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CHAPTER 1 

 INTRODUCTION 
 

Parts of this chapter are reprinted with permission from Dutter, B. F., Mike, L. A., Reid, P. R., 

Chong, K. M., Ramos-Hunter, S. J., Skaar, E. P., and Sulikowski, G. A. (2016) Decoupling 

Activation of Heme Biosynthesis from Anaerobic Toxicity in a Molecule Active in Staphylococcus 

aureus. ACS Chem. Biol. 11, 1354–1361. Copyright 2016 American Chemical Society.  

1.1 Background 

 Metals play a crucial role in virtually all biological systems. Owing to their unique 

reactivity due to the accessibility of d-orbitals, metals are critical components of enzyme 

catalysis, energy transfer pathways, and of various structural motifs.1,2  The ability of bacteria to 

acquire and manage nutrient metals in the niche they inhabit is of utmost importance to 

survival and bacteria have evolved systems to accomplish these tasks tailored to the 

environments they inhabit.  

 

1.2 Metal acquisition 

Iron 

The main obstacle to iron acquisition in the majority of systems is the low solubility of 

Fe(III).1,3 Ferric iron predominates under aerobic conditions and its low solubility means it exists 

in generally inaccessible forms. For example, in neutral or alkaline soils, iron exists primarily as 

polymeric iron oxides.4 In the human host, Fe is predominately bound to heme in 
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hemoproteins, but is also found in Fe storage proteins such as transferrin and lactoferrin 

(extracellular) and ferritin (intracellular).2,3 

Siderophores 

 One of the primary methods of iron acquisition by bacteria is the production of 

siderophores. Siderophores are low molecular weight molecules that tightly bind ferric iron. 

Bacteria typically secrete siderophores into their environment, whether inside a host or in soil, 

where the molecule will bind/solubilize ferric iron and be reabsorbed by the organism to 

provide it with nutrient iron.1,3,4  

 Siderophores are generally produced by nonribosomal peptide synthesis, which will be 

discussed in further detail in Chapter 2.3 Certain functional groups with high affinity for Fe(III) 

predominate in siderophore. These include catechols, hydroxamic acids, α-hydroxycarboxylic 

acids, and hydroxyphenyl oxazolines or thiazolines (Figure 1.1).1,3 Siderophores typically contain 

three of these functional groups, in various combinations, to result in a very strong hexadentate 

complex with Fe(III). Despite this, many siderophores exist with fewer metal binding groups 

resulting in tetra- and bi-dentate complexes. These are thought to solubilize Fe(III) in the 

environment for transfer to stronger chelators.1 

 

 

Figure 1.1. Common iron chelating motifs found in siderophores. 
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 In Gram negative bacteria, siderophores are transported into the cell in several stages. 

First, receptors on the outer membrane recognize and bind the siderophore-Fe(III) complex and 

use the energy of the TonB-ExbB-ExbD system to transport the molecule across the outer 

membrane and into the periplasm. ABC-transporters in the cell membrane then recognize the 

siderophore-Fe(III) complex and transport it into the cytoplasm.1,2  The siderophore-Fe(III) 

uptake process in Gram positive bacteria generally involves recognition of the molecule by 

lipoproteins receptors in the cell wall and transfer to ABC-transporters which pump the 

molecule into the cytoplasm.1 

 Once internalized, the bacterium must liberate Fe from the siderophore complex. This is 

primarily accomplished by reduction of Fe(III) to Fe(II). Hexadentate siderophores have a much 

lower affinity for Fe(II) than Fe(III) permitting the Fe to be released and utilized for cellular 

processes. This also allows recycling of the siderophore.1,2,3 
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Figure 1.2. Siderophores produced by pathogenic bacteria. 
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Siderophores are produced by bacteria in numerous niches. The best studied are 

siderophores of pathogens and in general, production of siderophores by pathogenic bacteria is 

associated with increased virulence.3 Enterobactin (1.1) is a triscatecholate siderophore 

produced by several Gram negative enteric pathogens including Escherichia coli and Salmonella 

enterica subsp. Typhinurium. Enterobactin was one of the first pathogenic siderophores 

identified.1,3 Yersiniabactin (1.2) is produced by species including Yersinia pestis, the causative 

agent of the bubonic plague. Loss of genes encoding yersiniabactin is associated with decreased 

virulence in mouse infection models.3 Acenitoferrin (1.3) is an amphiphilic siderphore produced 

by Acenitobacter haemolyticus.  Studies have suggested that its ability to pass through 

membranes allows the bacterium to steal iron from host ferritin during infection.5 

Mycobacteria, including the pathogenic Mycobacterium tuberculosis, express several 

siderophores with various roles. Exochelins (1.4) are secreted into the extracellular 

environment to scavenge for iron.1,6 In contrast, lipophilic mycobactin (1.5) is membrane 

associated and typically not secreted though evidence suggests a role in iron acquisition 

through vesicle secretion.7 

 Soil bacteria also rely on siderophores to solubilize iron as well as sequester it from 

competing organisms. The saprophyte Streptomyces coelicolor produces several siderophores 

including desferrioxamines B and E and coelichelin, which will be the subject of Chapter 2.4,8 S. 

coelicolor and many other soil bacteria encode multiple siderophore uptake systems, several of 

which can recognize and transport siderophores produced by other organisms in a process 

commonly referred to as siderophore piracy.9 
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Non-siderophore mediated iron acquisition 

 Many pathogens are able to acquire iron in the form of heme from host hemoproteins.2 

This will be discussed below in the section on Staphylococcus aureus heme acquisition.  

Divalent metal acquisition  

 While much is known about bacterial iron acquisition, the specific processes involved in 

Zn(II) and Mn(II) acquisition have not been as extensively studied and are focused mostly on 

pathogens. In the host environment, extracellular Zn(II) is mostly bound to albumin leaving very 

little in solution. During infections, immune cells secrete proteins of the S100 class, such as 

calprotectin, which bind and sequester Zn(II) and other divalent metals. Despite this, many 

pathogens are able to scavenge sufficient quantities of Zn(II) to promote infection. The ZnuD 

protein of many Gram negative pathogens is an outer membrane protein that scavenges Zn(II) 

and passes it to the periplasm via a TonB dependent mechanism.10 

 There also exist many porins in the outer membrane of Gram negative pathogens that 

allow metals such as Mn(II) to passively diffuse into the periplasm where they are recognized by 

substrate binding proteins (SBPs) and transported across the cell membrane via ABC-

transporters.11  

Some evidence exists for the production of zinc chelators by bacteria. In particular, S. 

coelicolor is hypothesized to produce coelibactin, a compound believed to be involved in zinc 

uptake given that its expression is under the control of the zinc uptake regulator (Zur). 

Coelibactin has never been isolated in culture and the exact structure is not known given the 

uncertainty surrounding its release from its NRPS.8 
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1.3 Metal homeostasis 

  Bacterial metal homeostasis is generally controlled by protein metal sensors which bind 

specific metals at given concentrations and induce some effect at the gene level in response.11 

Some sensors induce relatively small changes specific to that metal while others induce global 

changes in gene expression including genes tangentially associated with metal acquisition. The 

best example of this is the ferric uptake regulator (Fur) protein. Fur binds Fe(II) in iron replete 

conditions. This complex binds to control regions, called Fur boxes, of genes under its control 

which suppresses their expression. Examples include genes for siderophore biosynthesis, but 

also extend into other areas such as cell metabolism and virulence factor expression.1 Under Fe 

deplete conditions, Fur will dissociate from the Fur boxes inducing expression of the genes of 

this regulon.  

 

1.4 Iron acquisition and homeostasis in Staphylococcus aureus 

 Staphylococcus aureus is a Gram positive pathogen of humans primarily causing skin and 

soft tissue infections, but can also be responsible for more severe diseases including toxic shock 

syndrome and necrotizing pneumonias.12 S. aureus requires iron for normal cellular function 

and evasion of the immune system during infection. In addition, the availability of iron controls 

the expression of numerous virulence factors.13  While S. aureus is capable of acquiring iron by 

secretion of siderophores, heme is its preferred iron source during infection.14 

Heme acquisition through the Isd system 

  During an infection, heme is made available to the bacterium by secretion of hemolysins 

which lyse red blood cells causing a release of hemoglobin. Once hemoglobin is liberated, S. 
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aureus utilizes the the Isd (iron surface determinant) system to scavange heme from 

hemoglobin and pass it through the cell wall and membrane and into the cytoplasm where it 

can be degraded to release free iron or stored associated with the membrane for incorporation 

into hemoproteins.15 This system consists of several proteins each occupying a step along the 

path from extracellular hemoglobin to release of intracellular iron.15 

 

Figure 1.3. Schematic of Isd system shuttling heme into the bacterial cytoplasm.  

 

Heme toxicity and heme sensing 

Despite the value of heme as a nutrient iron source, heme is toxic to the bacterium in 

high concentrations.16 In order to overcome heme toxicity, S. aureus employs a two component 

system called the heme sensor system (HssRS) to sense heme and activate a response to 

alleviate heme toxicity. HssS is a transmembrane histidine kinase that senses toxic levels of 
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heme through an undetermined mechanism. Upon activation, HssS autophosphorylates and 

transfers the phosphate to an aspartate residue of its cognate response regulator, HssR. HssR is 

a cytoplasmic protein which, upon phosphorylation by HssS, binds the direct repeat of the 

promoter for the heme regulated transporter (hrtAB), a gene encoding an efflux pump that 

alleviates heme toxicity.17,18,19 The mechanism by which HrtAB alleviates heme toxicity is not 

well understood. 

 



10 
 

 

Figure 1.4. Activation of HssRS by heme. HssS is a transmembrane histidine kinase (A) which in 
the presence of toxic concentrations of heme autophosphorylates (B). HssS can then 

phosphorylate its cognate response regulator HssR and when phosphorylated, HssR can bind 
the promoter of hrt  (C) Inducing expression of HrtAB, an efflux pump which alleviates heme 

toxicity (D). 
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High throughput screen for activators of HssRS in S. aureus 

 Since heme toxicity in S. aureus is not well understood, the Skaar lab conducted a high 

throughput screen for activators of the heme stress response to identify potentially useful 

chemical probes to study this system. To accomplish this, a strain of S. aureus harboring a 

plasmid with the hrt promoter fused to a luciferase reporter was constructed. This strain was 

used to screen the Vanderbilt Small Molecule Library. Molecules that produced a luminescent 

response were run through a secondary screen using a catechol oxidase reporter and a tertiary 

screen for the ability of the molecule to preadapt S. aureus to toxic concentrations of heme. 

The top two hits which will be the subject of several chapters of this dissertation are shown in 

Figure 1.5.  
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1.5 Statement of Dissertation 

 The work presented herein involves the application of chemical synthesis to study two 

distinct questions in the realm of bacterial metal acquisition and homeostasis. The first aims at 

developing a concise total synthesis of the Streptomyces coelicolor produced siderophore 

coelichelin.  While this molecule can be obtained from culture, a synthetic route would enable 

more flexibility in using it as a chemical probe. The second project focuses on studying the 

activities of the two molecules identified in the screen for HssRS activators. In both cases, 

libraries around these scaffolds were prepared and screened for activity to establish structure-

activity relationships. These data were utilized in later work to develop chemical probes for 

target identification to help elucidate their mechanism of action and better define heme 

toxicity in S. aureus.  
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CHAPTER 2 

PROGRESS TOWARD THE TOTAL SYNTHESIS OF COELICHELIN 

 

2.1 Introduction 

 Coelichelin is a nonribosomal peptide produced by the bacterium Streptomyces 

coelicolor.1 The goal of this work is to develop a laboratory synthesis of the molecule for 

confirmation of the proposed structure and to establish a convenient and flexible route to 

provide significant quantities of the material and derivatives for biological studies.  Coelichelin 

could potentially be a useful chemical tool to study metal acquisition pathways and bacterial 

responses to iron depletion. For these kinds of experiments, synthetic chemicals such as 2,2’-

bipyridine, are often used as iron chelators to sequester iron in growth media.2,3,4 Natural 

product siderophores may be superior to synthetic chelators in such experiments as they are 

likely more selective for ferric iron. However, the use of many natural product siderophores is 

limited by their availability since most are only accessible by isolation from the producing 

organism. A convenient synthetic route to a natural product siderophore would provide ample 

material to conduct these experiments as well as study the basic biology of the siderophore 

itself. Coelichelin is an attractive target because it is structurally interesting but accessible using 

chemistry developed for the synthesis of similar siderophores. In addition, no chemical 

synthesis of coelichelin has been reported to date.  
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2.2 Background 

Traditionally, discovery of bioactive natural products involves screening of biological 

extracts for activity against systems of interest, fractionation of active extracts using 

chromatographic methods to identify active components, and structure determination.5 Many 

medically and industrially important compounds have been identified through these methods 

including antibiotics, antifungals, antineoplastics, cardiovascular drugs, and pain medications.6 

While this process has been fruitful, it can be tedious and self-limiting depending on the 

conditions of isolation and stability of the natural products being isolated.5 The inception of the 

genomic age has introduced the possibility of predicting natural products from genomic 

information7 allowing these limitations to be circumvented.  

Many antimicrobial drugs are either derived from or are themselves metabolites of 

microorganisms, and of these natural product based drugs, approximately half come from 

actinomycetes.8 Considerable work to characterize the numerous biosynthetic pathways in 

actinomycetes as well as homologous pathways in other organisms, has provided invaluable 

information that can be applied to search for sequence similarities in whole genomes to 

identify gene clusters encoding biosynthetic pathways.7  

Nonribosomal peptide synthesis 

 Nonribosomal peptides (NRPs) constitute a rich class of bacterial (and fungal) 

metabolites, many of which are used clinically including bacitracin, cyclosporine, and 

daptomycin. They are synthesized by modular mulitenzyme complexes called nonribosomal 

peptide synthetases (NRPSs) which function similarly to polyketide and fatty acid synthetases.9 
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 Each module is minimally composed of an adenylation domain (A-domain) and a 

thiolation domain (T-domain, also referred to as a peptidyl carrier protein or PCP). The A-

domain activates the amino acid to be added to the growing peptide by reaction with ATP to 

transfer AMP to the amino acid and release pyrophosphate. The A-domain recognizes a specific 

amino acid to be activated for each module and this can be discerned from the amino acid 

sequence of the domain and thus, predicted from genomic data.10,11 Since the NRP is 

synthesized from module to module, the sequence of A-domains determines the primary 

sequence of the NRP.9 

 The T-domain consists of a 4’-phosphopantethenyl (4’-PP) cofactor bound to the protein 

through a conserved serine residue. After amino acid activation by the A-domain, the thiol of 

the 4’-PP reacts with the activated carboxylate forming a thioester linkage and displacing AMP. 

The amino acid is now bound to the module and can be acted upon by modifying domains such 

as epimerases and N-methyltransferases. The chain is elongated by condensation domains (C-

domians) which catalyze the attack of the amino group of a module on the thioester carbonyl of 

the substrate of the previous module bound to the T-domain. Many NRPSs have a terminal 

thioesterase domain which will hydrolyze the completed peptide from the NRPS though some 

lack this function and rely instead on nonenzymatic reactions to achieve hydrolysis of the 

thioester.9  

Identification of coelichelin from genome mining 

 Utilizing genome sequences from an ordered cosmid library from S. coelicolor12, Challis 

and coworkers identified a region on cosmid SCF-34 with sequence homology to NRPSs. This 

region codes for a 3643 amino acid protein with a predicted molecular weight of 390 kDa. The 
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gene was determined to be part of a large gene cluster consisting of ~20 genes spanning ~29 

kbp. The functions of these genes were hypothesized based on sequence homology and the 

cluster determined to provide the components and biosynthetic machinery for siderophore 

synthesis as well as proteins involved in siderophore secretion and reuptake (Figure 2.1.A).13  

 

Figure 2.1.  Coelichelin gene cluster and NRPS. A. Organization of coelichelin gene cluster: blue 
= NRPS (cchH), light green = ornithine δN-oxidase (cchB), dark green = δN-hydroxy-L-ornithine 

formyl transferase (cchA), orange = genes involved in siderophore secretion and reuptake, red = 
RNA helicase, purple = chitinase, grey = unknown function. B. Organization of coelichelin NRPS: 

A = adenylation domain, T = thiolation domain, E = epimerase, C = condensation domain. 
 
 
 The functions of each module were determined based on conserved sequence similarity 

to known NRPS modules and the order is depicted in Figure 2.1.B. A notable feature of this 

NRPS is the lack of a terminal thioesterase domain responsible for releasing the final product 

from the synthetase. Taking this into account, analysis of the module sequence in cchH led to 

the two hypothesized structures 2.1 and 2.2 (Figure 2.2). Challis and coworkers favored 2.2 

arguing that a thioesterase domain would be required for 2.1 while 2.2 could be released by 

attack of the δ-amino group on the thiosester in a favored 6-exo-trig closure.13 
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            2.1          2.2 

Figure 2.2. Proposed structures of coelichelin based on genomic information. 

 
 

Isolation of coelichelin from culture 

 Challis and coworkers next attempted to isolate coelichelin from culture utilizing 

methods for the isolation and structure determination of similar siderophores.14 They 

compared HPLC traces of growth media of wild type S. coelicolor and a cchH knockout grown in 

iron deplete conditions and identified a fraction present in the growth media of wild type, but 

not the knockout. A strong absorbance at 435 nm in this fraction suggested a trishydroxamate 

bound to iron. This peak was isolated and subjected to various analyses to identify the structure 

including mass spectrometry, hydrolysis to the constituent amino acids followed by 

derivatization and chiral gas chromatography, and removal of iron by a competing siderophore 

to isolate apo-coelichelin followed by formation of the Ga3+ bound species for NMR analysis. 

These studies led to the revised structure 2.3 shown unbound and 2.4 bound to Fe3+ (Figure 2.3 

A and B).  
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Figure 2.3. A. Revised structure of coelichelin (2.3). B. Coelichelin depicted bound to ferric iron 
(2.4). 
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Figure 2.4. Proposed biosynthesis of coelichelin. 

 

 This tetrapeptide is hypothesized to be biosynthesized as depicted in Figure 2.4. In this 

model, the first A-domain recognizes and activates δN-formyl-δN-hydroxy-L-ornithine, the 

second, L-threonine, and the third, δN-hydroxy-L-ornithine, to provide 2.5, 2.6, and 2.7 

respectively, which are then loaded on to their respective T-domains (Figure 2.4.A). The first 

and second epimerase modules invert the stereochemistry at the α-carbons and then the 
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condensation domains catalyze the formation of the elaborated tripeptide 2.11 (Figure 2.4.B). A 

second δN-formyl-δN-hydroxy-L-ornithine is then loaded on to the first module where it is 

epimerized and condensed with 2.11 to give tetrapeptide 2.12 bound to the T-domain of the 

third modules (Figure 2.4.C). Finally, this is hydrolysed nonenzymatically to give 2.3 (Figure 

2.4.D).  

 

2.3 Previous synthetic studies towards siderophores 

Syntheses of δN-acyl-δN-hydroyornithine and derivatives 

Interest in the synthesis of δN-hydroyornithine and acylated derivatives began in the 

1960s with identification of these as components of siderophores and microbial natural 

products.15 Nielands reported the first synthesis of δN-hydroxyornithine. Starting from DL-

glutamic acid, the amino acid moiety was protected as the hydantoin and the terminal 

carboxylic acid was converted to bromide 2.13 in 3 steps. From 2.13, δN-hydroxy-DL-ornithine 

(2.14) was obtained by conversion to the nitro compound, semi-reduction with zinc dust, and 

subsequent acid hydrolysis of the hydantoin to provide 2.14 in 17 % yield. The authors noted 

that significant quantities of optically active 2.14 could be obtained from natural sources.16  

Isowa reported the first synthesis of optically active 2.14 and δN-acetyl-δN-

hydroxyornithine (2.18). This procedure began with monoalkyation of 1,3-dibromopropane 

with N-tosyl-O-benzylhydroxylamine to provide 2.15. The resulting bromide was alkylated with 

the sodium salt of diethyl acetamidomalonate followed by decarboxylation to provide 2.16 as a 

racemate. The enantiomers were resolved enzymatically by reaction with aniline using papain, 

providing the L-isomer as the anilide. Both enantiomers were converted to the amino acid by 
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heating with concentrated HCl in AcOH. The tosyl group was removed by reaction with HBr in 

AcOH for 50 h to provide 2.17 (or its enantiomer).17 2.18 was obtained by acetylation of the 

hydrobromide salt with acetic anhydride followed by catalytic hydrogenolysis to remove the 

benzyl ethers.18 Fujii expanded on this method by reacting the intermediate 3-bromopropyl 

diethylacetamidomalonate with O-benzylhydroxylamine under basic conditions to install the 

δN-hydroxylamine group, though poly-N-alkyation was problematic.19 Emery reported an 

analogous approach where α-protected 5-hydroxy-2-aminopentanoic acid was converted to the 

bromide and this intermediate reacted with N-acetyl-O-benzylhydroxylamine under basic 

conditions.20 

Maehr and coworkers reported a route to 2.14 utilizing N-alkylation of methyl 2-

acetamido-5-iodovalerate with the thallium(I) salt of trans-benzaldoxime in DMF to provide the 

nitrone which was then hydrolyzed under acidic conditions to provide the hydroxylamine with 

subsequent ester and acetamide hydrolysis to provide 2.14.21 A similar route utilizing nitrone 

hydrolysis was employed by Keller-Schierlein starting from α-protected L-ornithine 2.21, the δ-

nitrogen was reacted with p-methoxybenzaldehyde to form the imine followed by oxidation to 

provide oxaziridine 2.22 which was hydrolyzed to 2.29.15 Using a direct N-oxidation approach, 

Chimiak reported the oxidation of the δ-nitrogen of α-protected L-ornithine with benzoyl 

peroxide followed by same-pot acetylation.22  
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Figure 2.5. Methods for synthesizing δN-acyl-δN-hydroyornithines. 

 

Miller and coworkers have devised several methodologies to synthesize δN-acyl-δN-

hydroxyornithine precursors for siderophore syntheses. Their first route to optically active δN-

hydroxyornithine started from carboxybenzyl protected L-glutamic acid (2.24) with the amino 

acid function further protected by reaction with paraformaldehyde. The δ-carboxylic acid was 

converted to the acid chloride with thionyl chloride followed by reduction to aldehyde 2.25 

with lithium tri-t-butoxyaluminum hydride. The aldehyde was converted to a mixture of oximes 

by reacting with O-benzylhydroxylamine followed by reduction with sodium cyanoborohydride 

and acetylation in the same pot. The amino acid was deprotected to provide 2.26 with the 

hydroxamic acid protected as the benzyl ether. 2.26 could be used in siderophore synthesis 

with late stage hydrogenolysis to remove the benzyl ether.23 Alternately, they reacted α-

protected 5-hydroxy-2-aminopentanoic acid with N-Cbz or N–troc-O-benzylhydroxylamine 

under Mitsonobu conditions followed by deprotection of the δ-nitrogen to provide derivatives 

of 2.14.24  
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Syntheses of δN-acyl-δN-hydroxyornithine containing siderophores 

 By modern standards, the synthesis of peptide derived siderophores is not overly 

complex. The primary concerns when synthesizing hydroxamate containing siderophores in the 

laboratory are minimizing racemization during peptide coupling and strategic and orthogonal 

deprotection of functional groups. To a lesser extent, minimizing metal contamination of 

glassware in the final steps of the synthesis is important to obtain pure, unbound samples of 

the final product for characterization.  

 Much of the work towards efficient syntheses of δN-acyl-δN-hydroxyornithine was a 

component of larger syntheses of siderophores containing these functionalities. Several 

examples of siderophore syntheses will be presented to highlight the synthetic challenges and 

methods used to overcome them, as well as the guiding principles for our synthetic approach to 

coelichelin. 

Ferrichrome is a cyclic hexapeptide consisting of three contiguous glycines followed by 

three contiguous δN-acetyl-δN-hydroxy-L-ornithines. The first synthesis of ferrichrome was 

accomplished by Keller-Schierlein utilizing the nitro reduction chemistry pioneered by Neilands. 

They assembled a hexapeptide (2.30) containing the requisite three glycines and three L-5-

nitro-2-aminopentanoic acids (2.29), cyclized, and then reduced the nitro groups to provide δ-

hydroxylamines. This molecule was acetylated to give ferrichrome (2.31).15,25 Isowa’s group 

used a similar approach but employed their N-tosyl-O-benzylhydroxylamine compound 2.32 in 

the coupling process. Cyclization of 2.33 followed by global removal of tosyl groups with HBr in 

AcOH, acetylation, and global hydrogenolysis of benzyl ethers gave 2.31.26 



28 
 

 

Figure 2.6. Syntheses of ferrichrome. 

 

Another early target of siderophore synthesis was rhodotrulic acid (2.40). This 

compound is a diketopiperazine formed from the condensation of two δN-acetyl-δN-

hydroxyornithines. Isowa and coworkers first synthesized 2.40 using their N-tosyl-O-

benzylhydroxylamine alkylation chemistry. Keller-Schierlein adapted their nitro reduction 

chemistry to this molecule as well with a late stage global reduction followed by acetylation to 

give the natural product.15 Miller and coworkers used a contrasting route by installing the O-

benzyl protected hydroxamic acid into their monomer before coupling. Starting from protected 

glutamic acid 2.34, they converted the δ-carboxylate into the anhydride with ethyl 
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chloroformate and reduced to the alcohol with sodium borohydride to give 2.35. This was then 

reacted with N-troc-O-benzylhydroxylamine under Mitsonobu conditions, the troc group was 

selectively removed under reductive conditions, and the δ-nitrogen acetylated to provide 2.36. 

After several protecting group manipulations, they arrived at intermediates 2.37 and 2.38 

which were coupled with EEDQ to give 2.39. The Boc group and methyl ester were removed 

leading to cyclization and the benzyl ethers were removed by hydrogenolysis to give 2.40.24 

 

 

Scheme 2.1. Miller’s synthesis of rhodotrullic acid. 

 

 Foroxymithine, 2.48, is structurally similar to rhodotrullic acid. Miller’s lab synthesized 

this using a convergent approach applying their Mitsonobu chemistry. They prepared mono-N-

troc protected  diketopiperazine 2.43 and coupled this with the succinimide ester of dipeptide 
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2.45. Tetrapeptide 2.46 was then subjected to sequential removal of protecting groups and N-

formylation. The Cbz group was removed by HBr in acetic acid and the free amine was 

acetylated by acetic anhydride and triethylamine which also consequently O-acylated serine to 

provide 2.47. Treatment of this tetrapeptide with zinc dust and acetic formic anhydride in THF 

removed the Troc groups with subsequent N-formylation. The O-acetyl was removed under 

mildly basic conditions and the final product was provided by hydrogenolysis of the benzyl 

ethers.27 
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Scheme 2.2. Miller’s synthesis of foroxymithine. 
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A more modern synthesis (2013) of a δN-formyl-δN-hydroxyornithine containing 

siderophore was reported by Meijler with their synthesis of pyoverdin D (2.58), a complex 

molecule secreted by Pseudomonas aeruginosa. It consists of a partially cyclic octapeptide 

where the macrolide portion includes a lysine side chain at the N-terminus cyclized through 

four backbone amino acids to the lysine α-carboxylate. The macrolide is connected through the 

lysine α-amino group to a linear tripeptide bound at its N-terminus to a dihydroxyquinolone 

derived chromophore. Pyoverdin D contains two δN-formyl-δN-hydroxy-L-ornithine residues, 

one in the macrolide and one in the linear side chain.28  

Meijler utilized solid phase peptide synthesis (SPPS) to construct the octapeptide. They 

synthesized the δN-formyl-δN-hydroxy-L-ornithine component for SPPS by direct oxidation of 

the δ-nitrogen of protected ornithine 2.49 with benzoyl peroxide. The δ-nitrogen was then 

formylated by treatment with formic acid and EDC, the benzoate ester removed under basic 

conditions with added benzyl bromide to reprotect the hydroxamate oxygen as the benzyl 

ether. Protecting group manipulations provided the Fmoc protected compound 2.52 for SPPS. 

The octapeptide 2.56 was synthesized as depicted in Scheme 2.3.28 

The chromophore component 2.55 was prepared separately from 2.53 and 2.54. The 

carboxylic acid of the chromophore was coupled to the resin bound octapeptide 2.56 with 

PyBOP and released from the resin with concomitant trityl and Mmt deprotection by treatment 

with acid. The macrolide was formed by coupling the C-terminus with the ε-nitrogen of lysine 

by treatment with HATU and N,N-diisopropylethylamine to provide 2.57. The remaining 

protecting groups were removed by hydrogenolysis and the succinimide hydrolyzed with base 

to afford 2.58.    
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Scheme 2.3. Meijler synthesis of pyoverdin D. 

 

2.4 Studies towards the synthesis of coelichelin 

Coelichelin retrosynthetic analysis 

 Using a similar approach as the previously described syntheses, we envisioned 

assembling coelichelin through peptide couplings of suitably protected amino acid precursors 

and globally deprotecting the assembled polypeptide to provide the natural product. The 

molecule can be disconnected through the peptide bonds to three precursor amino acids; the 

Boc and acetonide protected D-allo-threonine 2.59, protected δN-hydroxy-L-ornithine 2.60, and 

protected δN-formyl- δN-hydroxy-D-ornithine 2.61 (Scheme 2.4). 2.59 can be prepared from D-

allo-threonine by a reported route.29  D-allo-threonine is prohibitively expensive but can be 

prepared from D-threonine in several steps and acceptable yield.30 2.60 and 2.61 can be 

prepared by a similar route differing only by the stereochemistry at the α-carbon and 

formylation of the D-isomer. Protected 5-hydroxy-2-aminopentanoic acid 2.62 is an excellent 

substrate for synthesis of 2.60 and 2.61 since a variety of the previously described chemistry to 
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install the N-hydroxy functionality can be utilized including the oxidation/reductive amination 

and conversion to a leaving group/displacement strategies. This material can be prepared from 

commercially available D- and L-pyroglutamic acids. Starting with this material allows simple 

incorporation of the correct stereochemistry and additionally allows easy modification of 

protecting groups should the need arise.  

 

 

Scheme 2.4. Retrosynthetic analysis of coelichelin. 

 

Synthesis of protected threonine 2.59 

 Using a literature procedure30, D-allo-threonine was prepared by converting D-threonine 

to methyl ester 2.63 by treatment with thionyl chloride in methanol. 2.63 was then treated 

with benzoyl chloride and triethylamine in methanol to provide benzamide 2.64. This was 
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reacted with thionyl chloride for 5 days at 0 °C leading to formation of oxazoline 2.65 and 

inversion of the stereocenter at the β-carbon. The oxazoline and methyl ester of 2.65 were then 

hydrolyzed in 6 N HCl to provide D-allo-threonine as the hydrochloride salt. The nitrogen was 

Boc protected by treatment with di-tert-butyl-dicarbonate in methanol-aqueous sodium 

bicarbonate. Under these conditions, methyl ester formation occurred to some extent. To 

resolve this, the crude product after work up was dissolved in THF and treated with 1 M LiOH to 

saponify the ester and provide 2.66 in 80 % yield. The Boc protected D-allo-threonine was 

converted to the acetonide by treating with 2,2-dimethoxypropane and catalytic TsOH in DCM 

to give 2.59 in 83 % yield.29 

  

 

Scheme 2.5. Synthesis of threonine precursor 2.59. 
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Synthesis of intermediate 2.60 and 2.61 

 We began investigating a route to 2.61 reasoning that the same chemistry could be 

applied to arrive at 2.60 but starting from the opposite enantiomer. Intermediate 2.62 was 

prepared from commercially available D-pyroglutamic acid ethyl ester in two steps. The 

nitrogen was Boc protected to provide 2.67 which was then treated with sodium borohydride in 

5:1 THF/water to provide 2.68 in 42 - 68 % yield over two steps.31 The sodium borohydride 

reduction did not give consistent yields and efforts to optimize were unsuccessful. While an 

alternate strategy to go from 2.67 to 2.68 by lactam hydrolysis with base followed by 

conversion to the anhydride and subsequent reduction has been reported31, the added steps 

and possibility of ester saponification rendered this route undesirable and we deemed potential 

material losses at this step to be acceptable.  

 

 

Scheme 2.6. Preparation of intermediate 2.68.  

 

We initially explored a route to 2.60/2.61 via conversion of the alcohol of 2.68 to a 

leaving group and direct displacement by O-benzylhydroxylamine similar to the previously 

described method of Fujii. 2.68 was easily converted to tosylate 2.69 by treatment with tosyl 

chloride in pyridine at 0 °C overnight. 2.69 was reacted with O-benzylhydroxylamine and a base 

under various conditions, but generally, only starting material was recovered. A small amount 
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of product was obtained when the reaction was carried out in DMF at 150 °C under microwave 

irradiation. In an attempt to see if an alternate leaving group would provide higher yields, we 

attempted to convert 2.68 to the bromide with triphenylphosphine and carbon tetrabromide 

but observed a complex mixture of products. Given the lack of success with this route, we 

decided to pursue an alternate strategy.  

 

 

Base Solvent Temperature Result 

DIEA MeOH rt No reaction 
DIEA DMF rt No reaction 
DIEA(TBAI 
added) DMF rt No reaction 
K2CO3 DMF rt No reaction 
K2CO3 DMF 150 °C (mw) 10 % yield 

 

Figure 2.7. Investigation of SN2 approach to 2.60/2.61. 

 

 The next method we attempted to employ was an oxidation/reductive amination 

approach. Initial efforts to oxidize 2.68 to the aldehyde were problematic. Pyridinium 

chlorochromate (PCC) was initially used as a similar reaction was previously reported by Miller. 

However, the aldehyde was not isolated in good yield and purification was not productive as it 

appeared the aldehyde was not entirely stable and thus could not be stored. Attempts to form 

the oxime from the crude product of PCC oxidation were also not productive. In addition to 

PCC, oxidations with IBX and Dess-Martin periodinane were also attempted with little success. 
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Ultimately, the Parikh-Doering oxidation was successful at producing the aldehyde in sufficient 

quantities to move forward. Oxidation under these conditions and subsequent oxime formation 

with O-benzylhydroxylamine hydrochloride and sodium acetate in ethanol provided oximes 

2.72 as a mixture of geometric isomers. 

 Reduction of oximes 2.72 was rendered needlessly time consuming by the insistence 

that sodium cyanoborohydride, the reagent of choice for this transformation, not be used. 

