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CHAPTER 1 

INTRODUCTION 

1.1 Motivation: Reusable Hypersonic Vehicles and Digital Aircraft Twin 

The U.S. Air Force (USAF) has identified the need for reusable high-speed aircraft that can 

endure the combined aerodynamic, thermal, and acoustic loads observed in hypersonic flight 

environments [1]. Due to limited operational data and the inability to fully reproduce hypersonic 

loads in ground facilities, there is significant uncertainty surrounding the structural response and 

material degradation of an aircraft structure that is repeatedly subjected to fluctuating aero-

pressures and high thermal-gradients from high-Mach flights [2]. As a result, the highly-coupled 

aerothermoelastic response of a structure characterized by fluid-thermal-structural interactions 

(FTSI) is studied primarily via single- and partial-physics constituent models (e.g., aero-elastic, 

fluid-thermal, heat transfer, aero-acoustic, etc.) [3,4].  

Concurrently with the increased emphasis on computer simulations to study the 

aerothermoelastic response, the USAF has identified the need to create a multi-physics simulation 

model to predict the damage, life, and reliability of a vehicle prior to and throughout its assigned 

mission [2,5]. This model is referred to as an “Aircraft Digital Twin,” which is a continuously 

updating computer simulation that makes mission decisions and adjustments based on on-board 

in-flight measurements, manufacturing and machining variations, and the inspection, repair, and 

operation history of an individual aircraft [6]. However, full-fidelity simulations using high spatial, 

temporal, and coupling resolutions for each multidisciplinary model component and interaction 

are computationally expensive [7]. Thus, there is ongoing research focused on improving 

computational efficiency by using simplified physics, surrogates, and reduced-order models  for 

FTSI simulations [8–11]. To that end, multi-level, multi-disciplinary, and multi-fidelity models 
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are to be integrated into an uncertainty-informed decision-making framework to streamline vehicle 

certification, optimize fleet management, and facilitate sustainment [12]. 

In the absence of full-scale physical tests under fully representative hypersonic loads, research 

is underway to fill-in knowledge gaps with small-scale component-level tests (e.g., panel) that 

capture subsets of the relevant physical interactions [13–17]. Historically, there has been very 

limited data from FTSI experiments in high-speed flows. A few of the validation-quality 

aerothermal loading experiments considered rigid flat plates, spherical domes, and quilted domes 

and were conducted at the NASA 8ft High-Temperature Tunnel (HTT) by Deveikis et al [18,19] 

and Glass and Hunt [20,21] during the 1970s and 1980s. In particular, the Glass and Hunt 

experiments in 1986 [20] were designed to study variable surface pressure and heating rates across 

rigid spherical domes in laminar and turbulent Mach 6.5 flow, and provide aerothermal data for 

the heating-induced deformations expected to occur during flight of metallic TPS panels. These 

legacy aerothermal HTT tests do not capture the structural dynamics that would constitute FTSI, 

however, they have supplied benchmark pressure and heating profiles for several static panel 

configurations to compare against the fluid-thermal components in FTSI solvers [22–24]. Thus, 

these limited, heterogeneous, and partial information sources can be used to quantify errors and 

uncertainty in their respective sub-domains of aerothermoelasticity, and help guide new 

experiments toward reducing significant knowledge gaps surrounding FTSI [25].  

Due to limited wind tunnel data and prohibitively expensive flight tests, decision-making relies 

heavily on uncertainty-quantified predictive models. This dissertation investigates effective 

uncertainty quantification methods for multidisciplinary, transient models (i.e., model calibration, 

model confidence assessment, global sensitivity analysis, and model selection) with specific focus 
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toward reducing the uncertainty and improving the accuracy and efficiency of coupled, 

aerothermoelastic predictions. 

1.2 Uncertainty in Aerothermoelastic Simulations 

Uncertainty inherently exists due to imperfect data and knowledge which includes: 1) natural 

variability in the system and model inputs (e.g., materials, geometry, fluid properties, and loading); 

2) uncertainty from measurement errors and limited data; and 3) and model uncertainty and errors 

from simplified or poorly-understood physics, their interactions, and numerical approximations 

[26]. At high Mach numbers, fluid-structural coupling between aerodynamic pressure (p) and a 

deforming structure (w) is accompanied by significant aerodynamic heat flux (Qaero) from large 

temperature gradients within the fluid boundary layer [27]. These aerodynamic heat loads transfer 

through the structure, augment the temperature-dependent material properties, and lead to non-

uniform thermal gradients in Tstructure which cause further structural deformation into the flow. A 

monolithic solution for the aerothermoelastic problem would consist of simultaneously solving the 

unsteady Navier-Stokes equations with real gas effects and structural dynamics equations. Due to 

the computational burden of a transient monolithic solution over a full aircraft, partitioned aero-

thermal-structural coupling strategies like the one shown in Figure 1.1 have been pursued to 

simulate and study FTSI [28–31]. 
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Figure 1.1. Coupling in aerothermoelasticity 

Partitioned approaches lend themselves to modularization and simulation flexibility where 

under a constrained computational budget (e.g., combat mission planning with a Digital Twin) 

either a) simplified physics or reduced-order models can be substituted for an expensive 

component, or b) the coupling strength between different disciplinary models can increase or 

decrease based on the application domain. In aerothermoelastic modeling, two viable alternatives 

have been identified: 1) simplified representations of the unsteady aerodynamic pressure (i.e., 3rd-

order piston theory [32]) and heating loads (i.e., Eckert’s reference temperature method [33]); and 

2) efficient incorporation of heat transfer between the fluid and structure into an aeroelastic 

solution process [34,35]. However, each model and coupling approximation contain errors and 

uncertainty, and also affect how the aforementioned sources of uncertainty propagate across the 

coupling interfaces.  

Model uncertainty impedes the realization of reusable hypersonic vehicles and the Aircraft 

Digital Twin due to the limited ability to perform ground tests and confidently predict the structural 

reliability, risk, and performance of these aircraft [36]. To make progress toward these long-term 

goals, this dissertation investigates effective uncertainty quantification methods for 

multidisciplinary, transient simulation models (i.e., model calibration, model confidence 
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assessment, global sensitivity analysis, and model selection) with the goal of improving the 

accuracy and efficiency of coupled, aerothermoelastic simulation. 

1.3 Outline of Dissertation 

This dissertation focuses on quantifying the confidence in multidisciplinary simulations, which 

are often assembled based on limited data and inadequate individual and partial-physics model 

components. Methodologies are proposed to address the following three challenges in the context 

of both inverse and forward uncertainty quantification (UQ) problems: 1) computational expense 

of multidisciplinary simulations, 2) error accumulation across multiple models and over time, and 

3) uncertainty due to the availability of limited data.  

The current state of the art in UQ analysis mostly addresses single-physics problems. Very few 

studies consider multidisciplinary analysis where errors and uncertainty aggregate across 

disciplinary models [37] (only forward prediction, not inverse problems). Therefore, this 

dissertation aims to fill this gap with respect to multidisciplinary model calibration and prediction. 

Specifically, regarding inverse problems, the interest lies in isolating model error contributions 

and for prediction problems, the goal is to improve prediction confidence and minimize 

computational effort. 

For inverse problems, the development of a segmented Bayesian model calibration strategy 

reduces the computational effort of calibration when multiple information sources are available. 

Further, prediction confidence is improved by reducing the uncertainty that aggregates between 

coupled analyses and through time using a partitioned approach to calibrate model errors. 

Methodology contributions for the forward problem include an efficient global sensitivity analysis 

method (to support dimension reduction) that incorporates existing model calibration results and 

an optimization framework that balances prediction confidence and computational effort to select 
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variable model fidelity in multidisciplinary simulations. These methods are illustrated with time-

dependent, aerothermoelastic analyses of airfoils subjected to high-speed flow. 

Objective 1: Bayesian calibration strategies for multidisciplinary models 

Bayesian calibration methods are explored to improve confidence in coupled aeropressure and 

aeroheating predictions using data on multiple quantities of interest. First, models and data are 

systematically integrated using a Bayesian network approach, and the objective is to investigate 

that impact of an alternative segmented calibration strategy compared to traditional simultaneous 

calibration over the entire network. The calibrations are performed using historic aerothermal wind 

tunnel test data with turbulent Mach 6.6 flow [20] and evaluated on the basis of increased 

prediction confidence and computational effort. The segmented calibration strategy targets 

dominant connections between uncertainty sources in the presence of limited data for maximum 

uncertainty reduction. 

Objective 2: Model discrepancy calibration in time-dependent, coupled analyses 

This Bayesian network framework from Objective 1 is extended to include transient heat 

transfer and time-series temperature data for the calibration of model discrepancy in the coupled 

aerodynamic heating and heat transfer prediction. The objective is to adapt the dynamic Bayesian 

network for time-dependent aerothermal models using the appropriate model discrepancy 

resolution for isolation and propagation of uncertainty through the network. Global, step-wise, and 

partitioned approaches for inferring coupled model errors are compared, where the partitioned 

approach is shown to capture the nonlinear response in extrapolation with minimal effect on the 

calibration cost and no effect on the cost of forward prediction. 

 

Objective 3: Efficient global sensitivity analysis for transient, multidisciplinary problems 
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The objective is to improve the efficiency of the global sensitivity analyses (GSA) that occur 

both before and after the model calibrations in Objectives 1 and 2. For pre-calibration GSA, 

convergence of an importance-sampling based global sensitivity analysis methodology (ISK-

GSA) [38] is improved with low-discrepancy sampling sequences (i.e., Sobol' sequence), thus 

minimizing the number of pre-calibration simulations required. For post-calibration GSA, the ISK-

GSA methodology is generalized to efficiently compute global sensitivities using a) existing input-

output relationships from calibration; and b) correlated input variables. 

Objective 4: Model selection and coupling in time-dependent, multidisciplinary simulations 

The final objective is to develop a confidence-based model selection framework to determine 

optimal coupling and temporal fidelities while accounting for uncertainty and error propagation 

differences among the simulation alternatives. At each time-step, an optimization decides the next 

model coupling and time-step size needed to balance both prediction confidence and simulation 

cost constraints. The model-selection process is demonstrated on the calibrated aerodynamic 

heating and heat transfer models from Objective 2. 

  

The above four dissertation objectives are pursued in Chapters 2 – 5 in the order above. Finally, 

Chapter 6 presents a summary of the research contributions and directions for future work. 
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CHAPTER 2 

BAYESIAN CALIBRATION OF MULTIDISCIPLINARY MODELS 

2.1 Introduction 

Within the probabilistic risk assessment and structural reliability communities, sources of 

uncertainty are characterized as either aleatory (irreducible) or epistemic (reducible) [39]. Aleatory 

sources of uncertainty are treated as random variables in the system with a probability density 

function (PDF) of known form (e.g., physical variability and measurement errors). Reliability 

assessments are then performed by propagating these aleatory uncertainty sources through 

mathematical representations (i.e. models) of the physical system using techniques such as Monte 

Carlo simulation (MCS), the first-order reliability method (FORM), and the second-order 

reliability method (SORM) [40]. Epistemic sources of uncertainty, however, arise from lack of 

knowledge about the physical system (e.g., model form errors, limited data) and affect the 

downstream reliability prediction. In the Bayesian approach, these sources of uncertainty are also 

represented through PDFs but are assumed to have a true deterministic value that is unknown. The 

uncertainty about their true value can be reduced using Bayesian updating techniques upon 

acquiring new information.  

The goal of model calibration, therefore, is to use the available data to reduce the uncertainty 

regarding the sources of epistemic uncertainty that affect the quantity of interest (QoI), which may 

be a model prediction, prediction confidence, or the reliability of the system predicted by one or 

more models [41]. Several model calibration and parameter estimation methodologies exist (e.g., 

least squares, maximum likelihood estimation (MLE), and Bayesian estimation). Within a 

Bayesian calibration framework, knowledge on the uncertain parameters both prior to and after 

calibration are represented as prior and posterior PDFs which can be used for post-calibration 
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uncertainty propagation, model confidence assessment, and reliability analyses [42,43]. Therefore, 

Bayesian approaches are pursued for the coupled aerothermoelastic simulation where the overall 

goal is to quantify and increase model confidence in each of the models corresponding the 

disciplines in Figure 1.1.  

When applying Bayesian methods over large systems for overall uncertainty reduction, it is 

necessary to connect the available data and the sources of uncertainty in a systematic way. 

Bayesian networks can be used for this purpose where the model inputs, outputs, data, and 

uncertainty sources are represented as nodes in the Bayesian network. The value of Bayesian 

networks lies in their ability to reduce the uncertainty over the entire network even when limited 

data is observed on even a small number of nodes. Bayesian networks and have been used for 

multi-level and hierarchical systems [44–46], where data is available at multiple levels (e.g., 

material, component, assembly). In these types of systems, each level feeds into the next and 

higher-level data can reduce the uncertainty regarding lower-level parameters. Bayesian 

calibration studies for these types of systems have compared the effects of calibrating low-level 

parameters with both lower-level and higher-level data, and have developed a roll-up technique to 

combine the posteriors from these calibrations using weights derived from single-level model 

validations [26,47]. Mullins et al [48] and Li and Mahadevan [46] further demonstrated the role of 

calibration and validation data available on each level in the network and optimized data collection 

to maximize the reliability of the top-level prediction within the roll-up framework. 

Similarly to multi-level and hierarchical Bayesian networks, multidisciplinary Bayesian 

networks have nodes representing the simulation components and uncertainty sources from each 

discipline. Each disciplinary model output is connected to one or more downstream models as 

inputs or the analysis in next time instant within the same discipline. (When connecting two time 
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instants, the Bayesian network is constructed as a dynamic Bayesian network (DBN), which is 

discussed in Chapter 2). The differences between multi-level and multidisciplinary Bayesian 

networks, however, lie in the heterogeneity of data available on a single model component. For 

example, single-physics experiments may be available as well as combined-physics experiments 

that capture cross-disciplinary interactions. Within the multidisciplinary Bayesian network, 

combined-physics experiments contain information on multiple nodes in the network, much like 

higher-level data in multi-level systems; however, updating simultaneously over the all the 

relevant nodes and data in the system may be impractical, due to a) the uncertainty being 

sufficiently reduced from previous calibration with a single-physics data set, or b) one or more of 

the models within relevant disciplines being computationally cumbersome. Therefore, calibration 

priority should be given to the uncertainty sources that will most benefit from the data. 

The segmented Bayesian calibration strategy developed in this chapter exploits the dominant 

connections between data and key sources of uncertainty in the presence of both single- and 

combined-physics data. The segmented calibration process partitions the parameter space and 

leads to greater uncertainty reduction within the calibration segments. When new data becomes 

available, the segmented Bayesian calibration strategy makes efficient use of the available data 

and reduces the computational burden by sequentially updating only the relevant calibration 

parameters and models. This motivates the comparison of segmented and simultaneous calibration 

procedures. Two comparison metrics are used in this study: the Bayes factor metric [49] is used to 

assess prediction accuracy, and the Kullback-Leibler (K-L) divergence metric [50] is used to 

compare the convergence rates of the posterior distributions, which are indicative of the overall 

computational effort of implementing the chosen calibration strategy. 
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Bayesian model calibration is presented in Section 2.2 and the Bayes factor and Kullback-

Leibler divergence metrics used to compare the calibration strategies are presented in Section 2.3 

and Section 2.4, respectively. The segmented and simultaneous calibration strategies for Bayesian 

model calibration are presented in Section 2.5 and demonstrated on illustrative examples in Section 

2.6 and the aeropressure and aeroheating models with HTT wind tunnel data in Section 2.7. 

One additional outcome of this chapter is the identification of the key model dependence and 

data characteristics for which a segmented Bayesian calibration strategy offers the most 

computational benefit without compromising downstream prediction reliability. The 

characteristics considered are: (1) the degree of dependence between models; (2) the relative 

numbers of single and combined effect experiments; and (3) the presence of shared parameters. 

Appendix A contains the analytical derivations of the posterior distributions from both segmented 

and simultaneous calibrations of a linear two-parameter example, where each parameter represents 

the uncertainty contribution from each physics. These derivations offer first-order estimates of the 

prediction reliability after a) single and combined-effect experiments, and b) segmented or 

simultaneous calibration, and can be readily implemented in resource allocation frameworks for 

both design of calibration experiments and model updating. 

2.2 Bayesian Model Calibration Methodology 

Consider a quantity of interest y predicted by a single physics model y that maps inputs x and 

model parameters θ to the model prediction ŷ, which is an inexact estimate of the true value of y. 

The difference between available observations yD and the true value of y is attributed to 

measurement error εD, as shown in Eq. (2.1) and often treated as a Gaussian random variable with 

zero mean and unknown variance . To capture the disagreement between ŷ = y and y due to 2

D
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missing physics or approximations in the model y, a model discrepancy term δ(x) parameterized 

as a function of the inputs is introduced in Eq. (2.2).  

 D Dy y      (2.1) 

 ( ; ) ( )yy  x x     (2.2) 

Input variables x are measurable quantities in laboratory or field experiments. These could be 

considered deterministic or stochastic with known probability distributions due to measurement 

errors or natural variability. In contrast to x, model parameters θ are uncertain due to lack of 

knowledge. Furthermore, the precise relationship between δ(x) and ŷ is unknown. Thus, the goal 

of Bayesian model calibration is to use data yD to estimate the posterior distributions of the 

parameters θ, δ(x), and , given observations from physical experiments and assumed prior 

distributions of these parameters. In some problems, some of the unmeasured inputs may also be 

treated similar to calibration parameters. Epistemic uncertainty may be present regarding either 

deterministic inputs (i.e., unknown value), or stochastic inputs (i.e., unknown distribution type 

and/or parameters). In this dissertation objective, epistemic uncertainty in the input parameters is 

not explicitly considered since its treatment is similar to model parameters θ.  

For a single computational model, Figure 2.2 shows the Bayesian network corresponding to 

Eqs. (2.1) and (2.2). Bayesian calibration is an inverse problem, which is achieved by passing the 

information upstream from the data nodes (solid squares) to the calibration quantities (dashed 

circles). 

2

D
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Figure 2.1. Bayesian network for a single physics model y 

Bayesian model calibration for continuous variables is facilitated using Bayes’ formula shown 

in Eq. (2.3) where the posterior probability density of the calibration quantities Φ = [θ, δ(x), ] 

is proportional to the product of the joint likelihood L(Φ) and the prior probability density π(Φ). 

Here, π(•) denotes a probability density function (PDF) and π(Φ| yD) refers to the updated PDF 

(i.e., posterior) of parameters Φ after observing yD. 
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 (2.3) 

Given N independent observations of yD the joint likelihood function of parameters Φ is shown 

in Eq. (2.4). The likelihood is proportional to the product of joint conditional probabilities of 

observing yD given a deterministic value of Φ. 

 ,

1

) ( ) (( | )
N

D i D

i

L y y 


       (2.4) 

The integral in the denominator of Eq. (2.3) simply normalizes the posterior distribution to a 

valid PDF, however, numerical integration schemes quickly become intractable with increasing 

dimension of Φ [51]. For this reason, Bayesian calibration is often performed using Markov chain 

Monte Carlo (MCMC) sampling algorithms – such as Metropolis-Hastings [52], Gibbs [53], or 

slice sampling [54] – which make direct use of the proportionality between the numerator 

L(Φ)π(Φ) and the posterior distribution from which samples desired. Slice sampling is used in this 

2

D
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dissertation. Furthermore, the cost of computing the likelihood function is proportional to the cost 

of the model being calibrated, and can be demanding when costly models are used to calibrate 

numerous parameters. These challenges are discussed in more detail in Section 2.5 in the context 

of multidisciplinary Bayesian model calibration when one or more models may be computationally 

prohibitive. 

