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INTRODUCTION 

Congress passed the Clean Air Act in 1963 to protect air resources and promote 

public health and welfare. In 2010 alone, state and federal regulators conducted over 

70,000 inspections and assessed a total of $115 million in penalties under the Clean Air 

Act. Surprisingly, there has been relatively little research into the effectiveness of 

monitoring and enforcement actions. In this dissertation, I investigate the impact of 

monitoring and enforcement actions on air pollution emissions and air quality and 

examine escalating penalties for repeat violations of environmental regulations. 

In Chapter I, I investigate the impact of monitoring and enforcement actions on 

emissions of criteria pollutants and find that penalties decrease emissions. Criteria 

pollutants are commonly found air pollutants that harm human health and the 

environment; yet, due to data limitations, few researchers have studied the impact of 

monitoring and enforcement on criteria pollutant emissions. Using a large dataset of 

nitrogen oxides emissions in California, I find that penalties reduce emissions. Increasing 

the penalty from the 25th percentile to the 75th percentile of the distribution of positive 

penalties reduces emissions by 1.46 tons and facilities that were assessed a penalty in the 

previous year reduce emissions by 5.60 tons on average. This reduction is approximately 

2.0% to 7.7% of mean facility emissions. Interestingly, inspections have no significant 

impact, likely because inspection rates in California are consistently high.  

In Chapter II, I examine whether monitoring and enforcement actions improve air 

quality. Focusing again on California, I find that penalties are successful at reducing 

ambient ozone concentrations. Previous studies have found that monitoring and 

enforcement improve a facility’s compliance with its pollution permit and reduce its 
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emissions, but this alone does not measure the efficacy of the regulatory regime. While 

compliance and emissions are important measures, noncompliance and high emissions do 

not directly harm health and the environment; they do harm by increasing ambient 

pollution. Most of the previous research examining air quality has found that 

nonattainment of federal air quality standards—which implies a more stringent regulatory 

regime—improves air quality. No research has directly examined the impact of 

monitoring and enforcement on air quality. 

I fill that gap in the literature by investigating how monitoring and enforcement 

actions at facilities located near an air quality monitor affect ambient ozone 

concentrations measured at the air quality monitor. I find that increasing penalties 

improves air quality; increasing total penalties assessed from the 25th percentile to the 

75th percentile of the penalty distribution reduces ambient ozone concentrations by 0.348 

parts per billion, a 0.4% reduction in ambient ozone concentrations. 

In Chapter III, I examine the theoretical and empirical support for escalating 

penalties for repeat environmental violations and find that facilities with a history of 

violations are not necessarily the worst polluters as their violations seem to be less severe 

on average. Although escalating penalties for repeat offenders are common, the law and 

economics literature has not fully explored this concept. I argue that existing theoretical 

models could better justify escalating penalties by incorporating fairness and the social 

norm of law compliance.  

Next, I perform empirical analysis of repeat violations in California and find 

limited evidence of escalating penalties. I find that most facilities are compliant; 71.3% 

were compliant in at least eight out of the nine years I study. I also find no evidence that 
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penalties escalate. Somewhat surprisingly, facilities that were in violation for longer 

periods of time were assessed smaller penalties on average per year of violation. I argue 

that this is because repeat violations are less severe, and thus do not merit large penalties. 

Therefore, even though penalties do not escalate, persistent violators might not be “bad 

apples” as their violations are less serious. 

Thus, my dissertation examines the impact of monitoring and enforcement policy 

and shows that penalties are effective at reducing emissions and improving air quality. 

This is a relatively new finding; very little of the previous literature on monitoring and 

enforcement has found that penalties are effective at improving environmental 

performance. My dissertation shows that penalties are effective as a part of an aggressive 

air pollution regulation regime like California’s.  



4 

CHAPTER I 

EXAMINING THE IMPACT OF MONITORING AND ENFORCEMENT ON 

STATIONARY SOURCE EMISSIONS 

Introduction 

Public monitoring and enforcement are an important part of any regulatory 

regime. This is especially true for environmental regulations as environmental harms can 

be complex and widespread and private parties are often ill equipped to perform 

monitoring and enforcement. At the same time, monitoring and enforcement actions are 

costly, and, in order to justify the cost, they should produce environmental benefit. This 

chapter investigates how monitoring and enforcement actions affect stationary source 

emissions, focusing on emissions of nitrogen oxides (NOx), an important air pollutant that 

is responsible for major air quality problems but has not been studied. This chapter is the 

first research that examines how monitoring and enforcement affect criteria pollutant 

emissions, and I find that penalties decrease emissions.  

The U.S. Environmental Protection Agency (EPA) has identified ozone and fine 

particles as the pollutants that cause the most significant human health effects (EPA 

2011a). Ozone and fine particles are two of six “criteria pollutants,” commonly found air 

pollutants that affect human health and the environment, for which the EPA has set 

national air quality standards. Ozone is not emitted directly, but is created by chemical 

reactions between NOx and volatile organic compounds. There are two types of 

particulate matter: particulate matter with a diameter of 10 micrometers or less (PM10) 

and particulate matter with a diameter of 2.5 micrometers or less (PM2.5). PM2.5, also 
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known as fine particles, may be emitted directly but is mostly formed by reactions 

between other air pollutants such as sulfur dioxide and NOx. Because NOx is a precursor 

of both ozone and fine particles, it is an important pollutant on which regulators focus.  

As criteria pollutants are ubiquitous, it is crucial to establish the impact that 

monitoring and enforcement have on criteria pollutant emissions. Unfortunately, due to 

the limited availability of data,
1
 the literature has not done so. Articles that studied the 

effect of regulatory actions on air pollution have focused on compliance and not 

emissions (e.g., Gray and Deily 1996; Nadeau 1997; Deily and Gray 2007); those that 

studied emissions examined toxic chemicals covered by the Toxics Release Inventory
2
 

(TRI) (Hanna and Oliva 2010).
3
 However, the TRI does not cover NOx and other criteria 

pollutants, and researchers have not examined emissions of criteria pollutants. This 

chapter is the first to study the impact of monitoring and enforcement on emissions of 

criteria pollutants. 

Some of the earliest work on monitoring and enforcement focused on the impact 

of monitoring and enforcement on oil spills. For instance, Epple and Visscher (1984) 

found that increasing monitoring activity reduced the amount of oil spilled, and Cohen 

(1987) found that certain types of monitoring activity were more effective than others. 

Researchers also found mixed evidence on the effectiveness of penalties. For example, 

Viladrich Grau and Groves (1997) found that enforcement reduced the probability of oil 

spills as well as the spill volume, but found that the size of the penalty had no significant 

                                                 
1
 Gray and Shimshack (2011) point out that while air pollution compliance is observable to researchers, 

emissions are not.  
2
 The Emergency Planning and Community Right-to-Know Act requires manufacturing plants to report 

releases of certain toxic chemicals. These releases are reported to a database known as the Toxics Release 

Inventory.  
3
 On the other hand, researchers studying the impact of monitoring and enforcement on water pollution 

have examined both compliance and effluent (e.g., Magat and Viscusi 1990). 
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impact. On the other hand, Weber and Crew (2000) found that the size and swiftness of 

the penalty reduced the size of oil spills, but the certainty of the penalty did not. 

Other studies have explored the relationship between regulatory actions and a 

facility’s compliance and pollution releases for both air and water pollution.
4
 Water 

pollution studies generally investigated the relationship between regulatory action and 

effluent and compliance. For example, Magat and Viscusi (1990) measured the effect of 

inspections of pulp and paper plants on the plant’s compliance with the Clean Water Act 

and found that inspections in the previous quarter increased compliance and decreased 

effluent. Laplante and Rilstone (1996) performed a similar study on water pollution at 

pulp and paper plants in Quebec and found that current and previous inspections lowered 

absolute discharges and discharges relative to the norm, and that the predicted probability 

of inspection produced larger reductions than actual inspections. On the other hand, 

Earnhart (2004a, b) studied municipal wastewater plants in Kansas and found that actual 

inspections and enforcement actions reduced effluent but predicted inspections and 

enforcement actions had no significant impact.  

Articles that investigated air pollution have studied the impact of monitoring and 

enforcement on whether a facility complies with its permit limits, the duration a facility 

remains noncompliant, and emissions.
5
 Gray and Deily (1996) used both lagged and 

predicted inspections and enforcement actions in their study of Clean Air Act (CAA) 

compliance at steel-making plants. They found that the predicted number of inspections 

and enforcement actions had no effect on compliance, but actual inspections and 

                                                 
4
 For the purposes of this chapter I refer to water pollution releases as effluent and air pollution releases as 

emissions. 
5
 Keohane, Mansur, and Voynov (2009) studied the impact of impending litigation on emissions at power 

plants and found that litigation reduced emissions. As this chapter focuses on aspects of regulation other 

than litigation, I do not discuss this study in depth.  
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enforcement actions increased compliance. In a later paper (Deily and Gray 2007), their 

investigation of the joint effect of environmental regulations and health and safety 

regulations yielded similar results.  

Nadeau (1997) studied how the number of inspections and enforcement actions 

affected the duration a facility remained out of compliance. He found that predicted 

monitoring and enforcement actions, when predictions were based on the noncompliant 

sample, significantly reduced the duration a facility remained noncompliant. 

Lastly, Hanna and Oliva (2010) studied emissions of toxic chemicals covered by 

the TRI at manufacturing plants between 1985 and 2001. They found that actual CAA 

inspections decreased emissions of toxic chemicals but the probability of inspection had 

no significant effect. They also found that fines seemingly increased emissions; however, 

they argued that industries with high abatement costs preferred fines to abatement, thus 

producing this counterintuitive result.  

In this chapter, I use a dataset of stationary source emissions in California to 

examine the impact of monitoring and enforcement on NOx emissions. I find that 

penalties produced significant reductions in NOx emissions. A majority of the surveyed 

literature studied water pollution; of the articles that studied the effect of regulatory 

actions on air pollution, only one examined emissions—Hanna and Oliva (2010) studied 

toxic emissions at manufacturing facilities in the United States. This chapter extends the 

literature by examining NOx, an important pollutant that has not been studied because of 

the lack of data. Furthermore, limiting the sample to one jurisdiction, California, reduces 

the heterogeneity in regulatory policy and allows me to better understand state and local 
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regulatory policy. This is especially important because state and local regulators play a 

major role in the implementation of the CAA. 

Regulatory Background 

The CAA is a comprehensive national air pollution control program that regulates 

nation-wide air quality. Under § 109 of the CAA, the EPA establishes national ambient 

air quality standards (NAAQS) for six commonly found pollutants that harm health and 

the environment. These pollutants, also called criteria pollutants, are ozone, particulate 

matter, carbon monoxide, nitrogen oxides, sulfur dioxide, and lead. Although the 

NAAQS are federal standards, states have primary responsibility for achieving and 

maintaining these standards. Sources located in areas that are in NAAQS nonattainment 

face more stringent regulations, such as lower emissions limits, that aim to bring the area 

into attainment.  

In California, stationary source monitoring and enforcement are handled primarily 

by thirty-five local air districts, not by the EPA.
6
 Monitoring and enforcement practices 

depend on the type of source: major sources are sources that emit (or have the potential to 

emit) more than 100 tons per year of any pollutant and synthetic minor sources are 

sources that emit (or have the potential to emit) above 80% of the major source threshold 

(EPA 2001). Minor sources are sources whose potential uncontrolled emissions are below 

100 tons per year. In my analysis, I focus on inspections, enforcement actions, and 

penalties. There are two types of inspections, full compliance evaluations (FCEs) and 

                                                 
6
 Local air districts are responsible for almost 99% of the regulatory actions in my data, so my discussion 

focuses on air district policy and practice, not EPA policy and practice. I base this description of air district 

policy on discussions with staff at the four largest air districts, which constitute 80% of my sample. 
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partial compliance evaluations (PCEs), and three types of enforcement actions, notices of 

violation (NOVs), administrative orders, and consent decrees. Administrative orders are 

usually accompanied by penalties. 

An FCE is a comprehensive evaluation of the facility, addressing all regulated 

pollutants and emission units, and a PCE focuses on a subset of pollutants, requirements, 

or emission units and can be used to address particular areas of concern at a facility (EPA 

2001). Air districts typically perform an FCE once every two years for major sources and 

once every five years for synthetic minor sources. Districts typically perform other 

smaller inspections, PCEs, when there are complaints, ongoing violations, or reports of 

equipment breakdown. All districts report FCEs to the EPA’s data system.
7
 Most districts 

do not report PCEs, but some districts report some or all of their PCEs.
8
 For districts that 

do not report PCEs, I enter zero PCEs. In my analysis, I consider both FCEs and PCEs as 

inspections. 

There are three types of enforcement actions: NOVs, administrative orders, and 

consent decrees.
9
 The enforcement process begins with the discovery of a violation; 

inspectors can discover a violation through self-reporting, record review, or inspections. 

Upon discovering a violation, inspectors typically issue an NOV. A facility with multiple 

violations might receive one NOV for all the violations or one NOV for each violation; 

there is no fixed practice regarding the number of NOVs. The time between detecting a 

violation and issuing an NOV can vary. An NOV can be issued the same day, but it may 

take several weeks for more involved violations, such as violations that require review of 

                                                 
7
 Although air districts may perform FCEs via a series of PCEs, they report the underlying FCEs, not the 

individual PCEs. 
8
 The San Joaquin Valley Air Pollution Control District reports some of its PCEs, and the South Coast Air 

Quality Management District reports all of its PCEs. 
9
 I based this classification on the EPA’s classification (EPA 2011b, 2012b). 
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the facility’s records. District regulators place an emphasis on correcting violations; once 

detected, violations are usually remedied quickly, sometimes the same day. NOVs 

usually expose the facility to penalties.  

After receiving an NOV, facilities typically resolve the matter administratively, 

and the district assesses a penalty and issues an administrative order. An administrative 

order might deal with multiple violations or multiple NOVs. The time between an NOV 

and an administrative order varies, but it mostly takes less than nine months.  

It is worth noting that, in California, NOVs typically expose the facility to 

penalties and almost all NOVs end up as administrative orders.
10

 An NOV notes a 

violation that is later addressed by an administrative order. However, because an 

administrative order can address multiple violations or multiple NOVs, there might not 

be a one-to-one relationship. Furthermore, most violations are corrected early in the 

process, before the penalty is assessed. Facilities rarely, if ever, refuse to correct a 

violation.  

Administrative orders may include other requirements. For instance, an 

administrative order could include a shutdown order, which requires the facility to stop 

operating the particular piece of equipment, or it could include a variance, which loosens 

the facility’s permit restrictions. Obviously, the shutdown order is far more costly than 

the variance, and this aspect of the enforcement process is important. However, I do not 

have any of these details about the administrative orders. Figure 1 shows the timeline of a 

typical violation. 

Some cases might go through the judicial process instead of the administrative 

process, which can take three to five years and usually ends in a consent decree. 

                                                 
10

 This is different from other jurisdictions where only some of the NOVs expose the facility to penalties. 
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However, this is rare; almost all cases go through the administrative process.
11

 Districts 

also vary in their reporting practices; all districts report violations that are considered 

high-priority violations,
12

 but some districts report some or all violations that are not 

considered high-priority violations.
13

 In my analysis, I collapse NOVs, administrative 

orders, and consent decrees into one enforcement actions variable. 

Theoretical Model 

I assume that the facility is run by a profit-maximizing, price-taking firm, and the 

only violation is a breakdown of abatement equipment. The firm chooses the quantity 

produced,  , and the amount spent maintaining abatement equipment,  , to maximize 

expected profits. The firm’s variable costs are determined by the cost function     . As 

quantity increases, cost increases at an increasing rate; that is,         and        , 

where    and    are the first and second derivatives of   respectively. The probability of 

breakdown of abatement equipment is determined by the function     , where the 

probability is between zero and one,          . As abatement expense increases, the 

probability of breakdown decreases at a decreasing rate; that is,         and       

 . If there is a breakdown, the violation is detected with probability  , and the firm faces 

a fine   if detected. Thus, the firm’s expected profit is given by  

                                                 
11

 Only 1.1% of the enforcement actions in my data are consent decrees.  
12

 High-priority violations are violations that the EPA believes should receive the “highest scrutiny and 

oversight” (EPA 1998, p. 3). These include more serious permit, emissions, and testing violations, and 

chronic violations. All districts report high-priority violations; the San Joaquin Valley Air Pollution Control 

District reports some of its violations that are not considered high-priority violations, and the South Coast 

Air Quality Management District reports all of its violations regardless of whether they are considered 

high-priority violations.  
13

 Regulatory authorities also have other types of enforcement actions at their disposal, such as notices to 

comply. However, as these are not reported to the EPA database, I do not discuss them.  
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                     , (1) 

where   is the expected profit and   is the price of the firm’s output. Taking the 

derivative with respect to quantity gives equilibrium quantity  

     
     , (2) 

where   
   is the inverse of   . Because      increases at an increasing rate (    ),    is 

a monotone increasing function and so   
   is also a monotone increasing function. 

Therefore, as   increases,    also increases; quantity produced increases as price 

increases. Similarly, taking the derivative of   with respect to   gives equilibrium 

abatement expense 

     
    

 

   
 . (3) 

Because      decreases at a decreasing rate (    ),    is a monotone increasing 

function and so   
   is also a monotone increasing function. Therefore, as   and   

increase,    also increases; abatement expense increases as the probability of detection 

increases and the size of the fine increases. For notational convenience let      
      

      and      
  ( 

 

   
)         . Thus far, I have established that   

      , 

  
        , and   

        , where   
  and   

  are the partial derivatives of         

with respect to   and  , respectively. 

Next, assume that if abatement equipment breaks down, emissions are equal to the 

quantity produced,    . If abatement equipment is working, emissions are reduced to a 

fraction of uncontrolled emissions,      , where         . Thus, expected 

emissions are     (         ). Substituting    and    in, expected emissions 

are 
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          (       )          . (4) 

The chain rule implies that         
 . Thus, the partial derivative of   with 

respect to   is 

     
             . (5) 

As previously established,    ,      ,    , and   
   ; thus     . This 

means that as prices increase, emissions increase. Similarly,            
  and 

           
 . Thus, 

                 
  and (6) 

                 
 . (7) 

As previously established,     ,      ,     ,     , and     ; therefore, 

     and     . This means that emissions decrease as the probability of detection 

increases, and emissions decrease as the size of the fine increases.  

Thus, more inspections, which increase the probability of detection,  , should 

decrease emissions. An increase in penalties, which increases  , should also decrease 

emissions. Enforcement actions can affect both probability of detection   and fines  . An 

increase in the number of enforcement actions might reflect an increase in detection of 

violations,  ; at the same time, repeat offenders might also face larger fines, thus an 

enforcement action might reflect an increase in  . Therefore, enforcement actions should 

decrease emissions.  
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Data Description 

I obtain emissions data from the California Air Resources Board’s (CARB) 

emissions inventory and monitoring and enforcement data from the EPA’s Air Facility 

System (AFS) database. While I do not restrict my sample to specific industries like other 

articles do, potentially introducing heterogeneity among the sources, studying only 

California limits heterogeneity in monitoring and enforcement policy. This also allows 

me to get a better understanding of state and local regulatory policy. 

CARB’s emissions inventory contains information about facilities regulated by 

California, including facility name, address, city, county, and air district responsible for 

its regulation, as well as amount of emissions the facility produced in that year. Every 

year, each facility’s emissions are estimated by the air district based on information 

submitted by the facility, such as fuel usage, and other information about the facility, 

such as equipment and abatement technology. Air districts compile this information for 

all facilities that emit over ten tons of pollutants per year.  

Emissions data are available between 1995 and 2008. However, I limit my period 

of study to 2002-2008 because compliance monitoring policy and data reporting practices 

changed significantly in 2001.
14

 I also dropped the facilities that produced no NOx over 

the entire period—all the facilities in my sample had positive emissions in at least one 

year. The mean facility NOx emissions, by year, are presented in Table 1. NOx decreases 

steadily from a mean of 79.7 tons per year in 2003 to 64.0 tons per year in 2008. The 

overall mean NOx emissions per facility per year, across the entire time period, is 73.0 
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 The EPA adopted a new Compliance Monitoring Strategy in October of 2001 (EPA 2001). This 

introduced new types of regulatory actions and changed the recommended inspection frequency. 
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tons. I also calculated each facility’s mean over the entire time period. There are 857 

facilities; the facility with the lowest NOx emissions over the entire period emitted just 

0.0002 tons per year, while the facility with the highest NOx emissions over the period 

emitted 4,853 tons per year. 

I restricted the sample to facilities that existed during the entire study period. 

Despite that, there are missing values. Even though there are 857 facilities, which should 

generate 5,142 observations, there are only 4,702 observations because of missing values. 

The number of missing values decreases steadily between 2003 and 2008.  

Different factors could have caused the missing values, and each reason implies a 

different method of overcoming the problem. First, the facility might have shut down 

permanently or new facilities might have begun operation; I control that by limiting the 

sample to facilities that existed through the entire period. Second, the facility might have 

failed to submit information due to reasons unrelated to emissions or regulatory actions. 

In this case, missing values will not bias the results. Third, the facility might have shut 

down temporarily due to factors such as a short-term decline in demand; in this case, 

these missing values should be treated as zero tons of emissions. Air districts usually fill 

in zero if this is the case, but it is still possible that such observations slip through as 

missing values.  

Fourth, the facility might have failed to submit emissions information due to 

reasons related to emissions or monitoring and enforcement actions. For example, 

facilities might choose not to submit information if emissions are unusually high, or a 

high number of regulatory actions at the facility might burden the facility’s 

environmental staff with other responsibilities and cause them to fail to submit the 



16 

information. Regulators indicated that they did not think that facilities were trying to hide 

high emissions levels by not submitting the required information. Because I am unable to 

discern the reason for the missing values, I treat the missing values as randomly missing 

values. Thus, I do not perform any corrections to compensate for missing values. As a 

precaution, I also run additional regression equations on the subsample of facilities that 

have no missing NOx values. 

The AFS is the EPA’s database for CAA-regulated sources. The database contains 

details of each polluting facility, such as its geographic coordinates, address, program 

identification number, and permit type. Additionally, it has details of regulatory actions 

since 2002: the date and type of regulatory action as well as the penalty. I classify all 

state and federal FCEs and PCEs as inspections, and all state and federal NOVs, 

administrative orders, and consent decrees as enforcement actions. Table 2 shows a 

summary of the number of inspections and enforcement actions and total penalty per 

facility-year.  

There is a mean of 1.93 inspections per facility-year, and 73.6% of the facilities-

years receive at least one inspection. The mean number of enforcement actions is 0.76 

and 23.6% of the facility-years receive at least one enforcement action. The mean penalty 

per facility-year is $12,994. However, only 17.2% of the facility-years have any 

penalties. Conditional upon a penalty, the mean is $75,564.
15

 As most penalties are small 

but there are several very large penalties, my regressions use the natural logarithm of 
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 The AFS has information on the compliance status of the facility; many studies have used compliance 

status as the dependent variable. However, the EPA cautions that compliance status is subject to errors of 

omission (EPA 2012a). Facility noncompliance in the AFS is a flag that regulators have to flip on or off 

when a facility becomes noncompliant or comes back into compliance. As it is located in a different part of 

the data system, regulators often overlook entering this data. In my sample, the average compliance rate is 

97.5%. Facilities that have received any sort of enforcement action in the current or previous year—and 

thus should be considered noncompliant—have a compliance rate of 94.3%. This indicates a high level of 

inaccuracy. As this chapter focuses on emissions, I do not investigate compliance further. 
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penalties. I add one to all penalties before taking the natural logarithm as there are many 

zero values. The mean of the logarithm of penalties is 1.47. 

