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Chapter 1

INTRODUCTION

The study of group actions (on spaces) and group representations occupies a central position in

modern mathematics. This relates naturally to the study of von Neumann algebras, as we shall de-

scribe. A von Neumann algebra is a ∗-subalgebra of B(H ) (bounded linear operators on a Hilbert

space H ), containing I (the identity operator), and is closed under the strong operator topology,

abbreviated SOT.(SOT can be thought as “topology of pointwise convergence”: a net of bounded

operators Tα converges in SOT to a bounded operator T if and only if ||(Tα −T )ψ|| → 0 for all

ψ ∈H ). A von Neumann algebra M is called a factor if the only operators commuting with all

of M are scalar multiples of identity. (i.e. Z (M) = M∩M′ = C. Here M′ denotes the commutant

of M inside B(H )). We say M is a type II1 factor if M is infinite dimensional, and has a faithful

tracial state, denoted by τ . In general, if a von Neumann algebra admits a faithful tracial state τ ,

we say that M is a finite von Neumann algebra.

Some examples of von Neumann algebras are L∞[0,1], Mn(C), or more generally B(H ).

Note that L∞[0,1] is an abelian algebra, while the other two are factors. As it turns out, every

abelian von Neumann algebra (on a separable Hilbert space) is isomorphic to L∞(X ,µ) for some

measure space (X ,µ). Hence the study of von Neumann algebras can be thought of as a noncom-

mutative measure theory. Other exciting examples of von Neumann algebras are constructed via

group representations and actions, as described below.

The first examples of von Neumann algebras different from the above examples was the so

called group von Neumann algebras of discrete groups. Given a countable, discrete group G, we

define vN(G) to be the SOT closure of the group algebra, C(G) inside B(`2G). This von Neu-

mann algebra is a factor if and only if the group is i.c.c. (i.e. every non identity element has infinite

conjugacy class. The i.c.c. conditions tells that the group is “highly noncommutative”).

Also, whenever a group G acts a probability measure space (X ,µ), we can construct a von
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Neumann algebra, denoted by L∞(X ,µ)oG. If the G action on (X ,µ) is measure preserving, free

and ergodic, then we obtain a II1 factor. Also, the algebra L∞(X ,µ)oG provides a natural setting

for studying the underlying group action. In fact, the dynamics of group actions has an exciting

relation with studying this algebra. Thus many questions in ergodic theory and group represen-

tations can be studied naturally in the von Neumann algebra context. This mutual symbiosis has

been a very active area of research for more than 50 years.

To study analytic properties of a group, like amenability and property (T), it’s desirable to look

for “nice” spaces on which the group acts. Poisson boundary of a group, (B,β ), provides a natu-

ral example of such a probability measure space, on which the group acts. In general, the actions

is not measure preserving: in fact, in the case of non-amenable groups, the action on its Poisson

boundary can never be measure preserving. (Nevertheless, L∞(B,β )oG is a factor as soon as

vN(G) is a factor, i.e. G is i.c.c). As we shall see below, the study of Poisson boundaries of groups

has been an exciting research area, and has led to a variety of deep results in the rigidity theory of

lattices in Lie groups, including the celebrated Normal Subgroup Theorem of Margulis.

1.0.1 Poisson boundaries of groups

The notion for Poisson boundary of groups was introduced by Fustenberg to study Harmonic

analysis over Lie groups. He was motivated by the Poisson transform in the classical complex anal-

ysis. In the classical case, any real valued bounded harmonic function h on the disc can be written

in terms of a bounded function f on the boundary of D. Notice that the group G = PSL2(R) acts

on D. Then, every bounded harmonic function h on D determines a bounded harmonic function

(see definition below) ĥ on G , by ĥ(g) = h(g(0)). In fact, every bounded harmonic function on G

arises in this fashion. So, there’s a one-one correspondence between bounded harmonic function

on G and bounded functions on the unit circle. This was the main motivation for Furstenberg to

study the notion of “boundary” of a Lie group, such that bounded harmonic functions on the group

would be in one-one correspondence with bounded functions on this “boundary”. As it turned out,

the notion could be generalized to arbitrary locally compact groups, and the study of the Poisson
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boundary has been a beautiful area of research henceforth. In the treatment below, we shall focus

on discrete groups and follow the perspective of Kaimanovich and Vershik [KV83]

Let G be a discrete group, and µ a symmetric probability measure of G. We say that f ∈ `∞(G)

is µ-harmonic if Pµ f = f , where Pµ f (g) = ∑x∈G f (gx)µ(x).

Even though the space of µ-harmonic functions doesn’t form an algebra, in general, it’s pos-

sible to define a product on the space of harmonic functions to make it into a commutative von

Neumann algebra. The space of harmonic functions with this new product then becomes isomor-

phic to L∞(B,β ), for some probability measure space (B,β )- which we call the Poisson boundary

of the group G. There is a natural G action on this space, which preserves the β null sets, i.e. is

quasi-invariant. The measure β is µ-stationary, (i.e. µ ∗β = β ) and the G action is amenable, (i.e.

L∞(B,β )oG is an amenable von Neumann algebra).

For the case of the free group on 2 generators, F2 = 〈a,b〉, with the uniform probability mea-

sure µ on a,a−1,b,b−1, the Poisson boundary can be identified with the space of one sided infinite

reduced words, with a natural Borel probability measure. This example hints that the Poisson

boundary can be thought of as an “exit boundary” for random walks on the Cayley graph of G.

Indeed, such is the case, (see [KV83]). Therefore the study of Poisson boundaries has natural

interactions with the study of random walks on groups as well.

One of the most striking application of Poisson boundaries was by Margulis’ in his proof of

the Normal subgroup theorem ([Mar78] [Mar79]). The Normal Subgroup Theorem states that: If

H is a lattice in a center free higher rank semisimple Lie group G, then every nontrivial normal

subgroup N of H has finite index. His strategy of showing the finiteness of the quotient H/N was to

show that it’s amenable, and has property (T). The amenability half of the result relied on looking

at the action of G on its Poisson boundary (which is an amenable action). As we shall see, this was

one of the key motivations to study Poisson boundary in the noncommutative setting.
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1.0.2 Poisson boundary of finite von Neumann algebras

Based on the Mostow rigidity theorem [Mos73], Margulis’ superrigidity theorem, and Zim-

mer’s cocycle rigidity theorem [Zim80], Alain Connes’ suggested in the early 80’s that to study

superrigidity type phenomenon in operator algebra setting, one should first study Poisson bound-

aries in the setting of operator algebras (see discussion in page 86 of [Jon00]).

In late 90’s Izumi realized that the notion of Poisson boundaries for groups can be extended to

the von Neumann algebra setting by studying fixed points of u.c.p. maps (defined below). Izumi

introduced this notion in [Izu99], and extended the theory further in [Izu02] and [Izu12]. Later

Peterson and Creutz studied the noncommutative boundary in depth in [CP13] and used it to prove

the amenability half of the noncommutative analog of Margulis’ Normal subgroup theorem.

Motivated by the above, in [DP17] we focus on the study of Poisson Boundary of finite von

Neumann algebras arising from regular, symmetric, hyperstates. The contents of this Thesis is

based on the joint work with Dr. Peterson in [DP17]
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Chapter 2

PRELIMINARIES

In this section we record a few preliminaries needed for the rest of the paper.

2.0.1 von Neumann algebras, u.c.p. maps and amenability

A von Neumann algebra M is a ∗-subalgebra of B(H ), containing 1, and closed under the

strong operator topology. Recall that B(H ) carries three natural topologies, namely, the norm

topology, the strong operator topology and the weak operator topology. A deep theorem of von

Neumann states that if M is a von Neumann algebra, then M equals its double commutant, i.e.

M = M′′. Throughout this paper we shall assume that M acts on a separable Hilbert space.

A linear functional ϕ on M is said to be normal if there exists ξ ,η ∈H ⊗ `2(N) such that

Φ(T ) = 〈T ⊗ Iξ ,η〉. A linear functional ϕ is said to be a state, if it is positive, and Φ(1) = 1. A

state τ on M is said to be tracial is τ(ab) = τ(ba) for all a,b ∈M.

We say that M is a finite von Neumann algebra, or a tracial von Neumann algebra, if there exists

a faithful, normal tracial state τ on M. Given such a state we can perform the GNS construction,

and get a Hilbert space, denoted by L2(M,τ) or sometimes L2(M) if τ is fixed. A finite von

Neumann algebra M is a factor if and only if it admits a unique tracial state τ .

An operator system B is a ∗-closed linear subspace of a unital C∗ algebra A , containing 1.

We say a map Φ : B→ A is positive, if it takes positive elements of B to positive elements os

A . We say Φ is unital, if Φ(1) = 1. Such a map Φ induces linear maps Φn from B⊗Mn(C)→

B⊗Mn(C), by acting on each matrix coordinate. We say that Φ is completely positive, if Φn is

positive for all n ∈N. We say that Φ is normal, if ϕ ◦Φ is normal, for all normal linear functionals

ϕ .

