816	8	0.03	10	3.2	7	2.04	60	21	222	80	320	61	461	76
IA-NS-9	IA-NS-9_16.1	12	4.10	2418	9	0.04	12	4.3	8	2.50	79	29	316	111	476	90	673	109
IA-NS-9	IA-NS-9_17.2	9	4.70	5623	954	0.46	103	1.1	6	0.48	54	29	394	176	834	191	1633	240
IA-NS-9	IA-NS-9_18.1	8	4.65	7668	244	0.03	147	5	17	2.23	185	72	806	313	1231	228	1630	239
IA-NS-9	IA-NS-9_18.2	9	4.49	10260	467	0.32	250	6	24	2.29	242	101	1109	434	1705	327	2304	315
IA-NS-9	IA-NS-9_20.1	13	3.93	2490	9	0.15	11	4.3	8	2.48	77	27	289	107	411	77	561	92
IA-NS-9	IA-NS-9_21.1	8	4.41	6925	469	0.37	271	3.5	8	1.87	82	43	561	248	1171	247	1913	251
IA-NS-9	IA-NS-9_22.1	12	2.52	1408	6	0.06	11	2.5	7	1.60	56	17	188	67	266	52	382	60
IA-NS-9	IA-NS-9_27	4.2	189	2548	331	1.7	43	3.0	12	0.51	87	49	688	245	1164	272	2282	327
IA-NS-9	IA-NS-9_29	9	9	8076	1071	0.78	88	44	78	1.57	343	154	1728	544	2167	443	3296	423
IA-NS-9	IA-NS-9_30	5	166	4007	350	5.4	138	8	16	0.55	79	44	654	282	1428	376	3460	509
IA-NS-9	IA-NS-9_31	11	9	9629	579	0.69	87	46	93	1.64	450	217	2569	844	3490	819	6422	845
IA-NS-9	IA-NS-9_32	12	2.45	2039	28	1.2	23	4.2	8	1.95	55	20	230	86	336	62	485	76
IA-NS-9	IA-NS-9_33	10	0.55	909	11	0.01	10	1.2	2.50	0.74	23	9	100	40	162	33	259	42
IA-NS-9	IA-NS-9_34	10	0.54	1509	28	0.05	22	1.5	3.93	1.10	37	15	196	64	267	50	377	59
IA-NS-9	IA-NS-9_35	12	0.48	4760	26	0.04	22	6	20	5	165	54	617	209	800	144	1078	167
IA-NS-9	IA-NS-9_36	11	0.43	1086	14	0.01	12	1.2	3.57	0.81	25	10	123	46	201	40	307	51
IA-NS-9	IA-NS-9_37	8	0.64	3847	40	0.04	39	5	14	2.63	123	46	518	181	722	132	921	151
IA-NS-9	IA-NS-9_38	10	0.36	1898	15	0.02	14	2.2	6	1.33	52	20	214	79	316	63	469	76
IA-NS-9	IA-NS-9_03.1	9	4.08	8114	598	0.17	76	17	50	1.59	331	173	2004	710	2887	614	4630	613
IA-NS-9	IA-NS-9_03.2		7	6498	891	2.4	101	29	58	1.80	298	130	1391	500	1940	424	3413	462
IA-NS-9	IA-NS-9_14.1		33	13388	410	13	320	95	136	2.45	571	219	2254	810	2911	681	5798	800
IA-NS-9	IA-NS-9_17.1	8	11	6507	533	5.3	72	25	21	2.84	82	38	469	192	960	242	2141	317
IA-NS-9	IA-NS-9_19.1		21	29171	2215	2.2	1509	9	26	4.06	264	117	1612	873	3275	680	4739	550

Appendix B.3. Continued

Sample	Grain #	Ti	Fe	Y	Nb	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
IA-NS-9	IA-NS-9_19.2		16	38389	896	3.8	1961	14	38	6	390	157	2175	1224	4522	941	6666	754
IA-NS-9	IA-NS-9_21.2		4.67	2738	250	11	78	8	6	0.43	45	36	537	232	1236	283	2407	332
IA-NS-9	IA-NS-9_25		156	8397	742	17	350	68	115	2.36	462	189	1935	616	2247	511	4185	539
IA-NS-9	IA-NS-9_26		126	9924	940	44	368	59	90	2.65	449	188	2056	782	2501	544	4121	559
IA-NS-9	IA-NS-9_28	6	60	5055	395	152	669	111	35	1.23	78	32	407	199	908	216	1762	255
IA-NS-10	IA-NS-10_1.1	17	0.71	8993	195	0.04	195	13	32	5	272	98	1074	386	1479	278	2052	321
IA-NS-10	IA-NS-10_3.1	14	1.83	1282	19	0.07	15	1.7	3.61	0.97	35	12	138	51	221	44	346	55
IA-NS-10	IA-NS-10_4.1	14	0.55	1220	16	0.02	14	1.3	3.41	1.08	33	12	133	50	202	41	306	50
IA-NS-10	IA-NS-10_5.1	15	0.71	1053	11	0.01	12	1.1	3.32	0.78	27	9	118	44	186	37	302	50
IA-NS-10	IA-NS-10_6.1	20	0.53	2224	29	0.03	28	2.8	7	1.99	63	22	257	92	388	78	607	99
IA-NS-10	IA-NS-10_7.1	16	3.85	4709	51	0.07	41	6	15	3.04	121	41	477	181	687	128	927	145
IA-NS-10	IA-NS-10_8.1	14	1.04	2388	11	0.41	15	4.5	9	2.14	79	25	280	105	408	74	558	93
IA-NS-10	IA-NS-10_9.1	10	0.78	2849	16	0.04	15	3.7	10	2.54	95	31	347	119	469	92	650	106
IA-NS-10	IA-NS-10_10.1	9	0.98	2139	12	0.25	12	3.5	8	2.33	64	23	264	93	366	69	476	79
IA-NS-10	IA-NS-10_11.1	8	0.49	834	11	0.01	10	0.6	2.44	0.66	18	8	95	35	149	31	236	39
IA-NS-10	IA-NS-10_12.1	11	0.51	798	11	0.01	9	0.6	2.17	0.57	21	7	90	34	148	29	227	37
IA-NS-10	IA-NS-10_13.1	11	1.72	1238	17	0.61	19	2.5	4.57	1.18	35	12	136	53	222	42	318	51
IA-NS-10	IA-NS-10_14.1	22	0.53	1768	23	0.03	13	1.7	4.96	1.37	42	15	181	68	311	62	517	87
IA-NS-10	IA-NS-10_16.1	15	0.73	1016	12	0.02	11	1.0	3.33	0.83	29	10	114	43	173	35	265	44
IA-NS-10	IA-NS-10_17.1	14	0.70	1100	13	0.01	12	1.4	3.40	0.87	31	10	120	45	198	39	305	49
IA-NS-10	IA-NS-10_18.1	21	0.44	3073	11	0.03	10	5	15	5	106	36	389	136	536	98	733	124
IA-NS-10	IA-NS-10_19.1	16	0.51	2070	29	0.04	24	2.3	6	1.93	59	20	228	85	325	65	449	75
IA-NS-10	IA-NS-10_20.1	14	1.57	1160	13	0.03	13	1.4	4.13	1.12	34	12	128	52	207	40	317	55
IA-NS-10	IA-NS-10_21.1	12	1.31	1038	14	0.12	14	1.3	3.09	0.72	26	10	116	44	185	37	285	48
IA-NS-10	IA-NS-10_22.1	13	0.75	1326	19	0.02	15	1.6	4.45	1.02	35	12	147	57	226	45	345	57
IA-NS-10	IA-NS-10_23.1	10	1.70	2063	7	0.02	10	3.4	8	2.29	65	23	253	91	349	67	496	78
IA-NS-10	IA-NS-10_24.1	9	0.65	759	11	0.17	10	0.7	2.54	0.66	18	7	90	33	137	28	225	40
IA-NS-12	IA-NS-12_4.1	18	0.71	5161	121	0.02	101	6	20	3.95	177	62	688	248	907	184	1238	195
IA-NS-12	IA-NS-12_6.1	12	0.60	1019	13	0.02	11	0.9	2.85	0.75	26	9	113	42	178	36	276	49
IA-NS-12	IA-NS-12_8.1	11	1.96	957	13	0.03	12	0.9	2.68	0.83	23	9	111	43	168	35	259	46
IA-NS-12	IA-NS-12_10.1	12	1.31	926	12	0.01	11	1.0	3.02	0.74	24	9	105	41	160	33	254	44

Appendix B.3. Continued

Sample	Grain #	Ti	Fe	Y	Nb	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
IA-NS-12	IA-NS-12_11.1	12	0.68	1432	14	0.01	14	1.5	5	1.58	39	14	157	60	242	50	371	65
IA-NS-12	IA-NS-12_12.1		0.99	8627	131	0.07	143	15	43	10	349	107	1123	399	1398	251	1743	273
IA-NS-12	IA-NS-12_13.1	16	0.76	2505	9	0.04	10	4.1	11	3.50	84	27	315	112	417	81	588	109
IA-NS-12	IA-NS-12_14.1	12	0.63	2783	16	0.04	15	4.2	10	2.20	86	28	338	128	489	92	660	108
IA-NS-12	IA-NS-12_15.1	16	0.69	3131	43	0.03	34	3.3	12	3.18	100	34	385	140	531	98	703	116
IA-NS-12	IA-NS-12_16.1	12	1.80	1342	18	0.04	16	1.7	4.64	1.09	33	12	146	56	226	45	337	56
IA-NS-12	IA-NS-12_17.1	12	0.84	1065	15	0.04	9	0.9	2.84	0.74	25	9	115	45	185	40	292	49
IA-NS-12	IA-NS-12_18.1	12	0.57	2865	12	0.01	14	5.0	11	2.63	86	30	346	125	508	92	693	108
IA-NS-12	IA-NS-12_19.1	13	0.77	1241	15	0.01	12	1.0	3.53	0.81	30	11	127	51	207	40	316	52
IA-NS-12	IA-NS-12_20.1	7	0.75	4591	42	0.01	47	7	16	2.22	133	46	520	195	743	137	980	157
IA-NS-12	IA-NS-12_21.1	13	0.48	1054	14	0.03	11	1.0	3.38	0.90	29	10	123	44	188	36	299	50
IA-NS-12	IA-NS-12_22.1	12	0.67	1870	30	0.02	23	2.1	6	1.31	53	19	226	85	341	65	503	83
IA-NS-12	IA-NS-12_23.1	13	0.76	1351	19	0.04	16	1.2	3.80	0.91	37	13	153	56	240	47	364	58
IA-NS-12	IA-NS-12_24.1	12	0.70	1613	27	0.03	21	1.5	4.52	0.99	37	15	174	65	283	55	416	68
IA-NS-12	IA-NS-12_25.1	19	0.97	939	8	0.01	9	1.0	2.81	1.01	25	9	104	38	167	33	266	45
IA-NS-12	IA-NS-12_26.1	13	1.06	1572	24	0.94	25	3.8	5	1.07	40	14	170	66	268	51	402	68
IA-NS-12	IA-NS-12_27.1	21	0.45	2169	8	0.01	8	3.9	9	3.10	70	22	251	86	339	67	491	79
IA-NS-12	IA-NS-12_1.1		912	8243	1058	179	1393	379	184	16	520	143	1287	444	1414	274	2044	293
IA-NS-12	IA-NS-12_3.1	15	5	2182	10	3.3	32	12	10	2.98	75	25	260	95	374	72	517	89
IA-NS-12	IA-NS-12_9.1	24	15	14024	276	3.6	294	21	48	3.63	400	141	1580	608	2225	432	2964	447
IA-G-1	IA-G-1-1.1	15	4.28	2178	1.4	0.03	11	3.7	8	3.14	70	24	257	91	392	75	558	91
IA-G-1	IA-G-1-2.1	13	3.98	2445	1.7	0.04	12	3.5	7	3.11	70	25	278	102	424	81	615	102
IA-G-1	IA-G-1-3.1	17	3.76	1119	2.3	0.01	9	0.9	2.53	1.07	24	9	105	45	208	44	358	66
IA-G-1	IA-G-1-4.1	21	3.78	4000	3.2	0.09	13	4.5	9	3.97	104	40	474	183	788	147	1097	177
IA-G-1	IA-G-1-5.1	21	3.82	1900	0.9	0.04	6	2.7	6	3.41	61	22	229	82	348	65	512	84
IA-G-1	IA-G-1-6.1	9	3.56	1735	1.0	0.01	13	2.7	7	1.73	56	20	209	75	319	59	446	70
IA-G-1	IA-G-1-6.2	11	3.98	1350	1.1	0.01	8	1.6	4.99	1.75	36	13	139	52	211	42	321	54
IA-G-1	IA-G-1-7.1	15	3.64	2072	1.0	0.02	11	3.2	6	2.52	61	22	239	85	365	69	527	85
IA-G-1	IA-G-1-8.1	17	3.98	2261	1.5	0.05	10	3.7	8	3.53	77	25	263	94	393	72	531	87
IA-G-1	IA-G-1-9.1	20	3.72	1980	1.4	0.02	9	3.8	8	3.71	69	23	229	82	326	63	470	77
IA-G-1	IA-G-1-10.1	14	3.57	2440	1.4	0.03	12	3.5	7	2.71	70	24	262	100	414	79	591	94

Appendix B.3. Continued

Sample	Grain #	Ti	Fe	Y	Nb	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
IA-G-1	IA-G-1-11.1	19	4.06	2863	1.7	0.08	11	4.0	9	4.20	88	31	334	123	508	96	726	118
IA-G-1	IA-G-1-12.1	21	3.93	5003	3.7	0.13	20	6	18	8	175	58	606	215	862	159	1177	186
IA-G-1	IA-G-1-13.1	17	3.71	1467	0.8	0.03	7	2.4	5	2.43	46	16	170	62	255	50	379	61
IA-G-1	IA-G-1-14.1	33	3.68	2273	2.6	0.03	20	3.1	7	3.63	70	24	253	94	390	72	548	89
IA-G-1	IA-G-1-15.1	12	2.85	2157	1.4	0.05	11	3.5	7	2.95	63	21	237	90	370	69	512	85
IA-G-1	IA-G-1-16.1	18	3.60	1278	0.6	0.02	5	2.3	5	2.57	42	14	152	53	223	42	334	57
IA-G-1	IA-G-1-17.1	25	3.63	5197	4.2	0.08	22	8	21	10	190	62	634	218	870	162	1184	190
IA-G-1	IA-G-1-18.1	23	2.33	5227	3.8	0.09	17	5	12	6	152	55	602	222	914	167	1227	196
IA-G-1	IA-G-1-19.1	19	3.60	2446	1.6	0.05	9	3.8	8	3.69	81	28	297	106	431	81	606	101
IA-G-1	IA-G-1-20.1	14	2.98	1572	1.1	0.01	9	2.2	5	2.14	46	15	162	61	243	48	355	57
IA-G-1	IA-G-1-21.1	18	2.93	1981	1.1	0.06	9	3.2	7	3.04	60	21	232	83	342	65	496	81
IA-G-1	IA-G-1-22.1	16	3.26	5021	9	0.05	89	3.9	13	4.30	142	53	569	210	888	170	1297	205
IA-G-1	IA-G-1-22.2	10	3.36	7450	4.9	0.14	56	11	28	9	252	86	903	316	1298	244	1815	276
IA-G-1	IA-G-1-23.1	24	3.48	3976	2.4	0.08	13	4.4	12	6	126	42	432	155	643	116	880	139
IA-G-1	IA-G-1-24.1	12	3.47	2152	1.4	0.05	12	3.1	6	2.48	63	22	233	89	371	70	527	86
IA-G-1	IA-G-1-24.2	9	3.56	4731	11	0.04	116	3.9	12	1.80	121	45	514	192	836	166	1224	186
IA-G-1	IA-G-1-25.1	8	3.73	2061	1.0	0.15	11	2.7	7	2.29	59	22	236	87	385	72	561	91
IA-G-1	IA-G-1-26.1	33	2.71	2455	3.2	0.03	26	2.7	7	3.72	75	26	282	102	424	79	588	96
IA-G-1	IA-G-1-27.1	14	2.88	2288	1.3	0.03	8	2.6	7	3.27	69	23	249	91	383	72	564	92
IA-G-5	IA-G-5-2.1	37	5	7919	36	0.07	273	14	35	9	293		868	312	1165		1503	217
IA-G-5	IA-G-5-4.1	31	2.75	8302	50	0.13	304	11	31	6	279		921	337	1229		1645	242
IA-G-5	IA-G-5-6.1	24	1.53	9149	26	0.17	189	16	37	11	320		1082	385	1370		1769	270
IA-G-5	IA-G-5-7.1	19	0.07	6244	12	0.15	84	12	27	8	206		629	245	898		1252	192
IA-G-5	IA-G-5_8.1	38	2.57	7440	53	0.08	330	12	42	8	302	104	1020	327	1248	232	1613	232
IA-G-5	IA-G-5_9.1	12	2.87	13075	16	0.47	428	30	82	13	496	173	1713	581	1982	359	2488	347
IA-G-5	IA-G-5_10.1	5	3.95	4681	4.0	0.03	85	6	15	2.85	141	53	585	214	880	164	1166	166
IA-G-5	IA-G-5_11.1	23	3.83	7882	12	0.21	150	24	49	14	359	116	1127	392	1394	251	1785	255
IA-G-5	IA-G-5_12.1	18	4.16	6527	9	0.09	102	14	29	9	227	88	883	294	1186	222	1595	222
IA-G-5	IA-G-5_13.1	20	3.91	9393	22	0.19	281	27	53	13	391	132	1284	442	1581	284	2293	307
IA-G-5	IA-G-5_14.1	36	4.22	6768	31	0.08	217	12	30	8	244	91	940	339	1331	243	1746	267

Sample	Grain #	Hf	Th	U	Eu*	Ce*	Ce/Ce*	Eu/Eu*	Crystallization Temp (°C)
IA-NS-2	IA-NS-2-1.1	11074	17	50	27	0.08	185	0.24	806
IA-NS-2	IA-NS-2-2.1	8236	34	59	129	0.84	13	0.40	919
IA-NS-2	IA-NS-2-3.1	10636	351	439	303	1.9	96	0.16	799
IA-NS-2	IA-NS-2-4.1	8384	53	107	81	0.46	83	0.32	805
IA-NS-2	IA-NS-2-4.2	8863	58	114	135	1.2	22	0.27	782
IA-NS-2	IA-NS-2-4.3	10129	158	290	97	0.27	257	0.19	766
IA-NS-2	IA-NS-2-5.1	8339	1042	841	837	7.2	34	0.12	853
IA-NS-2	IA-NS-2-5.2	9633	62	147	106	0.50	112	0.23	770
IA-NS-2	IA-NS-2-6.1	10204	887	719	260	1.3	276	0.19	824
IA-NS-2	IA-NS-2-7.1	9107	28	55	37	0.22	68	0.43	859
IA-NS-2	IA-NS-2-8.1	11028	768	695	279	1.6	214	0.19	853
IA-NS-2	IA-NS-2-9.1	11882	552	508	176	0.72	255	0.20	825
IA-NS-2	IA-NS-2-10.1	11984	862	1118	163	0.83	263	0.12	815
IA-NS-2	IA-NS-2-10.2	11551	656	878	263	2.3	53	0.12	768
IA-NS-2	IA-NS-2-11.1	8720	101	177	188	1.3	34	0.24	761
IA-NS-2	IA-NS-2-11.2	13044	625	819	151	0.68	271	0.14	820
IA-NS-2	IA-NS-2-12.1	8552	75	136	145	0.95	37	0.27	786
IA-NS-2	IA-NS-2-12.2	8809	119	200	219	1.3	36	0.26	781
IA-NS-2	IA-NS-2-13.1	9548	436	454	379	2.5	69	0.29	829
IA-NS-2	IA-NS-2-14.1	9749	406	529	136	0.50	235	0.18	804
IA-NS-2	IA-NS-2-14.2	8469	263	381	377	1.9	74	0.20	773
IA-NS-2	IA-NS-2-15.1	8069	156	263	222	1.5	69	0.29	811
IA-NS-2	IA-NS-2-15.2	9744	93	159	64	0.32	136	0.23	790
IA-NS-2	IA-NS-2-16.1	9307	31	99	51	0.28	108	0.22	780
IA-NS-2	IA-NS-2-16.2	8676	94	166	167	1.3	32	0.27	819
IA-NS-2	IA-NS-2-17.1	9409	68	145	77	0.42	126	0.22	774
IA-NS-2	IA-NS-2-17.2	10055	740	774	773	5.7	64	0.16	789
IA-NS-2	IA-NS-2-18.1	9094	131	212	201	1.6	34	0.24	765
IA-NS-2	IA-NS-2-18.2	9713	113	221	116	0.59	154	0.21	780
IA-NS-2	IA-NS-2-19.1	9149	76	166	102	0.61	122	0.23	778
IA-NS-2	IA-NS-2-19.2	8995	185	308	258	1.7	45	0.22	768
IA-NS-2	IA-NS-2-20.1	8762	100	167	197	1.4	29	0.26	782
IA-NS-2	IA-NS-2-21.2	8650	135	211	219	1.4	43	0.25	794
IA-NS-2	IA-NS-2-22.1	8245	32	69	103	0.91	16	0.37	803
IA-NS-2	IA-NS-2-23.1	8792	40	94	70	0.42	93	0.29	784
IA-NS-2	IA-NS-2-24.1	8829	62	119	136	1.2	23	0.27	782
IA-NS-2	IA-NS-2-24.2	10043	513	606	229	1.1	182	0.15	827
IA-NS-2	IA-NS-2-25.2	12820	235	461	86	0.60	139	0.14	765

Appendix B.4. Zircon Trace Element Compositions (ppm), measured *in situ* by SHRIMP-RG (Atomic Number > 71), REE anomalies³⁸, and estimated model crystallization temperatures³⁹

³⁸ REE anomalies: Ce* and Eu* calculated by logarithmic extrapolation of Sm and Nd, and Nd and Gd, respectively ³⁹ Model temperatures estimated using the Ti-in-zircon thermometer of Ferry & Watson (2007), see Chapter III, 3.3.b

Sample	Grain #	Hf	Th	U	Eu*	Ce*	Ce/Ce*	Eu/Eu*	Crystallization Temp (°C)
IA-NS-2	IA-NS-2-21.1	9680	184	299	212	51	4	0.17	764
IA-NS-2	IA-NS-2-23.2	8828	1290	987	738	45	14	0.21	845
IA-NS-2	IA-NS-2-25.1	10570	1119	841	671	31	22	0.20	
IA-NS-4b	IA-NS-4b-1.1	16898	725	1065	501	7.5	8	0.03	750
IA-NS-4b	IA-NS-4b-1.2	22578	7063	3985	1738	43	12	0.03	
IA-NS-4b	IA-NS-4b-2.1	8226	58	110	163	1.1	21	0.36	793
IA-NS-4b	IA-NS-4b-4.1	22139	1828	1262	225	0.72	188	0.04	689
IA-NS-4b	IA-NS-4b-6.1	7514	15	51	48	0.30	28	0.43	835
IA-NS-4b	IA-NS-4b-7.1	22628	5273	2984	1297	7.7	61	0.04	699
IA-NS-4b	IA-NS-4b-9.1	21137	2303	1710	162	0.34	294	0.05	724
IA-NS-4b	IA-NS-4b-9.2	17930	1887	1827	301	1.3	90	0.04	755
IA-NS-4b	IA-NS-4b-10.1	9170	354	454	168	0.77	149	0.17	818
IA-NS-4b	IA-NS-4b-11.1	7999	151	232	301	1.8	39	0.29	793
IA-NS-4b	IA-NS-4b-12.1	21201	1529	763	1074	13	12	0.03	764
IA-NS-4b	IA-NS-4b-14.1	20815	1969	1709	789	6.6	27	0.03	780
IA-NS-4b	IA-NS-4b-15.1	8055	2674	1695	623	2.5	462	0.32	834
IA-NS-4b	IA-NS-4b-18.1	21589	2020	1184	341	1.6	71	0.04	707
IA-NS-4b	IA-NS-4b-19.1	8293	31	67	100	0.84	17	0.37	794
IA-NS-4b	IA-NS-4b-20.1	8345	43	90	117	0.96	18	0.34	790
IA-NS-4b	IA-NS-4b-22.1	18342	821	690	45	0.12	350	0.06	662
IA-NS-4b	IA-NS-4b-23.1	18920	1919	812	278	1.00	110	0.04	683
IA-NS-4b	IA-NS-4b-23.2	22353	2928	1651	651	2.7	94	0.04	679
IA-NS-4b	IA-NS-4b-24.1	8926	65	112	127	1.0	15	0.29	826
IA-NS-4b	IA-NS-4b-25.1	18104	1632	1486	1151	16	10	0.03	751
IA-NS-4b	IA-NS-4b-25.2	19579	1619	1209	808	7.6	17	0.04	781
IA-NS-4b	IA-NS-4b-26.1	9144	39	104	57	0.36	53	0.24	832
IA-NS-4b	IA-NS-4b-27.1	8213	64	116	125	0.88	30	0.33	800
IA-NS-4b	IA-NS-4b-28.1	7824	45	78	46	0.35	33	0.42	861
IA-NS-4b	IA-NS-4b-29.1	21483	5758	693	652	7.0	305	0.12	791
IA-NS-4b	IA-NS-4b-40	14936	891	1600	113	3.7	21	0.03	711
IA-NS-4b	IA-NS-4b-43	21419	2550	2287	447	2.0	125	0.03	652
IA-NS-4b	IA-NS-4b-44	20493	1899	796	176	0.47	258	0.03	706
IA-NS-4b	IA-NS-4b-45	11447	1182	1429	235	1.4	97	0.03	681
IA-NS-4b	IA-NS-4b-49	18265	12612	803	3766	66	43	0.19	
IA-NS-4b	IA-NS-4b-50	12530	9330	763	1866	19	132	0.20	
IA-NS-4b	IA-NS-4b-51	20367	515	1030	76	0.17	194	0.04	711
IA-NS-4b	IA-NS-4b-52	27915	5967	2874	558	2.7	96	0.03	765
IA-NS-4b	IA-NS-4b-53	22358	1081	2850	68	0.79	103	0.04	
IA-NS-4b	IA-NS-4b-55	13360	320	613	11	0.17	258	0.06	687
IA-NS-4b	IA-NS-4b-56	14189	771	1419	33	0.98	74	0.04	695
IA-NS-4b	IA-NS-4b-57	21430	5276	2433	881	5.0	71	0.04	721
IA-NS-4b	IA-NS-4b-58	16893	1186	1384	275	0.88	121	0.04	684

Appendix B.4. Continued

Sample	Grain #	Hf	Th	U	Eu*	Ce*	Ce/Ce*	Eu/Eu*	Crystallization Temp (°C)
IA-NS-4b	IA-NS-4b-59	27190	2345	1560	163	0.55	175	0.04	682
IA-NS-4b	IA-NS-4b-3.1	24018	962	1878	71	1.2	85	0.05	
IA-NS-4b	IA-NS-4b-14.2	19398	901	758	307	9.7	15	0.04	707
IA-NS-4b	IA-NS-4b-21.1	8007	745	1074	231	1.4	503	0.19	779
IA-NS-4b	IA-NS-4b-21.2	13113	3933	1298	64	2.6	128	0.13	
IA-NS-4b	IA-NS-4b-27.2	8916	918	819	458	43	19	0.19	857
IA-NS-4b	IA-NS-4b-41	13913	1596	2945	86	7.5	13	0.05	728
IA-NS-4b	IA-NS-4b-42	22319	1512	2761	441	7.2	30	0.04	
IA-NS-4b	IA-NS-4b-46	13197	1777	2113	63	6.9	13	0.04	747
IA-NS-4b	IA-NS-4b-47	19930	1472	2210	148	9.1	18	0.04	711
IA-NS-4b	IA-NS-4b-48	12172	4129	3125	1856	17	60	0.03	
IA-NS-4b	IA-NS-4b-54	14113	3285	4421	140	7.4	14	0.04	
IA-NS-4b	IA-NS-4b-60	12991	1338	1576	232	13	14	0.06	
IA-NS-6	IA-NS-6-1.1	8638	108	162	89	0.46	100	0.29	820
IA-NS-6	IA-NS-6-2.1	7161	1072	956	1099	12	54	0.17	862
IA-NS-6	IA-NS-6-3.1	7708	1082	898	1017	9.8	62	0.15	847
IA-NS-6	IA-NS-6-4.1	7240	500	449	894	11	20	0.30	895
IA-NS-6	IA-NS-6-5.1	9165	1590	1306	555	3.4	108	0.07	840
IA-NS-6	IA-NS-6-6.1	8191	324	367	164	0.86	135	0.28	824
IA-NS-6	IA-NS-6-7.1	8431	24	95	48	0.27	80	0.31	792
IA-NS-6	IA-NS-6-9.1	8501	1182	906	966	10.0	55	0.15	862
IA-NS-6	IA-NS-6-10.1	9056	497	554	182	0.82	129	0.13	865
IA-NS-6	IA-NS-6-12.1	8730	40	87	113	0.74	29	0.30	774
IA-NS-6	IA-NS-6-13.1	7641	3199	1810	813	6.6	110	0.18	991
IA-NS-6	IA-NS-6-15.1	7834	512	526	574	7.0	39	0.19	854
IA-NS-6	IA-NS-6-16.1	8466	294	302	385	3.6	26	0.30	911
IA-NS-6	IA-NS-6-17.1	8158	320	374	278	2.5	40	0.24	863
IA-NS-6	IA-NS-6-17.2	7880	793	686	880	9.7	41	0.20	859
IA-NS-6	IA-NS-6-18.1	8772	34	72	41	0.17	114	0.32	871
IA-NS-6	IA-NS-6-18.2	8665	42	80	112	0.71	29	0.30	782
IA-NS-6	IA-NS-6-19.1	7728	964	777	1046	15	32	0.20	888
IA-NS-6	IA-NS-6-20.2	8730	513	442	620	5.5	29	0.25	912
IA-NS-6	IA-NS-6-21.1	8218	50	107	54	0.25	86	0.36	817
IA-NS-6	IA-NS-6-22.1	8719	40	89	66	0.32	62	0.31	788
IA-NS-6	IA-NS-6-22.2	8476	49	93	50	0.28	85	0.33	901
IA-NS-6	IA-NS-6-24.1	8668	43	80	80	0.63	35	0.29	886
IA-NS-6	IA-NS-6-24.2	8221	93	156	196	1.2	41	0.30	848
IA-NS-6	IA-NS-6-24.3	8627	35	81	60	0.42	69	0.30	815
IA-NS-6	IA-NS-6-26.1	8056	1088	993	902	9.9	36	0.09	842
IA-NS-6	IA-NS-6-23.1	7702	79	114	87	13	5	0.40	864
IA-NS-7	IA-NS-7-1.1	7926	133	190	283	1.9	16	0.37	881
IA-NS-7	IA-NS-7-2.1	10290	3769	2992	617	2.3	291	0.07	874

Appendix B.4. Continued

Sample	Grain #	Hf	Th	U	Eu*	Ce*	Ce/Ce*	Eu/Eu*	Crystallization Temp (°C)
IA-NS-7	IA-NS-7-3.1	6789	1098	1342	598	3.8	143	0.09	897
IA-NS-7	IA-NS-7-4.2	7180	1000	1093	327	2.0	136	0.10	857
IA-NS-7	IA-NS-7-5.1	7411	258	284	560	7.2	10	0.36	891
IA-NS-7	IA-NS-7-6.1	15425	3606	3230	244	1.5	177	0.09	771
IA-NS-7	IA-NS-7-4.1	8196	35	73	93	0.81	18	0.34	852
IA-NS-7	IA-NS-7-7.1	8366	47	81	88	0.58	29	0.30	846
IA-NS-7	IA-NS-7-8.1	8146	108	163	248	2.0	13	0.35	870
IA-NS-7	IA-NS-7-8.2	7162	1305	1270	483	2.7	152	0.09	879
IA-NS-7	IA-NS-7-9.1	6353	523	704	763	6.8	52	0.09	809
IA-NS-7	IA-NS-7-10.1	6127	2682	2243	1103	7.8	123	0.09	943
IA-NS-7	IA-NS-7-11.1	8042	99	156	210	1.9	12	0.37	878
IA-NS-7	IA-NS-7-11.2	13324	5164	5933	327	1.0	424	0.07	863
IA-NS-7	IA-NS-7-12.1	6807	2247	1684	926	6.2	107	0.11	975
IA-NS-7	IA-NS-7-12.2	6986	2430	1763	755	4.6	140	0.10	932
IA-NS-7	IA-NS-7-13.1	7550	482	606	477	2.7	67	0.10	808
IA-NS-7	IA-NS-7-13.2	7323	306	316	566	4.1	14	0.37	896
IA-NS-7	IA-NS-7-14.1	7923	117	178	228	1.2	15	0.37	878
IA-NS-7	IA-NS-7-15.1	8825	1444	1331	1104	9.6	59	0.10	806
IA-NS-7	IA-NS-7-16.1	7969	116	175	247	2.4	11	0.34	877
IA-NS-7	IA-NS-7-16.2	9135	3190	2057	800	3.8	223	0.09	894
IA-NS-7	IA-NS-7-17.1	6355	2428	2117	975	6.4	146	0.08	944
IA-NS-7	IA-NS-7-17.2	6342	457	579	602	5.5	45	0.08	801
IA-NS-7	IA-NS-7-18.1	6523	697	650	462	2.1	61	0.32	981
IA-NS-7	IA-NS-7-19.2	7181	242	283	587	5.9	12	0.37	893
IA-NS-7	IA-NS-7-19.1	7008	385	545	405	3.0	54	0.10	812
IA-NS-9	IA-NS-9_01.1	9160	49	90	57	0.31	73	0.27	834
IA-NS-9	IA-NS-9_02.1	13542	224	625	101	0.46	512	0.20	759
IA-NS-9	IA-NS-9_04.1	8797	62	115	110	1.3	13	0.27	805
IA-NS-9	IA-NS-9_05.1	8841	46	89	115	1.1	16	0.25	806
IA-NS-9	IA-NS-9_06.1	8748	41	75	98	1.5	10	0.32	839
IA-NS-9	IA-NS-9_07.1	9351	263	244	176	0.80	49	0.18	827
IA-NS-9	IA-NS-9_08.1	8784	20	45	47	0.23	38	0.31	826
IA-NS-9	IA-NS-9_09.2	9147	61	105	50	0.34	60	0.26	835
IA-NS-9	IA-NS-9_10.2	8871	37	79	40	0.27	53	0.25	833
IA-NS-9	IA-NS-9_11.1	6330	25	62	74	1.2	13	0.31	835
IA-NS-9	IA-NS-9_12.2	7536	187	207	226	2.6	19	0.37	847
IA-NS-9	IA-NS-9_13.1	8164	53	85	102	0.93	19	0.30	815
IA-NS-9	IA-NS-9_14.2	15534	4806	3516	800	10	23	0.03	785
IA-NS-9	IA-NS-9_15.1	8258	41	76	86	0.82	15	0.31	831
IA-NS-9	IA-NS-9_16.1	8350	63	105	110	1.2	12	0.30	839
IA-NS-9	IA-NS-9_17.2	19222	848	1155	76	0.11	1197	0.08	805
IA-NS-9	IA-NS-9 18.1	10391	523	777	244	0.92	193	0.12	790

Appendix B.4. Continued

Sample	Grain #	Hf	Th	U	Eu*	Ce*	Ce/Ce*	Eu/Eu*	Crystallization Temp (°C)
IA-NS-9	IA-NS-9_18.2	10360	1394	1572	328	0.83	368	0.09	808
IA-NS-9	IA-NS-9_20.1	8998	48	89	110	1.2	11	0.30	841
IA-NS-9	IA-NS-9_21.1	13666	494	1239	113	0.78	421	0.22	789
IA-NS-9	IA-NS-9_22.1	9103	33	64	85	0.46	29	0.25	836
IA-NS-9	IA-NS-9_27	15998	1170	2197	137	0.42	124	0.05	729
IA-NS-9	IA-NS-9_29	14895	1507	957	706	13	8	0.03	800
IA-NS-9	IA-NS-9_30	11857	2639	5138	154	2.2	76	0.05	754
IA-NS-9	IA-NS-9_31	11621	1203	3139	886	12	9	0.02	821
IA-NS-9	IA-NS-9_32	8966	56	105	89	1.3	22	0.29	833
IA-NS-9	IA-NS-9_33	7987	27	61	33	0.31	39	0.29	818
IA-NS-9	IA-NS-9_34	7789	110	163	53	0.31	88	0.28	811
IA-NS-9	IA-NS-9_35	8013	119	169	247	1.0	27	0.28	836
IA-NS-9	IA-NS-9_36	9541	32	72	41	0.22	65	0.26	828
IA-NS-9	IA-NS-9_37	7742	119	188	181	0.98	49	0.19	789
IA-NS-9	IA-NS-9_38	8865	49	98	77	0.41	40	0.23	814
IA-NS-9	IA-NS-9_03.1	21798	1540	782	555	2.9	32	0.04	804
IA-NS-9	IA-NS-9_03.2	24528	3187	1747	571	7.5	16	0.04	
IA-NS-9	IA-NS-9_14.1	12856	6536	5859	1207	35	11	0.03	
IA-NS-9	IA-NS-9_17.1	18140	3141	2623	178	16	6	0.21	787
IA-NS-9	IA-NS-9_19.1	13693	6295	805	358	1.7	1086	0.15	
IA-NS-9	IA-NS-9_19.2	12077	5921	1159	528	2.8	856	0.14	
IA-NS-9	IA-NS-9_21.2	18365	1740	2175	74	5.4	18	0.08	
IA-NS-9	IA-NS-9_25	15383	6232	3155	996	21	20	0.03	
IA-NS-9	IA-NS-9_26	17079	3080	2723	871	20	22	0.04	
IA-NS-9	IA-NS-9_28	14042	1164	2010	228	183	4	0.07	763
IA-NS-10	IA-NS-10_1.1	9829	570	681	402	2.9	82	0.16	872
IA-NS-10	IA-NS-10_3.1	9211	60	112	48	0.43	43	0.26	849
IA-NS-10	IA-NS-10_4.1	10153	45	92	46	0.27	63	0.31	856
IA-NS-10	IA-NS-10_5.1	9602	40	81	41	0.19	77	0.25	862
IA-NS-10	IA-NS-10_6.1	9351	160	172	93	0.57	61	0.28	893
IA-NS-10	IA-NS-10_7.1	11888	146	241	183	1.3	39	0.22	869
IA-NS-10	IA-NS-10_8.1	13364	42	83	118	1.1	16	0.24	853
IA-NS-10	IA-NS-10_9.1	7929	67	117	135	0.73	26	0.25	816
IA-NS-10	IA-NS-10_10.1	7213	45	92	99	0.78	19	0.31	803
IA-NS-10	IA-NS-10_11.1	8023	19	47	29	0.08	161	0.30	794
IA-NS-10	IA-NS-10_12.1	8636	20	47	29	0.08	138	0.26	827
IA-NS-10	IA-NS-10_13.1	8541	59	100	55	0.70	32	0.28	829
IA-NS-10	IA-NS-10_14.1	11323	42	101	62	0.30	52	0.29	908
IA-NS-10	IA-NS-10_16.1	9125	34	70	43	0.16	86	0.26	864
IA-NS-10	IA-NS-10_17.1	9360	41	86	44	0.28	52	0.26	849
IA-NS-10	IA-NS-10_18.1	7525	66	101	170	1.0	13	0.40	902
IA-NS-10	IA-NS-10 19.1	8586	168	178	80	0.48	60	0.32	868

