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CHAPTER I 

 

 
INTRODUCTION 

 

DNA Replication Overview 

 DNA replication is a process that is fundamental to all organisms.  The genome 

must be replicated accurately to ensure that all the genetic material is passed from cell to 

cell and from parent to offspring.  Complexes of several proteins acting in concert are 

responsible for replicating DNA, and while the endpoint is similar, the mechanism of 

DNA replication can vary from organism to organism.  This dissertation will focus on 

eukaryotic DNA replication and how a viral model system can be used to facilitate our 

understanding of this complex process. 

 There are three major phases of DNA replication: initiation, elongation, and 

termination.  Initiation is characterized by the generation of replication forks at origins of 

replication.  Origins are distinct locations of the genome where protein machinery 

assembles and begins the process of replicating the genome.  The double-stranded DNA 

(dsDNA) is initially melted and then unwound via the helicase activity of the protein 

machinery to create the replication bubble, which contains two replication forks.  This 

creates two strands of template single-stranded DNA (ssDNA).  The 3’ -> 5’ strand is 

known as the leading strand template and the 5’ -> 3’ strand is termed the lagging strand 

template.  DNA polymerases cannot polymerize deoxyribonucleotides (dNTPs) de novo, 

so a short RNA primer is generated on the leading and lagging strands. 
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 The main components of the elongation phase are the activity of the helicase and 

DNA polymerases.  DNA polymerases create DNA in the 5’ -> 3’ direction using the 

template DNA as a guide.  Due to the polarity of the lagging strand, the polymerase will 

have to be repeatedly recruited to the replication fork to generate stretches of DNA 

termed Okazaki fragments.  DNA replication is terminated when a DNA polymerase runs 

into a region where the DNA has already been replicated.  The RNA primers are 

removed, the resultant gaps are filled in, and the remaining nicks are repaired. 

 Defects in DNA replication can have dire consequences at both the cellular and 

organismal level.  Incorporation of incorrect bases into the daughter strand may lead to 

mutations in proteins that interfere with normal cellular processes.  Mutations that 

inactivate tumor suppressors, for example, can lead to tumor formation.  Another 

potential problem during DNA replication is fork stalling due to DNA lesions.  In healthy 

cells, this triggers cell cycle arrest, which allows for the cell to repair the damage or to 

destroy the cell via apoptosis.  The genome must also be replicated faithfully during 

embryogenesis to ensure that the embryo develops healthily.  As such, mutations that 

cause severe defects in DNA replication do not support life.  Given the central role of 

DNA replication in numerous processes ranging from development to tumorogenesis, 

understanding how this process is carried out in human cells is an important step in 

combating disease. 

 

Eukaryotic DNA Replication 

 DNA replication in eukaryotes is a complex process involving the coordination of 

many proteins.  This process is tightly controlled, allowing for one round of DNA 
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replication per cell cycle.  While origins in lower eukaryotes are well studied, human 

origins of replication are much more complex (1, 2).  This is largely due to the absence of 

consistent DNA sequences from one origin to the next.  The first component to localize to 

the origin is the origin recognition complex (ORC) in the G1-phase of the cell cycle (3, 

4).  ORC is a six subunit protein hypothesized to serve as a protein recruiter and scaffold.  

How ORC identifies origins is not clear.  While origins are discrete segments within the 

chromosomes, ORC binds dsDNA with no apparent sequence specificity (1).  Thus other 

proteins, perhaps those already associated with chromatin, may help guide ORC to 

origins (5). 

 A simplified schematic for initiation of eukaryotic DNA replication is shown in 

Figure 1.1.  Once ORC is bound to the origin, it serves as a scaffold for the recruitment of 

additional proteins required to form the pre-replication (pre-RC) complex.  Cell division 

cycle 6 protein (Cdc6) and chromatin licensing and DNA replication factor 1 (Cdt1) are 

recruited by ORC to origins (reviewed in (3, 4)).  These two proteins are required for the 

association of minichromisome maintenance 2-7 proteins (Mcm2-7) (6, 7).  Cdc6 and 

three of the subunits of ORC are ATPases, and ATP hydrolysis results in active loading 

of Mcm2-7 onto origin DNA, whereby the 6 subunits of Mcm2-7 are thought to encircle 

the dsDNA (4, 8).  Several copies of Mcm2-7 are loaded onto each origin via this cycle 

of ATP hydrolysis (9). 
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Figure 1.1.  Initiation of eukaryotic DNA replication. (A) ORC binds the origin. (B) 
Cdc6 (orange) and Cdt1 (yellow) are recruited. (C) Mcm2-7 are loaded, licensing the 
DNA for replication. (D) Mcm10 is loaded as the cell enters S-phase and the pre-RC is 
phosphorylated by Cdk and Ddk, followed by (E) Cdc45 and GINS. (F) Helicase activity 
is stimulated by Sld2, Sld3, and Dpb11 allowing RPA (yellow) to bind.  (G) Pol-prim is 
loaded and (H) lays down an RNA-DNA primer. 
 
 
 

The pre-RC is a key regulation step in DNA replication.  In order to ensure that 

the genome is not replicated continuously, origins are regulated so that they fire only 

once per cell cycle via a process termed DNA replication licensing with the key step 

being the loading of Mcm2-7 (10).  Since DNA replication occurs only during S-phase, it 

is not surprising that licensing is regulated by regulators of the cell cycle.  The pre-RC is 

phosphorylated by cyclin E-cyclin dependent kinase (Cdk) 2, cyclin A-Cdk2, and the 

DBf-4 dependent kinase (Ddk) which allows DNA replication to continue (8).  The 

availability of Cdt1 is also a key regulatory checkpoint in metazoans.  Geminin inhibits 

Cdt1 via a direct physical interaction.  Geminin levels are highly regulated and it is most 

highly expressed in late S-, G2-, and M-phase (8).  This ensures that Cdt1 is only free to 

associate with the pre-RC during G1-phase. 

 As the cell cycle progresses into S-phase, Mcm10 is loaded onto the origin, and 

serves as a prerequisite for binding of Cdc45 and GINS (11-13).  Recently, Cdc45 and 

GINS have been found to associate with Mcm2-7 to create the replicative helicase 
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complex (14, 15).  Sld2 and Sld3 (synthetically lethal with Dpb11-1) are phosphorylated 

by Cdk and Ddk, and together with Dpb11 (TopBP1 in humans), they promote origin 

unwinding by the helicase complex (16-18).  The Mcm2-7 proteins belong to the family 

of AAA+ helicases that will be discussed in more detail later.  The helicase utilizes cycles 

of ATP hydrolysis to continually unwind dsDNA.  Melting the origin DNA creates two 

ssDNA strands that are then bound by replication protein A (RPA) (19).  This serves to 

prevent reannealing of the strands and as protection against nuclease activity.   

DNA polymerase α/primase (pol-prim) is then recruited to the newly created 

replication fork (12) after the addition of DNA polymerase ε (20).  DNA polymerases are 

unable to synthesize DNA de novo.  Two additional components are required: a template 

strand, two of which are created when the origin is melted, and a primer, which is created 

via the primase activity of pol-prim.  Pol-prim creates a chimeric RNA-DNA primer of 

~30 nt (21).  Pol-prim has low processivity and no error-proofing capabilities, making it a 

poor candidate for the major replicative polymerase.  The bulk of DNA is synthesized by 

DNA polymerase δ (lagging stand) and DNA polymerase ε (leading strand) (22).  These 

polymerases are loaded via a process termed “pol switching”.  The clamp loader, 

replication factor C (RFC), loads PCNA, a clamp-like protein that associates with pol δ 

and ε as they synthesize DNA (22).  The loading of pol δ marks the end of the initiation 

step of DNA replication, and the beginning of the elongation step.  It should be noted 

however, that due to the nature of the lagging strand, the process of primer formation 

followed by pol switching must be subsequently completed many times. 

The complexity of initiation of human DNA replication presents a formidable 

challenge in understanding this process in detail.  While the order in which proteins 
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associate with the origin has become clearer over the last few years, it differs between 

species and the molecular details governing these transitions have remained elusive.  In 

order to address the question of how the initiation proteins come together to form a 

molecular machine, we have decided to study the proteins of SV40 DNA replication.  

This simplified in vitro system serves as a model for eukaryotic DNA replication, as three 

of the proteins involved in initiation (and 10 out of 11 for complete in vitro replication) 

are required for both processes.  Insights into SV40 DNA replication can thus shed light 

on eukaryotic DNA replication. 

 

Simian Virus 40 DNA Replication 

 Simian virus 40 (SV40) is a polyomavirus containing a circular dsDNA genome.  

It was originally discovered as a contaminant in the polio vaccine in the late 1950’s.  The 

virus persists as a dormant infection in its natural host, the monkey, Rhesus macaque, but 

has been shown to be tumorigenic in immunocompromised rodent hosts (23).  Despite 

some initial speculation, SV40 has not been proven to be tumorigenic in human hosts (24, 

25).  Subsequent study of SV40 revealed an interesting DNA replication mechanism, 

which allows the virus to hijack the host replication machinery. 

 The SV40 genome is small (~5200 bp), and encodes nine viral proteins (23, 26).  

Four of these proteins, VP1, VP2, VP3, and VP4 are structural components of the virion.  

Agnoprotein is involved in both the SV40 life cycle and in host cellular response (27).  

Small and large T antigen are involved in the induction of cellular transformation (23).  

Interestingly, large T antigen (Tag) is also a key component of the SV40 DNA replication 

machinery.  Not much is known regarding the two other encoded proteins, 17K T antigen 
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and small leader protein, other than they are transcribed early, along with Tag (23).  Tag 

was initially shown to support DNA replication of DNA containing an SV40 origin when 

incubated with a monkey cell extract (28).  Subsequent studies identified the human 

protein components of SV40 DNA replication initiation: topoisomerase I (topo I), RPA, 

and pol-prim (29).  These three proteins, together with the viral Tag, were sufficient to 

initiate SV40 DNA replication in vitro.  Further experiments have revealed much about 

these proteins, and how they function together to initiate DNA replication. 

 

SV40 DNA Replication: Initiation Proteins 

SV40 Large T Antigen (Tag) 

 Tag is the major early gene product encoded by the SV40 chromosome (23).  It 

plays critical roles in both cellular transformation and viral DNA replication.  It is 

composed of four functional domains: an N-terminal J-domain (a.a. 1-102), an origin 

binding domain (OBD) (a.a. 131-259), a helicase domain (a.a. 260-627), and a C-terminal 

host-range (HR) domain (a.a. 628-708).  Structures have been determined for the J-

domain (30), OBD (31), and helicase domain (32).  The HR domain was originally 

predicted to be unstructured, however limited proteolysis experiments indicated the 

possibility of some structure in that region (33, 34). 
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Figure 1.2.  Tag structure.  Tag is composed of three independent domains per subunit: 
the J-domain (red, PDB code 1GHG (30)), the OBD (blue, PDB code 1TBD (31)) and the 
helicase domain (green, PDB code 1N25 (32)).  Structures for each domain were 
determined independently. Figure layout adapted from (34).  
 
 
 
 The J-domain and HR domain are not directly involved in SV40 DNA replication.  

The J-domain is primarily involved in cellular transformation.  It interacts with Hsc70 to 

activate the E2F transcription factor which promotes cellular proliferation (35).  Prior to 

S-phase, E2F is inactivated via a physical interaction with the tumor suppressor, Rb.  Tag 

physically associates with Rb via an LXCXE motif, just C-terminal to the structured 

region of the J-domain (30).  ATP hydrolysis of the J-domain-bound Hsc70 causes a 

release of E2F from the RB/Tag complex, thus activating it and promoting cell cycle 

progression (35).  The HR domain is involved in host-range determination as well as in 

assembly of viral particles (36).  It is dispensable for cellular transformation, however 

(37). 
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 As their names imply, the OBD and helicase domain play crucial roles in SV40 

DNA replication.  The OBD is a small globular domain that is involved in origin 

recognition via binding the pentanucleotide GAGGC DNA sequence (31).  Both the OBD 

and the helicase domains are involved in critical protein-protein interactions that will be 

discussed further in this introduction.   

The helicase domain is composed of three subdomains: D1, a Zn-binding domain; 

D2, a AAA+ domain; and D3, an α-helical, globular domain (32).  Tag is a hexamer in 

solution, and x-ray crystal structures have been determined for various nucleotide binding 

modes (38).  The Zn domain is globular, and does not have a traditional Zn-finger motif 

that is often involved in protein-DNA interactions.  Thus the Zn domain is most likely not 

involved in DNA binding, and indeed, it has been shown to be required for Tag 

hexamerization (32).  The AAA+ domain is also involved in hexamerization.  AAA+ 

proteins share common sequence and structural properties, such as: a Walker A motif, 

involved in ATP binding; a Walker B motif, involved ATP hydrolysis; and the motif C, 

which detects ATP/ADP in the nucleotide-binding pocket (39).  All of these motifs are 

found in D2.   

Tag assembles at origins as a double hexamer, with the origin binding domains on 

the interior, and the helicase domains on the exterior (40-42).  Hydrolysis of ATP results 

in a large conformational change in Tag, allowing it to unwind dsDNA.  As ATP is 

hydrolyzed, D2 swings toward D1, using the fifth α-helix as a hinge (38).  This results in 

movement of the β hairpins in the central channel, which allows for the translocation 

along dsDNA.   
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Topoisomerase I 

 Topoisomerases are enzymes that relieve torsional stress created during DNA 

processing (reviewed in (43)).   As dsDNA is unwound, for example during initiation of 

DNA replication, DNA downstream of the helicase becomes supercoiled, creating 

superhelical tension.  Topoisomerases relieve this tension via one of two mechanisms.  

Type I topoisomerases, which as the name implies, includes the human Topo I, relax 

supercoiled DNA by cleaving one strand, and passing the intact strand through the gap.  

The gap is then religated and the topoisomerase dissociates.  Type II topoisomerases 

cleave both strands of dsDNA, and pass the dsDNA through this gap.  The double strand 

break is then repaired. 

 Topoisomerase activity is essential for human and SV40 DNA replication.  Topo I 

contains 765 amino acids, and is a monomer composed of four domains.  The N-terminal 

domain (a.a. 1-214) is poorly conserved and dispensable for Topo I activity in vitro (44).   

It is thought to be involved in subcellular localization (45).  The core domain (a.a. 215-

635), linker domain (a.a. 636-712), and C-terminal domain (a.a. 713-765) make up the 

rest of the protein, for which a crystal structure has been determined (46).  The core and 

C-terminal domains contain the active site residues including Tyr723, which is the 

residue that creates an intermediate phosphotyrosine bond with the cleaved DNA strand 

(43). 

 Topo I clamps around dsDNA with two lobes on either side of the DNA duplex 

(43).  The upper lobe which contains core subdomains I and II is also termed the cap.  

The lower lobe is composed of core subdomain III and the C-terminal domain.  The tight 



 11

clamp structure of DNA-bound Topo I allows for efficient enzymatic activity and helps 

to ensure that the enzyme does not prematurely dissociate leaving nicked dsDNA. 

Replication Protein A 

 RPA is the major eukaryotic ssDNA binding protein (19).  It is essential for many 

DNA processing events including replication, recombination and repair (47).  RPA binds 

ssDNA with high affinity and also interacts with the relevant DNA processing 

machinery. 

 RPA is composed of three subunits: RPA70, RPA32, and RPA14, named 

according to their molecular weights.  Similar to Tag, isolated domain structures have 

been determined for each RPA domain (Figure 1.3).  RPA has six 

oligonucleotide/oligosaccharide (OB-fold) domains, and a winged-helix-turn-helix 

RPA32C domain.  OB-folds are characterized by a pair of three-stranded antiparallel β 

sheets, with an α helix between the third and fourth strands (48).  The OB-fold domains 

in RPA are RPA70N, RPA70A, RPA70B, RPA70C, RPA32D, and RPA14.   

RPA70A, RPA70B, RPA70C, and RPA32D bind ssDNA and orient RPA with a 

5’ -> 3’ polarity with respect to the DNA (49).  The polarity of binding to DNA arises 

because RPA70A binds ssDNA with the highest affinity, RPA70B with the second 

highest affinity, RPA70C with the third highest, and RPA32D binds the weakest.  RPA 

has been shown to interact with DNA using three distinct binding modes.  In the compact 

mode, RPA70A and RPA70B bind 8-10 nt.  RPA70C can then bind ssDNA to cover ~20 

nt in total.  In the fully extended binding mode, all four OB-folds bind ssDNA covering 

28-30 nt (47). 
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OB-folds are also capable of interacting with proteins.  In RPA, RPA70N, 

RPA70A, and RPA70B, have been shown to be involved in protein-protein interactions 

(50-53).  Additionally, RPA32C is a major protein-protein interaction domain, and has 

been shown to be directly involved in several interactions (54, 55). 

 

 

Figure 1.3.  Structure of RPA.  RPA70 (red) contains four OB-fold domains: 70N (PDB 
2B3G, (50)), 70A, 70B (PDB 1JMC contains RPA70AB, (56)), and 70C.  RPA32 (blue) 
contains one OB-fold domain, 32D, and a winged-helix-turn-helix domain, 32C (PDB 
code 1DPU, (54)).  RPA14 (green) contains a single OB-fold (PDB 1L1O contains the 
trimerization core, which consists of RPA70C, RPA32D, and RPA14, (57)).  Figure 
layout adapted from (58). 
 

 
DNA Polymerase α/Primase 

 Pol-prim is the only DNA polymerase capable of synthesizing DNA de novo, due 

to its associated primase activity (21).  Thus pol-prim serves as the initiator polymerase 

during DNA replication.  Pol-prim is composed of four subunits, named according to 

their molecular weights: p180, p68, p58, and p48.  Figure 1.4 contains a schematic figure 

of the subunit organization.  Unlike the other three SV40 DNA replication proteins, there 

are no available structures for any pol-prim domain.  Even the domain architecture itself 
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is unclear.  Several functional regions of p180 and p68 have been identified, but whether 

these form structured domains remains to be determined (59, 60).  Due to their discrete 

functions, the subunits will be discussed in more detail separately. 

 

 
Figure 1.4.  Subunit organization of pol-prim. 
 
 
 

p180 -  The p180 subunit contains the DNA polymerase α (pol α) activity.  

Studies of truncation mutants of the mouse pol α identified three functional domains: an 

N-terminal domain (a.a. 1-329), a core domain (a.a. 330-1279), and a subunit assembly 

domain (a.a. 1235-1465) (60).  The core domain is necessary and sufficient for 

polymerase activity.  The subunit assembly domain interacts with the p68 and p58 

subunits.  

Pol α, along with pol ε and pol δ, belongs to the member of family B polymerases, 

based on sequence and structural similarities (21).  The structure of the family B 

polymerase, the gp43 protein from the bacteriophage RB69, has been determined, and it 

offers insights into how the pol α core domain might be structured (61). Family B 

polymerases fold into a structure that resembles a right hand, containing a palm, thumb, 

and fingers (21).  The palm domain contains two active site aspartic acid residues that 

coordinate two magnesium ions involved in catalysis via the two-metal ion mechanism 
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common among polymerases (including primases).  The fingers orient the template and 

dNTPs, and the thumb is involved in stimulating processivity via DNA-binding.  Multiple 

sequence alignments comparing pol α with other family B polymerases have identified 

six highly conserved regions that are involved in structural integrity as well as catalysis 

(61, 62). 

p68 - The second largest subunit of pol-prim is an accessory subunit containing 

no known enzymatic activity.  p68, also referred to as the B subunit, is required for 

initiation and elongation in SV40 DNA replication (63).  p68 physically interacts with 

Tag (59) during SV40 DNA replication, and with the eukaryotic DNA replication 

proteins, ORC and Cdc45 (64, 65).  Thus p68 is thought to play a role in recruiting pol-

prim to replication forks.  p68 has also been shown to be required for pol-prim import 

into the nucleus (60, 66). 

 Another important property of p68 is that it is phosphorylated in a cell cycle 

dependent manner.  Both cyclin A-Cdk2 and cyclin E-Cdk2 are capable of 

phosphorylating several residues between residues 141 and 160.  This serves as another 

regulatory step in eukaryotic DNA replication, as the phosphorylation state of p68 can 

influence the both the catalytic activity of p180 (67) and its protein-protein interactions 

(68).   

p48 - p48 and p58 constitute the DNA primase portion of pol-prim.  The active 

site residues are found in p48.  Based on multiple sequence alignments and alanine 

scanning experiments, Asp109, Asp111, and Asp306 have been proposed as the metal-

binding residues in the active site (69, 70).  p48 shares sequence homology with members 
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of the family X polymerases, such as DNA polymerase β, and is thought to catalyze 

primer formation using the two-metal ion mechanism. 

 The initial step in primer formation is the rate-limiting dinucleotide formation 

(71).  Primase exhibits some sequence specificity at this stage, as only purines may be 

incorporated as the 5’ nucleotide (72).  Primase is capable of dissociating at this stage in 

vitro (71), but likely remains bound to the template in vivo.  Next, primase extends the 

dinucleotide to create a unit length primer of 7-10 ribonucleotides.  Finally, the primer-

template complex is then transferred to the p180 active site for addition of dNTPs to the 

primer (73). 

 One of the roadblocks limiting our insight in eukaryotic DNA primase function is 

that eukaryotic and bacterial primases are structurally and functionally different (74).  

Bacterial DnaG-type primase are monomers and do not associate with a pol-prim 

complex.  Additionally, while pol-prim creates a chimeric RNA-DNA primer prior to pol 

switching, DnaG-type primases only synthesize short RNA primers.  Thus despite the 

structural information available for DnaG-type primases, they are not very informative in 

elucidating eukaryotic DNA primase function.  However, eukaryotic and archaeal 

primases do share sequence, and presumably structural, similarities. 

