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CHAPTER 1

INTRODUCTION

Bioavailability equivalence or bioequivalence (BE) is required by the United States Food and Drug Admin-
istration (FDA) for approval and marketing of generic drugs or new formulations of an existing drug (Davit
et al., 2009). A test drug is bioequivalent to a reference (such as innovator) drug if the rate and extent of
absorption of the test drug do not show a significant difference from the reference drug when administered
at the same molar dose of the therapeutic ingredient under similar experimental conditions in either a single
dose or multiple doses (FDA, 2012). Generally, establishing BE requires in vivo pharmacokinetic studies that
compare the blood/plasma drug concentration-time profile of the test drug with that of a reference drug in
healthy adults typically in a cross-over design (FDA, 2001; Tamboli et al., 2010).

The appropriate statistical hypotheses for BE (referred as interval hypotheses) (Westlake, 1972; Hauck
and Anderson, 1984; Schuirmann, 1987; Hoenig and Heisey, 2001) are:

Hy: pr—pg <6 or ur—ug>6;

Hy: 6 <pur—Uugr<6, (L1)

where Ur and pg denote the population means of a pharmacokinetic parameter (typically logarithmically
transformed AUC, the area under the blood concentration-time curve, or Cmax, the peak concentration) for
the test (T) and the reference (R) drugs, respectively, and 0; and 0, denote the specified equivalence limits;
the current FDA guidance suggests 0; =1og0.8 and 6, = log 1.25 so that —0; = 6, = 0.223.

Schuirmann’s Two-One-Sided-Tests (TOST) procedure (Schuirmann, 1987), equivalently, the 90% confi-
dence interval (CI) approach, has been used as the mainstream method for testing the above hypotheses since
1992 by the FDA and other countries (Tamboli et al., 2010). According to the FDA, BE is demonstrated if the
90% Cls for ur — ug for all three pharmacokinetic measures (AUCy_;, AUC(_., and Cmax), fall completely
within the [-0.223, 0.223] limit. In other words, the 90% CIs of the geometric mean ratios (GMR, exponen-
tiated mean difference in log scale) for all three pharmacokinetic measures fall completely within the limits
(in %) of 80-125% (FDA, 2001). This is particularly called average bioequivalence (ABE) criterion.

Despite a review of 12 years of BE data from the FDA shows that the ABE criterion support FDA’s objec-
tive of approving high quality generic drugs (Davit et al., 2009), there are some concerns over some generic
drugs that have a narrow therapeutic window such as some anti-epileptic drugs and anti-coagulant drug, War-

farin (Shaw and Hartman, 2010; Talati et al., 2012; Dentali et al., 2011). The one size-fits-all criterion has



come under criticism by many authors because it does not consider the therapeutic window and intra-subject
variability of a drug, and thus does not address the issues of drug prescribability [for which a concept of
population bioequivalence (PBE) may be applied] and switchability [for which a concept of individual bioe-
quivalence (IBE) may be applied] (Chow et al., 2011). For highly variable drugs (HVDs), which are defined
as drugs with within-subject coefficient of variation (CV) in one or more of the pharmacokinetic parameters
30% or larger (Davit et al., 2012), the TOST has low power with a sample size of 24 or 36 (typically used
in BE trials) since the width of CI is proportional to the estimated variability and reciprocally proportional
to the square root of the sample size (Berger and Hsu, 1996; Davit et al., 2008). Consequently, the number
of subjects required for demonstrating ABE increases dramatically in order to maintain the power. A highly
variable reference drug may not be demonstrated to be bioequivalent even to itself in a typical cross-over
study with a modest number of subjects (Davit et al., 2012). In general, it is believed that HVDs have wide
therapeutic windows and thus, effective and safe. A review of 1,010 BE studies of 180 generic drugs sub-
mitted to the FDA during 2003-2005 suggests that 31% (57/180) of those are highly variable in terms of root
mean square error (Davit et al., 2008). Therefore, it is necessary to develop an alternative to the TOST for
HVDs.

Berger and Hsu (1996) and Brown et al. (1997) have constructed uniformly more powerful tests than the
TOST. But those tests are difficult to interpret due to polar coordinates and the rejection region of those tests
has the undesirable property of being non-convex (Liu and Chow, 1996). Recently, the FDA working group
examined several alternatives and proposed a reference scaled average bioequivalence approach (RSABE),
where the BE limits are scaled to the variability of the reference drug for HVDs (i.e., the limits are increasing
proportionally to the variance) (Haidar et al., 2008a). The implementation of the FDA’s RSABE method for
HVDs is summarized in Davit et al. (2012). Either partial replicate (three-way cross-over: RTR, RRT, and
TRR) or full replicate (four-way cross-over: RTRT and TRTR) design is required, with minimum subject
number of 24 for RSABE. The European Medicines Agency (EMA) recently issued a guideline for BE
assessment of HVDs (EMA, 2010), which is also a reference scaled approach. However, the EMA approach
differs from the FDA: 1) the EMA RSABE allows only for Cmax, not for AUC; 2) the EMA uses a different
scaling factor for RSABE, which is smaller for the reference drug with %CV ranging from 30 to 50% and
fixed at a smaller scaling factor for the drug with %CV larger than 50% (Karalis et al., 2012). Both of these
scaled approaches have an additional point estimate constraint; that is, the point estimate for GMR has to be
contained within [0.8, 1.25].

Even though the power is improved using the reference scaled approaches, the frequentist tests may not
guarantee any level of confidence for the true difference being at the equivalence boundaries (for example,

GMR = 0.8 and 1.25) (Ghosh and Gonen, 2008; de Souza et al., 2009). There are also debates on the practice



of using the 100(1-2c¢)% CI rather than the test at a-level (Berger and Hsu, 1996; Munk and Pfluger, 1999).
The root of these problems is the fundamental flaw in the frequentist framework, within which p-values are
confused with the strength of evidence and the observed type I error rate (Blume and Peipert, 2003; Choi
et al., 2008). This motivated Choi et al. (2008) to advocate the likelihood framework for representing and
interpreting BE data as evidence.

In this thesis, we extended the likelihood approach for evaluating BE proposed by Choi et al. (2008)
to HVDs in full replicate 2 x 4 cross-over studies. We demonstrated how to present evidence for BE and
interpret this evidence using the profile likelihood of the parameters of interest, including the mean difference
and variance ratios (both in log scale) for pharmacokinetic measures of two drugs. This likelihood approach
shows the full spectrum of evidence that supports BE or bioinequivalence (BIE). We may even evaluate the
mean and variance together in a unified framework using the likelihood approach. Simulations were used
to evaluate the operating characteristics of the likelihood approach when the FDA or EMA RSABE criteria

were applied.



CHAPTER IT

BACKGROUND OF LIKELTHOOD PARADIGM

The law of likelihood says (Hacking, 1965; Royall, 1997):

If hypothesis A implies that the probability that a random variable X takes the value x is py (x),
while hypothesis B implies that the probability is pp(x), then the observation X = x is evidence
supporting A over B if and only if p4(x) > pp(x), and the likelihood ratio, p4 (x)/pp(x), measures

the strength of that evidence.

The likelihood paradigm, based on the law of likelihood, provides an appropriate framework for repre-
senting and interpreting statistical evidence. It is specifically developed to understand “what the data say”
(Blume, 2002). The growing interest in the likelihood paradigm is contributed by Royall (1997, 2000) and
others including Blume (2002) and Zhang (2009). The likelihood approach has also been applied to practical
problems such as clinical trials [see Blume (2008), Wang and Blume (2011) and Choi et al. (2008)]. More re-
cently, Zhang and Zhang (2013) generalized the law of likelihood (GLL) for composite hypotheses in clinical
trials, such as those used in BE trials.

Operating characteristics:

Suppose we wish to test two simple hypotheses Hy : i = o versus Hy : 4 = Uy, where u is the pa-

rameter of interest and its likelihood function is L,(u) (indexed with the sample size, n). The probabilities

Py {% > k} and Py {% < ’ZZEZ(‘); < k}, when the hypothesis Hy is true, are called the probability of observ-
ing misleading evidence (the likelihood ratio in favor of wrong hypothesis) and the probability of observing
weak evidence (the likelihood ratio in favor of neither of the hypotheses), respectively (where k > 1). Note
that both the probabilities are functions of sample size n and the threshhold k. Although they are closely
related to the type I and type II error rates, they are distinct from the type I and type II error rates in the sense
that the type I error rate is fixed in hypothesis testing while both these probabilities converge to zero as n — oo
[see Figure 2 in Blume (2002)].

For normally distributed data with mean u and known variance 62, if we want to test Hy : it = Lo and

Hi : u = u, the probability of observing misleading evidence when the hypothesis Hy is true is:

A [Ln(ul) > k} % { lc[v/n _ logk ] 7 (L1

2 efvn



where A = co = u; — p. When n is held as a constant, this probability is a function of ¢, the distance
between the two hypotheses measured in standard deviation. This probability is called the bump function
(Royall, 2000), which is generally much smaller than 1/k. This bound is called the “universal bound”, which
is a result of applying Markov’s inequality on the general form of the probability of observing misleading
evidence (Royall, 1997).

The derived probabilities of observing weak evidence and strong evidence when the hypothesis H is true

are:

1 Ly(w) ] [ICIx/ﬁ logk} [C|\/ﬁ logk}
P-< <kl = & + —-o — and 11.2)
O[k L (10) > Tlelvn > v (
Ly (Ho) ] { |elv/n Ing}
Po{ >kl = 1—-9|— + . (I1.3)
Ly(u) 2 elvn
< |
-
@Q _|
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Figure II.1: Probabilities of observing misleading, weak and strong evidence at n=20 and k=8. The dashed
horizontal line represents the universal bound, 1/8.