2.3 Bayes Factor Metric 

For models whose parameters are estimated through Bayesian methods and the posterior 

parameters Φ are stochastic, the likelihood ratio of observing the data (known as Bayes factor) can 

be employed for selecting between two competing models or methods, 1 and 2. For example, 

the posterior of parameters Φi  given model i and calibration data Dc is shown in Eq. (2.5) as a 

model-dependent extension of Eq. (2.3) 

 
Pr( | , ) ( )

Pr( | , )
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c
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D P
D

D P d
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

 


  
 (2.5) 

Often a validation set of data Dv is held separately from Dc to evaluate the predictive capabilities 

of the calibrated model i which is defined as Pr(Dv | Φi,i), the likelihood of observing Dv 

given i and parameters Φi. The ratio of each Pr(Dv | Φi,i) for each i = 1 to 2 defines the Bayes 

factor between two alternatives, shown in Eq (2.6). Since the parameters Φ1 and Φ2 are not 

deterministic but defined according to the posterior in Eq. (2.5), the integral over the posteriors of 

Φ1 and Φ2 defines the Bayes factor B(1,2), where B > 1 indicates that the validation data Dv 

supports the posterior distribution derived from calibrating 1. Inherently, the Bayes factor 

accounts for limited data in the calibration of Φi and when the maximum a posteriori estimate of 

Φi is used, the Bayes factor is equivalent to a likelihood ratio test. 
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In this chapter, the Bayes factor in Eq. (2.6) is compares posteriors from two competing 

Bayesian model calibration strategies – segmented and simultaneous calibration with posteriors 

Φseg and Φsim respectively– that are presented in Section 2.5, tested on a mathematical example 

problem in Section 2.6, and on interacting aeropressure and aeroheating models in Section 2.7. 

2.4 Kullback-Leibler Divergence 

Computational effort is compared using the posterior convergence rates from both segmented 

and simultaneous calibration strategies, which can be computed using the Kullback-Leibler (K-L) 

divergence measure presented in Eq. (2.7) [50]. The K-L divergence is an indicator of similarity 

between PDFs, so a smaller value of K-L divergence indicates a smaller dissimilarity between 

them. The distributions of interest are the posterior distributions obtained from the calibration after 

the ith MCMC sample πi(Φ)  and the posterior distributions after i+1 samples, πi+1(Φ). The K-L 

divergence integral in Eq. (2.7) is computed using Monte Carlo integration with the samples 

generated from by the MCMC algorithm. Slice sampling is used here, but other MCMC methods 

could also be used. 
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 (2.7) 

Therefore, a simultaneous calibration strategy will track the K-L divergence of the posterior 

PDF of Φ until convergence is reached. In contrast, a segmented calibration strategy monitors the 

K-L divergence of each calibration segment. For the illustrative examples in Section 2.6 and the 

hypersonic application problem in Section 2.7, two calibration segments are used. 
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2.5 Strategies for Multidisciplinary Bayesian Model Calibration  

Consider two physical model predictions ŷ1(x; θ1, θ12) and ŷ2 (x, y1; θ2, θ12) which are estimates 

of y1 and y2, respectively. Each model contains inputs x, uncertain model parameters θi, and input-

dependent discrepancy functions δi(x,yi-1). There are additional uncertain parameters common to 

both models represented by θ12. Building off of the notation in Eq. (2.2), the mathematical 

relationships for this two-discipline system are defined in terms of their model outputs, uncertain 

parameters, and model discrepancy in Eqs. (2.8) and (2.9). 

 1 1 1 1 12 1 1( ; , ) ( )D D Dy yy       x x     (2.8) 

 22 1 2 2 12 2 1 2
ˆ ( ; , ) ( )D D Dy y , yy       x x     (2.9) 

The Bayesian network for the quantities represented by Eqs. (2.8) and (2.9) is shown in Figure 

2.2. The systematic organization of information in the Bayesian networks makes them ideal for 

multidisciplinary problems with several interacting models and limited data. For example, the 

connections between the two models are provided by inputs x, parameters θ12, and true output y1 

that feeds into ŷ2. These relationships can be utilized during calibration such that the data furthest 

downstream (i.e., yD2) can inform the uncertain parameters associated with both y1 and y2, including 

shared parameters θ12. The influence of this downstream data depends on two main factors: 1) the 

relative amount of data available for yD1 and yD2 and 2) the dependence (i.e., sensitivity) of model 

ŷ2 on y1. 
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Figure 2.2. Bayesian Network for two-discipline system 

Given N1 independent observations of yD1 and N2 independent observations of yD2 for an testing  

input x, the simultaneous joint likelihood function of parameters Φ = [θ1, θ2, θ12, δ1(x), δ2(x,y1), 

σD1, σD2] is shown in Eq. (2.10). Assuming that the observations of yD1 and yD2 are statistically 

independent, Eq. (2.10) is further divided into two separable likelihoods each corresponding to a 

given data set. 
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 (2.10)  

The likelihood in Eq. (2.10) requires evaluating both models ŷ1 and ŷ2 at every input condition 

to generate a single posterior sample. Additionally, as discussed in Section 2.4 the number of 

samples required for the calibration to converge increases with the number of calibration 

parameters. This computational burden motivates the investigation of more efficient calibration 

techniques for multidisciplinary models. Therefore, in Section 2.5.1, a segmented calibration 

method is developed to explore its effectiveness in reducing the overall calibration effort. 
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2.5.1 Proposed Segmented Bayesian Model Calibration 

The goal of segmented calibration is to isolate important relationships in the multidisciplinary 

Bayesian network, as well as make the best use of limited data and computational resources. In 

reference to the Bayesian network in Figure 2.2, this leads to the parameter sets Φ1 = [θ1, δ1(x), 

σD1], Φ2 = [θ2, δ2(x,y1), σD2], and Φ12 = θ12. Modifying the Bayesian framework to calibrate in a 

segmented manner involves the joint likelihood function in Eq.(2.10), which is shown in its 

expanded form in Eq. (2.11) for Φ1, Φ2, and Φ12.  
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  (2.11) 

Since parameters Φ2 are not connected to yD1 in the Bayesian network, the first likelihood in the 

first step of Eq. (2.11) which can exclude Φ2 while still being equivalent to Eq. (2.10), as shown 

in the second step. The mechanism of segmenting the likelihood is shown between the second and 

last step of Eq. (2.11). The approximation sign implies that in the segmented approach, the quantity 

π(yD1| Φ1, Φ12) π(yD1| Φ1, Φ2, Φ12) is approximated by π(yD1| Φ1, Φ12) π(yD1| Φ1|D1, Φ2, Φ12),  

where Φ1|D1 denotes the posteriors of Φ1 from the first calibration. The validity of this 

approximation is verified in Section 2.6.1 with a global sensitivity analysis. 

 With a segmented likelihood in Eq. (2.11), two Bayesian posteriors emerge: one using the 

likelihood defined by yD1 in Eq. (2.12) and another using the likelihood defined by yD2 and 

conditioned on Φ1|D1 in Eq. (2.13). 
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The shared parameters Φ12 are updated in both calibration segments where the posterior PDF 

of Φ12|D1 from the first calibration becomes the prior of the second and assumed to be independent 

of Φ2, as shown in Eq. (2.13). In some cases, parameters in Φ12 can be included solely in the first 

or second calibration, if a sensitivity analysis determines one model is more sensitive to those 

parameters. A quantitative sensitivity analysis on all model outputs (see\ Chapter 4) helps 

determine an appropriate calibration strategy (i.e., segmented or simultaneous) for the sources of 

uncertainty in a multidisciplinary analysis. 

2.6 Mathematical Example 

In this section, segmented and simultaneous Bayesian calibration is first investigated for a 

mathematical example where analytical posteriors are obtained using conjugate distributions [55]. 

The derivations of the posterior PDFs from each calibration strategy are given in Appendix A. In 

Section 2.6.5, the example is extended for shared inputs and parameter θ12. 

First, consider two models y1 = θ1 and y2 = cy1 + θ2 that are related through a dependence 

coefficient c. Parameters θ1 and θ2 are uncertain and are to be calibrated using observations yD1 and 

yD2 on outputs y1 and y2, respectively. Here, model discrepancy is assumed to be contained in the 

uncertainty about each model and is contained in θ1 and θ2 such that y1 = ŷ1 and y2 = ŷ2, as shown 

in Eqs. (2.14) and (2.15). The observations yD1 and yD2 contain measurement errors that are 

assumed to be Gaussian with zero mean with known variances 
2

1D  and
2

2D , respectively. 

 1 1 1 1 1(0, ) (0, )D D Dy y N N        (2.14) 

 2 2 2 1 2 2(0, ) (0, )D D Dy y N cy N        (2.15) 

The Bayesian network for this system is shown in Figure 2.3, where the two models are 

connected via nodes y1 and y2. The strength of their dependence is dictated by c, which influences 
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the viability of a segmented Bayesian calibration strategy over the network for a fixed data 

scenario.  

  
Figure 2.3. Bayesian network for mathematical example 

In Section 2.6.1, prior distributions are selected for θ1 and θ2 and used to discuss the effect of 

model dependence on model output sensitivities. The posterior PDFs and output variance ratios 

between the segmented and simultaneous methodologies are derived in Appendix A. and the 

resulting distributions and downstream prediction confidence from each calibration is compared 

analytically in Section 2.6.2. The calibrations are then performed numerically in Section 2.6.3 

using slice sampling [54] and computational effort is assessed using K-L divergence in Section 

2.6.4. Finally, the demonstration on an example with shared inputs and parameters is presented in 

Section 2.6.5. 

2.6.1 Model Dependence and Prior Sensitivities 

Conjugate distributions facilitate the derivation of the segmented and simultaneous posteriors, 

where for simplified problems the distribution type of the posterior is the same as that of the prior 

when combined with an appropriate choice of the likelihood function (e.g., a normal likelihood 

function and normal prior result in a normal posterior) [55]. For this reason, the simple linear 

relationship between Eqs. (2.14) and (2.15) can be further used to derive the posterior statistics for 

θ1 and θ2 using normal priors π(θ1) ~ N(μθ1 , σθ1) and π(θ2) ~ N(μθ2, σθ2) given in Table 2.1. In 
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addition, there are N1 observations of yD1 and N2 observations of yD2 with known observation 

variances 
2

1D  and
2

2D also given in Table 2.1. 

Table 2.1 True parameter values, prior means and variances, and measurement error 

variance 

Parameter Quantity Value 

θ1 Truth 1.2 

 μθ1 1.3 

 
2

1  
1.0e-2 

θ2 Truth 0.9 

 μθ2 0.7 

 
2

2  
1.0e-2 

Measurement Error 

Variance 

2

1D
 

2.5e-3 

2

2D
 

10.0e-3 

 

The prior first order sensitivities of model y2 to the uncertainty in θ1 and θ2 for dependence 

coefficients of c = [0, 5] are computed using Eqs. (2.16) and (2.17), and are presented in Figure 

2.4. They represent the contribution to the total variance in y2 from each source of uncertainty. 

Since the priors are assumed uncorrelated, their first order and total effects are equivalent. 

Furthermore, due to the strictly feed-forward nature of the models, the sensitivity of y1 to θ1 is 1 

and its sensitivity to θ2 is zero.  

 
2 2

1 1 1 1 2 2 1
1, 2 , 2 2 2 2

2 1 2

( ( | ))

( )
y T y

Var E y c
S S

Var y c

    

 

 

 
  


 (2.16) 

 
2

2 2 2 2 2 1 2
1, 2 , 2 2 2 2

2 1 2

( ( | ))

( )
y T y

Var E y
S S

Var y c

    

 

 

 
  


 (2.17) 



34 

 
Figure 2.4. Prior sensitivity of model output y2 to uncertainty in θ1 and θ2 

At c = 0, parameter θ1 has no influence on output y2 as indicated in Figure 2.4 with zero 

sensitivity. Intuitively, increasing the dependence coefficient results in increased sensitivity of y2 

to the uncertainty in θ1, and asymptotically approaches 1 as c increases. Note that at c = 1, the first 

order sensitivities are 0.5 for both θ1 and θ2 because the variance contributions from cθ1 and θ2 on 

output y2 are equal.  

2.6.2 Calibration Results for Analytical Example 

The posterior distributions for segmented and simultaneous calibrations are derived in 

Appendix A and used to test the effects of the dependence coefficient c and the relative number of 

data points N1 and N2 on the posterior parameter and prediction uncertainty. The variances of θ1 

from a segmented strategy (Eq. (A.4)) and from a simultaneous strategy (Eq. (A.22)) as a function 

of N1 are shown in Figure 2.5 for two cases of downstream data: N2 = 5 and N2 = 50.  
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Figure 2.5. Posterior variance of θ1 as a function of data on y1  

It is observed in Figure 2.5 that the segmented calibration of θ1 is solely dependent on the 

amount of data on y1 and is unaffected by the amount of data on y2 or the dependence coefficient. 

In contrast, a simultaneous strategy does allow downstream information yD2 to influence θ1 

noticeably at low levels of N1 and large c. These figures imply that as model dependence increases, 

downstream data becomes important and a segmented calibration strategy fails to benefit from this 

information. However, the effectiveness of this downstream data is limited. For example, when c 

= 5 the amount of uncertainty reduction in θ1 between N2 = 5 and N2 = 50 for a simultaneous 

strategy is only 8.8%.  

In contrast to the posterior variances of θ1, c shows the posterior variances of θ2 computed using 

Eqs. (A.8) and (A.16) in Appendix A. When there is ample upstream data (i.e., N1 = 50), the 

posterior variance from the segmented strategy is effectively independent of c. This means that θ1 

does not influence the downstream segmented calibration when it is well-characterized. However, 
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when N1 = 5, more uncertainty propagates forward leading to more uncertainty in θ2. In a 

simultaneous strategy, however, the correlations between θ1 and θ2 posterior samples (denoted by 

ρ(θ1, θ2)), are negative and lead to observing more uncertainty in θ2 compared to the segmented 

strategy. Conversely, the correlations ρ(θ1, θ2) in a segmented strategy are zero. 

 
Figure 2.6. Posterior variance of θ2 as a function of data on y2  

As shown in Figure 2.7, the simultaneous calibration correlation coefficient in Eq. (A.26) is 

dependent on relative data sizes corresponding to the two model outputs. The parameters exhibit 

strong negative correlations when N1 is limited and with increased model dependence. 
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Figure 2.7. Posterior correlation between θ1 and θ2 as a function of c computed using 

simultaneous calibration) 

To account for ρ(θ1, θ2), posterior variances in y2 for both segmented and simultaneous strategies 

for the analytical example are given in Eq. (2.18) and shown in Figure 2.8. Even though the 

variance of θ2 from simultaneous calibration with N1 = 5 is significantly greater than the variance 

segmented calibration of θ2, neglecting the negative correlation between θ1 and θ2 in a segmented 

strategy results in more uncertainty propagating downstream to y2. In other words, neglecting the 

correlation results in greater downstream prediction uncertainty from the segmented calibration 

strategy as the dependence between the models increases. 

  
2

2 1 2 1 2 1 2) ( ) (( ) 2 ( , )c Var Var cVar y             (2.18)   
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Figure 2.8. Posterior variance of y2 as a function of data on y2 

2.6.3 Comparison of Segmented and Simultaneous Calibration Results 

The posterior distributions resulting from the segmented and simultaneous calibration strategies 

are be compared using two metrics. Here we compare their mean values and variances; the former 

is related to bias and the latter to precision. The mean values from both strategies were found to 

be identical; thus there is no bias introduced by the segmented strategy for these examples. Figure 

2.9 shows the variance ratio for the posterior distributions of θ1, θ2, and y2, with the variance from 

the simultaneous calibration as the denominator and the variance from the segmented calibration 

as the numerator. A variance ratio greater than 1 indicates that the result of the segmented strategy 

contains more uncertainty (i.e., more imprecision) and Figure 2.9 shows these ratios for the four 

data scenarios mentioned earlier.  
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Figure 2.9. Variance ratios for θ1, θ2, and y2 predictions from segmented and simultaneous 

calibration 

The variance ratios in Figure 2.9 continue to suggest that limited upstream data impedes the 

performance of a segmented calibration. First, the variance ratio for y1 = θ1 prediction (which is an 

increasing function of c) shows significant increase when N1 = 5 (since the simultaneous strategy 

uses yD2 data to reduce the variance of θ1). This effect of limited data on yD1 is worsened in 

downstream predictions in a segmented calibration strategy as seen from the increasing variance 

ratio for y2. Regarding θ2, the variance ratio for N1 = 5 and N2 = 50 is significantly less than 1 

because all of the yD2 data is used for the posterior estimation of θ2 (thus reducing its variance) in 

the segmented calibration, whereas in the simultaneous strategy the yD2 data is used to estimate the 

posteriors of both θ1 and θ2 (resulting in less variance reduction of θ2). However, the ignoring of 

negative correlation between θ1 and θ2 means more uncertainty is propagating downstream to y2 in 

a segmented calibration strategy, resulting in a larger variance ratio for y2. 

2.6.4 Comparison of Computational Effort 

The Kullback-Leibler divergence integral in Eq. (2.7) was computed numerically using Monte 

Carlo integration with the 104 posterior slice samples generated from calibration. A smaller DKL at 

a given posterior sample i means that the two posterior distributions defined by the samples up to 

i and up to i-1 are more similar, hence, the distribution is converging at a faster rate. It is observed 

that the convergence rate is not affected by the amount of data. Consider the convergence rates for 
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N1 = 50 and N2 = 50 for a dependence coefficient of 2 shown in Figure 2.10. Here convergence is 

assumed to be reached when log(DKL) = -10. 

 
Figure 2.10. K-L Divergence for segmented and simultaneous calibration 

From Figure 2.10, both segmented calibrations (the first using yD1 to calibrate θ1 and the second 

using yD2 to calibrate θ2) achieve a smaller K-L divergence than the simultaneous calibration 

strategy. Both segmented calibrations reached convergence in approximately 2500 samples from 

each model while the simultaneous converged in approximately 4500 samples from each model. 

This resulted in a computational savings of 2000 (45%) individual ŷ1 simulations and 2000 (45%) 

ŷ2 simulations using a segmented calibration strategy. With costly model simulations, typical of 

multidisciplinary analyses, these percentages can significantly influence computation time. 

2.6.5 Extension: Shared Inputs and Parameters 

Building on the analytical example in Eqs. (2.14) and (2.15) to more closely resemble the 

Bayesian network in Figure 2.2, consider the addition of shared input x and parameter θ12. Thus 

the above mathematical example is extended further, as shown in Eqs. (2.19) and (2.20). Note that 

we still do not include model discrepancy terms, since those would be calibrated similarly to local 

parameters θ1 and θ2. However, model discrepancy terms are explicitly considered in Section 2.7 

with aerothermal model errors. 
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 1 1 12 1(0, )D Dy x N       (2.19) 

 
2

2 1 2 12 2(0, )D Dy cy x N       (2.20) 

Data was synthetically generated for this problem using the true values of θ1 and θ2 and known 

variances 
2

1D  and
2

2D from Table 2.1 along with the true value of θ12 shown in Table 2.2. For the 

data cases considered (i.e., N1 = 5, N1 = 50, N2 = 5, N2 = 50), random realizations of yD1 and yD2 

were generated at equidistant points between 0 and 1. For example, when N1 = 5 one random 

realization of yD1 at each x = [0, 0.25, 0.5, 0.75, 1] was used for calibration. 

