STRUCTURAL INVESTIGATIONS OF STEREOISOMERIC N3-(2-HYDROXY-3-BUTEN-1-YL)-2'-DEOXYURIDINE DNA ADDUCTS

By

SARAH KIPLEY MUSSER

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Chemistry

August, 2009

Nashville, Tennessee

Approved:

Professor Michael P. Stone Professor Terry P. Lybrand Professor Carmelo J. Rizzo Professor Brian O. Bachmann To my loving husband,

Ryan Benjamin Musser

ACKNOWLEDGMENTS

I would like to begin by thanking my advisor, Dr. Michael P. Stone, for giving me the opportunity to be a part of his lab for the past five years. Thank you for trusting me to do this work and for the encouragement to overcome the barriers I met along the way. Thank you also for your many great words of advice. Thank you also to the members of my Dissertation Committee: Dr. Carmelo Rizzo, Dr. Brian Bachmann, and Dr. Terry Lybrand. I was privileged not only to have had each of you as committee members, but also as professors. I learned valuable information from each of you.

I would like to thank all of the past and present members of the Stone Lab, including Dr. Feng Wang, Dr. Hai Huang, Dr. Young-Jin Cho, Dr. Ganesh Shanmugam, and Ewa Kowal, for all of their help and advice and for many wonderful memories. Thank you also to Amy Williams. I am especially indebted to Dr. Markus Voehler and Dr. Kyle Brown for the many hours they spent training me on the NMR as well as other instruments in the lab. This work would not have been accomplished without the time you invested in me. Kyle, I am a better scientist because of you. Thank you for your friendship, your mentorship, and everything you taught me. Wen, it was a pleasure to work with you on the butadiene project.

I also had the privilege to work with some very talented undergraduate students over the years. Thank you to Ileana Alers, Adam Liudahl, and Rachel Ruckstuhl for all of your help.

Many labs contributed to the advancement of our understanding of these butadiene-derived adducts. Thank you to Dr. Richard Hodge for synthesizing the oligonucleotides used in the NMR studies. I would also like to express gratitude to the Rizzo lab, especially Dr. Ivan Kozekov, Dr. Plamen Christov, and Craig Garmendia, for the time they devoted to the purification of DNA samples as well as in training me in biochemical assays. I would like to acknowledge Dr. Stephen Lloyd's lab, specifically Dr. Priscilla Fernandes and Lauriel Earley, for their mutagenesis work. I would also like to thank the lab of Dr. Martin Egli for their help in the X-ray crystallography studies. Finally, this work would not have been achievable without the fiscal support of the National Institutes of Health, the Vanderbilt Center in Molecular Toxicology, and the Vanderbilt Center for Structural Biology.

I would like to extend special gratitude to Dr. Simeon Pickard, Dr. Jeffrey Lacy, Dr. Robin McCann, and Dr. Tracy Schoolberg. You each played a significant role in my education and fashioning me into the scientist I am today, and for that I thank you.

To the Forresters, the Lamberts, the Fowlers, the Forbises, the Barkers, the Buslers, the Tortis, and the Lovells – my closest friends, who have become more like family – what would I have done without you? You have prayed for me before my biggest exams and then thrown parties for me after I passed them. You have been the biggest support group and the loudest cheering section. I am forever grateful to you for all that you have been to my family. Thank you for being the most amazing friends.

I would not be here if it were not for the support of my family. Thank you to Ben and Bev and Randy and Jodi. You are incredible in-laws. I am so fortunate to have you as my family. Mom and Dad, I am so grateful for your love and encouragement. You have always been there for me. I love you both. Pete and Karyn, Charissa and Allan, and Nathan – you are the best brothers and sisters anyone could hope for. Thank you all for being so wonderful. I'm so proud to be your sister. Charissa, thank you especially for all of the times you have been there for me. I love you so much.

Nobody has been more important to me in this pursuit than my loving husband. Ryan – thank you for your love and support. I have enjoyed being on this journey with you, and I look forward to all that is ahead of us. I couldn't imagine having a more wonderful husband to spend my life with. Ethan, my precious son, your mommy is so proud of you. Thank you for being such a wonderful son. You bring me so much joy.

