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PREFACE

Early detection and isolation of faults is crucial for ensuring system safety and e�ciency. Online

diagnosis schemes are usually integrated with fault adaptive control schemes to mitigate these fault

e�ects, and avoid catastrophic consequences. These diagnosis approaches must be robust to uncer-

tainties, such as sensor and process noise, to be e�ective in real world applications. Also, diagnosis

schemes must address the drawbacks of centralized diagnosis schemes, such as large memory and

computational requirements, single points of failure, and poor scalability. Finally, to be e�ective,

fault diagnosis schemes must be capable of diagnosing di�erent fault types, such as incipient (slow)

and abrupt (fast) faults in system parameters.

This dissertation addresses the above problems by developing: (i) a uni�ed qualitative diagno-

sis framework for incipient and abrupt faults in system parameters; (ii) a distributed, qualitative

diagnosis approach, where each diagnoser generates globally correct diagnosis results without a cen-

tralized coordinator and communicates minimal measurement information and no partial diagnosis

results with other diagnosers; (iii) a centralized Bayesian diagnosis scheme that combines our qual-

itative diagnosis approach with a Dynamic Bayesian network (DBN)-based diagnosis scheme; and

(iv) a distributed DBN-based diagnosis scheme, where the global DBN is systematically factored into

structurally observable independent DBN factors that are decoupled across time, so that the ran-

dom variables in each DBN factor are conditionally independent of those in all other factors, given

a subset of communicated measurements that are converted into system inputs. This allows the

implementation of the combined qualitative and DBN-based diagnosis scheme on each DBN factor,

which operate independently with a minimal number of shared measurements to generate globally

correct diagnosis results locally without a centralized coordinator, and without communicating any

partial diagnosis results with other diagnosers. The correctness and e�ectiveness of these diagnosis

approaches is demonstrated by applying the qualitative diagnosis approaches to the Advanced Water

Recovery System developed at NASA Johnson Space Center; and the DBN-based diagnosis schemes

to a complex, twelfth-order electrical system.
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CHAPTER I

INTRODUCTION

Motivation

Modern day engineered systems are a product of careful design and manufacturing, and undergo

rigorous testing and validation before deployment. This reduces the likelihood of system failures,

but degradation and faults in system components still occur due to wear and tear from sustained

operations. Unlikely events and unanticipated situations can also create faults. Early detection

and isolation of faults is the key to maintaining system performance, ensuring system safety, and

increasing system life. Traditionally, the fault diagnosis task has been performed o�ine during

maintenance operations, using test results and alarm signals to isolate faults in system components.

For present-day, safety-and-mission critical systems, it is imperative to monitor system behavior

and performance online, i.e., during operation, so that system control and operation can adapt to

changes and avoid catastrophic failures.

The process of fault diagnosis consists of detection, isolation, and identi�cation of faults [2].

Fault detection typically produces a binary decision that determines whether the observed system

behavior has deviated from the expected nominal behavior. Fault isolation involves determination

of the cause of the fault, and is sometimes called root cause analysis. Fault identi�cation is the

task of determining the extent or magnitude of the fault. We consider a fault to be a change in the

system which causes the system's behavior to deviate from the expected nominal behavior. Faults

manifest at di�erent locations, e.g., in the sensors, actuators, or plants. These faults may manifest

at very fast rates (called abrupt faults) or they may be gradual (called incipient faults). In some

cases, they may cause unwanted changes in the system structure. Hence, fault diagnosis schemes

must be generally applicable and apply to di�erent kinds of faults.

Fault diagnosis approaches can be broadly classi�ed as model-free and model-based methods [2].

Model-based approaches are considered to be more general than model-free approaches that are

mostly based on expert knowledge and data-driven methods. Model-based approaches posses prov-

able properties, such as detectability and isolability of sets of faults. Typically there is a clear

separation between the particular model and the reasoning algorithm used in model-based diagno-

sis approaches. Again, in contrast to model-free approaches, this contributes to more general and

scalable solutions. In model-free approaches, the diagnosis algorithm parameters are functions of
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the system operating ranges and modes of operation, and any change in the system components

or operating ranges usually require the recalibration of the parameters and thresholds used in the

detection and isolation scheme. The generation of appropriate system models to support diagnosis,

however, can be a challenge, since, real-world systems encompass multiple domains, such as the hy-

draulic, electrical, and mechanical domains. Their behaviors can contain sharp nonlinearities, and it

may be di�cult to capture all possible interactions between components of the system, and between

the system and the environment. Moreover, the system models have to be built at the correct level

of abstraction, balancing the details needed in the model to make the system diagnosable, while

keeping the model complexity low, so as to not a�ect the performance of online diagnosis.

In the real world, uncertainties caused by measurement and process noise, and modeling ab-

stractions and errors are unavoidable. Therefore, e�ective fault diagnosis schemes must be robust

to these uncertainties, and generate correct diagnosis of faults in their presence. Probabilistic rea-

soning techniques are well suited for this purpose and are based on an intuitive and theoretically

sound mathematical foundation which generates consistent diagnostic results under uncertainties,

and usually require the generation of probabilistic system models, such as Dynamic Bayesian Net-

works (DBNs), to capture the uncertainties in the systems to be diagnosed [3]. Once generated,

standard Bayesian inference approaches are applied on these probabilistic models to diagnose faults

correctly in the presence of uncertainties. However, exact computation of probabilities for systems,

barring a few restricted cases, is computationally exponential, and hence, approximate methods

for computing these probabilities have to be applied. But, these approximate Bayesian inference

schemes can be computationally very expensive for large systems, and may su�er from convergence

issues [3, 4].

High costs, such as memory and computational requirements, plague most centralized model-

based diagnosis schemes (probabilistic, or otherwise), since these schemes involve one monolithic

diagnoser that operates on a global system model and requires all available system measurements

for diagnosis [2,5]. The computational expense can be reduced by distributing the diagnosis task into

subtasks that can be executed on separate processors. Therefore, distributed diagnosis approaches

�t well with present day embedded systems architectures, where each subsystem has associated lo-

cal processors, memory, and sensors for monitoring and control of that subsystem, e.g., electronic

control units in aircrafts. In addition to improving computational e�ciency, distributed diagno-

sis schemes also reduce the high costs of shielding and protection of the cables usually incurred

to transmit measurements to a centralized computer while maintaining signal quality, especially

in harsh environment. Furthermore, distribution of the diagnosis task addresses other issues of
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centralized diagnosis schemes, such as single points of failure, and poor scalability. In centralized

diagnosis schemes, a glitch or failure in the diagnosis unit may disable the entire diagnosis system.

Distributed diagnosis approaches do not have any such single point of failure. Further, central-

ized diagnosis schemes scale poorly, since changes in the system con�guration and components may

cause signi�cant changes in the system's dynamic behavior, requiring the diagnoser to be redesigned.

Again this drawback can be addressed by distributing the diagnosis task.

Research Contributions

To address the aforementioned challenges in model-based diagnosis of real-world systems, this dis-

sertation develops a distributed, probabilistic, model-based approach for the accurate diagnosis of

incipient and abrupt faults in a uni�ed framework, in the presence of uncertainties, such as sensor

noise and process disturbances. By distributing the diagnosis task into smaller subtasks, we improve

the computational e�ciency of our diagnosis approach. We further improve the computational e�-

ciency and scalability of our diagnosis approach by combining a qualitative diagnosis approach with

a quantitative Bayesian state estimation scheme.

Incipient and abrupt faults are classi�cations of parametric faults, which are characterized by

unwanted changes in system parameters. Incipient faults are modeled as slow drifts in system

parameter values caused by wear and tear in system components, such as degradation in the stator

windings or bearings in induction motors [6] and gradual blockage in pipes in hydraulic or chemical

systems due to the accumulation of sediments. Abrupt faults represent faults that are caused by

unwanted changes, where the rate of change in system parameter is much faster than the dynamics

of the system, or rate of sampling of system measurements. Hence, abrupt faults are modeled as step

changes in the parameter values. Examples of abrupt faults include a sudden (partial or complete)

blockage in a pipe carrying �uid, or a bias that develops in a sensor. Since both abrupt and incipient

faults are common in real-world engineering systems, our comprehensive diagnosis scheme applies

to both these types of faults in a uni�ed framework.

The speci�c research contributions of this thesis are listed below.

1. Qualitative diagnosis of incipient and abrupt faults in a uni�ed framework: We

extend the Transcend qualitative diagnosis scheme [7,8] to allow for qualitative diagnosis of

both incipient and abrupt faults in a uni�ed framework. The qualitative Transcend diagnosis

approach was originally designed for the diagnosis of abrupt faults. The isolation of abrupt

faults in Transcend is based on the analysis of fault transients, where observed deviations
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in measurements from nominal behavior are matched against qualitative predictions of faulty

behavior, known as fault signatures, to isolate faults. We extend the diagnosis scheme to

include the detection and isolation of incipient faults.

2. Distributed qualitative diagnosis of incipient and abrupt faults: We develop a dis-

tributed Transcend-based qualitative diagnosis scheme for continuous dynamic systems.

Most of the previous work in distributed diagnosis has been developed for discrete event system

models [9, 10], but these methods do not scale up for complex continuous systems [11]. Our

distributed diagnosis approach designs a multiple diagnoser solution that generates globally

correct diagnosis results by local analysis without a centralized coordinator, with no exchange

of partial diagnosis results amongst the diagnosers, and with minimal sharing of measure-

ments. We propose two approaches for designing the distributed qualitative diagnosers. The

�rst algorithm assumes the subsystem structure is known and constructs a local diagnoser for

each subsystem. The second algorithm creates a partition structure and local diagnosers si-

multaneously. The absence of a centralized coordinator ensures that our distributed diagnosis

scheme does not have a single point of failure. Moreover, because a distributed diagnoser does

not depend on the partial diagnosis results of other diagnosers for its own diagnosis, the failure

of individual diagnosers do not a�ect the performance of the other diagnosers. Hence, our dis-

tributed diagnosis scheme degrades gracefully as one or more distributed diagnosers fail. Also,

in our distributed diagnosis scheme, the diagnosis task is distributed amongst the di�erent

distributed diagnosers, and hence, this distributed scheme is computationally less expensive

than its centralized counterpart.

3. E�cient Bayesian diagnosis of incipient and abrupt faults: We combine the Tran-

scend qualitative fault isolation with a DBN-based state and parameter estimation scheme to

develop an e�cient probabilistic approach for diagnosis of both incipient and abrupt faults in

continuous dynamic systems using DBNs to explicitly model the system dynamics and uncer-

tainties. To accommodate nonlinearities, and non-Gaussian distributions, we employ a particle

�ltering-based state estimation scheme for diagnosis [12]. We use particle �lters to ensure that

our Bayesian diagnosis scheme is generally applicable to complex nonlinear systems, with non-

Gaussian probability distributions. However, particle �ltering-based fault diagnosis schemes

su�er from the sample impoverishment problem [4, 13]. We develop a solution to this prob-

lem, and describe three di�erent fault identi�cation approaches to estimate the value of the

faulty parameter based on the observed measurements, and isolate the true fault. The use of
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Bayesian estimation ensures robustness to measurement and process noise, and provides more

precise diagnosis results than our qualitative Transcend-based diagnosis scheme. However,

the Bayesian state estimation scheme can be computationally expensive for large systems. We

improve the e�ciency of this Bayesian diagnosis scheme by integrating it with our extended

qualitative Transcend diagnosis scheme. The e�ciency gain is obtained by �rst using the

qualitative diagnosis scheme to re�ne the possible fault hypotheses to a tractable number, and

then invoking multiple DBN-based �ltering schemes for the reduced fault hypothesis set.

4. Distributed Bayesian diagnosis of incipient and abrupt faults: We develop a dis-

tributed combined qualitative and Bayesian diagnosis scheme that further improves the e�-

ciency of our centralized diagnosis scheme. The basis of our distributed Bayesian diagnosis

scheme is the factoring of the system DBN model into multiple, non-overlapping DBN fac-

tors, such that each random variable in a DBN factor is conditionally independent of random

variables in all other DBN factors given the measurements communicated between these fac-

tors. Our DBN factoring scheme is based on computing some state variables in the system

as algebraic functions of measurements (considered to be system inputs), which allows the

replacement of the across-time links between these state variables with new intra-time links

from the measurements to the state variables. If su�cient number of across-time links are

removed, we can factor the system DBN into DBN factors such that the random variables in

each generated factor is conditionally independent from those in any other factor, given the

measurements that were used to compute some state variables. It is well-known that the state

variables of a system can be estimated from the system measurements only if the system is

observable. We ensure that each factor is observable based on the analysis of structural ob-

servability properties of the system's bond graph model and its component parts [14, 15]. We

analyze the structural observability properties of the system to ensure that each DBN factor

represents a structurally observable subsystem, and together all the DBN factors retain the

structural observability properties of the global system. Once the global DBN is factored, the

conditional independence of the random variables in each DBN factor allow the implementa-

tion of Bayesian estimation schemes on each DBN factor independently. For our distributed

Bayesian diagnosis scheme, we apply our combined qualitative-quantitative diagnosis scheme

on each DBN factor instead of the global system DBN. Previous work in factored estimation

schemes, such as the Boyen-Koller algorithm, presented in [16], creates the individual factors

by eliminating causal links between weakly interacting subsystems. Therefore, the belief state
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derived from the individual factors is an approximation of the true belief state. The error in

this approximation is bounded, but these bounds may not be su�ciently precise for online

monitoring of mission-critical systems. The novelty of our factoring scheme lies in the fact

that the DBN factors together preserve the overall system dynamics in the factored form, and

there is no approximation involved in the factored belief state.

5. Experimental studies. We apply our distributed qualitative diagnosis approaches to a

complex, real-world system, the Advanced Water Recovery System, which was designed and

built at the NASA Johnson Space Center to convert wastewater into potable water for long

duration manned missions [17]. Our centralized and distributed Bayesian diagnosis schemes

are applied to a complex, twelfth-order electrical circuit, with highly oscillatory behavior. The

use of Bayesian diagnosis schemes result in correct and precise diagnosis results in the presence

of noisy sensors, while our distributed diagnosis schemes address the drawbacks of centralized

diagnosis approaches, especially by improving the computational e�ciency when compared to

the centralized schemes.

Our distributed approach assumes faults are persistent, abrupt or incipient, and parametric. We

assume that the faults are non-catastrophic, i.e., the system still can operated, albeit in a degraded

state, after fault occurrence. We make the single fault assumption since simultaneous multiple fault

occurrences are much less likely.

Organization of Dissertation

This dissertation is organized as follows. Chapter II presents related work in model-based diagnosis

of continuous systems. We start with a taxonomy of faults and fault diagnosis approaches. Then we

present and compare di�erent model-based diagnosis schemes for dynamic systems, and how these

di�erent schemes handle uncertainties. Speci�cally, we describe di�erent diagnosis approaches, such

as discrete-event systems approaches, qualitative diagnosis schemes, analytical redundancy relations-

based diagnosis approaches, and probabilistic model-based diagnosis schemes. We conclude this

chapter by presenting our diagnosis approaches in context of the related work.

Chapter III starts with the necessary background on the Transcend qualitative diagnosis

scheme, and extends it to the combined diagnosis of incipient and abrupt faults. We begin by

presenting the modeling paradigms used in Transcend, i.e., bond graphs [18] and temporal causal

graphs (TCGs) [7], and then describe, in detail, the di�erent steps of the Transcend diagno-

sis scheme. Then, we present our extensions to Transcend for the diagnosis of incipient faults.
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Speci�cally, we describe how we have extended the Transcend fault signature generation scheme

to generate fault signatures for incipient faults. This allows for seamless integration of incipient

and abrupt fault diagnosis in Transcend. Finally, we present an analysis of the diagnosability

properties of the Transcend qualitative diagnosis scheme for the uni�ed qualitative diagnosis of

incipient and abrupt faults.

Chapter IV describes our distributed qualitative scheme for diagnosis abrupt and incipient faults.

First, we present our distributed diagnosis architecture, where each distributed diagnosis is essen-

tially a Transcend diagnoser that uses a subset of observations to diagnose a subset of faults.

Through the careful design of these distributed diagnosers, we guarantee that each distributed di-

agnoser will generate globally correct diagnosis results through local analysis, without a centralized

coordinator, and no exchange of partial diagnosis results, but through the communication of mini-

mal number of measurement information. Two approaches for designing the distributed qualitative

diagnosers are presented. In the �rst diagnoser design approach, we assume knowledge of subsystem

structure, especially the measurements and faults that belong to each subsystem, and based on this

information, we design a local diagnoser for each subsystem such that it required minimal number of

additional external measurements to globally diagnose all the faults assigned to that subsystem. In

the second approach, we assume no prior partitioning information. Instead, we generate the maximal

number of distributed diagnosers, such that, each local diagnoser can operate independently without

sharing any measurements to generate globally correct diagnosis results. The formulation of the di-

agnoser design problems and the algorithms for designing these distributed diagnosers are described

in the next two sections. This is followed by a set of studies that demonstrate the usefulness of this

distributed diagnosis approach. We then present a case study for a real-world engineering system.

We verify the correctness and e�cacy of the di�erent diagnosis approaches and the DBN factoring

scheme by applying them to the Advanced Water Recovery System, developed at the NASA Johnson

Space Center, a real-world large engineering system.

Chapter V presents our centralized Bayesian scheme for diagnosing abrupt and incipient faults

in continuous systems, where we combine the qualitative Transcend fault isolation scheme with a

DBN-based quantitative fault hypothesis re�nement and identi�cation approach. First, we present

the computational architecture of our diagnosis approach, and then describe the procedure for sys-

tematically deriving the DBNs for nominal and faulty system behavior from the system bond graph.

The following section presents our centralized diagnosis approach, which includes detection, isolation,

and identi�cation of the fault hypotheses using a particle �ltering-based state estimation scheme.

We then present three schemes for accurate estimation of faults using the particle �lter approach.
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Use of this approach requires addressing the sample impoverishment problem, as discussed in the

following section. This is followed by a set of experimental results that demonstrate the e�cacy of

our diagnosis scheme. We conclude this chapter with a discussion of the contributions in this work.

Chapter VI presents our distributed Bayesian approach for diagnosing incipient and abrupt

faults. We start by presenting our distributed diagnosis architecture. Then we formulate the di-

agnoser design problem. The main idea is to factor the system's global DBN into conditionally

independent DBN factor, such that each DBN factor is structurally observable, and apply the com-

bined qualitative-Bayesian diagnosis scheme on each DBN factor independently. We present our

diagnoser design approach based on factoring the system DBN into structurally observable DBN

factors in the following section. The next section provides proof that the design of our distributed

diagnosers ensures that our distributed diagnosis properties of generating globally correct diagnosis

through local analysis is satis�ed. We then present some experimental results to demonstrate the

e�ectiveness of our factored estimation and distributed diagnosis scheme.

Chapter VII summarizes the contributions of this dissertation, and presents some conclusions.

We also describe the current limitations of our approaches, and identify future directions of work to

improve the current research.
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CHAPTER II

RELATED WORK IN MODEL-BASED DIAGNOSIS OF DYNAMIC SYSTEMS

Timely detection and isolation of faults is very important for e�cient and safe performance of

engineering systems. For safety critical systems, such as aircraft, a fault in its component, if it goes

undetected, may have serious consequences in terms of the system's operation, and cause loss of life

and property. A �potentially harmless� fault in a computer network can hinder the productivity of

o�ce sta�, and result in monetary losses and unexpected delays. Given the varied nature of faults,

and the adverse e�ects they can have on system operation, the task of accurate and timely diagnosis

of system faults in complex dynamic systems presents a number of important and interesting research

challenges. In this chapter, we provide a taxonomy of faults and present several classical model-based

diagnosis approaches that have been developed for the detection and isolation of faults in dynamic

systems.

A Taxonomy of Faults

Faults are undesired changes that cause deviations in expected system behavior, which then a�ect

system performance [2, 7]. In this research, we di�erentiate faults from complete failures of the

system. We assume that faults cause degradation in system performance, but may not result in

complete loss of system functionality. As an example, a short-circuit in a battery that causes the

battery to explode is considered a failure, and hence, beyond the scope of this dissertation. However,

the gradual or an abrupt decrease in the battery's charge storage capacity is considered a fault, since

the battery can still operate in a degraded manner. We adopt the terminology used in the domain

of fault detection and isolation [2, 19, 20] to present the di�erent concepts in the remainder of this

chapter.

De�nition 1 (Fault). A fault is an unexpected change in the plant or its instrumentation that

causes the system to deviate from its nominal behavior.

Faults can be classi�ed based on how they are modeled, their temporal pro�le, and their location,

as shown below.

1. Fault Model: Based on how they are modeled, faults can be classi�ed as additive, parametric,

or discrete. Additive faults are modeled as unknown inputs to the system, which are nominally
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Figure 1: Scope of this dissertation with respect to the types of faults we diagnose.

zero. Additive fault e�ects are decoupled from the system dynamics, therefore, they can

be studied by analyzing changes in the system input-output relations without changing the

basic system dynamics model. Examples of additive faults include sensor faults (if the sensor

measurements are not part of the control loop), small leaks in a system, and changes to the

plant loads. A discrete fault causes a change in the system structure or topology. Examples

of discrete faults include broken wires and unexpected changes in a system's con�guration.

Parametric faults result in changes to the system parameters, and hence, these faults directly

impact the system dynamics. Therefore, fault e�ects cannot be analyzed by decoupling them

from the nominal system dynamics. In other words, parametric faults directly a�ect the

system's dynamic behavior and one has to analyze the nominal system and fault dynamics

simultaneously to isolate these faults. Examples of parametric faults include changes in the

parameter values of physical processes in the system, such as, the energy storage elements or

the dissipative elements.

2. Temporal pro�le: The temporal pro�le of a fault is linked to the persistence of a fault's

e�ects. Persistent faults do not �disappear� once they have occurred. On the other hand,

intermittent faults manifest for some time, and then their e�ects cease to perturb the system

dynamics. Intermittent faults typically appear and disappear at random intervals. Persistent

faults can be further categorized as abrupt or incipient. Abrupt faults cause changes in pa-

rameter values that occur at a rate much faster than the nominal system dynamics. Abrupt
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parametric faults are usually modeled as step-changes in component parameter values. In

contrast, incipient faults develop slowly over time, and the change in fault parameter value is

de�ned by a slow temporal function.

3. Fault location: Based on where faults are located in the system, they can be sensor, actuator

and plant faults. While sensor faults are attributed to measurement devices, and characterized

by discrepancies between the actual values of plant variables and the values reported by the

instrumentation system, actuator faults are located at system inputs, and plant faults are

characterized by faults in the system parameters.

In summary, a fault is completely de�ned by its fault model, temporal pro�le, and location. For

example, a sensor bias fault is characterized as an additive, (persistent) abrupt, sensor fault. Simi-

larly, some of the common failures in electric induction motors are de�ned as parametric, (persistent)

incipient, plant faults.

As shown in Fig. 1, this dissertation research aims at diagnosing abrupt and incipient parametric

plant faults in continuous dynamic systems. Faults in sensors and actuators, as well as discrete

faults are beyond the scope of this dissertation.

A Taxonomy of Model-Based Fault Diagnosis Approaches

The task of fault diagnosis includes fault detection, fault isolation, and fault identi�cation, as de-

scribed below:

1. Fault Detection: Fault detection comprises of methods that produce binary decisions as to

whether the deviation in system behavior from nominal is attributed to a fault in the system

or not.

2. Fault Isolation: Fault isolation refers to schemes that determine the component or subsystem

malfunction that explains the observed discrepancies in system behavior.

3. Fault Identi�cation: Fault identi�cation is the task of determining the magnitude or extent

of the fault. For parametric faults, fault identi�cation involves estimating the amount of

deviation in an abrupt fault, or the rate at which an incipient fault parameter changes over

time.

A number of fault diagnosis approaches have been developed by researchers and practitioners [7,

21�25]. The primary form of prior knowledge required for diagnosis is the set of faults, and the
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relationship between the observed symptoms and the faults. This prior domain knowledge may be

derived from �rst principles, domain-theoretic understanding of the system, such as physical system

models derived using physical laws. Model-based diagnosis schemes base their reasoning on such

knowledge. In contrast, model-free diagnosis approaches use an implicit or associational knowledge of

the system behavior, based on past experience of faulty and nominal system behavior. As mentioned

in the previous chapter, our focus is on model-based diagnosis approaches for nonlinear dynamic

systems [7,23,24,26]. In dynamic systems, the system dynamics vary with time and the system has

state, i.e., its behavior depends on both present and past inputs. In non-linear systems, the system

behavior is best represented as a non-linear function of the system parameters, control inputs, and

other system variables. Non-linear systems subsume linear systems.

Fig. 2 shows the architecture of a generic model-based diagnosis approach. In this scheme, the

model is used to represent the expected behavior of a system under nominal and faulty conditions. A

mathematical model capturing the relation between the input signals and the output measurements

is used to track or estimate the system outputs based on the observed measurements. The resulting

di�erences between estimated and measured outputs, or residuals, are processed to detect, isolate,

and identify the true fault(s). With a perfect model, and no measurement noise, a zero residual

implies nominal operating conditions, while a non-zero residual implies the presence of faults. In

practical applications, however, a residual is seldom zero under nominal operating conditions due

to the presence of noise in the measurements and imperfections in the models employed. Hence,

statistical mechanisms have been developed to mitigate the e�ects of modeling abstractions and

measurement noise. These statistical methods increase the robustness of model-based detection

and isolation approaches and reduce the generation of false alarms [26]. While early detection and

isolation of faults is imperative in safety-critical systems, fault identi�cation is important for fault-

adaptive control [27] and prognosis [28]. The fault detection and isolation steps can be aggregated

into one decision making scheme (e.g., see [26,29]), or solved as sequential problems (e.g., [7]), where

the fault isolation module is invoked once the fault detection mechanism indicates the occurrence

of a fault. Once the true fault is isolated, the magnitude or slope of this fault is estimated through

fault identi�cation.

Based on the reasoning strategy employed, model-based approaches can be broadly classi�ed

as abductive and consistency-based. Abductive approaches reason from e�ects to causes, while

consistency-based approaches reason from causes to e�ect. In abductive approaches, the observed

measurements are compared to the expected nominal behavior of the system, and any discrepancy

between the two is explained by the diagnosis, which is de�ned as �a set of abnormality assumptions
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Figure 2: The architecture of a generic model-based diagnosis approach.

that covers (or, in terms of logic, implies) the observations� [30]. On the other hand, in consistency-

based diagnosis approaches, diagnosis involves identifying the minimal set of faulty components,

which along with the assumption that all other components are not faulty, makes the system model

consistent with the observed sensor measurements [21,30,31].

Dynamic physical processes are, in reality, continuous-time processes, where the system behavior

is de�ned at every instance of dense time. However, all automated diagnostic tools implemented

on computers use sampled data. Hence, to facilitate the simulation and analysis of these models

using digital computers, discrete-time models are developed where the system behavior is de�ned at

discrete time points. In our work, we will focus on discrete-time models of dynamic systems. At the

highest level of abstraction, a dynamic system can be represented as discrete-event-system (DES)

representations, where time is not explicit in the system behavior. Instead, system behavior is de�ned

by transitions between pre-de�ned symbolic states, and these transitions are governed by pre-de�ned

events. At a lower level of abstraction, the system behavior can be represented using qualitative

models, wherein the relationships between faults and symptoms, as well as evolution of system

dynamics, are represented by qualitative expressions. At the next level of abstraction, the system

behavior is de�ned using state-space, or input-output equations [2]. The diagnosis approaches that

use the above mentioned models must be e�ective in diagnosing faults in real-world scenarios, where

uncertainties created by sensor noise and modeling abstractions cannot be avoided. Uncertainty

present in noise sensor readings, and inaccurate system models are captured by probabilistic and

fuzzy-set driven schemes [32], or by interval methods [33]. In our research, we use the probabilistic

framework for uncertainty, and review reasoning schemes based on Bayesian methods for robust

diagnosis [3,34]. Hence, at the lowest level of abstraction, we use models of dynamic systems which

explicitly capture these uncertainties. Example of such models include Bayesian networks, hidden

Markov models, and Dynamic Bayesian networks [3].
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Robust Model-Based Fault Diagnosis Approaches

Uncertainties are unavoidable in the real world. There are several possible causes of uncertainty,

such as modeling inaccuracies that can be attributed to modeling abstractions and parameter uncer-

tainties, sensor noise, disturbances, and process noise. These topics are discussed in greater detail

below:

1. Modeling inaccuracies: The main causes of modeling inaccuracies are (i) modeling abstrac-

tions, and (ii) parametric uncertainties. Models rarely capture the exact dynamics of a real

system, mainly because it is seldom possible to know everything about a system. Further-

more, modeling complex nonlinearities present in the system in a su�ciently precise form is

di�cult. Hence, a system model is usually an abstraction of the actual system behavior. For

example, complex nonlinear models are simpli�ed by linearizing the parameters, or reducing

the order of the nonlinearity. During abstraction or simpli�cation, the modeler focuses on the

important behaviors of the system while avoiding computational intractability, and reducing

the modeling e�ort that would be required to capture every small detail of system behavior.

As a result, the predicted model behaviors will invariably have certain di�erences from the

actual underlying system behavior. Moreover, building a complete system model requires de-

tailed knowledge of the system con�guration and component behaviors, as well as component

parameters. This knowledge is typically obtained by consulting system designers and experts,

extracting information from device manuals and research papers, and using experimental data

collected during system operations. When experimental data is used, unknown parameters

and function relations associated with the models are estimated using system identi�cation

techniques. Methods for estimation of system parameters are seldom exact, and estimated

parameter values and their functional forms are generally approximations of the actual param-

eter values. Inaccurate parameter estimates also result in uncertainties in system behavior.

Modeling errors usually have a multiplicative e�ect on the system behavior.

2. Sensor noise: Most real world sensors are noisy, and the noise may or may not conform

to known probability distributions. However, for practical purposes, noise is typically mod-

eled as a random Gaussian white noise with known parametric or non-parametric stochastic

distributions.

3. Disturbances and Process noise: Disturbances are usually modeled as unknown extra

inputs acting on the plant. For the purpose of fault diagnosis, disturbances are considered
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as �nuisance variables�, the presence of which the diagnosis approach must ignore and be

una�ected by. Process noise captures the di�erence between the actual observed evolution of

state variables based on the values of the states in the previous time step as compared to the

state evolution modeled by our system models.

Other causes of uncertainty may also be present. For example, in large systems, information

is often carried to di�erent parts of the system, as well as, to the reasoners, via information net-

works which introduce additional uncertainty, because the transmission may result in dropping of

information packets and transposing of observation sequences. However, modeling these forms of

uncertainty is beyond the scope of this dissertation.

1. Robustness through modeling abstractions: Di�erent model-based diagnosis schemes

handle these uncertainties in di�erent ways. Discrete-event systems [5, 35, 36] and the quali-

tative simulation-based diagnosis schemes [37�40] address the uncertainties through modeling

abstractions. The DES schemes abstract the system dynamics into a set of discrete modes and

events, while the qualitative model-based diagnosis schemes abstract the system evolution in

terms of qualitative di�erential equations and abstracted qualitative behaviors.

2. Handling disturbances through decoupling: The analytical redundancy relation-based

approaches [2] handle uncertainties modeled as additive disturbances by decoupling their e�ect

on the outputs through algebraic matrix manipulation.

3. Handling parameter uncertainties by accommodating parameter variations: An-

other approach to handle uncertainty is presented in [41], where the system parameters are

modeled as intervals, rather than constants, and sensitivity analysis of the generated residuals

is used to correctly evaluate the fault residuals for diagnosis.

4. Handling process and sensor noise through probabilistic approaches: Probabilistic

model-based diagnosis schemes handle sensor and process noise within the same framework us-

ing probability theory that provides a mathematically sound reasoning mechanism for diagnosis

under uncertainty. These approaches uses probabilistic models, such as Bayesian networks and

Dynamic Bayesian networks [3] to explicitly model measurement noise and modeling inaccura-

cies, and use Bayesian reasoning techniques to generate correct diagnosis results in the presence

of uncertainties.

In the remainder of this chapter, we present and compare the di�erent model-based diagnosis

schemes for continuous dynamic systems introduced above. We start with diagnosis approaches
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that use discrete-event system models, followed by qualitative diagnosis of dynamic systems. Then

we present analytical redundancy-based diagnosis schemes, followed by probabilistic model-based

diagnosis schemes.

Discrete-Event Systems Diagnosis

Wonham, in [42], de�nes a discrete event system (DES) representation of a dynamic system to be

�equipped with a state space and state-transition structure. In particular, a DES is discrete in time

and (usually) in state space; it is asynchronous or event-driven: that is, driven by events other than,

or in addition to, the tick of a clock�. Finite state machines (FSMs) have been widely used for

modeling DES [43]. FSMs are graphs where nodes represent states, and edges represent transitions

that can be taken from one state to another if the event guarding the transition occurs [43]. Formally

FSMs can be represented as a tuple (Σ, S, S0, δ, F ), where Σ is the input alphabet, S is a �nite non

empty set of states, S0 ⊆ S is the set of initial states, δ : S ×Σ→ S is the state transition function,

and F ⊆ S is the set of �nal states. FSMs allow for intuitive modeling of systems and match the

mental models many people use to analyze complex systems [36]. Also, capturing the ordering of

events is straightforward using FSMs. However, as we will show in the remainder of this section,

generation of FSMs usually involves quantization of the continuous, and depending on how �ne this

quantization is, FSMs can su�er from high space complexity, and result in the FSM-based DES

diagnosis schemes to be computationally very expensive [5, 35,36].

Example. Consider the two-tank example shown in Fig. 3. The �uid level in the tanks represent

the system state. A discrete, quantized state space representation for the tank system involves

representing the liquid levels into High, Medium, Low, and Empty, as shown in the �gure. Here, the

state of the two tank system can be de�ned as an ordered pair (stank1 , stank2), where stank1 is the

quantized state of tank 1 and stank2 is the quantized state of tank 2. In total, there are sixteen states

possible quantized states in the two tank system, as shown in Fig. 4, with state 1 corresponding to

both tanks being Empty, i.e., (Empty, Empty), state 2 corresponding to the (Low, Empty) state

for two tanks, and so on. One possible FSM for the two tank system is shown in Fig. 5. Assume

the �uid in�ow Fin to be constant. Under normal operation, the system starts in (Empty, Empty).

Then as water �ows into tank 1, the system moves to (Low, Empty) and stays in this state till the

water level in tank 1 reaches pipe R12. After this, the state changes to (Medium, Empty), water

starts to �ow into tank 2, and the system-state changes to (Medium, Low). Then, the system

moves into (Medium, Medium), and �nally to (High, High). The states mentioned above are the
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Figure 3: Schematic of a two tank system with quantized states.

Figure 4: Quantized state-space of the two-tank system. Grey arrows depict normal transitions, the
black arrow shows an unobservable faulty transition.

nominal states. States other than these can be considered faulty states and can be reached through

transitions caused by faults, such as the transition from (Medium, Medium) to (High, Medium)

(shown by a black arrow in Fig. 4) could be a result of an abrupt blockage in pipe R12. Similarly, a

leak in pipe R1 could result in the system going to (Low, Medium) from (Medium, Medium). In

the DES framework, faults are usually modeled as unobservable transition events.

The diagnosis approaches available in literature for discrete event approaches can be classi�ed as

one of two types: event-based and state-based [36]. In event-based diagnosis approaches, faults are

modeled as unobservable events, otherwise, they are trivially diagnosable. Fault diagnosis in event-

based frameworks typically involves inference to be made about the occurrence of unobservable

failure events based on observed events. In state-based approaches, the state-space is partitioned

according to the failure status of the system, into nominal and faulty modes, and the problem of

fault diagnosis involves the determination of whether the system is in nominal or faulty mode based

on the most recent observed measurements.

17



Figure 5: A FSM for the two-tank system.

An event-based DES diagnosis framework is presented in [5, 44]. The system is modeled as a

FSM, and has both observable and unobservable events. Observable events can include controller

commands and sensor readings. Unobservable events consist of fault events and other events which

cause state transitions that are not observable by the sensors. At the core of this diagnostic method-

ology is a diagnoser that is modeled as a deterministic FSM and systematically generated o�ine

from the system model. This diagnoser serves as an extended observer, and gives estimates of the

current state of the system after the occurrence of every observable event. The transitions of di-

agnoser FSM are only based on observable events. The state of a diagnoser consists of estimated

current system states, and a failure label which indicates whether a faulty transition of that speci�c

type necessarily had to be taken for the system to reach the estimated state. A fault is unequivocally

diagnosed when a state in the diagnoser is reached, wherein each system state estimate has the fault

label corresponding to this fault.

A state-based DES diagnosis scheme is described in [36], where the system is modeled as a Moore

FSM, so that each state of the system represents a system condition (or, failure mode). Being state-

based, the goal of this diagnosis scheme is to identify the failure mode the system is in, rather

than explicit failure events that caused the system to be in this mode, as is the case for event-based

DES diagnosis schemes. State-based diagnosis schemes are useful because for most practical settings,

system models are constructed by composing several smaller component models, each usually having

a single nominal mode and a few failure modes. Hence, a direct relation exists between system state

and the failure mode. This approach assumes that a system has a single nominal mode and several

failure modes. Like [5,44], this approach also generates a diagnoser, which takes as input the output

sequence of the system and estimates the failure mode of the system. The states in the diagnoser

contain an output, possible system states consistent with the output sequence, and possible system

condition estimate associated with these states. If in a diagnoser state, an output is possible from
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its set of system states, a transition is created from this diagnoser state to the next diagnoser state

corresponding to that output, and the new system states that could have been reached from the

possible system states. The possible system conditions for this new state is also marked accordingly.

A fault state is diagnosed when it is estimated with certainty that the system is in that particular

fault state.

The diagnosability property of DES-based schemes is studied in [5, 44] and [36]. A fault event

or mode is considered to be diagnosable if it can be detected and isolated after the occurrence of

a �nite number of events following the failure event. In addition, [5, 44] also de�ne the notion of

I-Diagnosability. A system is I-Diagnosable if it can be detected and isolated within a �nite number

of events following the occurrence of an indicator event corresponding to that fault.

Even though there are similarities between the approaches presented in [5] and [36], there are some

inherent di�erences between the two approaches. In [36], the authors assume that the states of the

system can be partitioned according to the condition (failure mode) of the system. Therefore, their

focus is on determining the system condition rather than detecting failure events. This approach,

therefore, allows diagnosis of faults in situations where the fault event has occurred before the start

of diagnosis. Moreover, the assumption simpli�es the transition function of the state-based diagnoser

in [36] because the system condition is assumed to be a function of the system state, and avoids the

need for propagating fault labels, as is done in the event-based diagnoser in [5, 44].

Another state-based, consistency-based DES diagnosis scheme is presented in [35], wherein the

continuous state-space is partitioned and the system is represented as a timed discrete-event model.

A quantizer partitions the quantitative state-space of the system into a �nite set of qualitatively

similar states, each represented by a qualitative value. The quantizer also generates an event every

time the system moves from one quantized state to another. The diagnosis approach uses the timed

event sequences, along with timed input sequences, to diagnose the system. Quantization results in

nondeterminism in the model, since for a known quantized state and known input, it may be possible

for the system to enter more than one new quantized state, as the exact point in the quantized space

is not known. To represent the non-determinism in its behavior, the author models the system as

a semi-Markov process in a compact manner. Based on the sequence of inputs and possible events,

the diagnoser computes the probabilities of faults, and as more events occur, the probability of the

true fault will increase in value, while for other faults, the probability should eventually become

negligible. If at the end of diagnosis, no fault can be uniquely diagnosed, the relative ranking of the

probabilities gives an indication of the likelihood of di�erent fault hypotheses.
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Discussion

DES models handle robustness to uncertainties by abstracting away details from continuous systems,

and representing the system dynamics in terms of discrete states and events. Once abstracted, the

DES diagnosis schemes can be applied to these DES models without additional mechanisms for

handling uncertainty. Note, however, that decisions about whether the system is in a particular state

or where a particular event has occurred must still be taken in the presence of uncertainties in system

dynamics at the lowest level of abstraction. As a result, the task of handling such uncertainties is

delegated to these decision tasks, so that once it is determined, taking into account uncertainties,

that a system is in a particular state and a certain event has occurred, the DES diagnosis approaches

can generate correct diagnosis results in the presence of uncertainties without explicitly having to

handle such uncertainties.

