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ABSTRACT

In this dissertation, we develop semiparametric rank-based methods. These types of

methods are particularly useful with skewed data, nonlinear relationships, and truncated

measurements. Semiparametric rank-based methods can achieve a good balance between

robustness and efficiency.

The first part of this dissertation develops new estimators for covariate-adjusted Spear-

man’s rank correlation, both partial and conditional, using probability-scale residuals (PSRs).

These estimators are consistent for natural extensions of the population parameter of Spear-

man’s rank correlation in the presence of covariates and are general for both continuous and

discrete variables. We evaluate their performance with simulations and illustrate their ap-

plication in two examples. To preserve the rank-based nature of Spearman’s correlation, we

obtain PSRs from ordinal cumulative probability models for both discrete and continuous

variables.

Cumulative probability models were first invented to handle discrete ordinal outcomes,

and their potential utility for the analysis of continuous outcomes has been largely unrec-

ognized. This motivates the second part of this dissertation: an in-depth study of the ap-

plication of cumulative probability models to continuous outcomes. When applied to con-

tinuous outcomes, these models can be viewed as semiparametric transformation models.

We present a latent variable motivation for these models; describe estimation, inference,

assumptions, and model diagnostics; conduct extensive simulations to investigate the finite

sample performance of these models with and without proper link function specification;

and illustrate their application in an HIV study.

Finally, we developed an R package, PResiduals, to compute PSRs, to incorpo-

rate them into conditional tests of association, and to implement our covariate-adjusted

Spearman’s rank correlation. The third part of this dissertation contains a vignette for this

package, in which we illustrate its usage with a publicly available dataset.

x



Chapter 1

Introduction

Rank-based statistical methods, such as Spearman’s rank correlation and Wilcoxon’s

rank sum test, are frequently used in biomedical and social science research, especially

for data with nonlinear relationships, skewed distributions, extreme values, and censored

observations. These methods use order information but do not rely on parametric distribu-

tion assumptions, and therefore, are favored for their robustness. However, many classic

rank-based tests do not easily handle covariates and in general, nonparametric methods are

inefficient when there are covariates. To achieve a good balance between robustness and

efficiency, we develop and study semiparametric rank-based methods in this dissertation.

Specifically, we extend Spearman’s rank correlation for covariate adjustment and investi-

gate the use of ordinal cumulative probability models to continuous outcomes.

This chapter provides some background and briefly reviews the literature for covariate-

adjusted rank correlations and rank-based semiparametric regression models. It also pro-

vides an overview of this dissertation.

1.1 Rank-Based Correlations with Covariate-Adjustment

Correlation coefficients are commonly used to summarize the degree of association

between two variables. For well behaved continuous variables, a common choice is Pear-

son’s correlation coefficient. When dealing with ordered categorical data, nonlinear re-

lationships, skewed distributions, and extreme values, rank correlation coefficients such

as Spearman’s rho or Kendall’s tau are preferred for their robustness. Spearman’s rank

correlation is simply Pearson’s correlation between the ranks of observations (Spearman,

1904), whereas Kendall’s rank correlation measures concordance and discordance among

all possible pair combinations (Kendall, 1942).
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In many applications, it is desirable to adjust correlation coefficients for the influence

of other variables. There are generally two types of covariate-adjusted correlations in the

literature: partial and conditional correlations.

The partial correlation removes the effect of covariates and summarizes the relation-

ship with a single number. It was originally developed for Pearson’s correlation with nor-

mal data (Fisher, 1924), and has been extended by plugging rank-based estimates into the

formula for Pearson’s correlation (Kendall, 1942). However, these rank-based partial cor-

relations are ad hoc, do not correspond with sensible population parameters, and at least

for the partial Kandall’s correlation have theoretical problems that make them not useful

(Kendall, 1942; Korn, 1984; Gripenberg, 1992).

The conditional correlation assesses the relationship at specific levels of covariates.

Rank-based conditional correlations have been studied for continuous data with copulas

(Nelsen, 2006) and have been extended to adjust for covariates (Gijbels et al., 2011). How-

ever, these methods cannot be directly extended to discrete data because copula functions

are not uniquely defined for discrete data (Genest & Nešlehová, 2007; Nešlehová, 2007).

Covariate-adjusted correlations can be constructed with residuals. For example, the

partial Pearson’s correlation between X and Y adjusting for Z can be computed as the

correlation between the observed-minus-expected residuals (OMER) resulting from linear

regression models of X on Z and of Y on Z (Fisher, 1924). Our methods are similarly

motivated. We construct partial and conditional covariate-adjusted Spearman’s rank cor-

relations using the correlation between probability-scale residuals (Li & Shepherd, 2012;

Shepherd et al., in press) resulting from semiparametric transformation models of X on Z

and of Y on Z.

1.2 Rank-Based Regression Models

Rank-based regression models for continuous variables are attractive due to their ro-

bustness. They only use the order information of response variables and are therefore in-

2



variant to any monotonic transformation of outcomes. This is particularly useful when the

distributions of continuous responses are skewed and different transformations may give

conflicting results.

An intuitive yet flawed rank-based regression method is simply replacing outcome vari-

ables with their ranks and then fitting them with linear regression models. This approach

has been seen in practice occasionally for data with extreme values or skewed distributions

(Tian et al., 2014). Although this approach is easy to implement, it lacks justification: ranks

are nonparametric statistics and they vary in different datasets; modeling their conditional

distribution does not make sense. Regression coefficients and predicted values using this

approach are generally not interpretable.

Another type of rank-based regression is linear regression with an unspecified mono-

tonic transformation of the response variable. For example, consider the linear transfor-

mation model Y = H(bX + e), where Y is a continuous response variable, X is the p-

dimensional covariates, e is the error term, and H(·) is an unspecified monotonic transfor-

mation function. This model is invariant to any monotonic transformation of Y since H(·)

is unspecified. There is a large literature for linear transformation models. For example,

when both H(·) and the distribution of error term e are unspecified, the model is non-

parametric. Several rank-based estimators for b and their asymptotic properties have been

studied, including the maximum rank correlation estimator (Han, 1987), the monotone rank

estimator (Cavanagh & Sherman, 1998), the partial rank estimator (Khan & Tamer, 2007)

and a modified partial rank estimator (Song et al., 2007). If the distribution of error term e is

assumed, the model is semiparametric and has been studied extensively for censored data

in survival analysis. With Gumbel minimum error distribution (the type I extreme value

distribution), this model is the well-known proportional hazards model (Cox, 1972). For

this semiparametric transformation model with censored outcomes, estimation procedures

based on partial likelihood Cox (1975), rank-based estimation equations (Cheng et al.,

1995; Chen et al., 2002), and nonparametric maximum likelihood estimation (NPMLE)

3



(Bennett, 1983; Murphy et al., 1997; Zeng & Lin, 2006) have been studied. The consis-

tency, asymptotic normality, and asymptotic efficiency of the NPMLE have been estab-

lished by Zeng & Lin (2006) for censored outcomes. This semiparametric transformation

model has also been considered for uncensored continuous outcomes but the asymptotic

properties of the NPMLE have not been developed (Zeng & Lin, 2006).

Ordinal regression models, specifically cumulative probability models, are also rank-

based. They are closed related to the nonparametric rank-based test. Specifically, when

there is only a single binary covariate, the score test of a cumulative probability model with

the logit link is equivalent to the Wilcoxon rank sum test (McCullagh, 1980). Cumula-

tive probability models also have natural connections with linear transformation models.

For example, cumulative probability models for discrete ordinal variables can be motivated

from linear transformation models where the transformation maps a latent continuous vari-

able to the observed discrete response. Although cumulative probability models were ini-

tially invented for discrete ordinal outcomes, they can be used for continuous variables

because continuous variables are also ordinal. However, this approach is typically not used

in practice, we believe largely due to a lack of awareness.

1.3 Overview of the Dissertation

In Chapter 2, we propose new estimators for covariate-adjusted Spearman’s rank cor-

relation, both partial and conditional, using probability-scale residuals. Our estimators are

consistent for natural extensions of the population parameter of Spearman’s rank correla-

tion in the presence of covariates and are general for both continuous and discrete variables.

We describe estimation and inference, and highlight the use of cumulative probability mod-

els, which allow our method to preserve the rank-based nature of Spearman’s correlation.

We conduct simulations to evaluate the performance of our estimators and compare them

with other popular measures of association, demonstrating their robustness and efficiency.

We illustrate our method in two application examples.
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In Chapter 3, we study the application of cumulative probability models for continuous

outcomes. We present a latent variable motivation for these models, describe estimation

and inference, and discuss model assumptions. Extensive simulations are performed to

investigate the finite sample performance of these models with and without correct link

function specification. We illustrate their application in an HIV study.

These methods will be of greatest use if they can be easily implemented using stan-

dard statistical software. We have created an R package Presiduals that computes

probability-scale residuals for a wide range of statistical models, including the cumulative

probability models studied in Chapter 3. This package also implements both the partial

and the conditional covariate-adjusted Spearman’s rank correlations developed in Chap-

ter 2. In Chapter 4, we present the PResiduals package. A publicly available dataset

is used to illustrate its usage in model diagnostics, tests of conditional associations, and

covariate-adjustment for Spearman’s rank correlation.

Chapter 5 concludes the dissertation with a discussion of future research.
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Chapter 2

Covariate-Adjusted Spearman’s Rank Correlation with Probability-Scale Residuals

In this chapter, we propose new estimators for covariate-adjusted Spearman’s rank cor-

relation, both partial and conditional, using probability-scale residuals (PSRs). Our partial

estimator for Spearman’s correlation between X and Y adjusted for Z is the correlation of

PSRs from models of X on Z and of Y on Z, which is analogous to the partial Pearson’s

correlation derived as the correlation of observed-minus-expected residuals. Our condi-

tional estimator is the conditional correlation of PSRs. Our estimators are consistent for

natural extensions of the population parameter of Spearman’s rank correlation in the pres-

ence of covariates and are general for both continuous and discrete variables. We describe

estimation and inference, and highlight the use of ordinal cumulative probability models,

which allow our method to preserve the rank-based nature of Spearman’s correlation. We

conduct simulations to evaluate the performance of our estimators and compare them with

other popular measures of association, demonstrating their robustness and efficiency. We

illustrate our method in two application examples.

2.1 Introduction

It is often of interest to summarize the degree of association between two variables

using a single number. To this end, associations are frequently described using correla-

tion coefficients, which, well over a century after their introduction, remain popular in

practice. Although correlation coefficients have limitations (e.g., an inability to accurately

describe non-monotonic relationships), their continued popularity is due in part to their

simplicity and interpretability. For well behaved continuous variables, a common choice

is Pearson’s correlation coefficient. When dealing with ordered categorical data, nonlinear

relationships, skewed distributions, and extreme values, rank correlation coefficients such
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as Spearman’s rho or Kendall’s tau are preferred.

In many applications, it is desirable to adjust the correlation coefficients for the influ-

ence of other variables. For example, when quantifying the association between educa-

tional attainment and wage, investigators may want to adjust for age, gender, job class, and

health condition, because those variables are associated with both educational attainment

and wage, and could be potential confounding factors. As a second example, researchers

may be interested in quickly and robustly assessing all pairwise associations between re-

sponses in a large survey while controlling for the influence of demographic factors. In

general, there are two approaches to adjusting the correlation for covariates. One is to

obtain a partial correlation, i.e., removing the effect of covariates and then summarizing

the relationship with a single number. The other is to obtain conditional correlations, i.e.,

assessing the correlation at specific levels of the covariates.

The partial correlation was originally developed for the Pearson’s correlation with nor-

mal data (Fisher, 1924). The partial Pearson’s correlation coefficient between X and Y

controlling for Z, denoted as rXY ·Z , is the correlation between the residuals resulting from

linear regression models of X on Z and of Y on Z. When Z is a single variable, it can be

calculated with the formula

rXY ·Z = (rXY �rXZrY Z)/
q

(1�r2
XZ)(1�r2

Y Z), (2.1)

where rAB represents the Pearson’s correlation between A and B. Partial Spearman’s and

partial Kendall’s correlations have also been proposed with the same formula: substituting

rAB with corresponding rank correlations (Kendall, 1942). However, they have limitations.

The partial Kendall’s correlation calculated with this formula can be far from 0 even under

conditional independence, and therefore, is generally not useful (Korn, 1984). The partial

Spearman’s correlation using this formula is an ad hoc procedure, has little theoretical

justification, and does not correspond with a sensible population parameter (Kendall, 1942;
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Gripenberg, 1992).

Conditional rank correlations have been studied for continuous data with copulas. For

continuous variables, Spearman’s rank correlation and Kendall’s rank correlation can be

expressed as functions of copulas (Nelsen, 2006). Gijbels et al. (2011) proposed a kernel-

based method to estimate the conditional copula and the associated conditional Spear-

man’s and Kendall’s rank correlations. However, their approach cannot be directly ex-

tended to discrete data because rank correlations between discrete variables cannot be eas-

ily described with copulas (see the discussions in Genest & Nešlehová (2007); Nešlehová

(2007)).

In this paper, we propose new estimators for covariate-adjusted Spearman’s rank corre-

lations, both partial and conditional, using probability-scale residuals (PSRs) (Li & Shep-

herd, 2012). Our partial estimator is the correlation of PSRs from models of X on Z and

of Y on Z, which is analogous to the partial Pearson’s correlation derived as the correlation

of observed-minus-expected residuals. Our conditional estimator is the conditional corre-

lation of PSRs, which can be used to capture changes in Spearman’s correlations between

different values of covariates. Since PSRs are widely defined for any orderable variable

(Shepherd et al., in press), our estimators are quite general. In the absence of covariates,

our partial estimator reduces to the usual sample Spearman’s rank correlation; and in the

presence of covariates, it averages the conditional Spearman’s rank correlation across dif-

ferent values of covariates.

The paper is organized as follows. In Section 2.2, we review PSRs and illustrate their

connection with Spearman’s rank correlation. We then describe new estimators for con-

ditional and partial Spearman’s rank correlation using PSRs. In Section 2.3, we discuss

estimation and inference, highlighting the use of semiparametric ordinal models. In Sec-

tion 2.4, we conduct simulations to evaluate the performance of our estimators and compare

them with other popular measures of association, demonstrating their robustness and effi-

ciency. In Section 2.5, we illustrate our approach in two application examples: one looking
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at the association between education and wage after controlling for other potentially con-

founding variables, and a second application estimating all pairwise correlations between

responses in a large survey after adjusting for relevant demographic and community-level

factors. Section 2.6 discusses the methods and future research, and Section 2.7 contains

some technical details and proofs.

2.2 Covariate-Adjusted Spearman’s Rank Correlations

2.2.1 Spearman’s Rank Correlation and PSRs

Fundamentally, Spearman’s rank correlation is a scale-invariant concordance measure

(Kruskal, 1958). Its population parameter, gXY , can be interpreted as the scaled difference

between the probability of concordance and the probability of discordance among (X ,Y )

and (X0,Y0), where X0 and Y0 have the same marginal distributions with X and Y , respec-

tively; but X0 ?Y0, and (X0,Y0)? (X ,Y ) (Kruskal, 1958). That is, gXY = c(Pc�Pd), where

Pc = P[(X �X0)(Y �Y0) > 0], Pd = P[(X �X0)(Y �Y0) < 0], and c is a scaling factor so

that �1  gXY  1. The scaling factor c is constant and equal to 3 for continuous X and

Y (Kruskal, 1958; Nelsen, 2006). For non-continuous X and/or Y , the scaling factor c is

usually not a constant but a function of the marginal distributions of the non-continuous

variables (Nešlehová, 2007). We now express gXY in terms of a new type of residual: the

probability-scale residual (PSR).

For an orderable random variable X from distribution F , the PSR of an observed value

x is defined as

r(x,F⇤) = E[sign(x,X⇤)] = P(X⇤ < x)�P(X⇤ > x) = F⇤(x�)+F⇤(x)�1,

where F⇤ is an assumed or fitted distribution of X , X⇤ is a random variable with distribution

F⇤, and sign(a,b) is �1, 0, and 1 for a < b, a = b, and a > b, respectively (Li & Shepherd,

2012; Shepherd et al., in press). We use Xres = r(X ,F⇤) to denote the corresponding random
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variable. With properly specified models, F⇤ ! F as n ! •; therefore, Xres = r(X ,F⇤)!

r(X ,F), and the properties of r(X ,F) are hence applicable to r(X ,F⇤) in its asymptote. As

shown in Shepherd et al. (in press), E[r(X ,F)] = 0 and var[r(X ,F)] = 1/3 if X is continuous

or var[r(X ,F)] = (1�Â f 3
x )/3 if X is discrete, where fx = P(X = x).

Note that the difference between the probability of concordance and the probability of

discordance can be written as

Pc �Pd = P[(X �X0)(Y �Y0)> 0]�P[(X �X0)(Y �Y0)< 0]

= E [sign(X �X0)sign(Y �Y0)]

= E(X ,Y ) {E [sign(X �X0)sign(Y �Y0)|(X ,Y )]}

= E(X ,Y ) {E [sign(X �X0)|X ]E [sign(Y �Y0)|Y ]}

= E(X ,Y ) {[P(X0 < X |X)�P(X0 > X |X)] [P(Y0 < Y |Y )�P(Y0 > Y |Y )]}

= E {[F(X�)+F(X)�1][G(Y�)+G(Y )�1]}

= E[r(X ,F)r(Y,G)]

= cov[r(X ,F),r(Y,G)],

with the last equality holding because E[r(X ,F)] =E[r(Y,G)] = 0. Therefore, gXY = c(Pc�

Pd) is bounded between �1 and 1 if and only if c = {var[r(X ,F)]var[r(Y,G)]}�1/2. Then,

gXY = corr[r(X ,F),r(Y,G)]. (2.2)

This expression suggests that Spearman’s rank correlation can be estimated with PSRs,

i.e., ĝXY = Ân
i=1(xi,res � x̄res)(yi,res � ȳres)/

p

Ân
i=1(xi,res � x̄res)2 Ân

i=1(yi,res � ȳres)2, where

xi,res = r(xi,F⇤), yi,res = r(yi,G⇤), x̄res = Ân
i=1 xi,res/n, and ȳres = Ân

i=1 yi,res/n. In the ab-

sence of covariates, F⇤ and G⇤ are often estimated with empirical distribution functions.

In that case, xi,res and yi,res are linear functions of the ranks of xi and yi (Shepherd et al.,

in press); therefore, the sample Spearman’s rank correlation estimated with PSRs is indeed
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equal to the usual sample Spearman’s rank correlation.

2.2.2 Conditional Spearman’s Rank Correlation

In the presence of covariates Z, the fitted distributions F⇤ and G⇤ will typically be con-

ditional on covariates, denoted as F⇤
X |Z and G⇤

Y |Z , respectively. Then, the PSRs of X and Y

for subject i are r(xi,F⇤
X |Z=zi

) and r(yi,G⇤
Y |Z=zi

), respectively. If both models of X on Z and

Y on Z are properly specified, the fitted distributions F⇤
X |Z ! FX |Z and G⇤

Y |Z ! GY |Z . Then,

r(X ,F⇤
X |Z)! r(X ,FX |Z) and r(Y,G⇤

Y |Z)! r(Y,GY |Z). Similarly, we have E[r(X ,FX |Z)|Z] =

0 and var[r(X ,FX |Z)|Z] = 1/3 for continuous X or var[r(X ,FX |Z)|Z] = (1�Âx f 3
x|Z)/3 for

discrete X , where fx|Z = P(X = x|Z).

We can define the population version of the conditional Spearman’s rank correlation as

gXY |Z = cZ(Pc|Z �Pd|Z) with Pc|Z = P[(X �X0)(Y �Y0)> 0|Z] and Pd|Z = P[(X �X0)(Y �

Y0)< 0|Z], where X0|Z ⇠ FX |Z , Y0|Z ⇠ GY |Z , X0 ?Y0|Z, and (X0,Y0)? (X ,Y ). As shown in

the unconditional case, Pc|Z �Pd|Z = cov[r(X ,FX |Z),r(Y,GY |Z)|Z]. With the scaling factor

cZ =
�

var[r(X ,FX |Z)|Z]var[r(Y,GY |Z)|Z]
 �1/2, gXY |Z can be expressed as the conditional

correlation of PSRs:

gXY |Z = corr[r(X ,FX |Z),r(Y,GY |Z)|Z] (2.3)

When both X and Y are continuous, the scaling factor cZ is constant and equal to 3; this

expression is mathematically equivalent to the conditional Spearman’s rank correlation de-

fined in Gijbels et al. (2011) with conditional copulas. However, since PSRs are well

defined and easily calculated for a wide variety of outcomes and models, our expression of

gXY |Z with PSRs has the advantages that it is general for any orderable variables.

2.2.3 Partial Spearman’s Rank Correlation

Mimicking the derivation of the partial Pearson’s correlation as the correlation of observed-

minus-expected residuals, we propose a new partial Spearman’s rank correlation as the cor-

11



relation of PSRs from the distributions of X given Z and of Y given Z. That is, gXY ·Z =

corr[r(X ,FX |Z),r(Y,GY |Z)]. Unlike the traditional ad hoc partial Spearman’s rank cor-

relation calculated using (2.1), our partial estimator corresponds to a meaningful pop-

ulation parameter. Specifically, gXY ·Z can be interpreted as the rescaled average of the

conditional concordance measure, since gXY ·Z = c⇤EZ(Pc|Z �Pd|Z) with the scaling factor

c⇤ =
�

var[r(X ,FX |Z)]var[r(Y,GY |Z)]
 �1/2 so that �1  gXY ·Z  1 (see Section 2.7.1).

Note that gXY ·Z is a weighted average of gXY |Z (see Section 2.7.1). For continuous X

and Y , the weights are constant and equal to 1; therefore, gXY ·Z = E(gXY |Z). For non-

continuous X or Y , the weight is a function of covariates Z. For example, if both X

and Y are discrete variables, gXY ·Z can be expressed as E(wZgXY |Z) with the weight wZ =
q

(1�Âx f 3
x|Z)(1�Ây g3

y|Z)/
q

[1�Âx EZ( f 3
x|Z)][1�Ây EZ(g3

y|Z)], where fx|Z =P(X = x|Z)

and gy|Z = P(Y = y|Z). Since the denominator of wz is fixed for all levels of Z, larger

weights are assigned to the levels of Z with which the discrete variables are less likely to

have ties (i.e., have more categories and/or are more evenly distributed).

2.2.4 Conditional Partial Spearman’s Rank Correlation

When covariates are multidimensional, it may be useful to condition the partial Spear-

man’s rank correlation on one or a subset of covariates. For example, suppose Z can be

divided into two (potentially multidimensional) components, i.e., Z = (Z1,Z2). To de-

scribe the rank correlation between X and Y for a specific level of Z1 while adjusting for

the other covariates, we can define a conditional partial Spearman’s rank correlation as

gXY ·Z|Z1 = corr[r(X ,FX |Z),r(Y,GY |Z)|Z1]. It can be shown that gXY ·Z|Z1 = c⇤Z1
EZ2|Z1(Pc|Z �

Pd|Z) = EZ2|Z1(w
⇤
Z1

gXY |Z) (see derivation and the expressions of c⇤Z1
and w⇤

Z1
in Section

2.7.2). For continuous X and Y , it can be shown that c⇤Z1
= 3 and w⇤

Z1
= 1; therefore,

gXY ·Z|Z1 = EZ2|Z1(Pc|Z �Pd|Z) = EZ2|Z1(gXY |Z) and gXY ·Z = EZ1(gXY ·Z|Z1). However, for non-

continuous X or Y , w⇤
Z1

and c⇤Z1
are usually not constant and this relationship is generally

not guaranteed.
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2.3 Estimation and Inference

2.3.1 Calculation of PSRs

To obtain our estimators, we first need to fit models for X on Z and for Y on Z, and com-

pute the two sets of PSRs. PSRs are functions of the fitted distribution, therefore, they are

well defined as long as the fitted distributions are estimable. Since Spearman’s rank correla-

tion is a nonparametric statistic, it is natural to consider obtaining the PSRs using nonpara-

metric models. For example, given a dataset (xi,yi,zi) for i = 1,2, ...,n, a kernel estimator

for the conditional distribution could be F̂X |Z=z(x) = Ân
i=1 wi(z,h)I(xi  x), where the ker-

nel weight wi(z,h) is given by K[(zi � z)/h]/Ân
i=1 K[(zi � z)/h] with kernel function K(·)

and bandwidth h (Gijbels et al., 2011). Similarly, F̂X |Z=z(x�) = Ân
i=1 wni(z,h)I(xi < x).