One example of normal u.c.p. map is given by unital homomorphisms between C∗ algebras. In

fact, Stinespring Dilation theorem says that, up to dilation, those are the only examples.
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A very imporant class of examples of u.c.p. maps are Conditional Expectations. Let B be

an operator system in B(H ). A map E : B(H )→B is said to be a conditional expectation,

if it’s u.c.p., and E ◦ E = E . In that case, B is said to be an injective operator system. A von

Neumann algebra M is said to be amenable, if it is injective as an operator system. A deep theorem

of Connes’ asserts that M is injective, if and only if, M is hyperfinite.
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Chapter 3

BOUNDARIES OF FINITE VON NEUMANN ALGEBRAS

In this chapter we record the main results and proofs of the thesis. The results here are from

the joint work in [DP17], with Dr. Peterson.

3.1 Hyperstates and bimodular u.c.p. maps

Fix a tracial von Neumann algebra (M,τ), and suppose we have an embedding M ⊂A where

A is a C∗-algebra. Given a state ϕ ∈A ∗ we will say that ϕ is a τ-hyperstate (or just a hyperstate

if τ is fixed) if it extends τ . We denote by Sτ(A ) the convex set of all hyperstates on A . To each a

hyperstate ϕ we obtain a natural inclusion L2(M,τ)⊂ L2(A ,ϕ) induced from the map x1τ 7→ x1ϕ

for x ∈ M. We let eM ∈B(L2(A ,ϕ)) denote the orthogonal projection onto L2(M,τ). We may

then consider the unital completely positive (u.c.p.) map Pϕ : A →B(L2(M,τ)), defined by

Pϕ(T ) = eMTeM, T ∈A . (3.1)

Note that if x ∈M ⊂ A then we have Pϕ(x) = x. We shall refer to the map Pϕ as the Poisson

transform (with respect to ϕ) of the inclusion M ⊂A .

The following proposition is well known, and implicit in [Con76b]. We include a proof for the

benefit of the reader.

Proposition 3.1.1. The correspondence ϕ 7→Pϕ defined by (3.1) gives a bijective correspondence

between hyperstates on M, and u.c.p., M-bimodular maps from A to B(L2(M,τ)). Moreover, if

A is a von Neumann algebra, then Pϕ is normal if and only if ϕ is normal.

Also, this corresondence is a homeomorphism where the space of hyperstates is endowed with

the weak∗-topology, and the space of u.c.p., M-bimodular maps with the topology of pointwise

weak operator topology convergence.
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Proof. First note that if ϕ is a hyperstate on A , then for all T ∈A we have

ϕ(T ) = 〈T, 1̂〉ϕ = 〈Pϕ(T )1̂, 1̂〉τ .

From this it follows that the correspondence ϕ 7→Pϕ is one-to-one. To see that it is onto, suppose

that P : A → B(L2(M,τ)) is u.c.p. and M-bimodular. We define a state ϕ on A by ϕ(T ) =

〈P(T )1̂, 1̂〉τ . For all y ∈ M we then have ϕ(y) = 〈P(y)1̂, 1̂〉τ = τ(y), hence ϕ is a hyperstate.

Moreover, if y,z ∈M, and T ∈A then we have

〈Pϕ(T )y,z〉τ = 〈Pϕ(z∗Ty)1̂, 1̂〉 (3.2)

= ϕ(z∗Ty) = 〈P(T )y,z〉τ ,

hence, Pϕ = P .

It is also easy to check that Pϕ is normal if and only if ϕ is.

To see that this correspondence is a homeomorphism when given the topologies above, suppose

that ϕ is a hyperstate, and ϕα is a net of hyperstates. From (3.2) and the fact that u.c.p. maps are

contractions in norm we see that Pϕα
converges in the pointwise weak operator topology to Pϕ

if ϕα converges weak∗ to ϕ . Conversely, setting y = z = 1 in (3.2) shows that if Pϕα
converges in

the pointwise weak operator topology to Pϕ then ϕα converges weak∗ to ϕ .

Considering the case A = B(L2(M,τ)) we see that to each hyperstate on B(L2(M,τ)) we

obtain a u.c.p. M-bimodular map on B(L2(M,τ)). In particular, composing such maps gives a

convolution operation on the space of hyperstates. More generally, if A is a C∗-algebra, with

M ⊂A , then for hyperstates ψ ∈A ∗, and ϕ ∈B(L2(M,τ))∗ we define the convolution ϕ ∗ψ to

be the unique hyperstate on A such that

Pϕ∗ψ = Pϕ ◦Pψ . (3.3)

We say that ψ is ϕ-stationary if we have ϕ ∗ψ = ψ , or equivalently, if Pψ maps into the space
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of Pϕ -harmonic operators

Har(B(L2(M,τ)),Pϕ) = {T ∈B(L2(M,τ)) |Pϕ(T ) = T}.

Lemma 3.1.2. For a fixed ψ ∈Sτ(A ) the mapping

Sτ(B(L2(M,τ)) 3 ϕ 7→ ϕ ∗ψ ∈Sτ(A )

is continuous in the weak∗-topology.

Moreover, if ϕ ∈B(L2(N,τ))∗ is a fixed normal hyperstate, then the mapping

Sτ(A ) 3 ψ 7→ ϕ ∗ψ ∈Sτ(A )

is also weak∗-continuous.

Proof. By Proposition 3.1.1 the correspondence ϕ 7→Pϕ is a homeomorphism from the weak∗-

topology to the topology of pointwise weak operator topology convergence, this lemma then fol-

lows easily from (3.3).

3.1.1 Poisson boundaries of II1 factors

If ϕ ∈Sτ(B(L2(M,τ)) is a hyperstate then we define the Poisson boundary Bϕ of M with

respect to ϕ to be the noncommutative Poisson boundary of the u.c.p. map Pϕ as defined by Izumi

[Izu02] (see the next section for an explicit construction).

The Poisson boundary contains M as a subalgebra and the inclusion (M ⊂ Bϕ) is determined

up to isomorphism by the property that there exists a completely positive isometric isomorphism

P : Bϕ → Har(B(L2(M,τ)),Pϕ) which restricts to the identity map on M. We will always

assume that P is fixed and we also call P the Poisson transform.

Given any initial hyperstate ϕ0 ∈Sτ(B(L2(M,τ))) we may consider the hyperstate given by

ϕ0 ◦P on Bϕ . Of particular interest is the state η on Bϕ arising from the initial state x 7→ 〈x1̂, 1̂〉,
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which we call the stationary state on Bϕ . In this case it is easy to see that we have Pη = P , and

hence ϕ ∗η = η .

Proposition 3.1.3. Let (M,τ) be a tracial von Neumann algebra and take ϕ ∈Sτ(B(L2(M,τ))),

then the Poisson boundary Bϕ is injective.

Proof. If we take any cluster point E of in the topology of pointwise weak operator topology

convergence, then E : B(L2(M,τ)) → Har(B(L2(M,τ)),Pϕ) gives a conditional expectation.

As Bϕ is isomorphic to Har(B(L2(M,τ)),Pϕ) as an operator system it then follows that Bϕ is

injective.

The trivial case is when ϕe(x) = 〈x1,1〉τ in which case we have that Pϕe = id, and the Poisson

boundary is nothing but B(L2(M,τ)). Note that ϕe gives an identity with respect to convolution.

Also note that if ϕ ∈ B(L2(M,τ))∗ is a hyperstate, then we have a description of the space of

harmonic operators as:

Har(B(L2(M,τ)),Pϕ) = {T ∈B(L2(M,τ)) | ϕ(aT b) = ϕe(aT b) for all a,b ∈M}.

Since Pϕ is M-bimodular it follows that Pϕ(M′) ⊂ M′. We say that ϕ is regular if the

restriction of Pϕ to M′ preserves the canonical trace on M′, and we say that ϕ is generating if M

is the largest ∗-subalgebra of B(L2(M,τ)) which is contained in Har(B(L2(M,τ)),Pϕ). If ϕ is

regular, then the conjugate of ϕ is given by ϕ∗(T ) = ϕ(JT ∗J), which is again a hyperstate. We’ll

say that ϕ is symmetric if it is regular and we have ϕ∗ = ϕ .

Regular, generating, symmetric hyperstates are easy to find. Suppose (M,τ) is a separable

finite von Neumann algebra with a faithful normal trace τ . We consider the unit ball (M)1 of M as

a Polish space endowed with the weak operator topology, and suppose we have a σ -finite measure

µ on (M)1 such that
∫

x∗xdµ(x) = 1. We obtain a normal hyperstate as

ϕ(T ) =
∫
〈T x̂∗, x̂∗〉dµ(x) (3.4)
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and using (3.2) we may explicitly compute the Poisson transform Pϕ on B(L2(M,τ)) as

Pϕ(T ) =
∫
(Jx∗J)T (JxJ)dµ(x).

Proposition 3.1.4. Consider ϕ as given by (3.4), then

1. ϕ is generating if and only if the support of µ generates M as a weakly closed subalgebra of

B(L2(M,τ)) containing the identity.

2. ϕ is regular if and only if
∫

xx∗ dµ(x) = 1.

3. If ϕ is regular then Pϕ∗(T ) =
∫
(JxJ)T (Jx∗J)dµ(x) and ϕ is symmetric if J∗µ = µ , where

J is the adjoint operation.