Note that the data only show whether the facility received an enforcement action; 

they do not specify which pollutant the enforcement action concerns. Thus, I cannot tell if 

the facility violated a NOx emissions limit or some other permit condition. Additionally, 

while some of the water pollution literature used information on individual effluent pipes 

within the facility, my data treat the facility as the unit of observation, and I do not have 

information on individual smokestacks within a facility. Lastly, while one firm may own 

many facilities, the data are at the facility level, so I study the facility as the unit of 

observation, not the firm. 

Table 3 shows the correlations between current- and previous-year regulatory 

actions. Part A of the table shows the correlations between the number of actions and 

logarithm of the penalty, while part B shows the correlations between the dummy 

variables for whether the facility received the specific regulatory action or penalty. The 

number of inspections is weakly correlated with other regulatory actions and their lagged 

values, probably because most inspections are performed at a predetermined frequency. It 

is also worth noting that enforcement actions are highly correlated with penalties because 

most violations expose the facility to penalties.  

I merge AFS inspection and enforcement information with CARB emissions 

information based on facility name and address. I manage to match about two-thirds of 

the AFS facilities to their emissions. As AFS removes facilities that have shut down, I 

restrict the study to facilities that have been in the sample for the entire period, excluding 

those that were in existence during the start of the period but shut down during the period 



18 

and those facilities that began operating during the period.
16

 Whether this biases the 

results depends on why the facilities shut down or begin operating during the period. If 

the facilities begin operation and shut down for reasons unrelated to regulatory actions 

and are affected by regulatory action in the same way that existing firms are, then this 

limitation of the sample should not bias results. If facilities shut down due to regulatory 

pressure, for instance, if large penalties render the facilities unprofitable, then the 

regulatory actions would have reduced emissions to zero; thus, in this case, my results 

would underestimate the impact of regulatory actions. New facilities that began operation 

during the study period might have better pollution abatement equipment. Thus, 

regulatory actions against these facilities might be less effective because they already 

have relatively advanced abatement equipment. In this case, my regression results would 

overestimate the impact of regulatory actions.
17

 

I also control for air quality, including variables for NAAQS attainment status, 

and demographic factors, including variables for per capita income, unemployment, and 

percent white at the county-year level. Being in a nonattainment area might increase 

regulatory activity at a facility but might also cause a facility to face other pressure from 

the community to control emissions. Thus, I include NAAQS attainment status, from the 

EPA’s Green Book, to avoid omitted variables bias. I control for attainment status for 
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 I use compliance information to decide whether a facility was operating; I took its earliest compliance 

entry as the earliest date it was in operation. Additionally, through a Freedom of Information Act request, I 

obtained information regarding facilities that had shut down and were thus removed from the AFS. 

However these data were very difficult to match with the emissions inventory data. Thus, I did not pursue 

this.  
17

 Future iterations of this project can add facilities that have shut down (from the data I received through a 

Freedom of Information Act request) and facilities that began operation during the time period (which are 

already in the EPA database).   
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ozone, PM10, PM2.5, and carbon monoxide.
18

 I do not control for attainment status for 

nitrogen oxides, sulfur dioxide, and lead because all areas are in attainment of those 

standards. I get information about per capita income from the Bureau of Economic 

Analysis and unemployment rate from the Bureau of Labor Statistics and include them in 

my regressions to control for price and cost of a facility’s output. I also obtain 

information about the percentage of white people in the county from the Census; counties 

with a large minority population might have less political power and less regulatory 

pressure to lower emissions, and omitting this might cause omitted variables bias.  

Table 4 presents a brief description and summary statistics for each variable. As 

the table shows, many facilities are situated in nonattainment counties. Sixty-seven 

percent of the facility-years are in PM10 nonattainment counties while 45.4% of the 

facilities-years are in PM2.5 nonattainment counties. Ninety-one percent of the facility-

years are in ozone nonattainment counties, while 31.3% of the facility-years are in carbon 

monoxide nonattainment counties. The average unemployment rate is 6.5%, average 

income is $37,191, and average percent of white population is 78.6%. 

Econometric Methods 

When investigating the impact of monitoring and enforcement on pollution, 

researchers have to overcome reverse causality. For instance, high emissions may attract 

regulatory action, leading to the mistaken conclusion that regulatory action causes 

noncompliance. Researchers have developed several methods of overcoming reverse 
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 Nonattainment classification for PM2.5 started only in 2005. All areas were classified as in attainment 

prior to 2005. In my regressions, year dummy variables account for this.   
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causality: including a wide range of control variables; limiting the analysis to facilities in 

one industry; and adjustments to the regulatory action explanatory variable.  

Most studies combat this problem by including a wide range of control variables, 

such as the facilities’ output and production process (e.g., Magat and Viscusi 1990). For 

example, if a facility’s output increases, it might increase emissions but also draw 

regulators’ attention. Including an extensive set of controls can alleviate such problems. I 

do not have detailed facility information, but I use facility fixed effects, control for 

income, unemployment rate, percent white, and NAAQS attainment status on the county-

year level, and control for time trends. 

Furthermore, most articles constrain analysis to facilities in one industry or 

several similar industries, such as pulp and paper mills, to ensure that the facilities 

studied are approximately similar and thus would react similarly to regulatory action. Not 

limiting the sample in this way can exacerbate causality problems. For example, Hanna 

and Oliva (2010) studied all manufacturing facilities and found that facilities that were 

fined did not reduce their emissions while facilities that were not fined reduced their 

emissions. They argued that this was due to the differences across industries; industries 

with high abatement costs preferred fines to emissions reduction. Thus, these facilities 

polluted more and also faced higher fines, causing the positive relationship between 

emissions and fines. Although I do not limit my sample to facilities in specific industries, 

I use fixed effects regression analysis. Fixed effects regression measures variation at a 

facility over time, so time-invariant characteristics, like the industry of the facility, will 

not cause the problem that Hanna and Oliva faced. I also ran additional regressions 
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limiting my sample to sources considered to be major sources and manufacturing 

facilities. 

Articles addressed reverse causality by making three different adjustments to the 

explanatory variables: using lagged regulatory variables, using the predicted probability 

of regulatory action, and using regulatory action directed at other facilities as an 

instrumental variable. Researchers most commonly compensate for reverse causality by 

regressing compliance or pollution releases in the current time period against monitoring 

and enforcement actions in previous time periods. Lagged variables avoid reverse 

causality because current noncompliance or pollution releases cannot cause inspections or 

enforcement actions in a preceding time period. For example, Magat and Viscusi (1990) 

found that previous-quarter inspections increased compliance and decreased effluent at 

pulp and paper plants.  

Other studies addressed the reverse causality problem by using the predicted 

probability of an inspection or enforcement action as explanatory variables, in addition to 

using lagged regulatory variables. Laplante and Rilstone (1996) studied water pollution at 

pulp and paper plants in Quebec and found that current and previous inspections lowered 

discharges and the fitted probability of inspections produced larger reductions than actual 

inspections. However, Earnhart (2004a, b) performed similar studies on publicly owned 

municipal wastewater plants in Kansas and found that actual inspections and enforcement 

actions reduced effluent but predicted inspections and enforcement actions did not reduce 

effluent, and even increased effluent in some cases. 

For air pollution studies, researchers have generally found that actual inspections 

and enforcement actions increased compliance or lowered emissions, but the predicted 
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probability of inspection and enforcement actions had no significant impact. Gray and 

Deily’s (1996) study of CAA compliance at steel-making plants found that the predicted 

number of inspections and enforcement actions had no effect on compliance, but if the 

plant had been inspected or faced an enforcement action in the past two years, it was 

more likely to be in compliance. Similarly, Hanna and Oliva (2010) studied emissions of 

toxic chemicals at manufacturing plants and found that actual CAA inspections decreased 

emissions of toxic chemicals but the probability of inspection had no significant effect.  

Lastly, researchers used instrumental variables to compensate for reverse 

causality. In their study of pulp and paper mills, Shimshack and Ward (2005) used the 

rate of inspection at other regulated plants in the same jurisdiction as an instrument for 

inspections at the facility. They reasoned that, as pulp and paper plants formed a very 

small portion of the regulator’s responsibilities, inspections at other regulated plants were 

unrelated to any idiosyncratic plant-specific effects. Thus, they argued, the variable 

reflected an overall rate of inspection and met the exclusion restriction. They found that a 

fine (both the presence and magnitude of the fine) in the previous year on any plant in the 

same jurisdiction increased compliance at that plant, as did a previous-year inspection on 

the plant. Current inspections, for which the authors used instrumental variables, had no 

significant impact. On the other hand, Earnhart (2004b), in his study of municipal 

wastewater treatment plants, used enforcement at all regulated plants in the jurisdiction as 

an explanatory variable (not an instrumental variable) and found that the general 

enforcement rate reduced effluent. 

The studies mentioned above generally found that actual inspections and 

enforcement actions improved compliance and decreased pollution released. However, 
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predicted inspections and enforcement actions seem to be ineffective: only one of the 

studies found that predicted inspections reduced effluent (Laplante and Rilstone 1996), 

and there is little evidence that predicted enforcement had any impact. This is, perhaps, 

because the predicted probability of regulatory action is a poor measure of the polluter’s 

perceived probability of regulatory action.  

In this chapter, I use the fixed effects regression model, which examines the 

changes in NOx at the same facility across time. This can reduce problems presented by 

differences in facilities across industries. I also use lagged regulatory variables to control 

for reverse causality. I describe my regression models in more detail in the next section.  

Regression Analysis 

In order to analyze the impact of monitoring and enforcement on emissions, I use 

a fixed effects regression model. The econometric model is represented by  

                      
      

               .
19

 (8) 

Emissions for facility   at time   are represented by    . In this case, it measures the tons 

of NOx released in that year. Time-invariant facility characteristics, such as technology, 

industry, or location of the facility, are captured by   . Year dummy variables are 

represented by      , and capture general time trends in emissions. Other time-varying 

characteristics are captured by    ; this controls for demographic characteristics (income, 

unemployment rate, and percent white) and attainment status (for particulate matter, 

ozone, and carbon monoxide) of the county in which the facility is located. 
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 While some articles control for the lagged dependent variable       , controlling for it in this case would 

cause estimators to be inconsistent because fixed effects regressions are estimated by mean-differencing 

(Cameron and Trivedi 2010).  
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The variable                    represents regulatory action, such as 

inspections and enforcement actions taken or penalties assessed, which can be measured 

in two different ways. One option is to use the number of regulatory actions, such as the 

number of inspections or number of enforcement actions, taken in any given year, 

directly. This has the advantage of providing a more complete picture: if a facility is 

subject to more inspections, then it should show a larger effect on emissions than a 

facility that is subject to fewer inspections.  

The second option is to use dummy variables to indicate whether the facility has 

received a particular regulatory action. This would make sense if the presence of 

regulatory action, not the number of regulatory actions, is what drives any changes in 

emissions. Additionally, in my data, the number of regulatory actions might be driven 

primarily by the size of the facility, not the degree of regulatory scrutiny the facility is 

facing. Because I do not limit my data to facilities in specific industries, there is great 

variation in the size of the facilities and therefore great variation in the number of 

regulatory actions. For example, a large facility can receive multiple enforcement actions 

for multiple smokestacks but a small facility with only one smokestack is unlikely to 

receive multiple actions. Thus, the number of regulatory actions is perhaps more 

representative of the size of the facility than the degree of regulatory scrutiny the facility 

is facing; this would make dummy variables more appropriate.  

Furthermore, dummy variables can minimize problems in my data. For instance, 

the data show that many large facilities received multiple FCEs per year. This is likely a 

reporting error as inspectors state that it is highly unlikely that they could complete 

multiple FCEs on a large facility in a year because FCEs at large facilities are time 
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consuming.
20

 The literature has taken both approaches, so I run the regression using both 

the number of actions and dummy variables. 

Additionally, the measure of regulatory action should account for reverse 

causality. As previously mentioned, using current regulatory action as the explanatory 

variable creates the risk of reverse causality. One solution is to use regulatory actions in 

the previous year instead of the current year,                       instead of 

                  . This avoids reverse causality because emissions this year cannot 

cause regulatory actions in the previous year. Thus, my regression equation is  

                         
      

               . (9) 

In the equation,                       is a vector of variables representing the number 

of regulatory actions in the previous year: inspections, enforcement actions, and penalties 

in the previous year. As the distribution of penalties is very skewed, I use the natural 

logarithm of penalties instead of the amount of penalties. As discussed in the theoretical 

model, increasing the probability of detecting a violation and increasing the size of 

penalties should decrease emissions. Thus, I expect the coefficients of inspections, 

enforcement actions, and penalties to be negative.  

In regression (1) of Table 5, I present the effect of having at least one previous-

year inspection, at least one previous-year enforcement action, and a positive previous-

year penalty on emissions. The coefficient of penalties is negative and significant at the 

10% level. If a facility received a penalty in the previous year, its NOx emissions 

decrease by 5.60 tons on average, which is about 7.7% of the mean emissions of 72.98 
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 Such recording mistakes could happen if, for instance, a facility is inspected once for two different air 

programs, hazardous air pollutants and criteria pollutants. Although it is only one action, it might be 

recorded twice because it involved two air programs. The AFS tries to minimize such mistakes but they 

still occur. 
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tons. Surprisingly, enforcement actions have no significant impact on emissions. This is 

probably because enforcement actions are often accompanied by penalties; thus, 

enforcement actions alone have no significant impact as penalties capture the deterrent 

effect of the enforcement action. 

In the regression, inspections do not affect emissions. This is probably because 

there is not much variation within the facility. Fixed effects regression tracks each facility 

over time; for an inspection to produce a significant impact on pollution, the inspection 

rate at a facility must change over time. Most air districts perform inspections at the same 

frequency through the study period, once every two years for major sources and once 

every five years for synthetic minor sources, so there is not much within-facility 

variation. Furthermore, the inspection rate is high, with 73.6% of facility-years receiving 

at least one inspection, and a marginal increase in inspections might have no impact. 

Thus, these two factors might be responsible for the lack of significance of the coefficient 

of inspections. It is worth noting that other studies have found that inspections improved 

compliance and decreased pollution releases. For example, Hanna and Oliva (2010) 

found that inspections significantly reduced toxic emissions, but they had dropped 

facilities that face yearly inspections from their sample. Other studies (e.g., Gray and 

Deily 1996) also found that inspections improved compliance. My sample is more recent 

and focuses on California, which has an aggressive inspection regime; thus, it likely has 

less variation in inspection rates, causing the insignificant coefficients.  

In regressions (2), (3), and (4), of Table 5, I run the same regression with different 

samples. Regression (2) displays the regression results when I use only facilities that are 

considered major sources. The results are similar, and a penalty reduces emissions by 
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6.24 tons. Regression (3) displays the regression results when I use a balanced panel of 

facilities that have no missing NOx values. The coefficient of penalties remains negative 

and significant; receiving a penalty reduces NOx emissions by 6.68 tons. Lastly, 

regression (4) displays the regression results for facilities that are in the manufacturing 

industry (Standard Industrial Classification code 20-39). The coefficient of penalties 

remains negative and significant; receiving a penalty reduces emissions by 10.73 tons for 

manufacturing facilities.  

In Table 6, I present the results of regressions when I use the number of 

regulatory actions (the number of inspections, the number of enforcement actions, and the 

natural logarithm of total penalties) as the explanatory variable instead of dummy 

variables that indicate the presence of a regulatory action. The coefficient of penalties 

remains negative and statistically significant in most specifications. Regression (1) 

displays the effect of previous-year inspections, enforcement actions, and penalties on 

emissions for all facilities. The coefficient of penalties is negative and significant at the 

10% level; increasing the penalty by 1% decreases NOx emissions by 0.007 tons. 

Although this number is small, penalties are relatively large and can cause large 

reductions. For instance, increasing the penalty from $1 to the average of $12,994 

decreases emissions by 6.41 tons; increasing the penalty from the 25th percentile to the 

75th percentile of the distribution of positive penalties (an increase from $1,500 to 

$12,896), decreases emissions by 1.46 tons. A 1.46 ton reduction is approximately 2.0% 

of the mean emissions of 72.98 tons.  
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Regressions (2) to (4) display the regression results when I use different samples. 

The results are similar; the coefficient of penalties remains negative and significant for all 

the samples except the balanced panel.  

Robustness Tests 

Next, I examine whether the fixed effects results in Table 5 and Table 6 are 

robust. First, I examine whether omitting year dummy variables and fixed effects affects 

the results. Table 7 shows the coefficients of the regulatory action variables when I omit 

year dummy variables. Regressions (1) to (4) are very similar to the analogous 

regressions in Table 5 and regressions (5) to (8) are very similar to the analogous 

regressions in Table 6. Thus, the results are robust to omitting time trends.  

Additionally, I examine how using pooled ordinary least squares, which omits 

facility fixed effects, affects the result. I run the regression 

                         
      

              . (10) 

where, instead of facility fixed effects,    in equation (9), there is a common intercept 

term,  . Table 8 shows the results: inspections and enforcement actions seem to increase 

emissions. This is likely due to the fact that regulators focus their regulatory actions on 

facilities that produce more emissions. Using fixed effects mitigates this reverse causality 

problem. Table 9 shows that the results are similar if I omit both fixed effects and time 

trends.  

Next, I examine whether omitting various control variables affects the results. 

Table 10 displays the coefficients of regulatory actions when I run a fixed effects 

regression on all facilities but omit various control variables. Regressions (1) to (3) are 
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similar to regression (1) in Table 5, examining how the presence of regulatory actions 

affects NOx emissions, and regressions (4) to (6) are similar to regression (1) in Table 6, 

examining how the number of regulatory actions affects NOx emissions. Omitting various 

control variables does not affect the significance and magnitude of the results. For 

example, as regression (1) of Table 10 shows, if I omit the NAAQS nonattainment 

variables from the regression, the coefficient of penalties is still significant and similar in 

magnitude, -5.70. As the table shows, the results are robust to omitting various control 

variables. In Appendix A, I present the regression results for the other subsamples, major 

facilities, the balanced panel, and manufacturing facilities, as well as further robustness 

tests. 

Conclusion  

This chapter is one of the few studies to directly examine air pollution emissions, 

and the first to examine the effect of monitoring and enforcement on NOx and criteria 

pollutant emissions. Furthermore, by limiting my study to one jurisdiction, I am able to 

better understand the monitoring and enforcement policies of the regulator; this is 

important because state and local regulators play a big role in the CAA.  

Penalties have the most robust effect; having a positive penalty reduces emissions 

by an average of 5.60 tons and increasing the penalty from the 25th percentile to the 75th 

percentile of the penalty distribution reduces emissions by 1.46 tons. The coefficients of 

inspections and enforcement actions are not significant, perhaps indicating that the 

deterrent impact of the regulatory regime lies in the penalties. Previous work has found 

that inspections and enforcement actions improved pollution outcomes. On the other 
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hand, little work has found penalties to be effective, with the exception of Shimshack and 

Ward’s (2005) finding that penalties on other facilities in the same jurisdiction improve 

compliance and Weber and Crew’s (2000) finding that larger penalties reduce the size of 

oil spills.  

My result, that penalties are effective, might be due to California’s uniquely 

aggressive pollution control regime and the certainty with which a violation results in a 

penalty. First, the inspection rate in California is very high; the inspection rate for all 

states other than California was 24.5%, far less than the inspection rate of 73.6% in my 

sample. Thus, it is more likely that violations will be detected and result in a penalty. 

Second, in California, almost every violation exposes the facility to a penalty, even if the 

violation is fixed quickly. Thus, given the relative certainty of penalties, it is unsurprising 

that penalties are effective at improving facility behavior. 
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Tables 

Table 1. Mean Facility NOx Emissions in Tons 

Year Obs. Mean (Std. Dev.) Min. Max. 

2003 756 79.650 (336.332) 0 4,813.100 

2004 762 76.830 (315.653) 0 4,483.260 

2005 770 77.500 (321.292) 0 4,753.500 

2006 808 71.932 (309.097) 0 4,753.500 

2007 807 68.753 (308.542) 0 5,265.266 

2008 799 63.990 (280.459) 0 5,108.270 

Overall 4,702 72.984 (311.910) 0 5,265.266 

Facility mean 857 68.477 (295.051) 0.0002
 

4,852.883 

Source: Author’s calculations and California Air Resources Board Emissions 

Inventory, 2003-2008. 
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Table 2. Means for Inspections, Enforcement Actions, and Penalty Amount per Facility-

Year 

 Mean (Std. dev.) Proportion positive 

Inspections 1.932 (3.003) 0.736 

Enforcement actions 0.755 (2.853) 0.236 

Penalty 12,993.61 (190,945.97) 0.172 

Penalty (log) 1.468 (3.309) 0.172 

Given penalty > 0    

  Penalty 75,563.84 (455,542.62)  

  Penalty (log) 8.536 (1.820)  

Source: Author’s calculations and EPA Air Facility System, 2002-2008. 
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Table 3. Correlations Between Current- and Previous-Year Regulatory Actions at a 

Facility 

  
Inspections Enforcement actions Penalty (log) 

A. Number of regulatory actions   

Current year actions:  
   

 
Inspections 1.000 

  

 
Enforcement actions 0.200 1.000 

 

 
Penalty (log) 0.171 0.517 1.000 

Previous year actions: 
   

 
Inspections 0.714 0.132 0.140 

 
Enforcement actions 0.245 0.516 0.311 

 
Penalty (log) 0.146 0.212 0.230 

B. Dummy variable for regulatory actions   

Current year actions: 
   

 
Inspections 1.000 

  

 
Enforcement actions 0.111 1.000 

 

 
Positive penalty 0.080 0.819 1.000 

Previous year actions 
   

 
Inspections 0.208 0.058 0.051 

 
Enforcement actions 0.076 0.380 0.380 

 
Positive penalty 0.081 0.199 0.200 

Source: Author’s calculations and EPA Air Facility System, 2002-2008. 
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Table 4. Description and Mean (per Facility-Year) of Variables  

 Variable Description Mean (Std. dev.) 

Dependent variable   

 NOx  NOx emissions in tons. Source: CARB. 72.984 (311.910) 

Explanatory variables   

 Inspections Number of full and partial compliance 

evaluations performed. FCEs address all 

pollutants and emission units and are 

performed once every two years for major 

facilities and once every five years for 

synthetic minor facilities. PCEs focus on a 

subset of pollutants or emission units, and 

are usually performed in response to 

ongoing violations and breakdown reports. 

Source: EPA. 

1.932 (3.003) 

 Enforcement 

actions 

Number of notices of violation, 

administrative orders, and consent decrees 

issued. NOVs are issued within a month of 

discovering the violation and 

administrative orders address a violation 

and usually take place within nine months 

of discovery. Source: EPA. 

0.755 (2.853) 

 Penalty Total penalty the facility received in the 

year, in thousands of dollars. Source: EPA. 