Table 2.2 True parameter values, prior mean, and variance of θ12 

Parameter Quantity Value 

θ12 Truth 0.5 

 μθ2 0.5 

 
2

2  
1.0e-2 

 

Since an analytical calibration solution was not available, slice sampling was used to generate 

20,000 posterior samples of θ1, θ12, and θ2 from both segmented and simultaneous calibration 

strategies. The calibrated model predictions extrapolated to x = 2 compared to the data are shown 

in Figure 2.11 for the particular case when c = 5, N1 = 5, and N1 =50.  (Note that the analytical 

example in Sections 2.6.1-2.6.4 demonstrated that the largest sacrifice in downstream prediction 

accuracy from a segmented calibration strategy occurred when the dependence coefficient was 

large and data on the first model was low). Accuracy comparisons using Bayes factor will be made 

between the two calibration strategies using the known true values of y1 and y2 at an extrapolation 

point x = 1.25. 
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Figure 2.11. Calibrated y1 and y2 predictions when c = 5, N1 = 5, and N2 = 50 

The posterior predictions in Figure 2.11 demonstrate how the extrapolation confidence in a 

segmented strategy is affected by the amount of upstream data available. First, the prediction of y1 

based on segmented calibration contains more uncertainty and bias than that based on simultaneous 

calibration. For example, at x = 1.25, variance ratio between the predictions of y1 from the two 

strategies is observed to be 5.9 (i.e., segmented vs. simultaneous), and the variance ratio for y2 is 

observed to be 33.3. These trends are similar to the previous example.  

Figure 2.12 shows the prior and posterior distributions from the segmented and simultaneous 

calibration strategies compared to the true parameter values of θ1, θ12, and θ2.The prior distribution 

parameters (‘Prior’) and true values (‘True’) are taken from Table 2.1 and Table 2.2. 

 
Figure 2.12. θ1, θ12, and θ2 posterior distributions when c = 5, N1 = 5, and N2 = 50 

The results show that the posterior distribution of θ1 from both calibration methods contains 

positive bias relative to the true value of θ1. For segmented calibration, this positive bias in θ1 from 
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the first calibration (‘Seg 1’) is accounted for in the second calibration (‘Seg 2’) with negative bias 

in θ2 due to their relationship in Eq. (2.20). In contrast, the posterior of θ1 in the simultaneous 

calibration (‘Sim’) has less uncertainty and bias from the use of downstream information. Similar 

to the analytical example, the posterior uncertainty in θ2 from simultaneous calibration is larger 

than that from segmented calibration when c = 5 due to the insensitivity of y2 to θ2 at higher 

dependence coefficients. 

Second, the two posterior distributions of θ12 from segmented calibration (one from each 

segment) are both biased. The bias in θ12 from the first calibration segment is from limited data N1 

= 5. The second calibration of θ12 aims to account for the previous negative bias in y1 data by 

adjusting θ12 positively with the information on y2. 

At x = 1.25, Figure 2.13 compares the accuracy of the calibrated models from each method for 

dependence coefficients ranging from 0 to 5, using Bayes factors. The Bayes factors were 

calculated using Eq. (2.5), where B1 and B2 correspond to y1 and y2 respectively. With the integrated 

likelihood from segmented calibration in the numerator, a Bayes factor less than 1 indicates that 

the validation data gives larger support to the simultaneous prediction. 

 
 Figure 2.13. Bayes factors for y1 and y2 predictions at x  = 1.25 from segmented and 

simultaneous calibration 



44 

As previously seen in the analytical example, Bayes factors in Figure 2.13 indicate that the 

accuracy of a segmented calibration strategy on the first model prediction is primarily a function 

of the data available on y1 rather than the dependence between the models.  When N1 = 5, the Bayes 

factor B1 across all values of c averages to 0.65 and when N1 = 50 they average to 0.98. Also, the 

Bayes factor for y2 is a function of both the available data and the dependence coefficient and 

decreases as a function of c more rapidly when there is low data on the first model (N1 = 5) 

compared to when N1 = 50.  

In summary, segmented calibration is a good approximation to simultaneous calibration when 

the level of dependence between the models is low or when ample data is available on the first 

model output. Further, segmented calibration ignores negative correlation between posterior 

parameter sets, thus propagating more uncertainty to downstream model predictions than 

simultaneous calibration. However, the segmented strategy was seen to offer significant 

computational savings. Considering the trade-off between accuracy and computational effort, the 

segmented strategy appears attractive as a calibration alternative when there is ample data on the 

first model or when the dependence between the two models is low. 

2.7 Application Problem: Aerothermal Models 

 The mathematical example problems presented in the preceding sections highlighted the 

factors that affect the calibration of multidisciplinary models, which include model dependence 

and relative data availability on each model output. In this section, multidisciplinary model 

calibration is investigated for coupled aerothermal models predicting the pressure and heating on 

an aircraft panel subjected to hypersonic flow conditions. The investigation focuses on whether a 

segmented calibration strategy is suitable for this multidisciplinary, and potentially costly, 

simulation. 
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Consider a panel on the forebody of a representative hypersonic vehicle with wedge angle θ 

shown in Figure 2.14. As the vehicle is subjected to hypersonic flow, an attached oblique shock 

with angle β is created at the leading edge (location ‘1’). This results in heating and aerodynamic 

pressure applied to the area of interest (location ‘4’). 

 
Figure 2.14. Representative hypersonic vehicle and panel deformation [28] 

Figure 2.15 schematically illustrates the aerothermal interactions consisting of aerodynamic 

pressure and heat flux model components. Given the freestream pressure (p1), temperature (T1), 

Mach number (M1), and panel deformation configuration (w), the local flow conditions at the panel 

are predicted (p4, T4, M4). The aerothermal models propagate the prediction such that that the local 

aerodynamic pressure (p4) is used by the aero-heating model to compute the applied heat flux (Q4) 

on the panel. In a coupled aerothermoelastic analysis, upstream uncertainty and errors from model 

estimates propagate downstream, which impacts the accuracy of the overall aerothermoelastic 

response prediction. These errors further compound through time and motivate the need to identify 

and reduce uncertainty sources using sparse experimental data available for calibration.   

 

 
Figure 2.15. Schematic of aerothermal models 
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The following Sections 2.7.1-2.7.4 apply segmented and simultaneous Bayesian model 

calibration to an aerodynamic pressure prediction model (i.e., 3rd-order piston theory) and heating 

prediction model (i.e., Eckert’s reference temperature method) using available high-speed wind 

tunnel tests. The Glass and Hunt [20] wind tunnel tests, presented in Section 2.7.2, measured both 

pressure and heat flux on several rigid domes with different height-to-diameter ratios intended to 

simulate a panel deforming into the flow. This problem provides a realistic test case for segmented 

calibration, since both model output quantities of interest were measured, with potential tradeoffs 

between computational cost and model uncertainty. A comparison of the calibration strategies is 

quantified with Bayes factors as well as Kullback-Leibler divergence to measure the number of 

samples required for posterior convergence. 

2.7.1 Aerothermal Models and Bayesian network 

The two models being considered in this aerothermal application problem are 3rd-order piston 

theory and Eckert’s reference temperature method. Piston theory (PT) provides a simplified 

relationship between the unsteady pressure on the panel surface [32] which is desirable for 

computational tractability in aerothermoelastic predictions. The leading edge Mach number (M3) 

and dynamic pressure (q3) computed from oblique shock relations found in [56] are used in Piston 

theory to approximate the aerodynamic pressure load chord-wise across the panel. Piston theory 

accounts for both the panel slope due to deformation (∂w/∂x) and the velocity of deformation 

(∂w/∂t), however, since the wind tunnel specimens considered in this study are rigid (further 

explained in Section 2.7.2), the time-dependent terms are removed and a 3rd-order expansion of 

piston theory is written as Eq. (2.21). 

 

2 3

3
4 3 3 3

3

1 1
2

4 12

PT q w w w
p p M M

M x x x

         
       

       

 (2.21) 
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After calculating the aerodynamic pressure and gas temperature T3 (location ‘3’ in Figure 2.14) 

from isentropic relations, the aerodynamic heat flux is predicted using the computationally 

efficient Eckert's reference temperature method assuming a calorically perfect gas [33]. Eckert's 

reference temperature is computed using Eq. (2.22) and the heat flux across the spherical dome is 

computed in Eq. (2.23). 

 
*

3 30.5( ) 0.22( )w e awT T T T T T       (2.22) 

 *

4

* * ( )e

ERT

p aw wQ St U c T T    (2.23) 

where, St* is the reference Stanton number, ρ* is the reference density, Ue is the inviscid flow 

velocity at the dome location, cp
* is the reference specific heat, Taw and Tw are the adiabatic wall 

and actual wall temperature, respectively and Te is the boundary layer edge temperature.  

Consistent with the Bayesian model calibration framework presented in Section 2.2, the 

measurement noise in pressure (εD,p) and heat flux (εD,Q) are assumed as normal distributions. 

These measurement error distributions were calibrated in a previous study using the same data set 

assuming Gaussian distributions with zero means and variances 2

,D p  and 2

,D Q , respectively [57]. 

Eqs. (2.24) and (2.25) are rewritten for piston theory and Eckert’s reference temperature. 

 
4 , 4 ,

PT PT

D D p p D pp p p        (2.24) 

 
4 , 4 ,

ERT ERT

D D Q Q D QQ Q Q        (2.25) 

Figure 2.16 shows the Bayesian network corresponding to the relationships between the 

aerodynamic pressure and heat flux model predictions along the panel (p4, Q4), aerothermal data 

(pD, QD), model inputs (p1, M1), random model inputs (T1, Tw), measurement errors (εD,p, εD,Q), and 

discrepancy terms for calibration (δp
PT, δQ

ERT).  
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 Figure 2.16. Bayesian network for aerothermal models and experiments 

The discrepancy models are chosen as a function of dome slope following previous work [57] 

(see Section 2.1) and given in Eqs. (2.26) and (2.27). The prior uniform distribution parameters 

for the uncertain model discrepancy coefficients are given in Table 2.3.  

 
PT PT PT 2
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p
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  (2.26) 
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  (2.27) 

Table 2.3. Prior distributions for aerothermal error parameters 

Parameter 
Lower 

Bound 

Upper 

Bound 

 -4e2 4e2 

 -1e4 1e4 

 -1e5 1e5 

 -2e4 2e4 

 -5e5 5e5 

 -5e6 5e6 

 

PT

0 (Pa)b

PT

1 (Pa)b

T

2

P (Pa)b

2

0

ERT (W/m )c

2

1

ERT (W/m )c

2

2

ERT (W/m )c
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A global sensitivity analysis using these prior model discrepancy coefficients was performed in 

[57] and showed that the sensitivity of Q4 to δp
PT and δQ

ERT are 0.592 and 0.333, respectively. These 

sensitivities correspond to a dependence coefficient of 1.3 in reference to Figure 2.4 indicating that 

a segmented calibration strategy could be viable without significantly compromising calibration 

accuracy. (This is of course very rough preliminary reasoning since the analytical example is not 

the same as the current problem). In a segmented calibration procedure the aerothermal calibration 

parameters are subdivided into pressure and heat flux calibration sets Φp = [b0
PT, b1

PT, b2
PT

 ] and 

ΦQ = [c0
ERT, c1

ERT, c2
ERT

 ]. The next subsection will describe the high-speed wind tunnel tests and 

aerothermal data that will be used for model calibration. 

2.7.2 Aerothermal Wind Tunnel Data 

Tests conducted by Glass and Hunt in 1986 at NASA’s 8ft High-Temperature Wind Tunnel 

(HTT) investigated the thermal and structural loads on body panels in hypersonic environments 

[20]. These tests measured the aerodynamic pressure and heating on spherical dome protuberances 

that simulated deformed aircraft panels. The flow conditions for the tests of interest had a turbulent 

boundary layer at the panel location, and the panel holder had a sharp leading edge, similar to the 

representative hypersonic vehicle depicted in Figure 2.14. The spherical domes were constructed 

at three different height-to-diameter (H/D) ratios with a dome diameter of 14 in (0.356 m). The 

freestream hypersonic flow conditions and dimensions of the three spherical dome configurations 

considered in this analysis are presented in Table 2.4. 
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Table 2.4. Experimental conditions for three tests by Glass and Hunt [20] with different 

H/D ratios 

Test p1 (Pa) M1 H/D 

Run 30 655.0 6.60 0.028 

Run 31 648.0 6.60 0.013 

Run 32 655.0 6.60 0.006 

 

Along with the Mach number (M1) and freestream pressure (p1) for each run, the data reports 

both the aerodynamic pressure (pD) and aerodynamic heat flux (QD) at 58 instrumented locations 

on the spherical dome. For the purposes of this analysis, only 11 points along the dome centerline 

are considered. Therefore, there are Np = NQ = 33 data points total (i.e., 11 points on 3 domes) of 

aerodynamic pressure and heat flux.  

Note, however, that the freestream temperature (T1) – a shared model input – and the initial 

wall temperature (Tw) were left unreported in the Glass and Hunt data. The lack of information on 

these two parameters presents epistemic input uncertainty; however sensitivity analyses from 

related studies by DeCarlo et. al [57] and Smarslok et. al [58] have determined that a 10% 

coefficient of variation in these parameters was not a significant source of uncertainty in pressure 

or heat flux. As such, they will not be considered for calibration; thus, only the model discrepancy 

parameters identified in Section 2.7.1 are updated. 

The data are subdivided into calibration and validation sets. In this objective, calibrations are 

performed using data from two domes with lower H/D ratios (i.e., Runs 31 and 32) and then the 

predictions based on the results of the two calibration strategies are compared against the pressure 

and heat flux measurements from Run 30 which had the highest H/D ratio. Further, a feature of 

Run 31 is exploited to test the effects of data availability on calibration. The front, back, and middle 

points of the Run 31 test set represent the most positive, most negative, and zero slopes. These 
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three points are used to illustrate the sparse data case; in contrast, the abundant data case has 22 

data values (i.e., at 11 locations on each dome). The four calibration cases considered are shown 

in Table 2.5. 

Table 2.5. Calibration cases with varying data available on pD and QD 

Case Np NQ 

1 3 3 

2 3 22 

3 22 3 

4 22 22 

 

2.7.3 Simultaneous and segmented calibration results 

Simultaneous and segmented calibrations for error parameters δp
PT and δp

ERT were conducted. 

For simultaneous calibration, 50,000 samples of the posterior distributions were generated using 

slice sampling [54]. Similarly, for segmented calibration 50,000 samples were generated for each 

segment. 

As a representative parameter for comparing the results of the segmented and simultaneous 

calibration, the posterior distributions of the piston theory error parameter b0
PT

 with Np = 3 and 22 

is shown in Figure 2.17. As was the case in the analytical example in Section 2.6, the posterior 

distributions from the first calibration are not affected by the calibration type or the model 

dependence but by the amount of data available. With a low dependence coefficient c, the amount 

of downstream data NQ does not impact the posterior PDFs of b0
PT.  
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Figure 2.17. Prior and posterior distributions for b0

PT from segmented and simultaneous 

calibration 

In a segmented strategy, the posterior distributions of b0
PT, b1

PT, and b2
PT propagate forward in 

the next calibration and do not change; the effect of this is seen in the downstream calibration of 

c0
ERT shown in Figure 2.17. For the aerothermal example, when there is limited data for the first 

calibration but abundant data for the second calibration (Np = 3, NQ =22), the segmented calibration 

strategy does not capture c0
ERT as precisely as the simultaneous strategy. This parallels the 

conclusions of the analytical example when considering low model dependence (Figure 2.12). 
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Figure 2.18. Prior and posterior distributions for co

ERT from segmented and simultaneous 

calibration 

The posterior distributions of Φp and ΦQ are propagated through piston theory and Eckert’s 

reference temperature models and compared against validation pressure and heat flux data from 

Run 30 in Figure 2.19 and Figure 2.20, respectively. In both figures, the prediction variance is 

smaller at the dome center and increases towards the edges; this is because of the model 

discrepancy form in Eqs. (2.26) and (2.27). The slope is zero at the dome center, thus only the first 

terms in Eqs. (2.26) and (2.27) contribute to the prediction variance; as we move towards the 

edges, the slopes are non-zero and increasing, thus increasing the prediction variance.  

Similar to the posterior results for b0
PT in Figure 2.17, the posterior pressure prediction is 

affected by the amount of data Np; the prediction bounds are wider for the sparse data case. The 

prediction bounds from both calibration strategies are generally similar; the slight differences 
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towards the edges are explained by the differences in the mean predictions and the correlation 

coefficients among the calibration parameters estimated by the two strategies.  

 
 Figure 2.19. Pressure prediction vs. observation across dome when Np = 3 and 22 

However, uncertainty in the downstream heat flux prediction increases from the segmented 

calibration. For example, when Np = 3 in Figure 2.19 the variance at the dome edges from 

segmented calibration is significantly greater than those from the simultaneous calibration. When 

there is ample Np data, however, the segmented and simultaneous strategies have small differences. 

These differences are quantified in Section 2.7.4. using the Bayes factor. 

 
 Figure 2.20. Eckert’s reference temperature predictions across dome from posterior 

distributions when NQ = 22 
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The explanation for the differences between Eckert’s reference temperature predictions in 

Figure 2.20 is that segmented calibration ignores negative correlation between Φp and ΦQ as 

discussed in Section 2.7.4. These correlations are significant in the simultaneous posterior samples 

and are dependent on the relative amount of observed data; for the data cases considered, the 

correlation coefficient between parameters b0
PT and c0

ERT are listed in Table 2.6. Not accounting 

for these correlations in a segmented strategy leads to additional variance in downstream 

predictions, similar to the analytical example in Section 2.6. 

Table 2.6. Correlation coefficients between b0
PT and c0

ERT from simultaneous calibration 

Np NQ ρ 

3 3 -0.74 

3 22 -0.97 

33 3 -0.28 

33 22 -0.74 

 

 

2.7.4 Comparison of Calibration Strategies 

To assess the effectiveness of the segmented calibration methodology compared to the 

simultaneous procedure, this subsection compares the accuracy and computational effort of the 

segmented and simultaneous calibration methods. Accuracy is compared using Bayes factors, and 

computational effort is compared using convergence of the K-L divergence metric.  

Values of Bayes factors B are computed at each Run 30 dome location using Eq. (2.5). Table 

2.7 shows average B values over all locations, B value at the dome center, and B value at the front 

edge of the dome. In the last column, the Bayes factors for the pressure and heat flux prediction 

(Bp and BQ) at each location are multiplied and averaged over all locations to compute Btotal,ave. A 

Bayes factor greater than 1 indicates that the data favors the segmented calibration method. 
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Table 2.7. Bayes factors across the dome for pressure and heat flux predictions 

Np NQ Bp,ave Bp,mid Bp,front BQ,ave BQ,mid BQ,,front Bcombined,ave 

3 3 1.06 0.92 1.22 1.04 0.83 1.02 1.11 

3 22 1.07 0.85 1.17 1.02 0.95 0.84 1.08 

22 3 0.94 1.04 0.99 0.99 0.90 0.96 0.93 

22 22 0.95 1.02 0.97 0.94 1.01 0.91 0.90 

 

Most of the Bayes factors are close to 1, implying that a segmented calibration strategy results 

in no significant loss of accuracy for the aeropressure and aeroheating relationship. Substantial 

difference between competing models is only indicated by Bayes factors greater than 3, as pointed 

out by Jeffreys in [59].  