The abstraction of details in a DES has a trade-o�. If the level of abstraction is very high

compared to the actual system behavior, information crucial to fast and accurate diagnosis of faults

is lost. A detailed DES model at a lower level of abstraction can overcome this drawback, but

would increase the size of the model and the computation time for the DES diagnosis schemes.

Moreover, the model may be di�cult to develop. Generation of DES models require quantization of

the continuous system state-space. Quantization can be leveraged to build both untimed and timed

models. Timed DES models capture information about system dynamics beyond that obtained

from a simple ordering of events. Quantization seems to be appropriate for systems with discrete

inputs, sensors and discrete faults. If the sensors are not discrete, quantization loses information.

Moreover, quantization based approaches su�er from state explosion depending on the resolution of

quantization of its state-space. In addition, to use these approaches, faults have to be quantized as

well. Also, if the faults are possible in any state of the system, then the DES model becomes very

large. In [1], the author presents an approach for constructing a DES model for continuous systems

by systematically abstracting the dynamics of the observed measurements in the presence of di�erent

faults to relatively avoid the exponential blow-up of states and state-transitions. The DES diagnosis

schemes provide a well-developed framework for event-based and state-based fault diagnosis. But,

they lack sophisticated mechanisms to handle measurement noise and unknown disturbances that

cannot be avoided in practical scenarios. In addition, the performance of DES diagnosis schemes

depend on the order in which the input and output events are observed, and if the order in which

events are generated by the system is not the same as that observed by the diagnoser, or if some
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observed events are missing, the DES diagnosis approaches may fail to generate correct diagnosis

results.

Diagnosis Using Qualitative Models

Qualitative models express the relationships between observed symptoms and the faults, as well as

the system dynamics in terms of qualitative functions and equations [45]. The qualitative diagnosis

schemes leverage the cause-e�ect relation behavior for di�erent faults captured in the qualitative

models to correctly isolate faults. Rather than focusing on expert systems which use IF −THEN −

ELSE rules [34], we will focus our discussion on those qualitative model-based diagnosis schemes

that are derived from �rst-principles and a sound understanding of the physics of the system. In

the following, we present a few qualitative model-based diagnosis approaches.

Several qualitative diagnosis schemes, such as [37, 38, 46, 47], use signed digraphs (SDGs) for

diagnosis. An SDG is a directed graph whose nodes represent deviation from the steady state of a

variable, and signed arcs represent the relationships between these nodes [38]. SDGs are much more

compact than truth tables, decision tables, or �nite state models.

Example. For example, if we denote the �uid-level of a tank as H, its inlet �ow as Fin, its outlet

�ow as Fout, and the resistance of its outlet pipe as Rout, then the equations to represent this system

are [45]:

Fin − Fout =
dH

dt

Fout =
H

Rout
.

The corresponding SDG for this system is given in Fig. 6. An external change causing the �ow rate

Fin to change, would cause dH and H to change in the same direction, which will in turn cause

Fout to also change similarly. However, this change in the Fout would cause the dH to change in the

other direction, implying a feedback. The SDG can be obtained by abstracting the mathematical

model of the underlying process.

In [38], the authors derive a cause-e�ect (CE) graph from a system's SDG. The CE graph consists

of only valid nodes (i.e., nodes which are abnormal) and consistent arcs (i.e., arcs which explain the

local propagation of the fault and hence, the observed symptom). The sign of the nodes in a SDG

can be considered as a pattern which may match a particular fault condition, and a fault is isolated

if the system's SDG shows the corresponding pattern. If the signs of some of the nodes are not
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Figure 6: Signed digraph for a simple tank system.

known, a partial pattern is formed, and this indicates the possibility of all possible fault conditions

the partial pattern corresponds to being present. In [37], the arcs gains of SDGs are allowed to

vary dynamically, thereby allowing modeling of nonlinearities. In [46], the authors address the issue

of conditional arcs in SDGs. SDGs can get quite complicated for complex systems, and in [47],

the authors present techniques to simplify the SDGs for fault diagnosis. A rule-based approach to

diagnosis using SDGs is presented in [48], where logical statements, or rules, such as, IF−(SDG rule

premise)−THEN−(possible fault), are automatically derived from SDGs and these statements are

evaluated using online data to generate the diagnosis result. These automatically derived rules can

also be integrated with other rules using an expert system framework, such as forward chaining [34].

A method for qualitative analysis of causal feedback in SDGs is proposed in [49] to resolve feedback

ambiguities, and this method is implemented in a simulator for qualitative ordinary di�erential

equations, called QUAF.

A qualitative simulation (QSIM)-based diagnosis approach,Mimic, is presented in [39,40], where

the system is modeled using qualitative di�erential algebraic equations (QDAEs). QDAEs are a

general, implicit form of qualitative di�erential equations (QDEs) [50]. Given a set of ordinary

di�erential equations (ODEs), QDEs can be considered as an abstraction of these ODEs, and repre-

sented by a set of qualitative constraint equations which are satis�ed by any behavior that satis�es

the given ODEs [50]. The constraint equations consist of a set of symbols representing the pro-

cess variables, and a set of constraints on how these variables may be related to each other. The

constraints allow the expression of simple mathematical relationships between the variables such as

addition, multiplication, and di�erentiation. The evolution of the system is qualitatively simulated

(see [50]), where essentially, the in�nite number of numeric behaviors of a system is discretized into

a smaller set of qualitatively distinct behaviors or states, and qualitative transitions exist between

states, depending on the constraints.

In Mimic, given the nominal model of the system, QSIM starts at the initial state, and as and

when observations change, the qualitative model is simulated based on the observations, predicting

the immediate successor qualitative states the system might possibly be in. In addition, QSIM also
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generates the quantitative ranges of values for each model parameter. Then, the model constraints

are utilized to identify the permissible next states. Further reduction of the possible next states is

obtained by employing tests to detect when steady-state conditions are reached, or when a cyclic

behavior is observed. If multiple successor states are present, the simulation branches. Finally, based

on both qualitative and quantitative values, a similarity function computes the similarity between

the observations and behavior predicted by the nominal system model. For the next iteration of

the hypothesize-and-match loop, only those models are retained whose similarity to the observations

exceeds a threshold. A fault is detected when the normal model of the system is discarded. An earlier

version of Mimic used a decision tree method to generate the new hypothesis. The corresponding

fault models was then selected from a set of pre-enumerated fault models and initialized as per the

current observations. Then the QSIM continued as described above. A new version of the Mimic

framework does not generate new hypotheses using decision trees. This implies that pre-enumeration

of faults is not required. As a result, Mimic is no more restricted to the diagnosis of only those

faults that were pre-enumerated and Mimic was trained for. In the updated version, Mimic tries

to modify the system model, before discarding it, in an attempt to make its predictions agree

with the observations. Mimic's algorithm identi�es all components and parameters that could have

contributed to the discrepancy, the only valid suspects being those that account for all discrepancies.

In addition, Mimic further tests the suspects' global consistency through constraint-suspension. A

suspect is exonerated if no assignment of values consistent with all symptoms is found. For each of

the remaining suspects, each of its operating modes is tested for compatibility with the observations,

and discarded if necessary. The remaining modes are now tracked by qualitative simulation, till only

the true fault model survives and tracks the observations of the (faulty) system.

Discussion

Qualitative models are abstractions of the analytic models that rely on quantization of the continuous

state-space. The modeling abstractions also help these approaches to be robust to uncertainties, by

not requiring the actual qualitative model-based diagnosis schemes to explicitly handle uncertainties

to generate correct diagnosis results.

Moreover, these methods su�er from nondeterminism and state explosion, just like DES-based

diagnosis approaches do. Similar to the DES diagnosis schemes, depending on the level of quantiza-

tion, qualitative diagnosis methods may have to deal with intense quantitative analysis at run-time.

However, the lack of precise quantitative information introduces ambiguities in the solutions, such
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Figure 7: Architecture of a generic model-based diagnosis approach where detection and isolation
of faults are combined.

as two di�erent faults having the same qualitative e�ect. Quantitative analysis of the observed

measurements can help resolve ambiguities that may be present in qualitative reasoning methods.

Another drawback of qualitative diagnosis approaches are spurious solutions, i.e., solutions which

are not physically realizable. Spurious solutions can be avoided, to a reasonable extent, by imposing

strict constraints, and modeling the system from di�erent perspectives. Moreover, qualitative diag-

nosis schemes may produce multiple possible behavior predictions because of the nondeterminism

that may be introduced due to quantization. Also, based on the degree of quantization, a fault may

not cause the system to move to a di�erent qualitative state, thereby resulting in delayed, or, missed

detection and isolation. The qualitative diagnosis schemes do not have any speci�c techniques to

handle uncertainties, such as measurement noise and modeling abstractions.

Analytical Redundancy Relations-Based Diagnosis Scheme

Analytical redundancy relations (ARR)-based diagnosis scheme is a quantitative diagnosis approach

that involves the generation of inconsistencies between actual and expected behavior, also known

as residuals. Checking for inconsistency requires some form of redundancy, and in ARR-based

approaches, the redundancy is analytical, and achieved from a fundamental understanding of the

dependence among the process variables. The residuals are expected to be close to zero in the absence

of faults, and show signi�cant non-zero values otherwise. Hence this cause-e�ect relationship between

faults and residuals can be analyzed to generate diagnostic conclusions. Several diagnosis approaches

for continuous systems are based on the notion of ARRs. As shown in Fig. 7, ARR-based approaches

perform the detection and isolation tasks together.
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In observer-based ARR schemes, observers track the system behavior closely, based on the system

model and observed measurements, and the residual r(t) = yi(t)− ŷi(t) is de�ned as the di�erence

between the estimated and observed measurements. While Unknown Input Observers (UIO) [51]

allow for generation of residuals in deterministic settings, in stochastic settings, Bayesian observers,

such as Kalman �lters and Extended Kalman �lters [34] can be used to estimate system states cor-

rectly in the presence of uncertainties, to generate residuals. Although UIOs are typically applicable

to linear systems, a similar design and analysis approach can result in unknown input observers for

nonlinear systems [52]. To detect and isolate faults, a set of observers is developed such that an

observer is sensitive to a subset of faults, while insensitive to the remaining faults and unknown

inputs. The presence of measurement and model redundancy results in extra degrees of freedom

to build such observers. The main idea is that for fault-free conditions, the observer tracks the

system behavior closely, generating residual values close to zero. Once a fault occurs, however,

the system outputs estimated using observers that are sensitive to this fault will show signi�cant

non-zero residuals, while the system outputs estimated using other observers will produce statisti-

cally insigni�cant residual values. Depending on the design of the set of observers, distinct residual

patterns are developed for each fault, making fault isolation possible.

Parity relations are another form of ARRs, which involves rearranged and transformed variants

of the I/O or state-space model of the system that allow the checking of parity (or consistency)

using sensor outputs and known process inputs only. The idea of this approach is to rearrange

the model structure so as to get the best fault isolation. In parity relations, the residual r(t) =

wTY(t)−wTRU(t), where U(t) is system input, Y(t) is measurements, and w and R are matrices,

can be structured such that one measured variable has no impact on a speci�c residual by choosing

the wT matrix appropriately. It has been shown, in [53], that residual generators developed based

on parity relations and observers are identical or equivalent. The residuals, once generated, need

to be selectively responsive to particular faults, while una�ected by other faults, to obtain the

desired fault detection and isolation properties. Therefore, residuals are enhanced to support fault

isolation by providing well-de�ned responses to particular faults. There are three main schemes of

enhancing the residuals, namely diagonal residuals, directional residuals, and structured residuals [2].

Diagonal residuals are designed such that each element of the residual vector responds to one and

only one fault. Directional residuals are generated such that the residuals are con�ned to a fault

speci�c direction in the multidimensional residual space. As a result, the fault isolation step requires

the determination of a prede�ned direction to which the residual is the closest. In structured

residuals, each residual element responds selectively to a subset of faults. The residual structures are
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characterized by incidence matrices, whose columns correspond to individual faults, rows correspond

to residuals, and whose elements determine whether a residual is a�ected by a fault.

Example. For example, given three possible faults {F1, F2, F3}, a possible incidence matrix [54]:



F1 F2 F3

r1 I I 0

r2 0 I I

r3 I 0 I


where the I element indicates that the residual responds to the fault while, a 0 indicates otherwise.

Each column of the incidence matrix can be termed as the fault signature. Hence, a fault is not

detectable by a residual structure if the corresponding column in the incidence matrix contains all

zeros. Also, two faults are not distinguishable from each other by a residual structure if their fault

signatures in the incident matrix are identical, i.e., the columns in the incident matrix corresponding

to these two faults are identical.

Parameter estimation methods can be used to diagnose parameter drifts which are not directly

measurable. In practical systems, it is very unlikely that the parameters of the system model is known

completely. Either the parameters are not known at all, or at best, known partially. However, if the

basic model structure of the system is known, these parameters can be estimated by measuring the

input and output signals. The process model used for parameter estimation is obtained using only

the measured inputs and outputs, and is of the form

y(t) = f(u(t), θ).

The model parameters θ can be estimated as y(t) and u(t) are measured using techniques such as

least squares, instrumental variables, and estimation via discrete-time models [19, 55]. Changes in

the parameters can be related to process faults.

Discussion

Depending on the residual generation scheme, ARRs apply di�erent approaches to handle uncertain-

ties. If the residuals are generated using UIO observers, ARRs handle uncertainties in a deterministic

setting by using matrix manipulation to make the generated estimates to be insensitive to unknown

disturbances [2]. A similar matrix manipulation is used in parity relations-based residual generation
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schemes [56]. If, however, ARRs use stochastic observers for generating residuals, these observers

usually handle uncertainties due to sensor and process noise using probabilistic schemes, as we

explain in the next section.

The main issue with ARRs is that one has to wait till all residuals have �red in order to correctly

isolate the true fault. For example, consider the incidence matrix below:



F1 F2 F3

r1 I I I

r2 0 I I

r3 I 0 I


,

where, if the true fault is F3, we must wait for all three residuals, r1, r2, and r3 to �re before this

fault can be correctly isolated. However, consider a scenario where the true fault is F2. In this case,

when residuals r1 and r2 �re, we can re�ne the set of possible faults to F2 and F3. However, as

indicated in the incidence matrix, r3 will never �re if F2 is the true fault. Hence, to diagnose F2, we

would have to impose additional heuristics, such as assuming that if a residual rj is sensitive to fault

Fi, then residual rj will �re within t
Fi
rj

time steps from the time of occurrence of fault Fi. Hence,

once the �rst residual �res, we would wait for tFi
rj

for each fault Fi and residual rj before making a

decision on what the true fault is. Also, typically a binary test is performed on the residual, and

hence, ARRs do not provide su�cient discriminatory power. One way to address this drawback is

to use the sign of the residual, as well as its transient behavior for fault isolation, as done in [7].

From the above discussion, it is clear that the ARR-based approaches concentrate mainly on the

tasks of fault detection and isolation, and parameter estimation techniques need to be implemented

for identi�cation of faults. The models used for ARR-based diagnosis are usually limited to linear

models, though they have been adapted for nonlinear systems as well [57]. Linear approximations

may prove to be poor for highly nonlinear systems, and hence these approaches may not be e�ective

for such nonlinear systems. Also, ARR-based diagnosis methods cannot guarantee that the residuals

will be able to detect a fault that has not been speci�cally modeled.

Probabilistic Diagnosis Schemes

Probabilistic reasoning methods have been used in several diagnosis algorithms [3,58,59]. Probability

theory provides mathematically sound reasoning mechanisms based on a numerical degree of belief
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(between 0 and 1) associated with hypotheses and measurements (i.e., evidences) in a diagnostic

scheme.

The fundamental problem we seek to solve in a probabilistic diagnosis is to determine the chance

of a particular fault occurring given the observed systems. This question, however, is counterintu-

itive, since our knowledge about the real world is causal. In other words, domain experts usually

have a fairly good intuition about the chances of seeing a particular symptom given a fault in the

system, e.g., the chances of having a headache if someone has fever. However, trying to ascertain

the chances of the fault happening given a particular e�ect, e.g., the chances of someone having

a fever given he/she has a headache, is somewhat counter intuitive, and the precise question we

ask in a diagnosis problem. In general, Bayes' theorem provides the fundamental mechanism for

diagnosing faults in the presence of uncertainty, by relating symptoms to faults [34]. For exam-

ple, assuming Symptom and Fault are two random variables, the posterior probability of Fault

given Symptom, P (Fault|Symptom) can be ascertained from �intuitive�, causal information such as

P (Symptom|Fault), and prior probabilities P (Fault) and P (Symptom) as follows:

P (Fault|Symptom) =
P (Symptom|Fault)P (Fault)

P (Symptom)
.

Example. As a simple example, consider a single-tank system as shown in Fig. 8. This tank

has an input �uid �ow source, Fin, and an output pipe, R1, at the bottom. A blockage in the

output pipe could cause the �uid level in the tank to rise abnormally. Let the opening in the

output pipe be represented by the random variable, Pipe, and the height of �uid in the tank is

represented by the random variable, Height. Let each random variable assume two discrete values,

e.g., Pipe = {nominal, blocked}, and Height = {nominal, increase}. The value of Height depends

on Pipe. It is common knowledge that the �uid level in the tank is highly likely to increase in

the event of a blockage in output pipe, i.e., say P (Height = increase|Pipe = blocked) = 0.9. We

also know that, to start with, chances of the pipe getting blocked, or �uid level abruptly increasing

is fairly slim, i.e., say P (Pipe = blocked) = 0.1 and P (Height = increase) = 0.3, respectively.

Notice however, inferring the chances of the pipe being blocked given the �uid level in the tank has

increased does not follow easily from common �causal� domain knowledge. However, using Bayes'

theorem, we can calculate this probability as follows:

P (Pipe = blocked|Height = increase) =
P (Height = increase|Pipe = blocked)P (Pipe = blocked)

P (Height = increase)

=
0.9× 0.1

0.3
= 0.3

Thus, observing an increase in �uid level increases the chances of a blockage in the pipe threefold

compared to when the knowledge of pipe blockage was not available.
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Figure 8: Schematic of a one tank system.

If additional symptoms are observed, the likelihood values of the fault can be further updated as

shown below:

P (Fault|Symptom1, . . . , Symptomn) =
P (Symptom1, . . . Symptomn|Fault)P (Fault)

P (Symptom1, . . . , Symptomn)
.

If each variable has two possible values, and there are n Symptom variables, calculating probabil-

ity P (Symptom1, . . . , Symptomn|Fault) requires the knowledge of conditional probabilities for 2n

possible combinations of observed symptoms. Hence, there is no considerable savings over using the

full joint probability distribution for inference instead. In general, the full joint distribution can be

written as

P (Fault, Symptom1, . . . , Symptomn) =

n−1∏
i=1

P (Symptomi|Symptomi+1, . . . , Symptomn, Fault)

× P (Fault)P (Symptomn|Fault).

Assuming that the single hypothesis directly in�uences the evidences, all of which are conditionally

independent given the cause, the joint probability distribution can be decomposed into

P (Fault, Symptom1, . . . , Symptomn) = P (Fault)

n∏
i=1

P (Symptomi|Fault).

Such a probability distribution is called the Naive Bayes model [34] as it is often used as a simplifying

assumption in cases where the Symptomi variables are not conditionally independent given the Fault

variable.

The above example illustrates the usefulness of probabilistic techniques to reason under uncer-

tainty. We also saw how the probabilities of di�erent hypotheses are updated as more evidence is

obtained. The storage of joint probability distributions and marginalization of unobserved variables,
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however, are exponential. In the naive approach, assuming each evidence variable is conditionally in-

dependent from other evidence variables given the hypothesis reduces the computational complexity

and the need for a large number of probability values. However, this assumption is very strict and

may not always be correct. The lack of causal dependencies between variables, is a good indication

of independence, and can be exploited in several graphical models for correct and e�cient inference,

as explained below.

Graphical models such as Bayesian networks (BNs) and Dynamic Bayesian networks (DBNs)

explicitly model uncertainty and graphically represent e�cient factorizations of the joint probability

distributions over a set of variables. This is possible because these models capture the multiple

causal dependencies, as well as, the independence between di�erent random variables. The notion

of independence is used to perform diagnosis in a tractable manner. In this paper, we focus on the

model-based diagnosis of dynamic systems. BNs assume the state of the system to be static, and

do not explicitly model the dynamic states of a system, and the transition between these states.

DBNs extend BNs by including this temporal information. In this chapter, we present di�erent

model-based diagnosis schemes that use stochastic models of dynamic systems, and show how these

stochastic diagnosis approaches extend the deterministic diagnostic techniques presented earlier in

this chapter. We will, however, �rst discuss BNs brie�y for the sake of completeness.

Model-based Diagnosis using Bayesian Networks

BNs are directed acyclic graphs (DAGs) where the nodes are random variables, and the arcs specify

the direct probabilistic in�uences between the random variables [60]. BNs are static causal mod-

els, with an arc between two nodes representing a causal relationship between the source node, the

�cause�, and the destination node, the �e�ect�. There are two types of nodes in a BN: observable

and hidden. A node in a BN is observable if it can be measured. The hidden nodes either represent

variables that are not measured, and can include fault hypotheses. The diagnostic reasoning pro-

cedure involves inferring the likelihood of the unobservable fault hypotheses variables based on the

observed evidence. The random variables in a BN can be discrete, with a �nite range of possible

values, or continuous, and can be speci�ed by a �nite number of parameters that correspond to

standard families of probability density functions.

The construction of a BN must ensure that it is a complete, yet compact, and correct represen-

tation of the full joint distribution of all random variables. In [34], the authors suggest that the

correct order in which to add the nodes in a BN is to add the root causes �rst, then the variables they
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in�uence, and so on, until we reach the �leaves� which have no direct causal in�uence on the other

variables. This construction of a locally structured BN is not a trivial problem, and usually requires

guidance from a domain expert as well as knowledge engineers who are well versed in Bayesian

models. Once the BN is constructed, the next step is to assign appropriate probability distribution

tables to the nodes again using expert knowledge or empirical data collected in the domain, e.g.,

empirical knowledge of frequency of observed symptoms given particular faults.

Example. Fig. 9 shows a highly simpli�ed BN for the two tank system shown in Fig. 3. Each node

labeled RiIncrease is unobservable, and represents a possible fault, i.e., a blockage in pipe Ri, where

i ∈ {1, 2, 12}. For simplicity, we assume these random variables take on two discrete values, True

and False. The �ow status through the pipe Fi is dependent on RiIncrease. In addition, �ows

F1 and F2 a�ects F12. Finally, the height in tank 1, Tank1Height, depends on the in�ow Fin, and

�ows F1 and F12. Similarly, Tank2Height is determined by F12 and F2.

If Tank1Height and Tank2Height are the only observed (measured) discrete nodes, the di-

agnosis problem can be formulated as to determining P (RiIncrease = True|Tank1Height =

t1, Tank2Height = t2) for each i = {1, 2, 12} and identifying that RiIncrease as the true fault,

for which this probability is the highest. t1, t2 could be discrete High, Nominal or Low values.

The above probability can be computed by marginalization from the joint probability distribution

of all variables, with the values for RiIncrease, Tank1Height and Tank2Height instantiated. In

BNs, this joint probability distribution can be computed e�ciently by utilizing the conditional

independence between nodes. Any two variables A and B are conditionally independent given C if

P (A,B|C) = P (A|C)P (B|C). In a BN, there are two speci�cations of conditional independence [34]:

(i) a node is conditionally independent of its non-descendants, given its parents, and (ii) a node is

conditionally independent of all other nodes in a network, given its parents, children, and children's

parents, i.e., its Markov Blanket.

Hence, once a BN with nodes {X1, X2, . . . , Xi} are constructed, the aforementioned notions of

conditional independence, along with the necessary probability information, is used to represent and

compute the joint probability distribution in an e�cient manner:

P (X1, . . . , Xi−1, Xi) =

n∏
i=1

P (Xi|Xi−1, . . . , X1) =

n∏
i=1

P (Xi|Parents(Xi)).

This factorization of the joint probability distribution results in considerable reduction in the number

of probability values or distributions needed to perform the marginalization calculations, as well as

the saving of space and computational complexity when computing the conditional probabilities.
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Figure 9: A Simpli�ed Bayesian Network for the two-tank system.

BNs have been used for diagnosis in a number of application domains such as, medical diagno-

sis [61, 62], and communication networks [63, 64], among others. Formally, the diagnosis procedure

using BNs involves evidence gathering and belief updating, i.e., the computation of the belief func-

tions, the conditional probability of a node taking a speci�c value given the available evidence.

Belief functions of the nodes re�ect the overall belief accorded to that node value by all evidence

that has been collected so far. Exact inference in BNs is NP-hard, except for the class of singly

connected Bayesian networks. For other classes of Bayesian networks, three approximate approaches

of belief updating have been developed, namely clustering, simulation, and conditioning [60,65]. In

clustering, compound nodes are formed in such a way that the resulting networks of clusters is singly

connected. Every BN can be structured as singly connected if the size of the clusters is not limited.

Simulation techniques involve an approximate solution to the evaluation of belief functions by using

Monte Carlo techniques to estimate probabilities by counting how frequently events occur over a

series of simulation runs [66, 67]. Conditioning involves breaking the loops in a BN by instantiat-

ing a selected set of nodes to reduce the network to being singly connected, so that a polynomial

belief updating algorithm can be applied, and then, properly aggregated with the di�erent value

instantiations.

As mentioned above, diagnosis using BNs involves belief updating in uncertain causal networks

as more observations become available. BNs are based on a well founded mathematical model, and

the reasoning is consistent. The main disadvantage of a BN is that it does not directly accommodate

relations between variables that evolve over time. As a result, dynamic systems cannot be modeled

easily using BNs. DBNs explicitly model temporal evolution of system state in a Bayesian framework

and allow for Bayesian reasoning with dynamic systems.
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In the following, we de�ne DBNs, and describe how diagnosis problems are formulated in terms

of DBNs. Typically, the diagnosis problem in the DBN-framework requires estimation of unob-

served state variables in the system based on observed measurements. Therefore, we present two

di�erent state estimation approaches, and describe some diagnosis schemes based on each estimation

approach. The main state estimation schemes we describe are Kalman �ltering [34], which is an

optimal state estimation approach, but restricted to a linear Gaussian systems; and particle �ltering,

which is a more general approach applicable to any general DBN [12].

Model-Based Diagnosis Using Dynamic Bayesian Networks

Dynamic Bayesian Networks (DBNs) [3] provide a systematic method for modeling the dynamics

of complex systems in the presence of uncertainties. A DBN is a compact, directed acyclic graph

structure that represents a probabilistic discrete-time model of a dynamic system. Nodes in the

graph represent random variables. Links in a DBN are of two types: (i) those that denote causal

dependencies between nodes in a particular time step, and (ii) those that capture causal relations

across time steps. The absence of a link between two nodes imply that these nodes do not causally

a�ect each other directly.

De�nition 2 (Dynamic Bayesian Network). Formally, we de�ne a Dynamic Bayesian Network

(DBN) as D = (X,U,Y), where X, U, and Y are sets of stochastic random variables that denote

(hidden) state variables, system input variables, and measured variables of the dynamic system,

respectively1. Graphically, a DBN is a two-slice Bayesian network, representing a snapshot of system

behavior in two consecutive time slices, t and t+ 1. Each DBN time-slice represents the observation

model, P (Yt|Xt,Ut) derived from causal links Xt → Yt and Ut → Yt, where X ∈ X, Y ∈ Y, U ∈ U,

and subscript t represents time. Across-time causal links Xt → Xt+1, Xt → X ′t+1, and Ut → Xt+1,

where X ′ ∈ X, represent the �rst order Markov state-transition model, P (Xt+1|Xt,Ut).

Our graphical representation of DBNs in this dissertation include thick-lined circles that denote

state variables, thin-lined circles that denote measured variables, and squares that denote input

variables. The Markov assumption signi�cantly reduces the number of time slices required for

representing the complete system evolution, and allows for a compact description of system evolution

using two time slices. However, across multiple time steps, the relations propagate, and eventually,

within a �nite number of time steps, all state variables causally connected to each other. In other

words, DBN reasoning is exponential, in general.

1We chose to use di�erent notation for our DBNs than that presented in [3] for simplicity, but essentially, both
imply the same DBN structure, as presented in [3].
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Figure 10: Dynamic Bayesian network of a two-tank system.

Example. Fig. 10 shows the DBN for the two-tank system shown in Fig. 3. The state variables

in the two-tank system are the pressures at the bottom of tanks 1 and 2, and represented by the

variables P1 and P2, respectively, i.e., X = {P1, P2}. Flows F1, F12, and F2 are the measured

variables, i.e., Y = {F1, F12, F2}, and the �ow in, Fin, is the input variable, i.e., U = {Fin}.

Therefore, the DBN in Fig. 10 can be represented as D = ({P1, P2}, {Fin}, {F1, F12, F2}). In the

two tank system, the �ow F12 at the current time instance depends on the pressure di�erence in

tanks C1 and C2 at the current time instance. Hence, the DBN contains the intra-time-slice causal

links P1t
→ F12t

and P2t
→ F12t

. The inter-time-slice causal link P1t
→ P2t+1 and P2t

→ P2t+1

represents the dependence of the value of P2 at the current time step on the values of P1 and P2 at

the previous time step. Similarly, links P1t
→ F1t

and P2t
→ F2t

denote the dependence of �ows F1

and F2 on P1 and P2, respectively. The absence of a causal link from Fin to P2 implies that volume

P2 at a time step does not depend on the value of the in�ow Fin at the previous time step.

In DBNs with exclusively discrete random variables, the prior and conditional probabilities are

expressed using probability distribution tables. For continuous systems, the prior and conditional

probabilities are expressed using probability density functions. DBNs are the most general of graph-

ical probabilistic models. DBNs exploit the conditional independence among variables to provide a

compact and factored representation of a dynamic system. DBNs do not impose any restrictions on

using arbitrary probability distributions to describe the dynamic evolution of system behavior, or

sensor noise [3].

DBNs have been used for fault diagnosis in hydraulic systems [58], planetary rovers [13], and

robots [4], amongst others. In the DBN framework, the diagnosis problem can be mainly formulated
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as a probabilistic inference problem, which involves the estimation of the value of the unobservable

state variables, Xt at time t, based on the observed measurements, Y1:τ , from time 1 to τ , i.e.,

computing the marginal P (Xt|Y1:τ ). If τ = t, the inference problem is termed �ltering or state

estimation, if τ > t, the inference problem is termed smoothing, and if τ < t, the inference problem

is termed prediction [3].

One formulation of the diagnosis problem is to determine the most likely sequence of states

that best explains the observed evidences. In other words, the diagnosis problem is posed as the

classic decoding problem. Since DBN nodes represent more than one state, this problem reduces

to the determination of the sequence of hidden states which maximizes the probability of the ob-

served evidence, i.e., X̂1:t = arg maxX1:t P (X1:t|Y1:t). This task can be achieved using the Viterbi

algorithm [68].

In this dissertation, we focus mainly on the diagnosis problems that are posed as a Bayesian

state estimation or �ltering problems, and involve determining the value of P (Xt|Y1:t), where the

fault is included as one or more unknown state variables. For example, in [58], the authors present

a DBN-based diagnosis scheme, where every parameter that can be faulty is included as an unob-

servable continuous random variables in the system DBN model. The DBN model also includes

discrete random variables that capture whether or not a parameter is faulty. Given this hybrid

DBN model, the diagnosis scheme involves solving the state estimation problem, i.e., tracking the

observed measurements to estimate the values of the system parameters correctly.

The �rst order Markov assumption allows a iterative solution of the state estimation problem,

using a two-step predict and update procedure [12]. Suppose, the probability distribution at time

t − 1 is available, i.e., P (Xt|Y1:t−1) is known. Then we �rst �predict� the state variable values at

the next time-step, i.e.,

P (Xt|Y1:t−1) =
∫
P (Xt|Xt−1)P (Xt−1|Y1:t−1)dXt−1. (1)

Then, based on the measurement values observed at time t, we �update� or modify the prior density

obtained in the prediction stage using Bayes' theorem to obtain the posterior density as follows:

P (Xt|Y1:t) =
P (Yt|Xt)P (Xt|Y1:t−1)

P (Yt|Y1:t−1)
, (2)

35



where the normalizing constant is

P (Yt|Y1:t−1) =
∫
P (Yt|Xt)P (Xt|Y1:t−1)dXt. (3)

Equations 1 and 2 form the basis of many Bayesian diagnosis schemes. However barring a few

restrictive cases, these two equations cannot be solved exactly, in an analytical manner. Linear

time invariant (LTI) systems with only Gaussian random variables allow for an optimal solution to

equations 1 and 2. Kalman �lters assume that the posterior density at every time step is Gaussian,

i.e., N(µ, σ2), where µ is the mean and σ2 is the variance of this distribution. and hence provides

an optimal and exact solution for P (Xt|Y1:t), parametrized in terms of the mean and variance [12].

However, for nonlinear systems, and systems with arbitrary probability distributions, the Kalman

�ltering approach does not apply, and a closed form solution for propagating the distributions

across causal links is not possible. For such systems, particle �ltering [12], a sequential Monte

Carlo simulation-based scheme that approximates the optimal solution, form the state of the art.

Extended Kalman �ltering can be applied for nonlinear systems, but, with only Gaussian random

variables. In the following, we �rst present Kalman �ltering-based diagnosis schemes, followed by

particle �ltering-based diagnosis approaches.

Diagnosis Using Kalman and Extended Kalman Filters

If every random variable in a DBN is sampled from a Gaussian normal distribution, and the system

is linear, Kalman �ltering allows for closed form exact solution to the state estimation equations

(see equations 1 and 2). A detailed tutorial on Kalman �lters can be found in [12].

Kalman �lter assumes that P (Xt−1|Y1:t−1) is Guassian, and the system is de�ned as

Xt = AtXt−1 +BtUt−1 +Qt−1

Yt = CtXt +Rt, (4)

where At, Bt and Ct are known matrices de�ning linear functions, and Qt−1 and Rt represent the

process noise and sensor noise covariance matrices, respectively. All these matrices can be time

varying.
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Then, equations 1 and 2 can be viewed as:

P (Xt−1|Y1:t−1) = N(mt−1|t−1, Pt−1|t−1) (5)

P (Xt|Y1:t−1) = N(mt|t−1, Pt|t−1) (6)

P (Xt|Y1:t) = N(mt|t, Pt|t), (7)

where,

mt|t−1 = Atmt−1|t−1 +BtUt−1 (8)

Pt|t−1 = Qt−1 +AtPt−1|t−1A
T
t (9)

mt|t = mt|t−1 +Kt(Yt − Ctmt|t−1) (10)

Pt|t = Pt|t−1 −KtCtPt|t−1, (11)

and where, the covariance of the innovation term, Yt−Ctmt|t−1, is de�ned as St = CtPt|t−1C
T
t +Rt,

and the Kalman gain, Kt = Pt|t−1C
T
t S
−1
t . In the above equations, MT denotes the transpose of a

matrix, M .

If the system is nonlinear, but still Gaussian, extended Kalman �ltering (EKF) can be applied to

generate approximate solutions to the state estimation problem [69]. The details of EKF implemen-

tation can be found in [12]. The basic idea in EKFs is that since, the system cannot be represented

using the linear matrices shown in equations 4, the EKF linearizes the nonlinear functions using the

�rst term in the Taylor series expansion of the nonlinear functions representing the state transition

and observation models, and then applies standard Kalman �lter predict and update steps on this

linearized system.

Parametric faults can be diagnosed using Kalman �lter-based parameter-estimation techniques.

In this method, the fault parameter is introduced as an extra �state-variable� in the above Kalman

�lter formulation, and the fault parameter in the other equations is replaced by this new �state-

variable�. This extension introduces nonlinearity, and transforms the above formulation into an

extended Kalman �lter. If there are k > 1 possible faults of interest, we design k + 1 separate

Kalman �lters, one for the normal operation, and each of the remaining k �lters for modeling one

of the k possible faults. A fault is detected when the observed measurements deviate from the

estimated values of the system output indicating o�-nominal behavior. Recall that a residual is the

di�erence in the measured values of the system outputs and their estimated values obtained from the
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Kalman �lter. The fault isolation task, then, involves the estimation of the outputs of the system

by each �lter, and whichever �lter generates the minimum residual is considered to represent the

true state of the system. In this scheme, the magnitude of the true fault can also be estimated. This

approach is also referred to multiple-model diagnosis scheme.

Sometimes, a bank of �lters is used for diagnosis, where each Kalman �lter exclusively represents

either the faulty or nominal system behavior. Di�erent A, B, C, and D matrices are used to model

the di�erent sensor or actuator faults. A sensor fault can be characterized as �hard� (i.e., the sensor

reading is assumed to be stuck at a certain value and the measurements available from it are ignored),

or �soft� (i.e., the sensor is degraded in quality, but not completely useless). Given n state variables,

a hard failure in the second sensor can be modeled by an C matrix with a null second row, i.e.,

C =



c11 c12 . . . c1n

0 0 . . . 0

. . . . . . . . . . . .

cn1 cn2 . . . cnn


,

where cij represents an element of C. Soft failures, on the other hand, are modeled by scaling the

sensor noise covariance matrix R to represent the power increment of the measurement noise [70].

While modeling soft failures, the C matrix remains unchanged from the one used in the nominal

system model. Likewise, given p actuator inputs, and n state-variables, a hard failure of the second

actuator can be modeled by a B matrix with a null second row, i.e.,

B =



b11 0 . . . b1p

g21 0 . . . b2p

. . . . . . . . . . . .

bn1 0 . . . bnp


.

Again, bij represents an element of B. Once the di�erent fault are modeled by di�erent C and B

matrices, residuals can be generated for each Kalman �lter, with the model which generates the

minimum residual being identi�ed as the true faulty model. However, real data is always noisy and

the naive approach might not be of much help as as it does not contain any information about the

validity of the residual information. One way to avoid this problem is to invoke statistical tests, such

as the standard hypothesis testing procedures, to isolate the true fault [70] . Another improvement
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over the above approach is the use of a back propagation neural network which gets to process these

residuals and identify the true fault [71].

In [71], the state-variables X represent a vector of fault deltas. The A matrix is an identity

matrix, indicating the persistence of faults. The measurement estimates are given by the equations

Y = CX + θ, where C is the matrix of fault in�uence coe�cients, and the random vector θ denotes

the uncertainties inherent in the measurement process. The C matrix can be computed as shown

in [72]. In this approach, for each fault, the corresponding Kalman �lter is invoked with a di�erent

set of parameters chosen to accentuate that particular fault's root cause. In this way, a measurement

estimate is obtained for each fault under consideration. Once all the estimates are obtained, they

are ranked based on a normalized measurement error norm for each measurement estimate. The

single fault admitting the minimum error is deemed the most likely root cause.

Another technique for diagnosing faults, especially additive sensor/actuator faults include the

isolation of faults using a bank of estimators [73]. In this scheme, under the hypothesis that the

input sensors are fault-free, a classical Kalman estimator is designed for each output sensor fault,

which is driven by only that output sensor and all inputs of the system. Hence if there are m output

sensor faults to be diagnosed, m di�erent Kalman estimators are set up. If there is a fault on the ith

output sensor, then only that Kalman estimator driven by this sensor reading will generate incorrect

estimates, thus a�ecting the residual function of that particular output observer. For example,

if there are n state-variables in the system and p inputs, the Kalman estimator for the residual

corresponding to failure of the second sensor (of m sensors in total) will have

A =



a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

an1 an2 . . . ann


, B =



b11 b12 . . . b1p

b21 b22 . . . b2p

. . . . . . . . . . . .

bn1 bn2 . . . bnp


, and C =



0 0 . . . 0

c21 c22 . . . c2n

. . . . . . . . . . . .

0 0 . . . 0


.

In order to isolate input sensor (or actuator) faults, however, the design of the bank of Kalman

�lters is slightly di�erent. Under the assumption that the output sensors are fault-free, a bank of

unknown input Kalman �lters is used, where in the ith observer is driven by all but the ith input

sensor and all outputs of the system. Each of these observers generates a residual function which is

sensitive to all but the ith input sensor fault. An input sensor fault is easily isolated since a fault in

the ith sensor will a�ect all but the ith residual function. For example, if there are n state-variables

in the system and m output sensors, the Kalman estimator for the residual corresponding to failure
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of the second actuator (of p actuators in total) will have

A =



a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .

an1 an2 . . . ann


, B =



b11 0 . . . b1p

b21 0 . . . b2p

. . . . . . . . . . . .

bn1 0 . . . bnp


, and C =



c11 c12 . . . c1n

c21 c22 . . . cnn

. . . . . . . . . . . .

cm1 cm2 . . . cmn


.