Then, the PSR for observation xi can be calculated as xi,res = F̂X |Z=zi(xi)+ F̂X |Z=zi(xi�)�1.

The PSR for yi can be calculated similarly.

Although such an approach is feasible, there are challenges to incorporate nonparamet-

ric models when applied to real data. One challenge of kernel based approaches is that

fitted models can be highly dependent on the selected bandwidth. Additional challenges

arise with multidimensional covariates due to the curse of dimensionality (Hastie et al.,

2009). Nonparametric models are also typically less efficient. But, on the other hand,

although parametric models are easier to fit, more efficient, and more convenient for ob-

taining PSRs, they are less robust. Given the robustness of Spearman’s rank correlation, it

seems that assessing the correlation of PSRs derived from parametric models is contrary to

the nature of Spearman’s rank correlation.

To achieve a good compromise between robustness and efficiency, we consider semi-

parametric models that only use the order information of the outcomes, e.g., the semi-

parametric transformation model X = T (bZ + e), where T (·) is an unspecified monotonic

increasing transformation and e is a random error term with a specified parametric distri-

bution Fe (Zeng & Lin, 2007). Since the transformation T (·) is left unspecified and only
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needs to be monotonic, this model only depends on the order of X . Note, this model can be

written in the form of the ordinal cumulative probability model: g[FX |Z(x)] = a(x)�bZ,

where FX |Z is the conditional distribution of X on Z, the link function g(·) = F�1
e (·), and

the intercept a(x) = T�1(x). Based on this fact, Harrell (2015) proposed an estimating

procedure which maximizes the multinomial likelihood of the corresponding ordinal cu-

mulative probability model and implemented this procedure as the function orm() in the

rms package (Harrell, 2016). Specifically, the orm procedure treats a continuous response

variable as an ordered categorical variable (each unique value as one category) and fits it

with ordinal cumulative probability models. Estimates from the orm procedure are very

similar to the nonparametric maximum likelihood estimators (Zeng & Lin, 2007), whose

asymptotic properties have been well studied with right censored data (Murphy et al., 1997;

Zeng & Lin, 2006, 2007); but in practice the orm procedure is much easier to implement.

Another advantage of using the orm procedure is its wide applicability: it can be fit to any

orderable outcome. For example, when the outcome is ordered categorical, the orm proce-

dure with the logit link function is the commonly used proportional odds model; when the

outcome is binary, it is the commonly used logistic regression model.

2.3.2 Standard Error of Partial Estimators

After obtaining the PSRs from models of X on Z and of Y on Z, we can obtain our partial

estimator simply as the correlation of PSRs. Here, we focus our discussion on the estima-

tion of its standard error. Li & Shepherd (2010) described two approaches, a bootstrap

method and a large sample approximation, for obtaining the distribution of the correlation

of PSRs in the special case where X and Y are both ordered categorical variables. Similar

approaches can be applied with more general X and Y .

The bootstrap method is easy to implement: sample with replacement from (X ,Y,Z),

re-fit models, compute PSRs, calculate their correlation, and repeat multiple times. The

resulting bootstrap distribution can be used to construct confidence intervals and to test
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the null hypothesis that gXY ·Z = 0. Note that when PSRs are obtained from nonparametric

models such as kernel smoothers, if the bandwidth is not pre-specified but chosen based on

the data, the bandwidth selection needs to be incorporated into each bootstrap replication

to account for this extra variability.

When both sets of PSRs are obtained from parametric or semiparametric models that

can be written in the form of estimating equations, it may be more computationally efficient

to obtain standard error estimates based on large sample approximation using M-estimation

techniques. Briefly, let Yx(·) denote estimating equations for the model of X on Z with

parameter qx, and Yy(·) denote estimating equations for the model of Y on Z with parameter

qy. Yx(·) and Yy(·) can be stacked together with the components necessary for computing

the correlation of PSRs, resulting in the following estimating function:

Y(Xi,Yi,Zi;q) =
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Yx(Xi,Zi;qx)

Yy(Yi,Zi;qy)

Yi,res �q1

Xi,res �q2

Yi,resXi,res �q3

Y 2
i,res �q4

X2
i,res �q5

where q = (qx,qy,q1,q2,q3,q4,q5), with q1 = E(Yi,res), q2 = E(Xi,res), q3 = E(Yi,resXi,res),

q4 = E(Y 2
i,res) and q5 = E(X2

i,res), and Ân
i=1 Y(Xi,Yi,Zi; q̂) = 0. Under the usual conditions,

p
n(q̂ �q) d�!N[0,V (q)], where V (q)=A(q)�1B(q)[A(q)�1]0,A(q)=E[�∂Yi(q)/∂q ],

and B(q) = E[Yi(q)Yi(q)0]. Since ĝXY ·Z = (q̂3 � q̂1q̂2)/
q

(q̂4 � q̂ 2
1 )(q̂5 � q̂ 2

2 ), the delta-

method can be employed to obtain the large sample distribution of ĝXY ·Z . In practice, esti-

mating the large sample distribution of the Fisher’s transformation of ĝXY ·Z , i.e., log[(1+
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ĝXY ·Z)/(1 � ĝXY ·Z)]/2, typically results in more rapid convergence to normality, and is

therefore preferable for constructing confidence intervals and test statistics based on large

sample approximations. In addition, some parameters may have known values and can be

removed from the estimating procedure. For example, q1 = q2 = 0 if F⇤ and G⇤ are prop-

erly specified, and q4 = q5 = 1/3 if X and Y are continuous and F⇤ and G⇤ are properly

specified. In our experience, however, estimation of these parameters even when the truth

is known does not have much impact on resulting confidence intervals and test statistics, so

we generally include them in the estimating equations.

2.3.3 Conditional Estimators

To obtain our conditional estimator, we need to estimate the correlation of PSRs con-

ditional on the value of Z. If Z is a categorical variable with sufficient numbers in each

category, it is natural to compute the correlation of PSRs within each level of Z. For con-

tinuous Z, smoothing is needed and can be achieved nonparametrically or parametrically.

For example, we can estimate the conditional correlation of PSRs nonparametrically

with a kernel smoothing approach, such as,

ĝXY |Z(z) =
Âxi,resyi,reswi(z,h)�Âxi,reswi(z,h)Âyi,reswi(z,h)

q

Âx2
i,reswi(z,h)� [Âxi,reswi(z,h)]2

q

Ây2
i,reswi(z,h)� [Âyi,reswi(z,h)]2

,

where wi(z,h) are weights which sum to 1, e.g., wi(z,h) = K[(zi� z)/h]/Ân
i=1 K[(zi� z)/h]

with kernel function K(·) and bandwidth h.

Alternatively, we can estimate gXY |Z using parametric models. For example, since un-

der properly specified models, both E(Xres|Z) and E(Yres|Z) converge to 0, ĝXY |Z can be ap-

proximated with Ê(XresYres|Z)/
q

Ê(X2
res|Z)Ê(Y 2

res|Z). To obtain Ê(XresYres|Z), Ê(X2
res|Z),

and Ê(Y 2
res|Z), one might fit linear regression models of XresYres on Z, X2

res on Z, and Y 2
res on

Z and transform Z with spline functions to allow flexible modeling. Specifically, when X

and/or Y are continuous variables, E(X2
res|Z) and/or E(Y 2

res|Z) converge to a constant equal
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to 1/3 under properly specified models; plugging in 1/3 or empirical estimates (ÂX2
res/n

and/or ÂY 2
res/n) could further simplify the estimation procedure.

Depending on the parametric or nonparametric methods used, standard errors and con-

fidence intervals can be estimated using the bootstrap or large sample approximation tech-

niques similar to those described in Section 2.3.2.

2.4 Numerical Illustrations and Simulations

We conducted simulations to evaluate the finite sample performance of our partial esti-

mator. Let Z ⇠ N(0,1) and
�X1

Y1

�

|Z ⇠ N
h

�a0+a1Z
b0+b1Z

�

,
� 1 rXY |Z

rXY |Z 1
�

i

with a0 = b0 = 0, a1 = 1,

and b1 = �1. We consider four scenarios: (I) X = X1 and Y = Y1; (II) X = X1 and

Y = exp(Y1); (III) Y = Y1 and X is generated by discretizing X1 with cut-off values as

the 20th, 40th, 60th, 80th percentiles of the standard normal distribution; (IV) Y = exp(Y1)

and X is the discretized version of X1 described in (III).

We first discuss the population values of our estimators in these four scenarios. In

Scenario I, since (X ,Y ) conditional on Z is normally distributed, gXY |Z has a closed-form

relationship with rXY |Z , i.e., gXY |Z = 6arcsin(rXY |Z/2)/p (Fisher, 1924). Because of this

relationship, gXY |Z is constant if we set rXY |Z constant for different values of Z, as done

throughout this section. Therefore, our partial estimator gXY ·Z = E(gXY |Z) = gXY |Z =

6arcsin(rXY |Z/2)/p . Figure 2.1 (left panel) plots gXY ·Z as a function of rXY |Z ranging

from �1 and 1. For the purpose of comparison, the traditional partial Pearson’s, Spear-

man’s, and Kendall’s correlations obtained by plugging corresponding parameters into (2.1)

are also plotted and denoted as r⇤
XY ·Z , g⇤XY ·Z , and t⇤XY ·Z , respectively. As shown in Figure

2.1, r⇤
XY ·Z = rXY |Z; t⇤XY ·Z has poor performance since its value departs from 0 even under

conditional independence (rXY |Z = 0); and our partial estimator gXY ·Z is a better approxi-

mation to rXY |Z than the traditional partial Spearman’s correlation g⇤XY ·Z , especially in the

upper tail. Scenario II is similar to Scenario I except that the exponential transformation

of Y generates extreme values and nonlinearity. All rank based correlations, including our
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Figure 2.1: Parameters in Scenarios I and III. gXY |Z and gXY ·Z are the population parameters of our conditional
and partial estimators, respectively; r⇤

XY ·Z , g⇤XY ·Z , and t⇤XY ·Z are traditional partial Pearson’s, Spearman’s, and
Kendall’s correlations based on (1), respectively; (Pc|Z �Pd|Z) is the difference between the probability of
concordance and the probability of discordance conditional on Z.

partial estimator, are unchanged, whereas partial Pearson’s correlation cannot accurately

summarize the covariate-adjusted association.

In Scenario III, X is discrete and has, when Z = 0, five evenly distributed categories.

As Z departs from 0, the conditional distribution of X becomes skewed, therefore, it is

more likely to have ties. We would expect the conditional correlation between X and Y

to become weaker as Z departs from 0. Figure 2.1 (right panel) plots gXY |Z as a function

of Z, showing this trend. Our partial estimator gXY ·Z differs, although only slightly in

this example, from E(gXY |Z). Since gXY ·Z = E(wZgXY |Z) = c⇤E(Pc|Z �Pd|Z), we also plot

wZgXY |Z and 3(Pc|Z �Pd|Z) as references. As shown in Figure 2.1, the weight, wZ , is bigger

when there are less likely to be ties in X (i.e., Z is closer to 0); and the scaling factor

c⇤ is larger than 3. Again, because it is a rank based correlation, our partial Spearman’s

correlation is identical in Scenarios III and IV.

We next evaluate the performance of estimating our partial estimators with PSRs de-

rived from linear regression models (LM), kernel smoothers (kernel), and orm procedures
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in finite samples (n = 200) in these four scenarios. In this set of simulations, we set

rXY |Z = 0.6 so that gXY ·Z ⇡ 0.582 in Scenarios I and II, and gXY ·Z ⇡ 0.520 in Scenarios

III and IV, respectively. With linear regression models, we computed two sets of PSRs: 1)

assuming normality of the error distribution, and 2) empirically, assuming a constant vari-

ance of the error distribution (Shepherd et al., in press). With kernel smoothers, we used

a Gaussian kernel and chose the bandwidth based on Silverman’s rule of thumb (Wand &

Jones, 1995). When applying orm procedures, we used both the properly specified link

function (probit) and misspecified link functions (logit, loglog, and cloglog). All simula-

tions used Fisher’s transformations and large sample approximations to compute variance

and confidence intervals for our partial estimator. The results based on 10,000 simulation

replications are shown in Table 2.1.

In summary, our partial estimators using PSRs from the orm procedure had minimal

bias, good coverage, and low mean squared error (MSE) across all four simulation scenar-

ios. In Scenario I, estimators using the orm procedure properly specified with the probit

link performed similarly to fully parametric estimators correctly assuming normality. How-

ever, because of their invariance to the exponential transformation of Y, in Scenarios II and

IV, estimators using the orm procedure easily out-performed those using PSRs from linear

models. Surprisingly, our estimators using PSRs from the orm procedure were very robust

to link function misspecification, with only slight increases in bias. The bias and MSE

of our estimators using the orm procedures were also generally smaller than those using

kernel smoothers. Other bandwidth selection algorithms may improve the performance of

kernel smoothers, but may also increase computational complexity.

In the second set of simulations, we investigated the performance of our partial esti-

mators using PSRs from the orm procedure for testing covariate-adjusted association, and

compared them with tests based on three traditional partial correlation coefficients. We set

rXY |Z = 0 under the null hypothesis (H0) and rXY |Z = 0.2 under the alternative hypothe-

sis (HA). For tests based on the traditional partial correlation coefficients, p-values were
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Table 2.1: Simulation results for evaluating our partial estimator with PSRs derived from linear models (LM),
kernel estimation (kernel), and the orm procedures with n=200 and 10,000 simulation replicates

Scenarios truth est % bias est.se emp.se MSE CP
I

LM
normality 0.582 0.582 0.01 0.048 0.049 0.0024 0.946
empirically 0.582 0.580 -0.35 0.048 0.049 0.0024 0.945

kernel
Silverman 0.582 0.552 -5.10 — 0.050 0.0034 —

orm
probit 0.582 0.577 -0.92 0.050 0.049 0.0025 0.950
logit 0.582 0.573 -1.59 0.050 0.050 0.0026 0.948
loglog 0.582 0.565 -2.85 0.050 0.049 0.0027 0.942
cloglog 0.582 0.565 -2.88 0.050 0.049 0.0027 0.941

II
LM

normality 0.582 0.394 -32.33 0.058 0.063 0.0393 0.057
empirically 0.582 0.386 -33.68 0.060 0.063 0.0424 0.051

kernel
Silverman 0.582 0.552 -5.10 — 0.050 0.0034 —

orm
probit 0.582 0.577 -0.92 0.050 0.049 0.0025 0.950
logit 0.582 0.573 -1.59 0.050 0.050 0.0026 0.948
loglog 0.582 0.565 -2.85 0.050 0.049 0.0027 0.942
cloglog 0.582 0.565 -2.88 0.050 0.049 0.0027 0.941

III
LM

normality 0.520 0.499 -3.86 0.054 0.055 0.0034 0.931
empirically 0.520 0.500 -3.72 0.054 0.055 0.0034 0.930

kernel
Silverman 0.520 0.499 -3.92 — 0.053 0.0032 —

orm
probit 0.520 0.517 -0.52 0.053 0.053 0.0028 0.945
logit 0.520 0.514 -1.02 0.053 0.053 0.0029 0.945
loglog 0.520 0.505 -2.84 0.053 0.053 0.0030 0.943
cloglog 0.520 0.504 -2.90 0.053 0.053 0.0030 0.939

IV
LM

normality 0.520 0.361 -30.52 0.054 0.056 0.0283 0.144
empirically 0.520 0.382 -26.50 0.053 0.055 0.0219 0.226

kernel
Silverman 0.520 0.499 -3.92 — 0.053 0.0032 —

orm
probit 0.520 0.517 -0.52 0.053 0.053 0.0028 0.945
logit 0.520 0.514 -1.02 0.053 0.053 0.0029 0.945
loglog 0.520 0.505 -2.84 0.053 0.053 0.0030 0.943
cloglog 0.520 0.504 -2.90 0.053 0.053 0.0030 0.939

est is the mean of the point estimates.
est.se is the mean of the standard error estimates.
emp.se is the standard deviation of the point estimates
CP is the coverage probability of 95% confidence intervals in the 10,000 simulation replicates
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Table 2.2: Type I error rate and power (%) for testing covariate-adjusted association using our partial esti-
mator and the traditional partial correlation coefficients with n=200 and 10,000 simulation replicates

Scenarios our partial estimator traditional partial coefficients

probit logit loglog cloglog Pearson Spearman Kendall
I

H0 4.96 4.97 5.11 5.04 5.01 6.36 67.42
H1 77.47 76.62 76.44 76.86 81.89 69.17 1.77

II

H0 4.96 4.97 5.11 5.04 5.20 6.36 67.33
H1 77.47 76.62 76.44 76.86 33.79 69.16 1.77

III

H0 5.12 5.12 5.29 5.29 5.16 6.64 72.04
H1 67.19 66.81 64.79 65.02 68.42 65.56 4.49

IV

H0 5.12 5.12 5.29 5.29 5.16 6.64 72.04
H1 67.19 66.81 64.79 65.02 26.85 65.56 4.49

obtained based on large sample approximations using the R package ppcor (Kim, 2015).

Type I error rate and power are reported in Table 2.2. Consistent with the observation in

Figure 2.1, tests based on partial Kendall’s correlations had poor performance: high type

I error rate and almost no power. Compared with the partial Pearson’s correlation, our

estimators were slightly less efficient when the relationships were linear or approximately

linear (Scenarios I and III), but much more robust in the presence of nonlinearity and ex-

treme values (Scenarios II and IV). Also, our estimators had better performance than the

traditional ad hoc partial Spearman’s correlation: type I error rate closer to 5% and gener-

ally higher power.

2.5 Application Examples

2.5.1 Wage and Education

We first illustrate our estimators by assessing the association between wage and educa-

tion using a dataset of 3,000 male workers in the mid-Atlantic region of the United States

from 2003 to 2009. This dataset is available in the R package ISLR (James et al., 2013).

Since education was collected as an ordered categorical variable with 5 levels and the distri-

bution of wage is right-skewed, Spearman’s rank correlation is preferred for its robustness.
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Also, since wage and education are associated with other factors, e.g., job class and age, it

is desirable to adjust Spearman’s rank correlation for these factors.

Using our approach, we computed PSRs for education (Xres) and for wage (Yres) using

the orm procedure with the logit link function and including job class, age (transformed

with restricted cubic splines using 5 knots), race, health condition, marital status, and cal-

ender year as covariates. Our partial estimator was 0.44 with 95% confidence interval (CI)

(0.41, 0.47), which was lower than the unadjusted Spearman’s rank correlation 0.50 (95%

CI: 0.47, 0.53). These confidence intervals and all others in this section, were based on

large sample approximations with Fisher’s transformation; bootstrap confidence intervals

were very similar and are not shown. To explore whether the association between wage

and education varied for different job classes and age groups, we estimated the correlation

of PSRs conditional on job class and conditional on age using the approaches described

in Section 3.3. Specifically, we fitted linear regression models of XresYres, X2
res, and Y 2

res

including job class or age (transformed with restricted cubic splines using 5 knots) as co-

variates, estimated the conditional expectations of XresYres, X2
res, and Y 2

res, and then plugged

in these estimates to obtain ĝXY |Z = Ê(XresYres|Z)/
q

Ê(X2
res|Z)Ê(Y 2

res|Z). We found that

after adjusting for other covariates, the Spearman’s rank correlation between age and edu-

cation was significantly higher in the information job class than in the industrial class: 0.48

(95% CI: 0.44, 0.52) vs. 0.41 (95% CI: 0.36, 0.45); the p-value for the difference was 0.02.

The age-specific conditional estimates and 95% pointwise confidence intervals, plotted in

Figure 2.2, suggested that after adjusting for other factors, the Spearman’s rank correlation

between education and wage was weaker among those who were younger (< 30 years). We

repeated the analysis with the nonparametric approaches, i.e., obtaining the kernel weighted

conditional correlation of PSRs for age and calculating the correlation of PSRs stratified

by job class, and found very similar results (see Figure 2.2).

Additional analyses were performed including implementing the orm procedure with

other link functions, and results were very similar to those reported here. For the purpose
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Figure 2.2: The age-specific conditional Spearman’s rank correlation between wage and education modeled
with parametric and nonparametric (kernel-based) approaches. The shaded region is the pointwise 95%
confidence intervals from the parametric approach. For the nonparametric approach, we used a Gaussian
kernel and selected the bandwidth based on Silverman’s rule of thumb (Wand & Jones, 1995). Note, these
estimates are also adjusted for job class, race, health condition, marital status, and calender year, since we
also included them in the models as covariates when computing PSRs.
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of comparison, we also fitted a linear regression model on log wage, including education

as a categorical variable, all other covariates, and also interaction terms between education

and job class, and between education and age. This linear regression model suggested

both interaction terms were significant, which was consistent with the results using our

approach.

2.5.2 SCIP Survey Data

In a second example, we use our partial estimator as a quick and robust tool to summa-

rize a large number of covariate-adjusted associations. We illustrate our method with the

endline survey data of the Strengthening Communities through Integrated Programming

(SCIP) project. This World Vision project was funded by the U.S. Government with the

aim to improve the health and livelihood of children, women, and families in Mozambique.

In this survey, 3,892 female heads of household were asked to give opinions on their over-

all quality of life, health care, nutrition, education, and other aspects of livelihood. Many

of the survey questions asked the participants to rank their opinions on an ordinal scale.

The investigators were interested in the correlations among the participants’ responses to

different questions while adjusting for relevant demographic factors, such as the age, pri-

mary language, marital status, religion, urban/rural region, and district. The purpose of

such an analysis is largely exploratory – to provide a quick view of the pairwise correlation

between the responses to all survey questions. This information can then be used to focus

on particular sets of questions for further study.

We included all 171 questions with orderable responses from 13 modules of the ques-

tionnaire, including 54 questions with binary responses (e.g, Yes or No), 106 questions

with ordinal responses (e.g., strongly disagree, disagree, neutral, agree, strongly agree),

and 11 questions with continuous responses. Missing values were common in this dataset.

We performed simple imputation with the median or mode for the relatively few missing

values of demographic factors ( 5%). We found that a lot of missing values were not due
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to nonresponse from participants, but rather due to the design of the questionnaire. For

example, some questions were designed to follow up an earlier question, and they were

only asked if the participants gave certain answers to the earlier questions. Because of this

design, and also because the investigators were interested in a quick initial pass, we decided

to focus our analysis on participants who actually responded to the survey questions, i.e.,

we did not impute any missing responses.

We fit a total of 171 models using the orm procedure with the logit link function for

the survey questions with the demographic factors listed above included as covariates, and

then obtained the PSRs. The pairwise correlation of PSRs were computed among partic-

ipants who responded to both questions. The heatmap of our covariate-adjusted partial

Spearman’s correlation matrix is plotted in Figure 2.3. As we expected, responses to ques-

tions within the same module tended to be correlated since those questions were usually

related to the same topics. But the strength of the correlation could be quite different even

within the same module. To facilitate the visualization of the results, we developed a web

application (https://scip.shinyapps.io/scip app) to allow investigators to zoom into any spe-

cific area in the heatmap and check the detailed information about the questionnaire and

responses. The web application includes 95% confidence intervals based on large sample

approximations and Fisher’s transformation, and also compares results with the unadjusted

Spearman’s rank correlation. Although their patterns were very similar, we found some

interesting changes after adjusting for demographic factors. For example, the unadjusted

Spearman’s rank correlation among the 3,782 pairs of responses to questions “Do you have

a separate room which is used as a kitchen? (1) No (2) Yes” and “How many years of

education have you completed?” was 0.2 (95% CI: 0.17, 0.23), whereas the corresponding

correlation of PSRs was 0.08 (95% CI: 0.05, 0.12), suggesting that the strength of associa-

tion between the responses to these questions might be partly due to demographic factors.

