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CHAPTER I 

 

1. INTRODUCTION 

on 

 

1.1 Motivati

The reliability of high consequence systems, such as weapon systems, has been 

traditionally established by testing individual systems and verifying that their 

performance is within some acceptable limits. Although full scale testing is currently not 

feasible for some full systems under actual use environments, some limited testing is 

often available for components, assemblies (i.e. groups of components) and a very 

limited number of tests of the full system in other use environments or in laboratory 

controlled tests. Modeling and simulation fill the gap left by the lack of full scale testing 

for the actual use environments. Because component level data are cheaper and easier to 

obtain relative to the system data, it is advantageous to have the ability to build individual 

models of the components and/or assemblies using the available data and incorporate 

them into the system level model. This leads to a hierarchical approach to building 

system level models and consequently the uncertainty in the system level model is a 

function of the component level data and of the knowledge not captured in the component 

level data. Furthermore, because tests cannot be performed for many actual use 

environments, the model is required to extrapolate beyond the data it was developed 

from. To establish confidence in an extrapolated model prediction, sources of uncertainty 

must be identified, quantified and propagated through the model to the response quantity 

of interest at the system level.  
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One formal framework to establish confidence in an extrapolated system level 

model response within the context of nuclear weapons was proposed at Sandia National 

Laboratories (referred to as Sandia hereafter) and it is referred to as Risk Informed 

Decision Analysis (RIDA). A central statement of RIDA which provides the main 

motivation for this research states (Pilch et al., 2006): 

 “Whatever mathematical form an application of Risk Informed Decision 
Analysis (RIDA) to a stockpile lifecycle decision might take, it requires 
that all uncertainties be identified and characterized. This includes the 
separate quantification of both variability (i.e., aleatoric uncertainty) and 
lack-of-knowledge uncertainty (i.e., epistemic uncertainty), as well as 
definitions of “other factors” and quantified characterizations of their 
individual contributions to uncertainty. RIDA also requires attention to 
uncertainties in requirements and decision criteria, such as definitions of 
performance thresholds that are fundamental to the decision making. In 
addition, RIDA requires complete transparency of all the information to 
make the decision process understandable, traceable, and reproducible 
(documented).”   

 

For the purpose of this dissertation, it will be assumed that the statement “… all 

uncertainties be identified and characterized” refers to all relevant uncertainties and not 

the whole universe of what is uncertain about a system. In this context, aleatoric 

uncertainty or variability is irreducible and in most cases can be characterized via a 

probability density function. These arise due to inherent variations in materials, assembly 

of components and test conditions. Epistemic uncertainty is due to lack of knowledge 

about a particular behavior in a system. These arise due to non-existent or incomplete 

data regarding a material behavior or a certain phenomenon, uncertainty in the choice of 

a computational model, the coupling of two distinct phenomena for which no information 

is available, and the probability density form and statistics chosen to represent a random 

variable. Epistemic uncertainty is reducible in the sense that with more information one 
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could gain increased insight into the behavior of a particular variable. If we seek to make 

our models a closer representation of an actual system, these types of uncertainties must 

be included in the analysis. Returning to the RIDA statement, notice that it allows for any 

mathematical framework to be used, whether classical or Bayesian probability methods, 

evidence theory or others, provided that it can be documented and defensible. This 

statement also requires the identification, quantification and propagation of uncertainty 

throughout the process. Dealing with the different types of uncertainties present in the 

system is a central topic of this research.   

A central concept in this process of RIDA is the Quantification of Margins and 

Uncertainty (QMU). In Pilch et al, 2006, QMU is defined as: 

 “QMU is a decision-support methodology for complex technical 
decisions centering on performance thresholds and associated margins for 
engineered systems that are made under conditions of uncertainty. RIDA 
does not base its decision outcomes solely on the results of QMU. Rather, 
QMU provides only part of the input into the decision process.” 

  

QMU is thus the methodology that requires quantification of performance thresholds and 

margins, as well as the associated uncertainty in their evaluation. Pilch et al, 2006 does 

not provide a mathematical formulation of how this quantification should be done but it 

only spells out the steps or elements that such quantification should have. This provides 

an opportunity to use tools from well-established fields, such as reliability analysis, to 

address this. 

At Sandia, there has been an emphasis on developing models of components from 

first principles, calibrating them from simple exploratory experiments, validating them 

relative to a different set of experiments and then using them within a more complex 
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model. What was described above is a hierarchical approach to building a system level 

model and has been repeatedly used at Sandia and other Department of Energy research 

laboratories. It basically is a construction of a complex system model by using a building 

block approach that incorporates simpler component based models and couples them 

together. This research proposes to use any available data to augment the knowledge base 

used to infer the uncertainty in the parameters of a model. By using Bayesian updating 

techniques and Bayes networks, it should be possible to incorporate the available data at 

multiple levels, update the model parameters and make model predictions to reflect the 

new information that was previously not available to the other individual levels. This 

methodology has been explored initially in Rebba (2005) for a system consisting of two 

levels of complexity and the current research extends this work to a 2-component system.   

In this research, the aim is to quantify and propagate uncertainty and evaluate 

confidence in the extrapolated response of the model prediction at actual use conditions. 

To demonstrate the methodologies developed in this research, an example problem 

developed at Sandia is used and it is described in Chapter 3. The proposed problem has 

the following characteristics: 

1. It is a 2-component problem where one branch involves a mechanical joint and 

the other, an encapsulating foam. Both are energy dissipating mechanisms. 

2. It is a multi-level problem where the phenomenon observed at the lowest level is 

assumed to be present at subsequent levels, i.e. damping in the joints and foam is 

assumed to be present at all levels. The degree to which the damping at one level 

is similar to the damping at another is a source of uncertainty and thus, the 
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relationship of energy dissipation at one level to energy dissipation at another 

level may be difficult to establish. 

3. The individual component branches, joint and foam, converge to a system level 

hardware where the two couple together. The interaction of the two physics is a 

potential source of epistemic uncertainty because this had not been previously 

tested.  

4. Experimental data consists of repeated tests on several, nominally identical 

hardware systems. These are intended to quantify the variability inherent in a 

physical system. 

5. Finite element models for all levels are built and verified (i.e. mesh convergence, 

time step convergence and PDE solver tolerance are calibrated to generate stable 

answers) and used to simulate a particular behavior of the physical hardware they 

represent. The model parameters have been calibrated from simple, discovery 

experiments aimed at isolating the particular physical phenomena that the model 

is meant to represent. 

 

1.2 Research Objectives 

The main objective of this work is to incorporate various sources of uncertainty into 

an analysis framework that combines information, in a probabilistic manner, to quantify 

and propagate uncertainty to a system level response. Information is contained at 

different levels of complexity and it also comes from different physical sources (i.e. 

different components). The work presented here establishes a framework that allows 
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various sources of information to be combined in a probabilistic manner and incorporates 

different sources of uncertainty. To address the main focus of this research, the following 

objectives are proposed:  

1. Quantification and propagation of aleatoric uncertainty (variability) in a 

hierarchically built system model;  

2. Quantification and propagation of both aleatoric and epistemic uncertainty (lack 

of or incomplete knowledge) in a hierarchically built system model; 

3. Quantification of margins and uncertainties (QMU) in a system level response to 

support a risk informed decision analysis; and 

4. Resource allocation using QMU.  

Research objective 1 establishes the baseline framework to propagate and 

quantify sources of uncertainty.  Uncertainty quantification analysis will be done on a 

hierarchical system model which incorporates sources of aleatoric uncertainty within the 

context of a multi-level, multi-component problem using a Bayes network as the main 

analysis framework. The Bayes network is chosen because it conveniently allows the 

modeling of both causal-type relationships and statistical dependencies between sets of 

data within a probability framework based on conditional probabilities between the 

various nodes of the network. This framework also allows any available experimental 

data to be incorporated into the analysis and updates the conditional probabilities. Once 

updated, the posterior probabilities of all nodes in the network can be obtained. The 

extrapolated response of the full system is also investigated. This objective extends the 

work of Rebba (2005) by considering a multi-level, multi-component system and 
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quantifies uncertainty in the extrapolated quantity. A key issue to address is the actual 

implementation of this methodology to perform fast and efficient computation. 

Research objective 2 extends the methodology described in objective 1 to 

incorporate sources of epistemic uncertainty into the Bayes network framework 

developed in objective 1. For this objective, the main difference is that some of the input 

parameters to a model would be specified in terms of bounds on a parameter given by 

experts and not by full probability density functions. An approach that is currently under 

development and described in McDonald et al, (2009a) and in Venkataraman and Wilson 

(1987) will be implemented in this research. This approach starts by calculating the 

sample mean and the next three central moments of intervals representing the epistemic 

uncertainty as described in Ferson et al (2007) and implemented in McDonald et al (2009 

b,c). These moments are then used to estimate the parameters of a Johnson family of 

distributions by any one of four methods presented in DeBrota et al (1998). The Johnson 

distributions will be incorporated in the Bayes network in a manner similar to objective 1.  

Research objective 3 implements the quantification of margins and uncertainty 

(QMU) approach using the uncertainty in the extrapolated model response obtained in 

objectives 1 and 2. In this research an approach similar to reliability analysis will be used 

to implement QMU. It is based on calculating the amount of overlap between a system 

level performance and a given requirement. This overlap defines the probability of failure 

of the system and it is used as a comparison metric for the purpose of this dissertation. 

This approach uses the uncertainty quantification results obtained in Objectives 1 and 2 

and a given performance requirement to estimate the probability of failure. A comparison 

of the results when aleatoric and epistemic uncertainty is included in the analysis versus 
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only aleatoric uncertainty is presented. Additionally, a comparison of the failure metrics 

obtained with different methodologies to model epistemic uncertainty is presented. 

Research objective 4 ties together the previous three objectives and considers the 

resource allocation in terms of improving the confidence in the system model. Based on 

the required confidence level and the calculated confidence based on the model response, 

an assessment will be made regarding whether or not the system is “certified” relative to 

the requirements. If the answer is no, then based on sensitivity analysis of the 

contribution of various nodes of the Bayes network to the overall model confidence, 

resource allocation guidance to achieve the required level of confidence could be given. 

Examples of resources are more experiments at a certain level, more model simulations, 

model refinement, reduction in uncertainty (particularly, epistemic uncertainty) in the 

model parameters, and reduction in  modeling errors due to solution approximation, 

model form error and others. Different actions have their associated costs. Various 

scenarios to achieve the required confidence are examined in this study.       

These objectives treat the various sources of uncertainty in a quantitative way, 

and when available, existing methods for addressing each objective are implemented and 

extended to multi-level models. 

 

1.3 Organization of Dissertation 

This dissertation is organized as follows. 

Chapter 2 provides background material and terminology relevant to this work. The 

formal weapon assessment process is briefly explained as well as the relevance of this 
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work to the current assessment process. The various technological challenges are noted in 

this chapter as well. 

 Chapter 3 presents the specific example problem to be solved. This is a Sandia 

National Laboratories relevant problem and details of both the testing and the modeling 

aspects are presented here. Determination of the relevant quantities of interest at each 

level of complexity and for each of the components in the problem as well as 

constructing surrogate models as an enabling technology are discussed within this 

chapter. 

Chapter 4 considers the baseline case where sources of uncertainty in the model 

input are considered aleatoric and treated in a probabilistic framework. This chapter 

introduces the basics of Bayesian analysis which includes Bayes networks and 

implements the proposed methodology to the problem described in Chapter 3. 

Chapter 5 extends the methodology developed and implemented in Chapter 4 to 

cases were both epistemic and aleatoric uncertainties are present. The implementation of 

various methodologies to accommodate the probabilistic treatment of epistemic 

uncertainty is described in this chapter and a comparison of various sets of results for the 

system level quantity of interest are presented here. 

Chapter 6 implements a reliability based approach to addressing QMU. This will 

be done by calculating the area of overlap between a system level response and a given 

threshold. This area is traditionally refer to as the probability of failure of a system and it 

is proposed in this work to be used as a metric of performance at the system level which 

incorporates sources of uncertainty in both the system level response and in the threshold. 
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Chapter 7 presents a methodology for resource allocation toward improvement of 

model confidence which incorporates analyses shown in Chapter 5 and Chapter 6. An 

optimization based solution is proposed to reduce the uncertainty in the decision metric 

of interest. A potential use of the results shown in this chapter will be to allow decision-

makers a way to allocate resources (computational, testing, monetary, etc) to increase the 

confidence in the system level prediction. 

Finally, the Chapter 8 presents general conclusions as well as recommendations 

for future work.  
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CHAPTER II 

 

2. BACKGROUND AND RELEVANT LITERATURE 

 

Four main research objectives were identified in Chapter 1 to address the overall 

goal of uncertainty quantification in a hierarchically built system model. The objectives 

are (1) Quantification and propagation of aleatoric uncertainty (variability), (2) 

Quantification and propagation of both aleatoric and epistemic uncertainty (lack of or 

incomplete knowledge), (3) Quantification of margins and uncertainties in system level 

prediction (QMU) to support a risk informed decision analysis and (4) Decision making 

for resource allocation towards improvement of model confidence and system 

performance. A review of the state-of-the-art for the various supporting methodologies 

used in this research is presented in the following sections.  

The sections of this chapter are organized as follows. Section 2.1 provides the 

background of the Risk Informed Decision Analysis (RIDA) paradigm which is the 

central motivating concept for this dissertation. Section 2.2 defines the concept of 

quantification of margins and uncertainties and its application to a modeling and 

simulation approach to quantifying uncertainty and establishing confidence in an 

extrapolated model prediction of a system. Section 2.3 considers some pros and cons of 

applying Bayesian analysis to address uncertainty quantification problems. This research 

proposes the use of Bayesian analysis as a tool to integrate observed data and prior 

knowledge about a quantity of interest to infer the distribution of this quantity given the 

observed data (i.e. the posterior distribution estimate of a quantity of interest). In doing 
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so, uncertainty is propagated through the hierarchical model to the system level. It is this 

uncertainty that is then used in the QMU analysis to estimate the confidence in the 

system level prediction. As stated in Chapter 1, QMU is the methodology that supports 

RIDA. Section 2.4 examines the sources of uncertainty and their treatment, particularly 

the probabilistic treatment of epistemic uncertainty. 

  

2.1 Risk Informed Decision Analysis (RIDA) 

This section starts with the statement of what qualities RIDA should posses 

according to Pilch et al. (2006) which was mentioned in Chapter 1. This statement, to say 

the least, is a complex set of requirements that incorporates abstractions that may or may 

not be attainable. Nevertheless, it is a challenge that is presented to the research 

community and should be addressed in a systematic way. The salient features of this 

statement are the text underlined and in bold typeface. The first point is the identification 

of all uncertainties present in a given system. This could be a monumental task, 

particularly for a complex system, because by definition, uncertainty is all that is not 

known for a fact. This implies that the categories of things that could be unknown, 

becomes known. This statement will be interpreted to mean that all sources of relevant 

uncertainty that substantially contribute to the uncertainty of system behavior will be 

identified which is more conducive to a real-life application. This statement immediately 

leads to the second highlighted point which is the quantification of both aleatoric and 

epistemic uncertainty. This topic will be extensively covered in section 2.3. The final 

issue is the attention to uncertainties in requirements and decision criteria which 
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ultimately leads to a final decision regarding the usability of the high consequence 

systems. This process is known as certification. 

 The developments in this work relate to UQ, QMU, RIDA and other modeling 

and assessment activities at DOE laboratories. Formally, the current annual certification 

process is a series of formalized reviews, conducted each year with multiple participants 

from various government and contractor organizations, culminating in a written 

certification letter from the US Secretaries of Defense and Energy to the President of the 

United States that the stockpile is safe and reliable in the absence of underground testing. 

The process serves to provide the President of the United States, and also the Secretary of 

Defense through Department of Defense participation, a measure of confidence that the 

nuclear deterrent is still safe and militarily effective (Perkins, 2000). The certification 

process is shown schematically in Figure 2.1. (Aloise, 2007). 
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Figure 2.1. Annual Certification Process of Nuclear Weapons Stockpile 

  

This certification process is what RIDA supports and the work at Sandia is integral to the 

decision by other members in the certification hierarchy. The purpose of this certification 

describes “’confidence in the stockpile’ as having two dimensions. The first, being 

based largely on a sufficient degree of thoroughness and probabilities calculated as a 

process because it provides the analysis of the components and this eventually leads to a 

is to establish a confidence in the stockpile which has a quantitative and a qualitative 

aspect. This is noted in the 1999 Foster-panel’s report to Congress (Foster, 1999). It 

quantitative, derives from scientific assessments and surveillance of the systems. It is 

result of a wide array of tests. The second dimension of confidence centers on judgment; 

it is based on trust in the ability of the people, methods, and tools available to find, 
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assess, and fix potential problems in the stockpile. Because of its qualitative nature and 

heavy reliance on judgment, it is this second facet which can be most perplexing. In fact, 

as we look closer at the overall process, we will find that once all the caveats and 

assumptions are accounted for in "quantitative testing," here too, a great deal of faith is 

placed in judgment.” Furthermore, under the current ban on testing, the first dimension 

mentioned in this report is now replaced by modeling and simulation which brings 

additional sources of incertitude to the problem. It is this issue which is addressed in the 

present research. 

 

2.2 Quantification of Margins and Uncertainties (QMU) 

A central concept in this process of risk informed decision analysis (RIDA) is the 

Quantification of Margins and Uncertainty (QMU) (Eardley, 2005; Sharp and Wood-

Schultz, 2003). QMU is defined by Sharp and Wood-Schultz as "a framework that 

captures what we do and do not know about the performance of a nuclear weapon in a 

way that can be used to address risk and risk mitigation." Pilch et al (2006) define it as “a 

decision-support methodology for complex technical decisions centering on performance 

thresholds and associated margins for engineered systems that are made under conditions 

of uncertainty”. Pilch et al (2006) further state: “RIDA does not base its decision 

outcomes solely on the results of QMU. Rather, QMU provides only part of the input into 

the decision process”. QMU is thus the mathematical methodology that quantifies these 

thresholds and margins, as well as the associated uncertainty in their evaluation. QMU is 

applied in a decision-making context, addressing the ability to meet design, qualification, 

or life-cycle performance requirements. Because of the programmatic constraints of cost 
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and schedule, there are often significant uncertainties due to lack of knowledge 

associated with the use of a model. QMU, particularly when using models whose 

uncertainties are dominated by lack of knowledge issues, has the technical dimensions of 

quantitative risk assessment (QRA). From the perspective of QRA, risk can be defined in 

terms of the Kaplan and Garrick (1981) risk triplet: 

1. Scenario identification – What can happen? 

2. Likelihood of scenarios – How likely is it to happen? 

3. Consequence of scenarios – What are the consequences if it does happen? 

A fourth component has always been an important factor in the use of QRA and will be 

an important factor in the application of QMU to the stockpile: 

4. Credibility – How much confidence do you have in the answers to the first three 

questions? 

The guidance for our QMU framework must be formulated in a manner that can 

easily address these four questions. Performance or safety requirements establish the 

metrics by which “consequence” can be measured in the context of a particular 

application. These metrics can be specified in a deterministic way (for example a given 

threshold (temperature) at which a component fails) or in a probabilistic fashion, such as 

a limit on the probability of a threshold event being surpassed. An illustration of margin 

and uncertainty in both performance requirement and predicted behavior of a system, and 

the margin between them is shown in Figure 2.2. 
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Figure 2.2. Uncertainty in predicted system response (X) and required performance (A) 

 

The case shown in Figure 2.2 is the most general case which includes both uncertainty 

(represented by a probability density function (PDF)) in the predicted system response, X, 

and in the performance or requirement measure, A. One factor that complicates the 

application of this QMU formulation to the stockpile is the fact that the system response 

is an extrapolated response to an environment that cannot be tested; therefore, the system 

response has only the confidence that is built through the hierarchical modeling of the full 

system. This implies that the amount of uncertainty represented by the system PDF might 

not be perfectly representative of the full system when subjected to the actual use 

environment. In addition, the system response measure PDF approximation might not be 

unique, especially in the presence of epistemic uncertainty. This PDF could be replaced 

by either a family of PDFs or some bounding PDFs that reflect the lack of knowledge 

present in the system. This complicates the analysis further by making the definition of 

the margin a random variable as well.  
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2.3 Bayesian Approach to Uncertainty Quantification 

One of the first issues to address in this research is the reason why we should use a 

Bayesian approach to solve the given Sandia problem. This research proposes the use of 

Bayesian methods, particularly a Bayes network as a tool to integrate observed data and 

prior knowledge, and quantify the uncertainty in system-level response prediction. The 

uncertainty in the system level response is used in the QMU analysis to estimate the 

confidence in the system level prediction. As stated previously, QMU is the methodology 

that supports RIDA and thus the connection between the proposed Bayesian analysis to 

the motivating statement of RIDA is through the quantification of output uncertainty.  