Diagnosis Using Particle Filters

Particle �ltering is the most general, sequential Monte Carlo scheme for state estimation in systems

that are either nonlinear, or non-Gaussian, or both. A particle �lter assumes that the state and

measurement vectors, X and Y, respectively, can be modeled as:

Xt = f(Xt−1,Ut−1,vt−1)

Yt = h(Xt,nt),

where f(·) and h(·) are nonlinear functions of the state and input vectors, vt−1 denotes an i.i.d.

process noise sequence vector, and nt is an i.i.d. measurement noise sequence vector.

The details of particle �ltering schemes can be found in [12]. The main idea in particle �ltering

is to represent the posterior density approximates the belief state of a system using a weighted

set of N samples, or particles, {Xi
t, w

i
t}Ni=1, where Xi

t is a set of support points with weights wit,

i = 1, 2, . . . , N , and t represents the simulation time step. The weights are normalized such that∑
i w

i
t = 1. The particle �ltering approach computes the estimates of the state variables based

on these support points and weights. Given the weighted particles, under the �rst order Markov

assumption, the posterior density at time t can be approximated as

P (Xt|Y1:t) ≈
N∑
i=1

witδ(Xt −Xi
t), (12)

where δ(·) is the Dirac delta function.

The principle of importance sampling [12] is used to choose the weights of the particles. Let

p(x) denotes a probability density such that direct sampling from p(x) is intractable. In such a

scenario, samples can be drawn from an importance density function, q(x), instead, i.e., xi ∼ q(x),

i = 1, . . . , N , and the weighted approximation of density p(x) can be obtained by

p(x) ≈
N∑
i=1

wiδ(x− xi),
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where

wi ∝ p(xi)
q(xi)

is the normalized weight of the ith particle.

Assuming that we start at time t with P (Xt−1|Y1:t−1) known, if we choose an importance density

function that factorizes as follows:

Q(Xt−1|Y1:t) = Q(Xt|Xt−1,Y1:t)Q(Xt−1|Y1:t−1),

then, we can obtain samples Xi
t ∼ Q(Xt|Y1:t) by augmenting each of the existing samples Xi

t−1 ∼

Q(Xt−1|Y1:t−1) with the new state Xi
t ∼ Q(Xt|Xt−1,Y1:t). The weight of the particles at time t is

de�ned as:

wit ∝ wit−1

P (Yt|Xi
t)P (Xi

t|Xi
t−1)

Q(Xi
t|Xi

t−1,Yt)
.

As time progresses, each particle is moved stochastically to a new state, and the observations

are used to re-adjust the weights on each particle to re�ect the likelihood of the observation given

the particle's new state. Highly weighted particles indicate likely states of the system. However, an

issue of particle �lters is the degeneracy problem [12], where, after a few iterations, all but a very

few particles are assigned negligible weights. As a result, a large amount of computation is used

in updating particles with negligible weights. Choosing a good importance sampling function, and

resampling are possible solutions to the degeneracy problem.

Resampling eliminates particles with small weights and replicates particles with large weights,

by generating new set of particles {Xi∗
t }Ni=1 by �resampling� with replacement N particles from the

approximate discrete representation of P (Xt|Y1:t−1) (shown in equation 12) with probability of

choosing a particle being equal to the weight of the particle, i.e., Pr(Xi∗
t = Xj

t ) = wjt [12].

Di�erent particle �ltering-based diagnosis algorithms are presented in [4, 13, 74�77]. In [77], an

approach for applying PF to DBNs is presented. In PF-based diagnosis frameworks, faults can be

modeled as explicit states. The fault diagnosis problem can then be formulated as the recursive state

estimation of a system based on the sequence of measurements. A particle �lter based diagnosis

algorithm is presented in [13], where the authors use particle �ltering for real-time fault detection in

planetary rovers. In [76], the authors present another PF-based algorithm for hybrid state estimation.
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Discussion

Probabilistic diagnosis schemes handle measurement and process noise by explicitly modeling and

reasoning with them. For dynamic systems, both Kalman and particle �lters have explicit variables

representing process and measurement noise variance. However, while Kalman �lters apply to linear

Gaussian systems, particle �lters can be applied to nonlinear non-Gaussian systems as well, and

hence, most general. Moreover, in these schemes, we consider each system variable to be a random

variable, assume a distribution about each parameter and system variable, and use Bayesian reason-

ing approaches to infer correct and accurate diagnosis results in terms of probability distributions,

in the presence of uncertainties.

As mentioned above, diagnosis using BNs involves belief updating in uncertain causal networks

as more observations become available. BNs are based on a well founded mathematical model, and

the reasoning is consistent. The main disadvantage of a BN is that it does not directly accommodate

relations between variables that evolve over time. As a result, dynamic systems cannot be modeled

easily using BNs. DBNs explicitly model temporal evolution of system state in a Bayesian framework

and allow for Bayesian reasoning with dynamic systems.

In Kalman �lter-based diagnosis schemes, themultiple-model approaches require the pre-numeration

of faults of interest, which can be di�cult. In addition, those approaches, which do not use parame-

ter estimation, are not suitable for diagnosing di�erent magnitudes of the same fault. On the other

hand, the parameter estimation based implementation can handle the isolation and identi�cation of

faults of di�erent magnitudes. Some multiple-model approaches also allow isolation of more than

one simultaneous sensor failures, and they permit handling sensors with di�erent data rates using a

sequential update scheme [78].

The bank of estimators methods of Kalman �lters allow for diagnosis of multiple faults, albeit

only for faults in the output sensors, wherein the presence of multiple faults will be indicated with

multiple residual functions tending to zero. However, for input sensor faults, these approaches cannot

perform multiple fault diagnosis because in the presence of multiple faults, no residual function will

approach zero. Also, the success of the bank of estimators scheme for output sensors depends on the

observability property of the system. A system is termed observable if the unobserved state variables

in the system can be accurately estimated based on the measurements that can be observed (see

Chapter V for details). The bank of estimators approach will fail unless the measurements are chosen

such that the system is observable using each single measurement. On the other hand, the design

of the bank of estimators for input sensor diagnosis is more robust. Yet, in both these schemes,
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it is required to ensure that the removal of the dependencies on particular sensor readings do not

compromise the observability of the system.

As shown above, once the residuals are generated, the e�cient and correct analysis of these

residuals is important. If the sensor to noise ratio is large, then one can simply identify the minimum

residual and isolate the sensor which corresponds to this residual function as the true fault. However,

this method can give incorrect results when the sensor measurements are noisy, or when the �lter

with the least residual is not the correct fault, as is shown in [79]. In that case, hypothesis testing,

or other classi�cation algorithms, such as arti�cial neural networks, can be invoked to intelligently

isolate the true fault. However, the problem with these classi�cation methods is that they are not

scalable.

Finally, it is interesting to see how faults are represented in these approaches. While mostly the

equations of a Kalman �lter model the dynamics of the physical process, some approaches model

abstract states with the Kalman �lter equations [71]. In such cases, the bulk of computation is in

�nding the in�uence factor matrix that relates the measurements to these abstract states.

Several reasons contribute to the popularity of particle �lters for fault diagnosis using DBNs.

We have already mentioned that particle �lters can be applied to nonlinear models with arbitrary

prior belief distributions. Moreover, particle �lters are contract anytime algorithms, i.e., if available

computation time is speci�ed in advance, the PF algorithm can estimate a belief distribution in the

available time, by changing the number of particles [13]. In fact, an important property of particle

�lters is that the computational requirement of a particle �lter depends only on the number of

samples, and not on the complexity of the model.

However, while PF has proven very successful in tasks such as visual tracking [80] and robot

navigation [81], they are less suited for diagnosis tasks. This is because, for diagnosis, we are most

interested in tracking fault states, which initially have very low probability of occurring. As a result,

during the resampling step, there is always the risk of losing these particles with low weights that

might represent the fault state, when the fault occurs. This results in sample impoverishment [4,13]

and the system may never diagnose the system to be faulty since there will be negligible particles,

if at all, representing these fault states. In [13], importance sampling has been suggested in as

possible solution to the above issue. Two other solutions to the sample impoverishment problem are

presented in [4]. These solutions include risk-sensitive particle �lters (RSPF) and variable-resolution

particle �lter (VRPF). In RSPF, a model of cost is factored in when generating particles. Since fault

states have high cost, the RSPF ensures that particles are generated to represent them, even if they

have low probability. In VRPF, multiple similar states are tracked by a single abstract particle,
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allowing a limited number of particles to su�ciently represent large portions of the state space when

the likelihood of occupying that part of the state-space is low. When the likelihood of the grouped

state increases, the abstract particles are re�ned to represent individual states.

Summary

In this chapter, we presented four types of model-based diagnosis schemes, namely, DES-based ap-

proaches, qualitative schemes, ARR-based approaches, and probabilistic schemes. Each of these

approaches handle uncertainties in di�erent ways. DES and qualitative diagnosis schemes handle

robustness to uncertainties by abstracting away details from continuous systems, and representing

the system dynamics in terms of discrete states and events; and a set of qualitative di�erential

equations, respectively. Once abstracted, the respective diagnosis schemes can be applied to these

abstracted models without additional mechanisms for handling uncertainty. Note, however, that de-

cisions about whether the system is in a particular state, or, where a particular event has occurred,

or, which qualitative state the system is in, must still be taken in the presence of uncertainties in sys-

tem dynamics at the lowest level of abstraction. As a result, the task of handling such uncertainties

is delegated to these decision tasks, so that once it is determined, taking into account uncertainties,

that a system is in a particular state and a certain event has occurred, the diagnosis approaches

can generate correct diagnosis results in the presence of uncertainties without explicitly having to

handle such uncertainties.

Depending on the residual generation scheme, ARRs apply di�erent approaches to handle un-

certainties. If the residuals are generated using UIO observers, ARRs handle uncertainties in a

deterministic setting by using matrix manipulation to make the generated estimates to be insen-

sitive to unknown disturbances. A similar matrix manipulation is used in parity relations-based

residual generation schemes. If however, ARRs use stochastic observers for generating residuals,

these observers usually handle uncertainties due to sensor and process noise using probabilistic

schemes.

Probabilistic diagnosis schemes handle measurement and process noise by explicitly modeling

and reasoning with them. For dynamic systems, both Kalman and particle �lters have explicit vari-

ables representing process and measurement noise variance. However, while Kalman �lters apply

to linear Gaussian systems, particle �lters can be applied to nonlinear non-Gaussian systems, and

hence, most general. Moreover, in these schemes, we consider each system variable to be a random

variable, assume a distribution about each parameter and system variable, and use Bayesian reason-
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ing approaches to infer correct and accurate diagnosis results in terms of probability distributions,

in the presence of uncertainties.

Modeling for diagnosis is a crucial aspect to all model-based diagnosis approaches. ARR-based

approaches use standard state-space or input-output formulations of the system which quantitatively

represent the continuous dynamic system behavior. These models are complete, and reasoning using

such models involve intense quantitative analysis. Qualitative diagnosis models, on the other hand,

are abstractions of the underlying analytic models and do not have to deal with intense quantitative

analysis at runtime. However, inherent nondeterminism present in qualitative models generally

results in maintaining a large number of possible qualitative evolution traces, or interpretations [48],

which can be computationally very expensive. DES models for representing large continuous system

can su�er from state-explosion. It is interesting to note that as we abstract away from the underlying

mathematical models of the system, the diagnosis approaches become computationally less complex,

but su�er from ambiguities. However, there is a cost involved in this abstraction, and these tasks,

such as quantization of the continuous state-space or events is not trivial. In other words, to get

information in the required qualitative form, a lot of analysis needs to be performed on the sensed

quantitative measurements, and hence the complexity of the approach is transfered from online

analysis to o�ine design phase.

Furthermore, while qualitative and DES diagnosis approaches mainly perform detection and

isolation tasks, ARR and DBN-based approaches perform online estimation, detection, isolation and

identi�cation of faults. Table 1 summarizes these features of the di�erent approaches.

DBNs are the most general framework for modeling dynamic systems to facilitate under uncer-

tainty. Particle �ltering approaches using DBNs permit inference using arbitrary distributions, and

since their complexity is determined by the number of particles used, rather than the size of the

system, these particle �ltering approaches are the state of the art in online diagnosis using DBNs

of large real-world systems. However, it must be noted that the standard particle �ltering scheme

with resampling are not well suited for diagnosis, and causes sample impoverishment issues. Kalman

�lters are a special case of particle �lters, and provide exact, optimal solution to the posterior density

function. However, Kalman �lters are restricted to linear Gaussian systems.

As mentioned earlier, the diagnosis approaches mentioned in this chapter account for uncertain-

ties through di�erent approaches. Our approach makes use of probabilistic modeling and Bayesian

inference techniques to handle uncertainties due to modeling imperfections and sensor noise. More-

over, our qualitative fault isolation scheme, which we present in Chapter III is a form of ARR

approach, but instead of simply determining if a residual is a�ected by a fault to isolate the true
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Table 1: Summary of Related Work

Approaches
Diagnostic Task

Estimation Detection Isolation Identi�cation
Discrete-Event X X
Qualitative X X

ARR X X X X
DBN X X X X

fault, our qualitative isolation scheme makes use of how a fault a�ects the dynamics of the measure-

ment residuals for fault isolation.
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CHAPTER III

THE TRANSCEND DIAGNOSIS APPROACH

Transcend is a model-based approach for centralized diagnosis of abrupt faults in continuous

systems1 [7, 8]. This chapter provides a brief overview of the Transcend continuous diagnosis

scheme, and extends the existing scheme to analyze abrupt and incipient faults in a common frame-

work [84,85].

The observer-based Transcend diagnosis approach combines a quantitative fault detection

scheme with a novel qualitative fault isolation approach to isolate sensor and process faults in

continuous dynamic systems. Transcend also includes a quantitative fault identi�cation scheme

that estimates the extent of fault in the system, and in the process, helps re�ne the diagnosis re-

sults when there are ambiguities in the qualitative fault isolation scheme. Fig. 11 illustrates the

computational architecture of the Transcend fault diagnosis approach. The observer, formulated

as an extended Kalman �lter [69], takes as input the control signals and sensor measurements to

track nominal system behavior. The di�erences between the observed and estimated values of mea-

surements form residuals. Ideally, non-zero residuals should indicate the presence of faults, but the

presence of uncertainties, such as sensor noise, makes the fault detection task more complicated. For

fault detection, Transcend employs a standard statistical hypothesis-testing scheme to determine

if the non-zero residuals are statistically signi�cant. The detection of a fault triggers the qualitative

fault isolation process, which performs the tasks of symbol generation and hypothesis generation and

re�nement. The symbol generation module converts the magnitude and slope of the residual into

qualitative symbols that are expressed as increases and decreases from nominal. The symbols are

used to generate one or more single fault hypotheses, i.e., possible faults that could explain the

generated symbols. Fault signatures capture the e�ect each generated fault hypothesis has on the

individual measurements at the time of fault occurrence. Hypothesis re�nement then is performed

using a progressive monitoring scheme that compares the fault signatures to the symbols generated

by the symbol generator for each measurement, removing any fault hypothesis whose fault signature

for a particular measurement is inconsistent with the observed symbols. When the fault hypotheses

are reduced to a small number, a quantitative fault identi�cation step is invoked for each hypothesis,

which computes the fault magnitude and the corresponding mean square error between predicted

1Extensions of Transcend for the diagnosis of hybrid systems have been presented in [82,83], but a discussion of
these hybrid diagnosis algorithms is beyond the scope of this dissertation.
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Figure 11: Computational architecture of the Transcend fault diagnosis approach.

and observed behaviors. The fault parameter that produces the least mean square error in the

measurements is listed as the true single fault in the system.

In the next section, we present the modeling required for diagnosis using Transcend. Bond

graphs [18] form the core of our modeling framework. Both the state-space equations required by

the observers, as well as the temporal causal graphs (TCGs) for qualitative fault isolation [7], are

automatically derived from these bond graphs. Bond graphs are domain-independent, energy-based,

topological models that capture energy exchange pathways in physical processes [18]. They allow for

physical systems modeling from �rst principles, and encode causal and temporal information that

are helpful in fault isolation [18]. TCGs are used to implicate possible causes for observed deviations

(from nominal) in measurements at the point of fault detection, and also to predict the e�ects of

di�erent faults on the measurements. These predictions are used in our hypothesis re�nement scheme

for fault isolation. We present in detail the di�erent steps of the Transcend diagnosis scheme.

Then, we present our extensions to Transcend for the diagnosis of incipient faults. Speci�cally, we

present how we have extended the hypothesis generation and fault signature generation schemes to

allow generation of incipient fault hypotheses and derivation of fault signatures for these incipient

fault hypotheses. The incipient fault signatures can be used seamlessly with Transcend's existing

qualitative fault isolation scheme for the qualitative diagnosis of incipient and abrupt faults in a

uni�ed framework. Finally we present an analysis of the diagnosability properties of the Transcend

qualitative diagnosis scheme.

Modeling for Diagnosis

Bond Graphs

Bong graphs form the core of the modeling scheme used in Transcend. Bond graphs allow for mod-

ular, multi-domain, physics-based, parameterized, component-based modeling of physical processes

that accommodate nonlinear behaviors [18]. We have also developed extensions to the component-

oriented modeling scheme in the Fault Adaptive Control Technology (FACT) paradigm [86] that
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allow for explicit parametrized representation of sensors and actuators in the system. Extensions of

bond graphs to hybrid modeling [87] are beyond the scope of this thesis work.

A bond graph (BG) is a directed graph, whose edges are termed bonds, and whose vertices are

termed bond graph elements. Bonds represent energy pathways between the BG elements, and are

drawn as half arrows (⇀). Each bond, speci�ed by a bond number i, i.e.,
i
⇀, has an associated

�across� e�ort variable, ei, and a �through� �ow variable, fi, such that ei · fi de�nes the power,

i.e., the rate of energy �ow through the bond. The BG modeling language allows for multi-domain

modeling in a common framework. Hence, the e�ort and �ow variables map to di�erent physical

variables in the di�erent physical domains. For example, e�ort and �ow variables map to voltage

di�erence and current, respectively, in the electrical domain; force and velocity, respectively, in

the mechanical domain; pressure di�erence and volumetric (or mass) �ow rate, respectively, in the

hydraulic domain; and temperature di�erence and rate of �ow of heat, respectively, in the thermal

domain2.

Bonds connect to the di�erent BG elements through ports. Hence, BG elements can be classi�ed

as one-port, two-port, and multi-port elements. The one-port elements include energy dissipative

resistor elements (denoted by R:R, such that ei = Rfi if
i
⇀R:R), energy storage elements, such

as capacitors (denoted by C:C, such that ėi = 1
C fi if

i
⇀C:C) and inductors (denoted by I:I, such

that ḟi = 1
I ei if

i
⇀I:I), and energy source elements, such as sources of e�ort (denoted by Se:u, such

that ei = u if
i
↼Se:u), and sources of �ow (denoted by Sf:u, such that fi = u if

i
↼Sf:u). Two-port

elements perform transformation of energy and include transformers (denoted by TF:n, such that

ei = nej and fj = nfi if
i
⇀TF:n

j
⇀) that transform energy in the same domain, and gyrators

(denoted by GY:r, such that ei = rfj and ej = rfi if
i
⇀GY:r

j
⇀) that transform energy in di�erent

domains. If the component parameters take on constant values, the bond graph models a linear

time invariant system [18]. For nonlinear systems, parameter values can also be functions of time,

other variables in the system, or external control variables. In our work, we assume that our systems

can be nonlinear, time-varying systems. Nonlinearities are typically modeled by modulated elements

that we de�ne below.

Two idealized multi-port junction elements, the 0-junction and the 1-junction, connect the one-

and two-port bond graph elements and satisfy the principles of conservation of energy and continuity

of power by allowing for lossless energy transfer between two or more BG elements, such that at a

0-junction (respectively, 1-junction), the e�orts (respectively, �ows) of all incident bonds are equal,

2These variables de�ne the pseudo bond graph paradigm in the thermal domain. The true bond graph paradigm
de�nes entropy as the e�ort variable.
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(a) Schematic. (b) Bond graph.

Figure 12: The example nonlinear two-tank system.

and the sum of �ows (respectively, e�orts) is zero. The direction of the bonds determine the signs

of the e�orts (respectively, �ows) in the summation at a 1-junction (respectively, 0-junctions). The

state space equations of a system can be derived from the system bond graph.

Other than bonds and BG elements, signal links drawn as full arrows (i.e., →) can also be

present in a BG. Each signal link allows for the exchange of information, and transfers the value of

an e�ort or �ow variable between di�erent parts of the BGs. Modulated elements, i.e., BG elements

whose parameters are algebraic functions of other system variables, or external signals, can be used

to model nonlinearities in a BG as described above, and also capture time-varying input to the

physical system. Signal links pointing from the internal and external variables to a modulated

component represents the modulation graphically. Modulated elements have the pre�x `M' added

to their names, e.g., MR:R denotes a modulated resistor. Signal links also carry the value of e�ort

or �ow variables to the sensors or energy detector elements, such as e�ort detectors (denoted by

De:u, such that u = ei if
i
⇀ 0→De:u) and �ow detectors (denoted by Df:u, such that u = fi if

i
⇀ 1→Df:u) [88].

Example. Fig. 12(b) shows the BG of a nonlinear two-tank �uid system connected by a pipe, with

a source of �uid �ow into the �rst tank, and drain pipes at the bottom of each tank (see Fig. 12(a)).

In the bond graph modeling paradigm, tanks are modeled as capacitors, and pipes are modeled as

resistors [18]. Pipes R1 and R2 drain tanks C1 and C2, respectively, and pipe R12 connects tanks

C1 and C2. In the hydraulic domain, the e�ort variables denote pressure, and �ow variables denote

volumetric �uid �ow rates. The pressure at the juncture where pipe Ri, i ∈ {1, 2} connects to tank

Ci, is the same as that at the bottom of tank Ci. Hence, Ci and Ri are connected by the equal-e�ort

0-junction. The rate of �ow of �uid in pipe R12 depends on the pressure di�erence between the
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Figure 13: Possible causal assignments and corresponding constituent equations of bond graph
elements.

two tanks, and hence, it is connected to the two tanks through an intermediate 1-junction. The

�ows through the three pipes, R1, R12, and R3 are measured using �ow detectors or sensors, Df:F1,

Df:F12, and Df:F2, respectively. The nonlinearity is introduced by the nonlinear modulated resistor,

MR:R2, which we de�ne as a function of the pressure at the bottom of tank C2, i.e., R2 = 3e2
7.

The signal link drawn from the 0-junction connected to C2 to this modulated resistor denotes this

dependence of R2 on e7, the common e�ort at that 0-junction.

Causality

BGs allow for the systematic generation of equations to describe the dynamics of a continuous

system. Basically, the constituent equations in each BG element forms part of a system of di�erential

algebraic equations. More e�cient computational forms, such as state-space equations and block

diagrams can be derived from BGs through using the notion of causality. Causality represents the

cause-e�ect dependencies between e�ort and �ow variables at every BG element. In other words,

causality assigns the computational directions to the e�ort and �ow variables. Causality is denoted

by a causal stroke on one end of a bond, with the BG element near the causal stroke imposing �ow

on the BG element away from the causal stroke.

Example. In Fig. 12(b), the causal stroke near R12 on bond 5 implies that the resistor R12 imposes

�ow on the adjacent 1-junction. Similarly, the causal stroke away from capacitor C2 on bond 7

implies that C2 imposes e�ort on the adjacent 0-junction.

Energy storage elements can be assigned both integral and derivative causality. For example,

the constituent equation for a capacitor in integral causality is ei = 1
C

∫
fidt, i.e., the e�ort, ei,

is computed by integrating the �ow, fi, and the equation for a capacitor in derivative causality is

fi = C dei

dt , i.e., the �ow, fi, is computed from the derivative of ei. Hence, while in integral causality,
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the e�ort is computed from the �ow, in derivative causality, the �ow is computed based on the e�ort.

Derivative causality is usually not preferred because of several issues, such as, the derivative of a step

input is in�nity, and the requirement of future data points (this makes the model non causal) for

correct computation of �ow. Hence, we assume that our systems are designed to operate in integral

causality. Derivative causality for energy storage elements imply degenerate models [18].

Assumption 1 (Integral Causality). We assume all energy storage elements to be in the (preferred)

integral causality.

Not all computational directions, or causality, can be assigned to every BG element. Each BG

element imposes a set of causal constraints, as shown in Fig. 13, which also shows the constituent

equations for each element, based on the causality. A source of e�ort (respectively, �ow) always

imposes e�ort (respectively, �ow), and hence has the causal stroke away from (respectively, towards)

it. Hence sources of energy have �xed causality. Similarly, energy sensors or detectors also have

�xed causality, since for an e�ort (respectively, a �ow) detector, its adjacent junction always impose

e�ort (respectively, �ow) on it. Resistors relate the e�ort and �ow variables algebraically, and hence

can have two possible causal assignments. Under the integral causality assumption, a capacitor

(respectively, inductor) always imposes e�ort (respectively, �ow) and have its causal stroke away

from (respectively, towards) it. Transformers and gyrators also relate the e�ort and �ow variables

algebraically, and can have one of two possible causal assignments.

The causality of bonds incident on a junction is also constrained by the algebraic relations

between the e�ort and �ow variables associated with the incident bonds. For example. at a 0-

junction, the e�orts of all incident bonds are equal. The bond that determines the value of the

e�orts, and therefore, has its causal stroke towards the 0-junction, is termed the determining bond

of this 0-junction. The value of the �ow of the determining bond of a 0-junction is an algebraic sum

of the �ows of all other incident bonds. Therefore, the causal strokes for all of the other bonds is

directed away from the 0-junction. A complementary procedure can be described for 1-junctions,

based on one bond determining the �ow at that junction. Note that a junction can have only one

determining bond. The Sequential Causal Assignment Procedure (SCAP) [18] systematically assigns

the causality in a BG based on the causal constraints.

The SCAP algorithm starts at elements having a �xed, unique causal assignment, i.e., the energy

source elements (Se and Sf) and energy storage elements (C and I), and assigns causality. Then

the constraints of this causal assignment propagate to adjacent junctions, since the possible options

for determining bonds become constrained. If the determining bond for a junction can be assigned
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uniquely, the junction is assigned that determining bond, and the constraints imposed by this assign-

ment are propagated along the BG to further restrict the possible options for determining bonds at

other junctions. After the causal changes have been propagated from all energy source and storage

elements, if some junctions are yet to be assigned a determining bond, SCAP arbitrarily chooses an

R element connected to one such junction, and assigns causality such that the bond connecting to

the R element becomes the adjacent junction's determining bond. The constraints imposed by this

assignment are then propagated along the BG, and the process continues until every junction has

been assigned a determining bond.

Example. Let us consider how SCAP can be used to assign causality to the bond graph shown

in Fig. 12(b). We start with the �ow source, F1, which always imposes �ow on the adjacent 0-

junction under integral causality. Capacitor C1 imposes e�ort on this 0-junction through bond 2,

which becomes the determining bond of the 0-junction. Hence, bonds 3 and 4 must impose �ow on

this 0-junction. Similarly, capacitor C2 imposes e�ort on its adjacent 0-junction through bond 7.

Thus, bond 7 is this 0-junction's determining bond. As a result, bonds 6 and 8 impose �ow on this

0-junction. Next, at the 1-junction, bonds 4 and 6 both impose e�ort. Hence, the remaining bond 5

must impose �ow on this 1-junction, and become its determining bond. The resistor R12 conforms

to this causal assignment.

Causality has several important advantages. It not only allows us to generate computational

forms of BG dynamics, such as state-space equations, signal �ow graphs, or block diagrams in an

e�cient manner [18,89], but also helps in determining other important information about the system

from its BG, such as the physical validity of the BG model, and whether the system is observable,

i.e., the values of the state variables can be estimated given the measurements. A model that cannot

be assigned unique causality to all its bonds according to the causal constraints laid out in Fig. 13

usually indicates a system with algebraic loops. Algebraic loops make the computation of system

dynamics harder, and it may result in non-unique diagnoses [90].

Deriving State Space Equations from Bond Graphs

State space equations for the nominal system can be systematically derived from the bond graphs.

The number of state variables in a system is equal to the number of C and I elements in integral

causality present in the system [18]. For every C element in integral causality, the corresponding

state variable is the displacement variable, q, such that q̇ = f . Similarly, for every I element in

integral causality, the corresponding state variable is the momentum variable, p, such that ṗ = e.
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The displacement and momentum variables of C and I elements in integral causality, respectively,

make up the set of all state variables for the system. The state space equations are derived from the

constituent equations of each bond graph element, and the constraints imposed by the junctions in

the bond graph model. The causal structure of the bond graph model facilitates e�cient derivation

of the state space equations. Details of this derivation process is presented in [18]. The state space

equations of the nominal system is used by the observer in Transcend for tracking and fault

detection.

Example. The state space equations of the nonlinear two-tank system shown in Fig. 12(b) are given

below. The state transition equations of the two-tank system are derived from its bond graph as

follows:

q̇2 = f2 = f1 − f3 − f4

= F1 −
1

C1R1
q2 −

1
R12

(
q2
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− q7
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)
,

q̇7 = f7 = f6 − f8

=
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)
− 1
C2(3q2

7/C
2
2 )
q7,

=
1
R12

(
q2

C1
− q7

C2

)
− C2

3q7
.

Similarly, the observation equations can be obtained from the bond graph as follows:

F1 = f9 =
q2

C1R1
,

F12 = f5 =
1
R12

(
q2

C1
− q7

C2

)
,

F2 = f10 =
C2

C2(3q2
7/C

2
2 )

=
C2

3q7
.

In our work, we use the �rst-order Euler method for deriving the di�erence equations from these

di�erential equations. In the Euler method, the derivative dx/dt is expressed as

dx

dt
= lim

∆t→0

x(t+ ∆t)− x(t)
∆t

,
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where ∆t represents the time di�erence between two consecutive time steps. Hence, for our two-tank

system, the state transition equations are:

q2(t+ ∆t)− q2(t)
∆t

= F1(t)− 1
C1R1

q2(t)− 1
R12

(
q2(t)
C1
− q7(t)

C2

)
,

q7(t+ ∆t)− q7(t)
∆t

=
1
R12

(
q2(t)
C1
− q7(t)

C2

)
− C2

3q7
(t), (13)

and the observation equations are,

F1(t) =
q2(t)
C1R1

F12(t) =
1
R12

(
q2(t)
C1
− q7(t)

C2

)
F2(t) =

C2

3q7(t)
. (14)

Modeling Abrupt Faults

De�nition 3 (Fault). A fault, φ, is an unexpected change in the plant or its instrumentation that

causes the system to deviate from its nominal behavior.

We de�ne a set of faults, F , such that F = {φ1, φ2, . . . , φl}. A set is denoted by uppercase

symbols, and its elements are denoted by lowercase symbols. The original version of Transcend

focused on the diagnosis of abrupt faults. The mathematical model for an abrupt fault is de�ned

below, and its pro�le is illustrated in Fig. 14. In general, Transcend can diagnose additive and

parametric abrupt faults in plants, actuators, and sensors. However, in this dissertation, we focus

on parametric plant faults only, which are hard to analyze because they directly a�ect the system

dynamics. Parametric plant forms are modeled as changes in system parameters. From now on,

the term �fault� will imply a �parametric plant fault�. Bond graphs support component-oriented

parametrized modeling of physical systems. Hence, every fault maps to a bond graph element, p,

and an abrupt fault is denoted by p±a, such that p+a denotes an abrupt increase in the parameter

p, while p−a denotes an abrupt decrease in parameter p.

De�nition 4. (Abrupt fault) An abrupt fault is characterized by a fast change (i.e., the rate of

change is much faster than the dynamics of the system) in the system parameter, p (with nominal

parameter value function, p(t)), and hence modeled as a constant persistent bias term, ∆a
p × p(t),

where ∆a
p is the percentage change in the parameter expressed as a fraction, added to the nominal
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Figure 14: Abrupt fault pro�le.

parameter value, p(t), i.e.,

p±a(t) =

 p(t) t < tf

p(t)±∆a
p × p(t) t ≥ tf ,

where tf is the time of fault occurrence, and p±a(t) is the temporal pro�le of parameter p with an

abrupt fault.

Example. Consider the two tank system shown in Fig. 12(b). In this two-tank system, the set of

possible abrupt faults is F = {C−a1 , C−a2 , R+a
1 , R+a

2 , R+a
12 }. This includes changes in tank capacities,

drain pipe resistances and connecting pipe resistances. A + (−) superscript implies that the fault

occurrence causes an abrupt increase (decrease) in the corresponding parameter value. For example,

C−a1 indicates an abrupt decrease in tank 1 capacity, for example, if a stone is dropped into tank 1,

thereby abruptly decreasing the capacity of the fault. Similarly, a block in the drain pipe of tank 1

is represented by an abrupt increase in the pipe resistance, R+a
1 .

Temporal Causal Graphs

The Transcend fault isolation scheme uses a model that explicitly incorporates the cause and e�ect

relationships between the abrupt faults mentioned above, and the measurements. This diagnosis

model is termed a temporal causal graph (TCG). TCGs contain the causal information that allows the

deviations of measurements from nominal to be mapped on to possible parameter deviations, and also

predict qualitatively the e�ect each of the parameter deviations would have on the measurements.

The TCG is essentially a signal �ow graph whose vertices correspond to the e�ort and �ow vari-

ables of the bond graph, and the edges denote causal dependencies between these system variables.

A TCG captures both the causal and temporal relations between its nodes. Each edge of a TCG has

a qualitative label, which denotes how the source node of the edge a�ects the destination node. The

possible edge labels include {=,+1,−1, 1
θdt, θ,

1
θ}, where θ denotes a system parameter, = denotes

equality, +1 denotes direct proportionality, −1 denotes inverse proportionality, and dt denotes a
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Figure 15: Generating temporal causal graphs from bond graphs.

time delay, i.e., integration. While the labels involving θ are de�ned by the constituent equations

of each BG element based on causality, the =, +1, and −1 labels are obtained from the causal

constraints and direction of bonds at the junctions, as described below.

Since the topological structure of the bond graph and the properties of its constituent elements

imply inherent causal relations between system variables, TCGs can be systematically derived from

the system bond graphs [7]. System components are directly mapped to bond graph element param-

eters, and this provides the mapping from observed behavior deviations to parameter value changes

in the system components [7, 8].

Deriving Temporal Causal Graphs from Bond Graphs

Given a bond graph, we �rst assign causality to it using SCAP. Then, for every bond i, we instan-

tiate vertices corresponding to the bonds's e�ort, ei and, �ow fi variables. Also, the bond graph

elements are converted into directed labeled edges, where the labels include system parameters,

direct proportionality, inverse proportionality, or equality relations. The direction of the edges are

determined based on the assigned causality. The edge labels are based on the assigned causality,

and the direction of the bonds.

For energy storage elements under the preferred integral causality assumption, e.g., a capacitor,

C, having the constituent equations ėi = 1
C

∫
fidt, the TCG shows fi

dt/C−→ ei, with dt denoting a

temporal relationship, or delay, between fi and ei. On the other hand, a resistor R could correspond

to either an ei
1/R−→ fi or fi

R−→ ei edge in a corresponding TCG. At a junction, depending on the
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Figure 16: Temporal causal graph of the two-tank system.

junction type, one type of variables is summed, and the other type of variables are set to be equal.

The determining bond of the junction sets the value. Say we have a 0-junction with three bonds i,

j, and k, with bond i directed toward the junction, and the other two bonds directed away. If bond

k is the determining bond for this 0-junction, we have the equations ei = ej = ek and fk = fi − fj .

Hence we have edges ek
=−→ ej , fj

−1−→ ek, and so on.

Additional sensitivity analysis is required to determine the labels on TCG edges involving mod-

ulated parameters. Consider the scenario where a parameter p relates the energy and �ow variables,

ep and fp, respectively, as ep = pfp. If the parameter p is modulated, and is a function of a set of

TCG variables (or nodes), N, i.e., if p = g(N), then the TCG has an edge from every N ∈ N to fp,

with sign
(
∂fp

∂N

)
as the edge label for this link. If

∂fp

∂N = 0, no TCG link is drawn from N to fp.

Example. Fig. 16 shows the TCG of the two-tank system, whose bond graph is shown in Fig. 12(b).

The nodes ei and fi in the TCG correspond to e�ort and �ow variables of bond i. For example, e1

and f1 correspond to bond 1. As explained above, under integral causality, C1 imposes e�ort on its

adjacent 0-junction, and hence the edge f2
dt/C1−→ e2 is drawn in the TCG. The label dt represents

integration. Similarly, the edge f7
dt/C2−→ e7 is drawn for capacitor C2. Resistor R1 relates e3 and

f3 according to the relation f3 = R1e3. Hence, we create edge e3
1/R1−→ f3 in the TCG. Similarly

we create edge e5
1/R12−→ f5 corresponding to resistor R12. To determine the label for e10 → f10

edge, related by nonlinear resistance R2 = 3e2
7 = 3e2

10, we compute
∂f10
∂e10

, where f10 = e10
R2

= e10
3e210

.

Hence, ∂f10
∂e10

= − 1
3e210

. As the partial derivative can never be positive, it can be determined that

f10 is inversely proportional to e10, and hence the e10 → f10 edge is assigned a `−1'label. At the

1-junction, bond 5 is the determining bond. Hence, we have f4 = f6 = f5 and, hence we have edges

f5
=−→ f4 and f5

=−→ f6. At the 1-junction, we also have e5 = e4 − e6. Hence the edges e4
+1−→ e5

and e6
−1−→ e5 have labels +1 and −1, respectively. In addition, we also have TCG edges relating
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e�ort and �ow variables to sources and sensors. These edge labels are usually `=', representing

equality. For example, the signal links connected to the �ow sensors correspond to the f9
=−→ F1,

f5
=−→ F12, and f10

=−→ F2 TCG edges. The input �ow source a�ects the energy variables through

the Fin
=−→ f1 TCG edge.

Tracking and Fault Detection

Tracking

In our diagnosis scheme, the �rst step to fault detection is the generation of measurement residuals.

Transcend adopts the usual de�nition of a residual, r(t), of measurement, y(t), and de�nes it as

r(t) = y(t) − ŷ(t), where ŷ(t) is the estimated value of y(t) given by the observer at time t. In

Transcend, an extended Kalman �lter [69] is used as an observer to estimate the state variables

for nonlinear systems, assuming that all of the state variables and measurements are stochastic and

are sampled from given Gaussian Normal distributions, and the covariance matrices for the state

and measurement equations are known.

Fault Detection

In an ideal scenario, a non-zero residual r(t) 6= 0 implies a fault is detected, while a zero resid-

ual implies nominal conditions. However, real-world scenarios have to accommodate uncertainties

due to measurement noise and modeling errors. Therefore, to avoid false alarms, but retain the

sensitivity of detection (i.e., to avoid missed alarms), we employ a statistical Z-test to establish if

measurement residuals are statistically signi�cant [91]. A statistically signi�cant non-zero residual

implies signi�cant deviation of system behavior from the expected nominal behavior that can be

attributed to the occurrence of faults in the system. The Z-test uses a sliding window scheme to

compute the residual mean and nominal signal variance. The choice of parameters for this scheme

and the con�dence level chosen for the Z-test determines the properties of the fault detection �lter.

These parameters also determine the tradeo� between false alarms and fast detection of faults.

The signal deviation at time step t is de�ned in terms of an average residual for the last N2

samples, i.e.,

µ̂N2(t) =
1
N2

t∑
i=t−N2+1

r(i).

A hypothesis testing scheme based on the Z-test is employed to establish the signi�cance of the

deviation. To perform the Z-test, the variance of the measurement residual must be known. For
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unknown variance the t-test may be performed. To approximate the conditions necessary for the

Z-test, the variance of the signal is estimated, but from a larger set of N1 samples, i.e., N1 � N2:

σ̂2
N1

(t) =
1

N1 − 1

t∑
i=t−N1+1

(
r(i)− µN1(t)

)2

.

Care must be taken to ensure that the σ calculation is performed on the nominal signal, i.e., the N1

window should lag the N2 by a su�ciently large number of samples, so that the occurrence of the

fault should not throw o� the calculation of nominal variance.