Instead, many alternate reagents and conditions including sodium triacetoxyborohydride, 

tetramethylammonium triacetyoxyborohydride, sodium borohydride, and triethylsilane were 

explored. While there was literature precedence for oxime reduction by all of these reagents, 

none reproducibly resulted in formation of 2.73. After much wasted time, treatment of 2.72 

with sodium cyanoborohydride and 0.1 M HCl in ethanol resulted in formation of 2.73 in 

excellent yield, naturally.  

 Formylation of 2.73 was accomplished by treatment with formic acetic anhydride32 to 

provide 2.74. Saponification of the ester to provide advanced intermediate 2.61 was attempted 

with 1 M LiOH in THF. Unfortunately, in addition to saponification this also resulted in loss of 

the formyl group. This result suggested that treatment of this compound and any advanced 

material with formyl groups would be problematic. Since component 2.60 also contains an 

ethyl ester, a late stage saponification in the presence of two formyl amides would be 

necessary. Given these limitations, we decided to change the type of ester to make 

deprotection more compatible with other functional groups in the molecule.  
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Scheme 2.7. Preliminary route to 2.61.   

 

To synthesize 2.61, the ethyl ester was swapped for an allyl ester since this could be 

removed by treatment with catalytic Pd(0) and a π-allyl cation scavenger which should not 

affect any other functional groups. The allyl ester 2.75 was formed by treatment of 

commercially available D-pyroglutamic acid with allyl alcohol and TsOH in toluene. 2.75 was Boc 

protected and carried through the route previously described for the ethyl ester. While this 

route was mostly compatible with the allyl ester, the yields for the reductive ring opening were 

lower using this substrate. The sequential Parihk-Doering oxidation-oxime formation was also 

problematic generally providing the oximes 2.78 in yields ~40 % over the two steps. This low 

yield was likely the result of the instability of the aldehyde. To overcome this, a one-pot 

oxidation-oxime formation was employed which significantly increased the yields of the 

sequence reliably to 80 – 90 %. The oximes 2.78 were reduced with sodium cyanoborohydride 

and the allyl ester removed with catalytic Pd(PPh3)4 and morpholine in THF to provide 2.61.  
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Scheme 2.8. Revised route to 2.61. 

 

Replacing the ethyl ester of 2.60 with a benzyl ester seemed prudent given that this 

could be removed under the same conditions as the benzyl ethers in the anticipated final global 

deprotection step. This component was prepared similarly to 2.78. Starting from L-pyroglutamic 

acid, benzyl ester formation by treatment with benzyl alcohol and thionyl chloride followed by 

Boc protection provides 2.81. This is reduced to alcohol 2.83 and the oximes prepared in the 

one pot reaction previously described. Reduction with sodium cyanoborohydride provides 2.85.  
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Scheme 2.9. Synthesis of advanced intermediate 2.85. 

 

Coupling strategy 

 With the three advanced coupling components 2.59, 2.85 (in place of 2.60), and 2.61 in 

hand, we envisioned a coupling strategy where 2.59 and 2.85 would be coupled and the 

resulting dipeptide Boc-deprotected to provide dipeptide 2.86. This could be treated with 2 eq 

of 2.61 to acylate both primary amines of 2.86 simultaneously to give protected tetrapeptide 

2.87.  
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Scheme 2.10. Coupling strategy. 

 

 

Coupling Conditions Result 

EDC, HOBt, DCM HOBt ester formation/No coupling 
EDC, HOBt, DMAP, DCM HOBt ester formation/No coupling 
PyBOP, DIEA, DCM HOBt ester formation/No coupling 
PyClU, Et3N, THF No coupling 
HATU, DIEA, DMF HOAt ester formation/No coupling 

 

Figure 2.8. Attempted synthesis of 2.88. 
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We initially explored the first coupling with 2.60 which had been prepared through the 

established route. Attempts to couple 2.59 with 2.60 were wholly unsuccessful. Several 

coupling reagents were investigated for this transformation including EDC (with HOBt as an 

additive), PyBOP, HATU, and PyClU. In the first three cases, no coupling reaction occurred but 

2.59 was converted to its respective activated ester. We hypothesized that the five membered 

acetonide was locked in a very rigid conformation and attack of a nucleophile on the carbonyl 

would be sterically hindered because of interactions with the bulky t-butyl carbamate and cis-

methyl. Since HOBt and HOAt are relatively small and flat, attack on the carbonyl is possible and 

thus, the activated esters can be formed. In contrast, 2.60 is a rather bulky nucleophile and the 

O-benzyl and aliphatic side chains would certainly clash with the substituents of the ring during 

any attack on the carbonyl.  

The primary motivation for acetonide protection of the threonine component was to 

prevent O-acylation during this and the subsequent coupling reaction. We hypothesized that 

foregoing the acetonide protection of threonine and instead using Boc protected D-allo-

threonine (2.66) would allow for a conformation where attack on the carbonyl by 2.85 was 

possible.  We further hypothesized that O-acylation would not be a significant concern since 

acyl migration to the adjacent nitrogen was favored. Reaction of 2.66 and 2.85 with HATU and 

DIEA in DMF led to formation of dipeptide 2.89 in 56 % yield after purification. Removal of the 

Boc groups of 2.89 was accomplished by treatment with 20 % TFA in DCM. This reaction is not 

entirely clean and product 2.90 (as the trifluoroacetate salt) was purified by HPLC leading to a 

lower yield for this transformation.  
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Scheme 2.11. Synthesis of dipeptide 2.90.  

 

2.5 Conclusion 

With dipeptide 2.90 in hand, we can now investigate the double acylation reaction to 

the fully protected tetrapeptide. Once assembled, the Boc groups will be removed by treatment 

with acid and the benzyl ethers and ester removed by treatment with hydrogen gas and 

palladium on carbon to provide the final product.  

We will characterize the final product as the unbound and Ga3+ bound compounds by 

NMR and mass spectrometry and compare to the originally reported spectra. Assuming the 

spectra match, we will move the material on to biological testing. If the spectra do not match, 

we will evaluate where the discrepancies may be and rework the synthesis to address this. 

Once synthetic coelichelin is available, we will test its activity against Staphylococcus 

aureus. First we will generate a dose response curve to determine an IC50 value for coelichelin. 

We anticipate this will be similar to other iron chelators. We will also supplement growth media 

with iron to see if this reverses any growth inhibition by coelichelin. Finally, we will treat a 

strain of S. aureus bearing a Fur reporter construct for activity.  
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Experimental section 

Note: The following experimental procedures were jointly written by Hunter Imlay and me.   

General Procedure: All non-aqueous reactions were performed in flame-dried flasks under an 

atmosphere of argon. Stainless steel syringes were used to transfer air- and moisture-sensitive 

liquids. Reaction temperatures were controlled using a thermocouple thermometer and analog 

hotplate stirrer. Reactions were conducted at room temperature (rt, approximately 23 °C) 

unless otherwise noted. Flash column chromatography was conducted using silica gel 230-400 

mesh. Analytical thin-layer chromatography (TLC) was performed on E. Merck silica gel 60 F254 

plates and visualized using UV and iodine stain.  

Materials: All solvents and chemicals were purchased from Sigma-Aldrich except D-

pyroglutamic acid and O-benzylhydroxylamine hydrochloride (Combi-Blocks) and di-tert-

butyldicarbonate, sodium borohydride, sodium triacetoxyborohydride, sodium 

cyanoborohydride, and HATU (Oakwood Chemicals). Dry dichloromethane was collected from 

an MBraun MB-SPS solvent system. Triethylamine, N,N-dimethylformamide (DMF) and 

dimethyl sulfoxide were used as received in a bottle with a Sure/Seal. N,N-

diisopropylethylamine was distilled from calcium hydride and stored over KOH. Deuterated 

solvents were purchased from Cambridge Isotope Laboratories. 

Instrumentation: 1H NMR spectra were recorded on Bruker 400, 500, or 600 MHz 

spectrometers and are reported relative to deuterated solvent signals. Data for 1H NMR spectra 

are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q 

= quartet, p = pentet, m = multiplet, br = broad, app = apparent), coupling constants (Hz), and 

integration. 13C NMR spectra were recorded on Bruker 100, 125, or 150 MHz spectrometers and 
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are reported relative to deuterated solvent signals. Low resolution mass spectrometry (LRMS) 

was conducted and recorded on an Agilent Technologies 6130 Quadrupole instrument. 

Compound data: 

Allyl (R)-5-oxopyrrolidine-2-carboxylate (2.75): To a stirred susupension of D-

pyroglutamic acid (6.00 g, 46.5 mmol) in toluene (185 mL) was added allyl alcohol 

(12.6 mL, 185 mmol) and p-toluenesulfonic acid hydrate (441 mg, 2.31 mmol). 

The reaction was refluxed 3 h at which point the reaction was judged complete by TLC. The 

reaction was allowed to cool to room temperature and aqueous sodium bicarbonate was added 

to quench the acid. The reaction was concentrated in vacuo, extracted dichloromethane (3x), 

washed with brine (2x), dried (MgSO4), filtered, and concentrated to yield 5.56 g (71 %) of 2.75 

as a white solid. Compound characterization data was consistent with previous reports.33 

2-allyl 1-(tert-butyl) (R)-5-oxopyrrolidine-1,2-dicarboxylate (2.76): To a stirred 

solution of 2.75 (5.56 g, 32.9 mmol) in dichloromethane (140 mL) was added 4-

dimethylaminopyridine (401 mg, 3.29 mmol), and triethylamine (5.05 mL, 36.2 

mmol). The solution was cooled to 0 °C  and di-t-butyl dicarbonate (7.83 g, 36.2 mmol) at 0 °C 

was added. The reaction was allowed to warm to room temperature and stirred overnight at 

which point the reaction was judged complete by TLC. The reaction was washed with saturated 

aqueous ammonium chloride and brine, dried (MgSO4), and concentrated in vacuo to afford 

8.83 (99 %) of 2.76 as a yellow solid: [α]23
D 35.25; IR (neat) 3550.8, 2981.0, 1790.1, 1751.9, 

1458.8, 1367.7, 1313.1, 1158.7, 1028.7, 985.2, 844.2, 779.3, 600.0, 421.3 cm-1; 1H NMR (400 

MHz) δ 5.94-5.81 (m, 1H), 5.38-5.12 (m, 2H), 4.69-4.56 (m, 3H), 2.66-2.53 (m, 1H), 2.52-2.41 (m, 

1H), 2.38-2.23 (m, 1H), 2.07-1.96 (m, 1H), 1.45 (s, 9H); 13C NMR (100 MHz) δ 173.1, 170.2, 
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159.1, 130.9, 119.5, 83.7, 78.2, 78.0, 77.8, 66.0, 59.2, 30.7, 28.5, 21.1; HRMS (ESI-TOF MS) 

calculated for C13H19NO5 (M+Na)+ m/z: 292.1155, measured 292.1171. 

Allyl (R)-2-((tert-butoxycarbonyl)amino)-5-hydroxypentanoate (2.77): 

To a stirred solution of 2.76 (8.06 g, 29.9 mmol) in THF (39 mL) and 

water (7.7 mL) at 0 °C was added sodium borohydride (1.59 mg, 41.9 mmol). The reaction was 

stirred for 1 h at 0 °C and then allowed to warm to room temperature and stirred for 45 min, at 

which point the reaction was judged complete by TLC. The reaction was diluted with diethyl 

ether (20 mL) and washed with water. The aqueous layer was extracted with diethyl ether (2), 

and the organic layers were combined and washed with water (1x) and brine (2x), dried 

(MgSO4), and concentrated. The resulting residue was purified by flash chromatography with a 

40 – 60 % ethyl acetate in hexanes gradient to afford 2.60 g (32 %) of 2.77 as a colorless oil: 

[α]23
D -3.59; IR (neat) 3370.00, 2969.5, 2358.0, 1706.2, 1519.0, 1451.8, 1369.4, 1252.7, 1168.9, 

1054.2, 932.8, 863.4, 781.0 cm-1; 1H NMR (400 MHz, CDCl3) δ 5.95-5.813 (m, 1H), 5.35-5.18 (m, 

3H), 4.66-4.55 (m, 2H), 4.39-4.25 (br, 1H), 3.637 (tr, J = 6.142 Hz, 2H), 2.18 (s, 1H), 1.96-1.82 (m, 

1H), 1.791-1.667 (m, 1H), 1.66-1.54 (m, 2H), 1.41 (s, 9H); 13C NMR (100 MHz) δ 172.60, 155.65, 

131.71, 118.91, 77.48, 77.16, 76.84, 65.96, 62.06, 53.32, 29.52, 28.40; HRMS (ESI-TOF MS) 

calculated for C13H23NO5 (M+H)+ m/z: 274.1649, measured 274.1666. 

Allyl (R)-5-((benzyloxy)imino)-2-((tert-

butoxycarbonyl)amino)pentanoate (2.78): To a stirred 

solution of 2.77 (500 mg, 1.82 mmol) in dichloromethane (8.0 mL) under an Ar atmosphere was 

added diisopropylethylamine (958 µL, 5.46 mmol) and dimethylsulfoxide (4.0 mL), and the 

resulting solution was cooled to -15 °C using a dry ice and acetone bath. Sulfur trioxide-pyridine 
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complex (871 mg, 5.46 mmol) was dissolved in dimethylsulfoxide (4.0 mL) and the resulting 

solution was added dropwise to the solution of 2.77. The reaction was stirred in the acetone 

bath until the temperature rose to -5 °C at which point the cooling bath was removed and the 

reaction allowed to warm to room temperature (20 min). TLC indicated complete consumption 

of starting materials. To the reaction was added ethanol (4.0 mL) and the reaction was stirred 

for 5 min followed by addition of diisopropylethylamine (476 µL, 2.73 mmol) and O-

benzylhydroxylamine hydrochloride (436 mg, 2.73 mmol). The reaction was stirred for room 

temperature for 1.5 h at which point it was judged complete by TLC. The reaction was diluted 

with diethyl ether and water, washed with 1 N HCl, saturated NaHCO3 (aq), and brine, dried 

(MgSO4), filtered, and concentrated in vacuo to afford 584 mg (85 %) of 2.78 as a colorless oil. 

1H-NMR shows a mixture of geometric isomers. The mixture was not separated and carried 

through to the next step without further characterization. 

Allyl (R)-5-((benzyloxy)amino)-2-((tert-

butoxycarbonyl)amino)pentanoate (2.79): To a stirred solution of 

oximes 2.78 (1.28 mg, 3.40 mmol) in methanol (128 mL) and concentrated hydrochloric acid 

(1.10 mL) at room temperature was added sodium cyanoborohydride (321 mg, 5.10 mmol). The 

reaction was maintained at room temperature for 1.5 h when the reaction was judged 

complete by TLC. Solvent was concentrated in vacuo to half volume and diluted with EtOAc (50 

mL) and H2O (40 mL). The organic layer was washed with brine (2 x 400 mL), dried (MgSO4), and 

concentrated in vacuo to afford 1.08 g (84%, crude) of 2.79 as a colorless oil: [α]23
D -4.00; IR 

(neat) 3355.9, 2932.9, 1713.0, 1508.5, 1452.8, 1366.5, 1250.4, 1167.4, 993.17, 863.0, 744.1, 

698.3 cm-1; 1H NMR (400 MHz) δ 7.38-7.27 (m, 5H), 5.97-5.83 (m, 1H), 5.37-5.09 (m, 3H), 4.72-
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4.58 (m, 4H), 4.36-4.27 (br, 1H), 2.93 (t, J = 6.76, 2H), 1.94-1.79 (br, 1H), 1.76-1.64 (m, 1H), 1.63-

1.52 (m, 2H), 1.44 (s, 9H); 13C NMR (100 MHz) δ 172.34, 155.31, 137.78, 131.57, 128.36, 128.31, 

127.77, 118.68, 79.75, 77.28, 76.96, 76.64, 76.21, 65.74, 53.27, 51.36, 30.29, 28.25, 23.20; 

HRMS (ESI-TOF MS) calculated for C20H30N2O5 (M+H)+ m/z: 379.2227, measured 379.2228. 

Allyl (R)-5-(N-(benzyloxy)formamido)-2-((tert-

butoxycarbonyl)amino)pentanoate (2.80): To a stirred solution 

of 2.79 (285 mg, 0.75 mmol) in dichloromethane (4 mL) was added formic acetic anhydride (0.5 

mL) previously prepared by heating acetic anhydride (0.8 mL) and formic acid (0.4 mL) at 65 °C 

for 45 min under Ar atmosphere. The reaction was stirred for 1 h until judged complete by TLC. 

The reaction was diluted with DCM and washed with saturated NaHCO3 (aq) and then brine, 

dried (MgSO4), filtered, and concentrated in vacuo. The residue was purified by flash 

chromatography (2:1 hexane:ethyl acetate) to provide 208 mg (68 %) of 2.80 as a colorless oil: 

[α]23
D -8.13; IR (neat) 3341.7, 2972.1, 1683.0, 1513.8, 1452.6, 1364.5, 1251.4, 1167.5, 1055.4, 

987.9, 749.5, 700.1 cm-1; 1H NMR (500 MHz) δ 8.16 (s, 1H), 7.47-7.33 (m, 5H), 6.91 (s, 1H), 5.95-

5.84 (m, 1H), 5.34-5.16 (m, 2H), 4.91 (s, 2H), 4.63-4.51 (m, 2H), 4.02 (s, 1H), 3.52 (d, J = 5.75, 

2H), 3.05 (s, 1H), 2.50 (s, 1H), 1.80-1.55 (m, 4H), 1.39 (s, 9H); 13C NMR (125 MHz) δ 172.11, 

135.39, 132.69 129.44, 128.78, 128.59, 117.86, 78.60, 76.65, 64.90, 53.81, 40.69, 40.52, 40.35, 

40.19, 40.02, 39.85, 39.69, 28.43, 28.39, 23.70. 

 (R)-5-(N-(benzyloxy)formamido)-2-((tert-

butoxycarbonyl)amino)pentanoic acid (2.61):  To a stirred solution 

of 2.80 (110 mg, 0.271 mmol) in tetrahydrofuran (1 mL) was added morpholine (234 µL, 2.71 

mmol) and palladium tetrakistriphenylphosphine (31 mg, 0.0271 mmol) under an Ar 
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atmosphere. The reaction was stirred overnight at which point it was judged complete by TLC. 

The reaction was diluted with ethyl acetate (5 mL) and washed was 1 N hydrochloric acid (1 x 3 

mL). The acid layer was extracted with ethyl acetate (2 x 2 mL), and the organic layers were 

combined, washed with brine (1 x 5 mL), dried (MgSO4), and concentrated in vacuo to afford 93 

mg (94 %) of 2.61, as a pale yellow solid: characterization: [α]23
D  -10.93; IR (neat) 2974.0, 

2357.4, 1705.0, 1512.6, 1365.5, 1166.3, 751.6 cm-1; HRMS (ESI-TOF MS) calculated for 

C18H26N2O6 (M+H)+ m/z: 367.1864, measured 367.1854. 

 Benzyl (S)-5-oxopyrrolidine-2-carboxylate (2.81) To a stirred solution of 2.00 g 

(15.5 mmol, 1.0 eq) of L-pyroglutamic acid dissolved in 15.0 mL (136 mmol, 8.8 eq) 

benzyl alcohol cooled in an ice bath was added 2.25 mL (31.0 mmol, 2.0 eq) of 

thionyl chloride dropwise.  The mixture was allowed to warm to room temperature and stirred 

overnight. The reaction was quenched by addition of saturated NaHCO3 (aq) and extracted 3x 

with EtOAc, washed with brine, dried (MgSO4), and concentrated. The residual benzyl alcohol 

was removed by distillation under reduced pressure to give 2.90 g (85 %) of 1. Compound 

characterization data was consistent with previous reports 34 

 2-benzyl 1-(tert-butyl) (S)-5-oxopyrrolidine-1,2-dicarboxylate (2.82) To a stirred 

solution of dichloromethane (180 mL) and 2.81 (7.41 g, 33.80 mmol) was added 4-

dimethylaminopyridine (413 mg, 3.38 mmol), triethylamine (4.71 mL, 33.80 mmol), 

and di-t-butyl dicarbonate (8.85 g,  40.56 mmol) at 0 °C under inert atmosphere. The reaction 

was warmed to room temperature after 1 h and stirred overnight, at which point the reaction 

was judged complete by TLC. The reaction was diluted with DCM (100 mL), washed with 

saturated ammonium chloride solution (2 x 70 mL) and brine (1 x 70 mL), dried (MgSO4), and 
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concentrated in vacuo to afford 9.84 g (91%, crude) of 2.82 as a yellow solid. Compound 

characterization data was consistent with previous reports.35 

 Benzyl (S)-2-((tert-butoxycarbonyl)amino)-5-hydroxypentanoate (2.83) 

To a stirred solution of 2.82 (4.4 g, 13.20 mmol) in tetrahydrofuran (53 

mL), and water (10.5 mL) was added sodium borohydride (1.05 g, 27.72 mmol) at 0 °C. The 

reaction was stirred for 1 h then warmed to room temperature and stirred for 45 min, at which 

point the reaction was judged complete by TLC. The reaction was diluted with diethyl ether (50 

mL) and washed with water (1 x 60 mL). The aqueous layer was extracted with diethyl ether (2 x 

25 mL), and the organic layers were combined and washed with water (1 x 25 mL) and brine (2 

x 20 mL), dried (MgSO4), and concentrated in vacuo. The resulting residue was purified by flash 

chromatography (60/40, 50/50, 40/60 hexane/EtOAc) to afford 2.35 g (55%) of 2.83 as a 

colorless oil. Compound characterization data was consistent with previous reports 36  

 Benzyl (S)-5-((benzyloxy)imino)-2-((tert-

butoxycarbonyl)amino)pentanoate (2.84) To a stirred solution of 

2.83 (1.05 g, 3.25 mmol) in dichloromethane (10 mL) was added N,N-diisopropylethylamine 

(1.29 mL, 7.39 mmol) and dimethylsulfoxide (5.0 mL) and the resulting solution was cooled to -

15 °C using a dry ice/acetone bath. Sulfur trioxide-pyridine complex (1.18 g, 7.39 mmol) was 

dissolved in dimethylsulfoxide (5.0 mL), and the resulting solution was added dropwise to the 

solution of 2.83. The reaction was stirred in the cooling bath until the temperature rose to -5 °C 

at which point the cooling bath was removed and the reaction allowed to warm to room 

temperature (~30 min). TLC indicated complete consumption of starting materials. To the 

reaction was added ethanol (4.0 mL) and the reaction was stirred for 5 min followed by addition 
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of N,N-diisopropylethylamine (642 µL, 3.68 mmol) and O-benzylhydroxylamine hydrochloride 

(588 mg, 3.68 mmol). The reaction was stirred at room temperature for 1.5 h at which point it 

was judged complete by TLC. The reaction was diluted with diethyl ether and water, washed 

with 1 N HCl, saturated NaHCO3 (aq), and brine, dried (MgSO4), filtered, and concentrated in 

vacuo to afford 1.14 g (82 %) of 2.78 as a colorless oil. 1H-NMR shows a mixture of geometric 

isomers. The mixture was not separated and carried through to the next step without further 

characterization. 

  (S)-benzyl 5-((benzyloxy)amino)-2-((tert-

butoxycarbonyl)amino)pentanoate (2.85): To a stirred solution of 

oximes 2.84 (1.14 g, 2.67 mmol) in ethanol (25 mL) and concentrated hydrochloric acid (408 μL) 

at room temperature was added sodium cyanoborohydride (336 mg, 5.34 mmol). The reaction 

was maintained at room temperature for 1.5 h when the reaction was judged complete by TLC. 

The reaction was diluted with EtOAc (90 mL) and H2O (50 mL). The organic layer was washed 

with brine (2 x 30 mL), dried (MgSO4), and concentrated in vacuo. The residue was purified by 

flash chromatography to afford 819 mg (72 %) of 2.85 as a colorless oil: [α]23
D -12.32; IR (neat) 

3354.80, 3030.86, 2968.28, 1713.64, 1507.03, 1454.15, 1364.20, 1250.85, 1168.09, 1009.56, 

915.19, 863.23, 744.08, 699.25, 605.26 cm-1; 1H NMR (400 MHz, CDCl3) δ 7.37-7.27 (m, 10H), 

5.28 (s, 2H), 5.23-5.10 (app q, 3H), 4.67 (s, 2H), 4.39-4.31 (br, 1H), 2.90 (t, J = 6.82 Hz, 2H), 1.92-

1.79 (m, 1H), 1.75-1.63 (m, 1H), 1.61-1.49 (m, 2H), 1.44 (s, 9H); 13C NMR (150 MHz, CDCl3) δ 

172.6, 155.4, 137.9, 135.4, 128.6, 128.4, 128.4, 128.2, 127.8, 79.8, 77.3, 77.1, 76.9, 76.2, 66.9, 

53.4, 51.4, 30.2, 28.3, 23.2; HRMS (ESI-TOF MS) calculated for C24H32N2O5 (M+H)+ m/z: 

429.2384, measured 429.2360. 
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Benzyl (S)-5-((2R,3R)-N-(benzyloxy)-2-((tert-

butoxycarbonyl)amino)-3-hydroxybutanamido)-2-((tert-

butoxycarbonyl)amino)pentanoate (2.89) To a stirred solution of 2.85 (123 mg, 0.287 mmol) 

and 2.66 (60 mg, 0.274 mmol) in dimethylformamide (1 mL) was added diisopropylethylamine 

(48 μL, 0.274 mmol) and HATU (156 mg, 0.411 mmol) at 30 °C under inert atmosphere. The 

reaction was maintained at 30 °C for 1.75 h, when TLC indicated the reaction was complete. The 

reaction was diluted with EtOAc (5 mL) washed with 1 N HCl (1 x 5 mL) and brine (1 x 5 mL), 

dried (MgSO4), and concentrated in vacuo. The residue was purified using flash chromatography 

with a hexane/ethyl acetate solvent gradient (70/30, 60/40, 50/50) to afford 96 mg (56%) of 

2.89 as a white solid: [α]23
D  -9.23; IR (neat) 3348.21, 2974.05, 1707.87, 1648.93, 1505.79, 

1452.80, 1368.42, 1248.35, 1166.99, 1015.70, 741.54, 698.87 cm-1; 1H NMR (400 MHz) δ 7.47-

7.17 (m, 10H), 5.53 (d, J = 6.04 Hz, 1H), 5.17-5.04 (m, 3H), 4.97 (d, J = 9.66 Hz, 1H), 4.91-4.79 (m, 

2H), 4.41-4.30 (br, 1H), 4.02-3.88 (br, 2H), 3.40-3.28 (br, 1H), 3.09-2.94 (br, 1H), 1.88-1.77 (br, 

1H), 1.75-1.58 (m, 4H), 1.43 (d, J = 19.80 Hz, 18H), 1.10 (d, J = 5.76 Hz, 3H); 13C NMR (150 MHz) 

δ 172.6, 171.8, 155.6, 135.5, 134.1, 129.8, 129.4, 129.0, 128.9, 128.7, 128.6, 80.3, 80.2, 77.5, 

77.3, 77.2, 77.1, 69.5, 67.4, 55.0, 53.2, 44.8, 30.1, 28.6, 28.5, 22.9, 19.6. 

Benzyl (S)-2-amino-5-((2R,3R)-2-amino-N-(benzyloxy)-3-

hydroxybutanamido)pentanoate (2.90): To a stirred solution 

of 2.89 (25 mg, 0.0397 mmol) in dichloromethane (2 mL) at room temperature was added 

trifluoroacetic acid (100 µL). The reaction was stirred for 2 h at which point it was judged 

complete by TLC. The reaction was concentrated in vacuo and purified by reverse phase HPLC 

to provide 2.90 as the TFA salt: 1H-NMR (600 MHz, MeOD) δ 7.47 - 7.41 (m, 5H), 7.38 – 7.31 (m, 
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5H), 5.26 (d, J=12.06 Hz, 1H), 5.22 (d, J=12.00 Hz, 1H), 5.02 (d, J=10.26 Hz, 1H), 4.91 (d, J=10.26 

Hz, 1H), 4.38 – 4.33 (m, 2H), 4.12 (t, J=6.21 Hz, 1H), 4.07 – 4.00 (m, 1H), 3.59 – 3.52 (m, 1H), 

2.00 – 1.79 (m, 3H), 1.03 (d, J=7.32 Hz, 3H); 13C-NMR (150 MHz, MeOD) δ 170.2, 168.3, 136.3, 

135.2, 130.7, 130.5, 130.0, 129.9, 129.8, 77.89, 69.2, 64.7, 58.2, 53.6, 45.4, 28.8, 23.4, 17.6; 

HRMS (ESI-TOF MS) calculated for C23H31N3O5 (M+Na)+ m/z: 452.2156, measured 452.2187. 
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Figure A2.1. 1H-NMR spectrum (600 MHz, CDCl3) and 13C-NMR spectrum (150 MHz, CDCl3) of 
2.84. 
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Figure A2.2. 1H-NMR spectrum (400 MHz, CDCl3) and 13C-NMR spectrum (100 MHz, CDCl3) of 
2.76. 
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Figure A2.3. 1H-NMR spectrum (400 MHz, CDCl3) and 13C-NMR spectrum (100 MHz, CDCl3) of 
2.77. 
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Figure A2.4. 1H-NMR spectrum (400 MHz, CDCl3) and 13C-NMR spectrum (100 MHz, CDCl3) of 
2.79. 
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Figure A2.5. 1H-NMR spectrum (500 MHz, DMSO-d6, 80 °C) and 13C-NMR spectrum (125 MHz, 
DMSO-d6, 80 °C) of 2.79. 
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Figure A2.6 1H-NMR spectrum (400 MHz, CDCl3) of 2.61. 
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Figure A2.7. 1H-NMR spectrum (600 MHz, CDCl3) and 13C-NMR spectrum (100 MHz, CDCl3) of 
2.89. 
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Figure A2.8. 1H-NMR spectrum (600 MHz, MeOD) and 13C-NMR spectrum (150 MHz, MeOD) of 
2.90. 
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CHAPTER 3 

STRUCTURE-ACTIVITY RELATIONSHIP STUDIES OF ‘8882 
 

Reprinted with permission from Dutter, B. F., Mike, L. A., Reid, P. R., Chong, K. M., Ramos-

Hunter, S. J., Skaar, E. P., and Sulikowski, G. A. (2016) Decoupling Activation of Heme 

Biosynthesis from Anaerobic Toxicity in a Molecule Active in Staphylococcus aureus. ACS Chem. 

Biol. 11, 1354–1361. Copyright 2016 American Chemical Society.  

3.1 Introduction 

Initial studies of ‘8882 determined that it activate HssRS by increasing endogenous 

heme biosynthesis leading to intracellular accumulation of heme sufficient to activate HssRS 

but not affect overall growth.1  In addition, while studying the mechanism of action of ‘8882, 

we observed that it was toxic to S. aureus growing anaerobically, potentially through the 

inhibition of a process essential during fermentation. S. aureus is a facultative anaerobe capable 

of generating energy through respiration or fermentation depending on the availability of 

terminal electron acceptors. Fermentative growth of S. aureus is significantly inhibited by ‘8882 

compared to an untreated control or S. aureus treated with‘8882 under aerobic conditions.1 
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Figure 3.1. Schematic of ‘8882 activity. 

 

Activators of heme biosynthesis are potentially useful chemical tools to study the 

regulation of heme biosynthesis in bacteria as little is known regarding the regulation of heme 

import and biosynthesis. Small molecules toxic to fermenting bacteria may serve as the basis 

for a new class of therapeutics. During certain types of infections, S. aureus relies heavily on 

fermentation to generate energy. In addition, phenotypic variants of S. aureus known as small 

colony variants (SCVs) are often obligate fermenters and are generally more resistant to current 

antimicrobial therapies.2,3,4 

While we initially concluded these two activities were linked through a single target, 

given the promiscuous nature of molecules identified through high throughput screens, it is 

possible that these phenotypes are the result of interactions of the same molecule with distinct 

targets in the bacterium. 

We synthesized a library of compounds around the scaffold of ‘8882 and screened for 

HssRS activation and anaerobic toxicity to determine how chemical modifications affect the two 

activities. Using this approach, we have effectively decoupled the two activities of ‘8882 and 

established that it likely has two or more targets. Furthermore, we have identified the 
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structural features of ‘8882 that promote one activity over the other and identified derivatives 

that maintain each activity while introducing higher specificity. 

3.2 Library synthesis 

 

Figure 3.2. Synthetic strategy for ‘8882 library development. 
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Figure 3.3. Derivatives of ‘8882 synthesized for this work. 
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Our initial efforts towards varying the structure of ‘8882 focused on four regions of the 

molecule (Figure 2.2A); removal of the B ring of the naphthol moiety; modification of the 

phenol by walking to the m- and p-positions (with B ring removed), O-methylation, and 

replacement with phenol equivalents (amides and sulfonamide); N-methylation of the pyrazole; 

and replacement of the furan with aromatic, heteroaromatic, and alkyl groups. 

Many routes to 3,5-substituted pyrazoles have been reported.5 We utilized two routes, 

1) cyclocondensation of hydrazine with an alkynone and 2) cyclocondensation of hydrazine with 

a 1,3-diketone (Figure 2.2B). The alkynone can be installed by palladium-mediated coupling 

with the acid chloride containing the corresponding 5-position substituent. This route requires 

methyl ether protection of the phenol. As such, synthesis of free phenol containing compounds 

involves subsequent deprotection with boron tribromide. For this reason, this sequence was 

primarily utilized to synthesize the amide, sulfonamide, and O-methylated derivatives of 1 

(Figure 3; 3.4, 3.5, 3.9 – 3.13, 3.29, and 3.30). The amide derivatives were quite labile in the 

presence of acid, particularly when substituted with small R groups (Me), and underwent 

further dehydration to generate 2,5-substituted pyrazolo[1,5-c]quinazolines. These compounds 

will not be discussed due to their divergence from the optimization plan. 

Using route 2, the 5-position was diversified by acylating the 2’-phenol of the 

corresponding acetophenone to generate the ester substrate for an intramolecular Claisen 

condensation to provide the 1,3-diketone. Compounds 3.14 – 3.17, 3.15–3.22, and 3.24 – 3.28 

were afforded by cyclocondensation with hydrazine. 3.17 was prepared by acylating 2’-

hydroxyacetophone with 2-methoxybenzoyl chloride, carrying the ester through this reaction 

sequence, and subsequently removing the methyl group using boron tribromide. 3.23 was 
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synthesized by reacting hydrazine with the corresponding chromone under the same conditions 

as the cyclocondensation. Using an analogous reaction sequence but acylating 3’- and 4’-

hydroxyacetophenone allowed synthesis of 3.6 and 3.7. Compound 3.8 was prepared by 

intermolecular Claisen condensation of the lithium enolate of acetophenone, prepared by 

reaction with LHMDS in toluene, with furoyl chloride to provide the 1,3-diketone. Methylation 

of the pyrazole nitrogen was achieved by reaction of the intermediate 1,3-diketone with 

methylhydrazine followed by HPLC separation of the resulting isomeric pyrazoles 3.31 and 3.32. 

