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INTRODUCTION 

Breast cancer severely threats women’s health worldwide. In US, breast cancer is 

diagnosed in one in eight women in their lifetime and breast cancer ranks the second cancer-

caused death for women after lung cancer [1]. It is estimated that, 231,840 invasive breast cancer 

cases will be diagnosed for 2015, which accounts for 29% of all cancers in women [1]. Despite 

of an overall favorable prognosis, the risk of breast cancer recurrence persists and can be high 

after 10 years from initial diagnosis. It is well recognized that breast cancer is a complex group 

of diseases with considerable inter-individual variability in prognosis. Understanding related 

prognostic factors and being able to more accurately predict outcomes of breast cancer would not 

only benefit breast cancer survivors and health care providers, but also have a major impact on 

public health policy development.  

 

1. An accurate and reliable prognostic model is essential for decision making in breast cancer 

treatment. 

Accurate prediction of breast cancer outcome facilitates the development of personalized 

treatment, reduces unnecessary adjuvant treatments, and results in effective and more precise 

decision making for both clinicians and patients. A reliable prediction model will be helpful 

when the patients and physicians need to decide whether certain adjuvant treatment and/or 

increasing soy intake after the initial surgery will be beneficial. If survival outcomes are likely to 

be significantly improved, then the benefit from the treatment and/or diet/lifestyle modification 

may outweigh the potential harm. On the other hand, if there is very little improvement in 

survival outcomes from interventions, the patient may decide not to go through them to avoid the 

possible side effects and toxicity. 
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For a long time, physicians determined the patients’ recurrence chance and mortality 

solely based on their knowledge and experience with pathological factors including tumor size, 

tumor grade and lymph node status [2]. Patients may suffer from many side effects and toxicity 

from adjuvant treatments while the likelihood of improving their prognosis remains low, let 

alone quality of life [3]. Prognostic models greatly facilitate patients’ and physicians’ decision-

making in clinical practice. With better prognostic models, we can improve the accuracy of 

patient’s prognosis, weigh the potential benefits and risks of adjuvant treatment, and tailor 

adjuvant treatment based on predictive factors, especially for patients with invasive, early-stage 

breast cancer. 

 

2. Currently available prognostic tools and models in breast cancer. 

Many prognostic models and tools are developed to estimate survival of individual breast 

cancer patient, but very few accomplished sufficient reliability and generalizability for clinical 

use. The three most well established prognostic indexes and models are the Nottingham 

Prognostic Index (NPI), Adjuvant! and Predict [4]. 

Nottingham Prognostic Index is a prognostic scoring system developed with the 

Nottingham dataset [5]. It integrates tumor size, tumor grade and lymph node status information 

and categorizes patients into three groups with distinctive survival probabilities (low risk, 

intermediate risk and high risk) [5]. NPI has been validated with another dataset from 

Nottingham [6]. In 2009, NPI was improved to provide accurate individual estimate for survival 

probability in addition to prognostic scores [7]. 

Adjuvant! Online (http://www.adjuvantonline.com) is a web-based prognosis tool based 

on data from US Surveillance, Epidemiology & End Results Registry (www.seer.cancer.gov) [3, 

http://www.adjuvantonline.com/
http://www.seer.cancer.gov/
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7-10]. Adjuvant! determines 10-year recurrence and survival estimates based on information of 

age, tumor grade, tumor size, lymph node status, and estrogen receptor status [8]. Meanwhile, 

Adjuvant! calculates the efficacy of adjuvant treatment for each individual patient. Adjuvant! 

was shown accurate in the Dutch population during years 1987 and 1998 in estimation of overall 

survival (OS) and breast-cancer specific survival (BCSS) [7]. Furthermore, Adjuvant! was 

validated with data from British Columbia Cancer Agency (BCCS) and the United Kingdom [8, 

11]. However, the prediction of efficacy of adjuvant systemic treatment was overestimated for 

younger patients, mainly because of relatively smaller sample size of younger population [12]. 

Moreover, the survival estimation by Adjuvant! is significantly biased downward for the 

treatment effect of endocrine therapy for pre-menopausal women who didn’t receive 

chemotherapy treatment [3]. 

PREDICT is an online web-based prognosis tool using the Eastern Cancer Registration 

and Information Centre (ECRIC) dataset in UK [13]. Models were built separately for estrogen 

receptor positive patients and negative patients, allowing us to observe the effect of estrogen 

receptor status overtime [14]. The prognostic factors included in the model are nodal status, 

tumor grade, tumor size, chemotherapy therapy, endocrine therapy and mode of tumor detection 

[13]. PREDICT was validated by an independent dataset from the West Midlands Cancer 

Intelligence Unit (WMCIU) of British Columbia, Canada [13]. In 2012, a new version of 

PREDICT, PREDICT Plus, was developed which incorporates human epidermal growth factor 

receptor 2 (Her2) status [15]. Validation was performed with the same Canadian dataset. 

PREDICT and PREDICT Plus provide better estimation for overall survival and breast cancer 

specific survival than Adjuavnt! [13, 15]. For patients with Her2 positive, Predict Plus performs 

the best among all three prognostic models [15]. 
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3. Study objective 

Most of validation on Adjuvant! and PREDICT were implemented with Western 

population. Given the huge difference of Asian and Western population in culture, genetic 

background and lifestyles, the models for breast cancer prognosis may vary dramatically. 

Adjuvant! has been shown to be overly optimistic about the survival of Asian breast cancer 

patients, especially for women under 40 years old [16]. A breast cancer cohort study for Asian 

women will fill this knowledge gap and provide us an ethnic specific evaluation for breast cancer 

prognosis. The objective of current study is to develop prognostic models to predict 5-year 

overall survival (5-year OS), 10-year overall survival (10-year OS), and 5-year breast cancer 

relapse-free survival (5-year RFS) for women treated for early breast cancer in an Asian 

population. 