Similar results were obtained when fitting the orm models with other link functions, again

demonstrating the robustness of our approach.
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Figure 2.3: The heatmap of our partial estimators for pairwise Spearman’s rank correlation adjusting for
demographic factors for responses to 171 questions from 13 modules of the survey labeled as 1: overall
quality of life, 2: mental health, 3: income, 4: food and nutrition, 5: material goods, 6: transportation, 7:
health care, 8: voluntary counseling and testing (VCT) services, 9: HIV prevention, 10: social support, 11:
community service, 12: education test result, and 13: perception of education. An interactive figure of results
is at https://scip.shinyapps.io/scip app.
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2.6 Discussion

In this work, we express the population parameter of Spearman’s rank correlation in

terms of residuals, which connects this commonly used nonparametric statistic to a variety

of regression models. Our methods therefore permit the adjustment of Spearman’s rank

correlation for multidimensional covariates. Our framework is very general, applicable to

any orderable variables modeled with estimable fitted distributions. As a specific applica-

tion with the orm procedure, our proposed covariate-adjusted Spearman’s rank correlation

preserves the rank-based nature of Spearman’s correlation while allowing flexible model-

ing of covariates. The wide applicability, robustness, and computational simplicity of our

estimators make them very useful, particularly when dealing with big data, as hinted at in

our survey example.

For implementation of our covariate-adjusted Spearman’s correlation, we favor using

PSRs from the orm procedure, as they appear to be quite robust and efficient. It should

be noted that the validity of the large sample distribution of our estimators when using the

orm procedure relies on the asymptotic normality of the orm estimators themselves, which

has never formally been proved. More generally, the asymptotic properties of the non-

parametric maximum likelihood estimator of semiparametric transformation models with

uncensored data have not been fully developed and are quite challenging to derive (Zeng &

Lin, 2007; Zeng, Kosorok, & Lin, personal communication). From fairly extensive simu-

lations (not shown), the orm estimators appear to be consistent and asymptotically normal,

and all of our simulation results of the covariate-adjusted Spearman’s correlation using the

orm procedure have been well behaved (e.g., confidence intervals based on large sample

distributions covering at the nominal level) and quite robust to misspecification of the link

function. Further study of the orm procedure is certainly warranted.

Since the PSRs are widely defined, our framework has the potential to be extended to

more complicated settings, such as longitudinal data in which the observations are not inde-

pendent and censored outcomes in which fitted distributions are not completely determined.
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We are studying extensions in these settings.

2.7 Supplemental Materials

2.7.1 Derivation of Population Parameter of Our Partial Estimator

Here we derive the population parameter of our partial estimator.

Since E[r(X ,FX |Z)|Z] = E[r(Y,GY |Z)|Z] = 0, E[r(X ,FX |Z)] = EZ{E[r(X ,FX |Z)|Z]}= 0

and E[r(Y,GY |Z)] = EZ{E[r(X ,GY |Z)|Z]}= 0. Then, we have

gXY ·Z =corr[r(X ,FX |Z),r(Y,GY |Z)]

= E[r(X ,FX |Z)r(Y,GY |Z)]/
q

var[r(X ,FX |Z)]var[r(Y,GY |Z)]

= EZ{E[r(X ,FX |Z)r(Y,GY |Z)|Z]}/
q

var[r(X ,FX |Z)]var[r(Y,GY |Z)]

= EZ{cov[r(X ,FX |Z),r(Y,GY |Z)|Z]}/
q

var[r(X ,FX |Z)]var[r(Y,GY |Z)]

= c⇤EZ(Pc|Z �Pd|Z)

=
EZ

n

q

var[r(X ,FX |Z)|Z]var[r(Y,GY |Z)|Z]corr[r(X ,FX |Z),r(Y,GY |Z)|Z]
o

q

var[r(X ,FX |Z)]var[r(Y,GY |Z)]

= EZ

(

s

var[r(X ,FX |Z)|Z]var[r(Y,GY |Z)|Z]
var[r(X ,FX |Z)]var[r(Y,GY |Z)]

gXY |Z

)

= EZ(wZgXY |Z),

where c⇤ =
�

var[r(X ,FX |Z)]var[r(Y,GY |Z)]
 �1/2 and wZ =

r

var[r(X ,FX |Z)|Z]var[r(Y,GY |Z)|Z]
var[r(X ,FX |Z)]var[r(Y,GY |Z)]

.

Note, the weight wZ can be written as wZ =paX |ZaY |Z , where aX |Z =
var[r(X ,FX |Z)|Z]
var[r(X ,FX |Z)]

and

aY |Z =
var[r(Y,GY |Z)|Z]
var[r(Y,GY |Z)]

. Since E[r(X ,FX |Z)|Z] = 0, we have

var[r(X ,FX |Z)] = E[var[r(X ,FX |Z)]|Z].

The denominator of aX |Z is the expectation of its numerator, and therefore aX |Z is a nor-
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malized function with E(aX |Z) = 1. Similar is aY |Z . This normalization effectively gives a

high weight to Z with a relatively high var[r(X ,FX |Z)|Z] or var[r(Y,GY |Z)|Z].

Specifically, for continuous X and Y , var[r(X ,FX |Z)] = var[r(Y,GY |Z)] = 1/3. There-

fore, th scaling factor c⇤ = 3 and the weight wZ = 1. Then,

gXY ·Z = 3EZ(Pc|Z �Pd|Z) = EZ(gXY |Z)

2.7.2 Derivation of Population Parameter of Our Conditional Partial Estimator

Here we derive the population parameter of our conditional partial Spearman’s rank

correlation gXY ·Z|Z1 = corr[r(X ,FX |Z),r(Y,GY |Z)|Z1].

Note,

E[r(X ,FX |Z)|Z1] =
Z

(X ,Z2)
r(X ,FX |Z) f (X ,Z|Z1)d(X ,Z2)

=
Z

(X ,Z2)
r(X ,FX |Z) f (X |Z) f (Z)/ f (Z1)d(X ,Z2)

=
Z

(X ,Z2)
r(X ,FX |Z) f (X |Z) f (Z2|Z1)d(X ,Z2)

=
Z

Z2



Z

X
r(X ,FX |Z) f (X |Z)dX

�

f (Z2|Z1)dZ2

=
Z

Z2
E[r(X ,FX |Z)|Z] f (Z2|Z1)dZ2

= 0.

This holds because E[r(X ,FX |Z)|Z] =0 for properly specified models. Similarly, we also
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have E[r(Y,GY |Z)|Z1] = 0. Therefore,

cov[r(X ,FX |Z),r(Y,GY |Z)|Z1]

=E[r(X ,FX |Z)r(Y,GY |Z)|Z1]

=
Z

(X ,Y,Z2)
r(X ,FX |Z)r(Y,GY |Z) f (X ,Y,Z2|Z1)d(X ,Y,Z2)

=
Z

(X ,Y,Z2)
r(X ,FX |Z)r(Y,GY |Z) f (X ,Y |Z) f (Z)/ f (Z1)d(X ,Y,Z2)

=
Z

Z2



Z

(X ,Y )
r(X ,FX |Z)r(Y,GY |Z) f (X ,Y |Z)d(X ,Y )

�

f (Z2|Z1)dZ2

=
Z

Z2
E
⇥

r(X ,FX |Z)r(Y,GY |Z)|Z
⇤

f (Z2|Z1)dZ2

=
Z

Z2
cov[r(X ,FX |Z),r(Y,GY |Z)|Z] f (Z2|Z1)dZ2

=
Z

Z2
(Pc|Z �Pd|Z) f (Z2|Z1)dZ2

=EZ2|Z1(Pc|Z �Pd|Z)

=EZ2|Z1(c
�1
Z gXY |Z) , where cZ =

�

var[r(X ,FX |Z)|Z]var[r(Y,GY |Z)|Z]
 �1/2

.

Then, we have

gXY ·Z|Z1 =
cov[r(X ,FX |Z),r(Y,GY |Z)|Z1]

q

var[r(X ,FX |Z)|Z1]var[r(Y,GY |Z)|Z1]

=c⇤Z1
EZ2|Z1(Pc|Z �Pd|Z)

=EZ2|Z1(w
⇤
Z1

gXY |Z),

where c⇤Z1
=
�

var[r(X ,FX |Z)|Z1]var[r(Y,GY |Z)|Z1]
 �1/2 and

w⇤
Z1

=

s

var[r(X ,FX |Z)|Z]var[r(Y,GY |Z)|Z]
var[r(X ,FX |Z)|Z1]var[r(Y,GY |Z)|Z1]

.
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When both X and Y are continuous, since

var[r(X ,FX |Z)|Z1] =E[r(X ,FX |Z)
2|Z1]

=
Z

(X ,Z2)
r2(X ,FX |Z) f (X ,Z2|Z1)d(X ,Z2)

=
Z

(X ,Z2)
r2(X ,FX |Z) f (X |Z) f (Z)/ f (Z1)d(X ,Z2)

=
Z

(X ,Z2)
r2(X ,FX |Z) f (X |Z) f (Z2|Z1)d(X ,Z2)

=
Z

Z2



Z

X
r2(X ,FX |Z) f (X |Z)dX

�

f (Z2|Z1)dZ2

=
Z

Z2
E[r(X ,FX |Z)|Z]2 f (Z2|Z1)dZ2

=
Z

Z2
var[r(X ,FX |Z)|Z] f (Z2|Z1)dZ2

=
Z

Z2
1/3 f (Z2|Z1)dZ2

=1/3,

and similarly, var[r(Y,GY |Z)|Z1] = 1/3, we have c⇤Z1
= 3 and w⇤

Z1
= 1. That is,

gXY ·Z|Z1 = EZ2|Z1(gXY |Z) = 3EZ2|Z1(Pc|Z �Pd|Z)

Then, it is easy to verify gXY ·Z = EZ1(gXY ·Z|Z1). However, when one or both of X and Y

are discrete, since w⇤
Z1

and c⇤Z1
are usually not constant, this relationship generally does not

hold.
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Chapter 3

Modeling Continuous Outcomes Using Ordinal Regression with Cumulative Probabilities

In this chapter, we study the application of a widely used ordinal regression model,

the cumulative probability model, for continuous outcomes. Cumulative probability mod-

els applied to continuous outcomes can be thought of as semiparametric transformation

models: a linear relationship is assumed between covariates and a latent variable whose

distribution is implied by the choice of link function, and the observed continuous response

variable arises from an unspecified monotonic transformation of the latent variable. We de-

scribe estimation and inference, and discuss model assumptions. Extensive simulations are

performed to investigate the finite sample performance of these models with and without

correct link function specification. We find that properly specified cumulative probability

models generally have good finite sample performance with moderate sample sizes, but

that bias may occur when the sample size is small. Cumulative probability models are

fairly robust to minor or moderate link function misspecification in our simulations. We

illustrate their application in a study of the treatment of HIV. CD4 cell count and viral load

6 months after the initiation of antiretroviral therapy are modeled using cumulative prob-

ability models; both variables typically require transformations and viral load has a large

proportion of measurements below a detection limit.

3.1 Introduction

Continuous data are also ordinal, and ordinal regression models can be fit to continuous

outcomes (Sall, 1991; Harrell, 2015). The first ordinal regression model was developed by

Walker & Duncan (1967) as an extension of logistic regression to ordered categorical data.

This class of models was later studied by McCullagh (1980) and referred to as proportional

odds models for the logit link and proportional hazards models for the complementary
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log-log link. To distinguish this class of models from other ordinal regression models

(e.g., continuation ratio and adjacent-categories models), these models have been referred

to as cumulative link models (Agresti, 2010). However, this nomenclature is problematic

because probabilities, not link functions, are added. Hence, we refer to this class of models

as cumulative probability models.

The use of ordinal cumulative probability models for continuous outcomes has many at-

tractive features. First, ordinal regression models are robust because they only incorporate

the order information of response variables and are therefore invariant to any monotonic

transformation of outcomes. This is particularly useful when the distributions of continu-

ous responses are skewed and different transformations may give conflicting results. Sec-

ond, cumulative probability models directly model the conditional cumulative distribution

function (CDF), from which other components of the conditional distribution (e.g., expec-

tation and quantiles) can be easily derived. Therefore, one can examine various aspects

of the conditional distribution from a single cumulative probability model. Finally, cumu-

lative probability models can handle any orderable response, including those with mixed

types of continuous and discrete distributions. This may be particularly useful when deal-

ing with detection limits, e.g., measurements censored at an assay detection limit resulting

in a mixture of an undetectable category and detectable quantities.

Although the idea of using ordinal cumulative probability models for continuous out-

comes is attractive and has been around for a while, we have not seen it used very often

in practice. This may be in part due to computing limitations, as most software that fit cu-

mulative probability models are currently designed for ordered categorical outcomes with

relatively small numbers of potential response values. This need not be the case anymore,

with modern computing power and improved algorithms (Sall, 1991), implemented in ex-

isting software (Harrell, 2016). However, we believe the primary reason for limited use

of these models with continuous outcomes is a lack of awareness. Cumulative probability

models were first invented to handle discrete ordinal outcomes, and their potential utility

33



for the analysis of continuous outcomes has been largely unrecognized. Furthermore, we

are unaware of an in-depth study of the use of cumulative probability models for continuous

outcomes.

The goal of this manuscript is to describe and study the application of cumulative prob-

ability models to continuous outcomes. In Section 3.2 we describe details of the approach

including the motivation, connections with semiparametric transformation models, esti-

mation, inference, assumptions and model diagnostics. In Section 3.3, we investigate the

finite sample performance of cumulative probability models with and without proper link

function specification through simulations. In Section 3.4, we illustrate their application

to an HIV study modelling CD4 cell count and viral load 6 months after the initiation of

antiretroviral therapy. Both variables typically require transformations and viral load has a

large proportion of measurements below a detection limit. Section 3.5 contains a discussion

and Section 3.6 contains additional simulation results.

3.2 Cumulative Probability Models for Continuous Outcomes

3.2.1 Latent Variable Motivation

For a discrete ordinal response variable Y with K categories and covariates X , a cumu-

lative probability model can be written as

G[P(Y  j|X)] = a j �bX for j = 1, ...,K �1, (3.1)

where G is a link function (McCullagh, 1980; Agresti, 2010). It is well known that the

cumulative probability model (3.1) can be motivated by assuming there is an underlying

continuous latent variable Y ⇤ from a parametric linear model Y ⇤ = bX + e , where e ⇠

Fe ⌘ G�1, and then assuming the observed response variable Y is generated by discretizing

the latent variable Y ⇤, i.e., Y = j if and only if a j�1 < Y ⇤  a j, where �• ⌘ a0 < a1 <

... < aK�1 < aK ⌘ +•. Hence, the cumulative probability model (3.1) can be motivated
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Table 3.1: Commonly used link functions and their corresponding error distributions. F(·) is the CDF of the
standard normal distribution.

Name Link Function Error Distribution CDF
logit log [y/(1� y)] logistic exp(y)/[1+ exp(y)]
probit F�1(y) normal F(y)
loglog � log [� log(y)] extreme value type II (Gumbel Maximum) exp [�exp(�y)]
cloglog log [� log(1� y)] extreme value type I (Gumbel Minimum) 1� exp [�exp(y)]
cauchit tan[p(y�1/2)] Cauchy tan�1(y)/p +1/2

from a linear transformation model: Y = H(bX + e), where e ⇠ G�1 and H is a left-

continuous non-decreasing step function mapping the latent variable Y ⇤ to the observable

discrete response Y , e.g., H(y⇤) = j if a j�1 < y⇤  a j. Table 3.1 summarizes commonly

used link functions and their corresponding error distributions.

Cumulative probability models for continuous response variables can be similarly mo-

tivated. Consider an underlying latent variable Y ⇤ = bX + e , where e ⇠ G�1 and the ob-

served response variable Y results from a monotonic increasing mapping, H(Y ⇤). That is,

consider a linear transformation model

Y = H(bX + e), (3.2)

where the transformation function H(·) is a monotonic increasing function. Since

P(Y  y|X) = P[H(bX + e) y|X ]

= P[bX + e  H�1(y)|X ]

= P[e  H�1(y)�bX |X ]

= G�1[H�1(y)�bX ],

we can rewrite the model in the form of cumulative probability models

G[P(Y  y|X)] = a(y)�bX , (3.3)
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Figure 3.1: (a): H(·) is not strictly increasing. Define H�1(y) = sup{x : H(x)  y}. In this example,
H�1(y1) = a1. This could be used to illustrate the detection limit issue. When the true underlying continuous
quantity Y ⇤ is below the detection limit a1, the observed measurement Y collapses to the “undetectable” (the
lowest) category, which results in a mixed type of continuous and discrete distributions for Y . (b): A special
case where H(·) is step function: H�1(yi) = ai. Y can only take on limited number of possible values and is
a discrete ordinal variable.

where a(y) = H�1(y). The above argument only needs H(·) to be a monotonic increasing

function and does not require a specific form for H(·). That is, we do not assume a lin-

ear relationship between response Y and covariates, but only require linearity after some

unspecified monotonic transformation of Y . The above derivation also works when H(·)

is not strictly increasing. If H(·) is constant on some interval as shown in Figure 3.1(a),

the observed response variable Y has the mixed types of continuous and discrete distribu-

tions, and we can define H�1(y) = sup{x : H(x) y}. In the extreme case where H(·) is a

step function as shown in Figure 3.1(b), the observed response Y is truly a discrete ordinal

variable with a fixed number of categories. Therefore, cumulative probability models moti-

vated from the transformation of latent variables are applicable to continuous, discrete, and

mixed types of ordinal variables.

Unlike other commonly used continuous regression models which only focus on one as-

pect of the conditional distribution, e.g., the conditional mean for linear regression models

or the conditional quantiles for quantile regression models, cumulative probability mod-
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els model the entire conditional distribution, FY |X(y) = G�1[a(y)� bX ]. Specifically,

FY |X=0(y) = G�1[a(y)], or a(y) = G[FY |X=0(y)]; therefore, the intercept a(y) can be in-

terpreted as the link function transformed outcome CDF at baseline X = 0. Since a(y) =

H�1(y), it can also be interpreted as the transformation needed for Y to best fit a parametric

linear regression model with the error term e ⇠ G�1. The association between covariates

X and the response variable Y is captured by the slope parameter, �b . Depending on the

link function chosen, the slope, �b , may have a nice interpretation, e.g., as a log-odds

ratio if G is the logit link function or as a log-hazard ratio if G is the cloglog link function.

Because cumulative probability models directly model the conditional CDF, other compo-

nents of the distribution, such as the conditional expectation or conditional quantiles, can

be readily derived. In this sense, cumulative probability models can provide more details of

the conditional distributions with fewer assumptions compared with other commonly used

regression models for continuous responses.

3.2.2 Nonparametric Maximum Likelihood Estimation

The latent variable motivation relates cumulative probability models to semiparametric

transformation models. Zeng & Lin (2007) studied these type of semiparametric transfor-

mation models with censored data. They proposed a nonparametric maximum likelihood

estimator (NPMLE) for this model and established its consistency, asymptotic normality,

and asymptotic efficiency. NPMLE can be viewed as a generalization of the maximum

likelihood estimator for semiparametric or nonparametric models, in which the likelihood

function is modified by replacing the functional parameter by an empirical function with

jumps only at the observed data. For example, in Zeng & Lin (2007), the likelihood func-

tion was first constructed based on the counting process and then modified by approxi-

mating the baseline cumulative intensity function using a step function with jumps at the

observed failure times.

For cumulative probability models with general continuous outcomes, we consider a
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similar approach but with a different parameterization. For a given dataset of size n with

the continuous response Y and p-dimensional covariate X , we order the observations so that

y1 < y2 < · · ·< yn (assuming no ties), and then approximate a(y) using a step function with

steps at each observed value yi and denote them as ↵= (a1, · · · ,an), where a1 < a2 · · ·<

an. Since the conditional probability density function for observation i can be written

as f (yi|X = xi) = limDy!0
FY |X=xi(yi)�FY |X=xi(yi�Dy)

Dy = limDy!0
G�1[a(yi)�bx]�G�1[a(yi�Dy)�bx]

Dy ,

we approximate the contribution of observation i to the likelihood with f ⇤(yi|xi)µ [G�1(ai�

bXi)�G�1(ai�1 �bXi)]. Therefore, the NPMLEs can be obtained by maximizing

L⇤(b ,↵) =
n

’
i=1

f ⇤(yi|xi)

µ
n

’
i=1

[G�1(ai �bxi)�G�1(ai�1 �bxi)].

Since a0 and an are only present in the first and the last term of L⇤, respectively, and

also since G�1 is a monotonic increasing function, L⇤ is maximized when â0 = �• and

ân =+•. Plugging in â0 and ân, L⇤ can be simplified as

L⇤(b ,↵) µ [G�1(a1 �bx1)][G�1(a2 �bx2)�G�1(a1 �bx2)] · · · [1�G�1(an�1 �bxn)],

(3.4)

with a total of n�1 intercepts (assuming no ties) and p slopes to estimate.

Note that L⇤(b ,↵) has the same structure as the multinomial likelihood of the cumu-

lative probability model for a discrete variable with only one observation in each category.

Therefore, maximizing L⇤(b ,↵) can be easily achieved by treating Y as a discrete vari-

able (each value of observed Y as one category) and fitting the discrete cumulative prob-

ability model using standard statistical software. Although this approach is convenient

in practice, computational challenges arise with large sample sizes because the Newton-

Raphson algorithm typically used for maximization requires inverting the Hessian matrix

whose dimensions (n� 1+ p by n� 1+ p) increase with the sample size. However, as
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Figure 3.2: (a) Each observation’s contribution to the score function assuming observations are ordered by
the value of y, i.e., y1 < y2 < · · ·< yn. White region indicates zero and grey region indicates none-zero values.
(b) The bordered tridiagonal structure of Hessian matrix of log(L⇤) with respect to intercepts and slopes.

shown in Figure 3.2, due to the special structure of the score functions, the Hessian matrix

of log(L⇤) with respect to the intercepts has a block tridiagonal structure. That is, large

regions of the Hessian are 0. With this structure, the matrix inversion can be solved ef-

ficiently through Cholesky decomposition (Sall, 1991). Taking advantage of these facts,

Harrell (2016) implemented a computationally efficient algorithm to obtain the NPMLE

with the orm function in the rms R package. Note, the orm function uses a slightly differ-

ent notation, i.e., G[1�FY |X(y)] =aorm(y)+bormX . For symmetric error distributions such

as normal and logistic distributions, whose corresponding link functions have the property

G(1� x) = G(x), the regression coefficients from the orm function differ with those from

Formula (3.3) only by sign. But for the cloglog and loglog link functions, this property

does not hold. Instead, Formula (3.3) with the cloglog link function corresponds to the

orm function with the loglog link function and vice versa. In this paper, we use the orm

function to fit all cumulative probability models for continuous responses, but we use the

notation from (3.3) to be consistent with the literature for cumulative probability models.
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Figure 3.3: (a): An example of the estimated conditional CDF and its pointwise confidence intervals. (b):
An example of the estimated pth quantile and its confidence intervals. The pth quantile of the conditional
distribution, denoted as Qp, and its confidence interval (LB, UB) could be obtained from the linear interpola-
tion of yi�1 and yi, where yi = inf{y : F̂Y |X (y)� p}, based on the estimated conditional CDF (or its pointwise
confidence intervals).

The variance and covariance matrix of b̂ and ↵̂ can be obtained by treating L⇤ as a

parametric likelihood and inverting the observed information matrix for all these parame-

ters. Again, this can be achieved in a computationally efficient way due to the bordered

tridiagonal structure of the Hessian matrix. With the NPMLE of (b ,↵) and their variance-

covariance estimators, the conditional CDF evaluated at the observed values can be cal-

culated directly, and their standard error estimates can be obtained by the delta method.

Given the order constraint of the cumulative probabilities, it is natural to use a step func-

tion with jumps at the observed values to approximate the entire conditional CDF. Figure

3.3(a) shows an example of the step function estimator for the entire conditional distribu-

tion and its pointwise 95% confidence interval. With the estimated CDF, other properties

of the conditional distribution can be easily derived. For example, we can estimate the

conditional mean as Ê(Y |X) = Ân
i=1 yi f̂ (yi|X) = Ân

i=1 yi[G�1(âi� b̂X)�G�1(âi�1� b̂X)]

and obtain its standard error estimate by the delta method. Also, as illustrated in Figure
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3.3(b), the conditional quantiles and their confidence intervals can be obtained from linear

interpolation of the inverse of the conditional CDF and its pointwise confidence intervals,

respectively.