12.994  (190.946)  

 PM10 

nonattainment 

Indicator for whether the county was in 

attainment of PM10 NAAQS (1 = 

nonattainment). Source: EPA. 

0.674 (0.469) 

 PM2.5  

nonattainment 

Indicator for whether the county was in 

attainment of PM2.5 NAAQS (1 = 

nonattainment). Source: EPA. 

0.454 (0.498) 

 Ozone 

nonattainment 

Indicator for whether the county was in 

attainment of ozone NAAQS (1 = 

nonattainment). Source: EPA. 

0.910 (0.286) 

 Carbon 

monoxide 

nonattainment 

Indicator for whether the county was in 

attainment of carbon monoxide NAAQS 

(1 = nonattainment). Source: EPA. 

0.313 (0.464) 

 Unemploy-

ment rate 

Percentage unemployment rate in the 

county. Source: BLS. 

6.521 (2.105) 

 Income Per capita income in the county, in 

thousands of dollars. Source: BEA. 

37.191 (9.936) 

 Percent white Percent white population in the county. 

Source: Census. 

78.581 (7.660) 

Source: Author’s calculations, California Air Resources Board (CARB) emissions 

inventory, EPA Air Facility System, Bureau of Labor Statistics (BLS), Bureau of 

Economic Analysis (BEA), and U.S. Census. 
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Table 5. Fixed Effects Regressions of the Impact of the Presence of Regulatory Actions 

in the Previous Year on NOx Emissions 

Sample
a
 All Major Balanced Manufacturing 

 (1) (2) (3) (4) 

Presence of any inspections 

in the previous year 

-0.497 0.735 -0.843 0.827 

(1.769) (2.770) (2.036) (3.612) 

Presence of any enforcement 

actions in the previous year 

2.289 2.451 3.030 5.208 

(2.572) (2.969) (2.790) (4.237) 

Presence of a penalty in the 

previous year 

-5.596
+
 -6.236

+
 -6.684

+
 -10.732* 

(3.215) (3.690) (3.507) (5.246) 

PM10 nonattainment -2.469 -2.896 -2.836 -6.267 

(3.504) (4.347) (3.778) (7.367) 

PM2.5 nonattainment 0.220 0.342 0.169 1.459 

(1.057) (1.512) (1.160) (2.418) 

Ozone nonattainment -6.080
+
 -7.464 -5.950 -7.035 

(3.589) (5.091) (3.897) (6.762) 

Carbon monoxide 

nonattainment 

-3.152 2.263 -0.750 -8.443 

(7.480) (11.800) (8.904) (15.680) 

Unemployment rate -2.224 -3.046 -2.139 2.498 

(4.219) (5.603) (4.531) (6.213) 

Income (/$1000) 7.794
+
 10.758* 8.525* 16.957* 

(4.043) (5.444) (4.276) (6.709) 

Percent white -5.117 -7.980 -4.097 -7.025 

(4.137) (5.450) (4.630) (7.315) 

Observations 4,702 3,459 4,032 2,316 

Facilities 857 613 672 423 

Adjusted R-squared 0.961 0.960 0.962 0.966 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; year 

dummy variables included but not shown. 
a
 Column titles (“all,” “major,” “balanced,” and “manufacturing”) refer to the sample 

used in the regression. 
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Table 6. Fixed Effects Regressions of the Impact of the Number of Regulatory Actions in 

the Previous Year on NOx Emissions 

Sample
a
 All Major Balanced Manufacturing 

 (1) (2) (3) (4) 

Number of inspections in 

the previous year 

-1.115 -1.080 -0.869 0.042 

(0.758) (0.892) (1.007) (1.109) 

Number of enforcement 

actions in the previous year 

0.960 0.974 0.320 1.208 

(1.083) (1.097) (1.235) (1.535) 

Amount of penalty (log) in 

the previous year 

-0.677
+
 -0.746

+
 -0.579 -1.046

+
 

(0.390) (0.434) (0.450) (0.570) 

PM10 nonattainment -2.671 -3.325 -3.019 -6.003 

(3.410) (4.279) (3.685) (7.048) 

PM2.5 nonattainment -0.020 -0.018 0.011 1.462 

(1.083) (1.575) (1.198) (2.535) 

Ozone nonattainment -5.603 -6.922 -5.678 -6.573 

(3.605) (5.121) (3.959) (6.821) 

Carbon monoxide 

nonattainment 

-3.319 1.820 -0.740 -8.178 

(7.329) (11.707) (8.785) (15.281) 

Unemployment rate -2.290 -2.936 -2.327 2.752 

(4.175) (5.501) (4.511) (6.018) 

Income (/$1000) 7.527
+
 10.885

+
 8.011

+
 17.680** 

(4.183) (5.594) (4.463) (6.673) 

Percent white -4.189 -6.839 -3.441 -7.083 

(3.991) (5.196) (4.495) (6.886) 

Observations 4,702 3,459 4,032 2,316 

Facilities 857 613 672 423 

Adjusted R-squared 0.961 0.961 0.962 0.966 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; year 

dummy variables included but not shown. 
a
 Column titles (“all,” “major,” “balanced,” and “manufacturing”) refer to the sample 

used in the regression.  
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Table 7. Fixed Effects Regressions of the Impact of Regulatory Actions in the Previous Year on NOx Emissions, Without Time Trends 

Regulatory actions
a
 Presence of Regulatory Actions Number of Regulatory Action 

Sample
b
 All Major Balanced Manufacturing All Major Balanced Manufacturing 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Inspections in the 

previous year 

-0.593 0.332 -1.131 0.258 -1.298* -1.360* -1.100 -0.372 

(1.622) (2.521) (1.857) (3.270) (0.705) (0.795) (0.911) (0.987) 

Enforcement actions 

in the previous year 

2.576 2.845 3.288 5.970 0.979 1.005 0.340 1.263 

(2.629) (3.044) (2.849) (4.459) (1.086) (1.100) (1.235) (1.534) 

Penalty in the 

previous year (log) 

-5.808* -6.466* -6.942* -11.300** -0.681* -0.748* -0.590 -1.059* 

(3.341) (3.808) (3.635) (5.552) (0.396) (0.438) (0.455) (0.571) 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; NAAQS nonattainment and demographic variables 

included but not shown. 
a
 Headings refer to the type of explanatory variable used in the regression. 

b
 Column titles (“all,” “major,” “balanced,” and “manufacturing”) refer to the sample used in the regression. 
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Table 8. Pooled Ordinary Least Squares Regressions of the Impact of Regulatory Actions in the Previous Year on NOx Emissions, 

Without Fixed Effects  

Regulatory actions
a
 Presence of Regulatory Actions Number of Regulatory Action 

Sample
b
 All Major Balanced Manufacturing All Major Balanced Manufacturing 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Inspections in the 

previous year 

29.534* 20.601 29.890
+
 50.502 4.920 2.657 8.383

+
 6.389 

(14.190) (22.356) (15.629) (32.419) (3.288) (3.407) (4.489) (7.039) 

Enforcement actions 

in the previous year 

55.209* 49.225 60.055* 83.371
+
 16.327** 15.935* 25.297** 21.610** 

(24.893) (30.227) (27.583) (42.734) (6.237) (6.303) (7.669) (8.111) 

Penalty in the 

previous year (log) 

25.583 28.591 25.997 60.643
+
 3.973 4.036 1.539 9.157 

(19.634) (22.309) (21.851) (33.397) (3.648) (4.213) (3.868) (5.811) 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; NAAQS nonattainment, demographic variables, and 

year dummy variables included but not shown. 
a
 Headings refer to the type of explanatory variable used in the regression. 

b
 Column titles (“all,” “major,” “balanced,” and “manufacturing”) refer to the sample used in the regression. 

  



 

 

4
2

 

 

 

 

 

 

 

 

Table 9. Ordinary Least Squares Regressions of the Impact of Regulatory Actions in the Previous Year on NOx Emissions, Without 

Fixed Effects and Time Trends 

Regulatory actions
a
 Presence of Regulatory Actions Number of Regulatory Action 

Sample
b
 All Major Balanced Manufacturing All Major Balanced Manufacturing 

 (1) (2) (3) (4) (5) (6) (7) (8) 

Inspections in the 

previous year 

28.683* 19.331 28.977
+
 48.968 5.135 2.848 8.611

+
 6.772 

(13.767) (20.740) (15.078) (31.538) (3.377) (3.474) (4.568) (7.251) 

Enforcement actions 

in the previous year 

54.534* 48.411 59.116* 82.125
+
 16.169** 15.738* 25.125** 21.301** 

(24.696) (29.507) (27.310) (42.111) (6.231) (6.286) (7.645) (8.073) 

Penalty in the 

previous year (log) 

25.148 28.380 25.683 60.835
+
 3.875 3.944 1.431 9.108 

(19.527) (22.179) (21.763) (33.158) (3.605) (4.130) (3.822) (5.773) 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; NAAQS nonattainment and demographic variables 

included but not shown. 
a
 Headings refer to the type of explanatory variable used in the regression. 

b
 Column titles (“all,” “major,” “balanced,” and “manufacturing”) refer to the sample used in the regression. 
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Table 10. Fixed Effects Regression of the Impact of Regulatory Actions in the Previous Year on NOx Emissions at All Facilities, 

Omitting Control Variables 

Regulatory actions
a
 Presence of Regulatory Actions Number of Regulatory Action 

  (1) (2) (3) (4) (5) (6) 

Inspections in the previous year -0.450 -0.549 -0.474 -1.148 -1.135 -1.159 

(1.644) (1.716) (1.564) (0.764) (0.739) (0.754) 

Enforcement actions in the 

previous year  

2.260 2.415 2.439 0.961 0.988 0.993 

(2.582) (2.625) (2.660) (1.083) (1.080) (1.079) 

Penalty in the previous year (log) -5.696
+
 -5.586

+
 -5.661

+
 -0.687

+
 -0.676

+
 -0.679

+
 

(3.186) (3.249) (3.205) (0.389) (0.392) (0.390) 

NAAQS nonattainment (PM10, 

PM2.5, ozone, and CO) 
      

Demographic variables (income, 

unemployment, and percent white) 
      

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; NAAQS nonattainment and demographic 

variables are included in some specifications but not shown; year dummy variables included but not shown. 
a
 Headings refer to the type of explanatory variable used in the regression. 
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Figures 
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Figure 1. Timeline of a Typical Violation 
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CHAPTER II 

EXAMINING THE IMPACT OF MONITORING AND  

ENFORCEMENT ON AIR QUALITY 

Introduction 

The Clean Air Act (CAA) is a comprehensive air pollution control scheme, which 

includes nation-wide air quality standards, emissions limitations for polluting facilities, 

and monitoring and enforcement of permit limits, with the central purpose of promoting 

public health and welfare by enhancing air quality. Thus, any assessment of the 

monitoring and enforcement regime must examine its impact on air quality. In this 

chapter, I use a dataset of air quality measures in California to examine the impact of 

monitoring and enforcement on ambient ozone concentrations. My study focuses on 

California because its aggressive pollution control policies allow me to test the 

effectiveness of air pollution regulation. Additionally, focusing on one jurisdiction allows 

me to better understand its regulatory regime. I find that penalties improve air quality. 

Inspections and enforcement actions also improve air quality, but the effect is less robust. 

Under the CAA, the U.S. Environmental Protection Agency (EPA) sets national 

ambient air quality standards (NAAQS) for “criteria pollutants,” which are six commonly 

found air pollutants that affect human health and the environment. State and local 

regulators are responsible for attaining the NAAQS by monitoring and enforcing 

stationary source emissions permits. As air quality is the main focus of federal regulation, 

the benefits of monitoring and enforcement should be measured in terms of 

improvements to air quality. Unfortunately, previous research on the impact of 
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monitoring and enforcement has not examined that question. Instead, it has focused on 

the impact of monitoring and enforcement actions on compliance and emissions. Other 

research that examined air quality used nonattainment of NAAQS as a proxy for 

increased regulatory stringency and investigated the impact of nonattainment on air 

quality, instead of directly studying the impact of monitoring and enforcement actions on 

air quality.  

Many studies have explored the relationship between regulatory actions and a 

facility’s compliance and pollution releases for both air and water pollution. These 

studies usually use the lagged and predicted regulatory action variables to avoid reverse 

causality problems. As regulators are likely to perform more inspections and enforcement 

actions at facilities that release more pollution or commit more violations, not correcting 

for reverse causality can lead to the erroneous conclusion that regulatory actions cause 

noncompliance or higher emissions. Using lagged and predicted regulatory actions can 

solve this problem.  

Water pollution studies have investigated the relationship between regulatory 

action and effluent and compliance. For example, Magat and Viscusi (1990) measured 

the effect of inspections of pulp and paper plants on the plant’s compliance with the 

Clean Water Act and found that inspections in the previous quarter increased compliance 

and decreased effluent. Laplante and Rilstone (1996) found that the predicted probability 

of inspection produced larger reductions in effluent than actual inspections at pulp and 

paper plants in Quebec but Earnhart (2004a, b) found that actual inspections and 

enforcement actions reduced effluent but predicted inspections and enforcement actions 

had no significant impact at municipal wastewater plants in Kansas.  
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Articles that investigated air pollution have studied the impact of monitoring and 

enforcement on whether a facility complies with its permit limits, the duration a facility 

remains noncompliant, and emissions. For example, Gray and Deily (1996) found that 

predicted regulatory actions had no impact on CAA compliance at steel-making plants, 

but the actual number of inspections and enforcement actions improved compliance. In a 

later paper (Deily and Gray 2007), their investigation of the joint effect of environmental 

regulations and health and safety regulations yielded similar results.  

Nadeau (1997) studied how the number of inspections and enforcement actions 

affected the duration a facility remained out of compliance with its permit. He found that 

predicted monitoring and enforcement actions, when predictions were based on the 

noncompliant sample, significantly reduced the duration a facility remained 

noncompliant. Hanna and Oliva (2010) found that actual CAA inspections decreased 

emissions of toxic chemicals at manufacturing plants, but the probability of inspection 

had no significant effect.  

Even if the literature shows that monitoring and enforcement improve compliance 

and decrease emissions, low compliance and high emissions levels alone do not cause 

harm; rather, they cause harm through high ambient concentrations of pollution. Ambient 

air quality is an important measure of the success of regulation that has not been 

adequately studied. Although it seems natural that increased compliance and reduced 

emissions would result in better air quality, that might not be true due to other factors 

such as weather conditions or characteristics of the air basin. For example, if the weather 

conditions are not conducive to ozone formation, a decrease in emissions of ozone 

precursors might not improve air quality; alternatively, if the air basin’s geography 
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permits winds to transport pollutants away, then increased enforcement might lead to 

decreased emissions, but might not improve air quality. 

Literature that examined air quality does not examine the impact of regulatory 

actions on air quality. Instead, authors used NAAQS nonattainment as a proxy for more 

stringent regulatory requirements as facilities located in areas that are in nonattainment of 

the NAAQS face tougher regulatory requirements, such as lower emissions limits, that 

aim to bring the area into attainment of the NAAQS. Most of the literature found that 

nonattainment—and thus more stringent regulatory standards—improved air quality.  

There is ample evidence that the NAAQS improves air quality; this evidence 

comes primarily from studies comparing attainment and nonattainment areas. For 

example, Kahn (1997) examined trends in particulate matter between 1969 and 1992 and 

found that pollution per unit of manufacturing increased more in the less-regulated 

attainment counties. Examining the 1987 change in the particulate matter NAAQS from 

regulating total suspended particles (particles with a diameter of 40 micrometers or less) 

to regulating PM10 (particles with a diameter of 10 micrometers or less), he found that 

counties that transitioned from nonattainment of the total suspended particles standard to 

attainment of the PM10 standard produced double the amount of pollution per unit of 

manufacturing than before, implying that easing of regulations increased pollution. 

Henderson (1996) focused on ozone levels during the worst ozone month, July, and 

annual ozone levels, and found that ozone nonattainment significantly reduced July ozone 

levels, but not annual levels. Even though he found no effects on the annual ozone levels, 

the NAAQS proved effective at improving air quality at the time of year when ozone 

levels are usually the worst. 
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On the other hand, Greenstone (2004) analyzed the effect of attainment status on 

county sulfur dioxide levels between 1969 and 1997 but did not find consistently 

significant results. He suggested that this might be due to problems with the data: his data 

had many counties that had ambient levels below the national standard but were still 

classified as nonattainment areas. States are responsible for petitioning the EPA to get a 

county redesignated from nonattainment to attainment, a process which requires states to 

develop expensive models. Greenstone argued that, instead of going through this costly 

process, states might have informally requested, and the EPA agreed to, reduced 

regulatory oversight in such counties. Thus, in his view, nonattainment was not an 

accurate proxy for regulatory stringency and the finding of no significant effect was not 

surprising. 

Auffhammer, Bento, and Lowe (2009) suggested that Greenstone’s (2004) lack of 

significant results could be due to “averaging out”: the nonattainment dummy captures 

the average effect of regulation on all monitors in nonattainment counties. If regulators 

focused on the most polluted parts of a nonattainment county, this averaging out effect 

might wrongly suggest that regulations are not effective. They examined PM10 levels and 

found that being in a nonattainment county did not have an effect on the change in 

ambient PM10 levels—similar to Greenstone’s findings. However, monitors that had 

readings exceeding the national standard in the previous year showed marked declines in 

PM10 levels regardless of whether they were in attainment or nonattainment counties. 

This suggested that regulators focused on such “noncompliant” monitors.  

Thus, the literature has established that monitoring and enforcement improve 

compliance and decrease emissions, and being in nonattainment of the NAAQS can cause 
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improvements in air quality. However, researchers have not studied the direct link 

between regulatory actions and air quality. This chapter will contribute to the literature by 

exploring how monitoring and enforcement affect air quality. 

In the next section, I describe the regulatory framework of the CAA in California. 

The following sections describe the theoretical model, the data, and regression analysis. I 

provide concluding remarks in the final section.  

Regulatory Background 

Under § 109 of the CAA, the EPA establishes the NAAQS for six commonly 

found pollutants that harm health and the environment. These pollutants, also called 

criteria pollutants, are ozone, particulate matter, carbon monoxide, nitrogen oxides, sulfur 

dioxide, and lead. Although the NAAQS are federal standards, states have primary 

responsibility for achieving or maintaining these standards. For instance, states are 

responsible for issuing stationary source permits and monitoring each source’s 

compliance with the permits. Of the criteria pollutants, ozone and PM2.5 (particulates with 

a diameter of 2.5 micrometers or less) cause the most significant human health effects 

(EPA 2011). Ozone is not emitted directly but is formed through reactions between 

nitrogen oxides and volatile organic compounds in the presence of sunlight. Ground-level 

ozone can cause respiratory problems to humans and damage vegetation. Under the 

ozone NAAQS, the annual fourth-highest daily maximum eight-hour concentration, 
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averaged over three years, should not exceed 0.075 parts per million (ppm).
21

 This 

standard was lowered from 0.08 ppm in 2008.
22

 

In California, stationary source monitoring and enforcement are handled primarily 

by thirty-five local air districts.
23

 Monitoring and enforcement practices depend on the 

type of source: major sources are sources that emit (or have the potential to emit) more 

than 100 tons per year of any pollutant and synthetic minor sources are sources that emit 

(or have the potential to emit) above 80% of the major source threshold (EPA 2001). In 

my analysis, I focus on inspections, enforcement actions, and penalties. There are two 

types of inspections, full compliance evaluations (FCEs) and partial compliance 

evaluations (PCEs), and three types of enforcement actions, notices of violation (NOVs), 

administrative orders, and consent decrees. Administrative orders and consent decrees are 

usually accompanied by penalties. 

An FCE is a comprehensive evaluation of the facility that addresses all regulated 

pollutants and emission units, and a PCE is an inspection that focuses on a subset of 

pollutants, requirements, or emission units (EPA 2001). Air districts typically perform an 

FCE once every two years for major sources and once every five years for synthetic 

minor sources. Districts typically perform PCEs when there are complaints, ongoing 

violations, or reports of equipment breakdown. All districts report FCEs to the EPA’s 

data system, but most districts do not report PCEs.  

                                                 
21

 Each day there are sixteen eight-hour averages and, naturally, one maximum of those sixteen eight-hour 

averages. Over the year, there are 365 of these maxima and one fourth-highest maximum. This fourth-

highest value is averaged over three years and compared to the air quality standard to determine the 

attainment status of the area. 
22

 Although 0.08 parts per million translates to 80 parts per billion, because of rounding, the limit was 

effectively 84 parts per billion.   
23

 Much of the regulatory background is covered in chapter 1; I provide a brief description here. 
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If regulators find a violation, they pursue enforcement action. There are three 

types of enforcement actions: NOVs, administrative orders, and consent decrees. The 

enforcement process begins with the discovery of a violation; inspectors can discover a 

violation through self-reporting, record review, or inspections. Upon discovering a 

violation, inspectors typically issue an NOV within a few weeks. District regulators place 

an emphasis on correcting violations; once detected, violations are usually remedied 

quickly, sometimes the same day.  

Districts typically handle violations administratively; after issuing an NOV, the 

district assesses a penalty and issues an administrative order. Additionally, an 

administrative order might have other components. For instance, it could contain a 

shutdown order, which orders the facility to shut down the piece of violating equipment. 

A shutdown order could cost the facility more than the penalty assessed, and this aspect 

of the enforcement process is important. However, I do not have any of these details 

about the administrative orders.  

The time between an NOV and an administrative order varies, but it typically 

takes less than nine months. It is worth noting that in California, unlike other 

jurisdictions, almost all NOVs end up as administrative orders and thus entail penalties.
24

 

However, because an administrative order can address multiple violations or multiple 

NOVs, there might not be a one-to-one relationship between NOVs and administrative 

orders.  

Some cases might go through the judicial process instead of the administrative 

process, which can take three to five years and usually ends in another type of 

enforcement action, a consent decree. However, this is rare and an overwhelming 

                                                 
24

 This is different from other jurisdictions where only some of the NOVs expose the facility to penalties. 
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majority of enforcement actions are administrative.
25

 Districts also vary in their reporting 

practices; all districts report violations that are considered high-priority violations,
26

 but 

some districts report some or all violations that are not considered high-priority 

violations.
27

 Penalties are part of the enforcement process but are not considered an 

individual enforcement action. Instead, penalties usually accompany administrative 

orders and consent decrees.  

In my analysis, I collapse both FCEs and PCEs into one inspections variable as 

this is more consistent with the literature and PCEs are not consistently reported by every 

air district. I also collapse NOVs, administrative orders, and consent decrees into one 

enforcement actions variable as administrative orders invariable follow NOVs and this is 

more consistent with the literature.  

Theoretical Model 

I extend the model from my previous chapter. In the previous chapter, I assume 

that each facility is run by a profit-maximizing, price-taking firm. Emissions of firm   are 

determined by the equation  

              , (11) 

                                                 
25

 Only 1.1% of enforcement actions in my data—EPA data for CAA-regulated facilities—are consent 

decrees. 
26

 High-priority violations are violations that the EPA believes should receive the “highest scrutiny and 

oversight” (EPA 1998, p. 3). These include more serious permit, emissions, and testing violations, and 

chronic violations. All districts report high-priority violations; the San Joaquin Valley Air Pollution Control 

District reports some of its violations that are not considered high-priority violations and the South Coast 

Air Quality Management District reports all of its violations regardless of whether they are considered 

high-priority violations.  
27

 Regulatory authorities also have other types of enforcement actions at their disposal, such as notices to 

comply. However, as these are not reported to the EPA database, I do not discuss them.  
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where    is the emissions for facility  ,    is the price of the facility’s output,    is the 

probability of detecting a violation, and    is the fine if the violation is discovered. I 

previously established that emissions are increasing in price and decreasing in probability 

of detection and the size of a fine (    ,     , and     ).  

