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CHAPTER I 

 

INTRODUCTION 

 

The Neurotransmitter Dopamine and Dopaminergic Pathways 

Dopamine (3-hydroxytyramine; DA) is a catecholamine neurotransmitter 

that is a precursor to the synthesis of the neurotransmitter norepinephrine (NE).  

DA in synthesized from tyrosine by a two step process, where tyrosine 

hydroxylase (TH) is the rate-limiting enzyme in the reaction.  Being that DA is a 

precursor to NE synthesis, it was originally thought that it did not have signaling 

properties on its own, but instead was only an intermediate to NE production.  

However, in 1958, Carlsson and colleagues demonstrated that DA had signaling 

properties on its own.  Using 3,4-dihydroxyphenylalanine (DOPA), the precursor 

to DA, they showed that in rabbits depleted of catecholamines by reserpine, 

DOPA treatment could reverse the reserpine-mediated effects.  Importantly, this 

reversal corresponded to an increase in DA, not NE (Carlsson, Lindqvist et al. 

1958).  Later work pointed to enrichments of DA in certain brain regions, namely 

the basal ganglia (Bertler and Rosengren 1959).  Soon DA brain regions were 

mapped, displaying several distinct pathways of DA signaling (Fuxe 1965; 

Ungerstedt 1971).  There are four main dopaminergic pathways: the 

tuberoinfundibular pathway, the nigrostriatal pathway, the mesocortical pathway, 

and the mesolimbic pathway (Figure 1).  The tuberoinfundibular pathway, which 
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Figure 1. Pathways of Dopamine Signaling in the Brain.  Illustration of major DA projections in 
the central nervous system. The nigrostriatal pathway originates in the substantia nigra and 
projects to the dorsal striatum. The mesolimbic and mesocortical projections originate in the 
ventral tegmental area and project both to ventral striatum and areas in the prefrontal cortex, 
respectively. The final system is the tuberoinfundibular system which projects from the 
hypothalamus to the pituitary.  This image was obtained from cnsforum.com. 

   

http://www.cnsforum.com/content/pictures/imagebank/hirespng/Neuro_path_DA.png
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refers to a group of DA neurons in the arcuate nucleus of the hypothalamus that 

project to the median eminence, controls prolactin secretion from the anterior 

pituitary gland (Weiner and Ganong 1978).  The nigrostriatal pathway consists of 

neurons whose cell bodies originate in the substantia nigra and terminate in the 

dorsal striatum.  This area is implicated in movement since degeneration of these 

projections has been shown to cause Parkinson’s Disease; characterized by 

tremors, rigidity, and overall improper movement (Barbeau 1962).  Recently it 

has been demonstrated that this region is also important in feeding behavior  

(Volkow, Wang et al. 2002; Sotak, Hnasko et al. 2005; Robinson, Rainwater et al. 

2007).  Next, dopaminergic neurons in the mesocortical pathway project from the 

ventral tegmental area (VTA) to the frontal lobes of the cerebrum, particularly the 

prefrontal cortex, and are involved in cognition and emotion.  Lastly, neurons of 

the mesolimbic pathway also originate in the VTA but instead innervate the 

ventral striatum, also known as the nucleus accumbens.  This pathway is 

implicated in reward and pleasure. 

DA is involved in a number of physiological and behavioral processes 

including cognition, locomotion, mood, motivation, and reward.  Abnormalities in 

the central dopaminergic systems contribute to several neuropsychiatric 

diseases, including Parkinson’s disease, attention-deficit hyperactivity disorder 

(ADHD), schizophrenia, bipolar disorder, binge eating disorder, and addiction  

(Wise 1998; Horschitz, Hummerich et al. 2005; Kienast and Heinz 2006; Volkow, 

Wang et al. 2007; Davis, Levitan et al. 2008; Koob and Le Moal 2008).  In 

particular, the nigrostriatal system is thought to give us the motivation to seek 
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basic needs, such as food, while the mesolimbic pathway enables us to feel 

pleasure from them (Palmiter 2007).  Our eating behavior and our desire for food 

is tied in closely with these systems, which receives input from areas of the brain 

that monitor our nutritional need for food, such as the hypothalamus (Obici, Feng 

et al. 2002; Obici, Zhang et al. 2002; Niswender and Schwartz 2003; Schwartz 

and Porte 2005).  Therefore, it is not surprising that dysfunction in DA signaling 

has been linked to eating disorders and obesity (Wang, Volkow et al. 2001; 

Shinohara, Mizushima et al. 2004; Chen, Yang et al. 2008). 

As such, DA dysregulation looks to be the basis of several neurological 

disorders.  In order to develop effective pharmacotherapeutic approaches, it is 

critical to understand dopaminergic neurotransmission, the regulatory factors 

governing it, and how dysreguation of these factors can contribute to disease. 

 

Dopaminergic Neurotransmission and the Dopamine Transporter 

Several factors influence dopaminergic neurotransmission, such as the 

amount of DA synthesized and released, the number of DA receptors (DRs) at 

the synapse, and the length of time DA spends in the synaptic space.  As noted 

above, DA is synthesized through a series of enzymatic reactions, beginning with 

the hydration of amino acid tyrosine to DOPA via TH. DOPA is decarboxylated by 

aromatic amino acid decarboxylase to produce DA (Figure 2).  The transmitter is 

then packaged into synaptic vesicles by a vesicular monoamine transporter 

(VMAT) and released at nerve terminals into the synapse upon stimulation.  

Released DA then binds to DRs to elicit a response in the  
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Figure 2.  Biosynthesis of dopamine.  Synthetic enzymes and their changes to each product 
are labeled in green and blue, respectively.  This image was obtained from 
www.neurosci.pharm.utoledo.edu. 
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postsynaptic cell.  The released DA is then cleared from the synapse primarily by 

the dopamine transporter (DAT), where it re-enters the presynaptic neuron to be 

recycled and repackaged into vesicles (Figure 3). 

An important component in DA signaling is the receptor itself.  DRs are a 

family of G protein-coupled receptors.  There are five subtypes, which are divided 

into two groups.  D1-like receptors, comprising the D1 and D5 receptors, are 

coupled to G proteins which stimulate adenylyl cyclase and cyclic adenosine 

monophosphate (cAMP) production, whereas D2-like receptors, comprising the 

D2 (D2R), D3 (D3R), and D4 (D4R) receptors, couple to Gi/o proteins and result 

in the inhibition of adenylyl cyclase and suppression of cAMP production 

(Kebabian and Calne 1979; Stoof and Kebabian 1981).  D1-like receptors, by 

stimulating cAMP production, are excitatory, whereas activation of D2-like 

receptors is inhibitory.  There are two isoforms of the D2R, a short form found 

presynaptically, and a long form found postsynaptically(Usiello, Baik et al. 2000).  

In fact, D2R is the main presynaptic autoreceptor of the dopaminergic system 

(Mercuri, Saiardi et al. 1997).  D2Rs are expressed throughout DA regions of the 

brain.  D3Rs, another member of the D2-like receptor family, also inhibit cAMP 

production.  They are found postsynaptically, and have a higher density in limbic 

areas of the brain, such as the nucleus accumbens (Bouthenet, Souil et al. 

1991).  The diversity of DRs expressed at a given synapse help to define the 

response elicited when DA is released.  Furthermore, this response is not only 

dependent on the receptor  
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Figure 3.  Diagram of a dopaminergic synapse.  Enlarged view of a typical dopaminergic 
synapse.  The presynaptic terminal is located at the top and the postsynaptic neuron is on the 

bottom.  DOPA: 3,4-dihydroxyphenylalanine, DOPAC: 3,4-dihydroxyphenylacetic acid, D1R: type 
1 dopamine receptor, D2R: type 2 dopamine receptor, MAO: monoamine oxidase.  The dopamine 
transporter is shown on the presynaptic terminal in purple.  The D2R subtype represents the main 
presynaptic autoreceptor of the dopaminergic system.  The source for the image is 
http://www.nibb.ac.jp/annual_report/2004/img/240-01.jpg  
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type(s) at the synapse, but also the number of receptors present, lending another 

element to regulation of DA neurotransmission (Figure 3).   

Termination of DA neurotransmission is another important component for 

maintaining proper dopaminergic tone.  DA is degraded enzymatically by 

monoamine oxidase B (MAOB) and catechol-o-methyl transferase (COMT) 

(Figure 4), but enzymatic degradation does not account for inactivation of DA in 

the synapse.  Instead, termination of DA neurotransmission is regulated by DAT.  

DAT allows DA to be cleared out of the synapse and taken up into the 

presynaptic bouton (Giros and Caron 1993).  The importance of this transport 

system was demonstrated by the creation of DAT knockout mice, where DA 

clearance is significantly slower than in wild type mice. DA remained in the 

synapse at least 100 times longer than the control animals (Giros, Jaber et al. 

1996; Gainetdinov, Jones et al. 1999), leading these animals to be hyperactive.  

In addition to its main role, DAT also provides a supply of DA for repackaging into 

vesicles for future release.  This DAT-mediated recycling is the main source of 

DA for vesicular release in the neuron, thus decreasing the amount of synthesis 

needed to replenish vesicular stores of DA (Giros, Jaber et al. 1996).  Indeed, 

when stimulated, the DA neurons of DAT knockout mice release significantly less 

DA than control animals (Giros, Jaber et al. 1996; Gainetdinov, Jones et al. 

1999).  It is thought that in DAT knockouts, there is a lack of DA available for 

packaging into vesicles, and consequently a reduction in the amount of DA 

available for vesicular release.    

Furthermore, D2R expression and activity are reduced in mice lacking the 
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Figure 4.  Enzymatic degradation of dopamine.  Metabolic enzymes, COMT and MAO, that 
degrade unpackaged DA in synaptic areas.   
 

 

 

 

 

 



10 

 

DAT (Jones, Gainetdinov et al. 1999).  These changes demonstrate that while 

DAT plays an important role in directly regulating DA signaling, it also influences  

several components of the dopaminergic synapse.  Therefore changes in the 

activity and functioning of DAT can markedly disrupt DA neurotransmission.  

Due to the important role of DAT in DA homeostasis, loss of proper 

function and regulation of the transporter has been implicated in several DA-

related diseases.   Decreased striatal DAT binding has been reported in first-

episode schizophrenic patients (Mateos, Lomena et al. 2005), clinical depression 

(Laasonen-Balk, Kuikka et al. 1999), and obese individuals (Chen et al. 2008).  

Differences in the genomic variable number tandem repeat have been identified 

as risk factors for bipolar disorder (Greenwood, Alexander et al. 2001).  

Furthermore, genetic polymorphisms in the DAT coding region have been also 

associated with ADHD (Mazei-Robison, Couch et al. 2005; Yang, Chan et al. 

2007; Binda, Dipace et al. 2008), as well as eating disorders (Shen, Hagino et al. 

2004).   DAT is also well-known for its role in addiction, including substance 

abuse of psychostimulants such as amphetamine (AMPH) (Giros, Jaber et al. 

1996), which act on the transporter to elicit their behavioral effects.  Due to its 

role in several neurological disorders and addiction, many researchers have 

focused on DAT structure, function, and regulation.   

 

The Dopamine Transporter Structure and Function 

The presence of a transport mechanism for biogenic amines was initially 

reported in the 1960s by Julius Axelrod.  In 1961, Hertting and Axelrod showed 



11 

 

that that NE could be accumulated in nerve endings, and released upon 

stimulation (Axelrod, Whitby et al. 1961).  Further characterization of 

catecholamine uptake regions in the brain revealed that both NE and DA could 

be accumulated by distinct regions of the brain, and that this accumulation could 

be inhibited by co-application of either tricyclic antidepressants or drugs of 

abuse, including cocaine and amphetamine (AMPH) (Glowinski and Axelrod 

1964; Ross and Renyi 1967).   

DAT is a member of the Na+/Cl--dependent neurotransmitter transporter 

family (SLC6) that contains high affinity transporters for NE, serotonin (5-HT), γ-

aminobutyric acid (GABA), glutamate, and glycine (Kilty and Amara 1992; Torres, 

Gainetdinov et al. 2003).  In 1991, DAT was cloned (Giros, el Mestikawy et al. 

1991; Kilty, Lorang et al. 1991; Shimada, Kitayama et al. 1991; Usdin, Mezey et 

al. 1991), and analysis of the human DAT (hDAT) primary sequences revealed 

that the DAT cDNA encodes a protein of 620 amino acids.  Hydropathy analysis 

predicts the presence of twelve transmembrane domains (TMDs) with 

intracellular amino and carboxyl termini (Figure 5).  DAT is closely related to 

other catecholamine transporters, namely the NE transporter (NET), with which it 

shares 66% sequence identity (Blakely, Defelice et al. 2005).  The structure of 

DAT also supports the notion that it is regulated by several signaling molecules.  

The termini of the transporter contain several serine, threonine, and tyrosine 

residues, allowing for regulation via phosphorylation.  In fact, some of these 

residues are found in the consensus sequences for kinases  
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Figure 5.  Illustration of the dopamine transporter.  The human dopamine transporter is an 
integral membrane protein that contains twelve transmembrane domains (TMDs) with intracellular 
N- and C-termini, a large extracellular loop between TMDs 3 and 4 with three N-linked 
glycosylation sites, and multiple phosphorylation sites located on intracellular termini and loops.  
Putative glycosylation sites are indicated with Y-shaped symbols on extracellular sequences. 
Possible phosphorylation sites are indicated with boxes for various protein kinases: gray boxes, 
protein kinase A; orange boxes, protein kinase C; white boxes, calcium-calmodulin protein 

kinase. This image was obtained from (Siegal 1999). 
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such as protein kinase C (PKC), protein kinase A (PKA), and calcium/calmodulin-

dependent kinase II (CaMKII) (Giros and Caron 1993).  Additionally, there are 

three glycosylation sites in the large second extracellular loop (ECL) between 

TMDs 3 and 4.   

Chimeric studies conducted on DAT and NET in heterologous expression 

systems initially defined DAT function as it related to structure.  These studies led 

to the hypothesis that TMDs 1-3 and 9-12 were important for the affinity of 

substrates and sodium/chloride dependence, where TMDs 4-8 were involved in 

transporting the substrate and inhibitor binding (Buck and Amara 1994; Giros, 

Wang et al. 1994; Syringas, Janin et al. 2000).  Mutagenesis studies have also 

helped to reveal the structure/function relationship of DAT.  For example, 

mutation of glycosylation sites on ECL 2 results in a transporter that is expressed 

at the plasma membrane, but has a reduction in DA uptake, as well as an 

increase in sensitivity to inhibitors (Li, Chen et al. 2004).  This predicts that 

glycosylation on ECL2 is important to the transport process.   

A high resolution crystal structure of the leucine transporter (LeuT), a 

prokaryotic sodium-dependent transporter with approximately 25% homology to 

DAT and related neurotransmitter transporters, is reported (Yamashita, Singh et 

al. 2005).  The LeuT is a fellow member of the SLC6 gene family and contains all 

12 TMDs.  Therefore, its structure has served as a point of reference for the 

structure/function relationship of DAT,  allowing for the initial hypotheses of DAT 

topology to be confirmed (Yamashita, Singh et al. 2005).  In fact, a recent study 

used LeuT as a reference for determination of the binding sites of cocaine and 
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DA in DAT.  Beuming and collegues developed models of DAT based on the 

LeuT structure to predict a binding site for cocaine and dopamine between TMD 

1, TMD 3, TMD 6, and TMD 8 (Beuming, Kniazeff et al. 2008)  They then 

confirmed these predictions experimentally using site directed mutagenesis and 

chemical cross-linking methods (Beuming, Kniazeff et al. 2008).  This study, 

which was possible only with the hi-resolution LeuT structure, demonstrates that 

cocaine utilizes the same binding site as DA. This work, which was aided with the 

LeuT structure, is important in helping develop therapies for cocaine abuse and 

addiction. 

These structural studies have helped to further establish to a model of 

transporter action that was first proposed in 1966, known as the alternating 

access model (Jardetzky 1966), where external and internal gates alternately 

allow access to the transporter channel (Figure 6).  First the gate to the 

extracellular space opens, allowing in the substrate and cotransported ions.  This 

gate then closes, allowing the gate facing the intracellular space to open and 

release its cargo, thus ―alternating‖ the access of the transporter channel 

between the outside and inside of the cell. This event is powered by the 

electrochemical gradient generated by the plasma membrane Na+/K+-ATPase 

(Torres, Gainetdinov et al. 2003).  DA uptake by DAT, therefore, is reliant on both 

sodium and chloride, where two sodium ions and one chloride ion are co-

transported with each DA molecule.  It is important to note that stoichiometry  
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Figure 6.  Dopamine transporter uptake action.  The model for how DA uptake occurs is via 
the alternating access model.  (A) The extracellular facing conformation of the transporter binds 
substrate and driving ions located in the extracellular space.  (B) Following a conformational 
change, the now intracellular facing conformation of the transporter releases the cargo into the 
cytosol.  The transporter is also thought to act as a channel, as demonstrated in (C).  Courtesy of 
Dr. Kris Kahlig, Vanderbilt University. 
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predicts that this transport process should be electrogenic, with a net 

translocation of two positive charges per transport cycle.  Due to the flux in 

electrical charge, this phenomenon can be measured by electrophysiology in a 

single cell expressing DAT, providing a useful tool in studying the transporter 

(Sonders, Zhu et al. 1997; Sitte, Huck et al. 1998; Khoshbouei, Wang et al. 2003; 

Pifl, Rebernik et al. 2004).  Interestingly, these studies have found that the inward 

current is larger than the current predicted by the charge-to-flux ratio of the proposed 

stoichiometry (Lester, Cao et al. 1996; Sonders and Amara 1996).  This suggests an 

uncoupled conductance.  Therefore, the alternating access model cannot fully 

account for transporter actions.   

Interestingly, some recordings taken of DAT currents have exhibited a large 

flux of DA crossing the membrane for a very brief amount of time, providing support 

for an alternative mode of action (Galli, Blakely et al. 1996; Galli, Blakely et al. 

1998; Kahlig, Binda et al. 2005).  This has led to one hypothesis to account for the 

uncoupled conductance of DAT; that it can act, albeit very briefly, as a channel.   

This channel-like mode is similar to the open conformation of a ligand-gated ion 

channel, consisting of large fluxes of substrate molecules and ions crossing the 

membrane (Figure 6).  Due to the large number of molecules that move across 

the membrane very quickly, this state is of interest, even if it only occurs 

infrequently.  Other functions have also been discovered by studying the effect  

of psychostimulants on the transporter.  AMPH, for example, is shown to promote 

a channel-like state of DAT that contributes to DA efflux (Kahlig, Binda et al. 
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2005).  The ability of DAT to function in several modes  demonstrates the 

dynamic nature of this protein. 

 

Psychostimulants and the Dopamine Transporter 

DA has a well established role in pleasure and reward.  It is not surprising 

then that this system is the target of several psychostimulant drugs, many of 

which elicit their effects through DAT.  These drugs are mainly viewed as abuse 

liabilities, they produce rewarding effects, alter DA tone, and lead to drug 

addiction.  DAT is a target for these drugs, which include cocaine, 

methamphetamine, and AMPH (Kuhar, Ritz et al. 1991; Zaczek, Culp et al. 1991; 

Giros and Caron 1993). They act to disrupt DAT’s ability to properly function, 

causing increases in extracellular DA that stimulate postsynaptic receptors, 

thereby enhancing neurotransmission.  These drugs can broadly be 

characterized through their mode of action.  For example, one mechanism is to 

block DAT directly.  This is the mode used by the drug cocaine.  By directly 

blocking uptake of DA, cocaine allows for an increase in synaptic levels of DA and 

enhanced DA neurotransmission (Ross and Renyi 1967; Giros, el Mestikawy et al. 