 

STUDY POPULATION AND VARIABLES 

The study data are from Shanghai Breast Cancer Survival Study (SBCSS), which is a 

large, population-based cohort study [17]. This study includes 4,858 female participants, all of 

whom are the residents of Shanghai, China. Primary breast cancer cases were identified from 

Shanghai Cancer Registry. Patients were 20-75 years old at diagnosis and were recruited 

approximately 6 month after diagnosis. All patients were diagnosed between March 2002 and 

April 2006. There are three follow-up interviews at 18, 36, and 60 months after breast cancer 

diagnosis. For participants who were lost for follow-up interviews, their survival information 

was collected from Shanghai Vital Statistics Registry database. Survival data were collected over 

the time period 2003 – 2015 and is ongoing till the end of 2016. To this day, we have completed 
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5-year OS and 5-year RFS, as well as 10-year OS data. The exact survival time for some 

observations may be greater than five years (for 5-year overall and relapse-free survival models) 

or ten years (for 10-year overall survival model), which results in right-censoring. 

The collection of variables included in prognostic model is critical for the model’s 

performance. Single predictive factor rarely yields satisfactory prediction accuracy. Multiple risk 

factors are needed to reproducibly differentiate patients who response to treatment and those who 

do not. Adjuvant! Online prediction uses age, menopause status, tumor grade, tumor size, 

number of positive lymph node, and estrogen receptor (ER) status in the presence or absence of 

adjuvant treatments [3-4, 7, 9-12]. PREDICT incorporates information from age, nodal status, 

tumor grade, tumor size, ER status, chemotherapy therapy, endocrine therapy and mode of tumor 

detection [15]. PREDICT Plus incorporates Her2 information [15].  

Prediction model from SBCSS dataset differs from other models: 1) it uses a well-

established population-based Asian cohort, 2) it expands the selection of potential predictors to 

include progesterone receptor (PR) status, post-diagnostic weight change and modifiable lifestyle 

factors (physical activity and intake of soy protein). PR is a nuclear receptor that belongs to 

ovarian steroid hormone family that regulates target gene expression in response to progesterone, 

which is critical for the mammary gland development and function [18]. A Norwegian study 

showed that the survival probability of a high-risk patient with positive PR status is similar to an 

intermediate-risk patient [19]. Prediction model may gain more precision by including prognostic 

contribution of PR expression.  

Post-diagnostic weight gain is prevalent among breast cancer patients as a side effect of 

systemic adjuvant treatment including chemotherapy and tamoxifen therapy [20]. Several studies 

have shown that post-diagnostic weight gain associates with poorer survival outcome, regardless 
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of patients’ age and menopausal status [21-28]. Change of energy intake, decrease in physical 

activity and lower level of metabolism are other contributing factors for post-diagnostic weight 

gain [25]. Post-diagnostic weight gain may cause obesity in some breast cancer patients. In a 

meta-analysis with ten-year follow-up, obese patients have 1.78 times more risk of disease 

recurrence and 1.36 times more risk of death [29]. Excess adiposity may have adverse effect on 

prognosis, possibly because it serves as a source for the generation of estrogen [30]. Indeed, 

estrogen concentration is substantially higher in obese women, which favors and mediates breast 

cancer growth [30]. Moreover, chemotherapy is known to be less efficient in obese patients as 

measured by the cell count of blood leukocyte [25]. 

Physical activity is important for maintaining good health in general as well as 

throughout breast cancer treatment. Inactivity has been shown to be a risk factor for the 

development of breast cancer. In addition, exercise capacity during cancer treatment may be 

reduced as a result of adverse side effects on the cardiopulmonary, neurologic, and muscular 

systems. Exercise can effectively reduce blood estrogen concentration by 15% to 25% [22]. 

Three MET-hours of physical activity benefits the prognosis of breast cancer patients, especially 

for patients who response to Tamoxifen treatment [23].  

Moderate amount of soy proteins consumption is associated with improved breast cancer 

prognosis [31]. Isoflavones are a class of phytoestrogens which are plant derived compounds 

with estrogenic activity. Soy isoflavones may serve as an estrogen antagonist through binding of 

estrogen receptor and slow down cancer cell growth, especially for hormone-dependent cancers 

[32]. Soybeans and soy-derived food are the richest sources of isoflavones in human daily diet. 

According to study by Lu, et al., the hazard ratio of death for breast cancer patients who consume 

> 15.31 grams of soy protein per day is 0.71 [0.54-0.92] of those who consume < 5.31 grams of 
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soy protein per day [32]. The hazard ratio of breast cancer recurrence between these two groups 

of patients is 0.68 [0.54-0.87] [32]. However, higher doses (such as regularly consumption of 

high doses of soy protein powers and isoflavones) may increase the breast cancer progression. 

Because of the importance of the above-mentioned factors, five groups of variables are 

considered in prognosis model of SBCSS dataset: (1) Demographic factors: age at diagnosis, 

post-diagnosis weight change, and BMI at 18-month interview; (2) Clinical factors: tumor grade 

(poorly differentiated, moderately differentiated, well differentiated), tumor size, number of 

positive nodes (>9, 4-9, 1-3, 0), and tumor-node-metastasis stage at diagnosis (III, IIB, IIA, I); 

(3) Pathological factors: ER status, PR status, and Her2 receptor status; (4) Lifestyle factors: 

physical activity at 18-month interview, soy protein intake at 18-month interview, and soy 

isoflavones at 18-month interview; (5) Primary and adjuvant treatment: mastectomy (radical 

mastectomy, other types of breast cancer surgery), chemotherapy (yes, no), radiotherapy (yes, 

no), and tamoxifen therapy (yes, no). Detailed information of these predictors’ measurements in 

SBCSS dataset can be found in Table 1-5. Evaluation of predictive abilities of these potential 

variables will give us a more precise and less biased estimation of breast cancer patient survival 

outcomes. 