 Structures of primases from Pyrococcus furiosis (75), Pyrococcus horikoshii (76, 

77), and Sulfolobus solfataricus (78) have been determined (Figure 1.5).  The structures 

of these proteins are actually quite different from DNA polymerase structures as they are 

lacking the familiar hand-like structure with the palm, thumb, and fingers (74).  The 

archaeal primases contain two closely associated globular domains.  The larger domain 

contains the putative active site residues, and the smaller domain is variable between the 
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organisms.  Acidic residues that align with Asp109 and Asp111 are part of an active site 

that is actually quite similar to the active site of the pol X family polymerases.  Thus 

despite the overall difference in fold, the mechanism of catalysis may be quite similar. 

 

 

Figure 1.5.  Archaeal primase structures.  p48 homologs from P. furiosis (red, PDB code 
1G71 (75)) and P. horikoshii (blue, PDB code 1v33 (76)) are extremely similar due to 
high sequence identity.  The primase dimer lacking the C-terminal portion of the p58 
homolog from S. solfataricus is shown in green (p48 on left, and p58 on right, PDB code 
1ZT2 (78)). 
 
 
 
 p58 - Like p68, p58 is not known to possess any enzymatic activity.  However, 

p58 stimulates p48 activity in vitro (79).  p58 has also been shown to be important for 

initiation, elongation, and counting (creating a unit-length primer of 7-10 ribonucleotides) 

(80).  Additionally, p58 interacts with both primer and template, suggesting a role during 

the termination step of primase activity when the primer is passed to the p180 subunit 

(81). 

 Very little is known about the domain architecture of p58.  Both the N- and C-

terminal halves of the subunit interact with p48 (79).  The N-terminal region of p58 has 

homology to the piece of the primase large subunit of S. solfataricus that was co-

crystallized with the small (p48 homolog) subunit (Figure 1.5, (78)).  Additionally, 
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multiple sequence alignments revealed homology between a region of p58 and a small 

domain of DNA pol β (80).  Given the unique roles of p58 during eukaryotic DNA 

replication, additional structural studies are warranted to fully understand its activity. 

 

The SV40 DNA Replication Initiation Machine 

 Tag, Topo I, pol-prim, and RPA interact to coordinate the early stages of DNA 

replication.  How these four proteins come together to initiate SV40 DNA replication is 

of considerable interest.  DNA processing enzymes are often modular, containing flexibly 

linked domains (82).  This property facilitates a handoff mechanism, whereby specific 

proteins can be recruited when needed and displaced when they have completed their task 

(82).  This is especially apparent in SV40 DNA replication, as both Tag and RPA are 

highly modular, and preliminary studies of pol-prim suggest a modular architecture as 

well.  Previous studies have taken advantage of this property by studying independent 

domain-domain interactions, and then testing the functional consequence of those 

interactions in the context of the intact full-length proteins.  The data generated from 

these studies (summarized in Table 1.1) have provided insight into how the DNA 

initiation proteins associate to form a molecular machine. 

 

 
 
 
 
 
 
 
 
 



 18

Table 1.1.  Protein-protein interactions involved in SV40 DNA replication initiation.  
Adapted from (47). 
 
Interaction Domains Role of interaction Binding site mapped? Ref 
Tag – Topo I HD - Cap Topo I loading Y (83, 84) 
Tag – Pol-prim HD – p681-240 Pol-prim loading? N (59) 
 ? – p180195-313 ? N (85) 
 ? – p48/p58 Pol-prim loading on lagging 

strand? 
N (86) 

Tag – RPA OBD – 70AB RPA loading onto ssDNA Y (53, 87) 
 OBD – 32C Pol-prim loading onto RPA 

coated ssDNA 
Y (55) 

RPA – Pol-prim 70NAB – p48/p58 ? N (88-90) 
 32C? – p48/p58 ? N (90) 
  
 
 

The current model of SV40 DNA replication is shown schematically in Figure 

1.6.  The first step in this process is Tag binding to the origin, mediated through the OBD 

(91).  Tag recognizes the specific DNA sequence and assembles as a double hexamer, 

encircling the dsDNA with the OBDs on the interior, and the helicase domains on the 

exterior.  Pol-prim is then recruited by Tag, presumably via the p68-helicase domain 

interaction (91).    Next, Topo I is recruited, also via an interaction with the helicase 

domain of Tag.  Two Topo I molecules are recruited, per double hexamer, presumably 

one on each side of Tag.  At this stage, Tag can begin melting the dsDNA via the 

mechanism described previously.  Topo I is positioned to relieve the torsional strain 

created by this process.  Tag actively loads RPA onto the ssDNA as it is extruded via the 

interaction between the OBD and RPA70AB (53).  RPA is initially loaded in the compact 

mode, only interacting with DNA via RPA70AB.  As more ssDNA is extruded, RPA then 

binds in its extended binding mode, utilizing all four DNA-binding domains.  Pol-prim 

then interacts with the ssDNA template, which is also mediated by Tag.  In addition to 

interacting with RPA70AB, Tag OBD also interacts with RPA32C.  This interaction 

promotes primer synthesis, and is likely the result of the dissociation of RPA at the 
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primer initiation site (55).  RPA is likely shifted from the high affinity, extended binding 

mode, to the lower affinity, compact binding mode, which gives pol-prim access to the 

ssDNA.  Pol-prim then begins synthesizing the RNA-DNA primer, completing the 

initiation stage of SV40 DNA replication.  Pol-prim and RPA also interact, and pol-prim 

is presumably able to dissociate RPA from ssDNA via these interactions. 

 

 

Figure 1.6.  Initiation of SV40 DNA replication. (A) Tag (red) assembles at the origin as 
a double hexamer. (B) Pol-prim (blue) is recruited by Tag. (C) Topo I (green) binds and 
the origin is melted.  (D) RPA (yellow) binds to the OBD of Tag, and (E) is actively 
loaded onto the emerging ssDNA. (F) Pol-prim is loaded onto the ssDNA, and (G) 
creates a chimeric RNA-DNA primer. 
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Experimental Overview 

 The studies described in this dissertation are aimed at furthering our knowledge of 

how pol-prim is involved in the initiation of SV40 DNA replication.  The following 

experiments were conducted in close collaboration with Dr. Ellen Fanning’s research 

group at Vanderbilt University.  All of the functional data originates from her laboratory, 

and the person responsible for generating the data will be identified in the appropriate 

figure legends.  Together with the Fanning group, the similar strategy of studying 

domain-domain interacts in the context of the initiation complex was pursued.  However, 

since structural information regarding pol-prim is lacking, identifying stable, structured 

domains was a necessary first step.  Using a variety of techniques structured domains 

were identified in the N-terminus of p68 (p68N) and the C-terminus of p58 (p58C). 

 The p58C domain was initially identified using limited proteolysis coupled with 

mass spectrometry (Chapter II).  Circular dichroism (CD), which can detect protein 

secondary structure was used to verify that the domain was structure.  This finding was 

confirmed by nuclear magnetic resonance (NMR) experiments.  Interestingly, p58C was 

found to contain an essential iron-sulfur cluster.  The protein solution was golden brown, 

and the cluster was identified using ultraviolet-visible (uv-vis) spectrophotometry. 

Electron paramagnetic resonance spectroscopy (EPR) was used to directly probe the 

cluster, and we were able to classify the clusters as a high-potential [4Fe-4S] type.  

Functional experiments using mutant proteins lacking the iron-sulfur cluster revealed that 

this cluster was required for p58’s stimulation of p48’s activity. 

 The p68N domain was found to interact with the Tag helicase domain, and it was 

found to be essential for SV40 DNA replication.  The p68N-helicase domain interaction 
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was studied biophysically using isothermal titration calorimetry (ITC) and NMR to 

calculate the strength of the interaction and to map the binding interface (Chapter III).  

ITC responds to heat changes as molecules interact, and titrating a binding partner into 

the sample cell allows for a binding curve to be created.  NMR is a powerful tool for 

studying protein-protein interactions, as residues at a binding interface are often 

perturbed when bound to the interacting protein. These biophysical experiments were 

used to create p68N mutants deficient in Tag-binding for use in functional assays.   

The p68N solution structure was determined using NMR techniques (Chapter IV).  

Briefly, backbone and side chain resonances were assigned using standard three-

dimensional experiments.  Initial structures were generated using NMR-derived distance 

restraints as well as dihedral restraints.  These structures were then further refined using 

restrained molecular dynamics. 

Finally, these results are discussed, and the model for SV40 initiation is revised to 

incorporate these new findings (Chapter V).  This work advances our knowledge of DNA 

replication by identifying a novel cofactor amongst DNA replication proteins, and it 

offers the first high resolution structure of a pol-prim domain. 
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CHAPTER II 
 

 
AN IRON-SULFUR CLUSTER IN THE C-TERMINAL DOMAIN OF THE p58 

SUBUNIT OF HUMAN DNA PRIMASE* 
 
 

Introduction 

DNA polymerase alpha-primase (pol-prim) associates with eukaryotic replication 

forks in S-phase during the initiation of DNA replication (21, 22).  Pol-prim synthesizes a 

chimeric RNA-DNA primer of ~30 nucleotides that is then extended by more processive 

DNA polymerases that synthesize the leading and lagging strands.  Pol-prim is composed 

of four subunits (p180, p68, p58, and p48).  The p180 subunit has the DNA polymerase 

catalytic activity and binds to both the p68 and p58 subunits. The p68 subunit has a 

regulatory function that is not completely understood.  It is required for initiation of yeast 

chromosomal replication (92, 93) and cell-free SV40 DNA replication (63).  In addition, 

phosphorylation of p68 alters the activity of pol-prim in SV40 replication (64, 67, 94, 

95). 

The two smallest subunits, p48 and p58, together function as the DNA primase by 

creating an RNA primer of 7-10 nucleotides (96, 97).  The p48 subunit contains the 

catalytic site (98).  The p58 subunit stabilizes p48 and participates in initiation, 

elongation, and “counting” the ribonucleotides polymerized (80).  Interestingly, p58 is 

also involved in transferring the RNA strand directly into the active site of the associated 

p180 subunit, which extends the growing nucleotide with dNTPs to complete the 

formation of the RNA-DNA primer (21, 72, 81).  Knowledge of the molecular basis for 
                                                 
* The bulk of this chapter was published in Weiner, B. E., Huang, H., Dattilo, B. M., Nilges, M. J., 
Fanning, E., and Chazin, W. J. (2007) J Biol Chem. 282, 33444-33451. 
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regulation of the length of RNA portion of the primer and internal transfer to the p180 

subunit is very limited. 

Despite the fundamental importance of primase in DNA replication, the only 

structural information available for a heterodimeric primase is for an archaeal (S. 

solfataricus) primase that does not form a pol-prim complex (78, 99).  Multiple sequence 

alignments reveal homology between the p48 subunits and the N-terminal half of the p58 

subunit.  In the crystal structure of the S. solfataricus primase core, the p48 subunit 

assembles with the N-terminal half of p58 (78). However, in human p58, both the N- and 

C-terminal regions have contacts with p48 (79). Interestingly, the C-terminal half of p58 

also contains a region with homology to a DNA polymerase beta domain; this region was 

determined to be important for primer synthesis (80), but how it functions is not known. 

DNA primase serves as a key target for regulation of DNA replication initiation, 

telomere maintenance, and response to DNA damage or fork stalling, in part through its 

physical interactions with other proteins involved in DNA replication and in checkpoint 

signaling (100). Primase interacts physically with the viral helicase SV40 large T antigen 

(Tag), eukaryotic replication protein A (RPA) (86, 88), and GINS, a recently identified 

component that plays a central role in establishment and progression of eukaryotic and 

archaeal replication forks (101-103).  Primase activity is essential for optimal checkpoint 

signaling at stalled replication forks (104-107) and possibly in rescuing stalled replication 

fork progression (108), but its interaction partners are not known.  

To better understand the role of human primase in these pathways, it will be vital 

to elucidate its structure and interactions with partner proteins.  This strategy has been 

useful in determining the roles of the Tag-RPA interaction in the context of SV40 DNA 
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replication (53, 55).  In order to facilitate similar experiments with human DNA primase, 

we sought to characterize the domain architecture of DNA primase.  The p58 and p48 

subunits can be expressed and purified independently of the other two subunits and retain 

primase activity in vitro at levels similar to those observed for the intact heterotetramer 

(79, 98).  Working from bacterially expressed primase protein, a structured domain in the 

C-terminus of the p58 subunit (p58C) was identified.  Biophysical analysis of this 

construct showed that the domain is folded and has the characteristics of a [4Fe-4S] high-

potential iron protein (HiPIP).  The conservation of four cysteines across several species 

suggests a critical role for the cluster, and this was confirmed by in vitro experiments that 

demonstrate that the [4Fe-4S] cluster is required for primase activity. 

 

Results 

 

Primase Domain Architecture 

Proteins involved in DNA replication are often modular, containing several 

independent domains tethered together (82).  In many cases, it is possible to map the 

location of these structural domains by subjecting the intact protein to very limited 

proteolytic digestion.  The protease will preferentially cleave solvent exposed linkers, 

leaving structured domains intact.  The digestion is then analyzed by SDS-PAGE, the 

bands are then excised and identified using mass spectrometry and N-terminal 

sequencing.  To test whether DNA primase contained any structured domains, the 

p48/p58 dimer was initially subjected to limited proteolysis with trypsin, chymotrypsin, 

and proteinase K (Figure 2.1). Digestion products were monitored as a function of 
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reaction time by using denaturing gel electrophoresis.  As the three proteases have 

different cleavage site specificities, they were able to cleave primase to varying degrees.  

Proteinase K produced the best fragmentation profile, and was chosen for further 

experiments. 

 

 
 
Figure 2.1.  Limited proteolysis of p48/p58.  The purified primase dimer was subjected 
to limited proteolytic digestion with trypsin, chymotrypsin, and proteinase K. 
 
 
 

As shown in Figures 2.1 and 2.2.A, two stable fragments were produced 

corresponding to molecular weights of ~42 kDa (band a) and ~28 kDa (band b).  Bands 

were excised from the gel and characterized by MALDI-TOF MS, LC-MS, and N-

terminal sequencing in order to determine the identity of the two fragments.  The 42 kDa 

band was found to be the result of a C-terminal truncation of roughly 60 residues from 

p48.  Proteinase K digestion of isolated p48 produced the same fragment (Figure 2.2.B), 

which confirmed that the 42 kDa fragment is a stable domain of p48.  The 28 kDa 

fragment corresponds to the C-terminal half of p58, residues Gly266-Ser509.  
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Figure 2.2.  Identification of a stable p58C domain.  Purified primase dimer (A) and p48 
(B) were subjected to limited proteolytic digestion using proteinase K.  Aliquots were 
taken at several time-points up to 24 hours and analyzed by SDS-PAGE.  Mass 
spectrometry and N-terminal sequencing were used to establish that band a results from 
cleavage near the C-terminus of p48, and band b is the C-terminal half of p58.   

 
 

Production of Primase Domain Expression Constructs 

To evaluate the potential primase domains further, they were sub-cloned into 

bacterial expression vectors.  Two p48 constructs (Met1-Ser361 and Met1-Glu366) were 

sub-cloned into bacterial expression vectors but did not produce soluble protein, 

suggesting the C-terminus is an integral part of the protein. This was surprising given that 

secondary structure prediction and a sequence alignment of human p48 with P. furiosus 

primase also suggest a C-terminal extension (Figure 2.3). Thus, p48 may actually be 

globular and contain a solvent exposed loop in the vicinity of the proteinase K cleavage 

site.  
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Human METFDPTELPELLKLYYRRLFPYSQYYRWLNYGGVIKNYFQHREFSFTLK-DDIYIRYQSFNNQSDLEKEMQ-KMNPYKIDIGAVYSHRPNQHNTVKLGA   98 
      ---------HHHHHHHHHH----HHHHHHH-------HHH---EEEEE-- ---EHEHH----HHHHHHHHH HH---EEEEEEEE-----H-------- 
Pfu   ------MLMREVTKE--ERSEFYSKEWSAKKIPKFIVDTLESREFGFDHNGEGPSDRKNQYSDIRDLEDYIR-ATSPYAVYSSVAFYENPR-----EMEG   85 
Pho   ------MLLREVTRE--ERKNFYTNEWKVKDIPDFIVKTLELREFGFDHSGEGPSDRKNQYTDIRDLEDYIR-ATAPYAVYSSVALYEKPQ-----EMEG   85 
            -------HH  HHHHHHHH---------HHHHHHHH--EEEE-------EEE-----HHHHHHHHH HH--EEEEEEE-EEEEE-     -EEE 
Sso   ---MGTFTLHQGQTN--LIKSFFRNYY--LNAELELPKDMELREFALQPFGSDTYVRHLSFSSSEELRDYLVNRNLPLHLFYSSARYQLPSARN-MEEKA   92 
                    H   HHHHHHHHH  HHH------HHHHH-EEEEE-------------HHHHHHHHHHH---EEEEEEE----------H HHHHH 
              : :           : : :   .    : . :: ***.:    ..   *  .:..  :*.. :     *  :  . .  . *      :  . 
 
Human FQAQEKELVFDIDMTDYDDVRRCCSSADICPKCWTLMTMAIRIIDRALKEDFGFKHRLWVYSGRRGVHCWVCDESVRKLSSAVRSGIVEYLSLVKGGQDV  198 
      --HHHEEEEEEE-------HHH--------HHHHHHHHHHHHHHHHHHHHH----EEEEEEE----EEEEE--HHHH---HHHHHHHHHHHHHH------ 
Pfu   WRG--AELVFDIDAKDLPLKRCNHEPGTVCPICLEDAKELAKDTLIILREELGFENIHVVYSGR-GYHIRILDEWALQLDSKSRERILAFISASEIENVE  183 
Pho   WLG--TELVFDIDAKDLPLRRCEHEPGTVCPICLNDAKEIVRDTVIILREELGFNDIHIIYSGR-GYHIRVLDEWALKLDSKSRERILSFVSASEIEDVE  183 
      EE-  -EEEEEEE----------------HHHHHHHHHHHHHHHHHHHH-------EEEEEEE- EEEEEE-------HHHHHHHHHHHHHH-----HHH 
Sso   WMG--SDLLFDIDADHLCKLR-SIRFCPVCGNAVVSEKCERDNVETLEYVEMTSECIKRGLEQTRNLVEILEDDFGLKPKVYFSGNRGFHVQVDCYGNCA  189 
      ---  --EEEE-HHHHHHH-H HHHH-----------EE----EE-EEEE--HHHHHHHHHHHHHHHHHHHHHH-----EEEE-----EEEEE----HHH 
      : .   :*:****  .    *       :*  .    .            ::  :      .   .    : *:   : .         .:.     :   
 
Human KKKVHLSEKIHPFIRKSINIIKKYFEEYALVNQDILENKESWDKILALVPETIHDELQQSFQKSHNSLQRWEHLKKVASRYQNNIKNDKYGPWLEWEIML  298 
      -----------HHHHHHHHHHHHHHHHHHHHH-------HHHHHHHHH-HHHHHHHHHHHHH-----HHHHHHHHHHHHHH----------HHHHHHHHH 
Pfu   EFRRFLLEKRGWFVLK-----HGYPRVFRLRLGYFILR----VNVPHLLSIGIRRNIAKKILDHKEEIYEGFVRKAILASFPEGVGIESMAKLFALSTRF  274 
Pho   EFRKLLLNKRGWFVLN-----HGYPRAFRLRFGYFILR----IKLPHLINAGIRKSIAKSILKSKEEIYEEFVRKAILAAFPQGVGIESLAKLFALSTRF  274 
      HHHHHHH-HHHHH---     --HHHHHHHHHHHHHHH    -HHHHHH------HHHHHHHHHHHHHHH---------------HHHHHHHHHHHHHHH 
Sso   LLDSDERKEIAEYVMGIG--VPGYPGGSENAPGWVGRKNR—GINGVTIDEQVTIDVKRLIRIPNSLHGKSGLIVKRVPNLDDFEFNETLSPFTGYTIFL   285 
      H---HHHHHHHHHHH---  -------------HHHHHHH  -------HHHHHHH---EEE--------------EE--------HHHHH----EEEEE 
             ::   ::         *          .  .          :   :  .: : :   :.   .        .   :    :. .        : 
 
Human QYCFPRLDINVSKGINHLLK-SPFSVHPKTGRISVPIDLQKVDQFDPFTVPTISFICRELDAISTNEEEKEENEAESDVKHRTRDYKKTSLAPYVKVFEH  397 
      HH----------H---HE-- ---EE-----EEEEE-----HH---------HHHHHHHHHH-----H---------H------------HHHHHHHHHH 
Pfu   SKAY--FDGRVTVDIKRILR-LPSTLHSKVGLIATYVGTK------------------EREVMKFN-----------PFRHAVPKFRKKEVR---EAYKL  339 
Pho   SKSY--FDGRVTVDLKRILR-LPSTLHSKVGLIAKYVGTN------------------ERDVMRFN-----------PFKHAVPKFRKEEVK---VEYKK  339 
      HHHH  H-HHHHHHH--EEE EE--EEE--EEEEEEE--H                  HHHH---H           HHHH------HHHHH   HHHHH 
Sso   PYIT--IETEVLGSIIKLNRGIPIKIKSSIGIYLHLRNLG-----------------------------------------EVKAYVR------------  330 
      E---  EEEE----EEEE-----EEEE-HHHHHHHHH---                                         EEEEE-- 
            :: .*  .: :: :  * .::.. *      .                                            .  : :             
 
Human FLENLDKSRKGELLKKSDLQKDF  420 
      HHHHHHHH-H-HHHHHHHHHH-- 
Pfu   WRESLEYE---------------  347 
Pho   FLESLGT----------------  346 
      HHHHH-- 
Sso   -----------------------  330 

 
Figure 2.3.  p48 sequence analysis.  Amino acid sequences for human, Pfu, Pho, and Sso 
primase catalytic subunits were aligned using ClustalX.  Identity is noted by a “*”, a 
conservative substitution is noted by a “:”, and a semi-conservative substitution is noted 
by a “.”.  Secondary structure is also listed below each sequence (α-helix as “H” and β-
strand as “E”).  The secondary structure content of the human primase was predicted 
using the SSpro program.  The C-terminus of the two p48 constructs, S361 and E366 are 
highlighted in green. 
 