1991).   Several lines of evidence have also demonstrated that cocaine alters the 

surface expression of DAT.  Repeated cocaine administration was shown to 

increase DA uptake in rats (Ng, Hubert et al. 1991; Parsons, Schad et al. 1993), and 

acute exposure to 10 µM cocaine for 30 minutes increased DAT transport activity 

and DAT cell surface expression (Daws, Callaghan et al. 2002).  Studies have also 

examined the impact of chronic cocaine treatment on DAT by looking at postmortem 
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tissue from cocaine addicts.  Striatal synaptosomes obtained from such tissue 

display a significant increase in both the Bmax of  binding for the cocaine analog, WIN 

35428, as well as the Vmax for DA uptake (Mash, Pablo et al. 2002).   Furthermore, 

reports have shown increased binding of WIN 35428 to DAT  in postmortem brains 

of addicts (Little, Kirkman et al. 1993; Staley, Hearn et al. 1994; Little, Zhang et al. 

1999).  These studies indicate a functional upregulation of DAT following chronic 

cocaine abuse.   

Another important method of action by psychostimulant drugs is to cause 

effux of DA via DAT into the synapse.  These drugs act as a substrate of DAT, 

competing with DA for uptake.  AMPH is perhaps the most well-known drug to 

utilize this mechanism.  Once inside the cell, AMPH acts to reverse the 

conformation of the transporter, causing efflux of DA into the synapse (Fischer 

and Cho 1979; Pierce and Kalivas 1997).  This allows for the drug’s effects by 

acting as an indirect agonist of DRs, thus stimulating the postsynaptic cell and 

increasing DA neurotransmission.   

Increases in DA signaling by either blocking DAT or by DAT-mediated DA 

efflux in limbic areas is thought to mediate the rewarding properties of 

psychostimulant drugs (Koob and Bloom 1988). Furthermore, AMPH-evoked DA 

efflux reveals another functional aspect of DAT beyond uptake of DA.  

Modifications to DAT function can be examined by changes to AMPH-induced 

DA efflux.  For example, in order for AMPH to elicit its effects, DAT must be on 

the cell surface.  Therefore alterations in the surface level of DAT will also 

change the amount of AMPH-induced DA efflux, which allows for another method 
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to examine alterations in DAT function.  As such, beyond its effects as a 

psychostimulant drug, AMPH can be a useful tool to examine changes to DAT 

function. 

AMPH effects include several behavioral changes, such as restlessness, 

reduced appetite, and hyperlocomotion.  These drug actions are believed to 

occur due to AMPH-induced increase in extracellular DA.    Consistent with this 

notion, DAT knockout mice do not show an increase in locomotion when 

administered AMPH (Giros, Jaber et al. 1996).  These findings demonstrate that 

DAT plays a crucial role in the hyperlocomotor effects of AMPH, and indicate that 

alterations in DAT function or expression can affect the ability of AMPH to elicit 

its behavioral effects.  

In addition to causing efflux and inducing behavioral changes such as 

hyperlocomotion, AMPH alters the surface expression of DAT, a phenomenon 

that has been shown by several groups (Fleckenstein, Haughey et al. 1999; 

Saunders, Ferrer et al. 2000; Carvelli, Moron et al. 2002; Gulley, Doolen et al. 2002; 

Kahlig, Javitch et al. 2004; Garcia, Wei et al. 2005; Johnson, Furman et al. 2005; 

Boudanova, Navaroli et al. 2008).  Application of AMPH to DAT transfected cells for 

one hour reduced the rate of DA uptake and also decreased the surface expression 

of DAT as measured by biotinylation (Saunders, Ferrer et al. 2000).  Similar results 

were obtained for the endogenous substrate, DA, as well (Saunders, Ferrer et al. 

2000).  Furthermore, measurements of a single transporter current after AMPH 

application demonstrated that the current itself was unaltered, confirming that 

changes to DA uptake were due to a redistribution of DAT away from the plasma 
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membrane (Kahlig, Javitch et al. 2004).  Recently, live cell imaging was used to 

examine changes to DAT surface expression after rapid treatment (up to one 

minute) of AMPH in neuroblastoma N2A cells expressing DAT.  These studies 

indicated that intially, AMPH acts to increase the expression of DAT on the cell 

surface, as does the endogenous substrate DA (Furman, Chen et al. 2009).  

Prolonged exposure, however, led to  a decrease of DAT cell surface expression.  

Importantly, these results demonstrate that endogenous, as well as exogenous, 

substrates of DAT regulate its expression on the plasma membrane in a biphasic 

manner. 

Due to the changes that occur to DA systems with chronic use, these 

drugs are often thought of in a negative manner and as an abuse liability.  

However, at times they have proved useful.  AMPH is used frequently to treat 

ADHD, under the tradename Adderall.  Also, the unique properties and functions 

they convey on DAT and DA transmission provide useful tools for studying the 

transporter.  Still, most exogenous compounds that act on the transporter are, in 

fact, addictive and can have many negative consequences with frequent use.   

 

DAT Regulation by Interacting Proteins 

Being that DAT has an important role in DA neurotransmission, it is not 

surprising that it is tightly regulated.  Several proteins that regulate DAT also 

physically interact with it, forming protein complexes, and much work continues 

to further define these.  To date, some identified DAT interacting proteins are, but 

not limited to, protein interacting with C kinase (PICK1) (Torres, Yao et al. 2001), 
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Hic5 (Carneiro, Ingram et al. 2002), the catalytic subunit of protein phosphatase 2A 

(PP2A) (Bauman, Apparsundaram et al. 2000), the PKC isoforms β1 and β2 

(Johnson, Guptaroy et al. 2005), the receptor for activated C-kinases (RACK1) 

(Lee, Kim et al. 2004), SYN-1a (Lee, Kim et al. 2004; Binda, Dipace et al. 2008), 

CaMKII (Fog, Khoshbouei et al. 2006; Wei, Williams et al. 2006), and D2R (Lee, Pei 

et al. 2007; Binda, Dipace et al. 2008).    

PICK1 was found to interact with DAT via the PDZ recognition motif found on 

the C-terminal tail on the transporter.  PKC, a well known modulator of DAT surface 

expression, also interacts with PICK1, leading to the possibility that PICK1 serves at 

an adaptor protein for these two molecules (Torres, Yao et al. 2001).  Interestingly,  

RACK1 have been shown to interact with the DAT’s N-terminus by a yeast-two 

hybrid assay (Lee, Kim et al. 2004).  RACK1 also interacts with PKC, as well as 

several other kinases, and therefore may serve to facilitate kinase regulation of DAT 

by PKC and other kinases on the N-terminus (Ron and Mochly-Rosen 1994; 

Rodriguez, Ron et al. 1999).  Therefore, both of these interacting proteins, PICK1 

and RACK1, may help to facilitate PKC modulation of DAT at two distinct regions on 

the transporter.  This indicates that PKC may modulate DAT in several ways, 

depending on the area of DAT available for binding and the interacting protein 

available to it.   

SYN-1a is another protein identified to interact with DAT (Lee, Kim et al. 

2004).  This is of interest due to work on SYN-1a and DAT family members, 

including the GABA transporter, GAT1, and NET.  SYN-1a interacts  with the N-

terminus of GAT1 and modulates the translocation of the transporter (Wang, Deken 
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et al. 2003), and is also shown to interact with NET (Sung, Apparsundaram et al. 

2003), suggesting that it might serve a similar function in regulation of DAT.  Recent 

studies have shown an increase in association between SYN-1a and DAT with 

AMPH treatment (Binda, Dipace et al. 2008), allowing for a possible role for SYN-1a 

in AMPH-mediated DAT trafficking. 

In addition to the proteins mentioned above, recent work has also identified 

D2R to associate with DAT.  Disruption of this interaction has been shown to 

decrease DA uptake (Lee, Pei et al. 2007).  The short isoform of D2R functions as 

an inhibitory autoreceptor on the presynaptic cell, with a localization similar to DAT 

(Centonze, Usiello et al. 2002).  Previous work has demonstrated that D2R 

stimulation may be regulating DAT through downstream activation of second 

messenger signaling cascades (Mayfield and Zahniser 2001).  For example, Bolan 

and colleagues demonstrated that D2R stimulation causes enhanced substrate 

clearance through an increase in DAT cell surface expression, which was 

dependent upon extracellular signal-regulated kinases 1 and 2 (ERK 1/2), but 

independent of phosphatidylinositol 3-kinase (PI3K) (Bolan, Kivell et al. 2007).  

Lee and colleagues reported the first evidence of a direct association between 

DAT and D2R, and that disruption of this interaction affects DAT function (Lee, 

Pei et al. 2007).  These studies suggest that there is a definite interplay, direct 

and indirect, between presynaptic D2Rs and DAT to help maintain DA 

homeostasis.   

It is also quite interesting to note that DAT is thought to interact with itself.  

Cross linking and mutagenesis studies, as well as studies using fluorescence 
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resonance energy transfer (FRET) imaging, demonstrated that DAT forms an 

oligomer (Hastrup, Karlin et al. 2001; Hastrup, Sen et al. 2003; Sorkina, Doolen et 

al. 2003; Torres, Carneiro et al. 2003).  Recently, the substrates DA and AMPH 

have been shown to reduce DAT oligomerization (Chen and Reith 2008), lending 

yet another opportunity for regulation of DAT function.  Further work is needed to 

examine how second messager systems may also play a role in altering DA 

uptake by changing the ability of DAT to form oligomers.   

 

Regulation of Dopamine Transporter Surface Expression   

DA uptake capacity depends on the turnover rate of an individual 

transporter as well as on the number of functional transporters expressed at the 

plasma membrane.   DAT function is dependent upon expression on the plasma 

membrane, and as such the surface expression of the transporter is a tightly 

regulated mechanism for controlling DA neurotransmission.  Several signaling 

molecules have been identified as regulators of DAT cell surface expression, 

including PKC, PKA, ERK1/2, and members of the insulin signaling family (i.e. 

phosphoinositol 3 kinase (PI3K) and protein kinase B (PKB, or Akt)) (Batchelor and 

Schenk 1998; Carvelli, Moron et al. 2002; Page, Barc-Pain et al. 2004; Garcia, 

Wei et al. 2005; Bolan, Kivell et al. 2007).  

Possibly the most well characterized of these pathways is PKC modulation of 

DAT.  PKC activation by phorbol esters has been shown to cause trafficking of the 

transporter away from the plasma membrane, resulting in reduced DA uptake (Huff 

et al. 1997; Vaughan et al. 1997; Zhang et al. 1997; Zhu et al. 1997; Pristupa et 
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al. 1998; Daniels and Amara 1999; Melikian and Buckley 1999; Granas et al. 

2003; Loder and Melikian 2003; Kahlig et al. 2004; Foster et al. 2008).  This 

PKC-induced trafficking of DAT from the plasma membrane to intracellular 

compartments is a clathrin-mediated and dynamin-dependent endocytic 

mechanism (Daniels and Amara 1999; Sorkina, Hoover et al. 2005; Foster, 

Adkins et al. 2008).  Beyond this work, PKC has been also shown to modulate the 

functionality of DAT by shifting it to a state that is more likely to result in DA efflux 

(Kantor and Gnegy 1998; Kantor, Hewlett et al. 2001; Johnson, Guptaroy et al. 

2005).  This work displays another aspect of the role of PKC in altering DAT 

function by supporting the reversal of DA transport.   

Although it was originally believed that phosphorylation of DAT by PKC 

was required for internalization (Huff, Vaughan et al. 1997; Vaughan, Huff et al. 

1997; Cowell, Kantor et al. 2000; Chang, Lee et al. 2001; Foster, Pananusorn et 

al. 2002; Granas, Ferrer et al. 2003; Foster, Adkins et al. 2008), recent lines of 

evidence have shown that this is not the case.  Truncation of the PKC consensus 

sequence in the DAT N-terminus abolishes PKC-induced phosphorylation of DAT, 

yet this form of the transporter is still able to traffic in response to phorbol ester 

treatment (Granas, Ferrer et al. 2003).  These data suggest that PKC regulation of 

DAT may involve separate phosphorylation and trafficking components.  In fact, 

recent work by Foster and collegues demonstrated that, with PKC activation, the 

loss of surface DAT occurred only in concanavalin A-sensitive, non-raft 

membranes (Foster, Adkins et al. 2008).  However, treatment with methyl-β-

cyclodextrin, which destabilizes lipid rafts by depleting cholesterol, inhibited PKC-
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induced downregulation of DAT activity but still allowed for internalization of DAT 

(Foster, Adkins et al. 2008).  In addition, DAT phosphorylation was found to be at 

a significantly greater level in cholesterol-rich lipid raft microdomains.  These 

findings suggest that regulation by PKC in the non-raft DAT population occurs 

through trafficking-dependent processes.  Conversely, in lipid rafts DAT 

regulation by PKC is achieved through trafficking-independent processes (Foster, 

Adkins et al. 2008).  Importantly, this study suggests that the localization of DAT 

is important in determining how it is regulated.  Further work is needed to look at 

the importance of DAT localization and how regulation of these distinct 

populations affects the transporter.   

Notably, recent work has revealed another interesting aspect of regulation 

of DAT trafficking.  Furman and collegues explored the changes to DAT cell 

surface expression over time after exposure to a substrate, either DA or AMPH, 

using live cell confocal imaging and biotinylation assays in neuroblastoma N2A 

cells transfected with DAT.  These investigations defined a biphasic regulation of 

DAT cell surface expression in response to substrate binding.  Initially, within 

seconds, there is a rapid increase of DAT on the cell surface, beginning at 10 

seconds and going to 2 minutes.  This is followed by a decrease of cell surface 

DAT upon continued exposure to the substrate (Furman, Chen et al. 2009).   

Importantly, further work by this group also showed that inhibition of PKCβ 

blocked the initial rapid increase of cell surface DAT after exposure to DA or 

AMPH (Chen, Furman et al. 2009; Furman, Chen et al. 2009).  Furthermore, 

PKCβ knockout mice were found to have a reduction in cell surface DAT 
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expression compared to wild type mice, while there was no change to the total 

levels of DAT protein between the two genotypes (Chen, Furman et al. 2009).  In 

addition, the rapid increase in DAT cell surface expression upon substrate 

treatment seen in wild type mice was not observed in PKCβ knockout mice 

(Chen, Furman et al. 2009).  Overall, these studies indicate that there are two 

phases of DAT trafficking in response to substrate binding, and that the initial 

rapid phase is dependent upon PKCβ.  This work further displays the complexity 

to the regulation of DAT function via transporter trafficking. 

PI3K signaling in regulating DAT Surface Expression.  Much work has 

shown that DAT activity is modulated by multiple signal transduction pathways, 

and often this regulation involves modifying DAT trafficking and expression at the 

plasma membrane.  The PI3K signaling pathway has been extensively studied 

for its role in modulating the surface expression of DAT.  PI3K phosphorylates the 

D-3 position of phosphoinositol-2 phosphate (PI(4,5)P2)to yield phosphoinositol-3 

phosphate (PI(3,4,5)P3).  The generation of PI(3,4,5)P3 at the plasma membrane 

upon the activation of PI3K allows for translocation of Akt (Taha and Klip 1999; 

Bondy and Cheng 2004).  This localization of Akt to the plasma membrane is critical 

for its activation (Figure 7).  Once bound to PI(3,4,5)P3, Akt is phosphoylated by 

phosphoinositide dependent kinase 1 (PDK1), and may go on to signal to several 

downstream effectors (Yang, Tschopp et al. 2004). 

  In 2002, work by Carvelli and collegues showed that in hDAT expressing 

heterologous cells, inhibition of PI3K by LY294002 led to a decrease in surface 
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expression of hDAT.  The investigators also reported a decrease in DA uptake 

with LY294002 treatment, not only in cells but also in rat striatal  

 

 

 

 

 

 

 

 

 
Figure 7.  Activation of Akt by Insulin.  Upon activation of the insulin receptor (IR), insulin 
receptor substrate (IRS) acivates  phosphoinositol-3-kinase (PI3K).  PI3K goes on to 
phosphorylate phosphoinositol-2 phosphate (PIP2), converting it to phosphoinositol-3 phosphate 
(PIP3) and allowing translocation of Akt to the plasma membrane, leading to its subsequent 
activation.  Akt is now an active kinase and can phosphorylate downstream targets.  This figure 
was obtained from http://www.hsph.harvard.edu/faculty/brendan-
manning/images/Insulin_Signaling.jpg 
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synaptosomes.  These effects are dynamin dependent as DA uptake and DAT 

cell surface expression after LY294002 treatment was inhibited by expression of 

a dominant negative mutant of dynamin I.   

PI3K is activated by receptor tyrosine kinase stimulation.  Importantly, 

RTK inhibitors have been shown to downregulate DAT activity and plasma 

membrane expression (Zahniser and Doolen 2001), thus fitting the  model that 

PI3K activation through RTKs causes an increase in surface expression of DAT.  

Carvelli and coworkers also demonstrated that incubation with a RTK activator, 

insulin, showed increases in DAT transport capacity and surface levels (Carvelli, 

Moron et al. 2002).   

As mentioned earlier, further downstream effects of PI3K signaling include 

the activation of Akt (Taha and Klip 1999).  Akt is an important component in insulin 

and growth factor signaling pathways, and is thought to regulate several cellular  

functions including cell growth, glucose uptake and metabolism, as well as 

apoptosis (Hanada, Feng et al. 2004).  Three isoforms of Akt have been identified 

(Hanada, Feng et al. 2004), all of which contain a pleckstrin homology domain that 

interacts with PI(3,4,5)P3.  This interaction allows for phosphorylation of Akt at 

residues threonine-308 and serine-473, that are required for full Akt activation 

(Hanada, Feng et al. 2004).  Akt1 and Akt2 are ubiquitously expressed throughout 

the body, but Akt3 is only found to be expressed in the brain and testes.  Insights 
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into the specificity of these isoforms in Akt-related functions such as glucose 

homeostasis and cell growth, have been provided by genetic studies where each 

isoform, or combinations of them, have been genetically deleted.   Akt1 null mice 

knocked out show impaired growth, but similar glucose metabolism and 

maintenance of insulin levels as their wild type counterparts (Cho, Thorvaldsen et al. 

2001).  The opposite is true, however, for Akt2 knockout mice.  These animals are 

normal in size, but are insulin resistant and hyperglycemic (Cho, Mu et al. 2001).  

These studies suggest that Akt1 is important in proper growth factor and cell survival 

signaling, whereas Akt2 is critical in insulin signaling and glucose metabolism.  

Clues to the specificity of Akt3 were also discovered using knock out animals.  

Knockouts of Akt3 show a reduced brain size (Tschopp, Yang et al. 2005).  

Interestingly, dual knockouts of isoforms 2 and 3 have both reduced brain size and 

impaired glucose metabolism, but a knockout of  Akt1/Akt3 is embryonic lethal 

(Dummler, Tschopp et al. 2006).  These data suggest that Akt2 and Akt3 serve 

distinct functions, because a dual knockout is not lethal.  However, with both Akt1 

and Akt3 knocked out, the mice do not survive, suggesting that one of these 

isoforms is needed for proper development, and Akt2 cannot serve that function.  

Therefore, it is thought that Akt1 and Akt3 are critical for proper cell growth, 

particularly Akt3 in brain, whereas the primary role of Akt2 is maintaining insulin 

signaling and keeping glucose at an appropriate level in the blood.  