Calibration convergence rates are computed using K-L divergence, presented in Eq. (2.7), with 

the integral being evaluated numerically using Monte Carlo integration with the slice samples 

generated from calibration, as explained in Section 2.4. For the aerothermal calibration, 

convergence was tested after every 1,000 slice samples and assumed to be reached when log(DKL,i 

) ≤ -8. It is seen that the convergence rate is not affected by the amount of observed data. The 

average number of samples (considering four different data availability cases) at which the 

simultaneous and segmented procedures reached convergence are presented in Table 2.8. 

Table 2.8. Average number of samples to convergence 

Procedure Model Samples 

Simultaneous Both Models 39,000 

Segmented Piston Theory 10,000 

 Eckert’s Ref. Temp. 10,000 

 

Table 2.8 shows that to obtain convergence in simultaneous calibration, both models must be 

evaluated 39,000 times. Whereas, for segmented calibration to obtain convergence, only 10,000 

evaluations of each model were required, thus indicating substantial savings in computational 

effort. 
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2.8 Conclusion 

A segmented Bayesian model calibration approach for multidisciplinary models was 

investigated as an alternative to full, simultaneous calibration in order to reduce the computational 

cost of calibration. The study included identifying the required characteristics of the data and 

coupled simulation (i.e. low model dependence and ample data specifically on the first model 

output), identifying the appropriate uncertain parameters and errors for calibration with the 

segmented process, and assessing the efficiency and accuracy of segmented model calibration.  

The aerothermal problem was segmented into piston theory and Eckert’s reference temperature 

model components. To quantify the viability and potential benefit of isolating calibrations of 

models in the Bayesian network, segmented and simultaneous calibration were compared using 

the Kullback-Leibler divergence and Bayes factor metrics. The Kullback-Leibler divergence was 

used to monitor calibration convergence, and the Bayes factor was used to assess the accuracy.  

The following insights were obtained based on comparison between the two calibration 

approaches, using the analytical example and the aerothermal application problem.  

1. As the coupling strength between the two models increases, the segmented approach 

loses accuracy for both upstream and downstream predictions. 

2. When there is limited data available on the first model output, more uncertainty 

propagates downstream from the calibration of the first model parameters which 

affects downstream prediction confidence. Furthermore, a simultaneous strategy has 

the opportunity to use downstream data to reduce the uncertainty in upstream 

parameters. This effect becomes apparent in limited data cases and as dependence 

between models increases. 
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3. Parameter correlations inherent in the simultaneous calibration are ignored in the 

segmented approach which yields greater downstream prediction uncertainty. 

4. For problems where coupling strength is not readily obvious (e.g., the aerothermal 

example), a global sensitivity analysis can indicate the coupling strength. 

5. When the two models have shared parameters, the shared parameters are calibrated 

twice in a segmented calibration strategy (i.e., the posterior from the first calibration 

is the prior for the second calibration). This offers a second opportunity for 

uncertainty reduction in the shared parameter. 

The calibration convergence comparison using K-L divergence indicates higher computational 

efficiency of the segmented approach. For the application problem, the reduction in the number of 

evaluations of each model using the segmented approach compared to simultaneous calibration 

was 74.4%. Further, in terms of accuracy comparison, both strategies yielded similar posterior 

predictions, as indicated by the Bayes factors. 

Further investigation into the tradeoffs between accuracy and efficiency between the segmented 

and simultaneous calibration methods is needed, especially when different models require different 

computational effort. Additional work on multidisciplinary model calibration needs to address 

transient simulations and feedback coupling between disciplinary models. In the presence of 

feedback coupling, sensitivity analyses and forward propagation of uncertainty are not 

straightforward. Future work may also address resource allocation for data collection for 

multidisciplinary model calibration, and its connection to the preferred calibration strategy. 
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CHAPTER 3 

MODEL DISCREPANCY CALIBRATION IN TIME-DEPENDENT, COUPLED ANALYSES 

3.1 Introduction 

This chapter is motivated by the challenge of isolating model discrepancy in coupled, time-

dependent analyses where model errors accumulate across the coupling interfaces and through 

time. Quantifying single-disciplinary model error contributions in multidisciplinary analyses 

(MDA) was addressed in Chapter 2, however, that chapter focused on choosing a Bayesian model 

calibration strategy (i.e., segmented or simultaneous calibration) when multiple sources of 

calibration data are available. The segmented calibration strategy will be effective only if data is 

available for each calibration segment. However, data is often only observed on one output QoI 

(i.e., wall temperature), which is often seen in multidisciplinary applications where one data source 

is used to calibrate potentially numerous sources of uncertainty [60,61]. Therefore, this chapter 

investigates effective error parameterization and aggregation strategies to isolate error 

contributions from coupled models through time with data limited to one QoI.   

Central to calibrating aeropressure and aeroheating models in Chapter 2, however, was 

determining how to best represent the model discrepancy that propagates through the Bayesian 

network. Often in Bayesian applications, model discrepancy is formulated to mitigate parameter 

bias during calibration of an unobservable QoI (e.g., structural damping). For this purpose, 

Kennedy and O’Hagan (KOH) developed a model calibration framework that used Gaussian 

process (GP) models to account for model inadequacy [62]. The GP representation of model 

discrepancy in KOH may also include a trend function term, which can be used to parametrically 

represent the dependence of discrepancy in model inputs. 



60 

Related calibration efforts by Smarslok et al [58] parameterized the static aeropressure and 

aeroheating model discrepancies as systematic biases which improved the agreement between the 

coupled prediction and data the at the dome centers. However, these error formulations were not 

sufficient to capture the prediction error among the remaining dome centerline points (see Section 

2.7.2). After observing the dependence of the prediction error on the dome slope, model 

discrepancies for both piston theory and Eckert’s reference temperature method were then 

represented as functions of slope and inferred using a static Bayesian network. 

When data through time is available on one QoI and the entire transient analysis is treated as a 

black box, the cumulative effects of the propagating errors are viewed globally across all time 

instants. However, this global representation of the model discrepancy does not identify significant 

sources of model error within the coupled analysis. Instead, model errors that are observed at each 

time instant can be corrected in a step-wise fashion, however, this approach would treat the coupled 

prediction as a black box and is unable to isolate individual model discrepancy contributions. What 

is needed is a partitioned approach to model discrepancy, where each model output at each time 

instant in the analysis is corrected before propagating to the next model. Again, one significant 

challenge is that data is often available only on one output QoI. Thus, this chapter investigates the 

use of dynamic Bayesian networks to capture individual model discrepancy contributions in time-

dependent, multidisciplinary analyses. 

This chapter applies these ideas to an aerothermal analysis where errors aggregate between 

Eckert’s reference temperature method and heat transfer over a dynamic Bayesian network in 

Section 3.2. Time-dependent temperature data from historic hypersonic wind tunnel experiments 

is presented in Section 3.3 and applied to the dynamic Bayesian network for calibration. Three 

different model discrepancy resolutions are developed in Section 3.4 (global, step-wise, and 
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partitioned approaches), calibrated using the time-dependent temperature data over the dynamic 

aerothermal Bayesian network in Section 3.5, and compared using the model reliability metric to 

assess post-calibration prediction confidence. 

3.2 Partitioned Aerothermal Models 

The relationships between aerodynamic pressure, aerodynamic heating, and heat transfer are 

shown in Figure 3.1, where there is a feed-back relationship between heat flux Q4 and the wall 

temperature Tw. Specifically, this chapter focuses the analysis on the aerodynamic heating and heat 

transfer model components in Figure 3.1 which is a quasi-static, coupled analysis shown in Figure 

3.2 in further detail. 

 
Figure 3.1. Time-Dependent Aerothermal Coupling 

The quasi-static aerothermal analysis steps iteratively between heat flux Qn and wall 

temperature Tn predictions through n aerothermal time-steps at a rate of ΔtAT. In the previous 

chapter, aerodynamic pressure model discrepancy was calibrated as a function of the deformed 

slope of the panel dw/dx using Glass and Hunt pressure data px
obs and a 3rd order expansion of 

piston theory [32]. Here, the mean posterior aerodynamic pressure prediction px at location x from 

the segmented calibration strategy (see Section 2.7.3) is used with the initial wall temperature T0 

as an input the partitioned aerothermal analysis in Figure 3.2.  
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Figure 3.2. Partitioned aerothermal analysis  

The model components considered in Figure 3.2 are Eckert’s reference temperature method for 

predicting heat flux Qn and one-dimensional heat transfer to predict wall temperature Tn. Assuming 

a calorically perfect gas [63], Eckert's reference temperature T* at location x and time-step n is 

computed using Eq. (3.1) where Tn
aw

 and Tn represent the adiabatic wall and current wall 

temperature, respectively, and Tn
bl and Tn

e
  represent the boundary layer edge temperature at the 

leading edge of the panel (x = 0). Eckert’s reference temperature method predicts the applied heat 

flux Qn+1at time-step n+1 using the reference Stanton number Stn
*, the reference flow density ρn

*, 

the reference specific heat Cp,n
* along with the inviscid flow velocity U n as shown in Eq. (3.2). 

 * 0.5( ) 0.22( )e b

n

l aw e

n n n n nT T T T T T      (3.1)  

 * * *

1 , ( )aw

n n n n p n n nCQ St U T T    (3.2) 

The wall temperature Tn+1 at the (n+1)th time-step is predicted with one-dimensional heat 

transfer using the current heat flux Qn+1 and wall temperature Tn  from the previous time step. One-

dimensional heat transfer is applicable to the thin-walled spherical dome protuberances and is 

shown in Eq. (3.3). Assuming a uniform initial wall temperature T0 = 300K at t = 0, Eqs. (3.1) 

through (3.3). are solved explicitly at each aerothermal time step of ΔtAT =0.05s according to the 

sequence shown in Figure 3.2.  
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Next, time-dependent temperature data is generated from three fully-turbulent aerothermal 

wind-tunnel tests in Section 3.3. Then, three model discrepancy resolutions are developed in 

Section 3.4 to capture for model error aggregation through time. Time-dependent temperature data 

is integrated into a dynamic Bayesian network in Section 3.5 to calibrate model discrepancy for 

three model discrepancy resolutions are compared based on prediction performance. 

3.3 Time-Dependent Temperature Data 

The Glass and Hunt HTT calibration experiments used in Chapter 2 is are used in this chapter 

to synthetically generate time-dependent temperature data, and are in part presented again for 

convenience. Three tests (Runs 30, 31, and 32) subjected 14-in diameter rigid domes to a fully 

turbulent boundary layer (TBL) at a surface inclination angle θ = 5°. The freestream Mach number 

M1, pressure p1, total temperature T∞
t, and height-to-diameter ratios H/D for these tests are 

presented in Table 3.1. With the highest H/D ratio, the Run 30 dome represented extreme panel 

deformation into the flow while Run 32 with the lowest H/D ratio represented shallow 

deformation.  

Table 3.1. Experimental conditions from Glass and Hunt for TBL tests with different H/D 

ratios 

Test M1 p1, Pa T∞
t,°R H/D 

Run 30 6.60 655.0 3590 0.028 

Run 31 6.60 648.1 3460 0.014 

Run 32 6.60 655.0 3530 0.007 
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The domes were instrumented with pressure sensors and thermocouples at 58 locations and 

subjected to approximately 5 seconds of freestream Mach 6.60 flow. The 11 centerline surface 

pressure measurements px and temperature measurements Tx (x = 1 to 11) parallel to the flow are 

used for calibration and validation. Measurements were taken at a rate of 20 samples per second, 

however, Glass and Hunt reported the resulting heat loads Qx
obs by transforming the temperature 

history using the linear heat transfer relationship Qx
obs=ρCpτ ΔTx/Δtobs. Here, τdome is the dome 

thickness of 0.00157m, ρdome and Cp,dome are the density and specific heat of aluminum (7000 

series), and Δtobs is the temperature measurement rate (i.e., Δtobs = 0.05s).  

Since the objective of this chapter is to isolate model discrepancy in transient, aerothermal 

predictions, a five second temperature history Tx,n
obs (n = 1 to 100) was reconstructed from the 

reported heat flux Qx
obs using Eq. (3.4). An initial wall temperature Tx,0 of 300K was assumed 

uniform along the dome centerlines and measurement error εobs was added as a Gaussian random 

variable with zero mean and a standard deviation σobs of 1K to generate time-dependent 

temperature data. 

 2

, , 1

,

obs
obs x obs

x n x n x obs

dome p dome dome

Q t
T T c t

C


 



      (3.4) 

An additive quadratic term cxt
2
 in Eq. (3.4) introduced synthetic error into the reconstructed 

temperature history. The coefficient cx was chosen such that the temperature data reached thermal 

equilibrium (∂T/∂t= 0) at the end of the 5 second time-history (cx=-Qx
obs/10ρCpτ Ks-2). The 

temperature profiles at the front, midpoint, and back of the Run 30, 31, and 32 domes are shown 

in Figure 3.3. The large heat fluxes reported at the front of the domes intuitively led to elevated 

temperatures at these locations. Also, the dome midpoints (when dw/dx = 0) for all three runs have 

similar temperature profiles since Qx
obs at those locations were of similar magnitude. 
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Figure 3.3. Synthetically generated temperature history for Runs 30, 31, and 32 from t = 0 

to 5 seconds. 

Furthermore, Figure 3.3 indicates three general phases of temperature evolution from t = 0 to 

5s in the reconstructed temperature histories: 1) near-linear from 0 to 1 seconds when the effective 

heat flux Qx,n
eff remains approximately equal to Qx

obs 2) non-linear from approximately 1 to 4 

seconds as the effective heat flux Qx,n
eff

 decreases from the reported Qx
obs 3) near-constant from 4 

to 5 seconds while effective heat flux Qx,n
eff approaches 0 at t = 5s. For this reason, the temperature 

histories were subdivided into calibration and validation sets where the temperatures observed 

from 1 to 4 seconds were used for calibration and the remaining two seconds of data (from 0 to 1 

second and 4 to 5 seconds) are used for comparing the posterior predictions. Other implications of 

this division on error parameterization and calibration are discussed in Section 3.5. 

Since the temperature history at front and back of the Run 30 dome bounds the temperature 

profiles of the other two domes in Figure 3.3, the temperature history at these locations is compared 

against the partitioned aerothermal model predictions in Figure 3.4. 
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Figure 3.4. Nominal aerothermal temperature predictions and data at Run 30 dome front, 

midpoint, and back 

The plots in Figure 3.4 highlight that the discrepancy between the temperature data Tobs and the 

temperature prediction T grows through time as the data reaches the imposed equilibrium. Section 

3.4 identifies three model discrepancy resolution options for error propagation and inference and 

Section 3.5 constructs a dynamic Bayesian network to calibrate the prediction inadequacies in 

Figure 3.4. 

3.4 Model Discrepancy Resolutions for Transient, Coupled Analysis 

Model discrepancy δ is present in both heat flux and temperature predictions - δQ from Eckert’s 

reference temperature in Eqs. (3.1) and (3.2) and δT from 1D heat transfer in Eq. (3.2) – which 

aggregate across the coupling interfaces and through time. The current approach focuses on 

identifying the best parameterization and resolution of coupled model discrepancy for calibration 

when data is limited to one output QoI. 

Sections 3.4.1 through 3.4.3 present the global, step-wise, and partitioned model discrepancy 

resolutions for transient, coupled analysis using the aerothermal application from Section 3.2. 

These three discrepancy resolutions are investigated for their ability to capture the aerothermal 

model discrepancies δQ and δT that propagate through the dynamic Bayesian network (DBN) 

constructed in Section 3.5 and their prediction performance in an extrapolation region. 
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3.4.1 Global Model Discrepancy 

A global model discrepancy strategy is shown in Figure 3.5 where the coupled model prediction 

is treated as a black box throughout the entire simulation time history from t = 0 to nΔtAT. After n 

time-steps, the aerothermal wall temperature prediction Tw,n  is corrected to Tw,n
* using an additive 

global discrepancy function δ as shown in Eq. (3.5).  

 
Figure 3.5. Global model discrepancy through time 

  , 1, ,

*

, 1( , ) )( ,w n w nn nt ww nT Q TT T Q    (3.5) 

Note that the global discrepancy δ in Eq. (3.5) does not delineate error contributions from heat 

flux δQ and heat transfer δT. Also in Figure 3.5, it is evident that δ contains errors that have 

accumulated through the analysis between t = 0 and t = nΔtAT. Isolating error contributions from 

both δQ  and δT and at each time step n has been identified as a goal of this chapter, and the 

subsequent step-wise and partitioned model discrepancies are developed in Sections 3.4.1 and 

3.4.2 and compared against the global discrepancy treatment in Section 3.5. 

3.4.2 Step-wise Model Discrepancy 

A step-wise model discrepancy approach is depicted in Figure 3.6 where a model discrepancy 

δn is applied at each time instant n. Again, the coupled model prediction is treated as a black box, 
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but over each time step. Formulated in Eq. (3.6), the corrected predictions Tw,n
* at each time step 

feed forward to both the next prediction and model discrepancy. This approach has been shown to 

have additional calibration advantages in earlier work [64] where a linear step-wise discrepancy 

model achieved the same prediction order as a quadratic global discrepancy model. Therefore, 

fewer parameters were required for calibration in the step-wise approach.  

 
Figure 3.6. Step-wise model discrepancy through time 

  * *

, , 1 ,

*

, 1( , )) ( ,w n w n t n w nw n nTT T Q QT     (3.6) 

However, while the step-wise formulation isolates errors that aggregate between time steps, it 

does not attribute them to either δQ,n  or δT,n. Therefore, the step-wise discrepancy formulation 

treats the temperature prediction at each time step like a black box. In contrast, a partitioned model 

discrepancy approach developed in Section 3.4.3 fully resolves the error contributions from each 

model and time-step in the partitioned analysis.  

3.4.3 Partitioned Model Discrepancy 

The partitioned model discrepancy approach is demonstrated in Figure 3.7 where both heat flux 

and temperature predictions are corrected at each time instant n with partitioned model 

discrepancies δQ,n  and δT,n. In this way, δQ,n at time-step n effectively modifies the temperature 
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gradient across time step ΔtAT while δT,n is specifically attributed to the inadequacy of linear heat 

transfer across that ΔtAT. Equations (3.7) and (3.8) show that the corrected wall temperature Tw,n
* 

is a function of Tw,n-1
*, as in the step-wise approach, however the corrected heat flux Qn

* (which is 

also dependent on Tw,n-1
*) is also used for the prediction of Tw,n

*. 

 
Figure 3.7. Partitioned model discrepancy through time 
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The three input-dependent model discrepancy resolutions (global, step-wise, and partitioned) 

will be calibrated and compared in Section 3.5. 

3.5 Model Error Calibration in Time-Dependent, Coupled Analyses 

Expanding the static Bayesian network from Chapter 2 to the dynamic Bayesian network 

(DBN) shown in Figure 3.8, the quasi-static aerothermal predictions from Section 3.2 and the 

temperature data from Section 3.3 are used for calibrating model discrepancy calibration through 

time. Specifically, Figure 3.8 depicts a DBN for the partitioned model discrepancy approach when 

two sources of model uncertainty – δQ and δT  are propagated through the network at each time-
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step. The data interval Δtobs and aerothermal prediction interval ΔtAT need not be equivalent as 

shown in Figure 3.8 (see Chapter 5), but are chosen as such for the calibrations in this chapter. 