 
 

Although a stable fragment was not detected in the experiments for the N-terminal 

half of p58, sequence analysis suggested it should form a structured domain: sequence 

alignment reveals homology between the N-terminal half of p58 and the region of the 

large subunit from S. solfataricus that has previously been crystallized (Figure 2.4, (78)).  

In an effort to produce and characterize a p58N construct, a wide range of sub-cloning 

experiments was performed by Chris Brosey in the Chazin laboratory, but none yielded 

soluble protein.  A similar observation has been made for the full-length p58 subunit.   
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Human MEFSGRKWRKLRLAGDQRNASYPHCLQFYLQPPSENISLIEFENLAIDRVKLLKSVENLGVSYVKGTEQYQSKLESELRKLKFSYRENLEDEYEPRRRDH  100 
      -------HEEEEEE------------EEE--------EHHHHHHHHHHHHHHHHHHHH----EE--HHHHHHHHHHHHHH--------HHHHHHHHHHHH 
Sso   ------------MALDVKKYPFIKSLDDELKKYG---GGITLTDLLLNSTTLIDQAKDRIQKTKSGDELPHYVSYNEPVLVFYTTLLSLAILNDVK----   81 
                  -------HHH-HHHHHHHHH--   ---HHHHHHHH-HHHHHHHHHHHHHHHH-----HHHHH-HHHHHHHHHHHHHHH---HH     
                  :* * :: .: :.*:  *:  .   . * : :* :: ..*:...::   .  .* *  :    .*   : ::   .*    : :     
 
Human ISHFILRLAYCQSEELRRWFIQQEMDLLRFRFSILPKDKIQDFLKDSQLQFEAISDEEKTLREQEIVASSPSLSGLKLGFESIYKIPFADALDLFRGRKV  200 
      HHHHHHHHHH---HHHHHHHHHHHHHHHHHHH----HHHHHHHHHH---------HHHHHHHHH--EE-------EEE----EEE--HHHHHHHHH--EE 
Sso   ---LIRRYAYAEAKQFRSLLHTENEE------NLLEISKLLDLKINRCDPIKFYLEKKRRIIQKEFCVHFIDYLKYTKDLKEDWKLS-----------GQ  161 
         HHHHHHHHHHHHHHHHHH--HHH      HHHHHHHHHH---EEEEEEEEE------EEEEEEEE-HHHHHHHH---HHHHH--           -- 
         :* * **.:::::*  :  :: :      .:*  .*: *:  :    ::   :::: : ::*: .   .    . .::. :*:.              
 
Human YLEDGFAYVPLKDIVAIILNEFRAKLSKALALTARSLPAVQSDERLQPLLNHLSHSYTGQDYSTQGNVGKISLDQIDLLSTKSFPPCMRQLHKALRENHH  300 
      EE---EEEE-HHHHHHHHHHHHHHHHHHHHHHHHHH-HHHHHHHHHHHHHHHHHH---------------E-HHHHHHHHH----HHHHHHHHHHHH--- 
Sso   ILHKGYVYLDKNQLIGLIAESIKSKIVEMIRP----LNLKEIPEKLKSLIERR----------------------------GIIPPCIENILAKEKLNEE  229 
      -EE--EEE-HHHHHHHHHHHHHHHHHHHHHHH    HHH---HHHHHHHHHH        
       *..*:.*:  ::::.:* :.:::*: : :      *   :  *:*:.*:::                               :***:.::    : *.. 
 
Human LRHGGRMQYGLFLKGIGLTLEQALQFWKQEFIKGKMDPDKFDKGYSYNIRHSFGKEGKRTDYTPFSCLKIILSNPPSQGDYHGCPFRHSDPELLKQKLQS  400 
      ----HHHHHHHHHH-----HHHHHHHHHHHHH-----HHHHHH---EEEEE---------------HHHEE-------------------HHHHHHHHHH 
Sso   EIR----TLITFYIDIGKGLSGIVSIMKKYNVSNVEDLYRKYRGD------------KGTRYIVYSCAKMKQLG------------LCVSSCNVKNPLQL  301 
        :        *  .**  *.  :.: *:  :..  *  :  :*             * * *  :** *:   .               ..  :*: **  
 
Human YKISPGGISQILDLVKGTHYQVACQKYFEMIHNVDDCGFSLNHPNQFFCESQRILNGGKDIKKEPIQPETPQPKPSVQKTKDASSALASLNSSLEMDMEG  500 
      ----HHHHHHHHHHHH----EEEHEEEEEEE--------------HHHHHHHHHH---------------------------HHHHH-------HH-HH- 
Sso   YFLSNE----------------------------------------------------------------------------------------------  307 
      * :*                                               
 
Human LEDYFSEDS  509 
      HHHH----- 
Sso   ---------  307 

 
Figure 2.4.  p58 sequence analysis.  Amino acid sequences for human and Sso primase 
secondary subunits were aligned using ClustalW.  Identity is noted by a “*”, a 
conservative substitution is noted by a “:”, and a semi-conservative substitution is noted 
by a “.”.  Secondary structure is also listed below each sequence (α-helix as “H” and β-
strand as “E”).  The secondary structure content of the human p58 was predicted using 
the SSpro program.  The construct co-crystallized with the Sso primase catalytic subunit 
is highlighted in green.  The p58C construct is highlighted in yellow. 
 
 
 

In contrast to p58N, p58C has no significant homology to proteins whose 

structure is known.  However, an extensive amount of secondary structure was predicted 

for this stable fragment (Figure 2.4).  In fact, the p58C domain expressed well and was 

very soluble, even to very high concentrations (~30 mg/ml).   

A combination of circular dichroism (CD) and nuclear magnetic resonance 

(NMR) spectroscopy was used to characterize the structural integrity of p58C.  Minima 

observed at 208 and 222 nm in the far-UV CD spectrum (Figure 2.5.A) indicate a 

significant amount of alpha-helical content in p58C.  Analysis of the CD spectrum using 

the K2d program provided an estimate of 31% helix, 14% beta-sheet, and 55% coil.  The 

600 MHz 1H-15N heteronuclear single quantum coherence (HSQC) NMR spectrum of 
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p58C is shown in Figure 2.5.B.  The spectrum contains relatively narrow linewidths and 

very good dispersion, which are indicative of a well-folded structural domain. 

 

 

Figure 2.5.  Structural characterization of p58C. (A) Purified p58C was visualized by 
SDS-PAGE and staining with Coomassie. (B) CD spectrum of p58C.  Minima at 208 and 
222 nm indicate the presence of a significant quantity of helical secondary structure.  (C) 
The 600 MHz 15N-1H HSQC NMR spectrum of p58C obtained at 25 ◦C.  The relatively 
narrow lines and wide dispersion of the signals indicate a well-folded tertiary structure. 

 

An Iron-sulfur Cluster in p58C 

Interestingly, when either the primase dimer or p58C was purified, the protein 

solution had a golden-brown color.  The color intensified as the protein was concentrated, 
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becoming very dark at high concentrations.  A UV-visible spectrum of p58C contained a 

broad peak at 400 nm, similar to spectra from proteins containing iron-sulfur clusters 

(Figure 2.6.A) [e.g. (109)].  The primase dimer also had this property, while isolated p48 

did not (data not shown). 

 

 

Figure 2.6.  An iron-sulfur cluster in p58C.  (A) The UV-visible spectrum of p58C.  The 
broad peak at ~400 nm is typical of proteins containing iron-sulfur clusters.  (B) 
Experimental (solid line) and simulated (dashed line) EPR spectra of p58C obtained at 15 
K. 
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To further investigate the presence of an iron-sulfur cluster in p58C, the protein 

was analyzed by inductively coupled plasma mass spectrometry (ICP-MS), which 

enables the content of metal ions to be quantified.  This analysis provided an estimate of 

3.09 moles iron per mole of protein, which is consistent with the presence of 4 iron atoms 

in the cluster.  A stoichiometry considerably lower than 4 is typical for proteins 

containing [4Fe-4S] clusters (110, 111), and is attributable to the loss of one iron in the 

cluster during protein purification and analysis. 

EPR spectroscopy is now a well accepted means to confirm the presence of iron-

sulfur clusters in proteins and assign them to specific cluster types and oxidation states.  

The 9.05 GHz X-band EPR spectra of p58C acquired directly on the purified protein 

lacked any appreciable signal.  Reduction of p58C with sodium dithionite produced only 

a weak, broad signal.  However, oxidation of the protein resulted in a strong signal 

characteristic of a low-spin S = ½ iron-sulfur cluster (Fig 2.6.B).  The signal is highly 

rhombic with g1 = 2.087, g2 =2.040, and g3 = 2.013.  Simulation of the EPR spectrum 

with SIMPOW6 software (112) reveals two slightly different forms are present in 

solution, one with g1 = 2.0870, g2 = 2.0405, and g3 = 2.0126 and a second weaker form 

with g1 = 2.0872, g2 = 2.0311, and g3 = 2.0094 and broader linewidths.  Similar results 

reported for oxidized HiPIPs have been interpreted as resulting from the presence of 

multiple isomeric states [e.g. (113)].  The average EPR g-factor of 2.046 observed for 

p58C is much more typical of a [4Fe-4S]3+ cluster than a [3Fe-4S]+ cluster, as the latter 

normally exhibit an average g-factor of 2.015 and relatively smaller g anisotropy (111, 

114, 115). 
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The EPR spectrum has many properties that suggest the [4Fe-4S] cluster is HiPIP-

like.  Like typical HiPIP clusters, the iron sulfur cluster in p58C is only visible by EPR 

when oxidized, has an average g-value greater than two, is observed best below 30K, and 

the signal does not readily saturate. While the observed g-values deviate somewhat from 

the prototypical HiPIP cluster, such differences may be attributable to changes in the 

environment around the [4Fe-4S] cluster or distortion of the cluster by the protein 

environment (116, 117).  In summary, the biophysical data on p58C are consistent with 

assignment to the class of high potential iron proteins, thus adding to the growing list of 

DNA processing proteins with this unique co-factor. 

 

Identification of Iron-sulfur Ligands in p58C 

Iron-sulfur clusters are typically bound to proteins via four cysteine residues, and 

p58C contains six cysteine residues.  Following the strategy used for other DNA-

processing proteins that contain an iron-sulfur cluster, potential cysteine ligands were 

identified from a multiple sequence alignment of p58 from 5 different species using 

CLUSTALX (118).  The alignment in Figure 2.8.A reveals that four of the cysteine 

residues (Cys287, Cys367, Cys384, Cys424) are conserved.  These are residues most 

likely responsible for cluster binding. 

In order to test this hypothesis, each of the four cysteine residues in p58C was 

individually mutated to serine.  While the mutant constructs expressed at levels similar to 

the WT protein (data not shown), they were poorly soluble (Figure 2.7).  Overnight 

dialysis resulted in total loss of each mutant protein, likely due to precipitation. 
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Figure 2.7.  Ni-NTA purification of p58C mutants.  The four Cys-to-Ser mutants were 
expressed as described for the WT p58C domain.  The soluble cellular lysate was passed 
over a gravity flow Ni-NTA column.  The lanes represent the column flow-through (FT), 
a three column volume wash (W) and a 2 CV elution with 250 mM imidazole (E).   

 

 
Consequently, an alternate strategy was used involving mutation in the context of 

the p48/p58 dimer.  Data is shown here for the Cys367Ser mutant primase dimer, which 

expressed at levels comparable to the wildtype primase, remained soluble, and co-

purified with the p48 subunit (Figure 2.8.B).  Analysis of this mutant primase dimer by 

UV-visible spectroscopy provided a spectrum in which the broad peak at 400 nm was 

clearly absent (Figure 2.8.C), confirming this mutant primase does not contain an iron-

sulfur cluster. 
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Figure 2.8.  The p58C iron-sulfur cluster is coordinated by four conserved cysteines.  (A) 
Sequences are shown for:  H. sapiens (Human), M. musculus (Mouse), D. melanogaster 
(Dros), C. elegans (Cele), and S. cerevisiae (Sacch).  The four highlighted cysteine 
residues are conserved, suggesting they serve as ligands for the iron-sulfur cluster. (B) 
Ni-purified p48/p58 WT (left) and p48/Cys367Ser-p58 mutant (right) were visualized by 
SDS-PAGE and Coomassie staining.  Lanes represent fractions collected during Ni-NTA 
purification as the concentration of imidazole is increased using a linear gradient.  (C) 
UV-visible spectrum of WT p48/p58 (solid line) and p48/Cys367Ser-p58 mutant (dashed 
line).  

 
 
 

A Role for the Iron-sulfur Cluster in Primase Function 

To initially assess the functional relevance of the iron-sulfur cluster in p58, the 

primase activity of wildtype and p48/Cys367Ser-p58 primase dimers on a natural ssDNA 

template was assayed as a function of protein concentration.  Radiolabeled CTP was 

incorporated into RNA primers of 8-10 nucleotides by the wildtype primase (Figure 

2.9.A, lanes 1-3), and small amounts of larger products were detectable, as observed 
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previously (79, 81). No RNA primers were observed in the absence of enzyme (Figure 

2.9.A, lane 7).  Products of the mutant primase that lacks the iron-sulfur cluster were 

barely detectable above background (Figure 2.9.A, lanes 4-6), and the level of reaction 

product was not proportional to the amount of mutant primase in the reaction.  

Quantification of the products as a function of primase concentration revealed that the 

specific activity of the mutant primase was reduced at least 5-fold (Figure 2.9.B).  These 

data suggest that the iron-sulfur cluster in p58 is crucial for the primase activity of 

p48/p58 in this assay.  
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Figure 2.9.  Primase activity of p48/p58 requires the iron-sulfur cluster. (A) Radiolabeled 
primers synthesized by wildtype (WT) p48/p58 (lanes 1-3) or mutant Cys367Ser (lanes 4-
6) on M13 ssDNA template were visualized by denaturing gel electrophoresis and 
phosphorimaging. Products of a control reaction without enzyme (-E) are shown in lane 
7. M, radiolabeled dT4-22 markers (lane 8).  (B) Primase products were quantified using 
phosphorimager software. Incorporation in the negative control reaction (A, lane 7) were 
subtracted from those in lanes 1-6 and graphed as a function of primase concentration.  
Data collected by H. Huang, Fanning laboratory. 

 

 
Discussion 

Our studies show that DNA primase contains a structured domain in the C-

terminus of the p58 subunit and that this domain contains an iron-sulfur cluster.  This is 

the first report of an iron-sulfur cluster in a DNA replication protein.  Analysis of p58C 

by ICP-MS, UV-Vis, EPR, and phylogenetic amino acid sequence comparisons are 
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consistent with the presence of a HiPIP [4Fe-4S] cluster coordinated by four conserved 

cysteine residues. 

Iron-sulfur clusters have been reported in DNA repair proteins, including DNA 

glycosylases MutY (119), endonuclease III (120), and family 4 uracil-DNA glycosylases 

(110).  Recently, several members of a family of DNA helicases involved in DNA repair, 

including the nucleotide excision repair helicase XPD and the Fanconi J crosslink repair 

helicase, have also been shown to contain an iron-sulfur cluster that is essential for 

helicase activity, but not for ssDNA-dependent ATPase activity (109). Remarkably, each 

of these proteins contains a [4Fe-4S] cluster coordinated by four conserved cysteines like 

DNA primase. 

Iron sulfur clusters in proteins are traditionally associated with electron transport 

and redox chemistry (121).  The presence of clusters in proteins involved in several 

aspects of DNA metabolism points to a different and possibly common function.  

However, a specific role for iron-sulfur clusters in DNA repair proteins has not yet been 

determined.  Evidence has accumulated showing that the clusters are required for 

enzymatic activity, e.g. for MutY (122) and XPD (109).  In addition, x-ray crystal 

structures of MutY (123) and endonuclease III (124) have been determined.  These 

structures show that the iron-sulfur clusters are too far from the active site to participate 

directly in catalysis.  Thus, the influence of the cluster on enzymatic activity appears to 

arise from an allosteric effect.  

In support of this proposal, studies conducted on MutY revealed that the cluster 

was critical for orienting key residues that contact the distorted DNA (122, 123, 125).  

Also, modeling studies on the uracil-DNA glycosylases point to a role in substrate 
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recognition rather than catalysis (110).  The lack of structural data on XPD makes 

determining the role of the iron-sulfur cluster considerably more difficult.  Hence, the 

bulk of the data available to date point to the iron-sulfur clusters having an influence on 

structural features of these proteins as opposed to participating directly in aspects of 

protein chemistry (109).  Since iron-sulfur clusters are invariably integrated into protein 

structure, it makes sense that they modulate the structure and stability.  However, it 

should be noted that it is not readily possible to manipulate the redox state of HiPIP 

proteins in vivo or in cells.  Moreover, it is difficult to design experiments that directly 

address functional questions that do not result in complete loss of the cluster.  Thus, 

while the importance of iron-sulfur clusters in the structure DNA processing proteins is 

evident, additional redox-mediated functional roles cannot yet be ruled out. 

If the role of the iron-sulfur cluster is purely structural, why was such a complex 

co-factor chosen to serve for this purpose?  Iron sulfur clusters are inserted into proteins 

via a multi-step process involving several proteins (126), which seems like an excessive 

utilization of cellular resources for a purpose that could be attained at a lower energetic 

cost.  Recently, studies on MutY have led to another theory of iron-sulfur cluster function 

in DNA glycosylases.  Initially, the cluster was not thought to be involved in redox 

chemistry as it is not redox active in vitro (127).  However, a recent report that binding of 

DNA shifts the redox potential of the cluster (128).  This observation led to a complex 

model of glycosylase function in which electron transfer between iron-sulfur clusters on 

separate glycosylases occurs through the DNA; the cluster in the remote glycosylase is 

reduced and the enzyme dissociates from the DNA.  Aberrant DNA would not have this 

property, and the glycosylase would remain oxidized and bound to DNA, promoting 
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DNA repair.  Although this model has a number of appealing features, it remains 

controversial. 

While we have shown that the iron-sulfur cluster in DNA primase is required for 

enzymatic activity, the specific function of the cluster remains unclear.  The decreased 

solubility and stability of the cysteine-to-serine mutants in p58C suggest that the cluster 

does provide some level of structural stability to the protein.  However, full-length p58 is 

still sufficiently structured in the absence of the iron-sulfur cluster to bind p48.  

Interestingly, a budding yeast mutant pri2-2 that encodes Tyr instead of one of the 

conserved Cys ligands (Cys434Tyr, Figure 2.6.A) in p58 displays a temperature-

sensitive, slow-growth phenotype (129, 130).  This substitution would be expected to 

result in loss of the iron-sulfur cluster from p58.  The observation that the mutation is not 

lethal suggests that in the context of the pol-prim complex in vivo, the cluster may serve 

primarily a regulatory as opposed to a purely structural function in p58.  

The possibility that the DNA primase iron-sulfur cluster becomes redox active 

when bound to DNA cannot be ruled out.  The idea that this might account for some of 

the unique properties of p58, such as its ability to regulate the length of unit length 

primers, is intriguing.  The above noted 5’-3’ iron-sulfur repair helicases as well as both 

subunits of primase (81) bind ssDNA.  Moreover, a 5’ overhanging, 3’ recessed primer-

template junction is known to be especially important for processing DNA by these 

proteins.  The helicases have ssDNA-dependent ATPase motor domains that translocate 

the protein 5’ to 3’ along ssDNA until it encounters the 3’ end of the complementary 

strand in duplex DNA.  It is known that without the iron-sulfur cluster, the helicase 

cannot unwind the DNA, perhaps because its interaction with the junction is weak or 



 40

defective.  Similarly, pol-prim bound to ssDNA template polymerizes NTPs into an 

oligoribonucleotide-template that remains bound to p58 (81).  These authors proposed 

that the completed RNA primer-template likely remained bound to p58C, based on the 

sequence homology to the 8-kDa domain of DNA pol-beta that is known to enhance pol-

beta processivity. 