It should be noted that there is no general theory for the asymptotic properties of NPM-

LEs. In the paper of Zeng & Lin (2007), the authors only prove the consistency, asymptotic

normality, and asymptotic efficiency for censored data and their proofs rely on the bound-

edness of the estimator of H(·). Based on personal communication, these authors have

been working on establishing the asymptotic properties of NPMLEs for semiparametric

transformation models with uncensored data. However, for a general continuous response,

both the true value of H(·) and its estimator could be unbounded. This imposes tremen-

dous technical difficulties in the proofs. In this manuscript we do not attempt to fill this

gap in the theory. Instead, we perform extensive simulations (Section 3.3 and additional

simulations in Section 3.6) that suggest that with proper model specification (i.e., cor-

rectly specifying the link function and the mean model, but leaving H(·) unspecified), the

NPMLE procedure just described results in consistent, asymptotically normal estimators

with well-approximated variance.

3.2.3 An Illustration of Cumulative Probability Models

We illustrate cumulative probability models and compare them with nonparametric and

parametric models in the following simple example. Consider a single binary covariate

X ⇠ Bernoulli(p), where p = 0.5, the latent response Y ⇤ = bX + e , where b = 1 and

e ⇠ N(0,1), and the observable response Y = H(Y ⇤). For simplicity, we set H(y) = y, that

is, no transformation is needed. We order the observations so that y1 < y2 < ... < yn. In

this setting, since the covariate is binary, both nonparametric and parametric models can

be easily applied to estimate the conditional CDF. Nonparametrically, we can compute the

empirical CDFs for the subgroup X = 0 and the subgroup X = 1, respectively. Parametri-

cally, we can fit a linear regression model to estimate the conditional mean and variance,
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Figure 3.4: Estimation of conditional CDF from cumulative probability models compared with parametric
and nonparametric models in a simple example: (a) with the sample size of 10, (b) with the sample size of
100, and (c) with the sample size of 1000.
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and then calculate the conditional CDF using the cumulative probability function of the

normal distribution. Figure 3.4 shows the estimation of conditional CDFs with different

approaches when the sample size is 10, 100 and 1000, respectively.

The nonparametric approach only uses information from each subgroup to estimate its

conditional CDF, i.e., the empirical CDF is a step function with jumps only at the observed

values within each subgroup, e.g., 6 jumps for X = 0 and 4 jumps for X = 1 in the specific

example with the sample size of 10 in Figure 3.4(a). The parametric approach (the normal

linear regression model) pools information from all observations and also uses the assump-

tion of a normal error distribution to provide smooth estimates for the conditional CDFs.

The cumulative probability model (semiparametric) provides something in between, i.e.,

the estimates are step functions but with jumps at observed values from both subgroups,

e.g., 10 jumps for both X = 0 and X = 1 as shown in the middle panel of Figure 3.4(a).

The nonparametric approach does not make any assumptions about the conditional distri-

butions; therefore, it is the most robust estimation procedure. But it is not efficient because

it only uses information within each subgroup and it is not easily extended to continuous

or multivariate X . The parametric approach assumes normality for the conditional distri-

bution. It is most efficient if the assumption is properly specified, but not robust. The

cumulative probability model does not make full parametric assumptions about the con-

ditional distributions (i.e., it only assumes that after some unspecified transformation, the

data are normal), but still pools information by assuming a shared shape for the conditional

distributions. Therefore, the cumulative probability model provides a compromise between

efficiency and robustness.

3.2.4 Assumptions of Cumulative Probability models

Cumulative probability models have an assumption of parallelism. That is, the differ-

ence between link function transformed conditional CDFs for different values of covariates

is constant, i.e., G�1[FY |X=x2(y)]�G�1[FY |X=x1(y)] = b (x2�x1), which is free of y. Specif-
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Figure 3.5: (a): The parallelism assumption is implicitly assumed in normal linear regression models. But
additionally, these models assume linearity for the link function (probit) transformed conditional CDF as
a linear function of y. (b): The parallelism assumption is also assumed in other parametric transformation
models where both the error distribution and the transformation are specified. In this example, we set e ⇠G�1

and H(y) = exp(y). But in addition to the parallelism assumption, these parametric transformation models
also assume a specific smooth shape for the link function transformed conditional CDF as a function of y.
A monotonic transformation of Y can be viewed as keeping the y-axis unchanged but changing the scale of
the x-axis in this plot. It could change the shape of the curve but would keep distance between two curves
constant (parallel). Cumulative probability models do not specify the transformation. Therefore, their link
transformed conditional CDF could be any monotonic function of Y as long as the parallelism assumption
holds. Adapted from Harrell (2015).
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ically, it assumes proportional odds with the logit link and proportional hazards with the

cloglog link. Cumulative probability models assume a parametric error distribution on the

transformed latent variable scale, i.e., e ⇠ G�1, but leave the monotonic transformation

H(·) unspecified; therefore, they can be viewed as semiparametric transformation models.

Figure 3.5 illustrates the different assumptions between cumulative probability models

and parametric transformation models. A parametric transformation model is written in the

form Y = H(bX + e), where H(·) and the distribution of e are specified. Note that a nor-

mal linear model is a parametric transformation model with H(y) = y and e ⇠ N(0,1). The

parallelism assumption is also implicitly assumed in these parametric linear transforma-

tion models. In addition, however, parametric transformation models implicitly assume a

specific form for the link function transformed conditional CDF, G�1[F(y|X)]. In contrast,

cumulative probability models do not assume the form of G�1[F(y|X)], but only require a

constant distance between different levels of covariates (parallelism).

Unlike least squares regressions, which mainly make assumptions on the mean and

variance of the error distribution, cumulative probability models require the specification

of a link function, which corresponds to specifying the CDF of the error distribution on the

transformed scale. Although the commonly used link functions represent various types of

error distributions, e.g., the probit and logit link functions correspond to bell-shaped and

symmetric error distributions with different tail densities, whereas cloglog and loglog link

functions represent error distributions skewed in opposite directions, in practice there is no

guarantee that the latent error has exactly the same CDF as the inverse of the link function.

Therefore, it is of interest to study the robustness of cumulative probability models with

link function misspecification, especially when the misspecification is only moderate, e.g.,

using the probit link function when the true latent error distribution is the t-distribution or

using the cloglog/loglog link functions when the true error distribution is skewed in the

same direction but does not have exactly the same shape as the specified link function. We

examine these misspecification through simulations in Section 3.3.

45



3.2.5 Model Diagnostics

As with discrete variables, the link function of cumulative probability models for con-

tinuous responses should ideally be pre-specified based on preliminary scientific knowl-

edge and convenience of interpretation. This may be challenging in application since it re-

quires the specification of the error distribution on the unknown transformed scale. Model

diagnostics, especially for the choice of link functions, is important. A Goodness-of-link

test has been developed by Genter & Farewell (1985) to discriminate the model fit between

probit, cloglog, and loglog link functions for discrete variables. The main idea is that these

three link functions can be considered as special cases of a generalized log-gamma link

function with an extra parameter. Then, a likelihood ratio test comparing the full model

(using the log-gamma link) with the reduced model (using the probit, cloglog, or loglog

link) could provide information about the goodness of fit. To avoid the computational

burden of fitting the full model, Genter & Farewell (1985) proposed to compare the log-

likelihoods of probit, cloglog, and loglog models directly as a conservative approximation

to the formal likelihood ratio test. Specifically, they claim that if twice the difference of two

log-likelihoods exceeds the appropriate percentile of a chi-square distribution with 1 degree

of freedom, one can infer that the link with the smaller likelihood is inappropriate. This

approach is also applicable to continuous responses. However, an automated link function

selection procedure based on the largest log-likelihood should be used with caution because

it seems to share the problems of step-wise selection procedures (Huberty, 1989; Shepherd,

2008) according to our simulations (see details in Section 3.6.1), i.e., type I error rates are

inflated, standard error estimates are too small, and the confidence intervals are too narrow.

The model fit of cumulative probability models can also be examined graphically with

residuals. As described in Section 3.2.1, the intercept a(y) can be interpreted as the best

transformation needed to fit the parametric linear model. Therefore, we can transform the

observed y according to â(y) and explore the model fit with residuals on the transformed

scale. Alternatively, we can use probability-scale residuals, which were originally pro-
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posed for discrete ordinal variables (Li & Shepherd, 2012; Shepherd et al., in press). The

probability-scale residuals are functions of fitted conditional CDFs. They are uniformly

distributed with proper model specification of continuous outcomes, and are therefore par-

ticularly useful in this setting. We illustrate the application of this new residual with details

in Section 3.4.

3.3 Simulation Studies

3.3.1 Estimation with Proper Link Function Specification

In this section, we first conduct simulations to evaluate the finite sample performance

of cumulative probability models for continuous response with proper link function spec-

ification. We generate data from Y = exp(b1X1 +b2X2 + e), where X1 ⇠ Bernoulli(0.5),

X2 ⇠ N(0,1), b1 = 1 and b2 = �0.5, and with two error distributions: (i) e ⇠ N(0,1) and

(ii) e generated from the extreme value distribution (type I) with location parameter 0 and

scale parameter 1. The corresponding properly specified link functions for these two error

distributions are probit and cloglog, respectively. We conducted simulations for different

sample sizes with n = 25,50,100,200,500, and 1000. For each sample size, simulations

were replicated 10,000 times. For the purpose of better visualization, we summarize the

results with Figures. More details of simulation results can be found in Section 3.6.

As discussed in Section 3.2.1, when the link function is properly specified, the intercept

a(y) of cumulative probability models corresponds to the proper transformation needed for

the parametric linear model, which is log(y) in this case. With NPMLE, a(y) is approx-

imated using a step function with jumps at observed values of Y . To illustrate this point,

we plot â(y) vs. the proper transformation log(y) from the first simulation replicate with

the sample size of 100 in Figure 3.6. The average of the step function estimates â(y) over

all 10,000 simulation replicates is also plotted. According to Figure 3.6, in our simula-

tions with sample size of 100, the NPMLE â(y) shows little bias compared with the true
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Figure 3.6: The intercept â(y) can be interpreted as the proper transformation needed to fit the parametric
linear model. In one simulation replication, not all possible values of Y would be observed, therefore, a(y)
is approximated using a step function with jumps at observed values of Y . However, the average of the step
function estimates over all simulation replicates is smooth and very close to the true transformation except in
the tail regions where little information is observed.

transformation except in the tail regions.

Figure 3.7 summarizes the performance for estimating the regression coefficients, in-

cluding slopes b1, b2, and the intercept a(y) with different sample sizes. For the purpose

of evaluation, we examine the values of â(y) at y1 = 0.368,y2 = 0.719,y3 = 1.649,y4 =

3.781,and y5 = 7.389 (shown in Figure 3.6). At those values, the marginal cumulative

probabilities of Y with the error distribution (i) are close to 0.1,0.25,0.5,0.75,0.9, and are

close to 0.23,0.39,0.63,0.84,0.95 with the error distribution (ii), respectively. The log

transformation (the true proper transformation) at those values are log(y1) =�1, log(y2) =

�0.33, log(y3) = 0.5, log(y4) = 1.33,and log(y5) = 2. In simulation replicates, those exact

values of Y are not observed, therefore, â(y j) is not directly estimated from the model but

approximated from the step function with maxyy j{â(y)}.

Our simulations demonstrate that when the link function is properly specified, the

NPMLE has good performance for estimating the regression coefficients with moderate to

large sample sizes (e.g., n � 50), i.e., bias is small and the standard error estimators agree
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Figure 3.7: The performance of cumulative probability models on estimating the slopes b1 and b2 and the
transformation at y1 = 0.368, y2 = 0.719, y3 = 1.649, y4 = 3.781, and y5 = 7.389 with properly specified
link functions. The results are based on 10,000 simulation replicates for each sample size. We report the
percent bias (%) of the point estimate, the percent bias (%) of the standard error estimate, and the coverage
probability of 95% confidence intervals. The percent bias of the point estimate is calculated as the mean of
point estimates in 10,000 simulation replicates minus the true value and then divided by the true value. The
percent bias of the standard error estimate is calculated as the mean of standard error estimates in 10,000
simulation replicates minus the standard deviation of point estimates in 10,000 simulation replicates, and
then divided by the standard deviation of point estimates in 10,000 simulation replicates.

49



well with the empirical standard errors. Although we do observe some bias (up to 20%)

when the sample size is small (e.g., n = 25), the bias in estimating regression coefficients

and their standard errors decreases quickly with increasing sample size. For example, in

our two simulation settings, the bias for regression coefficients is less than 8% with n = 50,

less than 5% with the sample size of 100, and less than 2% with the sample size of 200.

When the sample size gets to 1,000, the average of estimates are almost identical to the

true parameters.

For the purpose of comparison, we investigated the relative efficiency of the properly

specified cumulative probability models compared with other commonly used parametric

or semiparametric models with different sample sizes. For error distribution (i), we com-

pare the cumulative probability model with the linear regression model after a Box-Cox

transformation (Box & Cox, 1964). The latter can be viewed as a parametric transforma-

tion method, since the Box-Cox transformation with parameter l can be written as

B(y;l ) =

8

>

>

<

>

>

:

(yl �1)/l if l 6= 0;

log(y) if l = 0.

The usual practice of Box-Cox transformation is to first find the l̂ which gives the high-

est profile likelihood for the transformed linear regression model, and then to treat l̂ as

known (which is potentially problematic because it ignores uncertainty in its estimation)

and transform the response y to y⇤ = B(y; l̂ ). Finally, linear regression is performed on the

transformed response y⇤. In our simulations, we performed the Box-Cox transformation

using the boxcox function in the MASS R package. We used its default option in which l

is estimated by a grid search algorithm searching in the range of -2 to 2 with increments of

0.1.

In our simulation setting, the true proper transformation is a special case of the Box-

Cox transformation with parameter l = 0. With the latent scale error e ⇠ N(0,1), the
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Box-Cox transformation model is a properly specified parametric transformation model.

Figure 3.8(a) shows the relative efficiency of the properly specified cumulative probability

model compared with the Box-Cox transformation model on estimating the slopes b1 and

b2. Since the estimates from the cumulative probability models show small bias when the

sample size is small, we estimate the relative efficiency with the ratio of mean square errors

(MSE) instead of the ratio of variances. As expected, the properly specified cumulative

probability model is generally less efficient than its parametric counterpart. However, the

relative efficiency increases with the sample size. Specifically, in our simulation setting, the

relative efficiency is over 80% when n = 100, and over 90% when n = 1,000, indicating

only small efficiency loss when using properly specified cumulative probability models

with moderate or large sample sizes.

For error distribution (ii), we compare the properly specified cumulative probability

model with the Cox proportional hazards model. Note, in this scenario, both models as-

sume proportional hazards and are properly specified semiparametric models. However,

their estimation procedures are different. The Cox proportional hazards model maximizes

the partial likelihood which is only a function of slopes, whereas the cumulative probability

model maximizes the full likelihood L⇤ which is a function of both intercepts and slopes.

Usually, the Cox proportional hazards model is applied to right censored data, but it can

also be fitted to uncensored data with negative values (e.g., assume the response variable

Y is a centered time without censoring). Figure 3.8(b) shows the relative efficiency of the

cumulative probability and Cox proportional hazards models on estimating the slopes b1

and b2, again, measured with the MSE ratio. In our simulations, the cumulative probability

model with the cloglog link function has similar performance with the Cox proportional

hazards model when the sample size is moderate or large. For example, the relative effi-

ciency is over 90% when n = 100 and very close to 1 when n = 1,000. However, for small

sample size, such as n = 25, the estimates from the cumulative probability model seem to

be less efficient than those from the Cox proportional hazards model.
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Figure 3.8: (a): The relative efficiency of properly specified cumulative probability model (using the probit
link function) compared with properly specified Box-Cox transformation models in Scenario (i) e ⇠ N(0,1).
For the Box-Cox transformation models, l̂ is estimated as the value with the highest profile likelihood by a
grid search algorithm searching in the range of -2 to 2 with increments of 0.1. As in the common practice,l̂ is
then treated as known and the uncertainty of estimating l is ignored. (b): The relative efficiency of properly
specified cumulative probability model (using the cloglog link function) compared with Cox proportional
hazard model in Scenario (ii) when e is generated from type I extreme value distribution.

As described in Section 3.2.2, the conditional CDF and other properties of the condi-

tional distribution can be derived with the regression coefficients from cumulative probabil-

ity models. Figure 3.9 summarizes the performance on estimating conditional CDFs when

the link function is properly specified. Figures 3.10 and 3.11 summarize the performance

on estimating conditional means and conditional quantiles using the properly specified cu-

mulative probability models, respectively. Similar patterns are observed as in estimating

the regression coefficients. Generally, the cumulative probability models have good per-

formance for estimating different aspects of the conditional distribution with moderate or

large sample sizes (e.g., n � 50 in our simulation settings). But when the sample size is rel-

atively small (e.g., n = 25), there may be substantial bias both in estimating the parameters

and their standard errors.

It is worth pointing out that although the cumulative probability model is usually less
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Figure 3.9: The performance of cumulative probability models on estimating conditional CDF evaluated at
y1 = 0.368, y2 = 0.719, y3 = 1.649, y4 = 3.781, and y5 = 7.389 with properly specified link functions. The
results are based on 10,000 simulation replicates for each sample size.
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Figure 3.10: The performance of cumulative probability models on estimating conditional means with prop-
erly specified link functions. The results are based on 10,000 simulation replicates for each sample size.
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Figure 3.11: The performance of cumulative probability models on estimating conditional 10th,25th, 50th,
75th, and 90th quantiles with properly specified link functions. The results are based on 10,000 simulation
replicates for each sample size.
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efficient than the properly specified parametric models, it may still have some advantage

when estimating some properties that are easier to derive from the conditional CDF. For

example, with the error distribution (i) where the Box-Cox transformation model is prop-

erly specified, although the cumulative probability model is generally less efficient for es-

timating the slope parameters, it has good performance for estimating conditional mean

with moderate to large sample sizes when the link function is properly specified (shown in

Figure 3.10). However, with the regression coefficients from the Box-Cox transformation

model, we can only consistently estimate the conditional mean on the transformed scale,

i.e., Ŷ ⇤|X ! E[B(Y,l )|X ]. Performing a simple back transformation, B�1(Ŷ ⇤, l̂ ), usually

does not yield a consistent estimator for the conditional mean on the original scale because

B�1(Ŷ ⇤, l̂ )! B�1{E[B(Y,l )|X ],l}, which is well known from Jensen’s inequality to not

equal E(Y |X).

3.3.2 Estimation with Link Function Misspecification

We now study the performance of cumulative probability models with link function

misspecification. We generate data from Y =H(b1X1+b2X2+e), where X1 ⇠Bernoulli(0.5),

X2 ⇠N(0,1), b1 = 1 and b2 =�0.5. For simplicity, we set H(y) = y, that is, no transforma-

tion is needed. The error term e is generated from: (a) the standard normal distribution, (b)

the standard logistic distribution, (c) the Type I extreme value distribution, (d) the Type II

extreme value distribution, (e) the t distribution with 5 degrees of freedom, (f) the uniform

distribution with range from �5 to 5, (g) the standardized beta distribution with parameters

a = 5 and b = 2 (standardized by subtracting the mean and then dividing by the standard

deviation), and (h) the standardized beta distribution with parameters a = 2 and b = 5.

Figures 3.12 and 3.13 show the probability density functions (PDFs) of these error distri-

butions and the extent of violation to the parallel assumption when probit, logit, cloglog,

and loglog link functions are used, respectively. The proper link functions for (a) – (d) are

probit, logit, cloglog, and loglog, respectively, whereas, there are no proper link functions
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for (e) – (h), i.e., no perfect parallelism in Figure 3.13. However, there are some similarities

among error distributions (e) – (h) and (a) – (d) in terms of shape and skewness. We are

interested in the robustness of cumulative probability models in these settings.

We fitted cumulative probability models with probit, logit, cloglog, and loglog link

functions for each scenario with sample sizes of 50, 100, and 200, respectively. For each

sample size, we repeated the analysis 10,000 times. With different link functions, the

regression coefficients are not in the same scale, and therefore are not directly compa-

rable. Instead, we compared the estimated conditional means and conditional medians

for (X1 = 0,X2 = 0), (X1 = 1,X2 = 0), (X1 = 0,X2 = 1), and (X1 = 1,X2 = 1). For the

purpose of comparison, we also obtained the estimates for these conditional means and

medians from linear regression and median regression models. The efficiency of the cumu-

lative probability model on estimating conditional means and medians is compared with

the properly specified linear regression and median regression models, respectively. The

relative efficiency is measured with the MSE ratio.

Figures 3.14 and 3.15 summarize the performance for estimating conditional means and

medians for sample sizes of 100, respectively. More details of these simulation results are

reported as supplemental materials in Section 3.6.2. We also conduct simulations for sam-

ple sizes of 50 and 200. The results are similar and we report also them in Section 3.6.2. In

summary, we find with moderate or large sample size (e.g., n � 50), the cumulative proba-

bility models with properly specified link functions have good performance for estimating

conditional means and medians, i.e., the bias is small and the coverage probability of 95%

confidence intervals is close to 0.95. It is worth pointing out that cumulative probability

models with properly specified link functions seem to be more efficient than median re-

gression, i.e., MSE ratios are generally greater than 1. Cumulative probability models with

properly specified link functions may also be more efficient than linear regression when

the error distribution is skewed, e.g., error distribution (c) with the cloglog link function

and error distribution (d) with the loglog link function. The cumulative probability models
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Figure 3.12: The probability density functions of error distributions for (a) – (d) and the extent of violation
to the parallel assumption with commonly used link functions.

seem to have reasonable performance under minor or moderate link function misspecifica-

tion, e.g., error distribution (a) with the logit link function, error distribution (b) with the

probit link function, error distribution (e) with the logit or probit link function, error dis-

tribution (g) with the cloglog link function, and error distribution (h) with the loglog link

function. However, with severe link function misspecification, i.e., the error distributions

have totally different shapes or are skewed in opposite directions, the cumulative probabil-

ity models may have poor performance, e.g., error distributions (a) and (b) with the cloglog

or loglog link functions, error distributions (c) and (g) with the loglog link function, and

error distributions (d) and (h) with the loglog link function.
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Figure 3.13: The probability density functions of error distributions for (e) – (h) and the extent of violation
to the parallel assumption with commonly used link functions.
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Figure 3.14: The performance of cumulative probability models on estimating conditional means with commonly used link functions link functions. We report
the percent bias (%) of the point estimate, the coverage probability of 95% confidence intervals, and the relative efficiency (RE). The percent bias of the point
estimate is calculated as the mean of point estimates in 10,000 simulation replicates minus the true value and then divided by the true value. The relative efficiency
is compared with properly specified linear regression measured with MSE ratio. The sample size is 100 and the results are based on 10,000 simulation replicates.
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Figure 3.15: The performance of cumulative probability models on estimating medians with commonly used link functions. We report the percent bias (%) of the
point estimate, the coverage probability of 95% confidence intervals, and the relative efficiency (RE). The percent bias of the point estimate is calculated as the
mean of point estimates in 10,000 simulation replicates minus the true value and then divided by the true value. The relative efficiency is compared with properly
specified median regression measured with MSE ratio. The sample size is 100 and the results are based on 10,000 simulation replicates.
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3.4 Application Examples

We illustrate the application of cumulative probability models for continuous outcomes

using a dataset of 4,776 HIV-infected persons starting antiretroviral therapy (ART) in Latin

America (McGowan et al., 2007). We are interested in modeling CD4 count and viral load

6 months after the initiation of ART using patients’ demographics and baseline covariates.