 

MODELING STRATEGIES 

1. Restricted Cubic Splines: 

Among all 18 predictors, the following 7 are continuous variables: age at diagnosis, post-

diagnosis weight change, BMI at 18-month interview, tumor size, exercise participation at 18-

month interview, soy protein at 18-month interview, and soy isoflavones at 18-month interview. 

If a continuous predictor is presented in an ordinary linear regression model, the model assumes 
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that the outcome behaves linearly in that predictor. However, this assumption may not always 

hold. Linearity may not be achieved even after predictor transformation. Spline function are 

polynomials for each interval of a predictor, which offers a precise function to the variable and 

keeps the estimation flexible in curve fitting [33]. In our study, restricted cubic splines are used 

to estimate the coefficients of continuous variables. Compared to smooth spline function, 

restricted cubic splines have less number of parameters (k-1) and behavior better in the tails. The 

restricted spline function with k knots t1, …, tk is stated in equations 1-2 [33].  

[Equation 1] 

Where X1=X and for j=1, …, k-2, 

[Equation 2] 

Due to sample size limitation, restricted cubic splines with 3 knots were used on the 

following three variables: age at diagnosis, post-diagnosis weight change, and isoflavones, 

selected based on scientific knowledge. The positions of knots were pre-specified as fixed equal-

spaced quantiles: 10%, 50%, and 90% [33]. The three-knot restricted cubic spline function 

expands each continuous predictor into one non-linear term and two linear terms at both ends. 

The degree of freedom for each continuous predictor is 2. Indicator variables are used to expand 

categorical and binary predictors.  

 

2. Proportion Hazard Assumption: 

 A multivariable survival model is used to estimate the prognosis treatment benefit for 

breast cancer patients and to compute the relationship between the time to event and a set of 

potential predictors. Cox proportional hazard model is a semi-parametric, multiplicative hazards 
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model and is widely used for survival data analysis [34]. The basic form of Cox model is shown 

in Equation 3 [34]. 

 [Equation 3] 

h0(t) is an arbitrary baseline hazard rate.  is a vector of coefficients  = (1, 2, 3, …, p)
t
. Z is 

a vector of predictors. h(t|Z) is the hazard rate for any individual whose predictors equal to Z and 

time equals to t. The hazard ratio of two individuals, one with predictor vector Z and other with 

predictor vector Z*, is constant if both Z and Z* are fixed, regardless of change in time 

(Equation 4) [34]. 

 [Equation 4] 

 

Proportional hazard assumption is a key assumption for Cox model and should be 

checked before using Cox regression model [33-34]. Schoenfeld residuals can be used to assess 

proportional hazard assumption [35]. Scaled Schoenfeld residuals for each predictor are 

calculated from Cox regression model based on their contribution to the partial log likelihood 

[35]. Plots were used to visualize the raw and spline-smoothed scaled Schoenfeld residuals over 

time. The slope of spline-smoothed Schoenfeld residuals for each predictor against time is zero 

under proportional hazard conditions. If the slope of spline-smoothed Schoenfeld residuals is 

non-zero against time for a variable, the proportional hazard assumption is deemed violated. In 

this case, we can either stratify the offending variable since the survival rate is different for at 

least one stratum or add time-dependent interaction for the variable.  

 

3. Pre-specified Interactions: 

In regression analysis, the effect of one predictor may differ for distinct levels of another 
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predictor. Under this circumstance, an interaction term between the two predictors needs to be 

examined in the regression model. Six types of interactions that are common in clinical research 

are considered in this study [33]. (1) Interaction between different types of treatment 

(chemotherapy, radiotherapy, tamoxifen therapy, and mastectomy) and the severity of disease 

(tumor grade, tumor size, number of positive nodes, and tumor-node-metastasis stage at 

diagnosis). Treatment benefit may be more obvious for patients with severe breast cancer. (2) 

Interaction between age as diagnosis and life-style factors (level of exercise, intake of soy 

protein, intake of soy isoflavones). The lifestyle factors in our dataset are collected at the 18-

month follow-up after diagnosis. The effect of life-styles factors is cumulative and chronic. The 

benefits of lifestyle factors may be more obvious for patients have longer exposure to these 

factors. (3) Interaction between age and different types of treatment (chemotherapy, radiotherapy, 

and tamoxifen therapy). Treatment effects are a balance between treatment benefits and side 

effects. The tolerance of side effects and toxicity varies significantly among patients from 

different age groups. (4) Interaction between estrogen and tamoxifen therapy. Tamoxifen is an 

antagonist of the estrogen receptor in mammary gland tissue. The benefit of tamoxifen therapy 

may be different for patients with different estrogen status. (5) Interaction between estrogen and 

soy protein intake (soyprotein and isoflavones). Soy foods are rich in isoflavones, which is a 

natural modulator of estrogen receptor. Because of the antiestrogenic property of isoflavones, it 

may provide beneficial effect for breast cancer patients. Similar as tamoxifen, the benefit of 

isoflavones may vary between estrogen receptor positive patients and estrogen receptor negative 

patients. (6) Interaction between age and severity of breast cancer. For patients with the same 

disease severity, their survival outcome might be very different if they belong to distinct age 

groups, and vice versa.  
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We tested above-mentioned interactions in all three survival models. Three interaction 

terms are significant by ANOVA test at the significance level of 5%: age*tumor-node-metastasis 

stage, age*soy isoflavones, and ER status*Tamoxifen therapy. These three interaction terms are 

included in all three models. 