Next, assume that there are   facilities around an air quality monitor and ambient 

concentration at the monitor is a function of the emissions of surrounding sources and 

background air quality,  

                        , (12) 

where   is the ambient concentration at the monitor,   is a of vector emissions from 

surrounding sources, and   is increasing in emissions (        ). I assume the 

relationship between ambient concentration and emissions is linear, so ambient 

concentration is determined by  

   


n

i

iiec
1

  , (13) 

where    is the transfer coefficient and       such that an increase in emissions at 

source   by     will increase ambient concentrations by      .  

For simplicity, I assume that all the facilities are similar and have the same output 

price, probability of detection, fine, and transfer coefficient. Thus, the ambient 

concentration,  , is determined by 

              , (14) 

where   is the emissions of the representative firm,   is the price of the output,   is the 

probability of detection,   is the fine, and   is the transfer coefficient. Thus, as emissions 

increase, ambient concentration increases (    ). 
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The partial derivative of   with respect to   and   are:  

             and (15) 

            . (16) 

As previously discussed,    ,    ,     ,     , and     ; therefore,      

and     . This means that as the probability of detection and the size of fines increase, 

ambient concentration decreases. Equation (14) also leads to the intuitive result that 

ambient concentration increases with the number of nearby facilities (    ) and 

increases with output price (    ). 

Inspections increase the probability of detection,  , and thus should decrease 

ambient concentration. Higher penalties increase   and thus decrease ambient 

concentration. Enforcement actions can affect both probability of detection   and fines  . 

An increase in the number of enforcement actions might reflect an increase in detection 

of violations,  ; at the same time, repeat offenders might also face larger fines, thus an 

enforcement action might reflect an increase in  . Therefore, enforcement actions should 

decrease ambient concentration.  

Data Description 

I obtain air quality data between 2003 and 2010 from the EPA’s Air Quality 

System database. The EPA tracks hourly ozone concentrations at air quality monitors in 

California. The database has information about the location of the air quality monitor as 

well as information on when the monitor was established and terminated. I focus on 

ozone because ozone has been identified as one of the criteria pollutants that cause the 
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most significant human health effects (EPA 2011) and I have more observations for 

ozone than for other pollutants.  

As the NAAQS measures the fourth-highest daily maximum eight-hour average 

against the federal standard, the effects of regulatory actions should show up in that 

measure. Using the EPA air quality data, I calculate the fourth-highest daily maximum 

eight-hour average ozone concentration at each air quality monitor for each year. I 

exclude all readings for which the state requested an exclusion due to special 

circumstances, such as wildfires. I also restrict the sample to air quality monitors that 

were operating through the entire time period. Whether this restriction biases my 

coefficients depends on the reasons that air quality monitors might be added or removed. 

If air quality monitors are added or removed for reasons unrelated to regulatory actions 

and air quality, then restricting the sample will not bias my coefficients.  

However, regulators are likely to add monitors in areas with poor air quality, and 

remove monitors in areas that have good air quality. Ambient ozone concentrations in 

areas with good air quality are likely to be less responsive to regulatory action; thus, this 

could cause my regressions to overestimate the effectiveness of regulatory actions.
28

 

Nonetheless, my regression coefficients would still be valid for areas with poor air 

quality.  

Table 11 presents summary statistics of ozone concentrations in parts per billion 

(ppb). The mean ozone level is 78.6 ppb and the standard deviation is 16.9. There is a 

general downward trend, with ozone concentrations decreasing from 83.8 ppb in 2003 to 

74.6 ppb in 2010. Figure 2 shows the decreasing trend of mean ozone concentrations over 

                                                 
28

 Future work can account for this problem by including air quality monitors that stop operating or begin 

operation during the study period.  
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time. Figure 3 shows the distribution of ozone concentrations, along with the 2008 ozone 

standard and 1997 ozone standard; there are no extremely large outliers and the peak of 

the distribution is slightly less than the 2008 standard of 75 ppb. 

The Air Facility System is the EPA’s database for CAA-regulated sources. The 

database contains details of each facility, such as its geographic coordinates, address, 

program identification number, and permit type. Additionally, it has details of regulatory 

actions since 2002: the date and type of regulatory action as well as the associated 

penalty. I limit my period of study to 2002-2010 because compliance monitoring policy 

and data reporting practices changed significantly in 2001 (EPA 2001). I classify all state 

and federal FCEs and PCEs as inspections, and all state and federal NOVs, administrative 

orders, and consent decrees as enforcement actions. To measure the intensity of 

regulatory activity around each monitor, I use regulatory activity at facilities within 20 

miles of the monitor.
29

 I drop all monitors that have no facilities located within twenty 

miles. As a robustness check, I run the regressions using different radii; these results are 

shown in Appendix B.  

Facilities that have shut down are removed from the EPA database, so it only has 

information on facilities that were still operating at the time the database was accessed. 

Thus, facilities that were in operation at the start of my study period, 2002, but shut down 

before the end of the period, 2010, are not in my data. Such an exclusion is likely to 

overstate the significance of my regression coefficients. Facilities shut down and reduce 

emissions, resulting in an improvement in air quality. Such an improvement is attributed 

                                                 
29

 This radius is somewhat arbitrary as factors affecting ambient ozone concentration at an air quality 

monitor can be quite specific to the monitor, such as surrounding geography and upwind emissions. While 

it might be more logical to examine how regulatory actions within an air basin affects the air quality in the 

air basin, this method would reduce the number of observations as there are only 15 air basins in California.   
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to fewer regulatory actions (those on existing facilities) than the true value (those on 

existing and shut-down facilities), thus overstating my regression coefficients.
30

 Facilities 

that began operations during my study period are in the data. 

Table 12 presents a summary of the inspections, enforcement actions, and 

penalties at facilities within 20 miles of each monitor. There is an average of 55.2 

facilities within 20 miles of the air quality monitor. I computed the total number of 

regulatory actions and the average number of regulatory actions within 20 miles of a 

monitor. There is an average of 72.8 inspections at all facilities around a monitor and an 

average of 1.7 inspections per facility.
31

 There is an average of 28.2 enforcement actions 

at facilities surrounding monitors and an average of 0.5 enforcement actions per facility. 

Lastly, there is an average penalty of $323,925 dollars and facilities faced an average of 

$4,682 in penalties. As most penalties are small but there are several very large penalties, 

in my regressions, I use the natural logarithm of penalties as an explanatory variable. 

Based on the theoretical model, I expect increased inspections, enforcement actions, and 

penalties to decrease ambient concentrations of ozone and an increase in the number of 

facilities to increase ambient concentrations of ozone. 

I control for NAAQS attainment status for other pollutants (carbon monoxide, 

PM10, and PM2.5) and demographic factors (per capita income, unemployment, and 

percent white) at the county-year level. Being in a nonattainment county might cause a 

facility to face pressure from the community to improve air quality, which is not reflected 

                                                 
30

 Future research can include those facilities, based on information obtained through a Freedom of 

Information Act request.  
31

 These numbers are somewhat different from those in chapter 1. For instance, the average number of 

inspections in chapter 1 is 1.9 but the analogous number in chapter 2 is 1.7. These are measuring different 

values. In chapter 1, the 1.9 average is the average number of inspections at the facilities that I could match 

to the California emissions data. In chapter 2, I first average the number of inspections at facilities around 

each air quality monitor; then I take the average of that number of all the monitors to get 1.7. 
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in regulatory activity. Thus, I expect nonattainment of the NAAQS to result in lower 

ozone concentrations. I get county NAAQS attainment status from the EPA’s Green 

Book and focus on attainment status for carbon monoxide, PM10, and PM2.5, and omit 

lead, nitrogen oxides, and sulfur dioxide because all California counties are in attainment 

of those standards.  

I get county per capita income information from the Bureau of Economic 

Analysis and unemployment rate from the Bureau of Labor Statistics and include them in 

my regressions to control for the strength of the economy, the price of output and cost of 

input. I also obtain information about the percentage of white people in the county from 

the Census; counties with a high percentage of minority population might wield less 

political power and have less regulatory pressure to improve air quality, and omitting this 

might cause omitted variables bias.  

Additionally, I control for weather conditions as they affect ozone formation. As 

the worst ozone concentrations tend to occur during July, I control for July temperature, 

precipitation, and wind speed. I use the National Climatic Data Center’s Global Summary 

of the Day and match each air quality monitor to the nearest weather station. If there are 

no weather stations within 20 miles, I use a dummy variable to indicate missing weather 

data. Lastly, I use monitor fixed effects to control for time-invariant monitor 

characteristics and year dummy variables to control for time trends in air quality.
32

  

                                                 
32

 Mobile sources are a major source of ozone precursors, and future iterations of this chapter can account 

for traffic patterns around the air quality monitor to control for mobile source emissions.  
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Regression Analysis 

Regulators are more likely to target monitoring and enforcement actions at 

facilities around monitors that register poor air quality, so studying the impact of current-

year regulatory actions on air quality can cause the erroneous conclusion that regulatory 

action causes poor air quality. I use previous-year regulatory actions as the explanatory 

variable as current-year air quality cannot cause previous-year regulatory actions, thus 

avoiding reverse causality.  

Additionally, I use the fixed effects regression model, which examines the 

changes in air quality at the same air quality monitor over time. This method regresses 

the mean-differenced dependent variable on mean-differenced explanatory variables. It 

factors out any time-invariant characteristics of the air quality monitors such as location 

and surrounding geography, and can reduce problems presented by differences in the 

monitors. Furthermore, it is quite likely that regulators in areas that have persistently poor 

air quality are more stringent. Fixed effects will account for this, as long as the level of 

stringency does not change over time.  

Air quality is a function of regulatory action and other control variables. I 

assemble the data into a panel of monitor-years, and used monitor fixed effects to account 

for time-invariant individual characteristics. The regression model is represented by the 

equation  

                         
      

               , (17) 

where     is the ambient pollution concentration at monitor   in year  : the fourth-highest 

daily maximum eight-hour average for ozone (in ppb). Time-invariant monitor 



 

61 

characteristics, such as the location of the monitor, are captured by   . Year dummy 

variables,      , capture general time trends in ambient ozone concentrations.  

The variable                       represents regulatory action taken at nearby 

facilities in the previous year, such as the number of inspections and enforcement actions 

taken and penalties assessed. I use the total number of regulatory actions, such as the 

number of inspections or number of enforcement actions, taken in any given year as it 

provides a more complete picture: if facilities around a monitor are subject to more 

inspections, then it should show a larger effect on air quality than an air quality monitor 

that has fewer inspections. As regulatory action should improve air quality and decrease 

ambient concentrations of ozone, I expect the coefficients of regulatory action to be 

negative.  

However, the number of regulatory actions might be a reflection of the number of 

facilities surrounding a monitor, not necessarily the intensity of regulatory action.
33

 Thus, 

I also examine the average number of inspections, enforcement actions, or penalties at the 

surrounding facilities. As the impact of a regulatory action may depend on the size of the 

facility or its proximity to the monitor, it might make sense to weight regulatory actions 

based on those factors. However, I do not have any algorithm to weight these factors. 

Instead, I run robustness tests by considering all regulatory actions within 10, 15, and 30 

miles. These robustness tests are presented in Appendix B. 

                                                 
33

 This is mitigated to some extent by the fixed effects model which uses mean-differencing. For each 

variable, the regression model deducts each monitor’s mean, across time. This forms the model: 

     ̅  (                                      ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 )

 
        ̅                  ̅ ,  

where  ̅  
 

 
∑   . Thus, the model only uses differences from the mean of the number of regulatory 

actions. 
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Other time-varying characteristics are captured by    . This includes the number 

of facilities around a monitor, controls for county demographic characteristics (income, 

unemployment rate, and percent white), county attainment status (particulate matter and 

carbon monoxide attainment status), and weather characteristics (July mean temperature, 

total rainfall, and mean wind speed). I expect that an increase in the number of facilities 

around a monitor will increase ozone concentrations. Income and unemployment reflect 

the strength of the economy: an increase in economic activity is likely to result in 

increased emissions and thus increases in ozone concentrations. However, an increase in 

income also results in an increase in the value of clean air, which might decrease ozone 

levels. As minorities might wield less political power, a higher proportion of white 

population may result in lower ozone concentrations. Lastly, as sunlight is needed for 

ozone formation, I expect mean temperature to be positively related with ozone 

concentrations. Precipitation and wind remove pollutants from the air, so I expect total 

precipitation and wind speed to be negatively related with ozone concentration.  

Regression (1) of Table 13 displays the effect of the total previous-year 

inspections, enforcement actions, and penalties on ozone concentrations. The number of 

enforcement actions has no significant impact on the ozone concentration, and, as 

expected, an increase in the number of facilities increases ozone concentrations. An 

additional inspection decreases ozone concentration by 0.008 ppb. This effect is 

significant at the 10% level. Although the coefficient seems small, the relatively large 

number of inspections can still generate a large impact. For instance, the average number 

of inspections is 72.8, which reduces ozone concentrations by 0.583 ppb, compared to no 

inspections; increasing the number of inspections from the 25th percentile (13 
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inspections) to the 75th percentile (80 inspections) of the distribution of inspections 

reduces ozone concentrations by 0.536 ppb. 

Additionally, penalties have a negative and significant impact on ozone. As the 

dependent variable is the level of ozone concentration and the explanatory variable is the 

natural logarithm of the penalty, the coefficient can be interpreted as the effect of a 

percentage increase in penalty on the level of ozone concentration: increasing the penalty 

by 1% would reduce ozone concentrations by approximately 0.002 ppb. The average 

penalty is $323,925, which reduces ozone concentrations by 2.017 ppb compared to a 

penalty of $1; increasing the penalty from the 25th percentile ($14,000) to the 75th 

percentile ($125,000) of the penalty distribution reduces ambient ozone concentration by 

0.348 ppb.  

Monitors in PM2.5 nonattainment counties have ozone concentrations 3.499 ppb 

lower than attainment counties. This is likely because particulate matter nonattainment is 

a serious problem in California, and there are other unobserved factors that put pressure 

on these nonattainment counties to improve air quality. Additionally, increased 

unemployment reduces ambient concentrations of ozone. This is not surprising as 

unemployment is a proxy for economic activity, and poor economic performance should 

decrease ambient pollution. On the other hand, increased income reduces ambient ozone 

concentrations. This is somewhat surprising as income is a proxy for economic activity, 

and increased economic activity should worsen air quality. Perhaps higher income 

indicates better paying, less polluting jobs or an increase in the value of clean air, 

resulting in better air quality. Lastly, as expected, mean temperature increases ozone 
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concentrations, but total precipitation and mean wind speed have no impact on ozone 

concentration.  

Regression (2) of Table 13 displays the impact of the average number of 

inspections and enforcement actions and the natural logarithm of the average penalty at 

the facilities around the monitor. The penalty variable remains significant; increasing the 

average penalty by 1% reduces the ambient ozone concentration by 0.002 ppb.
34

  

Additionally, as a test for robustness, I run the same regressions using the natural 

logarithm of ozone as the dependent variable.
35

 The literature uses both levels and natural 

logarithms: for instance, Henderson’s (1996) study used the natural logarithm of ozone 

concentrations, while Auffhammer, Bento, and Lowe’s (2009) study used the level of 

PM10 concentrations. The results are presented in Table 14. In regression (1), the 

coefficient for inspections is negative and significant: increasing the number of 

inspections by one decreases ozone concentrations by 0.011%. The coefficient of 

penalties is also negative and significant. As both the dependent and explanatory 

variables are logarithms, the coefficient can be interpreted as the elasticity of ozone 

concentrations with respect to penalties: increasing the penalty by 1% decreases the 

ozone concentration by 0.002%. The interpretation for the average regulatory actions in 

regression (2) follows similarly. Notably, an increase in the average penalty by 1% 

decreases ozone concentrations by 0.002%. Although these coefficients seem small, 

                                                 
34

 Admittedly, the mean penalty of $4,682 is probably small compared to the facility’s operating costs. It is 

possible that the facilities are not deterred by the average penalty, but are concerned about the potential for 

far larger penalties, and the average penalty merely reflects this possibility. In Appendix B, I examine 

whether the maximum penalty improves air quality. 
35

 As shown in Figure 3, my data do not have large outliers. Thus, using natural logarithms might not be 

necessary. 
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given the large number of inspections and the large total penalty, the regulatory actions 

still make a relatively large impact on ozone concentrations.  

Next, as another robustness test, I perform the first differences regression, which 

regresses the change in ozone concentrations from the previous year on the change in the 

explanatory variables from the previous year. When using the first-differences model, I 

lose one year of data (168 observations). The regression equation is: 

                           
       

             , (18) 

where                . The results are shown in Table 15. Across the two regressions, 

the coefficients of enforcement actions are negative and statistically significant. In 

regression (1), increasing the number of enforcement actions by one is associated with a 

decrease in ozone concentrations by 0.016 ppb. In regression (2), increasing the average 

number of enforcement actions by one is associated with a decrease in ozone 

concentrations by 0.849 ppb. The coefficients of penalties are no longer significant. 

Oddly, an increase in the number of facilities is associated with a decrease in the 

ambient concentrations of ozone. Perhaps this is due to natural progression over time as 

the number of facilities increases over time and ozone concentrations also decrease over 

time. Other than these differences, the first differences regressions are similar to the fixed 

effects regressions. 

Robustness Tests  

In this section, I examine whether the results in the fixed effects regressions are 

sensitive to varying specifications. In Table 16 and Table 17, I show that the results are 

robust to omitting various control variables. Table 16 shows the coefficients of the impact 
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of the total number of regulatory actions in regressions that omit various control 

variables. Regression (1) shows the coefficients of the regulatory variables when I run the 

fixed effects regression in equation (17) while omitting the total number of facilities 

surrounding the air quality monitor. The coefficient of penalties remains statistically 

significant: increasing the penalty by 1% reduces ozone concentrations by approximately 

0.002 ppb. Regressions (2) to (5) show that the size and significance of the coefficient of 

penalties are robust to omitting various control variables. The coefficient of inspections is 

not as robust; it is significant in only three of the five specifications. Similarly, Table 17 

shows the impact of the average number of enforcement actions and the size of the 

penalty. The size and significance of the penalty coefficient is robust across the 

specifications. 

Next, I examine whether omitting year dummy variables changes the results. 

Regressions (1) and (2) of Table 18 show that the effect of the penalty is robust to 

omitting time trends: the coefficient of penalties is negative and statistically significant.  

Additionally, I examine how using pooled ordinary least squares, instead of fixed 

effects, affects the results. I run this regression  

                         
      

              , (19) 

where, instead of having an intercept for each air quality monitor,   , there is a common 

intercept term,  . As shown in regressions (3) to (6) of Table 18, the coefficient of the 

penalty variable is positive, quite large, and significant. Although the usual interpretation 

of such a coefficient is that penalties cause an increase in ozone concentrations, it is far 

more likely that regulators impose higher penalties around monitors that report persistent 

air quality problems. Using fixed effects accounts for such causality problems. 
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Lastly, I examine the robustness of the first differences regressions by comparing 

them to the differences-in-differences regressions. The differences-in-differences 

regression specification can account for general trends in ozone concentrations, 

regulatory actions, and other explanatory variables. The regression equation is  

                             
        

              , (20) 

where    
            . Table 19 shows the regression results. Compared to the first 

differences results in Table 15, the size and significance of the coefficient of the 

enforcement variable is similar; enforcement actions still decrease ambient ozone 

concentrations. However, in regression (1), an increase in the number of inspections 

seems to be associated with an increase in ozone concentrations.  

In Appendix B, I show that using different radii—for example, counting the total 

number of regulatory actions within 30 miles of the air quality monitor, instead of 20 

miles—does not affect the results, and I also investigate possible instrumental variables. 

Conclusion 

This chapter is the first article that examines the impact of inspections and 

enforcement actions on ambient air quality. Previous research has found that 

nonattainment of federal air quality standards and the more stringent regulatory regime 

that follows nonattainment improve air quality. However, the literature has not examined 

the impact of monitoring and enforcement actions on air quality. In this chapter, I find 

that penalties significantly improve air quality: increasing the total penalty at facilities 

around an air quality monitor by 1% improves ozone concentrations by 0.002 ppb. At the 

average penalty of $323,925, this translates into a 2.017 ppb improvement. This result is 
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fairly robust. Additionally, there is some evidence that enforcement actions improve air 

quality. This complements the results in my previous chapter, which found that penalties 

decrease emissions of nitrogen oxides.   
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Tables  

Table 11. Mean Ozone Ambient Concentration in ppb 

Year Mean Std. dev. Min. Max. 

2003 83.770 (19.689) 41.500 137.625 

2004 78.721 (15.209) 41.125 122.750 

2005 76.736 (19.085) 34.250 130.125 

2006 81.318 (18.184) 43.500 125.500 

2007 76.362 (15.941) 45.857 126.250 

2008 79.517 (15.825) 38.663 120.875 

2009 77.014 (14.285) 38.000 108.500 

2010 74.593 (14.191) 25.000 109.761 

Overall 78.575 (16.913) 25.000 137.625 

Source: Author’s calculations and EPA Air Quality System. 
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Table 12. Descriptions and Means of Explanatory Variables 

Variable Description Mean (Std. dev.) 

Number of 

facilities 

Number of facilities within twenty miles of 

the air quality monitor. Source: EPA. 

55.221 (77.351) 

Inspections Previous-year full and partial compliance evaluations performed at 

surrounding facilities. Source: EPA. 

 Total Total number of inspections performed.  72.826 (105.658) 

 Average Average number of inspections performed. 1.666 (1.319) 

Enforcement 

actions 

Previous-year notices of violation, administrative orders, and consent 

decrees issued at surrounding facilities. Source: EPA. 

 Total Total number enforcement actions issued.  28.189 (50.996) 

 Average Average number of enforcement actions 

issued. 

0.463 (0.714) 

Penalty Previous-year penalties assessed at surrounding facilities, in thousands 

of dollars. Source: EPA. 

 Total Total penalty at the surrounding facilities. 323.925 (1,104.261) 

 Average Average penalty at surrounding facilities. 4.682 (16.892) 

NAAQS non-

attainment 

Indicator for whether the county, in which the monitor is located, was 

out of attainment of NAAQS (1 = nonattainment). Source: EPA. 

 CO non-

attainment 

Indicator for whether the county was out of 

attainment of the carbon monoxide standard. 

0.116 (0.320) 

 PM10  non-

attainment 

Indicator for whether the county was out of 

attainment of the PM10 standard. 

0.415 (0.493) 

 PM2.5 non-

attainment 

Indicator for whether the county was out of 

attainment of PM2.5 standard. 

0.277 (0.448) 

Unemployment 

rate 

Unemployment rate in the county, in percent. 

Source: BLS. 

8.136 (3.957) 

Income Per capita income in the county, in thousands 

of dollars. Source: BEA. 

37.489 (9.943) 

Percent white Percent white population in the county. 