 
Figure 3.8. Dynamic Bayesian network for partitioned model discrepancy  

The corresponding DBN for the step-wise discrepancy approach removes the node for δQ and 

replaces δT in Figure 3.8 with a single discrepancy term δn applied at each time step n. The global 

discrepancy approach, however, removes the transient aspects of the DBN entirely and is therefore 

is equivalent to a static Bayesian network with five nodes: inputs px and Tx,0, model prediction 

vector Tx over all time-steps n, data vector Tx
obs, and model discrepancy δ.  

Parameterizing each model discrepancy formulation is discussed in Section 3.5.1 along with 

the prior distributions of the model discrepancy terms. The posterior temperature predictions for 

the front, middle, and back points of the Run 30 dome are compared in Section 3.5.2. 

3.5.1 Model Discrepancy Parameterization and Prior Distributions 

Since input-dependent error models are desired [62], Eqs. (3.5) through (3.8) each show that 

the model discrepancy term has the same input variables as the model itself. This implies that for 

coupled analyses, model discrepancies should likewise be coupled. This warrants exploration into 

appropriate discrepancy parameterization for such time-dependent analyses where the individual 



71 

models in a simulation are not functions of time but of the time-step and model outputs from a) 

the same model at previous time-instances, or b) other models at the either the current or previous 

time instants. 

Figure 3.9 shows the relationship between the nominal temperature error compared to a ratio 

of heat flux Qx,n
 and a reference heat flux Qx,ref, that is, the initial heat flux in the calibration region 

Qx,0 at t = 1s. This heat flux ratio serves the following two purposes: 1) during calibration the ratio 

Qx,n/Qx,0  is used to model the error as a function of the distance between Qx,n and the initial 

condition Qx,0, and 2) during prediction, the heat flux ratio Qx,n/Qx,ref  provides a connection 

between the calibration region and prediction where an increasing heat flux ratio increases the 

uncertainty in the model error. The same concept can be applied using a temperature ratio Tx,n /Tx,0 

during calibration and Tx,n /Tx,ref for prediction. 

 

 
Figure 3.9. Temperature errors vs. heat flux ratio 

Therefore, the proposed discrepancy parameterizations for the global, step-wise, and partitioned 

discrepancy approaches are shown in Eqs. (3.9), Eq. (3.10), and Eqs. (3.11) through (3.12), 

respectively.  Since Figure 3.9 displays a quadratic trend with respect to heat flux ratio, the global 
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model discrepancy in Eq. (3.9)  is chosen to be quadratic with respect to Qx,n/Qx,ref and linear in 

Tx,n /Tx,ref.  
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As previously discussed, it was shown in [64] that a step-wise approach could use a lower order 

discrepancy model to obtain the same prediction order as the global approach. Therefore, the step-

wise discrepancy parameterization in Eq. (3.10) has a linear relationship to heat flux ratio rather 

than quadratic shown in Eq. (3.9). 
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Finally, the proposed partitioned model discrepancy formulations arise by further subdividing 

the step-wise discrepancy formulation Eq. (3.10) into δT,n(Qn
*) and δQ,n(Tn-1

*) contributions. Note 

that δT,n(Qn
*) differs from δT,n(Tn-1

*, Qn
*) in (3.7), however, the error function in Eq. (3.11) is 

deemed appropriate for partitioned approaches since the goal of calibrating model discrepancy at 

the partitioned resolution is to remove the error contributions from previous time instants or 

models in the analysis.  
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Prior distributions for the discrepancy coefficients for each model discrepancy resolution are 

considered uniform random variables with lower and upper bounds shown in Table 3.2. The prior 
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distribution bounds for each calibration parameter were chosen by passing midpoint values of the 

other parameters within the same discrepancy model through the partitioned analysis and 

comparing the nominal temperature predictions to the Glass and Hunt data.  

Table 3.2. Uniform prior distributions for discrepancy model parameters 

Discrepancy 

Resolution 
Parameter Lower Bound Upper Bound 

Global  

(Eq. (3.9)) 

a0 (K) -700 -400 

a1 (K) 2e3 5e3 

a2 (K) -3e3 -1.5e3 

a3 (K) -900 -400 

Step-Wise 

(Eq. (3.10)) 

b1 (K) -2 5 

b2 (K)  -4 15 

b3 (K) -20 5 

Partitioned 

(Eq. (3.11) and 

Eq. (3.12)) 

c0 (W/cm2) -5e5 5e5 

c1 (W/cm2) -5e5 5e5 

d0 (K) -20 20 

d1 (K) -50 50 

 

The uncertain model discrepancy coefficients shown in Table 3.2 are calibrated in Section 3.5.2 

using time-dependent temperature data from Runs 30, 31, 32. 

3.5.2 Calibration and Prediction Confidence Assessment 

Recall that the temperature histories were subdivided into calibration and validation sets where 

the temperatures observed from 1 to 4 seconds are used for calibration. In Section 3.3, the 

nonlinearity within this region provided the initial justification for calibrating with this data set, 

however, the additional benefits to calibration are discussed next.  

Because the calibration set of temperatures starts at t  = 1s, the reference wall temperature Tx,ref  

is non-uniform which was initially observed to capture the spatial differences between model 

errors through time and increased uncertainty reduction in the temperature ratio coefficients (i.e., 

a4, b2, and d1). A non-uniform heat flux distribution for calibration was not of concern, however, 

because Qx,ref varies across the dome inherently from its relationship with aerodynamic pressure 
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and dome slope. In addition, the effects of extrapolation can be investigated when Tx,n is less than 

Tx,ref  (between t = 0 and 1s) and greater than Tx,ref  (when t = 4 to 5s). 

Bayesian model calibration (see Section 2.2) was performed over the DBN using 10e3 slice 

samples for each discrepancy resolution across the 3 second calibration temperature history (t  = 2 

to 4s) from Runs 30, 31, and 32 domes.  

The post-calibration wall temperature predictions are compared against full 5 second 

temperature histories (initial wall temperature Tx,0  = 300K) at the Run 30 dome front, midpoint, 

and back follow from each discrepancy approach in Figure 3.10, Figure 3.11, and Figure 3.12. 

This means that the initial conditions and analysis durations differed between calibration and 

validation. Figure 3.10, Figure 3.11, and Figure 3.12 compare the predictions from calibrated 

aerothermal models from the global, step-wise, and partitioned discrepancy approaches, 

respectively. 

 
Figure 3.10. Post-calibration wall temperature predictions with a global model discrepancy 

resolution 

At the front of the Run 30, higher heat fluxes, temperatures, and nonlinearities are observed in 

the data.  Posterior predictions with the global model discrepancy approach in Figure 3.10 has 

large prediction uncertainty in the validation regions. Furthermore, the prediction from the global 

approach has significant prediction bias after t = 1s. At the dome midpoint and back locations in 
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Figure 3.10, the there is less uncertainty about the prediction since the heat flux and temperature 

ratios are small in comparison to those at the dome front and thus the propagating less uncertainty 

from the calibrated discrepancy coefficients. 

 
Figure 3.11. Post-calibration temperature predictions with a step-wise model discrepancy 

resolution 

In Figure 3.11, the step-wise model discrepancy approach demonstrates less prediction 

uncertainty and bias at the front of the Run 30 dome than the global approach. The step-wise 

approach also predicts less uncertainty at the midpoint and the back of the dome, where it also 

demonstrates a prediction order increase over the global approach by more closely following the 

trend of the temperature history at the back of the Run 30 dome. 

 
Figure 3.12. Post-calibration wall temperature predictions with a partitioned discrepancy 

resolution 
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Finally, Figure 3.12 shows the post-calibration predictions using a partitioned model 

discrepancy resolution for the aerothermal prediction. By inspection, the partitioned approach has 

reduced the prediction bias at the front of the Run 30 dome in the nonlinear region (1 to 4s) 

compared to the step-wise approach in Figure 3.11.  

Because both prediction bias and uncertainty are of interest, model reliability metric [65] is 

employed for quantitative comparisons between the posterior predictions. Equation (3.13) shows 

the reliability R(t) at time t is computed as the probability that the difference between the stochastic 

model prediction y and validation data yD(t) is within a pre-specifed tolerance τ. [66]. When the 

tolerance is chosen as the measurement error σD (assuming Gaussian), the model is equivalent to 

computing the area of overlap between the prediction and measurement distributions. A 

temperature tolerance of 5 K is used to compute the prediction reliabilities from the global, step-

wise, and partitioned discrepancy approaches that are presented in Figure 3.13. 

  (3.13) 

 
 Figure 3.13. Posterior prediction reliability across Run 30 dome using global (black), step-

wise (solid red), and partitioned (dashed red) discrepancy approaches 

Figure 3.13 demonstrates that, for a prediction reliability tolerance of 5 K, the partitioned 

discrepancy approach maintains a high level of reliability across the front of the Run 30 dome. In 

the nonlinear region between (t  = 1 to 4s) the prediction reliability decreases to 0.8 and quickly 

recovers to 1. The prediction reliability from the step-wise approach also recovers to 1 after the 

( ) P[ ( ) ( ) ]DR t y t y t    
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nonlinear region, however, the added bias affects the model reliability more severely. Finally, the 

global model discrepancy approach also recovers prediction reliability after t = 4s due to 

increasing uncertainty the extrapolation in that region that is superficially inflating the probability 

of agreement with the data and loses extrapolation ability quickly after t = 4s at the midpoint and 

back locations.  

3.6 Conclusion 

Geared toward quantifying model error aggregation in coupled, time-dependent analyses, this 

chapter developed and compared three model discrepancy resolutions (i.e., global, step-wise, and 

partitioned) for integration into the Bayesian model calibration framework. It was shown that the 

partitioned error formulation isolated the model error contributions om coupled aerodynamic 

heating and 1D heat transfer predictions through time using one source of time-dependent 

temperature data. In addition, the posterior predictions with the model discrepancies from the 

partitioned approach showed increased confidence in both extrapolation and nonlinear regions 

compared to the step-wise and global approaches. 

Effective parameterization of the model error for each discrepancy resolution was addressed, 

where the step-wise and partitioned model discrepancies were selected as lower order than those 

from the global approach. While this did not result in fewer calibration parameters between the 

global and partitioned approaches for the application (each had 4 parameters), it did result in more 

intuitive selection of prior distributions before calibration of the partitioned discrepancy 

parameters as well as interpretation of the posterior results. Closely tied to parameterizing the 

model discrepancy was the choice of calibration data, where choosing a non-uniform initial 

temperature distribution better captured the spatial differences among error aggregation rates 

through time. 
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One highlight from the comparison between the three model discrepancy resolutions is the lack 

of additional computational expense in the application the step-wise and partitioned model 

discrepancies through the dynamic Bayesian network compared to the global resolution. The only 

differences in computational effort between the three methods were seen during calibration due to 

the number of calibration parameters. In effect, the calibration with step-wise model discrepancy 

would have converged faster with three calibration parameters than the global or partitioned 

approaches with four, however, the 40% gain in prediction confidence through the nonlinear region 

using the partitioned model discrepancy approach far outweighs the added calibration expense. 

Further investigation into the impact of propagating uncertainty from the stochastic 

aerodynamic pressure predictions through the dynamic aerothermal Bayesian network is needed. 

Other guidance and procedures for simplifying recalibration over dynamic Bayesian networks 

when new data is available for integration is also of interest, for example, if data becomes available 

on heat flux through time to use in an aerothermal Bayesian network. 
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CHAPTER 4 

EFFICIENT GLOBAL SENSITIVITY ANALYSIS FOR TRANSIENT, 

MULTIDISCIPLINARY PROBLEMS  

4.1 Introduction 

Sensitivity analyses provide useful insights into both the forward problem of uncertainty 

propagation as well as the inverse problem of uncertainty reduction by quantifying how the 

prediction is influenced by individual uncertainty sources. Until recently, sensitivity analyses 

conducted for forward problems of uncertainty quantification (UQ) in multidisciplinary analyses 

(MDA) and multidisciplinary design optimization (MDO) have focused on gradient-based 

sensitivities which are local. The inclusion of uncertainty in MDA has led to significant research 

in robust MDO approaches require quantifying how the system performance is affected by 

individual sources of uncertainty [12–15] using global sensitivity analysis. In contrast to gradient-

based local sensitivities at a chosen nominal value, global sensitivity analyses (GSA) use the entire 

probability distribution of the uncertainty sources. 

Sobol’ indices are a set of variance-based global sensitivity indices that quantify both individual 

and interactive effects between uncertain parameters on the model output variance [16]. The 

interactive effects are especially important in multidisciplinary simulations where parameter 

interactions among multiple disciplinary models may contribute to additional uncertainty in the 

predicted response [17]. Sobol’ indices for GSA present computational challenges, however, due 

to the large number of input-output samples needed to estimate the uncertainty contributions from 

even a single variable and quickly become intractable as the number of uncertain parameters 

increases. Saltelli’s widely-used class of matrix methods [18] have improved the computational 
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efficiency, however, the computational burden may still be too large in problems of high-

dimension and in the presence of expensive models.  

To alleviate the computational burden of GSA, surrogate models have been used in place of the 

expensive simulations [19,20]. Emphasis on non-intrusive surrogate modeling methods for 

uncertainty propagation have been seen for aero-applications. Lamorte et al. investigated the 

implementation of a stochastic collocation approach for differential equations using polynomial 

response surfaces to propagate uncertainty due to onset of transition and unstable boundary layers 

[21–23]. Hosder used a stochastic response surface obtained with non-intrusive polynomial chaos 

models for both uncertainty propagation and simplified sensitivity calculations [24]. However, the 

additional step of training and validating a surrogate to get accurate predictions is not straight-

forward and is dependent on the set of training points and the dimension of the input space. Hu 

and Mahadevan [25] recently investigated global sensitivity analysis-enhanced surrogate (GSAS) 

modeling for reliability analysis, where the new training points are selected based on GSA results, 

however, this further motivates more efficient GSA computations that are not reliant on a surrogate 

model. 

Other work has focused on efficiently using existing sets of input-output samples from model 

verification, validation, or calibration stages of model development. For example, Li and 

Mahadevan developed a modular global sensitivity analysis (MGSA) methodology that uses 

stratified sampling to assign uniform weights to one-dimensional strata to compute first order 

Sobol’ indices. A similar idea has been explored using an importance sampling-based kernel 

regression method (ISK-GSA) developed by Sparkman et. al. [26] where the choice of kernel need 

not be uniform and can follow the distribution type of the parameter. Furthermore, the ISK-GSA 

method calculates Sobol’ indices in fewer model runs and has the desired capability of additionally 
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being able to efficiently compute the total effects Sobol’ indices using the same existing input-

output samples. Thus, the ISK-GSA methodology provides the foundation for the research 

contributions presented in this chapter. 

For inverse problems in UQ, GSA is used to identify the subset of uncertain inputs and 

parameters that are candidates for uncertainty reduction through calibration. Calibration requires 

a significant number of model evaluations within the likelihood until the posterior distribution 

convergence, however, these input-output samples cannot be integrated into existing 

methodologies since the posterior distributions of the parameters exhibit correlation. In the 

literature, GSA with dependent variables are typically consigned to either expensive double-loop 

computations, grouping the correlated parameters into one auxiliary variable [34], or a 

combination of both approaches. As such, the input-output samples from calibration have yet to 

be used efficiently in post-calibration GSA and is a significant research gap that is addressed with 

the methodology developed herein. 

First, the proposed methodology addresses independent variables and improves the ISK-GSA 

methodology developed by Sparkman et. al. in Ref. [26] by using quasi-random sequences. Studies 

have found that quasi-random sequences provide optimal space-filling designs in higher 

dimensions [35] and the combined methodologies improve the convergence in estimating the 

sensitivity of a model output to independent sources of uncertainty. Second, the ISK-GSA method 

is generalized to allow consideration of dependent variables which are observed a) in posterior 

samples of calibrated parameters and b) among parameters and model outputs passing between 

coupling models in MDA. 

The outline of this chapter is as follows: Sobol’ indices for global sensitivity analyses are 

presented in Section 4.2 followed by an overview of the ISK-GSA method as developed by 
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Sparkman et al. in 4.3. Section 4.4 presents the proposed methodology suitable for independent 

variables that uses space-filling quasi-random number generators together with the ISK-GSA 

method. In Section 4.5, the generalized ISK-GSA methodology is developed to handle dependent 

variables which are observed after calibration and between coupled models through time and is 

demonstrated on an illustrative time-dependent example in Section 4.6. Section 4.7 applies the 

generalized ISK-GSA methodology to compute the posterior GSA results through time for a 

coupled, time-dependent aerothermal analysis and demonstrates the effects of model coupling and 

parameter correlation on the sensitivity estimates. 

4.2 Sobol’ Sensitivity indices 

After propagating D input sources of uncertainty X1xD to a model output Y, the variance 

decomposition theorem in Eq. (3.14) states that the total variance of the model output Var(Y) can 

be decomposed into the summation of a) the variance of the expectation of model output 

conditioned on the dth input variable Xd (d = 1 to D) with all other variables X~d varying and b) the 

expectation of the variance of Y conditioned the same the same set [70,72]. The summation of 

these two components are shown in Eq. (3.14). 

 ~ ~( ) { [ | ]} { [ | ]}d d d d

d d

X X
Var Y Var E Y X E Var Y X 

X X
 (3.14) 

The first-order Sobol’ index Sd,1 shown in Eq. (3.15) is the ratio of variance contributed by X d 

to the total variance in Eq. (3.14). The most straightforward and widely-used procedure to compute 

Sobol’ indices is the double-loop (DL) method. In the double-loop method, computing the first-

order Sobol’ index of variable Xd in Eq. (3.15) first consists of an outer-loop each at a fixed input 

xi
d  (i = 1 to Nouter), and an inner-loop over xj

~d (j = 1 to Ninner). Within the inner loop, an estimate 

of the conditional expectation EX~d [Y |Xd =xi
d] is obtained using Ninner samples of X~d. This process 
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is repeated by resampling Xd for each of Nouter outer-loop iteration and the variance of the 

conditional expectations from each choice of  xi
d is used in Eq. (3.15).  

 
~

,1

{ [ | ]}

( )

d d

d

X
d

Var E Y X
S

Var Y
 X   (3.15) 

The sum of the first-order indices across all D dimensions is equal to 1 (within a margin of 

finite sampling error), or less than 1 if parameter interactions are significant which are not captured 

in the first-order Sobol’ index. Therefore, the total effects Sobol’ index Sd,T
  inherently accounts 

for the first-order effects of Xd as well as the effects of interactions between Xd and all other 

variables X~d. Parameter interactions may either be a result of nonlinearities intrinsic to the model, 

statistical correlations between the parameters in the input space, or a combination of both. The 

total effects indices in Eq. (3.16) are derived by dividing the second term in Eq. (3.14) by Var(Y). 
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Using the double-loop method and Nouter = Ninner = N, the number of model evaluations M 

required for estimating both first-order and total effect Sobol’ indices for D parameters is on the 

order of O(2DN2)), which quickly become intractable. These computational expenses were 

addressed by Saltelli et al. [72] where a class of matrix-column exchange (MCE) methods were 

developed to simplify GSA by approximating the variances in the numerators In contrast to the 

double-loop method for computing the indices, MCE methods require M~O(2(2+D)N) because 

they estimate the variances in the numerators of.  First, an initial input matrix of dimension 2NxD 

is sub-divided into two NxD matrices XA and XB . These two input matrices are then propagated 

through the model for yA and yB. Next, a matrix XAB
d

  for each dimension d is then formed by 

permuting the dth column of XA with the dth column of XB such that XAB
d

 = [XA
1,… XA

d-1,XB
d,…, 
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XA
D]. Each XA, XB, and XAB

d
 (d = 1 to D) are propagated through the model for output matrices yA, 

yB, and  yAB
d (d = 1 to D), respectively. Several variance formulations have been explored to use 

MCE methods for Sobol’ indices, and the approaches from [80] are presented below in Eqs. (3.17) 

and (3.18). 
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The challenge with computing Sobol’ indices for time-dependent, multidisciplinary analyses 

with either the DL or MCE methods is two-fold; 1) convergence of the sensitivity estimate is slow 

from sub-optimal sampling and expensive models, and 2) MCE methods, among others, are unable 

to accommodate correlated quantities. First, computational effort is addressed using ISK-GSA in 

its original form and improved upon using Sobol’ sequences in Section 4.3. Performing post-

calibration GSA with correlated parameters is addressed in Section 4.3. 