Most importantly, God of Wonders, I praise You because we are fearfully and wonderfully made. Thank You for creating our bodies so intimately and intricately. It has been a joy to study Your design. Thank You for giving me the strength and understanding to finish this work. You deserve all the credit.

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT	iii
LIST OF FIGURES	X
LIST OF ABBREVIATIONS	XV
INTRODUCTION	1
DNA Structure	1
DNA Damage	6
DNA Replication Errors	7
Chemical Instability of DNA	7
Covalent Modification of DNA Bases	9
Mutagenesis	11
Carcinogenesis	12
Butadiene	
Butadiene-Induced Carcinogenicity	
Metabolites of Butadiene	14
Adducts Arising from Butadiene Metabolites	17
The N3-(2-Hydroxy-3-buten-1-yl)-2'-deoxyuridine Adducts	17
Biological and Biochemical Studies of Carcinogen-Bound DNA	19
Site-Specific Mutagenesis Studies	19
DNA Lesion Bypass Assays	
Structural Studies of Carcinogen-Bound DNA	
NMR Spectroscopy	
NMR Refinement of Duplex DNA	
Dissertation Statement	
MATERIALS AND METHODS	
Oligodeoxynucleotide Synthesis	
Oligodeoxynucleotide Purification	
Sample Preparation	
NMR Spectroscopy	
Structural Refinement	
Restrained Molecular Dynamics	
SOLUTION STRUCTURES OF THE STEREOISOMERIC N3-(2-HYDR BUTEN-1-YL)-2'-DEOXYURIDINE ADDUCTS ARISING FROM BUTA MONOEPOXIDE OPPOSITE DEOXYADENINE IN A DODECAMER OLIGONUCLEOTIDE	OXY-3- DIENE 42

Introduction	42
Results	46
R-Diastereomer	
Sample Purity	
Non-exchangeable protons	
Butadiene Protons	52
Exchangeable Protons	54
Structural Refinement	55
Hydrogen Bonding Analysis	59
Helicoidal Analysis	60
S-Diastereomer	64
Sample Purity	64
Non-exchangeable Protons	64
Butadiene Protons	69
Exchangeable Protons	72
Structural Refinement	74
Structure of the S-BD-N3-dU Adduct Opposite dA	76
Hydrogen Bonding Analysis	77
Helicoidal Analysis	78
Discussion	80
Structural Analysis of the R-BD-N3-dU Adduct Opposite dA	81
Structural Analysis of the S-BD-N3-dU Adduct Opposite dA	82
Biological Significance	83
Summary	

Introduction	
Results	86
R Diastereomer	
Sample Purity	86
Non-exchangeable protons	87
Butadiene Protons	
Exchangeable Protons	
Structural Refinement	
Structure of the R-BD-N3-dU Adduct Opposite dT	
Hydrogen Bonding Analysis	
Helicoidal Analysis	
S-Diastereomer	
Sample Purity	
Non-exchangeable Protons	
Butadiene Protons	105
Exchangeable Protons	106

Structural Refinement	
Structure of the S-BD-N3-dU Adduct Opposite dT	
Hydrogen Bonding Analysis	
Helicoidal Analysis	
Discussion	115
Structural Analysis of the R-BD-N3-dU Adduct Opposite dT	
Comparison of the Stereoisomeric BD-N3-dU Adducts Mismatched O	pposite dT
	117
Summary	118
SOLUTION STRUCTURE OF THE STEREOISOMERIC N3-(2-HYDR BUTEN-1-YL)-2'-DEOXYURIDINE ADDUCTS ARISING FROM BUT MONOEPOXIDE OPPOSITE DEOXYGUANINE IN A DODECAMER OLIGONUCLEOTIDE	OXY-3- ADIENE 119
Introduction	110
INCOULCION Results	
R Diastereomer	
Sample Purity	
Non-exchangeable protons	
Butadiene Protons	
Exchangeable Protons	125
Structural Refinement	126
Structure of the R-BD-N3-dU Adduct Opposite dG	128
Hydrogen Bonding Analysis.	
Helicoidal Analysis	
S-Diastereomer	
Sample Purity	
Non-exchangeable Protons	
Butadiene Protons	
Exchangeable Protons	
Structural Refinement	
Structure of the S-BD-N3-dU Adduct Opposite dG	
Hydrogen Bonding Analysis	
Helicoidal Analysis	
Discussion	
Structural Analysis of the R-BD-N3-dU Adduct Opposite dG	
Comparison of the Stereoisomeric BD-N3-dU Adducts Placed Opposit	te dG 148
Summary	
CONCLUSIONS AND FUTURE DIRECTIONS	150
Condusions	150
Cultura Directions	150 152
X-ray Crystallographic Investigations of Pol eta-DNA-dNTP Complex	132 (es 157
The set of	100