It is noted that a team at Sandia (which included the author) used the same 

demonstration problem that is used here and implemented a classical probabilistic 

approach to model the hierarchical system (Urbina et al., 2006). It is important to note 

that this research does not emphasize using one approach over another nor does it attempt 

to compare two methodologies to determine which one is superior. The approach used in 

the Sandia study was based on estimating parameters of a model and their corresponding 

uncertainty at the most fundamental level and use them to calculate the response of 

higher complexity models. Uncertainty was propagated to the system level model via the 

finite element models that mapped the model parameters to a given behavior and using 

Monte Carlo sampling. Although the ultimate objective in that study was not decision 

making but model validation, it still required uncertainty quantification which is a part of 

QMU. Deficiencies found in the model were addressed by modifying the finite element 

model to account for discrepancies between the actual data and the model predictions but 
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only by using very limited amount of information. From this stand point, the current 

research includes all the available data to update the uncertainty in the various component 

models and in the system level model. One could argue that if the data is available at any 

level, one should be able to use it to create the best predictive models possible. This is a 

major difference in the approach taken in this research relative to the Sandia approach 

where only the data at the lowest level was used to quantify uncertainty in the parameters 

and no further updating of the parameters was made using higher level information. With 

this comparison in mind, focus is now given to why Bayesian methods are a viable 

alternative. 

The essentials of Bayesian thinking are summarized by Gill (2002):   

1. Specify a probability model that includes some prior knowledge about the 

parameters if available for unknown parameter values 

2. Update knowledge about the unknown parameters by a conditional probability of 

this parameter given the observed data 

3. Evaluate the fit of the model to the data and the sensitivity of the conclusions to 

the assumptions. 

A recent text on Bayesian analysis (Gelman et al., 2004) concludes that the principles of 

Bayesian inference are now well established and the only issue left to address is the 

efficient implementation of Bayesian inference to real-world problems. This speaks to the 

maturity of the Bayesian methods and now the need to fully incorporate them into the 

application domain. Published reports such as Robinson (2001) and Williams et al. 

(2006) demonstrate the potential for using Bayesian methods in high consequence 
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environments such as at Sandia National Laboratories and Los Alamos National 

Laboratories.  

 Markov Chain Monte Carlo (MCMC) simulation has allowed Bayesian analysis 

to become tractable and a viable approach to solving engineering problems. Bayesian 

models are cursed by inference problems that were analytically intractable due to the 

high-dimension integral calculations that need to be solved. This was addressed with the 

pioneering work on MCMC of Metropolis et al. (1953), Hastings (1970), Peskun (1973) 

and Gelfand and Smith (1990) and has culminated with the implementation of a general 

purpose MCMC software, WinBUGS (Spiegelhalter, 2003). In a nutshell, the basic 

principle behind MCMC is that if an iterative chain of consecutive random variable 

realizations can be set up and run long enough, then empirical estimations of the integral 

quantities of interest can be obtained for the later chain values (Gill, 2002). Two potential 

issues arise with the use of MCMC techniques. One is the convergence of the chain itself 

and a related issue is the number of iterations needed for convergence. Both Gibbs and 

Metropolis-Hasting sampling algorithms guarantee convergence (Gill, 2002). However, 

this still leaves the issue of number of iterations needed for convergence which is directly 

related to computational expense and addresses the second reason why Bayesian methods 

have become a feasible option. 

 When using Bayesian methods that use MCMC to establish a posterior 

distribution of a quantity of interest, there is always the need to evaluate a function that 

relates some input to the quantity of interest. In applications such as those performed at 

Sandia, these functions are formulated in terms of complex and large finite element 

models that run on the order of days or weeks per function evaluation. If there is a need 
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to run thousands of simulations in order to establish convergence of the chain, any 

potential benefit gained by MCMC would be completely outweighed by this large 

computation expense. Surrogate models are powerful tools to address this potential 

pitfall. Surrogate models can be simple linear approximations, artificial neural networks, 

splines or Gaussian process models (a.k.a Kriging models, see McFarland, 2008).  

 In McFarland (2008), the use of Bayesian updating to calibrate the parameters of 

a model in a multi-level problem was investigated. This research used data from the 

highest level of complexity to calibrate a model’s parameters that described the 

controlling physics of the problem. To expedite the updating of the model parameters, 

Gaussian process models were used in lieu of the full finite element model. Although 

some runs of the finite element model were still necessary to train the Gaussian process 

model, they were on the order of 10-20 versus the thousands needed for Bayesian 

updating, thus offering a major computational efficiency. One major difference between 

McFarland (2008) and the current research is in the way the model parameters are 

updated. In the current work, data from all levels of complexity, not just from the highest 

level are used. This incorporates all available information which in the particular case of 

nuclear weapons is more plentiful at the component level then at the full system level. 

Although McFarland (2008) was successful in predicting the behavior of the system in an 

extrapolated sense, it left the question unanswered as to what a decision maker could do 

if little (i.e. one) or no information is available at the system level and yet a decision 

needs to be made. The current research addresses this question.  
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2.4 Types of Uncertainties and their Treatment 

Before any ideas can be put forth to address the propagation of uncertainties in a 

hierarchical model when both aleatoric and epistemic uncertainties are present, it is 

worthwhile to define each type, see how they come about and how they have been 

treated.  

 

Aleatoric Uncertainty 

This type of uncertainty is also referred to as variability, irreducible uncertainty, 

inherent uncertainty or stochastic uncertainty. This is the type most commonly associated 

with variability due to hardware-to-hardware and experimental setup-to-setup variability 

of nominally identical systems. It is also associated with material properties data and 

loading data. In general, a statistically significant database, fully relevant to the 

application is available. For the most part, a probabilistic interpretation can be assigned to 

input and output variables and all the machinery associated with probability theory can be 

used to propagate and analyze this type of uncertainty. Techniques for quantification and 

propagation of this type of uncertainty have been well established for many years and 

therefore, will not be further examined in this research.  

Epistemic Uncertainty 

This type of uncertainty is also known as reducible uncertainty, subjective 

uncertainty or lack of knowledge. Some areas where this arises are when alternate 

plausible models are available, cases where there is non-existent, sparse, incomplete, or 

inconsistent experimental data, model approximations, expert elicitation that expresses 
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subjective rather than data based on observations and, in general, where there is lack of 

information about the behavior of a system. It is found in the literature (Oberkampf, 

2000; Sentz and Ferson, 2002; RESS, 2004) that this type of uncertainty is treated by two 

types of methods: 

Non-Probabilistic Methods 

• Evidence (Dempster-Shafer) theory 

• Possibility theory 

• Fuzzy set theory 

• Interval analysis 

Probabilistic Methods 

• Bayesian approach or classical probability approach using transformations of 

bounds to probability density functions 

It is important to note that both types of approaches have their pros and cons and 

this research will not make an attempt to demonstrate why one approach is better then 

any other but simply use an approach that is more suitable to be implemented within the 

overall analysis framework.  

To begin this review, the proceedings from Sandia National Laboratories’ 

workshop on alternative representation of epistemic uncertainty (RESS, 2004) provide a 

comprehensive exposition of techniques to treat problems with two types of variables, 

one type described by probability distributions and the other type described by interval 

data. This forum presented various approaches, both probabilistic and non-probabilistic.  
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Historically, probability theory has been used to represent epistemic uncertainty (see 

Apostolakis, 1990 and Parry; Winter, 1981 and Wu et al., 1990) from which a separation 

of aleatoric and epistemic uncertainty involves two probability spaces, one for each type 

of uncertainty. However, many have expressed concern about modeling epistemic 

uncertainty via probability density functions with the main issue being the implication of 

a higher resolution of knowledge than what is really present (Helton, 2006). Evidence 

theory has been proposed as an alternative to probability theory since it doesn’t make 

assumptions regarding the distribution of the variables described by intervals. 

Soundappan et al. (2004) present an excellent comparison of evidence theory and 

Bayesian theory for modeling uncertainty. In their work, they suggest the following 

assumptions of the evidence theory approach: 

1. If some of the evidence is imprecise, uncertainty of an event can be quantified by 

the maximum and minimum probabilities of that event. In essence these are the 

absolute bounding probabilities that can be realized from the available evidence.  

2. Information about intervals from different experts can be uncertain (i.e. different 

experts have different opinions) and should be treated as yet another source of 

randomness and imprecision.  

These assumptions relate only to the available data (i.e. bounds) and not to any 

probability description of the data. This is why some consider the evidence theory 

approach a lower information augmentation technique to epistemic uncertainty, since no 

additional information is added by assuming the distribution of the data when only 

bounding information is given. Be that as it may, the complication in using evidence 

theory lies in the way uncertainty is represented: by two bounding density functions as 
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suggested by assumption 1 above. If the uncertainty quantification is aimed at aiding a 

decision-maker and furthermore the region separated by the two bounding density 

functions is large, then this is of little help in formulating a decision (Soundappan et al., 

2004). Using probability theory to model epistemic uncertainty has its drawbacks but in 

the context of this research, it provides a feasible approach to incorporating this type of 

uncertainty into our Bayes network approach. In addition to this, by treating epistemic 

uncertainty in a probabilistic way, it allows for a single estimate of the probability of the 

system response quantity of interest (or probability of failure if required) which facilitates 

the formulation of a risk informed decision making methodology.  

 Having decided that interval data will be treated in a probabilistic manner, a 

technique to do this will now be detailed. The approach shown below has been developed 

at Vanderbilt University by McDonald et al (2009a, b and c) and it is summarized as 

follows: 

1. Obtain from various experts bounding information (i.e. upper and lower bounds 

on an interval) of a quantity of interest. This can be the interval in which the true 

parameter of a model might lie, for example the value of damping for a 

mechanical system. 

2. Estimate the bounds on the first four moments of the interval data. 

3. Using the range of moments estimated in step 2, establish a family of Johnson 

distributions using the method of matching moments. 

4. Sample the variable from this family of distributions obtained in step 3 and use in 

a Monte Carlo type analysis for uncertainty propagation. 

25 



Because it is impossible to know the true moments of the data given an interval, 

there are infinitely many Johnson distributions which can represent the interval data. This 

fact needs to be accommodated in the analysis of interval data. One way to do this is to 

generate realizations of the moments that satisfy the constraint of falling within the given 

bounds. From these moments, a distribution from the Johnson family can be obtained. 

This operation might need to be repeated for several realizations of the moments; this 

could be done either by a jackknife procedure or a bootstrap procedure (Efron and 

Tibshirani, 1998) to create realization of the moment. In either case, this implies the need 

of a double loop in the analysis of uncertainty of the system: an inner loop with the 

aleatoric uncertainty and an outer loop for the epistemic uncertainty. Details of 

implementation of this approach will be discussed in Chapter 5. 

 

2.5 Gaussian Process Modeling Overview 

Gaussian process (GP) modeling is a technique based on spatial statistics that has 

been used as a surrogate modeling technique to replace complex and computationally 

expensive finite element model (FEM) runs, particularly when multiple realizations of the 

FEM are needed such as in uncertainty quantification and propagation. GP modeling uses 

a set of observed inputs and outputs (commonly referred to as training data) to construct 

an approximation to the underlying relationship. It is also desired that the resulting 

approximation function (i.e. GP model) interpolates within the range of the input data, 

thus the selection of appropriate training data becomes as important as the creation of the 

GP model. Since GP modeling is used only as a tool to enable the computations of 

response quantities, this topic will not be dealt with, here, in great depth. It is briefly 
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explained for completeness and the interested reader is referred to McFarland, 2008 for 

an excellent description of the GP algorithm used in this research. (Also refer to 

Rasmussen, 1996; Martin and Simpson, 2005; Mardia and Marshall, 1984 and Santner et 

al., 2003 for additional information). 

One advantage of a GP model is that it is a non-parametric modeling technique 

that avoids the need for a functional relationship among data to be known in advance. 

This provides much flexibility to establishing a relationship between a set of inputs and 

outputs but it also creates a limitation as to the applicability of such a model. In general, 

as long as the GP model is used in a regime (i.e. a set of inputs) that does not extend too 

far outside the boundaries within which the GP model was created, the interpolations will 

generally be good. A GP model will not normally produce accurate extrapolations. The 

GP model has another significant feature of interest in this research in that it provides a 

direct representation of the uncertainty associated with its interpolative approximation. 

As noted in McFarland, 2008, GP modeling is quite powerful but there is a steep learning 

curve needed to obtain a working understanding of the methodology, and the 

implementation can lead to erroneous conclusions if the parameters of the model are not 

selected carefully. A brief discussion of the theory behind GP models is described next. 

Consider that one wants to build an approximation to a function of a vector-

valued input X, based only on m observations of the inputs and outputs: Y(x(1)), . . . , Y 

(x(m)). As noted above, an appropriate selection of these input/output pairs is critical to 

the performance of the GP model. The basic idea of the GP interpolation model is that the 

outputs, Y, are modeled as a Gaussian process that is indexed by the inputs, x. A Gaussian 

process is simply a set of random variables such that any finite subset has a multivariate 
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Gaussian distribution. A Gaussian process is defined by its mean function and covariance 

function, which in this case are functions of X. Once the Gaussian process is observed at 

m locations x(1), . . . , x(m), the conditional distribution of the process can be computed at 

any new location, x*, which provides both an expected value and variance (uncertainty) 

of the underlying function. The key here is that the function describing the covariance 

among the outputs, Y, is a function of the inputs, X. The covariance function is 

constructed such that the covariance between two outputs is large when the 

corresponding inputs are close together, and the covariance between two outputs is small 

when the corresponding inputs are far apart. As shown below, the conditional expected 

value of Y(x*) is a linear combination of the observed outputs, Y(x1), . . . , Y(xm), in which 

the weights depend on how close x* is to each of x1, . . . , xm. In addition, the conditional 

variance (uncertainty) of Y(x*) is small if x* is close to the training points and large if it is 

not. Further, the GP model may incorporate a systematic, parametric trend function 

whose purpose is to capture large-scale variations. This trend function can be, for 

example, a linear or quadratic regression of the training points. It turns out that this trend 

function is actually the (unconditional) mean function of the Gaussian process. The effect 

of the mean function on predictions that interpolate the training data tends to be small, 

but when the model is used for extrapolation, the predictions will follow the mean 

function very closely as soon as the correlations with the training data become negligible. 

To develop the theory, let Y (x) denote a Gaussian process with mean and 

covariance given by 
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where fT(x) defines basis functions for the trend (either, a constant or linear trend); β 

gives the coefficients of the regression trend; c(x, x*|ξ) is the correlation between x and 

x*; and ξ is the vector of parameters governing the correlation function. Consider that the 

process has been observed at m locations (the training or design points) x1, . . . , xm of a d-

dimensional input variable, yielding the resulting observed random vector, Y. By 

definition, the joint distribution of Y satisfies: 

),)(f(~ T RY λβxN m      (2.2) 

where R is a matrix of correlations among the training points. In this research the 

parameters of the trend function and the covariance function are estimated using 

maximum likelihood estimation, thus, the conditional expected value and variance 

(uncertainty) of the process at an untested location x* are calculated as: 

[ ] )()()(f|)( 1**T* ββ FYxrxxYE T −+= −RY    (2.3) 

and 
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where f is the vector of trend basis functions at each of the training points, and r is the 

vector of correlations between x* and each of the training points. 
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2.6 Summary 

This chapter presented a summary of RIDA and its supporting methodology, 

QMU. It is noted that QMU will be accomplished by a combination of experimental and 

computational means. Identifying and quantifying sources of uncertainty are critical steps 

in this process and the two main categories, aleatoric and epistemic were described. 

Ideally, experimental data will be used to quantify uncertainty. Due to the complexity of 

the systems being analyzed, experimental data at the system level is seldom available but 

data from individual components or group of components is more readily available. This 

study proposes the use of Bayesian methods to incorporate all available data at different 

levels of complexity and propagate it through to the system level.  In order to quantify the 

uncertainty at the system level, many function evaluations of the system model need to be 

performed. Usually, the system level model is in the form of a computationally expensive 

finite element model. It is proposed in this study that a Gaussian process model, which is 

a type of surrogate model be used to enable fast and efficient computations of the system 

level prediction. With this background in place, attention is now turned to the 

demonstration problem used in this research. This includes a description of the available 

data and computational models. 
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CHAPTER III 

 

3. APPLICATION PROBLEM 

on 

 

3.1 Introducti

Physical systems are complex and the interaction of their parts can result in coupled 

behaviors. As we seek to model these physical systems we are faced with the need to 

include different individual mathematical models that represent various types of physics. 

In this example we look at a model that incorporates both a non-linear mechanical joint 

model and epoxy-based foam. These models have been developed using constitutive type 

experiments and formulations and have been independently validated using test data 

different from that used to calibrate them. The next step was to combine these models and 

exercise them in an environment different from the environments in which they had been 

validated. As explained in an earlier chapter, this is a hierarchical approach to building 

complex system models. The example uses an aerospace component developed at Sandia 

National Laboratories and the details of the experiments and modeling of the components 

are described in the following sections. 

At Sandia, there has been an emphasis on developing models of components from 

first principles, calibrating them from simple exploratory experiments, validating them 

relative to a different set of experiments and then using them within a more complex 

model. For example, one could investigate the behavior of a mechanical joint, develop a 

model that explains some phenomenon, validate its performance (based on a different use 

environment) and use it as part of larger system. Likewise, one could develop another 
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model for the behavior of encapsulating foam and repeat the same sequence of steps as 

for the mechanical joint. Similar steps could be taken for various other components which 

then will aggregate to form a full system (i.e. a system which is composed of joints, foam 

and other components). In addition, there can be multiple tests of these components and 

thus a probabilistic analysis of the data could be made. Furthermore, it is possible that the 

interactions of the various components were never tested, thus no information on the 

coupling of components is available or interactions of components were tested except at 

excitation levels that are not comparable to those of the full system. What was described 

above is a hierarchical approach to building a system level model and has been repeatedly 

used at Sandia and other Department of Energy research laboratories. It basically is a 

construction of a complex system model by using a building block approach that 

incorporates simpler component based models and couples them together. This 

hierarchical model building approach was described in Oberkampf et al. (2000), Sindir et 

al. (1996) and it has been implemented by Urbina et al. (2006) for the problem being 

examined in this dissertation. 

 

3.2 Overall Problem Description 

The example problem shown in Figure 3.1 was chosen to implement the ideas 

developed in this research which addresses uncertainty quantification and propagation in 

a hierarchical model development.  
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Figure 3.1. Example problem for uncertainty quantification analysis 

 

This problem was originally developed at Sandia for the purpose of implementing the 

(Alvin, et al., 2000, Trucano, et al., 2001 and Pilch, et al., 2001). The problem has the 

following features: 

rigorous uncertainty quantification and model validation methodology developed there 
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1. It is a 2-component problem where some components are mechanical joints and 

another component is epoxy-based foam. Both are energy dissipating 

mechanisms. 

2. It is a multi-level problem where the phenomena observed at the lowest levels are 

t branches converge to a system level hardware where 

Figure 3.1. These are intended to 

 

assumed to be present at subsequent levels, i.e. damping behavior in the joints at 

level 1 is assumed the same at levels 2 and 3. A priori, this seems like a 

reasonable assumption to make but it might turn out to be an incorrect one. 

3. The individual componen

the two couple together. The coupling of the two branches is a potential source of 

epistemic uncertainty since this interaction had not been tested previously and 

thus no data is available. 

4. Experimental data consists of repeated tests on several nominally identical 

hardware components, at levels 1 and 2 in 

quantify the variability inherent in a physical system due to manufacturing 

variations as well as test to test variability due to slight changes in the test 

configuration. 

5. Finite element models are built and calibrated to simulate a particular behavior of 

the physical hardware, at levels 1 and 2. The model parameters have been

calibrated from simple, discovery experiments (shown as level 0) aimed at 

isolating the particular physical phenomenon that the model is meant to represent. 

Several observations regarding the example problem and their potential implications are: 
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1. In general, there is no one-to-one correspondence between the hardware that was 

tested at the various levels. For example, the single joint tested in level 1 is not 

is issue could make relating data from one level to another difficult.  

omain data is 

available. 

sary, at any level. Surrogate models, particularly 

of the system level, might be necessary to expedite the calculations. 

4. No system-level experimental data is available. This makes all the predictions at 

the system level extrapolations. 

The data availab

so in 

this section, the computational models are described as well as the Gaussian process (GP) 

part of the 3-leg system at level 2. Similarly for the foam, the piece of foam in 

level 1 is not the same one (nor does it come from the same batch) as the foam in 

level 2. Th

2. The type of data collected for the joints and foams are different. In general, for the 

joints, time domain data is available and for the foam, frequency d

3. Model runs can be made if neces

le for this example are described below. 

 

3.3 Available Experimental Data and Models 

In this section, the experimental data and models available for this example at 

levels 0, 1 and 2 and the model at full system level (no data available) are described. It is 

assumed that all experimental data collected has been quality checked and does not 

contain any systematic errors. In addition, it is assumed in this research that measurement 

error is negligible relative to the sources of uncertainty examined in this research. Al
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models used in lieu of the finite element models. Use of GP models are needed to make 

the unc

eter Characterization 

The first step in the process is to characterize the material model that describes the 

behavior of epoxy-based foam with a nominal density of 20 pcf (pounds per cubic foot) 

and also to quantify the variability in the material. Samples used for this characterization 

are shown in Figure 3.2.  

 

ertainty quantification and propagation a computationally tractable problem. 

 

3.3.1 Foam - Level 0: Material Param

 

Figure 3.2. Samples for level 0 experiments 

he material density of the foam samples was estimated through physical measurements 

and the elastic and shear modulus were estimated using tension/compression and 

torsional experiments. The experiments and resulting data are shown in Figure 3.3 and 

Figure 3.4. 