Source: Census. 

81.775 (9.130) 

July weather July weather at the nearest weather station within twenty miles. 

Source: NCDC. 

 Temperature Mean temperature in July, in degrees 

Fahrenheit.  

74.831 (9.914) 

 Precipitation Total precipitation in July, in inches. 0.027 (0.154) 

 Wind speed Mean wind speed in July, in knots. 5.850 (2.091) 

Source: Author’s calculations, EPA, Bureau of Labor Statistics (BLS), Bureau of 

Economic Analysis (BEA), U.S. Census, and National Climatic Data Center (NCDC). 
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Table 13. Fixed Effects Regressions of the Impact of Regulatory Actions 

in the Previous Year on Ozone Concentrations 

Regulatory Actions
a
 Total Average 

  (1) (2) 

Inspections in the 

previous year 

-0.008
+
 -0.228 

(0.005) (0.174) 

Enforcement actions in 

the previous year  

-0.002 -0.253 

(0.005) (0.373) 

Penalty in the previous 

year (log) 

-0.159* -0.204* 

(0.061) (0.083) 

Number of surrounding 

facilities 

0.043* 0.031 

(0.021) (0.021) 

Carbon monoxide 

nonattainment 

1.584 1.410 

(1.226) (1.202) 

PM10 nonattainment -1.472 -1.502 

(1.377) (1.390) 

PM2.5 nonattainment  -3.499** -3.841** 

(0.965) (0.944) 

Percent white 

population of the county 

-0.450 -0.449 

(0.464) (0.465) 

Mean income of the 

county (/$1000)  

-0.280* -0.275* 

(0.140) (0.139) 

Unemployment rate of 

the county  

-0.580
+
 -0.596

+
 

(0.327) (0.326) 

July mean temperature 0.229** 0.231** 

 (0.086) (0.087) 

July total precipitation 

in inches 

-0.131 -0.133 

(1.090) (1.083) 

July mean wind speed 0.059 0.057 

 (0.148) (0.149) 

Observations 1,224 1,224 

Number of monitors 167 167 

Adjusted R-squared 0.289 0.288 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard 

errors in parentheses; missing weather and year dummy 

variables included but not shown. 
a
 Column titles (“total” and “average”) refer to the 

explanatory regulatory actions variable. 
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Table 14. Fixed Effects Regressions of the Impact of Regulatory Actions in 

the Previous Year on the 100 * Natural Log of Ozone Concentrations 

Regulatory Actions
a
 Total Average 

  (1) (2) 

Inspections in the 

previous year 

-0.011
+
 -0.341 

(0.006) (0.224) 

Enforcement actions in 

the previous year  

-0.009 -0.826
+
 

(0.007) (0.485) 

Penalty in the previous 

year (log) 

-0.192* -0.220
+
 

(0.083) (0.112) 

Number of surrounding 

facilities 

0.044 0.026 

(0.028) (0.027) 

Carbon monoxide 

nonattainment 

1.693 1.373 

(1.420) (1.385) 

PM10 nonattainment -0.932 -1.006 

(1.647) (1.666) 

PM2.5 nonattainment  -2.265
+
 -2.774* 

(1.291) (1.265) 

Percent white population 

of the county 

-0.745 -0.720 

(0.616) (0.617) 

Mean income of the 

county (/$1000)  

-0.472* -0.452* 

(0.197) (0.195) 

Unemployment rate of 

the county  

-0.527 -0.557 

(0.420) (0.419) 

July mean temperature 0.255* 0.260* 

 (0.101) (0.102) 

July total precipitation in 

inches 

0.020 -0.038 

(1.584) (1.559) 

July mean wind speed 0.041 0.039 

 (0.220) (0.220) 

Observations 1,224 1,224 

Number of monitors 167 167 

Adjusted R-squared 0.241 0.241 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard 

errors in parentheses; missing weather and year dummy 

variables included but not shown. 
a
 Column titles (“total” and “average”) refer to the 

explanatory regulatory actions variable. 
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Table 15. First Differences Regressions of the Impact of Regulatory 

Actions in the Previous Year on Ozone Concentrations 

Regulatory Actions
a
 Total Average 

  (1) (2) 

Inspections in the 

previous year 

-0.002 -0.190 

(0.004) (0.177) 

Enforcement actions in 

the previous year  

-0.016** -0.849* 

(0.006) (0.398) 

Penalty in the previous 

year (log) 

-0.084 -0.088 

(0.067) (0.094) 

Number of surrounding 

facilities 

-0.091** -0.092* 

(0.035) (0.035) 

Carbon monoxide 

nonattainment 

-1.633 -1.736 

(1.498) (1.477) 

PM10 nonattainment 0.060 0.141 

(1.912) (1.911) 

PM2.5 nonattainment  1.364 1.180 

(1.442) (1.477) 

Percent white 

population of the county 

0.261 0.300 

(0.536) (0.535) 

Mean income of the 

county (/$1000)  

-0.682** -0.685** 

(0.144) (0.146) 

Unemployment rate of 

the county  

0.452 0.453 

(0.396) (0.398) 

July mean temperature 0.443** 0.444** 

 (0.108) (0.108) 

July total precipitation 

in inches 

0.935 0.792 

(1.244) (1.219) 

July mean wind speed 0.088 0.080 

 (0.194) (0.192) 

Observations 1,056 1,056 

Number of monitors 166 166 

Adjusted R-squared 0.186 0.185 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard 

errors in parentheses; missing weather and year dummy 

variables included but not shown. 
a
 Column titles (“total” and “average”) refer to the 

explanatory regulatory actions variable. 
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Table 16. Coefficients of Total Regulatory Actions in Fixed Effects Regression of the Impact of Regulatory Actions on 

Ozone Concentration, Omitting Various Control Variables 

  (1) (2) (3) (4) (5) 

Total inspections in the previous year -0.005 -0.012* -0.008 -0.010* -0.013* 

(0.005) (0.005) (0.005) (0.005) (0.005) 

Total enforcement actions in the previous 

year 

-0.003 -0.002 -0.004 -0.003 -0.003 

(0.005) (0.005) (0.005) (0.005) (0.005) 

Total penalty in the previous year (log) -0.152* -0.154* -0.141* -0.160** -0.141* 

(0.061) (0.063) (0.062) (0.061) (0.063) 

Number of surrounding facilities 

 
     

NAAQS nonattainment (CO, PM10, and 

PM2.5) 
     

Demographic variables (income, 

unemployment, and percent white) 
     

Weather variables (mean temperature, 

total precipitation, and mean wind speed) 
     

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; number of surrounding facilities, 

NAAQS nonattainment, demographic variables and weather variables included in some specifications but not shown; 

year dummy variables included but not shown. 
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Table 17. Coefficients of Average Regulatory Actions in Fixed Effects Regression of the Impact of Regulatory Actions 

on Ozone Concentration, Omitting Various Control Variables 

  (1) (2) (3) (4) (5) 

Average inspections in the previous year -0.238 -0.286 -0.223 -0.334
+
 -0.369* 

(0.175) (0.177) (0.177) (0.170) (0.171) 

Average enforcement actions in the 

previous year 

-0.299 -0.291 -0.354 -0.242 -0.293 

(0.375) (0.383) (0.373) (0.380) (0.380) 

Average penalty in the previous year (log) -0.198* -0.190* -0.175* -0.206* -0.181* 

(0.083) (0.085) (0.083) (0.083) (0.084) 

Number of surrounding facilities 

 
     

NAAQS nonattainment (CO, PM10, and 

PM2.5) 
     

Demographic variables (income, 

unemployment, and percent white) 
     

Weather variables (mean temperature, 

total precipitation, and mean wind speed) 
     

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; number of surrounding facilities, 

NAAQS nonattainment, demographic variables and weather variables included in some specifications but not shown; 

year dummy variables included but not shown. 
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Table 18. Regression Coefficients of Regulatory Actions in Fixed Effects Regressions of the Impact of Regulatory Actions in the 

Previous Year on Ozone Concentrations 

 

Fixed Effects without Year 

Dummies 

Ordinary Least Squares without 

Fixed Effects with Year Dummies 

Ordinary Least Squares without 

Fixed Effects and Year Dummies 

Regulatory Actions
a
 Total Average Total Average Total Average 

  (1) (2) (3) (4) (5) (6) 

Inspections in the 

previous year 

-0.008 -0.305 -1.854
+
 -1.955** -2.136

+
 -2.093** 

(0.006) (0.196) (1.097) (0.506) (1.094) (0.456) 

Enforcement actions 

in the previous year 

-0.008 -0.465 -0.816 0.015 -0.958 -0.050 

(0.005) (0.401) (1.368) (0.810) (1.407) (0.833) 

Penalty in the 

previous year (log) 

-0.172** -0.222** 52.635** 0.599** 51.241** 0.579** 

(0.058) (0.079) (16.140) (0.209) (15.995) (0.207) 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; number of surrounding facilities, NAAQS 

nonattainment, demographic variables, and weather variables included but not shown. 
a
 Column titles (“total” and “average”) refer to the explanatory regulatory actions variable. 
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Table 19. Differences-in-Differences Regressions of the Impact of Regulatory 

Actions in the Previous Year on Ozone Concentrations 

Regulatory Actions
a
 Total Average 

  (1) (2) 

Inspections in the 

previous year 

0.012** -0.363
+
 

(0.003) (0.214) 

Enforcement actions in 

the previous year  

-0.012* -1.212** 

(0.005) (0.448) 

Penalty in the previous 

year (log) 

0.049 0.056 

(0.041) (0.097) 

Number of surrounding 

facilities 

-0.026 -0.018 

(0.063) (0.063) 

Carbon monoxide 

nonattainment 

-1.014 -1.177 

(1.060) (1.053) 

PM10 nonattainment -0.176 0.399 

(2.152) (2.124) 

PM2.5 nonattainment  -0.331 -1.089 

(1.317) (1.302) 

Percent white 

population of the county 

0.524 0.586 

(0.687) (0.681) 

Mean income of the 

county (/$1000)  

-0.035 -0.102 

(0.177) (0.169) 

Unemployment rate of 

the county  

-0.762 -0.735 

(0.553) (0.538) 

July mean temperature 0.120* 0.125* 

 (0.058) (0.058) 

July total precipitation 

in inches 

0.922 1.002 

(0.860) (0.836) 

July mean wind speed -0.028 -0.006 

 (0.127) (0.135) 

Observations 895 895 

Number of monitors 162 162 

Adjusted R-squared 0.173 0.165 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard 

errors in parentheses; missing weather and year dummy 

variables included but not shown. 
a
 Column titles (“total” and “average”) refer to the 

explanatory regulatory actions variable. 
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Figures 

 

Figure 2. Graph of Mean Ozone Concentrations Over Time 
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Figure 3. Distribution of Ozone Concentration 
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CHAPTER III 

INVESTIGATING ESCALATING PENALTIES FOR REPEAT  

ENVIRONMENTAL VIOLATIONS 

Introduction 

Escalating penalties for repeat offenders are common in the law. For example, 

under the U.S. Environmental Protection Agency’s (EPA) civil penalty guidelines, a 

violator’s history of noncompliance can increase the size of the penalty assessed (EPA 

1984). Indeed, it seems like common sense that those that have repeatedly shown 

disregard for the law should be subject to increasing punishment for their actions. 

However, existing theoretical research in law and economics has not been able to justify 

the ubiquity of escalating penalties, and there is little existing empirical research that 

investigates the existence and impact of escalating penalties.  

In this chapter, I examine the theoretical and empirical literature on escalating 

penalties, as applied to environmental regulation, and analyze possible implications for 

repeat offender policy. First, I analyze the law and economics theory regarding escalating 

penalties for repeat offenders and suggest some possible extensions to the theory that can 

account for the impact of fairness and the social norm of law compliance. Second, I 

discuss the empirical literature that examines repeat offenders in environmental 

regulation.  

Third, I present my empirical analysis of repeat offenders in air pollution 

regulation in California. I find that most facilities comply: over half the facilities did not 

commit any violations over the entire nine-year study period. Even repeat offenders are 
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not assessed very large penalties, implying that their violations are not very serious. I also 

find no evidence of increasing penalties. Additionally, I find that facilities with long 

spells of noncompliance face smaller penalties on average, indicating that the “worst 

actors,” with the longest spells of noncompliance, are committing less severe violations 

on average than the better actors. Thus, while my data do not show escalating penalties, it 

is likely because repeat violations are less severe and any escalation is mitigated by the 

reduced severity of the subsequent violation. 

The Theory of Escalating Penalties 

The theoretical law and economics literature has focused on the optimality of the 

enforcement regime, explaining how a regime of escalating penalties for repeat offenders 

can improve social welfare. Generally, these models use mathematical equations to 

represent each individual’s utility and decisions, and they assume that regulators aim to 

maximize social welfare—the sum of all individuals’ utilities.
36

 

In this section, I describe the model of efficient public law enforcement, and then 

discuss various models that examine the optimality of escalating penalties. I explore 

several models that argue that decreasing penalties are optimal, then analyze models that 

rely on various assumptions to justify escalating penalties.
37

 Lastly, I discuss which 

assumptions are the most realistic. I believe a model in which the gains to the violator are 

not counted in social welfare and different types of violators have different benefit from 

                                                 
36

 In this chapter, I use environmental regulation as an example, although a lot of this literature is applicable 

to other types of public law enforcement, such as the criminal justice system.  
37

 Although my analysis divides the models by their assumptions, it is important to note that many models 

rely on more than one of these assumptions. 
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each violation is the most realistic. I also describe potential additions to the models that 

can better account for fairness and the social norm of law compliance.  

Optimal Deterrence Theory 

In order to maximize social welfare, regulators should aim for optimal deterrence, 

not complete deterrence (Polinsky and Shavell 2000a).
38

 As some individuals might stand 

to gain more than society is harmed by a violation, complete deterrence, which deters all 

individuals from committing the violation, might not be socially efficient. Instead, 

regulators should deter only violations that would harm society more than they benefit 

the violators, and imposing an expected penalty that equals to the harm provides optimal 

deterrence.  

Based on this model of optimal deterrence,
39

 it is difficult to justify escalating 

penalties for repeat offenders. If the penalty scheme induces optimal behavior and only 

socially beneficial violations are committed, then deviating from the optimal penalty, by 

making the penalty depend on previous violations, will incentivize inefficient behavior. 

Nonetheless, some models show that escalating penalties can be efficient because they 

allow regulators to focus costly regulatory effort on a smaller group of repeat violators.   

Models that Support Decreasing Penalties 

Several theoretical models advocate decreasing penalties for repeat violations. 

The underlying intuition is relatively simple: in order to detect a repeat violation, 

regulators must detect a first violation. As regulators are more likely to impose a penalty 

                                                 
38

 Even though the EPA cannot consider costs when setting the National Ambient Air Quality Standards, 

regulators are still permitted to consider costs in making enforcement decisions.  
39

 There have been other models that consider non-economic factors, for instance, Polinsky and Shavell 

(2002b) describe a model that accounts for fairness. 
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for the first violation than for a repeat violation, it makes sense to maximally deter the 

first violation.  

For instance, Burnovski and Safra (1994) described a model in which individuals 

decide how many violations to commit, and found that the optimal policy involved 

decreasing penalties. Emons’s (2003) two-period model allowed individuals to choose to 

violate in each time period, and he found that decreasing penalties are optimal. In a later 

paper, he (Emons 2004) found that decreasing penalties are subgame perfect.  

Dana (2001) examined escalating penalties in the context of behavioral biases. He 

argued that first-time offenders underestimate detection because of optimism bias and 

repeat offenders overestimate detection because of salience. Therefore, he asserted, 

decreasing penalties make more sense.  

Thus, even though escalating penalties create additional deterrence for repeat 

offenders, some models argued that decreasing penalties are optimal because they deter 

the first violation, thus deterring repeat violations. 

Minimizing Enforcement Costs 

Enforcement is costly, and many researchers have found that escalating penalties 

can reduce enforcement costs and thus improve social welfare. Harrington’s (1988) 

model divided firms into two groups: a compliant group and a noncompliant group. Firms 

in the compliant group face a lower probability of detection and a lower penalty if they 

are found in violation; if found in violation, they are moved to the noncompliant group, 

where they face a higher probability of detection and a higher penalty if they are found in 

violation again. Firms in the noncompliant group may move back into the compliant 

group if they are found to be in compliance.  
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Harrington found that, because detection is costly, the regulator can save on 

detection costs by concentrating its enforcement effort on the small noncompliant group 

and imposing higher penalties on that group if a violation is found. However, this model 

does not fully explain why escalating penalties are optimal because Harrington assumed 

that penalties are higher in the noncompliant group. In a later model that had less 

restrictive assumptions, Harford (1991) found that the optimal penalty in both groups is 

the maximum penalty and the optimal solution does not involve escalating penalties.  

Polinsky and Shavell (1998) developed a two-period model in which it is efficient 

to treat repeat offenders more harshly. In their scheme, the optimal policy is to impose 

the maximum possible penalty for any offense in the first period; in the second period, 

regulators impose the maximum possible penalty on those that are considered repeat 

offenders and impose a smaller penalty on those who are considered first-time offenders. 

This penalty scheme is somewhat unusual because first-time offenders in the second 

period are treated differently than first-time offenders in the first period and the penalties 

for the first and second violations are the same. Thus, this model does not describe 

escalating penalties. 

Although these models do not fully justify escalating penalties, they provide some 

insight as to how escalating penalties might improve social welfare by reducing detection 

and enforcement costs.  

Changes in Benefits from Violation and Detection Probabilities  

Some authors justify escalating penalties using changes in the violator or 

regulator between the first violation and repeat violations. For example, a firm with a 

history of environmental violations might lose customers, thus reducing its profits. Miceli 
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and Bucci (2005) found that, if opportunity costs for repeat violations are smaller, 

escalating penalties are needed to maintain deterrence.
40

 

Several articles examined the role of learning. For instance, Friehe (2009) showed 

that if violators are unsure if their acts are violations but overestimate the probability that 

they are violations, escalating penalties are optimal. In Mungan’s (2010) model, violators 

could learn to evade detection, and regulators could learn to detect violations. He found 

that if violators learned more than regulators did, escalating penalties are optimal.  

Repeated Violations Reveal Information About the Violator 

Many models divided potential violators into types and used repeated violations 

as a mechanism to reveal information about the violator. For instance, Emons’s (2007) 

two-period model assumed that individuals choose whether to be law abiding; he found 

that, if the benefit from the violation is high relative to the individual’s wealth, the 

regulator imposes increasing penalties to induce individuals to be law abiding.  

McCannon (2009) divided violators into occasional violators and habitual 

violators. He made three assumptions: (1) violations by occasional violators are socially 

beneficial; (2) violations by habitual violators are socially undesirable; and (3) habitual 

violators gain more from a violation than occasional violators.
41

 He found that, under 

these assumptions, increasing penalties are optimal. A central assumption of the model is 

that violations by different types of violators cause different amounts of harm, thus 

justifying escalating penalties. However, it is not clear why the same violation by 

                                                 
40

 The authors assumed that all gains from violation are illicit and are not counted in social welfare. 

However, they admitted that, if the benefit from violation is counted in social welfare, then optimal 

penalties would not escalate as individuals would fully account for future lost income when deciding 

whether to violate. 
41

 In other words, he assumed that                                                    
            . 
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different types of violators should cause different amounts of harm, especially in the 

context of environmental regulation.  

Miceli’s (2012) model used three types of potential violators: those with a low 

gain, those with a high gain, and undeterrable, irrational violators.
42

 The author found 

that escalating penalties are desirable as the fraction of undeterrable offenders in the 

population becomes high. While this model justifies escalating penalties, it is not very 

applicable to environmental regulation as it requires irrational firms to be a high 

proportion of the regulated community.  

These models rely on repeat violations to reveal information about the violator 

and reduce enforcement costs by allowing the regulator to focus enforcement resources 

on those who are more likely to violate. This structure is applicable to environmental 

regulation as facilities with high abatement costs likely gain more from violation (by 

avoiding the abatement costs) than those with low abatement costs; thus, escalating 

penalties allow regulators to deter these facilities more strongly.  

Illicit Gains from Violation 

Other models consider some or all of the violator’s gain from the violation as 

“illicit gains,” which are not considered in the social welfare function but still drive the 

violator’s decision to violate. While this assumption is not traditional, it is perhaps more 

realistic. The EPA (1984, 1991) guidelines advise that the penalty should, at a minimum, 

remove all the benefit derived from a violation.
43

 This implies that regulators consider 

this gain at least somewhat illegitimate.  

                                                 
42

 The author treats gains for violation as illicit and does not include gains from violation in the social 

welfare function.  
43

 The penalty guidelines also consider the harm caused by the violation. More specifically, the penalty has 

a benefit component, which accounts for the benefit derived from the violation, and a gravity component, 
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Polinsky and Rubinfeld (1991) developed a model in which individual actors have 

an unobservable illicit gain from committing a violation. The illicit gain could, for 

instance, represent the individual’s propensity to violate. Individuals with higher illicit 

gains are more likely to violate repeatedly, and, because the illicit gains are not counted 

in the social welfare function, violators with higher illicit gains must be deterred more 

strongly. They found that, for certain parameter values, higher penalties on repeat 

offenders are optimal.  

Baik and Kim (2001) extended the Polinsky and Rubinfeld model to include 

sociological characteristics by allowing illicit gains to change over time. They found that, 

if the change in illicit gains is large compared to the initial illicit gains, it is desirable to 

punish repeat offenders as seriously as first-time offenders. This is because individuals 

anticipate the future increase in illicit gains, and first-time offenders must be punished 

more severely in order to offset that future increase in illicit gain. They also found that, 

for certain parameter values, escalating penalties are optimal.  

Implications of Theory and Possible Extensions 

Although illicit gains are a somewhat unconventional assumption, they match up 

with the moral intuition that individuals should not benefit from their wrongdoing and the 

EPA (1984, 1991) penalty guidelines that encourage regulators to, at minimum, assess 

the full benefit of a violation. In my opinion, the strongest case for escalating penalties is 

that regulators consider some or all of the gains from a violation as illicit.  

                                                                                                                                                 
which considers other factors, including the harm caused by the violation, the importance of the violation to 

the regulatory scheme, and the size of the violator. The gravity component can be further adjusted to reflect 

the degree of willfulness or negligence in the violation, the violator’s degree of cooperation, the violator’s 

history of noncompliance, and resulting environmental damage. 
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Each firm’s illicit benefit of violation is not necessarily unobservable to the 

regulator; for instance, the EPA uses models to estimate the economic benefit of 

violation. Nonetheless, repeat violations reveal that the previous penalties have been 

insufficient to deter and the facility has an otherwise unobservable higher propensity to 

violate. Thus repeat violations can reveal that the violator’s gains are high (or higher than 

the regulator previously thought), so escalating penalties are warranted. Focusing on 

these facilities could be the best way to allocate a regulator’s limited budget. Thus, a 

combination of illicit gains from violation, facility type, and cost minimization can justify 

escalating penalties. Nonetheless, I believe models should incorporate the social norm of 

law compliance and a sense of fairness to better explain escalating penalties.  

Social norms likely drive managers’ decisions on whether to comply with 

environmental regulations. While there are many norms at play (Vandenbergh 2003), I 

focus on the norm of law compliance as it can produce positive externalities; a strong 

norm of law compliance can allow regulators to achieve a high compliance rate with 

relatively little enforcement resources.  

