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CHAPTER I 

 

BACKGROUND 

 

Complex Human Genetic Disease 

 Over the past few decades, most of the success in the field of statistical genetics 

has come from identifying genes with substantial main (non-interactive) effects on the disease 

process.  Most statistical tools enabling this success were developed for and are primarily 

effective in the analysis of simple, Mendelian diseases such as Huntington disease, cystic 

fibrosis, and early-onset Alzheimer disease.  Molecular biologists and geneticists alike now 

acknowledge that the most common human diseases with a genetic component are likely to have 

very complex etiologies.  Going forward, statistical geneticists must not only acknowledge but 

also directly confront the numerous complicating factors that can be involved in complex genetic 

diseases and that present significant challenges for traditional statistical methods.  Only a small 

fraction of the human genetics literature specifically reports on investigations of such 

complexity.  It is, perhaps, daunting to consider multiple complicating factors, such as locus 

heterogeneity, trait heterogeneity, and gene-gene interactions (see Figure 1).  However, these 

must be addressed if we are to have any chance of understanding the genetic legacy of disease 

left to us by our forebears.  

Despite the consensus that common genetic disease is likely to be complex, statistical 

geneticists continue primarily using traditional methodologies to attack the problem.  Traditional 

statistical methods of genetic analysis, such as linkage and association, have failed to 

consistently replicate findings of main effect genes, even though they may explain a majority of 

the genetic effect of a complex disease.  Among the possible reasons for this failure are false 

positives due to population stratification and true differences in genetic etiology between study 

populations (Hirschhorn NJ et al., 2002).  Advances in statistical and computational genetic 

methodology simply have not kept pace with the advance of available sources of data.  There 

have been a few attempts to address complexity directly, including the development of 

nonparametric tools, but these have generally limited application.  One example is the 

transmission disequilibrium test that led to the discovery of the insulin receptor gene as a risk  
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(Rivolta C et al., 2002) 
(Kulczycki LL et al., 2003; Povey S et al., 1994; Young J and Povey S, 1998) 
(Harding AE, 1993; Rosenberg RN, 1995) 
(Devos D et al., 2001) 
(Tager-Flusberg H and Joseph RM, 2003) 
(Bradford Y et al., 2001) 
(Carrasquillo MM et al., 2002) 
(Collinge J et al., 1991; De Silva R et al., 1994; Doh-ura K et al., 1989; Owen F et al., 
1990; Palmer MS et al., 1991) 
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factor for diabetes (Shao Y et al., 2002; Spielman RS et al., 1993).  Current statistical 

approaches to detecting heterogeneity, such as the admixture test (Ott J, 1992; Smith CAB, 

1963), are neither sensitive nor powerful and can merely account for, not resolve, any underlying 

heterogeneity.  In addition, while a small number of supervised computational methods exist for 

discovering gene-gene interactions, the power of these methods drops dramatically when locus 

or trait heterogeneity is present (Ritchie MD et al., 2001).  It is possible that phenotypic data 

could be utilized to improve the performance of these methods in the face of locus or trait 

heterogeneity by facilitating heuristic stratification of data.  However, for most diseases, 

especially neurological ones, in which I am particularly interested, little detailed phenotypic data 

has been collected consistently in combination with genotypic data.  It is for these reasons that an 

unsupervised method, which does not rely on phenotypic data, is needed to mine potentially 

heterogeneous genotypic data as a means of data stratification and hypothesis generation. 

For complicating genetic factors involving heterogeneity, there are multiple independent 

(predictor) variables or else multiple dependent (outcome) variables that complicate the analysis 

by creating a heterogeneous model landscape.  In the case of locus heterogeneity, multiple 

predictor variables (e.g., multiple loci) are present, some of which may be unmeasured or 

unobserved and, therefore, unavailable for inclusion in the disease model.  In the case of trait 

heterogeneity, multiple outcome variables are present, which cannot or have not been 

distinguished based on the available phenotypic information.  Gene-gene interactions create a 

rugged model landscape for statistical analysis.  There is clear and convincing evidence that 

gene-gene interactions, whether synergistic or antagonistic, are not only possible but probably 

ubiquitous (Doh-ura K et al., 1991; Goldfarb LG et al., 1992; Moore JH, 2003; Tong AH et al., 

2004).  Thus, it is critical that complex genetic data sets be properly interrogated for possible 

underlying interactions. 

 

Statistical Analysis 

 No one analytic method is superior in all respects for the range of complicating factors 

that might be present in a specific data set.  Given the relative shortcomings of our current 

analyses in complex diseases, we need to greatly extend the range of available analytical tools.  

There is a critical need for extensive reevaluation of existing methodologies for complex 

diseases, as well as for massive efforts in new method development.  It is important that 
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empirical studies be conducted to compare and contrast the relative strengths and weaknesses of 

methods on specific types of problems.  For example, while cluster analysis has shown promise 

in numerous other scientific and mathematical fields, its use with genetic, particularly discrete 

genotypic data, has not been adequately explored.  Similarly, artificial neural networks modified 

with evolutionary computation have great potential for discovering nonlinear interactions among 

genes and environmental factors.  However, work is still ongoing to evaluate its limitations with 

regard to the heritability and effect sizes that can be detected. 

 Ultimately, though, the real power of existing and yet-to-be-developed methods lies in 

our ability to marry them into a comprehensive approach to genetic analysis, so that their relative 

strengths and weaknesses can be balanced and few alternative hypotheses are left uninvestigated.  

While no single method adequately investigates heterogeneity and interaction issues 

simultaneously, we propose routinely taking a two-step approach to analysis.  For example, 

clustering or ordered subset analysis (Hauser et al., 2004) can be used first to uncover genotypic 

and/or phenotypic heterogeneity and to subdivide the data into more homogeneous groups.  Then 

in a second step, specific tests of interactions, such as the S sum statistic approach (Hoh J et al., 

2001; Ott J and Hoh J, 2003) or the multifactor dimensionality reduction method (Ritchie MD et 

al., 2001; Ritchie MD et al., 2003) could be used to investigate gene-gene or gene-environment 

interactions within each of the homogenized subgroups.  This is still not a perfect approach, but 

it is an important improvement over the more common alternative of a single-pronged approach 

to analysis.  Such a combined strategy must be the future of genetic statistical analysis.  We must 

harness our knowledge and experience of existing methods even as we open our minds to newly 

fashioned techniques and approaches.  By thus “retooling” our analyses, we provide the best 

opportunity for uncovering the genetic basis of common human disease. 