4.3 Importance Sampling-based Kernel Regression Estimator for Sobol’ Indices (ISK-GSA) 

First, the independent concepts of kernel regression and importance sampling are introduced in 

Sections 4.3.1 and 4.3.2 and then used together with the ISK-GSA methodology in Section 4.3.3 

to estimate Sobol’ indices. The ISK-GSA methodology is then compared against DL and MCE 

methods using a simple example presented in Section 4.3.4 to demonstrate the computational 

savings offered by ISK-GSA and serve as a benchmark for the specific improvements to GSA with 

independent variables shown in Section 4.4. It also serves as the foundation for the expansion to 

GSA with correlated variables in Section 4.5.  
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Consider M available model evaluations from various stages of model development with input-

output relationships XMxD and YMx1. For each model evaluation m = 1 to M and input dimension d 

= 1 to D, an estimate of the conditional expectation EX~d [Y |Xd
 = xm

d] is achieved by weighting 

each model output Y as shown in Eq. (3.19).  

 ~

1

[ | ]d

M
d d d

m j jX
j

E Y X x y w


    (3.19) 

Kernel regression, importance sampling, and ISK-GSA each use Eq. (3.19) to estimate the 

conditional expectation of Y given xm
d, yet differ in how each of the M available model outputs are 

weighted. 

4.3.1 Kernel regression weights 

Kernel regression uses a locally weighted average within the neighborhood of xm
d where 

neighborhood is defined using a kernel function Kd(xm
d-xj

d) centered around on xm
d. The kernel 

function outputs are normalized according to Eq. (3.20) to define the weights wj
d for kernel 

regression in Eq. (3.19). 
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  (3.20) 

Kernel functions can be a uniform or constant for all xj
d within a certain Euclidean distance hd 

from xm
d or parametrized as continuous functions that decrease over the distance between the 

kernel center xm
d and xj

d. In this work, Gaussian kernels in each dimension are defined with kernel 

center cd = xm
d

 and bandwidth hd =1.06σd M
 -1/5 as suggested for Gaussian kernels in [21] where σd 

is standard deviation of the parameter Xd. Thus, the kernel bandwidth in each dimension d scales 

with input variance σd and decreases as the number of model evaluations M increases implying 
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that the conditional expectation estimate in Eq. (3.19) becomes more localized. These local 

conditional expectation estimates within the global probability space are supplemented with 

concepts from importance sampling in the ISK-GSA methodology and are discussed next. 

4.3.2 Importance sampling weights 

Importance sampling is a variance reduction technique that first distinguishes between the 

sampling density SD(x) of the input space from which M model evaluations are generated and a 

target density TD(x) from which statistics of the output are desired. In engineering reliability 

analyses, importance sampling defines the sampling density as a region of the input space with a 

high probability of an event of interest (e.g., failure) [40]. Therefore, the target probability of the 

event over the entire set of possible inputs reweights the outcomes observed in the sampling region 

with the probability of that combination of inputs.  

For the kernel regression weights, however, the sampling density Sd(x
d) and its statistics are 

known and the local statistics with a smaller subspace of the inputs are to be estimated. Therefore, 

for each input dimension d, an estimate the output within a target region Td(x
d) using samples from 

the sampling density Sd(x
d) is achieved using normalized importance-sampling weights wj

d defined 

according to Eq. (3.21). 
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4.3.3 Importance sampling-based kernel regression weights 

The formulation for the importance sampling-based weights for ISK-GSA arises out of equating 

the kernel function Kd(xm
d-xj

d) in (3.20) that defines the neighborhood around xm
d and the marginal 

target density Td(x) from Eq. (3.21). Likewise, and the sampling density Sd(x
d) is equivalent to 

marginal probability density of the available inputs pd(x
d) in each input dimension. Thus, for each 
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model evaluation M, the conditional expectation in Eq. (3.19) for first order effects is estimated 

using the ISK weights in Eq. (3.22).  
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The conditional expectation for total effects index in Eq. (3.23) is computed using Eq. (3.24) 

for the normalized weights. The normalized weight in Eq. (3.24) defines the neighborhood around 

xm
~d with a  D-1 dimensional kernel K~d(xm

~d-xj
~d). The probability density p~d(xm

~d) assumes that 

the d and ~d distributions are are independent. 
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The following section uses the ISK-GSA methodology to compute the sensitivities for a simple 

mathematical example. 

4.3.4 Mathematical Example using ISK-GSA 

To demonstrate the computational benefits of the ISK-GSA methodology for sensitivity 

analysis, consider a two-parameter model y = 2x1+ x2 where both parameters x1 and x2 are 

considered to be independent Gaussian random variables with zero mean and unit variance. The 

analytical first order and total effect Sobol’ indices are presented in Eqs. (3.25) and (3.26) and are 

shown to be equivalent since there are neither parameter interactions within the model nor 

correlations.  
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Using Eqs. (3.25) and (3.26) and σx1 = σx2 = 1 the true first-order and total effects indices of x1 

and x2 are 0.8 and 0.2, respectively. Figure 4.1 compares sensitivity estimates from N iterations of 

sensitivities from three methods: the double-loop (DL) method, Saltelli’s matrix column-exchange 

method (MCE), and the ISK-GSA method. Latin-hypercube sampling (LHS) was used to 

randomly sample the D = 2 dimensional input space for N = 1 to 400 sensitivity iterations. The 

number of model evaluations required for N sensitivity iterations of each of the three methods 

compared is shown in the legend of Figure 4.1. 

 
Figure 4.1. First order effects of x1 (top) and x2 (bottom) across N sensitivity iterations 

The legend in Figure 4.1 indicates that the number of model evaluations needed to compute the 

first order and total effect indices for the ISK-GSA method at each sensitivity iteration N is O(N) 

compared to O(2DN2)) and O(2(2+D)N) for the DL and MCE methods, respectively. In effect, 
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these results show that the ISK-GSA method requires less than 1% of the model evaluations 

required for the DL estimate and less than 17% compared to the MCE method.  

Furthermore, the ISK-GSA methodology can update the sensitivity estimate after each model 

evaluation, meaning the convergence of the sensitivity estimates may be monitored with each 

successive evaluation of the model. This example will be used in Section 4.4 to demonstrate 

improved convergence properties when the ISK-GSA methodology employs quasi-random 

number generators as opposed to LHS. These improvements are especially useful during pre-

calibration sensitivity analyses where the analyst is in control of the sampling space. Then, 

extension of the ISK-GSA methodology to correlated quantities is derived for post-calibration 

sensitivity analysis in Section 4.5 and applied to the posterior sensitivities the coupled aerothermal 

models through time in Section 4.6. 

4.4 Sensitivity Analysis for Independent Variables with ISK-GSA and Quasi- Random 

Number Generators 

Quasi-random and pseudo-random number generators are two distinct classes of algorithms 

used to generate random Monte Carlo samples for numerical integration, uncertainty propagation, 

and sensitivity analysis. Pseudo-random number generators (e.g., latin-hypercube) have the 

advantages of being most random-like, as shown in the left-hand side of Figure 4.2, but result in 

regions of high and low density that can prolong convergence of the integration. Quasi-random 

sequences (e.g., Sobol’ sequences [81], Halton sequences [82], or Hammersley sets [83]) were 

developed for even coverage over a high-dimensional integration domains and are guaranteed to 

cover the domain of interest evenly which results in improved efficiency in numerical integration 

schemes [81].  
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Figure 4.2. Latin-Hypercube design (left) and Sobol’ sequence (right) with 10,000 points 

The proposed methodology uses the Sobol’ sequence to fill the input space sequentially after 

each iteration  n = 1 to N where the difference in the domain coverage between (n-1)th and nth 

iterations is low. Again considering the model y = 2x1+ x2 from Section 4.3.4, the advantage of 

using a Sobol’ sequence is evident when N is constrained to a low number of model evaluations 

(N = 450) as shown in Figure 4.3. The asymptotic convergence of the sensitivity estimate is 

observed when a quasi-random Sobol’ sequence is used with the ISK-GSA method compared to 

using a Sobol’ sequence with the DL or MCE methods. Thus, a convergence criterion may be 

applied to terminate the sensitivity analysis and minimize the computational effort. Also, the 

Sobol’ algorithm to sequentially and uniformly fill the space contributes to the ‘stair-step’ pattern 

of convergence in Figure 4.3. In particular, the convergence property is observed using the ISK-

GSA method as the number of model evaluations M increases and the kernel bandwidth hd in each 

dimension d = 1,…,D decreases according to to hd =1.06σdM
-1/5.  
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Figure 4.3 Comparison of first order sensitivities using a 2-D Sobol’ sequence and LHS 

design 

Global sensitivity analysis for time-dependent, multidisciplinary models will be conducted 

using the ISK-GSA methodology with Sobol’ sequences to reduce the number of coupled 

simulations required when variables considered independent (e.g., before calibration). This is 

distinct from post-calibration parameter distributions that are correlated which are addressed by 

the generalized ISK-GSA methodology in Section 4.5. 

4.5 Sensitivity Analysis with Correlated Variables using Generalized ISK-GSA 

The derivation of the normalized weights for a generalized ISK-GSA estimate of first-order 

indices with correlated parameters begins in Eq. (3.27) by recognizing that the first-order ISK-

GSA weight in Eq. (3.22) and Eq. (3.27) are equivalent when X~d  and  Xd are independent. In the 

independent case, the marginal density pd (x
d) is equivalent to the joint sampling density pD(x) 

divided by the density p~d(x
~d). Similarly, a marginal kernel Kd(xm

d-xj
d) centered on xm

d is 

equivalent to a joint kernel KD (xm
D – xj

D) centered on xm
D divided by the kernel K~d (xm

~d – xj
~d) 

that is centered on xm
~d.  
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Building off Eq. (3.27), the generalized ISK-GSA weight is extended to Eq. (3.28) to apply 

when Xd and X~d  are dependent variables . In Eq. (3.28), both the kernel defining the neighborhood 

around xm
d and probability of xj

d are conditioned on xm
~d. If there is no dependence between Xd and 

X~d then pd|~d(x
d

 |x
~d) = pd(x

d)  and Kd|~d(x
d

 |x
~d) = Kd(x

d)  and Eq. (3.28) reduces to Eq. (3.22). 
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For completeness, the generalized ISK-GSA weights for total effects indices are presented in 

Eq. (3.29) and are equivalent to Eq. (3.24) when Xd and X~d are independent. 
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These generalized ISK-GSA methodology is demonstrated on a time-dependent, coupled 

problem first with independent parameters and then with correlated parameters in Section 4.6. The 

methodology is then applied to post-calibration sensitivity analysis of coupled aerothermal models 

in Section 4.7.  

4.6 Time-Dependent, Multidisciplinary Example 

Consider the models in Eq. (3.30)  that are representative of multidisciplinary, time dependent 

analyses. The models are coupled such 1) the value of model output y1,i, moves from 1 toward zero 

through time as 2) y2 increases from the initial condition y2,0 at a rate of y1,i across Δt = 0.1s until 

the final time of interest tf  = 50s. 
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Three sources of uncertainty - uncertain model errors (ε1, ε2) and the initial condition y2,0 - are 

considered for GSA analysis and are propagated through the coupled system first as independent 

Gaussian random variables with statistics shown in Table 4.1 and then as dependent variables with 

the correlation structure shown in Eq. (3.31). Negative correlation between model discrepancy 

parameters was observed after calibration in Refs. [27] and [29], with some correlations tending 

toward negative 1, thus,  a negative correlation ρ = -0.5 is imposed between model errors ε1 and ε2 

in Eq. (3.31). 

Table 4.1. Uncertain model inputs and errors 

Parameter Mean Variance 

y2,0 20 4 

ε1 0 4e-4 

ε2 0 4e-4 
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A 3-dimensional Sobol’ sequence was generated for y2,0, ε1, ε2 and propagated through to model 

outputs y1 and y2 for tf  = 50s. Figure 4.4 demonstrates the prediction uncertainty in both y1 and y2 

1) when just the uncertainty in the input condition is propagated as a random variable (RV) with 

ε1 and ε2 fixed at their mean values (black), 2)when all three sources of uncertainty are propagated 

as RVs (blue), and 3) when correlation among ε1 and ε2 is considered (green). It is observed in 

Figure 4.4a that a negative correlation between ε1 and ε2 slightly increases uncertainty in y1 

predictions compared to the independent case however, Figure 4.4b demonstrates that this 
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correlation decreases the uncertainty in y2 predictions. This is considered to be due to the inversely 

proportional relationship between y1 and y2, but the additive relationship between y2 and y1.  Note 

that since ε1 and ε2 both have zero mean, the mean predictions overlap for each of the three cases 

in Figure 4.4a and Figure 4.4b. 

 
Figure 4.4. Coupled y1 predictions (a) and y2 predictions (b) through t = 50s 

The sensitivities throughout the time to y2,0, ε1, and ε2 for each model were computed using the 

generalized ISK-GSA methodology for both the independent and dependent parameter cases. The 

first-order (Eq. (3.27)) and the total effects Sobol’ indices (Eq. (3.29)) were computed with a 3-

dimensional Sobol’ sequence of N = 1,000 which were assumed to be the conditional cumulative 

density function (CDF) values in each dimension d. Note that in the dependent parameter case, an 

iterative procedure was used to map the conditional CDF function values to the parameter space, 

however in the independent case the marginal CDF functions could be used. 

The first-order effects and total effects for model output y1 for the independent and correlated 

cases are shown in Figure 4.5.  First, is observed in Figure 4.5a and Figure 4.5b that the first-order 

and total effects on y1 are equivalent in the independent parameter case indicating that the 
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parameter interactions within the model itself are insignificant. The sensitivity of y1 to the initial 

condition y2,0 decreases over time, as expected, however, there is a trade-off between the effects ε1 

and ε2 through time as the model output y1 becomes more sensitive to the uncertainty in ε2 due to 

model interactions. 

 
Figure 4.5. First-order and total effects on model output y1 with independent (top) and 

correlated (bottom) parameters 

In contrast to the independent variable case, Figure 4.5c shows that individual first-order effects 

of both ε1 and ε2 change through time when correlation is considered. First, the first order effects 

of ε1 immediately decrease at t  = 0s due to the correlation of -0.5 with ε2. Then, the first order 

effects of ε2 do not approach 1 as in the independent case, but rather approach approximately 0.65. 

However, y1 sensitivity to y2,0 in Figure 4.5c undergoes little change between the independent and 

dependent cases since y2,0 itself is not correlated with any other parameter. For the dependent 

variable case in Figure 4.5d, however, the total effects of ε2 immediately increase from 0 to 0.35 

at t  = 0s due to the correlation with ε1 and it is ε1  that approaches approximately 0.35 as opposed 
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to 0 in the independent case. This is intuitive since the total effects Sobol’ index captures parameter 

interactions regardless if they are intrinsic to the model or the parameters themselves. Note that 

these ISK-GSA estimates maintain the summation criteria of ΣSd,1≤1 and ΣSd,T≥1 of the first order 

and total effects, respectively, over all time instants. 

The first order and total effect sensitivity indices for the y2 prediction are shown in Figure 4.6 

with similar conclusions drawn from the sensitivities of y1 from Figure 4.5.  First, the first-order 

sensitivities in Figure 4.6a and total effect indices in Figure 4.6b are equivalent in the independent 

case due to negligible parameter interactions within the model. Second, y2 sensitivity to y2,0 

undergoes little change between the independent and dependent variable cases since y2,0 itself is 

not correlated with any other parameter. 

 
Figure 4.6. First-order and total effects on model output y2 with independent (a-b) and 

correlated (c-d) parameters 

For the dependent variable cases in Figure 4.6c-d, it is observed the first-order effects of y2 in 

Figure 4.6c sum close to unity since the sensitivity of y2 to ε1 is low, however, in Figure 4.6d the 
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total effects sensitivities of y2 to both ε1 and ε2 increases over time due to the effect of correlation 

between ε1 and ε2. 

Figure 4.7a-b illustrate differences between positive and negative correlations on the first order 

and total effect sensitivities of both model outputs to error parameter ε2 through time. First, it is 

observed that as the correlation increases from -0.5 to -0.9, the first order effects of ε2 on y1 become 

closer to 0. It can be shown further that as the correlation approaches -1, the first order effects of 

both ε1 and ε2 approach 0, whereas the total effects in Figure 4.7b approach 1. 

  

 
Figure 4.7. Effect of ε1 and ε2 correlation on the sensitivities of y1 to ε2 (a-b) and y2 to ε2 (c-d)  

However, when the correlation between the parameters is positive, it is observed in Figure 4.7a-

b that the first-order effects of ε2 on y1 are greater than the total effects. Again, this is attributed to 

the inversely proportional relationship between y1,i and y2,i-1 (and, by extension, ε2), and this 

phenomenon does not occur in the first order and total effects of ε2 on model output y2 in Figure 

4.7c-d. In both positive and negative correlation cases in Figure 4.7c-d, the first order effects of ε2 
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on model output y2 decreased compared to the independent (ρ = 0) case, with the positive 

correlation cases exhibiting lower first order effects over time and higher total effects than the 

negative correlation cases. It is interesting to note that the independent case in Figure 4.7c 

represents the maximum first order effect, however the ρ = 0 case  does not bound the total effect 

sensitivities in Figure 4.7d. In general, the same is true between the first order and total effects on 

y1 in Figure 4.7a-b, however the relationship between the positive and negative correlations with 

the independent case in the total effects are opposite, with the positive correlations having lower 

total effects than the independent case for y1 but higher total effects for y2. 

For this 3-parameter example (D = 3), the sensitivity convergence rates between the 

independent and correlated cases were equal using the generalized ISK-GSA methodology with a 

Sobol’ sequence. Here, the first-order indices of both y1 and y2 on average converged in 250 

iterations using a 1-D Sobol’ sequence. However, the total effect indices converged in 

approximately 800 iterations from computing conditional expectation estimates in D-1 

dimensions. The comparison of ISK-GSA convergence rates with a Sobol’ sequence for a four 

dimensional aerothermal application problem (D = 3) will occur next in Section 4.7 as well 

computing post-calibration sensitivities of the aerothermal models using the generalized ISK-GSA 

methodology and existing model runs from calibration. 

4.7 Application Example: Coupled Aerothermal Sensitivities 

A global sensitivity analysis is performed on coupled aerothermal models to quantify the 

sensitivity of previously calibrated coupled model errors and uncertainty on aerodynamic heating 

and heat transfer predictions through time.  
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4.7.1 Aerothermal Model Calibration 

Building on the Bayesian model calibration work in Chapters 2 and 3, the aerodynamic heat 

flux Q predicted by Eckert’s reference temperature method [33] is coupled with the one-

dimensional heat balance equation to predict the structural temperature Tstructure  and wall 

temperature Tw of a panel on a hypersonic vehicle upstream of an oblique shock.  