 

 

T
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Figure 3.3. Torsional and tension experiments used for calibration 

 

 

Figure 3.4. Calibration data for foam modulus of elasticity 

 

sity and modulus of elasticity was chosen from Gibson and Ashby, 1999. The model 

is 

Based on the data shown in Figure 3.4, a model describing the relationship between 

den

( )powcE ρ*1=     (3.1) 
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The model parameters c1 and pow were calibrated through regression using the data in 

Figure 3.4, and estimated as c1 = 120 and pow = 2.0. In addition to calibrating a model of 

foam modulus of elasticity, the data in Figure 3.4 is used to obtain statistics (mean and 

standard deviation) of the foam density. 

 

3.3.2 Joints - Level 0: Material Parameter Characterization 

For the joints, experiments consisting of sine sweeps at 5 load levels (100, 200, 

300, 400 and 500 lbs) were performed and data in the form of force versus energy 

dissipation were used to calibrate a constitutive model that represents the behavior of the 

physical joint. Variability data from sample to sample and test to test were also obtained 

from a total of 9 combinations of three top and three bottom pieces of a bolted 

connection. These samples are shown in Figure 3.5. 

 

 

Figure 3.5. Single leg samples for calibration experiments 
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One of the combinations of the joint is shown in Figure 3.6 while mounted on an electro-

magnetic shaker. Each of the nine hardware combinations was assembled and 

disassembled 5 times in order to quantify test to test variability as well as sample to 

sample variability.  

 

 

Figure 3.6. Single leg test fixture 

 

Starting from acceleration time histories recorded from each experiment and using a log 

decrement approach to estimate the damping of the system, a collection of curves relating 

force versus energy dissipation were calculated. These are shown in Figure 3.7. 
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Figure 3.7. 45 realizations of force vs. energy dissipation curves 

 

In addition to this data, information regarding the hysteretic behavior of the joint is also 

features is shown in Figure 3.8. 

obtained from the experiments. A schematic of this type of data along with some salient 

 

Figure 3.8. Hysteresis curve for joint behavior 
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Using the data shown in Figure 3.7 and Figure 3.8, a constitutive model relating the 

energy dissipated per cycle of response to force across the joint can be calibrated. In this 

case, the following fmodel proposed by Smallwood (Smallwood et al., 2000) was used: 

( ) ( ) i
npow

ijnonijlinj fddkddkf +−−−=    (3.2) 

where  

cross the joint at the reversal point in the hysteresis loop (measured 

during 

aces of the joint at the reversal point in the 

hystere

pe of each experimental curve of Ed vs. 

binations), a probability distribution for each of the model 

arameters can be created. 

3.3.3 

fi&j = force a

experiment) 

di&j = relative displacement across the f

sis loop (measured during experiment) 

klin = linear stiffness component. This is a calibrated parameter. 

knon = non-linear stiffness component. This is calibrated from the data. 

npow = degree of nonlinearity. It is the slo

Force curve shown in Figure 3.7 in log-log space 

Since there are 45 repeated experiments (9 hardware combinations times 5 

assembly/disassembly com

p

 

Foam - Level 1: Component Level 

Tests at this level targeted the stiffness properties of the epoxy-based foam by 

placing it in a 2 degree of freedom configuration. Since the foam is bonded to the steel 
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masses, these tests also examined the foam’s damping properties. The structure is an 

element of foam (shown as a white block in the center of the test hardware) bonded to 

steel end masses for which six samples were available. Modal tests were performed on 

the samples with a representative configuration shown in Figure 3.9 and a schematic of 

the first 4 modes of vibration are shown in Figure 3.10.  

 

 

Figure 3.9. Modal testing setup for foam level 1 

 

1st Bending X

Torsion
1st Bending Y

Axial 

1st Bending X

Torsion

 

Figure 3.10. First 4 bending modes for foam level 1 sample 

1st Bending Y

Axial 
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Based 

0) were found to be less than 1.3% for the first six 

natural frequencies of the flexible modes of vibration in the mesh chosen. Modal analyses 

were performed and natural frequencies were obtained. The natural frequency in the axial 

direction will be used in this study.  

 

on the anticipated behavior of the system, the natural frequency in the axial 

direction was selected as the response measure that was most relevant to the system level 

behavior.  

A finite element model of the test hardware shown in Figure 3.9 was created and 

is shown in Figure 3.11. The model consists of 1470 Hex8 elements and 1920 nodes and 

it was analyzed in Salinas, a linear structural analysis code (Reese, 2004). Convergence 

studies were performed using four different mesh sizes to show model verificaton. 

Eigenvalues were used as the convergence metric and the Richardson extrapolated 

convergence errors (Richardson, 191

110

F

119
360

212

357

110

F

119
360

212

357

 

Figure 3.11. Finite element model of foam hardware for level 1 
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3.3.4 Joints - Level 1: Component Level 

Similarly to the foam level 1 experiments, tests at this level targeted the stiffness 

and energy dissipating properties of the joints while in a 2 degree of freedom 

configuration. This configuration places the single leg joint hardware used for the 

behavior characterization done in level 0 in a different loading configuration. Two 30 lb 

masses are bolted at the ends of the single leg creating a “dumbbell” shaped hardware. 

This is shown in Figure 3.12.  

 

 

Figure 3.12. One configuration of the single leg joints for level 1 experiments 

 

This configuration is then supported by bungee cords to simulate a free-free environment 

and it is subjected to an impulse excitation provided by an instrumented hammer. The 

acceleration response of the dumbbell on the end opposite to the excitation end is 

recorded and multiplied by the mass of one of the dumbbells to obtain the force across 

the joint. This is shown in Figure 3.13.  
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Figure 3.13. Time history of force across the joint (from F=ma) 

 

From this, an estimate the energy dissipation of the system at a particular force level can 

be obtained. This is done with the formulation shown below: 

 

0 0.1 0 .2 0 .3 0 .4
2.5

3

3.5

4

4.5

5

5.5

time (s)

lo
g

 x

10
1

10
2

10
3

10
-7

10-6

10
-5

10-4

10
-3

k=6.6731e-010, n=2.4522

Force (lbs)

E
n

e
rg

y
 D

is
s

ip
a

te
d

 p
e

r 
C

y
c

le
 (

in
c

h
-l

b
s

)

Straight line  f it
Measured Data

22

2

nfm
FcE ζ

=

Energy dissipation per cycle from transient responses

Polynomial Fit

Energy Dissipation
per Cycle

( ) ( )
( )
( )
( )( )

n

n

t
d

t

dt
xd

tx
etx

tetx
n

n

ςω

ςω

ω
ςω

ςω

−=

−=
=

=
−

−

log
log

cos

0 0.1 0.2 0.3 0.4
-200

-150

-100

-50

0

50

100

150

200

time (s)

F
o

rc
e

 (
lb

s
)

Time Response

0 0 .1 0.2 0.3 0.4
0.5

1

1.5

2

2.5
x 10

-3

tim e (s)

ze
ta

Damping

Simple free decay:
Envelope of the peaks:
Take the logarithm:
Take the derivative:

0 0.1 0 .2 0 .3 0 .4
2.5

3

3.5

4

4.5

5

5.5

time (s)

lo
g

 x

10
1

10
2

10
3

10
-7

10-6

10
-5

10-4

10
-3

k=6.6731e-010, n=2.4522

Force (lbs)

E
n

e
rg

y
 D

is
s

ip
a

te
d

 p
e

r 
C

y
c

le
 (

in
c

h
-l

b
s

)

Straight line  f it
Measured Data

22

2

nfm
FcE ζ

=

Energy dissipation per cycle from transient responses

Polynomial Fit

Energy Dissipation
per Cycle

( ) ( )
( )
( )
( )( )

n

n

t
d

t

dt
xd

tx
etx

tetx
n

n

ςω

ςω

ω
ςω

ςω

−=

−=
=

=
−

−

log
log

cos

0 0.1 0.2 0.3 0.4
-200

-150

-100

-50

0

50

100

150

200

time (s)

F
o

rc
e

 (
lb

s
)

Time Response

0 0.1 0.2 0.3 0.4
-200

-150

-100

-50

0

50

100

150

200

time (s)

F
o

rc
e

 (
lb

s
)

Time Response

0 0 .1 0.2 0.3 0.4
0.5

1

1.5

2

2.5
x 10

-3

tim e (s)

ze
ta

Damping

0 0 .1 0.2 0.3 0.4
0.5

1

1.5

2

2.5
x 10

-3

tim e (s)

ze
ta

Damping

Simple free decay:
Envelope of the peaks:
Take the logarithm:
Take the derivative:

0 0.1 0 .2 0 .3 0 .4
2.5

3

3.5

4

4.5

5

5.5

time (s)

lo
g

 x

10
1

10
2

10
3

10
-7

10-6

10
-5

10-4

10
-3

k=6.6731e-010, n=2.4522

Force (lbs)

E
n

e
rg

y
 D

is
s

ip
a

te
d

 p
e

r 
C

y
c

le
 (

in
c

h
-l

b
s

)

Straight line  f it
Measured Data

22

2

nfm
FcE ζ

=

Energy dissipation per cycle from transient responses

Polynomial Fit

Energy Dissipation
per Cycle

( ) ( )
( )
( )
( )( )

n

n

t
d

t

dt
xd

tx
etx

tetx
n

n

ςω

ςω

ω
ςω

ςω

−=

−=
=

=
−

−

log
log

cos

0 0.1 0.2 0.3 0.4
-200

-150

-100

-50

0

50

100

150

200

time (s)

F
o

rc
e

 (
lb

s
)

Time Response

0 0 .1 0.2 0.3 0.4
0.5

1

1.5

2

2.5
x 10

-3

tim e (s)

ze
ta

Damping

Simple free decay:
Envelope of the peaks:
Take the logarithm:
Take the derivative:

0 0.1 0 .2 0 .3 0 .4
2.5

3

3.5

4

4.5

5

5.5

time (s)

lo
g

 x

10
1

10
2

10
3

10
-7

10-6

10
-5

10-4

10
-3

k=6.6731e-010, n=2.4522

Force (lbs)

E
n

e
rg

y
 D

is
s

ip
a

te
d

 p
e

r 
C

y
c

le
 (

in
c

h
-l

b
s

)

Straight line  f it
Measured Data

22

2

nfm
FcE ζ

=

Energy dissipation per cycle from transient responses

Polynomial Fit

Energy Dissipation
per Cycle

( ) ( )
( )
( )
( )( )

n

n

t
d

t

dt
xd

tx
etx

tetx
n

n

ςω

ςω

ω
ςω

ςω

−=

−=
=

=
−

−

log
log

cos

0 0.1 0.2 0.3 0.4
-200

-150

-100

-50

0

50

100

150

200

time (s)

F
o

rc
e

 (
lb

s
)

Time Response

0 0.1 0.2 0.3 0.4
-200

-150

-100

-50

0

50

100

150

200

time (s)

F
o

rc
e

 (
lb

s
)

Time Response

0 0 .1 0.2 0.3 0.4
0.5

1

1.5

2

2.5
x 10

-3

tim e (s)

ze
ta

Damping

0 0 .1 0.2 0.3 0.4
0.5

1

1.5

2

2.5
x 10

-3

tim e (s)

ze
ta

Damping

Simple free decay:
Envelope of the peaks:
Take the logarithm:
Take the derivative:

0 0.1 0 .2 0 .3 0 .4
2.5

3

3.5

4

4.5

5

5.5

time (s)

lo
g

 x

10
1

10
2

10
3

10
-7

10-6

10
-5

10-4

10
-3

k=6.6731e-010, n=2.4522

Force (lbs)

E
n

e
rg

y
 D

is
s

ip
a

te
d

 p
e

r 
C

y
c

le
 (

in
c

h
-l

b
s

)

Straight line  f it
Measured Data

22

2

nfm
FcE ζ

=

Energy dissipation per cycle from transient responses

Polynomial Fit

Energy Dissipation
per Cycle

( ) ( )
( )
( )
( )( )

n

n

t
d

t

dt
xd

tx
etx

tetx
n

n

ςω

ςω

ω
ςω

ςω

−=

−=
=

=
−

−

log
log

cos

0 0.1 0.2 0.3 0.4
-200

-150

-100

-50

0

50

100

150

200

time (s)

F
o

rc
e

 (
lb

s
)

Time Response

0 0 .1 0.2 0.3 0.4
0.5

1

1.5

2

2.5
x 10

-3

tim e (s)

ze
ta

Damping

Simple free decay:
Envelope of the peaks:
Take the logarithm:
Take the derivative:

0 0.1 0 .2 0 .3 0 .4
2.5

3

3.5

4

4.5

5

5.5

time (s)

lo
g

 x

10
1

10
2

10
3

10
-7

10-6

10
-5

10-4

10
-3

k=6.6731e-010, n=2.4522

Force (lbs)

E
n

e
rg

y
 D

is
s

ip
a

te
d

 p
e

r 
C

y
c

le
 (

in
c

h
-l

b
s

)

Straight line  f it
Measured Data

22

2

nfm
FcE ζ

=

Energy dissipation per cycle from transient responses

Polynomial Fit

Energy Dissipation
per Cycle

( ) ( )
( )
( )
( )( )

n

n

t
d

t

dt
xd

tx
etx

tetx
n

n

ςω

ςω

ω
ςω

ςω

−=

−=
=

=
−

−

log
log

cos

0 0.1 0.2 0.3 0.4
-200

-150

-100

-50

0

50

100

150

200

time (s)

F
o

rc
e

 (
lb

s
)

Time Response

0 0.1 0.2 0.3 0.4
-200

-150

-100

-50

0

50

100

150

200

time (s)

F
o

rc
e

 (
lb

s
)

Time Response

0 0 .1 0.2 0.3 0.4
0.5

1

1.5

2

2.5
x 10

-3

tim e (s)

ze
ta

Damping

0 0 .1 0.2 0.3 0.4
0.5

1

1.5

2

2.5
x 10

-3

tim e (s)

ze
ta

Damping

Simple free decay:
Envelope of the peaks:
Take the logarithm:
Take the derivative:

 

Figure 3.14. Schematic of the process to calculate energy dissipation per cycle from 
transient responses 
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To implement the formulations shown in Figure 3.14, start with a time response that is in 

free decay and write the expression: 

( )tetx d
tn ϖξϖ cos)( −=     (3.3) 

where td  and ,ϖξ are the damping ratio, damped frequency and time, respectively and x 

is the measured signal. From this define the envelope of the peaks of the signal defined in 

Eq. 3.3 as: 

tnetx ξϖ−=)(      (3.4) 

and taking the logarithm of Eq. 3.4 and subsequently the time derivative to get: 

( )

( )
n

n

dt
txd

ttx

ξϖ

ξϖ

−=

−=

)(

)(log
    (3.5 and 3.6) 

Finally to estimate the energy dissipated per cycle of response, Ed, at a given force level, 

F, use the following expression: 

22

2

n
d fm

FE ξ
=      (3.7) 

where m is the mass and fn is the natural frequency of the system. 

A total of 45 experiments were conducted which consisted of 5 repetitions of the 

experiment for each of the nine leg configurations and the resulting energy dissipation 

curves are shown in Figure 3.15.  
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Figure 3.15. Energy dissipation vs. force curves for level 1 tests 

 

From this data, it was determined that the energy dissipation at 300 lbs was the most 

relevant at the system level and thus chosen as the response measure of interest.  

A finite element model for the hardware shown in Figure 3.12 was simplified to a 

few-degrees-of-freedom model that has all the mass properties of the actual hardware and 

the nonlinear joint element. This permits fast analysis of the model when time domain 

computations must be performed. The schematic of the model is shown in Figure 3.16. It 

consists of 4 nodes and 3 elements, one of which is the Smallwood element. This model 

was analyzed using Salinas. Due to a limitation of Salinas, accelerations cannot be used, 

directly, to excite the model so the experimental acceleration excitation was converted to 

a force.  

47 



F
M = 30 lbs

mbottom mtop
JointM = 30 lbs

F
M = 30 lbs

mbottom mtop
JointM = 30 lbs

 

Figure 3.16. Lumped mass model of joints at level 1 

 

 Level 

This configuration starts to simulate the conditions that will be present at the 

specimens were fabricated in order to investigate part to part variability. These are shown 

 

3.3.5 Foam - Level 2: Sub-system

system level. Namely, that the foam encapsulates a rigid component and it transmits and 

dampens externally applied loads relative to the encapsulated mass. Six different test 

in Figure 3.17.  

 

Figure 3.17. Foam level 2 samples for modal testing 

 

an aluminum outer shell. The hardware was instrumented with four triaxial 

This hardware consists of a set of steel masses encapsulated in foam and contained within 
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accelerometers in order to minimize mass loading effects and additional damping 

introduced by the cables. The instrumented hardware is shown in Figure 3.18.  

 

 

Figure 3.18. Foam sub-system test article 

 

The test fixture was suspended from bungee cords to simulate free-free conditions and 

and acceleration time histories at each accelerometer location were recorded and mode 

corresponding to the axial mode of vibration which is shown schematically in Figure 

3.19. 

excited using a small, instrumented hammer. All testing was done at room temperature 

frequencies and mode shapes were extracted. Of special interest is the natural frequency 
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Figure 3.19. Axial mode of foam level 2 hardware 

 

constructed and used to simulate the behavior of the test specimen. A schematic of the 

A finite element model (FEM) of the hardware shown in Figure 3.17 was 

FEM is shown in Figure 3.20. 

 

Steel

Steel

Encapsulating foam

Steel

Steel

Encapsulating foam  

Figure 3.20. Foam level 2 finite element model 
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The model is comprised of approximately 12000 nodes, 10000 eight node hex elements 

and a modal analysis was performed. A perfect bond was assumed between the foam, the 

aluminum outer shell and the steel masses, and furthermore, the foam was assumed to be 

perfectly homogenous (i.e. no voids or substantial changes in density). The foam was 

modeled using a linear-elastic type formulation with parameters derived from simpler 

constitutive tests. Mesh convergence studies were performed to assess the suitability of 

the proposed mesh discretization and it was determined through Richardson extrapolation 

analysis that the error due to mesh size was very small relative to the uncertainty present 

in the e

d axial mode 

frequency are shown in Figure 3.21 for the Level 1 and Level 2 structures.  

 

xperimental data. Analysis of this model was performed using in Salinas. 

The functional relationship to be modeled with a surrogate model is the one 

between modulus of elasticity and the axial mode for the level 1 and level 2 hardware. 

Realizations of the functional relationship between modulus of elasticity an
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Figure 3.21. Modulus of elasticity versus natural frequency in the axial direction 

 

As it can be observed, the relationship, given the small number of test data, is a 

     (3.8) 

n

polynomial model. The estimated values of parameters for each level are shown in the 

 

simple one and thus will be modeled with a polynomial fit to the data. The forms of these 

models are: 

cbEaEfn ++= 2

where f  are the natural frequency of the axial mode of vibration for either the level 1 or 

level 2 hardware, E is the modulus of elasticity and a, b and c are coefficients of the 

table below: 
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Table 3.1. Coefficient for polynomial fit of natural frequencies as a function of modulus 
of elasticity for foam level 1 and 2 

Level a b c 

1 0.3239 -18.891 1301 

2 -0.3023 40.215 115 

 

 

3.3.6 Joints - Level 2: Sub-system Level 

The hardware and the tests at this level closely approximates the final joint 

configuration at the system level. The stiffness and damping properties tested at this level 

could be a good starting point to estimate those at the system level. The experimental 

system is a truncated conic shell supported on legs at three approximately equidistant 

locations (around the curcumference). The support structure beneath the legs is a 

cylindrical shell – relatively thin on its top, and transitioning into a thicker section. The 

conic shell is attached to the support structure via three screws, each of which passes 

through a hole in a thin, flat plate at the top of a leg. Three nominally identical replicates 

of the conic shell were fabricated, along with three nominally identical support structures. 

They are shown in Figure 3.22.  
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Figure 3.22. Test articles for joints level 2 

 

generated using an electrodynamic shaker in the laboratory. The holes in the base of the 

shaker armature. The test setup is shown in Figure 3.23. 

 

The nine combinations of shells and support structures were tested in environments 

support structure were used to attach it to an adaptor plate that was connected to the 

 

Figure 3.23. Shaker testing for joints level 2 
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Each of the nine test structures was excited by a wavelet type input. Each shell-base 

combination was assembled, disassembled and reassembled three times, and tested each 

time. The average acceleration structural responses at the tops of the encapsulated masses 

were recorded and yielded twenty-seven time histories – nine structures times three tests 

each. These responses were then used to estimate the energy dissipation per cycle of 

response at various force levels using the formulation shown in Figure 3.14 and 

Equations 3.3 through 3.7. For this research, the energy dissipated corresponding roughly 

to 300 lbs of force across each leg was selected as the response measure of interest. The 

ollection of energy dissipation curves vs. force is shown in Figure 3.24. 