Figure II.1 shows these probabilities as a function of ¢ when n=20 and k=8. When the alternative is close
to the true hypothesis (¢ =2 0), the probability of observing weak evidence is close to 1 since the data cannot
tell the small difference between the alternative and null hypotheses. The probability of misleading evidence
is much smaller than the universal bound, 1/8.

Nuisance parameters:

Nuisance parameters are often present in the likelihood function in multi-parameter models (i.e., 0, if G is
unknown in the normal distribution model above). There are several ad hoc solutions to eliminate the nuisance

parameters, including conditional, marginal, profile and estimated likelihoods (Royall, 1997). The profile



likelihood function for u is defined as max L,(1,0)=L,(1,6(u)) =Lp,(u). The profile likelihood function
behaves like a true likelihood function under certain conditions and the limiting probability of observing
misleading evidence is given by the bump function (Royall, 2000). In the context of BE analysis, Choi et al.
(2008) demonstrated that the profile likelihood is a good approximation to the true likelihood.

Likelihood intervals and their connection with confidence intervals:

A standardized likelihood plot, which is a plot of likelihood divided by the maximum likelihood estimate
(MLE) as a function of the parameter of interest, has been suggested to represent the data as evidence (Royall,
1997). From this plot, we visualize all the likelihood ratios of any alternative parameter values to the MLE. A
horizontal line of 1/k on the plot defines a set of parameter values that are consistent with the data at & level,
where the standardized likelihoods are > 1/k. Any parameter values in the likelihood support set (likelihood
interval, LI) are supported by the data since the best supported value, MLE, is only better supported at most
by a factor of k.

For normally distributed data with known variance o, the 1/k LI for the mean p can be derived as:

fi +/2logko /v/n. (IL4)

On the other hand, the 1 — ¢ CI for u can be written as:

A £24/20/V/n. (IL5)

As such, there is a one to one relationship between the LI (IL.4) and CI (IL.5). Thus, for normally distributed
data, the 100(1 — )% CI can be surrogate to a LI with k = exp(z(zx 12 /2); for example, 1/4 and 1/6.8 LIs
approximately correspond to 90% and 95% Cls, respectively.

Simple versus interval hypotheses:

The likelihood ratio measures the strength of evidence for one simple hypothesis over another. Benchmark
values of 8 and 32 for the likelihood ratio has been suggested to define weak, moderate and strong evidences
(Royall, 1997). However, in practice, there is great need for testing composite hypotheses in clinical trials,
such as the interval hypotheses in BE trials. Zhang and Zhang (2013) proposed a generalization of the law
of likelihood using generalized likelihood ratio (GLR) for composite hypotheses in clinical trials. For two
composite hypotheses H; : 6 € ©; versus H, : 6 € ©,, where both ®; and ®, C O, if supL(®;) > supL(®;),
then there is evidence supporting H; over H, based on the GLL. The GLL is proposed as an evidential tool
for clinical trials, and a consequence of GLL [Theorem 3 in Zhang and Zhang (2013)] is that a hypothesis H

concerning 6 is supported over its complement at least & if and only if the 1/k likelihood interval is contained



in H. Choi et al. (2008) considered that the data present evidence at k strength in favor of BE if the entire
1/k LI for the mean difference (in log scale) is contained within the ABE limit of [-0.223, 0.223], which is
consistent with Zhang’s Theorem 3.

Through simulations, Choi et al. investigated the probability of incorrectly presenting evidence supporting
ABE using the frequency of 1/k LI being completely contained within the ABE limit, when the data are
marginally BIE (ur — g = —0.223). This is the probability of observing k strength misleading evidence
at specific Uy — ug = —0.223, which is an analogue of the type I error rate for the hypotheses (I.1). The
probability of correctly presenting evidence for ABE was also examined using the frequency of 1/k LI being
completely contained within the ABE limit when the data are truly ABE (ur — tg = 0). This is the probability
of observing evidence at k strength level, and it is an analogue of the power at 7 — g = 0 for the hypotheses
(I.1). Here, failing to present evidence for ABE at k strength implies that either the 1/k LI is partially
contained in the ABE limit or it is completely out of the limit. Therefore, the probability of failing to present
evidence for BE (an analogue of type II error rate) includes the probabilities of observing weak evidence and

misleading evidence (both at & strength level).



CHAPTER 111
METHODS

In a full replicate 2 x 4 cross-over study, subjects are randomized to either sequence RTRT or TRTR. Each
subject then receives both drug formulations twice in the order of RTRT or TRTR to which the subject is
randomized. Between the drug administrations, there is a “washout period” to avoid the possible effect of
drug(s) administered in the previous period(s), called “carry-over” effect. We assume there is no “carry-over”
effect here.

Let’s assume n; subjects in sequence RTRT and n; subjects in sequence TRTR (n = n; +n2). Let Y be
a random variable representing the log transformed response (i.e., ¥ = log AUC or log Cmax) for subject i in
period j of sequence k withi=1,...,m, j=1,2,3,4, and k = 1,2. The following model for ¥; x is commonly

assumed (Berger and Hsu, 1996; Qcana et al., 2008):
Yijk =u +Pj +ij + S+ Y,-kRI(drug=R) + %krl(drug=T) + €ijk, (III.1)

where /(-) is an indicator function, u is an overall mean, P; is the fixed effect of jth period, and Fj is the
fixed effect of drug formulation administered in period j of sequence k. That is F1| = F31 = Fop = Fip = Fg
and Fp1 = Fy1 = Fip» = F3p = Fr. Also S, denotes the fixed effect of kth sequence, and 7Yz and Y7 are the
random-effects of subject i in sequence k for the reference and test drugs, which are assumed to follow a

bivariate normal distribution (N>):

/ 0 O3r P OBROBT
Yie = (YVikr: Yar) ~ N2 ; )
0 P OBROBT Opr
The random errors, e;;;’s, are independent, and e;j; is assumed to follow a normal distribution (),

N (O’sz(jk))' The 7y, and e;j; are also independent to each other. We assume 0;(11) = O;31) = Or(22) =

Or(42) = Owr and Gr(a1) = Or(41) = Or(12) = Or(32) = OWT-

III.1 Estimation of the mean difference, ¢, and its standard error

Table III.1 displays the expected means and the observed data in a 2 X 4 cross-over study.



Table IIL.1: Expected means and the observed responses, y; i (in parentheses), in a 2 x 4 full replicate cross-
over study.

Period
Seq. 1 2 3 4
1 H+P +Fr+S1 | u+Pr+Fr+S1 | u+P+Fr+S1 | u+P+Fr+$
(vi11) (via1) (vis1) (via1)
2 | U+PHFr+S | U+P+FR+S) | u+P+Fr+S | u+P+FR+S)
(vir2) (viz2) (vis2) (via2)

Let
7 1 & (Yo +Yi Yin+7%;
4 = — ( 21+ ¥iq1 fint 31> and (I11.2)
np i=1 2 2
7 1 & (Yin+Y; Yo+
& = — ( 12+Ya Yoot 42)' (IIL.3)
ny i=1 2 2
Then
_ P,+P, P +P
Eld] = ¢+ 2;’ 4 _ ”2L 3 and (IL.4)
_ Pi+P; Py+P
Bl = ¢4+ Dt (IIL5)
2 2
where ¢ = Fr — Fp is the mean difference of the two drugs and it can be estimated by:
. d+d-
§=4 + 2 (11L.6)
2
which is an unbiased estimator for ¢ with complete data. The variance of ¢ is
R 1
Var(¢) = ZVar(d 1)+ 4Var(d2)
1 Yoi+Yar Yo +Yo 11 Yio+Ya Yoo +Ya
= —-—V — - —V — .o
4n1ar<2 2>4n2<2 2)()

The Var (%m‘ — %) Var (%Y’” — %) can be estimated by the pooled sample variance

of average difference within a subject:

2 < [ (vt +y,41 _Yinntysi Jor+3a1 a1 +3ar\]’
s8 = - - +
-2 = 2 2 2
i Yil2 +yz32 Yty ) (Y2t Y3 Yo tYa : (IIL$)
ni+ny—2 = 2 2 2 ’ '



where . ;x denotes the sample mean of j period of sequence k (each cell of Table III.1).

Therefore, the estimated standard error for ¢ is:

— 1 /1 1
SE¢p = —s4/ —+ —. (I11.9)
2 n n

In addition, o, = Var(y,-lzl—ym) = Var(Y,-zzz—Ym) can be estimated by s g:
2 1 - 2,V 2
Swr = 2mtm—2) ; (it = yiz1) = (P11 = ¥:31)] +i§i [(Vio2 = iaz) — (22 — Y.42)]” (IIL.10)
Similarly, 63, = Var(Y"zz‘_Y"‘”) = Var(Y"lzz_Y"”) can be estimated by 53,7
5 1 ny 2 ny 5
Swr = 2m+m—2) l; [(iz1 = yiar) — (P21 — Far)] +; [((i12 —viz2) = (.12 — ¥.32)]” (IL11)

The equations (II1.6), and (II1.9) to (III.11) are the simple moment estimators that can be obtained using

a random-effects model with a random intercept as well.

II1.2 FDA and EMA’s RSABEs for HVDs
In practice, the FDA recommends implementing RSABE for HVDs (Davit et al., 2012; FDA, 2011). If the
observed within-subject variability of the reference drug, swr, for log AUC or logCmax is equal or greater
than 0.294, the reference scaling method may be used. Otherwise, the original ABE analysis (i.e., TOST)
must be used. The value 0.294 is determined using the conversion formula of 62 = log(CV? + 1) when
CV=30%. There is no penalty if the applicant uses a partial or full replicate design with the intent of using
RSABE.

