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CHAPTER 1 

 

BACKGROUND 

 

Introduction 

Isolated from Pseudopterogorgia kallos by Rodriguez, bielschowskysin is a 

unique furanocembranoid natural product.1 In addition to its structural novelty and 

complexity, bielschowskysin exhibits antiplasmoidial activity against Plasmodium 

falciparum (IC50 = 10 µg/ mL) as well as in vitro cytotoxicity against EKVX nonsmall 

cell lung cancer (GI50 < 0.01 µM) and CAKI-1 renal cancer (GI50 < 0.51 µM). Its 

structural and biological profile renders the natural product an interesting target for total 

synthesis.  

 

Biosynthesis 

Bielschowskysin belongs to a unique class of diterpene natural products 

assembled by gorgonian corals.  These marine species are responsible for the production 

of most known furanocembranoids, pseudopteranes and gersolanes. Differing most 

markedly in carbocyclic ring size, these natural products are highly oxygenated – often 

featuring furan and butenolide moieties – and biosynthetically related.2 
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Figure 1: Furanocembranoid skeletons 

The proposed biosynthesis of the furanocembranoid ring system begins with 

geranylgeranyl diphosphate 1. Cyclization leads to generation of the cembrane skeleton, 

which upon deprotonation, forms neocembrane 3. Subsequent oxidation promotes 

formation of rubifolide 4, a supposed precursor for more complex furanocembranoids.2 

 

 

Scheme 1: Conversion of geranylgeranyl (1) diphosphate to rubifolide (4). 

 

Trauner has postulated that biosynthesis of bielschowskysin occurs through 

rubifolide 4. Advancement to intermediate 5 is accomplished through various oxidative 

processes. Further oxidation and hydration generates compound 6 which undergoes [2+2] 

photocycloaddition to yield the natural product.2 

  

 

Scheme 2: Proposed biosynthesis of bielschowskysin (7). 
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Alternate Routes 

 Due to its structural complexity, bielschowskysin has proven an interesting yet 

elusive target. Several groups, in addition to ours, have undertaken a total synthesis 

program. A noteworthy point of divergence among these routes is the manner in which 

the core cyclobutane functionality is installed.  

Similar to our route, Lear proposes a transannular [2+2]-photocycloaddition 

between an allene and a butenolide.3 In order to investigate the feasibility of this 

transformation, the group implemented a model system.  

Malic acid was reduced to triol 9 and converted to acetonide 10. Swern oxidation 

of the primary alcohol, addition of methyl magnesium bromide, and subsequent oxidation 

afforded methyl ketone 11. Ethynyl magnesium bromide addition resulted in tertiary 

alcohol 12, which underwent transketalization to the benzylidene acetal. Oxidation of the 

primary alcohol to the aldehyde followed by Wittig homologation yielded the 

predominately cis α,β-unsaturated ester 15. Upon treatment with sulfuric acid, the diol 

was liberated and spontaneously formed butenolide 16. Reaction of silyl ether 17 with 

paraformaldehyde gave photocycloaddition precursor 18. Upon irradiation in a solution 

of hexanes and dichloromethane, the allene butenolide was converted to cyclobutane 19. 

As of yet, there have been no reports of this methodology being employed in a 

transannular setting.  
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Scheme 3: Lear’s Route. 

 

Nicolaou and coworkers also favored a photochemical approach. They are able to 

access the [9.3.0.0] tetradecane ring system (27, Scheme 4) of bielschowskysin in five 

steps starting with furan 20. 4 Noyori reduction to the alcohol followed by CAN mediated 

coupling with β-ketoester 30 yields compound 21 as a mixture of C3 epimers, 22 and 23. 

Grubbs ring closing metathesis of 22 produced macrocycle 24, with the newly formed 

olefin in a predominately trans orientation. Attempted photocycloaddition with this 

substrate was unproductive. In an effort to render the olefin of the enol ether more 

reactive, ketone 25 was reduced to the allylic alcohol 26. Irradiation of 26 resulted in 27 

as a single diastereomer. 
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Scheme 4: Nicolaou’s Route. 

 

Mulzer opted for a non-photochemical approach and began his synthesis with 
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and subsequent oxidation to the aldehyde produced 43, establishing the eastern portion of 

bielschowskysin.  