Appendix B.4. Continued

Sample	Grain #	Hf	Th	U	Eu*	Ce*	Ce/Ce*	Eu/Eu*	Crystallization Temp (°C)
IA-NS-10	IA-NS-10_20.1	10515	34	76	51	0.25	62	0.29	852
IA-NS-10	IA-NS-10_21.1	9888	27	62	39	0.27	63	0.24	832
IA-NS-10	IA-NS-10_22.1	8853	47	92	54	0.29	61	0.25	842
IA-NS-10	IA-NS-10_23.1	10098	36	75	100	0.75	17	0.30	814
IA-NS-10	IA-NS-10_24.1	8119	19	50	30	0.10	124	0.29	808
IA-NS-12	IA-NS-12_4.1	9784	337	426	256	1.0	123	0.20	879
IA-NS-12	IA-NS-12_6.1	8793	26	67	38	0.15	92	0.26	831
IA-NS-12	IA-NS-12_8.1	9522	32	69	34	0.15	94	0.32	825
IA-NS-12	IA-NS-12_10.1	9533	28	64	37	0.16	85	0.26	840
IA-NS-12	IA-NS-12_11.1	9950	58	97	61	0.23	72	0.34	838
IA-NS-12	IA-NS-12_12.1	7358	487	483	530	2.9	61	0.24	
IA-NS-12	IA-NS-12_13.1	10945	43	84	132	0.82	14	0.35	870
IA-NS-12	IA-NS-12_14.1	11640	61	122	124	0.95	19	0.23	832
IA-NS-12	IA-NS-12_15.1	8507	210	237	147	0.51	82	0.29	869
IA-NS-12	IA-NS-12_16.1	9657	46	91	54	0.32	60	0.27	839
IA-NS-12	IA-NS-12_17.1	10208	19	62	36	0.16	65	0.27	839
IA-NS-12	IA-NS-12_18.1	12837	62	116	132	1.2	14	0.26	837
IA-NS-12	IA-NS-12_19.1	11186	33	81	45	0.15	102	0.24	845
IA-NS-12	IA-NS-12_20.1	9691	153	249	199	1.5	38	0.15	780
IA-NS-12	IA-NS-12_21.1	9095	23	57	43	0.15	92	0.28	847
IA-NS-12	IA-NS-12_22.1	12889	91	168	77	0.39	74	0.22	832
IA-NS-12	IA-NS-12_23.1	11749	38	94	52	0.19	104	0.23	846
IA-NS-12	IA-NS-12_24.1	10337	60	114	56	0.28	91	0.23	836
IA-NS-12	IA-NS-12_25.1	9000	20	46	37	0.19	55	0.36	888
IA-NS-12	IA-NS-12_26.1	9818	74	135	62	1.5	20	0.23	842
IA-NS-12	IA-NS-12_27.1	7816	42	73	111	0.85	11	0.37	902
IA-NS-12	IA-NS-12_1.1	11812	2524	1830	1338	414	4	0.16	
IA-NS-12	IA-NS-12_3.1	10025	39	74	121	7.2	5	0.32	863
IA-NS-12	IA-NS-12_9.1	9789	913	1130	601	5.0	71	0.08	916
IA-G-1	IA-G-1-1.1	9519	97	144	100	0.95	14	0.41	861
IA-G-1	IA-G-1-2.1	9767	108	158	99	0.87	17	0.41	848
IA-G-1	IA-G-1-3.1	9393	33	100	34	0.17	64	0.42	873
IA-G-1	IA-G-1-4.1	8629	220	237	129	1.3	13	0.41	903
IA-G-1	IA-G-1-5.1	9059	59	92	83	0.65	10	0.54	901
IA-G-1	IA-G-1-6.1	9917	85	137	83	0.59	27	0.27	805
IA-G-1	IA-G-1-6.2	10347	44	77	58	0.26	39	0.40	830
IA-G-1	IA-G-1-7.1	9728	76	119	86	0.86	15	0.39	861
IA-G-1	IA-G-1-8.1	9155	73	106	105	0.94	13	0.44	878
IA-G-1	IA-G-1-9.1	8733	48	74	104	0.93	12	0.47	895
IA-G-1	IA-G-1-10.1	9781	93	139	95	0.94	15	0.37	855
IA-G-1	IA-G-1-11.1	9269	108	144	122	0.93	15	0.45	889
IA-G-1	IA-G-1-12.1	8823	197	216	241	1.2	20	0.43	902

Appendix B.4. Continued

Sample	Grain #	Hf	Th	U	Eu*	Ce*	Ce/Ce*	Eu/Eu*	Crystallization Temp (°C)
IA-G-1	IA-G-1-13.1	9640	36	61	68	0.58	14	0.47	873
IA-G-1	IA-G-1-14.1	8418	222	187	99	0.67	37	0.48	961
IA-G-1	IA-G-1-15.1	9573	94	143	94	0.85	16	0.42	838
IA-G-1	IA-G-1-16.1	9026	31	51	63	0.56	10	0.54	882
IA-G-1	IA-G-1-17.1	8536	198	204	274	1.5	18	0.47	924
IA-G-1	IA-G-1-18.1	8592	234	242	181	1.3	16	0.43	915
IA-G-1	IA-G-1-19.1	9078	82	115	109	0.97	12	0.44	888
IA-G-1	IA-G-1-20.1	10002	41	72	67	0.50	22	0.42	854
IA-G-1	IA-G-1-21.1	9301	59	93	86	0.81	13	0.46	882
IA-G-1	IA-G-1-22.1	9973	1143	1123	188	0.60	179	0.30	869
IA-G-1	IA-G-1-22.2	10149	798	755	366	2.2	31	0.33	819
IA-G-1	IA-G-1-23.1	8656	131	160	171	0.81	20	0.45	918
IA-G-1	IA-G-1-24.1	9797	100	150	86	0.80	18	0.38	831
IA-G-1	IA-G-1-24.2	11878	846	1247	162	0.69	206	0.15	806
IA-G-1	IA-G-1-25.1	10938	129	204	86	0.58	23	0.35	795
IA-G-1	IA-G-1-26.1	8256	231	197	99	0.54	59	0.50	960
IA-G-1	IA-G-1-27.1	9837	101	155	94	0.53	18	0.46	854
IA-G-5	IA-G-5-2.1	6786	1768	1232	438	2.9	116	0.28	976
IA-G-5	IA-G-5-4.1	7813	1516	1072	401	2.1	175	0.21	951
IA-G-5	IA-G-5-6.1	7712	893	651	470	3.7	62	0.32	920
IA-G-5	IA-G-5-7.1	6860	276	316	321	3.0	34	0.32	890
IA-G-5	IA-G-5_8.1	8715	2857	1471	489	1.7	235	0.21	981
IA-G-5	IA-G-5_9.1	9060	3573	1423	870	5.7	92	0.19	834
IA-G-5	IA-G-5_10.1	9127	906	1088	198	1.1	93	0.19	752
IA-G-5	IA-G-5_11.1	6518	471	415	571	6.2	29	0.33	913
IA-G-5	IA-G-5_12.1	7399	373	410	351	3.7	33	0.32	884
IA-G-5	IA-G-5_13.1	7182	1721	939	622	7.2	48	0.29	893
IA-G-5	IA-G-5_14.1	8011	871	783	369	2.6	102	0.30	972

Appendix B.4. Continued

Spot Name	Mount	Date	¹⁶ O Measured	¹⁶ O Error	¹⁸ O Measured	¹⁸ O Error	¹⁸ O/ ¹⁶ O Measured	¹⁸ O/ ¹⁶ O Error	¹⁸ O/ ¹⁶ O Corrected	δ ¹⁸ Ο Corrected	Error (1σ)	Total Error (2σ) ⁴¹
					IA-NS-	2 (Grano	phyre)					
IA-NS-2 1.1	JW498	Oct. '11	1.939E+9		3.880E+6		0.0020012	2.4E-7	0.0020134	4.1	0.12	0.71
IA-NS-2_2.1	JW498	Oct. '11	1.923E+9		3.848E+6		0.0020010	1.5E-7	0.0020132	4.0	0.07	0.68
IA-NS-2_3.1	JW498	Oct. '11	1.934E+9		3.870E+6		0.0020012	2.0E-7	0.0020134	4.1	0.10	0.70
IA-NS-24.1	JW498	Oct. '11	1.950E+9		3.900E+6		0.0019997	2.8E-7	0.0020118	3.3	0.14	0.72
IA-NS-2_4.2	JW498	Oct. '11	1.954E+9		3.909E+6		0.0020006	1.9E-7	0.0020128	3.8	0.09	0.69
IA-NS-2_5.1	JW498	Oct. '11	1.945E+9		3.893E+6		0.0020015	2.0E-7	0.0020137	4.2	0.10	0.69
IA-NS-2_5.2	JW498	Oct. '11	1.926E+9		3.855E+6		0.0020019	2.3E-7	0.0020141	4.5	0.11	0.70
IA-NS-2_6.1	JW498	Oct. '11	1.955E+9		3.912E+6		0.0020016	2.0E-7	0.0020137	4.3	0.10	0.69
IA-NS-2_7.1	JW498	Oct. '11	1.960E+9		3.922E+6		0.0020011	1.7E-7	0.0020133	4.0	0.08	0.69
IA-NS-2_8.1	JW498	Oct. '11	1.944E+9		3.890E+6		0.0020009	1.6E-7	0.0020131	3.9	0.08	0.68
IA-NS-2_9.1	JW498	Oct. '11	1.860E+9		3.719E+6		0.0019991	2.0E-7	0.0020113	3.0	0.10	0.69
IA-NS-2_10.1	JW498	Oct. '11	1.922E+9		3.845E+6		0.0020000	2.9E-7	0.0020122	3.5	0.14	0.72
IA-NS-2_10.2	JW498	Oct. '11	1.898E+9		3.798E+6		0.0020007	1.5E-7	0.0020128	3.8	0.08	0.68
IA-NS-2_11.1	JW498	Oct. '11	1.928E+9		3.856E+6		0.0020000	1.8E-7	0.0020122	3.5	0.09	0.69
IA-NS-2_12.1	JW498	Oct. '11	1.892E+9		3.784E+6		0.0020004	1.8E-7	0.0020126	3.7	0.09	0.69
IA-NS-2_12.2	JW498	Oct. '11	1.915E+9		3.832E+6		0.0020006	1.7E-7	0.0020128	3.8	0.08	0.69
IA-NS-2_13.1	JW498	Oct. '11	1.924E+9		3.849E+6		0.0020003	2.2E-7	0.0020125	3.7	0.11	0.70
IA-NS-2_14.1	JW498	Oct. '11	1.926E+9		3.851E+6		0.0019994	2.3E-7	0.0020116	3.2	0.12	0.70
IA-NS-2_15.1	JW498	Oct. '11	1.941E+9		3.882E+6		0.0020003	3.3E-7	0.0020125	3.6	0.16	0.74
IA-NS-2_17.2	JW498	Oct. '11	1.950E+9		3.900E+6		0.0020004	1.9E-7	0.0020126	3.7	0.09	0.69
IA-NS-2_18.1	JW498	Oct. '11	1.913E+9		3.830E+6		0.0020017	2.1E-7	0.0020139	4.4	0.11	0.70
IA-NS-2_20.1	JW498	Oct. '11	1.875E+9		3.753E+6		0.0020014	1.4E-7	0.0020135	4.2	0.07	0.68
IA-NS-2_23.1	JW498	Oct. '11	1.932E+9		3.865E+6		0.0020000	2.4E-7	0.0020122	3.5	0.12	0.71
IA-NS-2_24.1	JW498	Oct. '11	1.903E+9		3.806E+6		0.0020004	8.9E-8	0.0020126	3.7	0.04	0.67
IA-NS-2_25.1	JW498	Oct. '11	1.936E+9		3.871E+6		0.0019999	1.4E-7	0.0020121	3.4	0.07	0.68

Appendix B.5. Zircon oxygen isotope compositions, measured *in-situ* by SIMS⁴⁰

 $^{^{40}}$ Errors are 1σ unless otherwise noted 41 Total errors, calculated in quadrature, include propagated analytical and external errors

Appendix B.5. Continued

Spot Name	Mount	Date	¹⁶ O Measured	¹⁶ O Error	¹⁸ O Measured	¹⁸ O Error	¹⁸ O/ ¹⁶ O Measured	¹⁸ O/ ¹⁶ O Error	¹⁸ O/ ¹⁶ O Corrected	δ ¹⁸ O Corrected	Error (1σ)	Total Error (2σ)
]	A-NS-4b (Hig	gh-SiO ₂ G	ranophyre)					
IA-NS-4b 1.1	JW498	Oct. '11	1.963E+9		3.924E+6		0.0019986	1.9E-7	0.0020108	2.8	0.10	0.69
IA-NS-4b 1.2	JW498	Oct. '11	1.988E+9		3.971E+6		0.0019976	2.6E-7	0.0020098	2.3	0.13	0.71
IA-NS-4b_2.1	JW498	Oct. '11	1.952E+9		3.902E+6		0.0019983	2.0E-7	0.0020105	2.7	0.10	0.69
IA-NS-4b_3.1	JW498	Oct. '11	1.948E+9		3.862E+6		0.0019826	2.1E-7	0.0019947	-5.2	0.11	0.70
IA-NS-4b_4.1	JW498	Oct. '11	1.902E+9		3.787E+6		0.0019907	2.8E-7	0.0020028	-1.2	0.14	0.72
IA-NS-4b_5.1	JW498	Oct. '11	1.881E+9		3.767E+6		0.0020020	2.2E-7	0.0020141	4.5	0.11	0.70
IA-NS-4b_6.1	JW498	Oct. '11	1.961E+9		3.919E+6		0.0019984	1.3E-7	0.0020106	2.7	0.07	0.68
IA-NS-4b_7.1	JW498	Oct. '11	1.951E+9		3.899E+6		0.0019986	1.9E-7	0.0020108	2.8	0.09	0.69
IA-NS-4b_8.1	JW498	Oct. '11	1.960E+9		3.916E+6		0.0019981	2.7E-7	0.0020103	2.5	0.13	0.72
IA-NS-4b_9.1	JW498	Oct. '11	1.959E+9		3.916E+6		0.0019993	1.9E-7	0.0020115	3.1	0.09	0.69
IA-NS-4b_9.2	JW498	Oct. '11	1.953E+9		3.893E+6		0.0019937	2.6E-7	0.0020058	0.3	0.13	0.71
IA-NS-4b_10.1	JW498	Oct. '11	1.967E+9		3.933E+6		0.0020000	1.9E-7	0.0020122	3.5	0.09	0.69
IA-NS-4b_11.1	JW498	Oct. '11	1.957E+9		3.911E+6		0.0019986	1.5E-7	0.0020108	2.8	0.08	0.68
IA-NS-4b_12.1	JW498	Oct. '11	1.959E+9		3.914E+6		0.0019984	2.0E-7	0.0020106	2.7	0.10	0.70
IA-NS-4b_13.1	JW498	Oct. '11	1.865E+9		3.731E+6		0.0020007	2.2E-7	0.0020129	3.8	0.11	0.70
IA-NS-4b_14.1	JW498	Oct. '11	1.895E+9		3.782E+6		0.0019956	1.7E-7	0.0020077	1.3	0.08	0.69
IA-NS-4b_14.2	JW498	Oct. '11	1.908E+9		3.795E+6		0.0019897	2.5E-7	0.0020018	-1.7	0.12	0.71
IA-NS-4b_15.1	JW498	Oct. '11	1.955E+9		3.898E+6		0.0019937	1.4E-7	0.0020058	0.3	0.07	0.68
IA-NS-4b_17.1	JW498	Oct. '11	1.842E+9		3.671E+6		0.0019934	1.9E-7	0.0020056	0.2	0.10	0.69
IA-NS-4b_18.1	JW498	Oct. '11	1.943E+9		3.882E+6		0.0019985	2.7E-7	0.0020107	2.7	0.13	0.72
IA-NS-4b_19.1	JW498	Oct. '11	1.884E+9		3.770E+6		0.0020015	1.7E-7	0.0020137	4.2	0.08	0.68
IA-NS-4b_21.1	JW498	Oct. '11	1.881E+9		3.728E+6		0.0019816	1.9E-7	0.0019937	-5.7	0.10	0.69
IA-NS-4b_21.2	JW498	Oct. '11	1.867E+9		3.703E+6		0.0019834	1.8E-7	0.0019955	-4.9	0.09	0.69
IA-NS-4b_22.1	JW498	Oct. '11	1.937E+9		3.851E+6		0.0019884	2.6E-7	0.0020005	-2.4	0.13	0.72
IA-NS-4b_24.1	JW498	Oct. '11	1.925E+9		3.852E+6		0.0020013	2.4E-7	0.0020135	4.1	0.12	0.71
IA-NS-4b_25.1	JW498	Oct. '11	1.864E+9		3.729E+6		0.0020002	2.0E-7	0.0020124	3.6	0.10	0.69
IA-NS-4b_26.1	JW498	Oct. '11	1.869E+9		3.741E+6		0.0020015	1.3E-7	0.0020137	4.3	0.07	0.68
IA-NS-4b_27.1	JW498	Oct. '11	1.857E+9		3.713E+6		0.0019993	1.3E-7	0.0020115	3.1	0.07	0.68
IA-NS-4b_29.1	JW498	Oct. '11	1.923E+9		3.815E+6		0.0019839	2.2E-7	0.0019959	-4.6	0.11	0.70
IA-NS-4b_30.1	JW498	Oct. '11	1.830E+9		3.637E+6		0.0019878	1.9E-7	0.0019999	-2.7	0.10	0.69
IA-NS-4b_31.1	JW498	Oct. '11	1.825E+9		3.631E+6		0.0019892	2.2E-7	0.0020013	-1.9	0.11	0.70
IA-NS-4b_32.1	JW498	Oct. '11	1.870E+9		3.732E+6		0.0019959	1.6E-7	0.0020081	1.4	0.08	0.68

Appendix B.5. Continued

Spot Name	Mount	Date	¹⁶ O Measured	¹⁶ O Error	¹⁸ O Measured	¹⁸ O Error	¹⁸ O/ ¹⁶ O Measured	¹⁸ O/ ¹⁶ O Error	¹⁸ O/ ¹⁶ O Corrected	δ ¹⁸ Ο Corrected	Error (1σ)	Total Error (2σ)
					IA-NS-4	4b (contin	ued)					
IA-NS-4b 33.1	JW498	Oct. '11	1.872E+9		3.727E+6		0.0019911	1.3E-7	0.0020032	-1.0	0.07	0.68
IA-NS-4b_34.1	JW498	Oct. '11	1.843E+9		3.670E+6		0.0019912	1.9E-7	0.0020033	-0.9	0.10	0.69
IA-NS-4b 40.1	AJP05	Dec. '14	4.142E+9	1.8E+7	8.223E+6	3.5E+4	0.0019854	1.4E-7	0.0019913	-6.9	0.07	0.58
IA-NS-4b 41.1	AJP05	Dec. '14	4.092E+9	1.2E+7	8.159E+6	2.5E+4	0.0019937	1.2E-7	0.0019996	-2.8	0.06	0.57
IA-NS-4b 42.1	AJP05	Dec. '14	3.987E+9	1.2E+7	7.978E+6	2.3E+4	0.0020009	1.3E-7	0.0020069	0.8	0.07	0.57
IA-NS-4b 43.1	AJP05	Dec. '14	3.992E+9	1.4E+7	8.013E+6	2.8E+4	0.0020073	1.2E-7	0.0020133	4.0	0.06	0.57
IA-NS-4b 44.1	AJP05	Dec. '14	3.854E+9	9.1E+6	7.691E+6	1.9E+4	0.0019958	3.2E-7	0.0020018	-1.7	0.16	0.64
IA-NS-4b_45.1	AJP05	Dec. '14	3.984E+9	2.0E+7	7.990E+6	3.9E+4	0.0020055	1.8E-7	0.0020115	3.1	0.09	0.59
IA-NS-4b_46.1	AJP05	Dec. '14	3.941E+9	6.3E+6	7.846E+6	1.2E+4	0.0019908	2.5E-7	0.0019968	-4.2	0.13	0.61
IA-NS-4b_47.1	AJP05	Dec. '14	3.895E+9	1.0E+7	7.767E+6	1.9E+4	0.0019940	2.5E-7	0.0020000	-2.6	0.13	0.61
IA-NS-4b_48.1	AJP05	Dec. '14	4.008E+9	2.7E+7	8.022E+6	5.2E+4	0.0020015	3.3E-7	0.0020075	1.2	0.16	0.65
IA-NS-4b_49.1	AJP05	Dec. '14	4.005E+9	1.7E+7	7.975E+6	3.3E+4	0.0019915	2.2E-7	0.0019974	-3.9	0.11	0.60
IA-NS-4b_50.1	AJP05	Dec. '14	4.079E+9	1.8E+7	8.123E+6	3.5E+4	0.0019917	1.8E-7	0.0019976	-3.8	0.09	0.59
IA-NS-4b_51.1	AJP05	Dec. '14	4.002E+9	1.4E+7	8.027E+6	2.8E+4	0.0020061	1.6E-7	0.0020121	3.4	0.08	0.58
IA-NS-4b_52.1	AJP05	Dec. '14	3.982E+9	1.3E+7	7.975E+6	2.7E+4	0.0020030	1.1E-7	0.0020090	1.9	0.05	0.57
IA-NS-4b_53.1	AJP05	Dec. '14	3.957E+9	2.0E+7	7.878E+6	3.9E+4	0.0019908	1.7E-7	0.0019968	-4.2	0.08	0.58
IA-NS-4b_54.1	AJP05	Dec. '14	4.079E+9	2.2E+7	8.161E+6	4.3E+4	0.0020006	3.4E-7	0.0020066	0.7	0.17	0.66
IA-NS-4b_55.1	AJP05	Dec. '14	3.953E+9	1.1E+7	7.852E+6	2.2E+4	0.0019865	1.8E-7	0.0019925	-6.3	0.09	0.59
IA-NS-4b_56.1	AJP05	Dec. '14	3.936E+9	7.6E+6	7.836E+6	1.5E+4	0.0019907	1.4E-7	0.0019966	-4.3	0.07	0.58
IA-NS-4b_57.1	AJP05	Dec. '14	4.027E+9	1.9E+7	8.063E+6	3.6E+4	0.0020020	2.0E-7	0.0020080	1.4	0.10	0.59
IA-NS-4b_58.1	AJP05	Dec. '14	3.963E+9	1.8E+7	7.924E+6	3.5E+4	0.0019996	2.1E-7	0.0020056	0.2	0.11	0.60
IA-NS-4b_59.1	AJP05	Dec. '14	3.887E+9	1.3E+7	7.800E+6	2.6E+4	0.0020065	1.6E-7	0.0020125	3.6	0.08	0.58
IA-NS-4b_60.1	AJP05	Dec. '14	3.938E+9	1.6E+7	7.844E+6	3.0E+4	0.0019918	2.9E-7	0.0019978	-3.7	0.15	0.63
					IA-NS	8-6 (Diorit	e)					
IA-NS-6 1.1	JW498	Oct. '11	1.921E+9		3.842E+6		0.0019999	2.0E-7	0.0020121	3.5	0.10	0.69
IA-NS-6 2.1	JW498	Oct. '11	1.895E+9		3.789E+6		0.0019996	2.3E-7	0.0020118	3.3	0.12	0.70
IA-NS-6_3.1	JW498	Oct. '11	1.907E+9		3.817E+6		0.0020009	2.5E-7	0.0020131	4.0	0.13	0.71
IA-NS-64.1	JW498	Oct. '11	1.927E+9		3.856E+6		0.0020006	3.0E-7	0.0020128	3.8	0.15	0.73
IA-NS-6_5.1	JW498	Oct. '11	1.936E+9		3.874E+6		0.0020004	1.6E-7	0.0020126	3.7	0.08	0.68
IA-NS-6_6.1	JW498	Oct. '11	1.915E+9		3.830E+6		0.0020000	1.9E-7	0.0020122	3.5	0.10	0.69
IA-NS-6_7.1	JW498	Oct. '11	1.930E+9		3.859E+6		0.0019998	1.4E-7	0.0020120	3.4	0.07	0.68

Appendix B.5. Continued

Spot Name	Mount	Date	¹⁶ O Measured	¹⁶ O Error	¹⁸ O Measured	¹⁸ O Error	¹⁸ O/ ¹⁶ O Measured	¹⁸ O/ ¹⁶ O Error	¹⁸ O/ ¹⁶ O Corrected	δ ¹⁸ O Corrected	Error (1σ)	Total Error (2σ)
					IA-NS	-6 (contin	ued)					
IA-NS-6 8.1	JW498	Oct. '11	1.822E+9		3.644E+6		0.0020000	1.4E-7	0.0020122	3.5	0.07	0.68
IA-NS-6 9.1	JW498	Oct. '11	1.915E+9		3.831E+6		0.0020004	1.8E-7	0.0020126	3.7	0.09	0.69
IA-NS-6_10.1	JW498	Oct. '11	1.932E+9		3.864E+6		0.0020003	2.2E-7	0.0020125	3.6	0.11	0.70
IA-NS-6_11.1	JW498	Oct. '11	1.894E+9		3.792E+6		0.0020020	2.2E-7	0.0020142	4.5	0.11	0.70
IA-NS-6_12.1	JW498	Oct. '11	1.908E+9		3.815E+6		0.0019997	3.0E-7	0.0020119	3.3	0.15	0.73
IA-NS-6_13.1	JW498	Oct. '11	1.938E+9		3.877E+6		0.0020011	1.7E-7	0.0020133	4.1	0.08	0.69
IA-NS-6_14.1	JW498	Oct. '11	1.893E+9		3.784E+6		0.0019995	1.2E-7	0.0020117	3.2	0.06	0.68
IA-NS-6_15.1	JW498	Oct. '11	1.935E+9		3.873E+6		0.0020014	1.4E-7	0.0020136	4.2	0.07	0.68
IA-NS-6_16.1	JW498	Oct. '11	1.874E+9		3.745E+6		0.0019984	2.7E-7	0.0020106	2.7	0.13	0.72
IA-NS-6_17.1	JW498	Oct. '11	1.926E+9		3.852E+6		0.0019999	1.8E-7	0.0020121	3.4	0.09	0.69
IA-NS-6_17.2	JW498	Oct. '11	1.903E+9		3.809E+6		0.0020015	1.8E-7	0.0020136	4.2	0.09	0.69
IA-NS-6_18.1	JW498	Oct. '11	1.899E+9		3.801E+6		0.0020009	1.3E-7	0.0020131	3.9	0.06	0.68
IA-NS-6_19.1	JW498	Oct. '11	1.921E+9		3.844E+6		0.0020015	1.8E-7	0.0020137	4.2	0.09	0.69
IA-NS-6_21.1	JW498	Oct. '11	1.888E+9		3.775E+6		0.0020002	1.3E-7	0.0020124	3.6	0.07	0.68
IA-NS-6_22.1	JW498	Oct. '11	1.880E+9		3.760E+6		0.0020004	2.2E-7	0.0020126	3.7	0.11	0.70
IA-NS-6_23.1	JW498	Oct. '11	1.866E+9		3.732E+6		0.0019998	1.3E-7	0.0020120	3.4	0.07	0.68
IA-NS-6_24.1	JW498	Oct. '11	1.928E+9		3.857E+6		0.0020006	2.5E-7	0.0020127	3.8	0.13	0.71
IA-NS-6_24.2	JW498	Oct. '11	1.930E+9		3.858E+6		0.0019996	1.6E-7	0.0020118	3.3	0.08	0.68
IA-NS-6_26.1	JW498	Oct. '11	1.936E+9		3.873E+6		0.0020007	2.1E-7	0.0020128	3.8	0.10	0.70
					IA-NS-7	7 (Granod	iorite)					
IA-NS-7_1.1	JW510	Apr. '12	2.112E+9	1.6E+6	4.245E+6	3.3E+3	0.0020104	1.8E-7	0.0020127	3.8	0.09	0.47
IA-NS-7_2.1	JW510	Apr. '12	2.103E+9	8.2E+5	4.229E+6	1.6E+3	0.0020106	9.2E-8	0.0020130	3.9	0.05	0.44
IA-NS-7_3.1	JW510	Apr. '12	2.128E+9	2.2E+6	4.275E+6	4.4E+3	0.0020086	1.4E-7	0.0020110	2.9	0.07	0.45
IA-NS-7_4.1	JW510	Apr. '12	2.100E+9	1.3E+6	4.225E+6	2.7E+3	0.0020114	1.5E-7	0.0020137	4.3	0.08	0.46
IA-NS-7_6.1	JW510	Apr. '12	2.104E+9	1.9E+6	4.229E+6	3.9E+3	0.0020100	1.5E-7	0.0020124	3.6	0.08	0.46
IA-NS-7_7.1	JW510	Apr. '12	2.107E+9	1.6E+6	4.238E+6	3.3E+3	0.0020111	1.4E-7	0.0020134	4.1	0.07	0.46
IA-NS-7_9.1	JW510	Apr. '12	2.109E+9	1.0E+6	4.239E+6	2.0E+3	0.0020101	1.7E-7	0.0020125	3.6	0.08	0.46
IA-NS-7_10.1	JW510	Apr. '12	2.054E+9	1.9E+6	4.132E+6	4.1E+3	0.0020117	2.8E-7	0.0020140	4.4	0.14	0.51
IA-NS-7_11.1	JW510	Apr. '12	2.106E+9	9.5E+5	4.235E+6	1.9E+3	0.0020108	1.1E - 7	0.0020132	4.0	0.05	0.45
IA-NS-7_12.1	JW510	Apr. '12	2.140E+9	2.1E+6	4.303E+6	4.2E+3	0.0020103	1.3E-7	0.0020126	3.7	0.06	0.45
IA-NS-7_13.1	JW510	Apr. '12	2.119E+9	7.2E+5	4.259E+6	1.3E+3	0.0020105	1.8E-7	0.0020129	3.8	0.09	0.47

Appendix B.5. Continued

Spot Name	Mount	Date	¹⁶ O Measured	¹⁶ O Error	¹⁸ O Measured	¹⁸ O Error	¹⁸ O/ ¹⁶ O Measured	¹⁸ O/ ¹⁶ O Error	¹⁸ O/ ¹⁶ O Corrected	δ ¹⁸ Ο Corrected	Error (1σ)	Total Error (2σ)
					IA-NS	-7 (contin	ued)					
IA-NS-7 14.1	JW510	Apr. '12	2.120E+9	1.3E+6	4.261E+6	2.7E+3	0.0020102	1.3E-7	0.0020126	3.7	0.06	0.45
IA-NS-7 15.1	JW510	Apr. '12	2.098E+9	9.7E+5	4.220E+6	2.0E+3	0.0020112	1.6E-7	0.0020135	4.1	0.08	0.46
IA-NS-7 ^{17.1}	JW510	Apr. '12	2.113E+9	1.4E+6	4.250E+6	2.8E+3	0.0020111	1.6E-7	0.0020135	4.1	0.08	0.46
IA-NS-7 ^{19.1}	JW510	Apr. '12	2.119E+9	1.3E+6	4.262E+6	2.7E+3	0.0020112	1.6E-7	0.0020135	4.2	0.08	0.46
					IA-NS-9 (Hig	gh-SiO ₂ G	ranophyre)					
IA-NS-9 1.1	AJP03	Nov. '13	1.673E+9	3.3E+6	3.367E+6	6.6E+3	0.0020126	1.5E-7	0.0020142	4.5	0.07	0.68
IA-NS-9_2.1	AJP03	Nov. '13	1.634E+9	8.7E+5	3.255E+6	1.7E+3	0.0019924	2.3E-7	0.0019940	-5.6	0.11	0.70
IA-NS-9_3.1	AJP03	Nov. '13	1.594E+9	2.8E+5	3.192E+6	6.4E+2	0.0020029	2.0E-7	0.0020045	-0.3	0.10	0.70
IA-NS-9_4.1	AJP03	Nov. '13	1.588E+9	4.5E+5	3.195E+6	9.4E+2	0.0020119	2.4E-7	0.0020135	4.1	0.12	0.71
IA-NS-9_5.1	AJP03	Nov. '13	1.601E+9	1.2E+6	3.221E+6	2.4E+3	0.0020118	1.9E-7	0.0020134	4.1	0.09	0.69
IA-NS-9_6.1	AJP03	Nov. '13	1.593E+9	2.2E+6	3.204E+6	4.4E+3	0.0020111	1.0E-7	0.0020127	3.7	0.05	0.67
IA-NS-9_7.1	AJP03	Nov. '13	1.617E+9	1.7E+6	3.253E+6	3.5E+3	0.0020116	2.2E-7	0.0020132	4.0	0.11	0.70
IA-NS-9_8.1	AJP03	Nov. '13	1.632E+9	3.1E+6	3.283E+6	6.2E+3	0.0020117	2.5E-7	0.0020133	4.0	0.13	0.71
IA-NS-9_9.2	AJP03	Nov. '13	1.670E+9	4.5E+6	3.357E+6	9.1E+3	0.0020107	1.9E-7	0.0020123	3.6	0.10	0.69
IA-NS-9_10.2	AJP03	Nov. '13	1.672E+9	1.6E+6	3.363E+6	3.4E+3	0.0020113	2.6E-7	0.0020129	3.8	0.13	0.71
IA-NS-9_11.1	AJP03	Nov. '13	1.713E+9	2.5E+6	3.445E+6	4.9E+3	0.0020114	1.7E-7	0.0020130	3.9	0.08	0.69
IA-NS-9_12.2	AJP03	Nov. '13	1.704E+9	9.3E+5	3.427E+6	2.0E+3	0.0020111	3.3E-7	0.0020128	3.8	0.16	0.74
IA-NS-9_13.1	AJP03	Nov. '13	1.710E+9	1.1E+6	3.437E+6	2.6E+3	0.0020103	2.4E-7	0.0020119	3.4	0.12	0.71
IA-NS-9_14.1	AJP03	Nov. '13	1.695E+9	3.8E+6	3.401E+6	7.7E+3	0.0020062	1.7E-7	0.0020078	1.3	0.08	0.69
IA-NS-9_15.1	AJP03	Nov. '13	1.734E+9	2.5E+6	3.489E+6	5.0E+3	0.0020119	1.8E-7	0.0020135	4.1	0.09	0.69
IA-NS-9_16.1	AJP03	Nov. '13	1.763E+9	8.5E+5	3.547E+6	1.9E+3	0.0020117	2.7E-7	0.0020133	4.1	0.13	0.72
IA-NS-9_17.1	AJP03	Nov. '13	1.797E+9	1.6E+6	3.593E+6	3.2E+3	0.0020001	2.0E-7	0.0020017	-1.8	0.10	0.70
IA-NS-9_18.1	AJP03	Nov. '13	1.767E+9	9.4E+5	3.543E+6	2.0E+3	0.0020053	2.4E-7	0.0020069	0.9	0.12	0.71
IA-NS-9_19.1	AJP03	Nov. '13	1.686E+9	2.6E+6	3.341E+6	5.4E+3	0.0019809	2.1E-7	0.0019825	-11.3	0.11	0.70
IA-NS-9_20.1	AJP03	Nov. '13	1.768E+9	4.6E+6	3.537E+6	9.6E+3	0.0020001	3.4E-7	0.0020017	-1.7	0.17	0.75
IA-NS-9_21.1	AJP03	Nov. '13	1.793E+9	2.6E+6	3.565E+6	5.2E+3	0.0019879	1.7E-7	0.0019895	-7.8	0.09	0.69
IA-NS-9_25.1	AJP05	Dec. '14	3.868E+9	2.1E+7	7.732E+6	4.0E+4	0.0019987	3.5E-7	0.0020047	-0.3	0.17	0.66
IA-NS-9_26.1	AJP05	Dec. '14	3.948E+9	1.0E+7	7.896E+6	2.0E+4	0.0019998	1.6E-7	0.0020058	0.3	0.08	0.58
IA-NS-9_27.1	AJP05	Dec. '14	3.885E+9	1.8E+7	7.751E+6	3.4E+4	0.0019949	2.8E-7	0.0020009	-2.2	0.14	0.63
IA-NS-9_28.1	AJP05	Dec. '14	3.906E+9	3.2E+7	7.787E+6	6.2E+4	0.0019935	3.6E-7	0.0019995	-2.8	0.18	0.66
IA-NS-9_29.1	AJP05	Dec. '14	3.934E+9	1.2E+7	7.875E+6	2.4E+4	0.0020018	1.2E-7	0.0020078	1.3	0.06	0.57

Appendix B.5. Continued

Spot Name	Mount	Date	¹⁶ O Measured	¹⁶ O Error	¹⁸ O Measured	¹⁸ O Error	¹⁸ O/ ¹⁶ O Measured	¹⁸ O/ ¹⁶ O Error	¹⁸ O/ ¹⁶ O Corrected	δ ¹⁸ Ο Corrected	Error (1σ)	Total Error (2σ)
					IA-NS	-9 (contin	ued)					
IA-NS-9 30.1	AJP05	Dec. '14	3.928E+9	1.2E+7	7.837E+6	2.4E+4	0.0019950	2.6E-7	0.0020010	-2.1	0.13	0.61
IA-NS-9_31.1	AJP05	Dec. '14	3.896E+9	1.4E+7	7.811E+6	2.7E+4	0.0020050	1.6E-7	0.0020110	2.9	0.08	0.58
IA-NS-9_32.1	AJP05	Dec. '14	3.942E+9	1.3E+7	7.910E+6	2.6E+4	0.0020068	1.3E-7	0.0020128	3.8	0.06	0.57
IA-NS-9_33.1	AJP05	Dec. '14	3.973E+9	1.4E+7	7.974E+6	2.8E+4	0.0020071	1.8E-7	0.0020131	3.9	0.09	0.59
IA-NS-9_34.1	AJP05	Dec. '14	4.022E+9	1.7E+7	8.071E+6	3.3E+4	0.0020066	1.7E-7	0.0020126	3.7	0.09	0.59
IA-NS-9_35.1	AJP05	Dec. '14	3.963E+9	1.4E+7	7.955E+6	2.8E+4	0.0020074	1.3E-7	0.0020134	4.1	0.06	0.57
IA-NS-9_36.1	AJP05	Dec. '14	3.855E+9	1.3E+7	7.731E+6	2.6E+4	0.0020055	1.3E-7	0.0020115	3.1	0.07	0.57
IA-NS-9_37.1	AJP05	Dec. '14	3.753E+9	1.6E+7	7.529E+6	3.3E+4	0.0020063	1.5E-7	0.0020123	3.5	0.07	0.58
IA-NS-9_38.1	AJP05	Dec. '14	3.895E+9	1.1E+7	7.809E+6	2.2E+4	0.0020046	1.6E-7	0.0020106	2.7	0.08	0.58
				Ι	A-NS-10 (Hig	gh-SiO ₂ G	ranophyre)					
IA-NS-10 1.1	AJP05	Dec. '14	3.787E+9	1.7E+7	7.602E+6	3.3E+4	0.0020073	1.9E-7	0.0020133	4.0	0.09	0.59
IA-NS-10_2.1	AJP05	Dec. '14	3.940E+9	2.3E+7	7.897E+6	4.5E+4	0.0020043	2.0E-7	0.0020103	2.6	0.10	0.59
IA-NS-10_3.1	AJP05	Dec. '14	4.025E+9	1.8E+7	8.072E+6	3.6E+4	0.0020053	1.3E-7	0.0020113	3.0	0.07	0.57
IA-NS-10_4.1	AJP05	Dec. '14	3.931E+9	1.8E+7	7.891E+6	3.5E+4	0.0020070	1.3E-7	0.0020131	3.9	0.07	0.57
IA-NS-10_5.1	AJP05	Dec. '14	3.972E+9	1.5E+7	7.973E+6	2.9E+4	0.0020072	2.1E-7	0.0020132	4.0	0.11	0.60
IA-NS-10_6.1	AJP05	Dec. '14	3.933E+9	1.5E+7	7.891E+6	3.0E+4	0.0020063	1.1E-7	0.0020123	3.5	0.05	0.57
IA-NS-10_7.1	AJP05	Dec. '14	3.924E+9	1.5E+7	7.869E+6	2.9E+4	0.0020056	1.1E-7	0.0020116	3.2	0.06	0.57
IA-NS-10_8.1	AJP05	Dec. '14	4.016E+9	9.6E+6	8.054E+6	1.9E+4	0.0020056	1.3E-7	0.0020116	3.2	0.06	0.57
IA-NS-10_9.1	AJP05	Dec. '14	3.964E+9	1.5E+7	7.954E+6	3.0E+4	0.0020063	1.6E-7	0.0020123	3.6	0.08	0.58
IA-NS-10_10.1	AJP05	Dec. '14	3.994E+9	1.5E+7	8.010E+6	3.0E+4	0.0020056	1.7E-7	0.0020116	3.2	0.09	0.59
IA-NS-10_11.1	AJP05	Dec. '14	3.900E+9	1.4E+7	7.830E+6	2.8E+4	0.0020076	1.4E-7	0.0020136	4.2	0.07	0.58
IA-NS-10_12.1	AJP05	Dec. '14	3.928E+9	1.8E+7	7.881E+6	3.5E+4	0.0020064	2.5E-7	0.0020124	3.6	0.12	0.61
IA-NS-10_13.1	AJP05	Dec. '14	3.916E+9	1.9E+7	7.853E+6	3.8E+4	0.0020053	1.7E-7	0.0020113	3.0	0.08	0.58
IA-NS-10_14.1	AJP05	Dec. '14	3.954E+9	1.4E+7	7.937E+6	2.9E+4	0.0020075	9.3E-8	0.0020135	4.2	0.05	0.57
IA-NS-10_15.1	AJP05	Dec. '14	3.807E+9	1.4E+7	7.612E+6	2.8E+4	0.0019996	1.9E-7	0.0020056	0.2	0.10	0.59
IA-NS-10_16.1	AJP05	Dec. '14	3.961E+9	1.4E+7	7.949E+6	2.8E+4	0.0020068	2.3E-7	0.0020128	3.8	0.12	0.60
IA-NS-10_17.1	AJP05	Dec. '14	3.922E+9	1.5E+7	7.865E+6	3.1E+4	0.0020053	1.5E-7	0.0020113	3.0	0.07	0.58
IA-NS-10_18.1	AJP05	Dec. '14	3.973E+9	1.5E+7	7.971E+6	3.0E+4	0.0020065	1.1E-7	0.0020125	3.6	0.06	0.57
IA-NS-10_19.1	AJP05	Dec. '14	3.946E+9	1.3E+7	7.916E+6	2.5E+4	0.0020062	1.7E-7	0.0020122	3.5	0.08	0.58
IA-NS-10_20.1	AJP05	Dec. '14	3.906E+9	1.7E+7	7.831E+6	3.4E+4	0.0020047	1.9E-7	0.0020107	2.7	0.09	0.59
IA-NS-10_21.1	AJP05	Dec. '14	3.925E+9	1.4E+7	7.871E+6	2.8E+4	0.0020056	1.8E-7	0.0020116	3.2	0.09	0.59