Being that Akt is downstream of PI3K activation, it is not surprising that the 

role of Akt in regulating DAT has been explored (Garcia, Wei et al. 2005; Wei, 

Williams et al. 2006).  These studies provided further evidence that PI3K signaling 
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controls DAT plasma membrane expression by demonstrating that basal Akt activity 

sustains DAT on the surface.  Using both pharmacological means (ML9, an Akt 

inhibitor) and genetic manipulations (dominant negative Akt mutant), Garcia and 

collegues demonstrated in heterologous expressing cells that inhibiting active Akt 

results in a decrease of DAT on the surface.  Akt can be altered to remain active as 

well through myristylation (myr-Akt), which keeps the protein anchored at the 

plasma membrane in an active state.  Importantly, transfection of this constitutively 

active, myr-Akt increased the surface expression of DAT (Garcia, Wei et al. 2005; 

Wei, Williams et al. 2006).  The physiological relevance of these results was 

emphasized by demonstrating that DA uptake, measured in heterologous 

expressing cells and striatal synaptosomes, was also impaired with ML9 

treatment (Garcia, Wei et al. 2005; Wei, Williams et al. 2006).  These data provide 

compelling evidence to support the hypothesis that basal PI3K/Akt signaling is 

important in regulating DAT function.  Furthermore, this work implies insulin 

regulates DAT trafficking, consistent with hormonal regulation of dopaminergic 

signaling.  The suggestion that insulin signaling can regulate DA 

neurotransmission via DAT is compelling given that insulin levels fluctuate with 

food consumption (Niswender, Morrison et al. 2003), and DA is an important 

neurotransmitter in regulation of reward and motivation for feeding.   

 

Insulin and the Dopamine Transporter 

DAT is an important component in regulation of DA signaling, and 

therefore it is of interest that several lines of evidence suggest that insulin can 
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regulate the expression and activity of DAT.  For example, chronic intracranial 

administration of insulin enhanced DAT mRNA in the substantia nigra (Figlewicz, 

Szot et al. 1994).  Moreover, hyperinsulinemic rats showed increased DAT 

mRNA in the substantia nigra (Figlewicz, Patterson et al. 1998).   Food 

restriction, which causes low circulating levels of insulin, results in a 32% 

decrease in the Vmax of DA uptake in the striatum of rats, whereas the Km 

remains unaltered, pointing to a reduction in the surface expression of DAT 

(Zhen, Reith et al. 2006).   Furthermore, food deprivation also reduces DA uptake 

in striatal synaptosomes (Patterson, Brot et al. 1998).  Incubation of these 

synaptosomes with a physiological concentration of insulin restored DA uptake to 

control levels (Patterson, Brot et al. 1998), suggesting that changes in circulating 

insulin can modulate DAT activity.  As discussed previously, important 

components of the insulin signaling pathway, PI3K and Akt, have been shown to 

regulate the transporter’s surface expression and function.  These studies also 

show that activating PI3K and Akt by stimulating heterologous cells expressing 

DAT with insulin causes an increase of the transporter on the cell surface, as well 

as an increase in DA uptake.   

Perhaps the most telling studies thus far related to insuilin regulation of 

DAT examined the effects of streptozotocin (STZ)-induced insulin depletion on 

DAT surface expression and its function.  STZ enters the pancreatic β-cell via the 

glucose transporter GLUT2 and causes DNA damage, resulting in free radical 

production and subsequent β-cell necrosis (Szkudelski 2001).  Without β-cells, 

animals suffer from hypoinsulinemia and hyperglycemia (Carr 1996).  Rats made 
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hypoinsulinemic by streptozotocin treatment show decreased DAT mRNA in the 

substantia nigra (Figlewicz, Brot et al. 1996; Patterson, Brot et al. 1998), as well 

as decreased DA clearance as measured by high speed chronoamperometry 

(HSCA) (Owens, Sevak et al. 2005).  Furthermore, rats treated with STZ were 

found to have a reduction AMPH-induced efflux, a phenomen that requires DAT 

on the cell surface.  Here the authors used functional magnetic resonance 

imaging (fMRI), a technique that displays an image that correlates to the 

oxygenation of the tissue, which is a representation of the activity in that brain 

region.  Upon receiving I.P. injection of AMPH, the rats treated with STZ had 

significantly less activity in the striatum compared to the control animals 

(Williams, Owens et al. 2007).  The data from the fMRI scans were confirmed by 

using high speed chronoamperometry (HSCA).  This technique measures DA 

efflux in vivo by carbon fiber amperometry in the brain of anesthetized animals 

after microinjection of AMPH in the striatum.  Using HSCA, the investigators 

found that STZ-treated rats had a reduction in AMPH-induced efflux.  Importantly, 

the authors also showed STZ to reduce active Akt, linking insulin signaling and 

Akt to DAT cell surface expression and function.   

Although these studies highlight insulin regulation of DAT, they do use 

pharmacological manipulations to alter insulin levels.  Further work has begun to 

examine DAT and the effect of high fat diets, which result in insulin resistance in 

the brain (De Souza, Araujo et al. 2005; Posey, Clegg et al. 2009).  One study 

found that, after 20 days on a high fat diet, DAT binding density in the ventral and 

dorsal striatum was reduced (South and Huang 2008).  Furthermore, an inverse 
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relationship between Body Mass Index (BMI) and striatal DAT availability has 

been shown (Chen, Yang et al. 2008).  These studies begin to point to changes 

in DAT with a high fat diet, but they do not provide a mechanism for such 

changes.  However, these data are of interest for they demonstrate alterations in 

a component of DA signaling in obesity.  Still, it is not understood whether this 

dysfunction is a cause, or a consequence of a high fat diet.  Additionally, co-

morbidity between obesity and several DA-related disorders points to a need for 

a better understanding of the interactions between insulin signaling and DA 

systems. 

 

Dopamine and Feeding Behaviors 

DA is important in modulating several behaviors, ranging from movement 

to cognition to motivation and pleasure, including our motivation to eat and the 

pleasure we receive from eating.  The role DA has in feeding behavior has been 

demonstrated by studies that illustrate improper DA signaling in obesity.  For 

example, upon eating a palatable meal, dopaminergic areas of the brain, such as 

the dorsal striatum, increase in activity (Stice et al., 2008).  Interestingly, in 

subjects with a BMI in the obese range, this activity is dampened, suggesting a 

dysregulation of DA neurotransmission in obese individuals (Stice et al., 2008).  

In studies on obese rats on high fat diets for up to 16 weeks, striatal DA turnover 

is impaired (Davis, Tracy et al. 2008), and mRNA levels of DAT, D4R, D2R, and 

TH are reduced (Huang, Yu et al. 2005; Huang, Zavitsanou et al. 2006).  In 

humans, D2R occupancy as measured by positron emission tomography (PET) 
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is reduced in a BMI-dependent manner (Wang, Volkow et al. 2001), and similar 

results for DAT were also shown (Chen, Yang et al. 2008).  Therefore, it is 

becoming clear that DA systems are very important in our consumption of food, 

as they are altered in states of excessive food consumption.  The exact 

mechanism of this phenomenon, however, is still being explored.   

DA has several roles in our consumption of food, namely motivation for 

seeking food and food consumption (Volkow, Wang et al. 2002; Palmiter 2007), 

and the reward and satiety we feel when we eat (Volkow and Wise 2005).  The 

latter of these has been studied extensively.  The DA reward system originates in 

the VTA, with the projections ending in the ventral striatum, also known as the 

nucleus accumbens.  Several inputs feed into this system, including canabanoid 

and opiate systems, as well as signaling molecules that are regulated by our food 

consumption; which include insulin and leptin (Palmiter 2007).  DA is well known 

for the role it plays as the signaling molecule for our endogenous reward system.  

Activation of DRs in the reward system is thought to give us a pleasant feeling for 

several tasks, such as consuming food or having sex.  Drugs are known to hijack 

this system, leading to highs when consuming the drug and cravings when not.  

In fact, comparisons between drug addiction and obesity have been made 

(Volkow and Wise 2005).  In fMRI scans, drug-addicted subjects had a reduction 

of activity in the striatum, a dopamine rich area, upon receiving the drug 

compared to non-addicted subjects.  With constant drug use, their DA systems 

were altered, as shown by a reduction in striatal activity.  This is thought to be the 

biological basis for addiction, causing them to crave the drug more, and also 
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need more to create a similar ―high‖.  Some groups have presented a similar 

hypothesis for food consumption and obesity.  In fact, fMRI scans of obese 

subjects also show a reduction in activity in the striatum when consuming a 

highly palatable food compared to normal subjects (Stice, Spoor et al. 2008; 

Stice, Spoor et al. 2008).  It is hypothesized that this disparity will override one’s 

metabolic signals for when food is actually needed.       

As researchers continue to explore DA signaling in feeding behavior, this 

view becomes overly simplistic.  One study examined the effects of DA on 

feeding by creating mice that are DA deficient in the brain (Sotak, Hnasko et al. 

2005).  This was accomplished by knocking out expression of TH, the enzyme 

needed to synthesize DA, in neurons.  Interestingly, these DA-deficient mice 

would not eat and die shortly after birth, having no motivation to seek and 

consume food.  To attempt to rescue the animal’s motivation to eat, the 

researchers rescued DA signaling by injection of a virus expressing TH in 

different DA regions in the brain to determine exactly which region was 

responsible for feeding behavior.  Only restoration to the dorsal striatum caused 

the animals to eat and survive.  This study highlights the dorsal striatum, and 

therefore the nigrostriatal system, in feeding behavior.  The authors suggest that 

the dorsal striatum may be the basis for our motivation for feeding; defining our 

basic need for food.  Without DA signaling in this region, the animals did not eat.  

Therefore, alterations to DA signaling in the dorsal striatum and nigrostriatal 

system may have implications for our basic need for consuming food, thus 

altering feeding behavior.  Importantly, restoration of signaling to the ventral 
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striatum had no effect, leading to the hypothesis that the dorsal striatum is 

necessary for food intake, and the ventral striatum may act just to fine tune 

feeding behavior (Sotak, Hnasko et al. 2005; Palmiter 2008).  

Further work has supported the hypothesis of the importance of the dorsal 

striatum in feeding behavior.  A study conducted by Volkow and colleagues 

examined extracellular DA levels using PET imaging, specifically a ratio of 

Bmax/Kd of D2R ligand raclopride, in hungry subjects.  These subjects were 

presented with food they could see and smell, but not consume.  They found, 

that the Bmax/Kd ratio of raclopride was decreased in the dorsal striatum (Volkow, 

Wang et al. 2002).   They concluded these changes to be from an increase in 

extracellular DA as the hungry subjects were presented with food, which bound 

to the D2Rs and decreased the D2Rs available for raclopride binding.  

Interestingly, they saw no change in D2R availability in the ventral striatum 

(Volkow, Wang et al. 2002), further pointing to the role of the dorsal striatum in 

desire and motivation for food.  

These studies highlight the importance of DA systems, in particular the 

dorsal striatum, to feeding behaviors.  Notably, the effects of high fat diets on DA 

systems, including the dorsal striatum, have also begun to be explored.  Geiger 

and colleagues examined the effects of obesity from a ―cafeteria style‖ diet in 

rats, consisting of access to several different highly palatable, highly caloric foods 

such as meats, cheeses, cookies, sweetened condensed milk, etc., on DA 

systems.  After 15 weeks on this diet, the rats became obese (Geiger, Haburcak 

et al. 2009).  They then measured the amount of DA released after electrical 
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stimulation ex vivo and found that the obese rats displayed a reduction in the 

evoked DA potentials in slices from the ventral striatum, as well as from the 

dorsal striatum (Geiger, Haburcak et al. 2009).  This study suggests that obese 

subjects have a reduction in DA neurotransmission in both the ventral and dorsal 

striatum.  Although it is still uncertain the exact role each system plays in feeding 

behavior, it is clear that both affect feeding behavior, and therefore both areas 

need to be explored in order to gain an understanding of the role of DA systems 

in obesity.    

  

Insulin Regulation of Feeding Behavior 

 Insulin is an important metabolic signal in our control of food consumption.  

Insulin is produced by pancreatic β-cells, and is well-known for its control of 

blood glucose levels.  Insulin has long been recognized as a major endocrine 

regulator of the uptake, cellular transport, and metabolism of small nutrient 

molecules such as amino acids, fatty acids, and glucose.  Insulin’s classical role 

in the peripheral system in maintaining blood glucose levels has been well 

characterized, and its involvement in the central nervous system was originally 

thought to be minimal.  However, evidence shows that insulin contributes to 

energy homeostasis through input to the hypothalamus (Baskin, Figlewicz 

Lattemann et al. 1999; Niswender, Morrison et al. 2003; Niswender, Baskin et al. 

2004).  Furthermore, additional roles of insulin signaling in the CNS have also 

begun to emerge (Figlewicz, Evans et al. 2003; Sevak, Koek et al. 2006; Russo, 

Bolanos et al. 2007; Williams, Owens et al. 2007).   
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The detection of insulin and insulin-related molecules in the brain provides 

plausible support for a regulatory role in the CNS (Kar, Chabot et al. 1993).  At 

first it was believed that insulin was impermeable to the blood-brain barrier 

(BBB), but evidence since has demonstrated otherwise.   Insulin is shown to 

rapidly enter the cerebrospinal fluid (Woods, Porte et al. 1985; Wallum, Taborsky 

et al. 1987).  In addition, animals with high levels of plasma insulin, such as 

genetically obese rats, are found to have high insulin levels in the cerebrospinal 

fluid (Stein, Dorsa et al. 1983), showing the blood plasma levels and 

cerebrospinal fluid levels move in parallel.  It is thought that movement across 

the BBB via a transport system is responsible for the parallel shifts between the 

two components (Woods, Porte et al. 1985).  Such a system has since been 

identified, allowing for the transfer of insulin from the blood plasma to brain 

microvessels in the CNS (Frank and Pardridge 1983; Pardridge, Eisenberg et al. 

1985).  Further work confirmed such transport by showing the transfer of insulin 

into the CNS using radiolabeled insulin injected into the blood that was later 

observed in the brain.  This transfer occured via a saturable transporter (Banks, 

Jaspan et al. 1997; Banks, Jaspan et al. 1997).  The transporter for insulin in the 

BBB is now well characterized and is found to be widely distributed throughout 

the central nervous system (Mateo, Budygin et al. 2004).  Insulin crosses the 

BBB with varying permeability, allowing for regulation of brain insulin levels, as 

well as dysregulation in disease states.  The transport system can be altered by 

a number of physiological and pathological events including fasting, obesity, and 

diabetes mellitus (Baskin, Stein et al. 1985; Banks, Jaspan et al. 1997; Banks 
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and Kastin 1998).  The existence of such a system suggests that insulin serves a 

physiological role in the brain.   

Insulin receptors (IRs) are abundant in CNS, including striatum and 

hypothalamus (Havrankova, Roth et al. 1978; Havrankova, Brownstein et al. 

1981; Hill, Lesniak et al. 1986; Figlewicz, Evans et al. 2003), however CNS 

glucose utilization is not insulin dependent.  Instead, insulin serves functions in 

the brain beyond regulating glucose homeostasis, showing other important 

functions for this signaling peptide, including regulation of food intake.  This was 

first demonstrated in a primate study, where researchers administered insulin 

directly to the brain by a intracerebroventricular (i.c.v.) infusion and found that 

food intake was decreased (Woods, Lotter et al. 1979).  Furthermore, using mice 

that lacked IRs in the CNS, Bruning and collegues confirmed the importance of 

insulin signaling in the brain.  These mice were overweight, insulin-resistant, and 

glucose intolerant (Bruning, Gautam et al. 2000).  Taken together, these studies 

indicate the importance of insulin signaling in the brain in regulation of food 

intake, and body weight.  

Understanding insulin signaling in all areas of the brain that contribute to 

feeding behavior is important to help understand improper food intake and 

obesity.  As discussed earlier, studies have demonstrated the importance of DA 

systems on feeding behavior, and IRs have been identified in the substantia 

nigra and striatum by anatomical studies using receptor autoradiography and 

receptor immunochemistry (Hill, Lesniak et al. 1986; Werther, Hogg et al. 1987; 

Unger, Livingston et al. 1991; Schulingkamp, Pagano et al. 2000).  Extensive 
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mRNA coexpression of the DA precursor TH and IRs was observed in the 

substantia nigra (Figlewicz, Evans et al. 2003).  With expression of IRs on DA 

neurons, it is not surprising that a role for insulin in regulating components of DA 

neurotransmission, including DAT, has begun to emerge.   

 

Insulin, Diabetes, and DA-related Diseases 

Several lines of evidence exist to link insulin to DAT and DA 

neurotransmission.  Interestingly, dysfunction in these systems overlaps as well.  

Insulin resistance and type II diabetes have been linked to several disorders 

involving improper DA signaling, such as Parkinson’s Disease (Sandyk 1993; 

Morris, Zhang et al. 2008), schizophrenia (Mukherjee, Decina et al. 1996), bipolar 

disorder (Fiedorowicz, Palagummi et al. 2008), and depression (Golden, Lazo et 

al. 2008).  A recent study found that, among diabetic patients, there was a 

significant increase in the risk for Parkinson’s Disease (Driver, Smith et al. 2008).  

Several studies have also shown a predisposition to the precursor to diabetes, 

metabolic syndrome, as well as diabetes itself, and obesity, in patients with 

bipolar disorder (Fiedorowicz, Palagummi et al. 2008; van Winkel, De Hert et al. 

2008). 

Perhaps the most well studied interplay of diabetes and DA-related 

disease is schizophrenia, a disorder that is well known to involve DA dysfunction 

(Kapur and Mamo 2003; Howes and Kapur 2009).  Diabetes and insulin 

resistance are known to be prominent in schizophrenic patients, where 18-19% 

of patients have a family history of diabetes mellitus (Mukherjee, Schnur et al. 



41 

 

1989), compared to approximately 1.2-6.3% of the general population (Adams 

and Marano 1995). Studies have linked this increase to second generation, 

atypical  antipsychotics, specifically clozapine and olanzapine, which have been 

shown to increase insulin resistance and improper glucose metabolism in a 

matter of a few months after beginning treatment (Newcomer 2001; van Winkel, 

De Hert et al. 2008).   This is of interest considering these drugs target dopamine 

receptors.  However, recent studies have demonstrated that use of these drugs 

does not fully explain the increase of diabetes in schizophrenic patients.  Ryan 

and colleagues found in drug naïve patients that there was already insulin 

resistance and impaired glucose tolerance (Ryan, Collins et al. 2003).  

Furthermore, another group found that the prevalence of diabetes in the 

schizophrenic population was increased before the use of new, atypical 

antipsychotics (Dixon, Weiden et al. 2000).  Lastly, Zhao and colleagues 

examined insulin signaling in the prefrontal cortex of postmortem tissue from 

schizophrenic patients.  These subjects had been treated with first generation 

antipsychotics, not the second generation, atypical drugs thought that were 

previously hypothesized to be responsible for this correlation.  They found a 

significant decrease in several aspects of insulin signaling, including insulin 

receptor phosphorylation and Akt phosphorylation (Zhao, Ksiezak-Reding et al. 

2006), again suggesting improper insulin signaling in schizophrenic patients 

regardless of the drugs used to treat them.  These studies certainly demonstrate 

a link between schizophrenia and diabetes, but the cause is still not clear.  
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Studies have not yet determined whether the dysfunction in insulin signaling 

seen in these patients is a cause, or a consequence, of schizophrenia.   

Although the exact relationship between insulin resistance and diseases 

involving DA dysfunction are still not fully understood, these studies demonstrate 

an important link between the two systems.   

 

Specific Aims 

DA signaling influences a wide range of behaviors, including movement, 

motivation and cognition, and desire and reward.  A growing body of literature 

points to DA regulation of feeding behavior via signaling in the dorsal striatum. 

DAT is an important component of DA neurotransmission, that functions to clear 

away extracellular DA and terminate transmission.  Therefore, changes to DAT 

function have important implications in altering DA signaling and DA-mediated 

behaviors, such as feeding behavior.   