Many models accommodate concerns other than the monetary gain from 

violation; for instance, Polinsky and Rubinfeld (1991) suggested that the illicit gains in 

their model might represent the propensity to commit an offense. Similarly, for 

environmental regulations, one could model the social norm of law compliance as the 

illicit gain portion of the facility’s decision to violate. Within a facility, individual 

managers make compliance decisions; these decisions are, in turn, influenced by the 

facility’s culture and attitude towards law compliance (Simpson et al. 2013). Those 

facilities with a strong desire to comply with the law would benefit less from a violation 
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than those with less desire to comply, even though the monetary benefit might be the 

same. Thus, to the extent that these models allow for individuals to benefit differently 

from a violation, they are, implicitly, accounting for this social norm. 

However, norms can change in response to regulators’ decisions, and these 

models have not accounted for that.
44

 In the case of repeat violations, escalating penalties 

could be part of the norm of law compliance. If penalties do not escalate, then penalties 

might be seen as the price of a violation (Gneezy and Rustichini 2000) that can be bought 

freely in the market for environmental compliance. This, in turn, could weaken the norm 

of law compliance. Thus, the strength of the norm, modeled as an illicit benefit of 

violation, could depend on how much penalties escalate. 

Lastly, regulators are likely concerned about fairness to the regulated entities and 

the community affected by pollution. The concern regarding fairness towards the 

regulated entities likely imposes some limitations on the maximum penalty.
45

 Although 

many models described the maximum penalty as limited by wealth, Harrington (1988) 

suggested that large penalties could be viewed as unfair, placing practical limits on 

penalties. Thus, many of these models that assumed a maximum penalty implicitly 

accounted for this; however, they do not allow the maximum penalty to vary based on 

violation history.  

A sense of fairness could limit the maximum penalty differently for first and 

repeat violations. For example, a large penalty for the first violation might seem unfair, 

especially if the facility had made some effort to comply. Thus, fairness could limit the 

                                                 
44

 At the most basic, if there is a very low enforcement rate, then the norm of law compliance might get 

much weaker. In an economic model, this could be modeled as a change in benefit from a violation that 

depends on the probability of detection. 
45

 Although there are statutory limits on penalties as well, these limits are generally very high and not 

binding. 
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maximum penalty for first-time violations. On the other hand, repeat violations might 

show that the facility is not making any effort to comply, and a large penalty for a repeat 

violation might not seem unfair. Thus, fairness might restrict maximum penalties for the 

first violation but allow larger maximum penalties for repeat violations. 

Alternatively, fairness could be part of the social welfare function. For instance, 

Polinsky and Shavell (2000b) introduced a model in which the fairness of a penalty, 

which depends on the size of the penalty, is part of the objective function that the 

regulator maximizes. A modification to their model, which allows the fairness of the 

penalty to depend on the size of the penalty and the facility’s violation history, would 

allow researchers to investigate the role fairness plays in escalating penalties. 

The regulator might also be concerned about fairness to the surrounding 

community. While it might be willing to tolerate occasional violations, if a facility 

violates repeatedly, it repeatedly releases pollution in the same affected community. 

Society might believe that some environmental damage is inevitable, but it might believe 

that this damage should be spread equally throughout the population in general, instead of 

being focused on the same community surrounding the repeat violator. Thus, out of a 

sense of fairness, regulators might impose increasing penalties so that a surrounding 

community does not have to put up with persistently poor environmental quality.  

Thus, these law and economics models that analyzed illicit gains, different types 

of violators, and enforcement costs provide the most likely justification for escalating 

penalties. Nonetheless, none of them explains the phenomenon fully, and accounting for 

social norms and fairness could improve the models.  



 

94 

Existing Empirical Evidence Regarding Escalating Penalties 

The empirical literature that specifically examines escalating penalties for repeat 

violations in environmental regulation is somewhat sparse. There is little information on 

how prevalent repeat offenders are and how regulatory policy treats them. In this section, 

I will describe some of the evidence regarding repeat offenders. First, I briefly discuss the 

different types of deterrence and how they relate to repeat violations. Second, I describe 

various studies that investigated whether poor compliance history increases the size of 

penalties. Third, I discuss studies that examined the impacts of regulatory actions on 

repeat violations.  

Penalties provide two types of deterrence, specific deterrence and general 

deterrence. Specific deterrence discourages the same violator from violating again in the 

future, while general deterrence discourages other entities from violating. Thus, research 

that examines the effectiveness of specific deterrence can be said to examine repeat 

violations, even if it does not focus on escalating penalties. For instance, Weber and 

Crew (2000), in their analysis of oil spills, found that penalties were effective at reducing 

amount of oil spilled, but Viladrich Grau and Groves (1997) found that penalties had no 

impact on the frequency of oil spills and amount of oil spilled during oil transfer. Helland 

(1998) investigated inspection targeting, not escalating penalties, and found evidence of 

inspection targeting based on the facility’s compliance history, but no evidence that such 

targeting improved compliance outcomes.  

Most of the articles that examined repeat offenders examined the characteristics 

of repeat offenders and whether the size of penalties depends on violation history. While 

it is EPA policy to assess higher penalties on those with a violation history (e.g., EPA 
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1984, 1991), actual practice might differ from policy. For instance, the EPA guidelines 

allow regulators to consider the firm’s ability to pay when it is assessing penalties (EPA 

1991), and regulators may be reluctant to assess large penalties as that might cause 

facilities to shut down and employees to lose their jobs (Gray and Deily 1996); thus, 

penalties might not escalate.  

Denning and Shastri (2000) examined the characteristics of companies against 

whom the EPA brought civil suits that were not settled.
46

 Of the firms in their sample, 

they found that 34.6% of the public companies were repeat offenders, and 12.6% of non-

profit organizations were repeat offenders. Additionally, 8.4% of closely held firms were 

repeat offenders. 

Oljaca, Keeler, and Dorfman (1998) examined the determinants of penalties for 

water pollution violations in Georgia. They found that firms with a history of violations 

received a penalty that was, on average, $5,616 larger. This is quite large compared to the 

average penalty of their sample, $12,786. Kleit, Pierce, and Hill (1998) investigated the 

determinants of penalties on water pollution violations in Louisiana. In their analysis, an 

enforcement action could result in a compliance order or a penalty, and they investigated 

how the number of previous violations affected whether the enforcement action resulted 

in a penalty and the size of the penalty. They found that increasing the number of 

previous violations increased the probability that the facility was issued a penalty and 

finally agreed to pay a penalty. Additionally, they found that an increase in the number of 

previous violations by one increased the penalty assessed for a violation by $4,580 and 

increased the final agreed settlement by $2,180. 

                                                 
46

 Note that this sample is not typical of environmental enforcement actions; under many federal 

environmental statutes, states are responsible for a majority of the enforcement actions and they usually 

resolve the cases administratively. 
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Simpson, Garner, and Gibbs (2007) examined repeat violations at the firm level. 

This study is different as most enforcement studies focus on the facility level, not the firm 

level, and substantial research is needed to understand the corporate ownership of the 

facilities. They found that enforcement actions and inspections had no impact on their 

measure of recidivism, the number of violations committed by the firm in that quarter. 

Miller (2005) examined all federal regulatory actions against U.S. companies for 

environmental violations between 1970 and 1997 and found that civil judicial law suits 

were not more effective than administrative actions, which carry lower penalties, at 

reducing repeat violations. However, he found that criminal suits significantly reduced 

repeat violations. 

Generally, there has been very little empirical research on escalating penalties and 

repeat offenders. A few studies found that penalties increased as violation history 

increased (Denning and Shastri 2000; Oljaca, Keeler, and Dorfman 1998). Others found 

mixed evidence on the effectiveness of monitoring and enforcement actions on repeat 

violations at the firm level: Simpson, Garner, and Gibbs (2007) found that enforcement 

actions had no impact on repeat violations at the firm level, while Miller (2005) found 

that civil enforcement actions were not effective but criminal enforcement actions were.  

New Empirical Research on Repeat Violators and Escalating Penalties 

In this section, I present my research into the nature of escalating penalties for 

repeat offenders in California air pollution regulation and show that, generally, repeat 

offenders are not a serious problem. I show that facilities are quite compliant, even 

though there is no evidence of escalating penalties. Furthermore, facilities that have long 
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spells of noncompliance receive smaller penalties, on average, than those that have short 

spells of noncompliance, implying that repeat violators commit less severe violations on 

average.  

Data Description and Summary Statistics 

My study focuses on California because its persistent air quality problems and 

aggressive monitoring and enforcement policy provide an interesting case study. I obtain 

monitoring and enforcement data from the EPA’s Air Facility System (AFS) database. 

Regulatory data are available between 2002 and 2010; I limit my period of study to the 

period after 2001 because compliance monitoring policy and data reporting practices 

changed significantly in late 2001 (EPA 2001).  

The AFS is the EPA’s database for sources regulated by the Clean Air Act. The 

database contains details of each polluting facility and regulatory actions carried out 

against it.
47

 I restrict the sample to facilities that existed during the entire study period 

because the EPA removes facilities that have shut down from the AFS.  This restriction 

could cause selection problems if repeat violators are forced to shut down by escalating 

penalties. This would weaken my finding that penalties do not escalate; it would also 

imply that escalating penalties are effective at reducing future violations. Additionally, if 

the worst violators are the ones that are forced to shut down, then my analysis of the 

repeat violator policy will be missing a crucial piece of the puzzle—the impact of the 

policy on the worst violators.
48

 However, this might not be an issue because regulators 

                                                 
47

 For enforcement actions, I only have information on the size of the penalty, not the nature of the 

enforcement action. Escalating penalties could manifest as a more stringent enforcement action, such as a 

shutdown order instead of a compliance order. Unfortunately, I cannot study this because I lack the 

necessary data.  
48

 Future research can overcome this problem by examining facilities that have shut down. For instance, I 

could examine whether those facilities tend to be repeat violators, and whether they were assessed 

escalating penalties. I have obtained this data through a Freedom of Information Act request. 
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generally try to avoid causing facilities to shut down as it entails job loss. Furthermore, 

both EPA (1991) guidelines and the California Health and Safety Code allow regulators 

to consider the violator’s ability to pay when deciding the penalty.  

There are 1,355 facilities over nine years, which makes 12,195 observations. 

Table 20 shows a summary of the number of inspections and enforcement actions and 

total penalty per facility-year. There is a mean of 1.79 inspections per facility-year, and 

63.4% of facilities-years received at least one inspection. The mean number of 

enforcement actions is 0.60 and 17.1% of the facility-years had at least one enforcement 

action. The mean penalty per facility-year is $6,993. However, only 12.7% of the facility-

years had any penalties. Conditional upon a penalty, the mean is $54,910.  

Evidence of Escalating Penalties 

I treat receiving a penalty as an indication of noncompliance as it represents the 

termination point of the violation and the regulator’s decision that the facility has 

committed a violation severe enough to warrant a penalty. If a facility was assessed a 

penalty in the year, I treat the facility as noncompliant for the year. As shown in Table 

20, the average noncompliance rate is 12.7%. Table 21 shows the number of years the 

facilities were noncompliant over the entire period. Over half of the facilities in the 

sample had no violations for the entire period; 19.7% spent one year in violation and 

12.3% spent two years in violation. A majority of the facilities were relatively compliant; 

83.6% of the facilities spent two or fewer of the nine years in violation. On the other end 

of the spectrum, three facilities (0.2%) were in violation for all nine years and nine 

facilities (0.7%) were in violation for eight of the nine years.  
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Next, I use regression analysis to examine escalating penalties. Table 22 shows 

the impact of the natural logarithm of the size of previous-year penalties on the natural 

logarithm of the size of current-year penalties for facilities with both previous- and 

current-year violations. I control for other variables on the county-year level: 

unemployment rate from the Bureau of Labor Statistics, income from the Bureau of 

Economic Analysis, percent white from the Census Bureau, and National Ambient Air 

Quality Standards nonattainment from the EPA’s Green Book.  

The regression shows no evidence of increasing penalties. Instead, the regression 

implies decreasing penalties: an increase in the previous-year penalty by 1% is associated 

with a 0.21% decrease in the current-year penalty. This shows that, for facilities that are 

in violation for two consecutive years, penalties do not escalate; instead, penalties are 

decreasing. Note that previous-year enforcement actions are associated with an increase 

in penalties, showing that violation history can increase penalties.
49

 Naturally, this 

analysis applies only to instances in which facilities were found to be in violation for two 

consecutive years.   

Penalties over the Spells of Noncompliance 

Lastly, I examine the length of the spells of noncompliance. I consider a 

noncompliance spell as a number of consecutive years that a facility is noncompliant. 

Thus, if a facility was noncompliant in years 2004 and 2005 but compliant in all other 

years, its maximum noncompliance spell is two years. If a facility was noncompliant in 

2004 and 2006 only, then its maximum noncompliance spell is one year. I consider 

                                                 
49

 Future iterations of this study can investigate the different impacts of enforcement actions that result in 

penalties and enforcement actions that do not. This will allow me to disentangle the different impacts of the 

penalty and the enforcement action.  
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facilities that have a noncompliance spell of at least two years as repeat offenders.
50

 

Table 23 shows a summary of the lengths of the longest noncompliance spells of each 

facility. Most facilities have short noncompliance spells; 31.7% of the facilities have 

noncompliance spells of one year. Other facilities can be considered repeat offenders: 

9.8% have noncompliance spells of two years, and 6.9% have noncompliance spells of 

three years or longer. A total of 16.7% of the facilities can be considered as repeat 

offenders at some point during the time period. 

Next, I examine the nature of repeat violations. Table 24 shows the trend of the 

penalty as the noncompliance spell progresses for facilities that have completed spells of 

noncompliance.
51

 I omit from this table facilities with incomplete spells of 

noncompliance—facilities whose longest spell of noncompliance was still ongoing in 

2010, the last year of available data. Focusing on the second column of the table, there 

were 116 facilities whose longest spell of noncompliance was two years long. The mean 

penalty during the first year of the noncompliance spell was $61,307. The standard 

deviation was $303,926, and the median was $3,779. During the second year of 

noncompliance, the mean penalty was $67,640 and the median penalty was $3,000. The 

difference in means is not statistically significant (p = 0.92).
52

 I also calculated each 

facility’s total penalty over the entire noncompliance spell and the per-year penalty over 

                                                 
50

 In this case I consider another violation of the Clean Air Act by the same facility in the next year as a 

repeat violation. Naturally, the definition of repeat violations can vary. For example, one could define a 

repeat violation as another violation of any environmental statute by the same firm in the next five years 

(EPA 2008). 
51

 If there were more than one noncompliant spells of the same maximum length, I use the first 

noncompliance spell. 
52

 These figures, with the mean much larger than the median and a large standard deviation, indicate that 

there are several very large values. For instance, the maximum penalty during the first year of 

noncompliance was $2.44 million, while the maximum for the second year of noncompliance was $6.50 

million. (The two penalties were at different facilities.) Thus, I also included the medians in the table. 
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the entire noncompliance spell. The average total penalty was $128,947, while the 

median total penalty was $8,525. The median per-year penalty was $4,263. 

If penalties escalate for repeat violations, then penalties for the second year of 

noncompliance should be higher than those for the first year of noncompliance, penalties 

for the third year of noncompliance should be higher than those for the second year of 

noncompliance, and so on. However, looking at Table 24, this is not entirely the case.
53

 

While penalties generally increase in the first two years of noncompliance, they do not 

keep increasing after that. For instance, for those with spells of noncompliance of four or 

more years, the first-year mean penalty is $28,761 and the median penalty is $6,635. For 

the second year, the mean increases to $29,171 and the median increases to $8,040. But, 

for the third year, although the mean penalty increases to $75,840, the median decreases 

to $6,220. Based on this table and on Table 22, it seems that, if penalties escalate, they do 

not escalate very much.  

Regulators likely focus on the severity of the violation in determining the size of 

the penalty; less severe violations draw smaller penalties. Thus, decreasing penalties 

likely show that subsequent violations are less serious than previous violations, not 

necessarily that the size of penalties are not affected by violation history. If there is 

penalty escalation for repeat violations, it is not obvious and might be obscured by a 

decrease in penalty due to a decrease in the severity of the violation. Nonetheless, there is 

no evidence that the regulators increase penalties sharply to bring the facilities into full 

compliance.  

                                                 
53

 Even if the penalties decline, it might still be considered escalating penalties if the repeat violations are 

less severe. I discuss this later in the chapter.  
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Moreover, penalties seem to be lower, on average, for those with longer 

noncompliance spells. Focusing on the first two years of noncompliance, those with four 

or more years of noncompliance were assessed lower penalties ($28,761 and $29,171) 

than those with three years of noncompliance ($44,553 and $40,137), which, in turn, 

were assessed lower penalties than those with two years of noncompliance ($61,307 and 

$67,640). Additionally, per-year penalty seems to be lower for facilities with longer 

noncompliance spells. For instance, the average penalty for those with noncompliance 

spells of four or more years is $41,029, which is lower than the penalty for those with 

three-year spells, $49,129. In turn, this is lower than the average for those with two-year 

spells. Again, this implies that those with longer noncompliance spells, on average, 

commit less severe violations.  

However, the median per-year penalty increases for those with longer 

noncompliance spells, perhaps an indication of escalating penalties for at least some of 

the facilities. It is possible that penalties escalate slightly for most facilities, but 

fluctuations in the severity of the violations tend to dominate these small escalations in 

penalties.  

Table 25 shows the statistics for facilities whose longest noncompliance spells 

continued through to the last year of the available data. There are far fewer observations, 

with 51 in total. These facilities seem quite different from those with completed spells of 

noncompliance. The 18 facilities that had one-year noncompliance spells that ended the 

year my data ended had been compliant for the entire period, 2002-2009, but violated in 

the last year, 2010. For these facilities, the mean penalty is rather high, $241,076, likely 
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driven by an outlier.
54

 The median penalty is $2,000, which is slightly smaller than that at 

facilities that had completed spells of noncompliance. Based on this column, even first-

time offenders can be assessed large penalties, likely because of the severity of the 

violation.  

Generally, those that were in violation for a relatively long period of time and 

were still in violation by the end of the period could be considered to be bad actors. Even 

then, they were not assessed very high penalties. The mean penalty is generally quite low; 

for example, those in years six and seven of their violation spell were assessed a mean of 

$15,849 and $21,371 (and a median of $10,200 and $16,325).
55

 For those that were in 

violation for all nine years of the data, the mean penalty in the ninth year of their 

violation was $5,597 and the median was $5,000. That is one of the lowest mean and 

median penalties. Thus, even those that are persistently noncompliant might not receive 

high penalties.  

Thus, Table 24 and Table 25 show that there are some persistent repeat offenders. 

However, taking the size of the penalty as an indication of the severity of the offense, 

repeat offenders might not be the worst actors.
56

 Although the median penalties for the 

repeat offenders tend to be higher, the means are lower in many instances.  

These tables also imply at least mixed evidence regarding escalating penalties. 

While these tables look at the trends in penalties over time, they do not account for other 

                                                 
54

 The largest value is $3,826,000 and the second largest value is $458,278. 
55

 However, there are, occasionally, very large penalties among these bad actors. For instance, the 

maximum penalty for the eighth year of noncompliance was $456,500. 
56

 Ideally, I would have some information on the severity of violations and would use that information to 

determine which facilities are the worst actors. Unfortunately, my data do not contain information on the 

severity of the violations. While certain types of violations, high-priority violations, are more severe than 

other types of violation, my data do not have information on the type of violation. Moreover, many 

California air districts report only high-priority violations to the EPA database. Thus, to the best of my 

knowledge, the only proxy for the severity of the violation is the size of the penalty. 
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factors and the analysis is somewhat limited. Unfortunately, I have no information on the 

severity of the violation. Assuming that larger penalties are assessed for more serious 

violations, it seems likely that some firms with shorter noncompliance spells are, on 

average, committing more serious violations and thus receiving larger penalties.  

Summary of Empirical Results 

These statistics suggest certain patterns. First, a vast majority of the facilities are 

very compliant; 71.3% of the facilities spent one or fewer years in violation over the 

nine-year period (Table 21). Second, there seems to be no clear pattern of escalating 

penalties. For facilities that spend two consecutive years in violation, there is no evidence 

of increasing penalties (Table 22). Over longer noncompliance spells, there is some 

evidence of escalating penalties: the median per-year penalty increases as the 

noncompliance spell progresses (Table 24). However, this escalation effect seems to be 

dominated by the severity of the violation as the mean penalty can be lower in later years 

of the noncompliance spells. If there are escalating penalties, it is not the main factor in 

consideration; the regulator does not assess huge penalties for the mere fact of a previous 

violation.  

Third, turning to each facility’s longest spell of noncompliance, 83.3% had 

noncompliance spells of one year or less. Thus, based on the definition of repeat 

offenders being those that had at least two consecutive years of noncompliance, only 

16.7% of the facilities were, at some point in the nine-year period, repeat offenders 

(Table 23). Finally, at least some facilities with longer noncompliance spells are, on 

average, assessed smaller penalties than those with shorter noncompliance spells (Table 

24). This implies that facilities with longer spells of noncompliance are committing less 
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serious violations. Thus, even the persistently noncompliant facilities might not be the 

worst actors.  

Conclusion and Policy Implications 

Law and economics theory has had some success in explaining the prevalence of 

escalating penalties. Some models rely on the concept of illicit gains, that some or all of a 

facility’s benefit from a violation should not be counted in social welfare, to justify 

escalating penalties as optimal. While that is a somewhat unconventional assumption to 

economics, judging by the EPA’s penalty policies, I believe it is more realistic. 

Additionally, some models assume some types of violators benefit more than other types, 

and escalating penalties are required to deter those that benefit more from violation. 

When applied to environmental regulation, this seems likely as different facilities have 

different abatement costs; those that have high abatement costs can be thought of as the 

type of violator that stands to benefit the most from violating. Thus, models that explain 

escalating penalties based on illicit gains and different types of violators are the most 

realistic representation of current policy.  

Nonetheless, these models can be further improved by accounting for the social 

norm of law compliance and fairness. The social norm of law compliance can be 

introduced as part of the illicit gain, and is thus included in many existing models. 

Furthermore, social norms may change depending on the regulator’s actions; escalating 

penalties might be necessary to reinforce the social norm of law compliance. For 

example, if regulators do not impose escalating penalties, penalties might start to seem 

like the price of a violation that can be purchased from the regulator, thus weakening the 
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norm of law compliance. In theoretical models, illicit gains from the norm of law 

compliance might be a function of how steeply the penalty escalates for repeat offenders.  

Additionally, regulators are concerned with fairness to the regulated entity and the 

affected community. Specifically, penalties might escalate because a sense of fairness 

limits the penalty for a first-time offender but not for a repeat offender. Regulators might 

also escalate penalties because fairness dictates that the same community situated around 

the repeat violators should not have to bear the cumulative cost of the facility’s repeated 

violation. Some environmental damage is inevitable, but regulators might believe that 

environmental damage should be spread throughout the population, instead of being 

concentrated on the community surrounding repeat violators. Thus, repeat violations 

cause more harm than first-time violations by offending this sense of fairness. This 

increased harm, in turn, can justify increasing penalties.  