Appendix B.5. Continued

Spot Name	Mount	Date	¹⁶ O Measured	¹⁶ O Error	¹⁸ O Measured	¹⁸ O Error	¹⁸ O/ ¹⁶ O Measured	¹⁸ O/ ¹⁶ O Error	¹⁸ O/ ¹⁶ O Corrected	δ ¹⁸ O Corrected	Error (1σ)	Total Error (2σ)
					IA-NS-	10 (contin	ued)					
IA-NS-10 22.1	AJP05	Dec. '14	3.925E+9	1.9E+7	7.873E+6	3.7E+4	0.0020059	2.5E-7	0.0020119	3.4	0.13	0.61
IA-NS-10_23.1	AJP05	Dec. '14	3.920E+9	1.3E+7	7.867E+6	2.5E+4	0.0020067	1.5E-7	0.0020127	3.7	0.07	0.58
IA-NS-10 24.1	AJP05	Dec. '14	3.936E+9	1.1E+7	7.896E+6	2.1E+4	0.0020060	2.0E-7	0.0020120	3.4	0.10	0.59
					IA-NS-1	2 (Granop	ohyre)					
IA-NS-12 1.1	AJP05	Dec. '14	3.903E+9	2.2E+7	7.807E+6	4.4E+4	0.0020002	1.4E-7	0.0020062	0.5	0.07	0.58
IA-NS-12 2.1	AJP05	Dec. '14	3.815E+9	2.1E+7	7.647E+6	4.1E+4	0.0020045	1.7E-7	0.0020105	2.6	0.08	0.58
IA-NS-12_3.1	AJP05	Dec. '14	3.883E+9	1.5E+7	7.793E+6	3.0E+4	0.0020070	1.6E-7	0.0020130	3.9	0.08	0.58
IA-NS-12 4.1	AJP05	Dec. '14	3.877E+9	1.5E+7	7.782E+6	2.9E+4	0.0020072	2.3E-7	0.0020132	4.0	0.12	0.60
IA-NS-12_5.1	AJP05	Dec. '14	3.859E+9	1.8E+7	7.725E+6	3.5E+4	0.0020018	1.0E-7	0.0020078	1.3	0.05	0.57
IA-NS-12_6.1	AJP05	Dec. '14	3.785E+9	1.3E+7	7.599E+6	2.6E+4	0.0020077	2.0E-7	0.0020137	4.2	0.10	0.59
IA-NS-127.1	AJP05	Dec. '14	3.832E+9	2.1E+7	7.681E+6	4.2E+4	0.0020047	1.6E-7	0.0020107	2.7	0.08	0.58
IA-NS-12_8.1	AJP05	Dec. '14	3.820E+9	1.9E+7	7.663E+6	3.7E+4	0.0020061	1.1E-7	0.0020121	3.5	0.06	0.57
IA-NS-12_9.1	AJP05	Dec. '14	3.867E+9	1.5E+7	7.749E+6	2.9E+4	0.0020039	1.3E-7	0.0020099	2.4	0.06	0.57
IA-NS-12 10.1	AJP05	Dec. '14	3.849E+9	1.6E+7	7.717E+6	3.2E+4	0.0020051	1.6E-7	0.0020111	2.9	0.08	0.58
IA-NS-12_11.1	AJP05	Dec. '14	3.927E+9	1.5E+7	7.870E+6	2.9E+4	0.0020042	2.2E-7	0.0020102	2.5	0.11	0.60
IA-NS-12_12.1	AJP05	Dec. '14	3.695E+9	1.6E+7	7.417E+6	3.1E+4	0.0020071	1.3E-7	0.0020131	3.9	0.06	0.57
IA-NS-12_13.1	AJP05	Dec. '14	3.700E+9	1.8E+7	7.418E+6	3.6E+4	0.0020049	1.5E-7	0.0020109	2.8	0.07	0.58
IA-NS-12_14.1	AJP05	Dec. '14	3.605E+9	7.0E+6	7.236E+6	1.4E+4	0.0020071	1.8E-7	0.0020131	3.9	0.09	0.59
IA-NS-12_15.1	AJP05	Dec. '14	2.986E+9	9.5E+6	5.991E+6	1.9E+4	0.0020063	1.9E-7	0.0020123	3.6	0.10	0.59
IA-NS-12_16.1	AJP05	Dec. '14	3.799E+9	2.0E+7	7.613E+6	3.9E+4	0.0020042	1.9E-7	0.0020102	2.5	0.09	0.59
IA-NS-12_17.1	AJP05	Dec. '14	3.883E+9	1.2E+7	7.794E+6	2.3E+4	0.0020073	1.6E-7	0.0020133	4.0	0.08	0.58
IA-NS-12_18.1	AJP05	Dec. '14	3.832E+9	1.2E+7	7.694E+6	2.4E+4	0.0020079	1.5E-7	0.0020139	4.3	0.08	0.58
IA-NS-12_19.1	AJP05	Dec. '14	3.731E+9	7.5E+6	7.487E+6	1.5E+4	0.0020070	1.2E-7	0.0020130	3.9	0.06	0.57
IA-NS-12_20.1	AJP05	Dec. '14	3.807E+9	1.1E+7	7.638E+6	2.2E+4	0.0020066	1.4E-7	0.0020126	3.7	0.07	0.58
IA-NS-12_21.1	AJP05	Dec. '14	3.873E+9	1.2E+7	7.772E+6	2.4E+4	0.0020070	2.1E-7	0.0020130	3.9	0.11	0.60
IA-NS-12_22.1	AJP05	Dec. '14	3.850E+9	1.3E+7	7.728E+6	2.6E+4	0.0020072	1.7E-7	0.0020132	4.0	0.09	0.58
IA-NS-12_23.1	AJP05	Dec. '14	3.819E+9	1.3E+7	7.664E+6	2.6E+4	0.0020068	9.9E-8	0.0020128	3.8	0.05	0.57
IA-NS-12_24.1	AJP05	Dec. '14	3.809E+9	1.3E+7	7.644E+6	2.6E+4	0.0020070	1.2E-7	0.0020130	3.9	0.06	0.57
IA-NS-12_25.1	AJP05	Dec. '14	3.686E+9	1.2E+7	7.402E+6	2.4E+4	0.0020081	1.8E-7	0.0020141	4.4	0.09	0.59
IA-NS-12_26.1	AJP05	Dec. '14	3.738E+9	1.3E+7	7.502E+6	2.7E+4	0.0020068	1.4E-7	0.0020128	3.8	0.07	0.58
IA-NS-12_27.1	AJP05	Dec. '14	3.779E+9	1.2E+7	7.584E+6	2.4E+4	0.0020072	1.7E-7	0.0020132	4.0	0.08	0.58

Appendix B.5. Continued

Spot Name	Mount	Date	¹⁶ O Measured	¹⁶ O Error	¹⁸ O Measured	¹⁸ O Error	¹⁸ O/ ¹⁶ O Measured	¹⁸ O/ ¹⁶ O Error	¹⁸ O/ ¹⁶ O Corrected	δ ¹⁸ Ο Corrected	Error (1σ)	Total Error (2σ)
					IA-C	G-1 (Gabb	ro)					
IA-G-1 1.1	JW510	Apr. '12	2.111E+9	2.1E+6	4.247E+6	4.3E+3	0.0020114	9.1E-8	0.0020138	4.3	0.05	0.44
IA-G-1_2.1	JW510	Apr. '12	2.116E+9	1.2E+6	4.257E+6	2.6E+3	0.0020119	1.8E-7	0.0020142	4.5	0.09	0.47
IA-G-1_6.1	JW510	Apr. '12	2.120E+9	1.3E+6	4.266E+6	2.5E+3	0.0020122	2.0E-7	0.0020146	4.7	0.10	0.48
IA-G-1_7.1	JW510	Apr. '12	2.106E+9	1.7E+6	4.238E+6	3.5E+3	0.0020119	1.9E-7	0.0020142	4.5	0.09	0.47
IA-G-1_8.1	JW510	Apr. '12	2.128E+9	1.0E+6	4.280E+6	2.1E+3	0.0020114	1.8E-7	0.0020138	4.3	0.09	0.47
IA-G-1_12.1	JW510	Apr. '12	2.116E+9	9.8E+5	4.259E+6	2.0E+3	0.0020123	9.5E-8	0.0020146	4.7	0.05	0.44
IA-G-1_15.1	JW510	Apr. '12	2.117E+9	1.3E+6	4.258E+6	2.7E+3	0.0020112	6.7E-8	0.0020136	4.2	0.03	0.44
IA-G-1_18.1	JW510	Apr. '12	2.117E+9	8.2E+5	4.258E+6	1.7E+3	0.0020116	9.8E-8	0.0020140	4.4	0.05	0.44
IA-G-1_22.1	JW510	Apr. '12	2.113E+9	1.1E+6	4.253E+6	2.3E+3	0.0020126	1.6E-7	0.0020149	4.9	0.08	0.46
IA-G-1_23.1	JW510	Apr. '12	2.119E+9	5.5E+5	4.266E+6	1.3E+3	0.0020126	1.6E-7	0.0020150	4.9	0.08	0.46
IA-G-1_29.1	JW510	Apr. '12	2.108E+9	1.0E+6	4.241E+6	2.2E+3	0.0020118	1.9E-7	0.0020142	4.5	0.10	0.47
IA-G-1_25.1	JW510	Apr. '12	2.127E+9	1.6E+6	4.280E+6	3.3E+3	0.0020125	1.6E-7	0.0020149	4.8	0.08	0.46
IA-G-1_26.1	JW510	Apr. '12	2.106E+9	1.4E+6	4.236E+6	2.9E+3	0.0020112	1.5E-7	0.0020135	4.2	0.08	0.46
IA-G-1_27.1	JW510	Apr. '12	2.128E+9	1.0E+6	4.281E+6	2.1E+3	0.0020120	1.8E-7	0.0020144	4.6	0.09	0.47
IA-G-1_28.1	JW510	Apr. '12	2.128E+9	2.0E+6	4.282E+6	4.0E+3	0.0020127	1.5E-7	0.0020150	4.9	0.08	0.46
					IA-C	G-5 (Gabb	ro)					
IA-G-5_2.1	AJP01	May. '13	2.468E+9	7.4E+5	4.930E+6	1.6E+3	0.0019978	1.6E-7	0.0020107	2.8	0.08	0.66
IA-G-5_3.1	AJP01	May. '13	1.166E+9	1.1E+7	2.334E+6	2.2E+4	0.0020013	5.1E-7	0.0020142	4.5	0.26	0.82
IA-G-5_4.1	AJP01	May. '13	2.475E+9	4.2E+6	4.943E+6	8.6E+3	0.0019966	2.4E-7	0.0020095	2.2	0.12	0.69
IA-G-5_6.1	AJP01	May. '13	2.512E+9	1.5E+6	5.021E+6	3.2E+3	0.0019986	1.6E-7	0.0020116	3.2	0.08	0.66
IA-G-5_7.1	AJP01	May. '13	2.529E+9	6.3E+6	5.063E+6	1.3E+4	0.0020016	1.4E-7	0.0020146	4.7	0.07	0.66
IA-G-5_8.1	AJP02	Nov. '13	1.446E+9	6.5E+5	2.909E+6	1.4E+3	0.0020118	3.0E-7	0.0020135	4.2	0.15	0.74
IA-G-5_9.1	AJP02	Nov. '13	1.448E+9	9.6E+5	2.913E+6	1.9E+3	0.0020114	1.8E-7	0.0020131	4.0	0.09	0.70
IA-G-5_10.1	AJP03	Nov. '13	1.754E+9	9.1E+5	3.529E+6	2.0E+3	0.0020123	1.3E-7	0.0020139	4.3	0.07	0.68
IA-G-5_11.1	AJP03	Nov. '13	1.797E+9	2.4E+6	3.618E+6	4.7E+3	0.0020131	1.9E-7	0.0020147	4.8	0.09	0.69

Spot Name	Mount	Total Hf Beam (V)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2SE	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2SE	¹⁷⁸ Hf/ ¹⁷⁷ Hf	2SE	8 _{Hf}	2SE
					IA-NS-2 (Gra	nophyre)						
IA-NS-2_1.1	JW498	10.4	0.283169	3.1E-5	0.00251	2.7E-4	0.0703	7.6E-3	1.467264	5.0E-5	13.6	1.1
IA-NS-2_2.1	JW498	11.0	0.283138	2.1E-5	0.00150	6.4E-5	0.0417	1.7E-3	1.467268	3.4E-5	12.5	0.8
IA-NS-2_3.1	JW498	12.8	0.283148	2.8E-5	0.00156	8.6E-5	0.0444	2.5E-3	1.467223	4.2E-5	12.8	1.0
IA-NS-2_4.1	JW498	11.9	0.283134	1.9E-5	0.00103	1.5E-5	0.0294	4.0E-4	1.467268	2.8E-5	12.3	0.7
IA-NS-2_6.1	JW498	14.4	0.283117	3.8E-5	0.00438	1.7E-4	0.1272	4.9E-3	1.467220	3.9E-5	11.7	1.3
IA-NS-2_7.1	JW498	12.0	0.283149	2.3E-5	0.00131	1.3E-4	0.0366	3.7E-3	1.467232	3.5E-5	12.9	0.8
IA-NS-2_8.1	JW498	14.7	0.283155	3.1E-5	0.00443	1.9E-4	0.1270	5.6E-3	1.467253	4.5E-5	13.1	1.1
IA-NS-2_10.1	JW498	16.6	0.283144	2.7E-5	0.00417	1.8E-5	0.1182	8.9E-4	1.467225	3.3E-5	12.7	1.0
IA-NS-2_11.1	JW498	12.6	0.283157	2.1E-5	0.00186	1.0E-4	0.0546	2.9E-3	1.467257	3.3E-5	13.2	0.7
IA-NS-2_12.2	JW498	14.3	0.283128	3.3E-5	0.00191	9.4E-5	0.0568	2.6E-3	1.467204	4.2E-5	12.1	1.2
IA-NS-2_15.1	JW498	15.7	0.283114	4.0E-5	0.00220	3.4E-5	0.0652	1.1E-3	1.467191	3.8E-5	11.6	1.4
IA-NS-2_17.1	JW498	15.5	0.283188	3.9E-5	0.00364	5.3E-4	0.1101	1.6E-2	1.467211	3.6E-5	14.3	1.4
IA-NS-2_18.1	JW498	17.6	0.283118	3.9E-5	0.00278	1.2E-4	0.0834	3.9E-3	1.467234	3.5E-5	11.8	1.4
IA-NS-2_20.1	JW498	14.1	0.283156	2.2E-5	0.00245	8.2E-5	0.0733	3.2E-3	1.467215	5.5E-5	13.1	0.8
IA-NS-2_23.1	JW498	15.9	0.283167	2.0E-5	0.00182	1.0E-4	0.0528	3.1E-3	1.467215	4.7E-5	13.5	0.7
IA-NS-2_24.1	JW498	17.6	0.283151	4.3E-5	0.00335	2.1E-4	0.1004	6.6E-3	1.467222	4.4E-5	12.9	1.5
IA-NS-2_25.1	JW498	16.7	0.283202	4.8E-5	0.00484	2.7E-4	0.1429	8.1E-3	1.467186	4.4E-5	14.7	1.7
IA-NS-2_26.1	JW498	14.2	0.283176	2.1E-5	0.00165	3.4E-5	0.0482	9.6E-4	1.467225	4.1E-5	13.8	0.7
				IA-NS	-4b (High-SiC	D ₂ Granoj	phyre)					
IA-NS-4b 2.1	JW498	12.5	0.283122	2.4E-5	0.00126	4.2E-5	0.0372	1.1E-3	1.467272	3.5E-5	11.9	0.9
IA-NS-4b_3.1	JW498	27.8	0.283145	3.1E-5	0.00325	2.1E-4	0.1156	7.6E-3	1.467267	2.4E-5	12.7	1.1
IA-NS-4b_4.1	JW498	18.5	0.283142	2.3E-5	0.00318	1.4E-4	0.1022	4.6E-3	1.467251	2.9E-5	12.6	0.8
IA-NS-4b_5.1	JW498	13.5	0.283132	2.5E-5	0.00114	3.1E-5	0.0314	9.1E-4	1.467230	3.8E-5	12.3	0.9
IA-NS-4b_8.1	JW498	13.6	0.283174	4.2E-5	0.00302	1.6E-4	0.0926	6.2E-3	1.467224	2.8E-5	13.8	1.5
IA-NS-4b_9.1	JW498	16.8	0.283172	2.6E-5	0.00349	1.5E-4	0.1099	4.6E-3	1.467242	4.0E-5	13.7	0.9
IA-NS-4b_9.2	JW498	15.7	0.283124	2.4E-5	0.00372	2.6E-4	0.1198	9.4E-3	1.467260	3.1E-5	12.0	0.9
IA-NS-4b_10.1	JW498	8.1	0.283133	3.2E-5	0.00171	6.4E-5	0.0513	1.8E-3	1.467288	4.2E-5	12.3	1.1
IA-NS-4b_11.1	JW498	9.1	0.283159	5.3E-5	0.00278	2.0E-4	0.0895	7.2E-3	1.467202	6.9E-5	13.2	1.9

Appendix B.6. Zircon Lu-Hf isotope compositions, measured *in-situ* by LA-MC-ICP-MS

Spot Name	Mount	Total Hf Beam (V)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2SE	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2SE	¹⁷⁸ Hf/ ¹⁷⁷ Hf	2SE	8 _{Hf}	2SE
				IA-NS	-4b (High-SiC	D ₂ Grano	phyre)					
IA-NS-4b 12.1	JW498	30.0	0.283171	3.1E-5	0.00639	5.0E-4	0.2240	1.7E-2	1.467253	3.2E-5	13.7	1.1
IA-NS-4b_13.1	JW498	12.7	0.283136	4.1E-5	0.00274	1.0E-4	0.0817	2.9E-3	1.467242	5.1E-5	12.4	1.4
IA-NS-4b 14.1	JW498	33.0	0.283143	1.7E-5	0.00110	4.5E-5	0.0399	1.9E-3	1.467232	3.3E-5	12.7	0.6
IA-NS-4b_17.1	JW498	28.9	0.283137	2.9E-5	0.00437	7.6E-5	0.1400	3.0E-3	1.467218	2.8E-5	12.4	1.0
IA-NS-4b_19.1	JW498	11.4	0.283117	2.6E-5	0.00130	4.3E-5	0.0368	1.3E-3	1.467239	4.2E-5	11.7	0.9
IA-NS-4b_22.1	JW498	26.3	0.283131	1.9E-5	0.00270	1.3E-4	0.0814	4.0E-3	1.467241	3.0E-5	12.2	0.7
IA-NS-4b_23.1	JW498	10.0	0.283121	3.7E-5	0.00571	5.6E-4	0.2014	2.1E-2	1.467223	2.5E-5	11.9	1.3
IA-NS-4b_25.1	JW498	27.9	0.283168	4.0E-5	0.00605	6.4E-4	0.2169	2.2E-2	1.467213	1.1E-4	13.6	1.4
IA-NS-4b_27.1	JW498	16.1	0.283165	3.9E-5	0.00405	4.6E-4	0.1256	1.4E-2	1.467211	5.7E-5	13.4	1.4
IA-NS-4b_30.1	JW498	21.0	0.283174	3.0E-5	0.00335	1.6E-4	0.1036	5.5E-3	1.467215	2.5E-5	13.8	1.1
IA-NS-4b_32.1	JW498	26.7	0.283140	2.8E-5	0.00482	1.7E-4	0.1583	6.1E-3	1.467234	2.2E-5	12.6	1.0
IA-NS-4b_33.1	JW498	31.9	0.283190	3.7E-5	0.00091	4.5E-5	0.0313	1.9E-3	1.467187	4.5E-5	14.3	1.3
IA-NS-4b_34.1	JW498	26.4	0.283139	3.1E-5	0.00286	5.0E-5	0.0915	1.7E-3	1.467226	2.9E-5	12.5	1.1
IA-NS-4b_31.1	JW498	29.7	0.283123	2.2E-5	0.00154	1.1E-4	0.0521	3.6E-3	1.467242	2.5E-5	12.0	0.8
IA-NS-4b_35.1	JW498	27.3	0.283151	3.9E-5	0.00582	7.3E-4	0.2019	2.5E-2	1.467224	3.3E-5	12.9	1.4
					IA-NS-6 (D)iorite)						
IA-NS-6 1.1	JW498	12.7	0.283179	3.0E-5	0.00174	5.5E-5	0.0504	1.6E-3	1.467268	4.1E-5	13.9	1.0
IA-NS-6 3.1	JW498	9.6	0.283167	4.0E-5	0.00824	1.2E-4	0.2564	3.3E-3	1.467229	4.4E-5	13.5	1.4
IA-NS-6 4.1	JW498	14.6	0.283142	5.5E-5	0.00797	2.2E-4	0.2519	6.8E-3	1.467217	5.8E-5	12.6	1.9
IA-NS-6 6.1	JW498	11.3	0.283156	2.0E-5	0.00262	4.1E-5	0.0789	1.1E-3	1.467212	3.4E-5	13.1	0.7
IA-NS-6 6.2	JW498	15.1	0.283136	2.9E-5	0.00205	1.1E-4	0.0604	3.6E-3	1.467205	4.6E-5	12.4	1.0
IA-NS-6 7.1	JW498	13.0	0.283163	3.4E-5	0.00355	2.0E-4	0.1029	5.6E-3	1.467209	5.0E-5	13.4	1.2
IA-NS-6_10.1	JW498	15.1	0.283146	4.2E-5	0.00529	1.5E-4	0.1510	4.5E-3	1.467212	4.4E-5	12.8	1.5
IA-NS-6_11.1	JW498	12.3	0.283197	2.8E-5	0.00092	4.8E-5	0.0255	1.3E-3	1.467246	3.7E-5	14.6	1.0
IA-NS-6_12.1	JW498	11.6	0.283175	2.6E-5	0.00137	4.5E-5	0.0401	1.4E-3	1.467240	3.5E-5	13.8	0.9
IA-NS-6_18.2	JW498	11.8	0.283133	2.4E-5	0.00172	3.1E-5	0.0485	9.3E-4	1.467235	4.1E-5	12.3	0.8
IA-NS-6_21.1	JW498	12.2	0.283161	4.0E-5	0.00118	2.9E-5	0.0323	6.5E-4	1.467215	5.0E-5	13.3	1.4
IA-NS-6 22.1	JW498	16.4	0.283161	2.9E-5	0.00187	4.3E-5	0.0542	1.1E-3	1.467228	4.5E-5	13.3	1.0
IA-NS-6_24.1	JW498	10.8	0.283134	3.5E-5	0.00245	3.2E-5	0.0721	9.7E-4	1.467268	5.4E-5	12.4	1.2

Appendix B.6. Continued

Spot Name	Mount	Total Hf Beam (V)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2SE	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2SE	¹⁷⁸ Hf/ ¹⁷⁷ Hf	2SE	8 _{Hf}	2SE
]	A-NS-7 (Grai	nodiorite)					
IA-NS-7_1.1	JW510	12.0	0.283155	3.1E-5	0.00390	3.9E-5	0.1083	1.2E-3	1.467137	4.1E-5	13.1	1.1
IA-NS-7_4.1	JW510	11.0	0.283140	3.1E-5	0.00383	2.2E-4	0.1078	6.5E-3	1.467159	3.9E-5	12.5	1.1
IA-NS-7_9.1	JW510	10.7	0.283143	3.7E-5	0.00807	5.4E-4	0.2410	1.6E - 2	1.467142	4.1E-5	12.6	1.3
IA-NS-7_10.1	JW510	10.8	0.283095	4.9E-5	0.00698	7.1E-4	0.2060	2.2E-2	1.467117	4.7E-5	10.9	1.7
IA-NS-7_11.1	JW510	15.9	0.283174	3.6E-5	0.00532	5.3E-4	0.1560	1.6E-2	1.467200	4.6E-5	13.7	1.3
IA-NS-7_12.1	JW510	13.0	0.283136	4.3E-5	0.00545	7.3E-4	0.1600	2.2E-2	1.467133	3.6E-5	12.4	1.5
IA-NS-7_13.1	JW510	14.2	0.283157	3.0E-5	0.00383	4.0E-4	0.1100	1.2E-2	1.467186	4.7E-5	13.1	1.1
IA-NS-7_14.1	JW510	11.1	0.283156	3.3E-5	0.00331	1.1E-4	0.0916	2.8E-3	1.467150	4.4E-5	13.1	1.2
IA-NS-7_16.1	JW510	14.9	0.283212	2.9E-5	0.00441	5.9E-4	0.1240	1.7E-2	1.467176	5.2E-5	15.1	1.0
IA-NS-7_17.1	JW510	12.4	0.283145	3.5E-5	0.00621	1.7E-4	0.1843	5.3E-3	1.467113	4.0E-5	12.7	1.2
IA-NS-7_19.1	JW510	7.6	0.283157	4.7E-5	0.00299	2.3E-4	0.0962	6.5E-3	1.467163	5.5E-5	13.1	1.7
IA-NS-7_20.1	JW510	16.1	0.283133	4.7E-5	0.00358	1.4E-4	0.1024	4.0E-3	1.467173	5.6E-5	12.3	1.7
IA-NS-7_22.1	JW510	11.6	0.283141	3.5E-5	0.00507	4.0E-4	0.1490	1.3E-2	1.467173	3.8E-5	12.6	1.2
IA-NS-7_23.1	JW510	11.1	0.283131	4.2E-5	0.00185	1.3E-4	0.0513	3.8E-3	1.467142	4.4E-5	12.2	1.5
IA-NS-7_25.1	JW510	11.5	0.283154	3.0E-5	0.00373	4.6E-4	0.1070	1.4E-2	1.467137	3.9E-5	13.0	1.1
				IA-NS	8-9 (High-SiO	2 Granop	hyre)					
IA-NS-9_1.1	AJP03	12.8	0.283044	5.6E-5	0.00152	1.2E-4	0.0469	3.3E-3	1.467127	7.1E-5	9.1	2.0
IA-NS-9_2.1	AJP03	22.0	0.283151	2.0E-5	0.00193	7.9E-5	0.0731	3.0E-3	1.467150	2.5E-5	12.9	0.7
IA-NS-9_5.1	AJP03	13.7	0.283126	3.4E-5	0.00159	7.0E-5	0.0521	1.9E-3	1.467171	3.5E-5	12.0	1.2
IA-NS-9_8.1	AJP03	13.3	0.283116	5.6E-5	0.00181	5.0E-5	0.0601	2.6E-3	1.467093	6.7E-5	11.7	2.0
IA-NS-9_11.1	AJP03	13.6	0.283096	3.9E-5	0.00162	1.4E-4	0.0527	4.0E-3	1.467131	4.0E-5	11.0	1.4
IA-NS-9_12.1	AJP03	13.1	0.283146	2.5E-5	0.00149	1.0E-5	0.0501	6.9E-4	1.467189	3.2E-5	12.8	0.9
IA-NS-9_15.1	AJP03	13.0	0.283136	2.4E-5	0.00097	3.2E-5	0.0306	8.9E-4	1.467149	3.8E-5	12.4	0.8
IA-NS-9_17.1	AJP03	31.8	0.283114	4.3E-5	0.00355	5.3E-5	0.1317	3.8E-3	1.467138	4.9E-5	11.6	1.5
IA-NS-9_21.1	AJP03	24.2	0.283170	2.4E-5	0.00207	4.9E-5	0.0765	3.1E-3	1.467173	2.9E-5	13.6	0.8

Appendix B.6. Continued

Spot Name	Mount	Total Hf Beam (V)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2SE	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2SE	¹⁷⁸ Hf/ ¹⁷⁷ Hf	2SE	8 _{Hf}	2SE
					IA-G-1 (Ga	ıbbro)						
IA-G-1_1.1	JW510	9.6	0.283158	2.8E-5	0.00220	7.9E-5	0.0626	2.3E-3	1.467211	4.6E-5	13.2	1.0
IA-G-1_2.1	JW510	9.6	0.283129	2.5E-5	0.00161	2.3E-5	0.0454	6.5E-4	1.467179	4.3E-5	12.2	0.9
IA-G-1 3.1	JW510	9.2	0.283148	3.3E-5	0.00239	9.0E-5	0.0662	2.6E-3	1.467228	4.2E-5	12.9	1.2
IA-G-1_4.1	JW510	9.3	0.283151	2.9E-5	0.00200	1.5E-4	0.0559	4.3E-3	1.467199	4.3E-5	13.0	1.0
IA-G-1_6.1	JW510	11.3	0.283154	3.4E-5	0.00193	2.6E-4	0.0539	7.4E-3	1.467210	6.4E-5	13.1	1.2
IA-G-1_7.1	JW510	9.9	0.283127	3.8E-5	0.00207	1.5E-4	0.0575	4.2E-3	1.467226	4.5E-5	12.1	1.4
IA-G-1_8.1	JW510	9.5	0.283144	2.7E-5	0.00213	6.2E-5	0.0594	1.8E-3	1.467217	4.2E-5	12.7	0.9
IA-G-1_10.1	JW510	10.8	0.283102	3.2E-5	0.00249	1.6E-4	0.0701	4.6E-3	1.467193	4.0E-5	11.2	1.1
IA-G-1_11.1	JW510	8.6	0.283233	4.4E-5	0.00124	2.1E-4	0.0334	6.0E-3	1.467244	5.2E-5	15.9	1.6
IA-G-1_12.1	JW510	9.4	0.283135	3.6E-5	0.00116	3.0E-5	0.0305	8.8E-4	1.467243	4.1E-5	12.4	1.3
IA-G-1_14.1	JW510	9.7	0.283156	3.1E-5	0.00170	4.4E-5	0.0471	1.2E-3	1.467241	4.7E-5	13.1	1.1
IA-G-1_15.1	JW510	10.1	0.283134	2.8E-5	0.00159	2.4E-5	0.0433	4.3E-4	1.467246	5.3E-5	12.4	1.0
IA-G-1_17.1	JW510	9.2	0.283153	3.0E-5	0.00230	1.1E - 4	0.0647	3.2E-3	1.467225	4.4E-5	13.0	1.1
IA-G-1_18.1	JW510	12.0	0.283179	3.9E-5	0.00287	3.4E-4	0.0810	9.7E-3	1.467236	5.0E-5	13.9	1.4
IA-G-1_19.1	JW510	9.7	0.283176	2.9E-5	0.00205	1.0E-4	0.0573	2.9E-3	1.467234	4.4E-5	13.8	1.0
IA-G-1_24.1	JW510	10.5	0.283150	3.0E-5	0.00267	3.7E-5	0.0776	1.2E-3	1.467188	3.9E-5	12.9	1.1
IA-G-1_25.1	JW510	10.3	0.283138	2.2E-5	0.00141	7.8E-5	0.0390	2.1E-3	1.467219	4.5E-5	12.5	0.8
IA-G-1_26.1	JW510	11.9	0.283177	3.6E-5	0.00226	7.3E-5	0.0635	2.1E-3	1.467259	5.9E-5	13.9	1.3
IA-G-1_27.1	JW510	10.0	0.283126	3.0E-5	0.00137	4.1E-5	0.0374	1.1E-3	1.467219	3.7E-5	12.1	1.1
IA-G-1_28.1	JW510	9.2	0.283159	3.0E-5	0.00279	2.0E-4	0.0772	5.7E-3	1.467199	4.0E-5	13.2	1.1
					IA-G-5 (Ga	ıbbro)						
IA-G-5_7.1	AJP01	9.1	0.283149	5.0E-5	0.00379	7.0E-5	0.1168	2.6E-3	1.467163	5.8E-5	12.9	1.8
IA-G-5_11.1	AJP03	10.6	0.283154	5.1E-5	0.00275	2.9E-4	0.1000	1.3E-2	1.467140	5.2E-5	13.0	1.8
IA-G-5_12.1	AJP03	9.7	0.283154	5.0E-5	0.00486	7.0E-5	0.1810	3.2E-3	1.467187	4.2E-5	13.0	1.8

Appendix B.6. Continued

Caracteris	Gammla	De els Terres	Whole Deels Dete	Zircon	Data	Bulk Oxygen
Group:	Sample	коск туре	whole-Kock Data	Elemental Geochemistry	Oxygen Isotopes	Isotopes
	IA-NS-1	Granophyre	Chapter III, Table 2 (p. 75)			
				Appendix B.2 (p. 186-187)		
	IA-NS-2	Granophyre	Chapter III, Table 2 (p. 75)	Appendix B.3 (p. 195-196)	Appendix B.5 (p. 211)	Appendix B.9 (p. 225)
				Appendix B.4 (p. 204-205)	1 1 1	1 1 1
	IA-NS-3	Granodiorite	Chapter III, Table 2 (p. 75)			
	IA-NS-4a	Granophyre	Chapter III, Table 2 (p. 75)			
	IA-NS-5	Granophyre	Chapter III, Table 2 (p. 75)			
ic				Appendix B.2 (p. 189)		1 1 1
ilic	IA-NS-6	Diorite	Chapter III, Table 2 (p. 75)	Appendix B.3 (p. 198)	Appendix B.5 (p. 213-214)	Appendix B.9 (p. 225)
$\mathbf{\tilde{s}}$				Appendix B.4 (p. 206)		
				Appendix B.2 (p. 189-190)		1 1 1
	IA-NS-7	Granodiorite	Chapter III, Table 2 (p. 75)	Appendix B.3 (p. 198-199)	Appendix B.5 (p. 214-215)	Appendix B.9 (p. 225)
				Appendix B.4 (p. 206-207)	, , ,	
	IA-NS-8	Granophyre	Chapter III, Table 2 (p. 75)			
				Appendix B.2 (p. 192-193)	1 1 1	1 1 1
	IA-NS-12	Granophyre	Appendix B.5 (p. 224)	Appendix B.3 (p. 201-202)	Appendix B.5 (p. 217)	
				Appendix B.4 (p. 209)	1 1	, 1 1 1
				Appendix B.2 (p. 193-194)	1 1 1	1 1 1
	IA-G-1	Gabbro	Chapter III, Table 2 (p. 75)	Appendix B.3 (p. 202-203)	Appendix B.5 (p. 218)	Appendix B.9 (p. 225)
fic				Appendix B.4 (p. 209-210)		; {
laj	IA-G-3	Gabbro	Chapter III, Table 2 (p. 75)	<u>_</u>		
				Appendix B.2 (p. 194)		
	IA-G-5	Gabbro	Chapter III, Table 2 (p. 75)	Appendix B.3 (p. 203)	Appendix B.5 (p. 218)	Appendix B.9 (p. 225)
			1	Appendix B.4 (p. 210)	1 1 1	1 1 1
				Appendix B.2 (p. 187-189)		
	IA-NS-4b	High-SiO ₂ Granophyre	Appendix B.5 (p. 224)	Appendix B.3 (p. 196-198)	Appendix B.5 (p. 212-213)	Appendix B.9 (p. 225)
			·	Appendix B.4 (p. 205-206)	i	i
7 h				Appendix B.2 (p. 190-192)		
S	IA-NS-9	High-SiO ₂ Granophyre	Appendix B.5 (p. 224)	Appendix B.3 (p. 199-201)	Appendix B.5 (p. 215-216)	Appendix B.9 (p. 225)
Ŧ			; 	Appendix B.4 (p. 207-208)	i 	; ;
				Appendix B.2 (p. 192)		1 1 1
	IA-NS-10	High-SiO ₂ Granophyre	Appendix B.5 (p. 224)	Appendix B.3 (p. 201)	Appendix B.5 (p. 216-217)	
	TA NO 11	High CiO. Company		Appendix B.4 (p. 208-209)	; ; ;	
	1A-NS-11	nign-SiO ₂ Granophyre	Аррепаіх в.э (р. 224)			

Appendix B.7.	Compositional	groups for c	lata comparison and	data references fo	or Chapter IV
---------------	---------------	--------------	---------------------	--------------------	---------------

San	nple ⁴² :	IA-NS-4b	IA-NS-4b_R	IA-NS-9	IA-NS-10a	IA-NS-10b	IA-NS-11	IA-NS-12
43	SiO ₂	75.6	75.7	77.4	76.1	79.4	77.8	69.9
(%:	TiO ₂	0.16	0.16	0.08	0.17	0.09	0.14	0.43
(wt	Al_2O_3	12.6	12.6	11.8	12.3	11.5	11.8	13.7
les	Fe ₂ O ₃	2.0	2.0	1.5	2.4	1.2	1.7	4.9
Oxio	MnO	0.05	0.05	0.04	0.04	0.02	0.02	0.15
nt (MgO	0.04	0.04	0.05	0.04	0.01	0.03	0.19
sme	CaO	0.34	0.34	0 39	0.17	0.05	0.22	17
Ele	Na ₂ O	5.0	49	4 4	4.4	53	4 5	57
ajor	K ₂ O	4.2	4.2	4.4	4.3	2.4	3.8	33
Ä	P ₂ O ₂	4.2	4.2	4. 4 0.00	4.5	0.01	0.01	0.06
	1205	0.01	0.01	0.00	0.01	0.01	0.01	0.00
	LUI (70)	1	1	2		0.6		2
		1.4	16	2	2	0.6	5.0	3
	Zn	68	69	137	76	3.5	3.0	127
	Rh	66	81	100	70	50	72	63
	Sr	17	29	29	49	26	39	156
	Y	38	65	92	71	97	91	99
	Zr	402	391	413	384	430	444	831
	Nb	58	69	71	56	87	67	66
(r	Ba	106	420	135	396	127	272	591
udd	V	1.8	2.6	1.1	3.4	1.7	1.1	4.3
l) su	Cr	3.7	4.0	5.6	1.9	3.9	2.9	2.8
tior	La	4.8	5.6	6.9	4.5	7.6	5.5	4.2
utra	Ce	8.3	43	39	40	29	36	66
lcer	Pr	27	98	95	117	119	99	156
Cot	- Na Sm	2.6	15	12	11	8.7	11	19
ent	 	3.2	15	40	11	10	12	20
eme	Gd	0.21	18	0.86	13	0.55	0.91	4 5
EI	Tb	3.9	13	14	11	11	13	19
race	Dy	0.88	2.4	2.9	2.2	2.6	2.7	3.3
Ĥ	Но	6.4	15	19	14	18	18	21
	Er	1.5	2.8	3.9	2.9	3.9	3.7	4.1
	Yb	4.6	7.5	11	8.0	11	10	11
	Lu	5.2	6.9	9.9	6.9	10	8.7	9.5
	Hf	0.79	1.0	1.4	0.97	1.4	1.2	1.4
	Ta	15	13	18	13	18	15	21
	Pb Th	0.7	5.9	4.4	5.2	9.2	5.2	4.1
	 	9.1	8.4	11	8.4	12	9.1	/.0
Тот	$\frac{0}{10000000000000000000000000000000000$	3.2 0(0	2.9	4.2 972	2.4	3.7	3.U 000	2.3 010
1 011	ip (C)	809	800	8/2	8/3	889	888	919

Appendix B.8. Major oxide and trace element compositions of rocks from the high-SiO₂ granophyre zone at the Austurhorn Intrusive Complex.