DAT function is regulated by changes in transporter expression on the 

plasma membrane.  The insulin signaling pathway, including PI3K and Akt, is 

known to alter DAT function by regulating the transporter’s cell surface 

expression (Figure 8).  Therefore, alterations in insulin signaling could lead to 

changes in DAT function and DA neurotransmission.  Interestingly, dysregulated 

insulin signaling and diabetes is seen in patients with DA-related disorders.  

Furthermore, the occurrence of insulin resistance and obesity is increasing in our 

nation (Mokdad, Ford et al. 2003; Flegal, Carroll et al. 2010), yet the effects of 

this on DA systems and DA-related behaviors is not well understood. As a role 
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for insulin in regulating DA-related behaviors begins to be revealed, 

understanding on a molecular level how changes to insulin signaling alter DAT 

function is needed.   

 

 

 

 

Therefore the aims of this dissertation are:  

 

1) To further define components of the insulin signaling pathway that alter 

DAT cell surface expression.  

2) Examine diet-induced molecular changes to insulin signaling and DAT 

function in the nigrostriatal pathway.  
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Figure 8.  Schematic of insulin regulation of the dopamine transporter.  Upon binding insulin 
to its receptor, the insulin signaling pathway, which consists of phosphoinositol-3-kinase (PI3K) 
and Akt, is activated.  This acts to support the dopamine transporter (DAT) on the plasma 
membrane (blue).  A high fat diet causes insulin resistance, inhibiting the insulin signaling 
pathway and therefore reducing DAT cell surface expression (red). 
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CHAPTER II 

 

ISOFORM SPECIFIC REGULATION OF DAT CELL  

SURFACE EXPRESSION BY AKT2 

 

Introduction 

DA is a neurotransmitter that plays an important role in movement, 

motivation, and cognition. DA is also a key regulator of reward (Wise 1998).  An 

essential element in fine tuning DA neurotransmission is the DA transporter 

(DAT)  (Giros, el Mestikawy et al. 1992; Borowsky, Adham et al. 2001).  DAT 

function is required to clear released DA by active reuptake into the presynaptic 

bouton (Giros, Jaber et al. 1996; Jones, Gainetdinov et al. 1998), thereby 

terminating DA signaling.  Therefore, changes in DAT function have profound 

implications in DA homeostasis and signaling (Gelernter, Kranzler et al. 1994; 

Spencer, Biederman et al. 2005).   

Both function and trafficking of the DAT are tightly regulated by several 

signaling pathways, including protein kinase C (PKC), mitogen activated protein 

kinase (MAPK), phosphatidylinositol 3-kinase (PI3K) and importantly, protein 

kinase B (Akt)  (Gonzalez and Robinson 2004; Torres 2006).  It is well 

documented that inhibition of PI3K decreases surface levels of DAT and reduces 

DAT function,  including DA clearance measured in vivo (Carvelli, Moron et al. 

2002; Owens, Sevak et al. 2005; Williams, Owens et al. 2007; Lute, Khoshbouei 
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et al. 2008).  Similarly, inhibition of Akt results in a decrease in DAT surface 

expression and function (Garcia, Wei et al. 2005).  

While it is known that Akt regulates DAT cell surface expression, it is 

unclear which Akt isoform is involved in this regulation. Importantly, different Akt 

isoforms appear to serve distinct functions in brain (Tschopp, Yang et al. 2005; 

Dummler, Tschopp et al. 2006).  Akt exists as three isoforms; Akt1 and Akt2 are 

ubiquitously expressed, whereas Akt3 is found only in the brain and testes 

(Dummler, Tschopp et al. 2006).  Knockout studies reveal that Akt1 is primarily 

associated with cell survival and growth (Cho, Thorvaldsen et al. 2001), and Akt3 

appears to have similar functions in the brain (Tschopp, Yang et al. 2005).  In 

contrast, Akt2 is associated with insulin modulation of glucose homeostasis, 

including regulation of glucose transporter (GLUT4) trafficking (Cho, Mu et al. 

2001; Bae, Cho et al. 2003).   

Many studies have linked dysfunctions in Akt signaling to the underlying 

mechanisms of disorders such as schizophrenia, which also involves 

dysregulation of DA signaling (Emamian, Hall et al. 2004; Schwab, Hoefgen et al. 

2005; Bajestan, Sabouri et al. 2006).    Therefore, defining the isoform of Akt that 

is responsible for altering DAT cell surface expression will further advance our 

knowledge of how aberrant Akt signaling leads to abnormal DA 

neurotransmission and may be clinically relevant to central dopaminergic 

disorders. 
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Methods 

Cell surface protein biotinylation.  Biotinylation experiments were 

performed on intact cells as described previously (Sung, Apparsundaram et al. 

2003; Garcia, Wei et al. 2005; Dipace, Sung et al. 2007). Briefly, HEK-293 stably 

transfected with hDAT (hDATcells) were plated at a density of 1 x 106 per well in 

a six-well poly-(D-lysine) coated plate. Cells were washed with cold PBS 

containing Ca2+/Mg2+ and treated for the indicated times. Then, cells were 

incubated with 1.0 mg/mL sulfosuccinimidyl-2-(biotinamido)ethyl-1,3-

dithiopropionate [NHS-SS-biotin] (Pierce/Thermo Scientific, Rockford, IL) for 30 

minutes, washed, quenched with 100 mM glycine, and extracted in lysis buffer 

(PBS Ca2+/Mg2+, 1% Triton 100-X, and 0.5 mM PMSF at 4°C). Lysates were 

centrifuged, total fractions reserved, and supernatants incubated with 

immobilized streptavidin beads (Pierce/ThermoScientific) for 1 hr at room 

temperature.  Beads were washed three times in lysis buffer, and bound proteins 

eluted with 2X sample buffer containing 2-mercaptoethanol. Proteins were 

separated by SDS-PAGE and immunoblotted. For estimation of relative amounts 

of proteins, the exposed films of the immunoblots were scanned, and band 

intensities were measured with Scion Image (Scion Corporation, Frederick, MD). 

Brain slice preparation.  Methods are as described (Grueter and Winder 

2005). All procedures were conducted in accordance with the Vanderbilt 

Institutional Animal Care and Use Committee. Briefly, Sprague Dawley rats 

(approx. 300 g) were decapitated. The brains were quickly removed and placed 

in an ice-cold, low-sodium/high-sucrose dissecting solution. Hemisected (300 µm) 



48 

 

coronal brain slices containing the striatum were prepared on a vibratome. Slices 

were allowed to recover in a submerged holding chamber (37°C) containing 

oxygenated (95% O2, 5% CO2) artificial cerebrospinal fluid (aCSF) that contained 

the following (in mM): 124 NaCl, 4.4 KCl, 2.5 CaCl2, 1.3 MgSO4, 1 NaH2PO4, 10 

glucose, and 26 NaHCO3 for a recovery period of 60 min before beginning 

experiments.  Slices were then incubated with Akt inhibitors: 12 µM (I-Akt1 and I-

Akt2), 5 µM (I-Akt ½) in aCSF, or aCSF containing the vehicle DMSO for one 

hour at 37 degrees.  Biotinylation assays were then performed.  

Biotinylation assays. For slice assays, hemisected coronal slices (300 µm) 

were transferred to multiwell submerged chambers containing oxygenated aCSF 

with NHS-SS-Biotin (1 mg/ml) on ice at 4°C and incubated for 45 minutes, then 

washed twice for 10 min each in aCSF, and finally incubated in aCSF containing 

glycine (100mM) for two 20 min periods.  Slices were then placed onto dishes on 

dry ice and the striatum was removed and placed into eppendorf tubes. Tissue 

punches of the striatum were homogenized in ice-cold homogenization buffer 

(1% Triton, 2 mM sodium orthovanadate, 2 mM sodium fluoride, 25 mM HEPES, 

150 mM NaCl, 10 µg/ml aprotinin, and 10 µg/ml  leupeptin, and 100 µM 

phenylmethylsulfonyl fluoride) and centrifuged for 30 min at 1000 x g at 4°C.  

Protein levels were obtained, and equal amounts were added to strepavidin 

beads with pulldown buffer (0.1 % Triton, 25 mM HEPES, 150 mM NaCl, 2 mM 

sodium orthovanadate, 2 mM sodium fluoride, 10 µg/ml aprotinin, and 10 µg/ml  

leupeptin, and 100 µM phenylmethylsulfonyl fluoride) and incubated overnight at 

4°C.  Samples were washed, eluted, and immunoblot analysis was carried out. 
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Total slice lysates and the biotinylated (slice surface) fraction underwent 

immunodetection for rDAT. 

Immunoprecipitation.  After treatment with either vehicle or each inhibitor 

as described, hDAT expressing HEK cells were washed with ice-cold 

PBS/Ca2+/Mg2+ and incubated in 400 μl/well of lysis buffer containing 50 mM 

NaH2PO4, 10 mM Tris, 100 mM NaCl, 0.5 mM PMSF, pH 8.0, plus 1% Triton X-

100 for 1 h at 4°C. Cell lysates recovered by centrifugation at 20,000g for 30 min 

were incubated overnight at 4°C either with Akt1 (1:250; Cell Signaling 

Technology; Danvers, MA) or Akt2 (1:800; Santa Cruz Biotechnology, Sana 

Cruz, CA) antibodies. Complexes were retrieved by the addition of 20 μl of 

protein G-Sepharose (GE Healthcare, Little Chalfont, Buckinghamshire, UK), 

washed three times with lysis buffer. Bound proteins were then eluted and 

processed for immunoblot analysis as described.  

Immunoblotting. Determination of immunoreactivity was conducted 

according to previously described methods (Garcia, Wei et al. 2005; Williams, 

Owens et al. 2007). Briefly, tissue samples were separated by SDS-PAGE, and 

resolved proteins were transferred to polyvinylidene difluoride (PVDF) 

membranes (BioRad), which were incubated for 1 hr in blocking buffer (5% BSA 

and 0.1% Tween20 in Tris-buffered saline). The blots were incubated with 

primary antibody overnight at 4°C.  Primary antibodies used for immunostaining 

were CamKII (1:2000; Affinity BioReagents, Rockford, IL), p-Akt (Thr308; 1:1000; 

Millipore, Billerica, MA) and hDAT (1:1000, Cell Signaling Technology, Danvers, 

MA).  For rat DAT (rDAT)  immunostaining, mouse monoclonal primary 
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antibodies were used (antibody 16, 1:1000; (Gaffaney and Vaughan 2004)).  All 

proteins were detected using HRP-conjugated secondary antibodies (1:5000; 

Santa Cruz Biotechnology, Santa Cruz, CA). After chemiluminescent 

visualization (ECL-Plus; Amersham; Piscataway, NJ) on Hyper-film ECL film 

(Amersham), protein band densities were quantified (Scion Image; Frederick, 

MD) and normalized to control.   

Immunohistochemistry.  For tissue staining, slices were prepared as 

described above and subsequently fixed with PBS Ca2+/Mg2+,4% 

paraformaldehyde, washed three times with PBS, permeabilized and blocked 

with PBS 4% bovine serum albumin (BSA)/0.15% Tween-20, and immunostained 

with the appropriate antibody dissolved in PBS 4% BSA/0.05% Tween-20.  

Primary antibodies used for immunostaining were used: Akt2 (1:200; Santa Cruz 

Technology; Santa Cruz, CA) and rDAT (1:400; antibody 16, (Gaffaney and 

Vaughan 2004)) overnight at 4°C.  After incubation with secondary fluorophores, 

immunofluorescence was imaged using a Perkin Elmer UltraView confocal with a 

Nikon Eclipse 2000-U microscope equipped with a 60X lens with an N.A. of 1.49.  

Image processing was performed using Image J and Adobe Photoshop.  

HSCA. HSCA was conducted using the FAST-12 system (Quanteon; 

http://www.quanteon.cc) as previously described with some modification (Owens 

et al., 2005; Williams et al., 2007).  Recording electrode/micropipette assemblies 

were constructed using a single carbon-fiber (30 lm diameter; Specialty 

Materials; Tulsa, OK), which was sealed inside fused silica tubing (Schott, North 

America; Elmsford, NY). The exposed tip of the carbon fiber (150 μm in length) 
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was coated with 5% Nafion (Aldrich Chemical Co., St. Louis, MO; 3–4 coats 

baked at 200 ˚C for 5 min per coat) to provide a 1000-fold selectivity of DA over 

its metabolite dihydroxyphenylacetic acid (DOPAC). Under these conditions, 

microelectrodes displayed linear amperometric responses to 0.5–10 μM DA 

during in vitro calibration in 100 mM phosphate-buffered saline (pH 7.4). Animals 

were anesthetized with injections of urethane (850 mg/kg, i.p.) and α-chloralose 

(85 mg/kg, i.p.), fitted with an endotracheal tube to facilitate breathing, and 

placed into a stereotaxic frame (David Kopf Instruments; Tujunga, CA). To locally 

deliver test compounds (see below) close to the recording site, a glass single or 

multi-barrel micropipette (FHC; Bowdion, ME) was positioned adjacent to the 

microelectrode using sticky wax (Moyco; Montgomeryville, AL). The center-to-

center distance between the microelectrode and the micropipette ejector was 300 

μm. The study used a multibarrel configuration in which barrels contained AMPH 

(400 μM) or vehicle (aCSF) and additional barrels contained the Akt inhibitors 

(1mM).  The electrode/micropipette assembly was lowered into the striatum at 

the following coordinates (in mm from bregma [68]): A/P +1.5; M/L, +/- 2.2; D/V, -

3.5 to -5.5. The application of drug solutions was accomplished using a 

Picospritzer II (General Valve Corporation; Fairfield, NJ) in an ejection volume of 

100–150 nl (5–25 psi for 0.25–3 s). After ejection of test agents, there is an 

estimated 10–200-fold dilution caused by diffusion through the extracellular 

matrix. To record the efflux of DA at the active electrode, oxidation potentials—

consisting of 100-ms pulses of 550 mV, each separated by a 1-s interval during 

which the resting potential was maintained at 0 mV—were applied with respect to 
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an Ag/AgCl reference electrode implanted into the contralateral superficial cortex. 

Oxidation and reduction currents were digitally integrated during the last 80 ms of 

each 100-ms voltage pulse. For each recording session, DA was identified by its 

reduction/oxidation current ratio: 0.55–0.80. At the conclusion of each 

experiment, an electrolytic lesion was made to mark the placement of the 

recording electrode tip. Rats were then decapitated while still anesthetized, and 

their brains were removed, frozen on dry ice, and stored at -80˚C until sectioned 

(20 μm) for histological verification of electrode location within the striatum. 

HSCA data were analyzed with GraphPad Prism.  

 

Results 

Pharmacological inhibition of Akt has been shown to reduce DAT cell 

surface expression (Garcia, Wei et al. 2005).  However, the isoform of Akt 

involved is unknown.  Therefore, we utilized allosteric, isoform-specific inhibitors 

of Akt1 (I-Akt1), Akt2 (I-Akt2), as well as a dual Akt1 and Akt2 inhibitor (I-Akt1/2), 

to identify the Akt isoform that regulates DAT trafficking (Figure 9).  These 

selective inhibitors were developed and characterized in cell lines and primary 

tissue (DeFeo-Jones, Barnett et al. 2005; Lindsley, Zhao et al. 2005; Zhao, 

Robinson et al. 2008).  HEK-293 cells stably expressing the human DAT (hDAT 

cells) were plated at the same density and treated for one hour with either I-Akt1 

(12 uM), I-Akt2 (12 uM), or I-Akt1/2 (5 uM). These concentrations have 

previously been shown to be isoform specific (DeFeo-Jones, Barnett et al. 2005; 

Lindsley, Zhao et al. 2005).  Using biotinylation assays  
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Figure 9.  Structures of isoform selective, allosteric Akt Inhibitors.  The structures of the 
potent dual Akt1/Akt2 selective (1), Akt1 selective (2), and Akt2 (3) selective inhibitors are shown.  

IC50 for each Akt isoform is shown for each compound. 
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(Saunders, Ferrer et al. 2000; Garcia, Wei et al. 2005), we examined surface 

expression of hDAT after both vehicle treatment and drug treatment.  Figure 10A 

(inset) shows representative immunoblots for hDAT obtained from hDAT cells 

treated with vehicle (Control), I-Akt1, I-Akt2, or I-Akt1/2.  Densitometric analysis 

of the immunoblots was performed and the level of surface hDAT was 

normalized to total hDAT.  This data demonstrated that only inhibition of Akt2 

significantly reduced hDAT cell surface expression (Fig. 10A, surface hDAT was 

normalized to total hDAT and expressed as percent of control; *p<0.01 by one-

way ANOVA followed by Bonferroni post hoc test).  Consistently, dual inhibition 

of both isoforms significantly decreased surface hDAT as well (Fig. 10A).  

Importantly, inhibition of Akt1 had no significant effect on hDAT surface 

expression.   

Active Akt is phosphorylated at Thr 308 and Ser 473, and therefore 

application of isoform specific inhibitors should reveal reduction of the 

phosphorylation of the appropriate isoform.  Therefore, to confirm the isoform 

specificity of these inhibitors in our assay, hDAT cells were treated as described 

above and specific Akt isoforms were immunoprecipitated and analyzed by 

immunoblot analysis using phospho-specific antibodies. We probed for 

phosphorylated Akt (Thr-308) to gauge the active, phosphorylated state of each 

Akt isoform after drug treatment.  Fig. 10B demonstrates that the each inhibitor 

dramatically decreased basal phosphorylation of the relevant isoform(s), 

confirming that these inhibitors are isoform specific at the concentrations and 

treatment time used in our assay.  Thus, these data suggest that Akt2, not Akt1,  
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Figure 10.  Inhibition of Akt2 reduces hDAT cell surface expression in hDAT cells. (A) 
Representative immunoblots obtained from HEK cells expressing hDAT after treatment for one 
hour with isoform-specific inhibitors of Akt1 (I-Akt1, 12 µM), Akt2 (I-Akt2, 12 µM) or a dual 
inhibitor of Akt1 and Akt2 (I-Akt1/2, 5 µM).  For quantification, the density of each biotinylated 
hDAT band was normalized to the density of its corresponding total hDAT band and expressed as 
a percentage of control (* = p<0.01; One Way ANOVA, followed by Bonferroni post-hoc test; 
n=4). All data are represented as mean ± S.E.M.  (B) Immunoprecipitation of Akt1 and Akt2 was 
performed from hDAT cells after treatment with each inhibitor as described in panel A.  
Immunoblots were probed for p-Akt (Thr308) to assess the phosphorylation state of each isoform 
after drug treatment.   
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is responsible for regulating hDAT cell surface expression in this heterologous 

expression system.  

Next we confirmed our findings ex vivo by biotinylation of striatal slices 

(300 µm), which are enriched in DAT positive nerve termini (Giros and Caron 

1993).  Slices were treated with either I-Akt1, I-Akt2, or I-Akt1/2 as shown in Fig. 

3.  The samples from each tissue punch were normalized to total level of 

proteins.  Similar to the results obtained from hDAT cells, treatment of striatal 

slices with I-Akt2 reduced rat DAT (rDAT) cell surface expression, as did 

treatment with the dual inhibitor I-Akt1/2 (Fig. 11A, inset). The cytosolic protein 

CaMKII was found only in the cytosolic fraction, confirming the plasma 

membrane nature of the biotinylated fraction of the striatal preparation. 

Importantly, CaMKII levels (loading control) were not affected by Akt inhibitor 

treatment (Fig. 11A, inset). Densitometric analysis of the immunoblots showed 

that inhibition of Akt2 significantly decreased DAT cell surface expression with 

respect to vehicle treated control (Fig. 11A). Similarly, dual inhibition of both Akt1 

and Akt2 significantly decreased DAT cell surface expression (Fig. 11A).  