Proof. If the support of µ generates a weakly closed subalgebra M0 containing the identity such

that M0 6= M, then we have [Jx∗J,eM0] = 0 for each x in the support of µ . Hence, Pϕ(T ) =∫
(JxJ)T (Jx∗J)dµ(x) = T , for each T in the ∗-algebra generated by M and eM0 . Therefore, ϕ

is not generating. On the other hand, if T ∈ Har(B(L2(M,τ)),Pϕ) is such that we also have

T ∗T ∈ Har(B(L2(M,τ)),Pϕ) then for each a ∈M we have

∫
‖((JxJ)T −T (JxJ))â‖2

2 dµ(x)

= 〈(T ∗Pϕ(1)T −Pϕ(T ∗)T −T ∗Pϕ(T )+Pϕ(T ∗T ))â, â〉= 0

Hence, [JxJ,T ] = 0 for µ-almost every x ∈ (M)1. Therefore, if the support of µ generates M as a

weakly dense subalgebra containing the identity then we then have that T ∈ JMJ′ = M, showing

that ϕ is generating.

If y ∈ M then we have Pϕ(JyJ) =
∫

Jx∗yxJ dµ(x). Hence, we see that ϕ is regular if and

only if for all y ∈ M we have τ(y) =
∫

τ(x∗yx)dµ(x) =
∫

τ(xx∗y)dµ(x), which is if and only if∫
xx∗ dµ(x) = 1.
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If ϕ is regular then

ϕ
∗(T ) = ϕ(JT ∗J) =

∫
〈JT ∗Jx̂∗, x̂∗〉dµ(x)

=
∫
〈x̂,T ∗x̂〉dµ(x) =

∫
〈T x̂∗, x̂∗〉dJ∗µ(x).

Therefore, if J∗µ = µ then ϕ is symmetric.

The following lemma is well known, see, e.g., [FNW94], or Lemma 3.4 in [BJKW00]. We

include a proof for the convenience of the reader.

Lemma 3.1.5. Suppose A is a unital C∗-algebra with a faithful state ϕ . If P : A→ A is a u.c.p.

map such that ϕ ◦P = ϕ , then Har(A,P)⊂ A is a C∗-subalgebra.

Proof. Har(A,P) is clearly a self-adjoint closed subspace, thus we must show that Har(A,P)

is an algebra. By the polarization identity it is enough to show that x∗x ∈ Har(A,P) whenever

x ∈ Har(A,P). Suppose x ∈ Har(A,P). By Kadison’s indequality we have P(x∗x)− x∗x =

P(x∗x)−P(x∗)P(x) ≥ 0. Also, ϕ(P(x∗x)− x∗x) = 0 so that by faithfulness of ϕ we have

P(x∗x) = x∗x.

Proposition 3.1.6. Let M be a finite von Neumann algebra with a normal faithful trace τ . Let

ϕ ∈B(L2(M,τ))∗ be a regular generating hyperstate, and let Bϕ be the corresponding Poisson

boundary, then M′∩Bϕ = Z (M). In particular, when M is a factor then so is Bϕ .

Proof. Let P : Bϕ → Har(B(L2(M,τ)),Pϕ) denote the Poisson transform. If x ∈M′∩Bϕ , then

P(x) ∈M′∩B(L2(M,τ)) = JMJ. Since ϕ is regular, Pϕ preserves the trace when restricted to

JMJ. Thus, Har(Pϕ ,JMJ) is a von Neumann subalgebra of JMJ by Lemma 3.1.5, which must be

Z (M) since ϕ is generating. Therefore, P(x) ∈ Har(Pϕ ,JMJ) = Z (M),and hence x ∈Z (M)

since P is injective.

If ϕ is a normal hyperstate in Sτ(B(L2(M,τ))), then Pϕ : B(L2(M,τ))→B(L2(M,τ)) is a

normal map, and hence the dual map P∗
ϕ preserves the predual of B(L2(M,τ)) which we identify

with the space of trace class operators.
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We let Aϕ ∈B(L2(M,τ)) denote the density operator associated with ϕ , i.e., Aϕ is the unique

trace class operator so that ϕ(T ) = Tr(AϕT ) for all T ∈B(L2(M,τ)). Since ϕ is positive we have

that Aϕ is a positive operator. If P1̂ denotes the rank one orthogonal projection onto C1̂, then we

have ϕ(T ) = 〈Pϕ(T )1̂, 1̂〉= Tr(Pϕ(T )P1̂), and hence we see that Aϕ =P∗
ϕ(P1̂). In particular we

have that Aϕ∗n = (Pn
ϕ)
∗(P1̂) for n≥ 1.

Proposition 3.1.7. Let ϕ ∈ Sτ(B(L2(M,τ))) be a normal hyperstate, then there exists a τ-

orthogonal family {zn}n which gives a partition of the identity as 1 = ∑n z∗nzn so that

Pϕ(T ) = ∑
n
(Jz∗nJ)T (JznJ)

for all T ∈B(L2(M,τ)).

Moreover, if {z̃m}m is a τ-orthogonal family which gives a partition of the identity as 1 =

∑n z̃∗nz̃n, then the map ∑n(Jz̃∗nJ)T (Jz̃nJ) agrees with Pϕ if and only if for each t > 0 we have

sp{zn | ‖zn‖2 = t}= sp{z̃n | ‖z̃n‖2 = t}.

Proof. Since Aϕ is a positive trace class operator we may write Aϕ = ∑n anPyn where a1,a2, . . . are

positive and {yn}n is an orthonormal family with Pyn denoting the rank one projection onto Cyn.

For T ∈B(L2(M,τ)) we then have

Tr(TAϕ) = ∑
n

an〈Tyn,yn〉.

Taking T = x∗x ∈M we have an‖xyn‖2
2 ≤ Tr(x∗xAϕ) = ‖x‖2

2, so that yn ∈M ⊂ L2(M,τ) for each

n. Hence, for T ∈B(L2(M,τ)) we have

Tr(Pϕ(T )P1̂) = Tr(TAϕ) =

〈
∑
n

an(JynJ)T (Jy∗nJ)1̂, 1̂
〉

= Tr
((

∑
n

an(JynJ)T (Jy∗nJ)
)

P1̂

)
.

13



Since Pϕ is M-bimodular and since JynJ ∈M′ it follows that for all x,y ∈M we have

Tr(Pϕ(T )xP1̂y) = Tr
((

∑
n

an(JynJ)T (Jy∗nJ)
)

xP1̂y
)
.

In particular, setting T = y = 1 we have

τ(x) = ∑
n

anτ(y∗nynx),

which shows that ∑n any∗nyn = 1.

Since the span of operators of the form xP1̂y is dense in the space of trace class operators it

then follows that Pϕ(T ) = ∑n an(JynJ)T (Jy∗nJ) for all T ∈B(L2(M,τ)). Setting zn =
√

any∗n then

finishes the existence part of the proposition.

Suppose now that {z̃m}m is a τ-orthogonal family which gives a partition of the identity 1 =

∑n z̃∗nz̃n, and set ϕ̃(T ) = Tr((∑n(Jz̃∗nJ)T (Jz̃nJ))P1̂). Then, the density matrix corresponding to ϕ̃ is

∑n z̃∗nP1̂z̃n. Since {z̃n}n forms a τ-orthogonal family it then follows easily that z̃∗n is an eigenvector

for Aϕ̃ , and the corresponding eigenvalue is ‖z∗n‖2
2 = ‖zn‖2

2. Since {zn}n above was constructed

using any orthonormal basis of eigenvectors from Aϕ the rest of the proposition then follows easily.

We say that the form Pϕ(T ) = ∑n(Jz∗nJ)T (JznJ) (resp. ϕ(T ) = ∑n〈T ẑ∗n, ẑ∗n〉) is a standard

form for Pϕ (resp. ϕ).

Remark: It follows from 3.1.4 that ϕ is generating if and only if the weakly closed subalgebra

generated by {zn} is M

Proposition 3.1.8. If ϕ is generating then the stationary state ζ on Bϕ is faithful.

Proof. By considering the Poisson transform, it suffices to show that ϕ is faithful on Har(Pϕ). Let

T ∈Har(Pϕ), with T ≥ 0 and ϕ(T ) = 0. Let ϕ(S) = ∑n〈Sẑ∗n, ẑ
∗
n〉 be the standard form of ϕ . Then

ϕ(T ) = 0 implies that T ẑ∗n = 0 for all n. Since T ∈Har(Pϕ), we have that Pk
ϕ(T ) =Pϕ(T )(= T ).

So, we have that ϕ∗k(T ) = 0 for all k ≥ 1. As ϕ is generating, we get that T m̂ = 0 for all m ∈M,
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and hence T = 0. This shows that ϕ is faithful on Har(Pϕ), and thus the stationary state ζ on Bϕ

is faithful.

3.1.2 Construction of the boundary

In this section, we give an explicit construction of the boundary, based on the Bhat’s dilation

theorem [Bha99]. The author first learned about this construction from Dr. Peterson.

Poisson boundaries of completely positive maps were first defined by Izumi in [Izu02] using

the Choi-Effros product from [CE77]. Izumi further developed the theory in [Izu04], and in [Izu12]

he credits Arveson with the description of Poisson boundaries as the fixed point algebra of Bhat’s

dilation, and this is the perspective we take here.