⁴² All sample names preceded by the label "IA-" (e.g. "NS-4b" = IA-NS-4b)
⁴³ Anhydrous basis, normalized
⁴⁴ Zircon Saturation Temperature: calculated using the formula of Watson & Harrison (1983) (see Section 3.2.a)

Sample	Phase	Date	Initial Mass (mg)	Yield (µmol/mg)	$\delta^{13}C/^{12}C$	δ ¹⁸ O Measured	δ ¹⁸ O Corrected	2σ	Notes
			,	IA-NS-2	(Granophy	re)			
IA-NS-2	Quartz	May '14	1.236	18.52	-23.97	6.1	5.9	0.1	
IA-NS-2	Pyroxene	May '14	1.454	14.48	-23.94	5.0	4.7	0.1	
IA-NS-2	Feldspar	May '14	2.540	13.25	-23.99	2.7	2.6	0.8	Airlock; small part jumped
IA-NS-2	Quartz	Nov. '11	1.450	15.03	-23.97	6.1	6.0	0.1	
IA-NS-2	Amphibole	Nov. '11	1.290	12.07	-23.95	3.7	3.7	0.1	
				A-NS-4b (Hig	gh-SiO ₂ Gra	nophyre)			
IA-NS-4b	Quartz	May '14	1.213	16.98	-23.97	-0.6	-0.9	0.1	
IA-NS-4b	Quartz	May '14	1.204	16.36	-23.96	0.3	0.0	0.1	
IA-NS-4b	Feldspar	May '14	1.691	6.81	-24.00	-0.2	-0.4	0.1	
IA-NS-4b	Feldspar	May '14	2.490	18.21	-24.01	-0.7	-0.8	0.8	Airlock
IA-NS-4b	Granophyre	May '14	2.523	16.29	-24.02	-1.4	-1.5	0.8	Airlock
IA-NS-4b	Whole-rock	May '14	2.400	15.39	-24.01	-1.4	-1.5	0.8	Airlock
		-		IA-N	S-6 (Diorite)				
IA-NS-6	Quartz	May '14	1.101	18.96	-23.95	2.5	2.2	0.1	
IA-NS-6	Feldspar	May '14	2.480	13.97	-24.01	-0.7	-0.8	0.8	Airlock
				IA-NS-7	(Granodior	ite)			
IA-NS-7	Quartz	May '14	1.252	16.49	-23.93	5.6	5.4	0.1	
IA-NS-7	Pyroxene	May '14	1.413	12.48	-23.97	1.2	0.9	0.1	
IA-NS-7	Feldspar	May '14	2.538	8.07	-24.01	0.1	0.0	0.8	Airlock; part jumped
IA-NS-7	Quartz	Nov. '11	1.970	16.29	-23.98	5.8	5.8	0.1	
IA-NS-7	Pyroxene	Nov. '11	1.820	12.59	-23.93	3.4	3.3	0.1	
				IA-NS-9 (Hig	h-SiO ₂ Gran	10phyre)			
IA-NS-9	Quartz	May '14	1.252	17.61	-23.97	-2.1	-2.4	0.1	
IA-NS-9	Quartz	May '14	1.343	16.50	-23.99	-2.6	-2.9	0.1	
IA-NS-9	Feldspar	May '14	2.515	10.76	-24.02	-2.5	-2.6	0.8	Airlock; part jumped
IA-NS-9	Granophyre	May '14	2.495	16.26	-24.02	-2.8	-3.0	0.8	Airlock
IA-NS-9	Whole-rock	May '14	2.537	15.33	-24.02	-2.8	-3.0	0.8	Airlock
				IA-G	-1 (Gabbro)	1			
IA-G-1	Feldspar	May '14	1.620	6.77	-23.96	3.4	3.2	0.1	
IA-G-1	Pyroxene	May '14	1.169	13.90	-23.96	3.8	3.6	0.1	
				IA-G	-5 (Gabbro))			
IA-G-5	Feldspar	May '14	1.776	12.08	-23.97	0.0	-0.3	0.1	
IA-G-5	Pyroxene	May '14	1.261	14.66	-23.96	5.0	4.7	0.1	

Appendix B.9. Bulk oxygen isotope compositions, measured *in-situ* by laser fluorination Mass Spectrometry

APPENDIX C

ICELANDIC SILICIC INTRUSIVE COMPLEXES

Spot Name	Mount	²⁰⁴ Pb/ ²⁰⁶ Pb	% error	²⁰⁶ Pb/ ²³⁸ U	% error	U (ppm)	Th (ppm)	²³² Th/ ²³⁸ U	% error	Total ²³⁸ U/ ²⁰⁶ Pb	% error	Total ²⁰⁷ Pb/ ²⁰⁶ Pb	% error	²⁰⁷ Pb-corr ²⁰⁴ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb-corr % ²⁰⁶ Pb _C
							SLAUF	RUDAL	UR						
IISlau-12 11.1	AJP03	6.0E-2	10	0.03966	7.9	190	158	0.86	0.30	41	15.1	0.828	1	5.3E-2	99.0
IISlau-12 4.1	AJP01		100	0.00191	9.2	36	15	0.42	3.10	1042	11.2	0.109	26	4.3E-3	8.0
IISlau-12 9.1	AJP01	2.5E-3	71	0.00226	3.6	262	215	0.85	3.56	1097	1.0	0.058	10	8.3E-4	1.5
IISlau-12 2.1	AJP01	2.5E-3	100	0.00223	3.0	138	116	0.87	0.97	1038	4.3	0.063	13	1.1E-3	2.1
IISlau-12 5.1	AJP01	8.1E-3	27	0.00260	29.7	383	430	1.16	0.78	1032	20.5	0.048	9	1.5E-4	0.3
IISlau-12 14.1	AJP03	-2.6E-3	105	0.00198	1.4	275	256	0.96	0.31	1023	2.2	0.044	12	-1.4E-4	-0.3
IISlau-12 17.1	AJP03	-2.0E-3	129	0.00214	4.0	218	153	0.73	0.17	1019	2.1	0.040	14	-4.0E-4	-0.8
IISlau-12 12.1	AJP03	2.5E-3	100	0.00223	1.5	290	253	0.90	1.47	1005	1.7	0.045	11	-7.6E-5	-0.1
IISlau-12 16.1	AJP03	-5.1E-4	183	0.00210	3.5	442	525	1.23	0.30	995	2.4	0.048	9	1.2E-4	0.2
IISlau-127.1	AJP01	6.6E-3	50	0.00218	2.5	231	271	1.21	0.49	993	3.6	0.047	12	3.0E-5	0.1
IISlau-12 15.1	AJP03	-1.2E-3	183	0.00198	3.4	204	180	0.91	0.16	993	2.1	0.041	14	-3.3E-4	-0.6
IISlau-12_1.1	AJP01	3.1E-3	100	0.00221	3.4	116	68	0.61	0.33	971	2.7	0.052	16	4.0E-4	0.7
IISlau-12 13.1	AJP03	5.3E-3	100	0.00205	2.0	141	95	0.69	0.22	985	2.8	0.037	19	-6.5E-4	-1.2
IISlau-22_3.1	AJP03	7.2E-3	61	0.00200	2.6	294	214	0.75	0.44	1025	2.6	0.052	11	4.0E-4	0.7
IISlau-22 7.1	AJP03	-2.1E-3	183	0.00200	4.3	111	59	0.54	0.43	1032	3.4	0.036	20	-6.6E-4	-1.2
IISlau-22 4.1	AJP03	8.3E-4	158	0.00215	2.5	342	333	1.01	1.57	1011	1.8	0.049	10	2.2E-4	0.4
IISlau-22 5.1	AJP03		100	0.00201	3.6	222	131	0.61	0.33	1013	2.1	0.034	15	-8.0E-4	-1.5
IISlau-22_12.1	AJP02	3.6E-3	100	0.00222	3.1	251	162	0.67	2.10	897	4.4	0.123	27	5.2E-3	9.7
IISlau-22_1.1	AJP03	-6.5E-3	129	0.00217	2.9	69	34	0.51	0.36	996	2.9	0.041	23	-3.3E-4	-0.6
IISlau-22_6.1	AJP03	-1.9E-3	183	0.00204	3.9	122	65	0.55	0.26	991	2.1	0.040	19	-3.9E-4	-0.7
IISlau-22_13.1	AJP02	3.8E-3	120	0.00207	3.5	196	96	0.51	0.25	995	2.3	0.032	20	-9.6E-4	-1.8
IISlau-22_11.1	AJP02		100	0.00197	3.0	84	31	0.38	0.44	949	2.9	0.053	23	4.4E-4	0.8
IISlau-25_1.1	AJP04	-2.2E-3	129	0.00180	5.2	523	652	1.29	0.88	1080	3.9	0.040	15	-4.3E-4	-0.8
IISlau-25_3.1	AJP04	1.8E-3	224	0.00185	6.0	179	88	0.51	0.63	1021	3.0	0.077	17	2.1E-3	3.9
IISlau-25_5.1	AJP04	-1.4E-3	158	0.00189	4.6	458	263	0.59	0.51	1027	2.3	0.055	12	5.7E-4	1.1
IISlau-25_4.1	AJP04	1.3E-2	46	0.00243	7.7	469	344	0.76	1.82	797	10.1	0.227	35	1.2E-2	22.9
IISlau-25_2.1	AJP04	2.8E-3	158	0.00193	2.2	207	109	0.55	0.26	1011	1.2	0.058	17	7.9E-4	1.5
IISlau-25 6.1	AJP04	4.7E-3	49	0.00213	4.3	1348	640	0.49	2.82	975	2.0	0.050	7	2.7E-4	0.5
IISlau-26_1.1	AJP04	8.4E-4	129	0.00172	4.7	1547	1309	0.87	0.43	1030	1.5	0.070	7	1.6E-3	3.1
IISlau-26 3.1	AJP04	3.1E-3	48	0.00190	5.9	2294	3298	1.49	1.13	1014	2.1	0.070	9	1.6E-3	3.1
IISlau-26_2.1	AJP04	6.8E-4	62	0.00196	5.8	5638	10497	1.92	0.51	1023	2.1	0.053	3	4.7E-4	0.9
IISlau-26_5.1	AJP04	2.3E-3	79	0.00215	2.4	1120	136	0.13	5.37	976	1.5	0.086	6	2.7E-3	5.0
IISlau-26_7.1	AJP04	-3.8E-4	129	0.00198	5.0	3042	3110	1.06	1.36	974	1.4	0.063	5	1.1E-3	2.1
IISlau-26_6.1	AJP04	4.7E-3	30	0.00242	4.2	3788	6255	1.71	1.28	876	2.1	0.103	3	3.9E-3	7.2
IISlau-26 4.1	AJP04	-7.2E-4	100	0.00263	1.9	1607	2364	1.52	0.10	911	1.5	0.045	6	-9.5E-5	-0.2

Appendix C.1. Zircon U-Pb Geochronology⁴⁵, measured *in-situ* by SHRIMP-RG

⁴⁵ Errors (%) are all 1 σ ; *Pb*_C denotes proportion of common Pb; *Pb-corr* indicates correction made using the corresponding (labeled) measured Pb values

Spot Name	Mount	²⁰⁴ Pb-corr ²⁰⁷ Pb*/ ²³⁵ U	% error	²⁰⁴ Pb-corr ²⁰⁶ Pb*/ ²³⁸ U	% error	Error Corr.	²⁰⁷ Pb-corr ⁴⁷ ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	lσ error	²³⁰ Th-corr ⁴⁸ ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	2σ error	Reason for excluding?
						SLAUF					
HG1 12 11 1	A 1D02	0.2794	04	2.05.2	02.2	0.00	1.(2	2.17	1.71	4.24	
IISlau-12_11.1	AJP03	-0.3/84	94	-3.0E-3	93.2	0.99	1.62	2.17	1./1 5.70	4.34	High comm-Pb (>20%), outlier (>2SD)
$IISlau-12_4.1$	AJP01	0.0144	28	9.6E-4	11.2	0.40	5.69	0.67	5.79	1.35	
IISlau-12_9.1	AJP01	0.0025	135	8.7E-4	3.5	0.03	5.78	0.07	5.87	0.15	
IISlau-12_2.1	AJP01	0.0032	160	9.2E-4	6.5	0.04	6.07	0.27	6.16	0.54	
IISlau-12_5.1	AJP01	0.0104	27	8.2E-4	21.0	0.79	6.23	1.27	6.30	2.55	
IISlau-12_14.1	AJP03	0.0113	46	1.0E-3	5.3	0.11	6.31	0.15	6.40	0.29	
IISlau-12_17.1	AJP03	0.0097	53	1.0E-3	5.2	0.10	6.37	0.14	6.46	0.28	
IISlau-12_12.1	AJP03	0.0008	632	9.5E-4	5.2	0.01	6.42	0.12	6.50	0.23	
IISlau-12_16.1	AJP03	0.0078	26	1.0E-3	3.0	0.12	6.46	0.16	6.54	0.32	
IISlau-12_7.1	AJP01	0.0077	20	8.8E-4	7.8	0.40	6.49	0.24	6.56	0.47	
IISlau-12_15.1	AJP03	0.0082	53	1.0E-3	4.4	0.08	6.53	0.15	6.61	0.30	
IISlau-12 1.1	AJP01	0.0005	1351	9.7E-4	6.7	0.00	6.59	0.19	6.68	0.38	
IISlau-12 13.1	AJP03	0.0064	36	9.2E-4	11.2	0.31	6.62	0.19	6.71	0.39	
IISlau-22 3.1	AJP03	0.0082	23	8.4E-4	9.8	0.43	6.24	0.17	6.32	0.33	
IISlau-22 7.1	AJP03	0.0093	81	1.0E-3	7.8	0.10	6.32	0.22	6.41	0.44	
IISlau-22 4.1	AJP03	0.0050	56	9.7E-4	3.1	0.06	6.35	0.12	6.42	0.25	
IISlau-22 5.1	AJP03	0.0047	15	9.9E-4	2.1	0.14	6.45	0.14	6.54	0.28	
IISlau-22_12_1	AJP02	0.0103	92	1.0E-3	8.4	0.09	6.49	0.42	6.57	0.83	
IISlau-22_11	A IP03	0.0199	79	1 1E-3	14.3	0.18	6.51	0.20	6.60	0.41	
IISlau-22_111 IISlau-22_61	A IP03	0.0097	72	1 0E-3	6.5	0.09	6.55	0.15	6.64	0.30	
IISlau-22_0.1	A IP02	0.0037	29	9 3E-4	93	0.32	6.59	0.16	6 69	0.33	
$IISlau_{22}_{13.1}$	A IP02	0.0077	23	1 1E-3	29	0.13	6.73	0.22	6.83	0.22	
IISlau-22 11.1	Δ IP04	0.0094	55	9.6E-4	6.4	0.12	6.01	0.22	6.08	0.49	
$IISlau=25_1.1$ $IISlau=25_3.1$	Δ IP04	0.0054	125	9.5E-4	8.4	0.12	6.07	0.24	6.16	0.40	
$\frac{1151au}{25} = 5.1$	A IP04	0.0000	125	1.0E-3	4.8	0.11	6.21	0.15	6 30	0.45	
IISlau-25_5.1	A IP04	0.0104	417	9.6E-A	17.5	0.11	6.23	1.03	6.32	2.06	High comm Ph (>20%)
IISlau-25_4.1	A ID04	0.0049	502	0.0E-4	80	0.04	6.25	0.11	6.38	0.22	mgn comm-1 b (~2070)
$\frac{1151au-25}{2.1}$		0.0017	56	0.4E 4	5.1	0.02	6.58	0.11	6.67	0.22	
<u>IISlau-25_0.1</u>	A ID04	0.0032	20	9.4L-4	2.5	0.09	6.06	0.14	6.14	0.27	
IISIau-26_1.1	AJE04	0.0077	29	9.0E-4	2.5	0.09	0.00	0.10	0.14	0.20	
1151au-20_3.1	AJP04	0.0029	110	9.3E-4	3.0	0.05	0.10	0.14	0.22	0.28	
11Slau-26_2.1	AJP04	0.005/	15	9./E-4	2.5	0.15	0.24	0.13	0.29	0.20	
11Slau-26_5.1	AJP04	0.00/1	54	9.8E-4	5.9	0.07	6.27	0.10	6.38	0.21	
IISlau-26_7.1	AJP04	0.0098	11	1.0E-3	1.7	0.15	6.47	0.10	6.55	0.19	
IISlau-26_6.1	AJP04	0.0047	72	1.0E-3	3.5	0.05	6.82	0.14	6.88	0.29	
IISlau-26 4.1	AJP04	0.0085	20	1.1E-3	2.0	0.10	7.08	0.11	7.14	0.22	Low UO/U

Appendix C.1. Continued⁴⁶

⁴⁶ *Pb** denotes proportion of radiogenic Pb; discarded ages are listed in red strikethrough font
 ⁴⁷ Corrected for common Pb assuming ²⁰⁶Pb/²³⁸U-²⁰⁷Pb/²³⁵U age concordance
 ⁴⁸ Corrected for initial ²³⁸U-²³⁰Th disequilibrium using whole-rock Th/U for each sample

Spot Name	Mount	²⁰⁴ Pb/ ²⁰⁶ Pb	% error	²⁰⁶ Pb/ ²³⁸ U	% error	U (ppm)	Th (ppm)	²³² Th/ ²³⁸ U	% error	Total ²³⁸ U/ ²⁰⁶ Pb	% error	Total ²⁰⁷ Pb/ ²⁰⁶ Pb	% error	²⁰⁷ Pb-corr ²⁰⁴ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb-corr % ²⁰⁶ Pb _C
VESTURHORN															
IIV-03a 2.1	AJP01	7.3E-3	58	0.00112	3.0	249	125	0.52	0.23	1768	0.6	0.071	12	1.7E-3	3.1
IIV-03a 14.1	AJP01			0.00155	2.2	354	247	0.72	0.16	1712	1.1	0.050	11	2.6E-4	0.5
IIV-03a 17.1	AJP01			0.00120	2.8	325	279	0.89	1.80	1698	3.2	0.055	13	6.0E-4	1.1
IIV-03a_13.1	AJP01	1.9E-3	71	0.00127	1.9	668	448	0.69	1.94	1668	0.8	0.057	8	7.2E-4	1.4
IIV-03a_16.1	AJP01			0.00144	1.9	499	461	0.96	0.40	1680	0.6	0.044	10	-1.7E-4	-0.3
IIV-03a_11.1	AJP01	-1.5E-3	100	0.00132	5.9	426	250	0.61	0.38	1675	5.0	0.047	19	4.4E-5	0.1
IIV-03a_6.1	AJP01			0.00124	5.2	326	152	0.48	0.24	1632	2.0	0.068	11	1.5E-3	2.7
IIV-03a_5.1	AJP01	1.6E-3	100	0.00116	6.7	359	210	0.60	1.45	1632	3.2	0.063	10	1.1E-3	2.1
IIV-03a_12.1	AJP01	-2.1E-3	100	0.00128	2.8	319	165	0.53	0.78	1583	1.2	0.076	11	2.0E-3	3.8
IIV-03a_9.1	AJP01		100	0.00144	1.9	522	291	0.58	0.18	1610	3.0	0.053	16	4.7E-4	0.9
IIV-03a_10.1	AJP01	9.5E-4	100	0.00141	1.9	561	531	0.98	0.76	1563	1.2	0.046	9	-3.7E-6	0.0
IIV-03a_15.1	AJP01	2.7E-3	100	0.00148	3.2	194	100	0.53	0.30	1503	5.5	0.074	27	1.9E-3	3.6
IIV-03a_8.1	AJP01	1.2E-2	58	0.00133	3.9	126	56	0.46	3.34	1529	2.8	0.062	16	1.0E-3	2.0
IIV-16_4.1	AJP03	2.0E-2	100	0.00146	3.9	51	22	0.44	1.09	1444	1.2	0.189	16	9.7E-3	18.1
IIV-16_3.1	AJP03	4.1E-2	32	0.00179	2.5	161	116	0.75	0.18	1135	3.5	0.322	4	1.9E-2	35.0
IIV-16_8.1	AJP03	1.7E-2	41	0.00114	3.4	467	293	0.65	2.23	1641	2.3	0.074	9	1.9E-3	3.5
IIV-16_2.1	AJP03	-3.5E-3	129	0.00126	5.2	175	130	0.77	1.21	1658	4.3	0.043	27	-1.9E-4	-0.4
IIV-16_7.1	AJP03	7.4E-3	120	0.00132	2.8	112	52	0.48	0.62	1555	2.2	0.092	16	3.1E-3	5.7
IIV-16_5.1	AJP03	-1.0E-3	183	0.00133	4.2	352	395	1.16	0.80	1617	3.1	0.054	12	5.1E-4	1.0
IIV-16_14.1	AJP02	-3.3E-3	183	0.00135	6.1	133	87	0.68	0.89	1581	4.8	0.064	19	1.2E-3	2.3
IIV-16_1.1	AJP03	1.3E-3	100	0.00138	3.8	747	886	1.22	0.22	1587	1.2	0.049	6	1.7E-4	0.3
IIV-16_15.1	AJP02	9.4E-3	100	0.00136	2.5	151	62	0.43	0.29	1586	3.3	0.054	19	5.5E-4	1.0
IIV-16_12.1	AJP02	-1.3E-3	183	0.00145	2.8	325	289	0.92	0.49	1597	1.7	0.045	15	-1.1E-4	-0.2
IIV-16_13.1	AJP02	6.3E-3	120	0.00132	2.4	165	122	0.77	0.22	1558	2.6	0.049	19	1.6E-4	0.3
IIV-16_11.1	AJP02	1.5E-2	61	0.00147	2.2	230	182	0.82	0.79	1518	2.8	0.056	15	6.9E-4	1.3
IIV-16_6.1	AJP03		100	0.00146	4.7	143	91	0.66	1.02	1465	4.5	0.079	19	2.2E-3	4.1
IIV-15_7.1	AJP04		100	0.00122	12.2	74	49	0.69	1.75	1773	10.6	0.075	34	2.0E-3	3.7
IIV-15_13.1	AJP04	-1.5E-2	158	0.00110	10.4	69	53	0.79	3.10	1688	7.6	0.104	27	3.9E-3	7.3
IIV-15_3.1	AJP04	2.2E-2	112	0.00122	4.3	112	86	0.79	0.34	1593	4.5	0.077	27	2.1E-3	3.9
IIV-15_1.1	AJP04	-5.9E-3	158	0.00120	7.0	199	234	1.21	1.20	1660	5.7	0.038	28	-5.2E-4	-1.0
IIV-15_17.1	AJP04	-1.9E-2	158	0.00130	5.7	63	32	0.52	0.56	1571	6.4	0.077	36	2.1E-3	3.9
IIV-15_15.1	AJP04	-7.0E-3	224	0.00128	4.9	82	46	0.58	0.45	1624	3.7	0.049	38	1.9E-4	0.3
IIV-15_19.1	AJP04		100	0.00129	4.7	97	69	0.73	0.40	1544	2.9	0.084	28	2.5E-3	4.7
IIV-15_16.1	AJP04	-7.8E-3	224	0.00133	5.1	71	49	0.71	1.89	1552	5.6	0.078	32	2.1E-3	4.0
IIV-15_6.1	AJP04	2.2E-2	129	0.00126	5.2	81	59	0.75	0.41	1558	6.6	0.066	34	1.3E-3	2.5
IIV-15_2.1	AJP04		100	0.00129	4.8	453	302	0.69	1.03	1547	2.3	0.055	16	6.1E-4	1.1
IIV-15_11.1	AJP04	1.3E-2	158	0.00131	4.8	83	60	0.75	0.39	1575	10.0	0.040	41	-4.1E-4	-0.8
IIV-15_18.1	AJP04	-2.5E-3	224	0.00127	2.9	257	84	0.34	0.35	1547	3.0	0.043	24	-2.1E-4	-0.4
Spot Name	Mount	²⁰⁴ Pb-corr ²⁰⁷ Pb*/ ²³⁵ U	% error	²⁰⁴ Pb-corr ²⁰⁶ Pb*/ ²³⁸ U	% error	Error Corr.	²⁰⁷ Pb-corr ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	1σ error	²³⁰ Th-corr ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	2σ error	Reason for excluding?				
--------------	-------	--	------------	--	------------	----------------	---	-------------	---	-----------------	-----------------------------				
						VESTUR	HORN								
IIV-03a 2.1	AJP01	0.0033	36	4.9E-4	9.1	0.25	3.53	0.05	3.62	0.09	Younger Age, outlier (>2SD)				
IIV-03a 14.1	AJP01	0.0040	11	5.8E-4	1.1	0.10	3.75	0.05	3.83	0.10	High UO/U				
IIV-03a 17.1	AJP01	0.0045	14	5.9E-4	3.2	0.23	3.75	0.13	3.84	0.25	Ŭ				
IIV-03a_13.1	AJP01	0.0022	78	5.8E-4	2.8	0.04	3.81	0.04	3.90	0.08					
IIV-03a_16.1	AJP01	0.0036	10	6.0E-4	0.6	0.06	3.85	0.03	3.93	0.06					
IIV-03a_11.1	AJP01	0.0057	33	6.1E-4	5.7	0.17	3.84	0.20	3.93	0.40					
IIV-03a_6.1	AJP01	0.0057	11	6.1E-4	2.0	0.18	3.84	0.08	3.94	0.17					
IIV-03a_5.1	AJP01	0.0032	64	5.9E-4	4.4	0.07	3.86	0.13	3.96	0.26					
IIV-03a_12.1	AJP01	0.0095	28	6.6E-4	4.0	0.14	3.92	0.06	4.01	0.13					
IIV-03a_9.1	AJP01	0.0045	16	6.2E-4	3.0	0.18	3.97	0.13	4.06	0.25					
IIV-03a_10.1	AJP01	0.0028	48	6.3E-4	2.2	0.05	4.12	0.05	4.20	0.11					
IIV-03a_15.1	AJP01	0.0029	146	6.3E-4	7.7	0.05	4.13	0.25	4.23	0.50					
IIV-03a 8.1	AJP01	0.0113	50	5.1E-4	16.9	0.34	4.13	0.13	4.23	0.26					
IIV-16_4.1	AJP03	0.0123	67	4.3E-4	61.4	0.91	3.65	0.18	3.75	0.35					
IIV-16_3.1	AJP03	0.0381	144	2.1E-4	102.1	0.71	3.69	0.17	3.78	0.33	High comm-Pb (>20%)				
IIV-16_8.1	AJP03	0.0165	49	4.1E-4	19.7	0.40	3.79	0.09	3.88	0.19	Low UO/U, outlier (>2SD)				
IIV-16_2.1	AJP03	0.0082	66	6.4E-4	9.0	0.14	3.90	0.18	3.98	0.35					
IIV-16_7.1	AJP03	0.0021	334	5.5E-4	19.2	0.06	3.91	0.12	4.00	0.23					
IIV-16_5.1	AJP03	0.0059	40	6.3E-4	4.7	0.12	3.95	0.13	4.02	0.26					
IIV-16_14.1	AJP02	0.0100	72	6.7E-4	11.5	0.16	3.98	0.20	4.07	0.40					
IIV-16_1.1	AJP03	0.0024	74	6.1E-4	2.8	0.04	4.05	0.05	4.12	0.10					
IIV-16_15.1	AJP02	0.0080	67	5.2E-4	21.5	0.3	4.02	0.14	4.12	0.29					
IIV-16_12.1	AJP02	0.0056	54	6.4E-4	4.6	0.1	4.04	0.08	4.12	0.15					
IIV-16_13.1	AJP02	0.0044	31	5.7E-4	16.1	0.5	4.12	0.12	4.21	0.23					
IIV-16_11.1	AJP02	0.0158	69	4.8E-4	23.4	0.3	4.19	0.13	4.27	0.25					
IIV-16_6.1	AJP03	0.0074	20	6.8E-4	4.5	0.23	4.22	0.21	4.30	0.42					
IIV-15_7.1	AJP04	0.0059	35	5.6E-4	10.6	0.30	3.50	0.39	3.58	0.78					
IIV-15_13.1	AJP04	0.0274	83	7.6E-4	35.1	0.42	3.54	0.30	3.61	0.60					
IIV-15_3.1	AJP04	0.0230	176	3.7E-4	77.9	0.44	3.89	0.20	3.96	0.41					
IIV-15_1.1	AJP04	0.0109	98	6.7E-4	16.7	0.17	3.92	0.23	3.98	0.46					
IIV-15_17.1	AJP04	0.0332	94	8.7E-4	42.4	0.45	3.94	0.29	4.03	0.58					
IIV-15_15.1	AJP04	0.0134	132	7.0E-4	26.1	0.20	3.95	0.17	4.04	0.35					
IIV-15_19.1	AJP04	0.0075	28	6.5E-4	2.9	0.10	3.98	0.17	4.05	0.34					
IIV-15_16.1	AJP04	0.0177	113	7.4E-4	28.9	0.26	3.99	0.26	4.06	0.51					
IIV-15_6.1	AJP04	0.0245	209	3.8E-4	90.1	0.43	4.03	0.29	4.11	0.58					
IIV-15_2.1	AJP04	0.0049	16	6.5E-4	2.3	0.14	4.12	0.11	4.20	0.21					
IIV-15_11.1	AJP04	0.0148	182	4.8E-4	53.6	0.30	4.12	0.42	4.20	0.84					
IIV-15 18.1	AJP04	0.0074	98	6.8E-4	10.5	0.11	4.18	0.14	4.28	0.27					

Appendix C.1. Continued

Appendix	C.1 .	Continued	

Spot Name	Mount	²⁰⁴ Pb/ ²⁰⁶ Pb	% error	²⁰⁶ Pb/ ²³⁸ U	% error	U (ppm)	Th (ppm)	²³² Th/ ²³⁸ U	% error	Total ²³⁸ U/ ²⁰⁶ Pb	% error	Total ²⁰⁷ Pb/ ²⁰⁶ Pb	% error	²⁰⁷ Pb-corr ²⁰⁴ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb-corr % ²⁰⁶ Pb _C
							REYÐA	RÁRTINI	DUR						
IIR-01 5.1	AJP04	-8.4E-3	129	0.00205	7.6	94	54	0.60	0.38	886	4.3	0.111	18	4.4E-3	8.2
IIR-01 3.1	AJP04		100	0.00176	5.7	195	109	0.58	0.93	894	3.0	0.083	16	2.5E-3	4.7
IIR-01 14.1	AJP04	-1.5E-3	224	0.00202	9.9	203	121	0.62	0.62	911	5.9	0.049	19	2.2E-4	0.4
IIR-01 7.1	AJP04	1.6E-2	75	0.00227	3.8	169	122	0.75	0.49	871	2.3	0.067	19	1.4E-3	2.6
IIR-01_4.1	AJP04	-1.7E-3	158	0.00170	9.0	479	474	1.02	0.35	905	1.7	0.033	19	-9.2E-4	-1.7
IIR-01 8.1	AJP04	-3.5E-3	158	0.00236	5.7	167	109	0.67	0.29	858	3.7	0.070	17	1.6E-3	3.1
IIR-01_11.1	AJP04	-6.9E-4	129	0.00215	5.4	1485	1750	1.22	0.26	868	1.9	0.045	8	-5.7E-5	-0.1
IIR-01_9.1	AJP04	-7.0E-4	224	0.00243	4.5	442	371	0.87	0.31	871	1.7	0.035	15	-7.7E-4	-1.4
IIR-01_1.1	AJP04	-2.5E-3	112	0.00171	7.5	464	296	0.66	1.59	856	4.1	0.043	13	-2.4E-4	-0.5
IIR-01_12.1	AJP04	2.2E-3	75	0.00247	4.3	1242	1503	1.25	0.45	839	1.8	0.046	14	-9.4E-6	0.0
IIR-01_6.1	AJP04	-2.1E-3	224	0.00209	6.0	170	89	0.54	1.20	803	3.2	0.070	19	1.6E-3	3.0
IIR-03a_17.1	AJP04	-6.6E-4	129	0.00209	7.1	1125	973	0.89	0.78	909	2.7	0.043	8	-1.9E-4	-0.4
IIR-03a_11.1	AJP04	2.2E-3	62	0.00223	4.6	1199	929	0.80	0.25	901	1.9	0.044	11	-1.7E-4	-0.3
IIR-03a_8.1	AJP04	4.2E-3	48	0.00231	4.4	1091	1102	1.04	0.58	896	1.3	0.044	7	-1.2E-4	-0.2
IIR-03a_7.1	AJP04	1.0E-3	158	0.00202	5.6	391	244	0.64	0.67	831	4.5	0.096	9	3.4E-3	6.4
IIR-03a_15.1	AJP04	3.7E-4	158	0.00213	5.7	1261	1307	1.07	0.45	881	2.5	0.049	6	1.8E-4	0.3
IIR-03a_10.1	AJP04	8.2E-4	112	0.00199	5.8	1179	1258	1.10	0.58	875	1.7	0.049	12	1.6E-4	0.3
IIR-03a_18.1	AJP04	1.8E-3	58	0.00197	6.0	2204	1700	0.80	0.96	871	1.5	0.052	5	4.1E-4	0.8
IIR-03a_14.1	AJP04	7.3E-4	112	0.00219	5.0	1170	1138	1.00	1.30	873	1.8	0.047	12	5.3E-5	0.1
IIR-03a_5.1	AJP04	5.3E-3	54	0.00237	6.0	1543	1331	0.89	0.73	851	6.7	0.038	23	-5.8E-4	-1.1
IIR-03a_4.1	AJP04	1.6E-3	112	0.00191	7.1	836	660	0.82	2.37	810	1.9	0.050	10	2.6E-4	0.5
IIR-03a 9.1	AJP04	4.7E-2	11	0.00658	10.5	660	546	0.86	0.62	225	10.4	0.601	8	3.8E-2	70.3
IIR-13_16.1	AJP04	-9.2E-4	158	0.00185	3.5	493	345	0.72	0.49	994	2.0	0.063	9	1.1E-3	2.1
IIR-13_17.1	AJP04	5.2E-3	112	0.00170	6.4	180	144	0.83	0.98	956	3.1	0.057	16	7.5E-4	1.4
IIR-13_15.1	AJP04	-1.9E-3	224	0.00211	6.3	147	71	0.50	0.33	937	3.6	0.073	18	1.8E-3	3.4
IIR-13_2.1	AJP04	2.7E-2	67	0.00191	6.2	100	60	0.61	0.32	969	1.6	0.044	24	-1.8E-4	-0.3
IIR-13_3.1	AJP04		100	0.00194	6.9	81	38	0.48	0.40	901	3.5	0.083	19	2.5E-3	4.6
IIR-13_7.1	AJP04	1.2E-3	100	0.00193	5.9	902	843	0.97	0.51	924	3.6	0.061	7	1.0E-3	1.9
IIR-13_13.1	AJP04	1.0E-3	224	0.00225	4.5	336	360	1.11	3.11	892	2.6	0.031	18	-1.0E-3	-1.9
IIR-13_10.1	AJP04	2.2E-3	54	0.00198	8.7	1895	3088	1.68	1.73	862	2.6	0.056	5	6.5E-4	1.2
IIR-13_18.1	AJP04	1.7E-3	129	0.00224	5.8	373	298	0.82	0.50	837	2.7	0.049	12	2.1E-4	0.4
IIR-13_20.1	AJP04	1.6E-3	224	0.00303	10.5	104	59	0.58	0.63	600	7.6	0.272	9	1.5E-2	28.6
IIR-13_8.1	AJP04	1.1E-3	100	0.00240	5.5	972	219	0.23	3.05	778	2.1	0.041	8	-3.5E-4	-0.6
IIR-13_4.1	AJP04	2.8E-2	31	0.00405	16.5	232	191	0.85	0.22	501	15.9	0.307	17	1.8E-2	33.0

Spot Name	Mount	²⁰⁴ Pb-corr ²⁰⁷ Pb*/ ²³⁵ U	% error	²⁰⁴ Pb-corr ²⁰⁶ Pb*/ ²³⁸ U	% error	Error Corr.	²⁰⁷ Pb-corr ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	lσ error	²³⁰ Th-corr ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	2σ error	Reason for excluding?
					RI	EYÐARÁR	TINDUR				
IIR-01 5.1	AJP04	0.0378	56	1.3E-3	18.1	0.32	6.68	0.34	6.76	0.69	
IIR-01 3.1	AJP04	0.0128	16	1.1E-3	3.0	0.19	6.87	0.24	6.96	0.48	
IIR-01 14.1	AJP04	0.0111	69	1.1E-3	8.6	0.13	7.04	0.42	7.13	0.85	
IIR-01 7.1	AJP04	0.0285	84	8.1E-4	31.2	0.37	7.20	0.20	7.29	0.40	
IIR-01_4.1	AJP04	0.0091	67	1.1E-3	5.2	0.08	7.24	0.14	7.31	0.28	
IIR-01 8.1	AJP04	0.0202	61	1.2E-3	10.5	0.17	7.28	0.29	7.36	0.59	
IIR-01 11.1	AJP04	0.0089	24	1.2E-3	2.5	0.10	7.43	0.15	7.50	0.29	
IIR-01 9.1	AJP04	0.0073	52	1.2E-3	3.4	0.06	7.51	0.14	7.59	0.27	
IIR-01 1.1	AJP04	0.0131	49	1.2E-3	6.4	0.13	7.56	0.31	7.65	0.62	
IIR-01_12.1	AJP04	0.0019	225	1.1E-3	3.7	0.02	7.68	0.15	7.74	0.30	
IIR-01_6.1	AJP04	0.0177	65	1.3E-3	9.0	0.14	7.78	0.28	7.87	0.56	
IIR-03a_17.1	AJP04	0.0081	24	1.1E-3	3.1	0.13	7.11	0.19	7.19	0.39	
IIR-03a_11.1	AJP04	0.0013	254	1.1E-3	3.3	0.01	7.17	0.14	7.25	0.28	
IIR-03a_8.1	AJP04	0.0032	53	1.0E-3	4.2	0.08	7.21	0.10	7.28	0.20	
IIR-03a_7.1	AJP04	0.0133	31	1.2E-3	5.5	0.17	7.26	0.33	7.35	0.67	
IIR-03a_15.1	AJP04	0.0067	22	1.1E-3	2.7	0.13	7.28	0.18	7.36	0.36	
IIR-03a_10.1	AJP04	0.0057	41	1.1E-3	2.4	0.06	7.34	0.14	7.41	0.27	
IIR-03a_18.1	AJP04	0.0038	67	1.1E-3	2.5	0.04	7.34	0.11	7.42	0.22	
IIR-03a_14.1	AJP04	0.0056	38	1.1E-3	2.4	0.06	7.37	0.14	7.45	0.28	
IIR-03a_5.1	AJP04	0.0074	26	1.1E-3	9.0	0.34	7.65	0.52	7.73	1.04	
IIR-03a_4.1	AJP04	0.0043	109	1.2E-3	3.9	0.04	7.91	0.16	7.99	0.32	
IIR-03a_9.1	AJP04	0.0841	100	5.2E-4	82.3	0.82	8.50	1.98	8.59	3.96	High comm-Pb (>20%)
IIR-13_16.1	AJP04	0.0108	28	1.0E-3	3.4	0.12	6.35	0.14	6.43	0.27	
IIR-13_17.1	AJP04	0.0035	145	9.4E-4	12.5	0.09	6.64	0.22	6.73	0.44	
IIR-13_15.1	AJP04	0.0151	59	1.1E-3	8.5	0.14	6.64	0.27	6.74	0.54	
IIR-13_2.1	AJP04	0.0530	143	5.2E-4	66.8	0.47	6.67	0.14	6.76	0.28	
IIR-13_3.1	AJP04	0.0126	19	1.1E-3	3.5	0.18	6.82	0.27	6.91	0.55	
IIR-13_7.1	AJP04	0.0064	42	1.1E-3	4.2	0.10	6.84	0.25	6.92	0.49	
IIR-13_13.1	AJP04	0.0023	242	1.1E-3	5.1	0.02	7.36	0.20	7.44	0.40	
IIR-13_10.1	AJP04	0.0034	87	1.1E-3	3.5	0.04	7.39	0.19	7.44	0.39	
IIR-13_18.1	AJP04	0.0037	152	1.2E-3	5.1	0.03	7.67	0.22	7.75	0.44	
IIR-13_20.1	AJP04	0.0566	21	1.6E-3	10.3	0.48	7.67	0.67	7.76	1.33	High comm-Pb (>20%)
IIR-13_8.1	AJP04	0.0043	67	1.3E-3	2.9	0.04	8.33	0.17	8.43	0.35	Outlier (>2SD)
IIR-13 4.1	AJP04	0.0347	56	9.6E-4	36.6	0.65	8.62	1.61	8.70	3.22	High comm-Pb (>20%)

Appendix C.1. Continued

Spot Name	Mount	²⁰⁴ Pb/ ²⁰⁶ Pb	% error	²⁰⁶ Pb/ ²³⁸ U	% error	U (ppm)	Th (ppm)	²³² Th/ ²³⁸ U	% error	Total ²³⁸ U/ ²⁰⁶ Pb	% error	Total ²⁰⁷ Pb/ ²⁰⁶ Pb	% error	²⁰⁷ Pb-corr ²⁰⁴ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb-corr % ²⁰⁶ Pb _C
							SAN	NDFELL							
IISand-01_12.1	AJP02		100	0.00349	2.7	181	57	0.33	0.83	562	1.7	0.054	12	5.3E-4	1.0
IISand-01 2.1	AJP03	2.8E-3	71	0.00366	4.6	288	141	0.50	0.57	543	1.8	0.076	6	2.0E-3	3.8
IISand-01_8.1	AJP03	9.2E-4	120	0.00370	4.6	309	139	0.46	0.60	552	1.6	0.056	7	6.3E-4	1.2
IISand-01_4.1	AJP03		100	0.00395	2.1	426	239	0.58	0.44	551	1.4	0.048	6	1.1E-4	0.2
IISand-01_1.1	AJP03	-2.8E-4	183	0.00395	3.2	441	168	0.39	0.26	550	1.8	0.047	7	4.6E-5	0.1
IISand-01_13.1	AJP02	1.6E-3	100	0.00387	2.8	317	135	0.44	0.34	556	2.0	0.039	10	-5.2E-4	-1.0
IISand-01_3.1	AJP03	1.7E-3	71	0.00367	3.3	483	219	0.47	0.14	549	1.7	0.048	6	9.1E-5	0.2
IISand-01_7.1	AJP03	1.4E-3	85	0.00388	3.1	402	193	0.50	1.03	548	1.2	0.042	7	-3.0E-4	-0.6
IISand-01_5.1	AJP03	-5.6E-4	129	0.00384	2.9	431	236	0.57	0.14	541	1.9	0.049	6	1.6E-4	0.3
IISand-01_6.1	AJP03	4.3E-4	158	0.00374	2.8	405	189	0.48	0.16	544	1.9	0.043	7	-2.5E-4	-0.5
IISand-01_11.1	AJP02	9.9E-3	38	0.00442	1.9	326	148	0.47	0.40	469	2.1	0.134	5	5.9E-3	11.1
IISand-01_10.1	AJP03	-8.7E-4	129	0.00417	2.0	250	108	0.45	0.19	525	1.7	0.038	16	-5.9E-4	-1.1
IISand-01_9.1	AJP03	5.6E-3	45	0.00452	0.9	320	130	0.42	0.18	479	0.8	0.103	11	3.9E-3	7.2
							LÝS	USKARĐ)						
IILys-07a 8.1	AJP04	-6.1E-3	158	0.00032	7.5	702	1367	2.01	1.13	5396	4.8	0.085	19	2.6E-3	5.0
IILys-07a 12.1	AJP04	2.5E-2	100	0.00037	8.8	435	492	1.17	1.58	5173	5.3	0.050	32	2.5E-4	0.5
IILys-07a 9.1	AJP04	2.1E-2	75	0.00044	3.0	739	699	0.98	0.38	5046	3.8	0.069	19	1.5E-3	2.9
IILys-07a 7.1	AJP04	1.6E-2	62	0.00054	4.3	1058	4705	4.59	0.79	3217	4.7	0.290	7	1.7E-2	30.9
IILys-07a_1.1	AJP04	-6.7E-4	224	0.00050	6.5	2850	4995	1.81	1.27	4717	2.0	0.052	13	3.8E-4	0.7
IILys-07a_3.1	AJP04		100	0.00045	4.5	1430	1118	0.81	1.20	4781	2.0	0.052	17	4.2E-4	0.8
IILys-07a_5.1	AJP04	2.7E-3	129	0.00045	4.5	2182	2810	1.33	0.51	4793	1.3	0.037	17	-6.1E-4	-1.1
IILys-07a_2.1	AJP04	1.7E-3	100	0.00048	7.6	4560	7921	1.79	2.41	4623	2.3	0.053	9	4.9E-4	0.9
IILys-07a_11.1	AJP04	3.0E-3	158	0.00044	6.3	1329	2795	2.17	1.33	4616	2.7	0.045	18	-9.8E-5	-0.2
IILys-07a_13.1	AJP04	8.9E-3	62	0.00058	4.4	2271	3299	1.50	0.46	3725	2.6	0.205	17	1.1E-2	20.1
IILys-07a_16.1	AJP04	-1.8E-3	224	0.00045	5.3	698	987	1.46	0.64	4632	2.6	0.052	19	3.8E-4	0.7
IILys-07a_14.1	AJP04	1.7E-3	100	0.00050	4.7	3607	6689	1.92	0.52	4278	1.5	0.057	8	7.6E-4	1.4