 

Cluster Analysis 

 For over 30 years, cluster analysis has been used as a method of data exploration 

(Anderberg MR, 1973).  Clustering is an unsupervised classification methodology, which 

attempts to uncover ‘natural’ clusters or partitions of data.  It involves data encoding and 

choosing a similarity measure, which will be used in determining the relative ‘goodness’ of a 

clustering of data.  No one clustering method has been shown universally effective when applied 

to the wide variety of structures present in multidimensional data sets.  Instead, the choice of 
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suitable methods is dependent on the type of target data to be analyzed.  Clustering has been 

utilized widely for the analysis of gene expression (e.g., DNA microarray) data; however, its 

application to genotypic data has been limited (Slonim DK, 2002). 

Most traditional clustering algorithms use a similarity metric based on distance that may be 

inappropriate for categorical data such as genotypes.  Newer methods have been developed with 

categorical data in mind and include extensions of traditional methods and application of 

probabilistic theory.  Three such methods were chosen (as discussed in the next chapter) to 

compare in the task of discovering trait heterogeneity using multilocus genotypes—Bayesian 

Classification (Hanson R et al., 1991), Hypergraph-Based Clustering (Han EH et al., 1997), and 

Fuzzy k-Modes Clustering (Huang Z and Ng MK, 1999)—all of which are appropriate for 

categorical data.
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CHAPTER II 

 

METHODS 

 

Data Simulation 

 To compare the performance of clustering methodologies in the task of uncovering trait 

heterogeneity in genotypic data, datasets were needed in which such heterogeneity was known to 

exist.  Since there are no well-characterized real datasets available that fit this description, a 

simulation study was needed.  Genetic models that contained two binary disease-associated 

traits, such that there is trait heterogeneity among ‘affected’ individuals, were used.  In addition, 

some of the models incorporate locus heterogeneity, a gene-gene interaction, or both.  Figure 2 

depicts the structure of the four genetic models used to simulate the genotypic data. 

Four prevalence levels were simulated for each genetic model:  (1) fifteen percent, which 

is characteristic of a common disease phenotype such as obesity, (2) five percent, which is 

characteristic of a relatively common disease such as prostate cancer, (3) one percent, which is 

characteristic of a less common disease such as schizophrenia, and (4) one tenth of one percent, 

which is characteristic of a more uncommon disease such as multiple sclerosis.  Three realistic 

levels of sample size were simulated for each model:  200, 500 and 1000 affected individuals.  

Finally, four levels of non-functional loci were simulated:  0, 10, 50 and 100.  The inclusion of 

non-functional loci adds a random noise effect that is present in real candidate gene studies when 

one is searching for the functional locus or loci among many more suspected but actually non-

functional loci.  All loci, including the functional loci, were simulated to have equal biallelic 

frequencies of 0.5. 

Although the above parameter settings are by no means exhaustive of the biologically 

plausible situations, the outlined conditions are reasonable and specify 192 different sets of data 

specifications due to the combinatorial nature of the study design.  To have adequate power to 

detect a difference in performance among clustering methodologies, 100 datasets per set of 

parameters, resulting in a total of 19,200 simulated data sets, were simulated.  Table 1 shows the 

power to detect a certain effect size using multiway analysis of variance given 100 datasets per 

set of data simulation parameters.  An effect size of 0.10 is considered small, one of  
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Model 1 – Trait Heterogeneity Only 
       
Allelic Variant i of Locus A  DiseaseX-Associated Trait I 
          Disease X 
Allelic Variant ii of Locus B  DiseaseX-Associated Trait II 
 

Model 2 – Trait Heterogeneity with Locus Heterogeneity 
 
Allelic Variant i of Locus A   
     DiseaseX-Associated Trait I  
Allelic Variant ii of Locus B       Disease X 
 
Allelic Variant iii of Locus C  DiseaseX-Associated Trait II 
 

Model 3 – Trait Heterogeneity with Gene-Gene Interaction 
 
Allelic Variant i of Locus A   
     DiseaseX-Associated Trait I  
Allelic Variant ii of Locus B       Disease X 
 
Allelic Variant iii of Locus C  DiseaseX-Associated Trait II 
 
 
Model 4 – Trait Heterogeneity with Locus Heterogeneity and 

Gene-Gene Interaction 
 
Allelic Variant i of Locus A   
     DiseaseX-Associated Trait I  
Allelic Variant ii of Locus B        
          Disease X 
Allelic Variant iii of Locus C   
     DiseaseX-Associated Trait II  
Allelic Variant iv of Locus D 
 

Figure 2.  Structure of Genetic Models Used for Data Simulation 
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0.25 is medium, and one of 0.40 is large.  Three of the four data simulation parameters (model 

type, prevalence and number of nonfunctional loci) have four levels, or groups, each.  The fourth 

parameter (number of affecteds) has three groups.  A different power calculation is provided for 

the factor combinations that differ by number of groups and degrees of freedom.  Assuming a 

small effect size, reasonable power can be expected for comparing performance across methods 

and by number of affecteds plus one of the 4-group factors.  For medium effect sizes, good 

power can be expected for comparing method performance by up to three of the four-group 

factors.  Beyond that, power falls to unacceptably low levels. 

 

 

Table 1.  Power calculations for multiway ANOVA, given N=100 for each set of factors. 
 

Factors N 
# 

Groups df α 
Effect 
Size Power

Method 19,200 3 2 0.05 0.10 1 
Method * NumAffecteds 6400 9 4 0.05 0.10 1 

Method *  
(Model or Prevalence or NumNFLoci) 4800 12 6 0.05 0.10 0.99 

Method * NumAffecteds * 
(Model or Prevalence or NumNFLoci) 1600 36 12 0.05 0.25 

0.10 
1 

0.76 
Method *  

(Model or Prevalence or NumNFLoci) * 
(Model or Prevalence or NumNFLoci) 

1200 48 18 0.05 0.25 
0.10 

1 
0.51 

Method * NumAffecteds 
(Model or Prevalence or NumNFLoci) * 
(Model or Prevalence or NumNFLoci) 

400 144 36 0.05 0.40 
0.25 

0.99 
0.71 

Method *  
(Model or Prevalence or NumNFLoci) * 
(Model or Prevalence or NumNFLoci) * 
(Model or Prevalence or NumNFLoci) 

300 192 54 0.05 0.40 
0.25 

0.88 
0.36 

Method * NumAffecteds 
(Model or Prevalence or NumNFLoci) * 
(Model or Prevalence or NumNFLoci) * 
(Model or Prevalence or NumNFLoci) 

100 576 162 0.05 0.40 0 

 

 

 For the purposes of simulating this data, a novel data simulation algorithm capable of 

incorporating these complex genetic factors in an epidemiologically-sound manner was designed 

and developed (see Figure 4).  Penetrance is the probability of having a particular trait given a 

specific genotype (single or multilocus).  Prevalence, on the other hand, is the percentage of 
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individuals in a population that have a particular trait.  The penetrance levels of the two 

simulated disease-associated traits are constrained by the overall prevalence level of the  

simulated disease.  The two traits were simulated to contribute equally to the prevalence of the 

associated disease (fifty percent trait heterogeneity), such that a small but naturally occurring 

degree of overlap would be present, representing individuals having both disease-associated 

traits, instead of just one or the other.  These penetrance tables are inputs for the new data 

simulation algorithm.   