The Z−value has a distribution N(0, 1):

Z(t) =
µ̂(t)

σ(t)/
√
N2

. (15)

The con�dence level, de�ned by α, de�nes the bound [z−, z+]: P (z− < z < z+) = 1−α. This bound

can be transformed to another bound [µ−, µ+] using Eqn. (15), and the approximation σ = σ̂N1(t):

µ− = z−
σ√
N2

, µ+ = z+
σ√
N2

.

The Z-test is employed in the following manner:

µ− ≤ µ(t) ≤ µ+ ⇒ no fault

otherwise ⇒ fault.

The advantage of this fault detection approach is that it is computationally simple, and it makes

no assumptions concerning the properties of the changed mean value (e.g., it does not have to be

constant).

Qualitative Fault Isolation

Once a fault is detected, the qualitative fault isolation (Qual-FI) scheme is triggered to generate

the initial fault hypotheses and re�ne these hypotheses as additional measurement deviations are

observed. Our Qual-FI scheme is based on analyzing the transients in the measurements caused

by faults, and comparing the expected deviation of measurements from nominal with the actual

observed deviations, represented qualitatively using symbols. Speci�cally, Qual-FI consists of three

main steps: (i) symbol generation, (ii) hypothesis generation, and (iii) hypothesis re�nement. The
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Figure 17: Symbolic abstractions of measurement deviations (adapted from [1]).

hypothesis re�nement step consists of fault signature generation and progressive monitoring steps.

We present these di�erent steps of Qual-FI in detail below. Note that once a fault is detected, we

stop the observer, and use the system model to simulate the system. If the observer is not stopped,

fault behaviors may be compensated for, resulting in incorrect or no symbols to be generated.

Symbol Generation

To facilitate qualitative isolation, two features are extracted from each measurement residual to

denote how the residual changes over time. The two features are abstracted symbolically as −, 0,

and + symbols, representing above, at or below nominal values, respectively. These two features

together form an ordered pair of symbols. The �rst feature captures the change in the residual

magnitude, while the second feature represents the �rst-order change in the residual [8]. A non-

zero �rst symbol implies the occurrence of a discontinuity, as well as, whether the measurement

discontinuously increased or decreased from nominal. Fig. 17 illustrates the possible measurement

symbols that can be generated.

The sign of the mean µ(t) obtained from the Z-test, discussed earlier, gives the �rst element of the

ordered pair, i.e., the symbol for the deviation in the magnitude of the residual. The computation

of the symbol for the slope involves some more computation. Let the deviation in the residual be

detected at time k0. The approximate variance of the residual is σ̂
2
r = σ̂2

N1
(k0 −N2). It is assumed

that the variance does not change due to the fault. A delayed value is used to prevent distortion

of the variance estimate. In a noise-free environment, the simple di�erence r0(k0 + 1) − r(k0)

would generate the required slope symbol. However this is rarely the case. Therefore, in a noisy

environment, a threshold can be used to prevent bad symbol generation. This threshold depends on

the noise. Similar to the generation of the magnitude symbol, a mean value will be used to make
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the decision. The size of the window used to calculate the mean is increased until the symbol is

successfully generated.

Assume µr0 is the estimate of the `initial' residual value after fault detection, and is calculated

as the average of the initial N3 residual samples, i.e.,:

µr0 =
1
N3

N3−1∑
j=0

r(k0 + j).

N3 is a design parameter. The mean value of the di�erential residual after fault detection is de�ned

as:

µd(k0 + k) =


1
k

∑k
j=1 (r(k0 + j)− µr0) =

(
1
k

∑k
j=1 r(k0 + j)

)
− µr0 , k > N3

0, k ≤ N3

.

The variance of µd is σ̂
2
d(k0 + k) ≈ σ̂2

r/k, while the variance of µr0 is σ̂2
r0 ≈ σ̂2

r/N3. That is, the

uncertainty of the initial residual value depends on the noise and N3, while the uncertainty of the

mean estimate depends on the noise and the number of samples used in the calculations. Using a

con�dence value α and the corresponding z+ and z− values, just like we did for the Z-test, the +

slope symbol is generated when:

µd − z+σd >
z+σr√
N3

⇒ µd > z+σr

(
1√
N3

+
1√
(k)

)
.

Similarly, the − slope symbol is generated when

µd < −z+σr

(
1√
N3

+
1√
(k)

)
.

Hypothesis Generation

Hypothesis generation is the �rst step in the fault isolation scheme. Once the fault detector reports

an deviant observation, a backward propagation [7] scheme applied to the TCG identi�es the set

of component parameters with a hypothesized direction of change in the parameter that explains

the �rst measurement deviation observed. These implicated component parameters constitute the

initial fault hypotheses.

De�nition 5. (Fault Hypothesis) Fault hypotheses are possible faults in component parameters

that explain all of the measurement deviations observed thus far.

Example. For example, in the two-tank system, if the height of tank 1 increases gradually, there

can be two possible explanations for this fault, namely the increase in resistance R12, i.e., R
+a
12 , or
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an abrupt decrease in the capacity of tank 2, i.e., C−a2 . Hence R+a
12 and C−a2 are two possible fault

hypotheses. However, if at a later stage, the height of tank 2 is observed to increase gradually, then

C−a2 is not considered a fault hypothesis anymore since it is not consistent with the gradual increase

in the height of tank 2. A C−a2 fault would cause the tank 2 height to increase abruptly instead.

Since we are dealing with dynamic systems, measurements can deviate over time, and not all at

once. So, at any time instance, the fault hypotheses are consistent explanations of the deviations in

measurements observed up to the current time step. As more measurement deviations are observed

and fault hypotheses that are not consistent explanations of the observed deviations are dropped

from consideration, thereby re�ning the fault hypothesis set.

Hypothesis Re�nement

Generating Fault Signatures

After the initial fault hypotheses are generated, propagating in the forward direction along the

temporal causal graph generates fault signatures, i.e., symbolic representations of the possible e�ects

of the hypothesized faults on observable measurements at the point of failure [7]. The transients

produced by abrupt faults can only have discontinuities at the time point of failure. For all other

times, the system behavior is continuous and continuously di�erentiable, and the transient response

to a fault can be approximated by its Taylor series expansion:

y(t) = y(tf ) + y′(tf )
(t− tf )

1!
+ y′′(tf )

(t− tf )2

2!
+ . . .+ y(k)(tf )

(t− tf )k

k!
+ . . . , (16)

where tf is the time point of fault occurrence, and t > tf .

If |y(k+1)| is bounded and t is close to tf , the Taylor series is a good approximation of the

true signal y(t). The time-varying residual signal, r(t) = y(t) − ŷ(tf ), where ŷ(tf ) is the predicted

measurement value at time point tf , is computed as

r(t) = y(tf )− ŷ(tf ) + y′(tf )
(t− tf )

1!
+ y′′(tf )

(t− tf )2

2!
+ . . .+ y(k)(tf )

(t− tf )k

k!
+ . . . ,

i.e., the magnitude di�erence, y(tf ) − ŷ(tf ), and k derivative values (y′(tf ), y′′(tf ), . . . , y(k)(tf )).

After a fault occurs, the nominal system model cannot be used to calculate the numeric values of

the derivatives. Instead, we use the TCG model to express the fault residual as qualitative magnitude

and derivative changes [7,8]. This becomes the basis for establishing a qualitative fault signature for

a fault transient [8].
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Table 2: Fault signatures from abrupt faults in the two-tank system
Fault F1 F2

C−a1 +− 0+
R+a

12 0+ 0+
C−a2 0+ +−

De�nition 6 (Qualitative Fault Signature). Given a fault φ, and measurementm, a qualitative fault

signature, FS(φ,m), of order k, is an ordered (k+1)-tuple consisting of the predicted magnitude and

1st through kth order time-derivative e�ects of a residual signal of measurement m, at the point of

failure of fault f , expressed as qualitative values: below normal (−), normal (0), and above normal

(+). Typically, k is chosen to be the order of the system.

Example. Table 2 shows some fault signatures3 of the nonlinear two-tank system. The signature,

(+−) of fault C−a1 for measurement, F1, implies that an abrupt decrease in capacity of the tank 1

will cause a discontinuous increase in the out�ow from that tank at the time of fault occurrence.

Similarly, the fault signature, (0+), of the same fault for measurement F2 implies that a C−a1 fault

would result in the �ow out of tank 2 to increase gradually.

After fault detection, online fault isolation compares the magnitude and slope of measurement

residual signals to derived fault signatures. Computing higher order derivatives from noisy mea-

surement signals is unreliable [92]. For this measurement scheme, we have shown that all of the

discriminatory evidence for fault isolation is provided by the �rst change in residual magnitude from

the point of failure detection [8]. This reduces the possible fault signatures for a measurement to

the set of symbols, Σ = {(+,−), (−,+), (0,+), (0,−)}. The �rst two fault signatures correspond

to a discontinuous change in a signal while the last two signatures imply that at the point of failure,

no discontinuous jump in the measurement residual will be observed. Fault signatures, (+,+) and

(−,−), are not considered because they imply positive feedback loops, and hence, unstable systems.

Progressive Monitoring

After the fault signatures are generated, as additional measurements deviate from nominal, a pro-

gressive monitoring scheme compares the generated symbol deviations for these measurements to

the fault signatures of the generated fault hypotheses, and if any fault signature is inconsistent with

the observed symbol for that measurement, the fault hypothesis is dropped. Speci�cally, a fault

hypothesis is deemed inconsistent if the observed deviation in a residual is di�erent from the pre-

3In the remainder of this dissertation, we refer to �qualitative fault signatures� simply as �fault signatures�.
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dicted e�ect of that fault hypothesis on that measurement, as represented by its fault signature for

that particular measurement. This process is continued till the fault hypothesis set is re�ned to a

singleton set, or till the fault hypothesis cannot be re�ned any further. In recent work, the discrim-

inatory power of the measurements have been improved using the concept of relative measurement

orderings, taking into account the partial order in which the measurements deviate [93]. However,

the use of relative measurement orderings is beyond the scope of this dissertation.

Fault Identi�cation

Fault identi�cation, i.e., parameter estimation is run as an iterative nonlinear estimation process.

If multiple single fault hypotheses are valid at the end of the hypothesis re�nement step explained

earlier, then the fault identi�cation step also helps in isolating the unique single fault. For each

fault parameter, an estimation scheme is run that updates the parameter value in a way that

minimizes the least squares error between the actual and predicted observation [91]. The parameter

estimator that converges to the smallest least squares error is declared to be the true candidate.

Each bond graph element, P , is de�ned in terms of an associated parametrized degradation function,

Degradation(Pfault) with one input argument, the degradation parameter, Pfault. For example, an

abrupt fault in resistance, R, can be de�ned as R = Degradation(Rfault) = Rfault. Therefore,

the degradation function de�nes the change in the characteristics of a bond graph element due to a

fault.

Fig. 18 shows the details of the fault identi�cation procedure. Once the fault is detected at time

tf , the current state variables of the system, X(tf ), as well as the following N samples of the system

input signal, U(tf , tf +1, . . . , tf +N−1), and the system output signal, Y (tf , tf +1, . . . , tf +N−1),

are stored. The system model consists of the state-space equations. In addition to the measurements,

X, U and Y , and the system model, there is a simulator that is capable of simulating the system

from an arbitrary initial state and generating the estimated output Ŷ . Note that the simulator can

also be parameterized, thereby allowing the modi�cation of the degradation parameter for any bond

graph element through the parameter index I and the corresponding degradation parameter Pfault.

Once the estimates Ŷ are obtained, the least squares error between Y and Ŷ are calculated by the

Least Squares Error Calculator. Finally, the iteration engine uses iterative optimization techniques

to estimate the value of Pfault, which corresponds to the (possible global) minimum of an error

surface.
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Figure 18: Block diagram of the fault identi�cation procedure.

The choice of the iteration engine poses a trade-o�. The more general the optimization algorithm,

the slower is the operation. However, this performance can be improved by building in a priori

domain knowledge into the engine. The properties of the error surfaces to be optimized are good

criteria for selecting the engine. The current iteration engine assumes that the error surface is well

behaved and assumes a parabolic form.

The minimum of the error surface, E2(Pfault), can be determined by scanning the possible pa-

rameter range and determining the minimum value of E2. This calculation of each point E2(Pfault)

on the error surface involves a run of the simulator with parameter Pfault. Since each run of the

simulator to determine a particular error value involves a lot of calculations, the number of simulator

runs must be kept at a minimum in order to be able to run this algorithm online. One way of mak-

ing the number of simulator runs practically feasible is to �nd the minimum of the error surface by

calculating a small number of points on it. The assumption of error surface lying close to a parabola

(which is valid for points close to the minimum, but not for the whole surface) allows for performing

the optimization by a series of parabolic �ts, with a relatively small number of simulator runs.

Extending Transcend To Include Diagnosis of Incipient Faults

A large class of realistic faults occur because of degradation and wear and tear due to system use.

In these situations, unlike abrupt faults, the associated component parameter changes gradually,

and such faults are termed incipient. As part of this research, we have extended Transcend's

hypothesis generation and fault signature derivation scheme to encompass incipient faults. We

have formulated these extensions in such a way that these extensions are transparent to the core
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Figure 19: Incipient fault pro�le.

progressive monitoring step of Transcend . We �rst de�ne incipient faults, and then, present in

detail the changes we have included in the hypothesis generation and fault signature derivation steps

to accommodate incipient fault diagnosis.

Modeling Incipient Faults

The mathematical model for incipient faults used in our approach is de�ned below, and its fault

pro�le is illustrated in Fig. 19. An incipient fault in component parameter, p, in a bond graph model

is denoted by p±i, such that p+i denotes an incipient increase in the parameter p, and p−i denotes

an incipient decrease in parameter p.

De�nition 7. (Incipient fault) An incipient fault is a slow change (i.e., the rate of change is

comparable to, or slower than, the dynamics of the system) in a system parameter, p (with nominal

parameter value function, p(t)). Without loss of generality, we approximate this gradual change

as a linear function4 with a constant slope, ∆i
p, added to the nominal component parameter value

function, p(t), i.e.,

p±i(t) =

 p(t) t < tf

p(t)±∆i
p × (t− tf ) t ≥ tf ,

(17)

where tf is the time of fault occurrence, and p±i(t) is the temporal pro�le of parameter p with an

incipient fault.

Example. Consider the two tank system shown in Fig. 12(b). A common incipient fault is a gradual

blocking in a pipe due to accumulation of sediments. Such a fault can be denoted as R+i
12 .

Extending Hypothesis Generation

The �rst step to diagnosing incipient faults is the generation of incipient fault candidates. This

incipient fault hypothesis generation is based on the deviation in the measurement residual that

resulted in the detection of a fault. Since, an incipient fault is a �rst order change in a component

4A more accurate approximation may be a piecewise linear function.

67



parameter, it can only have a �rst or higher order e�ect on the measurements. Hence, incipient fault

candidates are generated much like the abrupt fault candidates, except when a measurement devi-

ation shows a discontinuity. This also follows from our Taylor series expansion of the measurement

residual (Equation 16), which indicates that measurement discontinuity can only occur for abrupt

faults.

Example. Consider the two-tank system shown in Fig. 12(b). Recall how a gradual increase in the

height of tank 1 resulted in the implication of R+a
12 and C−a2 as possible fault hypotheses. Under

the extended hypothesis generation scheme, we also generate two additional fault hypotheses, R+i
12

and C−i2 , corresponding to the abrupt fault candidates that were generated. Note, however, that if

the fault was detected because of a discontinuous change in a measurement, no additional incipient

fault hypotheses would have been generated.

Extending Fault Signature Derivation

As shown above, since an incipient fault is modeled as a �rst order change in a parameter, the e�ect

an incipient fault parameter, p+i, has on a system variable, e1, is equivalent to the e�ect an abrupt

change in that parameter would have on the same variable, e1, but after passing through a delay

element. Graphically, this delay in fault e�ect can be expressed through the TCG fragments shown

below:

f1

R+i

- e1 = f1

∆i
Rdt+R

- e1

e1

1
R+i

- f1 = e1

1
∆i

R
dt+R

- f1

f1

dt

C+i

- e1 = f1

dt

∆i
C

dt+C

- e1

e1

dt

I+i

- f1 = e1

dt

∆i
I

dt+I

- f1

In each situation, an incipient fault edge label can be expanded to include an additional delay

element, represented by dt, compared to an abrupt change. As a result, incipient faults cannot

produce discontinuities in measurements, and their fault signatures are always of the form (0τ),

where τ is the �rst non-zero symbol in the fault signature of an abrupt fault in the same system

parameter and for the same direction of change.

Example. For example, consider the fault signature matrix shown in Table 3. The signature of fault

R+i
1 for �ow F1, FS(R+i

1 , F1) = (0−), since that of the abrupt fault R+a
1 , FS(R+a

1 , F1) = (−+).
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Table 3: Selected fault signatures for the two-tank system
Fault F1 F12 F2

R+a
1 −+ 0+ 0+

R+i
1 0− 0+ 0+

R+a
12 0+ −+ 0−

R+i
12 0+ 0− 0−

R+a
2 0+ 0− −+

R+i
2 0+ 0− 0−

Similary, FS(R+i
12 , F12) = (0−), since FS(R+a

12 , F12) = (−+). However, FS(R+i
2 , F1) = (0+) is the

same as that of FS(R+a
2 , F1), since both R+i

2 and R+a
2 results in a gradual increase in �ow F1.

Once the fault signatures are derived for incipient fault hypotheses, the progressive monitoring

scheme described earlier can be applied to isolate both incipient and abrupt faults within an uni�ed

qualitative diagnosis framework.

Diagnosability Analysis

The use of fault signatures for fault isolation may not always result in unique isolation of the true

fault, since many faults may have the same fault signatures for all measurements in the system.

Diagnosability is a measure of how well faults in a system can be uniquely discriminated by a

diagnosis framework.

Our analysis of a system diagnosability in the Transcend diagnosis framework is based on the

fault signature matrix, as we show below. Given the set of possible faults, F = {φ1, . . . , φl}, and the

set of measurements,M = {m1, . . . ,mn}, the fault signature matrix, FSM(F, M) = [FS(φi,mj)]l×n,

is a l×n matrix with rows corresponding to faults and columns corresponding to measurements, and

FS(φi,mj), the fault signature of fault φi for measurement mj , as its elements. A fault signature

tuple, 〈FS(φi, M̂)〉, de�ned for fault φi and a measurement set M̂ = {m1,m2, . . . ,mk} ⊆ M , can

be extracted from row i of the FSM(F, M) by selecting only those elements that are in the columns

corresponding to the measurements in M̂ . Formally, 〈FS(φi, M̂)〉 = 〈FS(φi,m1), FS(φi,m2), . . . ,

FS(φi,mk)〉.

We de�ne a system as S = (F,M,FSM(F, M)), where F is the set of possible faults, M is the

set of measurements, and FSM(F, M) is the fault signature matrix for F and M . The system S is

said to be diagnosable if every fault fi ∈ F can be uniquely isolated using the measurements in M .

Formally, in the Transcend diagnosis approach, diagnosability is de�ned as follows.
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De�nition 8 (Diagnosability). Given the set of available measurements, M , and the set of faults,

F , a system is diagnosable in the Transcend diagnosis framework if all single faults in F can be

uniquely isolated using measurements inM , i.e., ∀(fh, fg ∈ F, fh 6= fg), 〈FS(fh,M)〉 6= 〈FS(fg,M)〉.

Example. Consider the two-tank system in Fig. 12(b). Assume that the faults of interest are F =

{C−a1 , C−a2 , R+a
12 } and M = {F1, F2}. From Table 2 we see that measurement F1 can discriminate

between faults C−a1 and R+a
12 , but not C

−a
2 and R+a

12 . Similarly, F2 can discriminate between C
−a
2 and

R+a
12 , but not C

−a
1 and R+a

12 . However, together, F1 and F2 can uniquely isolate all single faults in F .

Therefore, a system with faults F is diagnosable usingM . If F2 was the only measured variable, i.e.,

M = {F2}, then faults C−a1 and R+a
12 cannot be uniquely isolated, and hence, F is not diagnosable

using M in this scenario.

The discriminatory power of signatures is the basis for constructing measurement selection algo-

rithms [94] for �nding the minimum number of measurements that establish complete diagnosability

for a given set of faults. In Chapter IV, we analyze the diagnosability property of systems to design

qualitative distributed diagnosers that generate globally correct diagnosis results locally, without a

centralized coordinator. Our extensions to the hypothesis generation and fault signature derivation

procedures facilitate the qualitative diagnosis of both incipient and abrupt faults. However, the

generation of the incipient fault hypotheses, many of which have the same fault signatures as their

abrupt counterparts results in a loss of discriminatory power of the qualitative isolation scheme.

Hence, the qualitative isolation scheme alone may not be able to uniquely discriminate between

incipient and abrupt fault hypotheses. In Chapter V, we combine the qualitative Transcend di-

agnosis scheme with Bayesian inference to improve the diagnosability of our qualitative diagnosis

approach.

Summary

In this chapter, we presented in detail, the Transcend qualitative diagnosis framework, on which

our current research builds upon. We �rst reviewed how Transcend performed the tasks of fault

detection, isolation, and identi�cation of abrupt faults. We then presented how we extend Tran-

scend to include the generation of incipient fault hypotheses, and the derivation of fault signatures

for these incipient fault hypotheses, based on the fault signatures of their corresponding abrupt

fault hypotheses. These extensions facilitate the diagnosis of incipient and abrupt faults within a

uni�ed qualitative framework. We also presented the approach to analyze the diagnosability prop-

erties of a system in the Transcend diagnosis framework. In the next chapter, we present how the
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diagnosability properties of a system is analyzed to partition the system into multiple subsystems,

such that when the Transcend diagnosis approach is applied to each subsystem independently, the

distributed Transcend diagnosers generate globally correct diagnosis results through local anal-

ysis, without a centralized coordinator, with no exchange of partial diagnosis results amongst the

diagnosers, and with minimal sharing of measurements.

The Transcend approach presented in this chapter is a centralized diagnosis approach, and like

other centralized approaches, it su�ers from scalability, computational complexity, and robustness

issues. Our approach to alleviate these issues by distributing the diagnosis task is presented in the

next chapter. Through careful design of our distributed diagnosers, we guarantee globally correct

diagnosis results through local analysis, without a centralized coordinator, with no exchange of

partial diagnosis results between the distributed diagnosers, and through a minimal exchange of

measurement information amongst the distributed diagnosers.
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CHAPTER IV

DISTRIBUTED QUALITATIVE DIAGNOSIS OF CONTINUOUS SYSTEMS

Like most model-based diagnosis schemes for continuous systems, the Transcend diagnosis ap-

proach is centralized with one monolithic diagnoser that uses a global system model and all the

available system measurements [2,5]. Centralized model-based diagnosis schemes have several draw-

backs. They are expensive in memory and computational requirements. Reliable transmission of

measurements to a centralized computer may incur high costs for shielding and protection of the

cables to maintain signal quality, especially in harsh environments. These approaches scale poorly for

continuous systems as changes in the system con�guration and components may cause signi�cant

changes in the system's dynamic behavior, requiring the diagnoser to be redesigned. A central-

ized approach also creates a single point of failure, such that a glitch or failure in the supporting

computational units may disable the entire diagnosis system.

The drawbacks of centralized diagnosis schemes motivate the need for distributed diagnosis ap-

proaches, where the diagnosis task is broken down into subtasks and executed on separate processors.

The distributed diagnosis approach �ts well with present day embedded systems architectures, where

each subsystem has associated local processors, memory, and sensors for monitoring and control of

that subsystem (e.g., electronic control units in aircrafts). In a distributed diagnosis scheme for sys-

tems with relatively slow dynamics, such as chemical processes, individual diagnosers implemented

for each component can operate independently. The large time constants associated with the global

interactions make the subsystem behaviors relatively independent, and the individual diagnosers

converge to correct isolation results before the fault e�ects propagate across subsystem boundaries.

Such an approach also works in well-instrumented systems where sensors are placed in close proxim-

ity to possible fault sources in individual units, but the cost of employing a large number of sensors

may be prohibitive. For system with fast dynamics, such as electromechanical and aerospace sys-

tems, fault e�ects propagate across component boundaries relatively fast, and ignoring component

interactions will result in incorrect diagnosis. Hence, extra analysis is required to design distributed

diagnosers for such systems.

In this chapter, we extend the centralized qualitative Transcend diagnosis scheme we presented

in the previous chapter to a distributed, model-based fault qualitative fault diagnosis scheme for

abrupt and incipient faults in continuous systems. In our diagnosis scheme, the local diagnosers gen-
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erate globally correct diagnosis results without a centralized coordinator, with minimal exchange of

measurement information amongst themselves, and no exchange of partial diagnosis results between

themselves. We propose two algorithms for designing the distributed diagnosers. The �rst algo-

rithm uses prede�ned subsystem structure to generate, for each subsystem, a local diagnoser that

produces globally correct diagnosis results with minimal exchange of information with the other

local diagnosers. The second algorithm constructs the system partition structure and local diag-

nosers simultaneously. The set of diagnosers do not exchange any information between themselves

to produce globally correct diagnosis results. We apply both algorithms to a complex, real-world

system, the Advanced Water Recovery System developed at the NASA Johnson Space Center [17].

The experimental results demonstrate the computational e�ciency and reduction in communication

overhead achieved by our distributed diagnosis approach.

The rest of this chapter is organized as follows. The following section presents our distributed

diagnosis architecture, where each distributed diagnosis is essentially the qualitative Transcend

diagnoser that uses a subset of observations to diagnose a subset of faults. Through the careful

design of these distributed diagnosers, we guarantee that each distributed diagnoser will generate

globally correct diagnosis results through local analysis, without a centralized coordinator, and

no exchange of partial diagnosis results, but through the communication of minimal number of

measurement information. The formulation of the diagnoser design problems and the algorithms for

designing these distributed diagnosers are described in the next two sections. This is followed by a

set of studies that demonstrate the usefulness of this distributed diagnosis approach. The chapter

concludes with a summary and comparison of our distributed qualitative diagnosis scheme to other

related work in distributed diagnosis. The research contributions presented in this chapter have

been published in [11,95].

The Distributed Diagnosis Approach

The architecture of our distributed diagnosis approach is shown in Fig. 20. Each distributed di-

agnoser essentially implements the qualitative Transcend diagnoser. In this chapter, we formally

de�ne the Transcend diagnoser, D(F, M), where F is the set of all possible faults in the system, and

M is the set of available measurements. GivenM , we de�ne the qualitative measurement residual as

Σ|M |, the |M |-dimensional cartesian product of elements in Σ = {(+,−), (−,+), (0,+), (0,−)}, the

set of possible symbols representing the magnitude and lowest-order non-zero derivative of individual

measurement residuals. Hence, we de�ne D(F, M) = (F,M,H), where H : Σ|M | → 2F is a mapping
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Figure 20: Architecture of the distributed qualitative fault diagnosis approach.

from the qualitative measurement residuals in M to the fault hypotheses set. In Transcend, the

mapping H is implemented as described in Chapter III1. In Fig. 20, each distributed diagnoser, Di,

denotes a Transcend diagnoser D(Fi, Mi), such that ∪iFi = F , and ∪iMi = M , and each fault in

Fi is globally diagnosable from all faults in F using the its local measurements, Mi, as we present

in the remainder of this chapter.

Our objective is to decompose the Transcend fault detection and isolation task into smaller

subtasks that can be performed by local diagnosers, such that the distributed diagnosis scheme

satis�es the following properties: (i) all single faults of interest in the system can be diagnosed,

(ii) the local diagnosis results obtained by a distributed diagnoser are globally correct, (iii) the

number of measurements communicated between the distributed diagnosers to satisfy the �rst two

conditions is minimal, and (iv) a distributed diagnoser does not need to communicate its partial

diagnosis results to any other distributed diagnoser to satisfy properties i and ii. Properties i -iii

enable distributed diagnosis without a centralized coordinator. We ensure that our approach satis�es

the above stated properties through careful design of the distributed diagnosers.

In the following, we use a six-tank system, shown in Fig. 21, as a running example to illustrate the

di�erent concepts and algorithms we present in this chapter. Fig. 22 shows the bond graph model of

this example six-tank �uid system connected by pipes, with a source of �ow, Fin, into the �rst tank,

and drain pipes at the bottom of each tank. Pipe Ri drains tank Ci and pipe Rij connects tanks Ci

and Cj . In the hydraulic domain, the e�ort, e, corresponds to pressure, and the �ow, f , corresponds

the �uid �ow rate. Fig. 23 shows the temporal causal graph (TCG) for the six-tank system. While

our approach applies to the detection and isolation of both abrupt and incipient faults, for simplicity,

1A least squares approach based fault identi�cation step is used in Transcend to not only identify the fault
magnitude, but also re�ne the fault hypothesis set further in case multiple fault hypotheses remain after the qualitative
fault isolation step of Transcend. However, the fault identi�cation step is beyond the scope of the work presented
in this chapter, and hence not described.
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Figure 21: The six-tank system.

Figure 22: Bond graph model of the six-tank system.

we restrict our examples to abrupt faults only, and consider the fault set F = {C−a1 , . . . , C−a6 , R+a
1 ,

. . . , R+a
6 , R+a

12 , . . . , R
+a
56 }. The measurements available for diagnosis include the pressures at the

bottom of each tank, and �uid �ow out of each output pipes, R1, R2, . . ., R6. The �ow and pressure

sensors are not shown in the bond graph in Fig. 22, and hence, in the remainder of this chapter,

we refer to a measurement in the six-tank system by its corresponding e�ort or �ow variable in the

six-tank system's bond graph, e.g., e1 denotes the pressure at the bottom of tank C1, f2 is the �ow

out of pipe R1, and so on. Table 4 lists these measurements, and Table 5 shows some fault signatures

from tanks 1 and 2 of the six-tank system obtained using the TCG shown in Fig. 23.

Formulating the Design Problem for Distributed Diagnosis

We assume that the system is diagnosable (see De�nition 8 in Chapter III) with a centralized

diagnosis architecture. The subsystem of the six-tank system, with F = {C−a1 , C−a2 , R+a
2 }, M =

{e1, e6}, and the FSM given in Table 5, is diagnosable. However, note that measurement e1 can

discriminate between faults C−a1 and R+a
2 , but not C−a2 and R+a

2 . Similarly, e6 can discriminate

between C−a2 and R+a
2 , but not C−a1 and R+a

2 . However, e1 and e6 together can uniquely isolate all

single faults in F , i.e., the system with faults F is diagnosable using the measurements in M . This

is a key observation we utilize in our diagnoser design.
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Figure 23: Temporal causal graph for the six-tank system.

Table 4: Six-tank measurements available for diagnosis
Measurement Description

e1 Pressure at the bottom of tank 1
e6 Pressure at the bottom of tank 2
e11 Pressure at the bottom of tank 3
e16 Pressure at the bottom of tank 4
e21 Pressure at the bottom of tank 5
e26 Pressure at the bottom of tank 6
f2 Flow out of pipt R1

f7 Flow out of pipt R2

f12 Flow out of pipt R3

f17 Flow out of pipt R4

f22 Flow out of pipt R5

f27 Flow out of pipt R6

Given a system, S = (F,M,FSM(F, M)), we de�ne subsystem as Si = (Fi,Mi, FSM(Fi, Mi)),

where Fi is the set of faults, Mi is the set of measurements, and FSM(Fi, Mi) is the fault signature

matrix corresponding to Fi and Mi. The Fi's and Mi's together form partitions of the set of faults,

F , and all measurements, M , respectively. A subsystem, Si, is globally diagnosable if every single

fault, φ ∈ Fi, can be uniquely isolated with respect to the global fault set F using the measurements,

M̃i ⊆ M . We use �global diagnosability� in the context of fault isolability. We can have faults in

a subsystem that are �locally� diagnosable from other faults in the subsystem, but which may not

be �globally� diagnosable from faults outside the subsystem. Formally, global diagnosability, which

extends the notion of diagnosability in De�nition 8, is de�ned as follows:

De�nition 9 (Global Diagnosability). Given the set of all faults, F , Fi ⊆ F , is globally diagnosable

by M̃i ⊆ M if M̃i can uniquely isolate every single fault, φ ∈ Fi, from all other faults in F , i.e.,

∀(φh ∈ Fi, φg ∈ F, φh 6= φg), 〈FS(φh, M̃i)〉 6= 〈FS(φg, M̃i)〉.

Example. For the six-tank system in Fig. 21, assume F = {C−a1 , C−a2 , R+a
2 } andM = {e1, e6}. For

a subsystem S1 with F1 = {C−a1 , R+a
2 }, and M1 = {e1}, S1 is not globally diagnosable as the fault

signature tuples 〈FS(R+a
2 ,M1)〉 and 〈FS(C−a2 ,M1)〉 are equal. However, S1 is globally diagnosable

with M̃1 = {e1, e6} since the fault signature tuples 〈FS(φi, M̃1)〉 for every fault, φi ∈ F1, are unique,

globally.
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Table 5: Fault signatures from tanks 1 and 2 of the six-tank system
Fault e1 e6

C−a
1 +−+−+−+ 0 +−+−+−

R+a
2 0 +−+−+− 0 +−+−+−

C−a
2 0 +−+−+− +−+−+−+

Each local diagnoser, D
(Fi, M̃i)

= (Fi, M̃i, Hi), must satisfy the global diagnosability condition,

i.e., all faults in Fi must be globally diagnosable by measurements in M̃i. The local diagnosers are

each implemented using the Transcend scheme with a distributed, decentralized, extended Kalman

�lter-based observer (e.g., [69]), a fault detection module, and a symbol generation module. The

local diagnosers run independently, and when a measurement deviates, the qualitative fault isolation

scheme is triggered for all local diagnosers, which use that measurement for their diagnosis.

We now describe how these local diagnosers generate a global diagnosis result without a coor-

dinator. Assume we have κ local diagnosers D
(Fi, M̃i)

, i = 1, 2, . . . , κ, such that the fault sets, Fi,

form a partition of the set of faults F . For the centralized diagnosis scheme, a diagnosis result is

attained when the fault hypothesis set is reduced to a singleton set. In the distributed diagnosis

scheme, since the fault sets Fi form a partition of F , we expect only the local diagnoser responsible

for diagnosing the true fault to establish a single fault diagnosis, and the others to return empty

diagnoses. In practice, we do not have to wait for all the diagnosers to have reached their �nal

diagnosis results. A global diagnosis result is obtained when:

1. All measurements for a local diagnoser have deviated and the fault hypothesis set is reduced

to a singleton fault set, or,

2. A local diagnoser's hypothesis set is reduced to a singleton but all of its measurements have

not deviated, and all other diagnosers produce a null hypothesis, i.e., their candidate sets are

empty.

Each local diagnoser reports its single or null hypothesis result independently, and the system diag-

nosis result is determined once conditions 1 or 2 are satis�ed. The local diagnosers do not have to

communicate with one another to establish their diagnosis results.

We assume that the system under consideration is diagnosable, and develop two di�erent problems

for designing distributed diagnosers:

1. In the �rst problem, we assume the system partition is known and construct local diagnosers

for each subsystem that exchange minimal information to globally diagnose each subsystem.
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2. In the second problem, we create the system partition structure and local diagnosers simulta-

neously, in a way that no measurements are shared between the subsystems.

The �rst problem applies to designing diagnostic schemes for distributed systems with known

partition structures. The second problem is more open-ended, and the system partition structure and

corresponding diagnosers are derived simultaneously at design time to ensure e�cient distributed

diagnosis.

In situations when the system is not globally diagnosable for a set of measurements, we can

de�ne the notion of �aggregate faults�. An aggregate fault includes all single faults that have the

same fault signatures for the available measurements, and hence, are not distinguishable from one

other. Our diagnosis methodology can be applied to the reduced fault set with the indistinguishable

faults represented as aggregate faults.

Formally, the two problems can be de�ned as follows:

Problem 1 (Partitioned System Diagnoser Design). Given κ subsystems, Si = (Fi,Mi, FSM(Fi, Mi)),

1 ≤ i ≤ κ, construct, for each subsystem, a measurement set M̃i ⊆ M such that (i) M̃i −Mi is

minimal, and (ii) all single faults in Fi are globally diagnosable by measurements in M̃i. Given Fi

and M̃i, we construct a local diagnoser, D(Fi, M̃i)
, for each subsystem. By ensuring that M̃i−Mi is

minimal, the local diagnosers share minimal information with one another.

Problem 2 (Unpartitioned System Diagnoser Design). Given a system S = (F,M,FSM(F, M)),

partition F and M into fault and measurement subsets, Fi and M̃i, respectively, such that all single

faults in Fi are globally diagnosable using measurements only in M̃i. From each Fi and M̃i subset

pairs, we then construct local diagnosers D
(Fi, M̃i)

that do not share any measurements.

These two problems are variations of the measurement selection problem [94], with applications

in control engineering [96], structural dynamics [97], and robotics [98], among others. The mea-

surement selection problem is an instance of the set covering problem [99], which is known to be

NP-complete. Our goal, while designing the local diagnosers, is to select fault-measurement sets

that together make the system completely diagnosable, with an emphasis on minimizing the sharing

of measurements across sets. For Problem 1, measurement selection is applied to each subsystem

with the constraint that the local diagnosis results must be globally correct. Problem 2 represents

a �double� measurement selection problem because of the simultaneous partitioning of the fault and

measurement sets to ensure that the local diagnosers generate globally correct diagnosis results with

no information exchange. To avoid the exponential complexity, we use heuristics that exploit our

knowledge of system dynamics to derive less expensive solutions for both problems.
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Algorithm 1 Designing Diagnosers for a Partitioned System

Input: κ local subsystems, Si = (Fi,Mi, FSM(Fi, Mi))
for each Si do
identify remFaultsi ∈ Fi that cannot be uniquely isolated using Mi.

for each remFaultsi do
δ = 1; M̃i = Mi

while remFaultsi 6= ∅ do

identify measurement set M̂i from measurements of subsystems Si at a distance d ≤ δ that
isolates maximal r ∈ remFaultsi and M̃i − M̂i is minimal.
M̃i = M̃i ∪ M̂i

remFaultsi = remFaultsi − r
if remFaultsi 6= ∅ then

δ = δ + 1
construct D

(Fi, M̃i)

Designing the Distributed Diagnosers

We present the two algorithms for generating the distributed diagnosers for continuous systems.

Implementing Distributed Qualitative Isolation

We now describe how these local diagnosers generate a global diagnosis result without a coordinator.

Assume we have κ local diagnosers D
(Fi, M̃i)

, i = 1, 2, . . . , κ, such that the fault sets, Fi, form a

partition of the set of faults F . For the centralized diagnosis scheme, a diagnosis is reached when

the fault hypothesis set is reduced to a singleton set. In the distributed diagnosis scheme, since the

fault sets Fi form a partition of F , we expect only the local diagnoser responsible for diagnosing the

true fault to establish a single fault diagnosis, and the others to return empty diagnoses. In practice,

we do not have to wait for all the diagnosers to have reached their �nal diagnosis results. A global

diagnosis result is obtained when:

1. All measurements for a local diagnoser have deviated and the fault hypothesis set is reduced

to a singleton fault set, or,

2. A local diagnoser's hypothesis set is reduced to a singleton but all of its measurements have

not deviated, and all other diagnosers produce a null hypothesis, i.e., their candidate sets are

empty.

Each local diagnoser reports its single or null hypothesis result independently, and the system diagno-

sis result is determined once conditions 1 or 2 are satis�ed. The local diagnosers do not communicate

with one another to establish their diagnosis results.
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Table 6: Fault signatures for the six-tank system example
Fault e1 f2 e6 f7 e11 f12 e16 f17 e21 f22 e26 f27

C−a
1 +− +− 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+

C−a
2 0+ 0+ +− +− 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+

C−a
3 0+ 0+ 0+ 0+ +− +− 0+ 0+ 0+ 0+ 0+ 0+

C−a
4 0+ 0+ 0+ 0+ 0+ 0+ +− +− 0+ 0+ 0+ 0+

C−a
5 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ +− +− 0+ 0+

C−a
6 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ +− +−

R+a
12 0+ 0+ 0− 0− 0− 0− 0− 0− 0− 0− 0− 0−

R+a
23 0+ 0+ 0+ 0+ 0− 0− 0− 0− 0− 0− 0− 0−

R+a
34 0+ 0+ 0+ 0+ 0+ 0+ 0− 0− 0− 0− 0− 0−

R+a
45 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0− 0− 0− 0−

R+a
56 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0− 0−

Designing Diagnosers for a Partitioned System

Problem 1 designs a local diagnoser for each subsystem Si = (Fi,Mi, FSM(Fi, Mi)) using the local

measurements, Mi and additional measurements, if required. The goal is to minimize the number

of additional measurements, while ensuring that each subsystem is globally diagnosable. For each

subsystem Si, we identify the faults that are not globally diagnosable given Mi, and then, search

for a minimal number of additional measurements that will make these faults globally diagnosable.