3.3 Activity 

HssRS activation 

 

Figure 3.4. HssRS activity at 50 µM relative to ‘8882. 

 

The library was screened for activation of the heme stress response as an indicator for 

activation of heme biosynthesis in S. aureus. We began by screening at the single point 
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concentration of 50 μM using a previously described reporter assay (Figure 4).6 In this assay, 

Newman harboring a plasmid with the hrt promoter fused to xylE, a gene encoding a catechol 

oxidase, is treated with compound for six hours, the bacteria lysed, and the oxidation of 

catechol by XylE quantified by spectrophotometry. An increase in absorbance due to the 

oxidation of catechol indicates elevated levels of xylE transcription and hrt promoter activity. 

Results are expressed as the fraction of activation of HssRS by the compound compared to 

‘8882. An arbitrary cut-off of 0.05 was chosen to define active vs. inactive compounds. 

Replacement of the naphthol substituent with phenol (3.2) or 4-methoxyphenol (3.3) 

resulted in a modest loss of activity compared to ‘8882, but still retained significant ability to 

activate HssRS. O- and N-methylation of ‘8882 (3.4, 3.31 and 3.32) resulted in complete loss of 

activity. These data suggest that disruption of the hydrogen bonding properties of ‘8882 has a 

significant effect on its ability to activate heme biosynthesis. To test this further, several 

modifications to the phenol of 3.2 were made. O-methylation (3.5), movement to m- or p-

positions (3.6 and 3.7), removal (3.8), and replacement with a methyl sulfonamide (3.9) or 

various aryl or heteroaryl amides (3.10 – 3.14) resulted in a loss of HssRS activation compared 

to ‘8882 and 3.2. This suggests that the ortho-OH is required for activity. 

To explore modification at the 5-position, we chose the o-hydroxyphenyl substituent at 

the 3-position instead of the o-hydroxynaphthyl of the parent molecule for convenience. 

Replacement of the furan with hydrogen (3.23), alkyl (3.24 – 3.28) or pyridyl (3.20 – 3.22) 

substituents eliminates activity compared to ‘8882 and 3.2. The furan can be replaced with 

several aromatic or heteroaromatic groups and retain considerable activity. In particular, 

replacement of the furan with an unsubstituted phenyl group, 3.16, seems to restore activity 
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comparable to ‘8882 without the presence of the naphthol B-ring. However, fluorination of 

3.16 decreases activity though 3.18 and 3.19 are comparable to 3.2 in activity. Substitution with 

hydroxyl at the ortho position of the phenyl ring of 3.16 to provide 3.17 renders the molecule 

toxic under the single point assay conditions and is therefore not included in Figure 4. However, 

3.17 activates HssRS at lower concentrations and its activity was explored further. 

Concentration response curves for the top six activators from the single point screen 

(3.2, 3.3, 3.14, 3.16, 3.18, and 3.19) and 3.17 were generated to determine EC50 values as a 

measure of compound potency. (Table 3.1). Compound efficacy is presented as percent 

activation compared to ‘8882 as displayed in Figure 4 since most compounds reach their Emax at 

or below 50 μM. Exceptions to this are 3.14, which did not reach a plateau below its solubility 

limit (~80 μM), 3.3 which plateaus around 100 µM, and 3.17 which is toxic in the XylE assay at 

50 µM. For the most part, compound potency does not significantly deviate from that of ‘8882. 

In addition, 3.18 and 3.19 maintain comparable potency to ‘8882 while exhibiting a ~70 % drop 

in efficacy indicating potency and efficacy do not correlate well. These data suggest that 

efficacy is a more important quantitative descriptor of compound activity. 
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Cmpd Structure 
EC50 
(μM) pEC50 

Efficacy 
(%) 

8882 

 

11.6 4.90 ± 0.37 100 

3.2 

 

30.4 4.49 ± 0.083 28.2 ± 5.4 

3.3 

 

50.2 4.30 ± 0.20 26.2 ± 6.7 

3.14 

 

ND ND 17.0 ± 2.9 

3.16 

 

14.6 4.66 ± 0.016 87.8 ± 23.7 

3.17 

 

5.81 5.24 ± 0.076 ND 

3.18 

 

10.7 4.97 ± 0.033 35.7 ± 10.1 

3.19 

 

13.6 4.90 ± 1.1 30.1 ± 8.0 

 

Table 3.1. Compound potency data. 

 

Finally, the top activators were assayed for their ability to preadapt S. aureus to heme as 

an indication that they can activate HssRS outside the context of a reporter assay. Pretreatment 

of cultures with a compound that induces HrtAB expression through activation of HssRS at 

subtoxic concentrations allows the bacteria to survive and grow when subcultured into a toxic 

concentration of heme. We compared pretreatment with 4 μM heme, 40 μM ‘8882, and vehicle 

with 40 μM of each of the top activators (excluding 3.17 because of toxicity). All derivatives 
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were able to preadapt S. aureus to a toxic concentration of heme (20 μM) as well as 4 μM heme 

and 40 μM ‘8882 (Figure 3.5). The discrepancy between XylE assay and heme adaptation 

activity is likely due to the length of treatment with compound (6 h vs. 15 h). Pretreatment with 

3.17 at the nontoxic concentration of 20 µM also induced excellent preadaptation to heme 

toxicity.. Four inactive derivatives from the single point screen, 3.10, 3.22, 3.28, and 3.29, were 

also assayed for preadaptation to heme toxicity. Growth of bacteria subcultured into 20 μM 

heme after pretreatment with 40 μM compound was indistinguishable from vehicle confirming 

that these compounds do not activate HssRS. 
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Figure 3.5. Heme adaptation by derivatives of ‘8882. 

 

The results of the HssRS activation screen suggest that any disruption to the hydrogen 

bonding ability of the molecule eliminates this activity. While this may be important for binding 

to a protein target, it may also interfere with the potential for the molecule to bind to metals of 

biological significance. The hydrogen bond donor-acceptor orientation is potentially capable of 
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binding iron.7  Since its primary activity is associated with heme-iron metabolism, the ability of 

‘8882 to bind iron was determined using the Chromazural-S (CAS) assay.8 When compared to 

the known iron chelator deferasirox, ‘8882 does not strongly bind iron Figure 3.6. Therefore, it 

is unlikely that iron chelation is involved in the activity of these molecules. 

 

Figure 3.6. Assay for the ability of ‘8882 to chelate iron. 

 

Anaerobic toxicity 

Next, the compound library was screened for anaerobic toxicity by generating 

concentration response curves for 9 h of growth and determining IC50 values (Table 3.2). Wild 

type S. aureus strain Newman was grown in an anaerobic chamber in appropriate media to 

ensure exclusion of terminal electron acceptors sufficient to force the bacteria to ferment. In 

addition, an isogenic menB mutant was used as a positive control as this strain lacks the 

electron carrier menaquinone, rendering the bacterium incapable of generating energy through 

respiration in the presence of any terminal electron acceptor.3 In parallel, the IC50 values were 
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determined in S. aureus grown aerobically to identify derivatives that exhibit toxicity 

independent of respiration. The arbitrary cut off point for toxicity of 60 μM was chosen as many 

of the compounds were not entirely soluble above this concentration. 
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Cmpd 
Newman 
aerobic 

Newman 
anaerobic ΔmenB 

8882 >60 13.5 (8.42-21.7) 
1.66 (0.491-

5.63) 

3.2 >60 >60 35.6 (31.0-41.5) 

3.3 >60 >60 >60 

3.4 >60 >60 >60 

3.5 >60 >60 >60 

3.31 >60 26.5 (21.9-32.1) 15.7 (11.5-21.5) 

3.32 >60 4.27 (3.39-4.65) 3.3 (1.28-8.55) 

3.6 >60 >60 >60 

3.7 >60 >60 >60 

3.8 >60 >60 >60 

3.9 >60 >60 >60 

3.10 >60 19.6 (16.9-22.8) 8.69 (7.65-9.88) 

3.11 >60 11.6 (10.2-13.0) 6.63 (5.02-8.76) 

3.12 >60* 28.8 (22.0-37.7) 21.4 (13.9-32.8) 

3.13 >60 13.4 (12.3-14.7) 5.89 

3.14 >60 >60 >60 

3.15 >60 >60 >60 

3.16 >60 24.0 (20.0-28.7) 25.2 (7.84-81.2) 

3.17 42.5 (40.2-44.9) 15.8 (15.3 - 16.4) 9.33 (4.89-20.1) 

3.18 >60 >60 >60 

3.19 >60 >60 >60 

3.20 >60 >60 >60 

3.21 >60 >60 >60 

3.22 >60 >60 >60 

3.23 >60 >60 >60 

3.24 >60 >60 >60 

3.25 >60 >60 >60 

3.26 >60 >60 >60 

3.27 >60 25.3 (23.4-27.2) 29.7 (24.6-35.9) 

3.28 48.6 (37.9-62.3) 11.6 (10.3-13.1) 13.2 (10.4-16.6) 

3.29 >60 20.8 (17.9-24.2) 24.9 (10.2-60.4) 

3.30 >60 >60 >60 

 
Table 3.2. Toxicity data for ‘8882 derivatives. Values are IC50s (μM) for 9 h of growth under the 

indicated conditions. 
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The majority of compounds were essentially nontoxic to aerobically growing Newman 

with the exceptions of 3.17 and 3.24 with IC50’s of 42.2 and 48.6 μM, respectively. These data 

indicate that the majority of derivatives do not exhibit general toxicity. 

Compounds 3.2 and 3.3 were relatively nontoxic to fermenting S. aureus suggesting that 

the B-ring of ‘8882 is important for toxicity.  O-methylation (3.4) also eliminates toxicity. 

However, pyrazole N-methylation does not decrease the toxicity of the molecules. In addition, 

the regiochemistry of N-methylation appears to exert a significant effect on toxicity. 3.31 is 

approximately five times less toxic to fermenting wildtype S. aureus and ΔmenB than 3.32 while 

the toxicity of ‘8882 is intermediate between the two. 

Substitution of the o-hydroxyl of 3.2 with aromatic amides (3.10 – 3.14) seems to impart 

toxicity to fermenting S. aureus comparable to ‘8882. However, substitution with a sulfonamide 

renders the compound nontoxic under fermentative conditions. This may be a consequence of 

the differing properties of amides and sulfonamides (pKa, hydrogen bonding, etc) or may be 

related to the added aromatic bulk of the amides while the methyl group of 3.9 is innocuous. 

We were unable to test this due to the propensity of amides with smaller R-groups to 

dehydrate to pyrazolo[1,5-c]quinazolines. 

Replacement of the furan with most aromatic or heteroaromatic groups resulted in 

nontoxic molecules under most conditions, the notable exceptions being 3.16 and 3.17, with 

the furan replaced by phenyl and o-hydroxyphenyl, respectively. These compounds exhibit 

anaerobic toxicity similar to ‘8882. Substitution of the phenyl ring with fluorine(s) (3.18, 3.19) 

eliminates this toxicity. Replacement of the furan with large (>4C) alkyl groups also produced 
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molecules with anaerobic toxicity. 3.27 and 3.28 were comparably toxic to ‘8882 while 3.23, 

3.24, 3.25, and 3.26, with hydrogen or smaller alkyl groups were nontoxic under all conditions. 

While O-methylation of ‘8882 eliminates toxicity, O-methylation of 3.16 (3.29), 

maintains toxicity comparable to the parent molecule. This suggests that O-alkylation is not a 

major contributor to the toxic character of these molecules. 

Compound 3.18 was previously reported to exhibit anaerobic toxicity and efficacy in a 

mouse model of S. aureus infection.1 The difference in these toxicity results is likely due to the 

method of IC50 determination. The previous method relied on a significant back-dilution of 

overnight cultures prior to compound addition to account for the time needed for the 

apparatus to become anaerobic. Bacteria grown at this low cell density could experience 

greater toxicity from the compound than the higher cell density used in this work. Although, 

3.18 is not bacteriostatic under the conditions tested here, the ability of the compound to 

activate HssRS was corroborated (Figure 4). This suggests that derivatives that either activate 

HssRS or inhibit growth under anaerobiosis may both be valid antibacterial approaches. This is 

supported by previous studies that have reported that HssRS activation affects virulence during 

infection.6 

Relationship between HssRS activation and anaerobic toxicity 

Any disruption to the hydrogen bond donating ability of the molecule through O- or N-

methylation or replacement with alternate hydrogen bond donor groups removes its ability to 

activate heme biosynthesis and is absolutely required for this activity. In contrast, the hydrogen 

bonding character seems to be less important for toxicity as several O- and N-methylated 

derivatives maintain toxicity levels comparable to ‘8882. Comparing the methylated derivatives 
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of ‘8882; 3.5, 3.31, and 3.32, O-methylation eliminates toxicity while the regiochemistry of N-

methylation has a significant impact on the magnitude of toxicity. 

Modification at the 5-position significantly affects which activity is favored. Aromatic or 

heteroaromatic groups are required to activate heme biosynthesis while large alkyl groups 

favor toxicity. Despite this, some overlap between HssRS activation and toxicity is evident. 

Replacement of the furan with a phenyl ring (3.2 to 3.16) restores toxicity comparable to ‘8882 

and maintains HssRS activity. O-methylation of this derivative (3.29) removes HssRS activity as 

expected while maintaining toxicity. Fluorination of 3.16 to 3.18 maintains HssRS activity, but 

removes toxicity. In addition, fluorination of 3.29 to 3.30 eliminates toxicity. Interestingly, 2.17 

which is highly symmetric, exhibits both activities. 

 

Figure 3.7. Summary of SAR results. 
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Relationship between XylE activity and HemY activity 

 Ultimately, the target of ‘8882 responsible for activation of heme biosynthesis was 

determined to be HemY, an enzyme in the late stages of heme biosynthesis (unpublished data). 

‘8882 has been established as an activator of this enzyme. Given this specific target, it was 

possible to screen the molecules prepared for this work in a biochemical assay to determine 

their ability to activate HemY relative to ‘8882 as had been done in the in vivo XylE assay. 

Several of the molecules appearing in this chapter (though not all due to lack of material) were 

tested in the HemY assay by Matthew Surdel and Audra Fullen (Skaar lab) and their activity was 

represented as the percent activation of HemY compared to ‘8882. This data is presented in 

Figure 3.8 in decending order of HemY activity and is side by side with data from the XylE assay. 

It is clear from these data that in vivo activity and in vitro activity do not correlate well. 3.5 was 

the most active compound in the HemY assay exhibiting almost 1.5x the activity of ‘8882. 

However, this compound is O-methylated which was established to eliminate HssRS activity in 

vivo. This signifies that much of the requirements for activity as determined from in vivo data is 

likely not related to binding to HemY, but possibly some other component of in vivo activity 

such as ability to access the target.  
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Figure 3.8. Activity of each compound in the XylE assay compared to the HemY assay. 
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Experimental Section 

XylE assay. Previously reported strains were used.6  Cultures grown overnight in 5 ml TSB with 

10 μg mL-1 chloramphenicol for 15-18 h were subcultured 1:100 into 0.5 mL TSB with 10 μg mL-1 

chloramphenicol containing compound and incubated at 37 °C, 180 rpm for 6 h. Cells were 

washed and lysed as previously described. 200 μL of a 200 µM catechol solution in 100 mM 

potassium phosphate (pH 8.0) was added to 20 μL of lysate and the oxidation of catechol was 

followed by monitoring absorbance at 375 nm for 10 min. Samples were normalized to protein 

concentration as determined by BCA assay (Pierce). 

HssRS activation dose response curves and EC50 determination. The above XylE procedure was 

followed using different concentrations of compound. The data were then entered into 

Graphpad Prism 6 and fit to a curve to determine EC50 values. 

IC50 determination. Cultures of wild type S. aureus strain Newman and ΔmenB1 were grown in 

aeration tubes aerobically at 37 °C with shaking for 15 – 18 h. Anaerobic cultures were 

prepared by growing bacteria at 37 °C without shaking in an anaerobic chamber for 15 -18 h. 

Bacteria from each condition were subcultured 1:100 into TSB containing various 

concentrations of compound in a 96 well plate. Aerobic wild type and ΔmenB plates are 

incubated aerobically at 37 °C with shaking while anaerobic plates were grown in an anaerobic 

chamber (Coy) at 37 °C without shaking. The absorbance at 600 nm (OD600) was determined 

after 9 h of growth and the fraction of growth at each compound concentration is determined 

by dividing the OD600 by the vehicle control (DMSO) value. IC50s were calculated using Graphpad 

Prism 6 and errors are reported as 95 % confidence intervals. 
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Heme adaptation assays. Overnight cultures of S. aureus were subcultured into 500 μL TSB 

containing compound in 1.5 mL tubes and incubated at 37 °C with shaking for 15 h. Bacteria 

from the compound treated cultures were then subcultured 1:100 into 100 μL TSB containing 

heme and incubated at 37 °C with shaking for 8 h. Growth was monitored by reading the OD600 

on a Biotek microplate reader at the defined time intervals. 

Iron chelation assay. Iron chelation by 1 was characterized using the CAS assay. Solutions were 

prepared as described.8 The clinical iron chelator deferasirox (AK Scientific) was used as a 

control. Samples were incubated in 1 mL cuvettes at room temperature for 30 min after 

addition of compound. The maximum concentration of compound used was 30 µM which is a 

4:1 stoichiometry of 1 to Chromeazural-S. Absorbance at 630 nm was measured on a Varian 

UV/Vis spectrophotometer. 

Chemical Synthesis 

 

General Procedure: All non-aqueous reactions were performed in flame-dried flasks under an 

atmosphere of argon. Stainless steel syringes were used to transfer air- and moisture-sensitive 

liquids. Reaction temperatures were controlled using a thermocouple thermometer and analog 

hotplate stirrer. Reactions were conducted at room temperature (rt, approximately 23 °C) 

unless otherwise noted. Flash column chromatography was conducted using silica gel 230-400 

mesh. Analytical thin-layer chromatography (TLC) was performed on E. Merck silica gel 60 F254 

plates and visualized using UV and iodine stain. 

Materials: All solvents and chemicals were purchased from Sigma-Aldrich unless otherwise 

noted. Dry dichloromethane was collected from an MBraun MB-SPS solvent system. N,N-

dimethylformamide (DMF), tetrahydrofuran (THF), and acetonitrile (MeCN) were used as 
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received in a bottle with a Sure/Seal. Triethylamine was distilled from calcium hydride and 

stored over KOH. Deuterated solvents were purchased from Cambridge Isotope Laboratories. 

Instrumentation: 1H NMR spectra were recorded on Bruker 400, 500, or 600 MHz 

spectrometers and are reported relative to deuterated solvent signals. Data for 1H NMR spectra 

are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q 

= quartet, p = pentet, m = multiplet, br = broad, app = apparent), coupling constants (Hz), and 

integration. 13C NMR spectra were recorded on Bruker 100, 125, or 150 MHz spectrometers and 

are reported relative to deuterated solvent signals. Low resolution mass spectrometry (LRMS) 

was conducted and recorded on an Agilent Technologies 6130 Quadrupole instrument. 

Synthetic procedures and compound characterization data: 

 

2-ethynyl-N-acylbenzamides: To a stirred solution of 2-ethynylaniline (1.0 eq) dissolved in 

dichloromethane (0.3 M) at room temperature was added acyl or sulfonyl chloride (1.0 eq). 

Tiriethylamine was slowly added to the reaction and once addition was complete, the reaction 

was stirred at room temperature overnight. Solvents were removed in vacuo and the residue 

was partitioned between ethyl acetate and saturated NaHCO3 (aq), the organic layer dried 

(MgSO4), and concentrated in vacuo. The crude product was purified by flash chromatography. 

N-(2-ethynylphenyl)methanesulfonamide (S1). Light brown solid; 1H-NMR (400 

MHz, CDCl3) δ 7.61 (d, J=8.20 Hz, 1H) 7.50 (dd, J=7.72 Hz, J=1.40 Hz, 1H), 7.39 (br t, 
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J=7.90 Hz, 1H), 7.13 (t, J=7.67 Hz, 1H), 7.02 (br, 1H), 3.49 (s, 1H), 3.02 (s, 3H); 13C-NMR (100 

MHz, CDCl3) δ 139.6, 133.0, 130.7, 124.8, 119.6, 113.0, 84.9, 78.8, 39.8; LRMS calculated for 

C9H9NO2S (M+H)+ m/z: 196.0, measured 196.1. 

N-(2-ethynylphenyl)-4-methoxybenzamide (S2). Off-white solid; 1H-NMR (400 

MHz, CDCl3) δ 8.64 (br, 1H), 8.51 (d, J=8.28 Hz, 1H), 7.77 (d, J=1.84 Hz, 2H), 

7.57 (t, J=1.86 Hz, 1H), 7.44 (t, J=7.95 Hz, 1H), 7.12 (td, J=7.57 Hz, 1.05 Hz, 1H), 

3.64 (s, 1H); 13C-NMR (100 MHz, CDCl3) δ 162.7, 139.2, 137.8, 136.0, 132.4, 132.1, 130.6, 125.9, 

124.3, 119.6, 111.5, 85.3, 79.4; LRMS calculated for C15H9Cl2NO (M+H)+ m/z: 290.0, measured 

290.0. 

3,5-dichloro-N-(2-ethynylphenyl)benzamide (S3). White solid; 1H-NMR (400 

MHz, CDCl3) δ 8.72 (br, 1H), 8.59 (d, J=8.20 Hz, 1H), 7.89 (d, J=6.78 Hz, 2H), 

7.50 (dd, J=7.68 Hz, 1.48 Hz, 1H), 7.42 (t, J=7.95 Hz, 1H), 7.06 (td, J=7.54 Hz, 1.08 Hz, 1H), 7.00 

(d, J=8.84 Hz, 2H), 3.88 (s, 3H), 3.59 (s, 1H); 13C-NMR (100 MHz, CDCl3) δ 164.9, 162.8, 140.2, 

132.3, 130.5, 129.1, 127.2, 123.3, 119.3, 114.3, 110.9, 84.7, 79.7, 55.6; LRMS calculated for 

C16H13NO2 (M+H)+ m/z: 252.1, measured 252.1. 

N-(2-ethynylphenyl)-1-naphthamide (S4). White solid; 1H-NMR (400 MHz, 

CDCl3) δ 8.71 (d, J=8.20 Hz, 1H), 8.57 (br s, 1H), 8.50 (d, J=8.24 Hz, 1H), 8.00 (d, 

J=8.00 Hz, 1H), 7.92 (d, J=7.64 Hz, 1H), 7.83 (d, J=7.04 Hz, 1H), 7.63-7.45 (m, 5H), 7.12 (t, J=7.52 

Hz, 1H), 3.42 (s, 1H); 13C-NMR (100 MHz, CDCl3) δ 167.5, 140.1, 134.3, 134.0, 132.4, 131.6, 

130.5, 130.3, 128.6, 127.6, 126.8, 125.6, 125.5, 124.9, 123.8, 119.7, 111.3, 84.9, 79.3 ; LRMS 

calculated for C19H13NO (M+H)+ m/z: 272.1, measured 272.1. 
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N-(2-ethynylphenyl)furan-2-carboxamide (S5). Brown solid; 1H-NMR (400 MHz, 

CDCl3) δ 8.99 (br, 1H), 8.55 (d, J=8.24 Hz, 1H), 7.53 (s, 1H), 7.49 (dd, J=7.68 Hz, 

1.48 Hz, 1H), 7.40 (t, J=7.94 Hz, 1H), 7.25 (d, J=3.54 Hz, 1H), 7.06 (t, J=7.71 Hz, 1H), 6.56 (dd, 

J=3.50 Hz, 1.72 Hz, 1H), 3.60 (s, 1H); 13C-NMR (100 MHz, CDCl3) δ 156.1, 148.0, 144.7, 139.4, 

132.3, 130.4, 123.6, 119.4, 115.6, 112.7, 111.1, 84.8, 79.1 ; LRMS calculated for C13H9NO2 

(M+H)+ m/z: 212.1, measured 212.1. 

 

1-methoxy-2-naphthaldehyde (S6).  To a stirred solution of 193 mg (1.12 mmol, 1.0 eq) 1-

hydroxy-2-naphthaldehyde (TCI America) dissolved in 5 mL N,N-dimethylformamide at 0 °C was 

added 49.0 mg (1.23 mmol, 1.2 eq) sodium hydride. The mixture was stirred at 0 °C for 5 min 

and 140 µL (2.24 mmol, 2.0 eq) methyl iodide was added. The reaction was heated to 60 °C and 

stirred for 3 h. The reaction was partitioned between ethyl acetate and water, the organic layer 

washed with water (1x), brine (2x), and dried (MgSO4). The organic layer was concentrated and 

the residue purified by flash chromatography with a 0-20 % ethyl acetate in hexane gradient to 

provide 165 mg (80 %) of product as a light brown solid. 1H-NMR (400 MHz, CDCl3) δ 10.59 (d, 

J=0.76 Hz, 1H), 8.23 (d, J=8.16 Hz, 1H), 7.86 – 7.82 (m, 2H), 7.64 - 7.54 (m, 3H), 4.12 (s, 3H); 13C-

NMR (100 MHz) δ 189.6, 162.6, 138.1, 129.4, 128.4, 127.9, 126.9, 124.9, 124.7, 123.2, 122.7, 

65.7; LRMS calculated for C12H10O2 (M+H)+ m/z: 187.1, measured 187.1. 

 



94 
 

2-ethynyl-1-methoxynaphthalene (S7).  To a stirred solution of 106 mg (0.570 mmol, 1.0 eq) 1-

methoxy-2-naphthaldehyde in 5 mL methanol was added 158 mg (1.14 mmol, 2.0 eq) 

potassium carbonate followed by 131 mg (0.682 mmol, 1.2 eq) dimethyl (1-diazo-2-

oxopropyl)phosphonate. The suspension was stirred for 24 h. The reaction was partitioned 

between ethyl acetate and water, the aqueous layer extracted with ethyl acetate (2x), the 

organics combined and washed with brine (1x), dried (MgSO4), and flash filtered through silica 

with 5:1 hexane/ethyl acetate to provide 72 mg (69 %) 2-ethynyl-1-methoxynaphthaldehyde. 

1H-NMR (400 MHz, CDCl3) δ 8.01 – 7.97 (m, 1H), 7.62 – 7.58 (m, 1H), 7.35 – 7.27 (m, 4H), 3.97 

(s, 3H), 3.22 (s, 1H); 13C-NMR (100 MHz, CDCl3) δ 159.3, 144.2, 134.9, 129.8, 127.9, 127.4, 126.5, 

123.5, 122.5, 110.3, 82.5, 80.8, 61.9; LRMS calculated for C13H10O (M+H)+ m/z: 183.1, measured 

183.1. 

The alkyne precursor for 3.29 and 3.30 was prepared from o-anisaldehyde as previously 

described.9 

 

2’-acyloxyacetophenone synthesis. To a stirred solution of 2’-hydroxyacetophenone in 

dichloromethane (0.2 M) was added triethylamine (1.1 eq) and 4-dimethylaminopyridine (0.05 

eq). The solution was cooled to 0 °C in an ice bath and acid chloride (1.1 eq) was added. The 

reaction was allowed to warm to room temperature and monitored by TLC and LCMS. When 

starting material was completely consumed and product observed by LC-MS, the reaction was 

partitioned between dichloromethane and saturated NaHCO3 (aq). The organic layer was 

washed with brine and dried (MgSO4), filtered, and concentrated. The products generally did 



95 
 

not require further purification but may be crystallized from hexane/ethyl acetate or purified by 

flash chromatography as needed. Products were generally carried on uncharacterized. 

 

1,3-diketone synthesis. A suspension of potassium tert-butoxide (2.0 eq) in dimethylformamide 

(0.2 M) was cooled to 0 °C under Ar. A solution of 2’-acyloxyacetophenone (1.0 eq) in DMF was 

added dropwise to the tBuOK suspension and stirred at 0 °C until consumption of starting 

material was observed by TLC (~1 h). The reaction was quenched with 1 N HCl and the resulting 

suspension extracted with diethyl ether (3x), washed with H2O, brine, dried (MgSO4) and 

solvents removed in vacuo. Products were carried on crude and uncharacterized. 

‘8882 and 3.18 were previously reported.1 

Pyrazole synthesis. ROUTE 1: To a stirred solution of terminal alkyne (1 eq) in THF (0.2 M) was 

added triethylamine (3 eq), bistriphenylphosphine palladium dichloride (0.05 eq), copper(I) 

iodide (0.1 eq), and acid chloride (1.5 eq) at room temperature. The reaction was stirred until 

conversion of starting material was observed by TLC. The reaction was diluted 1:1 with 

acetonitrile followed by addition of hydrazine hydrate (4 eq). The reaction was stirred until 

complete as determined by TLC. The reaction was filtered through celite, concentrated, and 

purified by preparative scale reverse phase HPLC. 

ROUTE 2: To a solution of crude diketone in ethanol (0.25 M) in a microwave vial was added 

hydrazine hydrate (2 eq). The vial was sealed and heated to 150 °C in a microwave reactor for 5 
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min. The reaction was concentrated and the product was purified by preparative scale reverse 

phase HPLC. 

General procedure for demethylation of aryl ethers. To a solution of reactant in 

dichloromethane (0.20 M) was added 6.0 eq BBr3 (1.0 M in dichloromethane) in a microwave 

vial. The vial was sealed and maintained at 90 °C under microwave irradiation for 20 min. The 

reaction was quenched with saturated NaHCO3 and extracted with dichloromethane. The 

organic layer was washed with brine, dried (MgSO4), and concentrated. Products were purified 

by flash chromatography or HPLC. 

2-(5-(furan-2-yl)-1H-pyrazol-3-yl)phenol (3.2) 1H-NMR (400 MHz, acetone-d6) δ 

7.76 (d, J=7.78 Hz, 1H), 7.72 (s, 1H), 7.22 (t, J=7.73 Hz, 1H), 7.12 (s, 1H), 6.96-

6.90 (m, 3H), 6.63 (dd, J=3.39 Hz, 1.86 Hz, 1H); 13C-NMR (150 MHz, acetone-d6) δ 158.3, 154.6, 

144.1, 130.0, 127.6, 120.1, 117.6, 117.5, 112.7, 108.5, 99.2; LRMS calculated for C13H11N2O2 

(M+H)+ m/z: 227.1, measure, 227.1. 

2-(5-(furan-2-yl)-1H-pyrazol-3-yl)-5-methoxyphenol (3.3) 1H-NMR (400 MHz, 

acetone-d6) δ 12.75 (br, 1H), 10.95 (br; 1H), 7.70 (s, 1H), 7.65 (d, J=8.44 Hz, 

1H), 7.00 (s, 1H), 6.91 (s, 1H), 6.62 (br, 1H), 6.54-6.48 (m, 2H), 3.80 (s, 3H); 13C-NMR  (100 MHz, 

acetone-d6) δ 161.9, 158.4, 144.0, 128.5, 112.6, 110.7, 108.3, 106.8, 102.4, 98.5, 55.4; .LRMS 

calculated for C14H12N2O3 (M+H)+ m/z: 257.1, measured 257.1. 

5-(furan-2-yl)-3-(1-methoxynaphthalen-2-yl)-1H-pyrazole (3.4) 1H-NMR 

(400 MHz, CDCl3) δ ]8.18 (d, J=8.20 Hz, 1H), 7.86 (d, J=7.80 Hz, 1H), 7.76 (d, 

J=8.60 Hz, 1H), 7.70 (d, J=8.64 Hz, 1H), 7.61 – 7.50 (m, 2H), 6.99 (s, 1H), 6.81 (d, J=3.28 Hz, 1H), 

6.52 (dd, J=3.28 Hz, J=1.80, 1H), 3.92 (s, 3H); 13C-NMR (100 MHz, CDCl3) δ 152.8,148.8, 142.0, 
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134.9, 128.3, 128.2, 127.0, 126.9, 125.3, 122.4, 117.7, 111.5, 106.0, 101.1, 62.0; LRMS 

calculated for C18H14N2O2 (M+H)+ m/z: 291.1, measured 291.1. 

5-(furan-2-yl)-3-(2-methoxyphenyl)-1H-pyrazole (3.5) 1H-NMR (400 MHz, 

CD3OD) δ 7.73 (d, J=7.20 Hz, 1H), 7.57 (s, 1H), 7.38 (t, J=6.8 Hz, 1H), 7.17 (d, 

J=8.4 Hz, 1H), 7.06 (t, J=7.60 Hz, 1H), 6.94 (s, 1H), 6.76 (d, J=3.20 Hz, 1H), 6.54 (m, 1H), 3.99 (s, 

3H); 13C-NMR  (100 MHz, acetone-d6) δ 157.1, 150.3, 142.7, 142.5, 130.2, 128.7, 121.8, 119.3, 

112.6, 112.1, 105.9, 101.5, 56.0; LRMS calculated for C14H12N2O2 (M+H)+ m/z: 241.1, measured 

241.1. 

3-(5-(furan-2-yl)-1H-pyrazol-3-yl)phenol (3.6) 1H-NMR (400 MHz, acetone-

d6) δ 7.62 (s, 1H), 7.36 - 7.31 (m, 2H), 7.26 (t, J=7.77 Hz, 1H), 6.89 (s, 1H), 

6.83 (d, J=8.18 Hz, 1H), 6.77 (d, J=3.19 Hz, 1H), 6.56 (dd, J=3.35 Hz, 1.41 Hz, 1H); 13C-NMR (100 

MHz, acetone-d6) δ 158.7, 143.0, 130.7, 117.6, 115.9, 113.2, 112.3, 106.6, 99.9;  LRMS 

calculated for C13H10N2O2 (M+H)+ m/z: 227.1, measured 227.2. 

3-(5-(furan-2-yl)-1H-pyrazol-3-yl)phenol (3.7) 1H-NMR (400 MHz, acetone-

d6) δ 7.70 (d, J=8.57 Hz, 2H), 7.61 (d, J=1.24 Hz, 1H), 6.92 (d, J=8.57 Hz, 2H), 

6.81 (s, 1H), 6.75 (d, J=3.24 Hz, 1H), 6.54 (dd, J=3.24 Hz, 1.24 Hz, 1H); 13C-NMR (150 MHz, 

acetone-d6) δ 158.4, 157.3, 149.1, 148.0, 142.8, 127.7, 123.8, 116.5, 112.2, 106.2, 99.0; LRMS 

calculated for C13H10N2O2 (M+H)+ m/z: 227.1, measured 227.1. 