 For one fourth of the models, trait heterogeneity only is involved (not locus heterogeneity 

or gene-gene interactions), and there is one genetic risk factor for each of the two traits.  Each 

locus acts in a recessive manner, such that affected individuals have both copies of the high-risk 

allele at one or both of the disease-associated “functional” loci (see Figure 3).  A naturally 

occurring degree of overlap results, such that some affected individuals have the high-risk 

genotypes from both loci. 

 

 

AA Aa aa
BB 0 0 0.1
Bb 0 0 0.1
bb 0.1 0.1 0.1

 
Figure 3.  Recessive genetic model in which the disease is penetrant only when two copies of the 
high risk allele at one locus are present (in this case the a and b alleles are high risk).  Cell values 
indicate penetrance level, or the probability of having the trait, given the corresponding 
multilocus genotype. 
 

 

In the second quarter of the datasets, locus heterogeneity was also simulated so that for 

one of the traits, there are two associated loci, each of which is responsible for roughly half of 

the individuals affected with the trait (creating fifty percent locus heterogeneity).  Again each 

locus operates under a recessive model for disease, such that the disease-associated genotype 

consists of two copies of the high-risk allele.  A naturally occurring degree of overlap results, 

such that some affected individuals have the high-risk genotypes from two or even all three loci. 
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Penetrance Function Array:  each cell value represents the probability of having the disease-
associated trait, given the (multilocus) genotype 

 
Unaffecteds Probability Array:  each cell value represents the probability of having the multilocus 

genotype given that the disease status is unaffected, which is the probability of being negative 
for all traits, or the joint probability of being negative for each trait, given the genotype 
frequency (prior probability) 

 
Affecteds Probability Array:  each cell value represents the probability of having the multilocus 

genotype given that the disease status is affected, which is the probability of being positive for 
at least one trait, which is the same as 1 – probability of being negative for all traits, or 1- joint 
probability of being negative for each trait, given the genotype frequency (prior probability) 

Pseudocode: 
 
1. Allocate two probability arrays, one for Affecteds and one for Unaffecteds, each of size 

∏∑
= =

L

i

A

j

i

j
1 1

  where L is the total number of loci and Ai is the number of alleles for locus i. 

 
2. For each penetrance function p(Status=Affected | Multilocus Genotype) 

==>Distribute 1-p across relevant cells of Unaffecteds probability array 
 

3. Populate cells of the Affecteds probability array with 1-(cell probability) of corresponding cells of 
the Unaffecteds probability array 
 

4. For each locus  
==>Distribute allele frequencies across appropriate cells of both probability arrays 

 
5. Generate the specified number of unaffected individuals from the Unaffecteds probability array 

 
6. Generate the specified number of affected individuals from the Affecteds probability array 
 
7. Determine the status of each disease-associated trait for each affected individual thus….  If the 

affected individual has a high-risk genotype combination for that disease-associated trait, then 
that individual is affected for that trait.  Otherwise, the individual is unaffected for that disease-
associated trait.  (By design, each affected individual will be affected at one or more disease-
associated traits.) 

Figure 4.  Novel Data Simulation Algorithm.  Simulates trait heterogeneity, locus heterogeneity 
and gene-gene interactions in an epidemiologically-sound manner.  The inputs are penetrance 
function arrays, which are translated into probability arrays for affecteds and unaffecteds, 
separately.  Then affected and unaffected individuals (with multilocus genotypes) are simulated 
from those respective arrays. 
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In the third quarter of the datasets, a gene-gene interaction was simulated for one of the 

two traits.  The “zagzig” gene-gene interaction model, first described by Frankel and Schork 

(Frankel WN and Schork NJ, 1996), which is nonlinear and nonadditive in nature, was used (see 

Figure 5).  Under this model, a multilocus genotype is high-risk if it has exactly two high-risk 

alleles from either of the two associated loci.  A multilocus genotype with fewer than or greater 

than two high-risk alleles is not associated with disease.  For the other trait, a recessive model 

was implemented, as described above.  By chance, some affected individuals are simulated to 

have both sets of high-risk genotypes associated with the two traits. 

 

 

AA Aa aa
BB 0 0 0.1
Bb 0 0.05 0
bb 0.1 0 0

 
Figure 5.  “Zagzig” genetic model first described by Frankel & Schork (Frankel WN and Schork 
NJ, 1996).  Two loci—A and B—are involved, each with two alleles—A and a; and B and b, 
respectively.    Cell values indicate penetrance level, or the probability of having the trait, given 
the corresponding multilocus genotype. 
 

 

In the fourth quarter of the datasets, one trait is simulated to involve locus heterogeneity, 

while the other is simulated to involve the “zagzig” gene-gene interaction, as described above.  

Thus, there are some affected individuals who, by chance, will have one or both high-risk 

genotypes from the first trait as well as the high-risk genotype from the second trait. 

 

Clustering Methods 

 There exists a very large number of clustering algorithms and even more implementations 

of those algorithms.  The choice of which clustering methodology to use should be determined 

by the kind of data being clustered and the purpose of the clustering (Kaufman L and Rousseeuw 

PJ, 1990).  Genotypic data is categorical, which immediately narrows the field of appropriate 

methods for this study to only a few.  The goal of this clustering is to find a partitioning of the 

affected individuals based on multilocus genotypic combinations that maps onto the trait 
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heterogeneity simulated in the data.  Three different clustering methodologies were chosen that 

are suitable for categorical data and are appealing due to their speed or theoretical underpinnings. 