 

4. Collinearity and Redundancy Analysis: 

Hierarchical cluster analysis on variables is performed to identify collinear predictors and 

redundancy. Spearman correlation is calculated with pairwise deletion of NAs (Figure 1). The 

graph shows that the correlation is about (1) 0.4 between variables ER status and PR status, (2) 

0.6 between tumor-nodal-metastasis status and number of positive nodes, (3) 0.8 between BMI 

and post-diagnostic weight change, and (4) 0.9 between soy protein and soy isoflavones. If a 

predictor can be predicted from other predictor(s), coefficient estimates will be biased, standard 

errors of estimated coefficients will be inflated, and the power of the corresponding test will be 

reduced. Due to the high correlation between soy protein and soy isoflavones, variable soy_pro2 

(Intake of soy protein) is removed from the full model without much loss of information. All 

treatment, clinical, and pathological predictors to include in the model are pre-specified based on 

scientific knowledge. The R
2
 statistic of tumor-node-metastatic status by redundancy analysis did 

not change markedly after deletion of ER status and radiotherapy. These variables (tumor-node-

metastatic status, ER status and radiotherapy) are generally considered important in breast cancer 

prognosis. Without causing concern of overfitting (see section 6), we included all these variables 

in the initial full model. 

 

5. Missing Data Imputation: 
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There are three types of missing data, including missing completely at random (MCAR), 

missing at random (MAR), and missing not at random (MNAR). MCAR means that missing is 

completely unrelated to the responses. The missing information is just a random subset of the 

dataset. MAR means that missingness is not completely at random, rather it is related to the 

value of variables we measured. MCAR and MAR are called ignorable missing.  MNAR means 

that the probability of missing is related to the response. MNAR is also called non-ignorable 

missing. It is reasonable to assume missingness in our dataset is missing at random (MAR), since 

most of them are due to loss to follow-up for reasons such as change of address and/or phone 

number, etc. 

As aforementioned, data collection has been completed for 5-year and 10-year overall 

survival as well as relapse free survival. However, the disease relapse time information is 

missing for 63 patients (1.3%) who died of breast cancer. Compared with complete cases 

analysis, imputation yields less biased and more precise inferences. Replacing missing data with 

“best guess” values such as expected values from observed data result in biased estimates and 

underestimated variance. In 5-year relapse-free survival model, time-to-relapse for these patients 

were imputed with single imputation using “transcan” function in Hmisc R package. All 17 

predictors, disease event indicator, relapse indicator, and survival time to relapse were used for 

the imputation. The imputed data was saved as the “complete” dataset for subsequent analyses. 

In addition to outcome variables, missingness presents in predictors (Table 6, Figure 2).  

Her2 status, tumor grade and tumor size have large number of missing values (about 20%). ER 

status, PR status, nodal status, tumor-node-metastasis, exercise, soy protein, soy isoflavon, BMI 

and weight contain fewer than 10% missing data. Variables chemotherapy, tamoxifen therapy, 

radiotherapy, and age at diagnosis have no missing values. Cluster analysis shows that five pairs 
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of variables, (1) Her2 status and tumor grade, (2) tumor size and number of positive nodes, (3) 

BMI and post-diagnostic weight change, (4) soy protein and soy isoflavones, (5) ER status and 

PR status, tend to be missing on the same patients (Figure 3). Multiple imputation (MI) was 

implemented using the “aregImpute” function in Hmisc R package for predictor imputation. MI 

imputes missing variables using the predictive mean matching method with weighted probability 

sampling of available data [36]. All 17 predictors were included in the imputation procedure, 

which was repeated for 10 times to account for variability introduced by imputation. All 10 

imputed datasets were used in model fitting and validation. Coefficient estimates were averaged 

from 10 imputations. The variance-covariance matrix for parameter estimates was also adjusted 

for the variability introduced by MI. All imputed “complete” datasets were saved for later 

development of approximate models.  

 

6. Overfitting: 

 When the prediction model is too complex with too many predictors, overfitting presents. 

The model describes random noise in the data rather than real signal from the underlying 

association. Heuristic shrinkage estimate is used to determine how reliable the model predicts 

new observations, whether overfitting is present, and whether data reduction is necessary. 

Heuristic shrinkage coefficient is the probability that the model predicts future data and is 

calculated from the total degrees of freedom of all predictors (p) and the model’s chi-square 

statistic by likelihood ratio test (Equation 5) [33, 37]. 

 [Equation 5] 

  

If heuristic shrinkage coefficient is greater than 0.9, the model has good calibration and 
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no data reduction needed. For our models the heuristic shrinkage coefficient is 0.94 for 5-year 

OS model, 0.95 for 10-year OS model, and 0.95 for 5-year RFS model. When these models are 

validated on new datasets, only 5-6% of the model fitting is from noise.  

We calculate the amount of complexity that our models can afford by calculating the 

effective sample size (m). A fitted survival model is reliable if the number of parameters is less 

than m/15 [33, 38-39]. In survival data, the effective sample size is the number of events (death 

or disease relapse). The effective sample sizes of 5-year OS, 10-year OS, and 5-year RFS model 

are 535, 950, and 845, respectively, among all 4,858 patients. As a rule of thumb, for each 

predictor included in a multivariable model at least 15 subjects (number of events for survival 

analysis) are required to avoid potential overfitting. The total number of degrees of freedom of 

all potential predictors is 36 (Table 7). No data reduction is needed. 

 

7. Discrimination and Calibration: 

Validation is critical for prognostic model development and for assessment of the 

model’s reliability and generalizability. A prediction model needs to work not only for the 

dataset used to develop the model, it should also generalize to new datasets of the same target 

population. There are two types of validation: internal and external. Internal validation aims to 

correct for potential overfitting in the model. We internally validated our models using the .632 

bootstrap method with 200 repetitions. The general performance and predictive accuracy of a 

prediction model are evaluated by discrimination and calibration.  