CD4 count and viral load are important measures of an HIV-infected patient’s immune

system function and control of the virus. Their distributions are often skewed. When mod-

eling them with linear regression models, transformations are often applied, e.g., square

root transformation for CD4 count and log transformation for viral load, although other

transformations are sometimes used and different transformations may yield conflicting

results. With cumulative probability models, the proper transformation can be estimated

semiparametrically. In addition, measurements of viral load are often censored at assay

detection limits, especially when patients are on ART. To deal with this issue, common

practice is to categorize the viral load (e.g., “undetectable” vs. ‘detectable”) or to im-

pute particular values for those measurements below the detection limit (e.g., if detection

limit is 400 copies/mL, then to record all measurements below the detection limit as 399

copies/mL). However, these strategies either ignore the information of viral load above the

detection limit or make assumptions for viral load below the detection limit. We believe

that cumulative probability models are particularly useful in these settings.

3.4.1 CD4 Count

We fit cumulative probability models for CD4 count 6 months after ART initiation with

the probit, logit, cloglog, and loglog link functions, including age, gender, treatment class,

study site, probable infection route, year of ART initiation, baseline nadir CD4, baseline

viral load, and baseline AIDS status as covariates. The baseline nadir CD4 was square-root

transformed, and then modeled with restricted cubic splines using 5 knots. The baseline
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Figure 3.16: (a): the estimated intercepts â(y) from the cumulative probability models using the probit, logit,
and loglog link functions, which can be interpreted as semiparametric estimates of the best transformation
for the 6-month CD4 count. For purpose of comparison, we also plot the estimated Box-Cox transformation,
(b): QQ-plots of probability-scale residuals (PSRs). (c): QQ-plots of observed-minus-expected residuals
(OMERs), removing the residual for the observation with the largest value of 6-month CD4 count.

viral load was log transformed, and then modeled with restricted cubic splines using 5

knots. All other continuous predictors were transformed with restricted cubic splines using

5 knots directly.

Figure 3.16(a) plots the estimated intercepts â(y) resulting from the cumulative prob-

ability models, which can be interpreted as semiparametric estimates of the best transfor-

mation for the 6-month CD4 count. For purpose of comparison, we also plot the estimated

Box-Cox transformation, which was estimated to be (y0.421 � 1)/0.421, close to the com-

monly used square-root transformation.

The cumulative probability model with the cloglog link function did not converge after
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12 iterations, suggesting poor model fit. The log likelihoods for models using the probit,

logit, and loglog link functions were -28796.59, -28709.87, and -29067.54, respectively,

suggesting better model fit using the symmetric probit and logit link functions. To further

assess the goodness-of-fit with different link functions, we computed the probability-scale

residuals (PSRs), defined as P(Y ⇤ < y)�P(Y ⇤ > y), where y is the observed value and Y ⇤

is a random variable from the fitted distribution (Li & Shepherd, 2012; Shepherd et al., in

press). PSRs of a continuous outcome under the properly specified model are uniformly

distributed with range from -1 to 1. Therefore, the QQ-plot of PSRs vs. the uniform distri-

bution can be used to assess the overall model fit (Figure 3.16(b)). We can also assess the

model fit using the observed-minus-expected residuals (OMERs) on the transformed scale.

Specifically, since the cumulative probability model (3.3) can be interpreted as the semi-

parametric transformation model Y = H(bX +e) and the intercept a(y) = H�1(y), we can

compute the OMERs on the transformed scale as êi = â(yi)� b̂xi. However, as discussed

in Section 3.2.1, the NPMLE of a(y) is an unbounded step function with â(ymax) = +•;

therefore, the OMER for the observation with the largest value of y is also unbounded.

Figure 3.16(c) shows the QQ plot of OMERs vs. the error distributions corresponding to

the specific link functions, removing the residual for the observation with the largest CD4

count. Both (b) and (c) of Figure 3.16 suggest better model fit using the logit link function.

This is consistent with the fact that the cumulative probability model with the logit link

function has the highest log likelihood among all link functions considered. The QQ-plots

of PSRs and OMERs from the linear regression model with Box-Cox transformation are

also shown in Figure 3.16, suggesting after the Box-Cox transformation, the error distribu-

tion, although fairly symmetric, is not normally distributed, especially in the tail regions.

PSRs and OMERs can also be used in residual-by-predictor plots to detect the lack of

fit for models. For example, in Figure 3.17, we compare the residual-by-predictor plots

using both PSRs and OMERs from the cumulative probability models including and not

including the baseline nadir CD4 in the model. The smoothed curves show a clear pattern
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Figure 3.17: Residual-by-predictor plots using PSRs (top panel) and OMERs on the transformed scale
(bottom panel) from cumulative probability models (using the logit link function) including and not including
baseline nadir CD4 count in the models. Smoothed curves using Friedman’s super smoother are added.
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Figure 3.18: The estimated mean, median, and the probabilities of CD4 being greater than 500 cells/uL and
CD4 being greater than 350 cells/uL as functions of age (top panel) or treatment class (bottom panel, BPI:
boosted protease inhibitors, NNRTI: non-nucleoside reverse transcriptase inhibitors, and UBPI: unboosted
protease inhibitors) from the cumulative probability model with the logit link function fixing other predictors
at their medians (for continuous variables) or modes (for categorical variables). For purpose of comparison,
we also plot the conditional means from linear regression models with Box-Cox transformation, the condi-
tional medians from median regression models, and conditional probabilities from logistic regression models
using the dichotomized CD4 count as outcomes. The shaded regions are point-wise 95% confidence intervals.

of a positive relationship between residuals and the baseline nadir CD4 when it is not

included (left panel of Figure 3.17). The relationship disappears when the baseline nadir

CD4 is included (right panel of Figure 3.17).

As described in Section 3.2.2, one can easily obtain different aspects of conditional

distributions using cumulative probability models for continuous outcomes. This is partic-

ularly useful when modeling CD4 count. For example, we might want to summarize the

central tendency of the conditional distribution with medians instead of means since the

distribution is skewed. Besides the central tendency, we may also be interested in the prob-

abilities of CD4 count below or above some commonly used thresholds. Figure 3.18 plots

the estimated means, medians, and the probabilities of CD4 count being above 350 or 500

cells/uL as functions of age or treatment class fixing other predictors at their medians (for
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continuous variables) or modes (for categorical variables). For purpose of comparison, we

also obtain the conditional means through a back transformation from the linear regression

model with the Box-Cox transformation, the conditional medians from a median regres-

sion model, and the conditional probabilities of CD4 being above 350 or 500 cells/uL from

corresponding logistic regression models using dichotomized CD4 count as outcomes. The

right sides of these models (i.e., the predictor variables and their transformations) are the

same as those in the cumulative probability models.

The estimated conditional means and medians from the different models were generally

similar with comparable 95% confidence intervals except that some point estimates for con-

ditional means from the back transformation of linear models were slightly lower than those

from the cumulative probability model. This trend is generally consistent with the direc-

tion of Jensen’s inequality, i.e., E[g(Y |X)]  g[E(Y |X)], where g(y) = (y0.421 � 1)/0.421.

The cumulative probability models were more efficient at estimating the conditional prob-

abilities of CD4 count being above 350 or 500 cells/uL than the corresponding logistic

regression models as evidenced by their narrow 95% confidence intervals. It is interesting

to note that the two models give similar point estimates for the probabilities of CD4 count

being above 350 cells/uL but slightly different point estimates for the probabilities of CD4

count being above 500 cells/uL. The estimates from the logistic regression models tend

to be larger and perhaps more susceptible to over-fitting given that relatively few patients

(16.5%) had CD4 greater than 500 cells/uL after 6 months.

In summary, rather than fitting three separate models, some of which require transform-

ing the outcome, we were able to obtain similar and likely less biased and more efficient

estimates by fitting a single cumulative probability model.

3.4.2 Viral Load

In this dataset, 85% of patients had viral load below the detection limit (400 copies/mL)

6 months after ART initiation. For those measurements above the detection limit, their
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distribution was highly skewed, ranging from 400 to 7,800,000 copies/mL with a median of

1,300 copies/mL. Due to the large proportion of undetectable viral loads, common practice

is to dichotomize the viral load into two categories (“undetectable” and “detectable”) and

then fit logistic regression models, which ignore the numerical information in the detectable

measurements. To make full use of ordinal information of viral load, we fit cumulative

probability models for the 6-month viral load measures using the probit, logit, cloglog, and

loglog link functions. We included the same covariates with similar transformations as in

the CD4 models except that we used 4 knots when transforming the continuous variables

using restricted cubic splines because of concerns of over-fitting due to the large proportion

of undetectable viral loads.

The log likelihoods for models using the probit, logit, cloglog, and loglog link func-

tions were �5213.69, �5185.26, �5245.03, and �5162.70, respectively, suggesting better

model fit with the skewed loglog link function, followed by the symmetric logit and probit

link functions, then the cloglog link function which is skewed in the opposite direction as

the loglog link function. Figure 3.19 displays the estimated transformations and the QQ-

plots of PSRs and OMERs. Note, since the distribution of 6-month viral load is a mixture

of discrete and continuous distributions, PSRs are not uniformly distributed, even if the

model is properly specified. OMERs on the transformed scale similarly suffer. QQ-plots,

in this setting, are not useful for assessing model fit. In this example, although the model

with the loglog link function had a slightly higher log likelihood, we also consider the logit

probability model for purpose of convenient interpretation, particularly for comparisons

with logistic regression models on the dichotomized viral load outcome.

Although PSRs are generally not uniformly distributed for variables with mixed types

of discrete and continuous distributions, they have expectation 0 under properly specified

models, and therefore can still be used in residual-by-predictor plots (Shepherd et al., in

press). Figure 3.20 plots the PSRs vs. age from cumulative probability models including

and not including age. When age is not included in the models, PSRs show weak negative
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association with age; whereas when age is included in the model, the association disap-

pears, suggesting that age should be included. The results using the loglog and the logit

link functions are generally similar.

Figure 3.21 plots the estimated probabilities of 6-month viral load being detectable and

being greater than 1,000 copies/uL, and the estimated 95th percentiles as functions of age

or treatment class fixing other predictors at their medians or modes using both the loglog

and the logit link functions. The results using these two different link functions were very

similar. For purpose of comparison, we also obtain the estimated probabilities from lo-

gistic regression models using dichotomized viral loads as the outcomes. We also obtain

estimates of the 95th percentiles from two separate quantile regression models: one imput-

ing values below the detection limit as the detection limit (i.e., 400 copies/uL) and the other

imputing values below the detection limit as 0. Cumulative probability models and logistic

regression models gave very similar results when estimating the probabilities of 6-month

viral load being detectable: similar point estimates and comparable 95% confidence inter-

vals. Results were more different when estimating the probabilities of 6-month viral load

being greater than 1,000 copies/mL: the point estimates from the cumulative probability

models were generally smaller with narrower 95% confidence intervals than those from

logistic regression models, suggesting that the cumulative probability models incorporated

information from all levels of detectable viral loads. The estimates for the 95th percentiles

from the quantile regression were very unstable: the point estimates varied with values im-

puted for undetectable viral load and their 95% confidence intervals were very wide (with

negative values for the lower bounds, results not shown). In contrast, cumulative probabil-

ity models did not require any imputation and they gave sensible point estimates and 95%

confidence intervals.

We performed a limited simulation to compare the performance of cumulative probabil-

ity models, logistic regression models with dichotomized outcomes, and linear regression

models with imputed values under various undetectable proportions (see details in Section
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Figure 3.19: (a): the estimated intercepts â(y) resulting from the cumulative probability models using the
probit, logit, cloglog, and loglog link functions, which can be interpreted as semiparametric estimates of
the best transformation for the 6-month viral load. (b): QQ-plots of probability-scale residuals (PSRs). (c):
QQ-plots of observed-minus-expected residuals (OMERs), removing the residual for the observation with the
largest value of viral load.

3.6.3). We found that cumulative probability models with properly specified link functions

were generally more robust than the other two approaches. We also saw that gains in ef-

ficiency, particularly when compared with logistic regression models, were minimal when

the proportion of undetectable measurements was large, e.g. � 75%, as was the case in our

actual data example.

3.5 Discussion

In this paper, we have studied cumulative probability models for continuous outcomes.

By relating them to semiparametric transformation models, we have shown that the esti-
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Figure 3.20: Residual-by-predictor plots using PSRs from cumulative probability models using the logit link
function (top panel) and the loglog link function (bottom panel). Smoothed curves using Friedman’s super
smoother are added.
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Figure 3.21: The probabilities of 6-month viral load being detectable (� 400 copies/mL) and being greater
than 1000 copies/mL, and the 95th percentiles as functions of age (top panel) or treatment class (bottom
panel), estimated using the cumulative probability model with the loglog and logit link functions, fixing other
predictors at their medians (for continuous variables) or modes (for categorical variables). The shaded regions
are the point-wise 95% confidence intervals. For purpose of comparison, we also show the estimates of the
conditional probabilities from logistic regression models using the dichotomized viral load as outcomes. We
also estimated conditional percentiles from quantile regression models by imputing the measurements below
the detection limit to be the detection limit or 0. However, since the estimates from quantile regression models
were very unstable with very wide 95% confidence intervals crossing 0, we did not plot the results.
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mated intercepts can be viewed as the estimated semiparametric transformation. There-

fore, these models are particularly useful when flexible transformations are needed for the

response variables. Another suitable application of these models is for measurements with

detection limits, since they only require outcomes to be orderable, but do not require as-

signing specific values to those under the detection limit. Various aspects of the conditional

distribution can be easily derived from the regression coefficients, giving a full picture of

the conditional distribution.

Our simulation studies show that properly specified cumulative probability models have

good finite sample performance with moderate or relatively large sample sizes, but that

some bias may occur when the sample size is small. In addition, cumulative probability

models seem to be fairly robust to minor or moderate link function misspecification accord-

ing to our simulations. These results are comforting given that the asymptotic properties of

the NPMLE of these models have not been formally developed and are quite challenging

(Zeng & Lin, 2007; Zeng, Kosorok, & Lin, personal communication). We have focused on

the application side of these models and we hope our study provides additional motivation

and insight to this challenging theoretical problem.

Using cumulative probability models for continuous variables is motivated from a sim-

ple and intuitive idea: continuous variables are also ordinal and can be modeled ordi-

nally. This idea can be naturally extended to other ordinal regression models, such as

the continuation-ratio models and adjacent-categories models, and to more complicated

settings, such as longitudinal data in which the observations are not independent. We are

studying extensions in these settings.
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3.6 Supplemental Materials

3.6.1 Performance of Cumulative Probability Models with an Automatic Link Function

Selection Procedure

With cumulative probability models, the primary assumptions are made through the

choice of link function. The goodness-of-link test proposed by Genter & Farewell (1985)

suggests using the log likelihood to discriminate the model fit using the probit, loglog,

and cloglog link functions. In a real application when the link function cannot be pre-

specified based on preliminary scientific knowledge, one would hope to automate the link

function selection. We conducted simulations to investigate the performance of cumulative

probability models with an automatic link function selection procedure, in which three

cumulative probability models are fitted separately using the probit, loglog, and cloglog

links, and the model with the largest log likelihood is selected. We generated data from

Y = H(bX +e), where X ⇠ N(0,1), b = 0 under the null hypothesis H0, and b = 0.1 under

the alternative hypothesis H1. For simplicity, we set H(y) = y, that is, no transformation

was needed. The error term e was generated from: (a) the standard normal distribution,

(b) the standard logistic distribution, (c) the Type I extreme value distribution, and (d) the

Type II extreme value distribution. The proper link functions in these scenarios are probit,

logit, cloglog, and loglog, respectively. Table 3.2 reports the type I error rate and power

of cumulative probability models with such a link function selection procedure compared

with those with a pre-specified link function. For models with the link function selection

procedure, we also report the proportion of times that the chosen link functions were probit,

loglog, and cloglog during the 10,000 simulation replicates. Simulations were repeated for

sample sizes of 25, 50, 100, 200, 500, and 1000, respectively.

The link function selection based on the log likelihood seems not to perform well in our

simulation setting. It generally favors the skewed link functions (cloglog and loglog) under

the null no matter what the true error distribution was. Under the alternative hypothesis, it
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still had difficulty choosing the proper link function, e.g., the proper link function was only

favored with large sample sizes, e.g., n = 1000. Cumulative probability models with such

a link function selection procedure have inflated type I error rates. It is interesting to note

that with moderate or large sample sizes, e.g., n � 50, the type I error rates are close to 5%

for any pre-specified link function even for those link functions that do not correspond to

the true error distributions. This is because there is only one covariate in our simulation

setting and under the null hypothesis (b = 0), there is always a transformation H�1(·) such

that H�1(Y ) has the distribution the link function specifies (Zeng & Lin, 2007). That is, in

our simulation setting there is no link function misspecification under the null. However,

this is generally not the case when there are multiple covariates in the model.

3.6.2 Details of Simulation Results

We report the detailed simulation results of Section 3.3.1 in Table 3.3 – Table 3.6. These

results have been summarized in Figures 3.7 – 3.11.

Here, we report the detailed simulation results of Section 3.3.2. The results for sample

size of 100 have been summarized in Figures 3.14 and 3.15. We also conducted simu-

lations for the same setting with the sample sizes of 50 and 200 to investigate the finite

sample performance. Tables 3.7 - 3.10 summarize the results for n = 50. Tables 3.11 - 3.14

summarize the results for n = 100. Tables 3.15 - 3.18 summarize the results for n = 200.

The results from these additional simulations are generally similar with what we report in

Section 3.3.2.
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Table 3.2: Type I error rate and power of cumulative probability models with an automatic link function
selection procedure (selecting the link function with the highest likelihood among probit, cloglog, and loglog)
compared with those with a pre-specified link function. The numbers in the parentheses are the proportions
of chosen link function being probit, cloglog, or loglog during 10,000 simulation replicates.

True error distribution link function selection probit cloglog loglog
Normal

n = 25 H0 0.118 ( 9.78%, 45.02%, 45.20%) 0.068 0.068 0.074
H1 0.153 (10.86%, 44.67%, 44.47%) 0.096 0.098 0.095

n = 50 H0 0.102 (12.52%, 43.51%, 43.97%) 0.057 0.060 0.060
H1 0.176 (13.95%, 42.89%, 43.16%) 0.113 0.106 0.112

n = 100 H0 0.099 (13.20%, 44.04%, 42.76%) 0.054 0.058 0.057
H1 0.247 (18.54%, 40.91%, 40.55%) 0.173 0.156 0.161

n = 200 H0 0.096 (14.83%, 43.31%, 41.86%) 0.052 0.053 0.056
H1 0.373 (24.16%, 37.31%, 38.53%) 0.294 0.261 0.251

n = 500 H0 0.091 (15.10%, 41.58%, 43.32%) 0.048 0.051 0.055
H1 0.678 (37.19%, 31.02%, 31.79%) 0.607 0.522 0.526

n = 1000 H0 0.099 (15.62%, 42.44%, 41.94%) 0.058 0.057 0.055
H1 0.910 (50.02%, 24.51%, 25.47%) 0.880 0.808 0.814

Logistic
n = 25 H0 0.116 (10.15%, 45.87%, 43.98%) 0.066 0.072 0.069

H1 0.126 (10.75%, 45.48%, 43.77%) 0.076 0.080 0.078
n = 50 H0 0.106 (12.02%, 43.35%, 44.63%) 0.057 0.064 0.061

H1 0.129 (13.37%, 42.53%, 44.10%) 0.077 0.077 0.077
n = 100 H0 0.100 (13.15%, 42.90%, 43.95%) 0.054 0.056 0.057

H1 0.142 (15.73%, 41.76%, 42.51%) 0.089 0.083 0.087
n = 200 H0 0.099 (14.78%, 42.44%, 42.78%) 0.054 0.055 0.055

H1 0.194 (19.45%, 40.16%, 40.39%) 0.137 0.121 0.119
n = 500 H0 0.091 (14.87%, 42.83%, 42.30%) 0.050 0.050 0.050

H1 0.317 (26.45%, 36.87%, 36.68%) 0.244 0.205 0.204
n = 1000 H0 0.095 (15.60%, 42.45%, 41.95%) 0.052 0.054 0.051

H1 0.506 (35.05%, 32.52%, 32.43%) 0.428 0.350 0.358
Extreme Type I

n = 25 H0 0.116 (10.15%, 45.87%, 43.98%) 0.066 0.072 0.069
H1 0.147 (10.32%, 47.74%, 41.94%) 0.089 0.100 0.085

n = 50 H0 0.106 (12.02%, 43.35%, 44.63%) 0.057 0.064 0.061
H1 0.165 (13.41%, 47.42%, 39.17%) 0.104 0.119 0.088

n = 100 H0 0.100 (13.15%, 42.90%, 43.95%) 0.054 0.056 0.057
H1 0.227 (16.23%, 50.30%, 33.47%) 0.152 0.171 0.109

n = 200 H0 0.099 (14.78%, 42.44%, 42.78%) 0.054 0.055 0.055
H1 0.352 (19.37%, 55.72%, 24.91%) 0.256 0.296 0.166

n = 500 H0 0.091 (14.87%, 42.83%, 42.30%) 0.050 0.050 0.050
H1 0.652 (21.80%, 66.99%, 11.21%) 0.525 0.606 0.312

n = 1000 H0 0.095 (15.60%, 42.45%, 41.95%) 0.052 0.054 0.051
H1 0.903 (21.17%, 75.20%, 3.63%) 0.819 0.886 0.534

Extreme Type II
n = 25 H0 0.116 (10.15%, 45.87%, 43.98%) 0.066 0.072 0.069

H1 0.145 (10.72%, 43.29%, 45.99%) 0.088 0.086 0.096
n = 50 H0 0.106 (12.02%, 43.35%, 44.63%) 0.057 0.064 0.061

H1 0.166 (13.71%, 38.10%, 48.19%) 0.106 0.088 0.118
n = 100 H0 0.100 (13.15%, 42.90%, 43.95%) 0.054 0.056 0.057

H1 0.224 (15.54%, 32.69%, 51.77%) 0.148 0.103 0.174
n = 200 H0 0.099 (14.78%, 42.44%, 42.78%) 0.054 0.055 0.055

H1 0.356 (18.58%, 23.89%, 57.53%) 0.254 0.163 0.305
n = 500 H0 0.091 (14.87%, 42.83%, 42.30%) 0.050 0.050 0.050

H1 0.652 (21.52%, 11.24%, 67.24%) 0.524 0.311 0.609
n = 1000 H0 0.095 (15.60%, 42.45%, 41.95%) 0.052 0.054 0.051

H1 0.900 (21.07%, 3.72%, 75.21%) 0.818 0.534 0.882
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Table 3.3: The performance of cumulative probability models on estimating the slopes b1 and b2 and the
intercepts at y1 = 0.368, y2 = 0.719, y3 = 1.649, y4 = 3.781, and y5 = 7.389 with properly specified link
functions. The results are based on 10,000 simulation replicates for each sample size.