 The first clustering method is Bayesian Classification (Cheeseman P and Stutz J, 1996; 

Hanson R et al., 1991).  The corresponding AutoClass software is freely available from Peter 

Cheeseman at the NASA Ames Research Center.  Bayesian Classification (BC) aims to find the 

most probable clustering of data given the data and the prior probabilities.  In the case of 

genotypic data, prior probabilities are based on genotype frequencies, which for the purpose of 

the proposed data simulations are set in accordance with Hardy-Weinberg equilibrium and equal 

biallelic frequencies of 0.5.  The most probable clustering of data is determined from two 

posterior probabilities.  The first involves the probability that a particular individual belongs to 

its ‘assigned’ cluster, or otherwise stated as the probability of the individual’s multilocus 

genotype, conditional on it belonging to that cluster, with its characteristic genotypes.  The 

second posterior probability involves the probability of a cluster given its assigned individuals, 

or otherwise stated as the probability of the cluster’s characteristic genotypes, conditional on the 

multilocus genotypes of the individuals assigned to that cluster.  In actuality, individuals are not 

‘assigned’ to clusters in the hard classification sense but instead in the fuzzy sense they are 

temporarily ‘assigned’ to the cluster to which they have the greatest probability of belonging.  

Thus, each individual has its own vector of probabilities of belonging to each of the clusters.  

The assignment of individuals is also not considered the most important result of the clustering 

method.  Instead, emphasis is placed on the identification of which attributes, or loci, are most 

important in producing the clustering. 

 The second method is Hypergraph Clustering (Han EH et al., 1997).  It has been 

implemented in the hMETIS software, which is freely available from George Karypis at the 

University of Minnesota.  Hypergraph clustering seeks a partitioning of vertices, which in this 

case represent simulated affected individuals, such that intracluster relatedness meets a specified 

threshold, while the weight of hyperedges cut by the partitioning is minimized.  Hyperedge 

weights are determined using association rules, which are simply patterns of frequently-

occurring variable instances.  The freely available LPminer program was used to generate the 

association rules (Seno M and Karypis G, 2001).  LPminer searches the database for multilocus 

genotype combinations that appear together with substantial frequency (above a prespecified 

“support” percentage) and outputs this info as a list of association rules.  hMETIS takes these 
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association rules and uses them to create a hypergraph in which single locus genotypes are 

vertices and association rules dictate the presence and weight of hyperedges.  hMETIS, using a 

series of phases—(1) Coarsening phase, (2) Initial partitioning phase, (3) Uncoarsening and 

refinement phase, and (4) V-cycle refinement—to create a partition of the hypergraph such that 

the weight of the removed hyperedges is minimized. 

This results in a partitioning of the genotypes.  If one were simply analyzing a single 

dataset, this information would be sufficient, in and of itself, since it would provide information 

about which multilocus genotypes were most important for partitioning out individuals.  

However, for the purpose of comparing the results of Hypergraph Partitioning to those of the 

other two methods, which produce partitionings of individuals (not genotypes), such a 

partitioning of individuals still needed to be created.  To that end, a heuristic was devised such 

that each individual would be assigned to the partition, or cluster, for which it had the highest 

percentage of matching genotypes.  More specifically, for each cluster, the number of loci 

represented by one or more genotypes in that cluster was determined (Lc).  Then, for each 

individual, for each cluster, the number of matching genotypes between the cluster and the 

individual (Mic) was divided by Lc, producing a vector of similarity percentages per individual, 

similar to the vector of probabilities used by the Bayesian Classification and Fuzzy k-Modes 

Clustering methods.  Each individual was then assigned to the cluster with which it had the 

greatest similarity. 

The third clustering method is Fuzzy k-Modes Clustering (Huang Z and Ng MK, 1999).  

k-Modes is a trivial extension of the popular k-means algorithm to categorical data.  In both 

methods, cluster centroids are initialized at random or by one of many seeding strategies (Duda 

RO and Hart PE, 1973), and individuals are assigned to their nearest cluster centroids.  Then, 

cluster centroids are reevaluated based on their newly assigned individuals.  For the k-means 

algorithm, the centroid is calculated as the mean vector of genotypes across individuals.  

However, for nominal data, such means are not necessarily meaningful, and the k-modes 

algorithm instead determines the centroid as the mode vector of genotypes across individuals.  

After cluster centroids are reevaluated, individuals are again assigned to their nearest centroids, 

and this process is repeated until the assignment of individuals to clusters does not change.  The 

straightforward algorithm was developed in the C++ language.  The number of clusters (k) was 

prespecified to be 2, 3, 4, 5 or 6.  All five possible k were run for each dataset.  Each cluster 
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centroid was initially set to the values of a randomly selected individual in the dataset being 

analyzed.  Both a ‘fuzzy’ and a ‘hard’ version of the k-modes algorithm were implemented and 

tested, and while their results on test datasets were comparable, the fuzzy version did perform 

slightly better and provided more information, which could be used for interpretation of results.  

Thus, the fuzzy version was chosen for use in the analyses. 

 

Statistical Analysis 

 

Comparison of Clustering Methods 

Each clustering method has its own metric(s) for evaluating the “goodness” of a 

clustering of data.  Since these methods are being tested on simulated data, classification error of 

a given clustering can be calculated as the number of misclassified individuals divided by the 

total number of individuals.  However, simple classification error has its disadvantages.  Firstly, 

in cases such as this where there is overlap between the known classes, the researcher must make 

an arbitrary decision as to when individuals who have been simulated to have both traits, not just 

one or the other, are considered to be misclassified.  The decision about error is equally arbitrary 

when the number of resulting clusters is greater than the number of known classes.  For instance, 

if the individuals belonging to one class were divided into two classes by the clustering 

algorithm, one would either have to say none of those individuals were incorrectly classified, 

since they are all in homogenous clusters, or else one would have to consider all individuals from 

one of those clusters as misclassified.  Neither choice seems to satisfactorily capture the 

“goodness” of the clustering result.  Subsequently, it is not advisable to compare the 

classification error of two clustering results for which the number of clusters differs. 

It is for these reasons alternative cluster recovery metrics were investigated.  The Hubert-

Arabie Adjusted Rand Index (ARIHA) addresses the concerns raised by classification error and 

was, therefore, chosen to evaluate the goodness of clustering results from the three clustering 

methods being compared (Hubert L and Arabie P, 1985).  Calculation of the ARIHA involves 

determining (1) whether pairs of individuals, who were simulated to have the same trait, are 

clustered together or apart and (2) whether pairs of individuals, who do not have the same trait, 

are clustered together or apart.  The ARIHA is robust with regard to the number of individuals to 

cluster, the number of resulting clusters, and the relative size of those clusters (Steinley D, 2004).  
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It is, however, sensitive to the degree of class overlap, which is desirable since it will penalize 

more for chance good clusterings than classification error would.  When interpreting ARIHA 

values, 0.90 and greater can be considered excellent recovery, 0.80 and greater is good recovery, 

0.65 and greater reflects moderate recovery, and less than 0.65 indicates poor recovery.  These 

values were derived from empirical studies showing observations cut at the 95th, 90th, 85th and 

80th percentiles corresponded to ARIHA values of 0.86, 0.77, 0.67 and 0.60 respectively (Steinley 

D, 2004). 