The search is simpli�ed by de�ning a notion of proximity among subsystems and using this

information to prioritize the selection of additional measurements for a local diagnoser. We represent

the system, S, as a graph of connected subsystems. Each subsystem, Si, forms a node of the graph,

and an undirected edge (Sg, Sh) implies direct energy or information exchange between Sg and Sh.

The proximity d is de�ned as the minimum path length from Sg to Sh. The search for additional

measurements starts from closer subsystems.

The procedure for designing diagnosers for a partitioned system is presented in Algorithm 1.

For each subsystem Si, we assign to remFaultsi the faults in Fi that cannot be uniquely isolated

using measurements in Mi. When remFaultsi is not empty, we start by assigning M̃i equal to Mi,

and generating a working measurement set M̃i

d≤1
by pooling in measurements from all subsystems,

Sl, at a distance d ≤ 1 from subsystem Si, i.e., M̃i

d≤1
=
⋃
lMl. Using the measurement selection

algorithm in [94] we select additional measurements from M̃i

d≤1
−Mi to reduce the number of faults

in remFaultsi. When di�erent measurement combinations provide the same reductions, we pick

the measurement set M̂i that adds minimal number of external measurements to Mi while making

the maximum number of faults in remFaultsi globally diagnosable. The set M̃i is expanded, and

remFaultsi is reduced to a smaller set. If remFaultsi is non-empty, d is incremented, and the

procedure is repeated till remFaultsi is empty. At this point, we have the local diagnoser D(Fi, M̃i)
.
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The search algorithm is complete as it will always �nd the measurements required to diagnose all

faults in remFaultsi.

We apply this algorithm to the six-tank system example of Fig. 21 with F = {C−a1 , . . . , C−a6 , R+a
12 ,

. . . , R+a
56 } and M = {e1, f2, e6, f7, e11, f12, e16, f17, e21, f22, e26, f27}. The fault signature matrix

for the fault and measurement sets appear in Table 6. Each tank and the pipe connecting it to the

tank on its right de�nes a subsystem. The six subsystems include the fault sets F1 = {C−a1 , R+a
12 },

F2 = {C−a2 , R+a
23 }, F3 = {C−a3 , R+a

34 }, F4 = {C−a4 , R+a
45 }, F5 = {C−a5 , R+a

56 }, and F6 = {C−a6 }, and

the measurement sets M1 = {e1, f2}, M2 = {e6, f7}, M3 = {e11, f12}, M4 = {e16, f17}, M5 =

{e21, f22}, and M6 = {e26, f27}.

Algorithm 1 generates the following local diagnosers: ({C−a1 , R+a
12 },{e1, f2, e6}, H1), ({C−a2 ,

R+a
23 }, {e6, f7, e11}, H2), ({C−a3 , R+a

34 }, {e11, f12, e16}, H3), ({C−a4 , R+a
45 }, {e16, f17, e21}, H4),

({C−a5 , R+a
56 }, {e21, f22, e26}, H6), ({C−a6 }, {e26, f27}, H7)). The external measurements required

for global diagnosability appear in bold. A capacitance fault for the ith tank is diagnosable by the

e�ort variable of that tank, but to achieve global diagnosis of the interconnecting pipe faults, the

algorithm adds the pressure variable ei+1 of the adjoining tank to the measurement set of tank i.

The distributed diagnosis scheme improves the centralized diagnosis approach. Given the system

S = (F,M,FSM(F, M)), we de�ne the size of a centralized diagnoser, D(F, M), as the size of its

FSM, i.e., |D(F, M)| = |F | × |M |. On the other hand, with κ local diagnosers, D
(Fi, M̃i)

, the

total FSM size is
∑
i |D(Fi, M̃i)

| =
∑
i(|Fi| × |M̃i|). Hence, the total space requirement for all

local diagnosers generated using Algorithm 2 will never exceed that of a centralized diagnoser, i.e.,∑
i |D(Fi, M̃i)

| ≤ |D(F, M)|. Only a few measurements are communicated between local diagnosers,

so there is considerable savings with the distributed diagnosers.

The computational complexity for deriving the diagnosers for subsystem Si depends on the

number of faults |Fi|. The algorithm to �nd remFaultsi is O(|Fi|2). To diagnose every element

of remFaultsi, which in the worst case, can be of size O(|Fi|), we assume m is the maximum

number of measurements in subsystems at a distance of d = 1. In the worst case, the algorithm

will have to generate all possible combinations of these measurements, i.e., O(mb
m
2 c), and the

algorithm to identify the measurement combination that isolates maximal faults in remFaultsi while

adding the least number of external measurements has complexity O(mbmc|Fi|2 + |Fi|2). Usually

|remFaultsi| << |Fi|, and using the measurement selection method in [94] reduces the complexity of

this operation to a much smaller value. In the worst case, for all of the κ subsystems, the complexity

of the algorithm is O(κ|M |b|M |c|Fi|2+κ|Fi|2), but the average run-time performance of this algorithm

is much better. In continuous systems we seldom need to look beyond the immediate neighbors of
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Algorithm 2 Designing Diagnosers for an Unpartitioned System

Input: Global system S = (F,M,FSM(F, M))
generate root node R = [(M̃1, F1), (M̃2, F2), ..., (M̃|M |, F|M |)] s.t. |M̃i| = 1
level l = 1
while true do
check for goal node, G = [(M̃1, F1), (M̃2, F2), ..., (M̃n, Fn)], at level l, s.t. ∪iFi = F
if goal node G is found then
for each Fi ∈ G such that Fi 6= ∅ do

construct D
(Fi, M̃i)

return
else

identify node N s.t. FCN = h
expand node N to generate level l + 1 of search tree

each subsystem for measurements that diagnose all faults in that subsystem. The tractability of the

approach is illustrated in our case study on the ALS system.

Designing Diagnosers for an Unpartitioned System

Problem 2 assumes no prior knowledge of subsystem structure for the system S. The goal is to

partition the system into subsystems, and construct local diagnosers for each subsystem that satisfy

global diagnosability, and do not have to share measurements to achieve global diagnosability. Al-

gorithm 2 solves this problem by generating the maximum number of local diagnosers that do not

share measurements, with an added constraint that the measurement subsets are balanced across

the diagnosers.

Let PI(M) denote a partition for the set of measurements, M , in a system, and assume Fi

is the set of faults that are globally diagnosable using every M̃i ∈ PI(M). Note that Fi can be

empty. If
⋃
i Fi = F , for every non-empty Fi, we can construct a set of local diagnosers, D

(Fi, M̃i)
=

(Fi, M̃i, Hi), that make the system globally diagnosable. The solution to Problem 2 is developed as a

tree search algorithm. Each node N of the tree is de�ned as N = [(M̃1, F1), (M̃2, F2), . . . , (M̃n, Fn)]

such that M̃i ∈ PN (M) and Fi is globally diagnosable with M̃i. Our goal is to construct the largest

number of local diagnosers which together can globally diagnose all faults in F . Hence our goal node

is a node N that partitions M into the largest number of subsets, i.e., |PN (M)| is maximal, and⋃
i Fi = F .

The root node, R, of the tree is R = [(M̃1, F1), (M̃2, F2), ..., (M̃|M |, F|M |)], where each M̃i is

represented by a single measurement, i.e., |M̃i| = 1. For each M̃i, we derive the corresponding Fi such

that M̃i produces a global diagnosis for Fi. For a goal node, G = [(M̃1, F1), (M̃2, F2), ..., (M̃n, Fn)],

the fault sets Fi cover the set of all faults F , i.e.,
⋃
i Fi = F .
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The search algorithm generates nodes at level l + 1 of the tree by creating all possible pairs

of measurement sets from the parent nodes at level l, and computing the corresponding fault-sets

for the new measurement sets. For example, if for node N1 = [(M̃1, F1), (M̃2, F2), (M̃3, F3)], the

following nodes will be formed as children of this node: N2 = [(M̃1 ∪ M̃2, F12), (M̃3, F3)], N3 =

[(M̃1∪M̃3, F13), (M̃2, F2)], and N4 = [(M̃2∪M̃3, F23), (M̃1, F1)]. Note that Fij , the set of faults that

are globally diagnosed by measurements in M̃i ∪ M̃j , can include more faults than Fi ∪ Fj . This is

because the two sets of measurements may uniquely diagnose more faults than the sum of the faults

that each can diagnose.

For every new level added to the tree, the algorithm checks if any of the new nodes is a goal node.

If there are none, the merge process is repeated at the next level of search till a goal node is found.

Exhaustive expansion of all nodes at each level would result in an algorithm whose search space and

search time are doubly exponential. To reduce computational complexity, our algorithm imposes a

greedy heuristic to choose a single node for expansion. If [N ]l represents the set of all nodes at a level

l in the search tree, we de�ne our heuristic function hl = max∀N∈[N ]l(FCN ), where FCN = |
⋃
i Fi|

denotes the total number of faults that are diagnosable in node N by the measurements in PN (M).

Intuitively, at any level, the greedy approach prefers nodes whose local diagnosers can together

diagnose the maximum number of faults, i.e., the node with the largest FCN value is chosen for

expansion. The process is repeated till a goal node is found.

For a goal node, G = [(M̃1, F1), (M̃2, F2), . . . , (M̃n, Fn)], we construct local diagnosers, D
(Fi, M̃i)

,

for every fault measurement subset pair, if Fi is not empty. If a fault is uniquely diagnosable by

more than one M̃i, we assign the fault to the local diagnoser that uses the smallest M̃i. This results

in balanced diagnosers. It should be noted that for tightly coupled systems, it is possible that the

the only solution found by Algorithm 2 is G = [(M,F )], i.e., the system cannot be partitioned.

Algorithm 2 applied to the six-tank system produces seven local diagnosers: ({C−a1 }, {e1}, H1),

({C−a2 , R+a
12 }, {e6}, H2), ({C−a3 , R+a

23 }, {e11, f7}, H3), ({C−a4 , R+a
34 }, {e16, f12}, H4), ({C−a5 ,

R+a
45 }, {e21, f17}, H5), ({C−a6 }, {f27}, H6), ({R+a

56 }, {e26, f22}, H7). When one compares the

number of node expansions required to generate the solutions, an exhaustive search used 183,074

node expansions, and Algorithm 2 derived its solution with 203 node expansions. We have run a

number of other experiments with n-tank systems (6 ≤ n ≤ 15), and in almost all cases, the heuristic

algorithm expanded 1% of the nodes that would be generated by the exhaustive algorithm. This

demonstrates that the heuristic algorithm is e�cient and generates acceptable solutions.
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Like Algorithm 1,
∑
i |D(Fi, M̃i)

| =
∑
i(|Fi|×|M̃i|), the size of the local diagnosers is smaller than

|D(F, M)|. Hence, there is considerable space complexity improvement using distributed diagnosers

designed by Algorithm 2.

To analyze the time complexity of Algorithm 2, assume |F | = l and |M | = n. The root node

has n local diagnosers. For each measurement set, M̃i, we identify the set of faults, Fi, diagnosable

by the measurements in M̃i. The faults in Fi have unique fault signatures for the measurements

in M̃i and they are computed by traversing the columns of the fault signature matrix, FSM(F, M),

that correspond to the measurements in M̃i. This operation can be computed in O(l2n) time. To

expand the node N , we merge all pairs of M̃i ∈ PN (M) to obtain the measurement sets of the

children nodes. Therefore, we have (n2 ) nodes in the next level and each node will have (n − 1)

measurement sets, M̃i. Identifying the fault sets, Fi, for each node at this level is also O(l2n). Since,

we are expanding only one node, we will have only (n−1
2 ) children. The number of nodes generated

is (n2 ) + (n−1
2 ) + (n−3

2 ) + . . . + (2
2) = O(n3) as there are at most n levels. Hence the complexity of

Algorithm 2 is O(l2n4), which is polynomial in the number of faults and measurements.

Case Study: The Advanced Water Recovery System

System Overview

We apply our distributed diagnosis approach to a large real-world system, the Advanced Water

Recovery System (AWRS), designed and built at the NASA Johnson Space Center (JSC) as part

of Advanced Life Support (ALS) Systems for long duration manned missions [17]. The AWRS,

shown in Fig. 24, is a closed loop system that converts wastewater to potable water in microgravity

conditions.

The conversion of wastewater, stored in the Wastewater Tank, is a multi-step process that starts

with a Biological Waste Processor (BWP), which removes organic matter and ammonia from the

wastewater, followed by a Reverse Osmosis Subsystem (RO), which removes inorganic and particu-

late matter using a high pressure membrane �ltration system. The concentrated brine that collects

in the RO is passed into the Air Evaporation Subsystem (AES), which recovers the remaining water

using a cyclic evaporation and condensation process. Finally, the Post Processing Subsystem (PPS)

uses ultraviolet light treatment to remove trace impurities and infectants from the RO and AES

e�uents, and the potable water produced is collected in the Potable Water Tank.
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Figure 24: Schematic of the Advanced Water Recovery System.

Biological Water Processor

The bond graph model of the BWP is shown in Fig. 25. A feed pump, modeled as a constant

�ow pump using the single �ow source, Sffp, feeds wastewater into the BWP. The Organic Carbon

Oxidation Reactor (OCOR), which oxidizes the organic carbon, is modeled as a tank, Cocor. The

e�uent from OCOR enters the Nitri�cation Reactor (NR) through the Rocor pipe. The NR has four

parallel tubes (NRi, 1 ≤ i ≤ 4) with nitrifying microorganisms packed into each tube, and a boost

pump that maintains the �ow. The resistance RNRi
of NRi is modeled to increase as wastewater

�ows through the pipe, simulating the growth of microorganims as they feed on the organic waste2.

The e�uent of the NR is sent to an ambient pressure gas-liquid separator (GLS), modeled as Cgls,

where the majority of the water e�uent is recycled back to the OCOR by the recirculation pump,

and a smaller stream, equal to the initial feed during steady state operations, is transferred to the

RO subsystem for further processing. The recirculation pump is modeled as a simple boost pump

with two bond graph elements: an e�ort source, Serp, and the pump rotor intertia, Irp. Rpipe1 and

Rpipe2 model the pipes between the feed pump and the OCOR, and the GLS and the recirculation

pump, respectively.

2Note that in the bond graphs, components modulated as a function of system variables have a pre�x M added to
their names, e.g., MRNRi

denotes that RNRi
is modulated by the �ow of water through it. An arrow pointing from

the system variable to a modulated component represents this modulation graphically.
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Figure 25: Bond graph model of the Biological Water Processor.

Reverse Osmosis Subsystem

Fig. 26 shows the bond graph model for the RO subsystem. The feed pump that moves e�uent from

the BWP into the RO is modeled as a source of e�ort, Sefp, with rotor inertia, Ifp, and resistance,

Rfp, to model frictional losses. The transformer, TFfp, models the conversion of rotational speed to

�uid �ow. A coiled pipe, modeled as CtubRes, acts as a tubular reservoir to help reduce �uctuations

in liquid �ow through the system. The connecting pipe is modeled as a resistance Rpipe. The RO

subsystem operates in multiple modes, determined by the 4-way multi-position valve, but in this

work, we restrict the RO to the primary mode of operation where the water circulates in a longer

loop. The recirculation pump has parameters Serp, Rrp, Irp, and GYrp. The membrane assembly is

modeled as a �xed chamber with capacitor, Cmemb, and a variable resistance, Rmemb, that models

the resistance to �ow through the membrane. Dirt accumulates as waste water �ows through the

membrane causing Rmemb to increase, and the out�ow of clean water to decrease with time. Hence,

the resistance, Rmemb, is modulated by the conductivity (K) of the water �owing in the system.

The water that does not pass through the membrane has a greater concentration of impurities, and

is recirculated through the pipe, Rbrine.
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Figure 26: Bond graph model of the Reverse Osmosis Subsystem.

Air Evaporation Subsystem

The bond graph, shown in Fig. 27, models the AES. It includes the wick, a porous element modeled as

Cwick, which dips into the brine that is collected in a tank. Warm air blown over the wick evaporates

some of the water. Csteam represents the quantity of vapor generated due to the evaporation. The

moisture laden air is then passed through a chilled water heat exchanger, and clean condensate is

collected in the condensate tank, Ccondensate. The condensate pump, modeled as a simple source of

�ow, SfcondFlow, pumps water to the PPS in a continuous stream. A blower (modeled as Seblower)

is used in the air�ow loop to maintain the �owrate, and a heater (Seheater) heats up the air cooled

in the exchanger to ensure that its capacity to absorb moisture remains high. The transformers,

TFblower and TFheater, model the e�ciency of the blower and the heater, respectively. The energy

exchanges and temperature content at di�erent parts of the air in the AES is modeled as capacitors

Cairi
(1 ≤ i ≤ 3). RairF low models the resistance to the �ow of air in the AES heat exchange loop.

Post Processing Subsystem

The PPS disinfects the e�uent from the RO and the AES components through a �ve step treatment

procedure to generate potable water. Since the PPS does not have interesting �ow dynamics, we do

not include it in our diagnosis model.
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Figure 27: Bond graph model of the Air Evaporation System.

The multi-domain bond graph models represent the mechanical and hydraulic domains in the

BWP, RO, and AES. The RO bond graph also models the �uid conductivity domain, to simulate

the changing concentration of impurities and their e�ects on the �ow process. The AES bond graph

models the exchange of heat between the water absorbed by the wick, the air, and the coolant liquid

in the thermal domain.

The AWRS is a large, complex, physical system with interacting subsystems, each containing a

large number of components. These interactions cause fault e�ects to propagate across subsystem

boundaries, eventually a�ecting all parts of the system. Hence, a centralized approach, when applied

to this system, will have high memory and computation requirements. On the other hand, the well-

de�ned subsystem structure of the AWRS lends itself well to our distributed diagnosis approach.

Diagnoser Design Experiments

The AWRS testbed is well instrumented. Table 7 shows the list of measurements and faults that

we chose for these experiments. In the following, we �rst derive diagnosers for the three AWRS

subsystems using three measurements sets. Then diagnoser-design experiments are run assuming

the subsystem structure is unknown.
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Table 9: Results for Experiment 2-A (17 measurements)
Faults Measurements

BWP.C−agls , BWP.R+a
ocor BWP.Pgls, BWP.Pocor

BWP.R+a
pipe1, BWP.R+a

pipe2 BWP.Pfp
BWP.R+a

NR1
, BWP.R+a

NR2
BWP.FNR1 , BWP.FNR2

BWP.R+a
NR3

, BWP.R+a
NR4

BWP.FNR3 , BWP.FNR4

RO.R+a
brine, RO.TF

−a
fp BWP.Prp, RO.Pmemb

RO.C−amemb, RO.R
+a
memb RO.Fpermeate

RO.R+a
pipe, RO.GY

−a
rp RO.Prp, RO.Pback

AES.C−awick AES.Pwick
AES.C−asteam, AES.TF

−a
blower, AES.Vair, AES.Psteam

AES.TF−aheater
AES.C−acondensate AES.Pcondensate
AES.R+a

airF low AES.Tcoolant

Table 10: Results for Experiment 2-B (14 measurements)
Faults Measurements

BWP.R+a
NR1

, BWP.R+a
NR2

BWP.FNR1 , BWP.FNR2

BWP.C−agls , BWP.R+a
ocor BWP.Pocor, BWP.Pfp

BWP.R+a
pipe1, BWP.R+a

pipe2

BWP.R+a
NR3

, BWP.R+a
NR4

BWP.FNR3 , BWP.FNR4

RO.C−amemb, RO.R
+a
memb RO.Pmemb,RO.Pback

RO.R+a
pipe, RO.GY

−a
rp RO.Prp, AES.Pwick

RO.R+a
brine, RO.TF

−a
fp AES.Psteam, AES.Vair

AES.C−awick , AES.TF
−a
blower

AES.TF−aheater
AES.C−acondensate, AES.R

+a
airF low AES.Pcondensate, AES.Tcoolant

AES.C−asteam

We use the bond graph model described above to systematically derive the TCG for the AWRS.

The distributed diagnosers are derived from this model using a Python implementation of the design

algorithms.

Designing Diagnosers for a Partitioned System

We assume the AWRS to be partitioned into the BWP, RO, and AES subsystems. We run three

experiments, for the same fault set (see Table 8), but with di�erent measurement sets. The pre�xes

BWP , RO, and AES, in Table 8, indicate that the measurement or fault is associated with the

BWP, RO, and AES subsystem, respectively.

Experiment 1-A is run with measurements shown in Table 8, column 2. The BWP and AES

measurements are su�cient to generate global diagnosis results for these subsystems. However, the

RO subsystem diagnoser needs the pressure at the BWP recirculation pump, BWP.Prp, to uniquely

isolate all of its faults.
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Experiment 1-B uses a measurement set generated by the measurement selection algorithm [94].

These 14 measurements listed in Table 8, column 3, are the minimum number of measurements

required to isolate all faults. The diagnosers for the BWP and the AES are the same as in Exper-

iment 1-A. However, the RO diagnoser now needs two external measurements, BWP.Pocor, and

AES.Pwick, to uniquely isolate all of its single faults.

Experiment 1-C uses 16 measurements (column 4 of Table 8). Like Experiment 1-A, only

BWP.Prp needs to be communicated to the RO for complete diagnosability. This shows that

the extra measurement in Experiment 1-A provides no additional diagnostic information.

The derived local diagnoser structures match our intuition. Comparing the results of the experi-

ments with 14 measurements to that with 16 measurements, it is clear that additional measurements

provide more redundancy of information, and make the diagnosers more independent. The trade-o�

between the cost of additional sensors versus greater communication overhead and independence of

the local diagnosers is evident.

Designing Diagnosers for an Unpartitioned System

For the case where we did not assume any subsystem information, we again ran three experiments

for the measurement sets and faults listed in Table 7.

Experiment 2-A to 2-C produced 11, 3 and 4 local diagnosers, respectively (see Tables 9-11).

It is clear that additional measurements increases redundancy, which Algorithm 2 exploits to

create smaller diagnosers. Tables 9 and 10 results show that the balance heuristic works well. The

Table 11 result is di�erent, because the algorithm derived one large, one medium, and two very small

diagnosers. A di�erent set of 16 measurements would very likely have produced a more balanced

result.

Comparing the results of the experiments with 14 measurements, the partition structure created

by Algorithm 2 is found to be similar to that generated by Algorithm 1, even though Algorithm 2

rearranges the faults and measurements between the diagnosers to ensure that less measurements

are needed for each diagnoser. For the experiments with additional measurements, Algorithm 2

tends to use the redundant information to create a larger number of smaller diagnosers, to improve

the overall computational e�ciency.
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Table 11: Results for Experiment 2-C (16 measurements)
Faults Measurements

BWP.R+a
NR1

, BWP.R+a
NR2

BWP.Prp, BWP.Pocor
BWP.R+a

NR3
, BWP.R+a

NR4
BWP.Pfp, BWP.FNR1

BWP.C−agls , BWP.R+a
ocor BWP.FNR2 , BWP.FNR3

BWP.R+a
pipe1, BWP.R+a

pipe2 BWP.FNR4 , RO.Prp
RO.R+a

brine, RO.R
+a
pipe RO.Fback, AES.Pcondensate

RO.GY −arp , RO.TF−afp
AES.C−acondensate
RO.C−amemb RO.Pmemb
RO.P+a

memb RO.Fpermeate
AES.C−asteam, AES.R

+a
airF low AES.Pwick, AES.Psteam

AES.C−awick , AES.TF
−a
blower AES.Tcoolant, AES.Vair

AES.TF−aheater

Table 12: Some fault signatures for the AWRS diagnosis experiment
Fault BWP. RO. RO. RO. AES.

Pocor Pmemb Pback Prp Pwick

BWP.C−agls 0− 0+ 0− 0+ 0+
RO.C−amemb 0− +− +− 0− 0+
RO.R+a

memb 0− 0+ 0+ 0− 0+
RO.R+a

brine 0+ 0+ 0+ 0− 0+
RO.R+a

pipe 0− 0− 0− 0− 0−
RO.TF−afp 0+ 0− 0+ 0− 0+
AES.TF−ablower 0+ 0− 0− 0− 0−
AES.TF−aheater 0+ 0− 0− 0− 0−

Distributed Fault Isolation

We illustrate the online operation with one set of distributed diagnosers. We show how the local

diagnosers generated in Experiment 1-B isolate a block in the pipe (RO.Rpipe) that connects the

tubular reservoir to the membrane in the RO subsystem. The three local diagnosers are implemented

as described above.

For this demonstration, we use a Matlabr Simulinkr simulation model of the AWRS that

was systematically derived from the bond graph models described in Section VI-A [89]. The fault,

modeled as a 20% abrupt increase in the RO.R+a
pipe pipe resistance, is introduced at time t = 21, 000

seconds. The simulation is run for 86,400 simulation seconds. Measurement noise is Gaussian with

a noise power level set at 2% of the average signal power for each measurement. The measurements

are sampled at 1 Hz. Table 12 gives some of the relevant fault signatures for this experiment.

The diagnosis steps are shown in Table. 13. A block causes decreased �ow through the pipe

initially. As a result, RO.Pmemb, the pressure in the membrane, decreases, but not discontinuously

(0−). The deviation in RO.Pmemb is �rst detected by the RO diagnoser. The candidate set, at
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this time, includes RO.P+a
pipe, and a decrease in the RO feed pump e�ciency, RO.TF+a

fp , the only

faults whose fault signatures are consistent with the observed (0−) change. Subsequently, mea-

surement RO.Pback, i.e., the pressure in the RO loop also deviates as (0−). The fault signature of

RO.TF−afp for this measurement is not consistent with this change and hence this fault is dropped

from the candidate list. At this point, RO.R+a
pipe is the only fault candidate, but all measurements

of D
(F2, M̃2)

have not deviated, therefore, we cannot be sure that we have the �nal diagnosis result.

The measurement deviation, (0−), in RO.Prp is consistent with the candidate. The fourth mea-

surement deviation observed, is a drop in the pressure in the wick reservoir, i.e., AES.P+a
wick. The

observed deviation (0−) continues to be consistent with the RO.R+a
pipe fault candidate. Since this

measurement is also accessible to AES, it triggers the fault diagnoser D
(F3, M̃3)

and generates the

fault candidate set of size 2. Finally, when BWP.Pocor is observed to deviate as (0−), diagnoser

D
(F1, M̃1)

is initiated with a single fault, BWP.C−agls , in the candidate set. Since all measurements

of D
(F2, M̃2)

have deviated, and it has one fault candidate remaining, the system supervisor declares

RO.R+a
pipe as the true fault, and this corresponds to the correct global diagnosis. The plots for the

measurement deviations are shown in Fig. 28.

Summary and Conclusions

In this chapter, we presented a novel model-based distributed diagnosis approach, where local di-

agnosers generate globally correct local diagnosis results, with minimal exchange of information,

and no coordination. Since no coordination is required, the computational complexity of the overall

diagnosis task is signi�cantly reduced. Moreover, minimal exchange of information also guarantees

reduction in communication overhead. We proposed two approaches to design distributed diagnosers.

In the �rst approach, we assumed knowledge of subsystem structure, especially the measurements

and faults that belong to each subsystem, and based on this information, we designed a local diag-

noser for each subsystem such that it required minimal number of additional external measurements

to diagnose all the faults assigned to that subsystem. In the second approach, we assumed no prior

partitioning information. Instead, we generated the maximal number of distributed diagnosers, such

that, each local diagnoser could operate independently without sharing measurements.

In literature, model-based diagnosis approaches have been broadly classi�ed into centralized, de-

centralized, and distributed schemes (e.g., [2,22,100,101]). Centralized schemes (e.g., [2]), construct

a single diagnoser from a global system model. Decentralized schemes, such as [9], use a global

system model but distribute the diagnosis computations among several local diagnosers. The local
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Figure 28: Experimental observations.

diagnosis decisions based on a subset of observations are communicated to other diagnosers, or to a

central coordinator, which use the global model to generate globally consistent solutions. Distributed

diagnosis approaches use subsystem models and assume the global model is unknown [102�104]. Lo-

cal diagnosers for each subsystem communicate their diagnosis results to each other to arrive at the

global solution.

Most decentralized and distributed diagnosis algorithms have been developed in the discrete-event

framework [9, 10, 102�105]. In [9], the authors discuss three coordinated decentralized protocols for

diagnosis that extend the centralized diagnosis method developed in [5]. Each local diagnoser is built

from the global system model and uses only a subset of observable events. Coordination is necessary

in the �rst and second protocols to generate the correct diagnosis result, but the third protocol

generates correct results without a coordinator. All three protocols, under certain assumptions,

produce the same results as a centralized diagnoser.
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The approaches presented in [105] and [10] avoid coordination between local diagnosers by repre-

senting the system as a network of communicating �nite state machines. First, the observable events

for each subsystem are used to generate the individual subsystem diagnoses. Then, the subsystem

diagnoses are merged to generate the global diagnosis result. The o�ine approach presented in [105]

assumes all observable events are received in the same order that they were transmitted. The online

approach described in [10] achieves e�ciency by avoiding merge operations for independent subsys-

tems. Its incremental algorithm does not make the assumption that the ordering of observations is

preserved.

In [102], the authors describe an approach where each local diagnoser generates a set of local di-

agnoses, and then communicates with its neighbors to reduce the number of hypotheses. The graph

of constraints between the fault hypotheses and the observations is partitioned to minimize commu-

nication between local diagnosers. A similar approach is presented in [103], where the partitioning

is based on physical connections.

Our approach, designed for diagnosing faults in large continuous systems, di�ers from [9,10,102�

105]. Abrupt parametric faults, i.e., a step change in a plant parameter value, produce transients

in the system dynamics. Capturing these fault-generated transient behaviors in a discrete-event

model by quantizing the measurement or state-space can result in state explosion [35]. We adopt a

di�erent approach, where we use the continuous model to derive fault e�ects as qualitative magnitude

and higher-order e�ects on individual measurements. This produces a compact model for online

diagnosis.

We use the global system model to design local diagnosers o�ine. At runtime, the local diagnosers

operate independently to generate local diagnosis results that are globally correct. Our approach

does not require a coordinator, there is minimal or no exchange of information among the diagnosers,

and no partial diagnosis result is exchanged between the diagnosers. This is similar to the third

protocol in [9], and a failure in a local diagnoser does not a�ect the diagnosis capability of the

other diagnosers. Therefore, our approach operates like other online distributed diagnosis schemes

(e.g., [10]).

In both the centralized and distributed qualitative diagnosis approaches we have presented thus

far, the generation of incipient and abrupt additional fault hypotheses, with similar fault signa-

tures leads to a loss of diagnosability, since the incipient and abrupt fault candidates may have the

same qualitative e�ect on the measurements. Hence, it is not always possible to re�ne the fault

hypothesis set to a singleton based on the qualitative information alone. In this chapter, we have

considered these indistinguishable faults to be �aggregate faults�. In the next chapter, we propose a
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combined qualitative-quantitative Bayesian diagnosis approach that combines the Transcend qual-

itative fault isolation scheme with Dynamic Bayesian network-based parameter and state estimation

approach to better discriminate between abrupt and incipient faults, and other aggregate faults, in a

computationally e�cient manner. This combined qualitative-quantitative diagnosis scheme is based

on probabilistic reasoning techniques, and hence is robust to uncertainties, caused by sensor noise.

In Chapter VI, we distribute this centralized qualitative-quantitative approach to further improve

the computational e�ciency, and address the other drawbacks inherent in the centralized Bayesian

scheme.
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CHAPTER V

CENTRALIZED BAYESIAN DIAGNOSIS OF COMPLEX SYSTEMS

In Chapter III, we presented the Transcend qualitative diagnosis scheme for isolating abrupt and

incipient faults in continuous, dynamic systems [7, 83, 95, 106]. We saw that Transcend's fault

isolation approach su�ers from the ambiguity problem, i.e., the inability to uniquely isolate the true

fault hypothesis from a set of fault hypotheses due to the lack of discriminatory ability of the qual-

itative fault signatures. Quantitative estimation schemes produce more precise diagnoses, and can

be made robust to uncertainties. But, for large systems with complex dynamics, these quantitative

approaches are computationally very expensive for online analysis. Besides, these approaches may

also su�er from convergence problems [3, 4].

This chapter addresses this ambiguity problem of the qualitative fault isolation scheme (Qual-FI)

of Transcend and improves its robustness to uncertainties by combining the Transcend Qual-FI

scheme with a stochastic, Dynamic Bayesian Network (DBN)-based state and parameter estimation

method for quantitative fault hypotheses re�nement and identi�cation (Quant-FHRI) in dynamic

systems. The DBN-based particle �ltering scheme [12, 77] is employed to accommodate nonlinear

systems with non-Gaussian probability distributions. However, DBN-based diagnosis approaches are

computationally expensive, mainly because these approaches use a single DBN model that include

all possible fault hypotheses as di�erent random variables, which results in a the DBN having a

large number of nodes (i.e., system variables and possible fault hypotheses) [58]. We reduce the

computational expense of the quantitative scheme by employing our qualitative fault signature-

based isolation methodology to reduce the number of potential hypotheses based on the observed

measurement deviations, creating a separate DBN model for each fault hypothesis in the reduced

hypotheses set, and then applying the quantitative scheme on these smaller DBN fault models in

parallel, thus providing considerable computational savings.

Fig. 29 presents the computational architecture of our combined qualitative-quantitative Bayesian

diagosis scheme. In this work, the extended Kalman �ltering (EKF)-based observer used for tracking

nominal system behavior in Transcend (see Chapter III) is replaced by a DBN-based observer

because it is more general than the EKF approach. We adopt the particle �ltering scheme for state

estimation using DBNs. For diagnosis, we start by �rst generating the DBN model of the nominal

system automatically from its temporal causal graph (TCG). Recall that the TCG itself can be
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Figure 29: The diagnosis architecture.

automatically generated from the system bond graph. The DBN-based observer is then invoked

to track the nominal system model to track nominal behavior. The di�erence between nominal

measurement estimates and the actual observations de�ne the residual signals that are used by the

fault detectors to detect statistically signi�cant non-zero residual values.

Detection of a fault triggers the extended Transcend Qual-FI scheme (for isolating both in-

cipient and abrupt faults) and possible fault hypotheses that explain the observed measurement

deviations are generated. These hypotheses are pruned as additional measurement deviations occur.

Once the number of fault hypotheses is re�ned to less than a user-speci�ed lower bound, or the fault

hypotheses set cannot be reduced any further, the Quant-FHRI scheme is invoked to identify the

true fault hypotheses, and if possible, further re�ne the fault hypotheses set. If the Qual-FI scheme

re�nes the fault hypotheses set to a singleton, the Quant-FHRI scheme performs the function of

fault identi�cation only.

The �rst step of Quant-FHRI is the generation of a faulty DBN for each remaining fault hy-

pothesis, typically done by modifying the nominal DBN model to include the faulty parameter as

a stochastic variable in the DBN [107]. Under the single fault assumption, a separate DBN-based

observer is then invoked for each fault hypotheses model to track the observed measurement val-

ues using a particle �ltering scheme. If the estimated measurements signi�cantly deviates from the

observed faulty measurements, that corresponding fault hypothesis is deemed inconsistent, and re-

moved from the set of fault hypotheses. Ideally, only the particle �lter estimator using the true fault

model produces measurement value estimates that converge to the observed faulty measurement

values. A side-e�ect of this process is the estimation of the fault parameter value. Also, as the

Qual-FI scheme (which is still running) continues to re�ne its fault hypotheses, the particle �lters

corresponding to the inconsistent fault models are terminated. This pruning of inconsistent fault
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hypotheses based on the qualitative and quantitative analysis of measurements helps in the e�cient

and accurate diagnosis of the true incipient or abrupt fault.

In Chapter III, we presented the diagnosability analysis of Transcend's Qual-FI approach

based on the available fault signatures. The diagnosability property of our Bayesian diagnosis

scheme, however, also depends on the correct estimation of the faulty parameter by the Quant-FHRI

scheme. Correctness of state estimates is guaranteed if a system is observable. Classical techniques

for determining if a system is observable require the knowledge of parameter values, and these

approaches are usually not applicable to nonlinear systems [88]. Structural observability depends

on the system structure, and not on parameter values, and can be systematically determined by

analyzing the bond graph of nonlinear systems [14]. Hence, in this chapter, we describe the property

of structural observability, and how it can be analyzed using bond graphs.

The rest of this chapter is organized as follows. The next section discusses our systematic ap-

proach for deriving the nominal DBN models from the system TCG. Then, the following sections

present the di�erent steps of the combined qualitative-quantitative diagnosis schemes. Since the

fault detection and Qual-FI are essentially the same as those used in Transcend, but implemented

using a particle �ltering-based observer, we brie�y present these approaches before presenting the

Quant-FHRI approach in detail. We propose three di�erent approaches for fault identi�cation that

are aimed at addressing the issue of sample impoverishment inherent in particle �ltering schemes

applied to fault diagnosis [4]. Next, we present a discussion on structural observability, and how the

system bond graph can be analyzed to determine the existence of structural observability properties

in a system. We then present a set of experimental results that demonstrate the e�ectiveness of our

combined qualitative-quantitative Bayesian diagnosis scheme over the extended Transcend diag-

nosis approach. Finally, we conclude the chapter with a discussion on how this Bayesian diagnosis

approach compares to other particle �ltering-based diagnosis. The research contributions presented

in this chapter have been published in [84,85].

Deriving Dynamic Bayesian Networks For Complex Systems

This section presents the systematic procedure for generating the nominal DBN model of a system

from its temporal causal graph. The procedure for generating DBN fault models by modifying the

nominal system DBN is presented in a later section of this chapter. In the remainder of this section,

we use the nonlinear two-tank system shown in Fig. 12(a) as an illustrative example.
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Figure 30: Two tank TCG containing displacement variables q2 and q7.

The DBN of a system can be systematically constructed from its TCG using a three-step pro-

cedure: (i) for every e�ort (respectively, �ow) variable associated with a C-element (respectively,

I-element) in integral causality, insert a corresponding displacement (respectively, momentum) vari-

able in the system TCG, (ii) �simplify� this TCG so that it contains the state, measured, and input

variables only, and (iii) construct the system DBN from this simpli�ed TCG.

In Chapter III, we showed how the nominal state-space equations obtained from bond graphs

include as state variables, the displacement and momentum variables, denoted by qi =
∫
fidt = Cei,

and pi =
∫
eidt = Ifi, respectively, where ei and fi denote the e�ort and �ow variables, respectively,

that are associated with bond i. In the DBN models, pi and qi variables also represent the state

variables with the across time links. However, recall that in a TCG, a node denotes either an ei

or fi variable. Since, we derive the nominal system DBN from its TCG, we need to include these

displacement and momentum variables in the system TCG before deriving the corresponding DBN.

The inclusion of displacement and momentum variables involves replacing every ei
dt/I−→ fi link in a

TCG with the ei
dt−→ pi

1/I−→ fi TCG fragment. Similarly, every fi
dt/C−→ ei link in a TCG with the

fi
dt−→ qi

1/C−→ ei TCG fragment. This transformation of the TCG follows directly from the de�nition

of the p and q variables [18].

Example. Consider the two-tank TCG shown in Fig. 16 that contains only e�ort and �ows as its

nodes. Fig. 30 shows the two-tank TCG with the variables q2 and q7 are inserted in between the

variables f2 − e2 and f7 − e7, respectively, where q2 and q7 denote the displacement variables in

tanks C1 and C2, respectively. As a result, the edges f2
dt/C1−→ e2 and f7

dt/C2−→ e7 are replaced with

pairs of edges, f2
dt−→ q2

1/C1−→ e2 and f7
dt−→ q7

1/C2−→ e7, respectively.

Once the appropriate p and q variables have been inserted into the system TCG, this TCG is

simpli�ed using the approach presented in [108] that allows TCG abstractions to be generated by
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Figure 31: Simpli�ed Temporal Causal Graph of the two-tank system.