(i) e ⇠ Normal (ii) e ⇠ Extreme Type I

true est est.se emp.se CP est est.se emp.se CP
n = 25

b1 1.00 1.13 0.472 0.550 0.922 1.19 0.515 0.610 0.924
b2 -0.50 -0.57 0.242 0.278 0.926 -0.60 0.269 0.314 0.923
a(y1) -1.00 -1.07 0.436 0.425 0.969 -1.09 0.490 0.532 0.955
a(y2) -0.33 -0.36 0.372 0.410 0.943 -0.34 0.395 0.434 0.939
a(y3) 0.50 0.56 0.376 0.423 0.940 0.60 0.368 0.435 0.932
a(y4) 1.33 1.49 0.439 0.504 0.936 1.58 0.454 0.526 0.938
a(y5) 2.00 2.22 0.533 0.582 0.948 2.27 0.573 0.625 0.952

n = 50
b1 1.00 1.06 0.314 0.331 0.941 1.08 0.334 0.361 0.936
b2 -0.50 -0.53 0.160 0.171 0.940 -0.54 0.172 0.187 0.935
a(y1) -1.00 -1.06 0.298 0.311 0.957 -1.04 0.327 0.343 0.947
a(y2) -0.33 -0.35 0.251 0.261 0.949 -0.33 0.266 0.281 0.943
a(y3) 0.50 0.53 0.251 0.262 0.945 0.55 0.243 0.262 0.938
a(y4) 1.33 1.40 0.289 0.303 0.945 1.44 0.287 0.311 0.940
a(y5) 2.00 2.12 0.354 0.375 0.948 2.16 0.379 0.390 0.952

n = 100
b1 1.00 1.03 0.217 0.222 0.947 1.04 0.228 0.235 0.944
b2 -0.50 -0.52 0.109 0.114 0.943 -0.52 0.116 0.121 0.942
a(y1) -1.00 -1.03 0.203 0.210 0.948 -1.02 0.226 0.231 0.948
a(y2) -0.33 -0.33 0.174 0.178 0.948 -0.33 0.184 0.188 0.946
a(y3) 0.50 0.52 0.174 0.176 0.949 0.52 0.167 0.173 0.945
a(y4) 1.33 1.36 0.200 0.205 0.947 1.38 0.193 0.201 0.943
a(y5) 2.00 2.05 0.241 0.248 0.947 2.09 0.255 0.264 0.950

n = 200
b1 1.00 1.01 0.152 0.155 0.946 1.02 0.158 0.162 0.948
b2 -0.50 -0.51 0.076 0.079 0.942 -0.51 0.080 0.081 0.948
a(y1) -1.00 -1.01 0.142 0.145 0.951 -1.01 0.158 0.159 0.948
a(y2) -0.33 -0.33 0.122 0.123 0.950 -0.33 0.129 0.131 0.947
a(y3) 0.50 0.51 0.122 0.125 0.947 0.51 0.117 0.118 0.950
a(y4) 1.33 1.35 0.140 0.143 0.948 1.35 0.133 0.136 0.946
a(y5) 2.00 2.03 0.168 0.172 0.951 2.04 0.174 0.178 0.947

n = 500
b1 1.00 1.01 0.095 0.097 0.946 1.01 0.099 0.100 0.944
b2 -0.50 -0.50 0.048 0.047 0.951 -0.51 0.050 0.050 0.947
a(y1) -1.00 -1.01 0.089 0.089 0.949 -1.00 0.099 0.100 0.950
a(y2) -0.33 -0.33 0.077 0.077 0.950 -0.33 0.081 0.082 0.947
a(y3) 0.50 0.50 0.077 0.078 0.946 0.50 0.073 0.074 0.944
a(y4) 1.33 1.34 0.088 0.089 0.949 1.34 0.083 0.085 0.947
a(y5) 2.00 2.01 0.105 0.106 0.950 2.02 0.108 0.110 0.944

n = 1000
b1 1.00 1.00 0.067 0.067 0.951 1.00 0.070 0.070 0.947
b2 -0.50 -0.50 0.034 0.034 0.948 -0.50 0.035 0.035 0.950
a(y1) -1.00 -1.00 0.063 0.063 0.949 -1.00 0.070 0.070 0.951
a(y2) -0.33 -0.33 0.054 0.054 0.953 -0.33 0.057 0.057 0.951
a(y3) 0.50 0.50 0.054 0.054 0.951 0.50 0.052 0.052 0.952
a(y4) 1.33 1.33 0.062 0.062 0.950 1.33 0.059 0.059 0.949
a(y5) 2.00 2.00 0.074 0.075 0.949 2.01 0.076 0.076 0.948

est is the mean of the point estimates.
est.se is the mean of the standard error estimates.
emp.se is the standard deviation of the point estimates
CP is the coverage probability of 95% confidence intervals in the 10,000 simulation replicates
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Table 3.4: The performance of cumulative probability models on estimating the conditional CDFs evaluated
at y1 = 0.368, y2 = 0.719, y3 = 1.649, y4 = 3.781, and y5 = 7.389. The results are based on 10,000 simulation
replicates for each sample size.

(i) e ⇠ Normal (ii) e ⇠ Extreme Type I

true est est.se emp.se CP true est est.se emp.se CP
n = 25

F(y1|X1 = 1,X2 = 1) 0.0668 0.0701 0.0680 0.0620 0.953 0.2000 0.1949 0.1074 0.0936 0.939
F(y2|X1 = 1,X2 = 1) 0.2033 0.2051 0.1275 0.1134 0.937 0.3534 0.3501 0.1492 0.1296 0.932
F(y3|X1 = 1,X2 = 1) 0.5000 0.4997 0.1694 0.1525 0.935 0.6321 0.6326 0.1710 0.1485 0.930
F(y4|X1 = 1,X2 = 1) 0.7967 0.7964 0.1264 0.1119 0.935 0.8991 0.8973 0.1006 0.0860 0.938
F(y5|X1 = 1,X2 = 1) 0.9332 0.9304 0.0693 0.0602 0.950 0.9887 0.9825 0.0350 0.0320 0.962

n = 50
F(y1|X1 = 1,X2 = 1) 0.0668 0.0679 0.0455 0.0423 0.947 0.2000 0.1980 0.0696 0.0664 0.947
F(y2|X1 = 1,X2 = 1) 0.2033 0.2036 0.0851 0.0817 0.945 0.3534 0.3515 0.0954 0.0914 0.944
F(y3|X1 = 1,X2 = 1) 0.5000 0.5024 0.1148 0.1096 0.946 0.6321 0.6341 0.1115 0.1063 0.945
F(y4|X1 = 1,X2 = 1) 0.7967 0.7980 0.0849 0.0807 0.944 0.8991 0.8994 0.0676 0.0629 0.942
F(y5|X1 = 1,X2 = 1) 0.9332 0.9326 0.0453 0.0417 0.945 0.9887 0.9855 0.0203 0.0180 0.957

n = 100
F(y1|X1 = 1,X2 = 1) 0.0668 0.0679 0.0315 0.0304 0.947 0.2000 0.1988 0.0477 0.0467 0.950
F(y2|X1 = 1,X2 = 1) 0.2033 0.2044 0.0598 0.0583 0.944 0.3534 0.3520 0.0658 0.0640 0.945
F(y3|X1 = 1,X2 = 1) 0.5000 0.5018 0.0797 0.0778 0.947 0.6321 0.6323 0.0772 0.0747 0.944
F(y4|X1 = 1,X2 = 1) 0.7967 0.7976 0.0593 0.0575 0.945 0.8991 0.8991 0.0471 0.0455 0.941
F(y5|X1 = 1,X2 = 1) 0.9332 0.9328 0.0311 0.0300 0.947 0.9887 0.9872 0.0128 0.0118 0.950

n = 200
F(y1|X1 = 1,X2 = 1) 0.0668 0.0672 0.0219 0.0216 0.948 0.2000 0.1994 0.0331 0.0330 0.950
F(y2|X1 = 1,X2 = 1) 0.2033 0.2034 0.0416 0.0412 0.950 0.3534 0.3529 0.0455 0.0450 0.952
F(y3|X1 = 1,X2 = 1) 0.5000 0.5004 0.0555 0.0550 0.948 0.6321 0.6326 0.0535 0.0525 0.946
F(y4|X1 = 1,X2 = 1) 0.7967 0.7972 0.0415 0.0409 0.949 0.8991 0.8997 0.0328 0.0324 0.949
F(y5|X1 = 1,X2 = 1) 0.9332 0.9330 0.0220 0.0214 0.947 0.9887 0.9880 0.0086 0.0082 0.948

n = 500
F(y1|X1 = 1,X2 = 1) 0.0668 0.0667 0.0139 0.0136 0.950 0.2000 0.1998 0.0210 0.0208 0.948
F(y2|X1 = 1,X2 = 1) 0.2033 0.2029 0.0266 0.0261 0.945 0.3534 0.3533 0.0287 0.0284 0.950
F(y3|X1 = 1,X2 = 1) 0.5000 0.4997 0.0354 0.0348 0.949 0.6321 0.6324 0.0335 0.0331 0.946
F(y4|X1 = 1,X2 = 1) 0.7967 0.7964 0.0262 0.0259 0.949 0.8991 0.8995 0.0208 0.0206 0.948
F(y5|X1 = 1,X2 = 1) 0.9332 0.9332 0.0135 0.0136 0.950 0.9887 0.9885 0.0053 0.0052 0.947

n = 1000
F(y1|X1 = 1,X2 = 1) 0.0668 0.0669 0.0097 0.0097 0.949 0.2000 0.1998 0.0149 0.0147 0.948
F(y2|X1 = 1,X2 = 1) 0.2033 0.2035 0.0184 0.0185 0.946 0.3534 0.3534 0.0202 0.0201 0.949
F(y3|X1 = 1,X2 = 1) 0.5000 0.5002 0.0243 0.0246 0.952 0.6321 0.6321 0.0236 0.0234 0.947
F(y4|X1 = 1,X2 = 1) 0.7967 0.7969 0.0182 0.0183 0.953 0.8991 0.8991 0.0149 0.0146 0.945
F(y5|X1 = 1,X2 = 1) 0.9332 0.9331 0.0097 0.0096 0.948 0.9887 0.9885 0.0038 0.0037 0.950

est is the mean of the point estimates.
est.se is the mean of the standard error estimates.
emp.se is the standard deviation of the point estimates
CP is the coverage probability of 95% confidence intervals in the 10,000 simulation replicates
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Table 3.5: The performance of cumulative probability models on estimating conditional means. The results
are based on 10,000 simulation replicates for each sample size.

(i) e ⇠ Normal (ii) e ⇠ Extreme Type I

true est est.se emp.se CP true est est.se emp.se CP
n = 25

E(Y |X1 = 0,X2 = 0) 1.65 1.668 0.531 0.589 0.874 1.00 0.995 0.285 0.311 0.877
E(Y |X1 = 1,X2 = 0) 4.48 4.480 1.358 1.675 0.832 2.72 2.746 0.758 0.856 0.870
E(Y |X1 = 0,X2 = 1) 1.00 1.034 0.393 0.450 0.863 0.61 0.603 0.219 0.245 0.860
E(Y |X1 = 1,X2 = 1) 2.72 2.808 1.043 1.239 0.866 1.65 1.704 0.603 0.691 0.865

n = 50
E(Y |X1 = 0,X2 = 0) 1.65 1.657 0.377 0.390 0.914 1.00 0.996 0.201 0.211 0.913
E(Y |X1 = 1,X2 = 0) 4.48 4.489 1.020 1.118 0.882 2.72 2.730 0.549 0.575 0.909
E(Y |X1 = 0,X2 = 1) 1.00 1.010 0.271 0.285 0.905 0.61 0.602 0.153 0.160 0.906
E(Y |X1 = 1,X2 = 1) 2.72 2.756 0.740 0.785 0.906 1.65 1.670 0.421 0.441 0.912

n = 100
E(Y |X1 = 0,X2 = 0) 1.65 1.652 0.265 0.269 0.930 1.00 0.997 0.142 0.145 0.932
E(Y |X1 = 1,X2 = 0) 4.48 4.503 0.753 0.782 0.918 2.72 2.732 0.391 0.396 0.928
E(Y |X1 = 0,X2 = 1) 1.00 1.003 0.190 0.193 0.925 0.61 0.603 0.107 0.108 0.930
E(Y |X1 = 1,X2 = 1) 2.72 2.743 0.524 0.538 0.928 1.65 1.661 0.294 0.301 0.928

n = 200
E(Y |X1 = 0,X2 = 0) 1.65 1.653 0.187 0.190 0.939 1.00 1.000 0.100 0.101 0.940
E(Y |X1 = 1,X2 = 0) 4.48 4.497 0.535 0.546 0.932 2.72 2.724 0.276 0.279 0.942
E(Y |X1 = 0,X2 = 1) 1.00 1.002 0.134 0.137 0.938 0.61 0.604 0.075 0.076 0.939
E(Y |X1 = 1,X2 = 1) 2.72 2.732 0.366 0.372 0.940 1.65 1.651 0.205 0.208 0.937

n = 500
E(Y |X1 = 0,X2 = 0) 1.65 1.649 0.117 0.119 0.945 1.00 0.999 0.063 0.064 0.944
E(Y |X1 = 1,X2 = 0) 4.48 4.496 0.341 0.340 0.946 2.72 2.721 0.174 0.176 0.946
E(Y |X1 = 0,X2 = 1) 1.00 1.001 0.084 0.084 0.948 0.61 0.605 0.048 0.048 0.945
E(Y |X1 = 1,X2 = 1) 2.72 2.728 0.230 0.231 0.946 1.65 1.649 0.129 0.131 0.943

n = 1000
E(Y |X1 = 0,X2 = 0) 1.65 1.650 0.083 0.084 0.949 1.00 1.000 0.045 0.045 0.951
E(Y |X1 = 1,X2 = 0) 4.48 4.488 0.241 0.242 0.949 2.72 2.721 0.123 0.125 0.946
E(Y |X1 = 0,X2 = 1) 1.00 1.001 0.059 0.060 0.951 0.61 0.606 0.034 0.034 0.950
E(Y |X1 = 1,X2 = 1) 2.72 2.722 0.162 0.162 0.950 1.65 1.650 0.091 0.092 0.943

est is the mean of the point estimates.
est.se is the mean of the standard error estimates.
emp.se is the standard deviation of the point estimates
CP is the coverage probability of 95% confidence intervals in the 10,000 simulation replicates
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Table 3.6: The performance of cumulative probability models on estimating the conditional 10th,25th, 50th,
75th, and 90th quantiles. The results are based on 10,000 simulation replicates for each sample size.

(i) e ⇠ Normal (ii) e ⇠ Extreme Type I

true est emp.se CP true est emp.se CP
n = 25

Q0.10|X1 = 1,X2 = 1 0.458 0.506 0.2657 0.931 0.174 0.214 0.1639 0.914
Q0.25|X1 = 1,X2 = 1 0.840 0.901 0.4165 0.942 0.474 0.546 0.3156 0.938
Q0.50|X1 = 1,X2 = 1 1.649 1.688 0.7428 0.935 1.143 1.199 0.5686 0.925
Q0.75|X1 = 1,X2 = 1 3.236 3.146 1.4068 0.930 2.286 2.187 0.9519 0.921
Q0.90|X1 = 1,X2 = 1 5.939 5.469 2.6814 0.909 3.796 3.385 1.4476 0.903

n = 50
Q0.10|X1 = 1,X2 = 1 0.458 0.477 0.1623 0.947 0.174 0.187 0.0904 0.954
Q0.25|X1 = 1,X2 = 1 0.840 0.862 0.2602 0.945 0.474 0.499 0.1872 0.947
Q0.50|X1 = 1,X2 = 1 1.649 1.657 0.4863 0.946 1.143 1.161 0.3615 0.944
Q0.75|X1 = 1,X2 = 1 3.236 3.170 0.9467 0.942 2.286 2.236 0.6473 0.939
Q0.90|X1 = 1,X2 = 1 5.939 5.670 1.8859 0.938 3.796 3.575 1.0389 0.931

n = 100
Q0.10|X1 = 1,X2 = 1 0.458 0.465 0.1083 0.951 0.174 0.179 0.0590 0.954
Q0.25|X1 = 1,X2 = 1 0.840 0.847 0.1773 0.945 0.474 0.486 0.1236 0.946
Q0.50|X1 = 1,X2 = 1 1.649 1.648 0.3305 0.946 1.143 1.154 0.2509 0.942
Q0.75|X1 = 1,X2 = 1 3.236 3.202 0.6600 0.944 2.286 2.264 0.4546 0.940
Q0.90|X1 = 1,X2 = 1 5.939 5.796 1.3193 0.943 3.796 3.691 0.7401 0.940

n = 200
Q0.10|X1 = 1,X2 = 1 0.458 0.462 0.0738 0.951 0.174 0.176 0.0409 0.952
Q0.25|X1 = 1,X2 = 1 0.840 0.845 0.1221 0.950 0.474 0.479 0.0839 0.950
Q0.50|X1 = 1,X2 = 1 1.649 1.650 0.2311 0.947 1.143 1.147 0.1725 0.947
Q0.75|X1 = 1,X2 = 1 3.236 3.221 0.4636 0.946 2.286 2.269 0.3215 0.946
Q0.90|X1 = 1,X2 = 1 5.939 5.877 0.9432 0.946 3.796 3.735 0.5288 0.944

n = 500
Q0.10|X1 = 1,X2 = 1 0.458 0.460 0.0469 0.948 0.174 0.175 0.0257 0.951
Q0.25|X1 = 1,X2 = 1 0.840 0.843 0.0783 0.944 0.474 0.476 0.0529 0.950
Q0.50|X1 = 1,X2 = 1 1.649 1.651 0.1465 0.949 1.143 1.144 0.1081 0.950
Q0.75|X1 = 1,X2 = 1 3.236 3.235 0.2942 0.947 2.286 2.280 0.2022 0.948
Q0.90|X1 = 1,X2 = 1 5.939 5.911 0.5867 0.952 3.796 3.770 0.3385 0.948

n = 1000
Q0.10|X1 = 1,X2 = 1 0.458 0.458 0.0325 0.950 0.174 0.174 0.0181 0.948
Q0.25|X1 = 1,X2 = 1 0.840 0.840 0.0536 0.951 0.474 0.475 0.0371 0.947
Q0.50|X1 = 1,X2 = 1 1.649 1.648 0.1009 0.953 1.143 1.144 0.0759 0.949
Q0.75|X1 = 1,X2 = 1 3.236 3.230 0.2037 0.951 2.286 2.283 0.1432 0.947
Q0.90|X1 = 1,X2 = 1 5.939 5.927 0.4167 0.951 3.796 3.784 0.2420 0.946

est is the mean of the point estimates.
emp.se is the standard deviation of the point estimates
CP is the coverage probability of 95% confidence intervals in the 10,000 simulation replicates
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3.6.3 Cumulative Probability Models for Measurements Subject to Detection Limits

We conducted simulations to investigate the performance of cumulative probability

models for handling measurements subject to detection limits. We generated data with

sample size of 100 from Y ⇤ = a +bX + e , where X ⇠ N(0,1), e ⇠ N(0,1), a = 3, b = 0

under the null hypothesis (H0), and b = 0.25 under the alternative hypothesis (H1). The

outcome variable Y was then generated by left censoring Y ⇤ at the detection limit (DL).

That is, we set Y as undetectable if Y ⇤ < DL and set Y = Y ⇤ if Y ⇤ � DL. We changed

the values of DL to vary the proportion of undetectable measurements. Specifically, we

set DL as 1.64, 2.28, 3.0, 3.72, and 4.36 so that the marginal proportion of undetectable

measurements were 10%, 25%, 50%, 75%, and 90%, respectively.

We fitted the properly specified cumulative probability model using the probit link func-

tion. For purpose of comparison, we also fitted the logistic regression using dichotomized

outcomes (undetectable vs. detectable) and two separate linear regression models: one

imputing values below the detection limit as DL and the other imputing values below the

detection limit as 0. To compare results with the logistic regression models, we also fitted

cumulative probability models with the logit link function.

Table 3.19 summarizes the type I error rate and power of these approaches under vari-

ous proportions of undetectable measurements. We found that the performances of cumu-

lative probability models with the probit and logit link functions were generally similar,

and they were generally more robust than the other two approaches. However, the gains

in efficiency varied with the proportion of undetectable measurements. For example, when

the proportion of undetectable measurements was small, e.g.,  25%, cumulative probabil-

ity models did not gain much efficiency compared with the linear regression models, but

they were much more efficient than the logistic regression models; when the proportion of

undetectable measurements was large, e.g., � 75%, all three models had similar power.
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Table 3.19: Type I error rate and power of cumulative probability models for outcomes subject to detection
limit (DL) compared with logistic regression models (dichotomizing the outcome into two categories: de-
tectable and undetectable) and linear regression models (imputing with the detection limit or 0). The sample
size is 100 and we repeat the simulation 10,000 times for each scenario.

% below DL orm logistic regression linear regression

probit logit binary outcome impute DL impute 0
10%

H0 0.053 0.053 0.042 0.050 0.050
H1 0.689 0.671 0.263 0.674 0.662

25%
H0 0.052 0.053 0.045 0.050 0.050
H1 0.673 0.654 0.406 0.646 0.625

50%
H0 0.052 0.049 0.044 0.049 0.050
H1 0.606 0.586 0.478 0.549 0.570

75%
H0 0.051 0.049 0.045 0.049 0.050
H1 0.464 0.446 0.412 0.387 0.450

90%
H0 0.042 0.041 0.041 0.050 0.047
H1 0.279 0.271 0.261 0.237 0.288
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Chapter 4

PResiduals: An R Package for Residual Analysis Using Probability-Scale Residuals

We have created an R package Presiduals that computes probability-scale resid-

uals for a wide range of statistical models, including cumulative probability models we

studied in Chapter 3. This package also implements both the partial and the conditional

covariate-adjusted Spearman’s rank correlations developed in Chapter 2. In this chapter,

we present the PResiduals package. A publicly available dataset is used to illustrate its

usage in model diagnostics, tests of conditional associations, and covariate-adjustment for

Spearman’s rank correlation.

4.1 Introduction

We have developed a new type of residual, the probability-scale residual (PSR), de-

fined as r(y,F⇤) = F⇤(y�)+F⇤(y)� 1, where y is the observed value and F⇤ is a fitted

distribution (Li & Shepherd, 2010, 2012; Shepherd et al., in press). This residual is on

the probability scale ranging from �1 to 1. It is well defined for a wide variety of outcome

types and models, including some settings where other popular residuals are not applicable.

Under properly specified models, the PSR has expectation 0, and it can, therefore, be used

for model diagnostics. In addition, PSRs can be used to test for conditional associations

(Li & Shepherd, 2010) and to construct covariate-adjusted Spearman’s rank correlation

(Liu, Shepherd, Wanga & Li, 2016). These methods are applicable to any orderable vari-

ables. They use order information but do not require assigning scores to ordered categorical

variables or transforming continuous outcomes, and therefore, can achieve a good balance

between robustness and efficiency.

The R package, PResiduals, has been developed to facilitate residual analyses using

PSRs. The purpose of this vignette is to provide an introduction to the PResiduals pack-
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age. We organize this paper as follows. In Section 4.2, we provide a brief review of PSRs

and related methods. In Section 4.3, we illustrate the main functions in PResidualswith

examples. Section 4.4 contains a summary.

4.2 Review of Methods

4.2.1 PSRs

A residual can be viewed as a contrast between the observed value and its fitted distri-

bution. For example, the commonly used observed-minus-expected residual (OMER) can

be written as y� ŷ= E(y�Y ⇤), where y is the observed value, Y ⇤ is a random variable from

the fitted distribution F⇤, and the contrast function is the difference. The PSR can be written

similarly with a more general contrast function sign(y,Y ⇤), where sign(a,b) is �1, 0, and

1 for a < b, a = b, and a > b. Specifically, r(y,F⇤) = E[sign(y,Y ⇤)] = P(Y ⇤ < y)�P(Y ⇤ >

y) = F⇤(y�)+F⇤(y)� 1. The PSR was originally proposed for ordered categorical vari-

ables where the difference between categories is not well defined (Li & Shepherd, 2010,

2012). Later, it was extended to other types of orderable variables, including continuous,

discrete, and censored outcomes (Shepherd et al., in press).

With continuous outcomes, the PSR is 2F⇤(y)� 1 (Shepherd et al., in press). If the

model is properly specified, i.e., F⇤ ! F , then r(Y,F⇤)! 2F(Y )�1. Note that F(Y ) is the

probability integral transformation and it is uniformly distributed from 0 to 1. Therefore, if

the PSR is from the properly specified model, it will be approximately uniformly distributed

from �1 to 1 with expectation 0 and constant variance 1/3. A quantile-quantile (QQ) plot

of PSRs versus the theoretical quantiles of the uniform distribution can be used to assess

the overall model fit. In addition, PSRs can also be used in residual-by-predictor plots to

detect lack of fit for specific predictors.

With discrete outcomes, the PSR is 2F⇤(y)� f ⇤(y)�1, where f ⇤ is the probability mass

function of the fitted distribution (Li & Shepherd, 2012; Shepherd et al., in press). In the
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extreme case where Y is binary, the PSR reduces to y�P(Y ⇤ = 1), which is the OMER or

unscaled Pearson residual. Although the PSR still has the expectation 0 under the properly

specified model, it is not uniformly distributed due to the discreteness. Therefore, residual-

by-predictor plots still provide information for the fit of specific predictors, but QQ-plots

with PSRs are generally not useful.