Appendix C.1. Continued

Spot Name	Mount	²⁰⁴ Pb-corr ²⁰⁷ Pb*/ ²³⁵ U	% error	²⁰⁴ Pb-corr ²⁰⁶ Pb*/ ²³⁸ U	% error	Error Corr.	²⁰⁷ Pb-corr ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	lσ error	²³⁰ Th-corr ²⁰⁶ Pb/ ²³⁸ U Age (Ma)	2σ error	Reason for excluding?
						SANDI	FELL				
IISand-01 12.1	AJP02	0.0133	12	1.8E-3	1.7	0.14	11.35	0.21	11.45	0.42	
IISand-01_2.1	AJP03	0.0084	90	1.7E-3	4.2	0.05	11.42	0.22	11.52	0.44	
IISand-01 8.1	AJP03	0.0103	41	1.8E-3	2.7	0.06	11.53	0.20	11.62	0.40	
IISand-01_4.1	AJP03	0.0120	6	1.8E-3	1.4	0.22	11.67	0.17	11.76	0.35	
IISand-01_1.1	AJP03	0.0129	16	1.8E-3	2.1	0.13	11.69	0.22	11.79	0.44	
IISand-01_13.1	AJP02	0.0033	191	1.7E-3	3.7	0.02	11.69	0.24	11.79	0.48	
IISand-01_3.1	AJP03	0.0052	92	1.8E-3	2.9	0.03	11.70	0.21	11.80	0.42	
IISand-01_7.1	AJP03	0.0050	93	1.8E-3	2.6	0.03	11.82	0.15	11.92	0.30	
IISand-01_5.1	AJP03	0.0147	19	1.9E-3	2.3	0.12	11.87	0.23	11.96	0.45	
IISand-01_6.1	AJP03	0.0091	30	1.8E-3	2.3	0.08	11.90	0.23	11.99	0.46	
IISand-01_11.1	AJP02	0.0061	199	1.7E-3	8.8	0.04	12.21	0.28	12.30	0.55	Outlier (>2SD)
IISand-01_10.1	AJP03	0.0135	34	1.9E-3	2.7	0.08	12.41	0.23	12.51	0.45	Outlier (>2SD)
IISand-01_9.1	AJP03	0.0043	268	1.9E-3	5.3	0.02	12.47	0.22	12.56	0.44	Outlier (>2SD)
						LÝSUSI	KARÐ				
IILys-07a_8.1	AJP04	0.0046	70	2.1E-4	16.9	0.24	1.14	0.06	1.18	0.12	
IILys-07a_12.1	AJP04	0.0090	193	1.0E-4	87.3	0.45	1.24	0.07	1.31	0.14	
IILys-07a_9.1	AJP04	0.0072	116	1.2E-4	49.6	0.43	1.24	0.05	1.32	0.10	
IILys-07a_7.1	AJP04	0.0015	438	2.2E-4	27.8	0.06	1.38	0.08	1.3 4	0.17	High comm-Pb (>20%)
IILys-07a_1.1	AJP04	0.0018	37	2.1E-4	3.4	0.09	1.36	0.03	1.41	0.06	
IILys-07a_3.1	AJP04	0.0015	17	2.1E-4	2.0	0.12	1.34	0.03	1.42	0.06	
IILys-07a_5.1	AJP04	0.0001	888	2.0E-4	6.9	0.01	1.36	0.02	1.43	0.04	
IILys-07a_2.1	AJP04	0.0008	93	2.1E-4	4.0	0.04	1.38	0.03	1.43	0.07	
IILys-07a_11.1	AJP04	0.0001	3032	2.0E-4	9.8	0.00	1.40	0.04	1.44	0.08	
IILys-07a_13.1	AJP04	0.0024	132	2.2E-4	12.7	0.10	1.38	0.08	1.44	0.17	High comm-Pb (>20%)
IILys-07a_16.1	AJP04	0.0024	73	2.2E-4	7.7	0.11	1.38	0.04	1.44	0.08	
IILys-07a_14.1	AJP04	0.0010	88	2.3E-4	3.7	0.04	1.49	0.02	1.53	0.05	

Appendix C.1. Continued

Intrusion ⁴⁹	Rock Type	Grain #	Mount	Date	Li	Be	В	F	Na	Al	Р	K	Ca	Sc
Slaufrudalur	Granophyre	IISlau-12-1.1	AJP01	May '13										52
Slaufrudalur	Granophyre	IISlau-12-2.1	AJP01	May '13										58
Slaufrudalur	Granophyre	IISlau-12-4.1	AJP01	May '13										33
Slaufrudalur	Granophyre	IISlau-12-5.1	AJP01	May '13										27
Slaufrudalur	Granophyre	IISlau-12-7.1	AJP01	May '13										51
Slaufrudalur	Granophyre	IISlau-12-9.1	AJP01	May '13										44
Slaufrudalur	Granophyre	IISlau-12_12.1	AJP03	Jan. '14	0.04	0.3	0.044	15	9	12	620	1.11	3.51	62
Slaufrudalur	Granophyre	IISlau-12_13.1	AJP03	Jan. '14	0.02	0.1	0.048	8	10	13	392	1.17	2.73	41
Slaufrudalur	Granophyre	IISlau-12_14.1	AJP03	Jan. '14	0.02	0.4	0.030	10	8	12	574	1.13	2.80	57
Slaufrudalur	Granophyre	IISlau-12_15.1	AJP03	Jan. '14	0.01	0.027	0.053	7	9	13	426	1.02	3.41	47
Slaufrudalur	Granophyre	IISlau-12_16.1	AJP03	Jan. '14	0.08	0.2	0.051	40	10	11	1032	1.55	3.34	64
Slaufrudalur	Granophyre	IISlau-12_17.1	AJP03	Jan. '14	0.0086	0.3	0.092	19	10	13	633	1.38	4.07	48
Slaufrudalur	Granophyre	IISlau-12_11.1	AJP03	Jan. '14	0.07	2	0.1	6	10440	13796	284	2886	238	28
Slaufrudalur	Granophyre	IISlau-22_1.1	AJP03	Jan. '14	0.0011	0.1	0.046	42	7	9	385	1.11	1.79	21
Slaufrudalur	Granophyre	IISlau-22_3.1	AJP03	Jan. '14	0.01	0.8	0.047	29	7	10	554	0.82	2.93	16
Slaufrudalur	Granophyre	IISlau-22_4.1	AJP03	Jan. '14	0.0006	0.012	0.067	9	9	10	370	1.05	2.51	15
Slaufrudalur	Granophyre	IISlau-22_5.1	AJP03	Jan. '14	0.0017	0.007	0.019	26	9	11	462	1.21	3.42	13
Slaufrudalur	Granophyre	IISlau-22_6.1	AJP03	Jan. '14	0.0011	0.020	0.018	36	11	10	450	1.10	3.69	16
Slaufrudalur	Granophyre	IISlau-22_7.1	AJP03	Jan. '14	0.0011	0.038	0.029	37	24	8	317	2.08	14	18
Slaufrudalur	Granophyre	IISlau-22_11.1	AJP02	Jan. '14	0.0005	0.055	0.054	31	11	6	171	10	2.21	11
Slaufrudalur	Granophyre	IISlau-22_12.1	AJP02	Jan. '14	0.0013	0.1	0.2	163	61	26	383	75	14	7
Slaufrudalur	Granophyre	IISlau-22_13.1	AJP02	Jan. '14	0.0005	0.3	0.052	91	4	5	518	2.17	3.33	12
Slaufrudalur	Granophyre	IISlau-25-1.1	AJP04	May '14	0.0042	2	0.023	106	55	43	525	68	10	3.66
Slaufrudalur	Granophyre	IISlau-25-2.1	AJP04	May '14	0.0027	0.084	0.032	192	6	10	307	4.23	77	6
Slaufrudalur	Granophyre	IISlau-25-3.1	AJP04	May '14	0.0024	0.018	0.051	162	5	8	284	4.10	10	3.96
Slaufrudalur	Granophyre	IISlau-25-5.1	AJP04	May '14	0.05	2	1	229	55	38	593	158	65	4.92
Slaufrudalur	Granophyre	IISlau-25-6.1	AJP04	May '14	0.01	0.2	0.1	120	52	12	190	635	37	6
Slaufrudalur	Granophyre	IISlau-26-3.1	AJP04	May '14	0.02	0.1	0.035	454	23	34	380	69	174	17
Slaufrudalur	Granophyre	IISlau-26-4.1	AJP04	May '14	0.02	2	0.2	43	9	15	565	15	38	57
Slaufrudalur	Granophyre	IISlau-26-5.1	AJP04	May '14	0.0045	2	0.2	323	11	8	978	16	10	40

Appendix C.2. Zircon Trace Element Compositions (ppm), measured *in situ* by SHRIMP-RG (Atomic Number < 22)

⁴⁹ For intrusion locations, see **Table** # and **Fig.** # in Chapter V

A	pp	oen	dix	C.2 .	Continu	ed
---	----	-----	-----	--------------	---------	----

Intrusion	Rock Type ⁵⁰	Grain #	Mount	Date	Li	Be	В	F	Na	Al	Р	K	Ca	Sc
Slaufrudalur	Granophyre	IISlau-26-6.1	AJP04	May '14	0.13	8	1	113	42	23	639	72	25	56
Slaufrudalur	Granophyre	IISlau-26-7.1	AJP04	May '14	0.04	4	0.3	91	6	6	646	6	3.61	64
Slaufrudalur	Granophyre	IISlau-26_8.1	AJP02	May '14	0.07	0.063	0.2	5	69	13	293	63	17	122
Slaufrudalur	Granophyre	IISlau-26-1.1	AJP04	May '14	0.0011	15	0.2	596	202	27	1789	83	2053	22
Slaufrudalur	Granophyre	IISlau-26-2.1	AJP04	May '14	0.53	6	2	408	1476	591	464	14240	106	75
Vesturhorn	HSG	IIV-03a-2.1	AJP01	May '13										5
Vesturhorn	HSG	IIV-03a-6.1	AJP01	May '13										9
Vesturhorn	HSG	IIV-03a-8.1	AJP01	May '13										7
Vesturhorn	HSG	IIV-03a-9.1	AJP01	May '13										13
Vesturhorn	HSG	IIV-03a-10.1	AJP01	May '13										20
Vesturhorn	HSG	IIV-03a-11.1	AJP01	May '13										6
Vesturhorn	HSG	IIV-03a-12.1	AJP01	May '13										7
Vesturhorn	HSG	IIV-03a-13.1	AJP01	May '13										8
Vesturhorn	HSG	IIV-03a-14.1	AJP01	May '13										11
Vesturhorn	HSG	IIV-03a-16.1	AJP01	May '13										10
Vesturhorn	HSG	IIV-03a-17.1	AJP01	May '13										22
Vesturhorn	HSG	IIV-03a-5.1	AJP01	May '13										6
Vesturhorn	HSG	IIV-03a-15.1	AJP01	May '13										9
Vesturhorn	Gabbro	IIV-15-1.1	AJP04	May '14	0.0091		0.1	76	4	6	236	3.13	2.22	38
Vesturhorn	Gabbro	IIV-15-2.1	AJP04	May '14	0.03	0.014	1	44	4	5	387	3.05	1.15	36
Vesturhorn	Gabbro	IIV-15-3.1	AJP04	May '14	0.0035	0.001	0.096		4	5	225	3.16	2.64	40
Vesturhorn	Gabbro	IIV-15-6.2	AJP04	May '14	0.0026		0.064	19	3	6	217	2.19	1.53	38
Vesturhorn	Gabbro	IIV-15-6.1	AJP04	May '14	0.0066		0.040		3	4	189	2.67	4.45	38
Vesturhorn	Gabbro	IIV-15-7.1	AJP04	May '14	0.0040		0.068		3	5	188	2.72	0.99	32
Vesturhorn	Gabbro	IIV-15-10.1	AJP04	May '14	0.0013	0.001	0.064		9	9	129	6	8	23
Vesturhorn	Gabbro	IIV-15-11.1	AJP04	May '14	0.0027	0.001	0.091		8	5	196	6	7	39
Vesturhorn	Gabbro	IIV-15-13.1	AJP04	May '14	0.02		0.1	155	47	31	239	88	198	22
Vesturhorn	Gabbro	IIV-15-15.1	AJP04	May '14	0.0062		0.073		5	6	223	7	6	32
Vesturhorn	Gabbro	IIV-15-16.2	AJP04	May '14	0.0048		0.1	70	8	6	206	7	4.44	29
Vesturhorn	Gabbro	IIV-15-16.1	AJP04	May '14	0.0041		0.025	23	11	6	195	12	7	37

 $\overline{}^{50}$ HSG = High-SiO₂ Granophyre (> 75 wt.% SiO₂)

Intrusion	Rock Type	Grain #	Mount	Date	Li	Be	В	F	Na	Al	Р	K	Ca	Sc
Vesturhorn	Gabbro	IIV-15-17.1	AJP04	May '14	0.0052		0.051	23	11	8	299	11	7	53
Vesturhorn	Gabbro	IIV-15-18.1	AJP04	May '14	0.0099		0.052	47	10	8	364	9	7	57
Vesturhorn	Gabbro	IIV-15-19.2	AJP04	May '14	0.0022		0.052		8	8	199	9	9	27
Vesturhorn	Gabbro	IIV-15-19.1	AJP04	May '14	0.0047		0.052	47	7	6	202	7	6	40
Vesturhorn	Gabbro	IIV-15-19.3	AJP04	May '14	0.02	0.002	0.054	49	8	10	398	8	5	34
Vesturhorn	Granophyre	IIV-16_1.1	AJP03	Jan. '14	0.04	3	0.3	31	10	8	1253	0.96	3.91	74
Vesturhorn	Granophyre	IIV-16_2.1	AJP03	Jan. '14		0.011	0.043	3	8	8	265	0.94	2.80	31
Vesturhorn	Granophyre	IIV-16_3.1	AJP03	Jan. '14	0.0003	0.021	0.012	13	11	9	320	3.80	3.59	38
Vesturhorn	Granophyre	IIV-16_4.1	AJP03	Jan. '14	0.0050	0.010	0.054	8	10	20	340	2.02	4.35	42
Vesturhorn	Granophyre	IIV-16_5.1	AJP03	Jan. '14	0.02	1	0.1	32	12	9	1235	1.52	3.62	61
Vesturhorn	Granophyre	IIV-16_6.1	AJP03	Jan. '14	0.0059	0.024	0.1	12	14	15	266	1.91	5	36
Vesturhorn	Granophyre	IIV-16_7.1	AJP03	Jan. '14	0.0049	0.012	0.025	11	6	9	356	0.83	1.93	44
Vesturhorn	Granophyre	IIV-16_8.1	AJP03	Jan. '14	0.01	0.020	0.047	7	6	8	463	0.63	1.94	45
Vesturhorn	Granophyre	IIV-16_11.1	AJP02	Jan. '14	0.03	5	1	82	3	5	1142	1.93	1.55	63
Vesturhorn	Granophyre	IIV-16_12.1	AJP02	Jan. '14	0.0039	0.013	0.2	12	2	5	286	1.42	1.19	36
Vesturhorn	Granophyre	IIV-16_13.1	AJP02	Jan. '14	0.0058	0.1	0.074	13	3	5	420	1.37	1.69	52
Vesturhorn	Granophyre	IIV-16_14.1	AJP02	Jan. '14	0.0058	0.4	0.1	12	3	4	302	1.62	1.33	27
Vesturhorn	Granophyre	IIV-16_15.1	AJP02	Jan. '14	0.0037	0.009	1	11	3	5	283	2.20	1.41	35
Reyðarártindur	Granophyre	IIR-01-1.1	AJP04	May '14	0.05	0.2	0.6	649	121	76	861	349	98	47
Reyðarártindur	Granophyre	IIR-01-4.1	AJP04	May '14	0.0026	0.012	0.039	53	6	6	326	6	39	28
Reyðarártindur	Granophyre	IIR-01-5.1	AJP04	May '14	0.0020	0.011	0.2	51	19	9	429	32	55	33
Reyðarártindur	Granophyre	IIR-01-6.1	AJP04	May '14	0.0004	0.015	0.089	64	3	5	467	5	2.33	36
Reyðarártindur	Granophyre	IIR-01-7.1	AJP04	May '14	0.0022	0.008	0.092	83	4	3	500	3.96	2.40	33
Reyðarártindur	Granophyre	IIR-01-8.1	AJP04	May '14	0.02	0.034	0.3	565	131	103	422	307	74	53
Reyðarártindur	Granophyre	IIR-01-9.1	AJP04	May '14	0.0016	0.2		121	6	15	610	9	3.96	46
Reyðarártindur	Granophyre	IIR-01-11.1	AJP04	May '14	0.01	10	1	147	5	6	1900	5	16	141
Reyðarártindur	Granophyre	IIR-01-12.1	AJP04	May '14	0.04	15	4	188	9	6	1939	9	10	92
Reyðarártindur	Granophyre	IIR-01-13.1	AJP04	May '14	0.03	4	1	401	381	185	1908	556	481	82
Reyðarártindur	Granophyre	IIR-01-14.1	AJP04	May '14	0.0031	0.011	0.094	106	20	10	415	24	171	31
Reyðarártindur	Granophyre	IIR-01-2.1	AJP04	May '14	2	3	7	3352	263	13633	805	163909	1220	29
Reyðarártindur	Granophyre	IIR-01-3.1	AJP04	May '14	0.67	0.2	0.6	2008	207	149	527	3373	89	29
Reyðarártindur	Granophyre	IIR-03a-1.1	AJP04	May '14	0.19	0.6	5	133	108	30	1504	382	58	133

Appendix	C.2 .	Continued	
----------	--------------	-----------	--

Intrusion	Rock Type	Grain #	Mount	Date	Li	Be	В	F	Na	Al	Р	K	Ca	Sc
Reyðarártindur	Granophyre	IIR-03a-2.1	AJP04	May '14	0.08	0.2	3	56	9	5	1108	13	5	99
Reyðarártindur	Granophyre	IIR-03a-3.1	AJP04	May '14	0.02	0.1	0.2		4	4	563	2.86	160	48
Reyðarártindur	Granophyre	IIR-03a-4.1	AJP04	May '14	0.0068	0.046	0.3	77	44	48	652	89	56	62
Reyðarártindur	Granophyre	IIR-03a-5.1	AJP04	May '14	0.02	0.053	0.042		5	4	589	2.62	2.04	53
Reyðarártindur	Granophyre	IIR-03a-6.1	AJP04	May '14	0.07	2	3	181	213	177	1647	434	121	139
Reyðarártindur	Granophyre	IIR-03a-7.1	AJP04	May '14	0.05	0.2	0.2		46	7	638	16	17	61
Reyðarártindur	Granophyre	IIR-03a-8.1	AJP04	May '14	0.08	1	0.5	101	6	3	1370	3.88	5	110
Reyðarártindur	Granophyre	IIR-03a-9.1	AJP04	May '14	0.01	0.076	0.2	59	9	4	737	19	3.90	64
Reyðarártindur	Granophyre	IIR-03a-10.1	AJP04	May '14	0.07	0.3	1	140	8	5	846	9	6	90
Reyðarártindur	Granophyre	IIR-03a-11.1	AJP04	May '14	0.08	0.5	0.5	101	4	5	1304	2.62	2.47	132
Reyðarártindur	Granophyre	IIR-03a-14.1	AJP04	May '14	0.07	0.2	0.7	48	8	10	1088	11	66	84
Reyðarártindur	Granophyre	IIR-03a-15.1	AJP04	May '14	0.05	0.8	0.7	287	26	11	1424	54	38	155
Reyðarártindur	Granophyre	IIR-03a-16.1	AJP04	May '14	0.05	0.2	0.8	142	7	3	1294	16	4.90	136
Reyðarártindur	Granophyre	IIR-03a-17.1	AJP04	May '14	0.07	2	0.4	51	4	4	1551	2.04	3.95	149
Reyðarártindur	Granophyre	IIR-03a-18.1	AJP04	May '14	0.13	0.2	2	170	34	8	1738	42	18	111
Reyðarártindur	Granophyre	IIR-13-1.1	AJP04	May '14	0.0023	0.052	0.019	68	12	5	209	12	3.98	6
Reyðarártindur	Granophyre	IIR-13-2.1	AJP04	May '14	0.12	0.008	0.8	310	261	48	532	547	212	44
Reyðarártindur	Granophyre	IIR-13-3.1	AJP04	May '14	0.06	0.078	0.019	154	23	143	376	512	95	31
Reyðarártindur	Granophyre	IIR-13-4.1	AJP04	May '14	0.04	0.053	0.038	17	23	3	321	2.50	2.25	34
Reyðarártindur	Granophyre	IIR-13-5.1	AJP04	May '14	0.0049	0.008	0.8	227	75	26	365	103	73	32
Reyðarártindur	Granophyre	IIR-13-6.1	AJP04	May '14	0.0019	0.1	0.3	175	4	3	760	2.25	2.58	45
Reyðarártindur	Granophyre	IIR-13-7.1	AJP04	May '14	0.0038	5	0.7	478	11	7	1397	9	47	97
Reyðarártindur	Granophyre	IIR-13-8.1	AJP04	May '14	0.0002	0.031	0.2	220	4	3	356	3.28	3.33	28
Reyðarártindur	Granophyre	IIR-13-9.1	AJP04	May '14	0.0005	0.063	0.6	214	5	4	352	3.88	14	29
Reyðarártindur	Granophyre	IIR-13-10.1	AJP04	May '14	0.0019	0.3	0.020	144	5	3	782	3.02	2.29	44
Reyðarártindur	Granophyre	IIR-13-12.1	AJP04	May '14	0.0007	8	0.4	1386	29	17	1301	35	19	20
Reyðarártindur	Granophyre	IIR-13-13.1	AJP04	May '14	0.0002	0.4	0.4	278	6	4	657	4.03	13	43
Reyðarártindur	Granophyre	IIR-13-14.1	AJP04	May '14	0.0051	1	0.3	241	373	47	537	300	3077	57
Reyðarártindur	Granophyre	IIR-13-15.1	AJP04	May '14	0.0003	0.084		38	5	4	536	4.57	3.16	80
Reyðarártindur	Granophyre	IIR-13-16.1	AJP04	May '14	0.0014	0.051	0.1	95	7	5	359	5	21	28
Reyðarártindur	Granophyre	IIR-13-17.1	AJP04	May '14	0.06	0.047	0.7	318	121	22	477	299	63	32
Reyðarártindur	Granophyre	IIR-13-18.1	AJP04	May '14	0.0005	27	2	77	5	4	987	3.85	4.24	97

ippendia cia: continuet	Ap	pendix	C.2 .	Continued
-------------------------	----	--------	--------------	-----------

Intrusion	Rock Type	Grain #	Mount	Date	Li	Be	В	F	Na	Al	Р	K	Ca	Sc
Reyðarártindur	Granophyre	IIR-13-19.1	AJP04	May '14		0.1	0.021	57	5	4	302	3.92	3.82	46
Sandfell	Rhyolite	IISan-01_1.1	AJP03	Jan. '14	0.0053	9	0.2	41	9	12	423	1.23	8	29
Sandfell	Rhyolite	IISan-01_2.1	AJP03	Jan. '14	0.0038	17	0.1	77	28	37	319	18	7	19
Sandfell	Rhyolite	IISan-01_3.1	AJP03	Jan. '14	0.0087	17	0.1	292	38	44	756	36	504	30
Sandfell	Rhyolite	IISan-01_4.1	AJP03	Jan. '14	0.0074	7	0.067	21	6	9	425	0.75	2.41	28
Sandfell	Rhyolite	IISan-01_5.1	AJP03	Jan. '14	0.0042	7	0.1	80	46	87	395	9	12	29
Sandfell	Rhyolite	IISan-01_6.1	AJP03	Jan. '14	0.0075	26	0.1	24	8	10	456	1.03	3.44	32
Sandfell	Rhyolite	IISan-01_7.1	AJP03	Jan. '14	0.0058	5	0.081	14	7	10	387	0.96	2.86	30
Sandfell	Rhyolite	IISan-01_8.1	AJP03	Jan. '14	0.0073	39	0.2	51	9	8	373	1.20	3.45	15
Sandfell	Rhyolite	IISan-01_9.1	AJP03	Jan. '14	0.0048	19	0.086	26	5	8	449	0.75	2.52	34
Sandfell	Rhyolite	IISan-01_10.1	AJP03	Jan. '14	0.0032	11	0.042	12	7	9	288	1.75	2.50	17
Sandfell	Rhyolite	IISan-01_11.1	AJP02	Jan. '14	0.0022	0.7	0.2	30	14	9	219	33	3.69	17
Sandfell	Rhyolite	IISan-01_12.1	AJP02	Jan. '14	0.0071	14	0.1	40	3	5	328	1.80	1.54	23
Sandfell	Rhyolite	IISan-01_13.1	AJP02	Jan. '14	0.0056	3	0.2	15	3	5	332	1.79	1.69	26
Lýsuskarð	Granophyre	IILYS-07a-1.1	AJP04	May '14	0.0003	8	3	1142	4	5	839	2.51	3.36	6
Lýsuskarð	Granophyre	IILYS-07a-2.1	AJP04	May '14	0.01	10	1	567	3	5	910	2.12	3.60	4.19
Lýsuskarð	Granophyre	IILYS-07a-3.1	AJP04	May '14	0.0036	2	2	299	3	3	723	1.47	1.71	1.15
Lýsuskarð	Granophyre	IILYS-07a-4.1	AJP04	May '14	0.0049	2	2	337	3	4	695	2.79	1.89	4.42
Lýsuskarð	Granophyre	IILYS-07a-5.1	AJP04	May '14	0.01	7	0.9	906	3	6	1194	2.24	25	1.37
Lýsuskarð	Granophyre	IILYS-07a-6.1	AJP04	May '14	0.0018	0.4	0.5	198	4	5	416	2.31	3.10	0.49
Lýsuskarð	Granophyre	IILYS-07a-7.1	AJP04	May '14	0.02	3	3	795	12	19	1349	15	8	0.45
Lýsuskarð	Granophyre	IILYS-07a-8.1	AJP04	May '14	0.0025	6	3	761	11	7	1126	12	18	1.32
Lýsuskarð	Granophyre	IILYS-07a-9.1	AJP04	May '14	0.0089	20	0.1	662	11	7	837	11	6	4.70
Lýsuskarð	Granophyre	IILYS-07a-10.1	AJP04	May '14	0.01	3	7	976	8	7	1213	4.90	7	1.83
Lýsuskarð	Granophyre	IILYS-07a-11.1	AJP04	May '14	0.0090	10	6	755	4	6	888	2.41	3.87	4.32
Lýsuskarð	Granophyre	IILYS-07a-12.1	AJP04	May '14	0.0016	0.015		23	5	5	159	2.20	2.05	2.27
Lýsuskarð	Granophyre	IILYS-07a-13.1	AJP04	May '14	0.0032	10	6	1439	5	6	787	2.77	6	2.81
Lýsuskarð	Granophyre	IILYS-07a-14.1	AJP04	May '14	0.02	2	3	341	43	5	1019	17	20	1.19
Lýsuskarð	Granophyre	IILYS-07a-19.1	AJP04	May '14	0.08	0.3	0.4	1167	308	24	387	534	1242	3.47
Lýsuskarð	Granophyre	IILYS-07a-17.1	AJP04	May '14	0.84	41	12	4200	25390	3066	896	22587	79	4.78
Lýsuskarð	Granophyre	IILYS-07a-20.1	AJP04	May '14	0.30	6	1	215	4142	356	553	19642	266	8

Intrusion ⁵¹	Grain #	Ti	Fe	Y	Nb	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Slaufrudalur	IISlau-12-1.1	19	0.37	2086	9	0.16	8	2.8	8	2.14	65		190	80	322		461	77
Slaufrudalur	IISlau-12-2.1	30	0.06	2066	10	0.04	14	2.4	6	2.15	57		208	81	336		482	80
Slaufrudalur	IISlau-12-4.1	17	0.78	943	5.0	0.02	4	1.3	3.46	1.16	31		101	39	157		227	39
Slaufrudalur	IISlau-12-5.1	13		5854	20	0.07	115	8	17	3.38	167		602	229	899		1289	204
Slaufrudalur	IISlau-12-7.1	30	0.94	2102	12	0.02	23	2.5	6	2.16	60		209	85	330		475	79
Slaufrudalur	IISlau-12-9.1	12	0.07	3990	15	0.04	34	5	13	3.30	135		463	168	635		903	144
Slaufrudalur	IISlau-12_12.1	20	4.43	4652	13	0.06	17	8	21	6	164	53	499	189	712	131	995	157
Slaufrudalur	IISlau-12_13.1	32	4.40	2377	4.6	0.04	6	3.9	10	4.52	88	29	290	103	396	76	578	95
Slaufrudalur	IISlau-12_14.1	20	4.43	4606	9	0.07	28	8	21	6	156	54	542	194	748	133	1080	172
Slaufrudalur	IISlau-12_15.1	23	4.26	1491	6	0.02	15	1.8	4.17	1.34	39	15	158	62	267	51	394	62
Slaufrudalur	IISlau-12_16.1	19	4.53	8625	20	0.09	40	15	45	12	356	104	1101	378	1397	242	1800	273
Slaufrudalur	IISlau-12_17.1	18	4.32	3639	18	0.06	28	5	13	3.47	113	38	397	137	563	104	806	128
Slaufrudalur	IISlau-12_11.1		7	1393	2.7	0.10	10	1.7	4.16	1.53	36	13	147	53	233	46	363	59
Slaufrudalur	IISlau-22_1.1	15	4.50	2266	7	0.05	10	4.5	10	2.49	75	26	267	96	363	67	480	82
Slaufrudalur	IISlau-22_3.1	14	4.44	7457	42	0.07	45	16	39	12	298	100	977	339	1253	217	1550	234
Slaufrudalur	IISlau-22_4.1	15	4.62	2381	34	0.01	29	3.1	8	2.40	77	28	294	110	411	73	546	88
Slaufrudalur	IISlau-22_5.1	10	4.43	2018	39	0.02	33	2.3	6	1.27	55	21	232	86	342	64	494	76
Slaufrudalur	IISlau-22_6.1	11	4.28	1920	29	0.02	27	2.3	6	1.33	56	20	223	85	338	64	487	76
Slaufrudalur	IISlau-22_7.1	12	4.42	2058	9	0.03	12	4.2	9	2.12	64	23	241	88	353	65	483	78
Slaufrudalur	IISlau-22_11.1	10	2.53	1248	14	0.04	14	1.0	3.29	0.72	29	10	116	44	181	30	275	45
Slaufrudalur	IISlau-22_12.1	9	2.55	4159	28	0.29	31	6	18	4.20	140	43	450	158	593	109	745	119
Slaufrudalur	IISlau-22_13.1	9	2.68	4994	46	0.07	38	7	18	2.91	153	51	535	193	768	144	1020	156
Slaufrudalur	IISlau-25-1.1	8	0.64	4395	37	0.01	38	9	22	10	182	60	609	190	758	134	924	144
Slaufrudalur	IISlau-25-2.1	9	0.50	1550	40	0.02	16	1.1	2.72	0.95	27	9	115	40	181	35	259	45
Slaufrudalur	IISlau-25-3.1	7	0.58	2721	19	0.04	20	2.9	8	2.67	79	28	314	111	443	82	618	95
Slaufrudalur	IISlau-25-5.1	46	1.11	3707	119	0.01	72	3.6	11	3.46	105	42	470	164	654	120	892	131
Slaufrudalur	IISlau-25-6.1	3.8	9	3308	817	0.03	57	0.6	1.92	0.24	27	17	259	114	591	137	1189	182
Slaufrudalur	IISlau-26-3.1	15	215	3653	66	1.4	100	5	8	0.56	79	29	323	130	557	118	1065	167
Slaufrudalur	IISlau-26-4.1	13	102	8280	181	0.18	323	13	24	2.23	204	78	843	301	1281	256	2072	311
Slaufrudalur	IISlau-26-5.1	15	1.48	5892	59	0.03	70	9	21	6	185	65	652	221	885	174	1354	209

Appendix C.3. Zircon Trace Element Compositions (ppm), measured *in situ* by SHRIMP-RG (Atomic Numbers 22-71)

⁵¹ See **Appendix C.2** for mount names and analysis dates

Appendix C.3. Continued

Intrusion	Grain #	Ti	Fe	Y	Nb	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Slaufrudalur	IISlau-26-6.1	18	13	12752	156	0.05	566	23	40	3.66	323	114	1243	439	1908	403	3374	510
Slaufrudalur	IISlau-26-7.1	15	0.60	9242	188	0.04	425	17	30	2.95	237	94	981	332	1418	283	2245	323
Slaufrudalur	IISlau-26_8.1	3.2	2.46	1523	3.8	0.13	7	2.7	7	1.15	48	15	166	63	259	53	417	71
Slaufrudalur	IISlau-26-1.1	16	363	15263	628	3.6	380	58	49	6	422	162	1698	599	2354	429	3156	437
Slaufrudalur	IISlau-26-2.1		19	8365	166	0.35	352	15	21	2.42	174	65	744	299	1379	306	2753	466
Vesturhorn	IIV-03a-2.1	3.6	1.62	4414	45	0.13	46	3.0	10	2.04	116		430	180	676		884	136
Vesturhorn	IIV-03a-6.1	4.4	0.07	3585	78	0.02	69	2.1	8	1.34	88		350	144	561		749	118
Vesturhorn	IIV-03a-8.1	4.0	0.95	1860	30	0.03	32	1.0	3.32	0.84	46		183	77	300		418	67
Vesturhorn	IIV-03a-9.1	6	0.23	5581	168	0.03	130	3.2	12	1.96	139		494	206	846		1151	176
Vesturhorn	IIV-03a-10.1	8	0.29	6296	31	0.14	112	9	21	5	170		573	236	954		1492	241
Vesturhorn	IIV-03a-11.1	4.5	0.34	3604	133	0.05	70	1.9	7	1.84	97		381	151	571		726	110
Vesturhorn	IIV-03a-12.1	4.2	2.24	2591	90	0.03	60	1.4	5	0.85	60		245	101	410		575	93
Vesturhorn	IIV-03a-13.1	6	0.14	6693	253	0.04	170	3.4	15	3.26	179		664	256	1006		1219	177
Vesturhorn	IIV-03a-14.1	5	0.40	3463	100	0.03	89	2.2	7	1.61	92		401	148	576		792	123
Vesturhorn	IIV-03a-16.1	5	1.24	5539	233	0.23	279	3.4	12	2.53	131		501	211	839		1166	176
Vesturhorn	IIV-03a-17.1	9	0.26	4847	22	0.14	42	11	23	3.82	183		536	197	707		920	142
Vesturhorn	IIV-03a-5.1	3.6	8	5168	49	3.8	70	8	14	2.00	127		456	192	743		981	152
Vesturhorn	IIV-03a-15.1	6	6	3147	50	36	149	40	19	2.60	106		357	135	500		679	106
Vesturhorn	IIV-15-1.1	18	0.27	1287	0.8	0.01	10	2.1	5	1.63	44	15	144	53	213	38	302	48
Vesturhorn	IIV-15-2.1	20	0.30	2563	1.8	0.01	15	3.3	6	2.14	58	21	248	97	426	85	653	106
Vesturhorn	IIV-15-3.1	32	0.34	1277	0.8	0.01	7	2.8	5	1.80	41	14	146	49	216	42	339	54
Vesturhorn	IIV-15-6.2	26	0.14	510	0.8	0.01	6	0.5	1.22	0.46	14	5	53	19	81	17	138	23
Vesturhorn	IIV-15-6.1	23	0.17	1134	0.8	0.01	8	1.9	3.92	1.53	34	11	123	42	173	33	260	41
Vesturhorn	IIV-15-7.1	24	0.12	880	0.7	0.01	6	0.7	2.44	1.23	25	9	97	33	136	26	210	32
Vesturhorn	IIV-15-10.1	25	0.20	299	0.8	0.01	4	0.4	1.24	0.51	12	4	44	16	74	15	119	19
Vesturhorn	IIV-15-11.1	25	0.11	1147	0.9	0.02	7	1.5	3.99	1.46	34	11	112	39	163	31	234	38
Vesturhorn	IIV-15-13.1	23	4.58	227	0.7	0.06	5	0.9	0.77	0.23	5	2	23	8	41	8	76	13
Vesturhorn	IIV-15-15.1	20	0.15	489	0.5	0.01	8	0.4	1.05	0.48	12	5	50	18	77	15	136	22
Vesturhorn	IIV-15-16.2	20	0.25	458	1.0	0.01	8	0.4	0.90	0.37	10	4	46	17	75	15	126	22
Vesturhorn	IIV-15-16.1	26	0.17	968	0.8	0.01	7	1.5	3.83	1.54	35	11	108	37	156	30	225	37
Vesturhorn	IIV-15-17.1	37	0.24	749	1.3	0.01	6	0.8	2.01	0.84	18	7	71	27	128	27	221	40
Vesturhorn	IIV-15-18.1	30	0.31	859	1.2	0.01	7	0.9	2.07	0.74	20	7	75	30	145	31	270	50

Ap	pendix	C.3 .	Continued	l
----	--------	--------------	-----------	---

Intrusion	Grain #	Ti	Fe	Y	Nb	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Vesturhorn	IIV-15-19.2	19	0.16	397	0.8	0.01	7	0.3	0.83	0.39	10	3	38	15	64	14	107	19
Vesturhorn	IIV-15-19.1	25	0.23	1104	0.8	0.01	8	2.3	4.39	1.60	36	12	118	42	174	34	256	42
Vesturhorn	IIV-15-19.3	10	0.27	658	1.0	0.02	10	0.3	0.97	0.24	12	5	60	24	112	24	192	32
Vesturhorn	IIV-16_1.1	15	4.31	10060	20	0.13	168	19	47	14	330	120	1227	431	1703	322	2386	357
Vesturhorn	IIV-16_2.1	14	4.42	1413	3.0	0.01	13	1.7	4.68	1.59	38	14	149	58	237	47	389	64
Vesturhorn	IIV-16_3.1	17	4.41	1846	3.4	0.06	12	3.5	9	3.33	74	26	255	92	381	73	560	94
Vesturhorn	IIV-16_4.1	30	4.42	839	2.9	0.03	7	0.9	2.52	1.07	23	8	91	36	152	32	267	46
Vesturhorn	IIV-16_5.1	23	4.48	8571	17	0.10	62	13	34	15	299	102	1032	367	1375	256	1888	280
Vesturhorn	IIV-16_6.1	16	5	1200	3.3	0.01	11	1.4	3.49	1.27	29	9	99	44	173	35	272	47
Vesturhorn	IIV-16_7.1	18	4.51	1086	6	0.01	11	0.9	2.14	1.01	24	10	112	45	200	41	342	62
Vesturhorn	IIV-16_8.1	15	4.56	1699	8	0.01	22	1.4	4.53	1.69	43	17	185	71	306	61	478	78
Vesturhorn	IIV-16_11.1	14	2.45	8076	24	0.14	90	14	33	9	290	96	1013	348	1409	272	2002	314
Vesturhorn	IIV-16_12.1	16	2.54	1472	3.9	0.02	13	1.8	5	1.76	41	15	158	59	256	51	395	66
Vesturhorn	IIV-16_13.1	27	2.33	2919	6	0.07	13	4.3	14	5	103	36	355	126	528	105	775	130
Vesturhorn	IIV-16_14.1	15	2.55	2015	3.7	0.02	14	2.5	7	2.53	56	21	218	78	324	64	492	80
Vesturhorn	IIV-16_15.1	19	2.40	1774	3.3	0.02	8	2.8	8	2.75	59	20	210	73	314	60	461	77
Reyðarártindur	IIR-01-1.1	82	2.11	3192	65	0.02	71	3.5	9	0.92	88	32	332	126	459	89	672	108
Reyðarártindur	IIR-01-4.1	12	0.18	1114	9	0.01	14	0.9	2.68	0.57	30	14	164	53	272	54	452	75
Reyðarártindur	IIR-01-5.1	17	7	1061	8	0.03	13	0.9	2.80	0.82	27	10	115	42	177	36	292	49
Reyðarártindur	IIR-01-6.1	14	0.13	1233	9	0.01	14	1.1	3.15	0.84	31	12	132	50	208	41	332	56
Reyðarártindur	IIR-01-7.1	14	0.28	1254	10	0.01	16	1.2	2.99	0.71	31	12	130	48	206	40	335	54
Reyðarártindur	IIR-01-8.1	30	32	1256	12	0.06	15	1.5	3.60	0.75	34	12	136	51	208	40	342	56
Reyðarártindur	IIR-01-9.1	10	0.61	5287	14	0.05	35	13	22	6	231	94	955	280	1308	232	1855	292
Reyðarártindur	IIR-01-11.1	22	0.39	14575	40	0.05	176	58	100	21	709	213	2022	610	2213	378	2702	369
Reyðarártindur	IIR-01-12.1	20	0.61	11378	299	0.03	470	17	45	2.05	403	150	1445	469	1801	321	2382	325
Reyðarártindur	IIR-01-13.1	19	3.98	9513	42	0.03	128	22	46	10	373	126	1231	421	1624	294	2169	336
Reyðarártindur	IIR-01-14.1	13	0.61	1170	11	0.02	16	1.1	3.02	0.61	32	12	138	49	211	43	352	57
Reyðarártindur	IIR-01-2.1		900	4321	84	0.20	56	6	11	2.73	102	40	432	169	609	110	783	121
Reyðarártindur	IIR-01-3.1		111	2537	18	0.09	27	4.3	8	1.26	75	29	308	107	439	81	673	111
Reyðarártindur	IIR-03a-1.1	13	12	13594	65	0.04	263	40	80	5	617	195	1884	602	2154	380	2706	385
Reyðarártindur	IIR-03a-2.1	11	2.62	8605	43	0.09	125	22	43	2.95	328	111	1080	349	1303	233	1706	246
Reyðarártindur	IIR-03a-3.1	7	0.35	4797	24	0.02	75	8	17	0.87	160	58	585	192	748	137	1029	155