The criterion for RSABE is # TO%V‘IL? K)’ < Bs, when sy for a pharmacokinetic parameter is equal or greater

than 0.294. Equivalently, the upper 95% confidence bound for (7 — g)?> — 656, must be < 0. Appendix

A lists the Howe method (Howe, 1974) to determine this criterion bound. In addition, the point estimate for
GMR must fall within [0.8, 1.25]. Here, 65 = (log1.25)%/03,, and oo = 0.25, yielding 65 = 0.8922.

The reference scaled EMA BE limits for HVDs are required only for log Cmax, but for log AUC, the
unscaled ABE limit of [-0.223, 0.223] must be used. When sy is equal or larger than 0.294 (i.e., %CV=30%)
but less than 0.472 (i.e., %CV=50%), the 90% CI for log Cmax is required to fall completely within the limit
of [-0.76swr, 0.76swg] to claim BE; when sy is equal or larger than 0.472, a fixed limit of [-0.359, 0.359]

(0.359 =0.76 x 0.472) should be used. EMA approach requires the point estimate constraint as well.
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1.3 Likelihood function and likelihood approach

Model (III.1) can be written as:

Yig = M+PI(j=2)+PI(j=3)+P1(j=4)+S"I(k=2)+ ¢I(drug=T)

+YirlI (drug=R) + yyr I (drug=T) + e; jx. (1IL.12)
In vector/matrix notation, (III.12) becomes:
Yir = X B + Vi + €, (IL.13)

where Yik = (Yilk7Yi2k7Yi3k7Yi4k)/; ﬁ = (uaP;71:§<7PI7S*>¢)l; ﬁ] = (YilRaYiILYilR,YilT)l and

Y5 = (Yor, Yor, Yor Yor)

1 000 0O 1 00 0 1 1
1 1.0 0 0 1 0010
X = and X;; = are the design matrices.
1 01 0 0O 1 01 0 1 1
1 001 01 1 001 10

We assume that both ¥}, and e are normally distributed with mean 0. Their variance and covariance ma-

2 2 2
O3gr P OBROBT Ogr POBROBT OwRr 0 0
P OBRO c} OBRO, o} 0 op 0
. 'BROBT BT POBROBT BT WT
trices are: Cov(Yy})) = and Cov(e;1) =
2 2 2
Ogr P OBROBT Opr P OBROBT 0 0 oyr
2 2
POBROBT Opr P OBROBT Opr 0 0 0

respectively, and for Cov(¥},) and Cov(e;»), the R and T subscripts should be swapped.

The likelihood function for B based on model (I11.12) is:

2 T 1 :
L(B:y) = ——————exp[—(yi — XuB) Vi (vic — XuB)/2] (ITL.14)
IHII;I[ ( 27T)4|Vik|1/2 i i ik L 1 ;
2 2 2
Opr + Owr  POBROBT Opr P OBROBT
POBROBT Gér + Gv2VT POBROBT O'§T
where V1 =
O3k POBROBT  Opp+ G‘%/R POBROBT
POBROBT GI%T POBROBT Gfgr + G‘%/T

11
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2 2 2
Opr +Oyr  POBROBT Ot P OBROBT

2 2 2
POBROBT  Or+Owgr  POBROBT Ojr
and Vi2 =
2 2 2
Opr POBrROBT Oy +Owr  POBROBT
2 2 2
POBROBT Og3r POBROBT  Opp+ Oyp

The profile likelihood function for ¢ will be:

Ly(9:y) =L(9,By:y) = maxL(9, By:y) for fixed ¢, (IIL15)
[4

where B¢ = argmax[Ly (B 4:y)] at fixed ¢, and B, denotes all B’s except for ¢. Utilizing the optim ()
function in R, we obtained the profile likelihoods for the mean difference ¢ and the variance ratios for an
example of 2 x 4 full replicate BE data, which are presented in CHAPTER IV.

According to Choi et al. (2008), if the 1/k LI for ¢ lies completely within the ABE limit of [-0.223,
0.223], the data support ABE; the larger the k, the greater the strength of evidence. We used the largest k,
kmax, at which the 1/k LI lies completely within the BE limit (for the mean or variance), as the evidence
for BE in the example. The larger the kmax, the stronger the evidence. We also used Zhang’s generalized
likelihood ratio, GLR = supL,(¢)/supL,(¢) to provide evidence for BE or BIE, where H; and Hy are the
interval hypotheses (I.1); ?llle larger tllliios GLR, the stronger the evidence for BE. In fact, when GLR > 1, it is

exactly the kmax. When GLR < 1, there is no such kmax exists.

II1.4 Simulations

We used simulations to evaluate the operating characteristics of the likelihood approach as shown in Choi
et al. (2008). We calculated the power as the percentage of simulations that present evidence for ABE. The
data present evidence for ABE if the 1/k profile LI for the mean difference fall completely within the BE
limit (unscaled or scaled), with or without the point estimate constraint.

In the simulations, we generated data from the random-effects model (II1.12) assuming that:
1. Equal number of subjects in each sequence (RTRT or TRTR) and complete data for each subject;
2. There is no period and sequence fixed effects;

3. Random-effects ¥;1g = Y17 and Vior = V21, thus p = 1; and the between-subject variances GéR = GI%T =

0.04;

4. Other parameter values: = 5; the total sample size n = 24, 36, and 72; within-subject standard devia-

tion owgr =0.198,0.294,0.385,0.472,0.631 corresponding to %CV= 20, 30, 40, 50, 70%, respectively;

12



and owr/owg = 0.7, 1.0 and 1.3. The true test/reference GMRs are 1.0, 1.1, 1.15, 1.2, 1.25, 1.3, 1.4
and 1.6.

For each simulated data, we applied 4 approaches to evaluate BE, including ABE (TOST), FDA RSABE,
EMA RSABE, and the likelihood approach. For the likelihood approach, we calculated the 1/8, 1/6.8 and 1/4
profile LIs for the mean difference ¢. According to the syg, we evaluated whether these intervals lie within
the corresponding FDA or EMA RSABE limits (with or without point estimate constraint). The powers for
different approaches under different scenarios were plotted and compared.

Due to the relatively slow computaion speed of optim () function, we used an alternative method
(Lme () function, Appendix B) to obtain the profile likelihood for the mean difference and the corresponding
profile LIs in the simulations. We confirmed that the profile likelihoods from the two computing methods

using the example data were identical (Figure B.1).
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CHAPTER 1V

EXAMPLE FOR 2 x 4 CROSS-OVER BIOEQUIVALENCE DATA ANALYSIS

Example data are taken from a full replicate 2 x 4 cross-over design where sequence 1 is RTRT and sequence
2 is TRTR [modified from an example data in Chapter 4 in Patterson and Jones (2005) with only complete
data for 27 subjects for each sequence]. The BEs for both AUC and Cmax were evaluated using the frequentist
and likelihood approaches. For the frequentist approach, the ABE was evaluated using TOST, FDA and EMA
RSABE methods. For the likelihood approach, in addition to ABE, PBE and IBE were also evaluated using
the total variances for the reference (67, = O3 + O@g) and the test (67, = 037 + Oy7) drugs, and the

within-subject variances for the reference (67 ) and the test (637) drugs.

IV.1 TOST, FDA and EMA RSABEs

° sequence
e RTRT
L A TRTR

Ratio of Test/Ref drugs for AUC
’00
4

| | |
Individual Ratio Mom Random-effects model

Figure IV.1: The ratio of the AUC means of the test to the reference drugs for each subject, and the GMR
estimates with the 90% ClIs from the moment based method (Mom) and the random-effects model. The
dashed horizontal lines represent the line of 1.0, and the ABE limits of 0.8 and 1.25.

Figures IV.1 and IV.2 present the ratios of the means of the test to the reference drugs for AUC and

Cmax for each individual, the estimated GMRs and the 90% CIs using the moment based method and the
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Ratio of Test/Ref drugs for Cmax

Figure IV.2: The ratio of the Cmax means of the test to the reference drugs for each subject, and the GMR
estimates with the 90% CIs from the moment based method (Mom) and the random-effects model. The

I
Individual Ratio

I
Mom Random-e

ffects model

dashed horizontal lines represent the line of 1.0, and the ABE limits of 0.8 and 1.25.

sequence
® RTRT
A TRTR

Table IV.1: FDA RSABE and EMA RSABE results for the example data.

PK Parameter | GMR (90% CI) | swr BE limits criteria bound | BE result
FDA | AUC 1.16 (1.04, 1.3) | 0.337 | [0.74,1.35] | -0.016 passed

Cmax 1.49 (1.31, 1.7) | 0.546 | [0.61,1.63] | 0.061 failed
EMA | AUC 1.16 (1.04, 1.3) | 0.337 | [0.8, 1.25] failed

Cmax 1.49 (1.31,1.7) | 0.546 | [0.7, 1.43] failed

random-effects model. The estimates from the moment based method are almost same as those from the
random-effects model. If the conventional BE test method is to be used, we would fail to conclude ABE for
AUC and Cmax since neither of the 90% ClIs fall completely within the [0.8, 1.25] limit. The individual Cmax

ratios show that there are two extreme values (Figure IV.2) from sequence RTRT. They may be influential,

but we do not study their influence here.

If the RSABE is used with consideration of the within-subject variability, the conclusion may be different,

as summarized in Table IV.1. The reference drug is indeed highly variable for both AUC and Cmax with sy

being equal to 0.337 and 0.546, respectively.

According to the FDA criteria, we would conclude BE for AUC since the 95% upper bound (criteria
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bound) for AUC is less than 0 and the GMR point estimate, 1.16, is within the range of [0.8, 1.25]. But
for Cmax, the criteria bound is larger than 0 and the GMR point estimate, 1.49, is out of the range of [0.8,
1.25], and hence we failed to demonstrate BE for Cmax. The overall conclusion is that the test drug failed to
demonstrate BE to its reference drug.