Empirically, there is existing evidence that shows that repeat offenders receive 

higher penalties, but the evidence is somewhat mixed on whether enforcement actions 

affect repeat violations. My empirical analysis shows that most facilities are compliant. 

Repeat violations do occur, but there is limited evidence that penalties escalate. 

Moreover, facilities with the longest spells of noncompliance have lower per-year 

average penalties than facilities with shorter spells of noncompliance. This indicates that 

facilities with longer spells of noncompliance are committing less serious violations than 

facilities with shorter spells of noncompliance. These repeat offenders are not necessarily 

the worst actors as their violations are less severe.  

This has two implications. First, it shows that repeat violations can be complex. 

Persistent repeat violators are not necessarily the worst actors as they might be 
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committing less severe violations. Any future research into repeat violations should 

examine the severity of violations as well. Second, the current repeat offender policy 

seems to be working well, even if my data show that penalties do not escalate. Very few 

of the facilities are persistent violators, and the persistent violators seem to commit less 

severe violations on average.  
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Tables 

Table 20. Means for Inspections or Enforcement Actions and Penalty Amount per 

Facility-Year 

 Mean (Std. dev.) Proportion positive 

Inspections 1.785 (3.333) 0.634 

Enforcement actions 0.603 (2.972) 0.171 

Penalty (/$1,000) 6.993 (126.288) 0.127 

Given penalty > 0    

  Penalty (/$1,000) 54.910 (350.251)  

Source: Author’s calculations and EPA Air Facility System, 2002-2010. 
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Table 21. Statistics for the Total Number of Years a Facility Was in Violation 

Years in violation Number Percentage 

0 699 51.6 

1 267 19.7 

2 167 12.3 

3 96 7.1 

4 49 3.6 

5 34 2.5 

6 18 1.3 

7 13 1.0 

8 9 0.7 

9 3 0.2 

Total 1,355 100.0 

Source: Author’s calculations and EPA Air 

Facility System, 2002-2010. 
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Table 22. Fixed Effects Regression of the Impact of the Size of 

Previous-Year Penalties on the Size of Current-Year Penalties for 

Facilities with Previous- and Current-Year Violations 

 (1) 

Previous-year penalty 

(log) 

-0.210** 

(0.079) 

Previous-year 

inspections 

-0.015 

(0.009) 

Previous-year 

enforcement actions 

0.036** 

(0.011) 

Unemployment rate 0.276** 

(0.089) 

Income (/$1000) -0.087 

(0.111) 

Percent white -0.355 

(0.221) 

PM10 nonattainment 0.358 

(0.408) 

PM2.5 nonattainment -0.535 

(0.602) 

Carbon monoxide 

nonattainment 

0.471 

(0.563) 

Observations 486 

Facilities 226 

Adjusted R-squared 0.123 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust 

standard errors in parentheses; year dummy 

variables and fixed effects included but not shown. 
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Table 23. Summary of Length of Longest Noncompliance Spell 

Length of longest 

noncompliance spell 
Number Percentage 

0 699 51.6 

1 430 31.7 

2 133 9.8 

3 51 3.8 

4 17 1.3 

5 5 0.4 

6 5 0.4 

7 3 0.2 

8 9 0.7 

9 3 0.2 

Total 1,355 100.0 

Source: Author’s calculation and EPA Air 

Facility System, 2002-2010. 
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Table 24. Mean, (Standard Deviation), and [Median] of Penalty/1,000 During a 

Facility’s Longest Completed Noncompliance Spell 

 Length of Noncompliance Spell in Years 

 
1 2 3 ≥ 4 All 

Year 1 54.058 61.307 44.553 28.761 53.429 

penalty (439.454) (303.926) (141.898) (52.685) (388.182) 

(/$1,000) [2.500] [3.779] [6.250] [6.635] [3.000] 

Year 2   67.640 40.137 29.171 54.906 

penalty   (603.176) (89.322) (44.959) (469.421) 

(/$1,000)   [3.000] [6.750] [8.040] [4.500] 

Year 3     62.699 75.840 67.990 

Penalty   
 

(161.210) (291.541) (221.317) 

(/$1,000)   
 

[6.200] [6.220] [6.220] 

Year 4       22.980 22.980 

penalty    
  

(54.760) (54.760) 

(/$1,000)       [6.500] [6.500] 

Year 5   
  

185.003 185.003 

penalty   
  

(655.194) (655.194) 

(/$1,000)   
  

[6.000] [6.000] 

Year 6       31.185 31.185 

penalty    
  

(42.541) (42.541) 

(/$1,000)       [15.000] [15.000] 

Year 7   
  

42.676 42.676 

penalty    
  

(35.352) (35.352) 

(/$1,000)   
  

[23.750] [23.750] 

Year 8       61.855 61.855 

penalty    
  

(41.107) (41.107) 

(/$1,000)       [77.900] [77.900] 

Total 54.058 128.947 147.388 283.692 87.280 

penalty (439.454) (671.928) (277.084) (638.881) (496.697) 

(/$1,000) [2.500] [8.525] [21.300] [57.250] [4.500] 

Per-Year 54.058 64.474 49.129 41.029 55.013 

penalty (439.454) (335.964) (92.361) (87.327) (392.360) 

(/$1,000) [2.500] [4.263] [7.100] [12.756] [3.090] 

Observations 412 116 46 31 605 

Source: Author’s calculation and EPA Air Facility System, 2002-2010. 
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Table 25. Mean, (Standard Deviation), and [Median] of Penalty/1,000 During a 

Facility’s Longest Incomplete Noncompliance Spell 

 Length of Noncompliance Spell in Years 

 
1 2 3 ≥ 4 All 

Year 1 241.076 8.550 11.465 104.705 111.643 

penalty (901.073) (12.852) (16.251) (249.564) (547.034) 

(/$1,000) [2.000] [2.700] [5.075] [16.500] [2.970] 

Year 2 
 

4.998 4.790 24.276 11.392 

penalty 
 

(6.893) (6.626) (42.855) (26.244) 

(/$1,000) 
 

[2.250] [2.400] [10.800] [3.500] 

Year 3 
  

2.900 286.099 197.599 

Penalty 
  

(2.488) (811.373) (676.214) 

(/$1,000) 
  

[2.000] [15.000] [7.300] 

Year 4 
   

41.267 41.267 

penalty  
   

(62.449) (62.449) 

(/$1,000) 
   

[15.000] [15.000] 

Year 5 
   

119.590 119.590 

penalty 
   

(267.661) (267.661) 

(/$1,000) 
   

[22.910] [22.910] 

Year 6 
   

15.849 15.849 

penalty  
   

(12.783) (12.783) 

(/$1,000) 
   

[10.200] [10.200] 

Year 7 
   

21.371 21.371 

penalty  
   

(23.275) (23.275) 

(/$1,000) 
   

[16.325] [16.325] 

Year 8 
   

110.155 110.155 

penalty  
   

(194.422) (194.422) 

(/$1,000) 
   

[34.900] [34.900] 

Year 9    5.597 5.597 

penalty     (1.488) (1.488) 

(/$1,000)    [5.000] [5.000] 

Total 241.076 13.548 19.155 639.759 229.467 

penalty (901.073) (14.197) (22.484) (1172.963) (780.185) 

(/$1,000) [2.000] [7.000] [11.800] [140.000] [8.000] 

Per-Year 241.076 6.774 6.385 102.474 110.072 

penalty (901.073) (7.098) (7.495) (197.489) (542.929) 

(/$1,000) [2.000] [3.500] [3.933] [22.574] [4.000] 

Observations 18 17 5 11 51 

Source: Author’s calculation and EPA Air Facility System, 2002-2010. 
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APPENDIX A 

ADDITIONAL ROBUSTNESS TESTS FOR CHAPTER I 

In this appendix, I further examine the robustness of my Chapter I empirical 

results. First, I examine whether excluding facilities that participate in the Regional Clean 

Air Incentives Market (RECLAIM) program affects my results. The RECLAIM program 

is a cap-and-trade program for the largest emitters of NOx and sulfur oxides in the South 

Coast Air Quality Management District. Table 26 and Table 27 show the regression 

results when I exclude facilities that participate in the RECLAIM program. These tables 

show that the results in Table 5 and Table 6 are robust to dropping RECLAIM facilities; 

the coefficients maintain their significance and are larger in magnitude. This is not 

surprising as RECLAIM facilities’ NOx emissions are limited by their emissions permits, 

and less so by regulatory action. 

Next, I examine whether my results in Table 5 and Table 6 are robust to omitting 

various control variables. Table 28 shows the impact of regulatory actions on major 

sources. The coefficients are very similar in significance and magnitude to regression (2) 

of Table 5 and regression (2) of Table 6, regardless of which control variables are 

omitted. Table 29 displays analogous regressions for the balanced panel, and Table 30 

displays analogous regressions for manufacturing facilities. The coefficients are robust to 

omitting various control variables.  

Next, I examine whether my results are affected by using first differences instead 

of fixed effects. First differences regression is another method of accounting for time-

invariant facility characteristics. The first differences regression method regresses the 
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change in the dependent variable on the changes in the explanatory variable. The 

regression equation is  

                           
       

             , (21) 

where                . The results are shown in Table 31 and Table 32. 

Unfortunately, the coefficients are not significant. Perhaps this is due to the reduced 

sample size: using first differences instead of fixed effects reduces the sample size 

because I lose one year of data. 

Additionally, I also run a differences-in-differences regression in order to account 

for possible trends in emissions and regulatory actions. The regression equation is 

                             
        

              , (22) 

where                   . The results are shown in Table 33 and Table 34. Much 

like the first-differences regressions, the coefficients for regulatory action are not 

significant, again perhaps due to a smaller sample size. 

Lastly, I explore instrumental variables, another method of accounting for reverse 

causality. Shimshack and Ward (2005) used inspection rate at other facilities in the 

jurisdiction as an instrument for inspections in the current time period. They argued that 

inspections at other facilities in the same jurisdiction were uncorrelated with the 

individual facility’s compliance or emissions, but were correlated with the probability of 

inspection, thus creating a valid instrument. For my data, the same logic as Shimshack 

and Ward’s applies, but the link might be attenuated. For example, inspection frequencies 

are relatively fixed, once every two years for major facilities, so the inspection rate at 

other facilities in the same jurisdiction might not reflect the probability of inspection very 

accurately. Additionally, while the enforcement rate at other facilities might be correlated 
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with a regulator’s strictness, enforcements actions are probably determined by whether 

there was a violation more than they are determined by the regulator’s strictness.  

I employ a similar set of instruments.
57

 For the number of regulatory actions 

directed at a facility in the current year, I use the average number of the same regulatory 

action directed at other facilities in the same air district in the current and previous years. 

For the dummy variable of whether the facility was subjected to a specific regulatory 

action in the current year, I use the proportion of other facilities in the same air district 

that were subject to the same regulatory action in the current and previous years. As 

instrumenting for all three regulatory action variables at the same time creates very weak 

instruments, I instead instrument for only one variable at the time. The regression 

equation is  

                                   
      

               , (23) 

where               is the instrumented regulatory action for facility   in period  , and 

                 is a vector of the other regulatory variables, which are not 

instrumented, for facility   in the previous period    . Thus, if I am instrumenting for 

inspections,               will consist of instrumented current-year inspections and 

                 will consist of previous-year enforcement actions and penalties. I run 

this regression equation three times, instrumenting for each regulatory action (while using 

the lags for the other regulatory actions).  

Table 35 shows the coefficients and standard errors for the instrumented activity, 

as well as the p values for the endogeneity test, the F-statistics for instrument strength, 

                                                 
57

 I also looked into the CARB budget as a possible instrument. However, while there is information on the 

general budget for CARB’s stationary source enforcement, information on the budget for each district was 

not publicly available.  
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and the p values for the overidentification test. When I run a fixed effects regression 

equation (23) instrumenting for the presence of current-year inspections and using lagged 

regulatory variables for the presence of enforcement actions and penalties, the results are 

shown in the rows for inspections in column (1) of Table 35. Thus, the coefficient for 

current-year inspections is -4.07 and the cluster-robust standard error is 7.37, which 

indicates that inspections do not have a significant impact on emissions. I do not show the 

coefficients for the other variables as they are not very different from previous 

regressions shown. I also test whether the endogenous regressor, current-year inspections 

in this case, can be treated as exogenous; the p value is 0.73, and I cannot reject the null 

hypothesis that current-year inspections can be treated as exogenous. Next, I test the 

strength of the instruments (the current- and previous-year proportion of other facilities in 

the same air district that were inspected). The instrument is strong, with an F-statistic of 

97.20, above the rule-of-thumb threshold of 10.
58

 I also perform the Sargan-Hansen test 

of overidentifying restrictions, which tests whether the instruments are exogenous. The p 

value is 0.52, and I cannot reject the hypothesis that the instruments are valid. Column (2) 

presents the coefficient and related statistics when the explanatory variable is the number 

of inspections at the facility.  

None of the coefficients for the instrumented variables are statistically significant. 

Interestingly, the test for endogeneity never rejects the hypothesis that the regulatory 

variable is exogenous, perhaps implying that endogeneity is not a concern for the sample. 

This might be the case if inspections and enforcement actions are determined in advance 

with little room for discretion.  

                                                 
58

 For errors that are not independently and identically distributed, Baum, Schaffer, and Stillman (2007) 

recommend comparing the Kleibergen-Paap rk Wald F-statistic against the rule-of-thumb threshold of ten. 
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Table 26. Fixed Effects Regressions of the Impact of the Presence of Regulatory Actions 

in the Previous Year on NOx Emissions, without RECLAIM Facilities 

Sample
a
 All Major Balanced Manufacturing 

 (1) (2) (3) (4) 

Presence of any inspections 

in the previous year 

0.161 2.248 0.167 1.982 

(1.998) (3.493) (2.354) (3.942) 

Presence of any enforcement 

actions in the previous year 

2.837 3.647 3.753 6.972 

(3.227) (3.927) (3.558) (5.603) 

Presence of a penalty in the 

previous year 

-7.500
+
 -9.079

+
 -8.827* -14.500* 

(4.044) (4.783) (4.481) (6.846) 

PM10 nonattainment -3.661 1.861 -1.337 -11.060 

(8.522) (12.889) (10.041) (19.662) 

PM2.5 nonattainment -2.200 -3.039 -2.341 3.508 

(4.725) (6.515) (5.162) (6.473) 

Ozone nonattainment 7.911
+
 10.839

+
 8.454

+
 18.755* 

(4.425) (5.859) (4.691) (7.687) 

Carbon monoxide 

nonattainment 

-4.728 -7.404 -3.544 -4.403 

(5.971) (7.842) (6.858) (10.825) 

Unemployment rate -2.531 -2.829 -2.893 -6.852 

(4.052) (5.082) (4.355) (8.973) 

Income (/$1000) 0.072 -0.027 -0.022 1.532 

(1.158) (1.702) (1.265) (3.087) 

Percent white -6.696
+
 -8.648 -6.610 -8.375 

(4.028) (5.949) (4.392) (7.683) 

Observations 3,931 2,757 3,331 1,805 

Facilities 722 494 556 334 

Adjusted R-squared 0.960 0.959 0.961 0.965 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; year 

dummy variables included but not shown. 
a
 Column titles (“all,” “major,” “balanced,” and “manufacturing”) refer to the sample 

used in the regression. 
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Table 27. Fixed Effects Regressions of the Impact of the Number of Regulatory Actions 

in the Previous Year on NOx Emissions, without RECLAIM Facilities 

Sample
a
 All Major Balanced Manufacturing 

 (1) (2) (3) (4) 

Number of inspections in 

the previous year 

-1.127 -1.120 -0.855 0.073 

(0.787) (0.930) (1.058) (1.170) 

Number of enforcement 

actions in the previous year 

1.086 1.129 0.429 1.406 

(1.102) (1.117) (1.268) (1.564) 

Amount of penalty (log) in 

the previous year 

-0.911
+
 -1.044

+
 -0.808 -1.391

+
 

(0.479) (0.554) (0.558) (0.741) 

PM10 nonattainment -3.608 1.596 -0.994 -10.371 

(8.366) (12.778) (9.913) (19.436) 

PM2.5 nonattainment -2.110 -2.566 -2.369 3.790 

(4.642) (6.291) (5.090) (6.251) 

Ozone nonattainment 7.742
+
 11.340

+
 8.036 19.872* 

(4.604) (6.061) (4.936) (7.708) 

Carbon monoxide 

nonattainment 

-3.771 -6.228 -2.921 -4.433 

(5.793) (7.490) (6.663) (10.288) 

Unemployment rate -2.670 -3.237 -2.995 -6.432 

(3.954) (5.002) (4.254) (8.670) 

Income (/$1000) -0.148 -0.365 -0.152 1.569 

(1.187) (1.780) (1.307) (3.213) 

Percent white -6.103 -7.906 -6.238 -7.918 

(4.039) (5.942) (4.457) (7.745) 

Observations 3,931 2,757 3,331 1,805 

Facilities 722 494 556 334 

Adjusted R-squared 0.960 0.959 0.961 0.965 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; year 

dummy variables included but not shown. 
a
 Column titles (“all,” “major,” “balanced,” and “manufacturing”) refer to the sample 

used in the regression.  
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Table 28. Fixed Effects Regression of the Impact of Regulatory Actions in the Previous Year on NOx Emissions at Major Sources, 

Omitting Control Variables 

Regulatory actions
a
 Presence of Regulatory Actions Number of Regulatory Action 

  (1) (2) (3) (4) (5) (6) 

Inspections in the previous year 1.158 0.829 1.114 -1.162 -1.086 -1.176 

(2.620) (2.898) (2.593) (0.901) (0.854) (0.872) 

Enforcement actions in the 

previous year  

2.378 2.728 2.727 0.982 1.013 1.026 

(2.957) (3.058) (3.095) (1.098) (1.095) (1.096) 

Penalty in the previous year (log) -6.407
+
 -6.273

+
 -6.442

+
 -0.765

+
 -0.742

+
 -0.753

+
 

(3.625) (3.740) (3.668) (0.432) (0.436) (0.434) 

NAAQS nonattainment (PM10, 

PM2.5, ozone, and CO) 
      

Demographic variables (income, 

unemployment, and percent white) 
      

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; NAAQS nonattainment and demographic 

variables are included in some specifications but not shown; year dummy variables included but not shown. 
a
 Headings refer to the type of dependent variable used in the regression. 
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Table 29. Fixed Effects Regression of the Impact of Regulatory Actions in the Previous Year on NOx Emissions Using a Balanced 

Panel, Omitting Control Variables 

Regulatory actions
a
 Presence of Regulatory Actions Number of Regulatory Action 

  (1) (2) (3) (4) (5) (6) 

Inspections in the previous year -0.713 -0.923 -0.812 -0.900 -0.900 -0.921 

(1.891) (1.998) (1.793) (1.005) (0.976) (0.989) 

Enforcement actions in the 

previous year  

2.963 3.137 3.157 0.320 0.357 0.367 

(2.801) (2.844) (2.889) (1.234) (1.228) (1.229) 

Penalty in the previous year (log) -6.743
+
 -6.671

+
 -6.713

+
 -0.588 -0.582 -0.584 

(3.476) (3.530) (3.490) (0.448) (0.450) (0.448) 

NAAQS nonattainment (PM10, 

PM2.5, ozone, and CO) 
      

Demographic variables (income, 

unemployment, and percent white) 
      

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; NAAQS nonattainment and demographic 

variables are included in some specifications but not shown; year dummy variables included but not shown. 
a
 Headings refer to the type of dependent variable used in the regression. 
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Table 30. Fixed Effects Regression of the Impact of Regulatory Actions in the Previous Year on NOx Emissions at Manufacturing 

Facilities, Omitting Control Variables 

Regulatory actions
a
 Presence of Regulatory Actions Number of Regulatory Action 

  (1) (2) (3) (4) (5) (6) 

Inspections in the previous year 0.785 0.752 0.796 -0.041 -0.051 -0.109 

(3.150) (3.489) (3.023) (1.153) (1.031) (1.096) 

Enforcement actions in the 

previous year  

5.220 5.526 5.534 1.194 1.288 1.271 

(4.251) (4.411) (4.415) (1.541) (1.526) (1.533) 

Penalty in the previous year (log) -10.920* -10.906* -11.058* -1.065
+
 -1.060

+
 -1.072

+
 

(5.230) (5.308) (5.236) (0.572) (0.568) (0.572) 

NAAQS nonattainment (PM10, 

PM2.5, ozone, and CO) 
      

Demographic variables (income, 

unemployment, and percent white) 
      

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; NAAQS nonattainment and demographic 

variables are included in some specifications but not shown; year dummy variables included but not shown. 
a
 Headings refer to the type of dependent variable used in the regression. 
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Table 31. First Differences Regressions of the Impact of the Presence of Regulatory 

Actions in the Previous Year on NOx Emissions 

Sample
a
 All Major Balanced Manufacturing 

 (1) (2) (3) (4) 

Presence of any inspections in 

the previous year 

0.595 1.418 1.414 2.459 

(1.931) (2.972) (2.305) (3.753) 

Presence of any enforcement 

actions in the previous year 

0.028 0.123 1.297 1.474 

(2.849) (3.292) (3.159) (5.006) 

Presence of a penalty in the 

previous year 

-2.741 -3.321 -3.350 -5.746 

(3.093) (3.519) (3.004) (5.364) 

PM10 nonattainment 0.069 6.772 1.493 -0.474 

(7.266) (11.082) (8.364) (15.163) 

PM2.5 nonattainment -2.737 -2.395 -4.251 -1.172 

(5.284) (6.911) (5.839) (6.727) 

Ozone nonattainment 5.462 7.777 -0.423 10.321
+
 

(3.665) (5.709) (3.500) (5.519) 

Carbon monoxide 

nonattainment 

-7.243* -10.295* -6.960
+
 -13.902* 

(3.191) (4.405) (3.674) (6.245) 

Unemployment rate -4.467 -5.285 -4.856 -10.604 

(3.868) (4.670) (3.922) (7.589) 

Income -0.485 -0.581 0.346 -1.022 

(1.371) (1.952) (1.308) (3.476) 

Percent white -5.040 -6.064 6.621 -5.716 

(4.501) (6.483) (4.580) (9.043) 

Observations 3,810 2,825 4,017 1,872 

Facilities 839 604 672 411 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; year 

dummy variables included but not shown. 
a
 Column titles (“all,” “major,” “balanced,” and “manufacturing”) refer to the sample 

used in the regression. 
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Table 32. First Differences Regressions of the Impact of the Number of Regulatory 

Actions in the Previous Year on NOx Emissions 

Sample
a
 All Major Balanced Manufacturing 

 (1) (2) (3) (4) 

Number of inspections in the 

previous year 

-0.140 -0.132 -0.127 1.663 

(0.877) (1.025) (1.189) (1.651) 

Number of enforcement 

actions in the previous year 

1.342 1.397 0.282 1.727 

(1.257) (1.277) (1.222) (1.708) 

Amount of penalty (log) in 

the previous year 

-0.538 -0.598 -0.306 -0.792 

(0.362) (0.399) (0.342) (0.528) 

PM10 nonattainment 0.427 7.233 2.233 0.297 

(7.405) (11.365) (9.010) (15.472) 

PM2.5 nonattainment -2.871 -2.528 -3.053 -0.867 

(5.120) (6.773) (5.549) (6.232) 