5-(furan-2-yl)-3-phenyl-1H-pyrazole (3.8) 1H-NMR (400 MHz, acetone-d6) δ 

7.77 (d, J=7.57 Hz, 2H), 7.57 (s, 1H), 7.44 (t, J=7.32 Hz, 2H), 7.35 (t, J=7.28 
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Hz, 1H), 6.87 (s, 1H), 8.77 (d, J=3.28 Hz, 1H), 6.54 (dd, J=3.28 Hz, 1.48 Hz, 1H); 13C-NMR (150 

MHz, acetone-d6) δ 143.1, 129.7, 128.8, 126.2, 112.3, 106.7, 9.8; LRMS calculated for C13H10N2O 

(M+H)+ m/z: 211.1, measured 211.1. 

N-(2-(5-(furan-2-yl)-1H-pyrazol-3-yl)phenyl)methanesulfonamide (3.9) 1H-

NMR (400 MHz, acetone-d6) δ 7.91 (d, J=7.94 Hz, 1H), 7.74 (s, 1H), 7.71 (d, 

J=7.72 Hz, 1H), 7.22 (t, J=7.60 Hz, 1H), 7.16 (s, 1H), 6.95 (d, J=3.40 Hz, 1H), 

6.64 (dd, J=3.40 Hz, 1.80 Hz, 1H), 2.97-2.95 (m, 3H); 13C-NMR (100 MHz, acetone-d6) δ 152.6, 

145.4, 144.2, 137.0, 136.5, 129.6, 129.1, 124.5, 121.5, 120.3, 112.7, 108.5, 100.7, 39.6; LRMS 

calculated for C14H13N3O3S (M+H)+ m/z: 304.1, measured 304.0. 

3,5-dichloro-N-(2-(5-(furan-2-yl)-1H-pyrazol-3-yl)phenyl)benzamide (3.10) 1H-

NMR (400 MHz, acetone-d6) δ 8.82 (d, J=8.20 Hz, 1H), 8.01 (d, J=1.92 Hz, 2H), 

7.93 (dd, J=7.82 Hz, 1.46 Hz, 1H), 7.72 (br s, 2H), 7.39 (br t, J=7.84 Hz, 1H), 7.23 

(br t, J=7.58 Hz, 1H), 7.19 (s, 1H), 6.94 (d, J=3.28 Hz, 1H), 6.63 (dd, J=3.40 Hz, 1.84 Hz, 1H); 13C-

NMR (125 MHz, acetone-d6) 163.2, 145.4, 144.2, 140.0, 137.4, 136.2, 132.0, 129.4, 128.9, 

127.0, 124.7, 121.4, 121.3. 112.7, 108.7, 101.2; LRMS calculated for C20H13Cl2N3O2 (M+H)+ m/z: 

398.1, measured 398.0. 

N-(2-(5-(furan-2-yl)-1H-pyrazol-3-yl)phenyl)-4-methoxybenzamide (3.11) 1H-

NMR (400 MHz, acetone-d6) δ 8.95 (d, J=7.84 Hz, 1H), 8.16 (d, J=8.88 Hz, 2H), 

7.90 (d, J=7.84 Hz, 1H), 7.71 (s, 1H), 7.36 (t, J=7.89 Hz, 1H), 7.19 - 7.14 (m, 2H), 

7.05 (d, J=8.89 Hz, 2H), 6.94 (d, J=3.36 Hz, 1H), 6.62 (dd, J=3.38 Hz, 1.82 Hz, 1H), 3.88 (s, 3H); 

13C-NMR (100 MHz, acetone-d6) δ 165.5, 163.4, 144.1, 138.3, 130.2, 129.3, 128.7, 123.6, 121.1, 



99 
 

114.7, 112.7, 108.5, 101.0, 55.9; LRMS calculated for C21H17N3O3 (M+H)+ m/z: 360.1, measured 

360.1. 

N-(2-(5-(furan-2-yl)-1H-pyrazol-3-yl)phenyl)-1-naphthamide (3.12) 1H-NMR 

(600 MHz, acetone-d6) δ 9.00 (d, J=8.28 Hz, 1H), 8.58 - 8.53 (m, 1H), 8.10 (d, 

J=8.24 Hz, 1H), 8.02 - 7.99 (m, 1H), 7.97 (d, J=7.97 Hz, 1H), 7.92 (dd, J=7.84 Hz, 

1.48 Hz, 1H), 7.68 (d, J=1.44 Hz, 1H), 7.64 - 7.56 (m, 2H), 7.44 (td, J=7.88 Hz, 1.48 Hz, 1H), 7.24 

(td, J=7.63 Hz, 0.96 Hz, 1H), 7.14 (s, 1H), 6.90 (d, J=3.36 Hz, 1H), 6.60 (dd, J=3.40 Hz, 1.80 Hz, 

1H); 13C-NMR (150 MHz, acetone-d6) δ 168.1, 153.0, 145.5, 144.1, 142.3, 138.0, 136.3, 134.9, 

131.3, 131.4, 129.3, 129.2, 128.8, 127.7, 127.3, 126.6, 126.4, 126.0, 124.3, 121.3, 112.6, 108.3, 

101.1; LRMS calculated for C24H17N3O2 (M+H)+ m/z: 380.1, measured 380.1. 

N-(2-(5-(furan-2-yl)-1H-pyrazol-3-yl)phenyl)furan-2-carboxamide (3.13) 1H-

NMR (400 MHz, acetone-d6) δ 8.83 (d, J=4.31 Hz, 1H), 7.89 (dd, J=7.82 Hz, 1.50 

Hz, 1H), 7.73 (ddd, J=4.60 Hz, 1.70 Hz, 0.78 Hz, 2H), 7.36 (app t, 1H), 7.26 (dd, 

J=3.48 Hz, 0.76 Hz, 1H), 7.19 (app t, 1H), 7.15 (s, 1H), 6.95 (dd, J=3.40 Hz, 0.50 Hz, 1H), 6.65 (dd, 

J=3.48 Hz, 1.76 Hz, 1H), 6.63 (dd, J=3.42 Hz, 1.82 Hz, 1H); 13C-NMR (100 MHz, acetone-d6) δ 

157.1, 149.8, 145.9, 145.6, 144.0, 137.4, 136.5, 129.2, 128.8, 124.2, 121.3, 121.1, 115.0, 113.0, 

112.7, 108.4, 100.9; LRMS calculated for C18H13N3O3 (M+H)+ m/z: 320.1, measured 320.1. 

2-(5-(thiophen-2-yl)-1H-pyrazol-3-yl)phenol (3.14)  1H-NMR (400 MHz, 

acetone-d6) δ 7.77 (dd, J=7.74 Hz, 1.54 Hz, 1H), 7.56 (br s, 1H), 7.24 - 7.15 (m, 

2H), 7.11 (s, 1H), 6.93 (app q, 2H) 13C-NMR (150 MHz, acetone-d6) δ 157.3, 153.5, 139.2, 130.0, 

128.9, 127.4, 127.0, 119.3, 117.5, 116.8, 99.5; LRMS calculated for C13H10N2OS (M+H)+ m/z: 

243.1, measured 243.1. 
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2-(5-(furan-3-yl)-1H-pyrazol-3-yl)phenol (3.15) 1H-NMR (400 MHz, acetone-

d6) δ 8.13 (s, 1H), 7.73 – 7.69 (m, 2H), 7.20 (app tr, 1H), 7.07 (s, 1H), 6.96 – 

6.87 (m, 3H); 13C-NMR (100 MHz, acetone-d6) δ 157.1, 145.2, 141.0, 129.9, 127.5, 120.0, 117.7, 

117.5, 109.4, 100.0; LRMS calculated for C13H10N2O2 (M+H)+ m/z: 227.1, measured 227.1. 

2-(5-phenyl-1H-pyrazol-3-yl)phenol (3.16) 1H-NMR (400 MHz, acetone-d6) 

δ  7.91 - 7.87 (m, 2H), 7.78 (dd, J=7.74 Hz, 1.62 Hz, 1H), 7.52 (t, J=7.54 Hz, 

2H), 7.43 (t, J=7.38 Hz, 1H), 7.27 (s, 1H), 7.21 (app t, 1H), 6.97 - 6.90 (m, 2H); 13C-NMR (150 

MHz, acetone-d6) δ 157.2, 153.8, 144.7, 130.0, 129.9, 129.7, 127.6, 126.5, 120.0, 117.7, 117.5, 

100.1; LRMS calculated for C15H12N2O (M+H)+ m/z: 237.1, measured 237.1. 

2,2'-(1H-pyrazole-3,5-diyl)diphenol (3.17) 1H-NMR (400 MHz, CD3OD) δ 

7.71 (d, J=7.52 Hz, 2H), 7.19 (t, J=7.58 Hz, 2H), 7.14 (s, 1H), 6.97 – 6.89 (m, 

4H); 13C-NMR (100 MHz, CD3OD) δ 156.4, 130.2, 128.3, 120.7, 117.8, 117.4, 100.4; LRMS 

calculated for C15H12N2O2 (M+H)+ m/z: 253.1, measured 253.2. 

2-(5-(2,5-difluorophenyl)-1H-pyrazol-3-yl)phenol (3.19) 1H-NMR (600 

MHz, acetone-d6) δ 9.12 (br s, 1H), 8.62 (br s, 1H), 8.24 (dd, J=7.89 Hz, 

1.88 Hz, 1H), 7.79 (dd, J=7.74 Hz, 1.56 Hz, 1H), 7.51 (dd, J=7.59 Hz, 4.83 

Hz, 1H), 7.38 (s, 1H), 7.23 (app t, 1H), 6.97 (d, J=8.10 Hz, 1H), 6.94 (t, J=7.30 Hz, 1H); 13C-NMR 

(150 MHz, acetone-d6) δ 156.9,  150.5, 147.8, 133.5, 130.1, 129.9, 128.1, 127.8, 124.7, 120.2, 

118.5, 117.6,117.5, 100.8; LRMS calculated for C15H10F2N2O (M+H)+ m/z: 273.1, measured 

273.1. 

2-(5-(pyridin-2-yl)-1H-pyrazol-3-yl)phenol (3.20) 1H-NMR (400 MHz, 

acetone-d6) δ 10.93 (br s, 1H), 8.66 (d, J=4.64 Hz, 1H), 8.00 (m, 2H), 7.78 
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(dd, J=7.72 Hz, 1.56 Hz, 1H), 7.47 (s, 1H), 7.39 (app t, 1H), 7.22 (app t, 1H), 6.97 – 6.90 (m, 2H); 

13C-NMR (150 MHz, acetone-d6) δ 150.5, 138.2, 129.9, 127.5, 124.4, 121.3, 120.0, 117.7, 

117.6,100.8; LRMS calculated for C1eH11N3O (M+H)+ m/z: 238.1, measured 238.1. 

2-(5-(pyridin-3-yl)-1H-pyrazol-3-yl)phenol (3.21) 1H-NMR (400 MHz, 

acetone-d6) δ 9.12 (s, 1H), 8.62 (br s, 1H), 8.24 (dt, J= 7.96 Hz, 1.92 Hz, 1H), 

7.80 (dd, J=7.76 Hz, 1.60 Hz, 1H), 7.51 (br, 1H), 7.38 (br s, 1H), 7.25 – 7.20 (m, 1H), 7.01 – 6.91 

(m, 2H); 13C-NMR (150 MHz, DMSO-d6) δ 148.3, 146.4, 132.2, 129.2, 127.5, 123.9, 116.3, 101.4; 

LRMS calculated for C1eH11N3O (M+H)+ m/z: 238.1, measured 238.1. 

2-(5-(pyridin-4-yl)-1H-pyrazol-3-yl)phenol (3.22) 1H-NMR (600 MHz, DMSO-

d6) δ 8.62 (d, J=4.80 Hz, 2H), 7.81 (app d, 2H), 7.72 (d, J=7.32, 1H), 7.39 (br, 

1H), 7.20 (app t, 1H), 6.99 (d, J=7.80 Hz, 1H), 6.92 (app t, 1H); 13C-NMR (150 MHz, DMSO-d6) δ 

154.5, 150.2, 129.3,127.3, 119.5, 119.4, 116.4, 102.2; LRMS calculated for C1eH11N3O (M+H)+ 

m/z: 238.1, measured 238.1. 

2-(1H-pyrazol-3-yl)phenol (3.23) 1H-NMR (400 MHz, acetone-d6) δ 11.01 (s, 1H), 

7.90 (d, J=2.36 Hz, 1H), 7.72 (d, J=7.64 Hz, 1H), 7.19 (t, J=7.64 Hz, 1H), 6.96 – 6.85 

(m, 3H); 13C-NMR (100 MHz, acetone-d6) δ 157.0, 130.7, 129.7, 127.4, 127.2, 119.9, 117.9, 

117.5, 102.3; LR7MS calculated for C9H8N2O (M+H)+ m/z: 161.1, measured 161.2. 

2-(5-methyl-1H-pyrazol-3-yl)phenol (3.24) 1H-NMR (600 MHz, acetone-d6) δ 

11.07 (s, 1H), 7.63 (dd, J=7.74 Hz, J=1.50 Hz, 1H), 7.16 (t, J=7.50 Hz, 1H), 6.89 (d, 

J=8.16 Hz, 1H), 6.86 (t, J=7.50 Hz, 1H), 6.58 (s, 1H), 2.39 (s, 3H); 13C-NMR (150 MHz, acetone-d6) 

δ 157.2, 129.5, 127.3, 119.8, 118.0, 117.4, 101.6, 10.6; LRMS calculated for C10H10N2O (M+H)+ 

m/z: 175.1, measured 175.2. 
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2-(5-ethyl-1H-pyrazol-3-yl)phenol (3.25) 1H-NMR (600 MHz, acetone-d6) δ 

12.13 (br s, 1H), 11.09 (br s, 1H), 7.56 (J=7.70 Hz, 1.58 Hz, 1H), 7.16 (app tr, 

1H), 6.87 (app q, 1H), 6.62 (s, 1H), 2.79 (q, J=7.60 Hz, 2H), 1.32 (t, J=7.60 Hz, 3H); 13C-NMR (150 

MHz, acetone-d6) δ 157.2, 152.8, 147.4, 129.5, 127.3, 119.8, 118.1, 117.4, 117.3, 100.1, 19.3, 

13.7; LRMS calculated for C11H12N2O (M+H)+ m/z: 189.1, measured 189.2. 

2-(5-(tert-butyl)-1H-pyrazol-3-yl)phenol (3.26) 1H-NMR (600 MHz, acetone-d6) 

δ 7.68 (dd, J=7.72 Hz, 1.60 Hz, 1H), 7.16 (app t, 1H), 6.91 - 6.84 (m, 1H), 6.65 (s, 

1H), 1.42 (s, 9H); 13C-NMR (150 MHz, acetone-d6) δ 157.2, 155.0, 152.4, 129.4, 127.3, 119.6, 

118.1, 117.4, 117.3, 98. 6, 31.7, 30.4; LRMS calculated for C13H16N2O (M+H)+ m/z: 217.1, 

measured 217.1. 

2-(5-cyclopentyl-1H-pyrazol-3-yl)phenol (3.27) 1H-NMR (400 MHz, 

acetone-d6) δ 12.13 (br, 1H), 11.09 (s, 1H), 7.66 (dd, J=7.72 Hz, 1.60 Hz, 

1H), 7.16 (app t, 1H), 6.91 – 6.83 (m, 1H), 6.64 (s, 1H), 3.22 (p, J=7.98 Hz, 1H), 2.19 – 2.10 (m, 

2H), 1.85 – 1.66 (m, 6H); 13C-NMR (150 MHz, acetone-d6) δ 157.4, 152.7, 150.2, 129.5, 127.4, 

119.6, 118.2, 117.8, 99.5, 33.8, 26.3, 25.7; LRMS calculated for C14H16N2O (M+H)+ m/z: 229.1, 

measured 229.2. 

2-(5-pentyl-1H-pyrazol-3-yl)phenol (3.28) 1H-NMR (400 MHz, acetone-

d6) δ 7.65 (dd, J=7.70 Hz, 1.56 Hz, 1H), 7.17 (app t, 1H), 6.91 – 6.84 (m, 

1H), 6.62 (m, 1H), 2.76 (t, J=7.66 Hz, 2H), 1.74 (br p, 2H), 1.40 – 1.33 (m, 4H), 0.90 (t, J=7.06 Hz, 

3H) 13C-NMR (150 MHz, acetone-d6) δ 157.2, 152.9, 146.0, 129.5, 127.3, 119.8, 118.1, 117.4, 

100.6, 41.4, 32.1, 25.9, 23.0, 14.2; LRMS calculated for C14H18N2O (M+H)+ m/z: 231.2, measured 

231.2. 
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3-(2-methoxyphenyl)-5-phenyl-1H-pyrazole (3.29) 1H-NMR (400 MHz, 

acetone-d6) δ 7.92 (app d, 2H), 7.87 (app d, 1H), 7.41 (t, J=7.64 Hz, 2H), 7.38 

– 7.27 (m, 2H), 7.20 – 7.15 (m, 2H), 7.06 (app t, 1H), 4.04 (s, 3H); 13C-NMR (150 MHz, acetone-

d6) δ 157.1, 130.1, 129.4, 128.7, 128.2, 126.2, 121.8, 112.6, 101.6, 56.0; LRMS calculated for 

C16H14N2O (M+H)+ m/z: 251.1, measured 251.2. 

5-(2-fluorophenyl)-3-(2-methoxyphenyl)-1H-pyrazole (3.30) 1H-NMR (400 

MHz, acetone-d6) δ 8.09 (br, 1H), 7.85 (d, J=6.84 Hz, 1H), 7.39 – 7.33 (m, 

2H), 7.28 – 7.17 (m, 3H), 7.16 (d, J=3.60 Hz, 1H), 7.07 (t, J=7.47 Hz, 1H), 

4.04 (s, 3H); 13C-NMR (150 MHz, acetone-d6); δ 157.1, 130.2, 130.0, 129.8, 129.2, 129.1, 128.7, 

125.2, 121.9, 116.9, 112.6, 104.7, 56.0; LRMS calculated for C16H13FN2O (M+H)+ m/z: 269.1, 

measured 269.1. 

2-(3-(furan-2-yl)-1-methyl-1H-pyrazol-5-yl)naphthalen-1-ol (3.31) 1H-

NMR (400 MHz, acetone-d6) δ 8.66 (br, 1H), 8.40 – 8.36 (m, 1H), 7.95 – 

7.90 (m, 1H), 7.62 – 7.52 (m, 4H), 7.34 (d, J=8.44 Hz, 1H), 6.70 (d, J=3.80 Hz, 1H), 6.58 (s, 1H), 

6.54 (dd, J=3.28 Hz, 1.80 Hz, 1H), 3.77 (s, 3H); 13C-NMR (150 MHz, acetone-d6) δ 151.6, 150.6, 

143.7, 142.5,141.4, 136.1, 128.8, 128.6, 127.9, 126.5, 126.2, 123.4, 120.6, 112.1, 111.9, 105.6, 

104.9, 37.5; LRMS calculated for C18H15N2O2 (M+H)+ m/z: 291.1, measured 291.2. 

2-(5-(furan-2-yl)-1-methyl-1H-pyrazol-3-yl)naphthalen-1-ol (3.32) 1H-

NMR (600 MHz, acetone-d6) δ 8.36 – 8.33 (m, 1H), 7.84 – 7.80 (m, 2H), 

7.50 (dt, J=9.72 Hz, 3.36 Hz, 2H), 7.45 (d, J=8.52 Hz, 1H), 7.17 (s, 1H), 

6.98 (d, J=3.78 Hz, 1H), 6.69 (dd, J=3.42 Hz, 1.80 Hz, 1H), 4.21 (s, 3H); 13C-NMR (150 MHz, 

acetone-d6) δ 152.6, 151.4, 145.0, 144.6, 136.2, 135.1, 128.3, 127.4, 126.3,126.0, 124.9, 123.5, 
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119.7, 112.7, 110.7, 110.4, 102.1, 39.2; LRMS calculated for C18H15N2O2 (M+H)+ m/z: 291.1, 

measured 291.2. 
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CHAPTER 4 

 STRUCTURE-ACTIVITY RELATIONSHIP STUDIES OF ‘3981 
 

4.1 Introduction 

Another molecule identified in the screens for HssRS activators was the thiourea ‘3981. 

The chemical structure of ‘3981 differs significantly from ‘8882. Preliminary efforts to elucidate 

the mechanism of activation of HssRS by ‘3981 were conducted by Matthew Surdel (Skaar lab). 

These studies revealed that, unlike ‘8882, ‘3981 does not require endogenous heme 

biosynthesis to activate HssRS. It also does not induce an increase in intracellular heme 

accumulation. In addition, ‘3981 is not active in anaerobically grown S. aureus. ‘3981 also 

exhibited considerable toxicity under both aerobic and anaerobic conditions. These results 

indicate a very different mechanism of HssRS activation from ‘8882 and that ‘3981 could be a 

useful probe to study the mechanism(s) of heme toxicity in S. aureus . A library of ‘3981 

derivatives was prepared to determine structure-activity relationships and identify compounds 

with better activity and toxicity profiles. 

 

Figure 4.1. Hypothesis of ‘3981 activation of HssRS. 
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4.2 Synthesis of ‘3981 derivatives 

The HssRS activating small molecule ‘3981 is a thiourea composed of N-benzyl and N’-4-

biaryl ether groups flanking the central thiocarbonyl. Thioureas are readily synthesized by 

preparing the isothiocyanate of one amine and reacting that with the second amine.1 A library 

of ‘3981 derivatives was prepared in this manner. First, one component was reacted with 

thiophosgene in biphasic saturated sodium bicarbonate-DCM to generate the isothiocyanate. 

The isocyanate in the reaction mixture was divided several times and the corresponding 

component was added to each sub-reaction to generate several derivatives. The products were 

purified by either preparative scale HPLC or recrystallization from either hexanes/ethyl acetate 

or isopropanol. Using this method, 18 derivatives with modifications to the benzylamine 

component (Figure 4.2) and eight derivatives with modifications to the biaryl ether component 

(Figure 4.3) were prepared 
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Figure 4.2. Derivatives of ‘3981 with modified benzylamine component. 
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4.10
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Figure 4.3. Derivatives of ‘3981 with modified biaryl ether component. 
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4.3 HssRS activity of ‘3981 derivatives 

Single-point data 

The ability of the ‘3981 derivatives to activate HssRS was determined using the XylE 

assay. Compounds were screened at the single point concentration of 10 µM due to the toxicity 

of ‘3981. The assay was followed as described in chapter 3. 

 
 

Figure 4.4. Activation of HssRS by 4.2 – 4.19 at 10 µM relative to ‘3981. 

 

 

Removal of the benzyl carbon to provide 4.2 resulted in significant loss of activity 

indicating the benzyl carbon is necessary for activity. Introducing an unsubstituted benzyl group 

(4.3) into the molecule also results in loss of activity indicating that substitution by certain 

groups is necessary for activity. Movement of the fluorine into the 3-position (4.5) is 

deleterious to activity while movement into the 2-position (4.4) increases activity two-fold 
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compared to ‘3981 indicating ortho-fluorine substitution is favored. The series of di-fluoro 

substituted compounds (4.6 – 4.11) indicates that 3-fluorine substitution is deleterious to 

activity regardless of the position of the other fluorine. In addition, the di-ortho fluorine 

substituted compound 4.9 exhibited approximately the same level of activity as 4.4 indicating 

this substitution pattern is not additive or synergistic. 

Introduction of methyl or methyl ether groups into the benzyl ring gave different 

results. In general, 3-substitution resulted in significant increases in activity compared to ‘3981. 

The most active of these, 4.16 (which will hereafter be referred to as ‘7501), routinely exhibited 

activity 2 – 6x that of ‘3981. 2-substitution also resulted in compounds more active than ‘3981 

while 4-substitution did not promote activity. In addition, 3-iodo (4.18) substitution also 

resulted in a significant increase in activity. 

 
 

Figure 4.5. Activation of HssRS by 4.20 – 4.27 at 10 µM relative to ‘3981. 
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Modification of the biaryl ether component was in general less well tolerated. 

Replacement with smaller aryl groups including phenyl (4.20), 4-methylphenyl (4.21), and 4-

methoxyphenyl (4.22) resulted in significant loss of activity. Movement of the 4-phenoxy 

moiety to the 2-position (4.25) also resulted in loss of activity. Movement to the 3-position 

(4.26) resulted in significant toxicity and as a result, the HssRS activity could not be determined 

in this screen.  The only modification that was tolerated was replacement of the 4-

phenoxyphenyl group with 4-biphenyl. This result suggested that activity is dependent on a 

large biaryl system in this component of the molecule. Despite this, biaryl sulfonamide 4.23 was 

not active. Finally, replacement of the biaryl ether system with an adamantlyl group (4.27) was 

also deleterious to activity. 

Another modification explored was converting ‘3981 to a urea by replacing the sulfur 

with oxygen. This was accomplished by reacting 4-phenoxyaniline with carbonyldiimidazole and 

reacting the resulting isocyanate with 4-fluorobenzylamine with carbonyldiimidazole.2 The 

resulting urea 4.28 demonstrated approximately the same activity as ‘3981 at 10 µM. 

 

 
 

X Cmpd 

Relative 
HssRS 

Activity 

S ‘3981 1 

O 4.28 0.97 

 

Figure 4.6. Comparison of urea 4.28 activity with ‘3981. 



114 
 

Concentration response curves 

Concentration response curves were generated for ‘3981 and several of the more active 

derivatives including 4.9, 4.12, 4.13, 4.15, ‘7501, 4.18, and 4.28. EC50s were determined for 

each of these compounds as a measure of potency. For the most part, these modifications do 

not significantly affect potency. The only molecule with significantly increased potency was 4.18 

with iodine in the 3-position of the benzyl component. 

 

Cmpd 
EC50 
(μM) pEC50 (M) 

‘3981 3.26 5.49 ± 0.0351 

4.9 1.13 5.95 

4.12 3.56 5.45 ± 0.196 

4.13 6.31 5.20 ± 0.121 

4.15 2.91 5.54 ± 0.0911 

‘7501/4.16 4.44 5.35 ± 0.156 

4.18 0.78 6.11 ± 0.112 

4.28 3.04 5.52 

 

Table 4.1. EC50 values for ‘3981 and derivatives. 
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Figure 4.7. Concentration response curves for select ‘3981 derivatives. 
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4.4 Conclusions 

 The results of the SAR study of ‘3981 indicate that several structural features of the 

molecule are important for activity. Substituents on the benzyl ring significantly affect activity. 

Activity is significantly ablated when fluorine is moved to the 3-position. In contrast, moving 

fluorine to the 2-position increases activity twofold compared to ‘3981. The series of difluoro 

compounds further indicates that fluorine in the 3-position is detrimental to activity. 

Substitution with methyl or methyl ethers in the 2- and 3- positions increases activity compared 

to ‘3981 while substitution in the 4-position decreases activity (Me) or does not alter activity 

(OMe). These results indicate that inductive effects in the benzyl ring are important for activity. 

This could be important for processes associated with protein binding such as π-cation 

interactions.  

Modification of the 4-biaryl ether was generally not well tolerated. All modification with 

the exception of substitution with 4-biphenyl resulted in loss of activity compared to ‘3981. 

Most modifications were truncation of the biaryl ether, although movement of the phenoxy 

ether to the 2- and 3- positions also negatively affected activity. These results may suggest that 

this region of the molecule binds to a hydrophobic pocket of a potential target protein. Altering 

the 4-biary ether may destabilize this binding leading to a loss of activity.  
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Experimental Section 

General synthesis of thioureas. To a stirred solution of amine A (1.0 eq) in dichloromethane 

(0.25 M) was added an equal volume of saturated sodium bicarbonate. The resulting biphasic 

mixture was cooled to 0 °C and stirred vigorously. Thiophosgene (1.0 eq) dissolved in a minimal 

amount of dichloromethane was added dropwise to the mixture. Once addition was complete, 

the mixture was stirred vigorously for 30 min at 0 °C. Amine B (1.0 eq) was added to the 

reaction neat and the reaction was allowed to warm to room temperature. When the reaction 

was judged complete (TLC or LCMS), it was diluted with dichloromethane, the aqueous layer 

removed, the organic layer washed with 1 N HCl, brine, and dried (MgSO4). The reaction was 

concentrated and the residue purified either by preparative scale HPLC or recrystallization from 

hexanes/ethyl acetate or isopropanol. Yields were generally not determined. 

Synthesis of urea 4.28. To a stirred solution of 50.0 mg (0.270 mmol, 1.0 eq) of 4-

phenoxyaniline in 1 ml dichloromethane at 0 °C was added 52.5 mg (0.324 mmol, 1.2 eq) of 

carbonyldiimidazole. The mixture was stirred for 1 h and 35.0 mg (0.270 mmol, 1.0 eq) of 4-

fluorobenzylamine was added neat. The reaction was allowed to warm to room temperature 

and was judged complete by TLC. Volatiles were removed in vacuo and the residue purified by 

preparative scale reverse phase HPLC to provide 4.28. A yield was not recorded. 
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CHAPTER 5 

CHEMICAL METHODS OF TARGET IDENTIFICATION 

5.1 Background 

Modern discovery of bioactive small molecules centers on high throughput screening. 

The nature of each screen greatly depends on the biological system under study, but in general 

falls into one of two categories: phenotypic (or cell based forward genetic) screens and 

biochemical (or reverse genetic) screens.1 Biochemical screens involve screening molecules 

against one protein or a system of proteins outside their native environment. The read-out of 

such a screen is often an assay for enzyme activity or receptor response.2 This type of screen is 

useful for identifying molecules that modify the activity of a given protein. However, since the 

systemic outcome of modification of a protein’s activity is difficult to predict, biochemical 

screens are primarily useful for identifying small molecules whose targets are already well 

validated in a disease model or whatever biological context is under study. In contrast, 

phenotypic screens are run with whole cells or organisms and the response of the system is 

monitored through a reporter that induces a measurable response such as luminescence or 

fluorescence. This type of screen is advantageous because molecules that induce a specific 

response can be identified and used as tools to study whole pathways.1,3 

Despite the potential for phenotypic screens as rich sources of tool compounds and 

leads for therapeutic development, one major drawback is that the targets of the small 

molecules, and thus the underlying mechanism of their activity, are frequently unknown. As 

such, one of the great challenges in chemical biology is to discover the targets of small 
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molecules identified in phenotypic screens. There are two divergent approaches to small 

molecule target identification: genetic and chemical. Chemical methods will be discussed in this 

chapter. 

 

5.2 Chemical methods of target identification 

Chemical methods for the identification of targets of bioactive small molecules typically 

involve the development of a molecule (or set of molecules) called the probe(s). Probes are 

based on the structure of the original molecule but incorporate additional functional groups 

that enable target identification. In general, there are two methods that fall under the realm of 

chemical methods of target identification: affinity purification, which generally relies on 

noncovalent interaction between the probe and target to purify the target from a complex 

mixture of proteins; and ligand directed protein labeling, which involves the covalent 

modification of the target by the probe followed by isolation.4 These methods and the 

chemistry frequently utilized to carry them out will be discussed below. 
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Figure 5.1. Scheme representing the affinity purification process. A. General structure of an 
affinity purification probe. The process begins with a complex mixture of proteins (B), usually a 

lysate. The lysate is incubated with the probe and the target proteins (orange) bind (C) while 
non-target proteins do not and are washed away (D). Finally the target proteins are eluted from 

probe (E). 
 
 

Affinity Purification 

The general method of affinity purification is depicted in Figure 5.1. The underlying 

principle of this method is a molecule will have a higher affinity for its target than other non-

target proteins. A typical affinity purification experiment involves immobilization of an active 

molecule on a solid support, passage of a complex mixture of proteins of biological interest 

over the probe matrix, washing the matrix to remove nonspecifically bound (non-target) 

proteins, and elution of specifically bound (target) proteins from the solid matrix followed by 
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visualization and identification.4,5 In practice, the affinity pulldown experiment is much more 

nuanced and several factors must be optimized. 

Given a bioactive small molecule with an unknown target, the first step in any affinity 

pulldown experiment is determining structure-activity relationships (SAR) to identify positions 

in the molecule that can be modified while maintaining activity. This will help determine where 

a linker for immobilization can be placed.4 Placement of this linker is important and can 

significantly affect the results. Heck and coworkers conducted affinity pulldown experiments 

with two probes of cGMP, each with different points of linker attachment. While their results 

overlapped to some degree, there were differences in the proteins each probe pulled down.6 

The type of linker used is also an important consideration. The purpose of a linker is to 

extend the immobilized small molecule far enough from the solid support so as to not hinder 

binding of proteins.4 A variety of linkers have been prepared and utilized for affinity purification 

experiments. The simplest linker is a long alkyl chain. However, the hydrophobic nature of alkyl 

chains is thought to promote nonspecific binding of proteins in a lysate. Therefore, more 

hydrophllic linkers such as polyethylene glycols are frequently used. In addition, more 

structurally complex linkers such as polyprolines, which form a rod shaped structure, have been 

used to prevent nonspecific binding.4,5,7 

Many solid supports are available for conducting affinity purification experiments. 

Several activated resins are commercially available that can be reacted with a probe to form a 

covalent linkage. For example, NHS ester activated resins can be reacted with molecule-linker 

conjugates with terminal amines to covalently link the probe via amide bond formation. A very 

popular solid support for affinity purification is streptavidin proteins immobilized to a bead. The 
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small molecule is immobilized through a linkage with biotin. The biotin-streptavidin dissociation 

constant is very small and represents one of the strongest noncovalent interactions in nature.4,5 

Many probes are constructed with the active compound at one end of the linker and a biotin 

moiety at the other end for immobilization on streptavidin beads. 

A typical affinity purification experiment (Figure 5.1) consists of a binding step, where 

the protein mixture of interest (usually a lysate) is incubated with the immobilized probe. The 

solid support is then subjected to several washes to remove nonspecifically bound proteins. 