 

c

 

Figure 3.24. Energy dissipation vs. force for joints level 2 

The model for the physical system shown in Figure 3.23 is simply the lumped-

mass representation shown in Figure 3.25.  
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Figure 3.25. Lumped model of joints level 2 

 

The element thought to be critical in the model is a nonlinear spring (denoted J in the 

figure), and it is modeled using the framework of the so-called Smallwood element. The 

parameters of the nonlinear, Smallwood spring element were identified based on 

experiments in which individual leg-simulators were excited sinusoidally. Multiple 

systems were tested, and they are stochastic, therefore, the parameters of the Smallwood 

model are described in a probabilistic framework. Because the geometry and boundary 

conditions of the system used to identify Smallwood model parameters differ from the 

geometry and boundary conditions of the three-legged system, a correction stiffness, K  

and an attachment stiffness, K  must be inserted into the lumped mass model to 

render its predictions accurate. The attachment stiffness was calibrated by matching the 

axial frequency of a monolithic structure and assuming that the stiffness of the cone is 

corr

attachment
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rigid when compared to the rest of the structure. The correction stiffness was calculated 

and inserted into the lumped-mass model, and predictions of the system acceleration 

response were made. Analysis of this model was done in Salinas. Each model was excited 

with the input waveform resembling a wavelet which has similar dynamic characteristics 

as those used in the experiments. Acceleration time histories for each model prediction 

were ob

 relate the three 

joint pa meters (klin, knon and npow) to the energy dissipated at 300 lbs. 

 

3.3.7 

hows the exterior and interior of the system 

model and the input and output locations.  

tained.  

For both level 1 and 2 models, Gaussian process models (GPM) were developed 

that relate the linear and non-linear stiffness components and the degree of non-linearity 

to the energy dissipated by the joint at an input level of 300 lbs. This model was trained 

with approximately 75% of the available full model simulations and the remainder were 

used for testing the GPM. The test data was used to calculate the root mean square error 

and it was determined to be 6.78e-5 while the average error between the predicted and the 

test data is less than 3% for both levels 1 and 2 surrogate models. It was then deemed that 

the GP models were good representations of the full scale model which

ra

Level 3: System Level 

There is no experimental data at this level. A finite element model of the physical 

system was constructed using the Sandia-developed CUBIT meshing tool (CUBIT, 2008) 

and analyzed using Salinas. Figure 3.26 s
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Figure 3.26. Finite element model with input and response locations 

The finite element model uses the Smallwood model in Equation 3.2 to represent the 

nonlinear energy dissipation behavior of the bolted connection between the conic part and 

the lower assembly, and the linear-elastic model for the encapsulating foam component. 

All solid pieces [the conic part, the bottom piece and the internal encapsulated mass 

(shown in the cross section in magenta color)] are made of stainless steel. The 

encapsulating foam is shown as various colored layers and uses the same type of foam 

which was used in level 0, 1 and 2. Full adhesion is assumed between the epoxy foam 

and the inside of the conic section and between the epoxy foam and the encapsulated 

mass. The model consists of 8052, 20-node, hexagonal-type elements which yields 

approximately 42,000 nodes in the model and was verified by doing a Richardson 

extrapolation on the natural frequencies. Multiple non-linear, transient analyses were then 

performed to predict structural response. When subjected to a blast type input the 
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acceleration time history response at the top of the encapsulated mass is shown in Figure 

3.27. 

 

 

Fi

These multiple transient analyses form the dataset available to build and test a GP 

model to capture the relationship between the input (1) linear stiffness, (2) nonlinear 

stiffness, (3) degree of nonlinearity and (4) modulus of elasticity to the output, absolute 

peak acceleration of the encapsulated mass. Since the main focus of this research is the 

modulus of elasticity (as the source of epistemic uncertainty), the functional relationship 

between modulus and absolute peak acceleration is shown below. 

gure 3.27. Model predicted acceleration response at top of encapsulated mass 
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Figure 3.28. Modulus of elasticity versus absolute peak acceleration at encapsulated mass 

 

An important observation involves the inverse relationship between modulus of elasticity 

substantial response amplification occurs for the structure. Because the excitation has 

complex system, multiple factors can contribute to counter-intuitive results.  

and peak acceleration. This relation was at first counter-intuitive; it might be anticipated 

that an increasing modulus of elasticity (or system stiffness) should cause a 

corresponding increase in the peak acceleration. In this case, it does not, because an 

increase in the modulus of elasticity increases the center of a frequency band over which 

fixed signal content, such a change in the center frequency can move the region of high 

amplification to a range where lower input signal content exists. That is the case for this 

input and this structure. This is an important issue that points to the need to fully 

understand the system being evaluated. It also serves as a reminder that, in a very 

60 



A Gaussian process (GP) model was developed that relates the linear and non-

linear stiffness components, the degree of non-linearity in the joints and the modulus of 

elasticity of the foam to the absolute peak acceleration of the encapsulated mass. This 

model was trained with approximately 60% of the available full model simulations and 

the remainder were used for testing the GP model. The test data was used to calculate 

average error between the predicted outputs and the measured test outputs and it is less 

than 2%. At this point, the results from the GP model are consider consistent with the full 

finite element model and will be used for the uncertainty quantification and propagation 

component of this research. 

 

3.4 Summary 

The experimental data and the simulation models available for this study have 

been presented in this chapter. It is easy to see that there is a wealth of data available to 

use in this example and thus is imperative to condense it into a useable form and better 

yet, into a form that reflects the main characteristics of the system that is ultimately being 

assessed. The data at the component and sub-system levels are relevant at the system 

level and can be used to update the parameters of the system level model in order to make 

the best prediction at the system level. Using the available data, we will concentrate on 

quantifying and propagating both aleatoric and epistemic uncertainty to quantify the 

uncertainty in system-level response prediction in the next two chapters.  
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CHAPTER IV 

 

4. PROPAGATION OF ALEATORIC UNCERTAINTY IN A
HIERARCHICAL MODELING

 
 

w 

rk 

 
 

4.1 Overvie

In this chapter it is proposed to use a Bayes network as a tool to integrate observed 

data and prior knowledge within a hierarchically built system level model. Bayesian 

updating propagates uncertainty through this network up to the system level response of 

interest. In this chapter, the methodology shown in Rebba and Mahadevan (2006) will be 

applied to the demonstration problem described in Chapter 3.  

 

4.2 Bayes Netwo

To briefly summarize the viability of using Bayes networks for this problem, 

consider the basic features of a Bayes network. The main reference for this discussion is 

Jensen (2001). The purpose of a Bayes network is to use statistical and functional 

relationships among the variables involved in the model to propagate updated 

information from one variable to another, based on new data. A Bayes network consists 

of the following: 

 - A set of variables and a set of directed edges (arcs) between variables 

 - Each variable has a finite set of mutually exclusive states 

 - The variables together with the directed edges form a directed acyclic graph 

(DAG). DAG’s do not allow circular causality. 
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 - To each variable B with parents A1, … An, there is an associated conditional 

probability P(B|A1, … An).  

In the intended use of a Bayes network, one would like to calculate the posterior 

probability density function (PDF) associated with some nodes of interest in the network. 

To do this, it is known that each parent node has a PDF associated with it and each child 

node has a conditional probability density function, given the value of the parent node. 

The entire network can be represented using a joint probability density function which is 

given by the general expression: 

∏=
i

ii XparentXPUP ))(|()(                               (4.1) 

where P(U) is the joint probability of the network and Xi is the ith node in the network. 

The Bayes network also facilitates the inclusion of new nodes that represent the observed 

data and thus the updated densities can be obtained for all the nodes. The joint probability 

density function for the network can be updated using Bayes theorem when data is 

available. The expression for Bayes theorem is: 

 ( )[ ]
( )[ ] θθθ
θθθ

θθ

θθ
θ dXYff

XYffYf
∫

=
|)(
|)()|(     (4.2) 

Equation 4.2 can be implemented using Markov Chain Monte Carlo techniques (Gilks et 

al, 1996). The marginal PDF of any node in the Bayes network can be obtained by the 

integration of the joint PDF over all the values of the remaining variables. Thus the Bayes 

network approach offers methodology to extrapolate inferences from component level 

information to the system level, as long as the two levels have common, linking node and 
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the physics does not change. With this background now we look at the specific 

implementation of the Bayes networks to the example problem. 

The Bayes network constructed to address the example problem used in this study 

is presented in Figure 4.1.  

 

 

Figure 4.1. Bayes network representation of example problem 

 

network, U as: 

From Figure 4.1, one formulates the joint probability density function of the entire 
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Note that the error nodes ε shown in 
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Figure 4.1 are associated with the discrepancy in the 

model predictions relative to the observed data at each level. This error term is assumed 

to have a normal distribution with zero mean and some standard deviation, σ which will 

be updated. The main reason behind this is in the way the network is set up. Note that 

there is a conditional probability that relates the model at each level back to a set of 

θmodel parameters denoted . These model parameters are updated based on the observed 

data at various levels. It is expected that the models and their parameters can only 

account for some of the behavior resulting in the observed data (i.e. no model is a perfect 

representation of the underlying phenomenon). It is generally agreed that the difference 

can come from various sources, such as model representation of the actual hardware (i.e. 

dimensions, boundary conditions, contact surface areas, etc), the inability to exactly 

represent mathematically the dominant physical phenomenon, and model convergence 

issues (

This error term contains among other sources, model form errors and solution 

approximation errors. These errors are summarized in Rebba and Mahadevan (2006) and 

methodologies are also suggested for treating them. For the purpose of this research, the 

solution approximation errors which include mesh discretization and solution stability 

will be assumed to be addressed by code verification activities which address the 

such as solution approximation). To account for these differences, an error term is 

included in the formulation following, Kennedy and O’Hagan, (2000), McFarland (2008), 

Landes et al (2006) and Williams et al (2006).  
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question: Are the numerical solutions correctly implemented? This means, in the context 

of this research, that issues such as mesh convergence have been addressed and it has 

been determined that those errors are small relative to other sources of uncertainty such 

as model form error. Model error will be considered in this research and will be 

considered a reducible source of uncertainty since it can be reduced if the “correct” 

model is chosen. This type of error can be quantified when observed data and model 

predictions are available. In the context of Baye

node in the network and is related to the standard deviation of the error in the posterior 

distribution of the model’s prediction as shown below: 

s networks, this is accounted for as a 

ε+= XY      (4.4) 

where X and Y are the model predictions and the observed data, respectively, at a given 

level and ε is interpreted as model error which includes both model form error and 

solution approximation error. Statistics for the prior of ε could be obtained by subtracting 

the available model predictions (prior to updating) from the experimental data. It is 

acknowledged that experimental measurements can also contain errors. These could be 

addressed by adding terms to Equation 4.4 which become nodes in the Bayes network. 

This formulation can be directly implemented in WinBUGS and estimates of the 

posterior distribution of ε obtained.  

One implementation issue is that to update some of the nodes in the Bayes network, 

evaluation of either the full finite element model or a surrogate model is needed. This 

issue needs to be addressed in the most efficient manner since multiple realizations of the 

model execution will be necessary. One leading candidate for this efficient calculation 

will be the use of surrogate models such as a Gaussian process (GP) model. Briefly, the 
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basic idea of the GP interpolation model is that the outputs, Y, are modeled as a Gaussian 

process that is indexed by the inputs, X. A Gaussian process is simply a set of random 

variables such that any finite subset has a multivariate Gaussian distribution. Once the 

output is observed at m training points denoted as x1, . . . , xm, the conditional distribution 

of the process can be computed at any new point, x*, which provides both an expected 

value and variance of the surrogate model.  A summary of GP modeling has been 

resented in Chapter 2. Additional in-depth information can be obtained from McFarland 

(2008) Rasmussen (1996), Martin and Simpson (2005), Mardia and Marshall (1984) and 

Santner et al (2003).  

t is not explained by 

variabi

to the 

p

 

4.3 Implementation and Results 

A Bayes network has been developed for the demonstration problem as shown in 

Figure 4.1. The baseline network includes all available data up to the second level and 

quantifies the error related to model versus observed data tha

lity in the model parameters. The details of the implementation and some 

preliminary results of the Bayes network approach to uncertainty quantification to the 

problem shown in Figure 3.1 of Section 3.1 are described below.  

A Markov chain Monte Carlo solution to the Bayes network shown in Figure 4.1 

was found using the software WinBUGS (Spiegelhalter et al, 2003). Software to 

implement the GP models was originally coded by McFarland (McFarland, 2008) and 

Bichon (Bichon et al, 2008) in Matlab and Fortran. To make the GP evaluation software 

available to WinBUGS, GP software was implemented as a function written in 

Component Pascal (Oberon Microsystems, Inc., 2006) and compiled directly in
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WinBUGS software. This allows the software to make the necessary function evaluations 

hich relate the model predicw tion to the calibration parameters and allow for the updating 

of the param ramework. The parameters to be updated are: 

c ibed in Smallwood, et al (2000) and denoted as 

 in Figure 4.1 are: 

o Linear stiffness, Klin 

o Non linear stiffness, Knon 

ssipation vs force relationship, npow 

eters within a Bayesian f

• Joints model parameters as des r

jθ

o Degree of non linearity of energy di

• Foam model parameter denoted as  in fθ Figure 4.1 is modulus of elasticity, E. 

• Error terms denoted as ε in Figure 4.1 are for levels 1 and 2, foam and joints 

(where ε ~ N(0,σ)).  

Some selected results of the Bayes network implementation are shown below. For the 

estimation of probability density functions, 5,000 samples were used. These were in 

addition to 10,000 samples discarded as burn-in samples to allow the Markov chain to 

become stationary. Convergence of the Markov chain is assessed by considering the 

samples created after the burn-in. Figure 4.2 show the samples for the linear stiffness, 

Klin, nonlinear stiffness, Knon, nonlinear exponent, npow and modulus of elasticity, E.  
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Figure 4.2. Samples of Klin, Knon, npow and E used to demonstrate convergence of 
Markov chain to constant mean and variance 

 

Convergence is checked by plotting in Figure 4.3, the moving average of the data from 

Figure 4.2 which shows converged mean values for Klin, Knon, npow and E. 
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Figure 4.3. Moving average to assess Markov chain convergence 

 

The first set of results show a comparison of the kernel density estimators (KDE) 

lin non pow(Silverman, 1986) for the updated parameters of the joint model, K , K  and n  as 

they compare to the prior distributions. A KDE is an approximation to the probability 

density function (PDF) of source of values of s and it is computed from n data 

realizations, . The form of the KDE used here is: njs j ...1(.) =

( ) ∞<<∞−⎥⎦
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where ε is the “width” of a Gaussian kernel. Figure 4.4 through Figure 4.6 show these 

statistics (mean and standard deviation) obtained from the level 0 experiments. These are 

KDEs. Normal distributions were used as prior distributions for these parameters, with 

plotted as the solid lines in Figure 4.4 through Figure 4.6. These priors are updated with 
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the available energy dissipation data measured in levels 1 and 2. The effect of the 

available experimental data is reflected in each the posterior distribution relative to the 

prior. It is important to note that data from both levels 1 and 2 are simultaneously used to 

update these parameters and thus the effect of this data is reflected in the posterior of the 

parameters.   

 

 

Figure 4.4. KDE of linear stiffness from the joint model 
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Figure 4.5. KDE on nonlinear stiffness from the joint model 

 

 

Figure 4.6. KDE of degree of nonlinearity from the joint model 
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Figure 4.7 shows the KDE for the modulus of elasticity which is the parameter of interest 

describing the foam. For the foam, the data used to update the parameter is the first 

natural frequency of the axial deformation mode measured at both levels 1 and 2. From 

the figure, it can be seen that after updating, the posterior distribution of the modulus of 

elasticity has a smaller variance when compared to the prior. This is a reflection of 

having more information and thus reducing the uncertainty about a given parameter. It 

also gives an indication of the possible range of values where this parameter might lie 

hen both levels of complexity are included.  

 

w

 

Figure 4.7.  KDE of modulus of elasticity of foam 
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Figure 4.4 through Figure 4.7 showed the effects of the experimental data at several input 

parameter nodes in the Bayes network when updating the parameters. Next, we will see 

the effect on the predicted model responses relative to the actual data. It is important to 

point out that these plots are not intended to show a validation of the model. They are 

merely for comparison purposes. A more formal validation could be carried out, but it is 

not the focus of this study. For the joints, the quantity of interest is the energy dissipated 

at a particular force level. In this case, the force was chosen to be 300 lbs mainly because 

it is at the mid-point in the calibration data (level 0) which span 100 to 500 lbs. With this 

specification, Figure 4.8 shows the response quantity – energy dissipated per cycle of 

response at a mechanical joint force level of 300 lbs - for the level 1 hardware when 

computed using the prior distribution of the input parameters and after updating the 

parameters (shown as the posterior distributions). A comparison is also made to measured 

data. Figure 4.8 shows that the response of the model when evaluated using the updated 

parameters, is a good representation of the mean behavior of the hardware at level 1 when 

compared to the KDE of the experimental data. It can be observed that a large part of the 

PDF is located roughly around 1.3e-3 which is close to the mean of the test data and the 

variance of the prediction is smaller than the variance of the test data. It is also observed 

from the figure, the effect of the experimental data on the prior prediction. The net effect 

is a reduction in the variance of the posterior distribution of this parameter relative to the 

prior distribution. 
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Figure 4.8. KDE of energy dissipation at level 1 

 

Next consider the measure of response of the foam at level 2 which, in this case, 

and the prior prediction is calculated from using the prior distributions of the parameters. 

sources of uncertainty that come into play to explain the discrepancy between model 

is the natural frequency of the axial deformation mode of the hardware. The KDEs of the 

prior and posterior predictions and the posterior prediction including error are shown in 

Figure 4.9. Again, the prediction refers to the model response for the foam at level 2 

using the updated parameter, (i.e. the posterior distribution of the modulus of elasticity) 

Also shown are the actual test data used to update the prior distributions. These are 

shown as small circles plotted on the abscissa. In this case, the KDE of the predicted 

behavior encompasses 2 of the 3 data points. When the KDE of the prediction plus the 

error term is plotted, it now captures all available data. This indicates that there are other 
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prediction and experimental data which are not fully explained by the model input 

parameters themselves. In this case the error term captures this discrepancy. This is an 

encouraging result since one of the hopes for this formulation was to properly apportion 

the uncertainty in model prediction to various sources. In other words, if a source of 

uncertainty is something other than parametric uncertainty, this should be captured as a 

separate error term, not rolled into the parameters themselves. In this research, no attempt 

is made (nor is it possible with the information available) to establish what the source of 

the error is. An understanding of the degree to which this error is present and whether it is 

a minor or major contributor to the overall uncertainty in the model prediction is desired. 

In this case, for level 2 foam, it shows some contribution. When observing Figure 4.9, it 

is clear that the KDE of the prediction plus the error spans the available data whereas the 

prediction by itself does not. Similarly to the energy dissipation at level 1, the prior 

prediction shows a larger variance when compared to the posterior distribution. This 

demonstrates one of the key features of a Bayes network and that is to incorporate data 

which has the effect of reducing the uncertainty of a quantity of interest, in this case, the 

natural frequency of the axial deformation. 
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Figure 4.9. KDE of natural frequency of the axial mode at foam level 2 and test data 
(shown as o) 

Among the observations that can be made from this figure, it is noted that the in general 

 

Finally, the kernel density estimator of the (extrapolated) predictions at the system 

level is shown in Figure 4.10. The extrapolation is both in terms of the input to the 

system (excitation with a blast load) and in the system that is used (cone with 

encapsulated mass inside). Several plots are shown in this figure. The prior prediction 

refers to the system level response evaluated using the prior distributions of the input 

parameters. This KDE shows a slight bi-modality. The next 3 curves shown in the figure 

refer to the particular data used to perform the update. The “posterior prediction using L1 

data only” means that only data from level 1 is used whereas “posterior prediction using 

L2 data only” refers to level 2 data being used for updating. The last curve represents the 

case where all the available data at all levels is used for updating the Bayes network. 
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all the posterior predictions show a decrease in variance relative to the prior which means 

that any available data reduces the uncertainty present in the system level response. In 

addition, and not surprisingly, when all the data is used, the variance of the posterior 

distribution of the system response is decreased the most relative to the other cases. From 

the figure, it can be observed the effect of the data from the various levels when it is 

included or not in the updating. It is seen from the figure that when removing the level 2 

data, the variance of the response is similar to the case where all data is used for 

updating. In contrast, when level 1 data is not included, the variance increases relative to 

the case where all data is included. This is a type of sensitivity analysis which shows the 

effect of the data from the different levels on the variance of the system level response.   

 

 

Figure 4.10. KDE of peak absolute acceleration at the system level 
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4.4 Model Errors 

tion, the errors between the model predictions and the experimental data 

at eac

pectively, and a

In this sec

h level are analyzed. These errors are denoted as f
2

f
1

j
2

j
1  and   ,  , εεεε corresponding to 

the joints level 1 and 2 and to the foam level 1 and 2 res re included in the 

Bayes network in Figure 4.1. The errors are assumed to follow a Normal distribution with 

zero mean and standard deviation σ. The standard deviation is updated with the observed 

data. This formulation is shown below: 

( )σε 0,N~      (4.6) 

where the hyper-parameter σ is given a prior distribution of: 

( )0010.0001,0.0gamma~σ     (4.7) 

and is subsequently updated in the Bayes network. In Equation 4.7, the first parameter of 

the gamma distribution refers to the shape of the distribution and the second parameter is 

the scale. All of the error terms are given the same prior for σ. The prior distribution for 

all the error terms is shown in Figure 4.11. 
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Figure 4.11. Prior distribution for all error terms in the Bayes network 

 

After updating the Bayes network, the posterior distribution of all the error terms are 

calculated and plotted in Figure 4.12 through Figure 4.15. The priors are also plotted. 