With right censored outcomes, we denote T as the time to event and C as the time to

censoring. Rather than directly observing T we only observe Y = min(T,C) and D = I(T 

C). The above formula for the PSR can only be applied to non-censored observations. If

censored, the failure time is unknown but it occurs after the censoring time y. Therefore,

we define the PSR as its conditional expectation given that t > y, i.e., E[r(T ⇤,F⇤)|T ⇤ >

y] = F⇤(y) (Shepherd et al., in press). Formally, the PSR for censored outcomes is defined

in terms of y and d , the observed values of Y and D as r(y,F⇤,d ) = F⇤(y)�d [1�F⇤(y�)].

Note that with this definition, the PSR for censored observations is always non-negative.

But under the properly specified model and T ?C, it still has expectation 0. Therefore, the

PSR can be used for model diagnostics for censored outcomes (Shepherd et al., in press).

4.2.2 Test of Residual Correlation with PSRs

The PSR was initially proposed as a component of test statistics for testing conditional

association between two ordered categorical variables X and Y while adjusting for co-

variates Z, referred to as COBOT (conditional ordinal by ordinal tests) in Li & Shepherd

(2010). Traditional regression approaches treat the ordinal predictor as either categorical

or numerical, whereas the former ignores the order information and the latter makes linear

assumptions. The basic idea of COBOT is to obtain conditional distributions of X and Y

from models of X on Z and of Y on Z, and then to determine whether these conditional

distributions are independent.

Three test statistics were proposed based on this idea. The first test statistic (T1) com-

pares the observed joint distribution between X and Y with their expected distribution under
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the null of conditional independence. If X and Y are independent conditional on Z, their

joint distribution given Z is expected to follow the product of the conditional distribution

of X and Y given Z. Therefore, we can test the difference between the observed and ex-

pected distributions; specifically, this is achieved by computing Goodman and Kruskal’s

gamma for the observed and expected joint distributions and taking their difference. The

second test statistic (T2) is based on the residuals (PSRs). Specifically, it computes PSRs

from models of X on Z and of Y on Z and tests the null of no residual correlation. The

third test statistic (T3) evaluates the concordance-discordance of data draw from the joint

fitted distribution of X and Y under conditional independence with those drawn from the

empirical joint distributions, which can be written as the covariance of PSRs. P-values are

computed based on large sample theory using M-estimation procedures. More details of

these test statistics are given in Li & Shepherd (2010).

Note that the test statistic of T2 is analogous to the partial Pearson’s correlation where

the same procedure is performed with linear regression using the OMER. Since the PSR

is well defined and on the same scale across various outcome types and models, we can

generalize T2 of COBOT to other settings: using the correlation of PSRs, we can test

for conditional associations between any orderable X and Y , including continuous, binary,

ordered categorical, or count outcomes.

4.2.3 Covariate-Adjusted Spearman’s Rank Correlation with PSRs

When there are no covariates, the PSR is a linear transformation of ranks and the cor-

relation of PSRs is simply Spearman’s rank correlation (Li & Shepherd, 2012; Shepherd

et al., in press). Formally, the population parameter of Spearman’s rank correlation can be

expressed as the correlation of PSRs (Liu, Shepherd, Wanga & Li, 2016). With covariates,

the PSR can be viewed as a linear transformation of adjusted ranks. This motivates us to

use PSRs to construct covariate-adjusted rank correlations (Liu, Shepherd, Wanga & Li,

2016).
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There are generally two types of covariate-adjusted correlations. One is the partial cor-

relation, i.e., removing the effect of covariates and summarizing the relationship with a

single number. The other is the conditional correlation, i.e., assessing the correlation at

specific levels of the covariates. We have proposed estimators for both partial and condi-

tional Spearman’s rank correlations: our partial estimator is the correlation of PSRs and

our conditional estimator is the conditional correlation of PSRs (Liu, Shepherd, Wanga &

Li, 2016).

To obtain those estimators, we first need to fit models of X on Z and of Y on Z, and then

compute PSRs from both models. Although the PSR is well defined and can be easily com-

puted from many parametric or nonparametric models, to achieve a good balance between

robustness and efficiency we favor fitting rank-based semiparametric models. Specifically,

we considered the cumulative probability models (Liu, Shepherd, Wanga & Li, 2016).

This class of models was originally developed for discrete ordinal data (McCullagh, 1980;

Agresti, 2010), but can be applied to continuous data (Sall, 1991; Harrell, 2015; Liu, Shep-

herd, Li & Harrell, 2016). Since the model fit only uses the order information of X and

Y , using PSRs from this type of models can preserve the rank-based nature of Spearman’s

rank correlation.

After obtaining PSRs from models of X on Z and of Y on Z, our partial estimator

can be obtained simply as the correlation of PSRs. M-estimation techniques can be used

to obtain its standard error (Liu, Shepherd, Wanga & Li, 2016). Since the correlation

coefficient is bounded between �1 and 1, Fisher’s transformation can be used to obtain

better convergence. Technical details can be found in Liu, Shepherd, Wanga & Li (2016).

To obtain the conditional estimator for Spearman’s rank correlation, we need to model

the conditional correlation between PSRs. If Z is a categorical variable with sufficient

numbers in each category, we can do a stratified analysis, i.e., compute the correlation of

PSRs within each level of Z. If Z is continuous, smoothing is needed and can be achieved

nonparametrically or parametrically. We have described a nonparametric approach based

99



on kernel weighting and a parametric approach using linear regression in Liu, Shepherd,

Wanga & Li (2016).

4.3 Analysis with the PResiduals Package

4.3.1 Wage Data

Throughout this section, we repeatedly use a publicly available dataset, the wage data,

as an example to illustrate the usage of key functions in the PResiduals package. This

dataset can be obtained from the R package ISLR (James et al., 2013). It contains annual

wages (in thousands of dollars) and other information for 3,000 male workers in the mid-

Atlantic region of the United States from 2003 and 2009. With this dataset, we can build

regression models for wages and study their relationship with other variables.

library(ISLR)
data(Wage)
head(Wage)

year age sex maritl race education
231655 2006 18 1. Male 1. Never Married 1. White 1. < HS Grad
86582 2004 24 1. Male 1. Never Married 1. White 4. College Grad
161300 2003 45 1. Male 2. Married 1. White 3. Some College
155159 2003 43 1. Male 2. Married 3. Asian 4. College Grad
11443 2005 50 1. Male 4. Divorced 1. White 2. HS Grad
376662 2008 54 1. Male 2. Married 1. White 4. College Grad

region jobclass health health_ins
231655 2. Middle Atlantic 1. Industrial 1. <=Good 2. No
86582 2. Middle Atlantic 2. Information 2. >=Very Good 2. No
161300 2. Middle Atlantic 1. Industrial 1. <=Good 1. Yes
155159 2. Middle Atlantic 2. Information 2. >=Very Good 1. Yes
11443 2. Middle Atlantic 2. Information 1. <=Good 1. Yes
376662 2. Middle Atlantic 2. Information 2. >=Very Good 1. Yes

logwage wage
231655 4.318063 75.04315
86582 4.255273 70.47602
161300 4.875061 130.98218
155159 5.041393 154.68529
11443 4.318063 75.04315
376662 4.845098 127.11574
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4.3.2 Calculation of PSRs

We first illustrate how to obtain PSRs from various models. The function presid()

is implemented to compute PSRs. Its usage is very similar to the function residuals()

from the stats library. Specifically, it takes a model object and returns a numerical

vector containing PSRs in the order of original observations in the data set. Currently sup-

ported model objects include lm and glm (Poisson, binomial, and gaussian families) in

the stats library; polr and glm.nb in the MASS library; ols, Glm, lrm, orm, psm,

and cph in the rms library; and survreg (Weibull, exponential, gaussian, logistic, and

lognormal distributions) and coxph in the survival library. Hence, using the function

presid(), we can easily obtain PSRs from proportional odds models (more generally cu-

mulative probability models), linear regression models, generalized linear regression mod-

els (such as Poisson and negative binomial models), parametric survival models, and Cox

proportional hazards models. We now illustrate the calculation of PSRs from some of these

models and their application in model diagnostics with the wage data.

We start with ordinal regression models for ordered categorical variables, for which

the PSR was originally created. Specifically, we model the ordered categorical variable

education, which has 5 levels, with a proportional odds model. We include age, race,

jobclass, maritl (marital status), health (health status), and year (calender year)

as covariates with age transformed using restricted cubic splines to account for a potential

nonlinear relationship. PSRs are natural residuals for this type of models and can be ob-

tained as functions of regression coefficients directly. In R, proportional odds models can

be fitted using the function polr() from the MASS package or the function orm() from

the rms package. The following chunk of code illustrates the usage of these two functions

along with presid(). When using orm(), we need to set the arguments x=TRUE and

y=TRUE so that the expanded design matrix and the values of the response variable are re-

turned; this is a convention of the rms package. In this specific example, the PSRs obtained

using these two functions are slightly different at the sixth digit after the decimal. This is
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because polr() and orm() use different fitting procedures and yield slightly different

regression coefficients.

library(PResiduals)
library(MASS)
po.polr <- polr(education ˜ rcs(age, 5) + race + jobclass + maritl +

health + year, data = Wage)
PSR.po.polr <- presid(po.polr)

library(rms)
po.orm <- orm(education ˜ rcs(age, 5) + race + jobclass + maritl +

health + year, data = Wage, x = TRUE, y = TRUE)
PSR.po.orm <- presid(po.orm)

summary(cbind(PSR.po.polr, PSR.po.orm))
PSR.po.polr PSR.po.orm
Min. :-0.9882886 Min. :-0.988289
1st Qu.:-0.4510896 1st Qu.:-0.451093
Median :-0.0072629 Median :-0.007264
Mean : 0.0000001 Mean : 0.000000
3rd Qu.: 0.5012186 3rd Qu.: 0.501223
Max. : 0.9716579 Max. : 0.971659

Figure 4.1 shows the application of PSRs in residual-by-predictor plots. Specifically,

in the left panel of Figure 4.1, we include both linear and nonlinear terms by transforming

age using restricted cubic splines with 5 knots, whereas in the right panel, we only include

the linear term. The smoothed curve shows a nonlinear relationship between PSRs and age

when only including the linear term, suggesting a better fit when both linear and nonlinear

terms are included.

par(mfrow = c(1, 2)) #### residual-by-predictor plots
plot(Wage$age, PSR.po.orm, cex = 0.3, xlab = "age", ylab = "PSRs",

col = gray(0.6), main = "(a) include both linear and
nonlinear terms", cex.main = 0.8)

lines(lowess(Wage$age, PSR.po.orm), lwd = 3)
abline(h = 0, lty = 2)

po.t.orm <- orm(education ˜ age + race + jobclass + maritl +
health + year, data = Wage, x = TRUE, y = TRUE)

PSR.po.t.orm <- presid(po.t.orm)
plot(Wage$age, PSR.po.t.orm, cex = 0.3, xlab = "age", ylab = "PSRs",

col = gray(0.6), main = "(b) only include the linear term",
cex.main = 0.8)

lines(lowess(Wage$age, PSR.po.t.orm), lwd = 3)
abline(h = 0, lty = 2)
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Figure 4.1: Residual-by-predictor plots with PSRs from proportional odds models. (a): PSRs are from the
model including both linear and nonlinear terms. (b): PSRs are from the model only including the linear
term.

Note that proportional odds models are special cases of a general class of ordinal regres-

sion models. This class of models has been referred to as cumulative link models in some

literature (Agresti, 2010), but we refer to them as cumulative probability models because

probabilities, not link functions, are added. Proportional odds models are cumulative prob-

ability models with the logit link (McCullagh, 1980). Other commonly used link functions

include the probit link, the loglog link, and the complementary loglog link. Cumulative

probability models with different link functions can be fitted by specifying the method

argument in polr() or the family argument in orm(), and PSRs can be similarly

obtained with presid().

Next, we consider linear regression models. For linear regression models, PSRs can

be obtained by assuming normality for the error distribution. For example, the PSR for

observed value yi can be computed as 2F(yi � ŷi)�1, where ŷi is the fitted value and F()

is the cumulative distribution function (CDF) of the standard normal distribution. This is

the default in presid() for linear model objects (lm, ols and Glm). But the normality
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assumption may be not necessary since it is well known that linear regression models are

fairly robust to nonnormal errors as long as they are not highly skewed. In some application,

we may be willing to only assume homoscedasticity instead of normality. In that case, PSRs

can be obtained by empirically ranking the observed-minus-expected residuals (OMER).

Specifically, if we denote the OMER for observation i as êi = yi � ŷi, the corresponding

empirical PSR would be Ân
j=1 I(ê j < êi)/n�Ân

j=1 I(ê j > êi)/n (Shepherd et al., in press).

This can be obtained with presid() by setting the argument emp=TRUE. In the wage

example, consider a linear regression model of logwage on education, age, race,

jobclass, maritl, health, and year, where we apply the log transformation to

wage due to its skewed distribution. The following chunk of code illustrates how to use

presid() to obtain PSRs from linear regression models under different assumptions.

lm.1 <- lm(logwage ˜ education + rcs(age, 5) + race + jobclass + maritl +
health + year, data = Wage)

library(PResiduals)
PSR.lm.1.normal <- presid(lm.1) # default, normality assumed
PSR.lm.1.emp <- presid(lm.1, emp = TRUE) #normality not assumed
OMER.lm.1 <- residuals(lm.1) # observe-minus-expected residuals

summary(cbind(OMER.lm.1, PSR.lm.1.normal, PSR.lm.1.emp))
OMER.lm.1 PSR.lm.1.normal PSR.lm.1.emp

Min. :-1.7070 Min. :-1.00000 Min. :-0.9997
1st Qu.:-0.1551 1st Qu.:-0.41148 1st Qu.:-0.4998
Median : 0.0138 Median : 0.03841 Median : 0.0000
Mean : 0.0000 Mean : 0.01264 Mean : 0.0000
3rd Qu.: 0.1657 3rd Qu.: 0.43675 3rd Qu.: 0.4998
Max. : 1.1556 Max. : 0.99994 Max. : 0.9997

Figure 4.2 shows the PSRs under different assumptions and their relationships with

OMERs. Since the PSRs of continuous responses are uniformly distributed over (�1,1)

under properly specified models, the quantile-quantile (QQ) plot of the empirical quantiles

of the PSRs versus theoretical quantiles of uniform(-1, 1) can be used to assess the overall

model fit (Shepherd et al., 2016). A QQ plot of PSRs from linear regression assuming nor-

mality is also plotted in Figure 4.2, suggesting the normal linear assumption for logwage

may not be ideal. Note, the PSR under the assumption of homoscedasticity is obtained
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Figure 4.2: PSRs from linear regression models. (a): PSRs assuming normality are compared with OMERs.
(b): empirical PSRs are compared with PSRs assuming normality. (c): QQ plot with PSRs under the assump-
tion of normality.

by empirically ranking the OMERs, therefore, it is uniformly distributed by construction

and its QQ-plot does not provide useful information about the model fit. However, this

empirical PSR can still be used in residual-by-predictor plots to detect lack of fit for spe-

cific predictors. For example, in Figure 4.3, we compare the residual-by-predictor plots

using the empirical PSRs from linear regression models including both linear and nonlin-

ear terms for age (transformed using restricted cubic splines) and not including nonlinear

terms. Again, the smoothed curves show a clear nonlinear pattern, suggesting lack of fit

when only including the linear term.

par(mfrow = c(1, 3))
plot(OMER.lm.1, PSR.lm.1.normal, cex = 0.1, xlab = "OMERs", ylab =

"PSRs (normality)", main = "(a)")
plot(PSR.lm.1.normal, PSR.lm.1.emp, cex = 0.1, xlab = "PSRs (normality)",

ylab = "PSRs (empirical)", main = "(b)")
abline(0, 1, lty = 2)
qqplot(qunif(ppoints(length(PSR.lm.1.normal)), -1, 1), PSR.lm.1.normal,

xlab = "Quantiles of Uniform Distribution",
ylab = "Quantiles of PSRs (normality)",
main = "(c)", cex = 0.1) ## QQ plot of PSRs assuming normality

abline(a = 0, b = 1, lty = 2)

105



20 30 40 50 60 70 80

−1
.0

−0
.5

0.
0

0.
5

1.
0

(a) include both linear and nonlinear terms

age

PS
R

s 
(e

m
pi

ric
al

)

20 30 40 50 60 70 80

−1
.0

−0
.5

0.
0

0.
5

1.
0

(b) only include the linear term

age

PS
R

s 
(e

m
pi

ric
al

)

Figure 4.3: Residual-by-predictor plots using PSRs from linear regression models. (a): PSRs are from the
model including both linear and nonlinear terms. (b): PSRs are from the model only including the linear
term.

par(mfrow = c(1, 2)) ## residual-by-predictor plot
plot(Wage$age, PSR.lm.1.emp, cex = 0.3, xlab = "age",

ylab = "PSRs (empirical)", col = gray(0.6),
main = "(a) include both linear and nonlinear terms",
cex.main = 0.8)

lines(lowess(Wage$age, PSR.lm.1.emp), lwd = 3)
abline(h = 0, lty = 2)

lm.1.t <- ols(logwage ˜ education + age + race + jobclass + maritl +
health + year, data = Wage, x = TRUE, y = TRUE)

PSR.lm.1.t.emp <- presid(lm.1.t, emp = TRUE)
plot(Wage$age, PSR.lm.1.t.emp, cex = 0.3, xlab = "age",

ylab = "PSRs (empirical)", col = gray(0.6),
main = "(b) only include the linear term", cex.main = 0.8)

lines(lowess(Wage$age, PSR.lm.1.t.emp), lwd = 3)
abline(h = 0, lty = 2)

Although the log transformation is commonly used for right-skewed data, it may not

be optimal. Different transformations may give conflicting results. A more robust analy-

sis would estimate the transformation semiparametrically. Specifically, we have studied a

semiparametric transformation model, which can be viewed as a natural extension of ordi-

nal cumulative probability models to continuous responses (Sall, 1991; Harrell, 2015; Liu,
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Shepherd, Li & Harrell, 2016). The orm() function in the rms package can be used to fit

cumulative probability models for continuous responses. We now illustrate its usage and

the calculation of PSRs with presid() using the wage data. Again, we need to set the

arguments x=TRUE and y=TRUE when calling orm().

library(rms)
cpm.logit <- orm(wage ˜ education + rcs(age, 5) + race + jobclass +

maritl + health + year, data = Wage, x = TRUE, y = TRUE)
cpm.cloglog <- orm(wage ˜ education + rcs(age, 5) + race + jobclass +

maritl + health + year, data = Wage, x = TRUE, y = TRUE,
family = cloglog)

library(PResiduals)
PSR.cpm.logit <- presid(cpm.logit)
PSR.cpm.cloglog <- presid(cpm.cloglog)

summary(cbind(PSR.cpm.logit, PSR.cpm.cloglog))
PSR.cpm.logit PSR.cpm.cloglog
Min. :-0.99991 Min. :-1.00000
1st Qu.:-0.51619 1st Qu.:-0.42772
Median : 0.01926 Median : 0.03212
Mean : 0.00000 Mean : 0.00906
3rd Qu.: 0.50798 3rd Qu.: 0.45051
Max. : 0.99976 Max. : 0.99945

PSRs from cumulative probability models can also be used in QQ-plots and residual-

by-predictor plots to assess model fit. Figure 4.4 shows QQ-plots of PSRs from cumulative

probability models with the logit link and the cloglog link, suggesting better model fit

with the logit link. The residual-by-predictor plots in Figure 4.5 show a similar nonlinear

relationship between wages and age as seen in the linear regression models.

par(mfrow = c(1, 2)) ## QQ plots of PSRs
qqplot(qunif(ppoints(length(PSR.cpm.logit)), -1, 1), PSR.cpm.logit,

cex = 0.1, xlab = "Quantiles of Uniform Distribution",
ylab = "Quantiles of PSRs", main = "(a) logit")

abline(0, 1, col = 2, lty = 2)

qqplot(qunif(ppoints(length(PSR.cpm.cloglog)), -1, 1), PSR.cpm.cloglog,
cex = 0.1, xlab = "Quantiles of Uniform Distribution",
ylab = "Quantiles of PSRs", main = "(b) cloglog")

abline(0, 1, col = 2, lty = 2)

par(mfrow = c(1, 2)) ## residual-by-predictor plot
plot(Wage$age, PSR.cpm.logit, cex = 0.3, xlab = "age",
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Figure 4.4: QQ-plots with PSRs from cumulative probability models with different link functions. (a) PSRs
are from the model using the logit link. (b) PSRs are from the model using the cloglog link function.

ylab = "PSRs (logit)", col = gray(0.6), cex.main = 0.8,
main = "(a) include both linear and nonlinear terms")

lines(lowess(Wage$age, PSR.cpm.logit), lwd = 3)
abline(h = 0, lty = 2)

cpm.t.logit <- orm(wage ˜ education + age + race + jobclass + maritl +
health + year, data = Wage, x = TRUE, y = TRUE)

PSR.cpm.t.logit <- presid(cpm.t.logit)
plot(Wage$age, PSR.cpm.t.logit, cex = 0.3, xlab = "age",

ylab = "PSRs (logit)", col = gray(0.6), cex.main = 0.8,
main = "(b) only include the linear term")

lines(lowess(Wage$age, PSR.cpm.t.logit), lwd = 3)
abline(h = 0, lty = 2)

To illustrate PSRs for censored outcomes with the wage data, we artificially create a

censoring indicator d with the probability of being censored equal to 0.2. If d = 0, we

pretend that the worker was not willing to share their exact wage and only reported a lower

bound, i.e., the true wage is higher than the reported wage; whereas for workers with d = 1,

we assume that they reported the exact value of their wages. In other words, we pretend

that the wage data are right censored.
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Figure 4.5: Residual-by-predictor plots using PSRs from cumulative probability models with the logit link
function. (a): PSRs are from the model including both linear and nonlinear terms. (b): PSRs are from the
model only including the linear term.

set.seed(1)
Wage$delta <- sample(c(0, 1), dim(Wage)[1], replace = TRUE, c(0.2, 0.8))

Survival models can be used to model right censored data. We first illustrate how to ob-

tain PSRs from parametric survival models. Specifically, we use the survreg() function

in the survival package to fit three parametric survival models, assuming the response

distribution is Weibull, logistic, or Gaussian.

library(survival)
psm.1 <- survreg(Surv(wage, delta) ˜ education + rcs(age, 5) + race +

jobclass + maritl + health + year, dist = "weibull", data = Wage)
psm.2 <- survreg(Surv(wage, delta) ˜ education + rcs(age, 5) + race +

jobclass + maritl + health + year, dist = "logistic", data = Wage)
psm.3 <- survreg(Surv(wage, delta) ˜ education + rcs(age, 5) + race +

jobclass + maritl + health + year, dist = "gaussian", data = Wage)

library(PResiduals)
PSR.psm.1 <- presid(psm.1)
PSR.psm.2 <- presid(psm.2)
PSR.psm.3 <- presid(psm.3)

summary(cbind(PSR.psm.1, PSR.psm.2, PSR.psm.3))
PSR.psm.1 PSR.psm.2 PSR.psm.3

Min. :-0.99335 Min. :-0.99570 Min. :-0.99899
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1st Qu.:-0.41191 1st Qu.:-0.45755 1st Qu.:-0.44846
Median :-0.02840 Median : 0.03148 Median :-0.04532
Mean :-0.01622 Mean : 0.00000 Mean :-0.03946
3rd Qu.: 0.34825 3rd Qu.: 0.41572 3rd Qu.: 0.32982
Max. : 1.00000 Max. : 0.99997 Max. : 1.00000

PSRs for censored outcomes are generally not uniformly distributed even when the

model is properly specified. To assess the overall model fit, we have considered a mod-

ified version of the PSR, referred to as a Cox-Snell-like PSR (Shepherd et al., in press).