Because the binding between probe and target is not covalent, these washes are typically not 

harsh. After sufficient washing, the bound proteins are eluted from the solid support. This 

frequently involves heating in a detergent such as SDS. While this method is effective, it will 

also elute nonspecifically bound proteins that were not removed in the washing step. An 

alternative elution strategy is to use the active compound itself. For example, the beads can be 

incubated with free compound which will compete with the probe for binding to the target and 

effectively remove the protein from the solid support-probe complex.4,5 

Another strategy for reducing the number of nonspecifically bound proteins during an 

elution step is the use of selectively cleavable linkers. This method utilizes a functional group 

usually placed somewhere on the linker between the probe and solid support. The linker can 

undergo a reaction that will induce cleavage thus separating the probe and any bound proteins 

from the solid support. The cleavage conditions are generally quite mild and do not interfere 

with protein-protein interactions.  Functional groups that have been used include; disulfide 

bonds which can be cleaved by reduction or thiol exchange, ortho-nitrobenzyl esters which can 

be cleaved by irradiation with 365 nm light, and siloxy ethers which can be cleaved under mildly 
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acidic conditions. The extent to which cleavable linkers decrease the amount of nonspecifically 

bound proteins in the elution step varies depending on the cleavable functionality. For 

example, disulfide cleavable linkers can undergo thiol exchange with cysteine residues in 

proteins during the binding step leading to poor enrichment of target proteins and high 

background.8,9 

A critical component of affinity purification experiments are the use of proper controls. 

A good control will help distinguish specific interaction with the probe from nonspecific 

interactions. Some controls simply involve capping the linker with a small functional group such 

as an acetyl group. More elaborate controls commonly consist of attaching molecules deemed 

inactive by SAR or in the case of chiral molecules, the enantiomer (which is frequently not 

active).4,5 

While many successful target identifications have been conducted using the affinity 

purification strategy, this method does have its limitations. Even with proper solid support and 

linker choice,  a high affinity probe, and excellent controls, nonspecific protein binding is 

common. In particular, high abundance proteins are difficult to completely remove in a 

pulldown experiment. This can convolute the target identification process, and is especially 

problematic when the target is a protein of low abundance.4,5 
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Figure 5.2. General overview of ligand-directed target identification. (A) General structure of a 
probe for this experiment. (B) A sample, either in vivo or in a lysate, is treated with the probe 

which associates with target proteins. (C) The reactive group covalently modifies the target and 
(D) the tagged fractions are isolated from the rest of the sample by use of a reporter group. 

 
 

Ligand directed target identification 

Like affinity purification, probes used for ligand-directed target identification are based 

on the structure of the molecule of interest, but instead of a site for immobilization, they 

contain a functional group that is capable of covalently linking to a protein of interest. The 

underlying theory of this method is that the probe will have a higher affinity for, and will 

covalently label, a larger population of target proteins over nontarget proteins (Figure 5.2).4 A 

critical component of such a probe is a reporter that will allow downstream identification of 
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labeled proteins. Probes of this sort frequently contain biotin handles or a fluorophore that can 

be identified by streptavidin binding or in-gel fluorescence, respectively. These handles can be 

quite large and may affect the activity of the molecule if incorporated into the probe. To 

overcome this, smaller reporter groups can be utilized. Radiolabels such as 3H, 14C and 125I have 

proven to be excellent reporters as they can be incorporated into the molecule without 

significantly modifying the structure. Another common method is incorporation of handles for 

click chemistry, primarily azides or alkynes, into the molecule. These are relatively small 

functional groups that are compatible with most biological systems and allow downstream 

incorporation of larger reporter groups.10 Click chemistry and its use in target identification 

experiments will be discussed further in section 5.4. 

Many methods of residue selective chemical modification of proteins11 have been 

developed and can be used for target identification (Figure 5.3). For example, vinyl sulfones can 

be incorporated into molecules for adduction to cysteine residues. Their reactivity can also be 

modulated by varying substituents on the alkene.12 Despite high selectivity, use of these 

functional groups in target identification may be undesirable since generally very little is known 

about the binding site and the residue required for adduction may not be present in the binding 

site or may be in an undesirable orientation to react with the probe. 

An alternate strategy is to incorporate a normally unreactive functional group that can 

be activated under specific conditions to generate a reactive intermediate. This is most 

commonly accomplished by use of a photoaffinity label (PAL). A PAL is a functional group that is 

normally inert toward the biological system, but upon activation by an appropriate wavelength 
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of light, generates a very reactive intermediate that can covalently modify a protein.13,14 PALs 

will be discussed further in section 5.3. 

Ligand directed target identification offers several advantages over affinity purification. 

Because the probe does not need to be immobilized, the labeling step can be conducted in vivo 

which may provide a more biologically relevant result than experiments in a lysate. Functional 

groups used for labeling and downstream fraction identification are generally much smaller 

than the linkers needed for immobilization and may prevent significant loss of activity when 

incorporated into a probe.4 
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Figure 5.3. Examples of functional groups used for site specific labeling of proteins. 
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Miscellaneous methods 

In addition to the methods described above, several other chemical methods of target 

identification have been proposed. Emili and coworkers described a method they call target 

identification by chromatographic coelution (TICC). The premise of this method is that when a 

protein is bound to a compound, it will have a different HPLC retention time. By comparing an 

untreated to compound treated lysate, fractions whose retention times differed may be targets 

of the molecule and later identified using proteomics. The primary advantage of this method is 

the target can be identified without the need to develop probes.15 

Another method called drug affinity responsive target stability (DARTS) is based on the 

idea that when a compound binds to a protein, the protein may be more stable towards 

processes such as proteolysis or chemical denaturation. In this experiment, a lysate can be 

treated with a bioactive compound, exposed to proteolytic or denaturing conditions, and the 

ratio of surviving proteins compared to an untreated control determined to identify targets.4 

 

5.3 Photoaffinity probes 

The concept of labeling biomolecules by generation of reactive intermediates from 

photoreactive functional groups was first introduced in the 1960s.16 Since then, photoaffinity 

labeling has been extensively used in chemical biology for target identification, the study of 

protein-protein interactions, and compound binding studies. The three most commonly used 

functional groups for PAL experiments are aryl azides, the benzophenones, and diazirines. 

While they differ in several key properties which will be discussed below, they are all stable in 
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most biological systems (particularly when light is excluded) and they each generate reactive 

intermediates when exposed to the appropriate wavelength of light.13,10 

Aryl azides 

Aryl azides are convenient photoaffinity reagents due to the ease with which they can 

be incorporated into molecules. The azide moiety is relatively small and thus generally does not 

significantly alter the activity of a molecule. When exposed to 250-280 nm light, aryl azides are 

excited to a singlet state. This can either expel nitrogen and generate a singlet nitrene or 

undergo intersystem crossing (ISC) to a triplet state which can eliminate nitrogen generating a 

triplet nitrene. While in theory, the singlet nitrene can undergo insertion reactions; its fate 

depends on the other substituents of the aryl ring. When hydrogens are ortho to the singlet 

nitrene, insertion reactions are typically not observed. Instead, the molecule either rapidly 

undergoes a rearrangement to the didehydroazepine or converts to the triplet nitrene through 

ISC. The didehydroazepine generated is potentially of use in photoaffinity labeling and can react 

with sufficiently nucleophilic amino acids such as cysteine and histidine. However, oxygen 

nucleophiles and protonated lysine typically do not react. Kohn and coworkers developed 

probes for target identification of the anti-epileptic drug lacosamide. One probe contained an 

arylazide photoaffinity label and the other used an isothiocyanate in the same position as the 

azide on the aryl ring. Despite the azide probe being significantly more active, the 

isothiocyanate probe allowed successful target identification. This result underscores the 

potential complications posed by the ring expansion.17 When both ortho substituents are 

fluorine, the rearrangement is suppressed and the singlet nitrene can undergo insertion 

reactions. Triplet nitrene can react with molecules through hydrogen abstraction and resulting 
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radical chemistry (Scheme 5.1) Aside from the potential inability of nonfluorine substituted aryl 

azides to undergo insertion reactions, another major drawback of their use is the short 

wavelengths needed to excite them have the potential to damage biomacromolecules.13,14,18 

 

Scheme 5.1. Photoaffinity labeling by aryl azides. (X = N,S; Y = C, N, O, S) 

 

Benzophenones 

Benzophenones can be excited to ketyl radicals with ~350 nm light. The excited 

intermediate can adduct proteins through hydrogen abstraction and resulting radical chemistry 
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(Scheme 5.2). While they are relatively large, they can be easily incorporated into certain 

bioactive molecules. One major disadvantage of benzophenones as photoaffinity labels is they 

require relatively long irradiation times. While 350 nm light typically does not damage 

biomacromolecules, the long irradiation times tend to lead to nonspecific labeling of proteins.13 

 

Scheme 5.2. Photoaffinity labeling by benzophenones. (X = C, N, O, S) 

 

Diazirines 

Diazirines are three membered heterocycles composed of one carbon atom bonded to 

two nitrogen atoms that are double bonded to each other. Upon irradiation with ~365 nm light, 

they either eject nitrogen to generate a reactive carbene or isomerize to the diazo compound 

(Scheme 5.3). Which pathway predominates and the nature of the carbene generated depends 

greatly on the substitution of the diazirine carbon. Aryl trifluoromethyl diazirines tend to 

suppress isomerization pathway and promote carbene formation. For this reason, they are 

predominantly used in photoaffinity labeling experiments, though aliphatic diazirines have also 

been successfully used.13,16 
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Scheme 5.3. Photoaffinity labeling by aryltrifluoromethyl diazrines. (X = C, N, O, S) 

 

5.4 Click Chemistry and Bioorthogonal Reactions 

The concept of click chemistry was introduced by Sharpless as a set of reactions with 

certain properties such as high yielding, modular, wide in scope, and easy to conduct.19 The 

reaction most synonymous with click chemistry is the copper(I) catalyzed Huisgen 1,3 

dipolarcycloaddition between an azide and an alkyne. Due to the stability of alkynes and azides 

in biological systems and the ability to conduct this reaction in aqueous solutions, this reaction 

has been described as bioorthogonal and has been extensively utilized and expanded on to 

study biology. In particular, azides and alkynes (and other clickable groups) have been utilized 

as handles for affinity purification and ligand directed target identification experiments.20 

Copper catalyzed azide alkyne cycloaddition (CuAAC) 

The canonical click reaction, while capable of occurring thermally, occurs best under 

Cu(I) catalysis. Cu(I) is not particularly stable in aqueous solutions and direct use of its salts 

without stabilizing ligands is generally not practiced. Instead, Cu(II) salts are used with a co-

reductant. Sodium ascorbate is predominantly used for this purpose though other reducing 
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agents including TCEP and hydrazine have been employed. Despite the use of co-reductants, 

Cu(I) produces reactive oxygen species in aqueous solutions. This presents certain challenges 

for bioconjugation reactions because of the potential for damage to biomacromolecules. 

Several ligands have been developed that stabilize the Cu(I) oxidation state and are essential in 

biological click reactions. Another complicating factor for click reactions using sodium ascorbate 

as co-reductant in biological systems is the dehydroascorbate produced from sodium ascorbate 

reduction of Cu(II) can adduct certain protein residues such as lysine and arginine.20 Finn and 

coworkers have extensively studied the click reaction for bioconjugations and have determined 

generally optimal conditions to suppress the negative aspects of CuAAC including the use of 

tris-triazole Cu(I) ligands and aminoguanidine as a dehydroascorbate scavenger.21 

Strain promoted azide alkyne cycloaddition (SPAAC) 

Since the majority of issues with CuAAC bioconjugation arise from the presence of Cu(I), 

researchers have devised methods for metal-free click reactions. The best developed of these is 

the strain promoted azide alkyne cycloaddition (SPAAC) developed by Bertozzi and co-workers. 

This method makes use of the reactive nature of alkynes incorporated in eight membered rings. 

These molecules are highly strained and cycloadditons with dipoles is favored since this will 

alleviate strain. Several cyclooctyne click reagents have been developed with varying 

substituents to improve the reactivitiy in the click reaction. Despite not needing metal catalysis, 

these reactions are 10 – 100 times slower than the Cu(I) catalyzed counterpart. In addition, 

certain biological nucleophiles such as thiols and sulfenic acids have been reported to react 

with cyclooctynes.20 
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Alternate click reactions 

Several methods mirroring the selective and bioorthogonal nature of the canonical 

azide-alkyne click have been developed with other functional groups. One such method utilizes 

Pd-mediated cross couplings for bioconjugations. Several Pd cross coupling reactions have been 

utilized to this end, including the Heck, Suzuki, and Sonogashira couplings.22,23,24 These 

reactions have enabled the use of aryl iodides, terminal alkenes, and boronic acids to be used 

as click handles. In addition, to Pd cross-coupling chemistry, cross metathesis has also been 

used for bioconjugation.20 
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Figure 5.4. Bioorthogonal click reactions 
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In addition to these metal-catalyzed reactions, metal-free click reactions (aside from 

cyclooctyne reactions) have also been developed with different functional groups as click 

handles. One class of these reactions utilizes tetrazines which react with a variety of strained 

alkenes and alkynes in reverse-electron demand-Diels-Alder reactions followed by retro-Diels-

Alder to eliminate nitrogen. These reactions occur with considerably high rate constants. In 

addition to undergoing [4+2] reactions, tetrazines also undergo [4+1] cycloadditons with 

isonitriles again followed by retro-Diels-Alder reaction to release nitrogen.20 

 

5.5 Quantitative proteomic methods for target identification experiments 

A crucial component of target identification by chemical methods is proteomic 

identification and quantification of probe and control samples. This is such an important 

component of chemical methods of target identification that the process is often referred to as 

chemical proteomics. Proteins are typically identified by shotgun proteomics and many 

methods for sample preparation, high resolution tandem mass spectrum acquisition, and data 

analysis have been developed.25 

A more challenging aspect is the quantification of proteins obtained in target 

identification experiments. Accurately discerning enrichment in a probe treated sample vs. 

control is of paramount importance in target identification. One of the major sources of error in 

the quantification of proteins in target identification experiments is in the post ligand directed 

or affinity purification sample handling. Since the samples must be kept separate, any 

manipulation introduces error and may skew the results and provide misleading data. Several 

methods have been developed to overcome this by combining the probe and control sample 
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into one so they are handled together, but introducing conditions that allow the ratios of 

proteins from each condition to be discerned. Stable isotope labeling by amino acids in cell 

culture (SILAC) involves incorporation of heavy amino acids into a protein sample by 

supplementing the media cells are grown in with stable isotope-labeled amino acids. This 

requires the organism be auxotrophic for the heavy labeled amino acids and require several 

rounds of cell division to fully incorporate the heavy amino acids into the proteome. A target 

identification experiment can then be conducted with the heavy proteome used for one 

condition and an unlabeled “light” proteome used for the second condition. The samples can 

then be combined, processed, subjected to shotgun proteomics, and quantified by observing 

the ratio of heavy to light peptides. While SILAC is a very powerful tool in quantitative 

proteomics, heavy amino acids can be quite expensive and the process is not applicable to all 

biological systems. Methods to exogenously label protein samples after target identification 

experiments have been developed. Isotopically coded affinity tags (ICAT) consist of a biotin 

moiety, a light or heavy labeled linker, and a thiol reactive group. Samples are treated with 

either the light or heavy labeled ICAT reagents which covalently link to proteins through 

cysteine residues, the samples processed, and protein ratios determined by observing the ratio 

of heavy to light tags. In a similar approach, isobaric tags for relative and absolute quantitation 

(ITRAQ) reagents consist of a reporter group (an isotopically labeled piperazine), a balance 

group (isotopically labeled carbonyl), and an NHS-ester. Proteins or peptides are treated with 

the ITRAQ reagent and labeled at the N-terminus by amide bond formation through the NHS 

ester. Quantification is possible using collision induced dissociation (CID) where the reporter tag 

will fly off. Up to four samples can be analyzed at once using ITRAQ reagents. In addition to 
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these labeling approaches, label-free techniques such as spectral counting are frequently used 

to quantify proteins in target identification experiments.4,26 

 

5.6 Examples of target identification experiments in bacteria 

The following are examples of chemical probes used for the target identification of small 

molecules active in bacteria. Several of the procedures for affinity pulldowns, photoaffinity 

labeling, and click chemistry have been applied to my work on target identification that will be 

described in chapters six and seven. 

Identification of the binding site of oxazolidinone antibiotics 

Oxazolidinones are a class of synthetic antibiotics represented by linezolid (5.1) and 

eperozilid (5.2) that inhibit bacterial growth by interfering with ribosomal protein synthesis. 

While the ribosome was well established as the target of oxazolidinones, the binding site within 

the ribosome was not. The ribosome is a large multicomponent complex composed of proteins 

and nucleic acids that work together to translate mRNA into proteins through several stages. 

Many early studies of the mechanism of action of oxazolidinone antibiotics relied on either in 

vivo genetic studies or biochemical studies of reconstituted components of the ribosome. These 

studies gave conflicting results. Colca and coworkers devised an oxazolidinone photoaffinity 

probe containing an aryl azide as the photoreactive group and a radiolabel as the reporter to 

identify which component of the ribosome this class of antibiotics binds to. Using SAR data, 

they designed photoaffinity probe 5.4 with an 125I radiolabel. This probe maintained an MIC < 

10 µM against S. aureus.27 
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Figure 5.5. Oxazolidinones and derived photoaffinity probes. Radiolabels in blue. 

 

The authors incubated S. aureus in exponential phase with 2 µM of 5.4 for 30 minutes 

either alone, with 40 µM 5.2 as a competitor, or 40 µM of the enantiomer of 5.2 (which is not 

active against S. aureus). The crosslinking was accomplished by irradiation with 254 nm light for 

2.1 minutes in a Stratalinker device. The cells were lysed and the RNA and protein fractions 

were isolated, run on gels, and visualized by autoradiography to identify sites of cross-linking. 

They observed crosslinking to the 23S rRNA subunit, a tRNA, and two proteins, L27 and LepA. 
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Labeling of all of these by the probe was competed off by cotreatment with 5.2 but not 

competed when its enantiomer was present. They concluded from these results that 

oxazolidinones act on the peptidyl transferase complex (PTC) of the ribosome.27 

In a follow up study, the authors introduced probes 5.5 and 5.6 with the azides and 

radiolabels placed in different parts of the molecule to better study the binding site of 

oxazoldinones in the PTC. Using the same crosslinking conditions as previously described, they 

used the three probes to map the binding site. From this information, they created a model 

whereby oxazolidinones occupy the A-site of the PTC which effectively blocks the binding of 

aminoacyl-tRNAs leading to inhibition of protein synthesis.28 

Affinity purification to identify the target of salicylidene acylhydrazides 

Salicylidene acylhydrazides such as 5.7 and 5.8 were identified as inhibitors of Gram 

negative bacterial type 3 secretion systems (T3SS) and exhibit in vitro and in vivo reduction of 

bacterial virulence. Despite activity related to T3SS inhibition, the mechanism of action of 

salicylidene acylhydrazide was not known. Elofson, Roe, and coworkers utilized affinity 

purification probe 5.9 to identify proteins that bind salicylidene acylhydrazides. 29 
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Figure 5.6. Salicylidene acylhydrazide inhibitors of bacterial T3SS and affinity purification 
probes. 

 

Affinity probe 5.9 was based on the structure of 5.8 with the nitro group replaced by a 

linker. The solid support used was an NHS ester activated agarose bead (Affi-Gel) and linked to 

the probe through amide bond formation with the terminal amine of the probe linker. Whole 

cell lysates of E. coli were prepared and incubated with 5.9 overnight at 4 °C. The beads were 

washed 10 times with PBS. The elution step was performed by incubation with 20 µM 5.7 

followed by another elution with 200 µM 5.7, and finally the beads were treated with 0.1% 

acetic acid to strip them of proteins. They performed SDS-PAGE on each fraction and identified 

16 bands enriched in the compound elution lanes, but less prominent in the acetic acid elution.  

Of the 16 candidate proteins, the authors were able to express seven and determined their 

ability to bind salicylidene acylhydrazides using biotinylated protein 5.10 for far western 
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experiments. Three proteins showed affinity for 5.10 in the far western experiments and 

homologs in several other Gram negative species also showed affinity for 5.10.29 

Work to validate these targets included creation of point mutants and knockout strains 

of several of the targets identified in the pulldown. The authors observed an increase in T3SS 

activity in several of the mutants as well as >2-fold changes in transcription of several other 

genes related to virulence. Treatment of the mutants with 5.7 and 5.8 decreased T3SS activity 

suggesting they had multiple targets. They conclude that the salicylidene acylhydrazides likely 

affect T3SS by interaction with several targets resulting in global downregulation of virulence.29 

A clickable photoaffinity probe used to identify the targets of a compound with anti-

tuberculosis activity 

Jacobs, Schultz, and coworkers identified benzothiazole 5.11 in a high throughput screen 

for compounds capable of disrupting M. tuberculosis biofilms. Further testing of 5.11 

demonstrated in vivo activity against M. tuberculosis in dormancy models. To establish a 

mechanism of action, they initially pursued a genetic approach to target identification by 

analyzing transcriptome changes induced by compound treatment, screening of a M. 

smegmatis cosmid library for mutants insensitive to 5.11, and generation of spontaneously 

resistant mutants followed by genome sequencing to identify genes that were mutated. This 

approach led to the hypothesis that 5.11 targets DprE1, a protein involved in cell wall arabinan 

synthesis.30 
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Figure 5.7. Benzothioazole active against dormant M. tuberculosis and probes based on its 
structure. 

 

However, several follow up experiments indicated the probability of secondary targets. 

In order to identify these targets, they prepared affinity probe 5.12 and photoaffinity probe 

5.13, containing an alkyl diazirine as the photoreactive group and alkyne click handle. A M. 

tuberculosis lysate was treated with 5.12 and 5.12 with 50 µM of 5.11 as a competitor. The 

beads were washed with loading buffer and eluted by boiling in Laemmli sample buffer. After 

the elution samples were run on SDS-PAGE and visualized by silver staining, the authors note a 

band that appears in the 5.12 only lane, but absent in the 5.12 plus competitor lane. They 

excised this band and identified the protein as MoeW, a protein involved in molybdenum 

cofactor biosynthesis.30 
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To further validate the interaction of 5.11 with MoeW, the authors created a strain of E. 

coli (which does not express endogenouse MoeW or any homolog) expressing MoeW from M. 

tuberculosis and conducted an in vivo crosslinking experiment with photoaffinity probe 5.13. 

Using an azido-rhodamine reporter that was clicked on via the alkyne handle, the authors 

demonstrated that 5.13 labels MoeW. The authors conclude that the activity of 5.11 is based 

on interactions with both DprE1 and MoeW.30 

Vancomycin photoaffinity probes identify alternate targets 

Vancomycin has been well established as an inhibitor of cell wall biosynthesis through 

binding to the D-Ala-D-Ala of nascent peptidoglycan and blocking crosslinking. Despite this well-

defined mechanism, off target effects that contribute to the antibacterial activity have been 

proposed. Affinity purification of lysates using immobilized vancomycin identified several 

proteins capable of binding it. Since interactions in lysates may not reflect actual in vivo 

interactions, Sieber and co-workers developed a series of vancomycin probes using 

benzophenones as the photoreactive moiety and propargyl groups as click handles. These 

probes were prepared by utilizing the C-terminal carboxylate and primary amine of the 

vancosamine moiety of vancomycin. Addition of these functional groups did not significantly 

affect activity and the probes were active against several strains of S. aureus and E. faecalis.31 
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Figure 5.8. Clickable photoaffinity probes of vancomycin. 
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With these probes in hand, the authors conducted in vivo target identification 

experiments. They treated stationary phase bacteria with either 10 µM probe or 10 µM with 

vancomycin competitor and irradiated at 366 nm for two hours. The cells were harvested and 

lysed, and reporters were introduced via click chemistry. Using this method, the authors 

identified staphylococcal autolysin as a secondary target of vancomycin. They hypothesized this 

contributes to disruption of the cell wall. In E. faecalis, an ABC transporter was found to interact 

specifically with the probes. The authors concluded that this contributes to the antibacterial 

activity by blocking the uptake of essential nutrients.31 

5.7 Conclusion 

It is clear from a survey of the literature that successful target identification by chemical 

methods requires a robust approach. Multiple probes, whether for affinity purification or ligand 

directed approaches, should be prepared to increase the chances of successful target 

engagement and purification. Much chemistry has been developed to enable the production of 

probes and should be relatively easy to tailor to the scaffold under study. This process must 

also be followed by rigorous validation using complementary genetic and biochemical 

approaches. 
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CHAPTER 6 

 TARGET IDENTIFICATION OF ‘8882 
 

6.1 Introduction 

 As discussed in chapter 3, two activities of ‘8882 were observed; activation of heme 

biosynthesis leading to intracellular accumulation of endogenous heme with concomitant 

activation of HssRS; and toxicity to anaerobically growing S. aureus.1 At the outset of this 

project, I had not completed the work presented in chapter 3 and we hypothesized that ‘8882 

had one target responsible for both activities. Therefore, the focus of early target identification 

experiments was on finding one target. Later experiments would focus primarily on identifying 

the target responsible for activation of heme biosynthesis, with toxicity pursued to a lesser 

extent. 

A complementary genetic approach identified HemY, a rate limiting enzyme in the later 

stages of heme biosynthesis2, as the target of ‘8882 responsible for activation of HssRS. With 

this knowledge, we can retrospectively examine the success and utility of the probes developed 

for ‘8882 target identification.  

The photoaffinity experiments described towards the end of this chapter were part of 

an ongoing effort to use PALs for target identification and the general process will continue to 

be discussed in chapter 7. The various aspects of the experiment such as irradiation conditions, 

click conditions, sample preparation, etc. were continually optimized throughout the process.  
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6.2 Affinity purification approach to ‘8882 target identification 

Synthesis of biotinylated ‘8882 probe 

 We initially pursued an affinity purification approach for ‘8882 target identification and 

envisioned developing a probe based on the structure of ‘8882 with a biotinylated linker 

incorporated. This could be immobilized on streptavidin beads and used to isolate putative 

targets from a S. aureus lysate.  Preliminary SAR data indicated that removal of the B-ring of the 

naphthol moiety of ‘8882 resulted in a modest drop in activity. We determined that removal of 

the B-ring and placement of a carboxylic acid para to the pyrazole moiety would permit 

attachment of a linker.  
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Scheme 6.1. Synthesis of affinity probe 6.7. 

 

 Synthesis of the ‘8882 component of the probe (Scheme 6.1) began with Pd-mediated 

cross coupling of commercially available 6.1 with trimethylsilylacetylene followed by TMS 

removal by stirring with potassium carbonate in methanol to provide 6.2. In one pot, 6.2 was 

converted to 6.3 by Pd-mediated cross coupling with 2-furoyl chloride to provide the alkynone 

which was then condensed with hydrazine to provide the pyrazole. 6.3 was reacted with boron 

tribromide in dichloromethane in a microwave reactor to cleave the methyl ether. These 
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conditions resulted in some hydrolysis of the methyl ester to provide a mixture of the methyl 

ester and 6.4. The methyl ester was isolated during workup and saponified by treatment with 

lithium hydroxide in THF to convert the remainder of the material to 6.4. The two fractions of 

6.4 were combined and purified.  

 As previously described in chapter 5, the choice of an appropriate linker is critical for 

affinity purification. We chose to use a PEG-7 linker since the use of hydrophilic linkers (as 

opposed to long alkyl chains) deters nonspecific binding. In addition, long linker length is 

correlated with better target identification outcomes.3 A mono-boc protected diamino-PEG-7 

linker was purchased and the free amine coupled to 6.4 using PyClU to provide 6.5. 6.5 was 

treated with trifluoroacetic acid in DCM to remove the boc group and provide 6.6 (as the TFA 

salt). This was stirred with biotin-NHS ester4 and triethylamine in DMF. Once 6.6 had been 

consumed as determined by TLC, the product was purified by HPLC to provide biotinylated 

probe 6.7.  

Evaluation of HssRS activity of 6.7 

 The ability of 6.7, 6.6, and 6.4 to activate HssRS was evaluated using the XylE assay and 

compared to ‘8882 and 3.2 (Figure 6.1). Placement of a carboxylic acid para to the pryazole 

(6.4) resulted in considerable loss of activity compared to ‘8882 and 3.2, although it did exhibit 

some activity compared to vehicle. However, the presence of the free amine linker and 

biotinylated linker resulted in complete loss of activity. 
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Figure 6.1. Activity of 6.7 and precursors. 

 

 There are several possibilities as to why 6.7 did not activate HssRS in the XylE assay. The 

presence of the linker could prevent binding to the target. In this case, 6.7 would not be useful 

for target identification. Another possibility is that it may be able to bind its target, but the large 

biotinylated linker renders the molecule unable to pass through the cell wall and/or membrane, 

preventing it from interacting with its target. In this case, the probe may still be able to bind the 

target in a lysate. We decided to proceed with target identification experiments using 6.7 

hoping the latter was the case.  
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Affinity purification with 6.7  

 

Figure 6.2. ‘8882 activation of HssRS at various time points. 

 

  With 6.7 in hand, we began conducting affinity purification experiments. Based on 

monitoring XylE activity at various time points (Figure 6.2), we hypothesized that the target was 

expressed in log phase so lysates were prepared after growing S. aureus for five hours after 

subculturing overnight cultures into fresh media. The lysates were split and incubated with 

either 6.7 or DMSO as a control. Streptavidin beads were then added to bind the probe and a 

series of washes with PBS were conducted followed by elution by boiling in 1X SDS-PAGE 

loading buffer for ten minutes. The samples were run on a gel and visualized with colloidal blue 

staining. A band ~26 kDa appeared to be enriched in the probe compared to control (Figure 

6.3).  
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Figure 6.3. Elution lanes of affinity purification experiment with 6.7. 

 

 We excised the band along with the adjacent section of the control lane and submitted 

these samples to the Vanderbilt Proteomics Core for identification and quantification using 

spectral counts. Between the two samples, 120 proteins were identified. Two proteins stood 

out because of their abundance in the sample and their enrichment in the probe vs. control 

lane. SufC, a protein involved in Fe-S cluster assembly5 was the most abundant based on 

spectral counting and was enriched ~1.5x in the probe vs. control sample. The other protein, 

NWMN_0632, was unannotated and enriched ~3x in the probe vs. control sample. Follow up 

experiments confirmed that these proteins were pulled down by 6.7, and in a more extensive 

proteomic analysis of the entre elution sample, several other components of the Suf system 

were identified.  

 Efforts towards validating these targets were primarily undertaken by Laura Mike. 

Validation efforts included attempts to knockout SufC and NWMN_0632, make overexpression 

strains, and express and purify each protein to biochemically characterize interactions with 
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‘8882. None of these efforts were ultimately conclusive in establishing either of these 

candidates as definitive targets. 

 I attempted to optimize the affinity purification experiment by developing better 

controls based on the available SAR data, the use of alternate solid supports, and employing 

milder elution methods. However, none of these strategies gave better results than the initial 

experiment. Given the uncertainty regarding the activity of 6.7 the affinity purification strategy 

was ultimately abandoned in favor of a ligand directed approach using clickable photoaffinity 

probes.  

I reasoned that the photoreactive groups and click handles could be incorporated into 

the structure of ‘8882 more innocuously than the biotinylated linker giving better chances that 

activity could be preserved. In addition, experiments could be conducted in vivo providing a 

more realistic system than proteins in a lysate.  

 

6.3 Development of clickable photoaffinity probes 

 To develop an active photoaffinity probe that could be utilized for in vivo target 

identification experiments, we again relied on SAR data to determine placement of 

photoreactive groups and click handles. Removal of the B-ring and placement of smaller groups 

in the eastern ring, such as a methyl ether, para to the pyrazole ring was possible without 

significant loss of activity. However, larger group such as the biotinylated PEG linker were not 

tolerated suggesting that placement of smaller groups would be ideal. The furan (Western) 

could be replaced with various aromatic groups and still retain activity. Since a free phenol and 

pyrazole were required for activity, those should be unaltered in any probe.  
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 Given these constraints, we set out to synthesize a small library of putative ‘8882 

photoaffinity probes. We decided to place the click handle in the eastern ring para to the 

pyrazole. Two clickable functional groups were used to increase the diversity of the library; a 

propargyl either for CuAAC and iodine for Pd-mediated click reactions (we initially envisioned 

using the Sonogashira reaction for this).  

Given the size and shape of benzophenones, using these in the initial probe design seemed 

undesirable since they would not be easy to incorporate around the parent scaffold and 

maintain activity based on SAR data. In contrast, the aryl azide and aryl trifluoromethyldiazirine 

were relatively small and could be easily incorporated in the Western aryl ring. We opted to 

place these in the 3- and 4-positions to increase diversity and the likelihood that an active 

probe would be identified.  

Synthesis of components for first generation probe library 

 We envisioned using the same intramolecular Claisien condensation-hydrazine 

cyclocondensation reaction sequence outlined in Chapter 3. Components for the probe 

synthesis were generally prepared following literature procedures with some minor 

modifications. Propargyl ether 6.8 was prepared by mono-alkylation at the 4-position of 2,4-

dihydroxyacetophenone with propargyl bromide and potassium carbonate in acetone. 

Iodoacetophenone 6.12 was prepared from 3-iodophenol by acetylation with acetic anhydride 

and Fries rearrangement of the acetate by heating a mixture of acetate 6.11 and aluminum(III) 

chloride at 140 °C.  

 3- and 4-azidobenzoic acids (6.15 and 6.16) were prepared from 3-and 4-aminobenzoic 

acid by diazotization and treatment with sodium azide (4-azidobenzoic acid is also commercially 



161 
 

available).6 While diazirines 6.29 and 6.30 are commercially available, they are prohibitively 

expensive and were prepared de novo from inexpensive starting materials. Diazirines are 

prepared from the corresponding ketone through a sequence of activated oxime formation 

followed by reaction with ammonia to produce the diaziridine and subsequent oxidation to the 

diazirine. Typical oxidation conditions/reagents include iodine-triethylamine, tert-butyl 

hypochlorite-triethylamine, manganese dioxide, and silver(I) oxide.7 Diazirines 6.29 and 6.30 

were prepared from 3- and 4-bromotrifluoromethylacetophenone, respectively.8 Oxime 

formation was accomplished by reaction with hydroxylamine hydrochloride and sodium acetate 

in ethanol at 150 °C in a microwave reactor. The oximes were tosylated by treatment with tosyl 

chloride and N,N-diisopropylethyamine in dichloromethane. The diaziridines were formed by 

dissolving the tosyloximines in liquid ammonia at -78  C in a sealed tube and allowing the 

mixture to warm to room temperature. In order to install the carboxylic acid, the diaziridines 

were protected as the di-trimethylsilyl amide by treatment with trimethylsilyl 

trifluoromethanesulfonate and triethylamine at -78 °C. The protected diaziridines were treated 

with n-butyl lithium to effect lithium halogen exchange and the lithiates quenched by passing a 

stream of carbon dioxide through the reaction. Acidic workup resulted in N-deprotection to 

provide the diaziridine benzoic acids. The diazirines were formed by oxidation of the 

diaziridines with iodine-triethylamine.  
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Figure 6.4. Synthesis of components for first generation probe synthesis. 
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Synthesis of first generation probe library 

 With the necessary components in hand, we began synthesis of the ‘8882 photoaffinity 

probe library (Scheme 6.2) by formation of the ester substrates from intramolecular Claisen 

condensation. Initial efforts to directly couple the acids to the hydroxyacetophenones using 

PyClU gave undesirable results as the reactions were not high yielding and required 

purification. To circumvent this, the acids were converted to the acid chlorides by treatment 

with thionyl chloride and pyridine. This reaction was quite convenient since the workup only 

involved filtering through a short plug of silica gel and gave products in excellent yield and 

purity. The acid chlorides were reacted with the corresponding hydroxyacetophenones to 

provide the esters in excellent yields with no need for further purification after workup.  