The ARIHA was used as the gold standard measure to compare the performance of the 

three clustering methods.  The assumptions of the multiway ANOVA were tested:  (1) normality 

for each group, and (2) equality of error variances across groups.  Since neither assumption held 

and data transformations were not advisable, the planned multiway ANOVA was not performed, 

and instead, a nonparametric method was used.  Three new categorical variables were created 

that essentially captured the same information but could be tested using the chi-square test of 

independence.  The ARIHA values were discretized into a 1 or 0 depending on whether they met 

or exceeded the cutoff values for excellent, good and moderate cluster recovery, as described 

above.  A chi-square test of independence was performed testing the null hypothesis that the 

number of clusterings achieving a certain ARIHA value was independent of the clustering 

method.  Five percent was chosen as the acceptable Type I error (false positive) rate.  An 

evaluation was performed of whether one method significantly outperformed the others and 

whether that method performed satisfactorily accordingly to the ARIHA.   

 

Analysis of Cluster-Specific Metrics 

 As a reminder, the ultimate goal of this research is to find a clustering method that works 

well at uncovering trait heterogeneity in real genotypic data.  Unlike for the current simulation 

study, for real data one does not know a priori to which clusters individuals belong, else the 

clustering would not be necessary.  Indeed, it is the goal of clustering to uncover natural clusters 

or partitions of data using the method-specific “goodness” metric as a guide.  In preparation for 

application of a clustering method to real data, after choosing the superior method, a correlation 

analysis using the Pearson correlation coefficient was performed for the ARIHA and that 

method’s internal clustering metrics to determine how good a proxy they were for ARIHA.   
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In addition, permutation testing was performed using the ARIHA and the internal 

clustering metric that was the best proxy for ARIHA.  The ratio of one hundred permuted datasets 

per simulated dataset was chosen, which should result in a reasonable approximation of the null 

distribution but would not put unreasonable strain on resources and time (Good P, 2000).  

Genotypes were permuted within loci across individuals, such that the overall frequency of 

genotypes at any one locus was unchanged, but the frequency of multilocus genotypes was 

altered at random.  This will create a null sample in which the frequency of multilocus genotypes 

is no longer associated with trait status except by chance.  The superior clustering method was 

applied to each permuted data set and both the internal clustering metric value and the ARIHA 

was determined.  For each set of 100 permuted data sets, the distributions of the internal 

clustering metric values and the ARIHA values were plotted.  The significance of each of the 

simulated dataset results was determined based on whether it exceeded the values at the 

significance level in the null distribution.  Ten percent was chosen as the acceptable Type I error 

rate since these methods serve as a means of data exploration to be followed by more rigorous, 

supervised analyses on individual clusters of the data.  However, the more conventional levels of 

0.05 and 0.01 were also evaluated, should one decide to use these more stringent significance 

criteria. 

Finally, the ability of permutation testing to preserve an acceptable Type I (false positive) 

error rate was evaluated at the three specified significance levels.  A false positive was defined as 

a clustering result which had a p-value according to the internal clustering metric that was 

significant but a p-value according to ARIHA that was not significant.  The Type II (false 

negative) error rate was evaluated at the same alpha levels to determine the sensitivity for 

detecting trait heterogeneity when it is present.  A false negative was defined as a clustering 

result which had a p-value according to the internal clustering metric that was not significant but 

a p-value according to ARIHA that was significant.   
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CHAPTER III 

 

RESULTS 

 

Descriptive Statistics 

 Descriptive statistics and plots for the Hubert-Arabie Adjusted Rand Index results were 

produced.  You will recall that a score of 0.90 on the ARIHA indicates excellent cluster recovery, 

0.80 good recovery, and 0.65 moderate recovery.  Mean ARIHA values for Bayesian 

Classification, Hypergraph Clustering and Fuzzy k-Modes Clustering were 0.666, 0.354 and 

0.556, respectively (Figure 6).  Mean ARIHA values differed by model type as well, with higher 

scores achieved on Trait Heterogeneity Only (THO) datasets for the Bayesian Classification and 

Hypergraph Clustering methods (see Figure 7). 
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Figure 6.  Comparison of Hubert-Arabie Adjusted Rand Index means by method (averaged over 
all parameter settings).  Columns represent means.  Horizontal lines represent thresholds for 
quality of cluster recovery:  0.90 for excellent recovery, 0.80 for good recovery, and 0.65 for 
moderate recovery.  The barely visible error bars represent 95% confidence interval. 
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Figure 7.  Comparison of Hubert-Arabie Adjusted Rand Index means by method and model.  
Horizontal lines represent thresholds for quality of cluster recovery:  0.90 for excellent recovery, 
0.80 for good recovery and 0.65 for moderate recovery.  Model abbreviations are as follows:  
Trait Heterogeneity Only (THO), Trait Heterogeneity with Locus Heterogeneity (THL), Trait 
Heterogeneity with Gene-Gene Interaction (THG), and Trait Heterogeneity with Both Locus 
Heterogeneity and Gene-Gene Interaction (THB) 
 

 

 Confidence intervals around the means were also produced to demonstrate the 

preciseness of the ARIHA measurements.  The results for each method across all datasets are 

presented in Table 2.  The results for each method by model type are presented in Table 3.  The 

intervals were very narrow, on the order of thousandths. 

 

 

Table 2.  Confidence intervals around ARIHA means by method 
   Confidence Interval 

Method Mean Standard Error Lower End Upper End 

Bayesian 0.666 0.001 0.664 0.667 

Hypergraph 0.354 0.001 0.352 0.355 

Fuzzy k-Modes 0.556 0.001 0.555 0.558 
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Table 3.  Confidence intervals around ARIHA means by method and model.  Model abbreviations 
are as follows:  Trait Heterogeneity Only (THO), Trait Heterogeneity with Locus Heterogeneity 
(THL), Trait Heterogeneity with Gene-Gene Interaction (THG), and Trait Heterogeneity with 
Both Locus Heterogeneity and Gene-Gene Interaction (THB). 
 