Figure 32: Dynamic Bayesian network of a two-tank system.

iteratively deleting vertices from the detailed TCG. While the simpli�ed TCG contains fewer nodes,

it retains the causal and temporal information present in the detailed TCG. Fig. 31 shows the

simpli�ed TCG generated from the detailed TCG shown in Fig. 16. Notice how this simpli�cation

results in more complex edge labels than in the detailed TCG. Hence, we cannot easily implicate

individual parameter deviations as possible causes of measurement deviations using this simpli�ed

TCG. However, the objective for generating the simpli�ed TCG is only to enable the systematic

and automatic generation of DBNs from the TCG, and not for qualitative isolation. The qualitative

isolation is based on the detailed TCG. Hence, the complex edge labels are acceptable in the simpli�ed

TCG.

The system DBN can be constructed from this simpli�ed TCG using the method outlined in [58].

The set of nodes, N, in the simpli�ed TCG includes only state variables, measured variables, and

system inputs. For each N ∈ N, we instantiate nodes Nt and Nt+1 in the consecutive time slices of

the DBN. Then, for every pair of variables, N,N ′ ∈ N that are algebraically related, causal links

Nt → N ′t and Nt+1 → N ′t+1 are constructed in each DBN time slice. For every pair of variables,

N,N ′ ∈ N having an integrating relation (i.e., a delay), the across-time Nt → N ′t+1 link is added to

the DBN.
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Example. We now describe the procedure for generating the two-tank DBN shown in Fig. 32 from

the two-tank TCG shown in Fig. 31. For every node, N , in the simpli�ed TCG, we instantiate

two nodes, N
t
and N

t+1 , e.g., we instantiate nodes Fint
, Fint+1 , q2t

, q2t+1 , and so on, based on the

simpli�ed TCG shown in Fig. 31. In this simpli�ed TCG, F12 is algebraically related to q2 and

q7. Hence, we draw causal links q2t
→ F12t

, q7t
→ F12t

, q2t+1 → F12t+1 , and q2t+1 → F12t+1 in

the two-tank DBN. Similarly, we have links q2t+1 → F1t+1 , and q7t+1 → F2t+1 , involving the two

other measurement variables, F1 and F2. All other edge labels of the simpli�ed TCG contains the dt

label indicating an integrating relation, e.g., the edge Fin
dt−→ q2. Hence, we draw a corresponding

inter-time-slice causal link, Fint
→ q2t+1 , in the DBN. Similar edges are drawn in the TCG for all

integrating edges in the simpli�ed TCG. The two-tank DBN shown in Fig. 32 can be represented as

D = ({q2, q5}, {Fin}, {F1, F12, F2}), with X = {q2, q5}, U = {Fin}, and Y = {F1, F12, F2}.

While the above approach generates the structural form of the DBN based on the appropriate

TCG, the conditional probability density functions, are obtained from the system's state space

equations (in di�erence form). For example, the conditional probability density functions in the two-

tank DBN can be obtained from the state space equations in di�erence form shown in equations 13

and 14, with ∆t = 1.

Example. It is well known that if a random variable U is the linear combination of two other

normal random variables, V ∼ N(µV , σ2
V ) and W ∼ N(µW , σ2

W ), such that U = aV + bW , then

U ∼ N(aµV +bµW , a2σ2
V +b2σ2

W ) is also normally distributed. Hence, given the state-space equations

of the two tank system, we have P (F1(t)|q2(t)) = N(µq2(t)/(C1R1), σ2
q2/(C

2
1R

2
1)). However, it is not

always possible to obtain closed-form, analytical representations of the conditional probability. For

example, since resistor R2 of the two-tank system is nonlinear, and depends on the pressure in

tank 2, i.e., R2(t) = 3e7(t)2 = 3q7(t)2

C2
2

, we cannot obtain a closed form representation of P (q7(t +

1)|q2(t), q7(t)) as q7(t + 1) = q2(t)
C1R12

+ q7(t) − C2
3q7(t) −

q7(t)
C2R12

. This justi�es our choice of adopting

particle �lters. Similarly, P (F2(t)|q7(t)) does not have a closed form analytical representation since

F2(t) = C2
3q7(t) , with the normal random variable, q7, in the denominator.

We now present the di�erent steps involved in our Bayesian diagnosis scheme shown in Fig. 29,

and show how the DBN models we derive from the system TCG are used in every step of our

diagnosis approach.
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Fault Detection and Qualitative Fault Isolation

The fault detection and qualitative fault isolation schemes invoked as part of our combined qualitative-

quantitative diagnosis approach is essentially the same as that used in the extended Transcend

diagnosis approach described in Chapter III. The only di�erence is the use of the DBN-based ob-

server instead of the extended Kalman �lter. The nominal DBN model includes nodes corresponding

to state variables, observed variables, and inputs only. The system component parameters are ei-

ther constant, or possibly nonlinear, deterministic algebraic functions of other state variables. The

conditional probability density functions in the DBN may or may not have a closed-form analytic

representation.

A fault is detected when the detector reports that at least one measurement residual is signif-

icantly di�erent from 0. Once a fault is detected, the Qual-FI scheme is triggered to generate the

initial fault hypotheses and re�ne these hypotheses as additional measurement deviations are ob-

served. The Quant-FHRI scheme is triggered when any of the following four conditions are satis�ed:

1. All measurements in the system have been observed to deviate from nominal, and hence, the

fault hypotheses set cannot be re�ned any further by the Qual-FI scheme.

2. Not all measurements have been observed to deviate, but the set of fault hypotheses cannot

be re�ned any further using the Qual-FI scheme. The diagnosability analysis of Transcend

(discussed in Chapter III), or, alternatively, related measurement orderings [1, 109], can be

used to determine if the set of fault hypotheses cannot be re�ned any further.

3. The fault hypotheses set is re�ned to a pre-de�ned size, k, a design parameter. In our work,

we typically set k to 10% of the total number of fault hypotheses generated after a fault is

detected.

4. A pre-speci�ed s simulation timesteps have elapsed, after which the Quant-FHRI scheme is

invoked to re�ne the hypothesis set further, and also identify the true fault.

Therefore, the maximum time after which the Quant-FHRI scheme is initiated is td + s time

steps, where td is the time of fault detection. However, on average, we have noticed that the Quant-

FHRI is invoked earlier than time td + s, and mostly depends on our choice of k. We need to choose

k and s carefully because if k is too large and s is too small, the large number of remaining fault

candidates would make the Quant-FHRI ine�cient. On the other hand, if k is very small, and

s is large, the isolation and identi�cation task will be delayed. In the following, we describe the

Quant-FHRI scheme in greater detail.
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Quantitative Fault Isolation and Identi�cation

Fig. 33 shows the architecture of our Quant-FHRI scheme, which performs both fault isolation

and identi�cation tasks. However, if the Qual-FI schemes isolates the true single fault hypothesis,

Quant-FHRI performs the task of fault identi�cation only. The �rst step of Quant-FHRI is to

develop a DBN model for each fault hypothesis, φj ∈ {φ1, φ2, . . . , φw} that remain when Quant-

FHRI is initiated. The goal of Quant-FHRI is to estimate the value of the hitherto unknown fault

parameter, and hence the DBN model must facilitate the estimation of this faulty parameter. As

we discuss later in the chapter, depending on how the faulty parameter is included in the DBN

model, we could have a separate DBN model, DBNi, for each φi, or a single DBNi could model

multiple fault hypotheses, e.g., a DBN that includes a parameter, p, as a state variable can be used

to represent both p±a and p±i fault hypotheses. Hence, the w fault hypotheses are modeled by v

DBNs, where v ≤ w. Next, for each DBNi, we use a separate DBN-based observer implemented

using a particle �ltering scheme, PFi, to estimate the augmented state variables that includes the

fault hypothesis. We can instantiate a separate particle �lter estimator for each hypotheses since we

assume only single faults occur in the system, and these faults can be independent. These estimates

are compared with the actual observed measurements to generate measurement residuals for each

fault model. A Z-test is then invoked on the residuals obtained from each particle �lter estimator to

test for statistically signi�cant divergence of measurement estimates from the actual measurements.

Since, even the correct fault model will need some time before the particles start converging to the

observed measurement values, we expect the measurement estimates to diverge at the point of fault

occurrence for a few time steps before it eventually converges to the the observed measurements. We

typically assume that the measurement estimates obtained using the true fault model will converge

to the observed measurements within sd time steps from the time the divergence was detected.

Hence, we declare that a fault model is inconsistent when the Z-test indicates that the measurement

estimates obtained using the fault model does not converge within sd time steps from when the

estimates diverged. Ideally, after a �nite number of time-steps, only the measurement estimates

obtained using the correct fault model should converge to the observed values of the measurements.

Depending on the magnitude of the fault, and which parameter is faulty, it might not be possible

for Quant-FHRI to re�ne the possible fault hypotheses to a singleton set. In that scenario, we

report all remaining fault hypotheses as declared equally probable. If multiple fault hypotheses are

modeled by the same DBN, additional post processing of the converged estimates is required to

further discriminate between the di�erent fault hypotheses this DBN models. Finally, the output of
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Figure 33: Computational Architecture of Quant-FHRI.

our Quant-FHRI scheme would be the true fault parameter and the magnitude, or slope, with which

this parameter has changed. Note that the Qual-FI scheme is not terminated once the Quant-FHRI

scheme is invoked. Hence, our combined qualitative-quantitative diagnosis scheme drops a fault

candidate if: (i) the Qual-FI drops that fault candidate, or (ii) the measurements estimated by that

fault model signi�cantly deviates from the observed faulty measurements.

In Chapter II, we showed that particle �ltering schemes used for fault diagnosis su�er from the

sample impoverishment [4, 13] problem. The main idea is that the transition probability to fault

states is typically very low, and hence particles are unlikely to cover the fault state mode during the

prediction stage of a particle �lter. Further, even if some particles do get instantiated correctly in

the vicinity of the faulty state, the particles have very low weights to begin with, and these particles

are very likely to be dropped during the resampling phase of the particle �ltering. Several di�erent

schemes for addressing this issue have been suggested. In [13], the faults are denoted by discrete

fault modes, and the authors suggest increasing the number of particles in the particle �lter to ensure

that the discrete state space is covered better. However, this may not be a feasible idea for online

diagnosis, since particle �ltering is an �any-time� algorithm, with its computational expense being

proportional to the number of particles it uses [13]. Moreover, the faults can be represented as a �nite

set of discrete fault modes which make the sampling process easier. Another solution was to have an

oracle tell the particle �lter what are the most likely set of fault modes, so that, during resampling,

there are always some particles in the states provided by the oracle. Other approaches to addressing

the sample impoverishment include risk-sensitive particle �lters (RSPFs) and variable-resolution

particle �lters (VRPFs) [4]. In RSPF, high costs are assigned to fault states, and by including

a cost-model during generating particles, RSPFs ensure that particles are generated to represent

faults, even if these particles have low weight. In variable-resolution particle �lters, multiple similar
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states are tracked by a single abstract particle, allowing a limited number of particles to su�ciently

represent large portions of the state-space when the likelihood of occupying that part of the state-

space is low. When the likelihood of the grouped state increases, the abstract particles are re�ned to

represent individual states. In RSPF and VRPF, again, the faults are represented as discrete with

only a �nite number of possible values.

In our fault diagnosis scheme, faults are represented by continuous random variables, and not

discrete fault modes. Hence unlike the above mentioned approaches, our faulty parameters cannot be

restricted to have a �nite set of possible values. Hence, it is not feasible for us to ensure that after

resampling, particles representing every possible value of the fault parameter are always present,

as proposed in [13]. A similar argument can be made to explain why RSPFs and VRPFs are not

applicable to our particular problem.

Once a fault has occurred, and till the magnitude of the fault is correctly identi�ed, the system

model is unknown to us. Since we do not know what value the faulty parameter is after the fault

has occurred, we face a more fundamental problem of what the variance for this unknown faulty

parameter should be in order to ensure that enough support points (or samples) are generated in the

vicinity of its correct, yet faulty value. Another issue we face is the setting of the initial conditions.

Therefore, if we started tracking faulty measurements from time td onwards, our tracking will be

o�, since we would possibly start at wrong initial state, especially for the unknown fault variable.

To overcome this problem, we start our tracking of measurements from time td − ∆max
t , where

∆max
t ≥ td − tf is the maximum delay possible between the time of occurrence of fault, tf , and the

time of its detection, and the initial state vector is set to the estimated values of the state variables

obtained from the nominal particle �lter at time td −∆max
t . The idea is that if ∆max

t is set to be

at least as large as td − tf , then td − ∆max
t ≤ tf ≤ td, and our initial state setting will be closer

to the correct value, since it is based on state estimates from a known system model. The values

of the observed measurements are stored from td −∆max
t , and used by the particle �lters using the

di�erent fault hypotheses. ∆max
t is another design parameter, and determined empirically based on

how well the fault detectors have been tuned. Even if the fault detector is tuned well, sometimes,

the dynamics of the system results in the fault detector to take more than ∆max
t time steps to detect

the fault, i.e., td − td > ∆max
t . In such scenarios, even if we start tracking measurements from

td −∆max
t , our estimates of the initial state would be very close to the actual initial states at that

time, since the deviation in the system state is relatively small in the �rst place, to have resulted in

this delayed detection.
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Tracking the observed measurements from before the occurrence of fault in the system is bene�cial

in terms of setting the initial state vector values. However, this implies that the process noise for

each state variable must be set large enough to allow the generation of enough particles in the

vicinity of the true faulty parameter value. Fig. 34 illustrates how our standard deviation is de�ned

around the approximate time of fault occurrence. Recall that we introduce the faulty parameter as

an additional state variable in the DBN fault model. Let us consider the case where we need to

identify an abrupt fault in parameter p. Since our assumption is that the fault could have occurred

any time between td − ∆max
t and td, we have to have a large enough variance, σ2

p, to allow the

generation of particles near the now faulty value of p. If we use a small variance instead, the particle

�lter will have a weak support, and it is unlikely the faulty parameter will be estimated correctly.

However, a constant large variance would result in a large variance in the estimated faulty parameter

value, which can be made up for by using a large number of particles. But, the larger the number

of particles used, the more computationally expensive the tracking process becomes, which is not

desirable for our online fault diagnosis scheme. Hence, we have adopted an approach of starting with

a high value for the standard deviation, σmaxp and gradually reducing it linearly to minimum σminp

value over a period of r seconds. A very large r implies a slow decrease in σp, which would result in

a large variance in the estimates of the faulty parameter. In contrast, a very small r implies a fast

decreasing variance, which might not allow the generation of a strong support for the particle �lter.

The decision about how fast the variance should be decreased is taken through an empirical study

of the system. From our experience, it is bene�cial to err on the side of caution, and decrease the

variance slowly, rather than quickly. Note that this variance is increased only for the unknown fault

parameter, now included as an additional state variable in the DBN fault model.

We have developed a heuristic approach to determine the σmaxp and σminp values. For p−a and

p−i faults, i.e., faults caused by abrupt or incipient decrease in parameter values, we leverage the fact

that the parameter value must always be positive. Since the faulty parameter value lies anywhere

between its nominal value and slightly above zero, we assign σmaxp ≥ P/3, where P is the nominal

value of parameter p for a p−a fault. The denominator 3 is due to the fact that 99.7% of the values

in a normal distribution lies within three standard deviations of the mean. For a p−i fault, we assign

σminp ≥ P∆t/3, where ∆t is the time di�erence between two slices of the DBN. For p+a and p+i

faults, we assume the max possible values for ∆a
p and ∆i

p, denoted by ∆a
pmax

and ∆i
pmax

, respectively.

So, for a p+a fault, σmaxp ≥ ∆a
pmax

/3, and for a p+i fault, σmaxp ≥ ∆i
pmax

∆t/3. Once σmaxp values

have been determined, we usually set σminp = σmaxp /10. Note that in the incipient fault model, it is

the noise that accounts for generating particles in the vicinity of the true parameter value at each
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Figure 34: Pro�le of standard for our particle �ltering-based fault identi�cation.

time step. Hence, we must be careful to ensure that σminp is not smaller than the actual ∆i
p×∆t for

that parameter, as otherwise, the gradually changing fault parameter will not be tracked correctly.

In the remainder of this section, we present three di�erent Quant-FHRI schemes. These ap-

proaches di�er from one another in three main respects: (i) the structure of the DBN fault model,

with a focus on how the faulty parameter is included in this model, (ii) the particle �ltering schemes

to estimate the faulty parameter using the di�erent DBN fault models, and (iii) the post processing

steps involved in isolating and identifying the true fault hypothesis if multiple fault hypotheses are

modeled by the same DBN fault model.

In the �rst approach, we adopt the standard practice of including the faulty parameter as a state

variable. This results in a single DBN model for both incipient and abrupt faults in a parameter.

As a result, fewer number of particle �lter estimators need to be instantiated to track the faulty

measurements to estimate the fault parameter. However, the common DBN model for abrupt

and incipient fault hypotheses necessitates the requirement of a post processing step to match the

estimated values with the corresponding fault pro�le, and extract the relevant parameters (e.g.,

the percentage change in parameter value for an abrupt fault, and the slope of the change for an

incipient fault). Next, we present a second approach where each fault hypothesis for a parameter,

p (i.e., abrupt, p±a, and incipient, p±i, fault hypotheses) uses a separate DBN fault model. This

approach requires a larger number of particle �lter estimators than the �rst approach, but since

there is no ambiguity in the fault models, no separate post processing step is required to isolate and

identify the true fault. Finally, we present preliminary results for a third Quant-FHRI approach,
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Figure 35: Single DBN model for both abrupt and incipient faults in the same parameter in Quant-
FHRI Approach 1.

where the state space is not augmented with additional state variables. Instead, we analytically

calculate the maximum likelihood estimate [110] for the unknown parameter, and use this estimate

to generate estimates for the other state variables in the system.

Approach 1: Including Faulty Parameter as State Variable

Generating DBN Fault Models

We generate the DBN fault model by augmenting the nominal DBN model with an extra state

variable, that denotes the faulty parameter, p. Augmenting the state variable with the unknown

parameter is one of the standard technique used in FDI methods for diagnosis [58, 111]. Note that

since we include the possibly time varying faulty parameter as a state variable, a single DBN fault

model captures both incipient and abrupt faults in a parameter.

Example. The DBN model of a two-tank system with an incipient or abrupt fault in R12 is shown

in Fig. 35(a). Every occurrence of constant R12 in the state space equation is replaced with the

random variable R12(t), and links are drawn accordingly. The state transition function for this new

state variable is P (R12(t + 1)|R12(t)) ∼ N(µR12 , σ
2
R12

), i.e., we rely on the process noise variance,

σ2
R12

, to generate particles in the vicinity of the actual value of R12. Similarly, the DBN models

for faults in R2 and R1 are shown in Fig. 35(b) and Fig. 35(c), respectively. Note that the DBNs

shown in Figs. 35(a) and 35(b) represent a fault scenario where only �ows F1 and F12 are available

for fault diagnosis. Similarly, the DBN in Fig. 35(c) represents a fault scenario where only �ows F12

and F2 are available, and not �ow F1.
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Tracking Faulty Measurements and Post Processing Step

Once the DBN models are generated, we use the standard particle �ltering scheme described in

Chapter II, but with a gradually decreasing variance (for the unknown fault state variable) to

track the observed measurements. A Z-test is used to determine if the measurement estimates

by a particular particle �lter signi�cantly deviates from the observed measurements. As discussed

earlier, a fault hypothesis is dropped from consideration when the sum of mean square estimation

error signi�cantly deviates from zero, and does not converge to the observed measurements within

sd time steps.

In this approach, the incipient and abrupt fault hypotheses have the same fault model, we employ

a window-based statistical hypothesis testing scheme (similar to that used in symbol generation in

Chapter III) to determine if the faulty hypothesis is incipient or abrupt. This hypothesis testing

scheme takes as input the di�erence between the particle �lter estimates of the parameter, and its

nominal value. If the fault is abrupt, the symbol generator should generate a−0 or +0 deviation, with

the − or + magnitude symbol implying that the faulty parameter increases/decreases in magnitude,

and the 0 slope symbol implying that the parameter estimate converges to a constant value. If the

fault is incipient, we expect the symbol generator to yield 0− or 0+ symbols, implying a gradual

increase or decrease in the parameter, and not a constant step change. Depending on whether

the fault pro�le is determined to be abrupt or incipient, the same windowing-based scheme can be

employed to determine the value of the bias term, ∆a
p, in case of an abrupt fault p±a, or the slope

of the drift term, ∆i
p, in case of an incipient fault.

Illustrative Examples

In the following, we present some runs of our Bayesian diagnosis scheme for a few fault scenarios in

the nonlinear two tank system shown in Fig. 12(a). In these examples, we ran our diagnosis scheme

on a Matlab simulation, with white Gaussian noise added to the measurements. For the following

examples, we seek to diagnose abrupt and incipient faults in pipes R1, R2 and R12 only, using a

strict subset of measurements, �ows F1, F12, and F2. Table 14 shows the fault signature matrix for

these faults and measurements. In these examples, we assume k = 2 and s = 300 s.

Example. Consider a run of our diagnosis scheme for an incipient fault in pipe, R12, denoted by

R+i
12 , with ∆i

R12
= 5, is introduced at time step, t = 20 s. The fault detector detects a decrease in

measurement F12 at t = 24 s. Based on this observed decrease in f5, the fault hypotheses, R+i
12 ,

R+a
2 , and R+i

2 are generated. At t = 30 s, F12 deviation is mapped onto a 0− change. Qual-FI
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Table 14: Selected fault signatures for the two-tank system
Fault F1 F12 F2

R+a
1 −+ 0+ 0−

R+i
1 0− 0+ 0−

R+a
12 0+ −+ 0+

R+i
12 0+ 0− 0+

R+a
2 0+ 0− −+

R+i
2 0+ 0− 0−

cannot re�ne the fault hypotheses further based on this observed deviation. At t = 51 s, an increase

in �ow F1 is observed, and by t = 70 s, this increase is con�rmed to be a gradual increase. Again,

this observation does not result in any re�nement of the fault hypotheses. Since all measurements

are observed to have deviated from nominal, Quant-FHRI is invoked. Two separate particle �lter

estimators, one for R+i
12 , and the other R+i

2 and R+a
2 faults are initiated. The DBNs for these fault

models are shown in Fig. 35, and explained above. For the two tank system examples, ∆max
t = 10 s.

Hence, we start tracking the observed measurements stored from t = 15 s onwards with the two

di�erent particle �lter estimators. The measurement estimates obtained using the two di�erent fault

models are shown in Fig. 36. Z-tests indicate a deviation in the measurement estimates obtained

using the R+i
2 /R+a

2 model. Since the fault in R12 is incipient, the particle �lter estimates made using

the R+i
12 fault model do not show an initial divergence before converging to the observed measurement

values. Therefore, the true fault is isolated to R+i
12 . A window-based symbol generation scheme, when

applied to the estimate of R12 shows a 0+ symbol, thus validating that the resistance, R12 indeed

has an incipient fault. While the actual value of ∆i
R12

is 5, our particle �ltering scheme estimates

∆i
R12

to be 4.835. The plot for the estimated R12 parameter is shown in Fig. 37. We have repeated

this experiment for multiple runs, and the average results are presented in Table 16.

Example. Consider another run of our diagnosis scheme for an abrupt fault in pipe, R1, denoted

by R+a
1 , with ∆a

R1
= 5, is introduced at time step, t = 20 s. For this experiment, we assume only

measurements F12 and F2 are used for diagnosis. The fault detector �rst detects an increase in

measurement F12 at t = 26 s. This results in the generation of fault hypotheses R+a
1 and R+a

1 .

The DBN model for these fault hypotheses is shown in Fig. 35(c). At t = 42 s, F12 is determined

to show an 0+ deviation, and F2 is determined to show an 0− deviation at t = 129 s. The fault

hypotheses are consistent with both observed deviations, and hence cannot be re�ned further using

Qual-FI. Quant-FHRI is initiated at t = 15 s, using the single particle �lter invoked on the DBN

fault model shown in Fig, 35(c). The measurement estimates obtained using this fault model are

shown in Fig. 38. Since the true fault is an abrupt fault in R1, the particle �lter estimates diverge
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(a) Measurement estimates using R+i
12 fault model.
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(b) Measurement estimates using R+i
2 /R+a

2 fault model.

Figure 36: Results of diagnosing fault R+i
12 using Quant-FHRI Approach 1.
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Figure 37: Estimated slope of the true fault R+i
12 using Quant-FHRI Approach 1.

from the observed measurement values till the unknown R1 parameter estimates converge to the true

value. At this point, the measurement estimates converge to the observed measurements. Whether

the true fault is R+i
1 or R+a

1 is determined using the hypothesis testing scheme, which shows the

estimated fault parameter to have a 0 slope, implying the estimate of R1 has converged to the actual
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Figure 38: Results of diagnosing fault R+a
1 using Quant-FHRI Approach 1.

value. The plot for the estimated R1 parameter is also shown in Fig. 38. While the actual value of

∆a
R1

is 5, our particle �ltering scheme estimates ∆a
R1

to be 5.192.

Approach 2: Including Fault Magnitude or Slope as State Variable

Generating DBN Fault Models

In this approach, a separate fault model is generated for each abrupt and incipient fault hypothesis.

The DBN fault model for abrupt fault p±a is derived by augmenting the nominal system model

with the abrupt fault magnitude, ∆a
p, as an extra state variable. The DBN fault model for the

incipient fault p±i is derived from the nominal DBN model by augmenting it with two additional

state variables, the slope of the incipient drift, ∆i
p, and the faulty parameter, p(t), itself. This

additional state variable sums the value of the incipiently evolving parameter over time.

Example. The model of a two-tank system with an abrupt R±a12 fault includes the additional state

variable ∆a
R12

. We assume that the magnitude of this bias is constant, i.e., ∆a
R12

(t+ ∆t) = ∆a
R12

(t),

where t ≥ tf . We generate the faulty system model by replacing all occurrences of R12 in the

nominal model with R12 ± ∆a
R12

(t) × R12. Fig. 39(a) shows the DBN model for this fault. The

model of a two-tank system with an incipient R±i12 fault includes two additional stochastic variables,

∆i
R12

, and R12, when compared to the nominal system. We assume that the slope is constant, i.e.,

slope ∆i
R12

(t + ∆t) = ∆i
R12

(t). The fault parameter R12(t) is included as an additional stochastic

variable that evolves according to the equations R12(t+ ∆t) = R12(t)±∆i
R12

(t)×∆t, and replaces

all occurrences of R12 in the nominal model. The DBN model for fault R±i12 is shown in Fig. 39(d).

The DBN models for fault hypotheses R±a2 , R±a2 , R±a1 , and R±i1 are also shown in Fig. 39.
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Figure 39: Separate DBN models for abrupt and incipient faults in the same parameter in Quant-
FHRI Approach 2.

Tracking Faulty Measurements and Post Processing Step

Once the DBN fault models are generated, the particle �lter estimator is invoked to track the faulty

system behavior with the di�erent fault models. In this scheme again, we assume that the variance

for the unknown fault slope or magnitude variables gradually decrease over time to a minimum

value. Also, in this Quant-FHRI approach, we use an auxiliary particle �ltering (APF) scheme for

state estimation [12, 112] to obtain an improved performance as compared to the standard particle

�ltering scheme in the presence of faults. In APF, �rst the particles are propagated to the next time

step (in an attempt to �look-ahead� in the future), and resampled to retain the set of most likely

state estimates. The likelihood weights are obtained based on this resampled set of particles. As a

result, the posterior density function is better approximated in APFs.
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The pseudocode for the generic APF scheme is presented in [12]. Unlike the standard particle

�lter, in each step of the APF, �rst a sample of the particle index k is drawn proportional to the

likelihood of some reference point, µ
(i)
t , that is a characterization of xt, given x(i)

t−1, i.e., the state

transition model, such as the mean. Hence,

k(i) ∼ P (i = k|zt) ∝ w
(i)p(zt|µ(i)

t )
t .

These indices are the �auxiliary variables� that are used as in an intermediate step. Once the indices

are obtained, these are resampled, to retain the indices that result in the most likely state estimates.

Based on the sampled indices, the conditional samples of states are drawn, as follows:

x
(i)
t ∼ P (xt|xk

(i)

t−1).

Then, as a last step of each iteration, the weights of these particles are updated as follows:

w
(i)
t ∝

P (zt|x(i)
t )

P (zt|µk
(i)

t )
,

to account for the mismatch between the likelihood at the actual sample and the predicted point

µk
(i)

t .

A Z-test is employed to detect signi�cant deviations from nominal in estimated measurements,

and drop fault hypotheses corresponding to the fault model used by a particle �lter to generate

these deviant measurement estimates. Since the ∆a
p or ∆i

p variables are included in the model as

state variables in every fault models, the magnitude or slope of the true fault is considered to be

that estimated directly by the particle �lter for the true fault model, and no post processing step is

required.

Illustrative Examples

Example. Fig. 40 presents the results of Quant-FHRI using the APF-based approach for the same

R+i
12 fault discussed earlier. As expected, the estimates from the wrong fault model deviated from

the observed measurements quickly, isolating R+i
12 as the true fault. Unlike in the previous example,

the fault slope ∆i
R12

is directly estimated. The mean value of ∆i
R12

is obtained to be 5.182, while

the real value was 5. The plots comparing the estimates of R12 and ∆i
R12

to the actual values is

presented in Fig. 41.
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(a) Measurement estimates using APF on R+i
12 fault model.
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(b) Measurement estimates using APF on R+i
2 fault model.

Figure 40: Results of diagnosing fault R+i
12 using Quant-FHRI Approach 2.

200 400 600 800
500

1000

1500

2000

2500

3000

3500

4000

4500

Time (s)

R
es

is
ta

nc
e 

(N
s/

m5 )

Resistance R
12

200 400 600 800

−1

0

1

2

3

4

5

6

7

8

9

Time (s)

R
es

is
ta

nc
e 

(N
s/

m5 )

Fault Slope ∆
R

12

i

 

 

Estimated

Actual

Figure 41: Estimated values of the true fault R+i
12 and fault slope ∆i

R12
using Quant-FHRI Approach

2.

Example. For the R+a
1 fault scenario, presented earlier, the APF-based Quant-FHRI scheme re-

quires the invocation of two particle �lters instead of just one in the earlier example. One of

these APFs operate on the R+a
1 model, while the other operates on the R+i

1 DBN model, shown in

Figs. 39(c) and 39(f), respectively. The estimates of measurements obtained using these two di�erent

fault models are shown in Fig. 42. While the estimates using the incorrect fault model, R+i
1 deviates

from the observed measurements, estimates using the true fault model, R+a
1 eventually converge
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(a) Estimates by the APF using the R+i
1 fault model.
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(b) Estimates by the APF using the R+a
1 fault model.

Figure 42: Results of diagnosing fault R+a
1 using Quant-FHRI Approach 2.

to the observed measurements, and the fault magnitude parameter, ∆a
R1

converges to 5.063, which

is close to the true value of 5. Hence, we can see that this approach yields a comparable fault

identi�cation result as the earlier approach, but is less computationally e�cient since this approach

required an extra particle �lter compared to the earlier approach.

Approach 3: Computing Maximum Likelihood Estimate of Fault Parameter

Generating DBN Fault Models

An alternate approach to state vector augmentation is a maximum likelihood scheme, where the fault

parameter is included as an input to the DBN. We derive the analytical expression for the maximum

likelihood estimate (MLE) [110] of the faulty parameter in terms of other system variables. The

DBN fault model does not contain any extra state variables compared to its nominal DBN model.

Similar to Quant-FHRI approach 1, we have the same DBN fault model representing both incipient

and abrupt faults in the same parameter. Fig. 43 shows the DBN fault models for approach 3, with
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(a) DBN model for R±a
12 and R±i

12 . (b) DBN model for R±a
2 or R±i

2 . (c) DBN model for R±a
1 and R±i

1 .

Figure 43: Single DBN model for both abrupt and incipient faults in the same parameter in Quant-
FHRI Approach 3.

the faulty parameter included as a DBN input. The procedure for calculating the values of the fault

parameters is presented next.

Tracking Faulty Measurements and Post Processing Step

Given this MLE expression, the initial values of the state variables and the unknown parameter, and

the observed measurements, we �rst perform a propagate and update step to get the estimates of

the state variables in the present time step. Then, we use these state estimates to compute the MLE

value of the unknown parameter. This value of the unknown parameter will be used to estimate the

state variable values in the next time step, and so on. Similar to Quant-FHRI approach 1, since

the same DBN model can represent multiple fault hypotheses, an additional windowing-based post

processing scheme is needed to isolate between the di�erent fault hypotheses the single fault DBN

model represents and correctly identify the true fault parameter.

Illustrative Examples

Example. As an example, let us consider identifying the parameter R12 in the R+i
12 incipient fault

scenario described in earlier examples in this section. Since we assume that every random variable

in the two tank system is sampled from a Gaussian normal distribution, and each measurement

variable is independent of other measurements, i.e., the sensor noise covariance matrix is diagonal,

the negative log likelihood, L, is computed as follows:

L =
(q2 − hq2)2

σ2
q2

+
(q7 − hq7)2

σ2
q7

+
(f3 − gf3)2

σ2
f3

+
(f5 − gf5)2

σ2
f5

+
(f8 − gf8)2

σ2
f8

,
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(a) Estimates of measurements for R+i
12 fault scenario using MLE with noise variance

of 4× 10−8 m6/s2.
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(b) Estimates of measurements for R+i
12 fault scenario using MLE with noise vari-

ance of 5× 10−12 m6/s2.

Figure 44: Results of diagnosing fault R+i
12 using Quant-FHRI Approach 3.

where hxi
denotes the state transition function that de�nes xi(t)|x(t−1), gyj

denotes the observation

model yj(t)|x(t), and σ2
n denotes the variance in the random variable n. To analytically obtain the

MLE expression for R12, we equate the partial derivative of L with respect to R12 to 0, i.e.,
∂L
∂R12

= 0

and solve for R12 to obtain

RMLE
12 =

1
f5(t)

(
q2(t)
C1
− q7(t)

C2

)
.

Fig. 44 shows the estimate of the measurements and R12 obtained using this approach for two

situations, one where a noise of variance 4 × 10−8 m6/s2 was added to each sensor, and the other

where the noise variance for each sensor was 5×10−12 m6/s2. As we can see, this approach is highly

sensitive to noise. The estimates for R12 parameter for the two scenarios are shown in Fig. 45.

Example. The MLE expression for R1 can be obtained in a manner similar to the one shown above.

By setting
∂L
∂R1

= 0, we get the following expression for R1:

RMLE
1 = −q2(t− 1)

C1

(
q2(t)− q2(t− 1) +

q2(t− 1)
C1R12

− q7(t− 1)
C2R12

− Fin
)−1
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(a) Estimates of R12 parameter using MLE with
noise variance of 4× 10−8 m6/s2.
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(b) Estimates of R12 parameter using MLE with
noise variance of 5× 10−12 m6/s2.

Figure 45: Estimation results of R12 using Quant-FHRI Approach 3.

Note that R1 does not appear in the observation model, and hence, the derivation of its MLE

expression is more involved. Fig. 46 shows the estimate of the measurements and R1 obtained using

this approach for two situations, one where the noise is minimal, and the other where the noise

is acceptable. As we can see from the plots in Fig. 47, the combined particle �ltering and MLE

approach for R1 is not very robust to sensor noise and state estimation errors.

Discussion

We now compare the three Quant-FHRI approaches we presented and evaluate the usefulness of each

approach for our combined qualitative-quantitative fault diagnosis approach. In approach 2, the fault

magnitude or slope variable are explicitly included in the DBN fault model, resulting in di�erent

DBNs to represent abrupt and incipient faults in the same parameter. Hence, unlike approaches 1

and 3, approach 2 does not require any additional post processing step for discriminating between

the di�erent fault hypotheses the same DBN model might represent. As the fault models are unique,

it is also more likely that the incorrect fault models will result in measurement estimates that quickly

diverge from the observed measurements.

However, e�ciency is also an important criteria for online diagnosis. Unlike approaches 1 and 3,

where a single DBN fault model represents both abrupt and incipient faults in the same parameter,

in approach 2, a much larger number of particle �lters have to be invoked, one for every unique

fault hypotheses. Hence, approaches 1 and 3 are well-suited for our diagnosis approach. Another

bene�t of approaches 1 and 3 is that the estimates of the fault slope for incipient faults made using

approaches 1 and 3 will be less noisy compared to approach 2, since the fault slope included as a

state variable in approach 2 is essentially the derivative of the incipiently changing parameter, and
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(a) Estimates of measurements for R+a
1 fault scenario using MLE with noise vari-

ance of 4× 10−8 m6/s2.
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(b) Estimates of measurements for R+a
1 fault scenario using MLE with noise vari-

ance of 5× 10−12 m6/s2.

Figure 46: Results of diagnosing fault R+a
1 using Quant-FHRI Approach 3.
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(a) Estimates of R1 parameter using MLE with
with noise variance of 4× 10−8 m6/s2.
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(b) Estimates of R1 parameter using MLE with
noise variance of 5× 10−12 m6/s2.

Figure 47: Results of diagnosing fault R+a
1 using Quant-FHRI Approach 3.

hence prone to being very noisy. When the faulty parameter is included as a state variable, the

estimates are less noisy.

Ideally, approach 3 would best suit our needs, computation wise, since the order of the system

is not increased for fault identi�cation. However, as we observed from the examples of the two
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tank system, Quant-FHRI approach 3 is highly sensitive to noise and estimation errors, and hence

fails to achieve our design goal of diagnosis schemes that are robust to sensor noise and modeling

inaccuracies. The extent of this sensitivity depends on the system parameters. Also, the generation

of analytical expression for maximum likelihood estimates of the faulty parameter, can be tedious

for linear systems. For nonlinear systems, the resultant MLE expression can be di�cult to derive.

So, we choose approach 1 for our preferred Quant-FHRI scheme. This implies that additional Z-

test-based post processing steps will be required to discriminate between the two pro�les. However,

approach 1 will still be computationally more e�cient than having to invoke a separate particle

�ltering-based tracking scheme for every fault hypotheses, as well as robustness to sensor noise.

Structural Observability

It is well-known that the state variables of a system can be correctly and accurately estimated from

the system measurements only if the system is observable, i.e., the values of all state variables can be

estimated given the past and current values of the available measurements [113]. Accurate estimation

of state variables is necessary to correctly track dynamic system behavior, and to correctly estimate

fault hypothesis parameter values.

The traditional schemes for analyzing observability are well-de�ned for linear systems, and de-

pend on the numerical values of the system parameters. However, since our systems can be nonlinear,

we explore the structural observability property of systems instead, which can be determined through

an analysis of the system bond graph [14, 15, 114]. Structural observability is de�ned for the class

of systems having similar structure, and not on the numerical values of the system parameters.

Structural observability is also de�ned for nonlinear systems in which the nonlinearities are in the

system components, and not in the system structure. In this section, we establish the theoretical

background for structural observability analysis of bond graphs. Structural observability is a less

strict property than traditional numeric observability, since structural observability is determined

based on system structure and not parameter values. Even if the system is structurally observable,

certain values of the parameters can render this system unobservable. However, a slight perturbation

of these parameter values can help regain the observability properties, as we explain below.

Consider the basic state-space formulation of a nth-order LTI system:

Ẋ = AX + BU (18)

Y = CX +DU, (19)
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where X, U, and Y represent the state, input and measurement variables of the system, respectively,

and A, B, C, and D are matrices with appropriate dimensions.

De�nition 10. [113] (Observability). A system is termed observable if its initial state variables,

Xt0 , at time t0, can be derived from the knowledge of inputs, Ut0:tf , and outputs, Yt0:tf , in the

time interval [t0, tf ], where tf is the current time.

It is well known that a system is observable if its observablity matrix,

O =



C

CA

. . .

CAn−1


,

is of full rank, i.e., rank(O) = n.

From above, system observability is a function of the numeric values of the system parameters. An

alternative approach has been proposed that is based on the analysis of the system structure [14,15,

114,115]. This notion of structural observability holds for a class of structurally equivalent systems.

If a system is structurally observable, but its O matrix is not of full rank, i.e., rank(O) < n, the

rank can be restored to n by perturbing the values of elements of its A and C matrices [14].

One of the earliest work on structural observability is presented in [115], where the author

analyzes the structured graph, G(A,B, C,D), of a system to determine if the system satis�es the

property of structural observability. A structured graph can be completely described by its adjacency

matrix, the structured matrix M . Because the elements of the adjacency matrix M are either 0 or

1, this matrix is often called a boolean matrix, we can denote this adjacency matrix as

M =

 AB BB

CB DB

 ,
with the index �B� denoting the boolean counterparts of a matrix.