For EMA, the RSABE is only allowed for Cmax and the BE limit for AUC is always [0.8, 1.25] regardless
of swg. Thus, we failed to demonstrate BE for AUC. For Cmax, the scaled limit is expanded to [exp(—0.359),
exp(0.359)], or [0.7, 1.43], since syg is larger than 0.472 (%CV=50%). Neither the 90% CI nor the GMR
point estimate of Cmax is completely contained within their corresponding limits, failing to conclude BE for
Cmax as well.

Just for comparison with the FDA RSABE for AUC, if we applied the EMA scaled limits to AUC, which
are exp(—0.76 x 0.337) = 0.77 and exp(0.76 x 0.337) = 1.29, we would still not conclude BE since the
90% CI is not completely contained within these limits. Thus, BE is concluded for AUC according to FDA
RSABE criteria, but we failed to conclude BE according to EMA RSABE criteria. This is because the FDA
RSABE is more permissive due to the larger scaling factor. Note that in frequentist framework, if the data

fail to show BE, it does not imply BIE.

IV.2 Likelihood approach

IV.2.1 Profile likelihoods for log AUC

In order to evaluate PBE and IBE, we reparameterized the total variances and the within-subject variances as
the ratio of their standard deviations of the test to the reference drugs, or7/org and owr/0Owg, in the like-
lihood function (II1.14). The profile likelihoods for ¢, orr/org and owr /owg for log AUC were obtained,
which are displayed in Figures IV.3 to IV.5.

Figure IV.3 shows that the MLE for the mean difference (in log scale) is 0.149 [GMR = exp(0.149) =
1.16], which is the same as the moment based estimate. The 1/8 LI is only partially contained within the
ABE limit [-0.223, 0.223]. The data fail to present evidence for ABE at k = 8 strength level according to
Choi et al. (2008). We identified the kmax is 1.85, which can be used as the strength of evidence for ABE
for log AUC. If we applied the GLL for composite hypotheses (Zhang and Zhang, 2013), the GLR = kmax=
1.85, which indicates weak evidence for ABE.

Similarly, we calculated the kmax = GLR = 3.43 from the profile likelihood for o7 /org in Figure IV.4,
demonstrating weak evidence for BE. However, for the within-subject standard deviation ratio, owr /Owr, as
shown in Figure IV.5, there is little evidence for BE since the MLE is slightly out of the limit, none of the 1/k
LIs are within the limit, and Zhang’s GLR is close to 1, indicating almost equal evidence for BE and BIE.

Here we assume the BE limit for the standard deviation ratio is [0.7, 1.3], but note that no explicit BE criteria
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Figure IV.3: The profile likelihood for the mean difference of the test and reference drugs for log AUC. The
dashed vertical lines represent the ABE limits of -0.223 and 0.223.

has been suggested for this quantity by any regulatory authorities in any countries.

Within the likelihood paradigm, it is easy to evaluate evidence for BE for the mean and variance together
to address the PBE or IBE issues. For AUC, there is weak evidence for PBE when we combine the evidence
for ¢ and o7y /org together. If both evidence were strong, the evidence for PBE would be strong. There is
little evidence for IBE when we consider the evidence for ¢ and oy /owg together. The evidence for PBE

and IBE for AUC is summarized in Table IV.2.

IV.2.2 Profile likelihoods for log Cmax

Figures IV.6 to IV.8 display the profile likelihoods of ¢, orr/org and owr/owg for logCmax. None of
1/k LIs for ¢ is completely contained within the ABE limit of [-0.223, 0.223] (Figure IV.6), indicating little
evidence for BE for Cmax. Note that the MLE is also out of the limit, and hence a kmax cannot be determined.
Zhang’s GLR in this case is 0.08, suggesting moderate evidence for supporting BIE (1/0.08=12.5). Again to
evaluate PBE or IBE for Cmax, we may combine the evidence from Figures IV.6 and IV.7, or evidence from
Figures IV.6 and IV.8, which is summarized in Table IV.2.

Overall, we may conclude that the data present only weak evidence for BE. However, with the likelihood
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Figure IV.4: The profile likelihood for the ratio of total standard deviations of test/reference drugs for
log AUC. The dashed vertical lines represent the limits of 0.7 and 1.3.

approach, we also present the specific strength level and direction of the evidence for each parameter. We
even evaluate BE for the variance and mean together within a unified framework. For highly variable drugs,
the LI will be wider due to larger variance, and consequently attenuate evidence for ABE. However, with
sample size increase, the evidence will be stronger if the two drugs are truly ABE. Likelihood approach may
not reduce sample size. A benefit of using the likelihood approach is that if more data are collected, we
can combine them with the existing data to re-evaluate the strength of evidence. There is no need to adjust
p-values in contrast to the methods in the frequentist framework. It is impossible to present evidence for BE
or BIE using FDA or EMA’s RSABE approaches. It is also difficult to evaluate BE for the variance in the

frequentist framework.
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Figure IV.5: The profile likelihood for the ratio of within-subject standard deviations of test/reference drugs
for log AUC. The dashed vertical lines represent the limits of 0.7 and 1.3.

Table IV.2: Evidence for BE using the profile likelihood approach for the example data.

PK parameter | Profile likelihood | kmax | GLR | interpretation
¢ 1.85 1.85 | weak evidence for BE

AUC orr/OTR 3.43 3.43 | weak evidence for BE
owr/OwWR 1 equal evidence for BE and BIE
() 0.08 | moderate evidence for BIE

Cmax Orr/OTR 8.68 8.68 | moderate evidence for BE
owr/OWR 9.51 9.51 moderate evidence for BE
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Figure IV.6: The profile likelihood for the mean difference of the test and reference drugs for log Cmax. The
dashed vertical lines represent the ABE limits of -0.223 and 0.223.
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Figure IV.7: The profile likelihood for the ratio of total standard deviations of test/reference drugs for
log Cmax. The dashed vertical lines represent the limits of 0.7 and 1.3.
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Figure IV.8: The profile likelihood for the ratio of within-subject standard deviations of test/reference drugs
for logCmax. The dashed vertical lines represent the limits of 0.7 and 1.3.
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CHAPTER V

SIMULATION RESULTS

We performed simulations to evaluate the operating characteristics of the likelihood approach and to compare
them with the FDA and EMA RSABE approaches. We investigated the effects of within-subject variabilities
of the reference and test drugs (the ratio between those variabilities), and the sample size. For each simulation,
the 1/8, 1/6.8 and 1/4 LIs from the profile likelihood of ¢ were obtained. Based on the syg, we compared
these intervals with the corresponding FDA or EMA RSABE limits. If they fall within the limits (and the
MLE is contained as well in the case of using the point estimate constraint), we conclude BE. The percentage
of simulations that demonstrated BE was calculated from 1000 simulations at each set of parameters. The
power curves shown in Figures V.1 to V.3 are the results of ABE and RSABEs with the point estimate
constraint, and the power curves shown in Figures C.1 to C.3 are the results of ABE and RSABEs without
that constraint. The red and blue dot-dash vertical lines in these figures represent the FDA and EMA RSABE
limits for the corresponding %CV. The black-dashed horizontal line is drawn at 0.05 in each plot to show the
type I error rate. The FDA RSABE limit for %2CV=70%, 1.76, is out of the range of x-axis in these figures,

and hence it is not shown.
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Figure V.1: Power curves (n=24) using different methods (with the point estimate constraint when applicable) under different scenarios for owg and owr /owr.
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Figure V.2: Power curves (n=36) using different methods (with the point estimate constraint when applicable) under different scenarios for owg and owr /owr.
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Figure V.3: Power curves (n=72) using different methods (with the point estimate constraint when applicable) under different scenarios for owg and owr /owr.



Simulation results for RSABEs with the point estimate constraint:

When the within-subject variability of the reference drug is small (i.e., 20% CV), the powers of ABE, FDA
RSABE, EMA RSABE, and the LI methods are close to each other, especially when the sample size is large.
These results are reasonable since CV < 30% (RSABE:s are basicly the ABE), and under the normal model
the LIs for k = 4, 6.8 and 8 approximately correspond to the frequentist 90, 95 and 96% CIs respectively.

When the sample size is small (n = 24 and 36), the larger the %CV of the reference drug and o7 /Owr,
the larger the differences between those methods that use FDA RSABE limits and the methods that use
EMA RSABE limits. When the sample size is large (n = 72) and %CYV is large (50-70%), these differences
disappear. This reflects the basic difference between FDA RSABE and EMA RSABE methods as shown by
Karalis et al. (2012).

The comparison between FDA RSABE and the LI methods using the FDA RSABE limits show that,
when the sample size is small (n = 24) and %CV is between 30-50%, the powers of 1/4 LI are slightly higher
than the FDA RSABE. This difference becomes smaller with the increase in sample size and %CYV, and even
disappears at %CV=70 for n = 24. The power of FDA RSABE is about same as the 1/6.8 and 1/8 LIs. We
used the 95% criteria bound along with the point estimate constraint to determine BE for the FDA RSABE
here. This may make the power of the FDA RSABE closer to the 1/6.8 LI (corresponding to 95% CI) than to
the 1/4 LI (about 90% CI) at intermediate range of %CV and small sample size. For higher %CV (i.e., 70%),
the point estimate constraint in the FDA RSABE and the related LI methods is very important and determines
the power, which can be seen by comparing Figures V.1 to V.3 with Figures C.1 to C.3. Therefore, the FDA
RSABE and related LI methods have almost same power regardless of the & , the sample size and oy /Owr.

Indeed, the comparison between the EMA RSABE and LI methods using the EMA RSABE limits show
that the power of the 1/4 LI is closer to the EMA RSABE (which uses the 90% CI), and it is almost the same
as the EMA RSABE when the sample size is > 36, regardless of the owg and o7 /Owg.

As expected, the larger k for the LIs, the smaller the power. In addition, we observe that the owr/Owg
affects the power for all approaches, especially when the %CV of the reference drug is large. Notice that the
current FDA and EMA RSABE approaches do not consider the variability of the test drug, which would be
problematic.