Appendix C.3. Continued

Intrusion	Grain #	Ti	Fe	Y	Nb	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Reyðarártindur	IIR-03a-4.1	12	2.94	2753	32	0.01	49	3.1	9	0.57	79	28	311	107	444	85	628	102
Reyðarártindur	IIR-03a-5.1	9	0.31	4608	17	0.02	50	9	19	1.43	154	57	574	191	751	143	1040	156
Reyðarártindur	IIR-03a-6.1	25	44	13110	139	0.03	298	35	72	4.56	547	172	1675	542	1984	357	2569	369
Reyðarártindur	IIR-03a-7.1	10	1.22	4903	21	0.02	59	11	20	1.21	167	57	586	193	746	139	1046	157
Reyðarártindur	IIR-03a-8.1	12	0.47	11061	48	0.03	161	26	51	3.61	415	138	1369	438	1666	297	2146	311
Reyðarártindur	IIR-03a-9.1	14	0.47	3357	43	0.02	59	3.2	9	0.60	92	35	375	129	552	106	809	125
Reyðarártindur	IIR-03a-10.1	12	0.91	6872	31	0.03	95	16	32	2.39	254	86	871	281	1059	194	1471	213
Reyðarártindur	IIR-03a-11.1	21	0.55	7217	121	0.02	181	8	23	1.83	240	88	871	289	1149	212	1579	238
Reyðarártindur	IIR-03a-14.1	12	3.85	8980	40	0.03	119	21	43	2.90	330	107	1079	367	1362	241	1765	260
Reyðarártindur	IIR-03a-15.1	24	0.76	7754	123	0.02	192	13	32	2.17	281	93	944	314	1174	219	1603	228
Reyðarártindur	IIR-03a-16.1	22	1.29	8226	114	0.03	189	18	37	2.47	294	96	965	334	1210	213	1582	230
Reyðarártindur	IIR-03a-17.1	14	0.55	13920	67	0.05	226	42	77	4.97	571	188	1776	565	2081	365	2624	370
Reyðarártindur	IIR-03a-18.1	11	167	13850	75	0.05	260	35	68	2.57	483	165	1602	510	1886	339	2446	351
Reyðarártindur	IIR-13-1.1	14	6	2747	15	0.03	9	4.5	11	6	104	34	332	119	439	80	605	97
Reyðarártindur	IIR-13-2.1		1.67	1038	5	0.12	13	2.9	2.92	1.19	25	9	105	41	178	37	298	50
Reyðarártindur	IIR-13-3.1		14	868	6	0.01	10	0.9	2.09	0.66	21	8	92	33	148	30	243	40
Reyðarártindur	IIR-13-4.1	15	0.21	1523	5	0.01	14	2.2	6	1.38	50	17	185	63	264	52	407	65
Reyðarártindur	IIR-13-5.1	15	1.44	902	6	0.04	10	1.1	2.36	0.66	24	9	100	37	152	31	260	43
Reyðarártindur	IIR-13-6.1	11	0.16	2648	34	0.01	48	2.5	6	1.25	66	25	284	107	453	87	705	111
Reyðarártindur	IIR-13-7.1	15	1.12	6171	143	0.03	144	7	18	1.98	186	69	707	248	986	185	1474	224
Reyðarártindur	IIR-13-8.1	16	0.21	1583	4.4	0.01	14	2.5	6	1.82	50	19	193	66	269	52	403	66
Reyðarártindur	IIR-13-9.1	18	0.66	1688	4.5	0.02	12	2.8	6	1.76	52	19	200	68	283	52	419	68
Reyðarártindur	IIR-13-10.1	9	0.16	2701	37	0.02	55	2.4	6	1.11	70	28	303	109	466	92	714	116
Reyðarártindur	IIR-13-12.1	12	1.01	8691	73	0.03	137	15	26	5	257	92	956	365	1423	272	1998	320
Reyðarártindur	IIR-13-13.1	27	0.13	4684	11	0.03	14	7	18	7	169	59	583	197	780	148	1134	177
Reyðarártindur	IIR-13-14.1		2.85	3466	8	0.19	36	10	15	4.61	143	47	464	165	634	122	925	147
Reyðarártindur	IIR-13-15.1	23	0.23	2362	13	0.01	10	2.6	6	2.32	54	20	222	87	364	72	576	99
Reyðarártindur	IIR-13-16.1	13	0.36	987	30	0.02	19	0.9	2.40	0.51	25	10	105	41	176	36	313	53
Reyðarártindur	IIR-13-17.1		1.00	3312	6	0.02	15	5	13	5	139	48	505	171	709	134	1050	168
Reyðarártindur	IIR-13-18.1	20	0.21	6905	27	0.03	41	12	27	10	223	75	749	261	1006	197	1535	242
Reyðarártindur	IIR-13-19.1	25	0.18	1920	2.3	0.01	8	4.3	8	3.46	73	25	255	84	358	70	548	85
Sandfell	IISan-01_1.1	9	4.27	2987	99	0.26	44	2.6	7	2.40	82	33	366	139	587	115	884	142

Appendix C.3. Continued

Intrusion	Grain #	Ti	Fe	Y	Nb	La	Ce	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Sandfell	IISan-01_2.1	6	4.62	3973	34	0.21	23	4.5	12	3.63	109	41	451	172	688	130	1017	159
Sandfell	IISan-01_3.1	9	15	3763	130	6.4	78	15	12	3.38	106	39	428	165	600	128	963	153
Sandfell	IISan-01_4.1	9	4.65	3051	101	0.01	45	2.2	7	2.35	76	30	316	131	532	104	774	124
Sandfell	IISan-01_5.1	10	4.60	2945	88	0.33	43	2.6	8	2.34	71	29	323	126	517	102	809	129
Sandfell	IISan-01_6.1	8	4.49	3359	106	0.03	53	2.5	8	2.61	83	32	400	147	609	119	920	145
Sandfell	IISan-01_7.1	8	4.42	2862	81	0.03	39	2.3	7	2.27	71	30	333	126	528	103	799	130
Sandfell	IISan-01_8.1	6	4.53	4496	45	0.04	26	4.4	12	3.64	114	45	499	195	780	148	1160	185
Sandfell	IISan-01_9.1	8	4.43	4236	94	0.02	46	3.9	11	3.64	121	45	502	189	773	148	1153	186
Sandfell	IISan-01_10.1	6	4.31	1923	49	0.02	23	1.6	4.64	1.69	53	21	231	93	394	74	612	100
Sandfell	IISan-01_11.1	7	2.52	1441	46	0.24	19	1.3	3.82	1.12	34	14	154	61	254	52	411	67
Sandfell	IISan-01_12.1	6	2.55	4067	39	0.08	22	4.2	14	3.60	130	43	475	173	701	139	1035	167
Sandfell	IISan-01_13.1	7	2.70	2254	81	0.01	31	1.6	6	1.65	58	21	236	93	384	77	597	96
Lýsuskarð	IILYS-07a-1.1	14	0.23	27893	753	0.28	833	155	255	37	1494	463	4283	1241	4216	717	4900	622
Lýsuskarð	IILYS-07a-2.1	15	0.22	28993	670	0.31	852	173	245	36	1414	482	4317	1317	4671	793	5412	685
Lýsuskarð	IILYS-07a-3.1	9	0.19	15966	913	0.07	450	50	95	15	686	249	2521	777	2950	519	3617	463
Lýsuskarð	IILYS-07a-4.1	10	0.27	15889	838	0.05	449	46	93	16	668	243	2334	710	2467	421	2852	368
Lýsuskarð	IILYS-07a-5.1	11	0.37	28047	993	0.21	892	103	190	35	1396	439	4105	1222	4177	686	4599	552
Lýsuskarð	IILYS-07a-6.1	6	0.47	5976	608	0.03	153	11	25	4.03	209	73	793	267	1005	181	1259	166
Lýsuskarð	IILYS-07a-7.1	41	0.86	19768	3138	0.07	1005	56	120	23	944	309	2862	822	2810	457	2940	343
Lýsuskarð	IILYS-07a-8.1	11	2.18	25707	932	0.39	769	100	175	30	1262	408	3840	1103	3782	618	4071	474
Lýsuskarð	IILYS-07a-9.1	15	0.51	12120	314	0.03	236	27	53	8	436	146	1510	519	2109	384	2938	432
Lýsuskarð	IILYS-07a-10.1	9	0.74	21648	896	0.09	778	56	102	18	747	273	2881	959	3760	681	4722	635
Lýsuskarð	IILYS-07a-11.1	13	0.61	28114	679	0.27	843	146	230	35	1409	472	4276	1287	4597	784	5446	676
Lýsuskarð	IILYS-07a-12.1	14	0.27	1234	35	0.01	19	2.1	3.77	1.25	34	13	140	52	225	44	336	58
Lýsuskarð	IILYS-07a-13.1	17	0.32	31131	643	0.33	949	154	234	41	1579	504	4669	1393	4892	824	5436	689
Lýsuskarð	IILYS-07a-14.1	22	1.92	16613	1874	0.31	775	48	93	18	696	256	2456	720	2563	429	2801	335
Lýsuskarð	IILYS-07a-19.1	17	1.83	4154	89	0.64	75	16	22	5	156	50	497	177	658	124	956	150
Lýsuskarð	IILYS-07a-17.1		361	22036	929	0.26	1677	135	220	31	1471	554	5680	1938	7772	1434	10573	1499
Lýsuskarð	IILYS-07a-20.1		320	12547	2522	0.72	512	71	96	17	564	200	1833	551	1911	324	2201	275

Sample	Grain #	Hf	Th	U	Eu*	Ce*	Ce/Ce*	Eu/Eu*	Crystallization Temp (°C)
Slaufrudalur	IISlau-12-1.1	7665	70	118	96	0.55	18	0.29	892
Slaufrudalur	IISlau-12-2.1	7648	118	141	78	0.52	33	0.36	949
Slaufrudalur	IISlau-12-4.1	8446	15	37	45	0.27	18	0.34	877
Slaufrudalur	IISlau-12-5.1	11002	439	390	232	2.1	68	0.19	841
Slaufrudalur	IISlau-12-7.1	7630	276	236	80	0.58	48	0.35	948
Slaufrudalur	IISlau-12-9.1	8402	220	268	180	1.1	37	0.24	831
Slaufrudalur	IISlau-12_12.1	8239	153	219	255	1.7	12	0.33	895
Slaufrudalur	IISlau-12_13.1	7848	63	92	131	0.76	10	0.45	956
Slaufrudalur	IISlau-12_14.1	8599	211	257	248	1.8	19	0.32	896
Slaufrudalur	IISlau-12_15.1	8472	161	166	55	0.39	48	0.32	910
Slaufrudalur	IISlau-12_16.1	8459	437	406	548	2.7	18	0.30	888
Slaufrudalur	IISlau-12_17.1	9142	300	321	164	1.1	32	0.28	881
Slaufrudalur	IISlau-12_11.1	9338	53	90	53	0.39	30	0.38	
Slaufrudalur	IISlau-22_1.1	9556	52	86	119	1.1	12	0.27	858
Slaufrudalur	IISlau-22_3.1	8141	237	302	468	3.6	16	0.35	854
Slaufrudalur	IISlau-22_4.1	9072	222	300	106	0.64	54	0.30	862
Slaufrudalur	IISlau-22_5.1	9986	150	229	77	0.51	79	0.22	819
Slaufrudalur	IISlau-22_6.1	9852	98	166	79	0.48	69	0.22	830
Slaufrudalur	IISlau-22_7.1	9396	54	97	101	1.1	13	0.28	831
Slaufrudalur	IISlau-22_11.1	10963	20	59	42	0.15	110	0.23	815
Slaufrudalur	IISlau-22_12.1	8487	94	157	215	1.2	31	0.26	808
Slaufrudalur	IISlau-22_13.1	10005	183	289	225	1.4	34	0.17	808
Slaufrudalur	IISlau-25-1.1	11096	101	54	272	2.0	23	0.50	798
Slaufrudalur	IISlau-25-2.1	7703	14	65	37	0.25	78	0.34	810
Slaufrudalur	IISlau-25-3.1	12474	53	125	106	0.57	42	0.33	775
Slaufrudalur	IISlau-25-5.1	12391	121	319	144	0.65	134	0.32	1009
Slaufrudalur	IISlau-25-6.1	16463	243	859	31	0.09	755	0.10	720
Slaufrudalur	IISlau-26-3.1	16009	641	765	112	1.6	76	0.07	859
Slaufrudalur	IISlau-26-4.1	15088	2349	1840	304	3.9	101	0.10	847
Slaufrudalur	IISlau-26-5.1	11516	397	770	271	2.1	40	0.29	863
Slaufrudalur	IISlau-26-6.1	11836	5637	3651	491	7.1	97	0.10	879
Slaufrudalur	IISlau-26-7.1	13950	2520	1865	364	4.8	107	0.11	864
Slaufrudalur	IISlau-26_8.1	9747	97	160	81	0.53	15	0.19	705
Slaufrudalur	IISlau-26-1.1	11505	1188	1597	622	36	13	0.14	868
Slaufrudalur	IISlau-26-2.1	10007	4516	3884	261	5.3	80	0.12	
Vesturhorn	IIV-03a-2.1	10230	128	255	149	0.45	123	0.18	716
Vesturhorn	IIV-03a-6.1	10106	155	333	112	0.29	289	0.16	734
Vesturhorn	IIV-03a-8.1	9997	57	129	53	0.15	259	0.21	726

Appendix C.4. Zircon Trace Element Compositions (ppm), measured *in situ* by SHRIMP-RG (Atomic Number > 71), REE anomalies⁵², and estimated model crystallization temperatures⁵³

⁵² REE anomalies: Ce* and Eu* calculated by logarithmic extrapolation of Sm and Nd, and Nd and Gd, respectively ⁵³ Model temperatures estimated using the Ti-in-zircon thermometer of Ferry & Watson (2007), see Chapter III, 3.3.b

Sample	Grain #	Hf	Th	U	Eu*	Ce*	Ce/Ce*	Eu/Eu*	Crystallization Temp (°C)
Vesturhorn	IIV-03a-9.1	10212	297	533	179	0.44	363	0.14	759
Vesturhorn	IIV-03a-10.1	8464	542	572	257	2.2	63	0.27	793
Vesturhorn	IIV-03a-11.1	9405	255	435	116	0.26	327	0.21	736
Vesturhorn	IIV-03a-12.1	11544	168	326	78	0.20	376	0.14	730
Vesturhorn	IIV-03a-13.1	8690	457	681	222	0.41	505	0.19	759
Vesturhorn	IIV-03a-14.1	10102	252	361	111	0.37	295	0.19	750
Vesturhorn	IIV-03a-16.1	9677	471	509	171	0.52	652	0.19	750
Vesturhorn	IIV-03a-17.1	6362	284	331	282	2.9	18	0.18	803
Vesturhorn	IIV-03a-5.1	10194	214	367	180	2.4	35	0.15	715
Vesturhorn	IIV-03a-15.1	9904	102	198	193	45	4	0.18	755
Vesturhorn	IIV-15-1.1	9295	215	188	65	0.47	27	0.33	882
Vesturhorn	IIV-15-2.1	10413	351	491	83	0.92	20	0.34	892
Vesturhorn	IIV-15-3.1	9881	69	99	63	0.81	11	0.38	956
Vesturhorn	IIV-15-6.2	9922	24	52	18	0.11	62	0.34	929
Vesturhorn	IIV-15-6.1	10332	62	93	50	0.51	18	0.40	913
Vesturhorn	IIV-15-7.1	10377	25	47	34	0.12	62	0.48	919
Vesturhorn	IIV-15-10.1	10109	22	44	17	0.06	74	0.41	926
Vesturhorn	IIV-15-11.1	10475	48	71	51	0.29	30	0.38	923
Vesturhorn	IIV-15-13.1	10449	11	27	9	0.54	11	0.35	915
Vesturhorn	IIV-15-15.1	10865	44	88	15	0.08	115	0.41	897
Vesturhorn	IIV-15-16.2	11605	39	95	13	0.07	131	0.37	895
Vesturhorn	IIV-15-16.1	10504	39	66	50	0.31	26	0.41	928
Vesturhorn	IIV-15-17.1	9214	31	81	26	0.15	45	0.42	977
Vesturhorn	IIV-15-18.1	9268	42	144	28	0.19	48	0.35	949
Vesturhorn	IIV-15-19.2	11357	31	73	13	0.04	199	0.41	888
Vesturhorn	IIV-15-19.1	10108	64	96	54	0.64	15	0.39	921
Vesturhorn	IIV-15-19.3	14230	82	219	15	0.04	335	0.22	813
Vesturhorn	IIV-16_1.1	8766	945	727	540	4.0	51	0.34	861
Vesturhorn	IIV-16_2.1	9373	38	77	58	0.33	49	0.36	852
Vesturhorn	IIV-16_3.1	8795	79	111	112	0.71	21	0.39	878
Vesturhorn	IIV-16_4.1	8407	30	63	33	0.18	49	0.43	947
Vesturhorn	IIV-16_5.1	8392	440	367	436	2.5	30	0.46	910
Vesturhorn		9036	30	59	43	0.28	50	0.39	870
Vesturhorn	IIV-16 7.1	9540	36	77	31	0.20	68	0.43	880
Vesturhorn	IIV-16 8.1	9758	103	157	60	0.24	114	0.37	862
Vesturhorn		8999	654	647	422	3.1	36	0.29	855
Vesturhorn		9062	48	79	65	0.30	54	0.36	866
Vesturhorn	IIV-16 13.1	8062	105	132	165	0.70	22	0.41	935
Vesturhorn	IIV-16 14.1	9237	89	103	87	0.45	38	0.38	858
Vesturhorn		8219	51	78	93	0.52	19	0.39	887
Reyðarártindur	 IIR-01-1.1	11985	437	502	125	0.67	130	0.10	1100
Revðarártindur	IIR-01-4.1	12154	134	196	39	0.15	108	0.19	831

Appendix C.4. Continued

Sample	Grain #	Hf	Th	U	Eu*	Ce*	Ce/Ce*	Eu/Eu*	Crystallization Temp (°C)
Reyðarártindur	IIR-01-5.1	11273	43	92	38	0.16	98	0.29	872
Reyðarártindur	IIR-01-6.1	11153	66	119	43	0.21	81	0.26	857
Reyðarártindur	IIR-01-7.1	11355	68	138	42	0.24	82	0.22	853
Reyðarártindur	IIR-01-8.1	11764	43	107	48	0.31	59	0.21	947
Reyðarártindur	IIR-01-9.1	17277	422	560	308	3.8	11	0.24	817
Reyðarártindur	IIR-01-11.1	8860	704	667	1152	18	12	0.24	905
Reyðarártindur	IIR-01-12.1	11271	3113	2076	584	3.6	160	0.05	893
Reyðarártindur	IIR-01-13.1	10691	531	597	566	5.6	28	0.22	890
Reyðarártindur	IIR-01-14.1	11266	93	159	42	0.23	83	0.19	848
Reyðarártindur	IIR-01-2.1	12544	128	253	142	1.8	37	0.25	
Reyðarártindur	IIR-01-3.1	12062	138	240	107	1.2	28	0.15	
Reyðarártindur	IIR-03a-1.1	6802	883	1071	961	11	30	0.07	845
Reyðarártindur	IIR-03a-2.1	7036	465	1021	512	6.1	25	0.08	829
Reyðarártindur	IIR-03a-3.1	7671	300	504	228	2.1	44	0.05	784
Reyðarártindur	IIR-03a-4.1	7455	190	371	116	0.57	106	0.06	835
Reyðarártindur	IIR-03a-5.1	6675	231	424	235	2.5	25	0.08	803
Reyðarártindur	IIR-03a-6.1	7553	1748	1431	856	8.9	41	0.07	922
Reyðarártindur	IIR-03a-7.1	6689	225	413	252	2.9	25	0.06	820
Reyðarártindur	IIR-03a-8.1	7597	644	781	632	7.0	28	0.08	833
Reyðarártindur	IIR-03a-9.1	7837	220	386	122	0.61	118	0.06	851
Reyðarártindur	IIR-03a-10.1	7014	385	534	389	4.1	28	0.08	838
Reyðarártindur	IIR-03a-11.1	7226	810	1078	325	1.6	139	0.07	903
Reyðarártindur	IIR-03a-14.1	6804	516	767	514	5.5	27	0.07	832
Reyðarártindur	IIR-03a-15.1	7056	856	1110	408	3.0	79	0.07	920
Reyðarártindur	IIR-03a-16.1	6358	706	981	452	4.5	51	0.07	905
Reyðarártindur	IIR-03a-17.1	6645	794	1005	910	12	23	0.07	851
Reyðarártindur	IIR-03a-18.1	6981	915	1485	784	9.5	33	0.04	826
Reyðarártindur	IIR-13-1.1	10241	36	78	149	0.95	12	0.53	856
Reyðarártindur	IIR-13-2.1	9796	36	77	37	1.6	10	0.42	
Reyðarártindur	IIR-13-3.1	10818	29	71	28	0.19	64	0.31	
Reyðarártindur	IIR-13-4.1	10289	50	98	74	0.46	39	0.25	863
Reyðarártindur	IIR-13-5.1	10735	24	59	33	0.25	50	0.27	859
Reyðarártindur	IIR-13-6.1	12197	142	258	89	0.51	115	0.18	828
Reyðarártindur	IIR-13-7.1	11068	672	943	251	1.4	122	0.10	862
Reyðarártindur	IIR-13-8.1	11303	51	87	77	0.51	33	0.31	866
Reyðarártindur	IIR-13-9.1	10945	58	90	76	0.73	21	0.31	883
Reyðarártindur	IIR-13-10.1	12607	206	358	90	0.50	135	0.16	808
Reyðarártindur	IIR-13-12.1	11413	630	757	356	4.3	39	0.20	838
Reyðarártindur	IIR-13-13.1	9262	162	231	239	1.3	14	0.39	933
Reyðarártindur	IIR-13-14.1	8807	286	370	199	3.9	11	0.30	
Reyðarártindur	IIR-13-15.1	9522	59	137	77	0.59	21	0.39	911
Reyðarártindur	IIR-13-16.1	11497	107	273	34	0.17	134	0.20	848

Appendix C.4. Continued

Sample	Grain #	Hf	Th	U	Eu*	Ce*	Ce/Ce*	Eu/Eu*	Crystallization Temp (°C)
Reyðarártindur	IIR-13-17.1	9207	194	235	183	1.1	17	0.39	
Reyðarártindur	IIR-13-18.1	9588	281	359	334	2.7	19	0.41	893
Reyðarártindur	IIR-13-19.1	9361	13		105	1.2	8	0.43	923
Sandfell	IISan-01_1.1	11001	239	450	104	0.49	109	0.30	804
Sandfell	IISan-01_2.1	10122	127	248	155	0.90	31	0.31	756
Sandfell	IISan-01_3.1	10768	365	616	156	10	9	0.29	799
Sandfell	IISan-01_4.1	10525	305	477	103	0.35	157	0.30	801
Sandfell	IISan-01_5.1	10228	171	360	103	0.46	116	0.30	810
Sandfell	IISan-01_6.1	10519	204	417	111	0.41	156	0.31	792
Sandfell	IISan-01_7.1	10407	184	364	95	0.40	119	0.31	791
Sandfell	IISan-01_8.1	10650	155	300	159	0.87	36	0.30	756
Sandfell	IISan-01_9.1	10349	181	400	156	0.73	77	0.31	790
Sandfell	IISan-01_10.1	10475	80	202	68	0.30	94	0.33	756
Sandfell	IISan-01_11.1	11052	55	153	49	0.22	106	0.30	785
Sandfell	IISan-01_12.1	10673	119	265	187	0.65	40	0.25	757
Sandfell	IISan-01_13.1	11057	115	274	80	0.22	171	0.27	776
Lýsuskarð	IILYS-07a-1.1	8533	1731	1517	2669	50	20	0.18	857
Lýsuskarð	IILYS-07a-2.1	10686	1766	1644	2550	64	16	0.18	864
Lýsuskarð	IILYS-07a-3.1	13389	1446	1454	1103	14	39	0.18	804
Lýsuskarð	IILYS-07a-4.1	11955	1242	600	1079	12	46	0.20	820
Lýsuskarð	IILYS-07a-5.1	10079	2092	1826	2230	30	37	0.21	827
Lýsuskarð	IILYS-07a-6.1	11766	341	691	312	2.5	76	0.17	761
Lýsuskarð	IILYS-07a-7.1	10860	4587	1114	1455	14	90	0.21	991
Lýsuskarð	IILYS-07a-8.1	12190	2000	759	2032	30	31	0.20	823
Lýsuskarð	IILYS-07a-9.1	8084	620	818	658	7.4	39	0.16	864
Lýsuskarð	IILYS-07a-10.1	8265	1525	2188	1192	16	59	0.20	810
Lýsuskarð	IILYS-07a-11.1	7765	1603	1549	2464	49	21	0.19	846
Lýsuskarð	IILYS-07a-12.1	8162	47	104	49	0.64	37	0.33	853
Lýsuskarð	IILYS-07a-13.1	9250	1756	1632	2628	54	22	0.20	879
Lýsuskarð	IILYS-07a-14.1	10505	3166	1941	1101	13	73	0.21	905
Lýsuskarð	IILYS-07a-19.1	7313	372	395	252	6.1	15	0.28	875
Lýsuskarð	IILYS-07a-17.1	14484	1286	3678	2462	44	47	0.17	
Lýsuskarð	IILYS-07a-20.1	11346	3398	1027	1008	28	22	0.22	

Appendix C.4. Continued

Spot Name:	Mount:	Date:	¹⁶ O Measured	¹⁶ O Error	¹⁸ O Measured	¹⁸ O Error	¹⁸ O/ ¹⁶ O Measured	¹⁸ O/ ¹⁶ O Error	¹⁸ O/ ¹⁶ O Corrected	δ ¹⁸ Ο Corrected	Error (1σ)	Total Error (2σ) ⁵⁵
					SLA	UFRUDAI	LUR					
IISlau-12 1.1	AJP01	May. '13	2.509E+9	9.3E+5	5.019E+6	1.9E+3	0.0020007	1.5E-7	0.0020137	4.3	0.08	0.66
IISlau-12 2.1	AJP01	May. '13	2.482E+9	1.2E+6	4.966E+6	2.5E+3	0.0020008	1.9E-7	0.0020138	4.3	0.09	0.67
IISlau-12_3.1	AJP01	May. '13	2.080E+9	9.6E+6	4.161E+6	2.0E+4	0.0020006	2.2E-7	0.0020135	4.2	0.11	0.68
IISlau-12 4.1	AJP01	May. '13	2.478E+9	1.3E+6	4.959E+6	2.9E+3	0.0020012	1.3E-7	0.0020142	4.5	0.07	0.66
IISlau-12 5.1	AJP01	May. '13	2.325E+9	5.0E+7	4.649E+6	9.9E+4	0.0019990	5.2E-7	0.0020120	3.4	0.26	0.82
IISlau-12_6.1	AJP01	May. '13	2.498E+9	1.1E+6	4.999E+6	2.2E+3	0.0020007	1.1E-7	0.0020137	4.2	0.05	0.65
IISlau-127.1	AJP01	May. '13	2.467E+9	1.7E+6	4.936E+6	3.5E+3	0.0020005	1.2E-7	0.0020135	4.1	0.06	0.65
IISlau-12 8.1	AJP01	May. '13	2.125E+9	2.7E+7	4.248E+6	5.5E+4	0.0019991	4.3E-7	0.0020120	3.4	0.22	0.77
IISlau-12_11.1	AJP03	Nov. '13	1.813E+9	2.1E+6	3.649E+6	4.3E+3	0.0020127	1.3E-7	0.0020143	4.5	0.07	0.68
IISlau-12_12.1	AJP03	Nov. '13	1.807E+9	5.1E+5	3.636E+6	1.0E+3	0.0020122	1.8E-7	0.0020138	4.3	0.09	0.69
IISlau-12_13.1	AJP03	Nov. '13	1.787E+9	2.8E+6	3.595E+6	5.5E+3	0.0020119	2.3E-7	0.0020135	4.1	0.12	0.71
IISlau-12_14.1	AJP03	Nov. '13	1.791E+9	2.8E+6	3.605E+6	5.7E+3	0.0020127	1.7E-7	0.0020143	4.6	0.08	0.69
IISlau-12_15.1	AJP03	Nov. '13	1.820E+9	1.1E+6	3.663E+6	2.4E+3	0.0020122	2.2E-7	0.0020138	4.3	0.11	0.70
IISlau-12_16.1	AJP03	Nov. '13	1.799E+9	1.2E+6	3.621E+6	2.5E+3	0.0020126	2.1E-7	0.0020142	4.5	0.10	0.70
IISlau-12_17.1	AJP03	Nov. '13	1.805E+9	1.9E+6	3.633E+6	3.7E+3	0.0020126	2.5E-7	0.0020142	4.5	0.13	0.71
IISlau-22_1.1	AJP03	Nov. '13	1.797E+9	2.0E+6	3.610E+6	4.1E+3	0.0020091	1.9E-7	0.0020107	2.8	0.09	0.69
IISlau-22_3.1	AJP03	Nov. '13	1.861E+9	2.2E+6	3.744E+6	4.4E+3	0.0020119	2.0E-7	0.0020135	4.2	0.10	0.69
IISlau-22_4.1	AJP03	Nov. '13	1.866E+9	2.0E+6	3.752E+6	4.2E+3	0.0020102	2.6E-7	0.0020118	3.3	0.13	0.71
IISlau-22_5.1	AJP03	Nov. '13	1.895E+9	2.4E+6	3.806E+6	4.8E+3	0.0020089	1.8E-7	0.0020105	2.6	0.09	0.69
IISlau-22_6.1	AJP03	Nov. '13	1.883E+9	8.4E+5	3.783E+6	1.7E+3	0.0020093	2.4E-7	0.0020109	2.9	0.12	0.71
IISlau-22_7.1	AJP03	Nov. '13	1.881E+9	2.1E+6	3.779E+6	4.2E+3	0.0020090	2.2E-7	0.0020106	2.7	0.11	0.70
IISlau-22_11.1	AJP02	Nov. '13	1.435E+9	4.8E+5	2.885E+6	8.3E+2	0.0020111	2.6E-7	0.0020128	3.8	0.13	0.72
IISlau-22_12.1	AJP02	Nov. '13	1.431E+9	6.6E+5	2.877E+6	1.5E+3	0.0020104	3.5E-7	0.0020121	3.4	0.17	0.76
IISlau-22_13.1	AJP02	Nov. '13	1.398E+9	6.4E+6	2.808E+6	1.3E+4	0.0020087	2.5E-7	0.0020105	2.6	0.12	0.72
IISlau-25_1.1	AJP04	Apr. '14	4.274E+9	4.7E+6	8.591E+6	9.2E+3	0.0020101	9.2E-8	0.0020117	3.3	0.05	0.30
IISlau-25_2.1	AJP04	Apr. '14	4.210E+9	7.0E+6	8.461E+6	1.4E+4	0.0020095	1.3E-7	0.0020111	3.0	0.07	0.32
IISlau-25_3.1	AJP04	Apr. '14	4.219E+9	3.7E+6	8.487E+6	7.3E+3	0.0020115	1.0E-7	0.0020132	4.0	0.05	0.31
IISlau-25_4.1	AJP04	Apr. '14	4.198E+9	4.7E+6	8.438E+6	9.2E+3	0.0020101	8.8E-8	0.0020118	3.3	0.04	0.30
IISlau-25_5.1	AJP04	Apr. '14	4.216E+9	5.2E+6	8.472E+6	1.0E+4	0.0020097	7.5E-8	0.0020113	3.1	0.04	0.30
IISlau-25_6.1	AJP04	Apr. '14	4.155E+9	4.8E+6	8.347E+6	9.8E+3	0.0020090	9.5E-8	0.0020106	2.7	0.05	0.30

Appendix C.5. Zircon oxygen isotope compositions, measured *in-situ* by SIMS⁵⁴

⁵⁴ Errors are 1σ unless otherwise noted
 ⁵⁵ Total errors, calculated in quadrature, include propagated analytical and external errors

¹⁸O ¹⁸O ¹⁶O ¹⁶**O** ¹⁸O/¹⁶O ¹⁸O/¹⁶O ¹⁸O/¹⁶O δ¹⁸O **Spot Name:** Date: Mount: Measured Error Measured Error Measured Error Corrected Corrected **SLAUFRUDALUR** (continued) 4.147E+9 9.2E+6 0.0020105 AJP04 Apr. '14 8.330E+6 1.8E+4 0.0020089 1.1E-7 2.6 IISlau-26 1.1 IISlau-26 2.1 4.147E+9 6.1E+6 8.336E+6 1.2E+4 0.0020104 6.4E-8 0.0020121 3.4 AJP04 Apr. '14 6.5E+4 IISlau-26 3.1 AJP04 Apr. '14 4.151E+9 3.3E+7 8.333E+6 0.0020076 1.3E-7 0.0020092 2.0 IISlau-26 4.1 4.061E+9 1.9E+7 8.140E+6 3.7E+4 0.0020047 1.1E-7 0.0020063 AJP04 Apr. '14 0.6 IISlau-26 5.1 AJP04 Apr. '14 4.168E+9 9.6E+6 8.381E+6 1.9E+4 0.0020109 7.8E-8 0.0020126 3.7 4.153E+9 5.1E+6 8.345E+6 1.0E+4 0.0020096 8.9E-8 0.0020112 IISlau-26 6.1 AJP04 Apr. '14 3.0 4.129E+9 6.0E+6 1.2E+4 7.0E-8 0.0020119 IISlau-26 7.1 AJP04 Apr. '14 8.301E+6 0.0020103 3.3 VESTURHORN 2.298E+9 3.2E+6 4.593E+6 6.2E+3 0.0019984 1.7E-7 0.0020114 AJP01 May. '13 3.1 IIV-03a 3.1 AJP01 May. '13 2.427E+9 1.4E+6 4.853E+6 3.0E+3 0.0019985 1.6E-7 0.0020115 3.1 IIV-03a 4.1 2.382E+9 2.0E+3 0.0019993 0.0020123 IIV-03a 5.1 AJP01 May. '13 9.1E+5 4.767E+6 1.7E-7 3.5 IIV-03a 6.1 AJP01 May. '13 2.365E+9 1.0E+6 4.731E+6 2.2E+3 0.0020008 1.8E-7 0.0020138 4.3 2.400E+9 5.3E+6 4.796E+6 1.1E+4 0.0020005 1.6E-7 0.0020135 IIV-03a 7.1 AJP01 May. '13 4.1 May. '13 2.451E+9 1.5E+6 4.906E+6 3.1E+3 0.0020015 1.1E-7 0.0020145 IIV-03a 8.1 AJP01 4.7 2.457E+9 7.4E+5 4.917E+6 1.4E+3 0.0020013 1.1E-7 0.0020143 4.5 IIV-03a 9.1 AJP01 May. '13 3.1E+3 AJP01 May. '13 2.439E+9 1.5E+6 4.881E+6 0.0020013 1.5E-7 0.0020142 4.5 IIV-03a 10.1 3.5E+4 IIV-03a 11.1 AJP01 May. '13 2.438E+9 1.8E+7 4.877E+6 0.0020007 4.0E-7 0.0020137 4.3 May. '13 2.436E+9 1.3E+6 4.878E+6 2.7E+3 0.0020026 1.3E-7 0.0020156 5.2 IIV-03a 12.1 AJP01 IIV-03a 13.1 AJP01 May. '13 2.182E+9 1.4E+7 4.364E+6 2.9E+4 0.0020006 3.1E-7 0.0020135 4.2 2.485E+9 0.0020144 7.7E+5 4.973E+6 1.8E+3 0.0020015 2.1E-7 IIV-03a 14.1 AJP01 May. '13 4.6 IIV-03a 15.1 AJP01 May. '13 2.451E+9 2.5E+6 4.907E+6 5.1E+3 0.0020017 1.1E-7 0.0020146 4.7 0.0020015 0.0020145 IIV-03a 16.1 AJP01 May. '13 2.474E+9 1.6E+6 4.952E+6 3.2E+3 1.3E-7 4.6 IIV-03a 17.1 2.490E+9 2.1E+6 4.990E+6 4.3E+3 0.0020035 1.4E-7 0.0020165 5.7 AJP01 May. '13 IIV-15 1.1 Apr. '14 4.480E+9 3.4E+6 9.018E+6 6.9E+3 0.0020128 1.0E-7 0.0020144 4.6 AJP04 0.0020129 IIV-15 2.1 4.474E+9 4.6E+6 9.006E+6 9.3E+3 7.3E-8 0.0020145 AJP04 Apr. '14 4.7 IIV-15 3.1 AJP04 Apr. '14 4.449E+9 4.8E+6 8.953E+6 9.7E+3 0.0020123 1.2E-7 0.0020139 4.3 IIV-15 3.2 4.447E+9 4.8E+6 8.949E+6 9.7E+3 0.0020125 7.0E-8 0.0020142 4.5 AJP04 Apr. '14 IIV-15 4.1 AJP04 Apr. '14 4.456E+9 3.2E+6 8.970E+6 6.4E+3 0.0020129 7.8E-8 0.0020145 4.7 4.458E+9 7.8E+6 1.6E+4 0.0020115 5.0E-8 0.0020131 IIV-15 5.1 AJP04 Apr. '14 8.966E+6 4.0

8.939E+6

8.920E+6

8.939E+6

Total

Error (2σ)

0.31

0.29

0.32

0.31

0.30

0.30

0.30

0.66

0.66

0.66

0.67

0.66

0.65

0.65

0.66

0.76

0.66

0.71

0.68

0.65

0.65

0.66

0.31

0.30

0.31

0.30

0.30

0.29

0.30

0.32

0.30

Error

(1σ)