Importantly, inhibition of Akt1 alone had no effect on DAT trafficking in our striatal 

preparation (Fig. 11A).   

To demonstrate further the role of Akt2 in the regulation of DAT, we 

determined whether Akt2 is expressed in striatum in DAT positive projections. 

Figure 11B shows that in striatal slices, Akt2 is heavily enriched in dopaminergic 

terminals marked by DAT immunoreactivity.  These data further support our  
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Figure 11.  Inhibition of Akt2 reduces rDAT cell surface expression in rat striatal tissue. (A) 
Representative immunoblots obtained from striatal slices of biotinylated and total rat DAT (rDAT) 
after treatment for one hour with isoform-specific inhibitors of Akt1 (I-Akt1; 12 µM), Akt2 (I-Akt2; 
12 µM ), or dual inhibitor of Akt1 and Akt2 (I-Akt1/2; 5 µM).  Immunoblots of CaMKII were used to 
determine the plasma membrane identity of the biotinylated fraction and control for loading.  For 
quantification, the density of each biotinylated rDAT band was normalized to that of its 
corresponding total rDAT band and expressed as a percentage of control (* = p<0.05; One Way 
ANOVA followed by Bonferroni post-hoc test; n=11).  All data are represented as mean ± S.E.M.  
(B) Confocal imaging of rat striatal slices, where green indicates DAT positive regions and red 
indicates Akt2 positive regions (scale bar, 12 µm).  The merged image depicts yellow regions 
indicating high levels of expression of both Akt2 and DAT in dopaminergic projections (n=3).   
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finding that Akt2 is involved in regulating DAT trafficking, demonstrating for the 

first time isoform specificity of Akt regulation of DAT trafficking in native tissue. 

DAT function is regulated both by the number of transporters at the 

plasma membrane and by the rate of their transport cycle.  Therefore, we 

determined in vivo whether inhibition of Akt decreases DAT function. For this, we 

utilized amphetamine (AMPH), a substrate of DAT that reverses its transport 

cycle to cause DA efflux.  We monitored AMPH-induced DA efflux in striatum of 

anesthetized rats, as a measure of DAT activity, by high speed 

chronoamperometry (HSCA).  Since Akt2 inhibition leads to a decrease in DAT 

cell surface expression, we hypothesized that it would also lead to a reduction in 

AMPH-induced DA efflux.  Figure 12A shows striatal AMPH-induced DA efflux 

recorded 45 min after injecting the Akt inhibitors I-Akt1, I-Akt2, or vehicle 

(artificial cerebrospinal fluid [aCSF] in DMSO). The inhibitors, AMPH, and aCSF 

were intrastriatally applied by way of a calibrated micropipette positioned 

adjacent to the recording electrode. First AMPH was applied to obtain a baseline 

measure for DA efflux.  Inhibitors or aCSF were then applied and AMPH 

pressure-ejected again 45 minutes later.  Inhibition of Akt2 led to a significant 

reduction in the ability of AMPH to cause DA efflux (Fig. 12B) further supporting 

our hypothesis that Akt2 is the isoform that regulates DAT surface expression 

and function. 
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Figure 12.  Inhibition of Akt2 reduces DAT-mediated reverse transport of DA. (A) 
Representative recordings of striatal extracellular DA after microinjection of AMPH (400 µM /125 
nl), as measured by HSCA.  Traces were obtained 45 minutes after microinjection of I-Akt1, I-
Akt2 (1 mM/125 nl), or vehicle control.  (B) Quantification of the total DA released after 
microinjection of AMPH. Inhibition of Akt2 significantly reduced AMPH-induced DA efflux.  One 
way ANOVA followed by Bonferroni post hoc test (*=p<0.05; control, n=9; I-Akt1, n=8; I-Akt2, 
n=6). All data are represented as mean ± S.E.M. 

  

 
 
 

 



60 

 

Discussion 

DA clearance is regulated both by DAT turnover rate and by the number of 

active transporters at the plasma membrane (Giros, el Mestikawy et al. 1991).  

As a consequence, DAT membrane expression is thought to fine tune DA 

homeostasis and dopaminergic signaling (Amara 1996; Blakely, Defelice et al. 

2005; Spencer, Biederman et al. 2005).  Previously, we have shown that insulin 

signaling through Akt regulates DAT cell surface expression, DA clearance, and 

the ability of psychostimulants such as amphetamine to target the DAT and 

thereby increase extracellular DA levels (Garcia, Wei et al. 2005; Owens, Sevak 

et al. 2005; Williams and Galli 2006; Lute, Khoshbouei et al. 2008). Here, we 

demonstrate by using selective inhibitors of Akt1 and Akt2 that, in striatum, Akt2 

activity regulates DAT trafficking, whereas Akt1 does not.   

Akt activation has diverse functions ranging from cell survival and growth 

to glucose homeostasis (Cho, Mu et al. 2001; Cho, Thorvaldsen et al. 2001; 

Somwar, Kim et al. 2001; Bae, Cho et al. 2003; Yang, Tschopp et al. 2004; 

Krizman-Genda, Gonzalez et al. 2005).  In order to contribute to such diverse 

physiological processes, it is thought that each Akt isoform serves a distinct role. 

This hypothesis is postulated from the phenotypes observed in the Akt isoform-

specific knockout mouse models (Cho, Mu et al. 2001; Cho, Thorvaldsen et al. 

2001).  In particular, Akt2 knockout mice are hyperglycemic and insulin resistant 

(Cho, Mu et al. 2001).  These observations obtained from knockout models are 

consistent with data supporting a pivotal role of Akt2 in the increase of glucose 

uptake (Bae, Cho et al. 2003). This insulin-mediated increase in glucose uptake 
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is supported by trafficking of the glucose transporter GLUT4 to the plasma 

membrane, an effect shown to be mediated through Akt2, not Akt1 (Bae, Cho et 

al. 2003).  Although insulin crosses the blood-brain barrier (Banks, Jaspan et al. 

1997), neurons use insulin-independent mechanisms to transport glucose.  

Insulin receptors (IRs) are found throughout the brain, including DA-rich areas 

such as the striatum (Schulingkamp, Pagano et al. 2000).  Importantly, abnormal 

insulin status has been shown to alter DAT cell surface expression and function 

(Patterson, Brot et al. 1998; Owens, Sevak et al. 2005; Williams, Owens et al. 

2007; Lute, Khoshbouei et al. 2008).  Therefore, it is conceivable that insulin 

signaling regulates DAT surface expression by modulating Akt2 activity.  

Furthermore, disease states with dysfunctional insulin signaling, such as Type II 

Diabetes, could alter Akt2 activity in brain and affect DAT function and DA 

homeostasis.  Further work is needed to determine the extent that improper 

insulin tone is affecting DAT function and DA homeostasis.   

Notably, these isoform-specific, allosteric Akt inhibitors exert their effects 

by blocking the phosphorylation of Akt itself (Lindsley, Zhao et al. 2005), making 

Akt unable to activate downstream targets.  Importantly, they do not have 

inhibitory activity on other cellular kinases, such as protein kinase A (PKA) or 

protein kinase C (PKC) (DeFeo-Jones, Barnett et al. 2005).  Previously, these 

inhibitors have been used to examine the isoform specificity of increased Akt 

activity in tumor cell lines and tissues (DeFeo-Jones, Barnett et al. 2005; Zhao, 

Robinson et al. 2008).  While each drug stimulates apoptosis, inhibition of both 

isoforms by the dual inhibitor I-Akt1/2 was most effective, providing evidence that 
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tumor cell growth is somehow not isoform specific (DeFeo-Jones, Barnett et al. 

2005).  Conversely, in striatal preparations, we found isoform specificity to Akt 

regulation of DAT trafficking, despite the fact that Akt1 is also expressed in 

dopaminergic terminals (data not shown).   

While the data shown here firmly point to Akt2 as an important regulator of 

DAT, only Akt1 and Akt2 were examined.  A third isoform, Akt3, is expressed in 

the brain and testes (Gonzalez and McGraw 2009).  Importantly, the inhibitors 

used in this study do not alter Akt3.  Previous work demonstrates that Akt3 plays 

a role similar to Akt1 in the brain in regulating cell growth and survival, whereas 

Akt2 contributes to mediating insulin receptor signaling (Tschopp, Yang et al. 

2005; Dummler, Tschopp et al. 2006).  The possibility that Akt3 regulates 

monoamine transporter trafficking is intriguing and warrants further evaluation in 

future studies when a specific inhibitor becomes available.   

In summary, our data indicate that basal Akt2 activity is responsible for 

maintaining DAT cell surface expression, implicating Akt2 as a key regulator of 

DAT function and DA homeostasis.  Akt2 is known to be coupled to insulin 

receptor activation, further confirming insulin signaling as an important modulator 

DAT function and dopaminergic tone.   

 

 

 

 

 



63 

 

 

CHAPTER III 

 

DIET-INDUCED CHANGES IN INSULIN SIGNALING REGULATES THE 

TRAFFICKING AND FUNCTION OF THE DOPAMINE TRANSPORTER 

 

Introduction 

High fat diets and the resulting obesity are known to cause several 

changes in the periphery, including insulin resistance, which can lead to Type 2 

Diabetes (Kahn, Hull et al. 2006), heart conditions (Hubert, Feinleib et al. 1983), 

and depression (Golden, Lazo et al. 2008). Still, the impact of obesity on brain 

function is not fully understood.  Clinical evidence has shown a correlation 

between disorders involving DA dysfunction to dysregulation in insulin signaling 

and food intake.  Binge eating disorder, for example, is associated with 

impairments in DA signaling (Davis, Levitan et al. 2008; Davis, Levitan et al. 

2009; Frieling, Romer et al. 2009).  Furthermore, patients with Parkinson’s 

Disease have been shown to have increased Type 2 Diabetes rates (Sandyk 

1993; Morris, Zhang et al. 2008), as do patients with schizophrenia (Mukherjee, 

Decina et al. 1996).   

Physiological homeostasis of DA signaling in striatum has been linked to 

motivation for feeding (Palmiter 2007).  Such studies highlight a tight relationship 

between insulin and DA signaling in the brain, such as that dysregulation of the 

insulin pathway will cause impairment in DA signaling and vice versa.  A tight 
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relationship is further supported by the comorbid nature of feeding behaviors 

abnormalities with DA signaling dysfunction.     

A key element fine tuning DA signaling is DAT (Giros, el Mestikawy et al. 

1992; Borowsky, Adham et al.).  DAT function is required to clear vesicular 

released DA by active reuptake into the presynaptic bouton (Giros, Jaber et al. 

1996; Jones, Gainetdinov et al. 1998), thus terminating DA signaling.  DA is then 

re-packaged into vesicles for release.  Thus, changes in DAT function have 

profound implications in DA signaling (Gelernter, Kranzler et al. 1994; Spencer, 

Biederman et al. 2005).  Therefore, is not surprising that both function and 

trafficking of the DAT are tightly regulated by several signaling pathways 

including PKC, mitogen activated protein kinase (MAPK), and importantly PI3K  

(Gonzalez and Robinson 2004; Torres 2006).  

It is well documented that a high density of IRs are expressed in DA 

regions, including the striatum (Hill, Lesniak et al. 1986; Manzanares, Canton et 

al. 1988; Bergstedt and Wieloch 1993; Kar, Chabot et al. 1993; Schulingkamp, 

Pagano et al. 2000; Figlewicz, Evans et al. 2003), a brain region enriched in DA 

projections and DATs (Pilotte, Sharpe et al. 1994; Ciliax, Heilman et al. 1995; 

Ciliax, Drash et al. 1999).  IRs signal through PI3K to activate Akt (Taha and Klip 

1999; Bondy and Cheng 2004).  Inhibition of PI3K decreases surface levels of 

DAT, reduces DA function, as well as DA clearance in vivo (Carvelli, Moron et al. 

2002; Owens, Sevak et al. 2005; Williams, Owens et al. 2007; Lute, Khoshbouei 

et al. 2008).  Consistently, inhibition of Akt results in a decrease in both DAT 

surface expression and function (Garcia, Wei et al. 2005).  AMPH is a well-
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characterized psychostimulant that elicits its effects by its ability to reverse DAT-

mediated transport of DA, inducing efflux and therefore increasing extracellular 

DA levels.  Due to the requirement of DAT on the cell surface for this 

phenomenon to occur, inhibition of Akt and the consequent reduction in DAT cell 

surface expression results in a decrease of AMPH-induced DA efflux (Garcia, 

Wei et al. 2005).   

Interestingly, the isoforms of Akt appear to serve distinct functions.  Akt 

has three isoforms; Akt1 and Akt2 are ubiquitously expressed where as Akt3 is 

found only in the brain and testes (Dummler, Tschopp et al. 2006).  Many studies 

have linked dysfunctions in Akt1 signaling to the underlying mechanisms of 

schizophrenia (Emamian, Hall et al. 2004; Schwab, Hoefgen et al. 2005; 

Bajestan, Sabouri et al. 2006). As shown in Chapter II, Akt2 is the isoform 

responsible for regulating DAT cell surface expression.  Importantly, several DA 

related disorders have been linked to insulin dysfunction, including schizophrenia 

(Mukherjee, Decina et al. 1996).  Therefore, defining the isoform involved in 

regulation of DAT in a state of insulin signaling dysfunction may help to further 

define the role of insulin signaling in brain diseases such as schizophrenia.  

Knockout studies have shown that Akt1 is primarily associated with cell survival 

and growth (Cho, Thorvaldsen et al. 2001). Consistently, Akt3 appears to 

function similarly for survival and growth in the brain (Tschopp, Yang et al. 2005).  

In contrast, Akt2 has been associated with glucose homeostasis and insulin 

signaling, including regulation of the glucose transporter (Cho, Mu et al. 2001; 

Bae, Cho et al. 2003).    
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In vitro insulin treatment causes an increase in DAT on the surface and an 

increase in DA uptake (Carvelli et al., 2002).  In vivo, studies have tried to 

address the functional regulation of DAT by depleting circulating insulin with 

administration of STZ, a drug that is toxic to the insulin producing pancreatic β 

cells.  These animals have reduced striatal levels of p-Akt, and decreased DAT 

surface expression and AMPH-induced efflux (Williams, Owens et al. 2007).  

Consistently, food restriction, a manipulation that also results in hypoinsulinemia, 

causes a reduction in DA uptake in rat striatal synaptosomes (Patterson et al., 

1998).  These studies suggest that changes in insulin status such as diabetes or 

obesity could affect DAT membrane expression by impairing Akt function. 

Obesity and insulin resistance are highly prevalent in the United States 

(Mokdad, Bowman et al. 2001).  In western nations, it is estimated that as much 

as 25% of the population is considered obese, and high fat diets are known to 

result in insulin resistance (Wisse, Kim et al. 2007).  In this pre-diabetic state, the 

body maintains proper glucose levels by increasing insulin production as cells 

become resistant due to increasing adiposity, resulting in euglycemia and 

hyperinsulinemia (Schwartz and Porte 2005).  This state is also known to result 

in reduced p-Akt (active) levels (De Souza, Araujo et al. 2005; Posey, Clegg et 

al. 2009).  Therefore, we sought to explore whether a high fat diet could affect 

DAT trafficking and function. This is particularly relevant, considering that DA 

homeostasis supports food intake (Palmiter 2007) and possibly regulates feeding 

behaviors including motivation for food seeking.  
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Considering that DA is involved in behaviors from cognition to movement 

to motivation for food, this work may shed light on the comorbid aspects of 

obesity and DA related diseases. 

 

Methods 

Diet induced obesity (DIO) model.  Male Sprague-Dawley rats were 

ordered from Charles River (Indianapolis, Indiana) at a body weight range of 275-

300 g. Upon arrival to the vivarium rats were individually housed in a facility kept 

on a 12-hour light cycle and were given standard rodent chow and water ad 

libidum. In the first phase of DIO, rats were given a control diet consisting of 10% 

fat (Research Diets, New Brunswick, NJ) for 7 days. After this lead-in period, half 

of the rats were switched to an isocaloric, nutrient matched high-fat (HF) diet of 

60% fat for 28 more days; the remaining control rats were kept on the control, 

low fat (LF) diet for the same amount of time.  All experiments were performed in 

the morning. 

Tissue preparation.  Tissue punches from specific brain regions were 

collected (dorsal striatum and substantia nigra) and homogenized on ice in buffer 

containing 20mM Tris (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 2.5 

mM sodium pyrophosphate, 1 mM b-glycerolphosphate, 1 mM Na3VO4, 1 lg/ml 

leupeptin and 1 mM PMSF, then spun at 13000xg for 30 minutes at 4°C.  The 

supernatant was taken, the protein content was assessed, and analysis was 

performed. 
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Brain slice preparation.  Methods are as described by (Grueter and 

Winder 2005). Briefly, rats were decapitated. The brains were quickly removed 

and placed in an ice-cold, low-sodium/high-sucrose dissecting solution. 

Hemisected (300 µm) coronal brain slices containing the striatum were prepared 

on a vibratome. Slices were allowed to recover in a submerged holding chamber 

(37°C) containing oxygenated (95% O2, 5% CO2) artificial cerebrospinal fluid 

(aCSF) that contained the following (in mM): 124 NaCl, 4.4 KCl, 2.5 CaCl2, 1.3 

MgSO4, 1 NaH2PO4, 10 glucose, and 26 NaHCO3 for a recovery period of 60 min 

before beginning experiments.  If treated with Akt inhibitors, slices were 

incubated with 12 µM (I-Akt1 and I-Akt2), 5 µM (I-Akt ½) in aCSF, or aCSF 

containing the vehicle DMSO for one hour at 37 degrees.  Biotinylation assays 

were then performed.  

Biotinylation assays. For slice assays, hemisected slices (300 µm) were 

made as described above and transferred to multiwell submerged chambers 

containing oxygenated aCSF with NHS-SS-Biotin (1 mg/ml) on ice at 4°C and 

incubated for 45 minutes, then washed twice for 10 min in aCSF, and finally 

incubated in aCSF containing glycine (100mM) for two 20 min periods.  Slices 

were then placed onto dishes on dry ice and the striatum was removed and 

placed into eppendorf tubes. Tissue punches were homogenized in ice-cold 

homogenization buffer (1% Triton, 2 mM sodium orthovanadate, 2 mM sodium 

fluoride, 25 mM HEPES, 150 mM NaCl, 10 µg/ml aprotinin, and 10 µg/ml  

leupeptin, and 100 µM phenylmethylsulfonyl fluoride) and centrifuged for 30 min 

at 1000 x g at 4°C.  Protein levels were obtained, and equal amounts were taken 
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and added to strepavidin beads with pulldown buffer (0.1 % Triton, 25 mM 

HEPES, 150 mM NaCl, 2 mM sodium orthovanadate, 2 mM sodium fluoride, 10 

µg/ml aprotinin, and 10 µg/ml leupeptin, and 100 µM phenylmethylsulfonyl 

fluoride) and incubated overnight at 4°C.  Samples were then washed, eluted, 

and western analysis was carried out.   

Immunostaining. For western blotting, determination of immunoreactivity 

was conducted according to previously described methods (Garcia, Wei et al. 