More interestingly, there is a trade-off between the power and the type I error rate. When the power is
large, and if we still consider GMR=1.25 as the upper BE limit, then the type I error rate (power at GMR
=1.25) is also large. However, we may argue that the type I error rate should be the power at the expanded
limit boundaries, such as GMR = 1.30, 1.41, 1.52 and 1.76 for %CV= 30, 40, 50 and 70% using the FDA
RSABE. In latter case, it appears that the type I error rate is reserved for FDA RSABE, thanks to the point

estimate constraint at larger %CV (see Figure C.1 to C.3 for results without the point estimate constraint).
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Then, we are left with two questions: “Are the two drugs really bioequivalent when their GMR is ‘1.76’?”
and “Is the type I error rate really a type I error rate with this point estimate constraint?”.
In all, if the same BE limit criteria are applied, then the power of the LI approach is comparable with the

FDA RSABE or EMA RSABE.
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CHAPTER VI

DISCUSSIONS

The FDA working group developed and recommended the RSABE for HVDs. Haidar et al. (2008b) demon-
strated improved power of RSABE as the within-subject variability increases, compared with the conventional
ABE test method (i.e., TOST) for 3 x 3 partial replicate design. Karalis et al. (2012) compared the perfor-
mance of FDA RSABE with the EMA scaled approach for the partial replicate study design. They found
that: 1) FDA RSABE and EMA RSABE are basically same for %CV less than 30%; 2) FDA RSABE is
more permissive when %CV > 30%; 3) The major difference was found for %CV > 50%, where the point
estimate constraint is necessary for FDA RSABE, but less important for EMA approach. The point estimate
constraint is effective only for large sample size and %CV > 50% for EMA approach. Their findings are
consistent with our simulation results for the full replicate 2 x 4 cross-over design. We found that the FDA
RSABE is more permissive than EMA RSABE, especially for small sample size (n = 24) and large %CV
(50-70%), with the largest difference at 70%. Patterson and Jones (2011) argued against the FDA RSABE for
the following reasons. When the point estimate constraint drives the inference for large sample size and large
within-subject variability in FDA RSABE, this method may not protect the public from the potential large
changes in exposure when patients switch between generic drugs. They are also concerned that the scaled
approach relies on the observed sy so heavily that it may make a “bad” study easier to show BE.

The FDA RSABE and EMA approaches do not consider the variability of the test drug. Haidar et al.
(2008b) and our simulations show that o7 /0wy affects the power when the within-subject variability of the
reference drug increases; the higher the ratio, the smaller the power.

Our simulations, along with studies of Haidar et al. (2008b) and Karalis et al. (2012), all show that, if we
still consider the upper limit for BE is 1.25, then when the power is improved over the BE range (1 < GMR <
1.25), the type I error rate (power at GMR =1.25) also increases. Clearly, these frequentist approaches for BE
may not guarantee any level of confidence for the GMR at the ABE boundaries of 0.8 and 1.25, even when
RSABE is concluded. Thus, alternatively, we advocate the evidential likelihood framework for evaluating
BE, which can show a full spectrum of evidence for BE or BIE. This approach does show what the data say
regarding the strength of evidence for BE or BIE, even though it does not make any conclusions of BE or
BIE. It does not conflict between the evidence and the type I & II error rates. Moreover, the probability of
observing misleading evidence is small and bounded (Royall, 1997).

We used a more general numeric method [optim () function] to obtain the profile likelihoods for the

mean difference and variance ratios in the likelihood function (III.14). For the full replicate example data, we
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showed how to obtain these profile likelihoods by profiling out other nuisance parameters (computer code is
provided in Appendix D). We demonstrated that, for the composite hypothesis such as the interval hypotheses
in BE testing, the evidence can be represented by kmax (the largest k so that 1/k LI are completely contained
within the BE limit) or Zhang’s GLR. The evidence can be interpreted as supporting BE (large kmax = GLR
> 1), or supporting BIE (no kmax and very small GLR < 1), or as weak evidence for BE or BIE (no kmax
and small GLR<1, or small kjmax = GLR >1). Note that, in the cases where the data tend to support BIE
(GLR<1), kmax does not exist. Therefore, we may prefer using GLR as the measure of strength of evidence
for the interval hypotheses. It is impossible to show evidence for BIE using frequentist approaches such as
the FDA or EMA RSABE since failing to reject the null does not imply that the null (BIE) is true.

By considering the evidence for the mean and the variability together, our likelihood approach provide
evidence for PBE or IBE also, and hence easily address the prescribability or switchability issue. The current
FDA position on prescribability is that the ABE criterion ensures the safety and efficacy of the generic drug
and thus its prescribability (Chow et al., 2011). At present, the FDA does not consider the IBE as an applicable
approach, perhaps due to the difficulty in its implementation (Chow et al., 2011). These issues are often the
target of criticism around the current ABE method. Not only we may consider the mean and the variance for
one pharmacokinetic parameter together, we can also consider multiple pharmacokinetic measures (AUC and
Cmax) simultaneously using their joint likelihood function (Choi et al., 2008).

We used simulations to demonstrate that, if we would apply the same FDA’s or EMA’s limit criteria, the
operating characteristics for LI approach at fixed k would be comparable with the FDA RSABE or EMA
approach. Note that we do not recommend using the likelihood approach for evaluating BE in this way.
The simulations are for comparison with the frequentist method in terms of the operating characteristics.
Instead, we advocate employing the likelihood approach to present evidence for BE in the manner that we
have illustrated using the example data (CHAPTER IV).

We extended Choi et al. (2008)’s work to HVDs. The likelihood approach proposed in this thesis can
be used for any BE evaluations, regardless of variability. It is true that large variability may widen the LI of
the mean difference, which makes it harder to present evidence for BE. However, we may also consider the
evidence for variability along with the mean. With the increase in sample size, the evidence will be stronger
if the two drugs are truly equivalent. The sample size and the strength of evidence measured by GLR for the
interval hypotheses determine the probabilities of observing misleading evidence, weak evidence and strong
evidence (CHAPTER II) for BE. We suggest that the evaluation of evidence for BE should be decoupled
from the decision making for approval of generic drugs. With the objective of minimizing the consumer risk
or producer risk, regulatory authorities can work with scientists to decide how strong (how large/small GLR

should be) the evidence should be to conclude BE or BIE.
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CHAPTER VII

CONCLUSIONS

In this thesis, we used the likelihood approach to present evidence for bioequivalence or bioinequivalence
for a full replicate 2 x 4 bioequivalence data for highly variable drugs within the evidential framework.
We recommend using the generalized likelihood ratio (or kmax When it exists) as evidence for the interval
hypotheses in bioequivalence testing. Similar to Figure II.1 for the simple hypotheses, in the future we need to
find how the probabilities of observing misleading evidence and weak evidence would behave for the interval

hypotheses (I.1) as a function of geometric mean ratio, sample size and generalized likelihood ratio cut off.
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Appendix A

FDA RSABE 95% criteria bound determination

The 95 % upper confidence bound for (ur — ug)> — GSGVZV g can be derived as follows (Howe, 1974; Hyslop
et al., 2000; Tothfalus et al., 2001).

The two independent terms can be estimated by their respective expected values:

Em = (mT —mR)2 = (]32 and

2
EW = OSSWR,

where m7 and mp, are the observed overall means of the test and reference formulations, respectively, and

~

mr —mg = ¢.

The confidence limits for the two terms are:

Cn = [mr—mg|+t_qn—2SE(mr —mg)]* and

Cv = 6;(N— 2)5124/1%/%12705,1\/—2-
The final confidence limit for (ur — ug)> — 656‘/2”3 is:
CL=Ey—Ey+ (Ln+Ly)*, (A.1)
where

L, = (Cp —Em)2 and

L, = (C,—E,)*.
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Appendix B

Alternative approach to obtain the profile likelihood for ¢ using 1me ()

B.1 Computer code

bedata < read.csv(”/Users/xiaofengqi/Desktop/thesis2/thesis/original files/exam44impmod3.csv”™)
##1me approach
bedata$Rind < ifelse (bedata$formula=="R”, 1,0)
bedata$Tind < ifelse (bedata$formula=="T", 1,0)
likelihood + c()
X ¢ seq(—0.25,0.5, length.out=200)
for(i in 1:length(x)) {

ds < transform (bedata, newY = ifelse (formula=="R”, log(AUC), (log(AUC)—x[i])))

linfit + Ime(fixed=newY ~ sequence+as.factor (period), method="ML",

random = list (~0+Rind+Tind |subject), data=ds, weights= varldent(form= ~1|formula),
control=lmeControl (maxIter=1000))

likelihood < c(likelihood ,exp(logLik(linfit)[1]))

B.2 Comparison of profile likelihoods obtained using 1me () and optim ()

1.00 -

0.75 -

- = Ime()

— optim()

Standardized profile likelihood
o
a1
o

0.00 -

I
-0.25 0.00 0.25 0.50
¢

Figure B.1: Comparison of profile likelihoods obtained using 1me () and optim ().
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Appendix C

Simulation results for RSABEs without the point estimate constraint
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Figure C.1: Power curves (n=24) using different methods (without point estimate constraint) under different scenarios for owg and owr /Owg.
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Figure C.2: Power curves (n=36) using different methods (without point estimate constraint) under different scenarios for owg and owr /Owg.
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Appendix D

Other computer code

D.1 ABE, FDA RSABE and EMA RSABE

D.1.1 Moment estimators

bedata < read.csv(”C:/Users/dul/Desktop/LD/thesis/original files/exam44impmod3.csv”)
bedata$auc < bedata$AUC

bedata$id <« bedata$subject

bedata$seq <« bedata$sequence

## Moment estimators

# number of subject in each sequence

nl < length(bedata$seq[bedata$seq=="RTRT”])/length (unique(bedata$period)) ## number
#of subjects in seq 1

n2 + length(bedata$seq[bedata$seq=="TRTR”])/length (unique(bedata$period)) ## number