Negative regulation of primer polymerization beyond unit length requires a stable 

primer-template (71, 81), implying that the unit-length primer-template forms a stable 

complex with p58C prior to internal transfer of the primer to the polymerase active site in 

intact pol-prim.  Thus, there is a pause in the reaction until the transfer occurs, relieving 

the negative regulation.  In the absence of the polymerase subunit, primase activity 

resumes only after the primase dissociates from the primer-template and rebinds to 

ssDNA.  Taken together, these studies strongly suggest that p58C interacts with primer-

template during and after primer synthesis.  If the iron-sulfur cluster in p58C is important 

for primer-template binding, the Cys367Ser primase might dissociate too frequently to 

enable efficient polymerization to create the full-length primer.  This interpretation could 

also partially explain the temperature-sensitive phenotype of the pri2-2 p58 yeast mutant, 

which would be expected to dissociate from the DNA more frequently at higher 

temperature and lose efficiency in generating the primer.  In terms of a redox function for 

the iron-sulfur cluster in p58C, one could speculate that control of the redox state may 

enable primase to be retained on the growing primer-template either until the unit-length 

primer is completed and transferred to p180 for elongation, or primase dissociates from 

the primer-template.  
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The discovery of an iron-sulfur cluster in DNA primase offers new horizons in 

which to investigate the function of [4Fe-4S] clusters in DNA replication and repair 

machinery.  Our findings imply that in addition to modulating the structural stability, the 

cluster in eukaryotic DNA primases may well function in some form of regulatory role, 

perhaps in controlling the length of the primer strand.  As is evidenced by the study of 

MutY and endonuclease III, high-resolution structural analysis would aide significantly 

in investigating the role of the iron-sulfur cluster in DNA primase function.  To this end, 

further integrated structural and functional analyses are currently in progress in our 

laboratories. 

 

Note: After this work had been completed and submitted for publication, Klinge and 

colleagues reported the presence of an iron-sulfur cluster in DNA primase from S. 

solfataricus and S. cerevisiae (131).  Our findings are in agreement with their data and 

extend it by identifying the cluster in human DNA primase and by showing that the 

cluster is contained in a distinct and well-folded structural domain within the p58 subunit. 
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Experimental Procedures 

 

Primase Construct Design 

The recombinant human p48/p58  primase expression plasmid used in this study 

has been previously described (79).  Full-length p48 cDNA was amplified using the 

dimer plasmid as the template.  Using BamHI and EcoRI restriction enzymes, it was then 

inserted into the in-house pBG100 vector (L. Mizoue, Center for Structural Biology, 

Vanderbilt University), which contains an N-terminal His6 tag.  A p58 (266-509) 

construct (p58C) was subcloned from the dimer plasmid into pET15b (Novagen) using 

NdeI and XhoI.  This construct also contains an N-terminal His6 tag.  Mutations were 

generated in the p58C expression plasmid by site-directed mutagenesis (Quikchange, 

Stratagene), and verified by DNA sequencing.  An SphI-BglII fragment of p58C 

containing the mutation was then used to replace the corresponding wild-type fragment in 

the dimer p48/p58 expression plasmid.  The oligonucleotides used to generate these 

constructs are listed in Appendix A. 

 

Protein Expression and Purification 

Each construct was expressed in BL21 (DE3) cells.  Cells were grown at 37 °C in 

LB to an OD600 of approximately 0.6.  The temperature was then lowered to 22 °C and 

the cells were allowed to equilibrate for 30 minutes.  Expression was induced using 1 

mM isopropyl thio-beta-D-galactopyranoside (IPTG).  Cells were harvested by 

centrifugation four hours post induction.  Pelleted cells were resuspended in lysis buffer 

containing 50 mM Tris-HCl (pH 8), 300 mM NaCl, 20 mM imidazole, 3 mM 2-
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mercaptoethanol (BME), 1% Nonidet P-40 (NP-40), 0.5 mg/ml lysozyme, ~10 mg DNase 

I, and one Complete Mini EDTA-Free protease inhibitor cocktail tablet (Roche).  Cells 

were lysed by sonication at 4 °C.  Insoluble material was removed by centrifugation. 

The primase polypeptides were purified using Ni-NTA affinity chromatography.  

The bound proteins were eluted using a linear imidazole gradient ranging from 20 mM to 

250 mM.  Fractions containing the primase polypeptides were pooled and dialyzed 

overnight at 4 °C into buffer containing 30 mM MES (pH 6.5), 50 mM NaCl, and 3 mM 

BME.  The sample was then further purified using a MonoS column (Amersham 

Biosciences) equilibrated in the same buffer and eluted with a linear gradient to 1 M 

NaCl. 

 

Limited Proteolysis 

p48/p58 and p48 primase preparations were exchanged into buffer containing 20 

mM Tris-HCl (pH 7.5), 50 mM NaCl, and 3 mM BME.  Digestions using proteinase K 

were performed at room temperature using a 1:1000 ratio of protease:protein.  At several 

time points over the 24-hour course of the digestion, an aliquot was removed, mixed with 

SDS sample loading buffer and boiled for 10 minutes.  The aliquots were then stored on 

ice until the end of the experiment, when they were analyzed by SDS-PAGE.  Bands of 

interest were excised and submitted for in-gel trypsin digestion and mass spectrometry 

analysis, or they were transferred to polyvinylidene fluoride (PVDF) membrane and 

submitted for Edman degradation. 
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Circular Dichroism (CD) 

p58C was buffer exchanged into 20 mM sodium phosphate (pH 6.5), 50 mM 

NaCl, and 3 mM BME.  The protein concentration was ~10 µM.  The far-UV CD 

spectrum was scanned at room temperature from 190-260 nm using a Jasco J-180 

spectrophotometer (Easton, MD). Secondary structure content was estimated using the 

K2d web server (132). 

 

Nuclear Magnetic Resonance (NMR) 

To obtain 15N-enriched p58C, the protein was expressed in an M9 minimal media 

with 15NH4Cl as the nitrogen source.  The protein was buffer exchanged into 20 mM 

sodium phosphate (pH 6.5), 50 mM NaCl, 3 mM BME, and 5% D2O.  15N-1H 

heteronuclear single quantum coherence (HSQC) spectra were acquired at 25 °C on a 

Bruker Avance 600 MHz spectrometer equipped with a cryoprobe.  A total of 64 scans 

were recorded in the direct (1H) dimension for each of the 128 points sampled in the 

indirect (15N) dimension.  The data were processed using NMRPipe (133) and analyzed 

and displayed using NMRView (134). 

 

UV-Visible Spectrophotometry 

Spectra were recorded using a Varian Cary 100 Bio spectrophotometer.  Samples 

were scanned from 550 nm to 250 nm at room temperature in buffer containing 20 mM 

Tris (pH 7.5), 50 mM NaCl, and 3 mM BME. 
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Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 

 Concentrated p58C was diluted to 10 mL in 99% chelex H2O and 1% nitric acid 

(optima).  This gave a final p58C concentration of 2.16 µM.  A blank sample containing 

buffer but no protein was prepared in the same manner.  The sample was submitted to the 

Environmental Engineering facility at Vanderbilt University for ICP-MS analysis.  The 

Fe57 content was measured and the [Fe]/[p58C] ratio was calculated. 

 

Electron Paramagnetic Resonance (EPR) 

Samples were prepared at 0.5 mM p58C in 20 mM MES (pH 6.5) and 50 mM 

NaCl, then freshly oxidized with 2.5 mM potassium ferricyanide.  Experiments were 

collected by M. Nilges at the Illinois EPR Research Center.  Spectra were recorded at X-

band (~9.05 GHz) on a Varian E-122 spectrometer.  The data were acquired from frozen 

glasses at ~15 K using an Air Products Helitran cryostat with liquid helium.  The 

magnetic fields were calibrated with a Varian NMR Gauss meter and the microwave 

frequency was measured with an EIP frequency meter. 

 

Multiple Sequence Alignment 

Amino acid sequences of p58 from H. sapiens, M. musculus, D. melanogaster, C. 

elegans, and S. cerevisiae were aligned using ClustalX (118). 

  

Primase Assay 

The activity of wildtype and mutant primases was tested on M13mp18 ssDNA 

(USB Corp., Cleveland, OH).  Reactions (20 µL) contained 0 to 8 pmol of primase, 100 
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ng of M13 DNA, in reaction buffer (30 mM HEPES-KOH (pH 7.9), 1 mM DTT, 7 mM 

Mg-acetate, 4 mM ATP, 0.2 mM UTP, 0.2 mM GTP, 0.01 mM CTP) and 20 µCi of 

[alpha-32P] CTP (3000 Ci/mmol; Dupont NEN, Boston, MA).  Reactions were assembled 

on ice and incubated at 37 °C for 90 min. Reaction products were precipitated with 2% 

NaClO4 in acetone, washed with acetone, and dried. Reaction products were dissolved in 

formamide loading buffer (45% vol/vol formamide, 5 mM EDTA) at 65 °C for 10 min 

and resolved by denaturing 20% polyacrylamide gel electrophoresis for 4-5 h at 500V, 

monitored using 0.08% wt/vol xylene cyanol and 0.08% bromophenol blue as markers. 

The reaction products were visualized and quantified by phosphorimaging.  
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CHAPTER III 

 

AN INTERACTION BETWEEN THE p68 SUBUNIT OF DNA POLYMERASE 
ALPHA AND SV40 T ANTIGEN 

 
 

Introduction 

DNA polymerase alpha (pol-prim) is an essential component of the eukaryotic 

replication machinery, serving to lay down chimeric RNA-DNA primers.  The function 

of the p68 subunit of pol-prim is not yet established.  Previous studies have established 

that while p68 is not required for polymerase or primase enzymatic activities, it is 

essential for SV40 DNA replication (63).  These authors showed that a trimeric pol-prim 

construct lacking the p68 subunit was defective in both initiation and primer elongation. 

p68 has no known catalytic activity but has been shown to be involved in protein-

protein interactions in both eukaryotic DNA replication and the SV40 model system (59, 

64, 65).  Protein interactions have been mapped to different regions of p68, and among 

these studies, the N-terminal 240 residues have been shown to interact with SV40 Tag 

(59).  The functional relevance of this region is underscored by studies showing that 

residues 141-160 contain sites that are phosphorylated by cyclin dependent kinases (67), 

which presumably regulates p68 function in a cell-cycle dependent manner.  More 

detailed investigations of these interactions are required in order to understand the 

function of p68. 

Our laboratory and others have observed that the majority of proteins that 

comprise DNA processing machinery exhibit multiple contact sites between structural 

domains.  These domain-domain contact points can be studied to build a view of the 
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structural basis for function.  For example, the domain structures of RPA and Tag, 

combined with studies of interactions using NMR spectroscopy and site-directed 

mutagenesis, have allowed for the mapping of specific binding interfaces (53, 55).  The 

structure-based design of mutants deficient in binding provided a highly efficient 

approach to understand the function of specific protein-protein interactions in the context 

of the SV40 replisome (53, 55).  Our laboratory is currently using similar approaches to 

study the function of pol-prim. 

 

Results 

 

p68(1-107) Interacts with Tag HD 

 In an effort to more finely map the portion of the N-terminal region involved in 

interacting with SV40 Tag, a series of yeast two-hybrid experiments were conducted.  Of 

the N-terminal 240 residues of p68 previously shown to interact with Tag (59),  the N-

terminal 107 residues were predicted to be structured using secondary structure 

prediction.  We first sought to determine if p68(1-107) could interact with Tag and to 

identify which Tag domain was responsible for the interaction.  A yeast two-hybrid 

screen revealed that p68(1-107) interacted with Tag, while p68(108-598) did not (Figure 

3.1).  Additionally, Tag(357-627), which corresponds to D2 and D3 of the helicase 

domain (HD), was sufficient for the interaction.  GST-pulldown experiments were then 

performed with GST-Tag(357-627) and His6-p68(1-107) to confirm that p68(1-107) 

physically interacts with Tag(357-627) (data not shown).  The finding that the Tag HD is 
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the domain responsible for the interaction is not surprising given that an antibody that 

recognizes this domain prevents binding between Tag and pol-prim (135). 

 

       
 

Figure 3.1.  p68(1-107) interacts with Tag(357-627).  (A)  Yeast two-hybrid experiment 
with p68 and control constructs fused to the Gal4 DNA-binding domain.  The Tag 
constructs were fused to the Gal4 activation domain.  Colony growth was observed on 
selective media (Leu (L), Trp (W), His (H), and Ade (A)).  (B)  Table summarizing data 
from A.  Data collected by H. Huang, Fanning laboratory. 
 
 

p68(1-107) is Essential for SV40 DNA Replication 

  In order to further evaluate the role of the p68(1-107) in SV40 DNA replication, 

a truncated pol-prim lacking the N-terminal 107 residues of p68 (p68∆N pol-prim) was 

purified and tested in a monopolymerase SV40 replication assay (Figure 3.2).  Similar to 

the observation of the trimeric pol-prim, p68∆N pol-prim was defective in SV40 DNA 

replication.  Thus, the N-terminal 107 residues of p68 have an important functional role 

in SV40 DNA replication. 

 

A B 
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Figure 3.2.  p68∆N pol-prim is defective in SV40 DNA replication.  WT (lanes 1-4) and 
p68∆N (lanes 5-8) pol-prim were tested in the monopolymerase assay for SV40 initiation 
coupled with elongation.  Reaction products were visualized by alkaline agarose 
electrophoresis and autoradiography.  Data collected by H. Zhang, Fanning laboratory. 
 
    

p68(1-107) is Structured 

 Given the evidence that p68(1-107) has a direct functional role in SV40 DNA 

replication, I set out to more fully characterize this construct.  p68(1-107) was initially 

expressed using the pET32a vector.  This vector contains three N-terminal tags: a 

thioredoxin tag, a His6 tag, and an S-tag.  The construct was expressed in BL21 (DE3) 

cells and purified using Ni-NTA chromatography.  The tags were removed via 

enterokinase digestion.  p68(1-107) was then purified away from the tag using a SourceQ 

column, giving a sample of sufficient purity for further studies (Figure 3.3.A). 
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Figure 3.3.  Structural analysis of p68(1-107).  (A) SDS-PAGE of purified p68(1-107) 
stained with Coomassie blue.  (B) Far-UV CD spectrum of p68(1-107) shows 
characteristic alpha-helical minima.  (C) 15N-1H HSQC spectrum of p68(1-107) contains 
dispersed peaks indicative of a folded protein. 
 
 
 
 Circular dichroism was used to assess secondary structure content in p68(1-107).  

Similar to what was observed for p58C in Chapter II, minima were present at 208 nm and 

222 nm in the far-UV CD spectrum (Figure 3.3.B), which indicates the presence of alpha 

helical secondary structure and suggests that there is a reasonable probability that p68(1-

107) is folded.  

 Given the promising CD data, p68(1-107) was transferred to another expression 

vector to simplify the purification process.  The construct was inserted into the pBG100 

A B 

C 

14 - 

6 - 



 52

vector (L. Mizoue, Center for Structural Biology, Vanderbilt University), which contains 

an N-terminal His6 tag with an H3C protease cleavage site.  The pBG100-p68(1-107) 

fusion protein was expressed in BL21 (DE3) cells and purified to homogeneity using a 

standard Ni-NTA chromatography protocol.  To further analyze the protein, p68(1-107) 

was expressed in 15N enriched minimal media, and an 15N-1H HSQC was recorded.  The 

spectrum contained a significant number of dispersed peaks with narrow linewidths 

which indicated the presence of a folded, globular structure (Figure 3.3.C).  Together, the 

CD and NMR data suggest that p68(1-107) contains a globular domain.  However, it was 

also clear from the presence of a significant number of strong peaks between 8.1 and 8.5 

ppm in the 1H dimension, that a considerable portion of the construct was not stably 

folded.  A calculation of the CD mean residue ellipticity indicated only ~33 of the 107 

residues are involved in helical structures.  The estimate from the NMR analysis was that 

about 1/3 of the construct was unfolded.  These observations prompted efforts to 

determine if the minimal Tag binding region was smaller than p68(1-107).  Based on 

previous observations of interactions between many DNA processing proteins involving 

stable folded domains, our next step involved more precisely delineating the putative 

folded domain in the N-terminal region of p68, which we term p68N. 

  

p68(1-78) Contains the Structured Region of p68(1-107) 

 The initial approach used to try to identify p68N was to assign the backbone 

NMR resonances of p68(1-107).  Unfortunately, p68(1-107) was not sufficiently stable to 

undertake these experiments: the protein degraded after several days, even in the 

presence of protease inhibitors.  This observation of sample degradation suggested that 
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p68(1-107) contained several unstructured residues at either the N- or C-terminus.  This 

prompted a detailed analysis of the p68(1-107) sequence.  Our initial analysis of the 

p68(1-107) sequence using several secondary structure prediction algorithms predicted 

that helical elements extended through the entire sequence (Figure 3.4).  However, these 

analyses were performed by restricting the sequence analysis to the residues of interest.  

Since secondary structure prediction algorithms consider a sliding window of residues to 

obtain the most accurate results, these initial analyses could be improved upon.  In fact, 

repeating the analysis using the entire p68 amino acid sequence produced a different 

result: no element of secondary structure was predicted beyond Ser75; thus the C-

terminal tail of p68(1-107) is likely to be unstructured (Figure 3.4).  Consequently, two 

new constructs, p68(1-78) and p68(1-87) were designed to eliminate the unstructured C-

terminal tail, which would presumably result in a more stable construct.  p68(1-87) was 

designed based on mass spectrometry data collected on a fragment produced by p68(1-

107) degradation, which had a mass consistent with residues 1-87.   
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       MSASAQQLAEELQIFGLDCEEALIEKLVELCVQYGQNEEQ     40 
       ----HHHHHHHHHH------HHHHHHHHHHHHH----HHH     FL 
       ----HHHHHHHHHH------HHHHHHHHHHHH-----HHH  1-107 
 
       MVGELIAFCTSTHKVGLTSEILNSFEHEFLSKRLSKARHS     80 
       HHHHHHHHHHH-------HHHHHHHHHHHHHHHHH-----     FL 
       HHHHHHHHHH---------HHHHHHHHHHHHHH-------  1-107 
 
       TCKDSGHAGARDIVSIQELIEVEEEEEILLNSYTTPSKGS    120 
       ------------EE--------------------------     FL 
       ------------HHHHHHHHHHH----               1-107 
 
Figure 3.4.   Secondary structure prediction of the N-terminus of p68.  The secondary 
structure content of p68 was predicted using the Jpred server (136).  The entire p68 
sequence was analyzed (middle row, labeled “FL”), however only the N-terminal 120 
residues are shown.  Analysis of only residues 1-107 (bottom row, labeled “1-107”) 
predicted a fifth helix.  Secondary structure is listed below the sequence (α-helix as “H” 
and β-strand as “E”).  The p68N construct is represented in blue, and the p68(1-107) 
construct contains the blue and green residues. 
 

 
 The p68(1-78) construct was selected for analysis first because it was the minimal 

size for p68N based on the structure prediction.  The construct was sub-cloned, expressed 

and purified using the same protocol as for p68(1-107).  Curiously, two protein bands 

were observed.  Both forms co-purified in the primary Ni-NTA chromatography step 

(Figure 3.5.A).  The lower MW band ran at a size consistent with the expected p68N 

monomer, whereas the higher MW band ran at a size consistent with a p68N dimer.  The 

gels were run under denaturing conditions, and since the p68(1-107) construct contains 

three Cys residues, it was assumed the dimer arose from a stable inter-molecular 

disulfide.  MALDI mass spectrometry (MS) confirmed that the molecular weights 

correspond to the monomer and dimer states.  In fact, the two species could be separated 

using an S75 gel filtration column (Figure 3.5.B), and once separated, they did not re-

equilibrate.   
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Figure 3.5.  p68N purification.  (A)  Fractions eluted off a Ni-NTA column as the 
concentration of imidazole is increased using a linear gradient (from left to right).  Two 
bands co-purify.  Band * is the putative p68N monomer, and band # is the putative dimer.  
(B) Fractions from the Ni-NTA column were pooled and loaded onto an S75 gel filtration 
column.  Two separate peaks eluted at retention volumes consistent with a monomer and 
dimer.  The gel confirms the species were separated, and additional gels demonstrated 
that they do not re-equilibrate. 
 
 
 

Since the overall yield of the protein was very high and the dimer was much less 

abundant than the monomer, all further analyses were performed with the monomer.  

Comparison of p68(1-78) with p68(1-107) were made by NMR.  Figure 3.6.A shows an 

overlay of the 15N-1H HSQC spectra of these two constructs.  The overlay demonstrates 

that all of the disperse peaks in p68(1-107) are present in the spectrum of p68(1-78); all 

p68(1-78) peaks that are missing from the spectrum of p68(1-107) are located in the 

central region, which contains peaks primarily from unstructured residues.  This implies 

that p68(1-78) contains the structured p68N domain. 

I then set out to further characterize the two bands observed in the gel.  Since MS 

data suggested the upper band was twice the size of the lower band, an 15N-1H HSQC 

spectrum was acquired to determine if it was comprised of the same protein.  The overlay 

of these two spectra (Figure 3.6.B) shows that the two species are in fact different forms 
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of the same protein as many of the dispersed chemical shifts are identical.  This 

observation provides strong support for the proposal that the upper band is a p68N dimer. 

   

 
 
Figure 3.6.  NMR characterization of p68(1-78).  (A)  The 15N-1H HSQC spectrum of 
p68(1-107) (blue) overlaid on top of p68(1-78) (black).  All dispersed peaks from p68(1-
107) are present in the p68N spectrum which indicates that the folded portion is present 
in both constructs. (B)  The 15N-1H HSQC spectrum of the p68N dimer (black) overlaid 
on top of the monomer spectrum (red).  The spectra overlay extremely well, confirming 
that the high MW band is a p68N dimer.   
 
 
 
 More detailed analysis of the HSQC spectrum of p68N revealed several residues 

that exhibited more than one peak, indicating sample heterogeneity (Figure 3.7.A).  In the 

initial spectra, there was clear evidence for a major and minor species.  Over time, the 

equilibrium distribution changed, shifting from a near equal distribution to almost only 

one form (Figure 3.7.A).  This shift was not accompanied by degradation.  Thus, even 

though the dimer p68N had been removed from the sample, the p68N monomer was not 
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homogeneous.  The most likely explanation for this observation is a slow shift to a 

reduced state of p68N, resulting in the loss of an intra-molecular disulfide. 