If A ⊂B(H ) is a unital C∗-algebra, and φ : A→ A a unital completely positive map, then a

projection p∈ A is said to be coinvariant, if {φ n(p)} defines an increasing sequence of projections

which strongly converge to 1 in B(H ), and such that for y ∈B(H ) we have y ∈ A if and only if

φ n(p)yφ n(p)∈ A for all n≥ 0. Note that for n≥ 0, φ n(p) is in the multiplicative domain for φ , and

is again coinvariant. We define φp : pAp→ pAp to be the map φp(x) = pφ(x)p, then φp is normal

unital completely positive. Moreover, we have that φ k
p(x) = pφ k(x)p for all x ∈ pAp, which can be

seen by induction from

pφ
k(x)p = pφ

k−1(p)φ k(x)φ k−1(p)p = pφ
k−1(φp(x))p.

Theorem 3.1.9 (Prunaru [Pru09]). Let A ⊂ B(H ) be a unital C∗-algebra, φ : A→ A a unital

completely positive map, and p ∈ A a coinvariant projection. Then the map θ : Har(A,φ) →

Har(pAp,φp) given by θ(x) = pxp defines a completely positive isometric surjection, between

Har(A,φ) and Har(pAp,φp).

Moreover, if A is a von Neumann algebra and φ is normal then θ is also normal.

Proof. First note that θ is well-defined since if x ∈Har(A,φ) we have φp(pxp) = pφ(p)xφ(p)p =

pxp. Clearly θ is completely positive (and normal in the case when A is a von Neumann algebra
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and φ is normal).

To see that it is surjective, if x ∈ Har(pAp,φp) then consider the sequence φ n(x). For each

m,n≥ 0, we have

φ
m(p)φ m+n(x)φ m(p) = φ

m(pφ
n(x)p) = φ

m(φ n
p(x)) = φ

m(x).

It follows that {φ n(x)} converges in the strong operator topology to an element y ∈B(H ) such

that φ m(p)yφ m(p) = φ m(x) for each m≥ 0, consequently we have y ∈ A.

In particular, for m = 0 we have pyp = x. To see that y ∈Har(A,φ) we use that for all z ∈ A we

have the strong operator topology limit

lim
n→∞

φ(φ n(p)zφ
n(p)) = φ

n+1(p)φ(z)φ n+1(p) = φ(z),

and hence

φ(y) = lim
m→∞

φ(φ m(p)yφ
m(p)) = lim

m→∞
φ

m+1(x) = y.

Thus θ is surjective, and since φ n(p) converges strongly to 1, and each φ n(p) is in the multi-

plicative domain of φ , it follows that if x ∈ Har(A,φ) then φ n(pxp) converges strongly to x and

hence

‖x‖= lim
n→∞
‖φ n(pxp)‖ ≤ ‖pxp‖ ≤ ‖x‖.

Thus, θ is also isometric.

Corollary 3.1.10 (Izumi [Izu02]). Let A be a unital C∗-algebra, and φ : A→ A a unital completely

positive map. Then there exists a C∗-algebra B and a completely positive isometric surjection

θ : B→ Har(A,φ).

Moreover B and θ are unique in the sense that if B̃ is another C∗-algebra, and θ̃ : B̃ →

Har(A,φ) is a completely positive isometric surjection, then θ−1 ◦ θ̃ is an isomorphism.

Also, if A is a von Neumann algebra and φ is normal, then B is also a von Neumann algebra

and θ is normal.
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Proof. Note that we may assume A ⊂B(H ). Existence then follows by applying the previous

theorem to Bhat’s dilation. Uniqueness follows from Theorem ??.

We refer to the C∗-algebra B from the previous corollary as the Poisson boundary of φ , and

we refer to the map θ as the Poisson transform.

Corollary 3.1.11 (Choi-Effros [CE77]). Let A be a unital C∗-algebra and F ⊂ A an operator

system. If E : A→ F is a completely positive map such that E|F = id, then F has a unique C∗-

algebraic structure which is given by x · y = E(xy). Moreover, if A is a von Neumann algebra and

F is weakly closed then this gives a von Neumann algebraic structure on F.

Proof. When A is a C∗-algebra this follows from Corollary 3.1.10 since Har(A,E) = F . Also note

that since En = E it follows from the proof of Theorem 3.1.9 that the product structure coming

from the Poisson boundary is given by x · y = E(xy).

If A is a von Neumann algebra and F is weakly closed then F has a predual F⊥ = {ϕ ∈ A∗ |

ϕ(x) = 0, for all x ∈ F} and hence A is isomorphic to a von Neumann algebraic by Sakai’s theo-

rem.

Note that if A is a C∗-algebra, F ⊂ A an operator system, and E : A→ F completely positive

with E|F = id, then we still have a form of bimodularity for E when we endow F with the Choi-

Effros product from Corollary 3.1.11. In this case though the bimodularity is with respect to two

different product structures, i.e., we have

E(xay) = x ·E(a) · y,

for all x,y ∈ F , a ∈ A.

3.2 Bi-harmonic operators

If ϕ ∈Sτ(B(L2(M,τ))) is regular and normal then we define Po
ϕ to be the u.c.p. map given

by Po
ϕ = Ad(J) ◦Pϕ∗ ◦Ad(J). Note that Po

ϕ and Pη commute for any normal hyperstate η .
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Indeed, if we have standard forms Pϕ(T ) = ∑n(Jz∗nJ)T (JznJ) and Pη(T ) = ∑m(Jy∗mJ)T (JymJ)

then by Proposition 3.1.4 we have Po
ϕ(T ) = ∑n znT z∗n and hence

Po
ϕ ◦Pη(T ) = Pη ◦Po

ϕ(T ) = ∑
n,m

zn(Jy∗mJ)T (JymJ)z∗n.

The following is a noncommutative analogue of double ergodicity which was established in

[Kai03].

Theorem 3.2.1. Let ϕ ∈Sτ(B(L2(M,τ))) be a normal regular generating hyperstate, then

Har(B(L2(M,τ)),Pϕ)∩Har(B(L2(M,τ)),Po
ϕ) = Z (M).

Proof. We fix a standard form Pϕ(T )=∑n(Jz∗nJ)T (JznJ), so that we also have Po
ϕ(T )=∑m zmT z∗m.

We identify the Poisson boundary Bϕ with Har(B(L2(M,τ))), and let ζ denote the stationary state

on Bϕ , which is faithful by Proposition 3.1.8. For T ∈ Bϕ we have

ζ (Po
ϕ(T )) = 〈Po

ϕ(T )1̂, 1̂〉= 〈Pϕ(T )1̂, 1̂〉= ζ (Pϕ(T )) = ζ (T ).

By Lemma 3.1.5 we then have that B0 = Har(Bϕ ,Po
|Bϕ

) is a von Neumann subalgebra of Bϕ .

If p ∈ B0 is a projection and ξ ∈ L2(Bϕ ,ζ ) then

∑
n
‖pz∗n p⊥ξ‖2

2 = ∑
n
〈zn pz∗n p⊥ζ , p⊥ξ 〉= 0.

We must therefore have ‖pz∗n p⊥ξ‖2 = 0 for each n, and hence pz∗n = pz∗n p, for each n. Repeating

this argument with p and p⊥ reversed shows that z∗n p = pz∗n p, so that p ∈M′∩Bϕ . Since p was an

arbitrary projection we then have B0⊂M′∩Bϕ and by Proposition 3.1.6 we have B0 =Z (M).

The previous result allows us to obtain an analogue of the Choquet-Deny theorem.

Corollary 3.2.2 (The Choquet-Deny theorem). Suppose M is abelian and ϕ ∈Sτ(B(L2(M,τ)))
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is a normal regular generating hyperstate, then

Har(B(L2(M,τ)),Pϕ) = Z (M) = M.

Theorem 3.2.3. Let ϕ ∈ Sτ(B(L2(M,τ))) be a normal regular generating hyperstate, suppose

C ⊂ Bϕ is a weakly closed M-bimodule. If δ : M→C is a norm continuous derivation then there

exists c ∈C so that δ (x) = [x,c] for x ∈M. Moreover, c may be chosen so that ‖c‖ ≤ ‖δ‖.

Proof. We first view δ as a derivation from M into P(C)⊂ Har(Pϕ)⊂B(L2M,τ). Henceforth,

we shall identify C with P(C). Since L2(M,τ) has a cyclic vector for M, δ (m) = mT −T m for

some T ∈B(L2M,τ). (Theorem 5.3, [Chr78]). Taking the conditional expectation onto Har(Pϕ),

we may assume T ∈ Har(Pϕ). Note that by our hypothesis, zmδ (z∗m) ∈C. So we get:

∑
m

zmδ (z∗m) = ∑
m

zmz∗mT −∑
m

zmT z∗m = T −Po
ϕ(T )

The left hand side of the above equation defines an element of C. So, T −Po
ϕ(T ) ∈ C. As Po

ϕ

leaves C invariant (as C is an M-bimodule), by induction we get that T − (Po
ϕ)

n(T ) ∈ C for all

n≥ 1. So, we get:

T − 1
N

N

∑
n=1

(Po
ϕ)

n(T ) ∈C

But,
1
N

∑
N
n=1(P

o
ϕ)

n(T ) has a weak operator topology limit point z ∈ Har(Po
ϕ). As z ∈ Har(Pϕ)

as well, we get by theorem 3.2.1, that z ∈Z (M). So, T = (T − z)+ z ∈C

Theorem 3.2.4. Let (M,τ) be a tracial von Neumann algebra, and suppose T ∈ B(L2(M,τ)),

then

dist(T,Z (M))≤ ‖δT |M′‖+‖δT |M‖.