 

 

Scheme 5: Mulzer’s Route. 

 

Stoltz and coworkers propose a tandem cyclopropane fragmentation/ Michael 
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kinetic resolution protocol developed in Stoltz’s lab. Notably, either enantiomer could be 

accessed from this method. 

 

 

Scheme 6: Stoltz’s synthesis of enantiomeric alcohols (47) and (48). 

 

Furan 46 was then acylated and coupled with a novel diazoacetoacetic acid reagent. 

Cyclopropanation with Cu(TBSal)2 afforded 53. They envisioned acetate removal, 
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Scheme 7: Stoltz’s approach to cyclobutane (56). 
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Scheme 8: Stoltz’s route to unexpected compound (61). 

 

Theodorakis proposes a novel biomimetic synthesis of bielschowskysin via 

cembrenolide 62.7 He postulates that hydration, oxidation, and subsequent Michael 

addition of this cembrenolide should lead to an intermediate that can undergo either aldol 
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Scheme 9: Theoretical approach to verrillin and bielschowskysin. 
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 The C7-C12 fragment of the cembrenolide was synthesized from butynol 66. 

Conversion to ester 67 was accomplished in three steps. Copper mediated reduction of 

the alkyne followed by acid-induced cyclization afforded lactone 69. Treatment with 

LHMDS and PhSeBr effected selenation at the alpha position.  

 

 

Scheme 10: Theodorakis’ synthesis of the C7–C12 fragment. 

 

 Methyl zirconation and iodination of propargyl alcohol followed by silylation 

yielded vinyl iodide 72. Lithium halogen exchange and addition of oxirane resulted in 
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Scheme 11: Theodorakis’ synthesis of the C1–C13. 
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by selective deprotection gave primary alcohol 76. Coupling of fufural 80 and iodide 77 

was accomplished via a modified Stille. Appel reaction of the allylic alcohol resulted in 

formation of the bromide, which underwent NHK cyclization to macrocycle 79. 

However, attempted oxidation of the furan moiety with CAN led to a complex mixture of 

products rather than enol ether 63. 

 

 

 

Scheme 12: Theodorakis’ completion of route to common intermediate (79) 
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CHAPTER II 

 

CURRENT PROGRESS 

 

Sulikowski Route 

Initially, efforts toward the molecule centered on construction of the tetracyclic 

core. With this strategy in mind, bis-butenolide 82 was envisioned as a precursor to 

cyclobutane 81 via a [2+2] photocycloaddition. The required bis-butenolide could 

ultimately be derived from (-)-malic acid.   

 

 

Scheme 13: Retrosynthetic analysis of bielschowskysin (7). 
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the substituted butenolide directly, the group resorted to Grieco’s method of selenation-

oxidation, accessing this moiety through lactone 85.9  

In a revised synthetic analysis, it was envisioned that formation of the macrocycle 

would arise from an intramolecular vinylogous aldol reaction of 83. Aldehyde 84 would 

enable installation of the required butenolide for this key reaction. The 

photocycloaddition precursor could be accessed from lactone 85, which could be derived 

from epoxide 86. As before (-)-malic acid would serve as the starting point of the 

synthesis.  

 

 

Scheme 14: Revised synthetic analysis of bielschowskysin (7). 
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89. Exposure to acid liberated the diol, which upon addition to a slurry of sodium hydride 

and tosyl chloride resulted in concomitant formation of epoxide 8614, 15 The action of 

ynamine 91 on the epoxide followed by desilylation gave lactone 90 in 88% yield.16  

 

 

Scheme 15: Synthesis of lactone (90). 
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Completion of photocycloadditon precursor 96 was realized upon silver catalyzed 

cycloisomerization of acid 95.19, 20 

 

 

Scheme 16: Synthesis of bis-butenolide (96). 
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Scheme 17: Synthesis of advanced intermediate (84). 

 

Model System 

To complete our synthetic vision of a vinylogous aldol to install the C2, C3 bond, 

a final butenolide must be constructed from aldehyde 12. In the interest of conserving 

valuable material, a model system was adopted to develop methodology before applying 

it to any advanced intermediates.  