Note that the priors have a very small variance compared to the posteriors and thus are 

plotted on a separate graph to help visualization.  
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Figure 4.12. KDE of error term for joints at level 1 j
1ε

  

 

Figure 4.13. KDE of error term or joints at level 2 j
2ε f
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Figure 4.14. KDE of error term for foam at level 1 f
1ε

 

Figure 4.15. KDE of error term for foam at level 2 f
2ε
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A general observation from these figures is that the model predictions are not 

perfect and some degree of error is present for all the measures of importance (i.e. energy 

dissipated and first axial frequency). Of importance in this study is the fact that this error 

term, which is a source of uncertainty, can be quantified and treated separately from the 

parametric uncertainty. Although not treated in this study, some possible sources of this 

error are:  

1. measurement error,  

2. model form error (arising from the choice of model selected to represent the 

physics of interest) 

3. solution approximation error (e.g. mesh discretization) 

An interesting topic for further research would be to examine the individual contribution 

of each error sources listed above to the overall error in the system level prediction. This 

will help identify possible areas of improvement and target those that have the greatest 

effect on the system level prediction error. 

 

4.5 Conclusion 

 This chapter presents an approach to quantify and propagate uncertainty in a 

complex system model that is built in a hierarchical manner. This analysis incorporates 

sources of aleatoric uncertainty (input variables and model parameters) within the context 

of a multi-level, 2-component problem using a Bayes network as the main analysis 

framework. The Bayes network is chosen because it conveniently allows the modeling of 
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both causal relationships and statistical dependencies between sets of data within a 

probability framework, based on conditional probabilities between the various nodes of 

the network. This framework also allows any available experimental data at any level to 

be incorporated into the analysis and calculates the posterior probabilities of all nodes in 

the network.  

A key issue that is addressed is the actual implementation of this methodology to 

perform fast and efficient computation within a Bayesian framework. This is done by 

using surrogate models (specifically Gaussian process models) in lieu of the finite 

element analysis which can be expensive to run. Results show that using a Bayes network 

approach is a reasonable way to model a multi-level problem and available experimental 

data can be easily incorporated into the analysis. Error terms were included in the 

prediction at each level to account for model errors in addition to parametric uncertainty 

alone. These error terms were quantified but their sources were not determined at this 

stage.  

The next step is to incorporate epistemic uncertainty into the analysis via the 

model parameters. This uncertainty can arise from lack of knowledge about a parameter 

of interest and will need to be treated probabilistically in order to be included in the 

Bayes network. Following this, the contribution of different sources of uncertainty to the 

overall uncertainty in the system level prediction could be investigated. 
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CHAPTER V 

 

5. INCORPORATION OF BOTH EPISTEMIC AND ALEATORIC
UNCERTAINTY IN A HIERARCHICAL SYSTEM MODEL

 
 

w 

nd 

 
 

5.1 Overvie

This chapter presents an extension of the methodology described in Chapter 4 that 

adds epistemic uncertainty into the Bayes network. As described in Section 2.4, sources 

of epistemic uncertainty arise from lack of data and knowledge. In the context of this 

research, there can be limited knowledge of a material or component behavior, the 

coupling of two or more component models, the extrapolation of a system model to an 

application space and generally, any condition that the modelers did not anticipate 

occurring and thus, is not included in the model’s expected use. In this chapter, two main 

sources of epistemic uncertainty are considered: data uncertainty and model error. Data 

uncertainty is treated in a probabilistic manner via a family of flexible distributions 

known as the Johnson distribution. As in Chapter 4, model error is quantified and 

discussed but its sources are not investigated.  

 

5.2 Backgrou

Data uncertainty is introduced with respect to the model parameters and arises from 

the fact that some materials used in engineering systems may not be fully characterized. 

Usually their parametric description is given in terms of intervals defined by subject 

matter experts and/or by very limited information but not by full probability distributions. 
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Formally, Ferson (2004 and 2007) and Osegueda et al (2002) list eight sources from 

which information is best represented by intervals, including plus-or-minus reports, 

significant digits, intermittent measurement, non-detects, missing data and gross 

ignorance. Intervals are obtained by either examination of the limited information 

available (enough to establish bounding information but not a full probabilistic 

representation) or by eliciting information from subject matter experts. For the case of 

expert opinion, one should also consider the relative weight that each expert’s opinion 

carries and it should be incorporated into the uncertainty analysis. This assessment of 

weight is, for the most part, a subjective endeavor and a future work topic. In this 

research, the parameter describing the foam behavior will be treated as a source of 

epistemic uncertainty and is assumed to be given as intervals by subject-matter experts. 

The approach taken in this research uses a transformation of the data uncertainty into a 

probabilistic description and it is detailed in McDonald et al (2009a, b and c). This 

approach starts by calculating the mean and estimates of the next three central moments 

of the bounds of intervals representing the epistemic uncertainty. These moments are 

used to estimate the parameters of the Johnson family of distribution by one of several 

methods.  

Another source of uncertainty is the choice of method for the treatment of 

epistemic uncertainty in the probabilistic calculations. In this study, this type of 

uncertainty arises from the various methodologies available to fit parameters of a Johnson 

distribution to the given data. This effect has not been considered before, and it is 

explored in this work by making comparisons of the results using the decision-making 

metric of interest when the various methods are implemented.  
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5.2.1 Estimating Bounds on Moments 

Moment Formula for lower and upper bound 

 The estimation of statistics or moments of interval data has been the subject of 

several recent papers and formulas and algorithms necessary to compute basic statistics 

for interval data have been presented. (e.g., Ferson et al, 2007; Kreinovich et al, 2004; 

Gioia and Lauro 2005; Xiang et al, 2006). In this research, the methodology developed in 

McDonald et al (2009a, b and c) is used to estimate the lower and upper bounds of 

moments from the interval data. The formulas to calculate the bounds on the first four 

moments given interval data are shown in Table 5.1. 

 

Table 5.1. Formulas to calculate first four moments of interval data 
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5.2.2 Johnson Family of Distributions 

As a basis to construct a probabilistic representation, the Johnson family of 

distribution (Johnson, 1949) is used in this research. The reason for choosing Johnson’s 

family of distributions is that it is a flexible set of probability distributions capable of 

representing a wide array of conventional probability distributions (McDonald et al 

(2009a, b and c)). If X is a continuous random variable with distribution 

, Johnson (1949) proposed four normalizing translations of the 

general form: 

function )()( xXPxF ≤=

⎟
⎠
⎞

⎜
⎝

⋅+= δγ gZ 5.1) 

where Z is a standard normal random variable, 

⎛ −
λ
ξX      (

δγ  and are shape parameters, λ is a scale 

parameter, ξ is a location parameter and g(.) is a function that defines the four 

distribution families as: 
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If sample data is available, choosing which family of distributions to use is 

1. Estimate the first four central moments, m1, m2, m3, and m4.of the sample data, X 

as: (DeBrota et al, 1998)

 (5.2) 

accomplished by the following procedure:   
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)(1 XEm ≡  and ( ) 4,3,21 =−≡ kmXEm k
k .  (5.3 and 5.4) 

ntity inside the parenthesis. 

2. Calculate the skewness and kurto

where E(.) is the expected value of the qua

sis:  

3
2

2
31 / mm≡β  and 2

42 / mm≡β .   (5.5 and 5.6) 2

3. Use the identification chart in Figure 5.1 to determine the appropriate distribution 

mily to use. 

 

fa

 

Figure 5.1. Johnson distribution family identification chart 
 

 

4. To fit the distribution parameter δγξλ  and ,, for one of the family of distributions 

shown in Equation 5.1, the following methods could be used 
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• method of matching moments (using the first four moments of the data),  

• percentile matching (where a desired value is specified at a given percentile 

ution when compared with 

e used and are implemented by 

either s

s the modulus of 

elastici

point(s))  

• least squares estimation and 

• minimization of the error norm of Johnson distrib

empirical cumulative distribution function (CDF). 

In this study, modifications of the first two methods will b

olving a least squares or an optimization problem. 

In the chart, SU represents an unbounded distribution (support is ± ∞) and SB is a 

bounded distribution. The bounded family of distributions will be used for the problem 

examined in this research for the simple reason that the physics of the problem 

establishes natural bounds on the variable being modeled. That i

ty has to be greater than zero and it has a physical upper limit.  

To use the Johnson family of distributions when interval data is available and 

when a moment based approach is desired, the process outlined above can still be applied 

except that instead of calculating moments from sample data, the moments would come 

from sampling within the bounds on the moments using the formulas presented in Table 

5.1. Various methodologies are considered and implemented in this work to find the 

family of distributions that would model the epistemic uncertainty using bounds on 

moments. In addition, other methods are also investigated that do not rely on bounds on 

moments or are based on the Johnson distribution. The methods used in this research can 

be divided in two categories: methods that aggregate the interval data and those that treat 
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the interval data individually. The aggregation methods seek to combine the given 

interval data using the bounds on the moments obtained from the intervals and/or selected 

percentile values. The latter methods treat each expert as a separate entity and do not 

combine the interval data. The methods are briefly summarized below and more detail is 

given in the following sub-sections with an application of each method to the 

demonstration problem.  

Methods for aggregating interval data 

1. Method of matching and bounding moment – This method seeks to construct a 

family of distributions, using a parametric definition based on a Johnson 

distribution for which the first and second moments of a proposed distribution 

will match exactly a given set of sampled moments from the expert given bounds 

and the third and fourth moments will lie between a given set of bounds. This is a 

iven bounds. This is also 

 et al (1998). 

slight variation of what is proposed in DeBrota et al (1998). 

2. Method of percentile matching and mean bounding– This method also constructs 

a family of Johnson distribution which are characterized by 2 selected percentile 

values defined by the empirical CDF obtained from the expert opinion being 

matched exactly and a selected mean falling between 2 g

a variation of what is proposed in DeBrota

Methods for individual treatment of interval data 

1. Parametric distribution functions from each expert interval – For this method, a 

family of distributions is obtained by randomly selecting plausible values of the 
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distribution parameters and using the individual bounds of each expert to define a 

distribution.  

2. Uniform distribution from each expert interval – This is similar to #3 above but it 

only defines a uniform distribution for each of the intervals. 

3. One uniform distribution covering all the experts’ range – This is the most un-

be defined over a range that includes values of the likelihood 

nction (i.e. where data is available); otherwise, the resulting posterior distribution will 

 

informed choice of prior. It uses the minimum and maximum values considering 

all the expert given bounds to define the limits of a single uniform distribution. 

One important issue to keep in mind when evaluating the various techniques to 

describe the epistemic variable is that each of these methods only produces a prior 

distribution for a given parameter. This prior distribution will be updated with any 

available data through the use of the Bayesian network construct which was described in 

Chapter 4. When sufficient data is incorporated into the analysis during the Bayesian 

updating process, the posterior probability distribution tends to have diminishing 

dependence on the prior distribution, regardless of the form of the prior. It is important to 

note that the priors should 

fu

resemble a delta function.  

5.3 Treatment of interval data: Methodology and Implementation 

This section considers various methodologies to handle interval data in the 

parameters of a model. Since the objective is to treat the entire problem in a probabilistic 

way, the objective will be use the available interval information and assign a reasonable 
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probability distribution that both incorporates the given information (i.e. bounds) and also 

does  

on the modulus of y, E given by six subject matter experts are given as: 

 

Table 5.2. Lower and upper limits for modulus of elasticity,  six experts 
Expert Lower Limit (ksi) Upper it (ksi) 

 not add too much subjective information. For this research the following intervals

 elasticit

E, from
Lim

1 32 60 

2 35 68 

3 40 72 

4 42 78 

5 48 82 

6 50 94 

 

 

In this chapter, it is assumed that the foam characterization data (collected at level 0) is 

not available and it is replaced by the experts’ interval data shown in the table above. For 

comparison purposes, the values of E used in Chapter 4 range between 20 ksi and 70 ksi 

wherea

cide with the available experimental data.  

as shown in 

Chapter 4.  

s the experts’ range from 32 ksi to 94 ksi. The range of values given by the experts 

are their best estimate of the parameter E at the system level and does not necessarily 

need to coin

For the joints, the level 0 data is still available and thus can be used to construct 

probability density functions of the parameters of the joint model. This w
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With the intervals given i d using t  Table 5.1, the 

bounds on the first four moments are es d and are shown i e 5.3. 

 

Table 5.3. Bounds on the first four moments from interval data 

Moment Lower Bound Upper Bound 

n Table 5.2 an he formulas in

timate n Tabl

1 41.2 75.7 

2 0 6288 

3 -7800.4 14392.5 

4 0 592721.8 

 

5.3.1 Method of matching and bounding moments 

This method uses the bounds on the moments calculated from the experts’ 

intervals using the formulation described in the previous section and fits a bounded 

Johnson distribution from which samples can be drawn. A variation of the method of 

matching moments pro

 

posed by DeBrotra et al (1998) is used and to fit a bounded 

Johnson distribution to these moments, the implementation developed by Venkataraman 

and Wilson (1997) is adopted. In this methodology, the distribution is assumed to have 

the same moments about the origin as the observed data. The procedure to create 

realization of a bounded Johnson distribution based on the interval data shown in Table 

5.2 is described below: 

94 



1. Calculate bounds on 1st moment via averaging of given bounds and on 2nd, 3rd 

and 4th moments via optimization, using the formulas shown in Table 5.1. These 

bounds on moments are shown in Table 5.3. 

 nerate the parameters of a bounded Johnson distribution  

a. Sample moments independently using the bounds on moments obtained in 

step 1 as the lower and upper bound of a uniform distribution. This is 

shown in Figure 5.2. 

 

2. To ge

 

Figure 5.2. Moments are sampled from a uniform distribution with limits 
given by estimated bounds on moments 

 

b. Form a collection of n four-tuple moments sampled at random from the 

uniform distributions shown in Figure 5.2. 
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c. For each row in m in Equation 5.7, use Equations 5.5 and 5.6, calculate 

21  and ββ and identify the region in Figure 5.1 where these fall. Keep only 

inations of those comb 21  and ββ which fall in the bounded region. 

 

 

Figure 5.3. System identification plot showing combinations of 21  and ββ which yield a 

 

d. Now, from the form of the bounded Johnson distribution 

bounded system (shown as green circles) 
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and using the given interval data, the parameters ξλ  and can be established. 

In this case they are set as: 
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e. Now use the method of matching moments to estimate remaining 

parameters, γδ  and . This is done using an optimization formulation as 

shown below: 
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=jmj are 

mpl unded Johnson distribution 

with parameters 

mome ed data taken from a bonts from sa

δγξλ  and,, , ),(f γδ is the objective fun s a 

and 2nd moments,  

ction and it i

sum of normalized squared errors between the 1st 
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2,1,ˆ and =lmm ll and ULUL MMMM 4433  and  , , are the lower and upper 

bounds on the 3rd and 4th moment respectively. 

3. 

The form a candidate bounded Johnson distribution has 1st 

and 2nd mome  within the bounds shown in Table 5.3; 

additionally, the 3 me stribution fall within their 

n is implemented in Matlab 

using fm eters of bounded Johnson 

e distributions are obtained and their PDFs 

are shown in 

 

The above procedure creates 

ulation in Eq. 5.9 requires that 

nts that match those sam

rd and 4th mo

respective bounds (also shown in 

incon to solve the optim

distributions are obtained. Samp

Figure 5.4. 

n bounded Johnson distributions. 

pled from

nts of this candidate di

Table 5.3). This formulatio

ization problem and the param

les from thes

 

Figure 5.4. PDFs of bounded Johnson distributed foam modulus of elasticity with 
parameters obtained using moment matching technique 
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To confirm that the simulated PDFs satisfy the required constraints, i.e. 1st and 2nd 

moments are matched and 3rd and 4th moments fall within the estimated bounds (as 

own in Table 5.3), the moments from the PDFs shown in Figure 5.4 are calculated (via 

sampling from these PDFs) and plotted below. First, we look at the first moment. There is 

a 1% or less error between the calculated and target moments. 

 

sh

 

Figure 5.5. Comparison of 1st moment sampled from Eq. 5.7 and those calculated from 

 

PDFs shown in Figure 5.4 

bias. This is a function of the tolerance of the optimization algorithm, in this case the 

Figure 5.6 shows the comparison between the calculated and target 2nd moments for the 

PDFs. In this case, the RMSE is around 12.9 and the estimated quantities show a slight 
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active set algorithm implemented in fmincon in Matlab, as it seeks to simultaneously 

satisfy the constraints that both the 1st and 2nd moments be matched. When this error is 

compared to the magnitude of the mean of the target moments, it is on the order of 5%, 

which is relatively low and, therefore, deemed acceptable for the purpose of this research.   

 

 

igure 5.6. Comparison of  2nd  moments sampled from Eq. 5.7 and those calculated from 
PDFs shown in Figure 5.4 

F

 

The next quantities to be compared are the 3rd and 4th moments which are only required 

to fall within the calculated bounds. These moments were not required to be matched 

exactly (or at least to within some small error) because it was deemed that the main 

features of the distribution that need to be matched closely were the mean and the 

variance. Figure 5.7 and Figure 5.8 show the 3rd and 4th moments calculated from the 

100 



PDFs shown in Figure 5.4 relative to their bounds. As can be observed in these figures, 

the PDFs shown in Figure 5.4 satisfy the 3rd and 4th moment requirement and thus the 

PDFs are considered a good representation of the expert specified intervals shown in 

able 5.2 and estimated via moment matching and bounding. These PDFs can be used as 

prior distributions for updating within the Bayes network. 

 

T

 

Figure 5.7. Comparison of  3rd moments  calculated from PDFs shown in Figure 5.4 and 
its bounds 
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Figure 5.8. Comparison of  4th moments  calculated from PDFs shown in Figure 5.4 and 
its bounds 

 

 While observing Figure 5.6 through Figure 5.8, it is noted that the 2nd to 4th 

moments plotted on these figures are concentrated in a region which in general fall away 

from one or both bounds. Even though the sampled moments come from a uniform 

distribution which cover the space between the bounds of the moments, the requirements 

is that the combination of the moments fall in the bounded region of the identification 

chart shown in Figure 5.1 and these moments are used to fit a bounded Johnson 

distribution to. In addition, the optimization procedure used to estimate the parameters of 

the bounded Johnson distribution (Eq. 5.8) may not converge for all the candidate 

moments. Thus from the original space of candidate moments selected, only a subset 

fulfill all the requirements needed (i.e. 21  and ββ fall in the bounded region and 
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convergence of the optimization problem for estimating the parameters of the bounded 

Johnson distribution). 

Once these distributions are created and it is verified that they satisfy the given 

requirements in terms of moments being matched and bounded, they now become the 

prior distributions to be used in the Bayes network shown in Figure 4.1. These priors are 

shown again below to facilitate the presentation of results. 

 

 

Figure 5.9. PDFs of prior distributions of foam modulus of elasticity, E 

 

These priors are then updated using the level 1 and 2 data described in Chapter 3 and a 

posterior distribution of E can be obtained. These are shown in Figure 5.10. 
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Figure 5.10. KDEs of posterior distributions of foam modulus of elasticity, E 

 

The effect of data used for calibration is noted when comparing Figure 5.9 with Figure 

as a source of aleatoric uncertainty where the statistics of the priors are obtained from a 

5.10. The large variances in the PDFs of the priors are significantly reduced when they 

are updated to form posteriors; it is evident in the smaller variances of the posterior 

distributions. The posteriors converge to a collection of very similar KDEs.  

There is a similar updating of the parameters for the joint model. These are treated 

large dataset at level 0 and the priors are assumed to follow a Normal distribution. In the 

case of the joint parameters, there are significantly more data available for updating than 

for the foam. The posterior probabilities of the joint parameters in general look very 

similar to those shown in the results section of Chapter 4 so they would not be presented 
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here. The focus of this section is the source of epistemic uncertainty, the foam’s modulus 

of elasticity.  

The final step in this process is to obtain a forward prediction of the system level 

response, the peak acceleration of the encapsulated mass. These are shown in Figure 

5.11. There is one peak acceleration response KDE for each prior PDF on the foam 

modulus of elasticity, E. As it is evident from Figure 5.11, the distributions of the peak 

acceleration at the system level are very tightly grouped, as a matter of fact they almost 

seem to converge to the same KDE. This is a reflection the posterior distribution of the 

foam modulus of elasticity which also shows a tight grouping and the fact that the 

response of the encapsulated components is very sensitive to this foam modulus of 

elasticity. 

 

 

Figure 5.11. KDEs of peak accelerations at the system level 
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The final plot shows a comparison when only sources of uncertainty are considered 

aleatoric only versus both aleatoric and epistemic are included. This is shown in Figure 

5.12. The results for this technique are very similar to those obtained when aleatoric 

uncertainty is only considered. This could indicate that the priors obtained with the 

method of moment matching share similar characteristics (i.e. 1st four moments) of those 

of the modulus of elasticity when it is treated as an aleatoric variable. This leads to a 

posterior prediction at the system level that are very similar to each other. 