 

 
 
Figure 3.7.  Redox-mediated heterogeneity of p68N.  (A)  15N-1H HSQC spectrum of 
p68N.  In the inset is a close-up view of the boxed peak.  p68N spectra were recorded at 0 
weeks, 1 week, and 2 weeks after purification.  The spectra are overlaid (left column) and 
shown individually (right three insets) to highlight how the intensity of one peak 
decreases as the other increases.  This indicates a shift in p68N sample population that 
occurs on a slow timescale.  (B)  Spectra of p68N in the presence (black) and absence 
(red) of BME.  Purification and analysis of p68N in the absence of reducing agent 
resulted in a homogenous sample. 
 
 
 To further probe the cause of p68N heterogeneity, a sample was purified in the 

absence of reducing agent.  The 15N-1H HSQC spectrum of this p68N preparation was 

homogeneous (Figure 3.7.C).  Addition of 20 mM BME to the solution reproduced the 

heterogeneous peaks, presumably due to incomplete reduction of the disulfide (Figure 

3.7.C).  The p68N peaks in the sample lacking reducing agents matched the initial 

population (i.e. the peaks that slowly disappeared) observed previously in Figure 3.7.A.  

These observations support the proposal that p68N forms an intramolecular disulfide 
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bond that it is slowly reduced over the two week timecourse when BME was present in 

the sample.  Based on this finding, we omitted reducing agent from further p68N 

preparations and structural studies.  Importantly, unlike p68(1-107), p68N was stable for 

2-3 weeks at room temperature.  We also noted that p68N was still somewhat susceptible 

to degradation after cleavage of the His6 tag, so the tag was left intact for experiments 

requiring long lifetimes, such as the NMR structure determination. 

  

Biophysical Characterization of the p68N-Tag HD Interaction 

Since initial studies of the p68-Tag interaction identified p68(1-107) as the region 

responsible for binding Tag (Figure 3.2), the question remained whether p68N would be 

sufficient for the interaction.  It was possible that Tag could bind to the unstructured 

residues in p68(1-107).  However, further yeast two-hybrid experiments confirmed that 

p68N was sufficient for the interaction with Tag (data not shown).  Thus the interaction is 

mediated through two structured domains, similar to what has been observed for the other 

well studied protein-protein interactions in SV40 DNA replication.  

In order to obtain a more detailed understanding of the interaction, isothermal 

titration calorimetry (ITC) was used to quantify binding parameters.  Initial attempts to 

work with Tag(357-627) were unsuccessful, as the protein aggregated upon cleavage of 

the GST tag.  This problem was alleviated by switching to the longer Tag(303-627) 

construct.  This construct disrupts the Zn subdomain (D1) of the HD, and is primarily 

monomeric in solution (32).  Tag(303-627) requires both a high ionic strength (150-250 

mM NaCl) and the presence of a reducing agent (1 mM DTT) to remain soluble.  Due to 

the difficulty of producing Tag(303-627) and its limited solubility, 50 µM Tag(303-627) 
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was placed in the ITC sample cell at 25 ºC, and 0.735 mM p68N was titrated into the cell.  

Both proteins were in an identical buffer, which contained 25 mM Tris (pH 8.0), 250 mM 

NaCl, and 1 mM DTT.  The data were fit to a single site binding model to calculate a Kd 

of 22 ± 1 µM, a ∆H of 1713 ± 20 kcal/mol, and a ∆S of 27.1 e.u. for the interaction 

(Figure 3.8).  

 

 
Figure 3.8.  p68N interacts with Tag(303-627) with an affinity of 22 µM.  p68N was 
titrated into Tag(303-627) and was monitored using ITC.  The raw data is shown on top, 
and the converted data is shown at bottom.  The data were fit to a single site binding 
model to calculate the dissociation constant. 
 
 

Mapping the Binding Surface 

 The solution structure of p68N was determined using NMR methods as will be 

described in detail in Chapter IV.  This structure was used in combination with NMR 

titration data to map the p68N surface involved in the Tag interaction.  NMR is a 
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powerful tool for studying protein-protein interactions (137).  A common approach used 

to study protein-protein interactions is the chemical shift perturbation assay (CSPA).  In 

this experiment, one protein is 15N-labeled and an 15N-1H HSQC spectrum is recorded.  

The unlabeled binding partner (which produces no signals in the HSQC spectrum) is then 

added to the sample.  The chemical shift is a very sensitive parameter, so peaks 

corresponding to residues at the binding interface will be selectively perturbed.  Notably, 

structural changes induced by the binding event will also cause chemical shift changes, so 

the assay requires careful consideration of both factors.  If a high resolution structure and 

resonance assignments are available, the binding interface can be mapped onto the 

structure by identifying the residues that are perturbed when the binding partner is added 

to the solution (e.g. (55)).   

 There are many instances where the standard CSPA is not practical however, 

including cases of intermediate exchange where many signals are broadened beyond 

detection or in the formation of large complexes (137).  The p68N-Tag HD interaction is 

an example of the latter case, as the complex is ~48 kDa, which is large by NMR 

standards.  Thus, as unlabeled Tag (303-627) is titrated into 15N-labeled p68N, a large 

majority of p68N peaks are broadened beyond detection at a molar ratio of 1:1 (Figure 

3.9).  Consequently, although there is unambiguous evidence for binding, no specific 

binding interface can be defined based on CSPA data alone. 
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Figure 3.9.  Tag-binding broadens p68N peaks.  (A)  15N-1H HSQC of p68N alone.  (B)  
15N-1H HSQC of p68N with an equimolar amount of unlabeled Tag (303-627).   
 
  

 Differential line broadening (DLB) is a less frequently used and more 

complicated approach that can be applied to systems such as p68N-Tag(303-627).  This 

technique involves the addition of sub-stoichiometric ratios of ligand to observed protein 

(138).  When a large, unlabeled protein is added to the smaller, labeled protein, the 

relaxation rate of the small protein is dramatically increased, causing line broadening.  

This, in effect, renders the bound state invisible to NMR.  At substoichiometric amounts 

however, line broadening can be used to indirectly assess resonance shifts caused by 

binding.  When there is a difference in chemical shift between the free and bound state, 

the peak is more severely broadened due to exchange effects.  Since only peaks at the 

binding interface have a chemical shift difference between the two states, severe line 

broadening can be used as an indicator for involvement at the protein-protein interface 

(reviewed in (137)).   
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 DLB was used to study the p68N-Tag interaction.  First, an HSQC spectrum of 

100 µM p68N alone was recorded.  Tag (303-627) was then added to the sample at 0.1:1 

and 0.3:1 Tag:p68N molar ratios, and additional HSQC spectra were recorded.  The 

expected general decrease in p68N peak intensities was observed as Tag was added to the 

solution (Figure 3.10.A).  However, certain peaks appeared to be selectively broadened 

more drastically relative to the average.  Since Tag(303-627) has only limited solubility, 

buffer conditions in these experiments were not the same as those used for resonance 

assignments.  The buffer for the DLB experiment contained 25 mM Tris (pH 8.0), 150 

mM NaCl, and 3 mM BME, while the structural studies were conducted in 20 mM 

sodium phosphate (pH 6.5) and 50 mM NaCl.  Consequently, some of the p68N peaks 

could not be unambiguously assigned: Met1-Gln13, Cys19, Leu27, Val28, Cys31, Gln36, 

His53-Val55, Leu57, Ser59, Glu60, Leu62, Ser64, Glu66, His67, Leu70 and Lys76.  

While at least sixteen of these residues have peaks present in the HSQC spectrum which 

could not be assigned, the remaining residues are likely broadened beyond detection due 

to solvent exchange at the higher pH.   

In order to make a detailed assessment of the effects of the titration, peak 

intensities were measured for all assigned resonances in all three spectra.  Peak intensities 

were measured as opposed to peak volumes because the accuracy of volume 

measurements is lower than intensities and intensities are much easier to measure.  Figure 

3.10.B and 3.10.C shows a plot of the intensities versus the sequence, normalized against 

the control spectrum without Tag(303-627).  Ten peaks were found to be selectively 

broadened when Tag(303-627) was added to the sample based on reduction in relative 

intensities that exceeds one standard deviation below the mean.   
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 The residues identified in the DLB experiment as significantly perturbed include: 

Ile14, Phe15, Leu17, Glu20, Leu45, Ile46, Ala47, Cys49, Gly56, and Ser71.  Given that 

the effect of dynamic line broadening was subtle, we repeated this experiment using 

Tag(251-627) Val350Glu/Pro417Glu obtained from Xiaojiang Chen’s laboratory.  This 

double point mutant is also a monomer in solution but retains the Zn domain (X. Chen, 

unpublished data).   The two experiments produced very similar results, confirming our 

interpretation of which residues were significantly perturbed. 
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Figure 3.10.  Tag(303-627) differentially broadens p68N signals.  (A)  Selected 1D slices 
of 15N-1H spectra without Tag (left) and at a ratio of 0.1:1 Tag(303-627):p68N (right)  
Although subtle, the I46 peak experiences a more significant intensity decrease.  Peak 
intensity at Tag(303-627):p68N ratios of 0.1:1 (B) and 0.3:1 (C) are plotted relative to the 
intensity without Tag present.  Peaks that could not be assigned (left) are underlined with 
a dashed line.  Residues with peak intensities below the gray line (mean minus one 
standard deviation) were considered significant. 
 

A

B
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Figure 3.11 shows the perturbed residues mapped onto the p68N.  A cluster of 

effected residues around the C-terminal ends of helices I and III suggest a possible 

binding surface.  Ser71, and to a lesser extent Glu20, were remote from the potential 

interface and these are assumed to arise from structural perturbations allosterically 

induced by the binding of Tag(303-627). 

  

   

 
 
Figure 3.11.  Potential Tag-binding surface on p68N.  (A) Ribbon diagram of p68N with 
significant residues identified from the DLB experiment colored in red.  Glu20 and Ser71 
are colored in yellow as they are remote from the other perturbed residues.  (B)  Same as 
in A, but with a surface representation.  (C)  Close-up view of the surface, which is 
primarily hydrophobic and is composed of Ile14, Phe15, Ile46, and Ala47. 
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 The potential binding surface is flat, primarily hydrophobic, and flanked by helix 

I and helix III (Figure 3.11.C).  Ile46 is primarily buried, but the CG2 methyl group is 

surface exposed.  Ile14, Phe15, and Ala47 are solvent exposed, and thus are good 

candidates for site directed mutagenesis.  These residues, as well as additional residues 

near this surface are being mutated to confirm our analysis of the Tag binding site, and 

for subsequent use in functional assays to test the importance of this contribution to the 

interaction of p68 with SV40 Tag. 

 p68N mutants will be initially assayed for Tag-binding using a yeast two-hybrid 

assay.  Those p68N mutants defective in Tag-binding will be assessed for structural 

integrity by collecting a 15N-1H HSQC spectrum.  If the mutation does not perturb p68N 

structure, there should be a few chemical shift perturbations corresponding to residues 

near the mutation, but overall, the spectrum should match that of the WT.  The binding 

affinity for the interaction between the p68N and Tag HD will be determined using ITC 

in order to quantify the reduction in affinity.  These mutants will then be incorporated 

into the full-length pol-prim tetramer for functional assays, such as the monopolymerase 

assay (Figure 3.2) and for the ability of Tag to relieve RPA inhibition of pol-prim on a 

ssDNA template. 

 
 

Experimental Procedures 

 

Yeast Two-Hybrid Assay 

 Tag fragments were fused to the Gal4 activation domain in the pGADT7 vector 

(Trp selection).  The control proteins and p68 fragments were fused to the Gal4 DNA 
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binding domain in the pGBKT7 vector (Leu selection).  These plasmids are part of the 

Matchmaker Two-Hybrid System 3, designed by Clontech (Mountain View, CA) (139).  

The plasmids were co-transformed into the yeast AH109 strain which contains three 

reporter genes: His3, Ade2, and LacZ.  The cells were grown for three days on -Leu -Trp 

plates.  Positive colonies were streaked onto -Leu -Trp plates and -Leu -Trp -His -Ade 

plates.  Cells were grown for three days and analyzed for the presence of colonies. 

 

Monopolymerase Assay 

 The monopolymerase assay was carried out as previously described (63).  Briefly, 

increasing amounts of WT and ∆p68N pol-prim were incubated with SV40 origin 

dsDNA, Topo I, 1000 ng RPA, 1200 ng Tag, and 0.10 mM dNTPs (including 3 µCi of 

[α-32P]dATP.  Reaction products were precipitated with 2% NaClO4 in acetone, washed 

with acetone, and dried.  Products were then resuspended in loading buffer and analyzed 

by agarose gel electrophoresis and autoradiography. 

 

p68N Construct Design 

 p68(1-107), p68(1-87), and p68(1-78) insert DNA was amplified from the Trx-

tagged p68(1-107) construct obtained from the Fanning laboratory.  Oligonucleotides 

used to amplify the insert DNA are listed in Appendix A.  The inserts were then cloned 

into the pBG100 vector (L. Mizoue, Center for Structural Biology, Vanderbilt University) 

using NdeI and BamHI restriction enzymes.  This vector introduces an N-terminal H3C 

protease-cleavable His6 tag. 
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p68N Expression and Purification 

 The p68N plasmid was transformed into the BL21 (DE3) expression cell line.  10 

mL LB was then inoculated and grown overnight at 37°C.  The following day, the culture 

was added to 1 L LB and grown at 37°C.  Protein expression was induced with 1 mM 

IPTG when the culture reached an OD600 of ~0.6.  Cells were then harvested four hours 

post-induction.  Isotopically labeled p68N was grown in a similar manner except that 1 L 

M9 minimal media was substituted for the LB.  The minimal media was supplemented 

with 15N-NH4Cl and/or 13C-glucose for 15N/13C incorporation as required. 

 Pelleted cells were resuspended in lysis buffer containing 50 mM Tris-HCl (pH 

8), 300 mM NaCl, 20 mM imidazole, 1% Nonidet P-40 (NP-40), 0.5 mg/ml lysozyme, 

and one Complete Mini EDTA-Free protease inhibitor cocktail tablet (Roche).  As 

mentioned in the results section, initial purifications also contained 3 mM BME, however 

this component was found to introduce sample heterogeneity and was subsequently 

removed.  Cells were lysed by sonication at 4 °C.  Insoluble material was removed by 

centrifugation. 

p68N was purified using Ni-NTA affinity chromatography.  The bound proteins 

were eluted using a linear imidazole gradient ranging from 20 mM to 250 mM.  Fractions 

containing p68N were pooled and dialyzed overnight at 4°C into NMR buffer, which 

contains 20 mM sodium phosphate (pH 6.5) and 50 mM NaCl.  The sample was then 

concentrated to 3 mL and loaded onto an S75 gel filtration column.  Fractions containing 

p68 were pooled and concentrated to 0.5 mL, to give a p68N NMR sample of ~0.75-1 

mM. 
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CD 

10 µM p68(1-107) was analyzed by CD as described for p58C in Chapter II.  

p68(1-107) was buffer exchanged into 20 mM sodium phosphate (pH 7.5), 50 mM NaCl, 

and 3 mM BME.  The far-UV CD spectrum was scanned at room temperature from 190-

260 nm using a Jasco J-180 spectrophotometer (Easton, MD). Secondary structure 

content was estimated using the K2d web server (132). 

 

ITC 

 p68N and Tag (303-627) were buffer exchanged into 25 mM Tris (pH 8.0), 250 

mM NaCl, and 3 mM BME.  Tag (303-627) was concentrated to 50 µM, and p68N was 

concentrated to 730 µM.  Data were collected at 25 ºC using a MicroCal VP-ITC and 

analyzed using the accompanying software.  Tag (303-627) was placed in the sample cell, 

and p68N was injected during the run.  The data were fitted to a single site binding model 

to generate calculate several thermodynamic values, including Kd. 

 

NMR 

 15N-1H HSQC spectra were recorded at 25 ºC on a Bruker Avance 500 MHz 

spectrometer equipped with a cryoprobe.  15N-labeled p68N and unlabeled Tag (303-627) 

were buffer exchanged into 25 mM Tris (pH 8.0), 150 mM NaCl, 3 mM BME, and 5% 

D2O.  The initial p68N concentration was 100 µM.  15N-1H HSQC spectra were recorded 

as described in Chapter II at the following Tag:p68N molar ratios: 0:1, 0.1:1, 0.3:1, 1:1.  

Spectra were processed using NMRPipe (133) and analyzed using SPARKY (140).  The 
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data were processed with a sine-squared bell window function followed by zero filling 

prior to the Fourier transformation in both dimensions. 
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CHAPTER IV 

 

THE SOLUTION STRUCTURE OF THE N-TERMINAL DOMAIN OF THE p68 
SUBUNIT OF DNA POLYMERASE ALPHA 

 
 
 

Introduction 

 High resolution structures of SV40 DNA replication proteins have provided 

insight into many aspects of initiation, ranging from enzymatic activity to protein-protein 

interactions.  For example, x-ray crystal structures of the Tag helicase domain in various 

nucleotide binding modes have provided a model for Tag helicase activity (38).  

Additionally, the structures of the RPA70AB domain and the Tag OBD combined with 

biophysical data, have allowed for the elucidation of the role of this domain-domain 

interaction in loading RPA onto ssDNA (53).   

 Chapter III describes studies of the interaction between p68N and Tag HD.  NMR 

data was used to map the potential binding interface onto the p68N structure.  Currently 

there is no published structure available for any pol-prim domain.  Thus we sought to 

determine a high resolution structure of a pol-prim domain with the goal of further 

elucidating the structural basis for p68N-Tag HD interaction and ultimately for pol-prim 

activity in the SV40 replisome.  This chapter describes the methods used to determine the 

p68N structure as well as a detailed analysis of the structure itself. 
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Results 

 

Resonance Assignments 

 The critical first step in any detailed NMR analysis is the assignment of the 

resonances.  The standard multi-dimensional heteronuclear NMR approach on 

isotopically enriched (13C, 15N) protein was used for p68N.  The backbone and side chain 

resonances were assigned using standard triple resonance NMR experiments on 13C, 15N-

enriched protein.  The following five spectra were recorded to assign the backbone 

resonances: HNCACB, CBCA(CO)NH, HNCA, HN(CO)CA, and HNCO.  From these 

data, 78/78 HN, 78/78 N, 78/78 Cα, and 75/78 C’ resonances were assigned.  Of the three 

missing C’ resonances, one is the C-terminal residue, and two are ambiguous due to 

overlapped HN and N resonances of the following residues.  The HNCO experiment used 

to assign the C’ resonances transfers magnetization to the C’ nucleus of the previous 

residue.  An HCACO experiment could conceivably be used to obtain these last three 

assignments, but it was not performed because these were not required for the structure 

determination.  Thus in cases of overlapped or missing HN and N resonances, the C’ 

resonance of the previous residue cannot be assigned.  To demonstrate the quality of the 

3D triple resonance data, Figure 4.1 shows paired strips from the HNCACB and 

CBCA(CO)NH spectra for Gly43-Ile46.  A 15N-1H HSQC spectrum of p68N is shown in 

Figure 4.2 with all peaks assigned. 
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Figure 4.1.  Strip plots from the 600 MHz 3D CBCA(CO)NH and HNCACB spectra.  
Spectra aquired for ~750 µM p68N at 25 ºC in a buffer containing 20 mM sodium 
phosphate (pH 6.5) and 50 mM BME.  Strip plots from CBCA(CO)NH (left) and 
HNCACB (right) spectra are shown for residues Gly43-Ile46.  Positive contours are 
colored red, and negative contours (which correspond to Cβ resonances in the HNCACB) 
are colored green. 
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Figure 4.2.  15N-1H HSQC spectrum of p68N with assignments.  Spectrum acquired for 
~750 µM p68N at 25 ºC in a buffer containing 20 mM sodium phosphate (pH 6.5) and 50 
mM BME.  Residues with negative numbers are from the uncleaved His6 tag.  The central 
region is expanded in the upper left. 
 
 

 Additional spectra were recorded to complete the assignments of the side chain 

resonances.  An HBHA(CO)NH spectrum was useful for providing many of the 1H 

assignments for the Cα and Cβ protons.  The majority of the remaining side chain 13C and 

1H resonances were assigned from (H)CC(CO)NH-TOCSY and H(CC)(CO)NH-TOCSY 

spectra.  Aromatic side chain resonances were assigned using a combination of  

homonuclear NOESY and COSY experiments.  In all, 96% of the side chain 13C and 1H 

resonances were assigned. The missing assignments are: Gln6 Cγ, Phe15 Hε, Phe15 Hζ, 

Lys26 Hε, Gln33 Hγ, Gln33 Hε, Gln36 Hγ, Gln36 Cγ, Phe48 Hζ, His53 Hε1, Lys54 Hδ, 
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Lys54 Hε, Leu57 Hγ, Thr58 Hα, Ser59 Cβ, Ile61 Hγ2, Ile61 Cγ1, Leu62 Hγ, Ser64 Cβ, His67 

Hε1, Arg78 Hδ, Arg78 Cγ, and Arg78 Cδ.   

 

Structural Restraints 

Backbone Dihedral Angle Restraints 

 The chemical shifts for N, C’, Cα, Cβ, and Hα resonances were input into TALOS 

(141) to generate constraints on φ and ψ angles along the polypeptide backbone.  TALOS 

compares chemical shifts to a database of known structures and chemical shifts to predict 

the backbone dihedral angles.  In the case of p68N, TALOS predicted φ and ψ values for 

61 out of the 78 residues (Table 4.5).  These correspond well to the four helical elements 

ultimately found in the structure (Figure 4.3). 