 Octenol, 101, serves as the starting point of our exploratory synthesis. The alcohol 

was smoothly converted to ester 102. Lemieux Johnson oxidation resulted in aldehyde 

104 in modest yield.21 The aldehyde was also obtained via a separate dihydroxylation/ 

sodium periodate cleavage pathway, a route more consistent with the reactions to be 

applied to the actual system.22 At this point the model system resembles C13 and C14 of 

intermediate 84. 
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Scheme 18: Synthesis of aldehyde (104). 

 

Wittig olefination with triphenyl phosphorane 105 afforded homologated 

aldehyde 106.  Sodium borohydride reduction resulted in allylic alcohol 107, an 

important intermediate allowing for synthetic divergence within the model system. 

Transformation of 107 to bromoacetal 108 was accomplished with NBS and neat ethyl 

vinyl ether. Employing a protocol established by Stork, radical cyclization of the 

bromoacetal was observed upon reflux with Bu3SnH and AIBN in benzene for five 

hours.23 Jones’ oxidation of the lactol yielded lactone 110. Subsequent enolization and 

reaction with Mander’s reagent provided the substituted lactone. Presumably, selenation 

followed by oxidation elimination would provide butenolide 112. Satisfied with the 

preliminary findings of the model system, we shifted our efforts toward scale-up of 

material and application of the newly explored chemistry to the front end.  
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Scheme 19: Synthesis of butenolide (112). 

 

Aldehyde 84 was converted to α,β-unsaturated aldehyde 113 without incident. 

However, attempted reduction to the allylic alcohol resulted in decomposition.  

 

 

Scheme 20: Application of model system chemistry to front end. 
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the exocyclic olefin and trans ring juncture simultaneously via an intermediate diazene.24 

Finally benzoate removal will result in bielschowskysin, 7.   

 

 

 

Scheme 21: Bielschowskysin end-game strategy. 

 

In an alternate strategy, we envision advancing bis-butenolide 96 to tris-

butenolide 119 via the model system chemistry and then attempting the 

photocycloaddition. 

 

  

Scheme 22: Proposed conversion to tris-butenolide 119.  
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Experimental Methods 
 

 

General. All non-aqueous reactions were performed under an argon atmosphere in oven-

dried glassware. Reagents were purchased at the highest commercial quality and used 

without further purification, unless otherwise stated. Diethyl ether (Et2O), acetonitrile 

(CH3CN), dichloromethane (CH2Cl2), and dimethylformamide (DMF) were obtained by 

passing commercially available formulations through activated alumina columns 

(MBraun MB-SPS solvent system). Tetrahydrofuran (THF) was obtained by distillation 

from benzophenone-sodium. Triethylamine (Et3N) and diisopropylamine were distilled 

from calcium hydride and stored over potassium hydroxide. Reactions were monitored by 

thin-layer chromatography (TLC) using E. Merck precoated silica gel 60 F254 plates. 

Visualization was accomplished with UV light and aqueous stain followed by charring on 

a hot plate. Flash chromatography was conducted using the indicated solvents and silica 

gel (230-400 mesh). Yields refer to chromatographically and spectroscopically 

homogenous materials. 1H and 13C NMR spectra were recorded on a Bruker 400 MHz 

spectrometer and are reported relative to deuterated solvent signals (7.26 and 77.2).   

 

Preparative Procedures 

 

To a solution of alcohol 101 (1.0 eq, 9.5 g, 74.1 mmol) in CH2Cl2 (120 

mL) at ambient temperature was added pyridine (100 mL), acetic 

anhydride (60 mL), and DMAP (1 crystal). The reaction was stirred 1 h, washed with 1 N 

HCl (3 x 50 mL), brine (1 x50 mL), dried (MgSO4), filtered, and concentrated in vacuo. 