#o0f subjects in seq 2

## Iintermediates
seqlsub < subset(bedata, seq=="RTRT”)
TRdl < c()
for (i in unique(seqlsub$id)){
TRd1li < with(seqlsub, mean(log(auc[id==i& formula=="T"]))-—mean(log (auc[id==i&
formula=="R”])))
TRdl « c(TRdl, TRdli)

seq2sub < subset(bedata, seq=="TRTR”)
TRd2 < c()
for (i in unique(seq2sub$id)){
TRd2i <« with(seq2sub, mean(log(auc[id==i& formula=="T"]))—mean(log (auc[id==i&
formula=="R” ])))
TRd2 < c(TRd2, TRd2i)

## estimate of phi
dl <+ mean(TRd1l)
d2 <+ mean(TRd2)
phihat « (d1+d2)/2
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## estimate of standard error for phihat
s2hat < (var(TRdl)=(nl—1)+var(TRd2)#(n2—1))/(nl+n2-2)

sehat < 1/2xsqrt(s2hat=(1/nl+1/n2))

## caculate the 90% confidence interval
phihatlw < phihat —qt(0.95, df=nl+n2-2)=xsehat

phihatup < phihat +qt(0.95, df=nl+n2-2)=sehat

##exponenatiate the estimates to get the GMR estimate and its confidence intervals
ratiohat < round(exp(phihat),2)
ratiolw < round(exp(phihatlw),2)

ratioup < round(exp(phihatup),2)

## estimate of sWR

Rdl + c()

for (i in unique(seqlsub$id)){
Rdli «+ with(seqlsub, log(auc[id==i& period==1])—log(auc[id==i& period==3]))
Rdl <« c(Rdl, Rdli)

Rd2 < c()

for (i in unique(seq2sub$id)){
Rd2i < with(seq2sub, log(auc[id==i& period==2])—log(auc[id==i&period==4]))
Rd2 < c¢(Rd2, Rd2i)

sR2hat <« (var(Rdl)=(nl—1)+var(Rd2)*(n2—1))/(2*%(nl+n2—2))
sRhat <« round(sqrt(sR2hat),3)

## estimate of sWT

Tdl + c()

for (i in unique(seqlsub$id)){
Tdli « with(seqlsub, log(auc[id==i& period==2])—log(auc[id==i& period==4]))
Tdl « c(Tdl, Tdli)

Td2 + c()

for (i in unique(seq2sub$id)){
Td2i + with(seq2sub, log(auc[id==i& period==1])—log(auc[id==i&period==3]))
Td2 <« c¢(Td2, Td2i)
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sT2hat < (var(Tdl)=(nl—1)+var(Td2)*(n2—1))/(2%(nl+n2-2))

sThat < sqrt(sT2hat)

D.1.2 Random-effects model: 1me ()

#H### A A FHAFHAFF A A F###random intercept model
bedata$Rind <+ ifelse(bedata$formula=="R”, 1,0)

bedata$Tind < ifelse (bedata$formula=="T", 1,0)

library (nlme)

#H##A AR

m < Ime(fixed=log(auc) ~ sequence+as.factor (period)+formula, method="REML”,
random=1ist (~0+Rind+Tind |id), data=bedata, weights= varldent(form= ~1|formula))

#summary (m)

#H#FAAAHAF

##extract swr
swrrandom.auc < summary (m)$sigma
##extract ratio of swt/swr

deviratio.auc < 1/unique(varWeights(m$modelStruct))[2]

#library (mgcv)

#vari < extract.lme.cov2(m, data=bedata)

##extract estimates

mtTable < summary(m)$tTable

d < nrow(mtTable)

est2 < exp(mtTable[d,1])

cilow2 < exp(mtTable[d,1]— qt(0.95,df=nl4+n2—2)+mtTable[d,2])
cihigh2 < exp(mtTable[d,1]+ qt(0.95,df=nl+n2—2)+«mtTable[d,2])

D.1.3 FDA RSABE

## using TOST results for AUC

theta_s <« (log(1.25)/0.25)"2

N < nl+n2

Em ¢+ phihat”"2

##Em < phihat2-sehat’2

Ew < theta_s+sR2hat

Cm ¢ (abs(phihat) + qt(0.95, df=N-2)x sehat)”2

Cw < theta_s = (N—2) % sR2hat/qchisq(0.95, df=N-2)
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Lm <« (Cm—Em)"2
Lw < (Cw—Ew)"2

CL «+ Em-Ew+(Lm+Lw)" (1/2)

## using LME model results

##AUC

Ema < mtTable[d,1]"2

Ew <« theta_s#swrrandom.auc’2

Cma < (abs(mtTable[d,1]) + qt(0.95, df=N-2)* mtTable[d,2])"2
Cw ¢+ theta_s % (N—2) % swrrandom.auc”2 /qchisq(0.95, df=N-2)
Lma + (Cma—Ema)”\2

Lw « (Cw—Ew)"2

CLa < Ema—Ew+(Lma+Lw)" (1/2)

D.1.4 EMA RSABE for Cmax

### EMEA approach for Cmax

if (sRhatc<0.294){
EMAlow <« 0.8
EMAup «+ 1.25

} else if(sRhatc<0.472){
EMAlow < round (exp(—0.76:xsRhatc) ,4)
EMAup < round(exp(0.76%sRhatc) ,4)
telse {
EMAlow < 0.6984

EMAup <« 1.4319

}

D.2 Profile likelihoods using the optim () function

###change dataset to vector or matrix
no.p < length(unique(bedata$period)) ## number of period

no.seq < length(unique(bedata$sequence)) ## number of sequence

nl < length(bedata$seq[bedata$sequence=="RTRT”])/no.p ## number of subject in seq 1

n2 < length(bedata$seq[bedata$sequence=="TRTR”])/no.p ## number of subject in seqg 2
Y < log(bedata$AUC) ## data (outcome)
ids <« bedata$subject

idl < unique(bedata$subject[bedata$sequence=="RTRT”]) ## unique id’s in sequence 1

id2 + unique(bedata$subject[bedata$sequence=="TRTR”]) ## unique id’s in sequence 2
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## design matrix for 2x4 design

Xil ¢ matrix(c(1,0,0,0,0,0,1,1,0,0,0,1,1,0,1,0,0,0,1,0,0,1,0,1), nrow=4, byrow=TRUE)
## design matrix of (mu, P2, P3,P4, S,Phi) for each subject in seq 1

Xi2 <4 matrix(c(1,0,0,0,1,1,1,1,0,0,1,0,1,0,1,0,1,1,1,0,0,1,1,0), nrow=4, byrow=TRUE)

## design matrix of (mu, P2,P3,P4,S,Phi) for each subject in seq 2

D.2.1 Profile likelihood for ¢

######## profile likelihood for phi using optim() function
X < seq(—0.25,0.5, length.out=300)
maxL <« c() ## profile likelihood vector

j < c() ## record of the converaged phi point

for (i in 1:length(x)) {
##theta= c(mu,P2, P3, P4, S, phi, sigmaST, sigmaSR, sigmaT,sigmaR,rho),
##sigmaST=log (sigmaST"2), sigmaSR=log(sigmaST"2), sigmaT=log(sigmaT2),
#sigmaR=1og (sigmaR"2)
loglik2by4phi <« function (theta, phi=x[i]){
## parameters beta
beta < c(theta[l],theta[2],theta[3],theta[4],theta[5],phi)

## parameters (mu, P2,P3,P4,S, phi)

# construct the variance-covariance matrix

vil < vi2 <« matrix (NA, nrow=4, ncol=4)

vil [1,1] « vil[3.,3] < vi2[2,2] <« vi2[4,4] < exp(theta[8])+ exp(theta[10])

vil[2,2] « vil[4,4] < vi2[1,1] <« vi2[3,3] < exp(theta[7])+ exp(theta[9])

vil[1,3] « vil[3,1] <« vi2[2,4] < vi2[4,2] < exp(theta[8])

vil[2,4] < vil[4,2] « vi2[1l,3] <« vi2[3,1] « exp(theta[7])

vil [1,2] < vil[2,1] < vil[l,4] < vil[4,1] < vil[2,3] < vil[3,2] <

vil [3,4] < vil[4.,3] < theta[ll]*sqrt(exp(theta[7])=«exp(theta[8]))

vi2 [1,2] < vi2[2,1] « vi2[l.,4] < vi2[4,1] « vi2[2,3] < vi2[3,2] «

vi2[3,4] < vi2[4,3] < theta[ll]*sqrt(exp(theta[7])=exp(theta[8]))

## log likelihood function for all subjects

I < 0 ## sum of log likelihood
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for (i in 1: nl){

yi « Y[ids==id1[i]]

I < l—-no.p/2xlog(2=pi)—log(det(vil))/2—1/2xt(yi—Xil%+%beta )%+%
solve (vil )%+%(yi—Xil%+%beta)

} ## sum of log likelihood for subjects in seq 1

for(i in 1: n2){

yi < Y[ids==id2[i]]

I < lI-no.p/2xlog(2+pi)—log(det(vi2))/2—1/2xt(yi—Xi2%=+%beta )%+%
solve (vi2)%+%(yi—Xi2%+%beta )

} ## sum of log likelihood for subjects in seqg 2

return (—1) ## negative log likelihood for minimization by optim() .