Proof. Let Pϕ(x) = ∑i µiJu∗i JxJuiJ, where u′is ∈U (M),µi > 0,∑i µi = 1, and span{ui1τ} form a

dense set in L2(M,τ). Then, Pϕ is a normal u.c.p. map, which corresponds to a regular, symmetric

hyperstate ϕ .
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Note that

‖T − Ju∗i JT JuiJ‖= ‖[JuiJ,T ]‖ ≤ ‖δT |M′‖

So, we get:

‖T − 1
N

N

∑
n=1

Pn
ϕ(T )‖ ≤ ‖δT |M′‖

But, ∑
N
n=1 Pn

ϕ(T ) has a weak operator topology limit point S ∈ Har(Pϕ). By same techniques as

above, we get:

‖S− 1
N

N

∑
n=1

(Po
ϕ)

n(S)‖ ≤ ‖δS|M‖

It’s easy to see that ‖δS|M‖ ≤ ‖δT |M‖. Now, let R be a weak operator topology limit point of
1
N

∑
N
n=1(P

o
ϕ)

n(S). Note that R ∈ Har(Pϕ)∩Har(Po
ϕ) = Z (M). So,

dist(T,Z (M))≤ ‖T −R‖ ≤ ‖T −S‖+‖S−R‖ ≤ ‖δT |M′‖+‖δT |M‖

Corollary 3.2.5. If M is an injective II1 factor, then dist(T,M′)≤ ‖δT |M‖

Proof. Since M′ = JMJ is isomorphic to L(S∞), by [KV83], there exists a regular, symmetric,

generating hyperstate ϕ such that Har(Pϕ) = M′. Then, by same techniques as above, we can find

R ∈ Har(Pϕ) = M′ with ‖T −R‖ ≤ ‖δT |M‖. Hence, dist(T,M′)≤ ‖δT |M‖.

Remark: M ⊆ Bϕ has the weak relative Dixmier property, in the sense of [Pop00]. The proof

follows from theorem 3.2.1.

3.3 Entropy

3.3.1 Asymptotic entropy

We let M be a tracial von Neumann algebra with a faithful normal tracial state τ . For a normal

hyperstate ϕ ∈ Sτ(B(L2(M,τ))) we define the entropy of ϕ , denoted by H(ϕ), to be the von
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Neumann entropy of the corresponding density matrix Aϕ :

H(ϕ) =−Tr(Aϕ log(Aϕ)).

If we have a standard form ϕ(T ) = ∑n〈T ẑ∗n, ẑ∗n〉 then we may compute this explicitly as

H(ϕ) =−∑
n
‖zn‖2

2 log(‖zn‖2
2).

Theorem 3.3.1. If ϕ and ψ are two normal hyperstates with ψ regular, then

H(ϕ ∗ψ)≤ H(ϕ)+H(ψ)

Proof. Let Aϕ and Aψ be the corresponding density matrices and Pϕ and Pψ be the correspond-

ing u.c.p. M-bimodular maps. Let {ai}i∈I and {c j} j∈J be τ orthogonal families, as in proof of

proposition 3.1.7, such that Aϕ = ∑
i

µiPâi and Aψ = ∑
j

ν jPĉ j . Let bi = JaiJ and di = JciJ. Then

bi,di ∈M′. We have that:

Pϕ(T ) = ∑
i

µibiT b∗i and Pψ(T ) = ∑
j

ν jd jT d∗j .

Since ψ is a regular hyperstate we have that ∑
i

νid∗i di = ∑
i

νidid∗i = 1. Since ϕ is a hyperstate, we

have that ∑
i

µibib∗i = 1. Now,

H(Aϕ∗ψ) =−∑
i, j

Tr[µiν jb∗i d∗j P1̂d jbi log(Aϕ∗ψ)].

But

b∗i d∗j P1̂d jbi = τ(bib∗i d∗j d j)Pb̂∗i d∗j
.

So,

Aϕ∗ψ = ∑
i, j

µiν jb∗i d∗j P1̂d jbi ≥ µiν jτ(bib∗i d∗j d j)Pb̂∗i d∗j
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for each i, j.

Thus

− log(Aϕ∗ψ) =− log(∑
i, j

µiν jb∗i d∗j P1̂d jbi)≤− log((µiν jτ(bib∗i d∗j d j))Pb̂∗i d∗j
)

for each i, j, as log is operator monotone.

So,

H(Aϕ∗ψ)≤−∑
i, j

Tr[µiν jτ(bib∗i d∗j d j)Pb̂∗i d∗j
log(µiν jτ(bib∗i d∗j d j)Pb̂∗i d∗j

)]

=−∑
i, j

Tr[µiν jτ(bib∗i d∗j d j)Pb̂∗i d∗j
log(µiν jτ(bib∗i d∗j d j)−∑

i, j
Tr[µiν jτ(bib∗i d∗j d j)Pb̂∗i d∗j

log(Pb̂∗i d∗j
)]

=−∑
i, j

µiν jτ(bib∗i d∗j d j) log(µiν jτ(bib∗i d∗j d j),

as the second term vanishes, and Tr(Pb̂∗i d∗j
)= 1. Now define m on I×J by m(i, j)= µiν jτ(bib∗i d∗j d j).

Note that ∑
i

m(i, j) = ν jτ(∑
i

µibib∗i d∗j d j) = ν jτ(d∗j d j) = ν j and

∑
j

m(i, j) = µiτ(∑
i

ν jbib∗i d∗j d j) = µiτ(bib∗i ) = µi. We claim that

H(m) =−∑
i, j

m(i, j) log(m(i, j))≤ H(µ)+H(ν).

Proof of claim:

H(m) =−∑
i, j

m(i, j) log(m(i, j))

=−∑
i, j

µiν jτ(bib∗i d∗j d j) log(µiτ(bib∗i d∗j d j))−∑
i, j

µiν jτ(bib∗i d∗j d j) log(ν j)

=−∑
i, j

µiν jτ(bib∗i d∗j d j) log(µi)−∑
i, j

µiν jτ(bib∗i d∗j d j) log(ν j)−∑
i, j

µiν jτ(bib∗i d∗j d j) log(τ(bib∗i d∗j d j)).

Note that in the above sum, the first term is H(µ) (summing over j we get−∑
i

µiτ(bib∗i ) log(µi) =

−∑
i

µi log(µi)), and the second term is H(ν). So, the inequality will be satisfied if we can show:

∑
i, j

µiν jτ(bib∗i d∗j d j) log(τ(bib∗i d∗j d j))≥ 0.
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Let η(x) = −x log(x) for x ∈ [0,1]. Note that η is concave, and so η(∑
i

αixi) ≥ ∑
i

αiη(xi)

whenever αi ≥ 0 and ∑
i

αi = 1.

So,

−∑
i, j

µiν jτ(bib∗i d∗j d j) log(τ(bib∗i d∗j d j)) = ∑
i, j

µiν jη(τ(bib∗i d∗j d j))

= ∑
i

µi(∑
j

ν jη(τ(bib∗i d∗j d j)))

≤∑
i

µiη(∑
j

ν jτ(bib∗i d∗j d j))

= ∑
i

µiη(τ(bib∗i )) = 0

Corollary 3.3.2. If ϕ is a normal, regular hyperstate, then the limit lim
n→∞

H(ϕ∗n)

n
exits.

Proof. The sequence {H(ϕ∗n)} is subadditive by Theorem 3.3.1

The asymptotic entropy h(ϕ) of a normal regular hyperstate ϕ is defined to be the limit

h(ϕ) = lim
n→∞

H(ϕ∗n)

n
.

3.3.2 A Furstenberg type entropy

Suppose G is a Polish group and µ ∈ Prob(G). Given a quasi-invariant action Gya(X ,ν) the

corresponding Furstenberg entropy (or µ-entropy) is defined [Fur63, Section 8] to be

hµ(a,ν) =−
∫∫

log
(

dg−1ν

dν
(x)
)

dν(x)dµ(g).

If we consider the measure space (G×X ,ν×µ) then we have a non-singular map π : G×X→
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G×X given by π(g,x) = (g,g−1x), whose Radon-Nikodym derivative is given by

dπ(µ×ν)

d(µ×ν)
(x,g) =

dg−1ν

dν
(x).

We may thus rewrite the µ-entropy as a relative entropy

hµ(a,ν) =−
∫∫

log
(

dπ(ν×µ)

d(ν×µ)
(g,x)

)
d(ν×µ) = S((ν×µ)|π(ν×µ)).

Let (M,τ) be a tracial von Neumann algebra, ϕ a normal hyperstate for M, and A a C∗-algebra,

such that M ⊆A . Let ζ ∈Sτ(A ) be a faithful hyperstate. Let ∆ζ : L2(A ,ζ )→ L2(A ,ζ ) be the

modular operator corresponding to ζ , and consider the spectral decomposition ∆ζ =
∫

∞

0 λ dE(λ ).

Since ζ |M = τ , we have a natural inclusion of L2(M,τ) in L2(A ,ζ ). Let e denote the orthog-

onal projection from L2(A ,ζ ) to L2(M,τ). The entropy of the inclusion (M,τ) ⊂ (A ,ζ ) with

respect to ϕ is defined to be

hϕ(M ⊂A ,ζ ) =−
∫

log(λ )dϕ(eE(λ )e).