    Confidence Interval 

Method Model Mean Standard Error Lower End Upper End 

Bayesian THO 0.875 0.001 0.872 0.878 

 THL 0.603 0.001 0.601 0.606 

 THG 0.585 0.001 0.583 0.588 

 THB 0.599 0.001 0.596 0.601 

Hypergraph THO 0.508 0.001 0.506 0.511 

 THL 0.255 0.001 0.252 0.257 

 THG 0.252 0.001 0.250 0.255 

 THB 0.399 0.001 0.396 0.401 

Fuzzy k-Modes THO 0.512 0.001 0.510 0.515 

 THL 0.587 0.001 0.585 0.590 

 THG 0.467 0.001 0.464 0.469 

 THB 0.659 0.001 0.656 0.661 

 

 

Sometimes during the course of a run, the Fuzzy k-Modes Clustering algorithm would 

end up moving all individuals from a given cluster into other clusters, thereby resulting in some 

‘empty’ clusters, such that the number of true ‘resulting’ clusters was smaller than the 

prespecified number.  In fact, it often produced one cluster (effectively no partitioning) of the 

data, especially for datasets with a larger number of nonfunctional loci.  This result was due to a 

convergence problem in which the algorithm initially choose as cluster modes two individuals 

whose multilocus genotypes were so similar to each other that the probability that any given 

individual in the dataset would belong to one cluster versus another was equal.  In such cases, the 

individuals were arbitrarily assigned to the first cluster, thereby resulting in the remaining 

cluster(s) being empty.  As one might expect, as the number of nonfunctional loci increased, this 

result was more common. 
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Multiway Analysis of Variance and Chi-Square Analysis 

For the planned comparison across methods, the distribution assumptions of the planned 

multiway ANOVA were tested: (1) normality for each group and (2) equal variance across 

groups being compared.  Using the Kolmogorov-Smirnov test of normality with Lilliefors 

significance correction, for each of the three distributions by method, the null hypothesis that 

they were drawn from a population with a normal distribution was rejected (Bayesian 

Classification D=0.173, df=19200, p<0.001; Hypergraph Clustering D=0.126, df=19200, 

p<0.001; Fuzzy k-Modes Clustering D=0.221, df=19200, p<0.001).  In addition, using the 

Levene’s test for equality of variances, the null hypothesis that the variances were equal across 

the three distributions was rejected (F=225.101, df1=2, df2=57597, p<0.001).    It was readily 

evident from visual examination of the distributions of ARIHA that not only were the 

distributions not normal and without equal variances, the shape of the distributions were very 

different across the groups.  (See Figure 8.)  The distribution of ARIHA scores for Bayesian 

Classification was bimodal, that for Hypergraph Clustering was negatively skewed, and that for 

Fuzzy k-Modes Clustering was slightly positively skewed.  In light of this, one particular data 

transformation was unlikely to normalize all three of them.  Additionally, performing three 

different data transformations, even if acceptable, would make interpretation of the results 

extremely difficult. 

Therefore, three new categorical variables were constructed that essentially captured the 

same information as the raw ARIHA values but could be tested using the nonparametric chi-

square test of independence.  The three variables were calculated as the number of clustering 

results achieving each of the three ARIHA cutoff values of 0.65 (for moderate cluster recovery), 

0.80 (for good cluster recovery) and 0.90 (for excellent cluster recovery).  Results are displayed 

in terms of percentages by clustering method (Figure 9) and by clustering method and genetic 

model (Figure 10).  A chi-square test of independence was performed testing the null hypothesis 

that the number of clusterings achieving a certain ARIHA cutoff value was independent of the 

clustering method.  The three methods performed significantly differently on each of the new 

ARIHA cutoff statistics (Table 4).  The Bayesian Classification outperformed the other two 

methods.  However, across all the dataset parameters, Bayesian Classification achieved moderate 

or better recovery on only 49% of the datasets—hardly a stellar performance (Figure 9). 
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Figure 8.  Distribution of ARIHA means by method. 
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Table 4.  Overall results of Chi-Square Test of Independence testing the null hypothesis that the 
percentage of clustering results achieving the specified cluster recovery level does not differ 
across clustering methods. 
 

Cluster Recovery Statistic χ2 df p 

%Results achieving Excellent cluster recovery (ARIHA ≥ 0.90) 1787 2 < 0.001

%Results achieving Good cluster recovery (ARIHA ≥ 0.80) 1614 2 < 0.001

%Results achieving Moderate cluster recovery (ARIHA ≥ 0.65) 8565 2 < 0.001
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Figure 9.  Percentage of clustering results achieving cluster recovery levels by method. 

 

 

The performance of the three clustering methods across different dataset parameters was 

evaluated in an attempt to find particular conditions under which one method consistently 

achieved good or excellent recovery (not just better recovery than the other two methods).  For  

those datasets simulated under the THO model, Bayesian Classification performed well, with 

over 73 percent of its resulting clusterings achieving an ARIHA value of 0.90 or greater, 

indicating excellent recovery (Figure 10).  For this subset of the datasets, Bayesian Classification  

22 



Table 5.  Results of Chi-Square Test of Independence for Trait Heterogeneity Only datasets, the 
testing the null hypothesis that the percentage of clustering results achieving the specified cluster 
recovery level does not differ across clustering methods. 
 

Cluster Recovery Statistic Model χ2 df p 

%Results achieving Excellent cluster recovery (ARIHA ≥ 0.90) THO 1787 2 < 0.001

%Results achieving Good cluster recovery (ARIHA ≥ 0.80) THO 1614 2 < 0.001

%Results achieving Moderate cluster recovery (ARIHA ≥ 0.65) THO 8565 2 < 0.001
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Figure 10.  Percentage of clustering results achieving cluster recovery levels by method and 
model. 
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outperformed the other two methods, and again there was a significant difference in performance 

across the three methods, as measured by a chi-square test of independence on each of the three 

new ARIHA cutoff statistics (Table 5).  Analysis of the other simulation parameters failed to 

show as great a difference among methods where the ‘winning’ method performed as well as the 

Bayesian Classification performed in the THO datasets.  Thus, this subset of data was chosen for 

further investigation into the efficacy of using the Bayesian Classification method to uncover 

trait heterogeneity in real data. 

 

Correlation of ARIHA and Bayesian Classification Internal Clustering Metrics 

 The Bayesian Classification method produces two internal clustering metrics for each 

resulting cluster, or class: (1) class strength, and (2) cross-class entropy.  Class strength is a 

heuristic measure of how strongly each class predicts “its” instances and is reported as the log of 

class strength.  Cross-class entropy is a measure of how strongly the class probability distribution 

function differs from that of the dataset as a whole.  Because each metric is calculated per 

resulting cluster, or class, two derivate measures were calculated for each metric: (1) the average 

metric value across clusters, and (2) the maximum metric value across clusters.  To evaluate the 

validity of using one of the Bayesian Classification internal clustering metrics as a proxy for the 

ARIHA (since ARIHA is unknown for real data) a correlation analysis using the Pearson 

correlation coefficient was performed for each of those derivative measures with ARIHA.  The 

maximum and the average derivative measures correlated almost perfectly with each other, for 

each of the internal clustering metrics (r=1.000, p<0.001 for log of class strength; r=0.963, 

p<0.001 for cross class entropy).  Although significant, due to large sample sizes, as evaluated 

by Pearson correlation coefficient, the correlations with ARIHA were not particularly strong 

(Table 4).  The strongest correlation was between average log of class strength and ARIHA 

(r=0.584, p<0.001).   