 
Figure 4.8. Aerothermal coupling  

Aerodynamic heating errors δQ,t and heat transfer errors δT,t propagate through each iteration 

and are functions of the changing model inputs according to Eqs. (3.32) and (3.33). The sources 

of uncertainty considered in the post-calibration sensitivity analysis are the four model error 

parameters X = [ c0, c1, d0, d1]. 
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Based on aerothermal tests conducted in the NASA Langley HTT tunnel [20], the reported heat 

flux measurements at t = 0 were used to construct a 3 second temperature history at a rates of Δt = 

0.05s (20 samples per second). Measurement noise was assumed to be zero-mean Gaussian with a 

standard deviation of 1K. This temperature history was used to calibrate the coupled heat flux and 

temperature predictions through time and the prior and posterior predictions with 95% confidence 

bounds are shown in Figure 4.9a and 4.9b, respectively. The calibration was completed using 103 

slice samples [54] and the post-calibration prediction confidence in temperature increased across 
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all time steps by reducing uncertainty in both Eckert’s reference temperature and 1-D heat transfer 

predictions. 

 
Figure 4.9. Prior and posterior heat flux (a) and temperature (b) predictions 

The posterior correlation among the four discrepancy parameters are shown in Eq. (3.34) and 

provides one application for the generalized ISK-GSA methodology for dependent variables. In 

addition, both the prior and posterior model discrepancy distributions of δQ and δT are correlated 

as well, and it is in this space that we apply the generalized ISK-GSA methodology to the coupled, 

aerothermal analysis. The prior and posterior correlations among the model discrepancy terms δQ 

and δT are depicted in  Figure 4.10a-b first at the beginning of the analysis at t0 = 0s and then at the 

end at tf = 3s. 
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Figure 4.10. Joint prior and posterior distributions for δQ and δT at (a) t = 0s and (b) t = 3s 

At t = 0s in Figure 4.10a, correlation ρδ between model discrepancies is observed to be -0.6 

among the posterior samples wheras ρδ = 0 among the prior model discrepancy predictions since 

the discrepancy parameters θ were independent before calibration. However, strong negative 

correlations are present among both prior model discrepancy predictions at t = 3s in Figure 4.10b.  

First,  Figure 4.10b shows the prior correlation between δQ and δT  becomes -0.9 solely due to 

discrepancy interactions that are inherent to the prediction.. In comparison, the posterior 

correlation between δQ and δT  changes from  -0.6 at t = 0s and grows to -0.95 at t =3s in Figure 

4.10b from model interactions through time. The trend of both the prior and posterior model error 

correlations through time in Figure 4.11 demonstrates that the input parameter correlations affect 

the coupled prediction until the coupling effects become more prominent over time, and extending 

the analysis through demonstrates the convergence of both prior and posterior error correlations to 

-0.9.   
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Figure 4.11. Prior and posterior correlation between δQ and δT 

Note that the generalized ISK-GSA methodology is also needed to compute the prior 

sensitivities of the model outputs to δQ and δT  through time as well, since the errors become 

correlated through time due to the model interactions. The difference however, lies in how the 

input-output samples are generated, where prior sensitivity analysis uses 4-D Sobol’ sequence and 

the posterior analysis uses samples generated from the MCMC algorithm. 

4.7.2 Pre-Calibration Aerothermal Sensitivities Through Time using Generalized ISK-GSA  

The pre-calibration sensitivity estimates of heat flux and temperature to model discrepancies δQ 

and δT were performed using generalized ISK-GSA with Sobol’ sequences. Figure 4.12 shows the 

sensitivity convergences observed during a prior sensitivity analysis using the generalized ISK-

GSA method with Sobol’ sequences compared to latin-hypercube design of the input space.  
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Figure 4.12. Convergence of prior sensitivities of temperature to d0 at t = 3s using latin-

hypercube and Sobol’ sequences  

Similar to the examples in Section 4.4, the first-order effects converged using fewer model 

evaluations than the total effects. Furthermore, the Sobol’ sequence of the input space led to faster 

convergence of the prior first-order sensitivities, where the first-order effects required 

approximately 600 iterations to satisfy the convergence criteria (<0.1% difference in sensitivities 

between tests occurring at every 10th iteration) compared to the 1300 iterations requires by the 

LHS design. It was determined that neither the total effects from the Sobol’ index nor the LHS 

design meet the convergence criteria within in 2000 iterations for this 4-dimensional problem. 

4.7.3 Post-Calibration Aerothermal Sensitivities Through Time using Generalized ISK-GSA  

The post-calibration sensitivity analysis for the aerothermal example was performed using the 

last 4e3 posterior samples from the 10e3 slice-sampling from calibration to reduce the 

computational effort required to compute the ISK-GSA results at each time instant.  The posterior 

heat flux sensitivities through time in Figure 4.13 demonstrate that the negative correlation 

between δQ  and δT  at all time instants first decreases the first order effect sensitivities of δQ from 
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1 (observed in the prior case) to 0.6, which corresponds to the negative posterior discrepancy 

correlation of -0.6 seen at t = 0s in Figure 4.13. Then, the posterior sensitivity of Qn to model 

discrepancy δQ follows a similar trend to the posterior discrepancy correlation in Figure 4.13. This 

is because a correlation close to -1 indicates strong interactive effects, which in turn reduce the 

first order effects of the variable. Similarly, the posterior total effect of δT on heat flux have 

increased to 0.4 at t = 0s due to the correlation with δQ, approach 1, and then asymptotically 

approach approximately 0.85, which can be considered as the total effect sensitivity from 

interactions inherent to the model. 

 
Figure 4.13. Posterior heat flux sensitivities to δQ and δT through time 

The posterior sensitivities of the predicted temperature to the model discrepancies δQ and δT 

through time are shown in Figure 4.14. First, in contrast to the heat flux sensitivities in Figure 4.13, 

the first order effects in Figure 4.14a indicate influence from a source of positive  correlation 

because, rather than the first order effects of δT decreasing from treating the correlation as 

interactions, the first order effects of δQ increase and both first order effects sum to greater than 1 

at t = 0s. Further, the total effects in Figure 4.14a sum to less than 1, and in this case, temperature 

sensitivities to δT decrease. This prompts further investigation into the relationships between 

temperature T and δQ and δT through time and the effect of positive correlations on GSA sensitivity 

indices of coupled model outputs through time. 
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Figure 4.14. Posterior temperature sensitivities to δQ and δT through time 

4.8 Conclusion 

Global sensitivity analysis computations for independent variables were improved first by 

pairing quasi-random number generators with the ISK-GSA methodology. Furthermore, efficient 

GSA computations were extended to correlated variables by generalizing the ISK-GSA method 

and applying it to coupled models interacting through time and then to existing posterior input-

output samples from Bayesian calibration. A summary of conclusions drawn from this chapter are 

as follows: 

1. When paired with quasi-random sequences, the ISK-GSA sensitivity estimate 

asymptotically converges to the true sensitivity. Therefore, a sensitivity convergence 

criterion can be used to minimize the number of model evaluations needed for global 

sensitivity analysis among independent variables (e.g., before calibration).  

2. The generalized ISK-GSA methodology for dependent variables improved the 

efficiency of GSA for: 

a) coupled model predictions, where parameters interactions within the models 

become more prominent over time; and  
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b) post-calibration sensitivity analyses by allowing the direct use of correlated 

posterior samples obtained from calibration. 

3. The effects of both positive and negative correlations on both the first order and total 

effects were demonstrated.  For the simplified time-dependent example, negative 

correlations between model errors maintained the expected summation criteria for first-

order and total effects, however, positive correlations did not. Similar results were 

observed for the aerothermal problem, and thus, the effects of positive correlations on 

the sensitivities of coupled models require further understanding.  

4. The generalized ISK-GSA method led to a broader analysis of sensitivity in coupled, 

time-dependent analyses where first-order and total effects are influenced by both 

parameter correlation and model interactions through time. For example, in the 

aerothermal application example, correlation effects on the sensitivity estimates were 

seen in early time instances until coupling effects became more significant through time. 

In future work, this methodology may be embedded directly into MCMC sampling procedures 

to monitor the evolution of the posterior parameters after each sample. In this way, sources of 

uncertainty can be down selected adaptively as the likelihood is explored in the MCMC algorithm. 

This may also account for the possibility that some regions of the likelihood may be more sensitive 

to a subset of the parameter space than other regions. Also, at a given point in the calibration the 

generalized ISK-GSA sensitivity result may indicate convergence globally or within the local 

likelihood region, which may inform the optimal step-sizes taken in each dimension and further 

improve calibration convergence. 
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CHAPTER 5 

MODEL SELECTION AND COUPLING IN TIME-DEPENDENT, MULTIDISCIPLINARY 

SIMULATIONS  

5.1 Introduction 

The focus of this dissertation has been on multidisciplinary analyses where several single-

discipline models are linked for prediction. In such time-dependent, multidisciplinary simulations, 

the following analysis decisions are made a priori that affect both the prediction accuracy and 

simulation cost: 1) the fidelity of each model component in the simulation hierarchy where 

reduced-order, reduced-physics, or low-fidelity models may be used in place of higher-fidelity 

models, and 2) the characteristic time step for each disciplinary model component where the time 

step ratios reflect the coupling between disciplines in time-dependent analyses. For example, in 

transient aerothermoelastic simulations, the model fidelities and time steps maybe chosen to 

capture the response at critical points along the trajectory (e.g., high-risk maneuvers, takeoff and 

landing). However, these a priori model fidelity and time step choices may be unnecessarily fine 

during the portions of the trajectory with slower-moving phenomena (e.g., cruise, elevation 

changes), adding unneeded cost to the analysis. In the case of a coarse model or time step being 

selected due to simulation cost restrictions, prediction errors may be introduced in the analysis. 

Thus, adaptive model fidelity and time step selection methods are needed for coupled, time-

dependent analyses to balance both prediction cost and accuracy during long duration simulations. 

In traditional statistical analysis, model selection criteria are based on two factors: a) the 

likelihood the model explains the data (accuracy) and b) the number of predictors (complexity – 

the smaller the better) [84]. Model selection methods are well-developed for choosing among 

candidate statistical models [85], reduced-order models and approximations for single-disciplinary 
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analysis, and spatial meshing and scale resolution in multi-scale problems [86]. This chapter 

expands these ideas to time-dependent, coupled models where complexity and goodness-of-fit 

characteristics are less explicitly defined.   

In the context of UQ, however, uncertainty propagates through time and through the models 

and their coupling interfaces in the forward prediction. Thus, there is a need for a selection metric 

that uses all the available probability information rather than an average or single summary statistic 

in order to comprehensively and robustly assess the prediction confidence and inform the best 

adaptive procedure. The model reliability metric developed in model validation research helps 

quantify the confidence by comparing stochastic predictions to experimental data or high-fidelity 

simulations [66]. The use of model reliability as a model selection criterion was developed by 

Hombal and Mahadevan [87]. 

The methods developed in this chapter expand on work by Hombal and Mahadevan by 

considering time-dependent, multidisciplinary analyses where the goal is to maintain a desired 

level of prediction accuracy through time under a limited computational budget. The methods are 

applied to the time-dependent aerothermal models that were calibrated in Chapter 3 and studied 

using ISK-GSA for sensitivity analysis in Chapter 4.  

Two prediction performance measures – prediction accuracy and prediction reliability – are 

presented in Section 5.2.1. Subsequently, the accuracy- and reliability-based loss functions are 

proposed in Section 5.3 and resulting optimizations with each over both time step and coupling 

from are demonstrated an illustrative example. Section 5.4  then demonstrates the optimization of 

the coupled aerothermal simulation through time using the reliability-based loss function. 
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5.2 Simulation Accuracy, Reliability, and Cost 

Consider a coupled, time-dependent analysis with two disciplinary models in which the load x 

interacts with the response of the system y. Two single-disciplinary model components x and y 

are used to simulate the interactions between xn and yn at each time step Δtn for n = 1 to N according 

to Figure 5.1. The initial condition y0 at initial time t0 = 0 seconds is considered known and N is 

the number of time steps between t0  and the final time of interest tN = tf. Assuming the cost of the 

coupled analysis at each time instant is Cn, the total simulation cost Cf  is computed in Eq. (4.1) as 

the sum of the costs incurred after each time step. 

 
Figure 5.1. Partitioned simulation with fixed coupling and time step  
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Suppose that there exists set of single-disciplinary modeling alternatives x’ and x’ that may 

be of higher or lower fidelity than x and y. Figure 5.2 illustrates a partitioned analysis that uses 

these alternative analyses as well as a zero-cost analysis ∅x that assumes the effect of y on x is 

negligible at time tn  (i.e., xn= xn-1). Therefore, the simulation cost at the nth time step in Eq. (4.1) 

is further decomposed into the cost of the nth model fidelity combination Fn ={x
*,y

*} where 

each single-disciplinary model (i.e., x
*{x, x’, ∅x} and y

*{y, y’, ∅y}) is associated 

with a known model cost (i.e., Cx
*{Cx, Cx’,0} and Cy

*{Cy, Cy’,0}), respectively. 
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Figure 5.2. Partitioned simulation with variable coupling and time step 

Figure 5.2 also demonstrates the use of different time steps sizes Δtn
* for each combination in 

Fn ={x
*,y

*}. Intuitively, increasing the time step size will reduce the number of time 

integrations needed for fixed-duration analyses and would subsequently reduce the overall 

simulation cost. However, increasing the time step size may have adverse effects on the prediction 

accuracy given the choice of models in Fn. Thus, the goal of this chapter is to develop a decision-

making framework for the coupling and temporal fidelity selection of Fn ={x
*,y

*
, Δtn

* } at each 

time step n that balances both simulation cost and prediction accuracy. In Section 5.2.1, two 

metrics for prediction accuracy – one deterministic (error) and one stochastic (model reliability)-  

are discussed. 

5.2.1 Prediction Accuracy and the Model Reliability Metric 

Consider a set of data realizations Dn at time tn from a known probability distribution pDn(dn). 

When comparing against a deterministic prediction yn, Eq. (4.2) defines the expected prediction 

error E[εn] as the magnitude of the difference between prediction yn and expected value of the data 

E[Dn]. Prediction accuracy is assessed deterministically by comparing the expected prediction 

error E[εn] against a prediction error tolerance τn ≥ 0. 

 [ ] [ ]n n n n nE y E D E y D          (4.2) 
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However, several sources of uncertainty may contribute to uncertainty about the prediction yn 

(e.g., natural input variability, model form error, etc. ) so that yn may no longer be considered a 

deterministic quantity but be characterized by a probability distribution pYn(yn).Thus, both data Dn 

and the model prediction yn are stochastic; the second equality in Eq. (4.2) applies in this case. The 

prediction error variance Var[εn] is the sum of prediction and data variances in Eq. (4.3). 

 [ ] [ ] [ ]n n nVar Var Y Var D     (4.3) 

Errors and uncertainty result from imperfect knowledge and numerical errors and are of two 

types - model form uncertainty and solution approximations (e.g., spatio-temporal discritization) 

[26] – that aggregate at each stage of the analysis based on the chosen models and coupling 

characteristics (e.g., monolithic vs. partitioned, high-fidelity vs. low-fidelity, strong vs. weak 

coupling). The model reliability metric in Eq. (4.4) assesses the agreement between distributions 

pYn(yn) and pDn(dn) on a scale from 0 and 1. The model reliability metric can be calculated for any 

distributions of Yn and Dn using Monte carlo sampling; the first equality in Eq. (4.4) represents this 

general case. The second equality in Eq. (4.4) demonstrates the model reliability following 

Gaussian assumptions for pYn(yn) and pDn(dn), where standard normal cumulative distribution 

function (CDF) denoted by Φ is used.  
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The model reliability metric inherently includes the prediction accuracy by comparing the 

prediction error E[εn] against the error tolerance τn at time tn, but it is additionally influenced by 

the uncertainty that propagates through the simulation to yn  (Eq. (4.3)). Therefore, a target 

prediction reliability Rlim may not be achieved even if τn -E[εn] ≥ 0 (i.e., the mean prediction error 
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is less than the error tolerance) due large prediction error variance Var[εn] from either prediction 

uncertainty or data uncertainty. These accuracy and precision tradeoffs in the prediction reliability 

metric are explored using an illustrative example problem in Section 5.2.2 which is used further to 

develop the adaptive model selection methodology in Section 5.3. 

5.2.2 Illustrative Example  

Two models, x in Eq. (4.5) and y in Eq. (4.6), are representative of multidisciplinary, time 

dependent analysis. The models are coupled such that xn is the rate of change between yn and yn+1 

across the time step Δtn and xn itself is the ratio between the current prediction yn and the initial 

condition y0. The initial condition y0 is uncertain and characterized by a normal distribution pY0(y0) 

~ (20,2) from which 1000 samples are randomly drawn and propagated through the coupled 

analysis. Therefore, the mean prediction and 95% confidence bounds of x and y using a model 

fidelity and time step combination of F = [x, y, Δt = 1s] are shown in Figure 5.3a-b. 
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Figure 5.3. Coupled simulation F = [x,y, Δt = 1s] compared to data Dn 

Random realizations of data Dn (one of which is shown in Figure 5.3b) were generated using a 

non-stationary Gaussian measurement noise of 5% of the true output ytrue and an observation rate 

of ΔtD = 0.1s. The true quantities xtrue and ytrue were simulated from the initial condition y0,true = 20 

using model fidelity and time step combination F = [x, y, Δt = 0.001s] through tf =1000s. 

Recall that prediction accuracy is computed as the difference between the prediction error E[εn] in 

Eq. (4.2) and an error tolerance τn  ≥ 0. In Figure 5.4, the error tolerance is a percentage – either 

1%, 2%, or 5% – of the magnitude of the expected value of the data E[Dn] at time tn. 

 
Figure 5.4. Prediction error εn  with (a) Δt = 1s, τ = 1%, 2%, and 5% and (b) τ = 5%, Δt = 1, 

5, and 10s  
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Figure 5.4a shows that the prediction error observed throughout a fixed time step analysis (Δt 

= 1s) does not exceed even the lowest error tolerance limit of τ = 1%. Figure 5.4b then demonstrates 

that increasing the simulation time step increases the prediction error, where an analysis with a 

fixed time step of Δt = 10s exceeded the error limit around t  = 40s. These conclusions are offered 

the within the context of the model reliability metric in Figure 5.5 so that comparisons can be 

drawn between the two methods.  

The results in Figure 5.5a demonstrate the role that the choice of error tolerance τ has on the 

model reliability metric where for a fixed time step analysis (Δt = 1s) the prediction reliability is 

close to 1 when the error tolerance is large (τ = 5%) and near to 0.6 when the tolerance is more 

restrictive (τ = 1%). In Figure 5.5b, a large simulation time-step of Δt = 10s with a large error 

tolerance of τ = 5% is shown to have a reliability of 0.4 at early time instances, however, meet the 

desired reliability Rlim of 0.9 during a large portion of the analysis.  