2005; Williams, Owens et al. 2007). Briefly, tissue samples were separated by 

SDS-PAGE, and resolved proteins were transferred to polyvinylidene difluoride 

(PVDF) membranes (BioRad), which were incubated for 1 hr in blocking buffer 

(5% BSA and 0.1% Tween20 in Tris-buffered saline). The blots were then 

incubated with primary antibody overnight at 4°C.  The primary antibodies used 

are as follows:  Akt (1:1000; Cell Signaling Technology; Danvers, MA), Akt1 

(1:1000; Cell Signaling Technology; Danvers, MA), phospho-Akt (Thr308) 

(1:1000; Cell Signaling Technology; Danvers, MA), Akt2 (1:1000; Santa Cruz 

Biotechnology; Santa Cruz, CA), Na/K ATPase (1:450; Dr. Fambrough, Johns 

Hopkins University; Baltimore, MD), and CamKII (1:2000; Affinity BioReagents; 

Rockford, IL), IRS2 (1:1000; Upstate Technologies; Billerica, MA).  For rat DAT 

(rDAT)  immunostaining, mouse monoclonal primary antibodies were used 

(antibody 16, 1:1000; (Gaffaney and Vaughan 2004).  All proteins were detected 

using HRP conjugated secondary antibodies (1:5000; Santa Cruz Biotechnology, 

Santa Cruz, CA). After chemiluminescent visualization (ECL-Plus; Amersham; 
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Piscataway, NJ) on Hyper-film ECL film (Amersham), protein band densities 

were quantified (Scion Image; Frederick, MD) and normalized to control.   

Assay of Akt Activity.  Akt activity assays were performed as described 

previously.  Tissue was lysed for 45 min at 4 degrees in a buffer containing 

20mM Tris (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 2.5 mM 

sodium pyrophosphate, 1 mM b-glycerolphosphate, 1 mM Na3VO4, 1 lg/ml 

leupeptin and 1 mM PMSF.  Lysed proteins (400 ug) underwent 

immunoprecipitation with an Akt-specific monoclonal antibody as part of a 

commercially available Akt activity assay kit (BioVision, Mountain View, CA).  

Activity of the immunoprecipitated Akt was determined in vitro with the addition of 

recombinant GSK3α a the kinase substrate; the resulting phosphorylated was 

determined by immunoblotting using phosphospecific antibodies to GSK3α 

(Ser21, diluted 1:1000), provided in the kit. 

Immunohistochemistry.  For tissue staining, slices were prepared as 

described above and subsequently fixed with PBS Ca2+/Mg2+,/4% 

paraformaldehyde, washed three times with PBS Ca2+/Mg2+, permeabilized and 

blocked with PBS Ca2+/Mg2+/4% bovine serum albumin (BSA)/0.15% Tween-20, 

and immunostained with the appropriate antibody dissolved in PBS 4%, 

BSA/0.05%, Tween-20/0.05%.  Primary antibodies used for immunoblotting were 

used here at the following concentrations: Akt2 at 1:200 and DAT at 1:400 

overnight at 4°C.  For immunohistochemistry experiments to confirm viral 

injections, rats were perfused with 4% paraformaldehyde in PBS and the intact 

brains were removed, postfixed for 24 hours, then put into PBS with 20% sucrose 
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overnight, and then sectioned and processed according to previously published 

protocols (Russo, Bolanos et al. 2007).  Briefly, sections were incubated in 

blocking buffer (containing BSA) and then with rabbit antibody to GFP (1:5000; 

Abcam Inc.; Cambridge, MA) and rat tyrosine hydroxylase (1:500; Chemicon; 

Billerica, MA).  After incubation with secondary fluorophores, 

immunofluorescence was imaged using a Perkin Elmer UltraView confocal with a 

Nikon Eclipse 2000-U microscope equipped with a 60X lens with an N.A. of 1.49.  

Image processing was performed using Image J and Adobe Photoshop.   

Locomotor activity. Locomotor activity was assessed by placing the rat in 

a 26 × 61 × 23 cm high plexiglass chamber located within sound-attenuating 

cubicles. Horizontal activity was measured with four pairs of infrared photobeams 

positioned 4 cm above the floor of the chamber. Each beam was placed 15 cm 

away from the next immediate photobeam and the two extreme photobeams 

were located 8 cm away from the floor sides. An hour baseline was recorded, 

animals were given amphetamine (1.78 mg/kg) by I.P. injection, and placed 

immediately back into the chambers to continue recording for 60 minutes.  The 

data was collected in 5 minute periods over each 60 minute test. 

HSCA. HSCA was conducted using the FAST-12 system (Quanteon; 

http://www.quanteon.cc) as previously described with some modification (Owens 

et al., 2005; Williams et al., 2007).  Recording electrode/micropipette assemblies 

were constructed using a single carbon-fiber (30 lm diameter; Specialty 

Materials; Tulsa, OK), which was sealed inside fused silica tubing (Schott, North 

America; Elmsford, NY). The exposed tip of the carbon fiber (150 μm in length) 
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was coated with 5% Nafion (Aldrich Chemical Co., St. Louis, MO; 3–4 coats 

baked at 200 ˚C for 5 min per coat) to provide a 1000-fold selectivity of DA over 

its metabolite dihydroxyphenylacetic acid (DOPAC). Under these conditions, 

microelectrodes displayed linear amperometric responses to 0.5–10 μM DA 

during in vitro calibration in 100 mM phosphate-buffered saline (pH 7.4). Animals 

were anesthetized with injections of urethane (850 mg/kg, i.p.) and α-chloralose 

(85 mg/kg, i.p.), fitted with an endotracheal tube to facilitate breathing, and 

placed into a stereotaxic frame (David Kopf Instruments; Tujunga, CA). To locally 

deliver test compounds (see below) close to the recording site, a glass single or 

multi-barrel micropipette (FHC; Bowdion, ME) was positioned adjacent to the 

microelectrode using sticky wax (Moyco; Montgomeryville, AL). The center-to-

center distance between the microelectrode and the micropipette ejector was 300 

μm. The electrode/micropipette assembly was lowered into the striatum at the 

following coordinates (in mm from bregma [68]): A/P +1.5; M/L, +/- 2.2; D/V, -3.5 

to -5.5. The application of drug solutions was accomplished using a Picospritzer 

II (General Valve Corporation; Fairfield, NJ) in an ejection volume of 100–150 nl 

(5–25 psi for 0.25–3 s). After ejection of test agents, there is an estimated 10–

200-fold dilution caused by diffusion through the extracellular matrix. To record 

the efflux and clearance of DA at the active electrode, oxidation potentials—

consisting of 100-ms pulses of 550 mV, each separated by a 1-s interval during 

which the resting potential was maintained at 0 mV—were applied with respect to 

an Ag/AgCl reference electrode implanted into the contralateral superficial cortex. 

Oxidation and reduction currents were digitally integrated during the last 80 ms of 
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each 100-ms voltage pulse. For each recording session, DA was identified by its 

reduction/oxidation current ratio: 0.55–0.80. At the conclusion of each 

experiment, an electrolytic lesion was made to mark the placement of the 

recording electrode tip. Rats were then decapitated while still anesthetized, and 

their brains were removed, frozen on dry ice, and stored at -80˚C until sectioned 

(20 μm) for histological verification of electrode location within the striatum. 

HSCA data were analyzed with GraphPad Prism.  

Viral Injections. At day 25 of the diet, rats were anesthetized with 

isoflurane inhalation and given 0.5 ul bilateral microinjections of HSV vectors 

encoding GFP (as a control), or wild-type IRS2 over 5 min into the substantia 

nigra (A/P -5.3, M/L +/- 2.0, D/L -7.8, measured from bregma). After a 5 minute 

pause, the needle was slowly withdrawn over 5 minutes.  Biochemical and 

behavioral assays were performed as described above 3 days after surgery. 

 

Results 

Diet-induced obesity results in reduced Akt activity in striatum and 

substantia nigra. We hypothesized that insulin resistance would also lead to 

decreased DAT surface expression.  To test this hypothesis we induced obesity 

and insulin resistance by high-fat feeding in rats (diet-induced obesity (DIO) (De 

Souza, Araujo et al. 2005; Posey, Clegg et al. 2009).  Rats were fed a 60% lard-

based high-fat diet (HF) for 28 days and controls fed a micro-nutrient matched 

10% low-fat diet (LF).  Throughout the 28 day period, HF animals consumed 

significantly more calories than LF animals (Fig. 13A; 3001 ± 134.3 cal. vs. 2633 
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± 95.65 cal, *=p<0.05 by Student’s t-test).  Also, HF animals gained significantly 

more weight than LF animals (Fig. 13B; 187.0 ± 9.63 g vs. 160.8 ± 5.38 g, 

*=p<0.05 by Student’s t-test).  Importantly, while blood glucose levels were not 

significantly different in the HF versus LF animals (Fig. 14A), plasma insulin 

levels were significantly elevated in the HF animals, indicating the presence of 

insulin resistance (Fig. 14B).  Furthermore, levels of tyrosine hydroxylase (TH) 

and dopamine were found to be similar between LF and HF groups (Fig. 15 and 

Fig. 16).  

 Akt is activated by phosphorylation at threonine 308 in response to insulin. 

Therefore, Akt phosphorylation is commonly utilized as a marker of insulin action 

(Luque et al., 2006).   To confirm that the DIO model resulted in impaired Akt 

phosphorylation, we assessed phosphorylated Akt (p-Akt) at position 308 in 

striatal extracts by western blot.  HF feeding resulted in reduction of p-Akt to 57 ± 

9% of LF animals (Fig. 17A; *=p<0.01 by Student’s t-test). Similar results were 

obtained in the substantia nigra, where the HF feeding decreased Akt 

phosphorylation to 69 ± 5% of LF animals (Fig. 17B; *=p<0.05 by Student’s t-

test). Importantly, total Akt levels were unaffected by DIO.  To further confirm a 

decrease in active Akt, we performed Akt activity assays.  For this, Akt was 

immunoprecipitated from striatal tissue of LF and HF animals.  A substrate of Akt, 

glycogen synthase kinase 3 (Gsk-3) was then added and phosphorylation of the 

substrate was assessed as a measurement of Akt activity in each preparation.   

DIO led to a decrease in Akt activity, as measured by p-Gsk-3 (Fig. 18, *=p<0.05 

by Student’s t-test, n=4), further confirming a reduction in active Akt in HF rats.  
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To assess the isoform specificity of the observed decreases in active Akt 

in the HF animals, immunoprecipitations were performed to pull down specific 

Akt isoforms, and then probed for phosphorylation.  In the HF animals, there was 

a significant reduction in p-Akt2 with respect to LF animals (Fig. 19A; *=p<0.05, 

by Student’s t-test), while no significant changes in the level of p-Akt1 were 

observed (Fig. 19B).  As a control, each isoform was immunoprecipitated and 

then probed for Akt1 or Akt2.  Figure 19C demonstrates the specificity of the 

immunoprecipitations.  

HF feeding reduces DAT cell surface expression.  Because HF feeding 

impairs Akt2 activation in the striatum, we next determined whether DIO induces 

a decrease in DAT cell surface expression using biotinylation assays on striatal 

slices.  Fig. 18A shows representative immunoblots of both biotinylated (surface) 

and total fraction obtained from either HF or LF animals. As a control, for non-

specific membrane protein trafficking, we also determined surface levels of the 

Na/K ATPase, a protein found predominantly at the plasma membrane. We 

observed a lack of immunoreactivity for Na/K ATPase in the cytosolic fraction, 

confirming the specificity of our assay.  Quantification by western blot analysis 

shows that levels of surface DAT in HF animals were reduced to 73 ± 9% of LF 

animals (Fig. 20B, *=p<0.05 by Student’s t-test).  This HF feeding-induced 

phenomenon was likely due to impaired trafficking since the total levels of DAT 

are unchanged (Fig. 20A).  Furthermore, since Na/K ATPase surface levels are 

unchanged, our data suggest that this DIO-induced trafficking does not target 

membrane proteins indiscriminately.   
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Figure 13.  High fat feeding results in increased food intake and weight gain.  Rats were fed 
a diet of either 10 % fat (LF) or 60% fat (HF) for 28 days.  The HF-fed rats have a significant 
increase in food intake (A, n=13; *=p<0.05 by Student’s t-test) and weight gain (B, n=13; 
*=p<0.05 by Student’s t-test). (*=p<0.05 by Student t-test; LF, n=13; HF, n=16).  All data are 
represented as mean ± S.E.M. 
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Figure 14.  High fat feeding results in insulin resistance.  Rats were fed a diet of either 10 % 
fat (LF) or 60% fat (HF) for 28 days.  On day 28, blood was collected and plasma glucose and 
insulin levels were measured. (A) Plasma glucose levels were not significantly different between 
the two groups. (B) Insulin levels in the HF rats were significantly higher as compared to the LF 
group (*=p<0.05 by Student t-test; LF, n=13; HF, n=16).  All data are represented as mean ± 
S.E.M. 
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Figure 15.  Tyrosine hydroxylase levels are unchanged by high fat feeding.  Rats were fed a 
diet of either 10 % fat (LF) or 60% fat (HF) for 28 days.   (A)  Representative immunoblot of 
tyrosine hydroxylae (TH) from the striatum of LF and HF animals.  (B)  Band densities of TH were 
quantified and are shown as a percentage of control.  There is not a significant difference 
between the two groups (n=3, p>0.05 by Student’s t-test).  All data are represented as mean ± 

S.E.M. 
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Figure 16.  Dopamine (DA) levels in striatum are unchanged by high fat feeding. (B)  
Dopamine levels were assessed in LF and HF rats on day 28 and no significant difference is seen 
between the two groups (shown as a percentage of control, n=5, p>0.05 by Student’s t-test).  All 
data are represented as mean ± S.E.M. 
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Importantly, levels of DA were found to be unchanged between HF and LF 

animals (Fig. 20A), as well as protein levels of tyrosine hydroxylase, the rate-

limiting enzyme in DA synthesis (Fig. 20B). 

HF feeding reduces DA clearance in vivo.  DAT activity is affected by the number 

of transporters at the cell surface and by their catalytic function.  Therefore, the 

DIO-induced reduction in DAT surface expression was predicted to lead to a 

consequent reduction in DAT activity.  We assessed this hypothesis by 

determining DA clearance in vivo using HSCA.  A calibrated micropipette 

positioned adjacent to the recording electrode was lowered into the striatum of 

anesthetized rats.  DA was applied into the striatum and its clearance measured 

over time.  Figure 21 shows the kinetic profile for DA clearance.  There was no 

effect on the signal amplitude or on the rise time (not shown) of the signal 

attained for a given amount of exogenously applied DA, which suggests that 

there is no change in the rate of diffusion of DA through the extracellular matrix 

between the two groups.  In contrast, compared to LF rats, HF animals showed a 

marked and significant reduction in the rate at which DA was cleared from 

extracellular fluid (Fig. 21, p<0.0001 by two-way repeated measures ANOVA, 

F4,24=60.83; *=p<0.01, with Bonferroni post-hoc analysis).  These data 

demonstrate that the decrease observed in the surface expression of DAT results 

in a functional decrease in DAT activity in vivo.    

HF feeding impairs AMPH-induced locomotion.  Alterations in Akt 

phosphorylation, thus, lead to changes in surface levels of DAT, as well as DAT  
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Figure 17.  DIO induces a decrease in p-Akt in striatum and substantia nigra.  (A,B) Tissue 
from the striatum (A) and substania nigra (B) was analyzed by western blot for levels of p-Akt 
(Thr308) and total Akt (insets).  Quantification of immunoreactivity for p-Akt shows a significant 
reduction in HF rats compared to LF rats for both brain regions.  Data is expressed as a 
percentage of LF control (*=p<0.05 by Student t-test; LF, n=6; HF, n=7).  All data are represented 
as mean ± S.E.M. 
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Figure 18.  DIO induces a decrease in Akt activity in striatum.  Akt activity was measured by 
the ability of immunoprecpitated Akt from striatal tissue of LF and HF fed animals to 
phosphorylate the substrate glycogen synthase kinase 3 (Gsk-3) in vitro.  Levels of 
phosphorylated Gsk-3 were analyzed by western blot (insets).  Quantification of immunoreactivity 
for p-Gsk-3 shows a significant reduction in HF rats compared to LF rats. Data is expressed as a 
percentage of LF control (*=p<0.05 by Student t-test;n=4).  All data are represented as mean ± 
S.E.M. 
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Figure 19.  DIO induces a decrease in p-Akt2.  Immunoprecipitation of Akt2 (A) and Akt1 ()b 
was performed on striatal tissue of LF and HF rats.  Immunoblots were probed for p-Akt (Thr308) 
to assess the phosphorylation state of each isoform (insets).  Quantification of the 
immunoreactivity shows that p-Akt2 levels were significantly decreased (A).  In contrast p-Akt1 
levels were not significantly changed (B) (*=p<0.05, Students t-test; LF, n=4; HF, n=5). (C) Each 
isoforms was pulled down and probed, demonstrating specificity to the immunoprecipitation for 
each isoform.  All data are represented as mean ± S.E.M. 
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activity.  AMPH elicits increased locomotion by causing DA efflux through reverse 

transport of DA, mediated by DAT.  Therefore, we used AMPH-induced changes 

in locomotion to probe functional changes in DAT mediated behavior between LF 

and HF rats.  Movement was assessed by the number of beam breaks (activity 

counts) in a 5 minute period.  Figure 21A shows rat locomotor activity over a 90 

min time period, wherein AMPH (1.78 mg/kg) was administered by I.P. injection 

at time = 60 minutes (arrow).  Baseline locomotor activity (between 0 and 60 min) 

was unchanged by HF feeding (Fig. 21B).  Importantly, after injection of AMPH, 

locomotion was increased in both groups, but the total distance traveled was 

reduced in HF animals (Fig. 21C, 8618 ± 835.7 vs. 6345 ± 573.0 mean activity 

counts, *=p<0.05 by Student’s t-test).  These data indicate that DIO reduces 

AMPH-induced locomotion, providing additional behavioral evidence that a high-

fat diet impairs DA signaling in striatum.  Furthermore, levels of AMPH in the 

striatum were found to be the same between LF and HF animals.  Animals were 

given an I.P. injection of AMPH (1.78 mg/kg) and then tissue was taken at three 

different time points, 5, 10, and 20 minutes.  The amount of AMPH in the tissue 

was similar over time, demonstrating that the ability of AMPH to reach the 

striatum between the two groups is not significantly different (Figure 23). 

Virally mediated IRS2 expression restores Akt activity in the substantia 

nigra.  Our data demonstrate that DIO leads to a reduction in DAT surface 

expression as a consequence of decreased Akt phosphorylation.  To cement this 

hypothesis, we employed a viral expression system to increase expression of  
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Figure 20.  Dopamine transporter cell surface expression is reduced in striatal slices of HF 
rat.  (A) Representative immunoblots of biotinylated (surface) and total proteins for the dopamine 
transporter (DAT) obtained from LF and HF rats. As a control we used both surface and cytosolic 
levels for the Na/K ATPase.  Na/K ATPase is found only at the surface and is unchanged across 
groups.  (B) Quantification of rDAT immunoreactivity.  rDAT surface levels were normalized to the 
total amount of rDAT and expressed as a percent of control. The levels of surface rDAT were 
significantly reduced in HF animals as compared to LF animals (**=p<0.01 by Students t-test, LF, 
n=4; HF, n=5). Data are represented as mean ± S.E.M.   
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Figure 21.  DA clearance rate is reduced in DIO animals.  Dopamine (DA) clearance rates 
obtained by pressure ejecting different concentrations of DA in striatum of anesthetized LF and 
HF rats.  HF rats show a significant reduction in DA clearance as compared to LF rats (*=p < 0.05 
by two way repeated measures ANOVA followed by Bonferroni post hoc test, n=4).  All data are 
represented as mean ± S.E.M. 