OAc

102
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The crude residue was purified by distillation (72-74 °C) to provide acetate 102 (12.0 g, 

70.0 mmol, 95%) as colorless oil. Spectral data was consistent with reported values.25 

 

To a solution of acetate 102 (1.0 eq, 3.0 g, 17.6 mmol) in THF (90 mL) 

at ambient temperature was added OsO4 (1 crystal) and sodium 

periodate (1.5 eq, 5.7 g, 26.5 mmol) as a slurry in water (25 mL). The reaction was stirred 

4 h, diluted with Et2O (100 mL) and washed with saturated sodium bicarbonate (3 x 50 

mL), brine (1 x 50 mL), dried (MgSO4), filtered, and concentrated in vacuo. The crude 

residue was purified by column chromatography (7:1 hexanes/ ethyl acetate) to provide 

aldehyde 104 (1.84 g, 10.7 mmol, 61%) as a colorless oil. Spectral data was consistent 

with reported values. 25 

 

To a solution of aldehyde 104 (1.0 eq, 900 mg, 5.2 mmol) in 

CH2Cl2 (50 mL) at ambient temperature was added 

formylmethylene triphenylphosphorane (1.0 eq, 1.6 g, 5.2 mmol). After warming to 

reflux, the reaction was stirred 3 h. Celite (1 g) was added and the reaction was 

concentrated in vacuo. The crude residue was purified by column chromatography (4:1 

hexanes/ ethyl acetate) to provide aldehyde 106 (680 mg, 3.4 mmol, 66%) as a pale 

yellow oil. 1H NMR (400 MHz CDCl3): δ 9.7 (d, J = 7.6 Hz, 1H), 6.75 (dd, J = 15.6, 4.8 

Hz, 1 H), 6.21 (dd, J = 15.6, 7.6 Hz, 1H), 5.52 (dd, J = 6.8, 5.2, 1H), 2.13 (s, 3H), 1.75-

1.69 (m, 2H), 1.44-1.27 (m, 6H), 0.93-0.89 (m, 3H); 13C (100 MHz, CDCl3) δ 192.9, 

170.0, 153.9, 131.4, 33.5, 31.3, 24.6, 22.3, 20.9, 13.9. 

 

OAc
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103
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To a solution of aldehyde 106 (1.0 eq, 198 mg, 1 mmol) in 

EtOH (10 mL) at ambient temperature was added sodium 

borohydride (1,0 eq, 380 mg, 10 mmol) and the reaction was stirred 1 h. The reaction 

mixture was concentrated in vacuo and the crude residue dissolved in ethyl acetate (10 

mL). The organics were washed with water (1 x 10 mL), brine (1 x 10 mL), dried 

(MgSO4), filtered and concentrated in vacuo. The crude alcohol was lowered to – 20 °C. 

Ethyl vinyl ether (10 eq, 740 mg, 10 mmol) was added and the reaction was allowed to 

stir 5 minutes. N-bromosuccinimide (1.0 eq, 178 mg, 1 mmol) was added while 

maintaining an internal temperature below 0 C. After 30 min, hexanes (10 mmol) was 

added and the reaction filtered through a plug of celite. The organics were washed with 

1N HCl (3 x 10 mL), dried (MgSO4), filtered, and concentrated in vacuo. The crude 

residue was purified by flash column chromatography (6:1 hexanes/ ethyl acetate) to 

provide acetal 108 (284 mg, 0.81 mmol, 81%) as a colorless oil. 1H NMR (400 MHz, 

CDCl3) δ 5.83-5.68 (m, 2H), 5.27 (dd, J = 6.8, 6.4 Hz, 1 H), 4.71 (t, J = 5.6 Hz, 1H), 

4.19-4.07 (m, 2H), 3.74-3.56 (m, 2H), 3.38 (d, J = 5.6 Hz, 1H), 2.06 (s, 3H), 1.66-1.54 

(m, 2H), 1.30-1.21 (m, 6H), 0.91-0.88 (m, 3H); 13C (100 MHz, CDCl3) δ 170.3, 131.4, 

128.3, 100.9, 73.9, 66.3, 62.4, 34.2, 31.6, 31.4, 24.7, 22.4, 21.2, 15.1, 13.9. 