Discrimination measures how well the prediction model separates the patients who 

experience the event from those who do not experience the event. Model discrimination in this 

study was measured using accuracy index Dxy, c statistic, and R
2
. These statistics were calculated 
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first using the original dataset and then corrected for overfitting. Dxy is used to measure the 

Somer’s rank correlation between variables and binary outcome. If Dxy is close to 1, the model’s 

discrimination ability is close to be perfect; if Dxy is close to 0, the model’s estimation is random. 

Discrimination from internal validation is also measured by calculating area under receiver-

operator-characteristic curve (ROC) (Dxy=2*(C-0.5)). Calibration describes the model’s ability to 

measure the outcome and bias by comparing the estimated outcome with observed outcome. 

Calibration is measured by slope index (Slope). We also demonstrated the model’s calibration 

ability graphically.  

 

8. Approximation of the Full Model: 

The full model is a multivariable Cox proportional hazard model that includes all 17 

potential predictors and 3 interaction terms. A simplified model with high accuracy can be very 

convenient, especially when the full model is too complex for routine use. In case a simpler 

approximate model is desired, we performed model approximation using a fast backward step-

down method. The full model with all 17 predictor and 3 interaction terms was against the fitted 

values from the full Cox regression model using ordinary least squares (OLS). The cutoff value 

for variables retained in the approximate model is =0.1. To determine whether the approximate 

model has comparable accuracy as the full model, we fitted the approximate model against the 

full model's predicted values using OLS. The approximate model is considered to have 

comparable predictive accuracy as the full model if R
2
 is greater than 0.95. The above procedure 

was repeated on all 10 imputed datasets. A variable was selected to be included in the final 

approximate model if it presented in more than 50% of the time.  

The coefficients of the final approximate model are simply the average across all 10 fits. 



 16 

The variance-covariance matrix of the final approximate model was calculated by Equation 6 

[33, 36]: 

 [Equation 6] 

, where i denotes the i
th

 imputation (i=1,2,…,10), Vi is the variance-covariance matrix from the 

ordinary least square from the i
th

 imputed dataset, B is the between-sample variance of the 

variance-covariance matrix, and M is the total number of imputations. Using this method, we 

calculated the overall coefficient estimates, while adjusting for the variability introduced by 

multiple imputation for the final approximate model. We choose to use the imputed data from 

multiple imputation instead of single imputation to reduce the potential bias. 

 

RESULTS 

The outcome measurements in this study are 5-year OS, 10-year OS, and 5-year breast 

cancer RFS. Survival time was measured in years from the date of diagnosis to the last follow-up 

or event. Patients were considered as censored if the patient was lost to follow-up or if she was 

still alive five-years after diagnosis (for 5-year OS and 5-year RFS models) or ten-years after 

diagnosis (for 10-year OS model). Recurrence was defined as the reappearance of breast cancer 

either locally (the same place as original cancer), regional (near the surgery area) or distant 

(other area of body).  

1. Results of Five-Year Overall Survival Model: 

Slope of spline-smoothed Schoenfeld residuals is roughly zero against time for all 

variables in the full model (Figure 4). The effect of any predictor variable in our dataset is 

constant over time. PH assumption seems to hold, and Cox model is used to fit 5-year overall 

survival model. The likelihood ratio chi-squared value of full model is 579.23 with 36 degree of 
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freedom. The shrinkage estimate is 0.94. So it is estimated that only about 6% of the model 

fitting is from noise. Coefficients of the full model are summarized in Table 8. The 

mathematical form of the full model is shown in the following equation (Appendix Figure S1). 

This equation can be used to precisely calculate the estimated log hazard ratio for a subject with 

a set of predictor values compare to the "reference" subject. Nomogram predicts median and 

mean survival time, based on the regression fit of full model (Figure 5). Nomogram can be used 

to manually calculate the predicted survival probabilities using this model. For each given value 

of predictor, the corresponding points can be read from the axis on the top of nomogram on a 0-

100 scale for each predictor. Points from all predictors are added as “total points” to read the 

corresponding “median survival time” and “mean survival time”. Contribution of individual 

variable in predicting survival time is plotted by Wald chi-squared statistics, penalized for degree 

of freedom, in descending order (Figure 6). The ranking of importance of the predictors is nodal 

status, estrogen receptor status, tumor grade, age at diagnosis, post-diagnostic weight change, ER 

status*tamoxifen, Tamoxifen therapy, tumor-nodal-metastasis status, age*isoflavones, 

age*tumor-nodal-metastasis status, isoflavones, progesterone receptor status, tumor size, 

chemotherapy, radiotherapy, exercise, mastectomy, BMI, and Her2. Estimated hazard ratios for 

default setting of predictors is summarized (Figure 7). The dashed line indicated the survival 

time ratio equals to one. When age changes from its lower quartile to the upper quartile (46.4 

year to 60.5 year), hazard ratio increases. The shaded bars represent 0.90, 0.95, 0.99 confidence 

limits. The strength of various predictors’ effect on log relative hazard was plotted (Figures 8). 

All four treatments (chemotherapy, Tamoxifen, radiotherapy, and mastectomy) reduced the risk 

of death. Log relative hazard goes up for patients with more severe disease as measured by tumor 

size, tumor grade, number of positive nodes, and tumor-node-metastasis status. The effects of 
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Her2 and BMI are not obvious from the figure. For patients with tumor-node-metastasis stage I 

and IIA (tnm_status=2 and tnm_status=3), the log hazard rate first decreases then increases with 

age (Figure 9). However, for patients with tumor-node-metastasis stage IIB and III 

(tnm_status=4 and tnm_status=5), the log hazard rate goes up and then becomes flat with age. 