 

  



87 

 

IRS2, a cytosolic protein upstream of Akt whose activation increases Akt function 

(Gelling, Morton et al. 2006).  We injected a herpes simplex virus (HSV) 

encoding IRS2 (HSV-IRS2) into the substantia nigra of HF and LF animals, as 

well as HSV expressing GFP (HSV-GFP) as a control.  This virus has been 

characterized previously in dopaminergic regions of the rodent brain (Russo, 

Bolanos et al. 2007).   Virally mediated GFP expression in the cell bodies of the 

nigral dopaminergic neurons and in their terminal projection to the striatum was 

confirmed by immunohistochemistry (Fig. 24A).  Neurons were labeled after 

injection of HSV-GFP GFP with antibody against TH, a marker for dopaminergic 

neurons.  Figure 24 shows expression of GFP in TH-positive neuronal cell bodies 

(top) and nerve endings (bottom).  Next we confirmed that injection of HSV-IRS2 

restores basal Akt phosphorylation in HF animals.  Since IRS2 is upstream of 

Akt, we expected that overexpression of IRS2 would restore p-Akt levels in HF 

animals, as observed by others (Gelling, Morton et al. 2006).  In the HF animals 

injected with HSV-IRS2, a significant increase in IRS2 protein level was observed 

in the substantia nigra compared to HF animals injected with HSV-GFP (Fig. 

25A, *=p<0.05; one way ANOVA followed by Bonferroni post hoc test).  

Importantly, IRS2 overexpression reversed the impairment in basal Akt 

phosphorylation seen between HF and LF rats (Fig. 25B). Although IRS2 

expression did not increase p-Akt levels in the LF animals, it was able to 

significantly increase p-Akt level in the HF animals as compared to HF animals 

injected with HSV-GFP (*=p<0.05, one way Anova followed by Bonferroni post 

hoc test).  
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Figure 22.  AMPH-induced locomotor activity is reduced in DIO animals.  Locomotor activity 
was assessed in HF and LF rats before and after an I.P. injection of AMPH (1.78 mg/kg).  (A) 
Locomotor activity measured by beam breaks over time.  Each data point represents 5 minutes of 
recording expressed as a mean ± SEM.  The arrow indicates administration of AMPH.  (B)  Total 
distance traveled by HF and LF rats measured during the first 60 minutes (before AMPH; p≥0.05 
by Student’s t-test, n=12).  (C)  Total distance traveled measured in HF and LF rats throughout a 
30 min time period after AMPH injection (*=p<0.05 by Students t-test, n=12). All data are 
represented as mean ± S.E.M. 
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Figure 23.  AMPH levels in striatum after I.P. injection of AMPH remain the same between 
LF and HF fed rats.  AMPH levels were assessed at different time point in the striatum of LF and 
HF rats after an I.P. injection of AMPH (1.78 mg/kg).  There was not a significant difference 
between the two groups (n=3 for each time point). All data are represented as mean ± S.E.M. 
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Overexpression of IRS2 in the substantia nigra restores DAT cell surface 

expression in striatum as well as AMPH-induced locomotion.  We next 

determined whether the increase in p-Akt in the nigra due to injection of HSV-

IRS2 restores normal surface expression of DAT (Fig. 26). Both LF and HF 

animals were injected in the substantia nigra with either HSV-GFP or HSV-IRS2. 

Consistent with its inability to increase p-Akt, injection of HSV-IRS2 in the nigra 

did not increase DAT cell surface expression in striatum of LF animals compared 

to GFP injected controls.  Conversely, IRS2 overexpression in HF animals 

restored DAT plasma membrane expression to the level detected in LF animal 

injected with HSV-GFP (Fig. 26).  Importantly, injection of either virus did not 

affect the levels of the Na/K ATPase, showing this result is not due to changes to 

all surface proteins (Figure 27). 

We next determined whether restoration of DAT plasma membrane 

expression reversed the reduction in locomotor response seen after 

administering AMPH in the HF animals. We again injected either HSV-GFP or 

HSV-IRS2 into the substantia nigra of LF and HF animals and then, three days 

later, measured locomotor responses after an IP injection of AMPH (1.78 mg/kg).  

HF HSV-GFP injected rats traveled less distance 30 minutes after AMPH 

injection compared to LF HSV-GFP injected animals (Fig. 28B, 5184 ± 281.5 vs. 

3835 ± 335.4, *=p<0.05 by one way ANOVA followed by Bonferroni post hoc 

test) as previously observed in uninjected animals (Fig. 23). Importantly, IRS2 is 

able to restore the deficit in cell surface expression of DAT and AMPH-induced 

locomotor activity in HF animals (Figure 28). 
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Figure 24.  Viral-mediated expression of HSV-GFP.  (A) DA neurons from the substantia nigra 
and projection terminals in the striatum were stained for TH immunoreactivity after injection of 
HSV-GFP into the nigra.  (scale bars, 20 uM, top panel; 12 uM, bottom panel).  Injection 
coordinates were A/P +5.3, M/L+/- 2.0, D/V -7.8.  All coordinated measured from the top of the 
skull at bregma. 
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Figure 25.  Viral-mediated expression of IRS2 in DIO rats restores p-Akt levels.  (A) 
Representative immunoblot (inset) and quantification of IRS2 levels in the substania nigra after 
injection of HSV-IRS2 (*=p<0.05 by one way ANOVA followed by Bonferroni post hoc test; n=4).  
(B) Representative immunoblot (inset) and quantification of p-Akt (Thr308) levels in the substania 
nigra after injection of HSV-IRS2.  Injection of HSV-IRS2 significantly increases p-Akt levels in HF 
rats (*=p < 0.05 by one way ANOVA followed by Bonferroni post hoc test; LF, n=3; HF, n=4). All 
data are represented as mean ± S.E.M. 
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Discussion 

Food ingestion is not only controlled by hypothalamic function (Niswender, 

Baskin et al. 2004), but is also regulated by nigrostriatal DA pathways that are 

required for motivation to engage in feeding behaviors (Palmiter 2007). 

Excessive stimulation of DA signaling inhibits feeding; for example, elevating 

intrasynaptic DA concentration with either AMPH or cocaine, or stimulating DA 

receptors with apomorphine reduces food intake (Ladurelle, Duterte-Boucher et 

al. 1991). Still, how pathological feeding affects DA signaling is poorly 

understood. We sought here to determine how high-fat feeding leads to defects 

in DA homeostasis.  Initial results from both animal and human studies support 

the concept that obese subjects suffer ―hypodopaminergic, reward-deficiency 

syndrome (HRDS)‖, based upon evidence of derangements in the striatal 

dopaminergic system (Volkow and Wise 2005; Stice, Spoor et al. 2008).  

Importantly, in rodents, dietary-induced obesity leads to deficits in mesolimbic DA 

neurotransmission and decreases DAT density in striatum (South and Huang 

2008; Geiger, Haburcak et al. 2009).   

To date there is not a clear understanding of how HRDS develops and 

whether obesity-driven brain insulin resistance plays a significant role in this 

process. Based upon evidence for insulin regulation of DA homeostasis 

(Williams, Owens et al. 2007; Geiger, Behr et al. 2008; South and Huang 2008), 

it is imperative to clarify whether insulin resistance in striatum triggers striatal 

hypodopaminergia and whether rescuing the insulin signaling in obese animals 

also rescues normal DA homeostasis.  
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Figure 26.  Viral-mediated expression of IRS2 restores surface expression of DAT.   (A) 
Representative immunoblots (inset) of biotinylated (surface) and total rDAT obtained from LF and 
HF rats injected either with HSV-GFP or HSV-IRS2. Quantification of surface levels, normalized 
to total and expressed as a percentage of control (LF, HSV-GFP injected rats) are shown  (*=p < 
0.05 by one way ANOVA followed by Bonferroni post hoc test; n=6).  All data are represented as 
mean ± S.E.M.  
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Figure 27.  Viral-mediated expression of IRS2 does not alter the surface expression of 
Na/K ATPase.   Representative immunoblots (inset) of biotinylated (surface) and total Na/K 
ATPase levels obtained from LF and HF rats injected either with HSV-GFP or HSV-IRS2. 
Quantification of surface levels are shown, expressed as a percentage of control. (p>0.05 by one 
way ANOVA; n=6)   
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Figure 28.  Viral-mediated expression of IRS2 restores surface expression of DAT and 
AMPH-induced locomotor activity in DIO rats.  (A) Locomotor activity measured by beam 
breaks over time, with AMPH (arrow) given at 60 minutes (I.P., 1.78 mg/kg) to HF rats injected 
either with HSV-IRS2 (HF IRS2) or HSV-GFP (HF GFP) and LF rats injected with HSV-GFP (LF 
GFP). (B) Total distance traveled throughout a 30 min time period after injection of AMPH in HF 
IRS2, HF GFP and LF GFP  (*=p<0.05 by one way ANOVA followed by Bonferroni post hoc test; 
LF GFP, n=13; HF GFP, n=12; HF IRS2, n=13).  All data are represented as mean ± S.E.M. 
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The two main DA projections to the striatum originate from either the 

substantia nigra to the dorsal striatum, or from the ventral tegmental area to the 

ventral striatum.  The ventral striatum does not underlie the primary motivation 

for feeding, since disruption of DA signaling in the nucleus accumbens does not 

impair food intake (Salamone, Correa et al. 2005; Palmiter 2008).  This notion is 

further support by studies demonstrating that DA synthesis in dorsal striatum, in 

contrast to the ventral striatum, is essential for feeding (Cannon, Abdallah et al. 

2004; Palmiter 2008).  Thus, we focused our attention to whether the 

development of obesity impairs DA signaling in the nigrostriatal system and 

whether this dysregulation can be triggered by acquired dietary-induced brain 

insulin resistance.  Here, we show that high-fat feeding decreases cell surface 

expression of a key element of DA homeostasis, namely, DAT. This decrease in 

DAT cell surface expression could therefore lead to a reduction in striatal DA 

clearance and mechanistically contribute to HRDS.  Further work into changes in 

DA signaling in the nigrostriatal system during the development of obesity will be 

required uncover the role this signaling pathway plays in feeding and identify 

possible drug targets for pharmacotherapies of obesity.   

The insulin signaling pathway, via Akt, regulates DAT trafficking to and 

from the plasma membrane as well as DAT-mediated DA clearance (Carvelli, 

Moron et al. 2002; Owens, Sevak et al. 2005; Williams, Owens et al. 2007).  

High-fat feeding and/or obesity leads to changes in insulin signaling (Edelman 

1998; Clegg, Benoit et al. 2005; Posey, Clegg et al. 2009), including defects in 

Akt activation.  After 28 days of high-fat feeding we found a reduction in 
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phosphorylation of Akt, at position Thr308, concomitant to the reduction in DAT 

plasma membrane expression.  Importantly, we extended this observation by 

examining whether DIO impairs Akt phosphorylation in an isoform specific 

manner and observed specific defects in striatal Akt2 phosphorylation.   

It is compelling then, given past work linking insulin signaling to DAT 

surface expression (Carvelli, Moron et al. 2002; Garcia, Wei et al. 2005; Williams, 

Owens et al. 2007), that inhibition of Akt2, not Akt1, affects levels of DAT at the 

plasma membrane.  Since inhibition of Akt2 reduces the ability of AMPH to cause 

DA efflux in vivo, as measured by chronoamperometry, Akt2-mediated DAT 

trafficking, therefore, supports changes in DAT function and possibly DA 

homeostasis.  Because AMPH relies on DAT-mediated reverse transport of DA in 

order to cause its behavioral effects, we sought to extend these findings to 

determine whether DIO affects AMPH-induced hyperlocomotion: indeed DIO 

leads to a significant reduction in AMPH-induced locomotion, further supporting 

the notion that DIO impairs DAT function. 

In order to solidify the hypothesis that high-fat feeding causes decreases 

in striatal DAT cell surface expression by impairing Akt phosphorylation/activity 

we sought next to determine whether genetic rescue of insulin signaling also 

rescues DAT expression/trafficking in DIO animals.  Overexpression of a viral 

vector expressing IRS-2, a kinase upstream of Akt, in substantia nigra increased 

phosphorylation of Akt in the DIO animals to a level comparable to that of low-fat 

fed control animals.  The substantia nigra has DA projections to the dorsal 

striatum.  Concomitant with rescue of Akt phosphorylation, IRS-2 gene therapy 
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also restored DAT cell surface expression in the dorsal striatum of DIO animals 

to the level observed on LF controls.  Consistent with our functional model, 

normalization of DAT cell surface expression normalized the ability of AMPH to 

induce locomotion. 

Thus, our work demonstrates that 4 weeks of a high-fat diet is sufficient to 

impair striatal DA clearance as well as the ability of AMPH to cause DA efflux 

and locomotion and this functional alteration is mediated by impaired activation of 

Akt isoform 2.  Our results further suggest that high-fat feeding decreases DAT 

cell surface expression by inducing brain insulin resistance.  As the role of DA 

signaling in feeding behavior begins to be revealed, a higher resolution 

understanding of alterations in DA systems by high-fat diets may yield insight into 

comorbid neuropsychiatric disorders and/or novel obesity therapeutic targets. 
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CHAPTER IV 

 

GENERAL DISCUSSION, IMPLICATIONS, AND FUTURE DIRECTIONS 

 

DA signaling plays an important role in mood, reward, behavior, and motor 

function.  Imbalances in dopaminergic signaling are thought to underlie various 

psychiatric disorders, including Parkinson’s disease, bipolar disorder, 

schizophrenia, drug abuse and ADHD (Wise 1998; Horschitz, Hummerich et al. 

2005; Kienast and Heinz 2006; Volkow, Wang et al. 2007; Davis, Levitan et al. 

2008; Koob and Le Moal 2008).  DAT  plays a critical role in dopaminergic 

signaling by taking up DA released into the synapse back into the presynaptic 

terminal (Borowsky, Adham et al. 2001).  Importantly, DA signaling is influenced 

by several signals, including peptides that are well known for their role in 

regulating food intake and metabolism, such as insulin.  Dysregulated insulin 

signaling and diabetes is seen in patients with DA-related disorders (Mukherjee, 

Decina et al. 1996; Dixon, Weiden et al. 2000; van Winkel, De Hert et al. 2008).  

Therefore, it is not surprising that researchers are discovering that insulin plays a 

role in regulating DA homeostasis.  As a role for insulin in regulating DA-related 

behaviors begins to be revealed, understanding on a molecular level how 

peptides related to food intake, such as insulin, affect DA systems is needed.  

Therefore this dissertation: 1) further defines components of the insulin signaling 

pathway that alter DAT cell surface expression and 2) examines diet-induced 

molecular changes to insulin signaling and DAT function in the nigrostriatal 
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pathway.  With obesity and diabetes rising in occurrence, further studies into how 

changes in insulin tone affect dopaminergic systems are warranted.   

 

Obesity and Diabetes 

According to the Center for Disease Control, obesity is quickly becoming 

an epidemic in our nation, with rates of obesity increasing markedly over the past 

20 years (Flegal, Carroll et al. 2010).  More than half of Americans are either 

overweight or obese, as defined by a BMI above 24 or 30, respectively (Mokdad, 

Bowman et al. 2001).  Perhaps even more startling is the increase of obesity in 

children and adolescents.  Approximately 31% of children, age 2-18, have a BMI 

above the 85th percentile for their age, sex, and height (Ogden, Carroll et al. 

2010).  Furthermore, these increases are leading to a financial burden to the 

health care system.  It is estimated that there has been a 36% increase in 

spending on obesity and obesity related disorders (Finkelstein, Fiebelkorn et al. 

2003).  This trend is quite alarming, given the association between obesity and 

many chronic diseases, including type 2 diabetes, cardiovascular disease, 

several types of cancer, musculoskeletal disorders, sleep apnea, and gallbladder 

disease (Must, Spadano et al. 1999; Visscher and Seidell 2001).   

Whereas obesity and diabetes mellitus continue to increase in occurrence, 

the understanding of how these conditions affect the brain is only beginning to be 

uncovered.  Americans over consume foods, and often these are high fat foods.  

Several ideas were put forth that the signaling of insulin, and other hormones 

relating to food consumption such as leptin, were not just important to the 
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periphery, but also in the brain.  It has been well established that these peptides 

signal to the hypothalamus, which helps balance our body’s rate of energy 

expenditure to the amount of food we have consumed.  Dysfunction here has 

been hypothesized to account for obesity, and surely does play a role.  However, 

this view alone is too simplistic.  Often individuals will eat when full, and the 

motivation for food and the pleasure of eating is believed to be an important 

component in feeding behavior.  In fact, fMRI studies have shown activity in the 

areas of our brain known to be involved in pleasure and reward, which involve 

DA as a neurotransmitter, are activated as we eat something palatable (Stice, 

Spoor et al. 2008).  Increased DA turnover and release occur in the nucleus 

accumbens and the dorsal striatum in response to feeding (Yoshida, Yokoo et al. 

1992).  As discussed, DA has been shown to have a role in motivation for food 

and the pleasure we feel from eating, but this role is not yet well understood.  

Interestingly, diabetes and obesity occur in patients with diseases involving DA 

dysfunction (Sandyk 1993; Morris, Zhang et al. 2008).  This overlap implies an 

important interplay between the two systems.  Insulin receptors are expressed in 

DA rich areas, including the substantia nigra, the VTA, and the striatum 

(Figlewicz, Evans et al. 2003).  Therefore, it is plausible that insulin signaling in 

DA regions helps to regulate our feeding behavior.  In order to understand 

overconsumption of food and obesity, it is critical to understand at a molecular 

level how metabolic signaling molecules such as insulin regulate DA 

homeostasis, and how this, as a whole, regulates food intake.   
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DA signaling comprises several components, all which provide an 

opportunity for regulation.  Proper dopaminergic tone is dependent upon several 

factors, including the amount of DA synthesized, vesicular release of DA, DRs on 

the post synaptic cell, and termination of the signal by uptake of DA through 

DAT.  PET imaging studies have demonstrated an inverse relationship between 

BMI and DAT binding in human subjects (Chen, Yang et al. 2008), pointing to 

alterations in the surface expression of DAT in obese subjects.  The work in this 

dissertation focuses on the alterations in DAT cell surface expression after a 4 

week period on a 60% high fat diet.  Prior work has demonstrated that improper 

insulin signaling can modify DAT function (Owens, Sevak et al. 2005; Williams, 

Owens et al. 2007).  These studies used an animal model of insulin depletion by 

injecting STZ, a drug that is toxic to the insulin producing β-cells in the pancreas.  

After treatment, these animals had a reduction in DAT function, shown by a 

reduction in DA clearance and AMPH-induced DA efflux as well as striatal Akt 

activity.   Therefore, we hypothesize that insulin signals through Akt to maintain 

DAT on the cell surface, thereby regulating DAT function and DA transmission.    

In this dissertation, this hypothesis was tested using a Diet Induced 

Obesity (DIO) model where rats were given a 60% high fat diet for 28 days.  

Control animals were kept on a 10% fat diet, which contains the same amount of 

fat as rat laboratory chow, but is also nutrient matched with the high fat diet.  The 

data collected demonstrate that consuming a high fat diet alters insulin signaling, 

namely phosphorylation of Akt, in the nigrostriatal system.  It also results in a 

reduction in DAT cell surface expression, DA clearance, and AMPH-induced 
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hyperlocomotion.  Importantly, restoration of Akt signaling by overexpression of 

IRS-2 by viral injection restores DAT to the cell surface.  This work indicates that 

insulin is signaling through Akt to regulate DAT function, demonstrating insulin 

regulation of DA neurotransmission.  