 

To a solution of bromoacetal 108 (1.0 eq, 40 mg, 0.11 mmol) in 

benzene (5 mL) was added tributyl tin hydride (1.1 eq, 30 µL, 0.12 

mmol). The solution was degassed and then AIBN (1 crystal) was added. Heated to reflux 

(80 °C). After 3 hours, concentrated in vacuo. The residue was dissolved in Et2O (5 ml), 

washed 2 x 5 mL 10% KF, dried (MgSO4), filtered through Celite, and concentrated in 

OAc

108

O OEt

Br

OAc

109

4

O
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vacuo. The crude residue was purified by column chromatography (8:1 hexanes/ ethyl 

acetate) to provide lactol 109 (23 mg, 0.08 mmol, 75%) as a colorless oil. 1H NMR (400 

MHz, CDCl3) δ 5.29 (s, 1H), 5.12-5.08 (m, 1H), 4.91-4.83 (m, 1H), 3.78 (dt, J = 24, 8 

Hz, 1H), 3.72 (ddd, J = 8, 7, 1 Hz, 1H), 3.47 (m, 2H), 2.35-2.15 (m, 2H), 2.04 (s, 3H), 

1.73-1.60 (m, 2H), 1.49-1.43 (m, 4H), 1.30-1.19 (m, 6H), 0,9-0.86 (m, 3H)  13C (100 

MHz, CDCl3) δ 170.7, 104.1, 73.4, 73.2, 71.6, 71.5, 39.3, 39.1, 37.3, 37.2, 35.4, 31.2, 

24.8, 22.4, 15.1, 13.9. 

 

To a solution of lactol 109 (1.0 eq, 80 mg, 0.30 mmol) in acetone (3 

mL) added 1 mL of a solution of Jones reagent (1:9 Jones reagent: 

acetone). The reaction was monitored by TLC. After 30 minutes, the reaction was 

quenched with ethanol (1 mL). The reaction was diluted with ether (5 mL) and washed 

with H2O (1 x 5 mL), sodium bicarbonate (1 x 5 mL), and brine (1 x 5 mL). The organics 

were dried (MgSO4) and filtered. The crude residue was purified by column 

chromatography (4:1 hexanes/ ethyl acetate) to provide lactone 110 (50 mg, 0.20 mmol, 

71%) as a colorless oil. 1H NMR (400 MHz, CDCl3) δ  4.90 (m, 1H), 4,42 (m, 1H), 3.93 

(dd, J = 16, 8 Hz, 1H), 2.70-2.55 (m, 2H), 2.21 (dd, J = 16,  8 Hz, 2H), 2.06 (s, 3H), 1.73 

(m, 2H), 1.58-1.53 (m, 3H), 1.27 (m, 6H), 0.90-0.87 (m, 3H)  13C (100 MHz, CDCl3) δ 

176.7, 170.7, 73.2, 72.9, 72.4, 72.1, 37.4, 32.8, 31.5, 24.8, 22.4, 21.1, 13.9. 

 

 To a freshly prepared solution of LDA (1.0 eq, 0.10 mmol) in THF (1 

mL) was added lactone 110 (1.0 eq, 25 mg, 0.10 mmol) at 0 °C. 

Stirred at 0 °C for 1 hour, then cooled to -78 °C and added HMPA (20 µL) and methyl 
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cyanoformate (1.0 eq, 10 µL, 0.10 mmol). Stirred 30 min at -78 °C then poured reaction 

into cold water (1 mL). Extracted (3 x 5 mL) Et2O, dried (MgSO4), and concentrated with 

Celite. The crude residue was purified by column chromatography (4:1 hexanes/ ethyl 

acetate) to provide ester 111 (18 mg, 0.07 mmol, 70%) as a colorless oil. 1H NMR (400 

MHz, CDCl3) δ 4.69 (m, 1H), 4.46 (t, J = 8 Hz, 1H), 3.94 (t, J = 8 Hz, 1 H), 3.78 (s, 3H), 

3.47 (d, J = 8 Hz, IH), 3.15 (dd, J = 16, 8 Hz, 1H), 2.43 (s, 3H), 1.78 – 1.74 (m, 2H), 

1.35-1.20 (m, 6H), 0.90-0.88 (m, 3H). 

 

To a solution of acetonide 99 (1.0 eq, 5 mg, 10 µmol) in CDCl3 (600 

µL) in an NMR tube was added 1 drop of trifluoroacetic acid. 

Reaction progress was monitored by NMR. After 1 hour, the reaction 

was concentrated in vacuo and the crude residue was purified by column chromatography 

(1:1 hexanes/ ethyl acetate) to provide diol 100 (2 mg, 4.0 µmol, 50%) as a white solid. 