Example 3.3.3. If Γ is a discrete group, µ ∈ Prob(Γ) and Γya(X ,ν) is a quasi-invariant action,

then we may consider the state ϕ on B(`2Γ) given by ϕ(T ) =
∫
〈T δγ ,δγ〉dµ(γ), and we may

consider the state ζ on L∞(X ,ν)oΓ⊂B(`2Γ⊗L2(X ,ν)) given by ζ
(
∑γ∈Γ aγuγ

)
=
∫

ae dν . Note

that we have that in this case we may compute ϕ ∗ ζ
(
∑γ∈Γ aγuγ

)
=
∫

ae dµ ∗ ν . The modular

operator ∆ζ is then affiliated to the von Neumann algebra `∞Γ⊗L∞(X ,ν), and we may compute

this directly as

∆ζ (γ,x) =
dγ−1ν

dν
(x).

We also have that the projection e from `2Γ⊗L2(X ,ν)→ `2Γ is given by id⊗
∫

. Thus, it follows that

the measure dϕ(eE(λ )e) agrees with dα∗(µ×ν), where α : Γ×X → R>0 is the Radon-Nikodym

cocycle, α(γ,x) = dγ−1ν

dν
(x).
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In this case we then have

hϕ(LΓ⊂ L∞(X ,ν)oΓ,ζ ) =−
∫

log(λ )dϕ(eE(λ )e)

=−
∫∫

log
(

dγ−1ν

dν
(x)
)

d(ν×µ) = hµ(a,ν).

Lemma 3.3.4. Let ϕ ∈Sτ(B(L2(M,τ))) be a normal hyperstate and write ϕ in a standard form

ϕ(T ) = ∑n〈T ẑ∗n, ẑ∗n〉. Suppose A is a C∗-algebra with M ⊂ A and ζ ∈Sτ(A ) is a hyperstate.

Then if hϕ(M ⊂A ,ζ )< ∞ we have that z∗n1ζ ∈ D(log∆ζ ) for each n and

hϕ(M ⊂A ,ζ ) = ∑
n
〈log∆ζ z∗n1ζ ,z

∗
n1ζ 〉= i lim

t→0

1
t ∑

n
(ζ (znσ

ζ

t (z
∗
n))−1).

Proof. As A 1ζ forms a core for Sζ we get that z∗n1ζ ∈D(log(∆ζ )). Also, we know that lim
t→0

∆it
ζ
−1

t
ξ =

i log(∆ζ )ξ , for all ξ ∈ D(∆ζ ). So, we have that

hϕ(M ⊂A ,ζ ) =−ϕ(e log(∆ζ )e)

= ∑
n
〈log∆ζ z∗n1ζ ,z

∗
n1ζ 〉

= i∑
n
〈zn lim

t→0

∆it
ζ
−1

t
z∗n1ζ ,1ζ 〉= i lim

t→0

1
t ∑

n
(ζ (znσ

ζ

t (z
∗
n))−1).

Example 3.3.5. Fix two normal hyperstates ϕ,ζ ∈Sτ(B(L2(M,τ))) such that ϕ is regular, and ζ

is faithful, and consider the case A =B(L2(M,τ)). Then the density operator Aζ is injective with

dense range and the modular operator on L2(B(L2(M,τ)),ζ ) is given by ∆ζ (T 1ζ ) = Aζ TA−1
ζ

1ζ ,

for T ∈B(L2(M,τ)) such that T 1ζ ∈ D(∆ζ ), so that log(∆ζ )(T 1ζ ) = (Ad(logAζ )T )1ζ , where

Ad(logAζ )T = (logAζ )T −T (logAζ ).

We also have that the projection e : L2(B(L2(M,τ)),ζ )→ L2(M,τ) is given by e(T 1ζ ) =
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Pζ (T )1τ . Therefore, e log∆ζ ex1τ = Pζ (Ad(logAζ )x)1τ = Pζ (Ad(logAζ ))x1τ . Hence,

hϕ(M ⊂B(L2(M,τ)),ζ ) = ϕ(Pζ (Ad(logAζ )))

= Tr(Aϕ∗ζ Ad(logAζ ))

= Tr(Aϕ∗ζ logAζ )−〈logAζ 1τ ,1τ〉.

Where the last equality follows since ϕ is regular.

We recall the following two lemmas from works of D.Petz

Lemma 3.3.6 (D.Petz: Properties of relative entropy of states of von Neumann algebras). Let ∆ j

be positive, self adjoint operators on H j, j = 1,2. If T : H1→H2 is a bounded operator such that:

• T (D(∆1))⊆D(∆2)

• ||∆2T ξ || ≤ ||T || · ||∆1ξ || (ξ ∈D(∆1)),

then we have for each t ∈ [0,1], and ξ ∈D(∆t
1),

||∆t
2T ξ || ≤ ||T || · ||∆t

1ξ ||

Lemma 3.3.7 (D Petz). Let ∆ be a positive self adjoint operator and ξ ∈D(∆). Then:

lim
t→0+

||∆t/2ξ ||2−||ξ ||2

t

exists. It’s finite or−∞ and equals
∞∫
0

logλd〈Eλ ξ ,ξ 〉where
∞∫
0

logλdEλ is the spectral resolution

of ∆.

Corollary 3.3.8. hϕ(M ⊂A ,ζ ) =− lim
t→0+

∞

∑
k=1
||∆t/2

ϕ ez∗n1τ ||2−||ez∗n1τ ||2

t

Lemma 3.3.9. hϕ(M ⊂A ,ζ )≥ 0
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Proof. Let Pζ (T ) = eTe for T ∈A .

hϕ(M⊂A ,ζ )= lim
n→∞

ϕ(−e log∆ne)=− lim
n→∞
〈Pϕ ◦Pζ (log∆n)1τ ,1τ〉≥ lim

n→∞
−〈log(Pϕ ◦Pζ (∆n))1τ ,1τ〉

(using the operator Jensen’s inequality; recall that log is operator concave).

Now, e∆ne≤ e∆e = I. So, Pϕ ◦Pζ (∆n)≤ I. As log is operator monotone, we get that log(Pϕ ◦

Pζ (∆n))≤ log(I) = 0. Hence we are done.

Theorem 3.3.10. Let ϕ,ψ ∈Sτ(B(L2(M,τ))) be two normal hyperstates such that ψ is regular,

and suppose A is a C∗-algebra with M ⊂A , and ζ ∈ Sτ(A ) is a faithful hyperstate, then

hϕ∗ψ(M ⊂A ,ζ ) = hϕ(M ⊂A ,ψ ∗ζ )+hψ(M ⊂A ,ζ ).

Proof. Let Pϕ and Pψ be the corresponding u.c.p. maps. Let Pϕ(T ) = ∑k µkJa∗kJT JakJ and

Pψ(T ) = ∑l νlJb∗l JT JblJ. We shall denote the projection from L2(A ,ζ ) to L2(M,τ) by e and ∆ζ

by ∆. We then have:

hϕ(M ⊂A ,ζ ) = i lim
t→0

ϕ(
e∆ite−1

t
) = i lim

t→0

1
t

ϕ(e∆
ite−1)

= i lim
t→0

1
t
(∑

k
µk〈(∆it−1)a∗k1ζ ,a

∗
k1ζ 〉)

Similarly,

hψ(M ⊂A ,ζ ) = i lim
t→0

1
t
(∑

l
νl〈(∆it−1)b∗l 1ζ ,b

∗
l 1ζ 〉)

and,

hϕ∗ψ(M ⊂A ,ζ ) = i lim
t→0

1
t
(∑

k,l
µkνl〈(∆it−1)a∗kb∗l 1ζ ,a

∗
kb∗l 1ζ 〉)

= i lim
t→0

1
t
(∑

k,l
µkνl〈(blakσt(a∗kb∗l )1ζ ,1ζ 〉−1)

We shall now show: lim
t→0

1
t
(∑k,l µkνl〈blakσt(a∗kb∗l )1ζ ,1ζ 〉−∑k,l µkνl〈blσt(b∗l )σt(a∗k)1ζ ,1ζ 〉) = 0.
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Let yt = akσ(a∗k). Note that yt → aka∗k as t→ 0, in SOT. We have:

ytσt(b∗l )−σt(b∗l )yt = ytσt(b∗l )− ytb∗l + ytb∗l −σt(b∗l )yt

= yt(σt(b∗l )−b∗l )+(ytb∗l −b∗l yt)+(b∗l −σt(b∗l ))yt

Now,

1
t
(∑

k,l
µkνl〈(ytb∗l −b∗l yt)1ζ ,b

∗
l 1ζ 〉=

1
t
(∑

k,l
µkνl〈blytb∗l 1ζ ,1ζ 〉−

1
t
(∑

k,l
µkνl〈yt1ζ ,blb∗l 1ζ 〉

=
1
t ∑

k
µk〈(∑

l
νlblytb∗l )1ζ ,1ζ 〉−

1
t ∑

k
〈yt1ζ ,1ζ 〉

=
1
t ∑

k
〈yt1ζ ,1ζ 〉−

1
t ∑

k
〈yt1ζ ,1ζ 〉= 0(Stationarity).