 Initial efforts to form the pyrazole from intramolecular Claisen condensation and 

subsequent reaction of the crude product with hydrazine were complicated and mostly 

unsuccessful. The chapter 3 procedure using potassium tert-butoxide in DMF was employed 

and resulted in a complex mixture of products. Since the β-diketone was typically carried 

through to the next reaction crude during the library synthesis in Chapter 3, the same 

procedure was employed here. The reaction with hydrazine was conducted at room 

temperature since azides and diazirines are known to be unstable at elevated temperatures. 

These reactions were monitored by LCMS for peaks corresponding to the mass of the product. 

While several reactions showed expected product masses, isolation of these peaks and 

subsequent characterization by NMR revealed they were not the correct structures. 

 Considerable optimization for this reaction sequence was carried out. Potassium 

bis(trimethylsilyl)amide replaced potassium tert-butoxide as the base for Claisen condensation 
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as this generally gave much cleaner reactions. Careful control of the amount of hydrazine used 

for the cyclocondensation step was also critical. Initially, a large excess of hydrazine was used to 

compensate for running the reaction in at lower temperatures. We speculated that the excess 

hydrazine was likely reducing the azides and diazirines leading to complicated product 

mixtures. Use of one equivalent proved to be sufficient for cyclization while minimizing 

unwanted side reactions. Ultimately, the eight iterations of probes using these six starting 

components were prepared. 

Evaluation of the activity of probe 6.31 – 6.38 

 Probes 6.31 – 6.38 were screened for their ability to activate HssRS using the XylE assay. 

The compounds were tested at 50 µM and compared to ‘8882. As in Chapter 3, anything less 

than 5 % of the activity of ‘8882 was deemed inactive. We also conducted a secondary screen 

for toxicity towards anaerobically grown S. aureus by calculating IC50s to determine their 

suitability as probes for identifying the target responsible for toxicity. The results are present in 

Table 6.1.  

 All probes with propargyl ethers were inactive with the most active compound 

exhibiting only ~1 % the activity of ‘8882. The two aryl iodide and diazirine containing probes 

6.36 and 6.38 were toxic under the assay conditions so their activity could not be gauged. 6.35 

with azide in the 3-position was inactive under our criteria showing 3.3 % the activity of ‘8882. 

However, 6.37 with azide in the 4-position exhibited ~20 % the activity of ‘8882. This result was 

encouraging and the results together provided insights into probe design. First, the inactivity of 

the propargyl ethers compared to the iodides suggests the ethers might be too large. Second, 

incorporation of halogens into the molecule promotes toxicity.  
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Scheme 6.2. General synthesis of first generation photoaffinity probes. 

 

Cmpd R1 R2 R3 
Relative HssRS 

Activity 
Anaerobic IC50 

(μM) 

6.31 

 

 

 

0.00934 >60 

6.32 

 

 

 

0.00417 19.4 

6.33 

 

 

 

0.0112 >60 

6.34 

 

 

 

0.017 27.2 

6.35 

 

 

 

0.0328 16.9 

6.36 

 

 

 

Toxic 8.7 

6.37 

 

 

 

0.213 11.1 

6.38 

 

 

 

Toxic 8.8 

 

Table 6.1. Activity of first generation photoaffinity probes. HssRS activation is presented as the 
fraction> of XylE activity at 50 µM compared to ‘8882. Anaerobic IC50 was calculated for 9 h of 

growth at 37 °C. >60 µM is considered nontoxic. 
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Synthesis and evaluation of second generation ‘8882 photoaffinity probes 

 While 6.37 is an active probe and could be used directly in target identification 

experiments, it does have some potential drawbacks. The iodide click handle and the Pd-

mediated chemistry associated with it has not been validated as extensively as the CuAAC in 

biological systems. In addition, it seems the presence of the iodide contributes to toxicity which 

may convolute target identification efforts by interacting with off-target proteins. Since the 

primary goal was to identify the target of ‘8882 responsible for activation of heme biosynthesis, 

this should be avoided if possible.  

 We speculated that replacement of iodine with an ethynyl group would eliminate the 

toxicity and provide an alkyne click handle while not negatively affecting activity since it is 

approximately the same size as iodine. We prepared the hydroxybenzophenone precursor for 

this from 6.12 by Sonogashira coupling with trimethylsilylacetylene. This was carried through 

the established route with 4-azidobenzoic acid and the TMS group removed after pyrazole 

formation by treatment with potassium carbonate in methanol to provide 6.43. We also 

reasoned that replacement of the azide of 6.43 with a trifluoromethyl diazirine would be active 

and less toxic than 6.38 since iodine was replaced. This compound was synthesized using an 

analogous route to provide 6.44. Finally, due to the propensity for aryl azide photoaffinity 

probes to rearrange to less reactive didehydroazepines after irradiation, we envisioned 

synthesizing a derivative of 6.43 where the eastern ring is fluorinated since this will suppress 

the rearrangement. The compound (6.45) was prepared from 6.39 and 4-azido-2,3,5,6-

tetrafluorobenzoic acid (6.42). 6.42 was prepared from methyl pentafluorobenzoate by 

refluxing with sodium azide and subsequent ester saponification.9  



167 
 

 

Figure 6.5. Synthesis of components for second generation probes. 

 

 

 

Scheme 6.3. Synthesis of second generation probes 6.43, 6.44, and 6.45. 

 

 These probes were evaluated for HssRS activation using the XylE assay. 6.43 exhibited 

44 % of the activity of ‘8882 and was nontoxic under anaerobic conditions. 6.44 was less active 

than 6.43, but still showed considerable activity compared to vehicle. 6.45 was fairly toxic 

under the assay conditions and could only be tested at low concentrations. At 10 µM, 6.45 only 

exhibited ~2 % of the activity of ‘8882 suggesting that fluorination is deleterious to activity. 
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Given that di-fluoro substitution did not promote toxicity in previous ‘8882 derivatives (3.19) 

and fluorination of the positions ortho to the azide is sufficient to suppress ring expansion10, we 

could potentially prepare a probe with only ortho fluorine substituents that may not be as toxic 

as 6.45 and could be tested at higher concentrations. However, we could not devise a practical 

route from commercially available starting materials to the necessary precursor benzoic acid 

and did not pursue this.  

 

Cmpd Structure 

Fraction 
HssRS 

Activation 

6.43 

 

0.44 (40 μM) 

6.44 

 

0.0804 (50 
μM) 

6.45 

 

0.0139 (10 
μM) 

 

Table 6.2. HssRS activation of second generation probes. Activity is presented as fraction of 
‘8882 activity (concentration tested in parentheses). 

 
 

Alternate ‘8882 photoaffinity probes  

 At the outset of probe development, it seemed advantageous to have an additional 

probe (or set of probes) with the photoreactive group in the opposite rings as the previous set 

of probes (Western ring). It is possible that the molecule binds its target in such a way that the 

eastern ring is solvent exposed. In this case, the reactive intermediate generated by irradiation 

would not react with the protein, and instead either be quenched by water (in the case of a 

carbene or triplet nitrene) or not react before diffusing away from the target (in the case of a 
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didehydroazepine). Incorporating the photoreactive group in different locations would increase 

coverage and the likelihood of successful target identification. 

 Since iodine and the ethynyl group in the 4-position of the Western ring were well 

tolerated in the previous series of probes, it was likely that a trifluoromethyl diazirine in this 

position would also work since they are similar in size. Diazirine containing 

hydroxyacetophenone 6.50 was prepared in seven steps from 3-bromoanisole (6.46). The 

bromide was converted to a trifluoromethyl ketone by lithium halogen exchange and 

quenching with trilfluormethylacetyl-piperidine. 6.47 was carried through the usual route for 

converting a ketone to diazirine.11 The acetyl group was installed by Firiedel-Crafts acylation 

with acetyl chloride and aluminum(III) chloride.12 Methyl ether deprotection was accomplished 

by treatment of 6.49 with boron tribromide in DCM. In this step, it was essential that fresh 

boron tribromide be used as older reagent did not induce demethylation. 

 

 

Scheme 6.4. Synthesis of photoaffinity probe component 6.50. 
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 Despite accessing 6.50, only one probe was synthesized starting from this material. That 

probe used 5-bromofuran as the Eastern aryl group and was quite toxic in the XylE assay and 

did not activate HssRS at low concentrations. Efforts to replace the bromine with an ethynyl 

group were under way, but ultimately abandoned in favor of utilizing 6.43 and 6.44 as probes. 

This route was not revisited because of the identification of HemY as a target by genetic 

methods. 

 

6.4 Photoaffinity experiments conducted with probe 6.43 

 The first probe utilized for photoaffinity experiments was 6.43, mainly because it was 

the first of the second generation probes to be prepared. The experimental strategy was based 

partially on work with azide photoaffinity probes of oxazolidinones described in chapter 5.13,14 

In this experiment, the authors grew the bacteria to a specific OD before adding the probe 

primarily because of the growth inhibition induced by the molecule. Since 6.43 does not affect 

growth, it could be added to growth media before subculturing bacteria. For photolabeling, the 

authors used a Stratalinker device, which is normally used for cross linking RNA to membranes 

for Northern blotting. The light source provides 254 nm light and a specific amount of energy 

can be delivered. In the oxazolidinone work, 180 mJ was sufficient for photolabeling so this 

amount was used for these experiments.  

 I initially favored use of a fluorescent reporter since a gel could be run and immediately 

visualized without any transferring or staining steps. Rhodamine reporter 6.51 was prepared as 

described.15 Throughout the use of this probe, I was not entirely familiar with in-gel 

fluorescence and the use of gel scanners for visualization. Instead, I used the AlphaImager UV-
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lamp. While fluorescence is visible, this is not near the max excitation wavelength and many of 

the gel images are of poor quality. Despite this, the outcome of each experiment is still mostly 

discernible. An analogous biotin reporter was also prepared (6.52) to complement the 

fluorescent reporter.  

 

Figure 6.6. Clickable reporters used for ‘8882 target identification. 

 

Initial photolabeling experiment 

 The first experiment with 6.43 was conducted simply to see if photolabeling followed by 

click chemistry attachment of rhodamine reporter 6.51 occurred and to determine a good 

concentration of 6.43 to use in subsequent experiments. Media was prepared with either 10, 

20, or 40 µM 6.43. Controls consisted of ‘8882 at the same concentrations. Bacteria were 

subcultured into each condition and grown for ~6 hours at 37 °C. The bacteria were then 

transferred to a 12 well plate and irradiated in the Stratalinker with 180 mJ of 254 nm light. The 
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bacteria were collected and lysed. The click conditions used were adapted from Schultz and 

coworkers.16 After the click reaction, the lysates were subjected to TCA precipitation to pellet 

the proteins. The pellets were washed with acetone and resuspended in 1X loading buffer. 

Resuspension was difficult and required several rounds of heating and sonication. This led to 

the future use of acetone precipitations instead of TCA. The samples were run on gel and 

visualized with the AlphaImager UV light. Several bands were visible in the probe lanes but not 

the ‘8882 treated lanes indicating that the rhodamine reporter was specifically binding those 

proteins through the alkyne moiety of the probe and that the probe is adducting proteins. In 

addition, there does not appear to be a significant difference in the labeling between the three 

concentrations suggesting that future experiments could be successfully conducted with 10 µM 

6.43. Coomassie staining indicated even protein loading in all lanes.  

 

Figure 6.7. Preliminary 6.43 photolabeling experiment. 
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Competition experiment 

 The goal of the competition experiment was to add increasing concentrations of ‘8882 

to 6.43 treated bacteria and observe any disappearance of bands in the final gel as a result of 

‘8882 competing for specific binding to its target and preventing photolabeling by 6.43.  Despite 

the previous hypothesis that ‘8882 was acting during log phase, photolabeling experiments 

were also conducted in lag phase. To obtain enough bacteria for analysis, the lag phase cultures 

were incubated in a large volume of media containing compound. At 1.5 h, the bacteria were 

pelleted, media decanted and the bacteria were resuspended in the residual media. All samples 

were treated with 10 µM of 6.43. The lysis, click, and sample preparation steps were the same 

as previously described except and acetone precipitation was used instead of TCA. 

 

Figure 6.8. Competition experiment with 6.43. All samples were treated with 10 µM 6.43 and 
varying concentrations of ‘8882. Lag phase bacteria were irradiated at 1.5 h after subculture. 

Log phase bacteria were irradiated at 5 h after subculture. 
 
 
 The results of this competition experiment do not clearly indicate any specific 

interactions were competed off with added ‘8882 in either growth phase. The lag phase 6.43 + 



174 
 

‘8882 lane shows a global lack of photolabeling. The pellet from this condition was grey 

whereas the pellets from all other conditions are the typical golden color of S. aureus. One 

possible explanation for this is the overproduction of some metabolite as a result of ‘8882 

treatment. This metabolite may absorb the 254 nm light preventing photoactivation of the 

azide. Subsequent experiments yielded similar results.  

Photoaffinity experiments in lysates with 6.43 

 Given the lack of success with in vivo photoaffinity experiments, photolabeling in lysates 

was attempted. Since the probe was active in vivo, it should bind its target in a lysate assuming 

the protein is stable after lysis and during the subsequent photolabeling. Lysates of S. aureus 

covering various points in the growth curve were prepared. These were normalized by BCA 

assay and incubated with 80 µM of 6.43 alone or with 40 µM of ‘8882. The samples were 

irradiated in the Stratalinker and the rhodamine azide was clicked on. Proteins were then 

precipitated with acetone, resuspended in loading buffer and ran on a gel. As with in vivo 

experiments, no clear competition of specific interactions were observed. Given these results, 

we decided to switch to using probe 6.44 for experiments.  
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Figure 6.9. Photoaffinity experiments in lysates with 6.43. 

 

6.5 Photoaffinity experiments with probe 6.44 

 We hypothesized that the lack of results using 6.43 was primarily due to the undesirable 

ring expansion typical of the aryl azide after photolysis. The resulting didehydroazepine is likely 

not in an environment where it can be captured by nucleophilic residues. Since the aryl azide 

can also proceed to a triplet nitrene state and adduct proteins through radical chemistry, it is 

possible that the aryl azide is solvent exposed and quenched to the aniline. In either case, the 

environment is not ideal for protein adduction. Given this result, we further hypothesized that 

use of the 6.44 may overcome some of these disadvantages, particularly the former, since the 

carbene generated through photolysis is much more reactive than the didehydroazepine.  
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 While preliminary experiments were conducted, 6.44 was not as extensively utilized for 

experiments as 6.43 due to the parallel discovery through genetic methods of HemY as the 

target of ‘8882 responsible for activation of heme biosynthesis.  

6.6 Conclusion 

 Use of chemical probes for ‘8882 target identification gave mixed results. The affinity 

probe was able to identify proteins of the Suf complex, and thus Fe-S cluster assembly, as a 

possible target of ‘8882, particularly with regards to toxicity. Subsequent work to validate Suf as 

a target has demonstrated that ‘8882 inhibits in vitro Fe-S cluster assembly and down-regulates 

in vivo activity of certain Fe-S cluster containing proteins (unpublished data). Despite this 

compelling story, the genetically validated target HemY did not appear in the affinity 

purification results. There are several possible explanations for this. In particular, it is possible 

that the presence of the linker interferes with binding to HemY resulting in a weak interaction 

that is easily disrupted during the wash steps. This could be confirmed by evaluating the activity 

of 6.7 in the HemY assay. Loss of activity would likely indicate poor binding. Placement of the 

linker elsewhere on the ‘8882 scaffold might lead to better results.  

 Many factors may have contributed to the lack of success with photoaffinity probes. 

First, the most active probe was aryl azide 6.43. Due to the photoinduced rearrangement to less 

reactive didehydroazepines, aryl azides may not be ideal labeling groups despite preserving 

activity.17 For both probes tested, the photoreactive group was in the same position of the 

molecule. If this part of the molecule is solvent exposed when bound to its target, the reactive 

intermediate would be quenched by water and not adduct the protein. To minimize the 
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possibility of this affecting a successful outcome, it would have been prudent to develop and 

utilize another probe with the photolabel in the western ring.  

Experimental Section 

General Procedures:  All non-aqueous reactions were performed in flame-dried flasks under an 

atmosphere of argon. Stainless steel syringes were used to transfer air- and moisture-sensitive 

liquids. Reaction temperatures were controlled using a thermocouple thermometer and analog 

hotplate stirrer. Reactions were conducted at room temperature (rt, approximately 23 °C) 

unless otherwise noted. Flash column chromatography was conducted using silica gel 230-400 

mesh. Analytical thin-layer chromatography (TLC) was performed on E. Merck silica gel 60 F254 

plates and visualized using UV and iodine stain.  

Materials: All solvents and chemicals were purchased from Sigma-Aldrich unless otherwise 

noted. Dry dichloromethane was collected from an MBraun MB-SPS solvent system. N,N-

dimethylformamide (DMF), tetrahydrofuran (THF), and acetonitrile (MeCN) were used as 

received in a bottle with a Sure/Seal. Triethylamine was distilled from calcium hydride and 

stored over KOH. Deuterated solvents were purchased from Cambridge Isotope Laboratories. 

Methyl-4-bromo-3-methoxybenzoate was purchased from Combi-Blocks. 

Trimethylsilylacetylene and 1-(Chloro-1-pyrrolidinylmethylene)pyrrolidinium 

hexafluorophosphate were purchased from Oakwood Chemicals.  

Instrumentation: 1H NMR spectra were recorded on Bruker 400 or 600 MHz spectrometers and 

are reported relative to deuterated solvent signals. Data for 1H NMR spectra are reported as 

follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, p = 

pentet, m = multiplet, br = broad, app = apparent), coupling constants (Hz), and integration. 
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13C NMR spectra were recorded on Bruker 100 or 150 MHz spectrometers and are reported 

relative to deuterated solvent signals. Low resolution mass spectrometry (LRMS) was 

conducted and recorded on an Agilent Technologies 6130 Quadrupole instrument. 

Methyl 4-ethynyl-3-methoxybenzoate (6.2). To a stirred solution of 

2.08 g (8.49 mmol, 1.0 eq) methyl-4-bromo-3-methoxybenzoate in 25 

mL of triethylamine was added 455 mg (0.394 mmol, 0.046 eq) 

palladium tetrakistriphenylphosphine, 160 mg (0.842 mmol, 0.099 eq) copper(I) iodide, and 

2.50 mL (17.6 mmol, 2.1 eq) trimethylsilylacetylene. The reaction was refluxed for 2 h when it 

was judged complete by LC-MS. The reaction was diluted with ethyl acetate (50 mL), filtered 

through celite, washed with saturated ammonium chloride (3x) and brine (2x), dried (MgSO4), 

and concentrated. The crude residue was dissolved in 25 mL of methanol and 1.80 g of 

potassium carbonate was added. The reaction was stirred for 15 min when judged complete by 

LC-MS. The reaction was concentrated and partitioned between 50 mL of ethyl acetate and 20 

mL of brine. The organic layer was filtered through silica gel, concentrated, and the residue 

purified by flash chromatography to provide 1.24 g (77 %) of S1 as a brown solid over 2 steps. 

1H-NMR (400 MHz, CDCl3) δ 7.56 (dd, J=7.88 Hz, J=1.44 Hz, 1H), 7.51 (d, J=1.28 Hz, 1H), 7.47 (d, 

J=7.88 Hz, 1H), 3.92 (s, 3H), 3.89 (s, 3H), 3.43 (s, 1H); 13C-NMR (100 MHz) δ 166.4, 160.5, 134.0, 

131.6, 121.7, 116.0, 111.3, 83.9, 79.4, 56.1, 52.4; LRMS calculated for C11H10O3 [M+H]+ m/z: 

191.1, measured 191.1.  

\Methyl 4-(5-(furan-2-yl)-1H-pyrazol-3-yl)-3-methoxybenzoate 

(6.3). To a stirred solution of 2.97 g (15.6 mmol, 1.0 eq) 6.2 in 50 
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mL of THF was added 2.18 mL (15.6 mmol, 1.0 eq) of triethylamine, 118 mg (0.167 mmol, 0.011 

eq) of bis(triphenylphosine)palladium chloride, 111 mg (0.584 mmol, 0.037 eq) of copper(I) 

iodide, and 2.30 mL (23.3 mmol, 1.5 eq) 2-furoyl chloride. The reaction was stirred at room 

temperature for 1 h until it was judged complete by TLC. The reaction was diluted with 25 mL of 

acetonitrile, 1.50 mL (23.4 mmol, 1.5 eq) of hydrazine hydrate was added, and the mixture was 

heated to 60 °C for 2 h until judged complete by TLC. The reaction was filtered through celite, 

concentrated, and purified by flash chromatography to give 3.98 g (86 %) of S2 as a yellow solid. 

1H-NMR (600 MHz, CDCl3) δ 7.76 (d, J=8.10 Hz, 1H), 7.71 (dd, J=8.04 Hz, J=1.44 Hz, 1H), 7.67 (d, 

J=1.26 Hz, 1H), 7.46 (d, J=1.14 Hz, 1H), 6.93 (s, 1H), 6.72 (d, J=3.28 Hz, 1H), J=3.30 Hz, J=1.74 Hz, 

1H), 4.0δ2 (s, 3H), 3.94 (s, 3H); 13C-NMR (150 MHz) δ 166.5, 155.8, 148.7, 142.0, 141.2, 130.8, 

127.8, 122.9, 121.9, 112.7, 111.5, 106.0, 101.0, 56.2, 52.3; LRMS calculated for C16H14N2O4 

[M+H]+ m/z: 299.1, measured 299.1. 

4-(5-(furan-2-yl)-1H-pyrazol-3-yl)-3-hydroxybenzoic acid (6.4). To 

a stirred solution of 258 mg (0.864 mmol, 1.0 eq) of 6.3 dissolved 

in 1 mL dichloromethane in a microwave vial was added 3.45 mL 

(3.45 mmol, 4.0 eq) of a 1 M solution of boron tribromide in dichloromethane. The vial was 

sealed and maintained at 90 °C for 20 min. The reaction was quenched in15 mL of saturated 

sodium bicarbonate, extracted with 30 mL of ethyl acetate (2x). The aqueous layer was acidified 

with 1 N HCl and extracted with 30 mL of ethyl acetate (2x) and set asside. The organic layer 

from the bicarbonate wash was concentrated and the residue dissolved in 2 mL THF. To the 

stirred THF solution was added 2.0 mL of 2 M lithium hydroxide and the resulting mixture was 

maintained at 50 °C for 3 h until the reaction was judged complete by TLC. The mixture was 
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acidified with 1 N HCl, extracted with ethyl acetate, and the organic layer combined with the 

organic layer from the acid wash from the previous step. The organics were concentrated and 

the residue purified by flash chromatography to provide 143 mg (61 %) of S3 as a light brown 

solid. 1H-NMR (600 MfHz, acetone-d6) δ 7.90 (br, 1H), 7.73 (br, 1H), 7.61 (br, 2H), 7.25 – 7.22 

(m, 1H), 6.98 – 6.94 (m, 1H), 6.64 (br, 1H); 13C-NMR (150 MHz) δ 167.3, 156.7, 145.5, 144.2, 

132.0, 127.7, 121.5, 121.4, 118.7, 112.7, 108.7, 100.0;  LRMS calculated for C14H10N2O4 [M+H]+ 

m/z: 271.1, measured 271.1.  

tert-butyl (1-(4-(5-(furan-2-yl)-1H-pyrazol-3-

yl)-3-hydroxyphenyl)-1-oxo-

5,8,11,14,17,20,23-heptaoxa-2-

azapentacosan-25-yl)carbamate (6.5) To a 

stirred solution of 15.0 mg (0.555 mmol, 1.0 eq) of 6.4 in 1 mL THF was added 51.9 mg (0.111 

mmol, 2.0 eq) of O-(2-Aminoethyl)-O′-[2-(Boc-amino)ethyl]hexaethylene glycol, 15.5 μL (0.111 

mmol, 2.0 eq) of triethylamine, and 36.9 mg (0.111 mmol, 2.0 eq) of 1-(Chloro-1-

pyrrolidinylmethylene)pyrrolidinium hexafluorophosphate. The reaction was stirred at room 

temperature for 1 h when it was judged complete by LC-MS. The solvent was removed, the 

residue was dissolved in DMSO and purified by preparative scale reverse phase HPLC 

(MeCN:H2O mobile phase) to provide 14.9 mg (37 %) of S4. 1H-NMR (400 MHz, CDCl3) δ 10.77 

(br, 1H), 7.65 (d, J=8.00 Hz, 1H), 7.50 (d, J=1.24 Hz, 1H), 7.46 – 7.40 (m, 2H), 6.98 (br, 1H), 6.76 

(d, J=3.32 Hz, 1H), 6.52 (dd, J=3.24 Hz, J=1.76 Hz, 1H), 5.08 (br, 1H), 3.71 – 3.48 (m, 30H), 3.33 – 

3.26 (m, 2H), 1.43 (s, 9H).  
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4-(5-(furan-2-yl)-1H-

pyrazol-3-yl)-3-hydroxy-N-

(25-oxo-29-((3aS,4S,6aR)-

2-oxohexahydro-1H-

thieno[3,4-d]imidazol-4-yl)-3,6,9,12,15,18,21-heptaoxa-24-azanonacosyl)benzamide (6.7) A 

total of 200 μL TFA was added to a solution of 14.9 mg (20.6 μmol, 1.0 eq) of 6.5 in 1 mL 

dichloromethane. The reaction was stirred at room temperature for 1 h when it was judged 

complete by TLC. The volatiles were removed in vacuo and the residue dissolved in 1 mL of 

DMF.  To this stirred solution was added 8.6 μL (61.8 μmol, 3.0 eq) of triethylamine and 8.4 mg 

(24.4 μmol, 1.2 eq) of biotin-NHS ester.  The reaction was stirred at room temperature for 1 h 

when it was judged complete by LCMS. The reaction was concentrated and the residue purified 

by preparative scale HPLC to provide 9.5 mg (48 %) of 8882 biotin probe as TFA salt. 1H-NMR 

(600 MHz, MeOD) δ 7.80 (d, J=8.04 Hz, 1H), 7.63 (d, J=1.20 Hz, 1H), 7.44 – 7.38 (m, 2H), 7.10 (br. 

1H), 6.85 (d, J=3.30 Hz, 1H), 6.58 (dd, J=3.24 Hz, J=1.74 Hz, 1H), 4.49 – 4.45 (m, 1H), 4.29 – 4.26 

(m, 1H), 3.71 – 3.55 (m, 30H), 3.51 (t, J=5.43 Hz, 2H), 3.34 (t, J=5.43 Hz, 2H), 3.19 – 3.14 (m, 1H), 

2.90 (dd, J=12.75 Hz, J=5.01 Hz, 1H), 2.70 (d, J=12.72 Hz, 1H), 2.20 (t, J=7.35 Hz, 2H), 1.75 – 1.54 

(m, 4H), 1.44 – 1.38 (m, 2H); LRMS calculated for C40H58N6O12S [M+H]+  m/z: 847.4, measured 

847.2.  

General synthesis of acid chlorides. To a stirred solution of carboxylic acid (1.0 eq) in 

dichloromethane (0.2 M) was added pyridine (1.1 eq) and thionyl chloride (1.5 eq). The reaction 

was stirred for 1.5 h at room temperature at which point it was flash filtered through a plug of 
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silica gel with dichloromethane. Volatiles were removed in vacuo to provide acid chloride in 70 

– 95 % yields.  

General synthesis of esters for Claisen condensation. As described in chapter 3. 

General procedure for intramolecular Claisen condensation. To a stirred solution of ester (1.0 

eq) dissolved in THF and cooled to 0 °C was added 0.5 M KHMDS in toluene (2.0 eq). The 

reaction was maintained at 0 °C for 2 h at which point it was judged complete by TLC. The 

reaction was quenched by addition of 1 N HCl and the resulting mixture extracted with diethyl 

ether, washed with brine, dried (MgSO4), and concentrated. The product was carried on crude 

to the next step.  

General procedure for pyrazole synthesis. The crude claisen condensation product was 

carefully dissolved in an amount of ethanol containing 2.0 mg/mL of hydrazine containing 

approximately 1.0 eq of hydrazine. The reaction was maintained at room temperature until 

judged complete by LCMS. The product was purified by preparative scale reverse phase HPLC 

(except 6.43 – 6.45 which were concentrated and carried through crude to the final TMS 

removal step described below). 

General procedure for TMS removal. To crude pyrazole (1.0 eq) dissolved in methanol (1 mL) 

was added a small quantity of potassium carbonate. The reaction was stirred for 30 min until 

judged complete by LCMS. The reaction was partitioned between water and ethyl acetate. The 

organic layer was washed with brine, dried (MgSO4), and concentrated. The crude residue was 

purified by preparative scale reverse phase HPLC.  

1-(2-hydroxy-4-((trimethylsilyl)ethynyl)phenyl)ethanone (6.39) To a 

stirred solution of 6.12 (25.0 mg, 1.0 eq) in tetrahydrofuran (1 mL) was 
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added triethylamine (19.2 µL, 2.0 eq), bis(triphenylphosphine)palladium dichloride (3.3 mg, 

0.05 eq), copper(I) iodide (0.9 mg, 0.05 eq), and trimethylsilylacetylene (20.2 µL, 1.5 eq).   The 

mixture was stirred for 4 h under an atmosphere of argon until judged complete by TLC.  

Affinity purification. Overnight cultures of S. aureus strain Newman were subcultured 1:100 

into 5 mL TSB in triplicate and incubated at 37 °C for 5 h. The bacteria were combined, pelleted, 

washed with PBS, pelleted again, and resuspended in lysis buffer (PBS + 25 µg/ml lysotaphen 

and 0.1 mM PMSF). Lysates were prepared by incubating the cells at 37 °C for 20 mins and 

sonicating 2x for 10 s at 80 % power on ice. The lysate was split in half and to one batch was 

added 150 µL of 1.5 mg/mL 6.7 in DMSO and to the other was added an equal volume of 

DMSO. The lysates were incubated at room temperature for 30 min. NeutrAvidin beads were 

added to both conditions and incubated at room temperature for 1 h. The beads were washed 

5x with PBS and then heated to 90 °C in 1X SDS-PAGE loading buffer for 10 min to effect 

elution.  

2-(3-(4-azidophenyl)-1H-pyrazol-5-yl)-5-ethynylphenol (6.43) 

1H-NMR (400 MHz, acetone-d6) δ 7.91 (d, J=8.52 Hz, 2H), 7.77 

(d, J=8.36 Hz, 1H), 7.29 (s, 1H), 7.23 (d, J=8.48 Hz, 2H), 7.08 – 

7.03 (m, 2H), 3.96 (s, 1H); LRMS calculated for C17H11N5O [M+H]+ m/z: 302.1, measured 302.1. 

Photoaffinity experiment. An overnight of S. aureus strain Newman was subcultured 1:100 into 

500 µL of TSB containing probe or probe and competitor on a 12 well plate. The bacteria were 

incubated at 37 °C and irradiated in a Stratagene Stratalinker 2400 set at 180 mJ. Replicates 

were combined, pelleted, and the cells washed with PBS. The cells were pelleted and 

resuspended in lysis buffer (PBS + 25 µg/mL lysostaphen + 1X EDTA-free protease inhibitor), 
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incubated at 37 °C for 20 min, and sonicated 2x for 10 s at 80 % power. To the lysates were 

added CuSO4 and TBTA to a final concentration of 200 µM, sodium ascorbate to a final 

concentration of 400 µM, and reporter to a final concentration of 50 µM. The lysates were 

rotated at room temperature in the dark for 2 h. Cold acetone was added to precipitate 

proteins and proteins were pelleted, the supernatant decanted, and the proteins resuspended 

in 1X SDS-PAGE loading buffer. 
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CHAPTER 7 

TARGET IDENTIFICATION OF ‘3981 
 

7.1 Introduction 

 Previous work on ‘3981 and its more active derivative ‘7501 indicate that, unlike ‘8882, 

‘3981/’7501 do not rely on heme biosynthesis or cause intracellular accumulation of heme. 

Therefore, a hypothesis that these small molecules activate HssRS through a pathway that 

overlaps with the stages of HssS activation downstream of heme seems reasonable (Figure 4.1). 

Since details of this signaling process is not well understood, ‘3981/’7501 may prove useful as 

chemical probes for defining the mechanism of sensing heme toxicity in S. aureus.  

Efforts towards identifying the cellular target of ‘3981 began after much of the work 

with ‘8882 had been conducted and the strategy for ‘3981 was influenced by experiences with 

‘8882. We decided against an affinity purification approach for several reasons. First, given that 

‘8882 affinity probe 6.7 was inactive, it seemed likely that adding large groups such as 

biotinylated linkers to a ‘3981 probe would also be detrimental to HssRS activation. While this 

could be related to preventing passage of the molecule into the cell, it may also interfere with 

binding to the target. Given this inherent uncertainty, a ligand directed approach was favored 

at the outset since smaller groups could be incorporated into the molecule with better chances 

of retaining activity. Second, an affinity purification experiment would be conducted in a lysate. 

This introduces more uncertainty into the experiment particularly with regard to the stability of 

the protein in the lysate and under the purification conditions.  In contrast, ligand directed 

target identification can be conducted in vivo in a context where the probe has known activity.  
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 As with ‘8882, photoaffinity affinity labeling was the preferred method of adducting 

proteins for ligand directed ‘3981 target identification. This was primarily due to the 

uncertainty that a nonphotoactivatable group such as an electrophile would be able to adduct 

proteins given the environment the probe was in when bound to its target (i.e. proximity to 

nucleophiles). Since the aryl azide ‘8882 probe 6.43 was not successful, likely because of the 

rearrangement of the singlet nitrene to the less reactive didehydroazepine, 

trifluoromethyldiazirines were  exclusively used for ‘3981 target identification.  