1H NMR (400 MHz, CDCl3) δ 7.37-7.31 (m, 5H), 6.95 (d, J = 1.5 Hz, 1H), 5.69 (d, J = 4, 

1 Hz, 1H), 5.33 (td, J = 11.4, 4 Hz, 1H), 4.37 (dd, J = 18, 11.2 Hz, 2H), 4.14 (dd, J = 14, 

6.7 Hz, 1H), 3.95 (m, 1H), 3.68-3.63 (m, 2H), 3.55 (dd, J = 7.8, 1.5 Hz, 1H), 3.35 (t, J = 

8 Hz, 1H), 3.15 (t, J = 6 Hz, 1H), 2.90 (ddd, J = 10, 8, 1.8 Hz, 1H), 2.15 (s, 3H), 2.05 (d, 

J = 1.8 Hz, 1H), 1.95 (s, 3H), 1.34 (s, 3H). 

 

To a solution of diol 100 (1.0 eq, 3 mg, 6.0 µmol) in ethyl acetate (500 

µL) at ambient temperature was added lead tetraacetate (3 mg). After 30 

min, filtered reaction through a plug of celite and obtained aldehyde  84 

(2 mg, 4 µmol, 75%) as a pure white solid. 1H NMR (400 MHz, CDCl3) δ 9.43 (s, 1H), 
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7.38-7.31 (m, 5H), 7.02 (d, J = 1.4 Hz, 1H), 5.76 (s, 1H), 5.35 m, 1H), 4.37 (dd, J = 19, 

11.4 Hz, 2H), 4.14 (dd, J = 14, 7 Hz, 1H), 3.59-3.51 (m, 2H), 2.90 (ddd, J = 10, 8, 2 Hz, 

1H), 2.23 (s, 3H), 2.07 (s, 3H), 2.03 (s, 3H).  

 

To a solution of aldehyde 84 (1.0 eq, 3 mg, 7.0 µmol) in CH2Cl2 (1 

mL) was added formylmethylene triphenylphosphorane (1.0 eq, 2 mg, 

7.0 µmol). The reaction was heated to reflux (40 °C). After 2 hours, 

concentrated reaction with Celite and purified residue by column chromatography (1:1 

hexanes/ ethyl acetate) to provide aldehyde 113 (2 mg, 4.0 µmol, 61%) as a white solid. 

1H NMR (400 MHz, CDCl3) δ 9.53 (d, J = 7.6 Hz, 1H), 7.38-7.31 (m, 5H), 7.02 (d, J = 

1.4 Hz, 1H), 6.73 (dd, J = 15, 6 Hz, 1H), 6.29 (dd J = 15.7, 6.7 Hz, 1H), 6.1 (d, J = 5.1 

Hz, 1H), 5.29-5.25 (m, 1H), 4.35 (dd, J = 20, 11.3 Hz, 1H), 2.87 (dd, J = 16, 8 Hz, 1H), 

2.16 (s, 3H), 1.91 (s, 3H), 1.5 (s, 3H).    
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Appendix A: 

 

Spectra of Relevant Compounds  
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Figure A1 1H NMR spectra (400 MHz, CDCl3) of compound 103 
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Figure A2 13C NMR spectra (100 MHz, CDCl3) of compound 103 
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Figure A3 1H NMR spectra (400 MHz, CDCl3) of compound 106 
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Figure A4 13C NMR spectra (100 MHz, CDCl3) of compound 106 
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Figure A5 1H NMR spectra (400 MHz, CDCl3) of compound 108 
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Figure A6 13C NMR spectra (100 MHz, CDCl3) of compound 108 
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Figure A7 1H NMR spectra (400 MHz, CDCl3) of compound 109 
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Figure A8 13C NMR spectra (100 MHz, CDCl3) of compound 109 
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Figure A9 1H NMR spectra (400 MHz, CDCl3) of compound 110 
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Figure A10 13C NMR spectra (100 MHz, CDCl3) of compound 110 
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Figure A11 1H NMR spectra (400 MHz, CDCl3) of compound 111 
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Figure A12 1H NMR spectra (400 MHz, CDCl3) of compound 100	
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Figure A13 1H NMR spectra (400 MHz, CDCl3) of compound 84	
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Figure A14 1H NMR spectra (400 MHz, CDCl3) of compound 113 
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