}

## theta: initial values for the nuisance parameters

theta < ¢(5.8, 0.107, 0.116, 0.254, -0.08, O, —1.35, —1.43,-1.63 ,-2.18,

## optimization to find the maxi likelihood at fixed phi
op < optim(theta, loglik2by4phi, method="CG”, control=1list (maxit=2000))
con < op$convergence
if (con==0){
J < c(j.i)

maxL< c(maxL,exp(—op$value))

D.2.2 Profile likelihood for 677 /0rg

0.78)

#### profile likelihood for alpha=log((sigma.sT"2+sigma_T"2)/ (sigma.sR2+sigma_R"2))###

alphas<+ seq(0.7, 0.9, length.out=50)

maxL < c() ## profile likelihood vector

j « c() ## record of the converaged phi point

for (i in 1:length(alphas)) {

##theta= c(mu,pP2, P3, P4, S, phi, alpha, sigmasR, sigmal, sigmaR, rho), s=log(sigma.sA2),

#alpha=log ( (sigmaST"2+sigmaT’2)/ (sigmaSR"2+sigmaR"2) )

loglik2by4varl <« function(theta, alpha=alphas[i]){
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## parameters beta

beta < c(theta[l],theta[2],theta[3],theta[4],theta[5], theta[6])
## parameters (mu, P2,P3,P4, S,phi)

# construct the variance-covariance matrix

vil <+ vi2 <« matrix (NA, nrow=4, ncol=4)

vil[1,1] <« vil[3,3] < vi2[2,2] < vi2[4,4] < exp(theta[8])+exp(theta[l0])
vil [2,2] < vil[4.,4] « vi2[1,1] « vi2[3,3] «
(exp(theta[8])+exp(theta[10]))=exp(alpha)

vil[1,3] « vil[3,1] < vi2[2,4] < vi2[4,2] < exp(theta[8])
vil[2,4] « vil[4,2] « vi2[1,3] < vi2[3,1] « (exp(theta[8])+exp(theta[10]))

#exp (alpha)—exp(theta[9])

vil[1,2] < vil[2,1] « vil[l.,4] « vil[4,1] « vil[2,3] « vil[3,2] <«
vil [3,4] < vil[4.,3] < theta[ll]=sqrt(exp(theta[8]))=sqrt((exp(theta[8])+
exp(theta[10]))=exp(alpha)—exp(theta[9]))

vi2[1,2] < vi2[2,1] « vi2[l.,4] « vi2[4,1] « vi2[2,3] «+ Vvi2[3,2] <«
vi2[3,4] « vi2[4.,3] < theta[ll]=sqrt(exp(theta[8]))=sqrt((exp(theta[8])+
exp(theta[10]))=exp(alpha)—exp(theta[9]))

## log likelihood function for all subjects

I < 0 ## sum of log likelihood

for (i in 1: nl){
yi ¢« Y[ids==idl[i]]
I < I-no.p/2xlog(2*pi)—log(det(vil))/2—1/2xt(yi—Xil%=+%beta )%+%
solve (vil )%+%(yi—Xil%+%beta)

} ## sum of log likelihood for subjects in seqg 1

for(i in 1: n2){
yi « Y[ids==id2[i]]
I < l—-no.p/2xlog(2xpi)—log(det(vi2))/2—1/2xt(yi—Xi2%=«%beta )%+%
solve (vi2)%+%(yi—Xi2%+%beta )

} ## sum of log likelihood for subjects in seq 2

return (—1) ## negative log likelihood for minimization by optim() .
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## theta: initial values for the nuisance parameters
theta < c¢(5.75, 0.105, 0.104, 0.244, -0.08, 0.15, 0, —1.71,—-1.53 ,-2.27, 0.78)
###optimization at fixed alpha
op < optim(theta, loglik2by4varl ,control=1list (maxit=2000), method="CG”)
con < op$convergence
if (con==0){
i e

maxL+«+ ¢ (maxL,exp(—op$value))

D.2.3 Profile likelihood for owr / OWR

#### profile likelihood for alpha=log(sigma.T2/sigma_R"2)###
alphas <+ seq(—0.55, 1.6, length.out=300)
maxL <« c() ## profile likelihood vector

j < c() ## record of the converaged phi point

for (i in 1l:length(alphas)) {
##theta= c(mu,P2, P3, P4, S, phi, sigmasT sigmasR, alpha, sigmaR, rho),
#s=log (sigma.s’2), alpha=log (sigma.T"2/sigma_R"2)

loglik2by4var2 <« function(theta, alpha=alphas[i]){

## parameters beta

beta < c(theta[l],theta[2],theta[3],theta[4],theta[5], theta[6])
## parameters (mu, P2,P3,P4, S,phi)

# construct the variance-covariance matrix

vil « vi2 <« matrix (NA, nrow=4, ncol=4)
vil[1,1] « vil[3,3] « vi2[2,2] <« vi2[4,4] « exp(theta[8])+exp(theta[10])
vil[2,2] <« vil[4,4] < vi2[1,1] <« Vvi2[3,3] «

exp(theta[7])+exp(theta[10])=*exp(alpha)

vil[1,3] < vil[3,1] « vi2[2.,4] < vi2[4,2] « exp(theta[8])
vil[2,4] < vil[4,2] < vi2[1,3] < vi2[3,1] < exp(theta[7])

vil[1,2] < vil[2,1] « vil[l.,4] « vil[4,1] « vil[2,3] + vil[3,2] «
vil [3,4] « vil[4.,3] < theta[ll]=sqrt(exp(theta[8]))=*sqrt(exp(thetal[7]))

vi2[1,2] « vi2[2,1] « vi2[l.,4] < vi2[4,1] « vi2[2,3] « vi2[3,2] ¢ vi2[3,4]

— vi2[4,3] < theta[ll]=xsqrt(exp(theta[8]))=sqrt(exp(theta[7]))
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## log likelihood function for all subjects

I < 0 ## sum of log likelihood

for (i in 1: nl){
yi ¢« Y[ids==idl[i]]
I < lI-no.p/2xlog(2=*pi)—log(det(vil))/2—1/2xt(yi—Xil%=%beta )%+%
solve (vil )%+%(yi—Xil%+%beta)

} ## sum of log likelihood for subjects in seqg 1

for(i in 1: n2){
yi « Y[ids==id2[i]]
I < l—-no.p/2xlog(2xpi)—log(det(vi2))/2—1/2xt(yi—Xi2%=«%beta )%+%
solve (vi2)%+%(yi—Xi2%+%beta )

} ## sum of log likelihood for subjects in seq 2

return (—1) ## negative log likelihood for minimization by optim() .

## theta: initial values for the nuisance parameters

theta < c¢(5.71, 0.116, 0.183, 0.312, —0.08, 0.15, —-1.26, —-1.71, 0 , —1.5, 0.88)
if (!is.null (tryCatch(op < optim(theta, loglik2by4var2 ,control=1list (maxit=2000),
method="CG”), error = function(e) {}))) {
con ¢« op$convergence
if (con==0){
J < ¢c(j.i)
maxL+ ¢ (maxL,exp(—op$value))

}

D.3 Simulations

library (MASS)

library (nlme)

### function to generate data for full replicate cross—-over (2x4)

## no squence effect, no period effect, random effect for i (R=T)

### sigmaBR=sigmaBT=sigmaS=0.2, sigmaWR

ABEdata < function(nl, n2, mu, phi, sigmaS, sigmaWT, sigmaWR){
## generate data for sequence 1: RTRT

randoml < rnorm(nl, mean=0, sd=sigmaS)
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randoml < rep(randoml, each=4)
fixedl <« rep(c(mu, mu+phi, mu, mu+phi), nl)
sigmal < matrix (c(sigmaWR"2, 0, 0, sigmaWT"2),2,2)
errorl0 < mvrnorm(2%nl, rep(0,2), sigmal)
errorl <« c()
k < 2xnl
for(i in 1:k){
errorl < c(errorl, errorlO[i,l1], errorlO[i,2])

}

Y1l + fixedl + randoml + errorl

## generata data for sequence 2:TRTR

random2 < rnorm(n2, mean=0, sd=sigmaS)

random2 < rep(random2, each=4)

fixed2 < rep(c(mu+phi, mu, mu+phi, mu), n2)
sigma2 < matrix (c(sigmaWT"2, 0, 0, sigmaWR”"2),2,2)
error20 < mvrnorm(2%n2, rep(0,2), sigma2)

error2 < c()

k < 2%n2

for(i in 1:k){

error2 < c(error2, error20[i,1], error20[i,2])

Y2 + fixed2 + random2 + error2

##### response Y

Y « c(Yl, Y2)

#### design matrix (no period, no sequence effect)
formulal <« rep(c(0,1,0,1), nl) ## l1-test, O-reference
formula2 <+ rep(c(1,0,1,0), n2)

formula < c(formulal, formula2)

period < rep(seq(l:4), nl+n2)

sequence < c(rep(l, 4xnl), rep(2,4%n2))

subject < rep(seq(l:(nl+n2)), each=4)

#HEF#

data < as.data.frame (cbind(subject,Y, formula, period,
#dataSRind < ifelse(data$formula==0, 1,0)

#data$Tind < ifelse (data$formula==1, 1,0)

return (data)
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#### function to get the LIs and compare with FDA and EMA RSABE limits
spintervals <« function (sWR, data, xmin, xmax){