Several other aspects of the experiment were altered from those used for ‘8882 target 

identification. First, experiments using a fluorescent reporter were imaged by a GE Healthcare 

Typhoon gel scanner which uses a laser more specific to rhodamine’s maximum excitation 

wavelength than the AlphaImager used for ‘8882 target identification experiments. Second, 

many of the later experiments rely on a biotin reporter which was visualized by Western 

blotting with a streptavidin-680 fluorophore imaged using a LICOR Odyssey. Finally, the click 

conditions used for reporter attachment were altered and optimized throughout these 

experiments.   

 

7.2 Development of photoaffinity probes for ‘3981 target identification  

 Given the SAR data and the previously described constraints of developing a ligand 

directed photoaffinity probe using trifluoromethyldiazirines as the photoreactive group, the 

probe development strategy focused on incorporating the diazirine in the biaryl ether system 

and the click handle in the 3-position of the benzyl amine component. The 3-position was 

chosen because SAR data demonstrated that substitution at this position promoted efficacy (in 
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the case of ‘7501) and potency 4.10 (Chapter 4). The click handles to be investigated were an 

ethynyl group, benzyl azide, and iodo group. 3-iodine substitution in the benzyl component has 

already been established as a promoter of activity. A benzyl azide or ethynyl group in the 3-

position were also likely to maintain activity since they are similar in size to iodine and a methyl 

ether (as in ‘7501).  

 The synthetic method for producing ‘3981 derivatives presented in chapter 4 offered 

the possibility of a modular approach for development of a ‘3981 probe. In this strategy, benzyl 

amines containing the click components and aminobiaryl ethers containing the diazirine would 

be prepared and initially coupled to the corresponding component of ‘7501. That compound 

would then be tested for HssRS activation using the XylE assay as an indication of the 

components effect on activity. When components are identified as active in the hybrid 

molecule, they will be coupled to each other to form putative probes. This strategy was 

advantageous over producing and screening every iteration of probes possible because it 

preserved advanced material.   
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Figure 7.1. Modular strategy for probe development. 

 

Synthesis of benzylamine components 

 3-iodobenzylamine is commercially available and also served as the starting material for 

3-ethynylbenzylamine (7.2). 7.2 was prepared by Sonogashira coupling of 7.1 with trimethylsilyl 

acetylene followed by TMS removal with ammonia in methanol.1 

 No synthesis of benzyl azide component 7.7 had been reported. We envisioned 

synthesizing this compound through displacement of an activated benzyl alcohol with azide. 3-

Methylaminobenzyl alcohol 7.4 was prepared by refluxing methyl 3-cyanobenzoate (7.3) with 

lithium aluminum hydride in THF to effect global reduction to the amino alcohol.2 The amino 

group was selectively protected as the trifluoroacetamide with trifluoroacetic anhydride to 

provide 7.5. Acetamide 7.5 was converted to the benzyl azide by treating with 
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diphenylphosphorylazide. Trifluoroacetamide deprotection was effected by sodium hydroxide 

to provide 7.7. 

 

 

Scheme 7.1. Synthesis of 7.2. 

 

 

Scheme 7.2. Synthesis of 7.7. 

 

Synthesis of biaryl ether components 

 Initial efforts to synthesize a trifluoromethyldiazirine containing amino biaryl ether 

focused on converting 4-(4-bromophenoxy)aniline to the trifluoromethyl ketone and 

conversion to the diazirine through the previously described route. The planned route to the 

diketone started with protection of the aniline, lithium-halogen exchange by treatment with 

nBuLi, and quenching of the lithiate with N-trifluoroacetylpiperidine. This route was 
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problematic due to difficulties with protecting groups. These were either not stable during the 

lithium-halogen exchange or resulted in complex mixtures of products that could not be taken 

forward or could not be removed at the end.  

Ultimately, this route was abandoned in favor of biaryl ether formation using SNAr 

chemistry where the diazirine could be prepared as the anisole, demethylated, and coupled 

with a suitable electrophile. This approach would theoretically allow the synthesis of 3- and 4-

substituted, though preparation of the 4-isomer would prove problematic.  

 Diazirine 7.9 was prepared in five steps from 3-bromoanisole and demethylated with 

boron tribromide as described in chapter 6.3 7.10 was stirred with 4-fluoronitrobenzene and 

potassium carbonate in DMF to form nitro biaryl ether 7.11. The nitro group was reduced to the 

aniline with tin(II) chloride under acidic conditions to provide 7.12.  

 

 

Scheme 7.3. Synthesis of probe component 7.12. 

 

 Attempts to prepare the 4-diazirine substituted compound through a similar route were 

unsuccessful. 7.14 was successfully prepared from 4-iodoanisole using an analogous route as 
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7.9. However, demethylation with boron tribromide was problematic. TLC samples taken 

directly from the reaction mixture showed one spot. Unfortunately, upon workup and standing 

for several minutes in deuterated chloroform, a complex mixture was evident by NMR and TLC 

analysis. A possible explanation for this is depicted in scheme 7.4. We speculate decomposition 

occurs due to the electron releasing phenol located para to the delicate diazirine. 

 

 

Scheme 7.4. Attempted synthesis of 7.15 for SNAr coupling. 

 

 To overcome this, an alternate coupling strategy making use of the electron 

withdrawing properties of trifluoromethyl ketones was employed. The nucleophile and 

electrophile roles were switched to accommodate this and the biaryl ether was prepared at the 

ketone stage with the diazirine installed after coupling. The sequence began with boc 

protection of 4-aminophenol.4 This was then reacted with 4’-fluoro-2,2,2-

trifluoroacetophenone and potassium carbonate in DMF at 120 °C under microwave irradiation 

to provide biaryl ether 7.19 in 29 % yield. The ketone was converted to the diazirine using the 

previously described method to provide 7.20 in 19 % yield over three steps. While this 

sequence including the SNAr coupling and diazirine formation was low yielding, it provided 
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enough material to move forward with activity testing. 7.20 was treated with trifluoroacetic 

acid in DCM to provide 7.21 as the TFA salt.  

 

Scheme 7.5. Synthesis of component 7.21. 

 

Modular synthesis and evaluation of probe activity 

 With click components 7.2 and 7.7 and photoaffinity components 7.12 and 7.21 in hand, 

compounds 7.22 and 7.23 were prepared according to the modular testing scheme (Figure 7.3) 

using the chemistry outlined in chapter 4. Compounds were tested for activation of HssRS using 

the XylE assay at 10 and 40 µM and compared to ‘7501 at the same concentrations. The 

compound using click component 7.1 was not tested against ‘7501 in this series since its activity 

compared to ‘3981 was establish in chapter 4 and exhibited comparable activity to ‘7501. 

Therefore, it will likely not negatively affect activity if incorporated into a probe. In addition, for 

the same reasons outlined in chapter 6, namely the limited examples of Pd-mediated click 
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reactions, an iodine click handle containing probe was not preferred to a handle for CuAAC and 

only kept as a possibility if the other handles were not well tolerated.  

 

 

 

Figure 7.2. Activation of HssRS using modular probe synthesis scheme. Data are presented as 
the fraction of HssRS activity compared to ‘7501 at the same concentration.  

 

 Compounds 7.21 and 7.22 both exhibit comparable activities to ‘7501 at 10 µM, but a 

loss of activity is observed at 40 µM. This is consistent with previous observations that these 

thiourea molecules do not activate HssRS in the XylE assay as well at higher concentrations. 

Given these results, both the benzyl azide and ethynyl group appear to be appropriate click 

handles for a future ‘3981/’7501 probe. 

 In contrast, placement of the trifluoromethyl diazirine significantly affects the activity of 

the resulting molecule compared to ‘7501. With the diazirine in the 4-position, 7.24 only 

exhibits ~1 % the activity of ‘7501.  With the diazirine in the 3-position, 7.23 activates ~25 % 

that of ‘7501 at both concentrations, indicating that this is the best position for the diazirine in 

a future probe.  
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 Having identified 7.2 and 7.7 as suitable click handles and 7.12 as the photoaffinity 

component for the best activity, the two possible probes from this combination, 7.25 and 7.26 

were prepared and tested for HssRS activation and compared to ‘7501. Probe 7.25 with ethynyl 

click handle was not significantly active demonstrating ~1-2 % the activity of ‘7501 at both 

concentrations. Probe 7.26 with benzyl azide click handle exhibited fairly good activation at 10 

µM with ~40 % the activity of ‘7501, but appeared to be toxic at 40 µM. As a result, the activity 

appeared significantly diminished at this concentration. Despite this, the activity of 7.26 at 

lower concentrations indicates it will be an acceptable probe for ‘7501 target identification.  A 

concentration response curve of 7.26 was generated and an EC50 of 2.16 µM was determined.  

 

 

 

Figure 7.3. HssRS activation of putative probes 7.25 and 7.26. Data are presented as the 
fraction of HssRS activity compared to ‘7501 at the same concentration.  
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Figure 7.4. Concentration response curve of 7.26. 

 

7.3 Target identification experiments with 7.26 

 As with the strategy for ‘8882 target identification, the emphasis of early experiments 

was to identify bands on a gel that are present in a probe treated sample but diminish or 

disappear when co-treated with a competitor. For most experiments ‘7501 was used as 

competitor. Once bands were identified, experiments would move into a phase geared towards 

isolating and identifying the proteins that correspond to the bands.  

General experimental details 

 The UV light source utilized for these experiments was a Reptisun 10.0 bulb housed in a 

deep dome lamp fixture generally used as a light source for indoor reptile enclosures (for this 

reason, the assembly will be referred to as the “lizard lamp”). The emission spectrum of this 

bulb exhibits a large spike around 360 nm which is the appropriate wavelength for diazirine 

activation. To determine an optimum irradiation time, the probe was dissolved in methanol and 

irradiated with the lizard lamp. The ratio of unreacted probe to the methanol adduction 

product of photolysis was observed. Based on this experiment, irradiation times of 6 – 10 min 
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seemed optimal and in general, most samples were irradiated for 8 - 10 min. Because this is a 

relatively long irradiation time, with the exception of the first few experiments which were 

conducted at room temperature, most samples were irradiated in an incubator at 37 °C with 

120 rpm shaking. The purpose of this was to prevent any change in protein expression or 

compound binding affinity as a result of the culture cooling to room temperature during the 

irradiation process.  

 In order to accommodate the azido click handle in 7.26, terminal alkyne-rhodamine 

reporters 7.28 and 7.29 were prepared. 7.28 was prepared by reacting 7.27 (as the TFA salt) 

with o-nitrophenol carbonate-activated 5-pentynol. 7.29 was prepared by reacting 7.27 (as the 

TFA salt) with the succinimide ester of pentynoic acid under basic conditions. Biotin reporter 

7.30 was similarly prepared. The choice of base for this reaction influenced the ease of 

purification by column chromatography. Use of triethylamine resulted in triethylammonium 

trifluoroacetate which was difficult to separate from the product on silica gel. Use of potassium 

carbonate instead of triethylamine eliminated this complication. 

  As previously mentioned, experiments using reporters 7.28 and 7.29 were imaged using 

a GE Healthcare Typhoon gel scanner and experiments using biotin reporter 7.30 as well as 

cleavable biotin probes (which will be discussed later) were visualized on a LICOR Odyssey after 

western blotting with streptavidin-680 or -800 fluorophores. Protein concentrations were 

normalized by BCA assay during the experiment to ensure equal protein concentrations across 

samples.  
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Figure 7.5. Clickable reporters used in this chapter.  

 

Competition experiments 

 The first experiment conducted was a simple competition experiment. S. aureus was 

subcultured into media with 20 µM of 7.26 and either 0, 1, 10, 20, or 40 µM of ‘7501. The 

bacteria were grown for 4 h and then irradiated with the lizard lamp for 10 min. The bacteria 

were lysed and the lysates treated with 7.28 under the previously described click conditions.5 

Proteins were precipitated with acetone and resuspended in 1X loading buffer, separated by 

SDS-PAGE, and visualized with the Typhoon gel scanner (Figure 7.7). Several controls were run 

including a sample that was treated with 20 µM of 7.26 but no irradiation, a sample from 
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bacteria not grown with 7.26 but subjected to the same experimental conditions as the rest of 

the samples, and a 7.26 labeled sample where reporter 7.28 was excluded from the click 

reaction.  

 

 Figure 7.6. Results of competition experiment with 7.26 and ‘7501 visualized with 
reporter 7.28. 

 

 No fluorescently labeled bands and very little background fluorescence was observed in 

the sample not treated with reporter 7.28 (Figure 7.7, lane 8) indicating that any fluorescence 

was the result of labeling by 7.28. The sample not treated with probe 7.26 (Figure 7.7, lane 7) 

exhibited some faint bands but considerable background compared to lane 8 suggesting some 

nonspecific labeling of proteins by 7.28 was occurring. Treatment with 7.26 without irradiation 

(lane 6) resulted in several distinct bands exhibiting fluorescence as well as a stronger 
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background than the previous controls. Several bands in lane 6 overlap with bands in lanes 1 – 

5 indicating that nonphotoinduced labeling was occurring. This may be occurring through 

thermal activation of the diazirine or some other mode of covalent adduction by the probe, 

possibly through the thiourea moiety. Despite this, several bands not appearing in lane 6 were 

present in lanes 1 – 5 and several of these seemed to diminish or disappear with increasing 

concentrations of ‘7501 competitor (Figure 7.7, blue arrows).  

 This result was encouraging and further experiments were conducted to optimize the 

target identification scheme. Despite demonstrating that ‘7501 activates HssRS during log 

phase, a photoaffinity experiment sampling different time points along the S. aureus growth 

curve was conducted by incubating bacteria with 20 µM of 7.26 either alone or with 40 µM 

‘7501 to determine any differential protein labeling between time points. Irradiation was 

conducted at 1 h (lag phase), 3 h (early log phase), and 5 h (mid to late log phase).  
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Figure 7.7. Competition experiment with 7.26 and ‘7501 at different time points. 

 

 Another optimization experiment examined what aspects of the experiment contributed 

to the nonspecific labeling seen in control samples. One possibility was that cellular 

nucleophiles could potentially react with the carbamate moiety of 7.28, displacing 5-pentyn-1-

ol and resulting in nonspecific protein labeling during the click reaction or further sample 

processing steps. To control for this, reporter 7.29 was prepared replacing the carbamate with 

a less reactive amide bond. Bacteria were incubated with 7.26 and either irradiated with the 

lizard lamp or not exposed to light to prevent photolabeling. Each sample was subjected to 

CuAAC conditions with either 7.28 or 7.29.  The results indicate no significant labeling 

differences between the two reporters in either condition. A control where a probe treated S. 

aureus lysate incubated with only reporter 7.28 and no other click reagents (Figure 7.8, lane 6) 
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displays some amount of labeling indicating there was nonspecific labeling of proteins by 

reporter 7.28 through some feature of the molecule not related to CuAAC. Given the difference 

in background between lane 6, and lanes 1 – 4, it seems that this is not a significant source of 

nonspecific labeling.  A lysate of S. aureus not incubated with 7.26, but treated with 7.28 under 

CuAAC conditions also did not exhibit the magnitude of background as lanes 1 – 4 indicating 

that the background fluorescence is likely due to nonspecific labeling by the probe itself and not 

through the linkers.  

 

 Figure 7.8. Competition experiment with probe 7.26 and reporters 7.28 and 7.29. 

 

 These experiments have demonstrated that probe 7.26 can label proteins and this 

labeling can be competed off by ‘7501. However, considerable background labeling occurred 

which may have been the result of using high concentrations of probe 7.26. Therefore, the 

probe concentration was lowered to 5 or 10 µM in future experiments. In addition, a significant 
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amount of protein labeling occurs in controls where bacteria are incubated with 7.26, but not 

irradiated with the lizard lamp. This may be because of thermal activation of the diazirine or 

possibly through some other mode of covalent protein adduction by 7.26.  

 The same experiment was conducted using 10 µM of 7.26 for the probe incubations and 

utilizing biotin reporter 7.30. The purpose of using this reporter was to demonstrate that a 

similar result could be obtained to the results with reporter 7.28. In addition, the Typhoon gel 

imager did not always give consistently clear images and results possibly because the 

instrument samples a plane of the gel for imaging and the three dimensional distribution of 

proteins can vary from gel to gel. In contrast, using reporter 7.30 required transferring to a 

nitrocellulose membrane which moves the proteins on to one plane.  

 This experiment was also conducted with an additional probe where the sulfur of 7.26 

was replaced with oxygen to provide the urea. Since the urea derivative of ‘3981 was 

comparably active to ‘3981, it was possible that this would be the case with 7.26. Urea probe 

7.31 demonstrated comparable activity to 7.26 at 10 µM but was significantly more active at 40 

µM due to its lack of toxicity at that concentration. Due to the lack of toxicity, it was likely 7.31 

would bind fewer proteins nonspecifically and permit better analysis of results. If a band 

appeared in both the 7.26 and 7.31 lanes and diminished in competitor lanes, that band would 

be a strong candidate for a target.  
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Figure 7.9. Relative HssRS activation of 7.26 and 7.31 compared to ‘7501 at the same 
concentrations. 

 

Figure 7.10. Photoaffinity experiment visualized using biotin reporter 7.30 and streptavidin-
680. Arrows indicate bands that appear to diminish with ‘7501 competition.  

 
 
 The results of this experiment were mostly consistent with those visualized with 7.28 

and the gel scanner. There appears to be less background in the samples in general which was 

likely the result of using less 7.26 in the experiment though this was not directly tested. There 

appear to be several bands around 30 – 37 kDa that diminish with increasing ‘7501 treatment 



207 
 

as well as a band around 100 kDa. There were similar bands in the experiments conducted with 

7.28. Unfortunately, there were no bands that appeared in the 7.31 treated lane suggesting 

that despite being active, this is not likely to aid in the target identification process.  

 

7.4 Isolation of tagged proteins using cleavable linkers 

 These results taken together suggested that it was possible to isolate targets using a 

photoaffinity approach. In order to effectively identify the labeled proteins, they must be 

separated from the whole cell lysate. One method of accomplishing this is by exploiting the 

interaction between biotin and streptavidin. The lysates with biotin reporter clicked on could be 

incubated with streptavidin beads, thoroughly washed to remove nonspecifically bound 

proteins, and then eluted to release the tagged proteins for proteomic analysis. However, 

eluting biotinylated molecules from streptavidin typically requires harsh conditions and results 

in contamination of the resulting samples with nonspecifically bound proteins that were not 

removed during washing steps.6  

 One method to overcome this is the use of cleavable linkers as described in chapter 5. 

Tirrell and coworkers evaluated several cleavable linkers for their selectivity during elution. 

They found that a dialkoxydiphenylsilane containing linker, which is cleaved under mildly acidic 

conditions, was the most selective. They reported a synthesis for an azido linker. Attempts to 

make an alkynyl version of this linker for ‘7501 target identification were unsuccessful. Instead 

of this linker, carboxybenzophenone-based cleavable linker 7.32, developed by the Porter and 

coworkers7, was employed. This functional group can be cleaved by irradiation with 365 nm 

light.  
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 With this linker in hand, photoaffinity experiments with 7.26 were conducted. The same 

growth and irradiation conditions as previous experiments were utilized. The samples were 

lysed and the cleavable linker clicked on. At this point, alternate click conditions were used 

consisting of 200 µM CuBR, 200 µM TBTA, and 50 µM of 7.32. These conditions were chosen 

because they were used by Tirrell and coworkers in their linker evaluation paper. After the click 

reaction, excess 7.32 was removed by passage of the reaction through a GE Healthcare PD10 

desalting column. The samples were then incubated with M280 Dynabeads for 1 h at room 

temperature. The beads were washed sequentially with 0.1 % SDS in PBS, 4 M urea, and 1 M 

NaCl, each targeting a specific protein-protein interaction, and finally the beads were washed 

with water to remove excess NaCl. The beads were then resuspended in PBS and irradiated for 

2 h with a 365 nm UV lamp. This elution was sequestered from the beads and the beads were 

heated to 90 °C in 1X SDS-PAGE loading buffer to remove any residual proteins.  

 

Figure 7.11. Photo cleavable linker 7.32. 
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Figure 7.12. Photoaffinity probe pulldown with photocleavable linker 7.31. Wash 1 = 0.1 % SDS 
in PBS, Wash 2 = 4 M urea, Wash 3 = 1 M NaCl, Wash 4 = water. Gel visualized by silver staining.  

 
  

 The samples from this experiment were separated by SDS-PAGE and visualized by silver 

staining. The gel required a fairly long developing time to visualize bands in the photoelution 

lanes resulting in a high background in other lanes. Several bands appear enriched in the 7.26 

treated lane (lane 11) compared to the 7.26 cotreated with ‘7501 lane (lane 12). However, none 

of the bands between 30 – 37 kDa that appeared in the previous competition experiments 

appeared in this lane.  

 The elution samples were submitted to the proteomics core for identification and 

relative quantitation by spectral counting. Not surprisingly, the top hits were endogenously 
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biotinylated proteins, pyruvate kinase and acetyl-CoA carboxylase. In addition to being the 

most abundant, in the sample, there was also an enrichment in probe vs. competitor suggesting 

that they could be real targets.  

 A refined list of proteins identified in this experiment is presented in Table 7.1. In order 

to validate these hits, the NARSA transposon mutant library was utilized.ref) Seven of the 11 

hits had transposon mutants in the NARSA library. If protein expression was knocked down 

because of transposon insertion into a gene, ‘7501 should not be active. Using the same assay 

described in chapter 3, these transposon mutants were tested for their ability to be preadapted 

to heme toxicity by ‘7501. If one of these genes were the target, ‘7501 should not be able to 

preadapt that strain to heme toxicity. All of the mutants were able to sense ‘7501 and adapt to 

heme toxicity. In addition, an IsaA knockout in S. aureus strain SH1000 was obtained courtesy 

of the Boles lab.(ref) This strain was also tested for its ability to preadapt to heme toxicity by 

‘7501 and was successful. These data indicate that none of the proteins pulled down are likely 

the target.  
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Protein name 
MW 

(kDA) 
Newman 

gene 
USA300 

gene NARSA Pathway 

Pyruvate carboxylase 129 pycA pyc Yes 

Central 
metabolism 

Acetyl-CoA carboxylase, 
biotin carboxyl carrier 

protein 17 accB accC Yes 
Fatty acid 

biosynthesis 

Probable 
transglycosylase 24 isaA 

 
No 

Cell wall 
biosynthesis 

Inosine-5'-
monophosphate 
dehydrogenase 53 guaB 

 
No 

Nucleotide 
biosynthesis 

Putative uncharacterized 
protein 12 NWMN_1673 

 
Yes 

 

Serine protease 87 htrA htrA Yes 
 

Glycerol kinase 56 glpK glpK Yes 
Fatty acid 

biosynthesis 

Hyaluronate lyase 92 hysA 
 

Yes 
Cell wall 

biosynthesis 

Phage transcriptional 
activator 16 NWMN_1013 

 
No 

 2-succinylbenzoate--CoA 
ligase 55 menE 

 
No 

Menaquinone 
biosynthesis 

Putative uncharacterized 
protein 68 NWMN_2339 

 
Yes 

  
Table 7.1. Refined list of proteins identified by proteomics from photoaffinity pulldown 

experiment. 
 
 
 
 These results indicate certain problems with the overall experimental design. First, the 

abundance of endogenously biotinylated proteins is problematic since the photoelution step 

should not result in their release from the beads and they should only elute when heated in 1X 

loading buffer. It is possible that these proteins are nonspecifically released from the beads 

during this step. Since they were the most abundant proteins in the samples, it also suggests 
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that the beads were oversaturated with endogenously biotinylated proteins. This means that 

any proteins tagged by 7.26 and 7.32 did not bind the beads and were washed away. Another 

concerning result is the larger amount of endogenously biotinylated proteins in the probe 

sample compared to control. Pyruvate kinase was six times more abundant in the probe sample 

than control and no peptides from acetyl-CoA carboxylase were found in the control sample. It 

is unlikely this result is due to differences in protein concentration since the proteins 

concentration of each sample was normalized by BCA assay. Sample handling could have been a 

source of error since the probe and control samples were handled separately, but the same 

procedures were carefully applied to both of them. One explanation for the discrepancy is that 

‘7501 decreases the abundance of endogenously biotinylated proteins. While the premise of 

this experiment requires that 7.26 and ‘7501 have the same target and same effects on the cell, 

‘7501 exhibits greater efficacy than 7.26 and is present in higher concentrations in the control 

sample. This difference in concentration and efficacy may lead to differential protein expression 

between the probe and control samples. This problem is not easily fixed as the previous 

competition experiments indicate a high concentration of ‘7501 is needed to effectively 

compete with 7.26. 

 To address the possibility that endogenously biotinylated proteins were oversaturating 

the streptavidin beads during the binding step, an experiment was conducted where a lysate 

from S. aureus was treated with 7.26 was incubated with varying amounts of M280 Dynabeads, 

then treated with 7.32 under CuAAC conditions, and each sample desalted. A sample from each 

condition was visualized with streptavidin-680 fluorophore after separation by SDS-PAGE and 

transferring to nitrocellulose. Endogenously biotinylated samples were still visible in the highest 
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concentration of beads used indicating that they are likely being oversaturated and any 

7.26/7.31 tagged proteins are not binding as a result of competition.  A similar experiment was 

conducted using higher capacity GE Healthcare Streptavidin Sepharose beads. The results are 

displayed in Figure 7.12. Pretreatment with the higher capacity beads seems better able to 

remove endogenously biotinylated proteins from samples. While the lower bands are cut off, 

the band corresponding to pyruvate carboxylase at 127 kDa is visible and clearly diminishes, 

though not completely, with increased amount of streptavidin beads used. 

 

Figure 7.13. Streptavidin pretreatment results. Lane 1 – 3 was from a lysate of bacteria not 
treated with probe. 1 = sampled immediately after pretreatment with 50 µL SA beads, 2 = 
sampled after click reaction, 3 = sampled after desalting. Lanes 5 – 13 were lysates from 

bacteria treated with 10 µM 7.26. Numbers above lanes indicate amount (µL) SA beads used for 
pretreatment. Lanes 5 – 7 = sampled after SA pretreatment, lanes 8-10 = sampled after click 

reaction, and lane 11 – 13 = sampled after desalting step. 
 
 
 This experiment also indicated two other potential issues with the photoaffinity 

pulldown. The heavy labeling observed in the lanes corresponding to samples taken 
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immediately after the click reaction (lanes 2, 8, 9, and 10) was indicative of nonspecific labeling 

by reporter 7.32. Furthermore, the samples taken after desalting (lanes 3, 11, 12, and 13) do 

not exhibit this labeling indicating the nonspecific labeling is likely occurring through direct 

interaction of 7.32 with proteins. It is not clear how this is occurring. These samples were 

prepared by directly sampling the reaction mixture, adding 1X loading buffer, and heating at 90 

°C for 10 min to denature proteins. These harsh conditions likely led to the considerable 

nonspecific labeling observed in this experiment. While this would not be an issue during the 

pulldown experiment due to the desalting step removing excess 7.32, several optimization 

experiments were conducted where the samples were prepared in this manner and may have 

provided misleading results. Furthermore, acetone precipitation of proteins after the click 

reaction, which should theoretically remove excess 7.32, does not consistently prevent 

nonspecific labeling.  

 Another issue indicated by this experiment was that very little specific labeling appeared 

to be occurring since desalted probe treated lanes 11 – 13 did not differ significantly in 

appearance from control lane 3. This could be the result of the new click conditions (CuBr, 

TBTA) not being as efficient as the previous conditions (CuSO4, sodium ascorbate, TBTA), 

However, an experiment was conducted directly comparing the two conditions and they did not 

appear to differ. Another possibility was that the large acetophenone group prevents the 

alkyne from accessing the azide. These experiments were conducted in lysates with proteins 

retaining their native conformation and it is possible 7.26 binds somewhere other than the 

surface of its target.  7.28 – 7.30 are all fairly linear while 7.32 has quite a bit of steric bulk due 

to the photocleavable moiety. This may prevent the linker from penetrating to the binding site 
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and reacting with the azide. To test this, labelling of lysates from 7.26 treated S. aureus using 

standard conditions with native proteins was compared to tagging in a lysate subjected to 

acetone precipitation. The acetone precipitation samples showed several extra bands 

compared to the native proteins. This suggested that denaturation of proteins before the click 

reaction with 7.32 was advantageous.  

 An experiment was conducted taking into account all of these factors. S. aureus was 

incubated with 5 µM of 7.26 or 5 µM 7.26 and 20 µM of ‘7501 as competitor for 3 h at which 

point they were irradiated with the lizard lamp. Bacteria were collected and run through the 

standard experimental procedure. Samples were taken at each point to confirm click labeling 

and streptavidin binding. GE high capacity streptavidin sepharose was used for the pulldown. 

Samples were evaluated by Western blotting to determine the presence of biotinylated 

proteins and samples from the pulldown washes and elutions were visualized by silver staining.  
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Figure 7.14. Pulldown experiment with photocleavable linker. A. Western blot visualized using 
streptavidin-680 fluorophore. B. SDS-PAGE gel visualized by silver staining.  
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 This experiment demonstrated that the streptavidin binding step binds most of the 

biotinylated proteins, either endogenous or labeled with 7.32. There are several bands that 

appear in lanes 3 and 4 (Figure 7.14.A) that disappear after treatment with streptavidin beads 

(lanes 5 and 6). The endogenously biotinylated proteins are completely absorbed, except for a 

small amount of pyruvate carboxylase. In addition, some of these proteins reappear in the 

photoelution samples indicating that these proteins may nonspecifically dissociate from the 

bead during this step. Several bands corresponding 7.32 labelled proteins are apparent in lanes 

3 and 4, particularly around 50 kDa and a strong band around 10 kDa. 50 kDa proteins appear 

to bind the beads completely while there is some residual 10 kDa protein in the sample.  

 Unfortunately, there did not seem to be any enrichment of 7.32 labelled proteins in 

probe samples compared to competitor samples. Furthermore, no bands were clearly visible in 

the photoelution lanes (besides background) when the samples were separated by SDS-PAGE 

and visualized by silver staining. 

 Given these results, the decision was made to forgo analysis of samples by Western 

blotting and SDS-PAGE and instead, submit samples directly to the proteomics core for analysis. 

While it would have been ideal to observe enrichment of proteins in a probe treated sample 

over a sample cotreated with competitor this may not be realistic. A final experiment was 

conducted using the same conditions and procedures as the previous pulldown and including a 

sample treated with 7.31. These samples were submitted directly to the proteomics core. The 

list of proteins is fairly long and is presented in the appendix to this chapter. The current focus 

of experiments is to narrow this list down by using more controls. 
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7.5 Conclusions 

Using SAR data and a modular approach to probe design, probe 7.26 was prepared. 

Several experiments were conducted to preliminarily establish the ability of 7.26 to specifically 

label proteins and for ‘7501 to be able compete with this specific labeling and appeared to be 

successful. However, efforts to isolate these proteins from a whole cell lysate have been 

unsuccessful so far. A variety of optimization experiments have been conducted and these have 

led to a fairly refined experimental protocol. Despite this, the most recent proteomics results 

do not conclusively point to any particular targets. Future experiments should include more 

than one control to help narrow down candidate target proteins.  
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Experimental Section 

General Procedure: All non-aqueous reactions were performed in flame-dried flasks under an 

atmosphere of argon. Stainless steel syringes were used to transfer air- and moisture-sensitive 

liquids. Reaction temperatures were controlled using a thermocouple thermometer and analog 

hotplate stirrer. Reactions were conducted at room temperature (rt, approximately 23 °C) 

unless otherwise noted. Flash column chromatography was conducted using silica gel 230-400 

mesh. Analytical thin-layer chromatography (TLC) was performed on E. Merck silica gel 60 F254 

plates and visualized using UV and iodine stain.  

Materials: All solvents and chemicals were purchased from Sigma-Aldrich. Dry dichloromethane 

was collected from an MBraun MB-SPS solvent system. Triethylamine, N,N-dimethylformamide 

(DMF) and dimethyl sulfoxide were used as received in a bottle with a Sure/Seal. N,N-

diisopropylethylamine was distilled from calcium hydride and stored over KOH. Deuterated 

solvents were purchased from Cambridge Isotope Laboratories. 

Instrumentation: 1H NMR spectra were recorded on Bruker 400, 500, or 600 MHz 

spectrometers and are reported relative to deuterated solvent signals. Data for 1H NMR spectra 

are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q 

= quartet, p = pentet, m = multiplet, br = broad, app = apparent), coupling constants (Hz), and 

integration. 13C NMR spectra were recorded on Bruker 100, 125, or 150 MHz spectrometers and 

are reported relative to deuterated solvent signals. Low resolution mass spectrometry (LRMS) 

was conducted and recorded on an Agilent Technologies 6130 Quadrupole instrument. 

N-(3-(azidomethyl)benzyl)-2,2,2-trifluoroacetamide (7.6) To a 

stirred suspension of 7.5 (131.4 mg, 0.563 mmol) in toluene (5 mL) 
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was added diphenylphosphorylazide (145 μL, 0.676 mmol) and the resulting mixture was cooled 

to 0 °C. To this cooled reaction was added DBU (102 μL, 0.676 mmol). The reaction was allowed 

to warm to room temperature and stirred for 3 d. The reaction was concentrated and the 

residue was purified by column chromatography to afford 88.8 mg (61 %) of 7.6. 1H-NMR (400 

MHz, CDCl3) δ 7.48 – 7.41 (m, 1H), 7.36 – 7.27 (m, 3H), 4.57 (d, J=5.96 Hz, 2H), 4.40 (s, 2H); 13C-

NMR (100 MHz, CDCl3) δ 136.9, 136.3., 129.5, 128.0, 127.9, 127.7, 54.5, 43.6.  

 (3-(azidomethyl)phenyl)methanamine (7.7) To a stirred solution of 7.6 

(88.8 mg, 0.344 mmol) in ethanol (5.0 mL) was added 0.2 N NaOH (1.0 

mL) and the resulting solution was stirred overnight at room temperature. The reaction was 

diluted with ethyl acetate, washed with brine 10 % NaOH (2x), brine (1x), dried (MgSO4), 

filtered, and concentrated to afford 52.0 mg (93 % of 7.7. 1H-NMR (400 MHz, CDCl3) δ 7.39 – 

7.32 (m, 3H), 7.32 – 7.27 (m, 1H), 4.30 (s, 2H), 3.96 (s, 2H).  