This residual is simply the PSR evaluated at the observed value (ignoring censoring). It

can be written as a one-to-one transformation of the Cox-Snell residual. Similar to the

Cox-Snell residual which corresponds to a censored exponential(1) distribution, this mod-

ified PSR corresponds to a censored uniform distribution from �1 to 1 under the properly

specified model. By comparing its Kaplan-Meier estimate with the uniform distribution,

we can assess the goodness of fit. The following chunk of code shows the calculation of

Cox-Snell-like PSRs. Note that this modified version of the PSR generally does not have

expectation 0. Figure 4.6 shows QQ-plots of Cox-Snell-like PSRs based on the Kaplan-

Meier estimates, suggesting better model fit when assuming the censored outcomes follow

a logistic distribution.

library(PResiduals)
PSR.cox_snell.psm.1 <- presid(psm.1, type = "Cox-Snell-like")
PSR.cox_snell.psm.2 <- presid(psm.2, type = "Cox-Snell-like")
PSR.cox_snell.psm.3 <- presid(psm.3, type = "Cox-Snell-like")
summary(cbind(PSR.cox_snell.psm.1, PSR.cox_snell.psm.2,

PSR.cox_snell.psm.3))
PSR.cox_snell.psm.1 PSR.cox_snell.psm.2 PSR.cox_snell.psm.3
Min. :-0.9967 Min. :-0.9957 Min. :-0.9990
1st Qu.:-0.4877 1st Qu.:-0.5487 1st Qu.:-0.5258
Median :-0.1831 Median :-0.1731 Median :-0.2106
Mean :-0.1311 Mean :-0.1133 Mean :-0.1572
3rd Qu.: 0.1684 3rd Qu.: 0.2728 3rd Qu.: 0.1567
Max. : 1.0000 Max. : 1.0000 Max. : 1.0000

par(mfrow = c(1, 3)) ## QQ plot with Cox-Snell-like PSRs

PSR.cox_snell.fit.1 <- survfit(Surv(PSR.cox_snell.psm.1, Wage$delta) ˜
1)

PSR.cox_snell.fit.2 <- survfit(Surv(PSR.cox_snell.psm.2, Wage$delta) ˜

110



−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

(a) Weibull

Quantiles of uniform

Q
ua

nt
ile

s 
of

 C
ox
−S

ne
ll−

lik
e 

PS
R

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

(b) logistic

Quantiles of uniform
Q

ua
nt

ile
s 

of
 C

ox
−S

ne
ll−

lik
e 

PS
R

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

(c) normal

Quantiles of uniform

Q
ua

nt
ile

s 
of

 C
ox
−S

ne
ll−

lik
e 

PS
R

Figure 4.6: QQ-plots of Cox-Snell-like PSRs from parametric survival models with different distribution
functions. (a): PSRs are from the model assuming the Weilbull distribution. (b): PSRs are from the model
assuming the logistic distribution. (c): PSRs are from the model assuming the normal distribution

1)
PSR.cox_snell.fit.3 <- survfit(Surv(PSR.cox_snell.psm.3, Wage$delta) ˜

1)

plot(summary(PSR.cox_snell.fit.1)$time,
qunif(1 - summary(PSR.cox_snell.fit.1)$surv, -1, 1), cex = 0.1,
ylab = "Quantiles of Cox-Snell-like PSRs", main = "(a) Weibull",
xlab = "Quantiles of uniform", xlim = c(-1, 1), ylim = c(-1, 1))

abline(0, 1, lty = 2)

plot(summary(PSR.cox_snell.fit.2)$time,
qunif(1 - summary(PSR.cox_snell.fit.2)$surv, -1, 1), cex = 0.1,
ylab = "Quantiles of Cox-Snell-like PSRs", main = "(b) logistic"
xlab = "Quantiles of uniform", xlim = c(-1, 1), ylim = c(-1, 1))

abline(0, 1, lty = 2)

plot(summary(PSR.cox_snell.fit.3)$time,
qunif(1 - summary(PSR.cox_snell.fit.3)$surv, -1, 1), cex = 0.1,
ylab = "Quantiles of Cox-Snell-like PSRs", main = "(c) normal"
xlab = "Quantiles of uniform", xlim = c(-1, 1), ylim = c(-1, 1))

abline(0, 1, lty = 2)

The standard PSR for censored data has expectation 0 under properly specified model

and independent censoring; therefore, it can be used in residual-by-predictor plots (Shep-

herd et al., in press). Figure 4.7 plots PSRs from parametric survival models assuming

the logistic distribution with and without the nonlinear terms for age, again suggesting a
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Figure 4.7: Residual-by-predictor plots using PSRs from parametric survival models assuming the logistic
distribution. (a): PSRs are from the model including both linear and nonlinear terms. (b): PSRs are from the
model only including the linear term.

better fit when including the nonlinear terms. For the purpose of illustration, we highlight

the PSRs of censored observations, showing that they are always non-negative.

par(mfrow = c(1, 2)) ## residual-by-predictor plot with PSRs (standard)
plot(Wage$age, PSR.psm.2, cex = 0.4, xlab = "age",

ylab = "PSRs (logistic)", col = ifelse(Wage$delta == 1,gray(0.6), 1),
pch = ifelse(Wage$delta == 1, 1, 3), cex.main = 0.8,
main = "(a) include both linear and nonlinear terms")

lines(lowess(Wage$age, PSR.psm.2), lwd = 3)
legend("bottomleft", legend = c("uncensored", "censored"), bty = "n",

col = c(gray(0.6), 1), pch = c(1, 3), cex = 0.7)
abline(h = 0, lty = 2)

psm.2.t <- survreg(Surv(wage, delta) ˜ education + age + race + jobclass
+ maritl + health + year, dist = "logistic", data = Wage)

PSR.psm.2.t <- presid(psm.2.t)
plot(Wage$age, PSR.psm.2.t, cex = 0.4, xlab = "age",

ylab = "PSRs (logistic)", col = ifelse(Wage$delta == 1,gray(0.6), 1),
pch = ifelse(Wage$delta == 1, 1, 3), cex.main = 0.8,
main = "(b) only include the linear term")

legend("bottomleft", legend = c("uncensored", "censored"), bty = "n",
col = c(gray(0.6), 1), pch = c(1, 3), cex = 0.7)

lines(lowess(Wage$age, PSR.psm.2.t), lwd = 3)
abline(h = 0, lty = 2)

We can also fit semiparametric survival models, e.g., the widely used proportional haz-
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ards model, for censored wage data. The PSR and the Cox-Snell-like PSR can be obtained

using the following chunk of code. Figure 4.8 shows the QQ plot of Cox-Snell-like PSRs

and residual-by-predictor plots using PSRs from Cox proportional hazards models. The

results are generally similar with those in the parametric survival models.

library(survival)
coxph.1 <- coxph(Surv(wage, delta) ˜ education + rcs(age, 5) + race +

jobclass + maritl + health + year, data = Wage)

library(PResiduals)
PSR.coxph.1 <- presid(coxph.1) ## standarad PSR
PSR.cox_snell.coxph <- presid(coxph.1, type = "Cox-Snell-like")

par(mfrow = c(1, 3)) ## PSRs from proportional hazards model

PSR.cox_snell.coxph.fit <- survfit(Surv(PSR.cox_snell.coxph, Wage$delta)
˜ 1)

plot(summary(PSR.cox_snell.coxph.fit)$time,
qunif(1 - summary(PSR.cox_snell.coxph.fit)$surv, -1, 1), cex = 0.1,
ylab = "Quantiles of Cox-Snell-like PSRs", xlim = c(-1, 1),
ylim = c(-1, 1), xlab = "Quantiles of uniform", main = "(a) Cox PH")

abline(0, 1, lty = 2)

plot(Wage$age, PSR.coxph.1, cex = 0.4, xlab = "age",
ylab = "PSRs (Cox)", col = ifelse(Wage$delta == 1, gray(0.6), 1),
pch = ifelse(Wage$delta == 1, 1, 3),
main = "(b) include both linear and nonlinear terms")

legend("bottomleft", legend = c("uncensored", "censored"), bty = "n",
col = c(gray(0.6), 1), pch = c(1, 3), cex = 0.7)

lines(lowess(Wage$age, PSR.coxph.1), lwd = 3)
abline(h = 0, lty = 2)

coxph.1.t <- coxph(Surv(wage, delta) ˜ education + age + race + jobclass
+ maritl + health + year, data = Wage)

PSR.coxph.1.t <- presid(coxph.1.t)
plot(Wage$age, PSR.coxph.1.t, cex = 0.4, xlab = "age",

ylab = "PSRs (Cox)", col = ifelse(Wage$delta == 1, gray(0.6), 1),
pch = ifelse(Wage$delta == 1, 1, 3),
main = "(c) only include the linear term")

legend("bottomleft", legend = c("uncensored", "censored"), bty = "n",
col = c(gray(0.6), 1), pch = c(1, 3), cex = 0.7)

lines(lowess(Wage$age, PSR.coxph.1.t), lwd = 3)
abline(h = 0, lty = 2)

PSRs can also be computed for other types of data and models, for example, Poisson

or negative binomial models for the count data. The usage of the presid() function for
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Figure 4.8: PSRs from Cox proportional hazards models. (a): QQ plot using Cox-Snell-like PSRs. (b):
residual-by-predictor plot using PSRs from the model including both linear and nonlinear terms. (c) residual-
by-predictor plot using PSRs from the model only including the linear term.

these models is similar with what we described above. We refer readers to the manual and

the help file of presid() for more details and examples.

4.3.3 Tests of Conditional Association

In the previous section, we described the calculation of PSRs using the function presid()

and illustrated their usage in model diagnostics. In this section, we focus on inference.

Specifically, we describe how to use the PResiduals package to perform tests of condi-

tional association.

Assume that we want to examine the association between wage and education

while adjusting for a few potential confounders, such as age, race, jobclass, maritl,

health, and year. One may consider fitting the linear regression or cumulative proba-

bility models we built earlier and then examining regression coefficients. In this example,

both the linear regression model and the cumulative probability model suggest positive as-

sociations between wage and education after adjusting for other covariates (results not

shown). Formal tests show significant associations between wage and education after

adjusting for other covariates (results not shown).
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However, in both regression models, the ordinal predictor education is coded as a

categorical variable and the order information is ignored. To use the order information,

we may consider assigning scores, e.g., the approximate years of education to different

education levels, but that would force an assumption of linearity. This is a common issue

for ordered categorical predictors in regression models and also one of the motivations for

developing COBOT and PSRs.

The COBOT approach has been implemented in the PResiduals package as the

cobot() function. To illustrate its usage with the wage data, we create an ordered cat-

egorical variable for wage, referred to as wage.level, by discretizing wage into five

categories. Note, this is simply for the purpose of illustration and we do not recommend

categorizing continuous variables in real data analyses because it does not use information

efficiently and may lead to biased results (Royston et al., 2006). The cobot() function

takes a formula object in the form of X |Y ⇠ Z, where X and Y are the ordinal variables

whose relationship we are interested in, and Z designates the covariates we want to adjust

for. Note that Z could be multidimensional covariates with transformations. By default,

cobot() fits proportional odds models for both X on Z and Y on Z. Cumulative proba-

bility models with other link functions can be specified with the arguments link.x and

link.y. The cobot() function reports three test statistics proposed in Li & Shepherd

(2010) and their standard errors, p-values, and confidence intervals. The second statis-

tic, T2, is the correlation of PSRs. Fisher’s transformation is used by default to compute

p-values and confidence intervals for T2. In this example, we find a strong positive associ-

ation between education and the discretized wage with highly significant p-values.

Wage$wage.level <- cut(Wage$wage, breaks = c(0, quantile(Wage$wage,
c(0.2, 0.4, 0.6, 0.8)), Inf))

summary(Wage$wage.level)
(0,81.3] (81.3,97.5] (97.5,114] (114,135] (135,Inf]

661 548 635 558 598
cobot(wage.level | education ˜ rcs(age, 5) + race + jobclass + maritl +

health + year, data = Wage)
est stderr p

Gamma(Obs) - Gamma(Exp) 0.3873366 0.015024858 1.497331e-146
Correlation of Residuals 0.4455342 0.015584921 4.729171e-134
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Covariance of Residuals 0.1367667 0.004861128 3.680273e-174
lower CI upper CI

Gamma(Obs) - Gamma(Exp) 0.3574999 0.4163833
Correlation of Residuals 0.4144760 0.4755558
Covariance of Residuals 0.1272267 0.1462814
Confidence Interval: 95%
Number of Observations: 3000

Since PSRs are well defined for a wide variety of outcomes, the COBOT approach

based on PSRs can be extended to other types of X and Y as long as they are orderable. For

example, in the PResiduals package, we have implemented cocobot() for an ordinal

X and a continuous Y , countbot() for an ordinal X and a count variable Y , and a wrap-

per function megabot() for any orderable X and Y . The usage of megabot() is very

similar with cobot() and is illustrated in the following chunk of code. Flexible modeling

choices are available for both X on Z and Y on Z, and can be specified with the arguments

fit.x and fit.y. Currently supported fitting procedures include ordinal (ordinal cu-

mulative probability models fitted with polr()), lm (linear regression models assuming

normality), lm.emp (linear regression models assuming homoscedasticity), orm (contin-

uous or discrete cumulative probability models fitted with orm()), poisson (Poisson

models for count data), and nb (negative binomial models for count data). If cumulative

probability models are used (with either polr() or orm()), the default link function is

the logit function and other link functions can be specified with arguments link.x and

link.y. We give a few examples, using PSRs for education obtained from ordinal

cumulative probability models fitted with either polr() or orm() and PSRs for wage

obtained from either linear regression models or cumulative probability models. Note that

when cumulative probability models are used for both models of X on Z and of Y on Z,

the test results only use rank information of X and Y and are therefore invariant to any

monotonic transformations of X or Y . Results are very similar across different models.

megabot(logwage | education ˜ rcs(age, 5) + race + jobclass + maritl +
health + year, data = Wage, fit.x = "lm.emp", fit.y = "ordinal")

est stderr p lower CI upper CI
cor PSRs 0.4403039 0.01585574 1.412076e-127 0.4087066 0.4708471
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Confidence Interval: 95%
Number of Observations: 3000
Fisher Transform: TRUE

megabot(logwage | education ˜ rcs(age, 5) + race + jobclass + maritl +
health + year, data = Wage, fit.x = "lm.emp", fit.y = "ordinal",
link.y = "cloglog")

est stderr p lower CI upper CI
cor PSRs 0.4409901 0.01562993 1.67254e-131 0.4098487 0.4711046
Confidence Interval: 95%
Number of Observations: 3000
Fisher Transform: TRUE

megabot(wage | education ˜ rcs(age, 5) + race + jobclass + maritl +
health + year, data = Wage, fit.x = "orm", fit.y = "orm")

est stderr p lower CI upper CI
cor PSRs 0.4428448 0.01564295 5.103498e-132 0.4116738 0.4729808
Confidence Interval: 95%
Number of Observations: 3000
Fisher Transform: TRUE

4.3.4 Covariate-Adjusted Spearman’s Rank Correlation with PSRs

As discussed in Section 4.2, PSRs can be used to construct partial and conditional

Spearman’s rank correlation adjusting for covariates (Liu, Shepherd, Wanga & Li, 2016).

The test statistics in our tests for conditional association implemented in megabot() are

actually partial Spearman’s correlations.

We have implemented the function partial.Spearman() to obtain the partial

Spearman’s correlation where cumulative probability models are set as the default mod-

eling method for both discrete and continuous ordinal X and Y (fitted with orm()). The

following chunk of code illustrates its usage with different link functions in the example of

wage and education.

partial.Spearman(wage | education ˜ rcs(age, 5) + race + jobclass +
maritl + health + year, data = Wage, link.x = "logit",
link.y = "logit")

est stderr p lower CI
partial Spearman 0.4428448 0.01564295 5.103498e-132 0.4116738

upper CI
partial Spearman 0.4729808
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Fisher Transform: TRUE
Confidence Interval: 95%
Number of Observations: 3000

partial.Spearman(wage | education ˜ rcs(age, 5) + race + jobclass +
maritl + health + year, data = Wage, link.x = "probit",
link.y = "probit")

est stderr p lower CI
partial Spearman 0.4448799 0.0156437 8.34341e-133 0.4137038

upper CI
partial Spearman 0.4750138
Fisher Transform: TRUE
Confidence Interval: 95%
Number of Observations: 3000

partial.Spearman(wage | education ˜ rcs(age, 5) + race + jobclass +
maritl + health + year, data = Wage, link.x = "cloglog",
link.y = "cloglog")

est stderr p lower CI
partial Spearman 0.4580628 0.01555897 2.233473e-139 0.4270347

upper CI
partial Spearman 0.4880135
Fisher Transform: TRUE
Confidence Interval: 95%
Number of Observations: 3000

The result with the logit link function shows that after adjusting for other covariates,

the partial Spearman’s rank correlation between wage and education is 0.44 with 95%

confidence interval (CI) (0.41, 0.47). This is lower than the unadjusted Spearman’s rank

correlation 0.50 (95% CI: 0.47, 0.53), suggesting part of the association between wage

and education can be explained by their association with other covariates. Note that the

point estimates and their confidence intervals are very similar with different link functions.

(We did not report the result with the loglog link function because the cumulative proba-

bility model did not converge.). This is consistent with our simulations in Liu, Shepherd,

Wanga & Li (2016) where we found that the partial Spearman’s rank correlation using

PSRs from orm() is robust to link function misspecification.

When covariates are multidimensional, as in the wage example, it may be useful to

condition the correlation of PSRs on a single covariate. For example, we may be inter-

ested in whether Spearman’s correlation varies for different job classes or ages while still
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adjusting for other covariates. The function conditional.partial.Spearman()

can be used to obtain the partial Spearman’s correlation conditional on a specific covariate,

denoted as Z1. The usage of conditional.partial.Spearman() is very simi-

lar to megabot() and partial.Spearman(). It takes a formula object in the form

of X |Y ⇠ Z to specify the models of X on Z and of Y on Z. The fitting procedures can

be specified with arguments fit.x and fit.y with the default as cumulative proba-

bility models with the logit link function. The covariate Z1 is specified by the argument

conditional.by. Different methods have been implemented to model the conditional

correlation of PSRs and can be specified using the argument conditional.method.

For categorical covariates such as jobclass, the conditional correlation of PSRs can

be obtained by stratification, that is, we compute the correlation of PSRs within each

category of jobclass. This can be achieved by setting conditional.method=

"stratification". For example,

conditional.partial.Spearman(education | wage ˜ rcs(age, 5) + race +
jobclass + maritl + health + year, conditional.by = "jobclass",
conditional.method = "stratification",
data = Wage)

Partial Spearman’s correlation conditional by: jobclass
Conditional method: stratification
Number of levels of jobclass : 2

jobclass est stderr p lower.CI
1 1. Industrial 0.4079285 0.02287611 4.085476e-56 0.3621315
2 2. Information 0.4782682 0.02107400 5.666486e-81 0.4359197

upper.CI
1 0.4517609
2 0.5185035
Fisher Transform: TRUE
Confidence Interval: 95%
Number of Observations: 3000

If the stratification method is used, conditional.partial.Spearman() re-

ports the point estimates, standard error estimates, p-values, and 95% confidence intervals

for each category. In this example, after adjusting for other factors, Spearman’s rank cor-

relation between wage and education is higher in the information job class than that in

the industrial class: 0.48 (95%CI: 0.44, 0.52) vs. 0.41 (95% CI: 0.36, 0.45).
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For continuous variables such as age, two options are available for conditional.method:

one is lm, which fits linear regression models for XresYres on Z1, X2
res on Z1, and Y 2

res on Z1

and then estimates the conditional correlation of PSRs using the fitted values, and the other

is kernel, which estimates the conditional correlation of PSRs nonparametrically with

kernel smoothing, allowing the user to input bandwidth parameters. If these methods are

specified, conditional.partial.Spearman() prints the results for the first few

observations and the results can be directly plotted using the function plot().

conditional.lm <- conditional.partial.Spearman(wage | education ˜
rcs(age, 5) + race + jobclass + maritl + health + year,
conditional.by = "age", conditional.method = "lm",
conditional.formula = " ˜ rcs(age,5)", data = Wage)

conditional.lm
Partial Spearman’s correlation conditional by: age
Conditional method: lm
Conditional Formula: ˜ rcs(age, 5)

age est stderr p lower.CI upper.CI
1 18 -0.0595070 0.11620834 6.094477e-01 -0.2804321 0.1674055
2 24 0.2014775 0.05041056 1.012077e-04 0.1009438 0.2979382
3 45 0.4983515 0.02531541 2.447728e-59 0.4471233 0.5463211
4 43 0.4958329 0.02878779 4.819362e-46 0.4373494 0.5501400
5 50 0.4982091 0.02759435 3.273183e-50 0.4422148 0.5503349
6 54 0.4767692 0.03082396 1.144778e-38 0.4141486 0.5348978
...
Fisher Transform: TRUE
Confidence Interval: 95%
Number of Observations: 3000

plot(conditional.lm)

conditional.kernel <- conditional.partial.Spearman(wage | education ˜
rcs(age, 5) + race + jobclass + maritl + health + year,
conditional.by = "age", conditional.method = "kernel",
kernel.bandwidth = "silverman", data = Wage)

conditional.kernel
Partial Spearman’s correlation conditional by: age
Conditional method: kernel
kernel function: normal
kernel bandwidth: 2.467

age est
[1,] 18 0.01784734
[2,] 24 0.24475183
[3,] 45 0.50106153
[4,] 43 0.49954376
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Figure 4.9: The age-specific conditional Spearman’s rank correlation between wage and education. The
conditional correlation of PSRs is modeled parametrically using linear regression models. The shaded regions
are the point-wise 95% confidence intervals.
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Figure 4.10: The age-specific conditional Spearman’s rank correlation between wage and education. The
conditional correlation of PSRs is modeled nonparametrically using kernel smoothing.

[5,] 50 0.50399806
[6,] 54 0.49989385
...
Fisher Transform: TRUE
Confidence Interval: 95%
Number of Observations: 3000

plot(conditional.kernel, cex = 0.4)

For the lm methods, conditional.partial.Spearman() reports standard er-

ror estimates and point-wise confidence intervals, obtained by M-estimation methods with

Fisher’s transformation. For the kernel methods, only the point estimates are returned.

The standard error estimates can be obtained using bootstrap methods by users themselves.

Figures 4.9 and 4.10 show that results from the two methods are similar, both suggest-

ing that after adjusting for other factors, Spearman’s rank correlation between wage and

education is weaker among those who are younger (< 30 years).
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4.4 Summary

The PResiduals package provides user-friendly functions for residual analysis with

probability-scale residuals. This vignette illustrates its usage with examples. We hope users

find it useful for model diagnostics and for assessing covariate-adjusted associations.
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Chapter 5

Conclusions

5.1 Summary

In this dissertation, we have presented a general framework to construct covariate-

adjusted Spearman’s rank correlation. With the application of cumulative probability mod-

els, our estimators are rank-based and allow flexible modeling of covariates, achieving a

good balance between efficiency and robustness. The wide applicability, robustness, and

computational simplicity of our estimators make them very useful, particularly when deal-

ing with big data.

In addition, we investigated the application of cumulative probability models to contin-

uous outcomes. Our extensive simulations show that this approach has good finite sample

performance and is fairly robust to minor or moderate link function misspecification. These

results are important and will help promote the usage of this robust modeling strategy.

Finally, we developed the R package PResiduals to compute PSRs, to incorporate

them into conditional tests of association, and to implement our covariate-adjusted Spear-

man’s rank correlation.

5.2 Future Research

Since our framework is very general, there is much room for future work. Here we

outline a few potential directions.

First, since PSRs are widely defined, we believe that our covariate-adjusted Spearman’s

rank correlation can be extended to more complicated settings, such as longitudinal data in

which the observations are not independent and censored outcomes in which fitted distri-

butions are not completely determined.

Second, we have shown good finite sample performance of semiparametric cumulative

probability models for continuous outcomes through simulations. The asymptotic proper-
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ties of this procedure have not been formally developed and warrant further study. Exten-

sions of these models to correlated continuous outcomes may be possible, and would be a

valuable statistical contribution. Finally, the idea of applying ordinal regression models to

continuous outcomes is not limited to cumulative probability models. Other ordinal regres-

sion models, such as the continuous-ratio models and adjacent-categories models, could be

similarly investigated.
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