Also, lim
t→0

1
t
(yt(σt(b∗l )−b∗l )) exists, and hence lim

t→0

1
t
(∑k,l µkνl〈blakσt(a∗kb∗l )1ζ ,1ζ 〉−∑k,l µkνl〈blσt(b∗l )σt(a∗k)1ζ ,1ζ 〉)=

0. So, we get that:

hϕ∗ψ(M ⊂A ,ζ ) = i lim
t→0

1
t
(∑

k,l
µkνl〈(blσt(b∗l )akσt(a∗k)−1)1ζ ,1ζ 〉

= i lim
t→0

1
t
(∑

k,l
µkνl[〈(blσt(b∗l )−1)1ζ ,1ζ 〉

+ 〈(akσt(a∗k)−1)1ζ ,1ζ 〉

+ 〈(akσt(a∗k)−1)1ζ ,(blσt(b∗l )−1)∗1ζ 〉]

The first term equals hϕ(M ⊂A ,ζ ), while second term equals hψ(M ⊂A ,ζ ), and the third term

equals zero, as lim
t→0

1
t
(akσt(a∗k)−1)1ζ exists, while lim

t→0
∑l νl(blσt(b∗l )−1)∗1ζ = 0

Corollary 3.3.11. Let ϕ ∈Sτ(B(L2(M,τ))) be a regular normal hyperstate and suppose A is a

C∗-algebra with M ⊂A , and ζ ∈ Sτ(A ) is a faithful hyperstate ϕ-stationary hyperstate, then for

n≥ 1 we have

hϕ∗n(M ⊂A ,ζ ) = nhϕ(M ⊂A ,ζ ).
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Lemma 3.3.12. hϕ(M ⊂A ,ζ )≤ H(ϕ)

Proof. Let Pϕ(T ) = ∑k µkbkT b∗k . Let ak = JbkJ ∈M. It follows from 3.3.7 that

H(ϕ) =− lim
t→0+

∞

∑
k=1

µk||A
t/2
ϕ a∗k1τ ||2−||a∗k1τ ||2

t
.

So by corollary 3.3.8 it’s enough to show that

lim
t→0+

∞

∑
k=1

µk||A
t/2
ϕ a∗k1τ ||2−||a∗k1τ ||2

t
≤ lim

t→0+

∞

∑
k=1

µk||∆
t/2
ϕ ea∗k1τ ||2−||ea∗k1τ ||2

t
.

—

So, it’s enough to show that

||At/2
ϕ ak1τ ||2 ≤ ||∆t/2

ζ
ak1ζ ||2

Define T : L2(A ,ζ )→ L2(M,τ) by T (a1ζ ) = Pζ (a)1τ . Then ||T || = 1, as ||T (1ζ )|| = 1 and

||Pζ || ≤ 1. T takes D(∆ζ ) into D(Aϕ) = L2(M,τ). By lemma 3.3.6 it’s enough to show:

||A1/2
ϕ T ξ || ≤ ||∆1/2

ξ ||for all ξ ∈D(∆).

In fact it’s enough to show the above for all vectors in a core for D(∆). Recall that A 1ζ forms a

core for D(∆). So, we only need to show

||A1/2
ϕ Ta1ζ || ≤ ||∆1/2a1ζ ||
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Now we have:

||∆1/2a1ζ ||2 = 〈∆1/2a1ζ ,∆
1/2a1ζ 〉= 〈JSa1ζ ,JSa1ζ 〉

= 〈Ja∗1ζ ,Ja∗1ζ 〉= 〈a∗1ζ ,a
∗1ζ 〉= ζ (aa∗)

= 〈Pζ (aa∗)1τ ,1τ〉

We also have Pϕ ◦Pζ = Pζ =⇒ ϕ ◦Pζ = ζ . Now:

||A1/2
ϕ Ta1ζ ||2 = 〈A

1/2
ϕ Pζ (a)1τ ,A

1/2
ϕ Pζ (a)1τ〉= 〈AϕPζ (a)1τ ,Pζ (a)1τ〉

= 〈Pζ (a)
∗AϕPζ (a)1τ ,1τ〉 ≤ Tr(Pζ (a)

∗AϕPζ )

= Tr(AϕPζ (a)Pζ (a
∗))≤ Tr(AϕPζ (aa∗)

= 〈Φ◦Pζ (aa∗)1τ ,1τ〉= 〈Pζ (aa∗)1τ ,1τ〉

= ζ (aa∗) = ||∆1/2a1ζ ||2.

Hence we are done.

Corollary 3.3.13. hϕ(M ⊂A ,ζ )≤ h(ϕ)

Proof. By lemma 3.3.12, we have that hϕ∗n(M ⊂ A ,ζ ) ≤ H(ϕ∗n). By corollary 3.3.11 we have

that hϕ∗n(M ⊂A ,ζ ) = nhϕ(M ⊂A ,ζ ). So we get,

hϕ(M ⊂A ,ζ )≤ H(ϕ∗n)

n
→ h(ϕ).

Lemma 3.3.14. hϕ(M ⊂A ,ζ ) = 0 if and only if there exists a ζ preserving conditional expecta-

tion from A to M.

Proof. Let E : A →M be a ζ preserving conditional expectation. Then, we know that σ
ζ

t (m) = m
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for all m ∈M. Hence,

hϕ(M ⊂A ,ζ ) = i lim
t→0

1
t ∑

k
〈(∆it−1)a∗k1ζ ,a

∗
k1ζ 〉

= i lim
t→0

1
t ∑

k
〈σt(a∗k)1ζ ,a

∗
k1ζ 〉−1 = 0

Conversely, suppose hϕ(M⊂A ,ζ ) = 0. Let ∆ζ =∆ and let ∆=
∫

∞

0 λdλ be it’s spectral resolution.

Let ∆n =
∫ n

1/n λdλ , n≥ 1 be the truncations. We know that ∆n converges to ∆ in the resolvent sense.

As usual, we denote by e the projection from L2(A ,ζ ) to L2(M,τ). We have that I = e∆e≥ e∆ne

for all n. So, (I + t)−1 ≤ (e∆ne+ t)−1 ≤ e(∆n + t)−1e for all n and for all t > 0. Taking limits as

n→ ∞, we get (I + t)−1 ≤ e(∆+ t)−1e. Now we shall use the following integral representation of

log:

log(x) =
∫

∞

0
[(1+ t)−1− (x+ t)−1]dt

So that :

hϕ(M ⊂A ,ζ ) =−
∫

∞

0
∑
k
〈e[(I + t)−1− (∆+ t)−1]ea∗k1τ ,a∗k1τ〉.

From hϕ(M ⊂A ,ζ ) = 0 and above discussion, we deduce that:

(I + t)−1a∗k1ζ = (∆+ t)−1a∗k1ζ

for almost all t > 0, and hence by continuity, for all t > 0. This implies that ∆ita∗k1ζ = a∗k1ζ , which

implies that σ
ζ

t (m) = m for all m ∈ M, as ϕ is generating. But this implies the existence of a ζ

preserving conditional expectation from A to M.

Corollary 3.3.15. Har(B(L2M,τ),Pϕ)=M if and only if hϕ(M⊂Bϕ ,ζ )= 0, where Bϕ denotes

the Poisson boundary with respect to ϕ .

Proof. If hϕ(M ⊂B,ζ ) = 0, then by lemma 3.3.14 there exists a conditional expectation E : B→
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M, given by E (b) = ebe = P(b). So,

Har(Pϕ) = P(Bϕ) = M.

Conversely, if Har(B(L2M,τ),Pϕ) = M then ∆ζ = I and hence hϕ(M ⊂Bϕ ,ζ ) = 0

Corollary 3.3.16. Har(Pϕ) = M if h(ϕ) = 0

Proof. Since 0 ≤ hϕ(M ⊂Bϕ ,ζ ) ≤ h(ϕ), this result follows from the previous corollary 3.3.15.

3.4 An entropy gap for property (T) factors

If (M,τ) is a tracial von Neumann algebra, then a Hilbert M-bimodule consists of a Hilbert

space H , together with commuting normal representations L : M→B(H ), R : Mop→B(H ).

We will sometimes simplify notation by writing xξ y for the vector L(x)R(yop)ξ . A vector ξ ∈H

is left (resp. right) tracial if 〈xξ ,ξ 〉= τ(x) (resp. 〈ξ x,ξ 〉= τ(x)) for all x∈M. A vector is bi-tracial

if it is both left and right tracial. A vector ξ is left (resp. right) bounded if there exists C > 0 so that

‖xξ‖ ≤ c‖x‖2 (resp. ‖ξ x‖ ≤C‖x‖2) for all x ∈M. We denote by oH (resp. H o) the subspace of

all left (resp. right) bounded vectors, we let oH o =o H ∩H o be the (dense [Pop86, Theorem...])

subspace of left and right bounded vectors. A vector ξ ∈H is central if xξ = ξ x for all x ∈M.

Note that if ξ is a unit central vector then x 7→ 〈xξ ,ξ 〉 gives a normal trace on M.

Suppose M ⊂A is an inclusion of von Neumann algebras and ϕ ∈A∗ is a hyperstate. We may

then consider the Hilbert space L2(A ,ϕ) which is naturally a Hilbert M-bimodule where the left

action is given by left multiplication L(x)â = x̂a, and the right action is given by R(xop) = Jx∗J. In

this case the vector 1̂ is clearly left tracial, and we also have Jx∗J1̂ = ∆1/2x1̂ from which it follows

easily that 1̂ is also right tracial. If ξ0 ∈ L2(A ,ϕ) is a unit central vector, then τ0(x) = 〈xξ0,ξ0〉

defines a normal trace on M. We let s ∈Z (M) denote the support of τ0.