For ER positive patients, tamoxifen therapy reduces the relative hazard of death (Figure 10). To 

investigate the interaction of age and isoflavones, we categorized patients into four equal 

quantiles based on their age (<46.4, 46.4-51.1, 51.1-60.5, and >60.5). As the amount of 

isoflavones consumption increases, the log hazard ratio reduces for younger patients (Figure 11). 

However, for older patients (> 60.5 year), higher doses of isoflavone are associated with higher 

log hazard ratio, although the log hazard ratios of all age groups are below zero (Figure 11). The 

five-year overall survival rate is 89.0% (Figure 12).  

Discrimination and calibration are quantified to assess the performance of our prognostic 

model (Table 9). The apparent Somers' Dxy is 0.533. The bias-corrected Dxy is 0.508. and the c-

statistics is 0.754, suggesting that our model will likely discriminate well in future datasets. The 

original R
2
 is 0.136 and the corrected R

2
 is 0.126. The corrected slope shrinkage factor is 0.916, 

which is close to heuristic shrinkage estimate 0.94. We further determined the model's export-

ability by optimism from Bootstrap, which is the average difference between the test quantity 

and training accuracy. The optimism for Dxy, R
2
 and Slope are 0.025, 0.010, and 0.084, 

respectively. All of them are reasonably small, indicating that this model has a good export-

ability. 

The model's calibration accuracy in predicting 5-year OS was validated by bootstrap, 

using adaptive linear spline hazard regression. The black line is the observed mean events, the 

grey line indicates the ideal condition where slope equals to 1, and the blue line is generated by 
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bootstrap datasets. The slope of observed versus predicted values is close to one, suggesting our 

model has good calibration (Figure 13). 

Next, we developed an approximate model for 5-year OS data based on the fitted full 

model. Predictors BMI, mastectomy, and Her2 were removed from the full model since they 

presented in less than 50% of the time (Figure 14). We fitted each approximate model with 

different imputed dataset against the full model's predicted values and calculated R
2
. All the R

2
 

are higher than 0.99, suggesting that the approximate model is quite accurate compared to the 

full model. 

 

2. Results of Ten-Year Overall Survival 

The slopes of spline-smoothed Schoenfeld residuals are constant around zero against time 

for all variables (Figure 15). PH assumption seems to hold and Cox model was used to fit 10-

year OS model. The likelihood ratio chi-squared value of full model is 759.59 with 36 degree of 

freedom. The coefficients are summarized in Table 11. The shrinkage estimate is 0.95. So it is 

estimated that only 5% of the model fitting is from noise. The mathematical form of the 

simplified model is showed in Appendix Figure S2. Mean and median survival time can be 

calculated from nomogram (Figure 16). Based on chi-squared statistics, the ranking of 

importance of the predictors is number of positive nodes, age at diagnosis, tumor-nodal-

metastasis status, tumor grade, age*tumor-nodal-metastasis status, post-diagnostic weight 

change, soy isoflavones, chemotherapy, age*isoflavones, tamoxifen therapy, tumor size, 

radiotherapy, ER status, exercise, ER status*tamoxifen, PR status, mastectomy, BMI, and Her2 

(Figure 17). Estimated hazard ratios for default setting of predictors is summarized in Figure 18. 

The strength of various predictors’ effect on log relative hazard was plotted (Figure 19-22). The 
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ten-year OS rate is 80.4% (Figure 23). The model’s discrimination ability is measured by the 

original Somer’s Dxy, the bias-corrected Dxy, and c-statistic. Their values are 0.466, 0.450, and 

0.725, respectively (Table 12). The original R
2
 is 0.151 and the corrected R

2
 is 0.141. The 

corrected slope shrinkage factor is 0.937, which is close to heuristic shrinkage estimator 0.95. 

The optimism for Dxy, R
2
, and slope are 0.016, 0.009, and 0.063, suggesting that the 10-year OS 

model has good export ability. In the calibration plot for 10-year OS model, the slope of 

observed versus predicted values is close to one, suggesting our model has good calibration 

(Figure 24).  

 Approximate model for 10-year overall survival model was developed. Predictors PR 

status, BMI, mastectomy, tumor size, and Her2 were removed from the full model (Figure 25). 

The approximate models from 10 imputed dataset explain at least 98% of the variance from the 

fitted value of full model.  

 

3. Results of Five-Year Relapse-Free Survival 

The slopes of spline-smoothed Schoenfeld residuals are constant around zero against time 

for all variables (Figure 26). PH assumption seems to hold and Cox model is used to fit 5-year 

RFS model. The likelihood ratio chi-square of full model is 653.53 with 36 degree of freedom. 

The coefficients are summarized in Table 14. The shrinkage estimate is 0.95. So it is estimated 

that only 5% of the model fitting is from noise. The mathematical form of the simplified model is 

showed in Appendix Figure S3. Mean and median survival time can be calculated from 

nomogram (Figure 27). Based on chi-square statistics, the ranking of importance of the 

predictors is number of positive nodes, age at diagnosis, tumor-nodal-metastasis status, tumor 

grade, ER status, age*tumor-nodal-metastasis status, post-diagnostic weight change, soy 
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isoflavones, tamoxifen therapy, radiotherapy, ER status*tamoxifen therapy, tumor size, 

mastectomy, chemotherapy, age*isoflavones, exercise, PR status, BMI, and Her2 (Figure 28). 

Estimated hazard ratios for default setting of predictors is summarized in Figure 29. The 

strength of various predictors’ effect on log relative hazard was plotted (Figure 30-33). The five-

year relapse-free survival rate is 82.6% (Figure 34). The model’s discrimination ability is 

measured by the original Somer’s Dxy (0.453), the bias-corrected Dxy (0.434), and c-statistic 

(0.717) (Table 15). The corrected slope shrinkage factor is 0.93. The optimism for Dxy, R
2
, and 

slope are 0.019, 0.011, and 0.074, suggesting that the 5-year RFS model has good export ability. 