0.05

0.03

0.07

0.05

0.04

0.04

0.03

0.08

0.08

0.08

0.09

0.08

0.05

0.05

0.08

0.20

0.07

0.16

0.11

0.06

0.06

0.07

0.05

0.04

0.06

0.03

0.04

0.03

0.05

0.07

0.04

4.5

4.9

4.7

Appendix C.5. Continued

AJP04

AJP04

AJP04

Apr. '14

Apr. '14

Apr. '14

IIV-15 6.1

IIV-15 6.2

IIV-15 7.1

4.440E+9

4.432E+9

4.441E+9

6.0E+6

4.9E+6

5.5E+6

1.2E+4

9.6E+3

1.1E+4

0.0020125

0.0020133

0.0020129

9.9E-8

1.5E-7

8.8E-8

0.0020142

0.0020150

0.0020146

Appendix C.5. Continued

Spot Name:	Mount:	Date:	¹⁶ O Measured	¹⁶ O Error	¹⁸ O Measured	¹⁸ O Error	¹⁸ O/ ¹⁶ O Measured	¹⁸ O/ ¹⁶ O Error	¹⁸ O/ ¹⁶ O Corrected	δ ¹⁸ Ο Corrected	Error (1σ)	Total Error (2σ)
					VESTURI	HORN (con	tinued)					
IIV-15 8.1	AJP04	Apr. '14	4.438E+9	5.6E+6	8.933E+6	1.1E+4	0.0020128	8.4E-8	0.0020144	4.6	0.04	0.30
IIV-15_9.1	AJP04	Apr. '14	4.437E+9	5.7E+6	8.931E+6	1.2E+4	0.0020131	1.0E-7	0.0020147	4.7	0.05	0.30
IIV-15_10.1	AJP04	Apr. '14	4.454E+9	5.1E+6	8.960E+6	1.0E+4	0.0020118	1.3E-7	0.0020134	4.1	0.06	0.31
IIV-15_11.1	AJP04	Apr. '14	4.428E+9	4.3E+6	8.911E+6	8.5E+3	0.0020125	9.2E-8	0.0020141	4.5	0.05	0.30
IIV-15_12.1	AJP04	Apr. '14	4.433E+9	6.9E+6	8.923E+6	1.4E+4	0.0020131	1.0E-7	0.0020147	4.7	0.05	0.31
IIV-15_13.1	AJP04	Apr. '14	4.434E+9	9.9E+6	8.925E+6	2.0E+4	0.0020128	8.6E-8	0.0020145	4.6	0.04	0.30
IIV-15_14.1	AJP04	Apr. '14	4.429E+9	6.9E+6	8.912E+6	1.4E+4	0.0020123	8.3E-8	0.0020139	4.3	0.04	0.30
IIV-15_15.1	AJP04	Apr. '14	4.446E+9	6.1E+6	8.948E+6	1.2E+4	0.0020129	8.6E-8	0.0020145	4.6	0.04	0.30
IIV-15_16.1	AJP04	Apr. '14	4.419E+9	6.6E+6	8.895E+6	1.3E+4	0.0020122	9.0E-8	0.0020138	4.3	0.04	0.30
IIV-15_16.2	AJP04	Apr. '14	4.423E+9	5.3E+6	8.899E+6	1.1E+4	0.0020127	8.0E-8	0.0020144	4.6	0.04	0.30
IIV-15_18.1	AJP04	Apr. '14	4.426E+9	4.9E+6	8.907E+6	1.0E+4	0.0020126	8.8E-8	0.0020142	4.5	0.04	0.30
IIV-15_18.2	AJP04	Apr. '14	4.407E+9	6.5E+6	8.870E+6	1.3E+4	0.0020123	7.9E-8	0.0020140	4.4	0.04	0.30
IIV-15_19.1	AJP04	Apr. '14	4.377E+9	2.8E+6	8.810E+6	5.6E+3	0.0020128	6.7E-8	0.0020144	4.6	0.03	0.30
IIV-15_19.2	AJP04	Apr. '14	4.411E+9	4.9E+6	8.878E+6	9.7E+3	0.0020128	1.0E-7	0.0020144	4.6	0.05	0.30
IIV-15_19.3	AJP04	Apr. '14	4.328E+9	3.9E+6	8.707E+6	7.9E+3	0.0020117	7.2E-8	0.0020133	4.1	0.04	0.30
IIV-16_1.1	AJP03	Nov. '13	1.859E+9	7.3E+5	3.741E+6	1.6E+3	0.0020127	1.6E-7	0.0020143	4.5	0.08	0.69
IIV-16_2.1	AJP03	Nov. '13	1.848E+9	2.0E+6	3.720E+6	4.0E+3	0.0020126	2.0E-7	0.0020142	4.5	0.10	0.70
IIV-16_3.1	AJP03	Nov. '13	1.851E+9	1.8E+6	3.727E+6	3.6E+3	0.0020131	1.4E-7	0.0020147	4.7	0.07	0.68
IIV-16_4.1	AJP03	Nov. '13	1.859E+9	6.4E+5	3.741E+6	1.3E+3	0.0020120	2.0E-7	0.0020136	4.2	0.10	0.70
IIV-16_5.1	AJP03	Nov. '13	1.796E+9	3.3E+5	3.616E+6	7.0E+2	0.0020135	1.9E-7	0.0020151	5.0	0.10	0.69
IIV-16_11.1	AJP02	Nov. '13	1.405E+9	1.9E+6	2.824E+6	3.7E+3	0.0020103	2.3E-7	0.0020120	3.4	0.11	0.71
IIV-16_12.1	AJP02	Nov. '13	1.389E+9	6.9E+5	2.798E+6	1.5E+3	0.0020136	1.8E-7	0.0020153	5.0	0.09	0.70
IIV-16_13.1	AJP02	Nov. '13	1.421E+9	1.2E+6	2.859E+6	2.5E+3	0.0020119	2.9E-7	0.0020137	4.2	0.14	0.74
IIV-16_14.1	AJP02	Nov. '13	1.398E+9	6.8E+5	2.813E+6	1.2E+3	0.0020128	2.7E-7	0.0020145	4.6	0.13	0.73
IIV-16_15.1	AJP02	Nov. '13	1.317E+9	1.1E+6	2.652E+6	2.2E+3	0.0020142	3.3E-7	0.0020159	5.4	0.17	0.75
					REYÐA	ARÁRTINI	DUR					
IIR-01_1.1	AJP04	Apr. '14	4.297E+9	7.6E+6	8.622E+6	1.5E+4	0.0020066	8.0E-8	0.0020082	1.5	0.04	0.30
IIR-01_2.1	AJP04	Apr. '14	4.232E+9	4.9E+6	8.495E+6	9.6E+3	0.0020074	1.1E-7	0.0020091	1.9	0.06	0.31
IIR-01_3.1	AJP04	Apr. '14	3.763E+9	1.5E+7	7.549E+6	2.9E+4	0.0020061	1.6E-7	0.0020078	1.3	0.08	0.33
IIR-01_4.1	AJP04	Apr. '14	4.274E+9	6.1E+6	8.584E+6	1.2E+4	0.0020084	7.0E-8	0.0020101	2.4	0.03	0.30
IIR-01_5.1	AJP04	Apr. '14	4.247E+9	4.8E+6	8.525E+6	9.5E+3	0.0020071	1.1E-7	0.0020087	1.8	0.06	0.31
IIR-01_6.1	AJP04	Apr. '14	4.255E+9	6.0E+6	8.546E+6	1.2E+4	0.0020086	6.9E-8	0.0020102	2.5	0.03	0.30

Appendix C.5. Continued

Spot Name:	Mount:	Date:	¹⁶ O Measured	¹⁶ O Error	¹⁸ O Measured	¹⁸ O Error	¹⁸ O/ ¹⁶ O Measured	¹⁸ O/ ¹⁶ O Error	¹⁸ O/ ¹⁶ O Corrected	δ ¹⁸ O Corrected	Error (1σ)	Total Error (2σ)
					REYÐ	ARÁRTIN	DUR					
IIR-01 7.1	AJP04	Apr. '14	4.249E+9	6.2E+6	8.529E+6	1.2E+4	0.0020072	8.4E-8	0.0020089	1.8	0.04	0.30
IIR-01_8.1	AJP04	Apr. '14	3.710E+9	1.1E+6	7.445E+6	2.0E+3	0.0020069	1.3E-7	0.0020085	1.7	0.06	0.32
IIR-01 9.1	AJP04	Apr. '14	4.186E+9	2.6E+6	8.418E+6	5.3E+3	0.0020111	1.4E-7	0.0020127	3.7	0.07	0.32
IIR-01 10.1	AJP04	Apr. '14	4.268E+9	2.8E+6	8.577E+6	5.7E+3	0.0020096	8.0E-8	0.0020112	3.0	0.04	0.30
IIR-01 11.1	AJP04	Apr. '14	4.158E+9	9.6E+6	8.342E+6	1.9E+4	0.0020063	7.8E-8	0.0020079	1.3	0.04	0.30
IIR-01 12.1	AJP04	Apr. '14	4.029E+9	6.5E+6	8.082E+6	1.3E+4	0.0020062	7.2E-8	0.0020078	1.3	0.04	0.30
IIR-01 13.1	AJP04	Apr. '14	4.276E+9	4.0E+6	8.585E+6	8.0E+3	0.0020076	1.2E-7	0.0020093	2.0	0.06	0.31
IIR-01_14.1	AJP04	Apr. '14	4.187E+9	3.4E+6	8.408E+6	6.8E+3	0.0020082	8.0E-8	0.0020098	2.3	0.04	0.30
IIR-03a_1.1	AJP04	Apr. '14	4.346E+9	8.0E+6	8.744E+6	1.6E+4	0.0020118	1.3E-7	0.0020134	4.1	0.07	0.32
IIR-03a_2.1	AJP04	Apr. '14	4.475E+9	1.4E+7	8.993E+6	2.7E+4	0.0020095	9.7E-8	0.0020112	3.0	0.05	0.30
IIR-03a_3.1	AJP04	Apr. '14	4.336E+9	3.9E+6	8.722E+6	7.8E+3	0.0020118	1.0E-7	0.0020134	4.1	0.05	0.30
IIR-03a_4.1	AJP04	Apr. '14	4.362E+9	4.7E+6	8.780E+6	9.3E+3	0.0020131	1.0E-7	0.0020147	4.8	0.05	0.31
IIR-03a_5.1	AJP04	Apr. '14	4.362E+9	4.7E+6	8.780E+6	9.4E+3	0.0020126	6.3E-8	0.0020142	4.5	0.03	0.29
IIR-03a_6.1	AJP04	Apr. '14	4.422E+9	8.7E+6	8.890E+6	1.7E+4	0.0020102	1.2E-7	0.0020118	3.3	0.06	0.31
IIR-03a_7.1	AJP04	Apr. '14	4.371E+9	7.3E+6	8.797E+6	1.5E+4	0.0020128	9.3E-8	0.0020144	4.6	0.05	0.30
IIR-03a_8.1	AJP04	Apr. '14	4.341E+9	4.4E+6	8.736E+6	8.8E+3	0.0020127	1.3E-7	0.0020143	4.5	0.07	0.32
IIR-03a_9.1	AJP04	Apr. '14	4.374E+9	5.4E+6	8.804E+6	1.1E+4	0.0020125	8.7E-8	0.0020141	4.5	0.04	0.30
IIR-03a_10.1	AJP04	Apr. '14	4.336E+9	1.6E+6	8.725E+6	3.5E+3	0.0020123	1.2E-7	0.0020140	4.4	0.06	0.31
IIR-03a_11.1	AJP04	Apr. '14	4.211E+9	2.6E+6	8.473E+6	5.2E+3	0.0020123	9.4E-8	0.0020139	4.3	0.05	0.30
IIR-03a_13.1	AJP04	Apr. '14	4.101E+9	4.2E+6	8.254E+6	8.3E+3	0.0020126	9.6E-8	0.0020142	4.5	0.05	0.30
IIR-03a_14.1	AJP04	Apr. '14	4.085E+9	4.2E+6	8.221E+6	8.3E+3	0.0020127	1.1E-7	0.0020143	4.6	0.05	0.31
IIR-03a_15.1	AJP04	Apr. '14	4.132E+9	5.0E+6	8.314E+6	1.0E+4	0.0020119	1.3E-7	0.0020135	4.1	0.07	0.32
IIR-03a_16.1	AJP04	Apr. '14	4.181E+9	8.1E+6	8.415E+6	1.6E+4	0.0020125	5.9E-8	0.0020142	4.5	0.03	0.29
IIR-03a_17.1	AJP04	Apr. '14	4.192E+9	1.3E+7	8.434E+6	2.5E+4	0.0020119	1.1E-7	0.0020136	4.2	0.05	0.31
IIR-03a_18.1	AJP04	Apr. '14	4.297E+9	7.1E+6	8.641E+6	1.4E+4	0.0020109	1.6E-7	0.0020126	3.7	0.08	0.33
IIR-13_1.1	AJP04	Apr. '14	4.312E+9	5.0E+6	8.672E+6	1.0E+4	0.0020112	8.1E-8	0.0020128	3.8	0.04	0.30
IIR-13_2.1	AJP04	Apr. '14	4.268E+9	2.7E+6	8.582E+6	5.4E+3	0.0020108	9.3E-8	0.0020125	3.6	0.05	0.30
IIR-13_3.1	AJP04	Apr. '14	4.311E+9	5.7E+6	8.658E+6	1.1E+4	0.0020083	7.0E-8	0.0020099	2.3	0.03	0.30
IIR-13_4.1	AJP04	Apr. '14	4.275E+9	4.0E+6	8.583E+6	8.3E+3	0.0020077	1.2E-7	0.0020094	2.1	0.06	0.31
IIR-13_5.1	AJP04	Apr. '14	4.269E+9	3.0E+6	8.573E+6	6.0E+3	0.0020079	9.2E-8	0.0020096	2.2	0.05	0.30
IIR-13_6.1	AJP04	Apr. '14	4.283E+9	4.1E+6	8.616E+6	8.3E+3	0.0020116	1.0E-7	0.0020132	4.0	0.05	0.31
IIR-13_7.1	AJP04	Apr. '14	4.306E+9	3.1E+6	8.645E+6	6.1E+3	0.0020077	1.3E-7	0.0020093	2.1	0.06	0.31

Appendix C.5. Continued	l
-------------------------	---

Spot Name:	Mount:	Date:	¹⁶ O Measured	¹⁶ O Error	¹⁸ O Measured	¹⁸ O Error	¹⁸ O/ ¹⁶ O Measured	¹⁸ O/ ¹⁶ O Error	¹⁸ O/ ¹⁶ O Corrected	δ ¹⁸ O Corrected	Error (1σ)	Total Error (2σ)
					REYÐA	RÁRTINI	OUR					
IIR-13_8.1	AJP04	Apr. '14	4.295E+9	2.8E+6	8.625E+6	5.5E+3	0.0020083	8.5E-8	0.0020099	2.4	0.04	0.30
IIR-13_9.1	AJP04	Apr. '14	4.321E+9	4.7E+6	8.681E+6	9.6E+3	0.0020089	8.6E-8	0.0020105	2.7	0.04	0.30
IIR-13_10.1	AJP04	Apr. '14	4.315E+9	4.2E+6	8.665E+6	8.3E+3	0.0020080	1.4E-7	0.0020097	2.2	0.07	0.32
IIR-13_11.1	AJP04	Apr. '14	4.340E+9	1.1E+7	8.713E+6	2.2E+4	0.0020078	7.4E-8	0.0020094	2.1	0.04	0.30
IIR-13_12.1	AJP04	Apr. '14	4.294E+9	4.2E+6	8.628E+6	8.3E+3	0.0020093	8.0E-8	0.0020110	2.9	0.04	0.30
IIR-13_13.1	AJP04	Apr. '14	4.299E+9	6.0E+6	8.646E+6	1.2E+4	0.0020110	9.6E-8	0.0020127	3.7	0.05	0.30
IIR-13_14.1	AJP04	Apr. '14	4.294E+9	2.0E+6	8.637E+6	4.2E+3	0.0020115	8.7E-8	0.0020131	3.9	0.04	0.30
IIR-13_15.1	AJP04	Apr. '14	4.296E+9	5.2E+6	8.636E+6	1.0E+4	0.0020100	8.1E-8	0.0020116	3.2	0.04	0.30
IIR-13_16.1	AJP04	Apr. '14	4.231E+9	8.3E+6	8.492E+6	1.7E+4	0.0020073	8.6E-8	0.0020089	1.8	0.04	0.30
IIR-13_17.1	AJP04	Apr. '14	4.241E+9	1.0E+7	8.517E+6	2.1E+4	0.0020082	1.1E-7	0.0020098	2.3	0.05	0.31
IIR-13_18.1	AJP04	Apr. '14	4.276E+9	5.4E+6	8.602E+6	1.1E+4	0.0020117	9.8E-8	0.0020134	4.1	0.05	0.30
IIR-13_19.1	AJP04	Apr. '14	4.249E+9	6.0E+6	8.551E+6	1.2E+4	0.0020123	6.0E-8	0.0020139	4.4	0.03	0.29
IIR-13_20.1	AJP04	Apr. '14	4.289E+9	4.6E+6	8.615E+6	9.3E+3	0.0020085	8.5E-8	0.0020102	2.5	0.04	0.30
					SA	NDFELL						
IISand-01_1.1	AJP03	Nov. '13	1.907E+9	2.2E+6	3.833E+6	4.4E+3	0.0020095	1.5E-7	0.0020111	2.9	0.07	0.68
IISand-01_2.1	AJP03	Nov. '13	1.878E+9	7.3E+5	3.774E+6	1.6E+3	0.0020095	2.6E-7	0.0020111	2.9	0.13	0.71
IISand-01_3.1	AJP03	Nov. '13	1.817E+9	1.4E+6	3.645E+6	3.0E+3	0.0020063	1.8E-7	0.0020079	1.3	0.09	0.69
IISand-01_4.1	AJP03	Nov. '13	1.825E+9	3.4E+6	3.668E+6	7.0E+3	0.0020099	2.3E-7	0.0020115	3.1	0.11	0.70
IISand-01_5.1	AJP03	Nov. '13	1.848E+9	1.1E+6	3.715E+6	2.0E+3	0.0020100	2.7E-7	0.0020116	3.2	0.13	0.72
IISand-01_6.1	AJP03	Nov. '13	1.744E+9	3.3E+5	3.505E+6	7.5E+2	0.0020100	1.9E-7	0.0020116	3.2	0.09	0.69
IISand-01_7.1	AJP03	Nov. '13	1.859E+9	2.1E+6	3.735E+6	4.2E+3	0.0020095	2.1E-7	0.0020111	2.9	0.10	0.70
IISand-01_8.1	AJP03	Nov. '13	1.886E+9	2.6E+6	3.789E+6	5.0E+3	0.0020093	2.1E-7	0.0020110	2.9	0.10	0.70
IISand-01_9.1	AJP03	Nov. '13	1.976E+9	1.4E+6	3.968E+6	2.7E+3	0.0020079	1.7E-7	0.0020095	2.2	0.09	0.69
IISand-01_10.1	AJP03	Nov. '13	1.907E+9	3.0E+6	3.832E+6	6.2E+3	0.0020098	1.9E-7	0.0020114	3.1	0.09	0.69
IISand-01_11.1	AJP02	Nov. '13	1.382E+9	1.6E+6	2.781E+6	3.4E+3	0.0020119	2.9E-7	0.0020137	4.2	0.14	0.74
IISand-01_12.1	AJP02	Nov. '13	1.380E+9	1.5E+6	2.775E+6	3.0E+3	0.0020106	1.5E-7	0.0020123	3.5	0.07	0.69

Appendix C.5. Continued

Spot Name:	Mount:	Date:	¹⁶ O Measured	¹⁶ O Error	¹⁸ O Measured	¹⁸ O Error	¹⁸ O/ ¹⁶ O Measured	¹⁸ O/ ¹⁶ O Error	¹⁸ O/ ¹⁶ O Corrected	δ ¹⁸ O Corrected	Error (1σ)	Total Error (2σ)
					REYÐA	RÁRTINI	DUR					
IIR-13_8.1	AJP04	Apr. '14	4.295E+9	2.8E+6	8.625E+6	5.5E+3	0.0020083	8.5E-8	0.0020099	2.4	0.04	0.30
IIR-13_9.1	AJP04	Apr. '14	4.321E+9	4.7E+6	8.681E+6	9.6E+3	0.0020089	8.6E-8	0.0020105	2.7	0.04	0.30
IIR-13_10.1	AJP04	Apr. '14	4.315E+9	4.2E+6	8.665E+6	8.3E+3	0.0020080	1.4E-7	0.0020097	2.2	0.07	0.32
IIR-13_11.1	AJP04	Apr. '14	4.340E+9	1.1E+7	8.713E+6	2.2E+4	0.0020078	7.4E-8	0.0020094	2.1	0.04	0.30
IIR-13_12.1	AJP04	Apr. '14	4.294E+9	4.2E+6	8.628E+6	8.3E+3	0.0020093	8.0E-8	0.0020110	2.9	0.04	0.30
IIR-13_13.1	AJP04	Apr. '14	4.299E+9	6.0E+6	8.646E+6	1.2E+4	0.0020110	9.6E-8	0.0020127	3.7	0.05	0.30
IIR-13_14.1	AJP04	Apr. '14	4.294E+9	2.0E+6	8.637E+6	4.2E+3	0.0020115	8.7E-8	0.0020131	3.9	0.04	0.30
IIR-13_15.1	AJP04	Apr. '14	4.296E+9	5.2E+6	8.636E+6	1.0E+4	0.0020100	8.1E-8	0.0020116	3.2	0.04	0.30
IIR-13_16.1	AJP04	Apr. '14	4.231E+9	8.3E+6	8.492E+6	1.7E+4	0.0020073	8.6E-8	0.0020089	1.8	0.04	0.30
IIR-13_17.1	AJP04	Apr. '14	4.241E+9	1.0E+7	8.517E+6	2.1E+4	0.0020082	1.1E-7	0.0020098	2.3	0.05	0.31
IIR-13_18.1	AJP04	Apr. '14	4.276E+9	5.4E+6	8.602E+6	1.1E+4	0.0020117	9.8E-8	0.0020134	4.1	0.05	0.30
IIR-13_19.1	AJP04	Apr. '14	4.249E+9	6.0E+6	8.551E+6	1.2E+4	0.0020123	6.0E-8	0.0020139	4.4	0.03	0.29
IIR-13_20.1	AJP04	Apr. '14	4.289E+9	4.6E+6	8.615E+6	9.3E+3	0.0020085	8.5E-8	0.0020102	2.5	0.04	0.30
					SA	NDFELL						
IISand-01_1.1	AJP03	Nov. '13	1.907E+9	2.2E+6	3.833E+6	4.4E+3	0.0020095	1.5E-7	0.0020111	2.9	0.07	0.68
IISand-01_2.1	AJP03	Nov. '13	1.878E+9	7.3E+5	3.774E+6	1.6E+3	0.0020095	2.6E-7	0.0020111	2.9	0.13	0.71
IISand-01_3.1	AJP03	Nov. '13	1.817E+9	1.4E+6	3.645E+6	3.0E+3	0.0020063	1.8E-7	0.0020079	1.3	0.09	0.69
IISand-01_4.1	AJP03	Nov. '13	1.825E+9	3.4E+6	3.668E+6	7.0E+3	0.0020099	2.3E-7	0.0020115	3.1	0.11	0.70
IISand-01_5.1	AJP03	Nov. '13	1.848E+9	1.1E+6	3.715E+6	2.0E+3	0.0020100	2.7E-7	0.0020116	3.2	0.13	0.72
IISand-01_6.1	AJP03	Nov. '13	1.744E+9	3.3E+5	3.505E+6	7.5E+2	0.0020100	1.9E-7	0.0020116	3.2	0.09	0.69
IISand-01_7.1	AJP03	Nov. '13	1.859E+9	2.1E+6	3.735E+6	4.2E+3	0.0020095	2.1E-7	0.0020111	2.9	0.10	0.70
IISand-01_8.1	AJP03	Nov. '13	1.886E+9	2.6E+6	3.789E+6	5.0E+3	0.0020093	2.1E-7	0.0020110	2.9	0.10	0.70
IISand-01_9.1	AJP03	Nov. '13	1.976E+9	1.4E+6	3.968E+6	2.7E+3	0.0020079	1.7E-7	0.0020095	2.2	0.09	0.69
IISand-01_10.1	AJP03	Nov. '13	1.907E+9	3.0E+6	3.832E+6	6.2E+3	0.0020098	1.9E-7	0.0020114	3.1	0.09	0.69
IISand-01_11.1	AJP02	Nov. '13	1.382E+9	1.6E+6	2.781E+6	3.4E+3	0.0020119	2.9E-7	0.0020137	4.2	0.14	0.74
IISand-01_12.1	AJP02	Nov. '13	1.380E+9	1.5E+6	2.775E+6	3.0E+3	0.0020106	1.5E-7	0.0020123	3.5	0.07	0.69

Spot Name	Mount	Total Hf Beam (V)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2SE	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2SE	¹⁷⁸ Hf/ ¹⁷⁷ Hf	2SE	8 _{Hf}	2SE
					SLAUFRUD	ALUR						
IISlau-12_1	AJP01	12.5	0.283170	4.2E-5	0.00175	1.3E-4	0.0512	4.2E-3	1.467179	4.4E-5	13.6	1.5
IISlau-12_2	AJP01	10.6	0.283112	3.0E-5	0.00127	2.9E-5	0.0348	9.3E-4	1.467157	3.5E-5	11.5	1.1
IISlau-12_7	AJP01	11.5	0.283085	5.5E-5	0.00221	6.1E-5	0.0639	2.1E-3	1.467123	4.5E-5	10.6	1.9
IISlau-12_12	AJP03	10.6	0.283147	5.6E-5	0.00273	2.6E-4	0.0865	8.6E-3	1.467155	4.9E-5	12.8	2.0
IISlau-12_13	AJP03	12.0	0.283115	2.8E-5	0.00174	8.3E-5	0.0545	3.0E-3	1.467187	4.2E-5	11.7	1.0
IISlau-12_14.1	AJP03	11.9	0.283086	4.9E-5	0.00241	1.0E-4	0.0742	2.1E-3	1.467101	5.0E-5	10.6	1.7
IISlau-12_15	AJP03	16.1	0.283089	4.0E-5	0.00165	5.3E-5	0.0528	1.2E-3	1.467154	5.3E-5	10.7	1.4
IISlau-12_16	AJP03	12.8	0.283146	3.8E-5	0.00370	3.7E-4	0.1240	1.3E-2	1.467117	3.3E-5	12.8	1.3
IISlau-12_17	AJP03	14.3	0.283148	2.7E-5	0.00177	3.9E-5	0.0560	1.3E-3	1.467168	3.8E-5	12.8	1.0
IISlau-22_1	AJP03	14.2	0.283086	4.3E-5	0.00152	3.0E-5	0.0479	8.5E-4	1.467120	4.7E-5	10.6	1.5
IISlau-22_3	AJP03	13.3	0.283133	3.2E-5	0.00473	1.3E-4	0.1599	2.6E-3	1.467166	3.8E-5	12.3	1.1
IISlau-22_5	AJP03	15.1	0.283105	2.9E-5	0.00115	3.7E-5	0.0367	7.3E-4	1.467166	3.3E-5	11.3	1.0
IISlau-22_6	AJP03	14.6	0.283099	4.8E-5	0.00196	1.2E-4	0.0627	3.3E-3	1.467113	5.0E-5	11.1	1.7
IISlau-22_7	AJP03	11.6	0.283056	4.0E-5	0.00205	1.3E-4	0.0642	3.6E-3	1.467140	4.4E-5	9.6	1.4
IISlau-22_12	AJP02	18.3	0.283135	5.1E-5	0.00081	8.3E-5	0.0245	2.8E-3	1.467235	4.3E-5	12.4	1.8
IISlau-22_14	AJP03	12.8	0.283015	5.4E-5	0.00228	2.4E-4	0.0701	6.2E-3	1.467120	6.0E-5	8.1	1.9
IISlau-22_15	AJP03	13.9	0.283145	3.3E-5	0.00287	2.9E-4	0.0990	1.1E - 2	1.467162	3.7E-5	12.7	1.2
IISlau-25_3.1	AJP04	9.4	0.283115	3.7E-5	0.00159	3.1E-5	0.0519	1.2E-3	1.467130	3.8E-5	11.7	1.3
					VESTURH	IORN						
IIV-03a_2	AJP01	14.6	0.283165	2.6E-5	0.00306	2.2E-4	0.0948	7.4E-3	1.467134	3.4E-5	13.4	0.9
IIV-03a_4	AJP01	18.8	0.283206	4.3E-5	0.00179	9.4E-5	0.0503	2.1E-3	1.467200	5.1E-5	14.9	1.5
IIV-03a_6	AJP01	13.8	0.283184	3.0E-5	0.00246	2.6E-4	0.0748	7.7E-3	1.467182	3.6E-5	14.1	1.1
IIV-03a_8	AJP01	21.9	0.283144	4.3E-5	0.00249	1.8E-4	0.0769	5.4E-3	1.467179	5.4E-5	12.7	1.5
IIV-03a_10	AJP01	12.9	0.283122	3.4E-5	0.00240	8.6E-5	0.0703	2.1E-3	1.467156	3.5E-5	11.9	1.2
IIV-03a_11	AJP01	16.1	0.283129	2.9E-5	0.00192	3.8E-5	0.0607	1.3E-3	1.467152	3.2E-5	12.1	1.0
IIV-03a_12	AJP01	19.7	0.283178	3.2E-5	0.00227	7.4E-5	0.0689	2.4E-3	1.467171	3.0E-5	13.9	1.1
IIV-03a_13	AJP01	16.2	0.283160	3.3E-5	0.00308	2.9E-4	0.0975	9.3E-3	1.467186	3.6E-5	13.2	1.2
IIV-03a_14	AJP01	19.9	0.283153	2.8E-5	0.00233	8.1E-5	0.0713	2.6E-3	1.467148	2.9E-5	13.0	1.0
IIV-03a_19	AJP01	16.0	0.283248	3.7E-5	0.00499	8.6E-4	0.1500	2.6E-2	1.467194	5.3E-5	16.4	1.3

Appendix C.6. Zircon Lu-Hf isotope compositions, measured *in-situ* by LA-MC-ICP-MS

Spot Name	Mount	Total Hf Beam (V)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2SE	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2SE	¹⁷⁸ Hf/ ¹⁷⁷ Hf	2SE	8 _{Hf}	2SE
				VI	ESTURHORN	(Continue	d)					
IIV-15_2.1	AJP04	18.2	0.283137	2.6E-5	0.00167	1.9E-5	0.0475	5.2E-4	1.467161	3.4E-5	12.4	0.9
IIV-15_3.1	AJP04	16.3	0.283156	2.4E-5	0.00104	1.3E-4	0.0300	3.9E-3	1.467172	3.2E-5	13.1	0.8
IIV-15_4.1	AJP04	19.5	0.283147	2.5E-5	0.00058	1.7E-5	0.0168	5.9E-4	1.467167	3.0E-5	12.8	0.9
IIV-15_6.1	AJP04	15.9	0.283090	2.9E-5	0.00097	5.6E-5	0.0276	1.5E-3	1.467160	3.2E-5	10.8	1.0
IIV-15_7.1	AJP04	17.2	0.283090	2.7E-5	0.00065	4.2E-5	0.0180	1.1E -3	1.467140	4.2E-5	10.8	1.0
IIV-15_9.1	AJP04	15.8	0.283148	1.9E-5	0.00092	5.8E-5	0.0249	1.8E-3	1.467147	2.9E-5	12.8	0.7
IIV-15_10.1	AJP04	10.9	0.283171	4.2E-5	0.00061	3.8E-5	0.0174	9.2E-4	1.467182	4.5E-5	13.6	1.5
IIV-15_11.1	AJP04	17.4	0.283126	2.6E-5	0.00061	9.0E-6	0.0174	3.0E-4	1.467163	4.2E-5	12.0	0.9
IIV-15_15.1	AJP04	16.6	0.283117	2.2E-5	0.00074	3.9E-5	0.0206	1.1E-3	1.467156	3.1E-5	11.7	0.8
IIV-15_16.1	AJP04	16.5	0.283128	1.9E-5	0.00079	2.2E-5	0.0219	4.9E-4	1.467165	2.9E-5	12.1	0.7
IIV-15_17.1	AJP04	17.3	0.283127	2.5E-5	0.00043	1.2E-5	0.0117	3.2E-4	1.467160	2.8E-5	12.1	0.9
IIV-15_18.1	AJP04	16.1	0.283131	1.8E-5	0.00104	5.5E-6	0.0264	1.7E-4	1.467146	3.3E-5	12.2	0.6
IIV-15_19.1	AJP04	16.7	0.283119	1.8E-5	0.00084	2.9E-5	0.0230	7.6E-4	1.467161	2.7E-5	11.8	0.6
IIV-15_19.2	AJP04	18.7	0.283136	1.7E-5	0.00048	9.3E-6	0.0131	2.4E-4	1.467168	2.8E-5	12.4	0.6
IIV-16_1	AJP03	15.7	0.283167	3.0E-5	0.00593	2.9E-5	0.1876	3.0E-4	1.467191	3.1E-5	13.5	1.1
IIV-16_2	AJP03	14.0	0.283124	2.9E-5	0.00242	6.5E-5	0.0727	2.0E-3	1.467143	3.4E-5	12.0	1.0
IIV-16_3.1	AJP03	11.7	0.283161	3.9E-5	0.00299	2.2E-4	0.0897	6.6E-3	1.467132	4.9E-5	13.3	1.4
IIV-16_4	AJP03	13.7	0.283115	3.1E-5	0.00148	1.2E-4	0.0427	3.6E-3	1.467169	3.9E-5	11.7	1.1
IIV-16_7	AJP03	12.4	0.283109	3.1E-5	0.00198	1.1E-4	0.0586	3.1E-3	1.467162	4.4E-5	11.4	1.1
IIV-16_9	AJP03	15.2	0.283095	4.4E-5	0.00286	3.0E-4	0.0879	9.6E-3	1.467160	4.1E-5	11.0	1.6
IIV-16_10	AJP03	14.6	0.283159	3.1E-5	0.00117	1.8E-4	0.0344	5.9E-3	1.467143	4.5E-5	13.2	1.1
IIV-16_13	AJP02	15.6	0.283140	2.8E-5	0.00205	9.4E-5	0.0604	3.2E-3	1.467147	3.6E-5	12.5	1.0
					LÝSUSKA	ARĐ						
IILys-07a_12.1	AJP04	6.3	0.283063	5.0E-5	0.00155	1.1E-4	0.0472	3.8E-3	1.467196	4.9E-5	9.8	1.8
IILys-07a_14.1	AJP04	15.2	0.283130	4.4E-5	0.00461	2.0E-4	0.1845	7.8E-3	1.467158	3.8E-5	12.2	1.6
IILys-07a_23.1	AJP04	14.7	0.283117	4.7E-5	0.00613	2.2E-4	0.2346	8.5E-3	1.467181	4.5E-5	11.7	1.7
IILys-07a_24.1	AJP04	13.0	0.283037	4.2E-5	0.00667	5.3E-4	0.2530	1.9E-2	1.467086	4.5E-5	8.9	1.5

Appendix C.6. Continued

Spot Name	Mount	Total Hf Beam (V)	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	2SE	¹⁷⁶ Yb/ ¹⁷⁷ Hf	2SE	¹⁷⁸ Hf/ ¹⁷⁷ Hf	2SE	8 _{Hf}	2SE
					REYÐARÁR	FINDUR						
IIR-13_19.1	AJP04	13.4	0.283127	3.6E-5	0.00177	5.2E-5	0.0504	1.6E-3	1.467159	3.9E-5	12.1	1.3
IIR-13_20.1	AJP04	11.8	0.283082	4.0E-5	0.00175	5.3E-5	0.0522	1.9E-3	1.467131	4.4E-5	10.5	1.4
					SANDFE	ELL						
IISand-01_4	AJP03	14.8	0.283122	3.6E-5	0.00260	1.8E-4	0.0789	4.9E-3	1.467105	4.7E-5	11.9	1.3
IISand-01_5	AJP03	15.1	0.283102	5.3E-5	0.00328	8.6E-4	0.1120	3.2E-2	1.467104	4.6E-5	11.2	1.9
IISand-01_7	AJP03	16.5	0.283153	3.3E-5	0.00212	1.5E-5	0.0647	5.1E-4	1.467123	3.5E-5	13.0	1.2
IISand-01_10	AJP03	16.2	0.283187	3.0E-5	0.00216	2.0E-4	0.0745	7.9E-3	1.467181	2.9E-5	14.2	1.1
IISand-01_11	AJP02	15.4	0.283177	2.3E-5	0.00225	8.2E-5	0.0667	2.6E-3	1.467123	3.1E-5	13.8	0.8
IISand-01_13	AJP02	16.3	0.283174	2.1E-5	0.00156	8.8E-5	0.0448	2.1E-3	1.467192	3.5E-5	13.7	0.7
IISand-01_14	AJP03	16.4	0.283168	5.2E-5	0.00373	2.9E-4	0.1250	1.3E-2	1.467149	4.4E-5	13.5	1.8
IISand-01 15L	AJP03	19.9	0.283220	3.9E-5	0.00256	2.6E-5	0.0802	7.8E-4	1.467198	4.6E-5	15.4	1.4

Appendix C.6. Continued

APPENDIX D

ADDITIONAL DATA NOT DISCUSSED IN THIS DISSERTATION

Sample	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	¹⁷⁸ Hf/ ¹⁷⁷ Hf	2σ	¹⁸⁰ Hf/ ¹⁷⁷ Hf	2σ	٤ _{Hf}	2σ
		Au	isturhorn Inti	rusive (Complex			
IA-NS-2	0.283140	± 7	1.467182	± 11	1.886801	± 26	12.6	± 0.3
IA-NS-4b	0.283141	± 7	1.467173	± 12	1.886785	± 23	12.6	± 0.2
IA-NS-6	0.283161	± 8	1.467184	±16	1.886733	± 32	13.3	± 0.3
IA-NS-7	0.283182	± 6	1.467189	± 10	1.886814	±16	14.0	± 0.2
IA-NS-9	0.283157	± 8	1.467171	± 18	1.887282	± 34	13.2	± 0.3
IA-G-1	0.283138	± 6	1.467179	± 10	1.886861	± 21	12.5	± 0.2
IA-G-3	0.283134	± 8	1.467159	± 14	1.887068	± 28	12.3	± 0.3
IA-G-5	0.283128	± 7	1.467163	±15	1.886663	± 22	12.1	± 0.3
		Sla	ufrudalur Int	rusive	Complex			
IISlau-25	0.283132	± 7	1.467169	± 12	1.886809	± 23	12.3	± 0.2
IISlau-42	0.283133	± 6	1.467177	± 12	1.886804	± 22	12.3	± 0.2
IISlau-22	0.283135	± 6	1.457181	±11	1.886855	± 22	12.4	± 0.2
IISlau-26	0.283133	± 7	1.467181	± 10	1.886892	± 20	12.3	± 0.2
IISlau-12	0.283129	± 6	1.467163	± 10	1.886790	± 18	12.2	± 0.2

Appendix D.1. Whole-rock Hf isotope compositions, measured by Solution MC-ICP-MS

Sample	¹⁴³ Nd/ ¹⁴⁴ Nd	2σ	¹⁴⁵ Nd/ ¹⁴⁴ Nd	2σ	¹⁴⁸ Nd/ ¹⁴⁴ Nd	2σ	¹⁵⁰ Nd/ ¹⁴⁴ Nd	2σ	E _{Nd}	2σ		
Austurhorn Intrusive Complex												
IA-NS-2	0.51298	±9	0.348393	±7	0.242086	±5.7	0.236870	±8.1	6.8	± 0.2		
IA-NS-4b	0.51298	±9	0.348412	± 6	0.241586	±6.0	0.236432	±9.1	6.8	± 0.2		
IA-NS-6	0.51298	± 8	0.348417	± 6	0.241576	±9.0	0.236433	±10.0	6.8	± 0.2		
IA-NS-7	0.51299	± 8	0.348424	± 6	0.241571	±6.1	0.236420	±7.2	7.1	± 0.2		
IA-NS-9	0.51301	±10	0.348422	± 6	0.241555	± 8.0	0.236418	±9.0	7.3	± 0.2		
IA-G-1	0.51300	± 9	0.348414	±7	0.241568	±5.5	0.236430	±8.5	7.3	± 0.2		
IA-G-3	0.51300	± 6	0.348415	± 5	0.241558	±7.0	0.236483	±10.0	7.3	± 0.1		
IA-G-5	0.51301	±10	0.348416	± 6	0.241566	±7.6	0.236415	±10.4	7.4	± 0.2		
Slaufrudalur Intrusive Complex												
IISlau-25	0.51303	± 8	0.348324	±7	0.241580	±4.7	0.236426	±7.5	7.8	± 0.2		
IISlau-42	0.51303	± 8	0.348417	±7	0.241589	±5.7	0.236447	±7.7	7.8	± 0.2		
IISlau-22	0.51303	± 9	0.348420	±7	0.241560	±5.3	0.236415	±7.7	7.8	± 0.2		
IISlau-26	0.51301	± 9	0.348418	± 5	0.241596	±6.4	0.236447	±9.4	7.5	± 0.2		
IISlau-12	0.51303	±11	0.348429	± 8	0.241570	±6.3	0.236430	±10.5	7.9	± 0.2		

Appendix D.2. Whole-rock Nd isotope compositions, measured by Solution MC-ICP-MS

Sample	²⁰⁶ Pb/ ²⁰⁴ Pb	2σ	²⁰⁷ Pb/ ²⁰⁴ Pb	2σ	²⁰⁸ Pb/ ²⁰⁴ Pb	2σ	²⁰⁷ Pb/ ²⁰⁶ Pb	2σ	²⁰⁸ Pb/ ²⁰⁶ Pb	2σ		
Austurhorn Intrusive Complex												
IA-NS-2	18.4630	± 8	15.4795	±9	38.174	±2	0.83841	±1	2.06759	±6		
IA-NS-4b	18.4965	±7	15.4945	±7	38.165	± 2	0.83769	± 1	2.06334	± 5		
IA-NS-7	18.5147	± 9	15.4827	± 9	38.171	± 3	0.83625	±2	2.06165	±7		
IA-NS-9	18.5265	± 6	15.4857	± 5	38.168	± 1	0.83587	± 1	2.06017	± 4		
IA-G-1	18.4495	± 6	15.4796	± 5	38.142	± 2	0.83902	± 1	2.06736	±4		
IA-G-5	18.2859	±7	15.4614	± 6	37.966	± 2	0.84555	± 1	2.07624	± 3		
Slaufrudalur Intrusive Complex												
IISlau-25	18.5526	±6	15.4930	±5	38.255	±1	0.83509	±1	2.06195	±3		
IISlau-42	18.5517	± 6	15.4909	± 5	38.254	± 1	0.83502	± 1	2.06205	±3		
IISlau-22	18.6238	±7	15.4950	±7	38.291	±2	0.83201	± 1	2.05603	±5		
IISlau-26	18.5442	± 5	15.4900	± 3	38.236	± 1	0.83530	± 1	2.06186	± 3		
IISlau-12	18.5307	± 6	15.4915	± 5	38.237	± 1	0.83599	± 1	2.06342	±3		

Appendix D.3. Whole-rock Pb isotope compositions, measured by Solution MC-ICP-MS

REFERENCES

- Anders, E., Grevesse, N., 1989. Abundances of the elements: Meteoritic and solar. *Geochimica et Cosmochimica Acta* 53:197-214.
- Anderson, A.T., Davis, A.M., Lu, F.Q., 2000. Evolution of Bishop Tuff rhyolitic magma based on melt and magnetite inclusions and zoned phenocrysts. *Journal of Petrology* 41, 449-473.
- Arth, J.G., 1976. Behavior of trace-elements during magmatic processes summary of theoretical models and their applications. *Journal of Research of the US Geological Survey* 4, 41-47.
- Bachmann, O., Dungan, M.A., Bussy, F., 2005. Insights into shallow magmatic processes in large silicic magma bodies: the trace element record in the Fish Canyon magma body, Colorado. *Contributions to Mineralogy and Petrology* 149: 338-349.
- Bachmann, O., Bergantz, G.W., 2004. On the origin of crystal-poor rhyolites: Extracted from batholithic crystal mushes. *Journal of Petrology* 45, 1565-1582.
- -, 2008. Rhyolites and their Source Mushes across Tectonic Settings. *Journal of Petrology* 49, 2277-2285.
- Bachmann, O., Dungan, M.A., Bussy, F., 2005. Insights into shallow magmatic processes in large silicic magma bodies: the trace element record in the Fish Canyon magma body, Colorado. *Contributions to Mineralogy and Petrology* 149, 338-349.
- Bacon, C.R., Druitt, T.H., 1988. Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. *Contributions to Mineralogy and Petrology* 98, 224-256.
- Barth, A.P., Wooden, J.L., 2010. Coupled elemental and isotopic analyses of polygenetic zircons from granitic rocks by ion microprobe, with implications for melt evolution and the sources of granitic magmas. *Chemical Geology* 277, 149-159.
- Bea, F., Pereira, M.D., Stroh, A., 1994. Mineral leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). *Chemical Geology* 117, 291-312.
- Belousova, E.A., Griffin, W.L., O'Reilly, S.Y., Fisher, N.I., 2002. Igneous zircon: trace element composition as an indicator of source rock type. *Contributions to Mineralogy and Petrology* 143: 602–622.
- Beswick, A.E., 1965. A Study of the Slaufrudalur Granophyre Intrusion, South-East Iceland [Ph.D. thesis, unpub.]: Imperial College, London, 284 p.
- Bindeman, I.N., Valley, J.W., 2001. Low-delta O-18 rhyolites from Yellowstone: Magmatic evolution based on analyses of zircons and individual phenocrysts. *Journal of Petrology* 42, 1491-1517.