 
Figure 5.5. Prediction reliability Rn with (a) Δt = 1s, τ= 1%, 2%, and 5% and (b) τ = 5%, Δt 

= 1, 5, and 10s 
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Table 5.1. Simulation statistics, reliabilities, and costs at tf=1000s with τ = 5% for Δt = 1, 5, 

and 10s 

 σx,f σy,f E[εf] Rf N Cf 

Δt = 1s 9.59e-2 2.21 0.11 0.99 1000 4000u 

Δt = 5s 9.61e-2 4.95 0.59 0.94 200 800u 

Δt = 10s 9.64e-2 7.05 1.22 0.87 40 400u 

 

Table 5.1 further demonstrates that an analysis that uses a fixed time step of Δt = 10s would 

result in 90% cost savings (compared to Δt = 1s) at a 3% deficit of meeting the target reliability 

Rlim of 0.9 at tf = 1000s. Therefore, Section 5.3 develops a bi-objective optimization methodology 

to balance cost vs. error and cost. vs reliability objectives. 

5.3 Proposed Coupling and Temporal Fidelity Selection Methodology  

A flowchart for the adaptive model selection procedure to select Fn+1
* based on a loss function 

L at time tn+1
* for the two-discipline system is summarized in the flow chart in Figure 5.6. First, 

the limiting values of each quantity of interest τn, Rlim, Clim are determined by an analyst. 
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Figure 5.6. Flowchart of the process of finding optimal coupling and temporal fidelity at 

time tn+1 

Two prediction performance measures – prediction accuracy and prediction reliability – were 

presented in Section 5.2.1 and the proposed accuracy- and reliability-based loss functions used to 

optimize coupling and temporal fidelities are presented in Section 5.3.1. Sections 5.3.2 and 5.3.3 

compare the two loss functions on an illustrative example and 5.3.4 demonstrates the reliability-

based loss function on combined coupling and temporal fidelity selection.  
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5.3.1 Accuracy- and Reliability-Based Loss Functions 

The proposed accuracy-based loss function Lε  shown in Eq. (4.7) is minimized to select the 

optimal coupling and temporal fidelity combination Fn+1
* = [x

*, y
* , Δt*]n+1  among multiple 

candidate fidelity options. Here, the * notation indicates the parameters that are dependent on the 

model fidelity choice of Fn+1
* (including Δtn+1

*).  
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For a candidate model coupling fidelity and time step to be considered for optimality in Eq. 

(4.7), the prediction error εn+1
*, error limit τn+1

*, and the cost Cn+1
* that would accumulate across 

the candidate time step Δtn+1
*
 if selected are either known given the model or estimated.  The 

proposed approach uses the model error and time step history obtained during the simulation to 

estimate εn+1
*(Δtn+1

*  
| x

*, y
*), considers the model costs Cn+1

*  as known quantities, linearly 

extrapolates to τn+1
*
 from τn and τn-1.

 * 

Note that the squared components of the loss function Lε are scaled by normalized positive 

weights wε and wC presented in Eq. (4.8). The weight wε is the ratio of the current prediction error 

εn, and current error tolerance τn,. When the ratio wε  < 1, it implies that εn  < τn. The weight wC is 

composed of two ratios: a) the ratio of the current cost Cn to the overall cost budget Clim and b) the 

ratio of the current simulation time tn to the final time of interest tf.. When the ratio wC = 1, it 

indicates that the simulation will conclude at tN  = tf  and CN  = Clim, meaning the simulation budget 

is entirely exhausted. 



118 

Similar to Eqs. (4.7) and (4.8), the proposed reliability-based loss function LR
  is shown in Eq. 

(4.9) with weights wR and wC shown in Eq. (4.10). The weight wR is the ratio between the current 

reliability Rn and Rlim where Rn is placed in the denominator to prevent the current prediction 

reliability from tending toward zero. 
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First the accuracy- and reliability-based loss functions are implemented on the illustrative 

example from Section 5.2.2 for optimizing two simulation cases: 1) coupling fidelity at a fixed 

time step in Section 5.3.2 and 2) temporal fidelity selection at fixed coupling in Section 5.3.3. Then 

in Section 5.3.4 the reliability-based loss function is applied for combined coupling and temporal 

fidelity selection. 

5.3.2 Case 1: Coupling Fidelity Selection (Fixed Time Step) 

Continuing with the illustrative example from Section 5.2.2, two competing model coupling 

options were identified, a two-physics model {x,y} with cost Cn = 4u and a single-physics 

model {∅x,y} with cost Cn =1u. Thus, for a fixed time step analysis Δt = 1s under a restricted 

computational budget of Clim =1250u, Figure 5.7 compares the model coupling selections made 

from both the Lε -optimized and LR -optimized simulations. 
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Figure 5.7. Comparison of Lε and LR for fixed Δt = 1s, [τ = 5%, Clim = 1250u, and Rlim = 0.9 ] 

Figure 5.7a-b first demonstrates that as the Lε -optimized simulation approaches the error limit 

τ from using the single-physics model (which would result in an effective prediction reliability of 

0.5), the Lε-optimization then selects the two-physics model to reduce the error leading to 

significant jumps in simulation cost. In contrast, after the LR-optimized simulation satisfies the 

reliability limit objective Rlim of 0.9, the cost objective is dictating the intermittent selection of the 

two-physics model such that the computational budget Clim=1250 is exhausted completely at the 

end of the analysis. 

5.3.3 Case 2: Temporal Fidelity Selection (Fixed Coupling)) 

Next, consider the simulation in Figure 5.8 where the temporal fidelity Δtn is optimized for a 

fixed coupling case with the two-physics model {x, y} with a cost of Cn = 4u. Here, a 
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computational budget Clim = 400u was imposed, meaning only 100 time instances can be evaluated 

across the 1000 second time history.  

From Table 5.1 in Section 5.2.2, it is inferred among these previous fixed time step simulations 

performed with {x, y} that a prediction reliability Rf  exactly equal to prediction reliability goal 

of Rlim = 0.9 would have been obtained between Δt  = 5s and Δt  = 10s that had associated costs 

800u and 400u, respectively. Figure 5.8 goes on to demonstrate that maintaining a prediction 

reliability Rlim = 0.9 strictly within the computational budget of 400u is infeasible for this problem. 

As such, the LR – optimized simulation maintains Rlim and exceeds the over-restrictive cost limit 

Clim by 55% to a Cf  = 620u and the optimized time step  is shown to slowly decrease throughout 

the analysis from approximately 15s to 5s.  



121 

 
Figure 5.8. Comparison of Lε and LR for fixed model {Mx, My}, 

 [τ = 5%, Clim = 400u, Rlim = 0.9 ] 

Conversely to the simulation optimized with LR, the Lε - optimization simulation exceeds the 

cost limit Clim by 18% yet does not reach the desired prediction reliability goal. After comparing 

the performances of both Lε and LR-optimized simulations, the reliability-based loss function LR is 

used going forward. 

5.3.4 Case 3: Combined Coupling and Temporal Fidelity Selection 

The reliability-based loss function LR was used for the combined optimization to choose 

between the two coupling scenarios, {x,y} and {∅x,y}, and well as the time-step for each. 

Figure 5.9 illustrates how simulation cost vs. prediction reliability tradeoffs impact both coupling 
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and time-step selection when both Clim and Rlim are restricted. Also, the effects of random sampling 

for uncertainty propagation are shown here, where trends observed for Clim=800u differ from the 

Clim = 600u and 1000u cases.  

 
Figure 5.9. LR for variable coupling and time step 

[τ = 5%, Clim = 600, 800, 1000u, and Rlim = 0.9 ] 

In Figure 5.9d, for the case when Clim=800u is observed that each model exhibited its own 

trends in the time step selection, where the two-physics model opted for the larger time steps and 

the single-physics model trended toward smaller, as expected. In addition, Figure 5.9b shows that 

this optimization prioritized prediction reliability over the cost objective since Clim was exceeded. 

5.4 Application: Aerothermal Coupling and Time-Step Selection 

Section 5.4 optimizes a coupled aerothermal simulation through time using the reliability-based 

loss function formulation for optimization. Recall from Chapters 3 and 4, the aerodynamic heating 
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errors δQ,t  (from Eq. (3.32)) from Eckert’s reference temperature and 1-D heat transfer discrepancy 

parameters δT,t (from Eq. (3.33)) propagate through to the prediction at each iteration and are 

functions of the changing model inputs. These model discrepancy parameters were calibrated using  

fixed coupling {Q,Tw} and a fixed time step Δt = 0.05s. Using these posterior model discrepancies, 

the reliability-based loss function for model coupling and time-step selection from Section 5.3.1 

is applied to the two-discipline aerothermal prediction through a 3 second time history at the 

leading edge of the Run 30 dome.  

Sections 5.4.1 through 5.4.3 illustrate the performance vs cost tradeoffs when optimizing a) the 

coupling fidelity under a fixed time step, b) the temporal fidelity for a fixed model coupling 

scenario and c) combined coupling and temporal fidelity. 

5.4.1 Case 1: Coupling Fidelity Selection (Fixed Time Step) 

Table 5.2 lists the costs of each individual model considered in the aerothermal example as well 

as the combined simulation cost. While presented in terms of the cost units u, these do reflect the 

true cost proportions where Eckert’s reference temperature method is three times as expensive as 

1-D heat transfer. Figure 5.10 shows the LR-optimized simulations at a fixed time step Δt = 0.05s 

when Clim are imposed as percentages – 25%, 50%, and 100% – of the reference simulation cost 

C0. The reference cost C0 is the cost of using the two-physics prediction{Q,Tw} at Δt = 0.05s over 

a 3 second time history, which is the same as the cost of the calibrated simulation. 

Table 5.2. Aerothermal model costs 

 Cost  

Eckert’s reference temperature method (Q) 3u 

1-D Heat Transfer (Tw) 1u 

Combined (Q and Tw) 4u 

Reference simulation cost, C0 240u 
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Figure 5.10 shows the LR-optimized simulations at a fixed time step Δt = 0.05s when the cost 

limits imposed as percentages – Clim is 25%, 50%, and 100% of the reference simulation cost C0. 

First, the imposed cost limit Clim of 25% of C0 was met at 60u, however, a sacrifice to prediction 

reliability was observed since the fully coupled analysis was only evaluated 6 times over the 3 

second analysis. Under the computational budgets of 50% and 100% of C0, however, both cost 

and prediction reliability targets were met. 

 
Figure 5.10. Aerothermal optimization for variable coupling and fixed time step 

[τ = 1%, Clim  = 20%, 50%, and 100% of C0, and Rlim = 0.9 ] 
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5.4.2 Case 2: Temporal Fidelity Selection (Fixed Coupling) 

Figure 5.11 compares the LR-optimized simulations for a fixed model coupling and a variable 

time step. First, it was observed that all computational budget criteria were met under each 

computational budget – 25%, 50%, and 100% of the reference simulation cost C0 = 240. 

Intuitively, the more restrictive cost limit led the optimization to select a more coarsely discretized 

temporal fidelity. 

 
Figure 5.11. Aerothermal optimization for fixed coupling and and variable time step 

[τ = 5%, Clim  = 20%, 50%, and 100% of C0, and Rlim = 0.9 ] 
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5.4.3 Case 3: Combined Coupling and Temporal Fidelity Selection 

Figure 5.12 demonstrates the developed methodology for the combined coupling and temporal 

fidelity selection. First, it was observed that all simulations maintained the computational budget, 

however, however, the sacrifice to model reliability when integrated with a lower-fidelity model 

is observed Figure 5.11. 

 
Figure 5.12. Aerothermal optimization for variable coupling and time step 

[τ = 5%, Clim  = 25%, 50%, and 100% of C0, and Rlim = 0.9 ] 
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5.5 Conclusion 

Two loss functions were formulated – accuracy-based and reliability-based – and compared on 

their ability to select between coupling fidelity and time steps while maintaining the balance of 

simulation cost vs. prediction reliability. First, the reliability based loss function exhibit better 

convergence properties for time-dependent problems. This reliability-based loss function was 

applied to the aerothermal relationship for coupling and time step selection where optimized 

predictions were shown to maintain reliability under budget constraints for many tested cases. 

Further investigation into the tradeoffs between computational cost and prediction reliability 

for the fully-coupled aerothermoelastic problem are needed. For instance, the time-scale needed 

for aeroelastic predictions are much finer than thermal analyses since heat transfer through a 

structure is a slower-moving phenomenon than structural dynamics. Further advancements could 

include UQ efforts (i.e., surrogate modeling, calibration, sensitivity analysis) that include 

structural dynamics analysis which was not addressed in this dissertation. 
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CHAPTER 6  

CONCLUSION 

6.1 Summary of Contributions 

Motivated by the USAF’s need for quantifying and improving prediction confidence in 

aerothermoelastic simulations, this dissertation addressed several uncertainty quantification 

challenges regarding the calibration and confidence assessment of multidisciplinary models. The 

contributions herein addressed both the forward problem of prediction and the inverse problem of 

model calibration where the challenges are the following: 1) computational expense of 

multidisciplinary simulations, 2) error accumulation across multiple models and over time, and 3) 

uncertainty due to the availability of limited data. 

Thus, this dissertation expanded the current state of the art in UQ to multidisciplinary analyses, 

where previous research predominantly focused on single-physics problems. Of particular interest 

was the challenge of model calibration when errors and uncertainty aggregate across disciplinary 

models. Therefore, this dissertation addressed model error isolation for the inverse problem of 

uncertainty reduction and minimizing the computational expense of multidisciplinary model 

calibration and prediction while maintaining prediction confidence. 

In Chapter 2, the computational expense of multidisciplinary model calibration was improved 

with a segmented Bayesian model calibration strategy. This methodology was developed to guide 

uncertainty reduction efforts when single- and combined-effect experiments are to be integrated 

for model calibration. When applied, the segmented calibration strategy was shown to better isolate 

sources of uncertainty within the calibration segments and the data and model characteristics that 

resulted in limited sacrifice to downstream prediction confidence were identified. The 

methodology was used to calibrate aerodynamic pressure and heat flux model discrepancies. 
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Chapter 3 addressed model discrepancy in coupled, time-dependent simulations where the 

challenge is isolating sources of uncertainty with data on one output QoI. In Objective 2, three 

model discrepancy resolutions were developed (global, step-wise, and partitioned) to account for 

the sources of model error that aggregate through the coupling interfaces and through time. 

Effective parameterization of the model discrepancy was addressed for the application problem of 

calibrating aerodynamic heating and 1-D heat transfer models, and the partitioned discrepancy 

approach was shown to better capture data nonlinearities and demonstrated increased prediction 

reliability in extrapolation. 

The computational challenges of identifying significant sources of uncertainty using global 

sensitivity analysis (GSA) were addressed in Chapter 4. For independent variables, GSA was made 

more efficient using Sobol’ sequences for sampling the input parameter space with an importance 

sampling-based kernel regression method (ISK). Sensitivities were shown to asymptotically 

converge and resulted in fewer model evaluations for independent variables using Sobol’ 

sequences compared to pseudo-random number generators. Efficient GSA methods were then 

further extended in this chapter to dependent variables sensitivity analysis. Specifically, the 

methodology aided post-calibration GSA by using existing input-output samples from model 

calibration directly and did not require additional model evaluations. 

Finally, Chapter 5 addressed model selection in multidisciplinary analyses to identify the 

necessary coupling and temporal fidelities needed to maintain prediction confidence under a 

restricted computational budget. Two loss functions were formulated – accuracy-based and 

reliability-based, where the reliability-based loss function demonstrated better convergence 

properties for time-dependent problems. The developed reliability-based loss function for model 

selection was applied to the aerothermal relationship for coupling and time step selection where 
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the optimized predictions were shown to maintain reliability under budget constraints for many 

tested cases. 

6.2 Future Work 

This dissertation was limited to the aerothermal model components (aerodynamic pressure, 

aerodynamic heating, and heat transfer in Figure 1.1) due to the limitation of the Glass and Hunt 

experiments used for calibration (only pressure and heat flux were measured for a rigid dome, no 

structural deformation). Further research that extends the methods developed herein to the fully-

coupled aerothermoelastic analysis requires data on structural deformation and dynamics.   

Further, other higher fidelity, reduced order, and surrogate models for each discipline have been 

developed in-house by the Structural Sciences Center at AFRL and can be integrated into 

aerothermoelastic analysis. These alternative modeling choices can be integrated into a multi-

fidelity framework to further advance the model selection objective. The combination of multi-

fidelity modeling and additional aerothermoelastic data will significantly advance the 

methodologies proposed in this dissertation towards application to hypersonic vehicle 

components. 
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APPENDIX A 

ANALYTICAL DERIVATIONS OF SEGMENTED AND SIMULTANEOUS 

CALIBRATION POSTERIORS 

The contents of this Appendix are the additional derivations that were used to produce the 

results in Section 2.6. 

Analytical expressions for the posterior distributions for segmented and simultaneous 

calibration of θ1 and θ2 are derived below using the assumption of conjugate distributions [55]. 

Both the priors and posteriors of the calibration parameters are assumed to be normal only for this 

analytical example.  

A.1. Segmented Calibration 

The segmented Bayesian calibration of θ1 is formulated in Eq. (A.1) and the likelihood L(θ1) in 

Eq. (A.2) is derived by assuming normally distributed measurement errors with zero mean and 

known variance V(yD1)[88]. Note that the prediction from the first model is y1(θ1) = θ1, as in Section 

2.6.  

  (A.1) 

  (A.2) 

Multiplying Eq. (A.2) by the normal prior distribution of θ2 with mean E(θ2) and variance V(θ2), 

Eqs. (A.3) and (A.4) are the posterior statistics of θ1 with mean E[θ1|yD1] and posterior variance 

Var[θ1|yD1]. The posterior statistics are derived by assuming normal conjugate prior and posterior 

distributions.  
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The prediction using the next model is y2(θ1, θ2) = cθ1 + θ2, and the distribution of θ1 is now 

aleatory and not updated from Eqs. (A.3) and (A.4) with the new data y2. The Bayesian formulation 

and likelihood function for the subsequent calibration of θ2 with yD2 are shown in Eq. (A.5) and 

(A.6), respectively. and thus the likelihood L(θ2) in Eq. (A.6) includes the posterior distribution of 

θ1|D1 with statistics from Eqs. (A.3) and (A.4). 
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Multiplying Eq. (A.6) by the normal prior of θ2, the posterior mean E[θ2|yD2] and posterior 

variance Var[θ2|yD2] are derived as in Eqs. (A.7) and (A.8), respectively, similar to the derivations 

of Eqs. (A.3) and (A.4). 
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The posterior statistics in Eqs. (A.7) and (A.8) are derived assuming there is zero correlation 

between parameters θ1 and θ2, which is an essential feature of segmented calibration. Next, the 

posterior statistics of θ1 and θ2 are propagated to the prediction of y2 as in Eq. (A.9) and (A.10).  
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A.2. Simultaneous Calibration 

The simultaneous formulation of Bayesian calibration of parameters θ1 and θ2 with data yD1 and 

yD2 is shown in Eq. (A.11) and the joint likelihood is formulated in Eq. (A.12). 
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Using the result in Eq. (A.2), the likelihood in Eq. (A.12) is multiplied by the normal prior of 

θ1 and θ2. The joint posterior means and variances of θ1 and θ2 and correlation coefficient between 

θ1 and θ2 can be derived as follows. 
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Next, the posterior statistics of θ1 and θ2 are propagated to the prediction of y2 to obtain 
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A.3. Segmented Calibration with Shared Parameters θ1 

In this case, θ1 is a shared parameter whose posterior from the first calibration is the prior for 

the second calibration. The Bayesian formulation and the likelihood are shown in Eqs. (A.20) and 

(A.21).  
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Multiplying Eq. (A.21) by the normal prior of θ2 and π(θ1|yD1), the joint posterior means and 

variances of θ1 and θ2 and correlation coefficient between θ1 and θ2 are derived as follows. 
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