 

  MSASAQQLAEELQIFGLDCEEALIEKLVELCVQYGQNEEQ   40 
       ----HHHHHHHHHHH-----HHHHHHHHHHHHHH---HHH      
 
       MVGELIAFCTSTHKVGLTSEILNSFEHEFLSKRLSKAR     78 
       HHHHHHHHHHHH----HHHHHHHHHHHH-HHH------        
 
Figure 4.3.  TALOS secondary structure prediction for p68N.  “H” represents an α-helix 
and “-“ represents no prediction. 
 
 

NOE Distance Restraints 

 The following NOESY experiments were collected to generate NOE distance 

restraints: 2D 1H NOESY, 3D 15N-edited NOESY, 3D 13C-edited NOESY, and 4D 13C, 

13C-edited NOESY.  Peaks were picked in the 2D and 3D experiments to give 3489 

potential proton-proton connectivities.  Rather than performing the very time consuming 

process of manually assigning each peak, we turned to CYANA (142) for automated 
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assignment.  The CYANA approach involves an iterative process to assign the NOESY 

peaks, which is directly coupled with structure calculations.  This corresponds to an 

automated version of “distance filtering” (e.g. (143)).   

Of the 3489 peaks picked from the NOESY spectra, 2648 were eventually 

unambiguously assigned according to CYANA, and 987 distance restraints were 

generated.  533 of the restraints are short range (between protons on the same or 

sequential residue), 233 are medium range (between protons 2 to 4 residues apart), and 

221 are long range (between protons greater than 4 residues apart).  The distribution of 

NOEs is shown in Figure 4.4.A.  This figure shows that the regions with the fewest long 

range NOEs (black bars) correspond to loops in p68N.  This is expected, as regions with 

few NOEs typically map to flexible loops and termini in NMR structures.  There is a 

good distribution of NOEs along the polypeptide chain, which is important to obtain an 

accurate tertiary structure.  Some residues, such as Leu45 and Phe65, have a large 

number of NOEs because they are centrally packed in the hydrophobic core.  Medium 

range NOEs are useful for defining secondary structure (Figure 4.4.B), while long range 

NOEs drive the overall fold of the protein.  Helical elements of secondary structure are 

defined by i, i+3 (dαβ, dαN) NOEs and specific assignment of an α-helix was based on i, 

i+4 (dαN) NOEs.  The assignments of long range NOEs were verified manually, using the 

4D NOESY when possible to ensure the accuracy of these critical distance restraints.   
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Figure 4.4.  Distribution of NOEs observed for p68N.  (A) Plot of number of NOEs for 
each residue.  White bars represent intramolecular NOEs, light gray bars are sequential 
NOEs, dark grey bars are medium range NOEs, and black bars are long range NOEs.  (B)  
Plot of sequential and medium range NOEs.  Vertical dotted lines are drawn to delineate 
the four different helices that can be assigned from the analysis of this data. 
 
  
 

A 

B 
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TALOS predicted four helices corresponding to Ala5-Phe15, Glu21-Tyr34, 

Glu38-Thr52, and Ser59-Lys72.  The medium range NOEs also define four helices, 

corresponding to Ser4-Phe15, Glu21-Tyr34, Glu39-Thr50, and Ser59-Leu74.  Both 

methods for determining secondary structure are in good agreement as the boundaries for 

the four helices are extremely similar.  Interestingly, both TALOS and the NOESY data 

suggest a break in helix IV at Phe69.   

In addition to distance restraints, CYANA was also valuable for generating 18 

sets of stereospecific assignments.  The software uses the GLOMSA algoritm (144), 

taking into account NOE distance restraints, dihedral angle restraints (not directly 

measured for p68N), and the features of the structure.  Stereospecific Hβ assignments 

were obtained for 15 residues: Leu8, Phe15, Leu17, Glu20, Leu23, Leu27, Leu30, Tyr34, 

Glu38, Leu45, Phe48, Phe65, Phe69, and Leu70.  Three additional stereospecific 

assignments were obtained for Glu25 Hγ, Val32 Hγ, and Gly43 Hα.    Only the Val32 

methyls could be stereospecifically assigned at the current stage of analysis. 

In initial p68N structures, helix II was bent, and consistent dihedral angle 

violations in structures arose for Leu27 and Val28.  This was surprising given that both 

TALOS and medium range NOEs suggested a continuous helix in this region.  This kink 

in helix II was retained through several rounds of CYANA calculations and even after 

restrained molecular dynamics refinement.  Analysis of the distance violations did not 

reveal “bad” NOEs; indeed, there were many restraints forcing the helix to bend.  Our 

initial concern was that resonances had been misassigned, especially given that Leu27 is 

overlapped with Leu70 in the 15N-1H HSQC (Figure 4.2), which would complicate the 

assignment of the Lys26 side chain resonances.  However, careful re-examination of the 



 79

assignment data did not turn up any misassigned resonances.  Returning to the NOEs, a 

detailed manual analysis of the long range NOEs was performed.  This revealed that a 

particular resonance that had several long range NOEs was being inconsistently assigned 

in CYANA calculations.  Further inspection identified this resonance as Met41 Hε, which 

had not been previously assigned.  Assigning this resonance and rerunning CYANA 

resulted in structures with no kinks in helix II as expected.  This example highlights one 

of the severe drawbacks of the network anchoring approach used by CYANA.  While it 

allows for the structures to more quickly converge, this approach also generates the 

possibility of amplifying the negative (or adverse) effects of incorrect or incomplete 

assignments, which in turn results in an inaccurate structure.  Our assignment 

completeness was quite high at 96%, which one might anticipate is sufficient to avoid 

this problem.  The example of p68N makes clear that this is not the case.  While the value 

of automating the NOE assignment process is clear, it is absolutely essential to recognize 

the potential for this process to generate erroneous structures.  Manual examination of 

NOEs after they are assigned, in particular the critical long range NOEs, is recommended 

as one means to check for errors in the NOE assignments made by automated approaches. 

 

Restrained Molecular Dynamics (rMD) 

 After CYANA analysis was completed, the 50 structures with the lowest CYANA 

target energy were used as starting structures for rMD simulations using AMBER (145).  

In order to optimize the protocol and weighting factors for the refinement of p68N data, 

six rMD simulations were run with different distance restraint sets based on the CYANA 

output.  These tests involved altering the upper limit for each restraint, multiplying the 
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CYANA output by 0.9, 0.95, 1, 1.05, 1.1, and 1.2.  The objective of this test was to find a 

proper balance between restraining conformation based on experimental data and 

retaining the chemical accuracy of the local conformational features (bond lengths, bond 

angles, etc.) that is optimized by the force field alone.   

In order to evaluate the six rMD simulations, the effect of the distance restraints 

on total energy, violation energy, and root mean square deviation (RMSD) was plotted 

versus weighting factor (Figure 4.5).  The expected trend is that as the structures become 

over-restrained, the restraints will cause chemically unreasonable representations of the 

structure, driving the total AMBER energy up (Figure 4.5.A).  On the other hand, if the 

restraints are too loose, then the protein will be poorly restrained and the RMSD of the 

ensemble rises (Figure 4.5.B).  The curves in Figure 4.5 show that a 5% increase in the 

distance restraints is optimal, resulting in low total AMBER and violation energies 

without significantly inflating the RMSD.  Thus the restraints generated by CYANA 

were loosened by 5% in the final rMD analysis. 
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Figure 4.5.  Effects of altering the upper bounds of NOE distance restraints.  Six 
identical simulations were performed changing only the upper bounds on the distance 
restraints.  The upper bounds generated by CYANA were factored as indicated along the 
x-axis of each plot.  (A) Total energy, (B) violation energy, and (C) RMSD (for residues 
5-68) are plotted versus the percent change to the restraints. 
 
 
 
Analysis of the Structure 

After completion of the rMD refinement, the 50 structures were ordered by 

AMBER restraint violation energy and the first 20 structures were selected for further 

analysis.  The extreme termini of p68N (Met1-Ser2, Ser75-Arg78) did not contain any 

medium or long range NOEs (Figure 4.4.A) and as a result occupied a wide range of 

conformations after rMD refinement.  These six residues were removed for clarity in all 

subsequent analyses.  Figure 4.6 shows the representative ensemble of 20 p68N 

conformers along with a ribbon diagram of the representative single conformer (that 

A B 

C 
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which is closest to the mean).  p68N is seen to adopt a compact structure composed of 

four helices, in good agreement with the secondary structure prediction (Figure 3.4).       
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Figure 4.6.  NMR solution structure of p68N determined at pH 6.5 and 25 ºC.  (A)  
Ensemble of the conformers representing the structure of p68N (left, in stereo).  Ribbon 
diagram of the structure closest to the mean structure, with the helical elements of 
secondary structure labeled (right).  (B)  Rotation of 90º along the Z-axis.  (C) Rotation 
of -90º along the Z-axis.  (D) Rotation of 90º along the X-axis.  (E) Rotation of -90º along 
the X-axis. 

A

B

3 
74 

C

D

E



 84

 The structural statistics for the ensemble (Table 4.1) shows that the structure of 

p68N is reasonably well defined, consistent with the average of 14.2 restraints/residue.  

The average total energy of -1315 ± 23 kcal/mol is largely negative indicating a stable 

globular structure, and the average constraint energy of only 3.4 ± 0.4 kcal/mol indicates 

excellent agreement with the experimental data.  There were no distance constraints 

violated by more than 0.2 Å nor angle constraints violated by more than 5°.  

PROCHECK-NMR (146) analysis  revealed 98% of the backbone psi-phi angles in the 

most favored and additionally allowed region, and only 2% in the generously allowed 

region of the Ramachandran plot.  These measures indicate a high quality structure has 

been determined. 
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Table 4.1.  Structural statistics for p68N. 
 

p68N Structural Statistics 
Total restraints 1109 
     NOE restraints 987 
          Short range 533 
          Medium range 233 
          Long range 221 
     Dihedral angle restraints 122 
  
Restraint violations (mean ± s.d.)  
     Distance restraints ≥0.2 Å 0 
     Dihedral angle restraint violations ≥5º 0 
     Maximum distance restraint violation 0.13 ± 0.02 
     Maximum dihedral restraint violation 3.6 ± 0.7 
  
AMBER energies (kcal/mol)  
     Restraint energy 3.4 ± 0.4 
     Total energy -1314 ± 23 
  
Ramachandran statistics (%)  
     Most favored 88 
     Additionally allowed 10 
     Generously allowed 2 
     Disallowed 0 
  
RMSD from mean structure (Å)1  
     Backbone atoms 0.53 
     Heavy atoms 1.02 
     Backbone atoms in helices 0.41 
     Heavy atoms in helices 0.90 
1Residues used for RMSD calculations include Ala3-Leu74. 

 
 

The RMSD from the mean structure for residues Ala3-Leu74 is 0.53 Å for the 

backbone atoms and 1.02 Å for all heavy atoms.  The corresponding values for the 

residues in the four helices (Ala5-Phe15, Glu21-Tyr34, Glu38-Thr52, and Ser59-Glu68) 

are 0.41 Å and 0.91 Å, respectively.  These RMSDs indicate that the structure is 

reasonably well converged.  Figure 4.7 contains a plot of the RMSD from the mean 

structure per residue which shows the expected trend of lower RMSD in the helical 

regions, which reflects the distribution of restraints (Figure 4.4.A).  Additionally, residues 
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that form the hydrophobic core of the protein are less variable (4.8.A), while surface 

exposed residues have a greater spatial variability (4.8.B). 

  

 
 
Figure 4.7.  RMSD per residue.  The backbone and heavy atom RMSD is plotted for 
each residue in p68N.  Below the chart, the average secondary structure content is shown 
in yellow, with solvent accessibility shaded in blue (white is surface exposed, and the 
darkest shades of blue represent the most buried side chains, generated using 
PROCHECK-NMR (146)).  As expected, the buried helical residues are regions of the 
protein with a low RMSD. 
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Figure 4.8.  Resolution of side chains in the structure of p68N.  (A)  Side chains 
contributing to the hydrophobic core are well ordered with a low RMSD (0.93 Å).  The 
view on the left displays p68N in the same orientation as in Figure 4.6.  (B)  Surface 
exposed side chains are more variable, with an RMSD of 1.36 Å. 
 
 
 
 p68N is a small, and highly compact/near spherical globular domain with specific 

hydrophobic patches (Figure 4.9.A).  The surface properties of p68N were examined to 

discern if there were any remarkable features.  One feature is the potential Tag-binding 

site described in Chapter III, which is primarily hydrophobic surrounded by negative 

patches (Figure 3.11).  p68N contains 13 Glu and Asp residues resulting in a pI of 4.6.  

These negatively charged residues are distributed evenly across the surface in the protein 

(Figure 4.9.B).  This suggests that p68N would be unlikely to interact with negatively 

A 

B 
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charged molecules, such as DNA.  On the other hand, the high negative charge may 

enable p68N to interact with DNA binding domains, in the manner of the p53-RPA70N 

interaction and others, which have been termed DNA mimic domains (50). 

 
 

        

        
Figure 4.9.  Surface characteristics of p68N.  (A)  Hydrophobic residues colored in 
yellow to highlight the hydrophobic surface.  The orientation on the left is the same as 
shown in Figure 4.6.A.  (B) Electrostatic potential with negative charge colored in red 
and positive charge colored in blue.   
 
 
 

p68N lacks sequence similarity with other proteins.  However, now that the 

structure has been determined, structure-based alignments can be used to identify other 

proteins that adopt a similar fold.  Given the relatively simple fold of p68N, it is not 

surprising that a DALI server (147) query using the p68N structure revealed many similar 

B 
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proteins.  Interestingly, many of these proteins, including the closest match, RuvB, are 

ATP-binding proteins.  In the case of RuvB, the p68N structure aligns with domain II, 

which contains the AAA+ sensor 2 motif (148).    In addition to missing the key arginine 

in the sensor 2 motif, the p68N surface is negatively charged, and would likely repel ATP 

molecules.  While p68 is not predicted to be an ATPase, it does interact with the AAA+ 

protein, Tag, and it is intriguing that it adopts a fold that is found in some of these 

proteins. 

In conclusion, p68N is a compact domain that adopts a typical four-helix bundle 

architecture.  There are distinguishing features on the surface of the protein, such as a 

diffuse negative charge, which suggest a function in binding but not catalysis.  All 

evidence points to p68N being a protein-protein interaction domain of pol-prim. 

 

Experimental Procedures 

 

p68N Expression and Purification 

p68N was expressed and purified as described in Chapter III.  Briefly, p68N was 

overexpressed in BL21 DE3 cells, and then purified using Ni-NTA chromatography 

followed by gel filtration.  Cells were grown in minimal media enriched with 15NH4Cl 

and/or 13C-glucose as required.  Growth in 1L of media typically produced a 500 µL 

NMR sample of ~750 µM. 
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NMR Spectroscopy 

 NMR spectra were recorded on Bruker Avance 500 MHz, 600 MHz, and 800 

MHz spectrometers equipped with cryoprobes.  Spectra were recorded at 25 °C.  p68N 

NMR buffer contained 20 mM sodium phosphate (pH 6.5), 50 mM NaCl, 5% D2O, and 

was supplemented with 0.02% NaN3 for experiments lasting more than one week.  Data 

were processed using NMRPipe (133) and analyzed using Sparky (140). 

HSQC 

 15N-1H HSQC was obtained using 1024 points in the direct dimension and 128 

points in the indirect dimension.  Typically eight scans were collected, which results in an 

experiment time of ~23 minutes.  The proton sweep width was set at 12 ppm.  The 

nitrogen sweep width was set at 23 ppm using a carrier frequency of 116 ppm.  The data 

were processed with a sine-squared bell window function followed by zero filling prior to 

the Fourier transformation in both dimensions. 

Backbone Resonance Assignment Experiments 

 The following experiments were collected at 600 MHz to complete backbone 

resonance assignments: HNCACB, CBCA(CO)NH, HNCA, HN(CO)CA, and HNCO.  

The experimental parameters are listed in Table 4.2.  The data were processed similar to 

the HSQC experiment, with a sine-squared bell window function followed by zero filling 

prior to the Fourier transformation in all three dimensions.  The F3 (1H) dimension was 

processed first, followed by F2 (15N) and then F1 (13C). 
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Table 4.2.  Backbone resonance assignment experimental parameters.   
 

Data Points Sweep Width Experiment 
F3 F2 F1 F3 F2 F1 

Time 

HNCACB 1k 48 128 11.97 (H) 23 (N) 62 (C) 4d 1h 
CBCA(CO)NH 1k 48 128 11.97 (H) 23 (N) 62 (C) 1d 9h 
HNCA 1k 48 128 11.97 (H) 23 (N) 30 (C) 1d 8h 
HN(CO)CA 1k 48 128 11.97 (H) 23 (N) 30 (C) 1d 9h 
HNCO 1k 48 128 11.97 (H) 23 (N) 11.2 (C) 1d 8h 

 
 

Side Chain Resonance Assignment Experiments 

 The following experiments were collected at 600 MHz to complete side chain 

resonance assignments: H(CC)(CO)NH-TOCSY, (H)CC(CO)NH-TOCSY, and 

HBHA(CO)NH.  The experimental parameters are listed in Table 4.3.  The data were 

processed using the same procedure as the backbone resonance assignment experiments. 

 

Table 4.3.  Side chain resonance assignment experimental parameters. 
 

Data Points Sweep Width Experiment 
F3 F2 F1 F3 F2 F1 

Time 

H(CC)(CO)NH-TOCSY 1k 48 160 11.97 (H) 28 (N) 10 (H) 3d 12h 
(H)CC(CO)NH-TOCSY 1k 48 160 11.97 (H) 28 (N) 75 (C) 2d 19h 
HBHA(CO)NH 1k 48 160 11.97 (H) 23 (N) 8 (H) 1d 18h 

 
 

NOESY Spectra 

 The following NOESY experiments were collected: 2D 1H NOESY (800 MHz), 

3D 15N-edited NOESY (600 MHz), 3D 13C-edited NOESY (600 MHz), and a 4D 13C, 

13C-edited NOESY (500 MHz) with the experimental parameters listed in Table 4.4.  The 

2D and 3D NOESY experiments were processed as described for the resonance 

assignment experiments.  The 4D NOESY experiment additionally included linear 

prediction in both 13C dimensions. 
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Table 4.4.  NOESY experimental parameters. 
 

Data Points Sweep Width Experiment 
F4 F3 F2 F1 F4 F3 F2 F1 

Time 

1H NOESY   2k 1k   12.01 (H) 12.01 (H) 20h 
15N HSQC-NOESY  1k 48 192  11.97 (H) 28 (N) 11.97 (H) 3d 2h 
13C HSQC-NOESY  1k 48 192  11.97 (H) 75 (C) 11.97 (H) 3d 20h 
13C, 13C-edited NOESY 1k 40 128 40 12.01 (H) 70 (C) 12.01 (H) 70 (C) ~6 d 

 
 

Resonance Assignments 

 Backbone resonances were manually assigned using the previously mentioned 

triple resonance experiments.  Briefly, for the HNCACB and CBCA(CO)NH spectra, 

strip plots were created in SPARKY (140), as shown in Figure 4.1.  This was possible 

due to the extremely high quality of the 3D triple resonance data for this small protein.  

Since the HNCACB spectrum contains Cα and Cβ peaks for both the intra-residue and 

sequential residues for each NH strip, connectivity chains can be constructed to connect 

the resonances of residues that are adjacent in the sequence.  These chains, combined 

with the characteristic chemical shifts of some residues (Thr and Ser Cβ resonances are 

far downfield, for example) allow for the sequence-specific assignments.  

Side chain resonances were primarily assigned using the 3D TOCSY experiments.  

These experiments utilize a spin-lock to excite all 13C nuclei within a side chain, then 

relaying this information to the NH of the sequential residue.  Thus the side chain 

resonances can be quickly assigned to corresponding using the backbone resonances in 

the corresponding N and HN strips.  For example, the (H)CC(CO)NH-TOCSY spectrum 

contains all peaks seen in the CBCA(CO)NH spectrum plus additional peaks 

corresponding to additional side chain carbon resonances (Figure 4.10) 
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Figure 4.10.  Strip plots of Ala47 from the 600 MHz 3D CBCA(CO)NH and 
(H)CC(CO)NH-TOCSY spectra.  The CBCA(CO)NH spectrum is on the left, and the 
(H)CC(CO)NH-TOCSY spectrum is on the right.  Cα and Cβ peaks for Ile46 are in both 
spectra, but the (H)CC(CO)NH-TOCSY experiment also contains Ile46 Cγ1, Cγ2, and Cδ 
peaks. 
 
 
 

Aromatic side chain resonances were assigned using COSY and homonuclear 1H 

NOESY experiments, because the TOCSY experiments do not excite magnetization in 

the far downfield aromatic region.  Aromatic protons are shifted downfield from the 

aliphatic protons, so they can be identified in 2D spectra on the basis of their unique 

chemical shifts and coupling patterns.  NOEs from aromatic protons to the Hβ resonances 

enable the connectivity to the other resonances with the given amino acid. 