- Bindeman, I., 2006. The secretes of supervolcanoes: Microscopic crystals of volcanic ash are revealing surprising clues about the world's most devastating eruptions. *Scientific American*, 294(**6**): 36-43.
- -, 2008. Oxygen Isotopes in Mantle and Crustal Magmas as Revealed by Single Crystal Analysis. Minerals, Inclusions and Volcanic Processes 69, 445-478.
- Bindeman, I., Fu, B., Kita, N., Valley, J., 2008a. Origin and evolution of Yellowstone silicic magmatism based on ion microprobe analysis of isotopically-zoned zircons. *Journal of Petrology* 49: 163-193.
- Bindeman, I., Gurenko, A., Sigmarsson, O., Chaussidon, M., 2008b. Oxygen isotope heterogeneity and disequilibria of olivine crystals in large volume Holocene basalts from Iceland: Evidence for magmatic digestion and erosion of Pleistocene hyaloclastites. *Geochimica Et Cosmochimica Acta* 72, 4397-4420.
- Bindeman, I.N., Schmitt, A.K., Evans, D.A.D., 2010. Limits of hydrosphere-lithosphere interaction: Origin of the lowest-known delta O-18 silicate rock on Earth in the Paleoproterozoic Karelian rift. *Geology* 38, 631-634.
- Bindeman, I., Gurenko, A., Carley, T., Miller, C., Martin, E., Sigmarsson, O., 2012. Silicic magma petrogenesis in Iceland by remelting of hydrothermally altered crust based on oxygen isotope diversity and disequilibria between zircon and magma with implications for MORB. *Terra Nova* 24, 227-232.
- Bindeman, I.N., Serebryakov, N.S., Schmitt, A.K., Vazquez, J.A., Guan, Y., Azimov, P.Y., Astafiev, B.Y., Palandri, J., Dobrzhinetskaya, L., 2014. Field and microanalytical isotopic investigation of ultradepleted in O-18 Paleoproterozoic "Slushball Earth" rocks from Karelia, Russia. *Geosphere* 10, 308-339.
- Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S., Foudoulis, C., 2004. Improved ²⁰⁶Pb/²³⁸U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chemical *Geology* 205, 115-140.
- Blake, D.H., 1966. Net-veined complex of Austurhorn intrusion southeastern Iceland. *Journal of Geology* 74, 891-907.
- -, 1970. Geology of the Alftafjördur volcano, a Tertiary volcanic centre in South-Eastern Iceland. *Scientia Islandica* 2: 43-63.
- Blichert-Toft, J., Chauvel, C., Albarède, F., 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. *Contributions to Mineralogy and Petrology* 127: 248-260.
- Blundy, J., Wood, B., 1994. Prediction of crystal-melt partition-coefficients from elastic-moduli. *Nature* 372, 452-454.

- -, 2003. Partitioning of trace elements between crystals and melts. *Earth and Planetary Science Letters* 210, 383-397.
- Blundy, J.D., Robinson, J.A.C., Wood, B.J., 1998. Heavy REE are compatible in clinopyroxene on the spinel lherzolite solidus. *Earth and Planetary Science Letters* 160, 493-504.
- Boehnke, P., Watson, E.B., Trail, D., Harrison, T.M., Schmitt, A.K., 2013. Zircon saturation revisited. *Chemical Geology* 351: 324-334.
- Bouvier, A., Vervoort, J.D., Patchett, P.J., 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. *Earth and Planetary Science Letters* 273: 48-57.
- Bryan S.E., Peate I.U., Peate D.W., Self S., Jerram D.A., Mawby M.R., Marsh J.S., Miller J.A., 2010. The largest volcanic eruptions on Earth. *Earth Science Reviews* **102**(3-4): 207-229.
- Burchardt, S., Tanner, D., Krumbholz, M., 2011. The Slaufrudalur pluton, southeast Iceland: An example of shallow magma emplacement by coupled cauldron subsidence and magmatic stoping. *Geological Society of America Bulletin* 124(1-2): 213-227.
- Cargill, H.K., Hawkes, L, Ledeboer, J.A., 1928. The major intrusions of south-eastern Iceland. *Quarterly Journal of the Geological Society of London* 84: 505-539.
- Carley, T.L., Miller, C.F., Wooden, J.L., Bindeman, I.N., Barth, A.P., 2011. Zircon from historic eruptions in Iceland: reconstructing storage and evolution of silicic magmas. *Mineralogy and Petrology* 102, 135-161.
- Carley, T.L., Miller, C.F., Wooden, J.L., Padilla, A.J., Schmitt, A.K., Economos, R.C., Bindeman, I.N., Jordan, B.T., 2014. Iceland is not a magmatic analog for the Hadean: Evidence from the zircon record. *Earth and Planetary Science Letters* 405, 85-97.
- Carmody, R.W., 1991. The Slaufrudalur Stock of Southeast Iceland: Geology, Geochemistry and Petrogenesis [Ph.D. thesis, unpub.]: Johns Hopkins University, Baltimore, 392 p.
- Cavosie, A.J., Valley, J.W., Wilde, S.A., Edinburgh Ion Microprobe, F., 2006. Correlated microanalysis of zircon: Trace element, δ^{18} O, and U-Th-Pb isotopic constraints on the igneous origin of complex > 3900 Ma detrital grains. *Geochimica Et Cosmochimica Acta* 70, 5601-5616.
- Charreteur, G., Tegner, C., Haase, K., 2013. Multiple ways of producing intermediate and silicic rocks within Thingmúli and other Icelandic volcanoes. *Contributions to Mineralogy and Petrology* 166, 471-490.
- Cherniak, D.J., Hanchar, J.M., Watson, E.B., 1997a. Diffusion of tetravalent cations in zircon. *Contributions to Mineralogy and Petrology* 127: 383-390.
- -, 1997b. Rare-earth diffusion in zircon. Chemical Geology 134: 289-301.

Cherniak, D.J., and Watson, E.B., 2000. Pb diffusion in zircon. Chemical Geology 172: 5-24.

- -, 2003. Diffusion in zircon. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), *Zircon*. Reviews in Mineralogy and Geochemistry, vol. 53. Mineralogical Society of America, Washington DC, pp. 113–143.
- -, 2007. Ti diffusion in zircon. Chemical Geology 242: 470-483.
- Claiborne, L.L., Miller, C.F., Walker, B.A., Wooden, J.L., Mazdab, F.K., Bea, F., 2006.
 Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada. *Mineralogical Magazine* 70, 517-543.
- Claiborne, L.L., Miller, C.F., Flanagan, D.M., Clynne, M.A., Wooden, J.L., 2010a. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens. *Geology* 38(11): 1011–1014.
- Claiborne, L.L., Miller, C.F., Wooden, J.L., 2010b. Trace element composition of igneous zircon: a thermal and compositional record of the accumulation and evolution of a large silicic batholith, Spirit Mountain, Nevada. *Contributions to Mineralogy and Petrology* 160: 511– 531.
- Coleman, D.S., Gray, W., Glazner, A.F., 2004. Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne intrusive suite, California. *Geology* 32(5): 433–436.
- Colombini, L.L., Miller, C.F., Gualda, G.A.R., Wooden, J.L., Miller, J.S., 2011. Sphene and zircon in the Highland Range volcanic sequence (Miocene, southern Nevada, USA): elemental partitioning, phase relations, and influence on evolution of silicic magma. *Mineralogy and Petrology* 102, 29-50.
- Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of zircon textures. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), *Zircon*. Reviews in Mineralogy and Geochemistry, vol. 53. Mineralogical Society of America, Washington DC, pp. 469-500.
- Dall'Agnol, R., Ramo, O.T., de Magalhaes, M.S., Macambira, M.J.B., 1999. Petrology of the anorogenic, oxidised Jamon and Musa granites, Amazonian Craton: implications for the genesis of Proterozoic A-type granites. *Lithos* 46, 431-462.
- Darling, J., Storey, C., Hawkesworth, C., 2009. Impact melt sheet zircons and their implications for the Hadean crust. *Geology* 37(10): 927-930.
- Deering, C.D., Bachmann, O., 2010. Trace element indicators of crystal accumulation in silicic igneous rocks. *Earth and Planetary Science Letters* 297, 324-331.
- Drew, D.L., Bindeman, I.N., Watts, K.E., Schmitt, A.K., Fu, B., McCurry, M., 2013. Crustalscale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho. *Earth and Planetary Science Letters* 381, 63-77.
- Duffield, W.A., Bacon, C.R., Delaney, P.T., 1986. Deformation of poorly consolidated sediment during shallow emplacement of basaltic sill, Coso Range, California. *Bulletin of Volcanology* 48: 97-107.
- Eiler, J.M., Gronvold, K., Kitchen, N., 2000. Oxygen isotope evidence for the origin of chemical variations in lavas from Theistareykir volcano in Iceland's northern volcanic zone. *Earth and Planetary Science Letters* 184, 269-286.
- Elders, W.A., Frioleifsson, G.O., Zierenberg, R.A., Pope, E.C., Mortensen, A.K., Guomundsson, A., Lowenstern, J.B., Marks, N.E., Owens, L., Bird, D.K., Reed, M., Olsen, N.J., Schiffman, P., 2011. Origin of a rhyolite that intruded a geothermal well while drilling at the Krafla volcano, Iceland. *Geology* 39, 231-234.
- Elhlou, S., Belousova, E., Griffin, W.L., Pearson, N.J., O'Reilly, S.Y., 2006. Trace element and isotopic composition of GJ red zircon standard by laser ablation. *Geochimica et Cosmochimica Acta* 70(18) Supplement (Abstract)
- Ewart, A., Griffin, W.L., 1994. Application of proton-microprobe data to trace-element partitioning in volcanic-rocks. *Chemical Geology* 117, 251-284.
- Ferry, J.M., Watson, E.B., 2007. New thermodynamic models and revised calibrations for the Tiin-zircon and Zr-in-rutile thermometers. *Contributions to Mineralogy and Petrology* 154: 429–437.
- Fisher, C.M., Hanchar, J.M., Samson, S.D., Dhuime, B., Blichert-Toft, J., Vervoort, J.D., Lam, R., 2011. Synthetic zircon doped with hafnium and rare earth elements: A reference material for in situ hafnium isotope analysis. *Chemical Geology* 286, 32-47.
- Fisher, C.M., Vervoort, J.D., Hanchar, J.M., 2014. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. *Chemical Geology* 363, 125-133.
- Flinter, B.H., 1959. The magnetic separation of some alluvial minerals in Malaya. *The American Mineralogist* 44(7-8): 738-751.
- Fohey-Breting, N., Barth, A., Wooden, J., Mazdab, F., Carter, C., Schermer, E., 2010.
 Relationship of voluminous ignimbrites to continental arc plutons: Petrology of Jurassic ignimbrites and contemporaneous plutons in southern California. *Journal of Volcanology and Geothermal Research* 189: 1–11.
- Frost, T.J. Mahood, G.A., 1987. Field, chemical, and physical constraints on mafic-felsic magma interaction in the Lamarck Granodiorite, Sierra Nevada, California. *Geological Society of America Bulletin* 99: 272-291.

- Fu, B., Page, F.Z., Cavosie, A.J., Fournelle, J., Kita, N.T., Lackey, J.S., Wilde, S.A., Valley, J.W., 2008. Ti-in-zircon thermometry: applications and limitations. *Contributions to Mineralogy and Petrology* 156: 197-215.
- Furman, T., Meyer, P.S., Frey, F.A., 1992a. Evolution of Icelandic central volcanoes: evidence from the Austurhorn intrusion, southeastern Iceland. *Bulletin of Volcanology* 55: 45-62.
- Furman, T., Frey, F.A., Meyer, P.S., 1992b. Petrogenesis of evolved basalts and rhyolites at Austurhorn, southeastern Iceland: the role of fractional crystallization. *Journal of Petrology* 33: 1405-1445.
- Gaetani, G.A., Grove, T.L., 1995. Partitioning of rare-earth elements between clinopyroxene and silicate melt crystal-chemical controls. *Geochimica Et Cosmochimica Acta* 59, 1951-1962.
- Gale, N.H., Moorbath, S., Simons, J., Walker, G.P.L., 1966. K-Ar ages of acid intrusive rocks from Iceland. *Earth and Planetary Science Letters* 1: 284-288.
- Genske, F.S., Beier, C., Haase, K.M., Turner, S.P., Krumm, S., Brandl, P.A., 2013. Oxygen isotopes in the Azores islands: Crustal assimilation recorded in olivine. *Geology* 41, 491-494.
- Ghiorso, M.S., Gualda, G.A.R., 2013. A method for estimating the activity of titania in magmatic liquids from the compositions of coexisting rhombohedral and cubic iron–titanium oxides. *Contributions to Mineralogy and Petrology* 165: 73-81.
- Glazner, A.F., Bartley, J.M., Coleman, D.S., Gray, W., Taylor, R.Z., 2004. Are plutons assembled over millions of years by amalgamation from small magma chambers? *GSA Today* 14: 4–11.
- Glazner, A.F., Coleman, D.S., Bartley, J.M., 2008. The tenuous connection between high-silica rhyolites and granodiorite plutons. *Geology* 36, 183-186.
- Griffin, W.L., Powell, W.J., Pearson, N.J., O'Reilly, S.Y., 2008. Appendix A2; GLITTER; data reduction software for laser ablation ICP-MS. Short Course Series Mineralogical Association of Canada, 40, 308-311.
- Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hanghøj, K., Schwartz, J.J., 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. *Geology* 35, 643-646.
- Gualda, G.A.R., Cook, D.L., Chopra, R., Qin, L.P., Anderson, A.T., Rivers, M., 2004. Fragmentation, nucleation and migration of crystals and bubbles in the Bishop Tuff rhyolitic magma. *Transactions of the Royal Society of Edinburgh-Earth Sciences* 95, 375-390.
- Gualda, G.A.R., Pamukcu, A.S., Claiborne, L.L., Rivers, M.L., 2010. Quantitative 3D petrography using X-ray tomography 3: Documenting accessory phases with differential absorption tomography. *Geosphere* 6, 782-792.

- Gunnarsson, B., Marsh, B.D., Taylor, H.P., 1998. Generation of Icelandic rhyolites: silicic lavas from the Torfajokull central volcano. *Journal of Volcanology and Geothermal Research* 83, 1-45.
- Gurenko, A.A., Bindeman, I.N., Sigurdsson, I.A., 2015. To the origin of Icelandic rhyolites: insights from partially melted leucocratic xenoliths. *Contributions to Mineralogy and Petrology* 169: 49.
- Guppy, E.M., Hawkes, L., 1925. A composite dyke from Eastern Iceland. *Quarterly Journal of the Geological Society* 81: 325-340.
- Halliday, A.N., Davidson, J.P., Hildreth, W., Holden, P., 1991. Modeling the petrogenesis of high Rb/Sr silicic magmas. *Chemical Geology* 92, 107-114.
- Hanchar, J.M., Miller, C.F., 1993. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images - implications for interpretation of complex crustal histories. *Chemical Geology* 110, 1-13.
- Harper, B.E., Miller, C.F., Koteas, G.C., Cates, N.L., Wiebe, R.A., Lazzareschi, D.S., Cribb, J.W., 2004. Granites, dynamic magma chamber processes and pluton construction: the Aztec Wash pluton, Eldorado Mountains, Nevada, USA. *Transactions of the Royal Society of Edinburgh: Earth Sciences* 95: 277–295.
- Hattori, K., Muehlenbachs, K., 1982. Oxygen isotope ratios of the Icelandic crust. *Journal of Geophysical Research* 87, 6559-6565.
- Hawkes, L., Hawkes, L.K., 1932. The Sandfell laccolith and 'Dome of Elevation'. *Quarterly Journal of the Geologic Society* 89: 379-400.
- Hawkesworth, C.J. Kemp, A.I.S., 2006. Evolution of the continental crust. *Nature* (Reviews) 443: 811-817.
- Hayden, L.A., Watson, E.B., Wark, D.A., 2008. A thermobarometer for sphene (titanite). *Contributions to Mineralogy and Petrology* 155: 529-540.
- Hollis, J.A., Van Kranendonk, M.J., Cross, A.J., Kirkland, C.L., Armstrong, R.A., Allen, C.M., 2014. Low delta O-18 zircon grains in the Neoarchean Rum Jungle Complex, northern Australia: An indicator of emergent continental crust. *Lithosphere* 6, 17-25.
- Hoskin, P.W.O., Ireland, T.R., 2000. Rare earth element chemstry of zircon and its use as a provenance indicator. *Geology* 28(7): 627-630.
- -, 2004. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. *Geochimica et Cosmochimica Acta* 69(**3**): 637-648.
- Hoskin, P.W.O., Schaltegger, U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), *Zircon*. Reviews in Mineralogy and Geochemistry, vol. 53. Mineralogical Society of America, Washington DC, pp. 27–62.

- Jónasson, K., 2007. Silicic volcanism in Iceland: Composition and distribution within the active volcanic zones. *Journal of Geodynamics* 43, 101-117.
- Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., Paterson, B.A., Woodhead, J.D., Hergt, J.M., Gray, C.M., Whitehouse, M.J., 2007. Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. *Science* 315(5814): 980-983.
- Kinney, P.D., Maas, R., 2003. Lu-Hf and Sm-Nd isotope systems in zircon. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. Reviews in Mineralogy and Geochemistry, vol. 53. Mineralogical Society of America, Washington DC, pp. 327–385.
- Kurosawa, M., Jackson, S.E., Sueno, S., 2002. Trace element analysis of NIST SRM 614 and 616 glass reference materials by laser ablation microprobe-inductively coupled plasma-mass spectrometry. *Geostandards Newsletter-the Journal of Geostandards and Geoanalysis* 26, 75-84.
- Leeman, W.P., Phelps, D.W., 1981. Partitioning of rare-earths and other trace-elements between sanidine and coexisting volcanic glass. *Journal of Geophysical Research* 86, 193-199.
- Lipman, P.W., 2007. Incremental assembly and prolonged consolidation of Cordilleran magma chambers: Evidence from the Southern Rocky Mountain volcanic field. *Geosphere* 3(1): 42-70.
- Loomis, T.P., Welber, P.W., 1982. Crystallization processes in the Rocky Hill granodiorite pluton, California: an interpretation based on compositional zoning of plagioclase. *Contributions to Mineralogy and Petrology* 81: 230–239.
- Ludwig, K.R., 2008. Unpublished SQUID 2 data reduction program. Berkeley Geochronology Center: http://www.bgc.org/isoplot_etc/squid.html.
- Luhr, J.F., Carmichael, I.S.E., 1980. Colima Volcanic Complex, Mexico .1. Post-caldera andesites from Volcan Colima. *Contributions to Mineralogy and Petrology* 71, 343-372.
- Maclennan, J., McKenzie, D., Grönvold, K., Shimizu, N., Eiler, J.M., Kitchen, N., 2003. Melt mixing and crystallization under Theistareykir, northeast Iceland. *Geochemistry Geophysics Geosystems* 4, 40.
- Mahon, K.I., 1996. The New "York" Regression: Application of an Improved Statistical Method to Geochemistry. *International Geology Review* 38: 293-303.
- Mahood, G., Hildreth, W., 1983. Large partition-coefficients for trace-elements in high-silica rhyolites. *Geochimica Et Cosmochimica Acta* 47, 11-30.
- Marsh, B.D., Gunnarsson, B., Congdon, R., Carmody, R., 1991. Hawaiian basalt and Icelandic rhyolite: indicators of differentiation and partial melting. *Geologische Rundschau* 80, 481-510.
- Marsh, B.D., 2006. Dynamics of magmatic systems. *Elements* 2: 287-292.

- Marshall, L.A., Sparks, R.S.J., 1984. Origin of some mixed magma net-veined ring intrusions. *Journal of the Geological Society of London* 141: 171-182.
- Martin, E., Sigmarsson, O., 2005. Trondhjemitic and granitic melts formed by fractional crystallization of an olivine tholeiite from Reykjanes Peninsula, Iceland. *Geological Magazine* 142, 651-658.
- -, 2007. Crustal thermal state and origin of silicic magma in Iceland: the case of Torfajökull, Ljósufjöll and Snaefellsjökull volcanoes. *Contributions to Mineralogy and Petrology* 153, 593-605.
- -, 2010. Thirteen million years of silicic magma production in Iceland: Links between petrogenesis and tectonic settings. *Lithos* 116, 129-144.
- Martin, E., Paquette, J.L., Bosse, V., Ruffet, G., Tiepolo, M., Sigmarsson, O., 2011. Geodynamics of rift-plume interaction in Iceland as constrained by new ⁴⁰Ar/³⁹Ar and in situ U-Pb zircon ages. *Earth and Planetary Science Letters* 311, 28-38.
- Mattson, S.R., Vogel, T.A., Wilband, J.T., 1986. Petrochemistry of the silicic-mafic complexes at Vesturhorn and Austurhorn, Iceland: evidence for zoned stratified magma. *Journal of Volcanology and Geothermal Research* 28, 197-223.
- Mazdab, F.K., Wooden, J.L., 2006. Trace element analysis in zircon by ion microprobe (SHRIMP-RG): Technique and applications. *Geochimica et Cosmochimica Acta* 70(18): A405-A405.
- McDowell, S.M., Miller, C.F., Mundil, R., Ferguson, C.A., Wooden, J.L., 2014. Zircon evidence for a ~200 k.y. supereruption-related thermal flare-up in the Miocene southern Black Mountains, western Arizona, USA. *Contributions to Mineralogy and Petrology* 168: 1031.
- Michael, P.J., 1983. Chemical differentiation of the Bishop Tuff and other high-silica magmas through crystallization processes. *Geology* 11, 31-34.
- -, 1988. Partition coefficients for rare-Earth elements in mafic minerals of high silica rhyolites the importance of accessory mineral inclusions. *Geochimica Et Cosmochimica Acta* 52, 275-282.
- Miller, C.F., Mittlefehldt, D.W., 1984. Extreme fractionation in felsic magma chambers a product of liquid-state diffusion or fractional crystallization? *Earth and Planetary Science Letters* 68, 151-158.
- Miller, C.F., Wark, D.A., 2008. Supervolcanoes and their explosive supereruptions. *Elements* 4: 11-16.
- Moorbath, S., Sigurdsson, H., Goodwin, R., 1968. K-Ar ages of the oldest exposed rocks in Iceland. *Earth and Planetary Science Letters* 4: 197-205.

- Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.J., Miller, J.S., Vroon, P.Z., 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. *Chemical Geology* 255: 231-235.
- Muehlenbachs, K., Anderson, A.T., Sigvaldason, G.E., 1974. Low-O¹⁸ basalts from Iceland. *Geochimica Et Cosmochimica Acta* 38(4), 577-588.
- Nagasawa, H., 1970. Rare earth concentrations in zircons and apatites and their host dacites and granites. *Earth and Planetary Science Letters* 9, 359-&.
- Nash, W.P., Crecraft, H.R., 1985. Partition coefficients for trace-elements in silicic magmas. *Geochimica Et Cosmochimica Acta* 49, 2309-2322.
- Onuma, N., Higuchi, H., Wakita, H., Nagasawa, H., 1968. Trace element partition between 2 pyroxenes and host lava. *Earth and Planetary Science Letters* 5, 47-&.
- Padilla, A.J., Miller, C.F., Bindeman, I.N., Economos, R.C., Carley, T.L., Banik, T.J., Schmitt, A.K., 2014. Generating the world's lowest magmatic zircon δ¹⁸O: Melting of intensely hydrothermally altered sources at Austurhorn Intrusive Complex, SE Iceland. *Geological Society of America Abstracts with Programs* Vol. 46, No. 6, p.199 (Abstract)
- Padilla, A.J., Miller, C.F., Carley, T.L., Economos, R.C., Schmitt, A.K., Coble, M.A., Wooden, J.L., Fisher, C.M., Hanchar, J.M., (*in review*). Elucidating the magmatic history of the Austurhorn Silicic Intrusive Complex (SE Iceland) using zircon elemental and isotopic geochemistry and geochronology. *Submitted to Contributions to Mineralogy and Petrology*.
- Pamukcu, A.S., Gualda, G.A.R., Anderson, A.T., 2012. Crystallization stages of the Bishop Tuff magma body recorded in crystal textures in pumice clasts. *Journal of Petrology* 53(3): 589-609.
- Pamukcu, A.S., Carley, T.L., Gualda, G.A.R., Miller, C.F., Ferguson, C.A., 2013. The Evolution of the Peach Spring Giant Magma Body: Evidence from Accessory Mineral Textures and Compositions, Bulk Pumice and Glass Geochemistry, and Rhyolite-MELTS Modeling. *Journal of Petrology* 54, 1109-1148.
- Pamukcu, A.S., Gualda, G.A.R., Ghiorso, M.S., Miller, C.F., McCracken, R.G., 2015. Phaseequilibrium geobarometers for silicic rocks based on rhyolite-MELTS-Part 3: Application to the Peach Spring Tuff (Arizona-California-Nevada, USA). *Contributions to Mineralogy and Petrology* 169, 17.
- Patchett, P.J., Tatsumoto, M., 1980. A routine high-precision method for Lu-Hf isotope geochemistry and chronology. *Contributions to Mineralogy and Petrology* 75: 263-267.
- Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R., Chenery, S.P., 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. *Geostandards Newsletter-the Journal of Geostandards and Geoanalysis* 21, 115-144.

- Peate, D.W., Breddam, K., Barker, J.A., Kurz, M.D., Barker, A.K., Prestvik, T., Grassineau, N., Skovgaard, A.C., 2010. Compositional characteristics and spatial distribution of enriched Icelandic mantle components. *Journal of Petrology* 51(7): 1447-1475.
- Pope, E.C., Bird, D.K., Arnorsson, S., 2013. Evolution of low-O-18 Icelandic crust. *Earth and Planetary Science Letters* 374, 47-59.
- Prowatke, S., Klemme, S., 2006. Rare earth element partitioning between titanite and silicate melts: Henry's law revisited. *Geochimica Et Cosmochimica Acta* 70, 4997-5012.
- Rampino, M.R., Ambrose, S.H., 2000. Volcanic winter in the Garden of Eden: the Toba supereruption and the late Pleistocene human population crash. *Geological Society of America Special Papers* 345: 71-82.
- Reimink, J.R., Chacko, T., Stern, R.A., Heaman, L.M., 2014. Earth's earliest evolved crust generated in an Iceland-like setting. *Nature Geoscience* 7, 529-533.
- Robinson, D.M., Miller, C.F., 1999. Record of magma chamber processes preserved in accessory mineral assemblages, Aztec Wash pluton, Nevada. *American Mineralogist* 84: 1346-1353.

Robock, A., 2002. The climatic aftermath. Science 295: 1242-1244.

- Roobol, M.J., 1974. The geology of the Vesturhorn Intrusion, SE Iceland. *Geological Magazine* 111(4): 273-368.
- Rosenblum, S., 1958. Magnetic susceptibilities of minerals in the Frantz isodynamic magnetic separator. *The American Mineralogist* 43(1-2): 170-173.
- Ross, J.G., Mussett, A.E., 1976. ⁴⁰Ar/³⁹Ar dates for spreading rates in eastern Iceland. *Nature* 259(5538): 36-38.
- Ruprecht, P., Bachmann, O., 2010. Pre-eruptive reheating during magma mixing at Quizapu volcano and the implications for the explosiveness of silicic arc volcanoes. *Geology* 38(10): 919-922.
- Rudnick, R.L., 1995. Making continental crust. Nature (Reviews) 378:571-578.
- Sano, Y., Terada, K., Fukuoka, T., 2002. High mass resolution ion microprobe analysis of rare earth elements in silicate glass, apatite and zircon: lack of matrix dependency. *Chemical Geology* 184, 217-230.
- Schattel, N., Portnyagin, M., Golowin, R., Hoernle, K., Bindeman, I., 2014. Contrasting conditions of rift and off-rift silicic magma origin on Iceland. *Geophysical Research Letters* 41, 5813-5820.
- Schnetzler, C.C., Philpotts, J.A., 1970. Partition coefficients of rare-earth elements between igneous matrix material and rock-forming mineral phenocrysts-2. *Geochimica Et Cosmochimica Acta* 34, 331.

- Severs, M.J., Beard, J.S., Fedele, L., Hanchar, J.M., Mutchler, S.R., Bodnar, R.J., 2009. Partitioning behavior of trace elements between dacitic melt and plagioclase, orthopyroxene, and clinopyroxene based on laser ablation ICPMS analysis of silicate melt inclusions. *Geochimica Et Cosmochimica Acta* 73, 2123-2141.
- Shane, P., Smith, V.C., Nairn, I., 2008. Millenial timescale resolution of rhyolite magma recharge at Tarawera volcano: insights from quartz chemistry and melt inclusions. *Contributions to Mineralogy and Petrology* 156: 397-411.
- Shannon, R.D., 1976. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. *Acta Crystallographica* (1976), A32, 751-767.
- Sigmarsson, O., Hémond, C., Condomines, M., Fourcade, S., Oskarsson, N., 1991. Origin of silicic magma in Iceland revealed by Th isotopes. *Geology* 19, 621-624.
- Sigmarsson, O., Steinthórsson, S., 2007. Origin of Icelandic basalts: A review of their petrology and geochemistry. *Journal of Geodynamics* 43, 87-100.
- Sisson, T.W., 1994. Hornblende-melt trace-element partitioning measured by ion microprobe. *Chemical Geology* 117, 331-344.
- Sparks, S.R.J., Sigurdsson, H., Wilson, L., 1977. Magma mixing: a mechanism for triggering acid explosive eruptions. *Nature* 267: 315-318.
- Stix, J., Gorton, M.P., 1990. Variations in trace element partition coefficients in sanidine in the Cerro Toledo rhyolite, Jemez Mountains, New Mexico: effects of composition, temperature, and volatiles. *Geochimica Et Cosmochimica Acta* 54, 2697-2708.
- Streck, M.J., 2002. Partial melting to produce high-silica rhyolites of a young bimodal suite: compositional constraints among rhyolites, basalts, and metamorphic xenoliths from the Harney Basin, Oregon. *International Journal of Earth Sciences* 91, 583-593.
- Streck, M.J., Grunder, A.L., 1997. Compositional gradients and gaps in high-silica rhyolites of the Rattlesnake Tuff, Oregon. *Journal of Petrology* 38, 133-163.
- Thirlwall, M.F., Gee, M.A.M., Lowry, D., Mattey, D.P., Murton, B.J., Taylor, R.N., 2006. Low δ¹⁸O in the Icelandic mantle and its origins: Evidence from Reyjanes Ridge and Icelandic lavas. *Geochimica Et Cosmochimica Acta* 70, 993-1019.
- Thorarinsson, S.B., Tegner, C., 2009. Magma chamber processes in central volcanic systems of Iceland: constraints from layered gabbro of the Austurhorn intrusive complex. *Contributions to Mineralogy and Petrology* 158: 223-244.
- Thordarson, T., Self, S., 2003. Atmospheric and environmental effects of the 1783–1784 Laki eruption: A review and reassessment. *Journal of Geophysical Research* 108(**D1**): 411.
- Thordarson, T., Larsen, G., 2007. Volcanism in Iceland in historical time: Volcano types, eruption styles and eruptive history. *Journal of Geodynamics* 43, 118-152.

- Trail, D., Mojzsis, S.J., Harrison, T.M., Schmitt, A.K., Watson, E.B., Young, E.D., 2007. Constraints on Hadean zircon protoliths from oxygen isotopes, Ti-thermometry, and rare earth elements. *Geochemistry Geophysics Geosystems* 8, 22.
- Trail, D., Watson, E.B., Tailby, N.D., 2011. The oxidation state of Hadean magmas and implications for early Earth's atmosphere. *Nature* 480, 79-U238.
- -, 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. *Geochimica Et Cosmochimica Acta* 97, 70-87.
- Trail, D., Tailby, N.D., Lanzirotti, A., Newville, M., Thomas, J.B., Watson, E.B., 2015. Redox evolution of silicic magmas: Insights from XANES measurements of Ce valence in Bishop Tuff zircons. *Chemical Geology* 402, 77-88.
- Troll, V.R., Sachs, P.M., Schmincke, H.U., Sumita, M., 2003. The REE-Ti mineral chevkinite in comenditic magmas from Gran Canaria, Spain: a SYXRF-probe study. *Contributions to Mineralogy and Petrology* 145, 730-741.
- Upton, B.G.J., Wright, J.B., 1961. Intrusions of Gabbro and Graonphyre in the Snaefellsness, Western Iceland. *Geological magazine* vol. XCVIII (6): 488-492.
- Valley, J.W., Kinny, P.D., Schulze, D.J., Spicuzza, M.J., 1998. Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. *Contributions to Mineralogy and Petrology* 133, 1-11.
- Valley, J.W., 2003. Oxygen isotopes in zircon. In: Hanchar, J.M., Hoskin, P.W.O. (Eds.), Zircon. Reviews in Mineralogy and Geochemistry, vol. 53. Mineralogical Society of America, Washington DC, pp. 343-385.
- Vernon, R.H., 1984. Microgranitoid enclaves in granites globules of hybrid magma quenched in a plutonic environment. *Nature* 309(**5967**): 438-439.
- Walker, B.A. Jr., Miller, C.F., Claiborne, L.L., Wooden, J.L., Miller, J.S., 2007. Geology and geochronology of the Spirit Mountain batholith, southern Nevada: Implications for timescales and physical processes of batholith construction. *Journal of Volcanology and Geothermal Research* 167: 239-262.
- Walker, G.P.L., 1960. Zeolite zones and dike distribution in relation to the structure of the basalts of eastern Iceland. *Journal of Geology* 68: 515-527.
- -, 1963. The Breiddalur central volcano, eastern Iceland. *Quaternary Journal of the Geological Society of London* 119: 29-63.
- -, 1964. Geological investigations in eastern Iceland. Bulletin of Volcanology 27: 1-15.
- -, 1966. Acid volcanic rocks in Iceland. Bulletin of Volcanology 29: 375-402.

- Walker, G.P.L., Skelhorn, P.R., 1966. Some associations of acid and basic igneous rocks. *Earth-Science Reviews* 2: 93-109.
- Wark, D.A., Miller, C.F., 1993. Accessory mineral behavior during differentiation of a granite suite: monazite, xenotime and zircon in the Sweetwater Wash pluton, Southeastern California, USA. *Chemical Geology* 110, 49-67.
- Wark, D.A., Hildreth, W., Spear, F.S., Cherniak, D.J., Watson, E.B., 2007. Pre-eruption recharge of the Bishop magma system. *Geology* 35(3): 235-238.
- Watson, E.B., 1976. Two-liquid partition coefficients: experimental data and geochemical implications. *Contributions to Mineralogy and Petrology* 56, 119-134.
- -, 1980. Some experimentally determined zircon-liquid partition coefficients for the rare earth elements. *Geochimica Et Cosmochimica Acta* 44, 895-897.
- Watson, E.B., Cherniak, D.J., 1997. Oxygen diffusion in zircon. *Earth & Planetary Science Letters* 148(**3-4**): 527-544.
- Watson, E.B., Harrison, T.M., 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. *Science* 308(5723): 841-844.
- Watson, E.B., Wark, D.A., Thomas, J.B., 2006. Crystallization thermometers for zircon and rutile. *Contributions to Mineralogy and Petrology* 151: 413-433.
- Watts, K., Leeman, W., Bindeman, I., Larson, P., 2010. Supereruptions of the Snake River Plain: Two-stage derivation of low-180 rhyolites from normal-180 crust as constrained by Archean xenoliths. *Geology* 38: 503-506.
- Wiebe, R.A., Collins, W.J., 1998. Depositional features and stratigraphic sections in granitic plutons: implications for the emplacement and crystallization of granitic magma. *Journal of Structural Geology* 20(9/10): 1273-1289.
- Wiebe, R.A., Blair, K.D., Hawkins, D.P. Sabine, C.P., 2002. Mafic injections, in situ hybridization, and crystal accumulation in the Pyramid Peak granite, California. *Geological Society of America Bulletin* 114: 909–20.
- Wiebe, R.A., Hawkins, D.P., 2004. Multiple replenishments in an evolving silicic magma chamber: the Vinalhaven intrusive complex, Maine, USA. *Geochimica et Cosmochimica Acta* 68(11S): A672.
- Wiebe, R.A., Manon, M.R., Hawkins, D.P., McDonough, W.F., 2004. Late-stage mafic injection and thermal rejuvenation of the Vinalhaven Granite, Coastal Maine. *Journal of Petrology* 45(11): 2133-2153.
- Wiebe, R.A., Wark, D.A., Hawkins, D.P., 2007. Insights from quartz cathodoluminescence zoning into crystallization of the Vinalhaven granite, coastal Maine. *Contributions to Mineralogy and Petrology* 154: 439-453.

- Wones, D.R., 1989. Significance of the assemblage titanite + magnetite + quartz in granitic rocks. *American Mineralogist* 74, 744-749.
- Wood., B.J., Blundy, J.D., 2001. The effect of cation charge on crystal-melt partitioning of trace elements. *Earth & Planetary Science Letters* 188: 59-71.
- Woodhead, J.D., Hergt, J.M., 2005. A preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. *Geostandards and Geoanalytical Research* 29(2): 183-195.
- Wotzlaw, J.F., Bindeman, I.N., Schaltegger, U., Brooks, C.K., Naslund, H.R., 2012. Highresolution insights into episodes of crystallization, hydrothermal alteration and remelting in the Skaergaard intrusive complex. *Earth and Planetary Science Letters* 355, 199-212.
- Zellmer, G.F., Rubin, K.H., Grönvold, K., Jurado-Chichay, Z., 2008. On the recent bimodal magmatic processes and their rates in the Torfajökull-Veidivötn area, Iceland. *Earth and Planetary Science Letters* 269, 387-397.
- Zheng, Y.F., 1993. Calculation of oxygen isotope fractionation in anhydrous silicate minerals. *Geochimica Et Cosmochimica Acta* 57, 1079-1091.
- Zheng, Y.F., Wu, Y.B., Chen, F.K., Gong, B., Li, L., Zhao, Z.F., 2004. Zircon U-Pb and oxygen isotope evidence for a large-scale O-18 depletion event in igneous rocks during the neoproterozoic. *Geochimica Et Cosmochimica Acta* 68, 4145-4165.