Continuing Investigations of Adducts Arising from Butadiene Meta	bolites 152
APPENDIX	
NMR RESONANCE ASSIGNMENTS	
EXPERIMENTAL DISTANCE RESTRAINT FILES	172
TORSION ANGLE AND EMPIRICAL RESTRAINT FILES	
MOLECULAR DYNAMICS INPUT FILES	
PDB COORDINATE FILES	
REFERENCES	

LIST OF FIGURES

Figure Page
Figure 1-1: The chemical structures of DNA nucleosides
Figure 1-2: Chemical structure and components of B-DNA
Figure 1-3: Watson-Crick model of hydrogen bonding
Figure1-4: DNA sites susceptible to depurination and hydrolytic deamination
Figure 1-5: Nucleophilic sites on DNA nucleosides susceptible to covalent modification.
Figure 1-6: Strategy for NMR-derived solution structure determination
Figure 1-7: Chemical shift regions for non-exchangeable DNA protons in a two- dimensional NOESY spectrum
Figure 1-8: Dipolar interactions between aromatic and anomeric DNA protons observed in a NOESY spectrum
Figure 2-1: HPLC separation of the stereoisomeric BD-N3-dU modified oligodeoxynucleotides
Figure 2-2: HPLC traces of nucleosides digested via enzyme hydrolysis reactions 35
Figure 3-1: Chemical structure and nomenclature of the stereoisomeric N3-(2-hydroxy- 3-buten-1-yl)-2'-deoxyuridine adducts
Figure 3-2: Mutagenic frequencies of the <i>R</i> - and <i>S</i> -N3-(2-hydroxy-3-buten-1-yl)-2'- deoxyuridine adducts in COS-7 mammalian cells
Figure 3-3: NOESY expansion plot of the anomeric proton to aromatic proton region for the <i>R</i> -BD-N3-dU modified sequence $5'-G^1C^2T^3A^4G^5C^6X^7A^8G^9T^{10}C^{11}C^{12}-3'\cdot5'-G^{13}G^{14}A^{15}C^{16}T^{17}A^{18}G^{19}C^{20}T^{21}A^{22}G^{23}C^{24}-3'$
Figure 3-4: Chemical shift perturbations in the aromatic and anomeric protons of the R-BD-N3-dU modified sequence, $5'-G^1C^2T^3A^4G^5C^6X^7A^8G^9T^{10}C^{11}C^{12}-3'\cdot5'-G^{13}G^{14}A^{15}C^{16}T^{17}A^{18}G^{19}C^{20}T^{21}A^{22}G^{23}C^{24}-3'$, relative to the unmodified oligonucleotide.51
Figure 3-5: TOCSY spectrum of the R-BD-N3-dU butadiene protons
Figure 3-6: Dipolar proton:proton interactions between the <i>R</i> -BD moiety and other oligonucleotide protons