### use Ime() to get the profile likelihood

X < seq(xmin, xmax, length.out=200) ## grid of x

likelihood <+ c()

i+ cO

for (i in 1:length(x)) {

phi < x[i]

ds <+ transform (data, newY = ifelse (formula==0, Y, (Y—phi))) ##new data

if (is.null (tryCatch(fit <« Ime(fixed=newY ~ 1 , method="ML” ,random

= ~1|subject ,

data=ds, weights= varldent(form= ~1|formula), control=lmeControl(maxIter=2000)),

error = function(e) {1}))) {

likelihood < c(likelihood ,exp(logLik(fit)[1])) ## maximum likelihood at each x (phi)

j < c(j, i) ## record x at which no error

if (length (j)>1){
# print (likelihood)
##caculate 1/8th 1/6.8th and 1/4 LIs
lik.norm < likelihood/max(likelihood) ## normalize the likelihood
phi.x « x[j]
#plot (phi.x, lik.norm)
phi8.x < phi.x[lik.norm >1/8] ##phi’s support by 1/8
phi6.8.x < phi.x[lik.norm >1/6.8] ##phi’s support by 1/6.8
phi4.5.x < phi.x[lik.norm >1/4] ##phi’s support by 1/4
phi.max < max(phi.x[lik.norm==max(lik.norm )])
## maximum likelihood estimator for phi
phi8.low < min(phi8.x)

phi8.up < max(phi8.x) ## 1/8 th interval

phi6.8.low < min(phi6.8.x)
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phi6.8.up <+ max(phi6.8.x) ## 1/6.8 th interval

phi4.5.low < min(phi4.5.x)

phi4.5.up < max(phi4.5.x) ## 1/4.5 th interval

### wheter those interals are within limits
sp8f < sp6f < spdf <« 0 ## indicator whether interval is within the FDA limit

sp8e <« spbe <« spde < 0 ## indicator whether interval is within the EMA limit

sp8fl <« sp6fl < sp4fl < 0 ## indicator whether BE limit + point constraint

sp8el <« spbel <« spdel < 0 ## indicator whether BE limit + point constraint

if (sWR<0.294){
if (phi8.low > —0.223 & phi8.up <0.223){
sp8f < sp6f <« sp4f <sp8e ¢+ spbe < spde « 1
sp8fl <« sp6fl < spd4fl <sp8el < spbel < spdel <« 1

telse if(phi6.8.low > —0.223 & phi6.8.up <0.223){
sp6f < sp4f <« spbe <« spde « 1
sp6fl <« spdfl <« spbel < spdel < 1

} else if(phi4.5.low > —0.223 & phi4.5.up <0.223){
sp4f < spde « 1

sp4fl <« spdel «+ 1

###FDA 1imits when sSWR> 0.294 no constraint
if (SWR>0.294){
if (phi8.low >—sWRx0.8926 & phi8.up <sWR%0.8926){
sp8f < sp6f <« spd4f « 1
} else if(phi6.8.low >— sWR%0.8926& phi6.8.up <sWRx0.8926){
sp6f < spdf « 1
} else if(phi4.5.low >-sWRx0.8926& phi4.5.up <sWRx0.8926){

sp4f«+ 1

###FDA limits when sWR> 0.294 with constraint

if (SWR>0.294){
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if (phi8.low >—sWRx0.8926 & phi8.up <sWR%0.8926 & phi.max <0.223&phi.max > —0.223){

sp8fl <« sp6fl <« spdfl « 1
} else if(phi6.8.low >— sWR+0.8926& phi6.8.up <sWRx0.8926 & phi.max <0.223&

phi.max > —0.223){

sp6fl <« sp4fl <« 1
} else if(phi4.5.low >-sWRx0.8926& phi4.5.up <sWRx0.8926 & phi.max <0.223&

phi.max > —0.223){

spafl « 1

###EMA 1imits when sWR> 0.294 and <0.472 no constraint

if SWR>0.294 & sWR<0.472) {

if (phi8.low >—sWR#0.76 & phi8.up <sWRx0.76){

sp8e < spbe <« spde < 1
} else if(phi6.8.low > —sWR+0.76 & phi6.8.up <sWRx0.76){spbe <« spde <+ 1
} else if(phi4.5.low >—-sWRx0.76& phi4.5.up <sWRx0.76){

spde +— 1

}
telse if (sWR>0.472){

if (phi8.low >10g(0.6984) & phi8.up <log(1.4319)){
sp8e <« spbe <« spde <« 1
} else if(phi6.8.low >10g(0.6984)& phi6.8.up <log(1.4319)){

spbe < spde « 1

} else if(phi4.5.low >10g(0.6984)& phi4.5.up <log(1.4319)){spde+ 1}

###EMA 1imits when sSWR> 0.294 and <0.472 with constraint

if (SWR>0.294 & sWR<0.472) {

if (phi8.low >—sWRx0.76 & phi8.up <sWRx0.76 & phi.max <0.223&phi.max > —0.223){

sp8el <« spbel < spdel « 1
} else if(phi6.8.low > —sWR+0.76 & phi6.8.up <sWRx0.76 & phi.max <0.223&

phi.max > —0.223)

{sp6el <« spdel <+ 1
} else if(phi4.5.low >-sWRx0.76& phi4.5.up <sWR«0.76 & phi.max <0.223&
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phi.max > —0.223){
spdel « 1

}
telse if (sWR>0.472){

if (phi8.low >10g(0.6984) & phi8.up <log(1.4319) & phi.max <0.223&phi.max > —0.223){
sp8el < spbel <« spdel «+ 1
} else if(phi6.8.low >10g(0.6984)& phi6.8.up <log(1.4319) & phi.max <0.223&
phi.max > —0.223){
spbel < spdel <« 1
} else if(phi4.5.low >10g(0.6984)& phi4.5.up <log(1.4319) & phi.max <0.223&
phi.max > —0.223)
{spdel <+ 1}

return (c(sp8f, sp6f, sp4f, sp8fl, sp6fl, sp4fl , sp8e, spbe, spde,sp8el, spbel, spdel))
## indicator of interval within the limit and the maximum likelihood

telse{
return (c(NA, NA, NA, NA,NA, NA, NA,NA, NA,NA, NA, NA))}

#H#### A A F#A###ATunction for FDA and EMA approaches

FDA2EMEA < function (data){

# number of subject in each sequence

nl <« length(data$sequence[data$sequence==1])/length (unique(data$period))
## number of subjects in seq 1

n2 < length(data$sequence[data$sequence==2])/length (unique(data$period))

## number of subjects in seq 2

## intermidates
seqlsub < subset(data, sequence==1)
TRdl « c()
for (i in unique(seqlsub$subject)){
TRdli < with(seqlsub, mean(Y[subject==i& formula==1])—mean(Y[subject==i& formula==0]))

TRdl « c(TRdl, TRdli)

seq2sub < subset(data, sequence==2)

TRd2 «+ c()
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for (i in unique(seq2sub$subject)){
TRd2i <« with(seq2sub, mean(Y[subject==i& formula==1])—mean(Y[subject==i& formula==0]))

TRd2 « c(TRd2, TRd2i)

## estimate phi
dl <« mean(TRdl)
d2 + mean(TRd2)
phihat « (dl1+d2)/2

## estimate of standard error of phihat
s2hat «+ (var(TRdl)*(nl—1)+var(TRd2)*(n2—1))/(nl+n2-2)
sehat < 1/2xsqrt(s2hat=(1/nl+1/n2))

## caculate the 90% confidence interval
phihatlw < phihat —qt(0.95, df=nl+n2—2)=*sehat
phihatup < phihat +qt(0.95, df=nl+n2-2)=sehat

##exponentiate the estimates
ratiohat < exp(phihat)
ratiolw < exp(phihatlw)

ratioup < exp(phihatup)

## estimate of sWR

Rdl « c()

for (i in unique(seqlsub$subject)){
Rdli < with(seqlsub, Y[subject==i& period==1]-Y[subject==i& period==3])
Rdl « c(Rdl, Rdli)

Rd2 + c()

for (i in unique(seq2sub$subject)){
Rd2i < with(seq2sub, Y[subject==i& period==2]-Y[subject==i&period==4])
Rd2 < c(Rd2, Rd2i)

sR2hat <« (var(Rdl)s(nl—1)+var(Rd2)*(n2—1))/(2*(nl+n2-2))

sRhat <+ sqrt(sR2hat) ## sWR

#########H#FDA’s conventional ABE

ABE < 0 ## bioequivalence indicator
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if (ratiolw >0.8 & ratioup <1.25){ABE « 1}

##FDA RSABE (2 step) approach

SABE < 0 ## bioequivalence indicator for FDA RSABE

SABEO < 0 ## bioequivalence indicator for FDA RSABE without constraint
EMEA <« 0 ## for EMA RSABE

EMEAO < 0 ## EMA without constrain

if (sRhat<0.294){

if (ratiolw >0.8 & ratioup §1.25){SABE +~—SABEO <« 1} ## unscaled ABE
telse{

## if sWR larger than 0.294 scaled ABE

theta-s <« (log(1.25)/0.25)"2

N < nl+n2

Ema < phihat”2

Ew <« theta_s#*sR2hat

Cma < (abs(phihat) + qt(0.95, df=N-2)% sehat)”2

Cw <« theta_s * (N—2) *x sR2hat /qchisq(0.95, df=N-2)

Lma < (Cma—Ema)’2

Lw « (Cw—Ew)"2

CLa < Ema—Ew+(Lma+Lw)”"(1/2)

if (CLa< 0) SABEO + 1

if (CLa<0 & ratiohat <1.25 & ratiohat >0.8) SABE <« 1

### EMEA approach
if (sRhat<0.294){
if (ratiolw >0.8 & ratioup <1.25){EMEA «EMEAO <1} ## unscaled ABE
telse if (sRhat<0.472) {
## 1if swr larger than 0.294 but smaller than 0.472
if (ratiolw >exp(—0.76xsRhat) & ratioup <exp(0.76=xsRhat)) EMEAO «+ 1
if (ratiolw >exp(—0.76xsRhat) & ratioup <exp(0.76=xsRhat)&ratiohat <1.25
& ratiohat >0.8 ) EMEA « 1
telse if (sRhat>0.472) {
#f swr larger than 0.472
if (ratiolw >0.6984 & ratioup <1.4319) EMEAO « 1
if (ratiolw >0.6984 & ratioup <1.4319 & ratiohat <1.25 & ratiohat >0.8) EMEA «+ 1

return (c(sRhat, ABE, SABEO, SABE, EMEAO, EMEA))
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