To help identify how insulin modulates DAT function, it is important to 

define the pathway insulin signals through to regulate DAT cell surface 

expression.  Studies examining PI3K and Akt, two important components of this 

pathway, show that they regulate the cell surface expression of DAT  (Carvelli, 

Moron et al. 2002; Garcia, Wei et al. 2005; Lute, Khoshbouei et al. 2008). Here, 

the isoform specificity of Akt in regulating DAT was explored, which was possible 

due to the development of isoform specific inhibitors of Akt.  Prior to this work, it 

was unknown if Akt regulation of DAT was primarily due to activation of insulin, 

being that Akt is stimulated by a variety of signals and controls several cellular 

processes in addition to serving as a mediator of insulin signaling, Akt signaling 

supports survival and cell growth (Hanada, Feng et al. 2004).  Interestingly, the 

isoforms of Akt appear to serve distinct roles.  It is known that Akt2 is the isoform 

responsible for mediating insulin signaling (Cho, Mu et al. 2001).  In contrast, 

Akt1 is thought to govern signaling for growth and cell survival (Cho, Thorvaldsen 

et al. 2001).   Therefore, establishing that Akt2 is the isoform of Akt regulating 

DAT helps to further define that insulin itself is mediating DAT function.  In fact, 

Akt2 inhibition alone was sufficient to reduce DAT cell surface expression in the 

striatum, as well as inhibit AMPH-induced efflux.  Therefore, this work supports 
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the hypothesis that insulin is an important mediator of DAT cell surface 

expression via PI3K and Akt2.   

Previously, studies used these inhibitors to try and identify an isoform-

specific target for tumor cells (DeFeo-Jones, Barnett et al. 2005).  Rapid cellular 

growth is often characterized with high levels of active Akt, and researchers 

looked to define the isoform of Akt responsible in hopes to be able to define a 

pharmacological target for halting tumor growth without affecting the other 

important roles of Akt.  However, they found that neither isoform was solely 

responsible, but only inhibition of both forms reduced tumor growth (DeFeo-

Jones, Barnett et al. 2005).  In contrast, here we did identify isoform specificity to 

a biological process.  We found inhibition of Akt2 alone, not Akt1, can alter a 

component of DA signaling, specifically by reducing DAT cell surface expression.  

Alterations in DAT cell surface expression affect its function, allowing DA to 

remain in the synapse and enhance DA neurotransmission, thereby affecting 

dopaminergic tone.   As such, this data displaying isoform specificity to DAT 

trafficking is particularly interesting for it is the first work using these inhibitors to 

demonstrate Akt isoform specificity.  Furthermore, it allows for an isoform-specific 

pharmacological target for altering DAT function, which may be useful in treating 

diseases of DA dysfunction.  For example, DA neurotransmission could be 

modulated by inhibiting Akt2, resulting in a decrease of DAT function.  Knowing 

the specific isoform to target would prevent potential unwanted outcomes of 

inhibiting all isoforms of Akt.  Perhaps defining a specific Akt isoform responsible 

in tumor growth was not possible because several processes are altered in this 
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state of cellular dysfunction, and therefore biological functions such as cell 

growth are greatly skewed.  As such, extreme situations of DA dysfunction may 

also lead to differential regulation of DAT by Akt, and therefore further study is 

warranted before treatment of a disease.   

 

Alternative Interpretations 

High fat feeding and DIO.  Here we examine alterations to DAT, a critical 

component in DA homeostasis, after 28 days on a high fat diet.  We report that 

high fat feeding causes alterations to Akt phosphorylation and DAT cell surface 

expression.  It is important to note that prior work using high fat diets 

demonstrates several changes throughout the body (Montague 2003; De Souza, 

Araujo et al. 2005; Posey, Clegg et al. 2009).  Furthermore, alterations from high 

fat diets continue to be defined.  Several studies have examined changes to 

components of DA neurotransmission in response to alterations in diet.  For 

example, Geiger and colleagues utilized animals with either obesity-prone or 

obesity-resistant phenotypes to examine differences in dopamine release 

between the two groups.  In this model, obesity-prone rats were hyperphagic and 

had a 20% higher body weight than the obesity-resistant rats.  Using slice 

preparations from these animals, they found that electrically evoked DA release 

was significantly reduced in obesity-prone rats in the dorsal striatum, along with 

other DA regions such as the ventral striatum and prefrontal cortex, suggesting 

that there may be a widespread dysfunction in mechanisms regulating dopamine 

release (Geiger, Behr et al. 2008).  Unlike the work in this dissertation, the model 
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of obesity used by the investigators in this study did not alter the type of diet.  

However, their data demonstrates alterations in stimulated release in an obese 

state.  Therefore, it is possible that there are alterations to DA release upon 

stimulation in the DIO model as well.  If so, such changes could influence the 

modifications we show in DAT cell surface expression and are an important 

consideration for future studies. 

Another important consideration is the role of diet changes and obesity on 

DRs.  For example, it is possible that the reduction in active Akt is affecting the 

presynaptic D2R, which has been shown to associate with DAT and affect its 

function (Lee, Pei et al. 2007).  Therefore, Akt may be affecting the receptor first, 

and the effects seen on the transporter may be indirect. A recent study examined 

changes to D2R in the striatum in another model of obesity, which they refer to 

as a ―cafeteria-style‖ diet.  Johnson and Kenny fed animals several forms of ―junk 

food‖ to model a typical poor diet that results in obesity.  They found that striatal 

levels of the D2R were signficantly reduced in the animals fed a ―cafeteria-style‖ 

diet compared to control animals (Johnson and Kenny 2010).  However, D2Rs 

are found both pre- and postsynaptically, and the authors did not examine which 

population was altered.  Still, modulation of either population could affect DAT 

cell surface expression and function, whether directly or indirectly.  Therefore, 

changes to D2R are another important consideration for interpretation. 

Pharmacological manipulations.  The data in this dissertation indicate that 

Akt2 is responsible for sustaining DAT cell surface expression.  These 

experiments made use of pharmacological inhibitors of Akt1 and Akt2.  It is 
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important to note that treatment with these drugs affects all cells in the striatum, 

not only DA neurons.  Therefore, it is possible that isoform-specific inhibition of 

Akt in other neuronal populations in the striatum could be the primary change, 

and changes to DAT cell surface expression may be secondary.  Experiments 

utilizing a preparation that enriches for DA terminals would be useful to confirm 

that it is indeed alterations to active Akt2 in DA neurons responsible for changes 

in DAT cell surface expression.   

Viral intervention with wild type IRS2.  We clearly show that expression of 

wild type IRS2 in the substantia nigra leads to an increase in phosphorylated Akt 

and DAT cell surface expression, as well as changes to AMPH-induced 

locomotion.  However, it is important to note that these data could have 

alternative interpretations.  Viral expression in the substantia nigra could directly 

alter presynaptic components of DA neurotransmission, such as vesicular 

release, DA production, or changes to presynaptic DRs.  In addition to 

modulation of DA signaling components, viral expression of IRS2 could alter 

receptors important to the excitability of the neuron itself.  For example, it is 

possible that the surface expression of other proteins is modulated as well.  To 

test this possibility, experiments looking for changes in other membrane bound 

receptors important to excitability, for example AMPA receptors, would be useful 

to determine if IRS2 injection is altering important components to 

neurotransmission beyond DAT. 
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Future Directions 

Downstream effectors of Akt regulating DAT cell surface expression.  With 

Akt2 identified as an important component in regulation of DAT cell surface 

expression, further work is now needed in determining what is downstream of 

Akt2 activation in order to alter DAT trafficking.  This exact process is still 

unknown.  Several kinases downstream of Akt2 have been identified (Frame and 

Cohen 2001; Kramer, Witczak et al. 2006; Thong, Bilan et al. 2007; Wieman, 

Wofford et al. 2007), allowing for several candidates for an intermediate between 

Akt2 and DAT.  However, one model of transporter trafficking by insulin activation 

leads to a hypothesis for a similar model for regulation of DAT trafficking.  The 

glucose transporter 4 (GLUT4) cell surface expression is mediated by insulin 

signaling via Akt2 (Sano, Kane et al. 2003).  Prior studies demonstrate that 

adipocytes from Akt2 null animals had a decrease of GLUT4 at the cell surface, 

as well as decreased insulin-stimulated glucose uptake (Bae, Cho et al. 2003).  

Rescue of Akt2 by viral expression restored GLUT4 surface expression, while 

viral expression of Akt1 had no effect (Bae, Cho et al. 2003).  Therefore, GLUT4 

cell surface expression is mediated through Akt2.  Importantly, this specificity is 

also demonstrated in this dissertation with Akt regulation of DAT.  This allows for 

a potential model to identify molecules downstream of Akt2 that are responsible 

for DAT trafficking, particularly because one such molecule has been identified in 

GLUT4 trafficking.  AS160 is a GTPase activating protein that catalyzes the 

inactivation of several Rab proteins (Kane, Sano et al. 2002).  These proteins are 

known to be important in the translocation of molecules throughout the cell, 
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including inter-membrane trafficking (Gonzalez and McGraw 2009).  Interestingly, 

AS160 is known to regulate GLUT4 cell surface expression, leading to the 

possibility that it may function in a similar manner to regulate the trafficking of 

DAT.  For example, knockdown of AS160 by RNAi expression increases the 

basal levels of GLUT4 on the cell surface in adipocytes (Eguez, Lee et al. 2005).  

Importantly, inhibition of AS160 is dependent on phosphorylation by Akt (Bae, 

Cho et al. 2003; Thong, Bilan et al. 2007).  In fact, GLUT4 increases in cell 

surface expression by activation of Akt2 have been shown to be reliant on the 

subsequent inhibition of AS160 (Eguez, Lee et al. 2005).  This indicates that Akt2 

activation leads to AS160 inhibition, supporting GLUT4 on the cell surface.  DAT 

cell surface expression has been shown to be regulated in a similar manner, via 

insulin and Akt2.  Therefore, AS160 should be targeted as a possible 

downstream effector of insulin receptor and Akt2 activation, resulting in 

modulation of DAT cell surface expression.  Experiments testing whether 

inhibition or overexpression of AS160 alters DAT cell surface expression and DA 

uptake could examine this hypothesis.  Furthermore, it would be interesting to 

determine whether the effects seen by inhibition of Akt2 on DAT cell surface 

expression require AS160.   

This work defining Akt2 in the regulation of DAT cell surface expression 

helped to further define the role of insulin signaling in DA systems.  The work in 

this dissertation also examined the effects of improper insulin signaling by using 

a model of obesity and insulin resistance; the DIO model.  Importantly, the levels 

of active Akt2 in the striatum of DIO animals were reduced, whereas active Akt1 
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was unchanged.  Further work examining changes to targets downstream of Akt2 

in DIO animals would help to define the effecter proteins contributing to the 

changes seen with improper insulin signaling to DAT.  If AS160 is involved in 

DAT trafficking, it would be expected that its phosphorylation is increased in HF 

fed animals compared to LF fed control animals, allowing it to remain active.  

Using viral techniques similar to those used with IRS-2, expression of dominant 

negative AS160 could reduce active AS160 and maintain DAT on the cell surface 

in HF rats.  Conversely, overexpression of AS160 in LF animals should produce 

an effect similar to that seen in HF animals, with DAT reduced on the cell 

surface.   

Although AS160 is an interesting candidate for regulation of DAT 

trafficking, it is important to note that there are many downstream effectors of 

Akt2 that could be regulating DAT trafficking.  For instance, glycogen synthase 

kinase 3 (GSK3) is a kinase targeted by Akt.  GSK3 is probably most well known 

for its role in activating glycogen synthase, which occurs when GSK3 is inhibited 

by Akt, allowing for the formation of glycogen upon insulin stimulation (Cohen, 

Alessi et al. 1997).  Phosphorylation by Akt of either GSK3α at serine-21 or 

GSK3β at serine-9 promotes inhibition of GSK3 activity (Cohen, Alessi et al. 

1997; Frame and Cohen 2001).  GSK3 signaling has been shown to regulate the 

plasma membrane expression of the glucose transporter-1 (GLUT1) (Wieman, 

Wofford et al. 2007), integrins (Roberts, Woods et al. 2004), and the megalin 

receptor (Yuseff, Farfan et al. 2007).  Therefore, as with AS160, it would be 

interesting to test whether GSK3 modulates DAT cell surface expression and 



112 

 

function.  Also similar to AS160, activation of Akt inhibits GSK3 activity (Cohen, 

Alessi et al. 1997).  Therefore, experiments similar to those described above for 

AS160 could test for the involvement of GSK3 in the regulation of the transporter.  

Alterations to GSK3 have been noted in schizophrenia (Emamian, Hall et al. 

2004), a disease of DA dysfunction that has been linked to polymorphisms to 

Akt1 (Emamian, Hall et al. 2004; Bajestan, Sabouri et al. 2006; Ikeda, Iwata et al. 

2006).  In fact, GSK3 is the target of the drug lithium, a well-known treatment for 

another DA-related disease, Bipolar disorder.  The relation of GSK3 signaling to 

diseases of DA dysfunction makes a possible interaction between DAT and 

GSK3 very intriguing.  Evidence collected so far support regulation of GSK3 by 

Akt1, due to the changes seen in schizophrenic patients (Emamian, Hall et al. 

2004), however this is far from conclusive and only an observation of a disease 

state.  Much work remains to be done to establish the isoform specificity to Akt 

regulation of GSK3 in brain, and therefore the potential regulation of DAT 

function.  AS160 and GSK3, as well as all effector proteins of Akt, should be 

explored as possible candidates for insulin regulation of DAT cell surface 

expression.  Identification of the exact components of the pathway that insulin 

acts through to modify DAT function would provide a better understanding of how 

Akt regulates DA systems.  

Alterations to DAT and interacting proteins.  Another important component 

in understanding how insulin signaling affects DAT cell surface expression is to 

examine if the post-translational modifications and interacting proteins of the 

transporter is itself, and how they are altered with inhibition of Akt2 or in the DIO 
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model.  For example, much work has been done examining the phosphorylation 

of DAT in response to activation of PKC, a well known regulator of DAT cell 

surface expression.  PKC activators such as phorbol 12-myristate 13-acetate 

(PMA) and protein phosphatase inhibitors such as okadaic acid (OA) have been 

shown to induce DAT endocytosis and reduce transporter Vmax (Daniels and 

Amara 1999; Melikian and Buckley 1999; Doolen and Zahniser 2001).  Initial 

models suggested that this PKC-dependent downregulation of DAT activity is 

primarily due to the intracellular accumulation of the transporter (Zhang, Coffey et 

al. 1997; Zhu, Kavanaugh et al. 1997; Pristupa, McConkey et al. 1998; Daniels 

and Amara 1999; Melikian and Buckley 1999; Chang, Lee et al. 2001; Granas, 

Ferrer et al. 2003; Loder and Melikian 2003).  It has been postulated that PKC 

downregulation of DAT is mediated by the phosphorylation of the transporter, 

therefore modifications such as phosphorylation could also be possible for insulin 

regulation of DAT cell surface expression.  When examining the effects of PKC 

activation on DAT, direct phosphorylation of N-terminal serines was observed 

using 32PO4-labeled DAT (Vaughan, Huff et al. 1997; Foster, Pananusorn et al. 

2002).  Such experiments looking at the phosphorylation of DAT after Akt2  

activation by insulin, or Akt2 inhibition by inhibitors used in this dissertation, could 

help to define if DAT itself is phosphorylated in response insulin.  Another possibility 

is to examine DAT mutants with truncations of the N-terminus or the C-terminus that 

are transfected into cell lines, or mutations with alterations to the amino acids that 

can be phosphorylated on these termini.  One could treat these cells with the Akt2 

inhibitor, I-Akt2, and look to see if DAT cell surface expression is reduced, as with 
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wild-type DAT, or not.  If there is no change, then the region mutated is important to 

Akt2-mediated DAT trafficking.  Overall, it is important to determine if post-

translational modifications, such as phosphorylation, to DAT by insulin occur and 

determine what region of the transporter is important for insulin-mediated DAT 

trafficking.  This would help to further define how insulin regulates DAT cell surface 

expression, which is critical to understand the interaction between insulin and DA 

systems.   

Mechanism of DAT trafficking in response to insulin signaling.  Decreases 

to the surface expression of a protein can occur either by removal from the 

plasma membrane, or by prevention of insertion onto the cell surface, or both.  

For the former, experiments examining whether certain proteins known to be 

involved in internalization, such as clathrin or dynamin, are required for DAT 

surface expression changes would be useful.   For example, the redistribution of 

DAT from the plasma membrane by a member of the insulin signaling pathway, 

PI3K, is known to be dynamin dependent (Carvelli, Moron et al. 2002).  

Therefore, one would hypothesize that modulation of DAT cell surface 

expression by other insulin signaling members, such as Akt2, is also dynamin 

dependent, but this remains to be tested.  Defining if internalization of DAT is 

responsible for DAT surface expression changes, and then understanding how 

that internalization is accomplished is important to understand how insulin 

signaling regulates DAT cell surface expression.  In fact, internalization of DAT is 

an extensive area of study, and recent work has indicated it could be dependent 

upon the location of DAT on the plasma membrane.  This was examined by 
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again looking at PKC-dependent internalization.  PKC stimulated trafficking of 

DAT is also believed to be dynamin-dependent, as with PI3K, as well as clathrin 

mediated (Daniels and Amara 1999; Sorkina, Hoover et al. 2005; Foster, Adkins 

et al. 2008).    Foster and coworkers demonstrated that a combination of 

trafficking and trafficking-independent processes are involved in PKC-dependent 

downregulation of DAT activity based upon the location of DAT (Foster, Adkins et 

al. 2008).   They found that PKC induced loss of cell surface DAT occurs only 

from non-raft populations.  Conversely, in cholesterol-rich lipid raft microdomains, 

PKC activation led to an increase in DAT phosphorylation compared to non-raft 

populations, as well as a loss of DAT activity, but there was not a decrease in the 

cell surface expression (Foster, Adkins et al. 2008).  This study indicates that 

non-raft DATs are regulated by trafficking events and that cholesterol-dependent 

nontrafficking regulatory mechanisms occur in lipid rafts.  Due to the changes 

seen in this study in cell surface expression, one would hypothesize that only the 

non-raft populations of DAT are regulated by insulin signaling.  Experiments 

looking at the localization of DATs regulated by insulin similar to those conducted 

looking at PKC and DAT would be needed to determine if this is the case.  

Understanding the population of DATs that are susceptible to regulation by 

insulin would help to further our knowledge on insulin regulation of DAT and DA 

systems.  By determining the population of DATs on the plasma membrane that 

are affected by insulin signaling, therapies that are specific to that population can 

be developed.  This allows for a more specific target for treatment of diseases 

with improper insulin signaling, such as insulin resistance and obesity.  
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With the emerging data indicating a role for insulin signaling in modulation 

of DA systems, the list of the detrimental effects of a high fat diet and insulin 

resistance grows beyond dysregulation of blood glucose levels.  DA signaling is 

important for a variety of behaviors and implicated in several diseases, from 

schizophrenia, depression, addiction, ADHD, binge eating disorder, and several 

others (Wise 1998; Horschitz, Hummerich et al. 2005; Kienast and Heinz 2006; 

Volkow, Wang et al. 2007; Davis, Levitan et al. 2008; Koob and Le Moal 2008).  

Alterations to DA homeostasis by improper insulin tone, therefore, have 

important implications for DA-based behaviors.   Here it is shown that a high fat 

diet results in a decrease in DAT cell surface expression, DAT function, and 

AMPH-induced DA efflux.  These changes are rescued with overexpression of a 

kinase directly downstream of the insulin receptor, IRS2.  Importantly, this 

trafficking event is attributed to Akt2 activity, the isoform of Akt known to be 

involved in insulin signaling.  Overall, the work in this dissertation demonstrates 

that insulin signaling via Akt2 is regulating DAT function, and that a high fat diet 

leads to improper insulin signaling thereby altering DAT function.   However, it is 

not fully understood how DA signaling alters feeding behavior.  Future studies 

aimed at revealing the role of DA systems in feeding behavior, as well as how 

alterations in insulin affect this will help to elucidate the co-morbitity of obesity 

and DA-related disorders, and hopefully begin to identify treatments.    
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