 

 

Figure 5.12. Comparison of system level predictions when aleatoric only and both 
aleatoric and epistemic uncertainties are included 
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5.3.2 Method of percentile matching and mean bounding 

This method starts with the bounding information given by subject experts and 

computes the empirical cumulative distribution function (ECDF) of the experts’ lower 

limit specifications and the ECDF of the experts’ upper limit specifications. The ECDF is 

a cumulative distribution that concentrates probability 1/n at each of the n numbers in a 

sample (Cox and Oakes, 1984 and The Mathworks, Inc., 2009). Let x1 … xn be 

independent and identically distributed (iid) random variables with the cdf, F(x). The 

empirical distribution function Fn(x) based on sample x1 … xn is the step function defined 

by: 
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   (5.10) 

where I(xi ≤ x) is the indicator of the event in parenthesis. Once the two bounding ECDFs 

are calculated, the 10th and 90th percentile points are obtained from each.  These are 

shown in Figure 5.13 by asterisks. 
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Figure 5.13. ECDFs for lower and upper bounds on E and 10th and 90th percentile points 

 

A procedure to generate realizations of the parameters of a bounded Johnson 

 

Figure 5.13. The percentile points are tabulated below. 

distribution that is based on the experts’-given bounds shown in Table 5.2 and enforces 

the ECDFs shown in Figure 5.13 is described below: 

1. Start by constructing the bounding ECDFs from the experts’ bounds and 

identifying their corresponding 10th and 90th percentile points. This is shown in 
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Table 5.4. Lower and upper bounds on the 10th and 90th percentile points based on 
ECDFs of experts' given intervals 

 Lower Bound Upper Bound 

10th Percentile point 32 60 

90th Percentile point 50 94 

 

 

2. Assume that the 10th and 90th percentile points follow a uniform distribution with 

limits given by the lower and upper bounds on the 10th and 90th percentile points 

(shown in Table 5.4). These distributions are shown in Figure 5.14. 

 

 

Figure 5.14. Uniformly distributed 10th percentile (upper graph) and 90th 
percentile (lower graph) with limits from ECDFs from experts’ given bounds  
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3. From the distributions shown in Figure 5.14, sample n realizations of the 10th and 

  (5.11) 

4. Now, from the form of the bounded Johnson distribution given in Equation 5.8 

90th percentile values and denote these as: 
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and using the given interval data, the parameters ξλ  and can be established. 

These are the same as in the moment matching method: 

32   
62  =λ
=ξ  

5. Now use the method of percentile matching and 1st moment bounding to estimate 

remaining parameters, γδ  and . This is done using an optimization formulation as 

shown below: 
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where ( 2:1,i )α  are the rows of α in Equation 5.12, 2,1,ˆ =jjα  and are 10th, 90th 

percentile values and 1st moment, respectively, found from sampled data taken from a 

bounded Johnson distribution with parameters 

1ˆ m

δγξλ  and ,, and the 

lower and upper bounds on the 1st moment respectively. The procedure was implemented 

in Matlab and a probabilistic description of the modulus of elasticity of foam is obtained 

and 30 realizations of the PDF of E are show in the figure below. The PDFs shown in 

UMM 11  L and are 

Figure 5.15 show good coverage of the entire range of E and seem plausible realizations 

of the probability density for this variable. 

 

 

Figure 5.15. PDFs of foam modulus of elasticity using percentile matching method and 
level 0 data – These are the prior distributions of E 
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To verify that the algorithm is working correctly, a plot of the CDFs for each of 

the PDFs shown in Figure 5.15 are shown with their 10th and 90th percentile values along 

with the ECDFs and the corresponding bounding 10th and 90th percentile values. These 

quantities are shown in Figure 5.16.  

 

 

Figure 5.16. Estimated 10th and 90th percentile points from 30 generated CDFs 

 

The final check on this methodology is to ensure that the first moments of the 

obtained from the interval data. The realizations of PDFs for the variable E appear 

resulting PDFs fall within the calculated bounds on the first moments based on the 

expert’s intervals and shown in Table 5.3. This is confirmed in Figure 5.17. Similarly to 

the method of moment matching, the 1st moments of the distributions obtained with the 

percentile matching method span the range defined by the bounds on the 1st moment 
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plausible and fall within the prescribed criteria for this method (percentiles matched and 

1st moments within the bounds). 

 

 

Figure 5.17. 1st moment of PDFs shown in Figure 5.15 and bounds on 1st moment from 
experts’ given bounds 

 

Similar to the previous method, the priors shown in Figure 5.15 are propagated 

through the Bayes network, updated via Markov chain Monte Carlo simulation, and used 

to obtain samples of the posterior distribution of E, and then the forward prediction of the 

system level response. This sequence is plotted in Figure 5.18 through Figure 5.19. 
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Figure 5.18. KDEs of posteriors of foam modulus of elasticity, E, based on level 1 and 
level 2 data (Note: Prior PDFs of E, based on level 0 data, are shown in Figure 5.15) 

 

Figure 5.19. KDEs of peak acceleration from predicted responses of system level 
structures 
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 When compared to the previous method (method of moment matching), it is clear 

that the priors are different from those generated before, and since the same data is used 

to update them, the resulting posterior distributions of modulus of elasticity show 

different variances and different means. This is a function of the location of the priors 

relative to the data used for updating and it is a reflection of the epistemic nature of the 

parameter (i.e. the true probabilistic form of the random variable is unknown). The 

system level prediction shown in Figure 5.19 demonstrate the effect of the varying 

posterior PDFs of the foam modulus of elasticity, E. The current method yields a larger 

scatter in the values of peak possible accelerations and the ranges of mean and variance 

of the resulting predictions are larger than those obtained using the previous method. 

 

5.3.3 Parametric distribution functions from expert intervals 

This method constructs parametric distributions functions using the bounded 

Johnson distribution as the framework. Furthermore, it models, individually, each of the 

expert-specified intervals. In other words, it treats the original problem of multiple 

intervals as six separate problems each defined by one of the intervals (as shown in Table 

5.2). The six intervals are shown graphically in Figure 5.20.  
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Figure 5.20. Expert-given intervals for values of modulus of elasticity of foam 

 

Prior distributions for the foam modulus of elasticity are generated from each of 

ξ λ

the intervals shown in Figure 5.20 using a bounded Johnson distribution whose form is 

given by Equation 5.8. The parameters  and  define the bounds within which this form 

of the Johnson distribution has realizations. The lower bound is ξ ; the upper bound 

is λξ + . For example for the first expert,  = 32 and  = 28. The parameters  and  are 

then chosen at random from within plausible ranges. (The ranges of delta and gamma are 

parameters.) The ranges are:  = [-2 4] and  = [0.33 2.67]. An analysis must define how 

number of distributions from each interval, thus assigning each expert an equal weighing. 

ξ λ δ γ

defined by examining the shape of the distribution function resulting from use of a set of 

γ λ

many distributions are to be selected in each interval. One possibility is to select an equal 

An example in which five distributions are generated from each interval is shown in 
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Figure 5.21. The 30 PDFs shown in the figure serve as priors of the foam modulus of 

elasticity. 

 As before, these prior distributions of modulus of elasticity are updated through 

the Bayes network to obtain estimates of the posterior distributions of modulus of 

elasticity; then each posterior PDF of modulus of elasticity is used in a forward prediction 

to obtain the PDF of peak acceleration of the system level structure. The PDF of priors 

and posteriors of modulus of elasticity, E, and peak acceleration response of the system 

level structure are shown in Figure 5.22 through Figure 5.24. 

 

 

Figure 5.21. PDFs that serve as priors for Bayesian analyses. Five PDFs are defined for 
each expert-specified interval. This is considered equal weighing of expert-intervals 
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Figure 5.22. Collection of PDFs of priors of modulus of elasticity based on equal expert 
weighing 

 

Figure 5.23. KDEs of posterior distributions of foam modulus of elasticity from expert 
equal weighing 
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Figure 5.24. KDEs of peak acceleration responses from system level structural response 
predictions 

 

One observation that can be made from Figure 5.24 is that the range of PDFs describing 

the system level response is much broader than the ranges observed using the previous 

methods. This is due, in part, to considering each of the experts as separate entities and 

not combining the information from all the experts. This method calls for each of the 

expert’s opinions to be treated separately, thus, the resulting priors reflect each 

individual’s range of values, only. The reason for the large range in posteriors is that 

some prior distributions start out far away from the available data at level 1 and 2 and 

thus the priors can only be updated to account for this data. Just to recall, the available 

data consisted of the following: 
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1. 45 joint experiments at level 1 and 27 joint experiments at level 2; energy 

dissipation was calculated for each experiment 

2. 6 foam experiments at level 1 and 3 foam experiments at level 2; natural 

frequencies were calculated for each experiment. 

Instead of equal weighing, the experts can be given different weights subject to 

their relative amount of experience, knowledge, credibility and/or past performance. For 

this research an arbitrary assignment of weights was defined. Here, weighing is 

interpreted in terms of a corresponding number of distributions in each of the expert’s 

intervals. For example, the weighing (in terms of number of distributions in each interval) 

chosen for this work is shown in Table 5.5. The generated distributions are shown in their 

respective intervals in Figure 5.25. 

 

Table 5.5. Relative weighing of experts (in terms of number of distributions in each 
interval) 

Expert Relative weight 

1 1 

2 12 

3 5 

4 3 

5 7 

6 2 
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Figure 5.25. PDFs generated to represent expert-specified intervals. Weighting is non-
equal. 

 

The prior PDFs of foam modulus of elasticity are updated to obtain the KDEs of the 

posterior distributions of foam modulus of elasticity. Then each posterior KDE of foam 

modulus of elasticity is used to make a forward prediction of the PDF of peak 

acceleration response of the system level structure. The prior and posterior PDFs of foam 

modulus of elasticity and the PDFs of peak acceleration in the system level structure are 

shown in the sequence of Figure 5.26 through Figure 5.28. The KDEs of peak 

acceleration of system level response (shown in Figure 5.28) are very similar to those 

shown in Figure 5.24. The main difference is attributed to the fact that more prior 

distributions are generated for those experts whose opinions are weighted higher relative 

to the others. If some experts (experts 2 and 4), had priors that were closer to the data 
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used for updating, then the resulting posteriors and system level responses would tend to 

be more concentrated in the interval [160,190].  

 

 

Figure 5.26. Collection of PDFs of priors of modulus of elasticity based on different 
expert weighing 
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Figure 5.27. KDEs of posterior distributions of foam modulus of elasticity from expert 
different weighing 

 

Figure 5.28. KDEs of peak acceleration responses from system level structural response 
predictions 
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5.3.4 Uniform distribution from each expert interval 

This approach is conceptually similar to the one described above except that uniform 

distributions of foam modulus of elasticity are assumed for each expert interval. The 

uniform PDFs are shown in Figure 5.29. 

 

 

Figure 5.29. PDFs of expert intervals with a uniform distribution 

 

For this particular case, there are only 6 prior distributions of modulus of elasticity to 

update into posterior PDFs of foam modulus of elasticity. Each of the posterior 

distributions was used to compute the KDE of peak acceleration response on the system 

level structure. A general observation is that the posterior PDFs of E and, in turn, the 
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forward predictions of PDFs of peak acceleration response are strongly influenced by the 

locations of the priors and the available data used to update the priors into the posteriors. 

It is not surprising that some of the PDFs of peak acceleration response group together 

around a central location of 180g; this is where the PDFs obtained using the other 

ethods have also clustered. 

 

m

 

Figure 5.30. KDEs of posterior distributions of foam modulus of elasticity from 6 
uniform priors 
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Figure 5.31. KDEs of peak acceleration responses from system level structural response 
predictions 

 range 

 

5.3.5 One uniform distribution covering all the experts’

The final method to incorporate the expert-specified information is to take the 

absolute minimum and maximum values given by experts and use this to define a 

uniform distribution. This defines a prior that encompasses all the ranges of values 

offered by the experts, but does not take into account the experts individual information. 

The PDF of this prior distribution is shown in Figure 5.32 and it provides a single 

posterior PDF of foam modulus of elasticity, which can be used to obtain one distribution 

of the peak acceleration of system level response. A family of distributions is obtained 

with the all other methods. This is analogous to performing an analysis where the 

modulus of elasticity is treated as an aleatoric variable and not an epistemic one. The 
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reason for performing this analysis is to determine the effect on the analysis with and 

without epistemic uncertainty included. The approach of selecting one prior distribution 

as in this case, is the most uninformed case since it uses the least amount of information 

to capture epistemic uncertainty. It uses a uniform distribution to encompass the entire 

range of values that are specified by the experts by setting the limits of the uniform 

distribution to the minimum and maximum of the experts’ given intervals.  

 

 

Figure 5.32. Uniform distribution between absolute bounds on expert-specified data – 
This is the prior distribution of E 

 

Figure 5.33 and Figure 5.34 show the KDE of the posterior distribution of E and the KDE 

of the system level response. It is interesting to note that the resulting system level 
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response shown in Figure 5.34 is similar to the resulting KDE obtained in Chapter 4 

when all random variables were treated as sources of aleatoric uncertainty.  

 

 

Figure 5.33. KDEs of posterior distribution of foam modulus of elasticity 
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Figure 5.34. KDE of peak acceleration responses from system level structural response 
prediction 

lts 

 

5.4 Comparison of Resu

In the following two sections, the results presented in Section 5.3 are compiled and 

compared in order to make some general statements regarding the suitability of each of 

the methods to incorporate epistemic uncertainty into a Bayesian analysis of a 

hierarchical model. Section 5.4.1 presents results which arise due to UQ method 

uncertainty. This section summarizes the results for all the methods shown in Section 5.3. 

Section 5.4.2 shows the model error comparison for four of the methods described in 

Section 5.3. The errors are also compared to those presented in Chapter 4 where only 

aleatoric uncertainty was considered. 
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5.4.1 UQ Method Uncertainty - Results 

This section presents the effect of the uncertainty quantification methodology 

used to model the modulus of elasticity of foam on the system level prediction. First, the 

prior distributions for the various analysis methods are plotted in Figure 5.35 (Note that 

the uniform priors are not shown.) To facilitate visualization of all the results, the 

cumulative density functions (CDF) are plotted instead of the PDFs. Although in this 

figure it is difficult to examine small features of individual distributions, it is most helpful 

to look at some global characteristics of the CDFs. One of the most salient features is the 

shape of the CDFs from the moment matching technique. These CDFs are consistent with 

distributions that are not unimodal, are highly skewed and are relatively flat. These PDFs 

can be observed in Figure 5.9. 

The next interesting feature of this plot is the range of values that these priors 

cover. Of course, the extreme values are those corresponding to the limits of the expert 

opinion (i.e. from Table 5.1 the values are 32 and 94). It is noted that some distributions 

start and end well away from these endpoints, and they are all reasonable quantifications 

of epistemic uncertainty. 
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Figure 5.35. Compilation of all prior CDFs of foam modulus of elasticity from different 
methods 

 

Figure 5.33 shows the CDFs of the posterior distributions of the foam modulus of 

elasticity for all methods. The curves show, clearly, the effect of the data used for 

updating relative to each of the priors. In general, when the prior distributions have 

support over the range where data is present, the prior moves toward the data during the 

updating procedure, and the posterior reflects the characteristics of the prior and the 

likelihood function. When the prior distribution is far away from the data, the PDF of the 

posterior distribution may resemble a delta function, thus indicating little or no support 

for the prior distribution in the likelihood function. In general, the CDFs shown in Figure 

5.36 show that all prior distributions have some degree of data support. 
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Figure 5.36. Posterior distributions for all methods 

 

response predictions. These are shown in Figure 5.37. These CDFs reflect not only the 

aleatoric variables (the joint model parameters, klin, knon and npow). The system level 

response is an extrapolated quantity and no experimental data has been used for updating 

 

The next comparison considers the distributions of system level peak acceleration 

effect of the epistemic variable (foam modulus of elasticity) but also the effects of the 

(although it could be easily incorporated if it were available).  
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Figure 5.37. System level predicted responses for all methods 

 

CDFs, the majority of the system level responses cluster around values between 140g to 

 The next set of plots compares the results obtained in this chapter with those 

obtained in Chapter 4. This is a comparison of the effect of both epistemic and aleatoric 

considered. Figure 5.38 shows the prior distributions of E. As it is apparent from the 

considered but it is also constrained to a certain range. This is to be expected as the 

intervals given by the experts need to be preserved. 

With the exception of some of the equally weighted and differently weighted expert 

200g.  

uncertainty present in an analysis relative to when only aleatoric uncertainty is 

figure, the distribution of this variable has a much greater spread when interval data is 
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Figure 5.38. Comparison of prior distributions of E - Aleatoric/Epistemic and Aleatoric 
only 

 

Figure 5.39 shows the posterior distribution of E once all the available data is 

used to update the Bayes network. It is interesting to note that the CDF of E, when only 

aleatoric uncertainty is considered, falls towards the lower end of the range defined by 

the CDFs obtained when both epistemic and aleatoric uncertainty is included. This says 

that the possible range of E is much greater when epistemic uncertainty is included in the 

analysis and also due to the different method used to quantify uncertainty due to interval 

data. 
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Figure 5.39. Comparison of posterior distributions of E - Aleatoric/Epistemic and 
Aleatoric only 

 

Finally, Figure 5.40 shows the comparison of the posterior distribution of the 

system level response with and without epistemic being considered. Consistent with the 

results shown in Figure 5.39, the system level CDF when only aleatoric uncertainty is 

included falls on the upper end of the range of CDFs (as noted in Chapter 3, there is an 

inverse relationship between E and the system level response). The presence of epistemic 

uncertainty has an effect to expand the range of possible system level responses and thus 

it accounts for possibilities that are not included if the parameter E is treated as an 

aleatoric variable. 
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Figure 5.40. Comparison of posterior distributions of system level response - 
Aleatoric/Epistemic and Aleatoric only 

esults 

 

5.4.2 Model Errors - R

This section presents the statistics of model error terms, denoted as  

(see 

f
2

f
1

j
2

j
1  and  , , εεεε

Figure 4.1) and compares four of the methods examined in Section 5.3: moment 

matching, percentile matching, equal and unequal weighing of experts. The results 

obtained when interval data is present are also compared with the results obtained when 

treating parametric uncertainty as aleatoric uncertainty (as was presented in Chapter 4). 

Note that the prior distribution for the error terms is the same as what is shown in 

Equations 4.6 and 4.7.  

The first set of plots, shown in Figure 5.41, presents the posterior distribution of the 

error terms associated with the moment matching method of treating interval data.  
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Figure 5.41. KDE of error terms - using moment matching method 

 

One interesting feature is that the results when both epistemic and aleatoric uncertainty is 

considered appear to include those obtained when only aleatoric uncertainty is present; 

this is expected. The collection of KDEs for the epistemic/aleatoric case are due to the 

multiple realizations of the prior distributions of E.  

 Figure 5.42 shows the error terms when the percentile matching method is used to 

obtain the parameters of the Johnson distribution used to model interval data. 
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Figure 5.42. KDE of error terms - using percentile matching method 

An interesting effect is shown in the error of the 1st natural frequency of the foam level 1 

hardware. The variance changes for each realization of the prior distribution of the 

modulus of elasticity and in general it is higher in all cases relative to the aleatoric only 

case. This says that the error in this metric is highly sensitive to the variation in the prior 

E. The other error term

 Figure 5.43 and Figure 5.44 show the error terms for the non-aggregating methods 

used to model interval data: equal and unequal expert weighing. Similar to the results 

 

of s do not show this effect. 
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shown for the percentile matching methods, the variance change in the error of the 1st 

natural frequency of the foam level 1 response measure is noticeably different for both 

cases and in general higher when compared to the aleatoric only case. 

 

 

Figure 5.43. KDE of error terms - using equal weighing of experts method 
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Figure 5.44. KDE of error terms - using unequal weighing of experts method 

 

 

presented. Results obtained from propagating both epistemic and aleatoric uncertainty 

informed decision analysis. Different approaches to treat interval data when used to 

5.5 Conclusion 

In this chapter, the treatment of interval data using a probabilistic approach was 

using a Bayes network were shown. In the literature, interval data has been addressed 

with non-probabilistic methods but in this research a decision was made to pursue a 

probabilistic approach to enable the implementation of Bayes networks and eventually, a 

reliability based approach to address the main focus of this research which is risk 
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describe a model parameter lead to multiple PDFs of the system level response. This is an 

example of model form uncertainty. This arises from the treatment of the so-called 

parametric uncertainty when the modulus of elasticity is given in terms of an interval. 

Both of these are sources of epistemic uncertainty  

An interesting factor reflected in the analyses in this chapter is the effect of UQ 

method uncertainty in incorporating interval data. This comes to light due to the choice of 

methodology used to describe the modulus of elasticity given bounds on the parameter. In 

this chapter, six different ways to model interval data are presented. Using the 

methodologies described in this chapter, the resulting uncertainty at the system level was 

quantified and comparisons among the various techniques were made. It was observed 

that some techniques yield results that were very consistent among each other while 

others had a much larger range of values of the system level response. This was the result 

of the location and shape of the prior distributions and the available data used for 

updating. At this point, there is no attempt to rank these methods or suggest which ones 

perform better. This would be later revisited in the context of a decision making 

framework. 