Determination of the Structure 

Cα 

Cβ 

Cγ1 

Cγ2 

Cδ 
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Dihedral Angle Restraints 

 The goal of restraining dihedral angles is to assist in limiting the search of 

conformational space in the structure calculations.  TALOS (141) is a program that 

predicts backbone dihedral angle values by comparing NMR chemical shift data to a 

database of published chemical shifts and structures.  Backbone and Cβ chemical shift 

values were input into the program TALOS to generate backbone φ and ψ dihedral angle 

restraints (Table 4.5).  The restraints generated by TALOS were doubled in size prior to 

structure calculation to be conservative in restraining these angles and therefore not 

unduly biasing the structures. 
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Table 4.5.  Output from TALOS calculations providing target values and standard 
deviations for the backbone φ and ψ dihedral angles. 
 

Res. Phi (º) ∆phi (±º) Psi (º) ∆psi (±º) 
Ala3 -71.52 9.93 -30.29 21.79 
Ala5 -60.93 5.15 -36.99 5.25 
Gln6 -64.62 5.38 -40.94 5.77 
Gln7 -63.68 5.41 -41.27 5.71 
Leu8 -62.05 4.44 -42.07 5.32 
Ala9 -63.37 5.8 -39.17 6.16 
Glu10 -63.25 7.13 -44.92 7.6 
Glu11 -65.51 6.6 -41.29 6.97 
Leu12 -61.49 6.92 -41.86 6.58 
Gln13 -66.29 6.28 -40.52 6.45 
Ile14 -70.92 12.19 -38.86 8.9 
Phe15 -92.63 15.79 4.27 14.89 
Gly16 82.73 13.04 17.83 12.56 
Leu17 -96.71 19.31 138.56 30.18 
Glu20 -88.24 27.98 149.46 21.87 
Glu21 -58.34 4.4 -39.35 12.45 
Ala22 -60.92 3.93 -37.87 5.93 
Leu23 -66.31 5.59 -42.61 5.59 
Ile24 -63.52 7.92 -41.63 7.08 
Glu25 -60.39 3.29 -41.97 7.03 
Lys26 -64.91 3.39 -41.4 6.48 
Leu27 -65.78 6.13 -41.2 5.07 
Val28 -64.33 4.7 -42.77 5.06 
Glu29 -61.86 4.9 -39.34 6.77 
Leu30 -62.6 6.06 -39.04 4.86 
Cys31 -63.4 8.04 -40.57 6.26 
Val32 -66.6 3.99 -41.33 2.29 
Gln33 -66.04 10.84 -37.48 6.37 
Tyr34 -88.63 16.34 0.51 9.21 
Gln36 -118.08 23.52 149.63 10.31 
Asn37 -83.39 16.26 157.74 19.58 
Glu38 -58.95 6.39 -36.17 6.18 
Glu39 -62.44 3.53 -37.03 12.52 
Gly40 -67.26 8.55 -38.2 6.71 
Met41 -66.87 5.46 -40.28 6.67 
Val42 -63.57 4.39 -44.39 4.44 
Gly43 -64.83 4.17 -39.63 6.34 
Glu44 -63.88 3.47 -41.01 8.47 
Leu45 -59.51 6.16 -46.77 5.06 
Ile46 -63.04 3.01 -41.62 3.92 
Ala47 -62.29 6.28 -41.66 4.14 
Phe48 -70.25 6.87 -40.3 8.41 
Cyc49 -60.86 4.89 -44.29 7.58 
Thr50 -64.13 5.25 -41.79 5.9 
Ser51 -67.93 12.68 -34.46 9.75 
Thr52 -103.18 13.26 3.3 8.53 
Leu57 -103.4 27.9 144.04 15.48 
Thr58 -102.94 24.1 162.68 11.63 
Ser59 -62.55 8.1 -32.57 8.77 
Glu60 -65.7 4.98 -39.43 6.06 
Ile61 -64.32 3.05 -41.37 5.31 
Leu62 -64.4 3.3 -41.04 8.02 
Asn63 -65.95 6.82 -37.82 3.09 
Ser64 -63.64 2.86 -39.62 9.09 
Phe65 -60.53 9.15 -44.77 6.73 
Glu66 -58.64 7.72 -40.98 13.48 
His67 -67.85 8.55 -31.2 11.26 
Glu68 -82.45 11.78 -29.77 17.3 
Leu70 -59.31 5.21 -40.57 6.62 
Ser71 -61.45 5.81 -30.72 12.24 
Lys72 -78.7 14.55 -24.5 13.18 
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CYANA Calculations 

 Distance restraints were generated by CYANA (142) using peak lists from the 2D 

1H NOESY, 3D 15N-edited NOESY, and 3D 13C-edited NOESY experiments.  The 4D 

13C, 13C-edited NOESY was used to validate CYANA assignments and to check for any 

overlapped peaks in the 3D 13C-edited NOESY.  Each CYANA run was set to generate 

100 structures, and the 50 best were selected based on CYANA target energy.  The 

chemical shift tolerances were set 0.02 ppm for 1H resonances and 0.2 ppm for 15N and 

13C resonances. 

Restrained Molecular Dynamics Refinement 

 The 50 structures generated by CYANA were used as starting structures for 

restrained molecular dynamics (rMD) simulations in AMBER (145).  The structures first 

underwent a short energy minimization and then were subjected to simulated annealing.  

The AMBER files used for both these processes are listed in Figures 4.11 and 4.12.  The 

energy minimization protocol is 5000 steps and incorporates the experimental restraints.  

The simulated annealing protocol heats the system to 1000K, loosely incorporating the 

experimental restraints, and then gradually increasing the restraints until they are fully 

enforced at 5 ps.  The system is then slowly cooled to the starting temperature for another 

15 ps, allowing the protein to sample to sample energetically favorable conformations.  

The structure present at the final step of the calculation is then contributed to the 

ensemble and the process repeated with a new starting structure. 
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energy minimization for starting structures 
 
 &cntrl 
 
maxcyc=5000, ncyc=50, pencut=0.1, nmropt=1, imin=1, 
temp0=0.5, tautp=0.02, ntpr=50, ntt=1, 
nsnb=50, ntb=0, cut=10.0, scee=2.0, 
 
 / 
 &ewald 
 eedmeth=5, 
 / 
 
 &wt type='END'    / 
 
LISTOUT=POUT 
DISANG=RST 

 
Figure 4.11.  AMBER file for performing energy minimization.  This protocol was used 
to regularize p68N starting structures in the AMBER force-field prior to simulated 
annealing. 
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20 ps vacuum simulated annealing for initial NMR structure refinement 
 
 &cntrl 
    imin=0, nstlim=20000 
    irest=0, ntx=1, 
    ntb=0, cut=10.0, 
    ntt=1, tautp=0.2, 
    igb=0, saltcon=0.0, gbsa=0, 
    ntr=0, nmropt=1,  
    ig=23491765, vlimit=12, scee=2.0, 
    ntwe=100, ntwx=100, ntpr=100,  
 / 
 &ewald 
    eedmeth=5, 
 / 
# 
#Simple simulated annealing algorithm: 
# 
#from steps 0 to 1000: heat the system to 1000K with a slower 
#  temperature coupling paramter: 
#from steps 1001 to 3100: equilibration with increasing constraints 
#from steps 3101 to 5000: equilibration with full constraints 
#from steps 5001 to 19000: re-cool to low temperatures 
#from steps 19001 to 20000: final cooling with short tautp 
# 
 &wt type='TEMP0',istep1=0,istep2=1000,value1=0.0, 
     value2=1000.0,  / 
 &wt type='TEMP0',istep1=1001,istep2=5000,value1=1000.0, 
     value2=1000.0,  / 
 &wt type='TEMP0',istep1=5001,istep2=17000,value1=1000.0, 
     value2=200.0,  / 
 &wt type='TEMP0',istep1=17001,istep2=20000,value1=0.0, 
     value2=0.0,  / 
 &wt type='TAUTP',istep1=0,istep2=1000,value1=0.4, 
     value2=0.4,  / 
 &wt type='TAUTP',istep1=1001,istep2=5000,value1=0.2, 
     value2=0.2,  / 
 &wt type='TAUTP',istep1=5001,istep2=13100,value1=2.0, 
     value2=2.0,  / 
 &wt type='TAUTP',istep1=13101,istep2=16000,value1=1.0, 
     value2=1.0,  / 
 &wt type='TAUTP',istep1=16001,istep2=19000,value1=0.5, 
     value2=0.5,  / 
 &wt type='TAUTP',istep1=19001,istep2=20000,value1=0.05, 
     value2=0.05,  / 
 
 &wt type='REST',istep1=0,istep2=3100,value1=0.1, 
     value2=1.0,  / 
 &wt type='REST',istep1=3101,istep2=20000,value1=1.0, 
     value2=1.0,  / 
 
 &wt type='END'  / 
LISTOUT=POUT 
DISANG=RST 

 
Figure 4.12.  AMBER file for performing simulated annealing refinement.  This protocol 
was used to refine the energy minimized p68N starting structures. 
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Structure Analysis 

 PROCHECK-NMR (146) was used to generate structural statistics for the 

ensemble, including secondary structure assignments and phi, psi, and chi dihedral angle 

distributions.  p68N PDB coordinates were submitted to the DALI server (147) to 

identify proteins with similar structures.  Final coordinates, restraints, and NMR chemical 

shifts will be deposited in the PDB and BMRB databases, respectively. 
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CHAPTER V 

 

DISCUSSION AND FUTURE DIRECTIONS 
 

 
An Iron-sulfur Cluster in DNA Primase 

 Human DNA primase was found to contain an essential iron-sulfur cluster in the 

C-terminal domain of the p58 subunit.  Limited proteolysis, CD, and NMR experiments 

identified p58C as a structured domain.  Purified p58C was golden-brown in color, which 

prompted the collection of a UV-Vis spectrum.  The spectrum was similar to those 

reported for proteins containing an iron-sulfur cluster.  ICP-MS confirmed the presence 

of iron, and EPR spectra were consistent with the presence of a HiPIP [4Fe-4S] cluster.  

Four conserved cysteine residues were identified which likely bind to the iron-sulfur 

cluster.  Mutating one of these, Cys367, to serine in the context of the primase dimer, 

prevents cluster binding.  Additionally, p48/Cys367Ser-p58 had dramatically reduced 

primase activity when compared to the WT, suggesting that the cluster is required for the 

p58 stimulation of p48 activity. 

 While primase is the first DNA replication protein found to contain an iron-sulfur 

cluster, there are examples of iron-sulfur proteins involved in other aspects of DNA 

processing.  DNA glycosylases, including Endo III (119) and MutY (120), are the best 

characterized examples.  More recently, iron-sulfur clusters have also been identified in 

the XPD (Rad3) and FancJ helicases (109).  In addition to being involved in DNA 

metabolism, these proteins share two important properties with DNA primase.  First, they 
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contain HiPIP [4Fe-4S] clusters.   Second, the clusters are essential for full enzymatic 

activity. 

 Iron-sulfur clusters are traditionally associated with electron transport and redox 

chemistry; however they are becoming recognized as much more versatile cofactors.  

Perhaps the most interesting example of this diversity is the activity of the iron regulatory 

protein (IRP) (Reviewed in (149)).  When iron content is high, IRP contains a [2Fe-2S] 

cluster.  However, when the cellular iron content drops, IRP loses its cluster.  This results 

in a conformational change and the protein interacts with iron-responsive elements 

(IREs) on specific mRNAs.  IRP binding to the transferrin receptor mRNA protects it 

from degradation, and binding to ferritin mRNA blocks translation.  This serves to 

promote import of iron into the cell and prevent ferritin from sequestering free iron, thus 

raising the intracellular iron concentration.  The iron-sulfur clusters in the DNA 

processing enzymes are not predicted to have this type of property, but this example 

illustrates that functions beyond electron transfer must be considered, especially in the 

case of HiPIP clusters. 

 Proteins containing [4Fe-4S] clusters can be classified into two types: ferredoxin-

like, and HiPIP-like.  [4Fe-4S] clusters in ferredoxin proteins exist in either the +2 or +1 

oxidation state with typical redox potentials ranging from -250 to -650 mV (150).  

Ferredoxin-like proteins are typically involved in electron transport.  HiPIPs on the other 

hand, exist in either the +2 or +3 oxidation state in vitro and have a much higher redox 

potential, +50 to +450 mV (150).  HiPIPs were first identified in photosynthetic bacteria, 

but the functions of these proteins, including whether they are redox active in vivo, are 

not clear.  [4Fe-4S] clusters in ferredoxins and HiPIPs are structured similarly, however 
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the ferredoxin clusters tend to be more surface exposed and in a less hydrophobic 

environment.  The [4Fe-4S] clusters in the DNA processing enzymes appear to be HiPIP-

like primarily based on defining characteristics in the EPR spectra described in Chapter 

II.  Additionally, only the oxidized [4Fe-4S] is EPR-active, suggesting that the cluster is 

in the +3 oxidation state. 

 Despite the findings that the [4Fe-4S] cluster is required for activity in these DNA 

processing enzymes, relatively little is known about their direct role in binding and/or 

catalysis.  The clusters in MutY and Endo III are remote from the active site, but they are 

important for orienting key residues involved in substrate recognition (122, 123, 125).  

XPD and FancJ require the iron-sulfur cluster for helicase activity but not for ssDNA-

dependent ATPase activity (109).  Interestingly, recent studies of the archaeal XPD 

protein also point to a substrate recognition role, as the presence of the iron-sulfur cluster 

targeted the helicase to ssDNA-dsDNA junctions (151), and these findings were 

supported by recent XPD crystal structures (152, 153).  Mutating any of the four cysteine 

ligands in p58C resulted in substantially reduced solubility of the protein (Figure 2.7).  

This also suggests a structural role for the [4Fe-4S] in DNA primase.  However, since 

HiPIP clusters are typically buried, it is not surprising that they would significantly 

impact the overall fold of the protein.  This was directly observed in the case of the 

archaeal XPD protein using CD measurements (151). 

 While the bulk of the available data point to a structural role for the [4Fe-4S]  

 clusters in the DNA processing enzymes, the use of this specific cofactor is intriguing.  

Iron-sulfur clusters are actively assembled via several proteins in a multi-step process 

(126).  This seems like an extensive utilization of cellular resources for a purpose that 
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could be achieved in a simpler manner.  Another role for the iron-sulfur clusters in the 

DNA glycosylases has been proposed.  HiPIP clusters have redox potentials that are 

outside the range of what is typically considered accessible for cellular redox activity.  

However, there is evidence that DNA-binding may shift the redox potential of the iron-

sulfur cluster, such that redox chemistry becomes possible (128), which be relevant for 

p58C, as it has been shown to interact with DNA (S. Vaithiyalingam & W. J. Chazin, 

unpublished results).  This property has led to a complex and controversial model of how 

DNA glycosylases locate sites of DNA damage.  In this model, one glycosylase can 

donate an electron to a nearby glycosylase via the dsDNA helix.  The cluster is reduced 

in the nearby glycosylase prompting the enzyme to dissociate and scan elsewhere.  A 

DNA lesion would not transmit the electron, leaving the other glycosylase associated 

with the dsDNA to promote repair.  Given the difficulty in studying the redox properties 

of HiPIP proteins, the possibility that the iron-sulfur cluster of DNA primase can be 

redox active cannot be ruled out. 

 We have shown that human DNA primase cannot initiate primer formation on 

M13 ssDNA without the presence of the iron-sulfur cluster (Figure 2.9).  Klinge, et al. 

reported similar findings for the yeast primase using a synthetic template (131).  

Interestingly, they also found that the cluster was not required for extension of a pre-

formed primer-template substrate.  This suggests that the cluster is involved in the initial 

dinucleotide formation, however this remains to be conclusively demonstrated.  p58C 

interacts with both p48 and DNA ((79, 81), S. Vaithiyalingam & W. J. Chazin, 

unpublished results).  Thus p58C may facilitate nucleotide binding or properly orient the 
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p48 active site on the template ssDNA.  This is in agreement with the ability of p58 to 

stimulate p48 activity (79). 

 A previous study identified a region of p58 with homology to a pol β domain 

(80).  Deletion of the homologous region, residues 288-313, results in reduced enzymatic 

activity coupled with the inability to create unit-length primers (i.e. counting).  

Interestingly, this deletion is directly adjacent to one of the conserved cysteine ligands, 

Cys287.  Thus it is possible that the authors are actually observing the consequences of 

the loss of the iron-sulfur cluster.  The potential role of the cluster in counting is 

intriguing given the previously discussed role of substrate recognition in the HiPIP 

glycosylases and helicases.  In the context of the pol-prim heterotetramer, the p58 subunit 

has also been proposed to mediate the transfer of the RNA primer to the p180 subunit 

(81).  p58C may only be able to interact with the 5’ end of the primer when it is 7-10 

nucleotides long (Figure 5.1).  This interaction could cause a conformational change to 

inhibit further primer extension and promote primer transfer.  Primer extension occurs on 

the 3’ end, which is the end that must be transferred to the p180 subunit.   
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Figure 5.1.  Proposed role of the iron-sulfur cluster in primase activity.  (A)  DNA 
primase bound to a ssDNA template.  p48 is represented in blue, p58 is represented in 
red, and the [4Fe-4S] cluster is represented as a yellow star.  (B)  The p48/p58 dimer 
initiates priming.  (C)  When the primer is unit-length, p58C contacts the primer-template 
substrate and undergoes a conformational change.  This conformational change 
propagates to the p48 subunit, inhibiting elongation which stalls pol-prim to promote 
primer handoff. 

 
 
 

If p58C is involved in dinucleotide formation as well as counting, it must “sense” 

both ends of the RNA primer.  One possibility is that the primer-template is wrapped 

around the p58C subunit, allowing for direct contacts with both the 5’ and 3’ ends.  

Another possibility is that it directly contacts one end, and has effects on the other end 

via an allosteric mechanism.  For example, once the RNA primer is unit length, it may 

interact with the p58C domain.  The 5’ end of the primer-template junction would be 

analogous to the ssDNA-dsDNA junction that is involved in binding the iron-sulfur 

domain in XPD.  This interaction could prompt a conformational change, negatively 

regulating the p48 subunit, causing the enzyme to stall (Figure 5.1).  This promotes 

transfer rather than extension, and the primer is transferred, perhaps via the p58N domain 

to the p180 subunit.  This proposed model is highly speculative, and several additional 
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experiments would be needed to validate the model, some of which will be discussed in a 

following section. 

 

High Resolution Structure of p58C 

 Currently there are no published high resolution structures of a eukaryotic 

primase.  Moreover, of the three archaeal primase structures, none contain the domain 

homologous to the eukaryotic p58C domain.  Given that p58C is required for primase 

activity, determination of the structure would be highly beneficial.  For example, the 

structure may help identify the role of the iron-sulfur cluster, in much the same way the 

structures of MutY (123) and Endo III (124) have led to the proposal of a substrate 

recognition role for those proteins.  The strategy of either x-ray crystallography or NMR 

can be used to determine the structure.  Once available, one could then begin a series of 

biochemical and structural experiments to map out the DNA and RPA binding regions of 

the domain and, in turn, develop hypotheses for the mechanism of action of p58C. 

 NMR studies of iron-sulfur proteins are difficult.  The cluster is paramagnetic and 

broadens NMR signals from nearby nuclei in the protein.  Missing signals complicate the 

resonance assignment process, and also result in few NOEs to residues near the cluster.  

Nonetheless, solution structures have been determined for small iron-sulfur proteins 

(154).  Additionally, recent advances in 13C detection based experiments have facilitated 

resonance assignments of paramagnetic proteins (155).  The large size of p58C (~28 kDa) 

further complicates the possibility of NMR structure determination as signal overlap 

becomes more of a concern.  Given these drawbacks, x-ray crystallography would be the 

preferred method of determining the structure. 
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 Attempts were made throughout the thesis period to crystallize p58C.  This 

construct was tested in several crystal screens, including an automated screen of more 

than 1500 conditions at the Hauptman-Woodward Institute.  For Hampton and Wizard 

screens, various protein concentrations were tried, with the maximum being ~ 30 mg/ml.  

Despite extensive efforts, none of the conditions produced protein crystals.  Careful 

analysis of the secondary structure prediction, as well as CD and NMR data suggest that 

the C-terminal region of the p58C construct may be unstructured.  Consequently, two C-

terminal truncations have been created, and one of these, p58(266-424) has been 

promising in initial crystal screens (S. Vaithiyalingam, W. J. Chazin, and B. F. Eichman, 

unpublished results).  Future work in the Chazin laboratory will focus on optimizing 

conditions to produce diffraction-quality crystals, determining the structure, and 

characterizing the structural basis for activity. 

 

p58C Interactions 

 Given that the iron-sulfur clusters in the DNA glycosylases and repair helicases 

have been implicated in DNA substrate recognition, it is possible that the cluster has a 

similar role in p58C.  WT primase, p48/C367S-p58 primase, and p58C could be tested 

for their ability to interact with various DNA substrates including ssDNA, dsDNA, 

forked DNA, 5’-overhang DNA, and 3’-overhang DNA.  The electromobility shift assay 

(EMSA) could be used for its simplicity.  For a more quantitative analysis, fluorescence 

anisotropy measurements should be recorded.  These data would help refine the model of 

the iron-sulfur cluster’s role in primase activity described above in Figure 5.1. 
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 DNA primase has been shown to interact with both Tag (86) and RPA (88-90), 

however the regions of primase involved in these interactions have not been determined.  

Since primase domain architecture is now better characterized, identifying the Tag and 

RPA binding domains is warranted.  Initial work in our laboratory using affinity 

chromatography has verified the p48/p58-RPA70NAB and p48/p58-RPA32C 

interactions.  Additionally, p58C has been shown to physically interact with RPA32C 

using ITC and NMR (S. Vaithiyalingam & W. J. Chazin, unpublished results).  Initial 

assays to identify other domain-domain contacts could include yeast two-hybrid, protease 

protection, and pulldown experiments. Once domain-domain interactions are identified, 

they would be studied biophysically as described for the p68N-Tag HD interaction in 

Chapter III.   