In the calibration plot for 5-year RFS model, the slope of observed versus predicted values is 

close to one, suggesting our model has good calibration (Figure 35). Approximate model for 5-

year RFS model was developed. Predictors PR status, BMI, and Her2 were removed from the 

full model (Figure 36). The approximate models from 10 imputed dataset explain more than 

99% of the variance from the fitted value of full model. 

 

SUMMARY 

Breast cancer is the second most common cancer diagnosed among women worldwide 

[1]. Despite an overall favorable prognosis, considerable inter-individual variability in prognosis 

exists. Establishment of a prognosis prediction model would lay the foundation for the 

development of personalized treatment, which would maximize treatment efficacy, spare patients 

unnecessary treatment, reduce treatment-related toxicities, and identify women at high risk of 

recurrence for preventive intervention. There are widely used breast cancer prognosis tool based 

on European and North American populations, however, the prognosis tool for Asian population 

is understudied. We built a novel prognosis prediction model based on an Asian population-
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based cohort study. In addition to inclusion of the predictors in Adjuvant!, we expanded the 

prognostic model by incorporating lifestyle predictors (exercise level and intake of soy proteins), 

as well as PR status and Her2 status. Using Cox multivariate regression model, we established 

and internally validated prognostic models to predict 5-year OS, 10-year OS, and 5-year RFS. 

All three models are well-calibrated and showed good ability to discriminate among patients, 

with a c-statistic of 0.758, 0.728, and 0.721, respectively for 5-year OS, 10-year OS, and 5-year 

RFS. This predictive tool will be useful to facilitate breast cancer patients’ decision-making, 

personalized treatment and recurrence prevention. 

Complex statistical predictive models could be complicated for people from different 

fields. A nomogram elegantly reduces this complexity into simple numerical estimations of the 

probability of death or recurrence [40]. Nomogram may be tailored for an individual patients 

based on the their predictor information and greatly promotes our prognostic models’ routine 

clinical use and increases its translational potential. Nomogam’s graphical presentation is very 

practical and user-friendly for both physicians and patients. Nomogram also provides 

straightforward interpretation of risk assessment. The patient can visualize the benefit from 

certain treatment and/or change in their lifestyle and precisely estimate their prognostic. The 

input variables include patient demographic, clinical, pathological, treatment, and lifestyle 

information. Medium and mean survival/recurrence time were calculated.  

The 5-year and 10-year OS approximate models were evaluated and compared to each 

other. Progesterone receptor status remained in 5-year OS approximate model, but not in the 10-

year OS approximate model (Figure 37). The result about progesterone is intriguing because it 

might mean that the mechanisms of short-term and long-term disease outcomes are different and 

progesterone might be the key molecular that explains this difference. Progesterone is an ovarian 
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steroid hormone. Progesterone and 17-oestradiol are crucial in regulation of breast development 

and mammary carcinogenesis [41-43]. The function of 17-oestradiol and progesterone are 

intimately linked together. Treatment by 17-oestradiol alone failed to induce mammary gland 

cell proliferation in ovariectomized adult mice, but treatment by both 17-oestradiol and 

progesterone induced sustained mammary gland cell proliferation [41, 44-45]. Mammary stem 

cells (MaSCs) are a very small subset of cells that can regenerate a functional mammary gland. 

Except developmental periods like puberty and pregnancy, MaSCs are at G0 resting phase and 

quiescent. So MaSCs are usually long-lived, which makes them vulnerable to accumulate 

mutagenesis. Misregulated expansion of MaSC pool may lead to abnormal cell growth and breast 

cancer initiation. Recent studies showed that MaSCs were important targets of steroid ovarian 

hormone signals and progesterone dramatically induced MaSC growth [46-47]. Progesterone 

may trigger breast cancer initiation through regulation of MaSCs growth, but may not be 

important for long-term disease progression. 

Exercise level at 18-month after diagnosis was retained in both 5-year and 10-year OS 

approximate model (Figure 37). Very few studies assessed the association of post-diagnostic 

physical activity and mortality of breast cancer [48]. Physical activity impacts on breast cancer 

through three mechanisms: (1) physical activity lowers the concentration of circulating ovarian 

hormones, including estrogen and progesterone [49-51]; (2) physical activity reduces weight gain 

and obesity in breast cancer patients; (3) physical activity improves survival through reduction of 

insulin level [52]. Pharmacological antagonists of estrogen have been used in clinical practice 

since 1970s. Drugs interfere with progesterone signaling and the mitogenic effects of insulin are 

under development. Understanding the mechanism of physical activity in both short-term and 
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long-term overall survival helps us to choose the best treatment strategy for breast cancer 

patients.  

In summary, we built a novel breast cancer prognostic model among Asian women. 