Figure 3-7: NOESY expansion plot of the imino proton region for the R-BD-N3-dU modified sequence, 5'- $G^1C^2T^3A^4G^5C^6X^7A^8G^9T^{10}C^{11}C^{12}-3'\cdot5'$ -
$G^{13}G^{14}A^{15}C^{\bar{1}6}T^{17}A^{18}G^{19}C^{20}T^{21}A^{22}G^{23}C^{24}-3'$
Figure 3-8: Overlay of ten solution structures emergent from simulated annealing calculations
Figure 3-9: CORMA calculations on the average <i>R</i> -BD-N3-dU modified oligodeoxynucleotide calculated using a simulated annealing rMD protocol
Figure 3-10: Lesion site of the average <i>R</i> -BD-N3-dU modified oligonucleotide
Figure 3-11: Structural representation of the <i>R</i> -BD-N3-dU DNA adduct extracted from 5 ns of MD calculations in explicit solvent
Figure 3-12: Global base pair helicoidal parameters
Figure 3-13: Global base-base helicoidal parameters
Figure 3-14: Global inter-base helicoidal parameters
Figure 3-15: NOESY expansion plot of the anomeric proton to aromatic proton region for the <i>S</i> -BD-N3-dU modified sequence, $5'-G^1C^2T^3A^4G^5C^6X^7A^8G^9T^{10}C^{11}C^{12}-3'\cdot5'-G^{13}G^{14}A^{15}C^{16}T^{17}A^{18}G^{19}C^{20}T^{21}A^{22}G^{23}C^{24}-3'$
Figure 3-16: Chemical shift perturbations in the aromatic and anomeric protons of the <i>S</i> -BD-N3-dU modified sequence, $5'-G^1C^2T^3A^4G^5C^6X^7A^8G^9T^{10}C^{11}C^{12}-3'\cdot5'-G^{13}G^{14}A^{15}C^{16}T^{17}A^{18}G^{19}C^{20}T^{21}A^{22}G^{23}C^{24}-3'$, relative to the unmodified oligodeoxynucleotide
Figure 3-17: TOCSY spectrum of the S-BD-N3-dU butadiene protons
Figure 3-18: Dipolar proton to proton interactions between the S-BD-N3-dU moiety and other oligonucleotide protons
Figure 3-19: NOESY expansion plot of the imino proton region for the S-BD-N3-dU modified sequence $5'-G^{1}C^{2}T^{3}A^{4}G^{5}C^{6}X^{7}A^{8}G^{9}T^{10}C^{11}C^{12}-3'\cdot5'-G^{13}G^{14}A^{15}C^{16}T^{17}A^{18}G^{19}C^{20}T^{21}A^{22}G^{23}C^{24}-3'$
Figure 3-20: Overlay of six solution structures emergent from simulated annealing calculations

Figure 3-22: Lesion site of the average S-BD-N3-dU modified oligonucleotide76
Figure 3-23: Structural representation of the modified <i>S</i> -BD-N3-dU extracted from molecular dynamics calculations in explicit solvent
Figure 3-24: Global base pair helicoidal parameters
Figure 3-25: Global base-base helicoidal parameters
Figure 3-26: Global inter-base helicoidal parameters
Figure 4-1: NOESY expansion plot of the anomeric proton to aromatic proton region for the R-BD-N3-dU modified sequence
Figure 4-2: Chemical shift perturbations in the aromatic and anomeric protons of the R-BD-N3-dU modified sequence
Figure 4-3: Dipolar interactions between the R-BD moiety and other oligonucleotide protons
Figure 4-4: NOESY expansion plot of the imino proton region for the R-BD-N3-dU modified sequence
Figure 4-5: Overlay of the five convergent structures of the R-BD-N3-dU modified oligonucleotide calculated using a simulated annealing rMD protocol
Figure 4-6: CORMA calculations on the average <i>R</i> -BD-N3-dU modified oligodeoxynucleotide calculated using a simulated annealing rMD protocol
Figure 4-7: Lesion site of the average structure of the oligodeoxynucleotide containing R-BD-N3-dU opposite dT calculated using a simulated annealing rMD protocol
Figure 4-8: Global base pair helicoidal parameters
Figure 4-9: Global base-base helicoidal parameters
Figure 4-10: Global inter-base helicoidal parameters
Figure 4-11: NOESY expansion plot of the anomeric proton to aromatic proton region for the S-BD-N3-dU modified sequence
Figure 4-12: Chemical shift perturbations in the aromatic and anomeric protons of the S-BD-N3-dU modified sequence
Figure 4-13: Dipolar interactions between the R-BD moiety and other oligonucleotide protons