A graph theoretic approach to analyzing the structural properties of a system was proposed

in [115], where the author notes that a system is structurally observable i�:

1. the states (or nodes) are all output reachable

2. term-rank

 AB
CB

 = n, where n is the number of state variables in the system.
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The term-rank of the matrix M is given by the number of elements in a maximal permutation

matrix contained in M . A permutation matrix is a square (0, 1)-matrix that has exactly one entry 1

in each row and each column and 0's elsewhere. Each such matrix represents a speci�c permutation

of m elements, and when used to multiply another matrix, can produce that permutation in the

rows or columns of the other matrix.

Example. Consider the state matrix of an electrical network may have

A =

 − R
L1

R
L2

R
L1

− R
L2

 .
While A can never be of rank 2, its associated boolean adjacency matrix

AB =

 1 1

1 1

 ,
has a term-rank of 2.

Thus, information is lost when the boolean adjacency matrix is used for structural analysis.

Bond graphs provide an elegant approach for determining structural observability of a system [14]

without losing the important information present in functional relationship between the elements

of the matrix. The notion of structural rank (struct-rank) is central to establish the necessary and

su�cient conditions for this bond graph-based structural analysis procedure

De�nition 11. [14] (Structural Rank). Structural rank of a matrix is de�ned as the maximal

rank of this matrix as a function of its free parameters, taking into account the relations between

parameters.

Example. Consider the same A matrix we presented in an earlier example to illustrate the notion

of term-rank. If we now evaluate the structural rank of this matrix, we obtain

struct-rank


 − R

L1

R
L2

R
L1

− R
L2


 = 1,

since the second row of the matrix is linearly dependent on the �rst row.

In terms of bond graphs, given the bond graph model of a system with matrices A, B, C, and D,

the system is structurally observable i� [14]:
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Figure 48: Junction Structure.

1. every dynamical element of the BG in integral causality is causally connected to a measurement

sensor, and

2. struct-rank([At Ct]t) = n, where n is the number of state variables in the system.

Intuitively, condition 1 is satis�ed if for each independent decoupled subsystem, at least one

dynamical element in integral causality is causally connected to a measurement.

Condition 2 is satis�ed if the causality of every I and C element initially in integral causality can

be inverted to produce a valid derivative causality assignment for the BG model. In some situations,

De and Df elements may have to be changed into their dual form to assign consistent derivative

causality to the BG. This procedure for manipulating the BG to directly determine the structural

rank of matrix [At Ct]t has been presented as the following result in [14]:

struct-rank


 A
C


 = rank



S11

S21

S31


 = n− Td, (20)

where S11, S21, and S31 are components of the junction structure matrix (introduced below); and

Td is the number of dynamical elements remaining in integral causality after (i) derivative causality

assignment is performed, and (ii) the maximal number of output detectors are dualized to eliminate

as many storage elements in integral causality as possible. Hence, if every I and C element initially

in integral causality can be assigned derivative causality, Td = 0, and condition 2 above is satis�ed.

Structural analysis of a BG model can help determine the structural rank of [At Ct]t since the

structure of the BG plays a crucial role in determining the state-space equations of a system, as we

show below.

127



The junction structure (see Fig. 48) represents the structure of a BG and contains information

about the BG elements, and how they are interconnected (this is independent of the numerical values

of the parameters). The junction structure can be represented using a junction structure matrix,

S [15]:


Ẋi

Din

Y

 =


S11 S12 S13 S14

S21 0 S23 S24

S31 0 S33 S34





Zi

Ẋd

Dout

U


(21)

where the state vector Xi is composed of energy variables p =
∫
e dt (respectively, q =

∫
f dt) on I

(respectively, C) elements) in integral causality (denoted by subscript i), Xd is the vector of energy

elements of I and C elements in derivative causality, Y is the vector of system outputs, and U is

the vector of system inputs. Din and Dout represent the e�ort or �ow variables imposed upon, and

imposed by the R elements, respectively, as shown in Fig. 48. Zi and Zd denote the vector of �ow

(respectively, e�ort) variables of I (respectively, C) elements in integral and derivative causality,

respectively.

Example. Given the bond graph of the two-tank system, shown in Fig. 12(b), we have

Ẋi =

 q̇2

q̇7

 , Zi =

 ė2

ė7

 , Din =


e9

e5

e10

 , Dout =


f9

f5

f10

 , Y =


F1

F12

F2

 , and U = [f1] .

Therefore, junction structure matrix is derived to be:



q̇2

q̇7

e9

e5

e10

F1

F12

F2



=



0 0 −1 −1 0 1

0 0 0 1 −1 0

1 0 0 0 0 0

1 −1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0





e2

e7

f9

f5

f10

f1


(22)
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Basic laws associated with each component produce Dout = LDin, and Zi = FiXi, where L is a

diagonal matrix composed of R and 1
R coe�cients, and Fi is composed of 1

I and 1
C coe�cients. We

assume that the original system models do not have I an C elements in derivative causality, as these

elements can be usually collapsed into one �equivalent� inductor or capacitor in integral causality.

Hence, in this work, we assume that Xd and Zd do not exist. Therefore, the A, B, C, and D matrices

of the state-space equations of a system can be derived from its corresponding junction structure

matrix as follows [14]:

A = [S11 + S13L(I − S23L)−1S21]Fi

B = [S14 + S13L(I − S23L)−1S24]

C = [S31 + S33L(I − S23L)−1S21]Fi

D = [S34 + S33L(I − S23L)−1S24].

To prove Eqn. (20), let us assumeXi = [Xt
i1
Xt
i2

]t, withXi1 ∈ Rn−m,Xi2 ∈ Rm, and rank([S11 S12]) =

m. Given the junction structure shown in Eqn. (21), switching energy storage elements to derivative

causality, and retaining consistent causality assignments in the BG model without having to dualize

the output detectors yields a new junction structure:



Ẋi1

Zi2

Din

Y


=



0 M1 0 M2

M3 M4 M5 M6

0 M7 M8 M9

M10 M11 M12 M13





Zi1

Ẋi2

Dout

U


, (23)

where Xi1 represents I and C elements remaining in integral causality after derivative causality

assignment is performed, and Xi2 represents those I and C elements that are assigned derivative

causality.

Dualizing of detectors implies decomposing Y = [Y t1 Y t2 ]t, Y ∈ Rp, and Y1 ∈ Rp∗, where Y1

represents the sensors that are dualized, and Y2 represents those sensors that are not dualized.
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After dualizing the sensors, a new junction structure is built as follows [14]:



Ẋi

Z

D∗in

Y2


=



0 N1 0 0

N2 N3 N4 N5

0 N6 N7 N8

0 N10 0 N11





Zi

Ẋ

D∗out

U∗


, (24)

where, U∗ = [U t Y t1 ]t. In Eqn. (24), Ẋi depends only on the Ẋ variables now in derivative causality.

Equation (24) can also be obtained using the invertible matrix contained in [St11 S
t
21 S

t
31]t. Hence,

it can be concluded that rank([St11 S
t
21 S

t
31]t) = n− Td. Finally, we can prove struct-rank([At Ct]t)

= rank([St11 St21 St31]t) using the same considerations as in Appendix 1 of [14], but with matrix

[At Ct]t.

The proposed method for analyzing structural observability for linear systems is applicable to

nonlinear systems as well, as long as the nonlinearities are not linked to the system structure, and

do not change the junction structure [14]. The applicability of this bond graph-based structural

observability analysis approach to nonlinear systems is evident from the fact that the elements of

the junction structure matrix do not include any information regarding the system parameters.

Therefore, the junction structure matrix of the two-tank system would remain unchanged from that

given above if the resistance R2 is assumed to be a constant. The nonlinearity, however, becomes

evident when generating the state-space equations, since this step requires the use of Fi and L

matrices, whose elements are made of the system parameter values.

In our combined qualitative-quantitative diagnosis scheme, we ensure that the system to be

diagnosed is structurally observable, as otherwise, there is no guarantee that the particle �ltering-

based observer would generate correct estimates of states.

Case Study: Twelfth-order Electrical Circuit

In this section, we use a twelfth-order electrical circuit shown in Fig. 49(a) as a case study to

illustrate the concepts presented in this chapter. Fig. 49(b) shows the bond graph of this circuit. In

the electrical domain, the e�ort variables denote voltage di�erence across, and �ow variables denote

current through, BG elements. For example, f2 = i1 denotes the current through the inductor L1,

and e7 = v2 denotes the voltage di�erence across resistor R1. e1 = vbatt denotes the voltage imposed

by the voltage supply. De : v2 is a voltage sensor. Fig. 50 shows the DBN for the example circuit.
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(a) Schematic.

(b) Bond graph.

Figure 49: Electrical circuit models.

We present some experimental results obtained by applying our diagnosis approach to the twelfth-

order electrical circuit. In such electrical systems, usual faults include degradation in capacitors and

inductors, and increase in the resistance of resistors. Table 15 lists the speci�c faults of interest

in this system, the measurements available to diagnose these faults, and the fault signature of

each fault for the di�erent measurements. The goal of these experiments is to demonstrate that

our combined qualitative-quantitative diagnosis scheme has more discriminatory power than the

Transcend qualitative diagnosis scheme.

In our experiments, we assume all random variables, and the prior and conditional probabilities

are sampled from Gaussian Normal. The mean and variance of each hidden variable is set based on

empirical knowledge of the model. The means and variances of the observed variables, as well as

the conditional probabilities, are functions of the estimated system parameters, and the parameters

of distributions of the hidden variables. For the experiments below, we set k = 5 and s = 300 s.

System behavior is generated for a total of 500 time steps using a Matlab Simulink simulation

model and data sampled at a rate of 10 Hz. According to standard practice, white Gaussian noise

with zero mean and constant variance is added to the measurements. The measurements are saved

to a �le, and then run through our fault diagnosis scheme (implemented in Matlab) to generate our

experimental results.

We present a run of our diagnosis scheme for a speci�c fault scenario. An abrupt fault in C2,

C−a2 , with ∆a
C2

= −0.900, is introduced at time step, t = 100 s. As shown in Fig. 51, a negative
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Figure 50: DBN model of the electrical circuit.

deviation is noticed in measurement i3 at t = 101.3 s. Based on this deviation, the following fault

hypotheses are generated {C−i2 , C−a2 , R+a
2 , R+i

2 , L−i2 , L−a2 , L−i4 , L−a4 , L−i7 , L−a7 }. At t = 102.5 s, the

deviation in i3 is con�rmed to be a gradual decrease. Hence, fault hypothesis L−a4 is dropped

from consideration. At t = 102.8 s, measurement i2 shows a negative deviation, as a result of

which, the Qual-FI approach drops fault hypotheses L−i4 , L−a7 , and L−i7 from consideration. At

t = 103.9 s, measurement v3 shows a positive deviation. As a result, based on the fault signatures

shown in Table 15, the fault hypotheses are re�ned to {C−i2 , C−a2 , R+a
2 , R+i

2 }, after dropping fault

hypotheses L−a2 and L−i2 . Since these fault hypotheses cannot be further re�ned through Qual-FI

alone, Quant-FHRI is initiated. We start tracking the observed measurements from time t = 97.5 s,

and instantiate two particle �lters, one using a DBN model for fault C−i2 /C−a2 , and the other using a

DBN model for fault R+i
2 /R+a

2 , where the faulty parameter, i.e., in this case, parameters C2 and R2

are introduced as additional state variables in the nominal system DBN shown in Fig. 50. Fig. 52

shows the error in estimating the di�erent measurements using the C2 DBN fault model. As is

expected, at the time the fault is introduced, the fault parameter value is unknown. Hence, it takes

some time for the correct fault model estimates to converge to the observed measurements, as we
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Table 15: Selected fault signatures for the electrical circuit
Fault i1 i2 i3 v1 v2 v3 i4 v4 v5 v6

C−a2 , C−i2 , R+a
2 , R+i

2 0− 0− 0− 0+ 0+ 0+ 0+ 0+ 0+ 0+
C−a3 , R+a

4 0− 0− 0+ 0+ 0+ 0− 0+ +− 0+ 0+
C−i3 , R+i

4 0− 0− 0+ 0+ 0+ 0− 0+ 0+ 0+ 0+
C−a4 0− 0− 0+ 0+ 0+ 0− 0− 0+ +− +−

C−i4 , R+a
6 , R+i

6 0− 0− 0+ 0+ 0+ 0− 0− 0+ 0+ 0+
L−a2 0+ 0− 0− −+ −+ 0− 0− 0− 0− 0−
L−i2 0+ 0− 0− 0− 0− 0− 0− 0− 0− 0−
L−a3 0+ +− +− −∗ −+ 0+ 0+ 0+ 0+ 0+
L−i3 0+ 0+ 0+ 0− 0− 0+ 0+ 0+ 0+ 0+
L−a4 0+ 0+ −+ 0− 0− 0− 0− 0− 0− 0−
L−i4 0+ 0+ 0− 0− 0− 0− 0− 0− 0− 0−
L−a7 0+ 0+ 0− 0− 0− 0+ −+ 0− 0− −∗
L−i7 0+ 0+ 0− 0− 0− 0+ 0− 0− 0− 0−
R+a

7 0− 0− 0+ 0+ 0+ 0− 0− 0+ 0− +−
R+i

7 0− 0− 0+ 0+ 0+ 0− 0− 0+ 0− 0+
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Figure 51: Detection of C−a2 fault through tracking system behavior using nominal DBN model.

can see for the plots of measurements, v2, i2, i3, and v3 in Fig. 52. Estimates made using the

incorrect R2 DBN fault model, on the other hand, do not converge to the observed faulty behaviors,

as the estimation errors in Fig. 53 show. A statistical test is employed on the sum of estimation

errors across all the measurements to detect statistically signi�cant sum of mean squared estimation

errors. Fig. 54 shows the sum of mean squared estimation errors obtained using the two di�erent

fault models. The Z-test detects a statistically signi�cant sum of mean squared estimation error

obtained by both the DBN fault models at times t = 101.2 s and t = 101.3 s, respectively. However,

the sum of mean squared estimation errors from the R2 DBN fault model do not converge even

after sd = 150 s, whereas, the sum of mean squared estimation errors from the C2 DBN fault model

converges to the observed measurements from t = 103.7 s. Hence the true fault is isolated to be

C±a2 /C±i2 fault at t = 251.3 s. In order to isolate whether the fault is an abrupt or incipient fault in

C2, we run a window-based Z-test on the di�erence between the known nominal parameter value and

the estimated state variable. This approach is similar to the one used by Transcend for symbol
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generation. At t = 171.7 s, the statistical test shows that the estimated parameter evolves in a −0

manner, implying it is an abrupt fault, and that it converges . By taking a mean of the values for

20 time steps after the abrupt fault is isolated, we obtain ∆a
C2

= −0.897. The actual value of ∆a
C2

is −0.900. The estimate for the faulty parameter is shown in Fig. 55.
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Figure 52: Tracking faulty system behavior using the C±i2 /C±a2 DBN fault model.
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Figure 53: Tracking faulty system behavior using the R±i2 /R±a2 DBN fault model.
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Figure 54: Sum of mean squared estimation errors obtained by C2 and R2 DBN fault models.
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Figure 55: Estimate of C2 obtained using the C2 DBN fault model.

In another scenario, we diagnose an incipient fault in L3, denoted by L−i3 , with ∆i
L3

= −0.050,

injected at time t = 20 s. At time t = 69.4 s, a positive deviation from nominal is observed in

measurement i3 (see Fig. 56). This results in the generation of fault hypotheses {C−a3 , C−i3 , R+a
4 ,

R+i
4 , C−i4 , C−a4 , R+a

6 , R+i
6 , L−a3 , L−i3 , R+a

7 , R+i
7 }. At t = 92.3 s, a positive deviation is observed in

measurement i2, as a result of which, the fault hypotheses set is re�ned by the Qual-FI scheme to

{L−a3 , L−i3 }, based on the fault signatures shown in Table 15. At t = 100.6 s, the deviation in i3 is

con�rmed to be 0+, which results in the fault hypothesis L−a3 being dropped from consideration and

the fault hypotheses set to be re�ned to the single fault hypothesis L−i3 . Since the fault hypotheses

set is re�ned to a single fault by Qual-FI, we invoke the Quant-FHRI to perform fault identi�cation

only. We start tracking the observed measurements using a L3 DBN fault model from t = 17.5 s.

After sd = 150 s from the time the faulty observations are tracked, a Z-test based scheme is initiated,

and this statistical test con�rms that the fault is indeed an incipient L−i3 fault at t = 172.3 s. The
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Figure 56: Detection of L−i3 fault through tracking system behavior using nominal DBN model.
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Figure 57: Estimate of L3 obtained using the L3 DBN fault model.

estimates of L3 obtained from our Quant-FHRI approach is presented in Fig. 57. The Quant-FHRI

estimates ∆i
L3

= −0.047, while the true value of is ∆i
L3

= −0.050.

Table 16 summarizes the results of the di�erent diagnosis experiments we ran on the electrical

circuit example. For each experiment, we conducted 5 runs, and took the average of the time to fault

detection, time to single fault isolation (either by Qual-FI alone, or, by both Qual-FI and Quant-

FHRI), time for the estimated parameter value to convergence to the true value, and the percentage

estimation error in the estimates of the true fault parameter. The estimates of the faulty parameters

made using the correct fault models for each respective fault for one of these experimental runs is

shown in Fig. 58. When compared to the Transcend diagnosis scheme, this combined diagnosis

approach allows more precise diagnosis approach. For example, using the qualitative isolation scheme

alone, we could not have isolated fault C−a2 and C−i2 from amongst {C−a2 , C−i2 , R+a
2 , R+i

2 }. Similarly,

Transcend would not have been able to discriminate between C−i3 and R+i
4 .
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Table 16: Results of Centralized Diagnosis Experiments on the Twelfth-Order Electrical Circuit
Experiment Fault Magnitude Detection Isolation Convergence % Mean

Time (s) Time (s) Time (s) Absolute Error

1 C−a2 −0.90 1.26 53.80 4.76 0.27
2 C−i2 −0.55 32.82 53.80 11.52 6.05
3 L−a3 −0.90 0.50 3.98 5.08 0.49
4 L−i3 −0.05 49.62 82.9 12.40 5.50
5 C−a3 −0.90 0.2 2.8 3.26 0.12
6 R+a

7 +5.00 196.8 377.4 115.6 0.48
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Figure 58: Parameter identi�cation results for electrical circuit example.

Discussion and Summary

Particle �lter estimators have been used extensively for system health monitoring and diagnosis of

continuous and hybrid systems [13,58]. The general approach involves the system to include discrete

nominal and fault modes, with the evolution of the system in each discrete mode being de�ned using

di�erential equations. The process of diagnosis then involves tracking the observed measurements

using a PF that runs on the comprehensive system model till the particles eventually converge to a

discrete fault mode. PFs have also been used to diagnose parametric incipient and abrupt faults [77].

The usual approach for using PFs for diagnosis, however, cannot alleviate the problem of sample

impoverishment, wherein particles in faulty state (with typically very low probability, and hence low
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weights) are dropped during the re-sampling process. Even though several solutions to this problem

have been proposed [4], the diagnosis scheme still has to rank the di�erent fault hypothesis based

on their likelihoods, and report the most likely fault mode that justi�es the observations best. Our

single fault assumption allows us to reduce the e�ects of the sample impoverishment problem to

some extent by having a separate fault model for each fault hypothesis. Also, we do not rank the

di�erent fault hypotheses, and drop candidates based on their inability to track the observed faulty

measurements. However, the issue of sample impoverishment remains when we need to estimate the

unknown faulty parameter correctly, as discussed above.

In [116], the authors propose a combined qualitative-quantitative diagnosis scheme, where they

combine look-ahead Rao-Blackwellised PFs (RBPFs) with the consistency-based Livingstone 3 (L3)

approach for diagnosing faults in hybrid systems. In this approach, the nominal RBPF-based ob-

server tracks the system evolution till a fault is detected, after which L3 generates a set of fault

candidates that are then tracked by the fault observer (another RBPF). All the fault hypotheses are

included in the same model, and tracked by the fault observer. In contrast, our approach executes

the qualitative and quantitative fault isolation schemes in parallel, and uses separate fault models

for each fault candidate.

In [111], the authors propose an approach for e�cient combined state and parameter estimation

based on the auxiliary particle �ltering algorithm [12, 112]. The approach presented in [111] avoids

the problem of loss of information through kernel smoothing of parameters, and gradually decreasing

the variance of the unknown parameter as time progresses. In this paper, the authors emphasize

that assuming constant parameters to be time varying, and applying standard state estimations

approaches for combined parameter and state estimation, results in a loss of information, and may

not give accurate estimates of the unknown �constant� parameter. While this approach is applicable

to estimating abrupt fault parameters, we cannot directly apply this approach if the parameter

is time varying, as is the case for incipient faults. Therefore, we have adapted the approach of

using decreasing variance to apply to both incipient and abrupt fault scenarios within a common

framework.

In the next chapter, we improve upon this centralized Bayesian diagnosis scheme by distributing

the diagnosis task amongst several distributed diagnosis. Just like in Chapter IV, our Bayesian

diagnosis approach necessitates careful construction of the distributed diagnosers to guarantee that

each distributed diagnoser generates globally correct diagnosis results through local analysis, without

the need of a centralized coordinator, without the exchange of partial diagnosis solutions amongst

the individual diagnosers, and through minimal communication of measurement values amongst
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themselves. We achieve this by partitioning the global system DBN into DBN factors that are

decoupled across time, such that the random variables in each factor is conditionally independent

of the variables in all other factors, given some shared measurements; and invoking our Bayesian

diagnosis approach on each DBN factor independently. Also to ensure accurate state estimation,

we analyze the structural observability properties of system bond graph to guarantee that these

factors not only possess the structural observability property individually, but together they retain

the observability properties of the global system.
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CHAPTER VI

DISTRIBUTED BAYESIAN DIAGNOSIS OF CONTINUOUS SYSTEMS

In this chapter, we present a distributed Bayesian scheme for the diagnosis of incipient and abrupt

faults. This work extends the DBN-based approach presented in Chapter V to a distributed di-

agnosis scheme, where the qualitative diagnoser for each distributed diagnoser satis�es all of the

properties of the distributed diagnosers of Chapter IV, and each of the corresponding DBN-based

local quantitative diagnosers also operates independently of the other diagnosers. Together, the

set of distributed diagnosers can diagnose all single faults of interest in the DBN. This distributed

diagnosis approach addresses the drawbacks of our centralized Bayesian diagnosis approach, such as

single points of failures and poor scalability as systems become larger and more complex. In addition,

the distributed scheme is more computationally e�cient as compared to the centralized scheme, but

without compromising on accuracy of the diagnosis results. Fig. 59 shows the architecture of the

distributed diagnosis scheme that we have developed and tested in this chapter.

The basis of our diagnoser design is a procedure for factoring the global system DBN into DBN

factors (DBN-Fs), such that the random variables in each DBN-F are conditionally independent

of the random variables in all other DBN-Fs, given some subset of communicated measurements.

The factors are generated by expressing some of the state variables as algebraic functions of the

subset of chosen measurements, and making these variables as �input� nodes to the DBN factors.

As a result, a number of across time causal links that are primarily responsible for the exponential

nature of the computations are eliminated. It is the removal of these across-time links that results

in the conditional independence of variables in DBN-Fs given the set of original and newly created

input variables. The conditional independence amongst the random variables between the DBN-Fs

makes it possible to invoke an independent DBN-diagnoser on each factor, such that each diagnoser

takes on the form of the centralized diagnoser discussed in Chapter V. Independence among the

factors is achieved by converting some of the system measurements to input variables and replacing

the across-time causal links to these state variables with intra-time causal links from the inputs to

these state variables. In this chapter, we establish that the independent estimation algorithms for

each DBN-F generates correct and accurate inference results by guaranteeing that each DBN-F, by

construction, represents a structurally observable subsystem, and together, the DBN-Fs retain the

structural observability property of the entire system. We determine if a subsystem represented
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Figure 59: The distributed diagnosis architecture.

by a DBN-F is structurally observable by analyzing the bond graph factor that corresponds to the

DBN-F.

This chapter is organized as follows. We start by formulating the diagnoser design problem

by factoring the global system DBN, and then present the design algorithms for generating the

distributed diagnosers. The next section presents how each distributed diagnoser is implemented

based on a DBN-F, and establishes the proof that our distributed diagnosers generate globally correct

diagnosis through local analysis. We then present some experimental results to demonstrate the

e�ectiveness of our factored estimation and distributed diagnosis scheme. We conclude the chapter

with a comparison of our distributed Bayesian diagnosis scheme to some related work, followed by

a discussion of the results, and summary of accomplishments of this approach.

Formulating the Design Problem for Distributed Diagnosis

Formally, we de�ne our diagnoser design problem as follows:

Problem 3. Given a system S modeled using a global DBN D = (X,U,Y), partition D into the

maximal number of conditionally independent DBN Factors (DBN-Fs), Di = (Xi,Ui,Yi), i ∈ [1,m],

such that each DBN-F is observable. Then, once generated, implement a combined qualitative-

quantitative diagnoser for each DBN-F.

Observability and conditional independence of each DBN-F are necessary conditions for ensuring

e�cient and accurate state estimates when the estimation algorithm is applied to each DBN-F

separately. If a system is not observable, there is no guarantee that the estimates obtained from the

particle �ltering-based estimation schemes are correct.

In the following, we formally de�ne DBN-Fs and the notions of observability and conditional

independence in the context of DBN-Fs. We illustrate these concepts using a tenth-order electrical
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(a) Schematic.

(b) Bond graph.

Figure 60: Models of the tenth-order electrical system.

circuit shown in Fig. 60(a). The observed measurements in this electrical circuit are the currents

i1, i2, . . . , i8, and the voltages v1 and v2. The battery vbatt drives the circuit.

De�nition 12 (DBN Factor). A DBN Factor (DBN-F), Di = (Xi,Ui,Yi), i ∈ [1,m], of DBN

D = (X,U,Y) is a subset of DBN, D, such that (i)
⋃

Xi ⊂ X, (ii)
⋃

Yi ⊂ Y, (iii)
⋃

Ui =

U
⋃

(Y − ∪Yi), and (iv) every Xi and Yi in Di is conditionally independent from other random

variables in all other DBN-Fs, given the inputs, Ui.

The measured variables, Y − ∪Yi, denote the subset of measurements that are used as inputs,

and used to compute the values of states X−∪Xi. The method for deriving this subset is discussed

later in the chapter. In order to be e�ective for distributed diagnosis, and ensure correct estimation

of state variables, we assume that the measurement sensors do not become faulty.

Assumption 2. Given a DBN-F, Di, we assume that the set of measurements that are treated as

input variables, i.e., (U−Ui) ∩ (Y − ∪Yi) have no faults. However, these sensors may be noisy.

De�nition 13 (Conditionally Independent DBN-F). Any DBN-F, Dj = (Xj ,Uj ,Yj), of a global

DBN, D = (X,U,Y), is conditionally independent from all its other DBN-Fs Dk = (Xk,Uk,Yk),

s.t. k 6= j, k ∈ [1,m] given Uj if (i) P (Xjt+1 |Xt−n:t ,Ut−n:t) = P (Xjt+1 |Xjt−n:t ,Ujt−n:t), and (ii)

P (Yjt |Xt ,Ut) = P (Yjt |Xjt ,Ujt).
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Example. Fig. 61(a) presents the global DBN, D, of the tenth-order electrical system. This DBN is

generated systematically from the bond graph of the tenth-order electrical system shown in Fig. 60(b)

using the approach presented in Chapter V. Fig. 61(b) shows four DBN-Fs, D1 = ({p2, q3, q7},

{i6L2}, {i8, i7, v2}), D2 = ({q13}, {i6L2,
v1L3
R6
}, {i5}), D3 = ({q19}, { v1L3

R6
, i3L4}, {i4}), and D4 =

({q25, p27}, {i3L4, vbatt}, {i2, i1}), of the global DBN,D, shown in Fig. 61(a), such that the conditions

of De�nition 12 are ful�lled, i.e.,

⋃
i∈[1,4]

Xi ⊂ X,
⋃

i∈[1,4]

Yi ⊂ Y,
⋃

i∈[1,4]

Ui = U
⋃

(Y − ∪Yi),

and, each of the four DBN-Fs shown in Fig. 61(b) is conditionally independent of all other DBN-Fs.

For example, DBN-F D2, shown in Fig. 61(b), is conditionally independent of all the other DBN-Fs,

D1, D3 and D4 given the input nodes i6L2 and v1L3
R6

because the values of the single state variable

in D2, q13, and measurement variable, i5, at time t, do not depend on any variable external to D2.

Recall that we assume that there are no errors in the measurements i6, v1 and i3, but they may be

noisy. Note that the conditional independence is established as a result of converting measurement

variables to inputs and the resultant factoring. The conditional independence relations did not exist

in the unfactored global DBN shown in Fig. 61(a), and the value of variable q13 at time step t + 1

depends on variables p9, q13, and p15 at time step t, and variables p2 and p7, among others, at time

step t− 1, and so on. The factoring of a DBN is not unique, and multiple factorings may exist for

a DBN. Fig. 61(c) and Fig. 61(d) show other possible factorings of the full DBN.

De�nition 14 (Observable DBN-F). A DBN-F, Dj = (Xj ,Uj ,Yj) is observable if the subsystem it

models is structurally observable.

Example. Consider the four DBN-Fs shown in Fig. 61(b). As we will show in the next section, each

DBN-F has a one-to-one mapping with a bond graph factor (BG-F). If the BG-F corresponding to a

DBN-F is analyzed to be structurally observable (as explained in the previous chapter), we say that

the DBN-F is observable. The four DBN-Fs shown in Fig. 61(b) corresponds to the BG-Fs shown in

Fig. 62. The two outer BG-Fs are structurally observable, as all their energy storage elements can

be assigned a preferred derivative causality (albeit by dualizing an e�ort sensor into a �ow sensor,

indicated by the shaded background, in the �rst BG-F), and every state variable a�ects at least

one sensor. The two BG-Fs in the middle, however, are not observable, since, in each of these two

BG-Fs, the single state variable does not causally a�ect the �ow sensor (whose value is determined

by the two �ow sources on the 0-junction).
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(a) Full DBN. (b) 4-factored DBN.

(c) DBN with 3 factors. (d) 2-factored DBN.

Figure 61: Factorings of the electrical system DBN.
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Figure 62: Four-factored bond graph of the electrical circuit with imposed derivative causality.

Designing the Distributed Diagnosers

Our distributed diagnoser design procedure consists of three main steps: (i) partitioning the system

DBN into maximal number of conditionally independent DBN-Fs by output injection, i.e., replacing

every state variable which can be determined as an algebraic function of at most r output measure-

ments, where r is a user-speci�ed parameter, (ii) mapping each generated DBN-F to a bond graph

factor (BG-F) and analyzing the structure of this BG-F to determine if the DBN-F is observable, and

(iii) merging every unobservable DBN-F with other DBN-Fs to possibly generate resultant observ-

able DBN-Fs. Steps ii and iii are repeated till a factoring is obtained containing the most number of

DBN-Fs that are all observable. These steps (shown in Algorithm 3) are presented in detail below.

We assume that the system to be factored is globally observable, as otherwise, no factoring with only

observable factors exist. Also, we assume that we have su�cient sensors to execute the factoring

procedure.

Step 1 - Generating Maximal Factoring

Our procedure for factoring a DBN into maximal number of DBN-Fs involves replacing one or

more of its state variables, each represented by X, by an algebraic function of at most r measured

variables, Y≤rX , where r is a user-speci�ed parameter. To identify state variables in the global DBN

that can be replaced to generate DBN-Fs, we analyze the system DBN, and for every state variable,

X, identify all single measurements, then pairs, triples, and so on, up to r measurements that this

state X can be expressed in terms of. In other words, for every X, we determine

Y≤rX =
r⋃

n=1

Yn
X ,
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Algorithm 3 Generating factors of a DBN.

Input: System DBN, D
Generate maximal Factoring1 = {D1, D2, . . . , Dn}
SetOfFactorings = {Factoring1}
while true do

SetOfObsF = ∅; SetOfUnobsF = ∅;
for each Factoringi ∈ SetOfFactorings do
if every DBN-F in Factoringi is observable then
SetOfObsF = SetOfObsF ∪ Factoringi

else

SetOfUnobsF = SetOfObsF ∪ Factoringi
if SetOfObsF 6= ∅ then

BestFactoring = Factoringj ∈ SetOfObsF having the most number of balanced DBN-Fs
exit

else

NextBestFactoring = Factoringj ∈ SetOfUnobs having the most number of unobservable
DBN-Fs

SetOfFactorings = all possible pairwise mergings of the DBN-Fs of NextBestFactoring

where, Yn
X denotes sets of exactly n measurements that can be used to compute the value of state

variable X at every time step. Given n, and Yn
X = h(X), we replace X = h−1(Yn

X) if h is an

invertible function. To compute X, we may need to solve multiple equations that involve more than

one measurement variables.

Example. If n = 1, a state variable, X, can be replaced by an algebraic function of measurement

Y , if and only if, X is the only state variable that has an intra-time slice link to Y . For example, in

Fig. 61(b), Y1
p2

= {i8}, since p2 is the only state variable causally a�ecting i8 within a time step.

Similarly, for Y1
p9

= {i6}, and so on. Note however, that Y1
q7 6= {v2} since v2 depends on q7, as

well as, p2 and p9. The determination of Yn
X for n > 1 involves solving a system of n simultaneous

equations. For example, if n = 2, to determine Y2
p27

, we must solve the two equations

i3 = p21/L4

i2 = p27/L5 − p21/L4,

simultaneously to determine

p27 = (i2 + i3)L5.

Hence, Y2
p27

= {i2, i3}. For practical purposes, in this work, we mostly restrict the value of r to 1.

If no observable factorings are possible with r = 1, we relax r to be 2. If r is assigned values 3 or

above, the determination of Y≤rX quickly becomes very involved.
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For each state variable, X, for which set Y≤rX 6= ∅, we identify its smallest element [Y≤rX ]min,

and express X = h−1([Y≤rX ]min), considering the measurements in [Y≤rX ]min to be inputs. Next,

we delete every Xt → Xt+1, Ut → Xt+1, Xt → Yt link, replace X with h−1([Y≤rX ]min), and restore

an intra-time slice link h−1([Y≤rX ]min) → Yt for every Xt → Yt, such that Yt /∈ [Y≤rX ]min. The

across-time links into Xt are not restored, since h
−1([Y≤rX ]min) can be computed independently at

each time step. If there are more than one possible choice for [Y≤rX ]min, we choose that value of

[Y≤rX ]min, which has maximum overlap with other [Y≤rX′ ]min, for states X
′ 6= X. We assume that

the components associated with each algebraic function, h, do not become faulty during diagnostic

analysis.

Assumption 3. We assume that any component parameter associated with the algebraic function,

h, whose inverse is used to determine the state X in terms of [Y≤rX ]min, i.e., X = h−1([Y≤rX ]min),

cannot be faulty.

Once every state variable X with a nonempty Y≤rX is replaced, the system DBN is maximally

factored into DBN-Fs, if the removal of the across-time links involving the replaced state variables

results in the random variables in each DBN-F being conditionally independent of variables in all

other DBN-F, i.e., no random variable in a DBN-F has a causal link to another variable in any

other DBN-F, and vice versa. To test for the conditional independence, we check if the removal of

the newly introduced �input� nodes decomposes the global DBN into disconnected subgraphs. Each

disconnected subgraph, along with its corresponding input nodes result in a DBN-F.

Example. Consider the DBN shown in Fig. 61(b). If we assume r = 1, since voltage v1 = h(p15) =

p15R6/L3, we can determine the value of the state variable p15 as an algebraic function of voltage

v1, i.e., p15 = h−1(v1) = v1L3/R6. Therefore, we can replace p15 with v1L3/R6. Since, we no longer

need the variables p9, q13, p15, q19, and p21 to compute p15, the across-time links to p15 can be

removed. Similarly, we can replace state variables p9 and p21 with algebraic functions of i6 and i3,

respectively, since p9 = i6L2 and p21 = i3L4. These replacements result in the maximally factored

DBN with four DBN-Fs, where, each DBN-F is conditionally independent of all other DBN-Fs, given

measurements i6, v1, and i3, as de�ned in De�nition 13.

Note that there are two situations in which a state variable is not removed from a global DBN:

(i) if the removal of this state variable does not generate any new factors, e.g., the state variables

p2 and p27 are not replaced by functions of i8 and i1, respectively, as that would not generate any

more factors in Fig. 61(b), and (ii) any parameter involved in the computation of the state variable
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is a potential fault hypothesis, e.g., we could not have replaced the state variable p15 with v1L3/R6

if either L3 or R6 represent components that could fail during system operation.

Step 2 - Testing Observability of DBN-Fs

Given a DBN-F, Di, we can test whether or not it is observable by mapping Di to its corresponding

BG-F, Bi, and analyzing Bi for structural observability. Before mapping a Di to a Bi, we identify

the state variables in the global DBN that were removed to generate Di, and the measurement

variables these state variables were replaced with. Given this information, the �rst step of mapping

a Di to a Bi is to replace the I or C element (in the global bond graph) corresponding to every

state variable that was removed from the global DBN to generate Di by a MSf or MSe element,

respectively, and the value of its outgoing �ow or e�ort is computed from at most r measurements.

De�nition 15 (Bond graph factor). We de�ne a bond graph factor (BG-F), Bi, as a subgraph

of connected bond graph elements such that a subset of its state variables, i.e., the corresponding

energy-storage elements, are replaced by modulated sources of e�ort or �ow.

Proposition 1. A bond graph may be factored into independent bond graph fragmentsB1, B2, . . . , Bn

by replacing an I or C element with a MSf or MSe element, respectively.

Proof: A capacitor C1's constituent equation is q̇C1 =
∫
fC1dt. In the state-space formulation, fC1

can be expressed in terms of other state variables. Therefore, any measurement or state variable

that depends on qC1 would, in turn, be dependent on fC1 , and hence, possibly every other state

variable. Now, if fC1 can be measured, and we replace C1 with modulated SeC1 = h−1(fC1), the

dependence between qC1 and all other state variables is broken, and the bond graph is factored into

independent BG-Fs. The proof similarly follows for an I element replaced with a modulated Sf . �

Example. The maximally factored DBN for the tenth-order electrical circuit has four DBN-Fs (see

Fig. 61(b)), which correspond to the BG-Fs shown in Fig. 62. The two outer BG-Fs are structurally

observable, as all their energy storage elements can be assigned preferred derivative causality (albeit

by dualizing an e�ort sensor into a �ow sensor, indicated by the shaded background, in the �rst

BG-F), and every state variable a�ects at least one sensor. The two BG-Fs in the middle, however,

are not observable, since, in each of these two BG-Fs, the single state variable does not causally

a�ect the �ow sensor (whose value is determined by the two �ow sources on the 0-junction). Hence,

in the maximally factored DBN shown in Fig. 61(b), the two outer DBN-Fs are observable, while

the two middle DBN-Fs are not. Therefore, the middle DBN-Fs, if used for state estimation, may

not generate accurate state estimates.
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Step 3 - Merging Unobservable Factors

We propose merging of two or more unobservable DBN-Fs to generate an observable DBN-F. m

DBN-Fs, D1, D2, . . . , Dm, can be merged by restoring those state variables in the system DBN that

were replaced to generateD1, D2, . . . Dm, redrawing the across-time causal links involving these state

variables, and reintroducing the measurements that were used to compute these state variables.

An unobservable DBN-F can be merged with another DBN-F (observable or otherwise) to gen-

erate a resultant DBN-F that is observable. A DBN-F is unobservable if its corresponding BG-F

does not satisfy the conditions of structural observability (described in Chapter V). An unobservable

DBN-F, D1, when merged with another DBN-F, D2, generates the resultant DBN-F, D1,2, which

maps to the BG-F, B1,2. The merging of D1 and D2 maps to the replacement of at least one source

element in B1 and B2 with a I or C element, and reintroduction of at least one sensor element in

the resultant B1,2. The measurement sensors that are reintroduced are directly connected to the

reinstated I or C elements in B1,2. Hence, condition 1 of structural observability is satis�ed for these

reintroduced energy storage elements. Moreover, the new sensor can be causally linked to other I or

C elements that are not linked to any sensor element, further aiding the satisfaction of condition 1

for B1,2. Moreover, the greater are the number of sensors in B1,2, the greater is the �exibility for

dualizing these sensors to satisfy condition 2.