Figures 11 and 12 plot ARIHA versus average log of class strength and average cross-

class entropy, respectively.  As is visually apparent, the relationship between the measures is 

nonlinear in both cases.  For average log of class strength, there are four distinct groupings of 

values along the scale.  After plotting average log of class strength versus ARIHA separately for 

each number of nonfunctional loci, it became clear that the groupings were related to this noise 

parameter (Figure 13).  The highest grouping of average log of class strength resulted from 
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datasets with the fewest number of nonfunctional loci (0), and likewise, the lowest average log of 

class strength values resulted from datasets with the greatest number of nonfunctional loci (100).  

Still, even after this examination of each grouping on a smaller scale, the relationship between 

the average log of class strength and ARIHA was not straightforward. 

 

 

Table 6.  Correlations between ARIHA and Bayesian Classification Internal Clustering Metrics.  
Pearson correlation coefficients (r) and significance (p-value) provided. 
 

 Hubert-Arabie Adjusted Rand Index 

Internal Clustering Metric r p Value 

Average Log of Class Strength 0.584 < 0.001 

Maximum Log of Class Strength 0.582    0.001 

Average Cross-Class Entropy 0.024 < 0.001 

Maximum Cross-Class Entropy -0.042 < 0.001 

 

 

As for the relationship between average cross-class entropy and ARI, it is also nonlinear 

and not particularly strong. There appears to be an effect based on the number of resulting 

clusters in which most of the nonlinearity is attributable to datasets resulting in 2 clusters (see 

Figure 14).  What is most troublesome is that, other than for very low entropy values for datasets 

where there were 2 resulting clusters, high scores for average cross-class entropy, which should 

indicate good clustering, actually correspond to low (poor) ARIHA values.  It is this characteristic 

that makes using cross-class entropy as a proxy for ARIHA ill-advised.  Therefore, despite its 

complex relationship with ARIHA, average log of class strength is a better option for an ARIHA 

proxy than is average cross-class entropy. 
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Figure 11.  Average Log of Class Strength versus Hubert-Arabie Adjusted Rand Index.  Points 
represent means over 100 datasets per set of simulation parameters.  Red bars represent standard 
error. 
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Figure 12.  Average Cross-Class Entropy versus Hubert-Arabie Adjusted Rand Index.  Points 
represent means over 100 datasets per set of simulation parameters.  Red bars represent standard 
error. 
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Figure 13.  Average Log of Class Strength versus Hubert-Arabie Adjusted Rand Index paneled 
by Number of Nonfunctional Loci in simulated datasets.  Notice different scales in each panel for 
Average Strength.  Points represent means, indicating that the fewer the number of nonfunctional 
loci, the larger (better) the log of average class strength scores were achieved.  Red bars 
represent standard error. 
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Figure 14.  Average cross-class entropy versus Hubert-Arabie Adjusted Rand Index paneled by 
number of resulting clusters. 
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Permutation Testing 

 After choosing average log of class strength as the preferred proxy for ARIHA, 

permutation testing was performed on the 19,200 simulated datasets, using 100 permuted 

datasets per simulated data set.  The values corresponding to the alpha levels of 0.01, 0.05 and 

0.10 for the ARIHA and average log of class strength were used to calculate false positive and 

false negative rates.  A clustering result was considered a false positive if it was ‘called’ 

significant according to average log of class strength but was not significant according to our 

gold standard, ARIHA.  A clustering result was considered a false negative if it was called not-

significant according to average log of class strength but was significant according to ARIHA.  

Figures 15 and 16 show the false positive and false negative rates, respectively, by alpha level. 

The false positive, or Type I, error rate was controlled very well at the one percent level 

for all three significance levels.  The false negative, or Type II, error rate was not well 

controlled, however.  For the most stringent significance level of 0.01, almost half of the 

clustering results that were significant according to the ARIHA were not called significant 

according to the average log of class strength.  At the least stringent significance level (α = 0.10), 

however, the Type II error rate was 21 percent, which is more acceptable.  Other simulation 

parameters were examined for their impact on the false negative rate, and Figures 17 and 18 

show the false negative rate by alpha level paneled by number of nonfunctional loci and number 

of affecteds (sample size), respectively.  As might be expected, the lowest false negative rates 

were achieved for datasets with the lowest number of nonfunctional loci (10) and the greatest 

sample size (1000). 
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Figure 15.  False positive rate by significance level (alpha). 
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Figure 16.  False negative rate by significance level (alpha). 
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Figure 17.  False negative rate by significance (alpha) level, paneled by number of nonfunctional 
loci. 
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Figure 18.  False negative rate by significance (alpha) level, paneled by number of affecteds 
(sample size). 
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CHAPTER IV 

 

DISCUSSION 

 

Data Simulation 

 The new data simulation algorithm produced complex genotypic datasets that included 

trait heterogeneity, locus heterogeneity and gene-gene interactions.  Most existing simulation 

software that attempts to simulate heterogeneity does so by allowing the user to specify what 

portion of the dataset is to be simulated under one model versus another, and the resulting 

individuals are simply combined into one dataset.  In the new algorithm, however, the disease 

penetrance models, which were used to simulate the data, were constructed so that overall 

prevalence levels were controlled, allowing naturally occurring overlaps, in which some 

individuals would have both traits (and their associated multilocus genotypes) by chance. 

As expected, the simpler the model, the better the performance by the three clustering 

algorithms, with the exception that the Hypergraph Clustering and Fuzzy k-Modes Clustering 

methods performed somewhat better (although still achieved poor cluster recovery) on the THB 

(Trait Heterogeneity with Both locus heterogeneity and gene-gene interaction) datasets than they 

did on the THL (Trait Heterogeneity with Locus heterogeneity) and THG (Trait Heterogeneity 

with Gene-gene interaction) datasets.  Likewise, in general, the fewer the nonfunctional loci and 

the larger the sample size, the better the performance was.  This novel data simulation algorithm 

should prove very useful for future studies of other proposed genetic analysis methods for 

complex diseases. 