3-(3-(4-nitrophenoxy)phenyl)-3-(trifluoromethyl)-3H-diazirine 

(7.11) To a stirred solution of 7.10 (30 mg, 0.148 mmol) in DMF 

(1.0 mL) was added 4-fluoronitroaniline (20.8 mg, 0.148 mmol) 

and potassium carbonate (61.4 mg, 0.444 mmol). The mixture was heated to 40 °C and stirred 

for 2 h at which point it was judged complete by TLC.  The reaction was partitioned between 

water and diethyl ether, the organic layer washed with brine, dried (MgSO4), filtered, and 

concentrated to provide 37.0 mg (77 %) of 7.11.  1H-NMR (400 MHz, CDCl3) δ 8.25 – 8.20 (m, 

2H), 7.47 (t, J=8.06 Hz, 1H), 7.13 (dd, J=8.16 Hz, J=2.20 Hz, 1H), 7.07 (d, J=8.20 Hz, 1H), 7.04 – 

6.99 (m, 2H), 6.93 (s, 1H); 19F-NMR (376 MHz) δ 68.2.  
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4-(3-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenoxy)aniline (7.12) 

To a stirred solution of 7.11 (37.0 mg, 0.114 mmol) in EtOH (8 mL) 

was added a solution of tin(II) chloride dihydrate (102 mg, 0.456 mmol) dissolved in 

concentrated HCl (2.0 mL). The resulting mixture was maintained at 70 °C for 1 h when it was 

judged complete by TLC. The reaction was neutralized with saturated sodium bicarbonate, 

extracted with ethyl acetate, the organic layer washed with brine, dried (MgSO4), filtered, 

concentrated and the residue purified by column chromatography to provide 9.5 mg (28 %) of 

7.12.  

Thiourea synthesis. As described in Chapter 4. Compounds purified by preparative scale 

reverse phase HPLC. 

 1-(3-(azidomethyl)benzyl)-3-(4-(3-(3-

(trifluoromethyl)-3H-diazirin-3-

yl)phenoxy)phenyl)thiourea (7.26) 1H-NMR 

(400 MHz, acetone-d6) δ 9.06 (br s, 1H), 7.74 (br s, 1H), 7.57 – 7.48 (m, 3H), 7.41 – 7.33 (m, 3H), 

7.30 – 7.25 (app d, 1H), 7.10 (dd, J=8.32 Hz, J=2.32 Hz, 1H), 7.07 – 7.01 (m, 3H), 6.88 (s, 1H), 

4.92 (d, J=5.64 Hz, 2H), 4.43 (s, 2H).  

Photoaffinity competition experiment. An overnight of S. aureus strain Newman was 

subcultured 1:100 into 500 µL of TSB containing probe or probe and competitor on a 12 well 

plate. The bacteria were incubated at 37 °C and irradiated with the lizard lamp for 8 min. 

Replicates were combined, pelleted, and the cells washed with PBS. The cells were pelleted and 

resuspended in lysis buffer (PBS + 25 µg/mL lysostaphen + 1X EDTA-free protease inhibitor), 

incubated at 37 °C for 20 min, and sonicated 2x for 10 s at 80 % power. To the lysates were 
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added CuSO4 and TBTA to a final concentration of 200 µM, sodium ascorbate to a final 

concentration of 400 µM, and reporter to a final concentration of 50 µM. The lysates were 

rotated at room temperature in the dark for 2 h. Cold acetone was added to precipitate 

proteins and proteins were pelleted, the supernatant decanted, and the proteins resuspended 

in 1X SDS-PAGE loading buffer.  

Pulldown with photocleavable linker. Photolabeling and lysate preparation were conducted as 

described for the competition experiment. To the prepared lysate was added TBTA to a final 

concentration of 200 μM, CuBr to a final concentration of 200 μM, and cleavable linker 7.32 to 

a final concentration of 50 μM. The reaction was incubated at room temperature on a sample 

rotisserie in the dark for 2 h. The lysate was passed through a GE Healthcare PD10 desalting 

column. To the desalted lysate was added streptavidin beads and the reaction was rotated at 

room temperature in the dark for 1 h. The beads were washed with 0.1 % SDS in PBS, 4 M urea, 

1 M NaCl, and H2O. The beads were suspended in PBS and irradiated for 2 h with a 365 nm UV-

lamp. The supernatant was collected and concentrated in a 3K centrifuge filter. The streptavidin 

beads were suspended in 1X SDS-PAGE loading buffer and heated at 90 °C for 10 min.   
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Appendix to Chapter 7 

Table A7.1. Protein hit from last photocleavable pulldown experiment.  Values are spectral counts. 

# Identified Proteins (150) 
Molecular 

Weight 

10 μM 
7.26 + 
20 μM 
7501 

10 μM 
7.26 

10 μM 
7.31 

6 

DNA-directed RNA polymerase 
subunit beta' OS=Staphylococcus 
aureus (strain Newman) GN=rpoC 

PE=3 SV=1 135 kDa 2 33 15 

7 

Pyruvate carboxylase 
OS=Staphylococcus aureus (strain 

Newman) GN=pycA PE=4 SV=1 129 kDa 11 20 16 

8 

DNA-directed RNA polymerase 
subunit beta OS=Staphylococcus 

aureus (strain Newman) GN=rpoB 
PE=3 SV=1 133 kDa 2 38 9 

9 

Elongation factor G 
OS=Staphylococcus aureus (strain 

Newman) GN=fusA PE=3 SV=1 77 kDa 5 28 10 

10 

Elongation factor Tu 
OS=Staphylococcus aureus (strain 

Newman) GN=tuf PE=3 SV=1 43 kDa 2 22 15 

11 

Pyruvate kinase OS=Staphylococcus 
aureus (strain Newman) GN=pykA 

PE=3 SV=1 63 kDa 2 20 11 

12 

Putative uncharacterized protein 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_0811 PE=4 

SV=1 44 kDa 2 16 6 

14 

Probable malate:quinone 
oxidoreductase 2 OS=Staphylococcus 

aureus (strain Newman) GN=mqo2 
PE=3 SV=1 56 kDa 0 13 7 
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15 

Dehydrogenase family protein 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_2201 PE=4 

SV=1 41 kDa 2 11 7 

17 

Glycine--tRNA ligase 
OS=Staphylococcus aureus (strain 

Newman) GN=glyQS PE=3 SV=1 54 kDa 2 13 4 

18 

Glutamine synthetase 
OS=Staphylococcus aureus (strain 

Newman) GN=glnA PE=3 SV=1 51 kDa 0 15 3 

19 

Phosphoenolpyruvate-protein 
phosphotransferase 

OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_0950 PE=3 

SV=1 63 kDa 0 18 1 

21 

Leucine--tRNA ligase 
OS=Staphylococcus aureus (strain 

Newman) GN=leuS PE=3 SV=1 92 kDa 0 11 6 

22 

Dihydrolipoamide acetyltransferase 
component of pyruvate 
dehydrogenase complex 

OS=Staphylococcus aureus (strain 
Newman) GN=pdhC PE=3 SV=1 46 kDa 1 9 5 

23 

Glucosamine-fructose-6-phosphate 
aminotransferase, isomerizing 

OS=Staphylococcus aureus (strain 
Newman) GN=glmS PE=3 SV=1 66 kDa 0 13 3 

24 

FeS assembly protein SufB 
OS=Staphylococcus aureus (strain 

Newman) GN=sufB PE=4 SV=1 53 kDa 2 8 3 

26 

Dihydrolipoyl dehydrogenase 
OS=Staphylococcus aureus (strain 

Newman) GN=pdhD PE=3 SV=1 49 kDa 0 8 5 

27 

30S ribosomal protein S3 
OS=Staphylococcus aureus (strain 

Newman) GN=rpsC PE=3 SV=1 24 kDa 1 6 5 
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28 

Oligoendopeptidase F 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_0870 PE=4 

SV=1 70 kDa 0 9 3 

29 

Phosphoglycerate kinase 
OS=Staphylococcus aureus (strain 

Newman) GN=pgk PE=3 SV=1 43 kDa 2 7 2 

30 

30S ribosomal protein S2 
OS=Staphylococcus aureus (strain 

Newman) GN=rpsB PE=3 SV=1 29 kDa 1 6 3 

31 

6-phosphogluconate dehydrogenase, 
decarboxylating OS=Staphylococcus 

aureus (strain Newman) GN=gnd 
PE=3 SV=1 52 kDa 1 9 1 

32 

ATP-dependent Clp protease, ATP-
binding subunit ClpC 

OS=Staphylococcus aureus (strain 
Newman) GN=clpC PE=3 SV=1 91 kDa 0 7 5 

33 

Glyceraldehyde 3-phosphate 
dehydrogenase 1 OS=Staphylococcus 

aureus (strain Newman) GN=gapA 
PE=3 SV=1 36 kDa 1 6 4 

34 

Protein translocase subunit SecA 1 
OS=Staphylococcus aureus (strain 
Newman) GN=secA1 PE=3 SV=1 96 kDa 0 7 1 

35 

Carbamoyl-phosphate synthase large 
chain OS=Staphylococcus aureus 

(strain Newman) GN=carB PE=3 SV=1 117 kDa 1 11 1 

36 

Ribonucleoside-diphosphate 
reductase OS=Staphylococcus aureus 
(strain Newman) GN=nrdE PE=3 SV=1 82 kDa 0 5 5 

37 

Isoleucine--tRNA ligase 
OS=Staphylococcus aureus (strain 

Newman) GN=ileS PE=3 SV=1 105 kDa 0 10 1 
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38 

Glutamyl-tRNA(Gln) 
amidotransferase subunit A 

OS=Staphylococcus aureus (strain 
Newman) GN=gatA PE=3 SV=1 53 kDa 0 6 4 

39 

GMP synthase [glutamine-
hydrolyzing] OS=Staphylococcus 

aureus (strain Newman) GN=guaA 
PE=3 SV=1 58 kDa 0 8 2 

40 

Aconitate hydratase 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_1263 PE=4 

SV=1 99 kDa 1 8 0 

41 

Adenylosuccinate lyase 
OS=Staphylococcus aureus (strain 

Newman) GN=purB PE=4 SV=1 50 kDa 0 6 5 

42 

ABC transporter ATP-binding protein 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_1303 PE=4 

SV=1 60 kDa 0 8 3 

43 

Acetate kinase OS=Staphylococcus 
aureus (strain Newman) GN=ackA 

PE=3 SV=1 44 kDa 1 8 2 

44 

ATP-dependent helicase/nuclease 
subunit A OS=Staphylococcus aureus 

(strain Newman) GN=addA PE=3 
SV=1 141 kDa 1 3 0 

46 

Transketolase OS=Staphylococcus 
aureus (strain Newman) GN=tkt PE=3 

SV=1 72 kDa 0 8 1 

48 

Inosine-5'-monophosphate 
dehydrogenase OS=Staphylococcus 
aureus (strain Newman) GN=guaB 

PE=3 SV=1 53 kDa 0 7 1 

49 

Chaperone protein DnaK 
OS=Staphylococcus aureus (strain 

Newman) GN=dnaK PE=3 SV=1 66 kDa 0 6 3 
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50 

Naphthoate synthase 
OS=Staphylococcus aureus (strain 
Newman) GN=memB PE=4 SV=1 30 kDa 0 7 2 

51 

Putative uncharacterized protein 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_0677 PE=4 

SV=1 16 kDa 0 5 1 

52 

Acetyl-CoA carboxylase, biotin 
carboxyl carrier protein 

OS=Staphylococcus aureus (strain 
Newman) GN=accB PE=4 SV=1 17 kDa 2 1 1 

53 

Aspartyl/glutamyl-tRNA(Asn/Gln) 
amidotransferase subunit B 

OS=Staphylococcus aureus (strain 
Newman) GN=gatB PE=3 SV=1 54 kDa 0 6 2 

54 

Asparagine--tRNA ligase 
OS=Staphylococcus aureus (strain 

Newman) GN=asnS PE=3 SV=1 49 kDa 0 6 2 

55 

6-phosphofructokinase 
OS=Staphylococcus aureus (strain 

Newman) GN=pfkA PE=3 SV=1 35 kDa 1 5 2 

56 

Molecular chaperone Hsp31 and 
glyoxalase 3 OS=Staphylococcus 

aureus (strain Newman) GN=hchA 
PE=3 SV=1 32 kDa 1 3 2 

57 

RNA-metabolising metallo-beta-
lactamase OS=Staphylococcus aureus 
(strain Newman) GN=NWMN_1184 

PE=4 SV=1 63 kDa 0 3 3 

58 

Aspartate--tRNA ligase 
OS=Staphylococcus aureus (strain 

Newman) GN=aspS PE=3 SV=1 67 kDa 0 4 2 

59 

Small GTP-binding protein 
domain:GTP-binding protein TypA 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_0974 PE=4 

SV=1 69 kDa 0 4 2 
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60 

Glucose-6-phosphate isomerase 
OS=Staphylococcus aureus (strain 

Newman) GN=pgi PE=3 SV=1 50 kDa 0 7 0 

61 

Putative uncharacterized protein 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_0956 PE=4 

SV=1 63 kDa 1 2 1 

62 

Aldehyde dehydrogenase family 
protein OS=Staphylococcus aureus 
(strain Newman) GN=NWMN_2026 

PE=3 SV=1 52 kDa 1 2 0 

63 
Catalase OS=Staphylococcus aureus 

(strain Newman) GN=katA PE=3 SV=1 59 kDa 0 5 1 

64 

Aerobic glycerol-3-phosphate 
dehydrogenase OS=Staphylococcus 
aureus (strain Newman) GN=glpD 

PE=3 SV=1 64 kDa 0 3 2 

65 

DNA-directed RNA polymerase 
subunit alpha OS=Staphylococcus 
aureus (strain Newman) GN=rpoA 

PE=3 SV=1 35 kDa 0 4 2 

66 

Dak phosphatase OS=Staphylococcus 
aureus (strain Newman) 

GN=NWMN_1136 PE=4 SV=1 61 kDa 0 4 2 

67 

ATP synthase subunit alpha 
OS=Staphylococcus aureus (strain 

Newman) GN=atpA PE=3 SV=1 55 kDa 0 3 1 

68 

30S ribosomal protein S5 
OS=Staphylococcus aureus (strain 

Newman) GN=rpsE PE=3 SV=1 17 kDa 0 6 1 

69 

4-amino-4-deoxychorismate lyase 
OS=Staphylococcus aureus (strain 

Newman) GN=pabC PE=4 SV=1 24 kDa 0 2 1 
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70 

Polyribonucleotide 
nucleotidyltransferase 

OS=Staphylococcus aureus (strain 
Newman) GN=pnp PE=3 SV=1 77 kDa 0 5 0 

72 

Elongation factor 4 
OS=Staphylococcus aureus (strain 

Newman) GN=lepA PE=3 SV=1 68 kDa 0 3 1 

74 

DNA polymerase III subunit beta 
OS=Staphylococcus aureus (strain 

Newman) GN=dnaN PE=3 SV=1 42 kDa 0 3 2 

75 

CTP synthase OS=Staphylococcus 
aureus (strain Newman) GN=pyrG 

PE=3 SV=1 60 kDa 0 2 2 

76 

Pyruvate dehydrogenase E1 
component, beta subunit 

OS=Staphylococcus aureus (strain 
Newman) GN=phdB PE=4 SV=1 35 kDa 0 4 2 

77 

S-adenosylmethionine synthase 
OS=Staphylococcus aureus (strain 

Newman) GN=metK PE=3 SV=1 44 kDa 0 3 2 

78 

ATP-dependent Clp protease, ATP-
binding subunit ClpC 

OS=Staphylococcus aureus (strain 
Newman) GN=clpC PE=4 SV=1 78 kDa 0 3 1 

79 

Pyruvate oxidase OS=Staphylococcus 
aureus (strain Newman) GN=poxB 

PE=3 SV=1 64 kDa 0 4 1 

80 

Ribose-phosphate 
pyrophosphokinase 

OS=Staphylococcus aureus (strain 
Newman) GN=prs PE=3 SV=1 35 kDa 0 4 1 

81 

Alkyl hydroperoxide reductase 
subunit C OS=Staphylococcus aureus 

(strain Newman) GN=ahpC PE=4 
SV=1 21 kDa 0 3 1 
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82 

Proline--tRNA ligase 
OS=Staphylococcus aureus (strain 

Newman) GN=proS PE=3 SV=1 64 kDa 0 3 1 

83 

ATP-dependent DNA helicase 
OS=Staphylococcus aureus (strain 

Newman) GN=pcrA PE=4 SV=1 84 kDa 0 4 0 

84 

D-alanine--poly(phosphoribitol) 
ligase subunit 1 OS=Staphylococcus 

aureus (strain Newman) GN=dltA 
PE=3 SV=1 55 kDa 0 3 0 

85 

Cell division protein ftsA 
OS=Staphylococcus aureus (strain 

Newman) GN=ftsA PE=3 SV=1 53 kDa 0 4 0 

86 

Putative uncharacterized protein 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_1739 PE=4 

SV=1 18 kDa 1 3 1 

87 

30S ribosomal protein S10 
OS=Staphylococcus aureus (strain 

Newman) GN=rpsJ PE=3 SV=1 12 kDa 1 1 3 

88 

50S ribosomal protein L21 
OS=Staphylococcus aureus (strain 

Newman) GN=rplU PE=3 SV=1 11 kDa 1 1 2 

89 

Putative uncharacterized protein 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_0600 PE=4 

SV=1 76 kDa 0 0 2 

90 

50S ribosomal protein L5 
OS=Staphylococcus aureus (strain 

Newman) GN=rplE PE=3 SV=1 20 kDa 0 2 1 

91 

Nicotinate 
phosphoribosyltransferase 

OS=Staphylococcus aureus (strain 
Newman) GN=nadC PE=3 SV=1 56 kDa 0 2 0 
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92 

MarR family regulatory protein 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_0655 PE=4 

SV=1 17 kDa 0 3 2 

93 

Bifunctional purine biosynthesis 
protein PurH OS=Staphylococcus 

aureus (strain Newman) GN=purH 
PE=3 SV=1 54 kDa 0 2 1 

94 

Arginine--tRNA ligase 
OS=Staphylococcus aureus (strain 

Newman) GN=argS PE=3 SV=1 62 kDa 0 2 1 

96 

ATP-dependent Clp protease 
proteolytic subunit 

OS=Staphylococcus aureus (strain 
Newman) GN=clpP PE=3 SV=1 22 kDa 0 4 1 

97 

UPF0447 protein NWMN_0550 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_0550 PE=3 

SV=1 29 kDa 0 4 1 

98 

Phosphoribosylformylglycinamidine 
synthase 2 OS=Staphylococcus 

aureus (strain Newman) GN=purL 
PE=3 SV=1 80 kDa 0 3 0 

99 

Phenylalanine--tRNA ligase beta 
subunit OS=Staphylococcus aureus 

(strain Newman) GN=pheT PE=3 
SV=1 89 kDa 0 5 0 

100 

UDP-N-acetylglucosamine 1-
carboxyvinyltransferase 1 

OS=Staphylococcus aureus (strain 
Newman) GN=murA PE=3 SV=1 45 kDa 0 5 0 

103 

Uridylate kinase OS=Staphylococcus 
aureus (strain Newman) GN=pyrH 

PE=3 SV=2 26 kDa 1 0 2 

104 

50S ribosomal protein L4 
OS=Staphylococcus aureus (strain 

Newman) GN=rplD PE=3 SV=1 22 kDa 0 2 1 
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105 

Aspartate carbamoyltransferase 
OS=Staphylococcus aureus (strain 

Newman) GN=pyrB PE=3 SV=1 33 kDa 0 2 2 

106 

3-hydroxy-3-methylglutaryl 
coenzyme A synthase 

OS=Staphylococcus aureus (strain 
Newman) GN=mvaS PE=4 SV=1 43 kDa 0 2 2 

107 

Hydrolase OS=Staphylococcus aureus 
(strain Newman) GN=NWMN_2480 

PE=4 SV=1 31 kDa 0 2 1 

108 

DNA mismatch repair protein MutS 
OS=Staphylococcus aureus (strain 

Newman) GN=mutS PE=3 SV=1 100 kDa 1 3 0 

109 

Transcriptional regulator sarA 
OS=Staphylococcus aureus (strain 

Newman) GN=sarA PE=1 SV=1 15 kDa 0 3 1 

110 

DNA gyrase subunit B 
OS=Staphylococcus aureus (strain 

Newman) GN=gyrB PE=3 SV=1 73 kDa 0 2 1 

111 

50S ribosomal protein L14 
OS=Staphylococcus aureus (strain 

Newman) GN=rplN PE=3 SV=1 13 kDa 0 2 2 

112 

50S ribosomal protein L22 
OS=Staphylococcus aureus (strain 

Newman) GN=rplV PE=3 SV=1 13 kDa 0 1 3 

113 

Pyruvate dehydrogenase E1 
component, alpha subunit 

OS=Staphylococcus aureus (strain 
Newman) GN=phdA PE=4 SV=1 41 kDa 0 2 2 

114 

3-oxoacyl-[acyl-carrier protein] 
reductase OS=Staphylococcus aureus 
(strain Newman) GN=fabG PE=3 SV=1 26 kDa 0 1 2 
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115 

Alkaline shock protein 23 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_2086 PE=4 

SV=1 19 kDa 0 3 0 

116 

Glycerol kinase OS=Staphylococcus 
aureus (strain Newman) GN=glpK 

PE=3 SV=1 56 kDa 0 4 0 

117 

Fumarylacetoacetate hydrolase 
family protein OS=Staphylococcus 

aureus (strain Newman) 
GN=NWMN_0839 PE=4 SV=1 33 kDa 0 4 0 

118 

UDP-N-acetylglucosamine 1-
carboxyvinyltransferase 2 

OS=Staphylococcus aureus (strain 
Newman) GN=murZ PE=3 SV=1 45 kDa 0 4 0 

119 

UDP-N-acetylglucosamine--N-
acetylmuramyl-(pentapeptide) 

pyrophosphoryl-undecaprenol N-
acetylglucosamine transferase 

OS=Staphylococcus aureus (strain 
Newman) GN=murG PE=3 SV=1 40 kDa 3 0 0 

120 

Coenzyme A disulfide reductase 
OS=Staphylococcus aureus (strain 

Newman) GN=cdr PE=3 SV=1 49 kDa 0 2 0 

121 

RNA polymerase sigma factor 
OS=Staphylococcus aureus (strain 

Newman) GN=sigA PE=3 SV=1 42 kDa 1 2 0 

122 

Sigma factor sigB regulation protein 
OS=Staphylococcus aureus (strain 

Newman) GN=rsbU PE=4 SV=1 38 kDa 1 2 0 

123 

(3R)-hydroxymyristoyl-[acyl-carrier-
protein] dehydratase 

OS=Staphylococcus aureus (strain 
Newman) GN=fabZ PE=3 SV=1 16 kDa 0 2 1 

124 

Putative uncharacterized protein 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_0355 PE=4 

SV=1 41 kDa 0 2 0 
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125 
Enolase OS=Staphylococcus aureus 

(strain Newman) GN=eno PE=3 SV=1 47 kDa 0 1 2 

126 

30S ribosomal protein S4 
OS=Staphylococcus aureus (strain 

Newman) GN=rpsD PE=3 SV=1 23 kDa 0 1 2 

127 

DNA polymerase III gamma subunit 
OS=Staphylococcus aureus (strain 

Newman) GN=dnaX PE=4 SV=1 63 kDa 2 1 0 

129 

DNA topoisomerase 
OS=Staphylococcus aureus (strain 

Newman) GN=topA PE=3 SV=1 79 kDa 0 2 0 

130 

DNA polymerase III polC-type 
OS=Staphylococcus aureus (strain 

Newman) GN=polC PE=3 SV=1 163 kDa 0 2 0 

131 

Cysteine synthase 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_0475 PE=3 

SV=1 33 kDa 0 3 0 

132 

Probable manganese-dependent 
inorganic pyrophosphatase 

OS=Staphylococcus aureus (strain 
Newman) GN=ppaC PE=3 SV=1 34 kDa 0 3 0 

133 

D-alanine--D-alanine ligase 
OS=Staphylococcus aureus (strain 

Newman) GN=ddl PE=3 SV=1 40 kDa 0 2 0 

134 

Putative uncharacterized protein 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_2045 PE=4 

SV=1 53 kDa 0 2 0 

135 

DNA gyrase subunit A 
OS=Staphylococcus aureus (strain 

Newman) GN=gyrA PE=3 SV=1 100 kDa 0 2 0 
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136 

Oligoendopeptidase F 
OS=Staphylococcus aureus (strain 

Newman) GN=pepF PE=4 SV=1 69 kDa 0 2 0 

138 

Zinc-containing alcohol 
dehydrogenase superfamily protein 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_2272 PE=4 

SV=1 37 kDa 0 3 0 

141 

Pyridoxal biosynthesis lyase pdxS 
OS=Staphylococcus aureus (strain 

Newman) GN=pdxS PE=3 SV=1 32 kDa 0 0 2 

142 

Glutamate racemase 
OS=Staphylococcus aureus (strain 

Newman) GN=murI PE=3 SV=1 30 kDa 0 2 0 

143 

Alanine--tRNA ligase 
OS=Staphylococcus aureus (strain 

Newman) GN=alaS PE=3 SV=1 99 kDa 0 2 0 

144 

Methionyl-tRNA synthetase 
OS=Staphylococcus aureus (strain 

Newman) GN=metS PE=3 SV=1 75 kDa 0 2 0 

145 

ATP-dependent zinc metalloprotease 
FtsH OS=Staphylococcus aureus 

(strain Newman) GN=ftsH PE=3 SV=1 78 kDa 0 2 0 

146 

Transcription termination-
antitermination factor 

OS=Staphylococcus aureus (strain 
Newman) GN=nusA PE=4 SV=1 44 kDa 0 2 0 

147 

Glucokinase OS=Staphylococcus 
aureus (strain Newman) GN=glk PE=4 

SV=1 35 kDa 0 2 0 

148 

General stress protein-like protein 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_1632 PE=4 

SV=1 18 kDa 0 2 0 
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149 

Glutamyl-aminopeptidase 
OS=Staphylococcus aureus (strain 
Newman) GN=NWMN_1638 PE=4 

SV=1 40 kDa 0 2 0 

150 

Ferritin OS=Staphylococcus aureus 
(strain Newman) GN=NWMN_1831 

PE=4 SV=1 20 kDa 0 2 0 
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CHAPTER 8 

CONCLUSIONS AND FUTURE DIRECTIONS 
 

8.1 Summary 

 The work presented in this dissertation has focused on the chemical synthesis and 

application of small molecule probes for the study of bacterial metal acquisition and 

homeostasis. This has encompassed two main projects; 1) the total synthesis of the natural 

product siderophore coelichelin and 2) structure-activity relationship and target identification 

studies of two small molecule activators of the heme stress response in Staphyloccocus aureus. 

The following is a general summary of the results and elaboration on the future directions for 

these projects.  

 

8.2 Progress towards the total synthesis of coelichelin 

 Studies towards the total synthesis of coelichelin have focused on developing a 

convergent route beginning from readily available starting materials and utilizing orthogonal 

protecting groups. Reaction sequences have been optimized to provide gram-scale quantities of 

the advanced intermediate coupling components 8.1, 8.2, and 8.3 (Figure 8.1). The coupling 

strategy outlined in Chapter 2 employing preparation of a central dipeptide followed by N-

deprotection and bis-acylation to provide the fully protected tetrapeptide has been partially 

elaborated. Conditions for the first coupling to prepare central dipeptide 8.4 have been 

developed. However, yields of this critical first coupling step are not high typically giving 50 – 60 

% of the protected dipeptide. In addition, Boc group removal proceeds with considerable 
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decomposition requiring the product to be further purified by HPLC. Conditions for the 

coupling-deprotection sequence require further optimization in order to maximize material 

throughput.  

 Several attempts at the second key bis-amide coupling were encouraging but not 

conclusive. Preliminary spectral analysis of the coupling product indicated the reaction 

proceeded but requires further optimization and complete characterization of the product. This 

step will likely require screening of several reactions to identify optimal coupling conditions. 

With the protected tetrapeptide in hand, removal of protecting groups to afford coelichelin 

should proceed in two steps, the order of which may or may not be important. Removal of the 

Boc protecting groups requires acidic conditions. While this deprotection step should not be 

complicated, we do anticipate some product decomposition as observed in the preceding Boc 

deprotection. Finally, the four benzyl protecting groups need to be removed by 

hydrogenoloysis, a reaction well precedented in related siderophore syntheses.1,2 We 

anticipate the benzyl ester will also be removed to provide the acid under these reaction 

conditions.  

 With the compound in hand, the biological activity of the synthesized natural product 

can then be evaluated. We originally intended to study the effects of coelichelin treatment on 

S. aureus, though these experiments can be extended to other organisms. IC50 curves for S. 

aureus treated with coelichelin will be generated to determine concentrations that inhibit 

growth. A similar experiment with added Fe3+ and Zn2+ will be conducted to determine their 

ability to reverse coelichelin induced growth inhibition. Using a strain of S. aureus bearing a 
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luciferase reporter under the control of Fur, the ability of coelichelin to activate an iron-stress 

response will be evaluated at several concentrations. 

 A potentially useful application building off of this route to coelichelin would be the 

development of a photoactivatable coelichelin derivative. Photoreactive groups such as o-

nitrobenzyl compounds, which are commonly used for photocaging applications3, could be 

introduced by replacing the O-benzyl ethers with o-nitrobenzyl ethers as protecting groups for 

the hydroxylamine moieties. The molecule, which almost certainly would not chelate iron in the 

caged form, could be activated at any point during bacterial growth by irradiation with the 

appropriate wavelength of light. The activation wavelength can be red-shifted by various 

substitutions on the phenyl ring4 to avoid using UV light for activation which would likely 

damage the biological system under study. The growth media could be inoculated with the 

photocaged siderophore at the beginning of the experiment and, at any desired time point, 

irradiated to activate the siderophore and induce iron sequestration. Such a molecule could 

facilitate the study of the response to iron depletion in bacteria (and other organisms) by 

allowing greater temporal control over iron concentrations.  
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Figure 8.1. Summary of coelichelin project. A. Progress towards the total synthesis of 
coelichelin. B. Proposed photoactivatable coelichelin.  
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8.3 Small molecule activators of the heme stress response in S. aureus 

 Chapters 3 and 4 focus on studying the structure-activity relationships of ‘8882 and 

‘3981, molecules identified as activators of HssRS in S. aureus. The information gained was 

applied to the development of chemical probes for target identification and this work was 

presented in Chapters 6 and 7.  

 

Figure 8.2. Summary of structure-activity relationship studies of ‘8882 (A) and ‘3981 (B). (Note: 
Summary of ‘8882 activity is for HssRS activation. 

 

SAR studies of ‘8882 

 The preliminary studies on structure-activity relationships of ‘8882 presented in Chapter 

3 featured the synthesis and activity testing of 31 derivatives focused on understanding SAR 
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around four regions of the molecule (Figure 8.2). While the information gained from this work 

has been useful for understanding basic SAR and applying that to probe design, more extensive 

SAR studies should be conducted. This includes expansion of the library to include more 

derivatives to focus on the areas of the molecule not thoroughly covered by the work 

presented in Chapter 3. In particular, modification of the western ring was not extensively 

studied and alternate substituents such as indazoles, fluorinated phenyl rings, and nitrogen 

containing rings should be prepared and tested. In addition, the central pyrazole core should be 

replaced by alternate heterocycles.  

 New derivatives should be screened for HssRS (in vivo) and HemY (in vitro) activation. 

Given the discrepancy between these two activities as discussed in Chapter 3, it is worth 

exploring the reason for this disparity, particularly in the context of developing therapeutics as 

both activities would need to be optimized.  

SAR studies of ‘3981 

 The SAR around ‘3981 has been extensively studied as presented in Chapter 4. It is clear 

that inductive effects are important for activity and substitution on the benzyl ring controls 

activity. Derivatives that should be prepared to further study SAR include introducing chirality 

at the benzylic carbon (by substitution with methyl or other groups), placement of electron 

withdrawing or releasing groups into the phenoxy ether ring of the biaryl ether, and cyclization 

to aminobenzothiazole derivatives.  

 Several molecules were identified from the initial SAR studies of ‘3981 that exhibited 

greater efficacy and reduced potency compared to the parent molecule. Given that ‘3981 and 

‘7501 do not require heme to activate HssRS, these molecules may be valuble probes for 
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studying heme toxicity in S. aureus. It would be interesting to compare RNAseq data between 

heme and ‘7501 treated samples. There would most likely be overlap between certain RNAs 

that may help define heme toxicity.  

 

 
 

Figure 8.3. Areas of ‘8882 (A) and ‘3981 (B) to explore SAR in future studies. 

 
 

‘8882 target identification 

 As presented in Chapter 6, several clickable photoaffinity probes based on ‘8882 SAR 

were prepared and are able to activate HssRS. Presumably, this activation is through interaction 

with HemY though the probes have not been directly tested in the HemY assay and should be 

evaluated and compared to the other derivatives. While 8.6 was extensively used for target 

identification experiments, no samples were ever submitted for proteomic analysis. A pulldown 

experiment using 8.6, 8.7 and suitable controls should be conducted to generate a list of 

putative target proteins. This could serve to further confirm HemY and SufC as targets as well as 

identify potential undiscovered targets. In addition, these probes can be used to confirm in vivo 

target (HemY or SufC) engagement.  
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‘3981 target Identification 

 A clickable photoaffinity probe developed based on ‘3981 SAR was prepared as detailed 

in Chapter 7. Several experiments were conducted. The first round of experiments focused on 

identifying bands that appear in a probe treated sample and diminish or disappear in a control 

sample. Controls were generally treated with free compound to compete off specific 

interactions. These experiments did not consistently identify candidate targets. The focus was 

then shifted towards utilizing proteomics data to identify candidate targets. To facilitate this, a 

photocleavable linker was utilized to minimize nonspecific binding proteins appearing in 

proteomics samples. Several experiments were conducted using this linker and, after much 

optimization, the final experiment generated a fairly long list of candidate target proteins. It is 

clear additional controls will be necessary in future experiments. These could include using a 

“just beads’ control where a sample excluding the photocleavable linker is prepared to control 

for proteins that stick to the beads. In theory, these proteins should not appear in the 

photoelution samples but this may not be the case. Another potential control would be the use 

of an alternate cleavable linker.   
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Figure 8.4. Summary of probes developed for target identification for ‘8882 (8.5 – 8.7) and 
‘3981 (8.8). 
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