As shown in Algorithm 3, the merging procedure is invoked if any DBN-F in the maximally

factored DBN is not observable. At every iteration of merging, we create new factorings through

all possible pairwise mergings of unobservable DBN-Fs into other DBN-Fs, with the goal of creating

at least one new partition where all the DBN-Fs are observable. If multiple such factorings get

created, we use a heuristic to choose that factoring which has the most number of balanced DBN-Fs,

determined by comparing how close the number of state variables in each of its DBN-F is to the

average number of state variables per DBN-F. If the merging step does not generate any factorings

where all DBN-Fs are observable, we select the maximal factoring with the largest number of factors

and highest number of unobservable DBN-Fs, and generate the next set of factorings by pairwise

merging of unobservable DBN-Fs. This procedure is repeated till we obtain at least one factoring

with all its DBN-Fs being observable. Since the system was initially observable, continued merging

will eventually result in a factoring in which all DBN-Fs are observable, in the worst case we will

end up with the original DBN. Therefore, our factoring algorithm terminates. However, when it is

possible, our algorithm uses additional heuristics to produce multiple balanced DBN-Fs.
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Figure 63: Three-factored bond graph of the electrical circuit with imposed derivative causality.

Figure 64: Two-factored bond graph of the electrical circuit with imposed derivative causality.

Example. The BG-Fs corresponding to the DBN-Fs in the maximally factored DBN are shown in

Fig. 62. The two unobservable BGs in the middle can be merged in two possible ways, as shown in

Figs. 63 and 64. The factoring shown in Fig. 63 corresponds to a DBN-F generated by merging the

two central DBN-Fs (see Fig. 61(c)), and is not observable (since a consistent causal assignment is

not possible in the middle BG-F after assigning capacitor C4 a derivative causality) However, the

two BG-Fs shown in Fig. 64 correspond to the DBN-Fs shown in Fig. 61(d), are observable, and

hence, we select this as our desired factoring.

Once a system DBN is factored into m DBN-Fs, D1, D2, . . . Dm, we construct a distributed

diagnoser, Di, based on every DBN-F Di. A diagnoser Di is responsible for diagnosing faults Fi

based on its observations Ui.
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Implementing the Individual Distributed Diagnosers

Recall the computational architecture of our distributed Bayesian fault diagnosis approach shown in

Fig. 59. Each distributed diagnoser, Di, essentially implements the combined qualitative-quantitative

scheme for diagnosing incipient and abrupt faults. However, instead of using a single diagnoser that

operates on the complete system, in our distributed approach, each diagnoser operates with a DBN-F.

Hence, each Di receives the input signals Ui, and the observed measurements Yi from the system.

Note that a diagnoser Di's inputs Ui may include some of the inputs to the global system, i.e.,

Ui∩U 6= ∅, as well as some measurements now considered inputs, i.e., Ui∩Y 6= ∅. Two diagnosers

Dj , Dk communicate a measurement Y ∈ Y if Y ∈ Uj ∧ Y ∈ Uk, i.e., measurement Y is an input

to both Dj and Dk.

Each diagnoser Di implements an independent particle �lter-based observer for DBN-F Di. Each

of these particle �lters takes as inputs, Ui, and estimates Xi based on Yi. Only measurements

(∪iUi)−U are shared between the particle �lter-based observers for each Di. Further, the particle

�lter for the DBN-F Di is designed to use a |Xi|
|X| particles, where a is a user-speci�ed parameter.

Given m DBN-Fs, we know that
∑
i |Xi| < |X|, where X is the total number of state states in

the complete system. Therefore, the complexity of tracking using each DBN-F is less that that

of tracking using the global DBN. Also, since the inference algorithms on the di�erent factors are

executed simultaneously, the total complexity of inference reduces to the complexity of inference of

the particle �lter with the maximum number of particles. The reduction of complexity is based on

Assumptions 2 and 3, i.e., the sensors associated with measurements converted to inputs will not be

faulty, and the components whose parameters are used in the algebraic functions are assumed not

to fail. Therefore, there is a trade-o� for robustness to gain e�ciency.

As explained earlier in this chapter, each of these distributed particle �lters corresponding to a

DBN-F Di can track nominal system behavior, and be linked to a local fault detector. Qual-FI is

performed using the subset of measurements for each Di. Quant-FHRI applies the same approach as

centralized DBN diagnosis by including fault variables as extra state variables. The particle �lters

for each factor can be run in parallel on separate processors thus providing signi�cant speed up.

The observers are independent of one another, and this independence is guaranteed by construction,

as discussed earlier. This independent execution of the observers in each diagnoser results in the

following property.

Lemma 1. The failure of one of the observers will not a�ect the quality of state estimates at other

observers.
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Once a fault in Fj is detected in any one diagnoser Dj , �rst the Qual-FI is initiated, followed

by Quant-FHRI till the true fault is diagnosed. Given the way the DBN-Fs are constructed, we can

argue that our distributed diagnosers ful�ll the following property.

Lemma 2. A fault φ ∈ Fj is only detected by diagnoser Dj, and all other diagnosers, Dk, k 6= j, will

not detect the fault. Hence, they are not activated, even though the e�ect of fault φ may propagate

to all other factors.

Proof: Every DBN-F Di has a one-to-one mapping to a BG-F Bi. A diagnoser Di is activated when

it detects a fault. In general, let us assume that the observer in diagnoser Di uses the state space

equations X̂it+1 = Gi(Xit ,Uit), and Ŷit = Hi(Xit ,Uit). Let us now assume that there is a fault

in BG-F Bk. This means that functions Gk and Hk do not correctly represent the actual system

any more. As a result, Ŷk 6≈ Yk, and a fault is eventually detected by Dk. The e�ects of a fault

in Bk can propagate to another BG-F Bj , j 6= k, through their shared inputs, (Uj ∩Uk) −U, i�

Bk and Bj communicate at least one measurement, i.e., (Uk ∩Uj) −U 6= ∅. But, since we adopt

the single-fault assumption, and since by construction, two BG-Fs can never share any parameters,

the state space representations Gj and Hj of all other BG-Fs, Bj , j 6= k, will correctly represent

the actual system dynamics of each BG-F. Hence, Ŷj ≈ Yj , i.e., the observers in other diagnosers

will correctly track the faulty measurement, and hence no fault will be detected. Consequently, if a

fault is not detected, the diagnoser will not be activated. �

In the next section, we present two sets of experiments. The �rst set of experiments are imple-

mented on the tenth-order electrical system we have been using as a running example throughout this

chapter. These experiments focus on comparing the centralized versus distributed scheme in terms

of computational e�ciency and accuracy of estimates generated. We do not perform any diagnosis

experiments on the tenth-order electrical system. Instead, we perform distributed diagnosis experi-

ments on the twelfth-order electrical system that we used as a case study in Chapter V. The results

of our distributed fault diagnosis experiments on the twelfth-order electrical system demonstrate

that the distributed Bayesian diagnosers generate globally correct results through local analysis,

and in many cases, result in faster isolation times and lower estimation errors, when compared to

the results of applying our centralized Bayesian diagnosis scheme on the same twelfth-order electrical

system in Chapter V.
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Experimental Results for Distributed State Estimation Using DBN-Fs

This section presents experimental results that evaluate our distributed Bayesian state estimation

scheme using DBN-Fs in comparison to the centralized estimation scheme that uses the global

DBN. Our objective is to determine if the factored scheme observable DBN-Fs results in improved

computational e�ciency in state estimation without compromising the accuracy of estimation.

For this experiment, we tracked the state variables using the DBN factorings shown in Fig. 61(d)

for 10 runs. Given m DBN-Fs, Di = {Xi,Ui,Yi}, i = 1, 2, . . . ,m, such that X = X1 ∪X2 ∪ . . .Xm,

for each run we computed the estimation error: E = 1
|X|
∑
X∈X

(
1
T

∑T
t=0 (Xt −Xmodel

t )2
)
, where T

is the total simulation time, Xt denotes the estimated value of state X at time t, and Xmodel
t denotes

the actual value of state X at time t obtained from the simulation model. Table 17 reports the mean

and standard deviation of errors obtained from each factoring over all runs. In this experiment,

all prior and conditional probabilities are assumed to be Gaussian, and all sensors have associated

white Gaussian noise with 0 mean and 1 W variance.

To demonstrate that the factoring scheme preserves the system dynamics, we hypothesized the

accuracy di�erences measured by the error in estimation for the 2-factor and unfactored DBN would

not be statistically signi�cant, and the error for the 4-factor DBN (which is observable) would be

signi�cantly larger than the unfactored DBN. Further the di�erence in error for the 2-factor and

4-factor DBNs would also be statistically signi�cant. We ran t-tests to establish signi�cance of the

di�erences in the error in estimating the state. The tests for signi�cance indicated that the errors

obtained using the 2-factor DBN did not signi�cantly di�er from that obtained using the unfactored

DBN (p < 0.05), while those obtained using the 4-factor DBN was signi�cantly greater (p < 0.05).

The test of signi�cance between the 2- and 4-factor DBN showed that the error in the 4-factor

DBN was signi�cantly larger (p < 0.05). Therefore, we conclude that the 2-factor DBN preserves

dynamics of the unfactored DBN, whereas the 4-factor DBN, which has unobservable factors, does

not.

Table 18 shows the average time taken by the slowest particle �lter for each factoring to track

system behavior for 1500 time steps. The time taken by a particle �lter depends on the number of

particles it uses. In our experiments, the number of particles used by a particle �lter was proportional

to the number of states in the DBN factor the particle �lter was associated with. Hence, the particle

�lter for unfactored DBN (with 1000 particles) took the most time, followed by the particle �lter on

the larger DBN-F of the 2-factor DBN (with 500 particles). The least amount of time was taken by

the particle �lters applied to the 4-factor DBN, since its largest DBN-F has 3 state variables, and
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Table 17: Average mean squared error and standard deviation over all state variables across 10 runs
No. of Factors → 1 2 4

Mean 0.1143 0.1381 0.1968
(Standard Deviation) (0.0360) (0.0470) (0.0314)

Table 18: Time taken for particle �lter to complete estimation
No. of Factors → 1 2 3 4

Time (s) 137.03 37.74 18.79 18.97

Figure 65: Two-factored DBN for the twelfth-order electrical circuit.

hence, its particle �lter used 300 particles. Thus, running Bayesian estimation schemes on factored

DBN improves computational e�ciency.

Case Study 2: Diagnosis Experiments on the Twelfth-order Electrical Circuit

In this section, we use the twelfth-order electrical circuit shown in Fig. 49(a) as a case study to

demonstrate the distributed diagnosis scheme we have presented in this chapter. Recall that this

circuit was used as a case study for the centralized diagnosis scheme presented in Chapter V. In this
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Table 19: Fault Signatures for Diagnoser D1

Fault i1 i2 i3 v1 v2

C−a2 , C−i2 , R+a
2 , R+i

2 0− 0− 0− 0+ 0+
L−a2 0+ 0− 0− −+ −+
L−i2 0+ 0− 0− 0− 0−
L−a3 0+ +− +− −∗ −+
L−i3 0+ 0+ 0+ 0− 0−
L−a4 0+ 0+ −+ 0− 0−
L−i4 0+ 0+ 0− 0− 0−

chapter, we �rst describe the result of our distributed diagnoser design algorithm, when applied to

this electrical circuit, and then compare how our distributed Bayesian diagnosis scheme compares

to the our centralized Bayesian diagnosis scheme in terms of fault detection and isolation times, and

error in estimating the magnitude of the true fault parameter.

Distributed Diagnoser Design

The bond graph model of this electrical circuit is shown in Fig. 49(b). Fig. 50 shows global DBN of

this circuit. The available measurements in this circuit are current values, i1, i2, . . . , i4 and voltages

v1, v2, . . . , v6. Fig. 65 shows the DBN of the electrical circuit factored into two DBN-Fs. We assume

r = 1 in the following. It is evident from Fig. 49(a) that the current through the inductor L5 is equal

to v3L5/R3. Hence, we can replace p35 in Fig. 50 with v3L5/R3, as shown in Fig. 65. Since, v3L5/R3

can be measured at every time step, all causal links into this node is removed. As a result, given

v3L5/R3, every variable in one factor is conditionally independent of the variables in the other factor.

Thus, two conditionally independent factors are generated. In the factored DBN, we do not replace

state variables, such as, p2 with i1L1, since this replacement does not yield any additional factors in

Fig. 65. Moreover, we do not replace state variables p10 and q29 with i2L3 and v5C4, respectively,

since we assume that inductor L3, and capacitor C4 can become faulty. We can see that the DBN-Fs

shown in Fig. 65 map to the BG-Fs shown in Fig. 66. Both the BG-Fs are structurally observable as

they ful�ll both the conditions necessary for structural observability mentioned in Chapter V. Note

that the current sensor i1 had to be dualized to assign derivative causality to the BG-F on the left

in Fig. 66. Since the two BG-Fs shown in Fig. 66 are structurally observable, we do not require any

further merging in our particular example.
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Figure 66: Two-Factored bond graph of the twelfth-order electrical circuit with imposed derivative
causality.

Table 20: Fault Signatures for Diagnoser D2

Fault i4 v4 v5 v6

C−a3 , R+a
4 0+ +− 0+ 0+

C−i3 , R+i
4 0+ 0+ 0+ 0+

C−a4 0− 0+ +− +−
C−i4 , R+a

6 , R+i
6 0− 0+ 0+ 0+

L−a7 −+ 0− 0− −∗
L−i7 0− 0− 0− 0−
R+a

7 0− 0+ 0− +−
R+i

7 0− 0+ 0− 0+

Distributed Diagnosis Experimental Results

In this section, we present experimental results obtained by applying the proposed distributed diag-

nosis approach to the electrical circuit shown in Fig. 49(a). Two distributed diagnosers, D1 and D2

are designed for this electrical circuit, for the top and bottom DBN-Fs shown in Fig. 65, respectively.

The two diagnosers communicate measurement v3 between each other. Tables 19 and 20 show the

possible faults that must be diagnosed by each of the two diagnosers, and the fault signatures for

each fault, given the measurements available to each diagnoser.

For our distributed diagnosis experiments, we applied the distributed Bayesian diagnosis scheme

for the same fault scenarios described in Chapter V. The �rst experiment we performed was to

diagnose an abrupt fault in C2, C
−a
2 , with ∆a

C2
= −0.9, that was introduced at time step, t = 100 s.

As shown in Fig. 68, a negative deviation is noticed in measurement i3 at t = 101.4 s. Based on

this deviation, the fault hypotheses set, {C−i2 , C−a2 , R+a
2 , R+i

2 , L−i2 , L−a2 , L−i4 , L−a4 }, is generated. At

t = 102.9 s, a negative deviation is observed in measurement i2. Based on the fault signatures

shown in Table 19, Qual-FI re�nes the fault hypotheses set by dropping fault hypotheses L−a4 and
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(a) DBN-F Fault model for

C−a
2 /C−i

2 .

(b) DBN-F Fault model for

R+a
2 /R+i

2 .

(c) DBN-F Fault model for

L−a
3 /L−i

3 .

Figure 67: DBN-F Fault models for distributed diagnosis experiments using the Quant-FHRI ap-
proach 1.

L−i4 . Finally, at t = 102.9 s, the deviation in i3 is con�rmed to be a gradual decrease. Hence, fault

hypothesis L−a4 is dropped as a fault hypothesis. At t = 106.7 s, measurement v2 shows a positive

deviation. As a result, based on the fault signatures shown in Table 19, the fault hypotheses are

re�ned to {C−i2 , C−a2 , R+a
2 , R+i

2 }. Since these fault hypotheses cannot be further re�ned through

Qual-FI alone, Quant-FHRI1 is initiated. As shown in Fig. 69, the second diagnoser does not detect

any fault. We start tracking the observed measurements from time t = 97.5 s, and instantiate two

particle �lters, one using a DBN-F model for fault C−i2 /C−a2 , and the other using a DBN-F model for

fault R+i
2 /R+a

2 , with parameters C2 and R2 introduced as additional state variables in the nominal

system DBN-Fs shown in Fig. 65. The DBN-F fault models for C−i2 /C−a2 and R+i
2 /R+a

2 are shown in

Figs. 67(a) and 67(b), respectively. Fig. 70 shows the error in estimating the di�erent measurements

using the C2 DBN-F fault model. Just like in the centralized diagnosis approach, for abrupt faults,

at the time the fault is introduced, the abrupt fault parameter value is unknown. Hence, it takes

some time for the correct fault model estimates to converge to the observed measurements, as we can

see for the plots of measurements, v1, v2, i2, and i3 in Fig. 70. Estimates made using the incorrect

R2 DBN-F fault model, on the other hand, do not converge to the observed faulty behaviors, as

the estimation errors in Fig. 71 show. A statistical test is employed on the sum of estimation

1For reasons explained in Chapter V, we adopt Quant-FHRI approach 1 for our distributed diagnosis experiments
as well.
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Figure 68: Detection of C−a2 fault by diagnoser D1.

errors across all the measurements to detect statistically signi�cant sum of mean squared estimation

errors. Fig. 72 shows the sum of mean squared estimation errors obtained using the two di�erent

fault models. The statistical test detects a statistically signi�cant sum of mean squared estimation

error obtained by both the DBN-F fault models at times t = 101.3 s and t = 101.9 s, respectively.

However, the sum of mean squared estimation errors from the R2 DBN fault model do not converge

even after sd = 150 s, whereas, the sum of mean squared estimation errors from the C2 DBN fault

model converges to the observed measurements from t = 105.0 s. Hence the true fault is isolated to

be C±a2 /C±i2 fault at t = 251.3 s. In order to determine whether the fault is an abrupt or incipient

fault in C2, we run a window-based Z-test on the di�erence between the known nominal parameter

value and the estimated state variable. This approach is similar to the one used by Transcend for

symbol generation. At t = 171.7 s, the statistical test shows that the estimated parameter evolves in

a −0 manner, implying it is an abrupt fault, and that it converges. By taking a mean of the values

for 20 time steps after the abrupt fault is isolated, we obtain ∆a
C2

= −0.897. The actual value of ∆a
C2

is −0.900. Thus, there is a 0.33% error in estimating ∆a
C2
. The estimate for the faulty parameter is

shown in Fig. 73. Notice how the initial set of fault hypotheses generated in the distributed scheme

is smaller than that generated in the centralized approach for the same fault experiment.

In the second scenario, we diagnose the incipient fault in L3, denoted by L−i3 , injected at time

t = 20 s, with ∆i
L3

= −0.05. At time t = 70.0 s, a positive deviation from nominal is observed in

measurement i3 (see Fig. 74). This results in the generation of fault hypotheses set {L−a3 , L−i3 }.

At t = 84.2 s, a positive deviation is observed in measurement i2. Both the fault hypotheses are

consistent with this symbol, and hence not dropped by the Qual-FI scheme. At t = 106.1 s, the

deviation in i3 is con�rmed to be gradual, and fault hypothesis L
−a
3 is dropped from consideration as

its fault signature for i3 is discontinuous +−. As shown in Fig. 75, the second distributed diagnoser
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Figure 69: Tracking observations in the presence of C−a2 fault by diagnoser D2.

does not detect a fault. Since the Qual-FI isolates the true single fault, L−i3 , the Quant-FHRI scheme

is invoked to perform fault identi�cation only. The DBN-F fault model for L−i3 /L−a3 is shown in

Fig. 67(c). Quant-FHRI estimates ∆i
L3

= −0.56. Notice how the initial set of fault hypotheses

generated in the distributed scheme is much smaller than that generated in the centralized approach.

In the centralized scheme, C−a3 , C−i3 , C−a4 , C−i4 , R+a
4 , R+i

4 , R+a
7 , R+i

6 , R+a
7 and R+i

7 hypotheses were

also generated when a positive deviation in i3 was observed. However, in the distributed case, these

hypotheses were not generated, because the task of diagnosis of these fault hypotheses is delegated

to diagnoser D2. If the true fault was indeed one of these fault hypotheses, the second distributed

diagnoser, D2 would have detected a fault. Since the fault hypotheses set is re�ned to a single fault

by Qual-FI, we invoke the Quant-FHRI to perform fault identi�cation only. We start tracking the

observed measurements using a L3 DBN-F fault model from t = 17.5 s. After sd = 150 s from the

time the faulty observations are tracked, a Z-test based scheme is initiated, and this statistical test

con�rms that the fault is indeed an incipient L−i3 fault at t = 134.8 s. The estimates of L3 obtained

from our Quant-FHRI approach is presented in Fig. 76. The Quant-FHRI estimates ∆i
L3

= −0.054,

while the true value of is ∆i
L3

= −0.050. Thus, there is a 8.00% error in estimating ∆i
L3
.
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Figure 70: Tracking faulty system behavior using the C±i2 /C±a2 DBN-F fault model.

Table 21 summarizes the results of the di�erent distributed diagnosis experiments we ran on

the electrical circuit example. For each experiment, we conducted 5 runs, and took the average of

the time to fault detection, time to single fault isolation, time for the estimated parameter value to

convergence to the true value, and the percentage error in the estimates of the true fault parameter.

The estimates of the faulty parameters made using the correct fault models for each respective fault

is shown in Fig. 77. By comparing the diagnosis results obtained by the centralized and distributed

Bayesian diagnosis approaches, presented in Tables 16 and 21, respectively, we can draw the following

conclusions.

First, the computational expense of our distributed diagnosis scheme was less than the centralized

diagnosis scheme, since, the distributed diagnosis approach makes use of smaller DBN-F fault models,
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Figure 71: Tracking faulty system behavior using the R±i2 /R±a2 DBN-F fault model.

compared to the DBN fault models used by the centralized scheme. If each distributed diagnoser

is implemented on a separate process, the worst case e�ciency of our distributed diagnosis scheme

is determined by the largest DBN-F fault model used for tracking faulty measurements. Since,

by construction, the largest DBN-F will still be smaller than the global DBN-F fault model, our

distributed diagnosis is computationally more e�cient than the centralized diagnosis scheme, given

the same number of particles as the centralized scheme.

Compared to the centralized diagnosis approach, the distributed diagnosis approach resulted in

larger estimation errors for four out of the six experimental runs, and comparable to the centralized

diagnosis approach for the remainder of the two. Also, the parameter estimates made by the dis-

tributed approach took longer to converge in terms of the number of measurement points required

than the centralized scheme. We anticipate the reason for this being the proportional distribution
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Figure 73: Estimate of C2 obtained using the C2 DBN-F fault model.

of particles based on the size of each factor, keeping the sum total of particles used by all the par-

ticle �lters the same. Moreover, the use of a noisy sensor to compute the value of a state variable

also contributed to this degraded accuracy. The centralized diagnosis scheme has access to more

sensors and the state-estimates are not as noisy as those computed in terms of measurements in the

distributed scheme. If the individual distributed diagnosers are executed on di�erent processors,

then we can increase the number of particles for each diagnoser, and our intuition is that this will

improve the estimation accuracy and identi�cation time of the distributed diagnosers. Thus, our

experimental results on the twelfth-order electrical circuit illustrates the accuracy versus e�ciency

trade-o� due to the factoring of the DBN into DBN-Fs.
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Figure 74: Detection of L−i3 fault by diagnoser D1.

Table 21: Results of Distributed Diagnosis Experiments on the Twelfth-Order Electrical Circuit with
Particles Used Proportional to The Total Number of States per Factor

Experiment Fault Magnitude Detection Isolation Convergence % Mean
Time (s) Time (s) Time (s) Absolute Error

1 C−a2 −0.90 1.04 55.06 5.88 0.64
2 C−i2 −0.55 37.3 53.90 19.80 39.74
3 L−a3 −0.90 0.50 4.32 6.56 1.11
4 L−i3 −0.05 50.40 82.50 23.76 21.14
5 C−a3 −0.90 0.20 3.02 3.64 0.13
6 R+a

7 +5.00 118.30 163.30 128.64 0.66

Table 22: Results of Distributed Diagnosis Experiments on the Twelfth-Order Electrical Circuit with
500 Particles Used per Factor

Experiment Fault Magnitude Detection Isolation Convergence % Mean
Time (s) Time (s) Time (s) Absolute Error

1 C−a2 −0.90 1.04 55.06 3.52 0.57
2 C−i2 −0.55 37.3 53.90 15.26 13.99
3 L−a3 −0.90 0.50 4.32 5.76 0.67
4 L−i3 −0.05 50.40 82.50 22.86 23.09
5 C−a3 −0.90 0.20 3.02 3.32 0.06
6 R+a

7 +5.00 118.30 163.30 123.20 0.70

Table 23: Results of Distributed Diagnosis Experiments on the Twelfth-Order Electrical Circuit with
750 Particles Used per Factor

Experiment Fault Magnitude Detection Isolation Convergence % Mean
Time (s) Time (s) Time (s) Absolute Error

1 C−a2 −0.90 1.04 55.06 3.50 0.68
2 C−i2 −0.55 37.3 53.90 13.30 14.63
3 L−a3 −0.90 0.50 4.32 5.06 0.45
4 L−i3 −0.05 50.40 82.50 19.84 16.55
5 C−a3 −0.90 0.20 3.02 3.36 0.08
6 R+a

7 +5.00 118.30 163.30 117.2 0.52
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Figure 75: Tracking observations in the presence of L−i3 fault by diagnoser D2.
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Figure 76: Estimate of L3 obtained using the L3 DBN-F fault model.

Table 24: Results of Distributed Diagnosis Experiments on the Twelfth-Order Electrical Circuit with
1000 Particles Used per Factor

Experiment Fault Magnitude Detection Isolation Convergence % Mean
Time (s) Time (s) Time (s) Absolute Error

1 C−a2 −0.90 1.04 55.06 3.28 0.61
2 C−i2 −0.55 37.3 53.90 10.11 25.36
3 L−a3 −0.90 0.50 4.32 4.92 0.45
4 L−i3 −0.05 50.40 82.50 17.84 16.59
5 C−a3 −0.90 0.20 3.02 3.22 0.07
6 R+a

7 +5.00 118.30 163.30 114.8 0.31
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Figure 77: Parameter identi�cation results for electrical circuit example.
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Figure 78: % MAE and convergence time of distributed Bayesian experiments for di�erent numbers
of particles.
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Fig. 78 plots the % mean absolute error and convergence times of the six distributed experiments,

but run using 500, 750, and 1000 particles. Tables 22, 23, and 24 show the results of the di�erent

distributed diagnosis experiments averaged over multiple runs using 500, 750, and 1000 particles,

respectively. As was our intuition, both the % mean absolute error and the convergence time

to the true parameter value show a decreasing trend with increase in the number of particles.

However, compared to the centralized diagnosis experiments with 500 particles for the global DBN,

the distributed diagnosis experiments with 1000 particles has less % mean absolute error for three

out of the six fault cases, and faster convergence time for all six experiments. Experiments with

500 and 750 particles result in slower convergence times and more % mean absolute error than the

experiments run using 1000 particles. Thus, increasing the number of particles used per factor for

distributed diagnosis can improve estimation accuracy and convergence time.

Discussion and Summary

In this chapter, we established how the distributed diagnosers truly generate globally correct results

without any centralized coordinator, and through communicating the minimal number of measure-

ments alone, and not individual diagnoses. The requirement for communicating partial diagnosis

results is avoided by systematic partitioning of the system in terms of structural observability. The

requirement for communicating partial diagnoses is avoided because unlike other approaches, we have

the knowledge of the global system model that is analyzed carefully for designing the diagnosers.

Several related approaches for distributed estimation of states exist in literature. Distributed

decentralized extended Kalman Filters (DDEKF) [69] represent an approach for subdividing the

estimation problem into smaller subproblems. However, in DDEKFs, each local component requires

both measurements and estimates of state variables from other components to correctly estimate its

states. As a result, the inaccuracies in one component can a�ect the estimation in other components.

In our estimation approach, the variables in a factor are conditionally independent of those in all

other factors, given some measurements. Hence, failures in individual factors do not a�ect the

estimates made using other factors as long as the required measurements are available.

The BK algorithm, presented in [16], creates the individual factors by eliminating causal links

between weakly interacting subsystems. Therefore, the belief state derived from the individual

factors is an approximation of the true belief state. The error in this approximation is bounded, but

these bounds may not be su�ciently precise for online diagnosis, since they may result in missed

alarms and less precise diagnoses in the best case scenario, and false alarms and wrong diagnosis in
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the worst case scenario. Heuristic techniques for automatically decomposing a DBN into factors are

presented in [117]. This approach results in lower estimation errors, but the computed factored belief

state is still an approximation. The Factored Particle Filtering (FPF) scheme [118] further reduces

estimation errors by applying the particle �ltering scheme to the BK factored inference approach.

Our estimation approach uses the particle �ltering scheme for inference using DBNs and preserves

the overall system dynamics in the factored form, and does not approximate the belief state. Hence,

we produce accurate state estimates e�ciently.

In [119,120], Houfbaur and Williams present an approach of decomposing the overall model of a

hybrid system into a set of concurrently operating automata that interact via shared measurements.

These concurrently operating automata are termed concurrent probabilistic hybrid automata (cHPA)

models, and like our DBN-Fs, are generated by converting observed variables as �virtual inputs�.

Once the system is decomposed, structural observability analysis is performed on each cPHA to

exclude unobservable parts before implementing a Kalman �ltering scheme on each cPHA for mode

estimation. Although the cPHA generation approach is very similar in concept to our DBN factoring

scheme, there are some notable di�erences between the two approaches. First, the procedure for

generating the cPHAs requires the presence of a causal graph, where there are explicit causal links

between the output variable of one component and a dependent variable of another. cPHAs are

generated by slicing these causal graph at every vertex that has outgoing links to dependent variables,

inserting a new vertex to represent a virtual input corresponding to the output node, and remapping

the causal edge to originate from this new virtual input. The causal links are explicitly de�ned in

the system descriptions. The strength of our factoring approach is that in our DBN models, the

causal links between outputs and state variables are implicit and, must be determined based on

the system's observation model. Hence, our scheme has more �exibility with respect to generating

factors, compared to the cPHA generation scheme. Second, in the cPHA approach, dependent

variables are not removed, and the order of the system, over all cPHAs, remains unchanged from

the complete system. In our factoring scheme, the goal is to generate factors that are conditionally

independent of other DBN-Fs over time, and this conditional independence is obtained only through

the replacement of state variables by algebraic functions of output measurements, and removal

of some across-time links. Application of cPHA-generation approach on DBNs might not yield

conditionally independent DBN-Fs at all if all state variables have to be retained. Finally, both cPHA

and DBN-F generation schemes ensure that each component satis�es the structural observability

properties to allow correct state estimation. However, our de�nition of structural observability is

stronger than the one applied in the cPHA generation scheme, since in the latter, the notion of
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structural observability requires ensuring that every dependent variable is causally connected to an

output variable. Recall that this is just the �rst of two conditions that need to be satis�ed for our

bond graph based procedure to determine a system to be structurally observable.

The DBN-F-based distributed diagnosis approach addresses the drawbacks of the centralized

Bayesian diagnosis approach presented in V. The conditional independence of random variables

in each DBN-F ensures that there is no requirement for a centralized coordination mechanism to

generate globally correct diagnosis results. The reduced order state-space of the individual DBN-Fs

also results in a reduction of computational complexity. Since we guarantee each DBN-F represents

a structurally observable subsystem, we ensure that our distributed particle �lter-based observers

will generate accurate results. However, the design of DBN-Fs is based on Assumptions 2 and 3, i.e.,

the sensors associated with measurements converted to inputs will not be faulty, and the components

whose parameters are used in the algebraic functions are assumed not to fail. Therefore, there is a

trade-o� for robustness to gain e�ciency.
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CHAPTER VII

CONCLUSIONS

In this dissertation, we presented two distributed diagnosis approaches: (i) a qualitative fault

signature-based scheme that extends the Transcend centralized diagnosis approach, and (ii) a

Dynamic Bayesian Network (DBN)-based scheme for e�cient and accurate diagnosis of abrupt and

incipient faults in uncertain environments. The qualitative and quantitative approaches are com-

bined into a uni�ed framework for fault detection, isolation, and identi�cation. The basis of our

distributed diagnosis schemes is the careful design of the distributed diagnosers through the o�ine

analysis of system properties, e.g., diagnosability and structural observability. By careful construc-

tion of these diagnosers, we guarantee that each distributed diagnoser generates globally correct

diagnosis results by local analysis without a centralized coordinator, with minimal exchange of mea-

surement information with each other, and without exchanging any partial diagnosis results amongst

themselves.

The �rst step towards developing the Transcend-based distributed diagnosis scheme was ex-

tending Transcend to generate incipient fault hypothesis, and modifying Transcend's existing

fault generation scheme to derive the fault signatures for incipient fault hypotheses. We then ana-

lyzed the diagnosability properties of the global system to come up with an approach for designing

our distributed qualitative fault diagnosers. We proposed two approaches for designing the dis-

tributed qualitative diagnosers. In the �rst diagnoser design approach, we assumed knowledge of

subsystem structure, especially the measurements and faults that belong to each subsystem, and

based on this information, we designed a local diagnoser for each subsystem such that it required

minimal number of additional external measurements to globally diagnose all the faults assigned to

that subsystem. In the second approach, we assumed no prior partitioning information. Instead,

we generated the maximal number of distributed diagnosers, such that, each local diagnoser could

operate independently without sharing measurements to generate globally correct diagnosis results.

In the Bayesian distributed diagnosis scheme, the DBN framework is designed to handle uncer-

tainties in the form of process and measurement noise. To accommodate arbitrary distributions and

non-linearities in the system, a particle �ltering scheme is employed. We proposed three di�erent

approaches to address the sample impoverishment problem inherent in particle �ltering-based fault

diagnosis schemes. For a Bayesian state estimation scheme to be able to generate correct state

170



estimates, the system must be observable. Classical notions of analyzing the observability property

requires the knowledge of system parameters and are mostly de�ned for linear systems. Since, our

systems can be nonlinear, we explored the structural observability property of systems and ensured

that the system is structurally observable before applying our Bayesian diagnosis approach to the

system. Bayesian diagnosis schemes can be computationally expensive for large systems, so we

proposed a novel scheme for combining the qualitative Transcend fault isolation scheme with the

Bayesian diagnosis approach to improve the overall computational e�ciency and accuracy of the

diagnosis of incipient and abrupt faults in the presence of uncertainties.

The e�ciency and scalability of our Bayesian diagnosis scheme was further improved by dis-

tributing the diagnosis task amongst distributed diagnosers that generate globally correct diagnosis

results locally, without a centralized coordinator, with minimal exchange of measurement informa-

tion with each other, and without exchanging any partial diagnosis results amongst themselves.

The basis of our diagnoser design is a procedure for factoring the global system DBN into DBN

factors (DBN-Fs), such that the random variables in each DBN-F are conditionally independent of

the random variables in all other DBN-Fs, given some subset of communicated measurements. The

conditional independence amongst random variables of the DBN-Fs makes it possible to invoke the

centralized, combined quantitative-qualitative Bayesian diagnosis on each individual DBN-F inde-

pendently. Thus, in each distributed diagnoser, the fault detector makes use of a particle �ltering

scheme applied to a DBN-F to estimate the values of the state variables in that DBN-F. We design

our distributed Bayesian diagnosers by analyzing the structural observability of the system and its

component parts. This is in contrast to the design procedure for Transcend-based distributed

diagnosers, where we analyzed the diagnosability properties of a system to design the distributed

diagnosers. The application of structural observability for the design and analysis for Bayesian

diagnosers is, to the best of our knowledge, novel.

The experimental results of applying our distributed qualitative diagnosis to the Advanced Water

Recovery System, demonstrated that our distributed qualitative diagnosis scheme is computationally

more e�cient than the centralized Transcend diagnosis approach. Our centralized and distributed

Bayesian diagnosis schemes were applied to a complex, twelfth-order electrical circuit, with highly

oscillatory behavior. The centralized Bayesian diagnosis schemes resulted in correct and more pre-

cise diagnosis results in the presence of noisy sensors, when compared to the purely qualitative

Transcend diagnosis scheme. The distributed Bayesian diagnosis scheme resulted in improvement

in computational e�ciency over the centralized Bayesian diagnosis approach while still generating

precise diagnosis results.
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Note that our approach of analyzing the diagnosability and observability properties of a sys-

tem o�ine to design distributed diagnosers that generate globally correct online diagnosis results

through local analysis, without a centralized coordinator, with minimal exchange of measurement

information, and no exchange of partial diagnosis results is not restricted to any one particular

diagnosis scheme. In fact, our distributed diagnosis philosophy can be applied to other diagnosis

approaches, given that we analyze diagnosability and/or observability properties pertinent to the

particular diagnosis scheme. For example, we can apply our distributed diagnoser design scheme to

any general ARR approach, if we are given the global incidence matrix which has information about

which residuals are a�ected by which faults. One must note that the qualitative Transcend diag-

nosis approach is itself a form of ARR, but Transcend uses more information about its residuals

(such as magnitude and slope symbol) rather than a binary 0 or 1 value to determine if the fault

merely a�ects a residual or not, as is the case in other general ARR-based schemes [121].

Future Directions

Our distributed diagnosis approaches do have some limitations and there are open problems that

need to be addressed in future work. In [1], the author presents a discrete event systems (DES)

approach for diagnosis of continuous systems, derived from the qualitative Transcend diagnostic

framework. This approach automatically constructs a labeled transition system that describes the

fault model, and also generates a computationally e�cient event-based diagnoser. As part of future

work, we would like to investigate how the algorithms described in this paper can be extended to

develop distributed DES approaches for diagnosing continuous systems.

The scope of this research was restricted to the diagnosis of single, abrupt and incipient paramet-

ric faults. Although these faults cover a large set of real-world fault scenarios, there are cases when

this assumption needs to be relaxed. In the future, we would like to extend the diagnosis approaches

presented in this dissertation to the diagnosis of multiple abrupt and incipient parametric faults.

Recall that once factored, Bayesian estimation algorithms can be applied to the di�erent DBN-Fs

independently. Also, the fault in a DBN-F will only cause the fault detector for that DBN-F to de-

tect the fault, and the other distributed diagnosers will not detect this fault. Hence, our distributed

Bayesian diagnosis approach can be easily extended to multiple faults, where the multiple faults are

de�ned as a collection of faults, where only a single fault can occur in each DBN-F.

We would also like to extend our distributed Bayesian diagnosis scheme to the diagnosis of

sensor faults. The basis of our distributed Bayesian diagnosis scheme is the computation of some
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state variables in terms of some measurement values, that are now considered as system inputs. In

this dissertation, we have assumed that these sensors that are used for computing state variables may

be noisy, but not faulty. Although not discussed in this dissertation, the diagnosis of sensor faults

is measurements that are not considered as system inputs requires a straightforward application of

the sensor fault diagnosis scheme presented in [1]), where a sensor fault is isolated if a deviation is

observed only in that sensor and no other measurements. However, the application of this sensor

fault diagnosis scheme to sensors that are now considered as system inputs is not straightforward.

One solution for diagnosing sensor faults is to have, in addition to the standard set of maximal

number of observable DBN-Fs, a set of di�erent DBN-Fs, where the sensors are not considered to be

system inputs, and apply the approach presented in [1] on these additional DBN-Fs only to diagnose

sensor faults.

At present, the distributed Bayesian diagnosers are designed by analyzing the structural ob-

servability of the system. Since the diagnosability property of the system is not considered during

factoring, we are often left with large number of faults that cannot be uniquely isolated by applying

qualitative Transcend isolation scheme alone, and we rely on the fault hypothesis re�nement and

identi�cation step to re�ne the fault hypotheses further, ideally to the single true fault. In the fu-

ture, we would like to improve the e�ciency of our distributed Bayesian diagnosis approach further

by ensuring that the DBN-Fs are carefully designed to reduce the number of faults that cannot be

isolated further by the qualitative fault isolation step to a minimal number.

Finally, as part of future work, we seek to investigate the important research problem of studying

the diagnosability of the faulty DBN models, once the extra fault variables are introduced. It has

been shown in [122] that the introduction of a fault in a system does not a�ect the structural

observability of the system, since injection of fault in the bond graph parameters does not increase

the number of extra states. However, for the sake of estimation, we include the faulty parameter as a

state variable, and this extra state variable may a�ect the estimation problem, and the diagnosability

of our Quant-FHRI scheme is related to the ability of estimating the faulty parameter correctly.

The problem of identifying the correct set of measurements such that the faulty parameter can be

estimated (and hence diagnosed) correctly, therefore, is also an important research task. We also

wish to apply our diagnosis approach to a large real-world system to better analyze the scalability

and e�ciency of our methodology.
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