Ozone nonattainment 6.013
+
 8.913 6.314

+
 10.413* 

(3.561) (5.598) (3.799) (4.922) 

Carbon monoxide 

nonattainment 

-7.404* -10.698* -7.750* -14.564* 

(3.284) (4.619) (3.823) (6.331) 

Unemployment rate -4.217 -4.981 -5.004 -9.222 

(3.788) (4.590) (4.053) (7.362) 

Income -0.599 -0.768 -0.551 -0.912 

(1.353) (1.967) (1.502) (3.414) 

Percent white -4.487 -5.245 -5.387 -4.822 

(4.818) (7.015) (5.396) (9.737) 

Observations 3,810 2,825 3,360 1,872 

Facilities 839 604 672 411 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; year 

dummy variables included but not shown. 
a
 Column titles (“all,” “major,” “balanced,” and “manufacturing”) refer to the sample 

used in the regression. 
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Table 33. Differences-in-Differences Regressions of the Impact of the Presence of 

Regulatory Actions in the Previous Year on NOx Emissions 

Sample
a
 All Major Balanced Manufacturing 

 (1) (2) (3) (4) 

Presence of any inspections 

in the previous year 

-0.169 0.423 0.222 1.876 

(3.266) (4.977) (3.544) (6.793) 

Presence of any enforcement 

actions in the previous year 

-0.339 0.348 0.743 0.108 

(3.445) (3.945) (4.169) (5.838) 

Presence of a penalty in the 

previous year 

0.331 -0.620 -1.830 -0.400 

(3.424) (3.872) (4.101) (5.983) 

PM10 nonattainment 10.166 16.923 8.290 31.283 

(8.353) (12.937) (8.603) (19.563) 

PM2.5 nonattainment -0.440 0.774 -3.944 4.282 

(7.369) (9.693) (7.514) (8.141) 

Ozone nonattainment -13.229
+
 -16.367

+
 -14.224

+
 -29.434* 

(7.235) (9.166) (7.838) (14.948) 

Carbon monoxide 

nonattainment 

5.551 6.272 1.091 15.803 

(8.571) (12.793) (3.907) (14.596) 

Unemployment rate 1.066 1.421 -5.214 4.747 

(4.887) (6.590) (4.445) (8.691) 

Income -1.783 -2.890 1.307 -5.238 

(3.723) (5.638) (2.831) (8.915) 

Percent white 18.688 26.099 -2.656 72.496 

(29.249) (37.649) (33.118) (83.018) 

Observations 2,968 2,218 3,345 1,459 

Facilities 812 597 672 393 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; year 

dummy variables included but not shown. 
a
 Column titles (“all,” “major,” “balanced,” and “manufacturing”) refer to the sample 

used in the regression. 
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Table 34. Differences-in-Differences Regressions of the Impact of the Number of 

Regulatory Actions in the Previous Year on NOx Emissions 

Sample
a
 All Major Balanced Manufacturing 

 (1) (2) (3) (4) 

Number of inspections in the 

previous year 

-0.785 -0.896 -0.937 0.586 

(0.799) (0.904) (1.038) (1.308) 

Number of enforcement 

actions in the previous year 

1.655 1.731 0.556 2.239 

(1.421) (1.438) (1.445) (1.913) 

Amount of penalty (log) in 

the previous year 

-0.252 -0.280 -0.003 -0.342 

(0.463) (0.509) (0.462) (0.705) 

PM10 nonattainment 12.242 20.698 14.629 31.955 

(9.024) (13.289) (10.161) (21.709) 

PM2.5 nonattainment -0.633 0.454 -0.032 3.957 

(7.288) (9.838) (7.745) (8.313) 

Ozone nonattainment -14.498* -18.361* -15.346* -31.051* 

(7.040) (8.836) (7.501) (13.776) 

Carbon monoxide 

nonattainment 

6.923 8.559 6.682 17.999 

(7.797) (11.910) (8.220) (11.683) 

Unemployment rate 1.569 2.248 1.194 7.462 

(4.770) (6.330) (5.364) (8.219) 

Income -1.928 -3.255 -2.181 -5.193 

(3.655) (5.556) (4.065) (8.444) 

Percent white 16.166 22.972 15.240 55.048 

(28.083) (35.871) (29.935) (78.467) 

Observations 2,968 2,218 2,688 1,459 

Facilities 812 597 672 393 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; year 

dummy variables included but not shown. 
a
 Column titles (“all,” “major,” “balanced,” and “manufacturing”) refer to the sample 

used in the regression. 

  



 

131 

Table 35. Coefficients of Instrumented Variables in Regressions of 

the Impact of Regulatory Actions on NOx Emissions 

Regulatory actions
a
 Presence Number 

  (1) (2) 

Inspections 

  

 

Coefficient -4.067 3.523 

 

(Cluster-robust standard error) (7.374) (2.801) 

 

Endogeneity test p value 0.725 0.166 

 

Kleibergen-Paap rk Wald F-statistic 97.197 14.169 

 

Sargan overidentification p value 0.521 0.920 

Enforcement actions 

 

 

 

Coefficient 6.406 0.223 

 

(Cluster robust standard error) (39.001) (2.492) 

 

Endogeneity test p value 0.844 0.492 

 

Kleibergen-Paap rk Wald F-statistic 24.953 15.522 

 

Sargan overidentification p value 0.834 0.954 

Penalties (log or dummy variable) 

 

 

 

Coefficient -18.043 -4.247 

 

(Cluster robust standard error) (45.152) (8.848) 

 

Endogeneity test p value 0.711 0.383 

 

Kleibergen-Paap rk Wald F-statistic 18.789 24.953 

 

Sargan overidentification p value 0.970 0.239 

Note: none of the coefficients are significant. Coefficients for other 

lagged regulatory variables and control variables are not shown. 
a
 Column titles ( “presence” and “number”) refer to the explanatory 

variables used in the regression. 
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APPENDIX B 

ADDITIONAL ROBUSTNESS TESTS FOR CHAPTER II 

In this appendix, I perform several robustness tests for Chapter II. I first examine 

the impact of the maximum penalty around an air quality monitor. As previously 

discussed, the average penalty is $4,682, which is probably a small amount compared to a 

facility’s operating costs. Thus, it seems unlikely that this average penalty is much of a 

deterrent to facilities. It is possible that firms are not concerned with the average penalty; 

they might be more worried about being assessed a large penalty, and the average penalty 

is correlated with that. The facilities might be deterred by the total penalty or maximum 

penalty assessed, rather than the average penalty. Thus, for each air quality monitor, I 

find the maximum penalty assessed at surrounding facilities during that year. The mean 

of the maximum penalty is $236,291 and the standard deviation is $939,721. 

In Table 36, I examine the impact that the maximum penalty has on air quality. In 

this table, the inspection and enforcement action variables are totals or averages, and the 

penalty is the maximum penalty at all the facilities around the air quality monitor. For 

example, in regression (1), a one-unit increase in the total number of inspections reduces 

ozone concentrations by 0.007 ppb, but the coefficient is statistically insignificant. The 

coefficient of the natural logarithm of the maximum penalty in the previous year is  

-0.162. This means that increasing the maximum penalty by 1% decreases ambient ozone 

concentrations by approximately 0.002 ppb. Thus, increasing the maximum penalty from 

$1 to the average of $236,291 reduces ambient ozone concentrations by 2.01 ppb. 

Increasing the maximum penalty from the 25th percentile ($0) to the 75th percentile 
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($71,000) of the penalty distribution reduces ambient ozone concentration by 1.810 ppb.  

Regression (2) shows a similar result. Thus, it is possible that facilities are deterred by the 

largest penalties assessed around the air quality monitor. 

Next, I examine whether the results are robust to using different radii around the 

monitor to compute regulatory actions and explore possible instrumental variables. In the 

chapter, I examine monitoring and enforcement actions within a twenty-mile radius of the 

air quality monitor. To test whether the results are sensitive to the chosen radius, instead 

of counting all regulatory actions within 20 miles, I examine all regulatory actions within 

10, 15, and 30 miles. In Table 37, I present a summary of the coefficients of regulatory 

actions when I use different radii.  

The effect is fairly robust, and holds for the fifteen- and thirty-mile radius 

specifications. As shown in regressions (1) and (4), the significant effect of penalties does 

not hold in the ten-mile radius cases. This is likely due to a smaller sample size. Reducing 

the radius reduces the number of facilities surrounding each monitor and, because I drop 

all monitors that have no facilities within the radius, it also reduces the number of air 

quality monitors in the data. Nonetheless, using fifteen- and thirty-mile radii produces 

similar results as the twenty-mile radius regressions and the coefficient of penalty 

variable is negative and statistically significant.  

In the next four tables, I show the summary statistics and more detailed regression 

results for the different radii. In Table 38, I present summary statistics. It is worth noting 

that the average number of inspections and enforcement actions do not change much as 

radius increases. For instance, the average number of inspections within 10 miles is 1.89, 

the average within 15 miles is 1.79, and the average number of inspections within 30 
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miles is 1.70. If regulators focused on facilities near the monitors, then the average 

numbers should decrease as radius increases. On the other hand, the average penalty 

increases as radius increases, perhaps due to a few extraordinarily large penalties. 

Table 39 to Table 41 show the full fixed effects regressions for the different radii. 

The with the exception of regulatory variables, the coefficients are fairly similar 

regardless of radius. The magnitudes of the penalty coefficient get larger and more 

statistically significant as the radius increases: for instance, the coefficient of penalties is 

-0.114, significant at 5%, for the fifteen-mile radius; it is -0.237, significant at 1%, for the 

twenty-mile radius. Perhaps this is because regulatory actions are effective over a long 

distance, and a large penalty can improve air quality in places up to 30 miles away. 

Additionally, I explore using an instrumental variables approach. Regulatory 

actions are not random. It is likely that regulators focus their efforts on areas with poorer 

air quality. Thus, instrumental variables are appropriate. The instrumental variable has to 

be correlated with regulatory actions and otherwise uncorrelated with ozone 

concentrations. It is difficult to come up with viable instruments. Facilities in 

nonattainment areas likely face more regulatory actions. Thus, I use previous-year 

nonattainment for particulate matter and carbon monoxide as instruments. If current-year 

ozone concentrations are otherwise unrelated to previous-year nonattainment for other 

pollutants, then the exclusion restriction is fulfilled and this is a valid instrument. 

I instrument for current-year regulatory actions using previous-year nonattainment 

for carbon monoxide, PM10, and PM2.5. I instrument for the current year regulatory 

actions one at the time, using the lagged regulatory variables for the other actions. The 

regression equation is:  
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               , (24) 

where               is the instrumented regulatory action for monitor   in period  , and 

                 is a vector of the other regulatory variables, which are not 

instrumented, for monitor   in the previous period    . 

The results are presented in Table 42. When I run the fixed effects regression 

equation (24) instrumenting for the total number of inspections and using lagged 

regulatory variables for total enforcement actions and the size of penalties, the results are 

shown in the rows for inspections in column (1). The coefficient for current-year total 

inspections is -0.034, and the cluster-robust standard error is 0.121, which indicates that 

inspections do not have a significant impact on ozone concentrations. I also test whether 

the endogenous variable, current-year inspections, can be treated as exogenous. The p 

value is 0.661, and I cannot reject the null hypothesis that current-year inspections can be 

treated as exogenous. Next, I test the strength of the instruments (previous-year 

nonattainment for carbon monoxide, PM10, and PM2.5). The instrument is weak, with an 

F-statistic of 6.393, which is lower than the rule-of-thumb threshold of ten.  

I also perform the Sargan-Hansen test of overidentifying restrictions, which tests 

whether the instruments are exogenous. The p value is 0.025, and I can reject the null 

hypothesis that the instruments are valid. This is likely because the same pollution 

sources that cause carbon monoxide and particulate matter nonattainment also cause 

ozone pollution. Unfortunately, overall, the instruments perform quite badly. The 

instruments are weak and cannot be considered to be exogenous. I have not been able to 

find a better instrument.  
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Table 36. Fixed Effects Regressions of the Impact of Regulatory Actions 

and Maximum Penalty in the Previous Year on Ozone Concentrations 

Regulatory Actions
a
 Total Average 

  (1) (2) 

Inspections in the 

previous year 

-0.007 -0.230 

(0.005) (0.176) 

Enforcement actions in 

the previous year  

-0.003 -0.301 

(0.005) (0.366) 

Maximum penalty in the 

previous year (log) 

-0.162* -0.152* 

(0.062) (0.065) 

Number of surrounding 

facilities 

0.043* 0.033 

(0.021) (0.021) 

Carbon monoxide 

nonattainment 

1.562 1.459 

(1.220) (1.199) 

PM10 nonattainment -1.469 -1.518 

(1.376) (1.385) 

PM2.5 nonattainment  -3.537** -3.813** 

(0.969) (0.946) 

Percent white population 

of the county 

-0.463 -0.458 

(0.463) (0.466) 

Mean income of the 

county (/$1000)  

-0.278* -0.266
+
 

(0.140) (0.138) 

Unemployment rate of 

the county  

-0.582
+
 -0.596

+
 

(0.327) (0.327) 

July mean temperature 0.230** 0.231** 

 (0.086) (0.087) 

July total precipitation in 

inches 

-0.127 -0.097 

(1.091) (1.081) 

July mean wind speed 0.054 0.050 

 (0.147) (0.147) 

Observations 1,224 1,224 

Number of monitors 167 167 

Adjusted R-squared 0.283 0.283 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors 

in parentheses; missing weather and year dummy variables 

included but not shown. 
a
 Column titles (“total” and “average”) refer to the explanatory 

regulatory actions variable. 
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Table 37. Regression Coefficients of Regulatory Actions Using Different Air Quality Monitor Radii 

Regulatory Actions
a
 Total Average 

Radius 10 miles 15 miles 30 miles 10 miles 15 miles 30 miles 

  (1) (2) (3) (4) (5) (6) 

Inspections in the 

previous year 

-0.014
+
 -0.008 -0.006

+
 -0.278* -0.200 -0.365

+
 

(0.008) (0.006) (0.003) (0.122) (0.160) (0.200) 

Enforcement actions in 

the previous year 

-0.005 -0.002 0.001 0.038 -0.126 0.012 

(0.010) (0.006) (0.004) (0.253) (0.320) (0.477) 

Penalty in the previous 

year (log) 

-0.074 -0.114* -0.237** -0.102 -0.147
+
 -0.295** 

(0.057) (0.056) (0.060) (0.073) (0.076) (0.085) 

Observations 1,115 1,200 1,258 1,115 1,200 1,258 

Number of monitors 152 164 172 152 164 172 

Adjusted R-squared 0.274 0.276 0.284 0.275 0.277 0.283 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in parentheses; number of 

surrounding facilities, NAAQS nonattainment, demographic variables, weather variables, and year 

dummy variables included but not shown. 
a
 Column titles (“total” and “average”) refer to the explanatory regulatory actions variable. 
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Table 38. Means and Standard Deviations of Explanatory Variables Using Different 

Radii 

 Ten-mile radius Fifteen-mile radius Thirty-mile radius 

Variable Mean (Std. dev.) Mean (Std. dev.) Mean (Std. dev.) 

Number of 

facilities 

20.169 (28.833) 35.523 (49.471) 95.904 (123.244) 

Inspections       

 Total 30.319 (48.917) 51.533 (75.29) 133.673 (170.669) 

 Average 1.888 (2.143) 1.792 (1.544) 1.698 (1.239) 

Enforcement 

actions 

      

 Total 10.408 (26.248) 18.108 (38.595) 45.386 (75.053) 

 Average 0.446 (0.912) 0.446 (0.799) 0.428 (0.614) 

Penalty       

 Total 124.755 (648.595) 221.744 (909.691) 587.357 (1,501.666) 

 Average 4.393 (22.085) 4.494 (17.320) 5.523 (20.396) 

NAAQS 

nonattainment 

      

 CO  0.124 (0.329) 0.118 (0.323) 0.115 (0.319) 

 PM10   0.438 (0.496) 0.419 (0.494) 0.406 (0.491) 

 PM2.5  0.288 (0.453) 0.278 (0.448) 0.270 (0.444) 

Unemployment 

rate 

8.039 (3.976) 8.079 (3.949) 8.142 (3.938) 

Income 37.778 (10.074) 37.639 (9.971) 37.357 (9.878) 

Percent white 81.086 (9.161) 81.602 (9.138) 82.009 (9.135) 

July weather       

 July 

temperature 

74.264 (9.659) 74.773 (9.826) 75.005 (10.098) 

 July 

precipitation 

0.027 (0.159) 0.027 (0.159) 0.032 (0.225) 

 July wind 

speed 

6.065 (2.365) 5.876 (2.161) 5.898 (2.149) 

Observations 1,115 1,200 1,258 

Monitors 152 164 172 

Source: Author’s calculations, EPA, Bureau of Labor Statistics, Bureau of Economic 

Analysis, U.S. Census, and National Climatic Data Center. 
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Table 39. Fixed Effects Regressions of the Impact of Regulatory Actions in the 

Previous Year on Ozone Concentrations (Radius = 10 Miles)  

Regulatory Actions
a
 Total Average 

  (1) (2) 

Inspections in the 

previous year 

-0.014
+
 -0.278* 

(0.008) (0.122) 

Enforcement actions in 

the previous year  

-0.005 0.038 

(0.010) (0.253) 

Penalty in the previous 

year (log) 

-0.074 -0.102 

(0.057) (0.073) 

Number of surrounding 

facilities 

0.055 0.037 

(0.045) (0.043) 

Carbon monoxide 

nonattainment 

1.888 1.826 

(1.235) (1.210) 

PM10 nonattainment -1.642 -1.680 

(1.489) (1.503) 

PM2.5 nonattainment  -3.215** -3.449** 

(1.008) (0.989) 

Percent white population 

of the county 

-0.156 -0.171 

(0.463) (0.458) 

Mean income of the 

county (/$1000)  

-0.273
+
 -0.279+ 

(0.144) (0.143) 

Unemployment rate of 

the county  

-0.462 -0.446 

(0.336) (0.335) 

July mean temperature 0.023 0.024 

 (0.085) (0.085) 

July total precipitation in 

inches 

-0.510 -0.270 

(1.435) (1.319) 

July mean wind speed 0.070 0.076 

 (0.206) (0.205) 

Observations 1,115 1,115 

Number of monitors 152 152 

Adjusted R-squared 0.274 0.275 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors 

in parentheses; missing weather and year dummy variables 

included but not shown. 
a
 Column titles (“total” and “average”) refer to the explanatory 

regulatory actions variable. 

  



 

140 

Table 40. Fixed Effects Regressions of the Impact of Regulatory Actions 

in the Previous Year on Ozone Concentrations (Radius = 15 Miles) 

Regulatory Actions
a
 Total Average 

  (1) (2) 

Inspections in the 

previous year 

-0.008 -0.200 

(0.006) (0.160) 

Enforcement actions in 

the previous year  

-0.002 -0.126 

(0.006) (0.320) 

Penalty in the previous 

year (log) 

-0.114* -0.147
+
 

(0.056) (0.076) 

Number of surrounding 

facilities 

0.053* 0.043
+
 

(0.026) (0.026) 

Carbon monoxide 

nonattainment 

1.480 1.359 

(1.229) (1.204) 

PM10 nonattainment -2.320
+
 -2.390

+
 

(1.367) (1.375) 

PM2.5 nonattainment  -3.544** -3.787** 

(0.976) (0.959) 

Percent white population 

of the county 

-0.325 -0.324 

(0.458) (0.458) 

Mean income of the 

county (/$1000)  

-0.259
+
 -0.257

+
 

(0.141) (0.140) 

Unemployment rate of 

the county  

-0.612
+
 -0.613

+
 

(0.345) (0.345) 

July mean temperature 0.180* 0.181* 

 (0.085) (0.086) 

July total precipitation in 

inches 

-0.332 -0.318 

(1.132) (1.126) 

July mean wind speed -0.002 -0.004 

 (0.161) (0.161) 

Observations 1,200 1,200 

Number of monitors 164 164 

Adjusted R-squared 0.276 0.277 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors 

in parentheses; missing weather and year dummy variables 

included but not shown. 
a
 Column titles (“total” and “average”) refer to the explanatory 

regulatory actions variable. 
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Table 41. Fixed Effects Regressions of the Impact of Regulatory Actions 

in the Previous Year on Ozone Concentrations (Radius = 30 Miles) 

Regulatory Actions
a
 Total Average 

  (1) (3) 

Inspections in the 

previous year 

-0.006
+
 -0.365

+
 

(0.003) (0.200) 

Enforcement actions in 

the previous year  

0.001 0.012 

(0.004) (0.477) 

Penalty in the previous 

year (log) 

-0.237** -0.295** 

(0.060) (0.085) 

Number of surrounding 

facilities 

0.020 0.010 

(0.016) (0.015) 

Carbon monoxide 

nonattainment 

1.426 1.361 

(1.233) (1.217) 

PM10 nonattainment -1.382 -1.330 

(1.358) (1.369) 

PM2.5 nonattainment  -3.486** -3.804** 

(0.964) (0.940) 

Percent white population 

of the county 

-0.520 -0.550 

(0.463) (0.461) 

Mean income of the 

county (/$1000)  

-0.264
+
 -0.272* 

(0.138) (0.137) 

Unemployment rate of 

the county  

-0.506 -0.519 

(0.317) (0.314) 

July mean temperature 0.198* 0.199* 

 (0.080) (0.080) 

July total precipitation in 

inches 

0.686 0.650 

(0.590) (0.601) 

July mean wind speed 0.064 0.050 

 (0.141) (0.144) 

Observations 1,258 1,258 

Number of monitors 172 172 

Adjusted R-squared 0.284 0.283 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors 

in parentheses; missing weather and year dummy variables 

included but not shown. 
a
 Column titles (“total” and “average”) refer to the explanatory 

regulatory actions variable. 
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Table 42. Coefficients of Instrumented Variables in Regressions of the 

Impact of Regulatory Actions on Ozone Concentrations 

Regulatory Actions
a
 Total Average 

  (1) (2) 

Inspections 

 

 

 

Coefficient -0.034 -9.673 

 

(Cluster-robust standard error) (0.121) (5.881) 

 

Endogeneity test p value 0.661 0.030 

 

Kleibergen-Paap rk Wald F-statistic 6.393 5.460 

 

Sargan overidentification p value 0.025 0.150 

Enforcement actions 

 

 

 

Coefficient -0.021 4.192 

 

(Cluster-robust standard error) (0.056) (4.260) 

 

Endogeneity test p value 0.717 0.320 

 

Kleibergen-Paap rk Wald F-statistic 9.455 6.502 

 

Sargan overidentification p value 0.032 0.046 

Penalties (log or dummy variable) 

 

 

 

Coefficient -0.946
+
 -1.302* 

 

(Cluster-robust standard error) (0.529) (0.659) 

 

Endogeneity test p value 0.121 0.086 

 

Kleibergen-Paap rk Wald F-statistic 5.210 5.524 

 

Sargan overidentification p value 0.085 0.102 

** p < 0.01, * p < 0.05, 
+
 p < 0.1; cluster-robust standard errors in 

parentheses. Coefficients for other lagged regulatory variables and 

control variables are not shown. 
a
 Column titles (“total” and “average”) refer to the explanatory 

regulatory actions variable. 

 