 

Method Comparison 

 The Bayesian Classification method outperformed the other two methods across most 

dataset parameter combinations, with the exception of the most complex model (THB) on which 

Fuzzy k-Modes Clustering performed best.  When the results were further examined to find a set 

of parameters for which one or more methods performed well, Bayesian Classification was found 

to have achieved excellent recovery for 75% of the datasets with the THO model and achieved 

moderate recovery for 56% of datasets with 500 or more affecteds and for 86% of datasets with 
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10 or fewer nonfunctional loci.  Neither Hypergraph Clustering nor Fuzzy k-Modes Clustering 

achieved good or excellent cluster recovery even under a restricted set of conditions. 

Bayesian Classification was obtained as closed-source software, for which there were 

numerous parameters, which could have been tweaked.  Initial parameter settings were chosen as 

recommended by the authors based on the type of data being analyzed.  However, it is possible 

that alternative settings may have yielded better results.  For example, for datasets with the more 

complex genetic models, greater numbers of nonfunctional loci and smaller sample sizes, the 

maximum number of classification trials and/or the maximum number of classification cycles per 

trial may need to be longer, and those parameters concerned with convergence rate and stopping 

criteria may need to be changed to delay convergence.  If improvements in performance could be 

achieved with reasonable time and resource tradeoffs, such changes would certainly be desirable.  

The results of this simulation study are perhaps encouraging enough to warrant further 

investigation of this matter. 

It was certainly disappointing that Hypergraph Clustering did not perform very well 

under most conditions, despite its intuitive appeal as a method that would find frequently-

occurring multilocus genotypic patterns.  As it turns out, the Hypergraph Clustering may not 

have been a good fit for this type of data.  The Hypergraph Clustering method was reported to 

work well with very large variable sets (on the order of thousands), which have complex patterns 

for which large numbers of clusters (10-20+) were relevant (Han EH et al., 2002).  There has 

been no discussion in the literature about the method’s performance on smaller variable sets.  

Thus, it is possible that the restricted patterns present in our multilocus genotypic data were too 

simple and sparse and that the method is simply tuned to search for more complex patterns.  

Also, the process devised to translate the resulting partitioning of genotypes into a clustering of 

individuals was awkward and did not seem to yield the desired result, although it was the best 

process out of several tested.  Oftentimes, even when the method correctly chose the functional 

genotypes to be in different partitions, too many other nonfunctional genotypes were also 

chosen, which meant that the difference between an individual’s likelihood of belonging to one 

cluster versus another was too small, making the choice of cluster assignment almost arbitrary. 

Like the Bayesian Classification method, the Hypergraph Clustering method was 

obtained as closed-source software (LPminer and hMETIS), and it had a number of different 

parameter settings also.  It is possible that different settings would have yielded better results.  

34 



For example, the maximum size of an association rule was limited only by the number of 

variables.  Perhaps it would have performed better if we had limited it to five loci, which is the 

largest number of functional loci in any of the datasets and in real data is perhaps the largest 

number of interactions one would want to find (and try to interpret).  Also, it is possible that the 

performance could have been improved with a different level of the minimum “support” or 

frequency required for a pattern to be considered an association rule.  The default of five percent 

was used, but perhaps in combination with lowering the maximum size of an association rule, the 

minimum support should have been raised to ten or fifteen percent.  This may have reduced the 

number of nonfunctional loci included in the partitioning of genotypes such that the subsequent 

partitioning of individuals was more satisfactory. 

The Fuzzy k-Modes Clustering method performed comparably for the more complex 

datasets and was much less computationally intensive.  It has been widely reported that the 

performance of k-means algorithms is highly variable depending on the method of seeding the 

initial cluster centroids.  While we used the recommended method of selecting individuals from 

the dataset to serve as the initial cluster modes, we perhaps could have achieved better results if 

we implemented an additional step to ensure that the initial centroids were substantially 

dissimilar to each other.  This is supported by evidence that when the Fuzzy k-Modes Clustering 

resulted in only one cluster (effectively no partitioning of the data), the initial centroids were 

very similar, and the dataset had converged early so that individuals had equal probability of 

belonging to any of the clusters.  In such cases, the individual was arbitrarily assigned to the first 

cluster, thereby leading to all other clusters being left empty. 

 

Permutation Testing 

 To determine the efficacy of using the Bayesian Classification method on real data, the 

reliability of its internal clustering metrics at finding good clusterings was evaluated.  It was 

discovered that when using the average log of class strength as the internal clustering metric, the 

false negative rate was alarmingly high for the most stringent significance level of 0.01.  

However, it was perhaps acceptably low (21 percent) for the less stringent significance levels of 

0.05 and 0.10.  In addition, the average log of class strength metric controlled the false positive 

rate very well, at one percent or less for all three significance levels.  Thus, if a clustering of data 

were called significant according to permutation testing using the average log of class strength, 
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one could be quite confident that the result were real.  On the other hand, if the clustering were 

called statistically insignificant by the same process, using an alpha level of 0.10, there would be 

a twenty-one percent chance that you were mistakenly rejecting a good clustering of the data.  

Because these methods are meant as a preprocessing step before applying other statistical or 

supervised machine learning methods, one might have preferred that the method err on the side 

of having more false positives than false negatives.  One could then further test several of the 

new hypotheses, feeling relatively confident that few if any potentially true hypotheses had been 

missed. 

However, others might prefer it the way it turned out here.  There is indeed a trade-off 

between the two types of error, and many researchers would be pleased to have a method with a 

one percent false positive rate, regardless of the twenty-one percent false negative rate.  That is 

because valuable time and resources can be spent on follow-up studies, and it can be very 

detrimental to pursue leads that do not have a good chance of yielding new information about the 

disease under study.  By controlling the false positive rate so well, Bayesian Classification offers 

a comfortable degree of certainty with regard to the hypotheses that it generates.  At least, this is 

true when the underlying data structure is similar to that simulated under the THO model.  It is 

not known whether data with a substantially different underlying model would lead to different 

behavior and different false positive and false negative rates.  This needs to be further 

investigated to determine whether Bayesian Classification is robust to a variety of data structure 

conditions.  There are methodological parameters concerning convergence that might be further 

optimized to better suit a range of data structures.  These two areas should be the focus of future 

studies. 

 In conclusion, the efficacy of three clustering methodologies at uncovering trait 

heterogeneity in genotypic data was investigated.  One method, Bayesian Classification, was 

found to perform very well under some conditions (THO model) and to outperform the other 

methods.  Permutation testing confirmed that the method could be used on real data with 

excellent Type I error control and acceptable Type II control.  Further investigation of how 

different parameter settings may improve the performance of Bayesian Classification is 

recommended. 
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