Comparing to existing prognostic tools, we expanded the model by incorporating lifestyle 

predictors, PR and Her2 status. We performed internal validation on models developed for 5-

year OS, 10-year OS, and 5-year RFS, and showed that all three models have satisfactory 

predictive accuracy. We further simplified the full models by performing model approximation 

using a fast backward step-down method. The approximate models will be convenient to practice 

use. 
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Table 1: Descriptive Analysis of Demographic Predictors 
  

 
 
Table 2: Descriptive Analysis of Pathological Predictors 

 

 
Table 3: Descriptive Analysis of Clinical Predictors 
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Table 4: Descriptive Analysis of Treatment Predictors 
 

 
 
Table 5: Descriptive Analysis of Lifestyle Predictors 
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Table 6: Summary of Missingness of All Predictors 
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Table 7: Degree of Freedom for Candidate Predictors 
 
 
  Type Degree of freedom 
Demographic Predictors: 

  age at diagnosis Continuous 2 
BMI at 18-month interview Continuous 1 
Post-diagnostic weight change Continuous 2 
  

  Pathological Predictors: 
  Estrogen Receptor status Binary 1 

Progesterone Receptor status Binary 1 
HER2 Categorical 2 
  

  Clinical Predictors: 
  Tumor grade Categorical 2 

Tumor Size Continuous 1 
Number of Positive Nodes Categorical 3 
Tumor-Node-Metastasis stage (TNM) Categorical 3 
  

  Treatment Predictors: 
  Chemotherapy Binary 1 

Radiotherapy Binary 1 
Tamoxifen Binary 1 
Mastectomy Binary 1 
  

  Lifestyle Predictors: 
  exercise at 18-month interview Continuous 1 

Soy isoflavones2 at 18-month interview Continuous 2 
  

  Interaction terms: 
  ER status * Tamoxifen / 1 

Age * TNM status / 6 
Age * Isoflavones / 4 
  

  Total: 
 

36 
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Table 8: Summary of 5-year Overall Survival Model 
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Table 9: Discrimination Ability of 5-year Overall Survival Model 
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Table 10: Summary of Approximate Model of 5-year Overall Survival Model 

 
 
 
 
 
 
 
 
 
 
 
 



	   35	  

Table 11: Summary of 10-year Overall Survival Model 
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Table 12: Discrimination Ability of 10-year Overall Survival Model 
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Table 13: Summary of Approximate Model of 10-year Overall Survival Model 
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Table 14: Summary of 5-year Relapse-free Survival Model 
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Table 15: Discrimination Ability of 5-year Relapse-free Survival Model 
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Table 16: Summary of Approximate Model of 5-year Relapse-free Survival Model 
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Figure 1. Hierarchical Cluster Analysis of All Predictors 
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Figure 2: Fraction of NAs in each variable 
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Figure 3: Variables Tend to Miss Together 
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Figure 4: Schoenfeld Residuals of Individual Predictors in 5-year Overall Survival Model 
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Figure 5. Nomogram of Predicting Median and Mean Survival Time in 5-year Overall 
Survival Model 
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Figure 6: Contribution of Each Variable in 5-year Overall Survival Model 
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Figure 7: Estimated Hazard Ratios in 5-year Overall Survival Model 
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Figure 8: Effect of Each Predictor in 5-year Overall Survival Model 
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Figure 9: Effect of the Interaction of Age and Tumor-Node-Metastatic Status (TNM) in 5-
year Overall Survival Model 
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Figure 10: Effect of the Interaction of ER Status and Tamoxifen Therapy in 5-year Overall 
Survival Model 
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Figure 11: Effect of the Interaction of Age and Isoflavones in 5-year Overall Survival 
Model 
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Figure 12: Survival Curve of 5-year Overall Survival Model 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	   55	  

Figure 13: Calibration of 5-year Overall Survival Model 
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Figure 14: Factors Retained in Approximate Model of 5-year Overall Survival Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	   57	  

Figure 15: Schoenfeld Residuals of Individual Predictors in 10-year Overall Survival 
Model 
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Figure 16. Nomogram of Predicting Median and Mean Survival Time in 10-year Overall 
Survival Model 

 
 
 

 
 
 
 
 
 



	   61	  

Figure 17: Contribution of Each Variable in 10-year Overall Survival Model 
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Figure 18: Estimated Hazard Ratios in 10-year Overall Survival Model 
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Figure 19: Effect of Each Predictor in 10-year Overall Survival Model 
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Figure 20: Effect of the Interaction of Age and Tumor-Node-Metastatic Status (TNM) in 
10-yr Overall Survival Model 
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Figure 21: Effect of the Interaction of ER Status and Tamoxifen Therapy in 10-year 
Overall Survival Model 
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Figure 22: Effect of the Interaction of Age and Isoflavones in 10-year Overall Survival 
Model 
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Figure 23: Survival Curve of 10-year Overall Survival Model 
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Figure 24: Calibration of 10-year Overall Survival Model 
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Figure 25: Factors Retained in Approximate Model of 10-year Overall Survival Model 
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Figure 26: Schoenfeld Residuals of Individual Predictors in 5-year Relapse-free Survival 
Model 
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Figure 27. Nomogram of Predicting Median and Mean Survival Time in 5-year Relapse-
free Survival Model 
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Figure 28: Contribution of Each Variable in 5-yr Relapse-free Survival Model 
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Figure 29: Estimated Hazard Ratios in 5-year Relapse-free Survival Model 
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Figure 30: Effect of Each Predictor in 5-year Relapse-free Survival Model 
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Figure 31: Effect of the Interaction of Age and Tumor-Node-Metastatic Status (TNM) in 5-
year Relapse-free Survival Model 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	   78	  

Figure 32: Effect of the Interaction of ER Status and Tamoxifen Therapy in 5-year 
Relapse-free Survival Model 
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Figure 33: Effect of the Interaction of Age and Isoflavones in 5-year Relapse-free Survival 
Model 
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Figure 34: Survival Curve of 5-year Relapse-free Survival Model 
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Figure 35: Calibration of 5-year Relapse-free Survival Model 
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Figure 36: Factors Retained in Approximate Model of 5-year Relapse-free Survival Model 
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Figure 37: Comparison of Approximate Models for 5-year and 10-year Overall Survival  
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Appendix:  
Figure S1: Mathematical Form to Estimate Log Hazard of 5-year Overall Survival –Full 
Model 
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Figure S2: Mathematical Form to Estimate Log Hazard of 10-year Overall Survival Model 
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Figure S3: Mathematical Form to Estimate Log Hazard of 5-year Relapse-free Survival 
Model 
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