Also shown in this chapter is a comparison of the results obtained in Chapter 4 

where only aleatoric uncertainty was included in the analysis. Both the results from the 

modulus of elasticity and the system level response were compared. It was observed that 

when epistemic uncertainty is present the range of possible values for these quantities 

was increased and in general the results from the aleatoric only analysis tends to fall on 

the extreme of the distributions obtained when both aleatoric and epistemic uncertainty 

are considered.  
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A comparison was also made using the model error terms present in the Bayes 

network. When both epistemic and aleatoric uncertainty is present, there is a collection of 

model errors that arises due to treating the interval data probabilistically. Two 

comparisons were made. One was the effect of including epistemic uncertainty which 

shows a minimal effect on some of the error distributions relative to the aleatoric only 

analysis. The other effect was due to UQ method uncertainty. In this case, the effect was 

clearly different based on the choice of method used. Except for the results of using the 

moment matching method, the other methods showed a significant change in the variance 

of the errors associated with the level 1 and 2 foam. This is an interesting result and it 

speaks to the sensitivity of this type of uncertainty in the overall analysis. 
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CHAPTER VI 

 

6. RELIABILITY-BASED QMU 

on 

 

6.1 Introducti

A central step in the process of risk informed decision analysis (RIDA) is the 

Quantification of Margins and Uncertainty (QMU). QMU methodology has been, for the 

most part, proposed at the conceptual level and not much literature is available describing 

actual applications. In this regard, this dissertation looks at a few candidate 

implementations of this methodology and selects the most appropriate one to an actual 

problem developed at Sandia.  

Based on the current literature, one possible implementation is described in 

Diegert et al. (2007). The QMU measure presented in this work is the confidence factor, 

(CF), and it is defined as: 

UMCF /=       (6.1) 

where M is the margin between the system behavior and the required performance 

measure, and U is defined as the uncertainty on the operating region and is assessed 

through modeling, testing, expert judgment or some combination of the three. In practice, 

U captures both aleatory and epistemic uncertainties. To ensure consistency across 

applications, it is recommended that the margin M be defined in terms of the difference of 

median values for assessed and threshold distributions and that the uncertainty U be 

defined in a manner to convey “high confidence” in the context of a specific application. 

If the assessment of U is rigorous, then it is sufficient that CF > 1 to ensure that the 
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reliability is “ONE” with high confidence. In practice, however, it is prudent to demand 

some robustness to unknown unknowns or to assessments lacking rigor in the modeling 

processes. Consequently, it is likely that some issues will require additional attention if 

CF is too close to unity (Diegert et al., 2007). An application paper based on the work by 

Diegert et al. is described in Pepin et al. (2008). This paper describes a step by step 

procedure to perform a QMU analysis based on Diegert et al.’s approach. The essence of 

this paper is that a unique way to implement QMU is not currently available and 

therefore opportunities abound to suggest techniques that satisfy the requirements for a 

QMU analysis.  

 A second approach to implement QMU is based on the risk-based decision 

methodology of Jiang and Mahadevan (2007) which is quite suitable for the analysis 

done in this research. This work was proposed to answer a model validation assessment 

question but it could be extended to address a QMU type question. The result of the risk-

based methodology presented by Jiang and Mahadevan (2007) is the use of Bayesian 

hypothesis testing and the Bayes factor as the comparison metric. The proposed 

techniques should be valid approaches to implementing QMU as long as they satisfy the 

Kaplan and Garrick risk triplet plus the credibility component as described in Chapter 2. 

As a matter of fact, the fourth component, credibility, is the only one that relates to a 

quantitative assessment of the system performance and it is the one that can differ in the 

implementation. The other three components are more or less defined by the system 

being evaluated (i.e. the weapons system), the use environment and the ultimate objective 

of the system. For the purpose of this research, it will be assumed that these remain 
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constant for a particular system so this research will only propose a method to address the 

credibility issue. 

 Another possible approach to the treatment of QMU, in particular, one that treats 

interval data with probability theory, is to consider techniques used in the field of 

reliability using Bayes networks. The basic concept of reliability analysis can be found in 

Haldar and Mahadevan (2000).  Estimation of systems reliability using Bayes networks 

dates back to 1988, when it was first defined in Barlow (1988). The idea of using Bayes 

networks in systems reliability analysis has gained acceptance because of the simplicity it 

allows in the representation of systems and the efficiency for obtaining component 

associations. Recently, Bayes networks have found applications in fault detection systems 

(Jensen, 2001) and general reliability modeling (Bobbio et al., 2001). Bayes networks 

have been developed for reliability estimation for specific systems. Gran and Helminen 

(2001) provide a Bayes network for nuclear power plants and introduce a hybrid method 

for estimating the reliability of the plant. Wilson and Huzurbazar (2006) showed using a 

simple two level system that it is possible to relate multiple levels of complexity to a 

system reliability analysis within a Bayesian context.  

The reliability analysis in this research will be coupled to the use of Bayes 

networks to probabilistically combine the information available at multiple levels of 

complexity leading up to the system level. The major reason for using this methodology 

is the need to ultimately cast the decision making problem in a probabilistic framework 

and provided decision makers with a probability of occurrence rather than just a 

deterministic value. Still, the major complication and the real crux of the problem is the 

way that interval data is handled, and a key question concerns how much uncertainty is 
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added due to the choice of treating the interval data in a probabilistic way. This is 

something that can be answered only if a comparison with another approach to interval 

data treatment is performed. In the following section, a method to calculate the 

probability of failure based on the system level results is presented and a comparison 

using the various methods used to model interval data is also shown.  

    

6.2 Methodology 

As stated in the introductory section, the approach taken to implement QMU in this 

research is one that is based on reliability-type analysis. In this context the calculation of 

the probability of failure (or the probability of exceeding a given threshold) needs to be 

performed using the results obtained from the Bayesian network described in Chapter 4, 

which results from the inclusion of epistemic and aleatoric uncertainty as shown in 

Chapter 5. The methodology applied here makes extensive use of kernel density 

estimators (KDE) whose form was presented in Equation 4.4 of Chapter 4, to facilitate 

the computation of the probability of failure. The derivation of a formula to obtain this is 

shown below. (Key references to basic probability theory and reliability concepts can be 

found in Ang and Tang (1975), Haldar and Mahadevan (2000) ). 

To begin, let S be a random variable describing the response quantity of interest 

obtained from a model of the system. In the example problem, S describes the absolute 

peak acceleration response of the system, given a particular input. Now, let R be a 

random variable denoting the design threshold of the system given the same input to the 

system as the one used for the model. The values of R are usually obtained from 

experiments, from historical data, experts or a combination of all these. The key is that 
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this is the threshold at which the system of interest is assumed to fail. Let Z denote the 

margin of safety against failure, then, 

SRZ −=      (6.2) 

The probability of failure is the given by: 

)(P)0(P)0(Ppf SRSRZ ≤=≤−=≤=    (6.3) 

For this research, the random variable S is known only through a collection of samples, sj, 

j=1…n, which are obtained from the Bayes network following updating and the 

probability distribution of R is assumed to follow a normal law with mean Rμ  and 

variance, . The probabilistic characterization of S is an approximation to its PDF that 

uses the kernel density estimator (KDE) defined as (This is a repeat of Equation 4.5.):  
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where the kernel used in the KDE is the Gaussian kernel with standard deviation, ε. (The 

value of ε can be optimized based on the sample standard deviation of the sj, j=1…n, and 

the number of data, n). The random variable R is assumed Gaussian in this research (The 

assumptions is that a predetermined requirement has specified this.) Its PDF is given by: 
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    (6.5) 

Given the PDFs in Equations 6.4 and 6.5, we seek the CDF of Z, 

)(P)(P)(F zSRzZzZ ≤−=≤=     (6.6) 
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Assume the random variables R and S are independent random variables; this is a 

reasonable assumption since there is no reason to believe that the system level response 

and its threshold are related. Therefore,  

∫∫
≤−

= )(f)(fdsdr)(F SRZ srz
zsr

     (6.7) 

The region over which the integral is evaluated is shown in Figure 6.1. 

 

s

r

r – s = z

r – s ≤ z

s

r

r – s = z

r – s ≤ z

 

Figure 6.1. Failure region 

 

The integral in Equation 6.7 can be rewritten (reflecting the region shown in Figure 6.1) 
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or 
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The PDF of Z is the derivative of the CDF, 

)(F)(f ZZ z
dz
dz =      (6.10) 

To evaluate the right hand side of Eq. 6.10, we need the derivative of an integral, which 

can be obtained by Leibnitz rule. The PDF of Z when derived using Equation 6.8 is 

(Paez, 2009): 
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Substitute Equations 6.4 and 6.5 into Equation 6.11 to obtain, 
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After simplifying Equation 6.12, the following expression is obtained: 
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Exchange the order of the summation and integration in Equation 6.13, then simplify the 

result to obtain: 
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Equation 6.14 represents the KDE of the data njs jR ...1, =−μ , with smoothing 

constant, . The CDF of Z is the integral of Equation 6.14: 22
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where is the CDF of a standard normal random variable. The reliability of the 

system is obtained by setting 
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 in Equation 6.15 and observing 
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Finally, the probability of failure of the system is given by: 
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The formulation presented above is now applied to the results obtained in Chapter 5 and a 

comparison of the different methodologies used to quantify epistemic uncertainty relative 

to this metric are shown. 

 

6.3 Implementation and Results 

In this section, the implementation of the formulation shown above, to calculate the 

probability of failure given a collection of simulations obtained using the Bayes network 

and the different methods to quantify interval data is presented. The first step in 

calculating this probability of failure is to establish an acceptable threshold for this 

150 



system. Normally, this threshold will be specified a priori in a standards’ manual, by 

historical testing, by a panel of experts and/or a combination of all of these. For this 

research, a suitable value is suggested based on some experimental evidence and expert 

opinion. It is then accepted that this threshold in itself also contains uncertainty which 

will not be treated in this research. The threshold is assumed to follow a Gaussian 

distribution with a mean of 247 g and a standard deviation of 34. The PDF of the failure 

threshold is shown in Figure 6.2.  

 

 

Figure 6.2. PDF of the system’s peak acceleration threshold 

 

Once this is established, the next step is to calculate the probability of failure for each of 

the simulated peak acceleration responses at the system level given that both epistemic 

and aleatoric uncertainty are present in the analysis. For this, the results at the system 
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level presented in Chapter 5 are used. The results for the percentile matching technique 

(presented in Section 5.4.2) are used to illustrate the methodology to calculate the 

probability of failure. The generated PDFs at the system level (first shown in Figure 5.16) 

and the system threshold PDF are shown in Figure 6.3. The overlap between the 

simulations and the threshold is what defines the probability of failure. This will be 

calculated using the formulation described in Section 6.2. 

 

 

Figure 6.3. KDEs of simulated peak acceleration responses (blue), and PDF of threshold 
(red) 

 

To simplify visualization of the steps involved in the calculation of the probability of 

failure, one of the realizations of the system response PDF (shown as blue curves in 
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Figure 6.3) is plotted along with the PDF of the threshold and they are shown in Figure 

6.4.  

 

 

Figure 6.4. One realization of the PDF of absolute acceleration of system level response 
(blue) and the PDF of absolute acceleration threshold (red) 

 

In this figure, the grey shaded area defines the probability of failure for this particular 

realization of the system level response.  If the random variable, R (which in this case is 

the threshold of the system), falls in the interval [r, r+dr] (r = 175 in the graph) and the 

random variable S (which comes from the Bayes network analysis) falls anywhere in the 

interval [r,∞] then failure occurs. The probability of this event is dr))(F1()(f SR zrr −− . 

To obtain the overall probability of failure, we integrate this event probability of failure 

over all r. This is what is done in Equation 6.8 with 0=z . 
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Using the formulation described in the previous section, the probability of failure 

for the case shown in Figure 6.4 is evaluated as 0.0170. The above procedure is repeated 

for each simulated PDF of S and the system threshold (shown as blue and red curves, 

respectively in Figure 6.3), and the corresponding failure probabilities are shown in 

Figure 6.5. Again, these failure probabilities were obtained at the system level using the 

percentile matching method. Note that these probabilities of failure are much higher than 

one would hope to attain for a high consequence system (where probabilities of failure 

are typically in the 1e-6 range). The reason for this is that the threshold was set arbitrarily 

low in order to have some overlap in the system response and threshold PDFs which 

facilitates the visualization of the results. The red colored triangle in Figure 6.5 represents 

the result of the case shown in Figure 6.4. As can be seen in the figure, most of the results 

are between 0.01 and 0.02 with one as low as 0.0045. 
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Figure 6.5. Collection of probabilities of failure from system level simulations using 
percentile matching. The red triangle represents the case shown in Figure 6.4.  

 

Similarly for the system level response PDFs obtained using the other 5 methods for 

handling interval data presented in Chapter 5, the probability of failure is calculated. The 

values of the probability of failure will be greatly influenced by the choice of prior 

distribution of modulus of elasticity.  As a matter of fact, the results are influenced by the 

method used to generate the prior distributions. In Figure 6.6, the resulting probabilities 

of failure obtained using the different methodologies presented in Chapter 5 to model 

interval data are presented. The legend in Figure 6.6 relates to the techniques presented in 

Chapter 5 as: 

Methods for aggregating interval data 

• 2 moment – Moment matching and bounding method 
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• Percentile – Percentile matching and 1st moment bounding 

Methods for individual treatment of interval data 

• Equal weight – Equal weighing of individual expert intervals 

• Different weight – Different weights applied to each individual expert intervals 

• Unif. Intervals – Each expert interval is modeled with a uniform distribution 

• One uniform – One uniform distribution with bounds defined by the min/max of 

the expert-specified information. 

 

 

Figure 6.6. Comparison of probability of failure results for all methods of quantifying 
interval data. (Note log scale on the abscissa) 
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Some immediate conclusions can be drawn from Figure 6.6. For the case of one uniform 

distribution between the minimum and maximum of the bounds given by the experts, 

there is only one probability of failure calculated. This is analogous to the case where 

only aleatoric uncertainty is present (as described in Chapter 4). When compared to the 

other results, it is obvious what effect interval data has on the probability of failure. It 

expands the range of values that the probability of failure can occupy. It is this range of 

values that one should seek to minimize in order to increase the confidence that one has 

on a system level reliability prediction. This issue, as well as its ramifications connected 

to decision making, will be considered in Chapter 7 

Another observation from Figure 6.6 concerns the spread of possible values for the 

probability of failure relative to the method used to create prior distributions. The 

smallest spread occurs when using the method of moment matching. This could be due to 

the priors’ 1st and 2nd moments being constrained to match a given set and for the 3rd and 

4th moments falling within some bounds obtained from the expert intervals. This may 

have the effect of constraining the form of priors that can be generated as well as where 

the majority of their density is located.  

The widest range of values for the probability of failure is obtained when all the 

experts’ intervals are equally weighted and plausible values of the parameters of the 

bounded Johnson distribution are obtained. The requirements placed on these 

distributions are that they lie within each of the expert-specified intervals and that the 

skewness and kurtosis, as defined in Equation 5.5 and 5.6, fall in the region identifying 

the random source as a bounded Johnson system as shown in Figure 5.1 and denoted SB. 

This allows for a wider range of possible prior distributions to be generated and for some 
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of them to overlap, more or less, with the given threshold. These conditions will yield 

wider bounds on the probability of failure.  

When different weights are assigned to each expert, the probability of failure has a 

range that is narrower than the one obtained for an equal weighing. This is not completely 

unexpected since the priors being used for the simulations tend to be biased toward one 

of the expert-specified intervals (as noted in Chapter 5, the relative weight of each expert 

is defined by the number of prior distributions from each interval; the higher the weight, 

the more priors defined from a particular interval). Again, for this particular set of 

weights for each experts’ interval, the range of probability of failure is narrower than the 

equal weight case (for this particular problem). It is expected that a different set of 

weights will produce a different set of results, thus the above observation is not a 

generalization. 

Finally, it is observed from Figure 6.6 that the results obtained from both the 

percentile matching and uniformly distributed prior analyses yield similar ranges of 

values for the probability of failure. The reason is as follows: if each of the values in an 

interval has equal probability of occurrence, then the range of the probabilities of failure 

is almost the same as if one constructs a bounded Johnson prior constrained to have its 

10th and 90th percentile values within bounds of empirical CDFs arising from expert-

specified bounds.  

 

6.4 Conclusion 

This chapter presented a reliability-based method to implement the QMU 

methodology. The metric of system sufficiency is the probability of failure. The 
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probability of failure compares random response levels to a given threshold of 

performance and includes sources of uncertainty. Both epistemic and aleatoric 

uncertainties are included in the system level response and aleatoric uncertainty is 

contained in the threshold. It is assumed, for the purpose of this research, that the 

threshold can be a random process since the actual system and its operating environment 

are random in nature.  

The results shown in this chapter also highlight the effect of method choice in 

handling interval data; this is similar to model form uncertainty. This is reflected by the 

variation in results that occurs because of the use of different methodologies to model the 

interval variable, foam modulus of elasticity. As shown in the results, each technique 

yields a spread in the probability of failure which is attributed to the presence of interval 

data at the parametric level. The next chapter presents a methodology to assess the effects 

of two sources of epistemic uncertainty (interval data and method choice) within a 

decision making context. 
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CHAPTER VII 

 

7. RESOURCE ALLOCATION USING QMU 

on 

 

7.1 Introducti

This chapter focuses on developing a methodology to allocate the resources needed 

to increase the confidence in the system level prediction. The method presented in the 

following sections leverages the work presented in Chapters 3 through 6. Based on a 

requirement on the amount of uncertainty present in a metric such as the probability of 

failure (presented in Chapter 6), an assessment could be made regarding whether or not a 

system is “certified” relative to that requirement in the presence of both epistemic and 

aleatoric uncertainty. This is what QMU seeks to address. If the answer is no, an 

important question to address is how to reach this requirement. This could be in terms of 

the resources needed to achieve a required level of confidence. Confidence in this 

dissertation is related to the amount of uncertainty present in the probability of failure of 

the system relative to a given threshold. Resources could be in terms of more experiments 

at a certain level, additional model simulations or model refinement and a reduction in 

the uncertainty of a metric of interest (such as the probability of failure) is equated to an 

increase in the confidence in the system level model prediction. Determining which 

resources are relevant could be done by means of a Phenomenology Identification and 

Ranking Table (PIRT), which connects the application requirements to some relevant 

phenomenon (Pilch et al., 2001) and Trucano et al., 2002).  
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To address the resource allocation question, a solution could be given by solving an 

optimization problem in which the design variables are functions of the resources to be 

allocated. In this study, analysis will be done numerically by introducing perturbations of 

one or more parameter(s) or one or more nodes in the Bayes network while keeping the 

others at their nominal values and calculating the metric of interest (i.e. probability of 

failure) for each combination.  

 

7.2 Methodology 

roach 7.2.1 General app

The general framework to address the resource allocation problem is now 

presented. This framework needs to include sources of aleatoric and epistemic 

uncertainty and will be cast as an optimization problem. In mathematical terms, this can 

be written as: 
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The various terms in Equation 7.1 are now described.  

iΘ is the ith design variable which is constrained to be greater than (this is 

needed to avoid nonsensical cases, such as zero or negative number of data points); 

n_design_variables is the number of design variables that can be modified and have an 

effect on the uncertainty in the system performance. The design variables, 

lower
iΘ

iΘ define 

where resources can be allocated to impact the confidence on the system model. These 

design variables could include: 

1. Increased overall budget for testing, where permitted, at the different levels that 

make up the hierarchical system level model. In the example problem used in this 

study, this will be additional testing of joints and/or foam at levels 1 and 2. 

2. Additional refinement to the computational models to reduce the error terms 

associated with the difference between the model predictions and the available 

experimental data at a particular level. For example, a functional form that relates 

the change in jκ  at the system level as a function of the reduction in error due to 

model refinement is needed. 

3. Alternate models to describe the relevant physics of the problem. Again, a 

functional form that relates the change in jκ  at the system level as a function of 

the candidate physics models and their contribution to the error at each level will 

be required. 

In Equation 7.1,Ψ  is the measure of the system performance which is relevant to 

the application space of the system. It is directly related to the system level prediction and 

contains the different sources of uncertainty including variability due to part-to-part 
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variations and uncertainty due to interval data. This quantity incorporates the design 

threshold of the system which is defined a priori. In the case where interval data is 

present, such as in the example problem for this study, Ψ becomes a vector value as was 

shown in Chapter 6.  

In Equation 7.1, jκ  is referred to as the system assessment metric and is a 

function of . It relates to the confidence in the system model. This quantity can take on 

various forms such as the range of 

Ψ

Ψ and is defined as: 

)min()max(j Ψ−Ψ=κ     (7.2) 

or the expected value of given as: Ψ

Ψ=

Ψ=

Ψ

Ψ
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1
j

n
n

κ     (7.3) 

Other candidate metrics are the expected value of information (EVI) (Hubbard, 2007) and 

entropy. 

The constraints for this problem are specified as a function of the sum of the cost 

of each design variable ( iΘiα ) where each iα represents the unit cost of each design 

variable. The total cost should be less than or equal to a given budget.  