 

The Iron-sulfur Complex in the Context of Pol-prim 

 We have shown that the iron-sulfur cluster in p58C is required for human primase 

activity.  This has been confirmed in a complementary study in yeast (131).  These 

authors also showed that the cluster is dispensable for primer extension.  The authors 

used a synthetic poly(dT) template, while our studies utilized M13 ssDNA.  When an 

(A)15 primer was annealed to the template, primase activity was restored.  This 

experiment should be repeated using additional templates and primers to further confirm 

this finding.  The primer length should also be varied to include a preformed dinucleotide 

as well as a unit-length primer.  The initial dinucleotide formation is the rate limiting step 

in primase activity (71).  Perhaps in the absence of the iron-sulfur cluster, the template-



 109

primase interaction is not sufficiently stable to allow for dinucleotide formation, but since 

polymerization is rapid, it is not affected.   

These studies were conducted on mutants in the context of the primase dimer.  To 

obtain a more complete understanding of the role of the cluster, the effects of removing 

the cluster in the pol-prim heterotetramer can be studied.  Since p58 has been implicated 

in the transfer of the RNA primer to the p180 active site, it would be interesting to study 

the role of the iron-sulfur cluster in this context (81).   

 

An Interaction between p68N and Tag HD 

 The N-terminal region of the p68 subunit of pol-prim was shown by a yeast two-

hybrid experiment in the Fanning laboratory to interact with the helicase domain of SV40 

Tag.  Biochemical studies showed that the first 78 residues of the 107 residue p68N 

construct was responsible for this activity.  The solution structure of this domain was 

determined using NMR techniques.  p68N is a compact, globular domain containing four 

helices, and NMR experiments identified a potential binding site for Tag on p68N that is 

primarily hydrophobic.  

 The solution structure of p68N represents the first high-resolution structure of a 

pol-prim domain.  Secondary structure prediction suggests that the p68N domain may be 

flexibly linked to the rest of the p68 subunit, although this has not been confirmed 

experimentally.  Given the ability of p68N to interact with Tag, it may function in a 

manner similar to the RPA70N and RPA32C domains.  These two domains are protein 

interaction domains that are flexibly linked to the ssDNA-binding core of the protein.  

The linkers allow the protein-protein interaction domains the required freedom to explore 
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for potential binding partners while other domains of the protein are interacting with 

DNA.  The C-terminus of p68 is responsible for its interaction with p180, and p68 does 

not directly associate with either p58 or p48.  Thus p68N may also be remote from the 

polymerase active sites, available to interact with Tag or other undetermined proteins. 

As discussed in Chapter I, protein-protein interactions allow the four discrete 

proteins of SV40 DNA replication initiation to assemble into a molecular machine.  

Protein-protein interactions in DNA processing machinery are often composed of 

multiple domain-domain contacts (82).   These domain-domain interactions have specific 

roles in the context of the SV40 replisome.  The role of the p68N-Tag interaction remains 

to be determined, and experiments are currently underway to study the interaction 

functionally.  However, given the current data, it is possible to speculate on the role of 

the interaction of p68N with the helicase domain (HD) of Tag in the context of SV40 

DNA replication.  

 Based on fluorescence measurements, the stoichiometry of pol-prim binding to 

Tag has been calculated to be one molecule of pol-prim per six molecules of Tag (156).  

Thus in the context of the Tag double hexamer assembling at the origin of replication, 

two pol-prim molecules would be bound, presumably one for each fork.  This is 

interesting given our observation that p68N can interact with the monomeric mutant of 

Tag HD.  It is possible that in the context of the assembled Tag hexamer, only one 

molecule of pol-prim may bind due to steric occlusion (Figure 5.2).  H. Huang in the 

Fanning laboratory has also collected preliminary evidence suggesting that the region of 

Tag responsible for binding p68N is on the back surface of the helicase domain, i.e. the 

region away from the center of the double hexamer.  Topo I has also recently been shown 
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to interact with the back surface of the helicase domain (84), and it also binds with a 

stoichiometry of one molecule per Tag hexamer (157).  Whether both proteins can bind 

simultaneously has not been studied, and it would be interesting to determine if this is the 

case or if a hand-off mechanism is utilized. 

 

 
 
Figure 5.2.  Schematic view of the p68N-Tag interaction.  Although the p68N:Tag HD 
stoichiometry is 1:1, in the context of hexameric Tag (red), only one pol-prim tetramer 
(blue) may bind due to the large size of pol-prim. 
 
 
 
 In addition to interacting with the p68 subunit, Tag also interacts with p180 (85) 

and the p58/p48 dimer (86).  The p180 interaction is thought to be important for the 

ability of Tag to stimulate pol-prim’s activity.  This is supported by the observation that 

Tag can stimulate pol-prim activity of a recombinantly expressed trimer pol-prim lacking 

the p68 subunit (63).  Additionally, a peptide designed to inhibit the Tag-p180 interaction 

eliminates the stimulatory effect of Tag on pol-prim (158).  The interaction with p58/p48 

dimer has not been well characterized.  In addition to demonstrating that p68N interacts 

with Tag, the Fanning laboratory has shown that deleting this domain in the context of 

the SV40 replisome does not allow for the initiation of DNA replication.  Although 

confirmatory experiments are currently underway, this defect is almost surely due to 

abolishment of the p68-Tag interaction.  We can therefore expand upon the model for the 
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initiation of SV40 DNA replication as diagramed in Figure 1.6.  The pol-prim loading 

step from Figure 1.6.E to 1.6.F is modified to incorporate this proposal in Figure 5.3. 

 

 
 
Figure 5.3.  Tag-mediated loading of pol-prim onto ssDNA.  (A) RPA (yellow) coated 
ssDNA.  (B) Tag (red) interacts with RPA32C via the OBD and with p68N via the HD.  
pol-prim is shown in blue.  (C)  The RPA32C-Tag OBD interaction facilitates RPA 
displacement.  (D) Pol-prim can then be loaded onto the newly freed ssDNA to initiate 
primer synthesis.  Figure adapted from (55). 
 
 
 
 The p68-Tag interaction may be required for simply tethering pol-prim to the 

replication fork.  By localizing pol-prim to the replication fork, primer formation is 

indirectly promoted.  Another possibility is that Tag may actively load pol-prim onto the 

template DNA, similar to its ability to load RPA onto emerging ssDNA via the Tag 

ODB-RPA70AB interaction (53).  It is well established that RPA inhibits pol-prim 

activity on a ssDNA template and that Tag is able to relieve this inhibition (55).  

Additionally, this property is dependent on the Tag OBD-RPA32C interaction as well as 

the presence of the p68 subunit of pol-prim (55, 63).  It is possible that Tag promotes 
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RPA displacement from ssDNA via the origin binding domain while simultaneously 

loading pol-prim via the helicase domain. 

  

Role of the p68N-Tag HD Interaction 

 The identification of the Tag-binding interface in Chapter III sets the stage for 

future functional studies.  The binding interface will be confirmed via site-directed 

mutagenesis.  Mutation of key residues at the binding interface should eliminate or 

reduce Tag binding.  The p68N mutants will initially be screened using a yeast two-

hybrid assay.  Those defective in binding Tag will be assayed for structural integrity by 

NMR, and then ITC will be used to confirm the binding defect.  These mutations will 

then be incorporated into the pol-prim heterotetramer.  The mutant pol-prim(s) can then 

be assessed for functional defects in the monopolymerase assay and for Tag-mediated 

stimulation on an RPA-coated ssDNA template.  We hypothesize that the pol-prim point 

mutants will show the same phenotype as the p68∆N pol-prim in these assays, which 

would confirm our hypothesis that the interaction is essential. 

 

Role of p68N in Eukaryotic DNA Replication 

 p68N is required for SV40 DNA replication initiation (59), but its role in 

eukaryotic DNA replication has not been studied.  p68 has been previously shown to 

interact with ORC and Cdc45, so it would be interesting to determine if either of these 

interactions are mediated through p68N.  Other potential binding partners include 

Mcm10, GINS, or other proteins in the initiation complex.  Yeast two-hybrid assays 

could be used as an initial screen with positive hits confirmed by pulldown experiments.  
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Similar studies as are currently underway for the Tag HD could then be utilized to map 

the binding interface and create binding-deficient mutants.  These mutant pol-prim 

constructs could be studied in vivo, perhaps using a yeast system.  This would allow for a 

direct observation of the role of p68N interactions in cellular DNA replication. 
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APPENDIX A 

 

TABLE OF POL-PRIM CONSTRUCTS 

 

Table A.1.  Pol-prim construct design.  For the p58C point mutations, reverse 
complements to the oligonucleotides listed were also used. 
 
Construct Vector Enzymes Oligonucleotides 
p48 pBG100 BamHI 

EcoRI 
5’-TATTATGGATCCATGGAGACGTTTGACCCCACC-3’ 
5’-ATAATAGAATTCCTATCAGAAATCTTTTTGTAA-3’ 

   1-361 pBG100 BamHI 
EcoRI 

5’-TATTATGGATCCATGGAGACGTTTGACCCCACC-3’ 
5’-ATAATAGAATTCCTATCAGGAAATGGCATCCAATTC-3’ 

   1-366 pBG100 BamHI 
EcoRI 

5’-TATTATGGATCCATGGAGACGTTTGACCCCACC-3’ 
5’-ATAATAGAATTCCTATCATTCCTCTTCATTAGTGGA-3’ 

    

p58 pET15b EcoRI 
XhoI 

5’-TATTATGAATTCATGGAGTTTTCTGGAAGAAAG-3’ 
5’-TATTATCTCGAGTCACTAAGAATCTTCACTAAA-3’ 

   266-509 pET15b NdeI 
XhoI 

5’-TATCATATGGGAAATGTTGGGAAGATTTCT-3’ 
5’-ATACTCGAGCTAAGAATCTTCACTAAAGTA-3’ 

      C287A pET15b  5’-AAATCCTTCCCACCTGCAATGCGTCAGTTACAT-3’ 

      C287S pET15b  5’-AAATCCTTCCCACCTTCAATGCGTCAGTTACAT-3’ 

      C367A pET15b  5’-TATACACCTTTCAGTGCACTGAAGATTATTCTG-3’ 

      C367S pET15b  5’-TATACACCTTTCAGTTCACTGAAGATTATTCTG-3’ 

      C384A pET15b  5’-GGGGATTATCATGGGGCACCATTCCGTCACAGT-3’ 

      C384S pET15b  5’-GGGGATTATCATGGGTCACCATTCCGTCACAGT-3’ 

      C424A pET15b  5’-CATTACCAGGTAGCCGCACAAAAATACTTTGAG-3’ 

      C424S pET15b  5’-CATTACCAGGTAGCCTCACAAAAATACTTTGAG-3’ 

    

p68    

   1-107 pBG100 BamHI 
XhoI 

5’-TATTATGGATCCATGTCCGCATCCGCCCAG-3’ 
5’-GAATTCCTACTATTCCTCTTCTTCTTC-5’ 

   1-87 pBG100 BamHI 
XhoI 

5’- TATTATGGATCCATGTCCGCATCCGCCCAG -3’ 
5’-TATTATGAATTCCTATCAATGGCCACTGTCCTTGCA-3’ 

   1-78 pBG100 BamHI 
XhoI 

5’- TATTATGGATCCATGTCCGCATCCGCCCAG -3’ 
5’-TATTATGAATTCCTATCACCTGGCTTTCGATAATCT-3’ 
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APPENDIX B 
 
 
 

TABLE OF p68N CHEMICAL SHIFT ASSIGNMENTS 
 
 
 
Table B.1.  p68N backbone chemical shifts. 
 

Residue CA CB H N 
M1 55.68 33.3 8.364 122 
S2 58.74 64.19 8.338 117.1 
A3 53.32 19.69 8.219 124.7 
S4 58.68 64.27 8.886 114.8 
A5 55.31 18.43 8.565 126.5 
Q6 59.29 28.71 8.255 117.5 
Q7 58.79 28.76 7.855 119.3 
L8 59.1 42.44 8.346 120.6 
A9 55.68 18.08 8.324 120.1 
E10 59.37 29.44 7.9 118.2 
E11 58.79 29.2 8.139 119.4 
L12 58.39 41.37 8.438 118.4 
Q13 58.88 28.36 7.904 118.2 
I14 64.65 37.4 7.722 121.8 
F15 58.91 39.74 7.284 116.9 
G16 46.17  7.932 108.1 
L17 53.82 43.51 7.706 121.3 
D18 53.72 41.95 8.17 122.3 
C19 57.9 30.12 8.314 119.2 
E20 56.59 30.08 8.427 123 
E21 60.43 30.04 9.017 124.5 
A22 55.18 18.45 8.89 119.5 
L23 56.86 41.6 7.389 116.7 
I24 64.67 36.4 7.509 120.5 
E25 59.73 29.13 8.144 117.6 
K26 58.02 30.84 7.336 119.5 
L27 58.33 42.75 8.018 120.5 
V28 67.56 31.57 8.478 121.3 
E29 59.67 29.41 7.613 118.9 
L30 58.16 42.09 8.497 119.5 
C31 65.34 26.98 8.469 119.2 
V32 66.1 32.18 7.741 118.3 
Q33 59.03 29.02 8.605 119.7 
Y34 59.14 37.65 8.203 112.3 
G35 47.74  7.714 112.2 
Q36 53.63 33.33 8.385 118.1 
N37 51.55 39.13 8.419 119 
E38 62.19 28.58 10.2 120.4 
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Table B.1 continued. 
 

Residue CA CB H N 
E39 59.68 29.52 8.743 118.6 
G40 46.54  8.433 109.3 
M41 57.29 32.08 8.677 121.9 
V42 67.46 30.89 8.197 118.3 
G43 47.49  8.035 106.6 
E44 59.01 29.02 8.001 122 
L45 57.8 41.72 8.319 123.3 
I46 63.72 36.21 8.659 120.5 
A47 55.59 17.64 7.801 125.1 
F48 61.13 39.28 8.319 121 
C49 64.6 26.54 8.897 120.5 
T50 65.87 68.88 8.476 114.3 
S51 61.27 63.33 7.969 116.9 
T52 61.42 68.93 7.28 108.5 
H53 56.4 26.34 7.324 117 
K54 54.68 33.58 8.349 118.8 
V55 61.7 33 8.333 120.8 
G56 44.63  8.059 112.2 
L57 55.58 43.78 8.305 118.6 
T58 59 73.55 6.607 112.2 
S59 62.39  9.533 117.8 
E60 60.18 29.33 8.529 121.9 
I61 65.06 38.75 7.811 121.6 
L62 58.14 41.51 8.136 119.7 
N63 56.89 38.55 8.353 119.5 
S64 62.79  8.239 117.4 
F65 59.21 39.1 8.747 122.9 
E66 59.57 29.02 8.272 119.9 
H67 59.41 30.05 8.133 115.3 
E68 56.72 30.3 9.039 115.2 
F69 60.22 41.7 7.334 118 
L70 58.42 40.45 7.995 120.4 
S71 60.55 62.91 7.933 109.9 
K72 56.65 32.78 6.748 118.7 
R73 56.95 30.95 7.449 118.3 
L74 54.71 42.8 7.819 120.2 
S75 58.68 63.83 8.099 115.6 
K76 56.52 33.07 8.254 123.2 
A77 52.56 19.24 8.268 125.8 
R78 57.37 31.52 7.869 125.3 

 



 118

Table B.2.  p68N side chain 1H chemical shifts. 
 

Residue HA HA2 HA3 HB HB2 HB3 HD HD1 HD2 HD21 HE HE2 HE21 HE22 HG HG1 HG2 HG3 HZ 

M1 4.522   2.115       2.084    2.571     
S2 4.415   3.965                
A3 4.398   1.418                
S4 4.533    3.889 4.025              
A5 3.813   1.451                
Q6 4.014    2.032 2.137      7.629   2.426     
Q7 4.088   2.190         6.833 7.729 2.416     
L8 3.865    1.356 1.964 0.855        1.741     
A9 4.000   1.531                
E10 4.015   2.146           2.485     
E11 4.200   2.210           2.599     
L12 4.055   1.937    0.733 0.692      1.775     
Q13 4.084   2.228         6.819 7.357   2.451 2.573  
I14 3.651   1.880    1.087        1.607 0.373   
F15 4.457    2.693 3.422 7.323             
G16  3.840 4.037                 
L17 4.530    1.328 1.583 0.777        1.556     
D18 4.604    2.554 2.651              
C19 4.668    2.657 2.808              
E20 4.350    2.111 2.248         2.398     
E21 3.880   2.106           2.340     
A22 4.179   1.449                
L23 4.149    1.376 1.940 0.844        1.692     
I24 3.567   2.162    0.760        1.542 0.974   
E25 3.965   2.090             2.266 2.433  
K26 4.297   2.021   1.626        1.415     
L27 4.104    1.456 2.155  0.841 0.798      1.787     
V28 3.402   2.356            0.986 0.969   
E29 4.029   2.279           2.491     
L30 4.292    1.369 2.271 0.944        2.097     
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Table B.2 continued 
 

Residue HA HA2 HA3 HB HB2 HB3 HD HD1 HD2 HD21 HE HE2 HE21 HE22 HG HG1 HG2 HG3 HZ 

C31 3.934    3.207 3.364              
V32 3.695   2.197            1.088 0.944   
Q33 3.869    1.792 2.144              
Y34 4.437    2.643 3.260 7.256    6.592         
G35 3.878                   
Q36 4.740   2.282                
N37 4.769    2.966 3.214    7.029          
E38 3.856    1.642 2.198           2.354 2.749  
E39 3.873   2.016           2.273     
G40 3.920                   
M41 4.502   2.183       1.957      2.293 2.769  
V42 3.380   2.117            1.002 0.815   
G43  3.585 3.940                 
E44 4.288   2.439           2.260     
L45 3.239    0.819 1.728  0.039 1.088      0.496     
I46 3.496   1.663    0.363        1.048 0.626   
A47 4.098   1.575                
F48 3.976    2.677 3.028 7.088    7.331         
C49 3.595   2.992                
T50 4.015   4.224             1.240   
S51 4.149   3.962                
T52 4.279   4.118             0.862   
H53 4.242    3.284 3.405   7.155           
K54 4.543    1.712 1.570         1.258     
V55 4.199   2.044           0.881     
G56  3.777 4.004                 
L57 4.413   1.519   0.799        1.531     
T58    4.764             1.277   
S59 3.949   3.961                
E60 4.179   2.035           2.378     
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Table B.2 continued. 
 

Residue HA HA2 HA3 HB HB2 HB3 HD HD1 HD2 HD21 HE HE2 HE21 HE22 HG HG1 HG2 HG3 HZ 

I61 3.947   1.821    0.968        1.000    
L62 4.108    1.595 1.929 0.857             
N63 4.646   2.987     7.788           
S64 4.229   4.234                
F65 3.030    2.719 3.041 6.543    7.032        7.229 
E66 3.365    1.834 2.045           1.826 2.036  
H67 4.304   3.246     7.264           
E68 4.338   2.205           2.451     
F69 4.583    2.657 2.915 7.015    7.418        7.300 
L70 3.385    0.354 1.074 0.373        0.329     
S71 4.176   3.962                
K72 4.227    1.577 1.812 1.613    2.972      1.256 1.372  
R73 4.145    1.494 1.775 2.743          1.399 1.348  
L74 4.445   1.661   0.884        1.590     
S75 4.453   3.870                
K76 4.241   1.798   1.686    2.965    1.342     
A77 4.287   1.367                
R78 4.289   1.687           1.390     
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Table B.3. p68N side chain 13C and 15N chemical shifts. 
 
Residue CD CD1 CD2 CE CG CG1 CG2 ND2 NE2 
M1     32.46     
S2          
A3          
S4          
A5          
Q6         112.4 
Q7     34.21    112.9 
L8  25.34   28.36     
A9          
E10     36.18     
E11     34.76     
L12  24.09 26.32  26.11     
Q13     34.47    111.3 
I14  12.78    28.83 16.69   
F15          
G16          
L17  24.85   26.85     
D18          
C19          
E20     36.57     
E21     36.17     
A22          
L23  25.62 22.79  27.64     
I24  12.04    28.86 18.56   
E25     35.98     
K26 27.90   45.79 24.70     
L27  24.87   27.49     
V28      23.04 22.01   
E29     36.27     
L30  23.02   25.37     
C31          
V32      22.33 21.39   
Q33     33.18     
Y34          
G35          
Q36          
N37        112.5  
E38     37.81     
E39     36.00     
G40          
M41    16.88 31.45     
V42      24.27 21.97   
G43          
E44     36.02     
L45  22.04   26.17     
I46  11.32    27.88 17.04   
A47          
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Table B.3 continued. 
 
Residue CD CD1 CD2 CE CG CG1 CG2 ND2 NE2 
F48          
C49          
T50       21.49   
S51          
T52       21.45   
H53          
K54 28.44   42.16 24.05     
V55      20.69    
G56          
L57  24.91   27.58     
T58       21.78   
S59          
E60     36.63     
I61  13.79     17.59   
L62  24.82   26.50     
N63        113.0  
S64          
F65          
E66     34.79     
H67          
E68     36.46     
F69          
L70  22.97   25.97     
S71          
K72 28.75   42.22 24.95     
R73 42.99    27.01     
L74  25.05 23.13  27.43     
S75          
K76 28.91   42.00 24.66     
A77          
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