Figure 4-14: NOESY expansion plot of the imino proton region for the S-BD-N3-dU modified sequence
Figure 4-15: Overlay of the eight convergent structures of the S-BD-N3-dU modified oligonucleotide
Figure 4-16: CORMA calculations on the average <i>S</i> -BD-N3-dU modified oligodeoxynucleotide calculated using a simulated annealing rMD protocol
Figure 4-17: Lesion site of the average S-BD-N3-dU modified oligonucleotide structure calculated using a simulated annealing rMD protocol
Figure 4-18: Global base pair helicoidal parameters
Figure 4-19: Global base-base helicoidal parameters
Figure 4-20: Global inter-base helicoidal parameters
Figure 5-1: NOESY expansion plot of the anomeric proton to aromatic proton region for the <i>R</i> -BD-N3-dU modified sequence
Figure 5-2: Chemical shift perturbations in the aromatic and anomeric protons of the <i>R</i> -BD-N3-dU modified sequence
Figure 5-3: Dipolar proton:proton interactions between the R-BD moiety and other oligonucleotide protons
Figure 5-4: NOESY expansion plot of the imino and H2 proton region for the R-BD-N3- dU modified sequence
Figure 5-5: Overlay of the five convergent R-BD-N3-dU modified oligonucleotide structures calculated using a simulated annealing rMD protocol
Figure 5-6: CORMA calculations on the average <i>R</i> -BD-N3-dU modified oligodeoxynucleotide calculated using a simulated annealing rMD protocol
Figure 5-7: Lesion site of the average R-BD-N3-dU modified oligonucleotide structure.
Figure 5-8: Global base pair helicoidal parameters
Figure 5-9: Global base-base helicoidal parameters
Figure 5-10: Global inter-base helicoidal parameters

Figure 5-11: NOESY expansion plot of the anomeric proton to aromatic proton region for the <i>S</i> -BD-N3-dU modified sequence
Figure 5-12: Chemical shift perturbations in the aromatic and anomeric protons of the S-BD-N3-dU modified sequence
Figure 5-13: Dipolar proton:proton interactions between the S-BD moiety and the H2 proton of A8
Figure 5-14: NOESY expansion plot of the imino and H2 proton region for the S-BD-N3- dU modified sequence
Figure 5-15: Overlay of the six S-BD-N3-dU modified oligonucleotide structures 140
Figure 5-16: CORMA calculations on the average <i>S</i> -BD-N3-dU modified oligodeoxynucleotide calculated using a simulated annealing rMD protocol
Figure 5-17: Lesion site of the average S-BD-N3-dU modified oligonucleotide calculated using a simulated annealing rMD protocol
Figure 5-18: Global base pair helicoidal parameters
Figure 5-19: Global base-base helicoidal parameters
Figure 5-20: Global inter-base helicoidal parameters

LIST OF ABBREVIATIONS

1D	one dimensional
2D	two dimensional
BD	1,3-butadiene
BDE	3,4-epoxy-1,2-butanediol
BDO	butadiene monoepoxide (1,2-epoxy-3-butene)
BDO ₂	butadiene diepoxide (1,2:3,4-diepoxybutane)
CORMA	complete relaxation matrix analysis
COSY	correlation spectroscopy
dA	deoxyadenosine
dC	deoxycytidine
dG	deoxyguanosine
dT	deoxythymidine
DNA	deoxyribonucleic acid
DQF-COSY	double-quantum filtered correlation spectroscopy
EDTA	ethylenediamine tetraacetic acid
HPLC	high performance liquid chromatography
MD	molecular dynamics
NMR	nuclear magnetic resonance
NOE	nuclear Overhauser effect
NOESY	two dimensional nuclear Overhauser effect spectroscopy
PEM	potential energy minimization
ppm	parts per million
R-BD-N3-dU	R-N3-(2-hydroxy-3-butene-1-yl)-2'-deoxyuridine adduct
\mathbf{R}_{1}^{x}	sixth root residual index
rMD	restrained molecular dynamics
rmsd	root mean square deviation
S-BD-N3-dU	S-N3-(2-hydroxy-3-butene-1-yl)-2'-deoxyuridine adduct
t_1	evolution period
$ au_{\mathrm{m}}$	mixing time
TOCSY	total correlation spectroscopy
TPPI	time-proportional phase increment