 In this study, the emphasis will be placed on how much experimental data needs 

to be included in the original problem. This translates into allocating resources (i.e. 

money) to run the necessary experiments at levels 1 and 2. This approach is examined in 

the next section. 
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7.2.2 Problem-specific approach 

Following the general approach presented in the previous section, the specific 

formulation to the example problem used in this study is shown below. Using Equations 

7.1 through 7.3, the following optimization problem can be written for the specific 

problem used in this study: 
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where are the optimal number of samples that minimizes the objective 

functions, 

ff
 nn 21  and

 and 1  2κκ . is a function of the number of foam samples at level 1 and 2 and 

the corresponding probability of failure (pf). As it turns out, it is also a function of the 

method used to quantify the uncertainty due to interval data. Finding when interval 

data is present was the subject of Chapter 5 and the formulation presented in that chapter 

will be used in here. 

Ψ

1

Ψ

κ was initially mentioned in Chapter 6 and was formally defined in 

Equation 7.2 as the range of the probability of failure at the system level. As noted in 
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Chapter 6, the range in values of probability of failure is a reflection of having a model 

parameters specified in terms of interval data. It is also related to the method used to treat 

the interval data probabilistically. 2κ  is the mean of the probability of failures based on 

multiple realizations of the epistemic variable, E. The decision to minimize 

  and 21 κκ simultaneously is proposed in this study as a reasonable approach to perform 

risk-informed decision analysis, as interpreted in this dissertation. The constraints for this 

problem are stated in terms of the total budget for adding resources (i.e. more 

experimental data). The values for each of the terms in Equation 7.4 are summarized in 

Table 7.1. 
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Table 7.1. Summary of parameters in Equation 7.4 

Parameter Value/Description 

1Θ  Number of Level 1 foam samples 

2Θ  Number of Level 2 foam samples 

lower
1Θ  Minimum Level 1 foam samples = 3 

lower
2Θ  Minimum Level 2 foam samples = 3 

Ψ  Probability of failure 

1κ  Range of probability of failure 

2κ  Mean of probability of failure 

Total Budget $100,000 

1α  $2,500 (per L1 sample) 

2α  $4,500 (per L2 sample) 

 

 

To address the resource allocation problem, a multi-objective optimization 

problem (described in Equation 7.4) is solved. It involves the cost of additional foam 

samples at level 1 and 2 and requires the minimization of both   and 21 κκ . For 

completeness, the following is a brief summary of the available techniques to solve this 

problem (from Rao (1996)). These methods fall under the general category of direct 

search methods and are applicable to this problem.  
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1. Random Search Method: This method generates trial solutions for the 

optimization model using random number generators for the decision variables. 

Random search method includes random jump method, random walk method and 

random walk method with direction exploitation. Random jump method generates 

huge number of data points for the decision variable assuming a uniform 

distribution for them and finds out the best solution by comparing the 

corresponding objective function values. Random walk method generates trial 

solution with sequential improvements which is governed by a scalar step length 

and a unit random vector. The random walk method with direct exploitation is an 

improved version of random walk method, in which, first the successful direction 

of generating trial solutions is found out and then maximum possible steps are 

taken along this successful direction.  

2. Grid Search Method: This methodology involves setting up of grids in the 

decision space and evaluating the values of the objective function at each grid 

point. The point which corresponds to the best value of the objective function is 

considered to be the optimum solution. A major drawback of this methodology is 

that the number of grid points increases exponentially with the number of decision 

variables, which makes the method computationally costlier.  

3. Univariate Method: This procedure involves generation of trial solutions for one 

decision variable at a time, keeping all the others fixed. Thus the best solution for 

a decision variable keeping others constant can be obtained. After completion of 

the process with all the decision variables, the algorithm is repeated till 

convergence.  

167 



The majority of the methods described above are implemented in Matlab’s optimization 

toolbox. One complicating factor for implementing these is that the design variables (i.e. 

) are integers and thus cannot be directly accommodated in the Matlab 

optimization functions since these operate on continuous variables. After some initial 

attempts to solve this in Matlab using some workarounds, a decision was made to use a 

grid search technique to explore the possible design space. Even though this is the most 

expensive way of solving this problem, the fact that there are only 2 design variables and 

the design space is relatively small, made this a viable alternative to addressing this 

particular example.  

ff
 nn 21  and
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7.3 Implementation 

The solution implemented for this objective is shown graphically in Figure 7.1.  
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Figure 7.1. Schematic of grid search solution to resource allocation under uncertainty 
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The following steps detail the procedure to implement the resource allocation 

methodology shown in Figure 7.1. The step numbers shown below correspond to the 

numbers in the schematic in Figure 7.1 

1. The first step is to define a reasonable space for the design variables ff
 nn 21  and . 

This is shown in Figure 7.2 and it is usually defined by economics, availability of 

manufacturing and/or testing resources. For this research, it is assumed that all of 

these factors are considered when making an actual selection of the design space 

and the values used here are representative values chosen for illustration purposes 

only. Due to the large computational expense to calculate Ψ  at all the 

combination of the points in the grid, the intervals in the grid were in increments 

of 2 and 3 for level 1 and 2 foam samples respectively. In addition and due to 

computational requirement in WinBUGS, the lower bound on the number of 

samples was set to 3.  
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Figure 7.2. Grid of possible combinations of samples for level 1 and level 2 foam 
samples. Red dot shows one such combination. 

 

2. An important issue to consider is how to obtain the data that is needed for 

updating the Bayes network developed in Chapter 4. Recall from Chapter 3 that 

only 6 and 3 data points are available from foam level 1 and 2 respectively for 

updating. Since data cannot be physically obtained instantaneously, one is faced 

with using “virtual” data to enable the necessary calculations. It is acknowledged 

that this comes with its own set of uncertainties which include the approach by 

which “virtual” data is generated. In this study, an assumption is made that the 

available level 1 and 2 foam data is representative of all possible scenarios and 

that it come from a uniform distribution. This uniform distribution has bounds 

defined by the minimum and maximum of the available data. The effect of this 

“virtual data” on the final decision is further investigated later in this chapter. 

171 



3. The next step is to update the Bayes network developed in Chapter 4 with the 

appropriate number of foam samples chosen from the grid shown in Figure 7.2. 

Since interval data is being considered, the process needs to be repeated for a 

certain number of prior distributions of modulus of elasticity which are generated 

by one (or all) of the methodologies described in Chapter 5. In this study and due 

to time constraints, 20 realizations of prior distributions of modulus of elasticity 

were used. 

4. Once the Bayes network has been updated for all the priors using all the available 

data at all levels, a collection of posterior system level predictions are obtained 

and used with the given threshold to calculate the probability of failure of the 

system relative to peak acceleration. This process was described in Chapter 6 and 

defines the vector, Ψ in Equation 7.3.  

5. The vector Ψ is shown in the schematic in Figure 7.1 as item #5. There are 20 

values of the probability of failure which corresponds to each realization of the 

system level posterior distribution. 

6. The process is repeated for all the combination of level 1 and 2 points in the grid 

and a collection of surfaces relating ff
 nn 21  ,  and the probabilities of failures 

obtained after updating each of the priors of the modulus of elasticity can be 

plotted. In this case, 20 surfaces relating ff
 nn 21  ,  and probability of failure are 

obtained.  

172 



The steps described above are used to populate the grid. Finding the optimum 

 by minimizing the objective functions described in Equations 7.2 and 7.3 are 

accomplished with the following procedure. 

ff
 nn 21  and

1. First, the values of 21  and αα are used to calculate the cost of each of the 

combinations of ff
 n1  and in the grid. Next the total budget constraint is imposed 

and only the combinations of ff
 n21  and  that satisfies the budgetary constraint are 

kept. 

n 2

n

2. Using only the ff
 n  that satisfy the budget constraint, their corresponding 

values of Ψ are used in Equations 7.2 and 7.3 to calculate   and 2

n 21  and

1 κκ . These are 

the two objectives to minimize. To simultaneously minimize   and 21 κκ , a 

weighted sum approach is taken were it is assumed that both objectives are 

equally weighted; thus, the minima is obtained by: 

( )21 min κκ +      (7.5) 

3. With the result of Equation 7.5, the corresponding optimal ff
 n  can be 

obtained and an associated cost can be computed. 

n 21  and

With the procedure outline above, an estimate of the cost to minimize two 

objectives when interval data is present can be obtained. In this research, the effect of UQ 

method uncertainty when treating interval data was also investigated. To account for this, 

the process described above is repeated using four of the methods described in Chapter 5. 

These results are presented in Figure 7.3 through Figure 7.6 and some remarks regarding 

these results are made. The sequence of figures presented next consists of: 
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1. the collection of failure probabilities obtained from 20 realizations of the prior 

distributions of E for each method of treating interval data and at each grid point, 

2. the value of   and 21 κκ as defined in Equations 7.2 and 7.3, 

3. a plot of    vs. 21 κκ from which a point which minimizes both objectives as shown 

in Equation 7.5 can be obtained and 

4. the corresponding optimal values of ff
 n and its associated cost. n 21  and

In order to visualize   and 21 κκ as a function of the design variables with a finer 

resolution than originally specified, and to avoid calculating the grid at each point, a 

Gaussian process model was used to represent each of the   and 21 κκ surfaces as a 

function of . ff
 nn 21  and

 

7.4 Results 

rtainty 7.4.1 Effect of epistemic UQ method unce

This section shows the effect of the method used to model uncertainty on the 

overall system level uncertainty. 

Figure 7.3 shows the results of the optimization when the moment matching 

method is used. From the collection of failure probabilities, the range and mean value of 

the probability of failure at each of the grid points can be calculated. The resulting 

optimal point that minimizes both objectives is shown on the lower right hand plot as 8 

and 6 level 1 and 2 samples respectively with an associated cost of $47,000. This is the 

cost that minimizes both objectives simultaneously.  
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Figure 7.3. Results from implementing resource allocation methodology using moment 
matching method 

 

Figure 7.4 shows the results of the optimization when the percentile matching 

method is used. Similarly to the above results, the optimal point that minimizes both 

objectives is shown on the lower right hand plot as 6 and 9 level 1 and 2 samples 

respectively with an associated cost of $55,500. This cost is higher than the one obtained 

with the moment matching method. 
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Figure 7.4. Results from implementing resource allocation methodology using percentile 
matching method 

 

Figure 7.5 shows the results of the optimization when equal weighting of the 

experts is used. The optimal point that minimizes both objectives is shown on the lower 

right hand plot as 18 and 12 level 1 and 2 samples respectively with an associated cost of 

$99,500. This cost is very close to the total budget of $100,000 and higher than the 

previous methods. 
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Figure 7.5. Results from implementing resource allocation methodology using equal 
weighing of experts 

 

Finally, Figure 7.6 shows the results of the optimization when unequal weighting 

of experts is used. The optimal point that minimizes both objectives is shown on the 

lower right hand plot as 18 and 9 level 1 and 2 samples respectively with an associated 

cost of $85,500. Again, this cost is very close to the total budget of $100,000 but it is less 

than the previous method. 
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Figure 7.6. Results from implementing resource allocation methodology using different 
weighing of experts 

 

The previous figures show the range of results that are obtained from using four 

of the methods to include interval data into the analysis. One encouraging feature in most 

of the plots is that some degree of convergence is achieved when enough test data is used 

to update the Bayes network. This convergence is shown as the flat region in each of the 

surfaces in the probability of failure plots. As expected the uncertainty in the results is 

high with limited data and starts to converge after a certain point. The optimal values for 

all four methods are summarized in Table 7.2. 
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Table 7.2. Comparison of optimal values using four methods to model interval data 

Method Cost ($) f
 n1  fn2  1κ   2κ   21 κκ +  

Moment 
matching 8 6 $47,000 0.000533 0.0163 0.0169 

Percentile 
matching 6 9 $55,500 0.00967 0.0142 0.0238 

Equal 
weighing 18 12 $99,000 0.0056 0.016 0.0216 

Different 
weighing 18 9 $85,500 0.000674 0.0164 0.0171 

 

It is obvious from Table 7.2 above that multiple solutions to the resource allocation 

decision-maker, a single solution would be preferred versus a range of possible solutions. 

on the following criteria: 

 

Gives the most conservative value of failure probability in a mean sense (i.e. the 

 

problem are obtained and are dependent on the methodology used to quantify the 

epistemic uncertainty represented by interval data. For the analysis to be useful to a 

The method that provides the best solution to this problem, relative to the others, is based 

1. Minimizes the total cost 

2. Minimizes the two objectives 

3. Minimizes the range of failure probability (as this is related to the confidence of 

the system level prediction) 

4. 

largest mean value at the optimal solution) 
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The above criteria are satisfied by the moment matching method and it is thus picked as 

the solution for this resource allocation problem.  

 

7.4.2 Virtual experimental data 

 Based on the method selected above, attention is now focused on the issue of 

needing “virtual data” to enable the calculations needed to arrive at an optimal solution. 

As it was mentioned in the beginning of Section 7.3, “virtual experimental data” is 

created with the assumption that it comes from a uniformly distributed source and it is 

consistent with the limited available data for foam at level 1 and 2. To examine the effect 

of creating “virtual data” on the optimal solutions, several realizations of the “virtual 

data” were created and the optimization problem, using the moment matching method 

was solved for each realization. The results of these runs are shown in Figure 7.7 and 

summarized in Table 7.3. 
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Figure 7.7. Comparison of results using multiple realizations of virtual experimental data 

 

Table 7.3. Summary of optimal values using multiple realizations of virtual experimental 
data and moment matching method 

Run # f
 1n  f

2n  Cost ($) 1κ   2κ   21 κκ +  

1 8 6 $47,000 0.00053 0.0163 0.0169 

2 8 3 $33,500 0.00068 0.0139 0.0146 

3 14 3 $48,500 0.00053 0.0156 0.0161 

4 12 6 $57,000 0.00046 0.0148 0.0153 

 

 

 The data shows the effect of four realizations of virtual data on the optimal 

solution of the problem. As it can be seen, there is no convergence to one optimal value 

but the range of values for the number of samples and the associated cost is not very 
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large. A solution could be stated as needing between $33,500 and $57,000 to obtain a 

range of failure probability between 0.00046 and 0.00068. This information accounts for 

the effect of multiple sources of uncertainty which include aleatoric uncertainty and the 

method by which epistemic uncertainty is modeled. 

 

7.5 Conclusion 

This chapter completes the implementation of RIDA which is a methodology to 

provide decision makers with information necessary to make informed decisions. In this 

study, those decisions involve allocating resources to increase the confidence in a system 

level prediction. Shown in Figure 7.1 is the schematic implementation of the resource 

allocation question to the demonstration problem used in this research. The range and the 

mean of the probability of failure are functions of the interval data and the number of 

experimental data points used for updating the Bayes network. They are also a function 

of the method used to model the interval data. This functional relationship was examined 

using a grid search to examine the design space of  which directly relate to the 

cost of building and testing additional foam samples at level 1 and 2. From these studies, 

a surface for each of the methods was obtained and both the range and the mean value of 

the probability of failure were minimized. From this, the corresponding optimal set 

of and the cost associated with them can be obtained.  

ff
 nn 21  and

ff
 nn 21  and
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CHAPTER VIII 

 

8. CONCLUSIONS AND FUTURE WORK 

ns 

 

8.1 Summary of contributio

This dissertation described development of a methodology to enable risk-informed 

decision analysis (RIDA) that provides decision makers with information necessary to 

make informed decision regarding allocation of resources to increase the confidence in 

the prediction of a system level model of an engineering system. Central to the concept of 

RIDA is the quantification of margins and uncertainties (QMU) which in essence, seeks 

to quantify sources of both known and unknown conditions. These are commonly 

classified as aleatoric and epistemic uncertainties and the probabilistic treatment of the 

latter is a key component of this study.  

To demonstrate a methodology that enables RIDA, a multi-level, 2-component 

problem developed at Sandia is used and was described in Chapter 3. The system level 

model in the Sandia problem was built in a hierarchical or building-block approach 

manner which builds complex system model using simpler component models. This 

approach takes advantage of data that is available at the component level. In this research, 

it is proposed that all available data be used to quantify the uncertainty at the system 

level. With this in mind, the schematic implementation of resource allocation to the 

demonstration problem described in Chapter 3 is shown in Chapter 7. It shows all the 

components that RIDA is comprised of: 
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1. Quantification of aleatoric and epistemic uncertainty and propagation to the 

system level.  

2. Quantification of margins and uncertainty (QMU) at the system level. 

3. Resource allocation under uncertainty.  

The first component was addressed in Chapters 4 and 5 with the formulation of a 

Bayes network that incorporates all the available data at the different levels. Just to 

reiterate, there is no experimental data at the system level. In Chapter 5, the modulus of 

elasticity of foam was given in terms of interval data, a type of epistemic uncertainty. 

Modeling interval data in a probabilistic framework was the subject of Chapter 5. A 

flexible family of distributions was used as the basis for modeling the interval data. 

Several methods to determine the parameters of this family of distributions were 

examined. The effect of each method on the uncertainty at the system level was observed. 

This is a form of model form uncertainty since the true distribution of the interval data is 

unknown. This uncertainty as well as the uncertainty due to interval data is then reflected 

in the second component of RIDA. 

The second component of RIDA, quantification of margins and uncertainties 

(QMU), was addressed in Chapter 6. This chapter proposes a reliability-type framework 

to address QMU. In this framework, sources of uncertainty are accounted for in both the 

system level response and in the specified requirement of the system. This requirement is 

typically given a priori. The formulation presented in Chapter 6 makes use of basic 

reliability concepts and uses kernel density estimators to calculate the probability of 

failure of the system. Since interval data is present and treated probabilistically, the 

probability of failure becomes a vector of values. Since model form uncertainty is also 
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present, the probability of failure becomes a matrix. In other words, the probability of 

failure becomes a function of both the interval data and the method in which interval data 

is modeled. This fact complicates the problem since now there is a range of possible 

values of probability of failure.  For this information to be useful to decision-makers, a 

methodology that accounts for the uncertainty in the probability of failure was developed. 

The third component, decision-making under uncertainty, was discussed in Chapter 

7. As noted in the paragraph above, the probability of failure can have a range and a 

mean value due to interval data and to the method used to model it. The uncertainty 

present in both the range and mean of the probability of failure is influenced by the 

choice of method used to model the interval data and thus needs to be accounted for. To 

use this in a resource allocation context, this study proposed using an optimization 

approach where the design variables relate to those resources that have some impact on 

the uncertainty of the system level response. In this study, these resources were in terms 

of the cost to manufacture and perform additional experiments for the foam components 

at level 1 and 2. Analyses performed using the methodology developed in Chapters 4 

through 6 eventually lead to a collection of optimal cost of adding foam data based on the 

uncertainties being included. It was obvious from the results, that in the presence of 

epistemic uncertainty, there is not a single solution to the problem but the information 

obtained with the analysis in Chapter 7 could help a decision-maker narrow down the 

possible alternatives when allocating or requesting resources.    
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8.2 Proposed future work 

The current research addresses the fundamental question of how to incorporate 

different sources of data at different levels of complexity into a hierarchically built 

complex system level model. Both aleatoric and epistemic uncertainty was incorporated 

and propagated in a probabilistic manner up to the system level response of interest. 

Following the analysis done to address the four main objective of this research, a set of 

issues were identified and are listed below as possible research directions for future 

implementation: 

1. In this research, the parameters of the Smallwood joint model were treated as 

statistically independent. Statistical correlations between the model parameters 

need to be quantified and included in the context of using a Bayes network. 

2. When examining the example problem and the corresponding Bayes network, it is 

observed that some levels could be more relevant to the system level than others. 

This is because the geometry or the physics of interest are similar at a particular 

level relative to the system level. A question is: how to give different weights to 

different levels, considering which level is closer to the system level? 

3. One of the cases examined to incorporate epistemic uncertainty assigned either 

equal or unequal weighing to the various experts. This weighing was done in an 

ad-hoc manner in this research. A more formal way to assign these weighing is 

required. This weighing scheme could be tied to the comparison measure (i.e. the 

probability of failure).   

4. To further examine the effect of model form uncertainty (in the physical system 

model), the following question is raised: how to consider model uncertainty, 
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which comes from multiple models that contribute to some of the nodes? For 

example, the Smallwood model was considered in this research but others are 

available. How to assess the effect of this type of uncertainty? 

5. Currently we only considered a single system output. What if there are multiple 

outputs of interest? One possibility is a system reliability approach for QMU.  

6. Currently the optimization for resource allocation in Chapter 7 is done using a 

brute force grid search. There is a need for a more elegant algorithm that 

incorporates sensitivities of system output and uncertainty to various sources of 

uncertainty/error. Non-gradient based optimization methods could be good 

candidates for this. 

7. A related issue stemming from item 6 above is the overall question of how to do 

resource allocation in the case of multiple outputs.  

8. There is a need for efficient computation of the Bayes network. Particularly in the 

case of uncertainty quantification were the Bayes network might need to be run 

many times, it will be advantageous to make this computation as efficient as 

possible especially for a more complex system. Several ideas come to mind but 

one involves parallel processing of the nodes in the Bayes network. If each node 

could run on a separate processor, then one could take advantage of parallel 

computers to run this more efficiently. Another idea would involve the actual 

algorithm used for solving the Bayes network. Currently, MCMC-based solutions 

for the Bayes network are implemented and this requires convergence of the 

network which takes many iterations. Alternative algorithms that provided faster 

integration are desired. 
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