The von Neumann algebra M has property (T) if for any sequence of Hilbert bimodules Hn, and

ξn ∈Hn bi-triacial vectors, such that ‖xξn−ξnx‖→ 0 for all x∈M, then we have ‖ξn−P0(ξn)‖→
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0, where P0 is the projection onto the space of central vectors. This is independent of the normal

faithful trace τ [Pop06, Proposition 4.1]. Property (T) was first introduced in the factor case by

Connes and Jones [CJ85] where they showed that for an ICC group Γ, the group von Neumann

algebra LΓ has property (T) if and only if Γ has Kazhdan’s property (T) [Kaž67]. Their proof

works equally well in the general case when Γ is not necessarily ICC.

We now fix a normal hyperstate ϕ on B(L2(M,τ)) and we take {ak}n
k ⊂M with n∈N∪{∞} so

that ∑
n
k=1 a∗kak = 1 and ϕ(T ) = ∑

n
k=1〈T â∗k , â

∗
k〉 for T ∈B(L2(M,τ)). For a fixed Hilbert bimodule

H we define ∇L,∇R : H o→H ⊕n by

∇L(ξ ) =⊕akξ

∇R(ξ ) =⊕ξ ak.

Note that we have

‖∇L(ξ )‖2 =
n

∑
k=1
‖akξ‖2 =

〈
n

∑
k=1

a∗kakξ ,ξ

〉
= ‖ξ‖2.

Also, if ξ ∈H o is such that ‖ξ x‖ ≤C‖x‖2, then we similarly have that ‖∇R(ξ )‖2 ≤C2.

Definition 3.4.1. A tracial von Neumann algebra M together with a hyperstate ϕ is said to have

an entropy gap, if there exists a constant ε = ε(M,ϕ) such that for any stationary space (A ,ζ )

the Furstenberg entropy is atleast ε .

We shall show that if M has property (T) in the sense of Connes and Jones, then (M,ϕ) has an

entropy gap for any regular, symmetric hyperstate.

Lemma 3.4.2. Let (A ,ϕ0) be a stationary space. Define T : L2(A ,ζ )→ L2(A ,ζ ) by :

T (ξ ) = (∑
k

La∗k
Rak)(ξ )
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Then hϕ(A ,ζ )≥−2log〈T 1ζ ,1ζ 〉.

Proof. Note that, La∗k
Rak1ζ = a∗k∆1/2ak1ζ . Now,

−2log〈T 1ζ ,1ζ 〉=−2log(∑
k
〈La∗k

Rak 1̂, 1̂〉)

=−2log(∑
k
〈a∗k∆

1/2ak1̂, 1̂〉) =−2log( lim
n→∞

∑
k
〈a∗k∆

1/2
n ak1̂, 1̂〉)

=−2 lim
n→∞

log(∑
k
〈a∗k∆

1/2
n ak1̂, 1̂〉)

≤ lim
n→∞

∑
k
〈a∗k log(∆n)ak1̂, 1̂〉= hϕ(A ,ζ ),

where the last inequality follows from Jensen’s operator inequality.

Lemma 3.4.3. 〈T 1ζ ,1ζ 〉 ≤ ||T || ≤ 1.

Proof. Let ∇L and ∇R be defined as before, for the Hilbert bimodule L2(A ,ζ ). Then:

〈∇∗R∇L(ψ),η〉= ∑
k
〈akψ,ηak〉

= ∑
k
〈akψa∗k ,η〉= 〈T (ψ),η〉.

We also have:

〈∇∗L∇L(ψ),η〉= ∑
k
〈akψ,akη〉

= ∑
k
〈a∗kakψ,η〉= 〈∑

k
a∗kakψ,η〉= 〈ψ,η〉,

and:

〈∇∗R∇R(ψ),η〉= ∑
k
〈ψak,ηak〉

= ∑
k
〈ψaka∗k ,η〉= 〈∑

k
ψaka∗k ,η〉= 〈ψ,η〉.
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So, ||T || ≤ ||∇L|| · ||∇R|| ≤ 1.

Remark: The operator T is unambiguously defined.

Lemma 3.4.4. If M has property (T) then 〈T 1ζ ,1ζ 〉 ≤ c < 1 where c is independent of (A ,ζ )

Proof. We already showed that 〈T 1ζ ,1ζ 〉≤ 1. Suppose that there exists (stationary) spaces (A\,ζn),

such that 〈T 1ζn,1ζn〉→ 1. Since 1ζn are bi-tracial vectors, satisfying ||ak1ζn−1ζnak|| → 0 (by con-

vexity of Hilbert spaces), we get that there exists a central vector ψ (since ak’s generate M and M

has property (T).)The rest follows easily.

3.5 Rigidity for u.c.p. maps on the boundary

Theorem 3.5.1. Suppose we have an intermediate von Neumann algebra M ⊂ C ⊂B, and Ψ :

C →B is a normal unital completely positive map such that Ψ|M = id, then Ψ = id.

Proof. By identifying C with P(C ) we may assume that φ : C → Har(Pϕ) is a normal unital

completely positive map such that Ψ|M = id. Under this identification, C is a weakly closed M-sub

bimodule of Har(Pϕ). Note that for T ∈ C we have,

〈Ψ(T )1τ ,1τ〉= 〈Pϕ(Ψ(T ))1τ ,1τ〉= 〈Po
ϕ(Ψ(T ))1τ ,1τ〉

= ∑
n
〈znΨ(T )z∗n1τ ,1τ〉= 〈Ψ(Po

ϕ(T ))1τ ,1τ〉.

Where the last equality follows from the fact that Ψ is normal and M-bimodular. So we get that

〈Ψ(Po
ϕ(T ))1τ ,1τ〉= 〈Ψ(T )1τ ,1τ〉 for all T ∈C, which immediately implies that

〈Ψ(
1
N

N

∑
n=1

(Po
ϕ)

n(T ))1τ ,1τ〉= 〈Ψ(T )1τ ,1τ〉for all T ∈C.

Let z be a weak operator topology limit point of 1
N ∑

N
n=1(P

o
ϕ)

n(T ). Then, z ∈ Z (M) by theo-

rem 3.2.1. So, Ψ(z) = z, and we get that

〈Ψ(T )1τ ,1τ〉= 〈z1τ ,1τ〉= 〈T 1τ ,1τ〉
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where the last equality follows because z is independent of Ψ. Now, let a,b∈M, and T ∈C . Then,

we have that b∗Ta ∈ C , and hence by above computation, we get:

〈Ψ(T )a1τ ,b1τ〉= 〈Ψ(b∗Ta)1τ ,1τ〉= 〈b∗Ta1τ ,1τ〉= 〈Ta1τ ,b1τ〉

and hence Ψ(T ) = T

Theorem 3.5.1 should be compared with Theorem 3.2 in [CP13] where this is established for

crossed products of commutative Poisson boundaries.

Corollary 3.5.2. Suppose Mi is a II1 factor for i∈ {1,2}, and ϕi be regular, generating hyperstates

(for Mi on B(L2Mi) ). Then,

Har(Pϕ1⊗Pϕ2) = Har(Pϕ1)⊗Har(Pϕ2).

Proof. We clearly have Har(Pϕ1)⊗Har(Pϕ2) ⊂ Har(Pϕ1 ⊗Pϕ2) so we only need to show the

reverse inclusion. Note that

(Pϕ1⊗ id)◦ (Pϕ1⊗Pϕ2) = (Pϕ1⊗Pϕ2)◦ (Pϕ1⊗ id),

hence (Pϕ1⊗ id)|Har(Pϕ1⊗Pϕ2)
gives a normal ucp map which restricts to the identity on M1⊗M2.

By Theorem 3.5.1 we have that (Pϕ1⊗ id)|Har(Pϕ1⊗Pϕ2)
is the identity map and hence

Har(Pϕ1⊗Pϕ2)⊂ Har(Pϕ1⊗ id) = Har(Pϕ1)⊗B(L2M2).

We similarly have

Har(Pϕ1⊗Pϕ2)⊂B(L2M1)⊗Har(Pϕ2).

Since Har(Pϕ1) is injective it is semidiscrete [Con76a], and hence has property Sσ of Kraus
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[Kra91, Theorem 1.9]. We then have

Har(φ1⊗φ2)⊂ (Har(Pϕ1)⊗B(L2M2))∩ (B(L2M1)⊗Har(Pϕ2))⊂ Har(Pϕ1)⊗Har(Pϕ2).

Corollary 3.5.3. Let M be a II1 factor, and let ϕ be a regular, generating hyperstate. Then, M is a

maximal type II1 factor inside Bϕ .

Proof. Suppose N ⊂Bϕ is a type II1 factor containing M. Then there exists a normal conditional

expectation E : N→M. Hence, by theorem 3.5.1, E(n) = n for all n ∈ N, and hence N = M.
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[Kaž67] D. A. Každan, On the connection of the dual space of a group with the structure of its closed

subgroups, Funkcional. Anal. i Priložen. 1 (1967), 71–74.
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