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CHAPTER I 

INTRODUCTION AND SUMMARY 

 

Introduction 

 Fault Detection and Isolation (FDI) has received considerable attention and 

widespread growth in recent years for various dynamic systems [1, 2, 3, 4]. The FDI of 

different failures play a vital role in maintaining the stability and reliability of the plant. 

Different applications of complex dynamic systems have emphasized the need for 

accurate and timely diagnosis of sensors and actuators that are part of these subsystems. 

Also, these applications demand stringent requirements on safety and reliability. Many 

researchers pursued the investigation in designing various FDI algorithms and techniques 

for real world applications [5, 6, 7].  

The FDI problem is mainly concerned with the failure state of a dynamic system 

based on the residuals from comparative relationship amongst the system variables. One 

of the simplest ways to solve fault detection is by hardware redundancy. The major 

drawback of hardware redundancy is the extra cost associated with the addition of 

different elements. Other redundancies that exist in a dynamic system are in the form of 

analytical redundancies. Analytical redundancy [8] mainly refers to the dynamic 

relationship between dissimilar outputs. These dynamic relationships provide additional 

redundancy equations that produce residuals useful to FDI scheme. Finally, a third type 

of residual can be formed from self-test type redundancy relationships. In this 
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redundancy the dynamic relationship is strictly written in terms of a single instrument 

output. 

 There are numerous approaches to the design of FDI systems. They are classified 

as: a) Fault detection filter [9, 10, 11]; b) Innovation-based diagnosis systems [12]; c) 

Multiple model adaptive filters [1]; and, d) Analytical redundancy systems [8]. Design of 

detection filters and its application for vibration control is the main area of focus in this 

research work. Beard [9] developed the detection filter in 1971. This work was later 

expanded by Jones [10] in 1973, and then reformulated by several researchers. 

Detection filters are designed so that output error residuals are produced with 

directional characteristics that can be associated with a set of known design fault 

directions. In this research work the main emphasis is on the Beard-Jones (BJ) filter. The 

BJ filter constitutes a technique for generating closed-loop residuals that have certain 

directional characteristics. The concepts used by Beard are based on an observer that is 

constructed so that the presence of faults in the system causes the direction of the residual 

vector in the output space to be in fixed in time (unidirectional). The concept of fault 

detectabilty is achieved if the output error residual is one-dimensional when any fault 

event occurs, and the closed-loop eigenvalues are arbitrarily assignable. In order to 

satisfy the above conditions, detection filter theory is based on the reference model 

approach used in observer theory and state estimation theory. Thus, a Beard-Jones 

detection filter (BJDF) is developed.  

 Beard detection filters mainly focus on the determination of a cyclic basis 

representation for the closed-loop system in which the output error has certain directional 

properties. Beard adopted the matrix algebra techniques for the calculation of the 



 3

detection gain matrix. Jones extended Beard’s work by using linear operators and vector 

space techniques. Later, Massoumnia [13] used a geometric approach for the design of 

detection gain matrix. Both approaches and methodologies for designing the detection 

gain matrix are rather indirect and overly complicated, and are unfamiliar to the most 

engineers. In the mid 1980’s White and Speyer [6, 14, 15] proposed a spectral technique 

for the design of detection gain matrix by assigning the eigenvalues and eigenvectors 

directly. Therefore, the detection filter needs to be constructed inside and outside the 

detection space simultaneously, which is a limitation of this method. In order to avoid 

this problem, Kim and Park [16, 17, 18] proposed a methodology based on the invariant 

zero approach. 

 An important component of any practical active control system is the transducers 

used for the implementation of control. Actuators are used to apply control signals to the 

system in order to change the system response. Sensors are required for measurement, 

which in turn can be used to estimate important system variables. These sensors provide 

necessary information to the controller to determine the performance of the system. 

These sensors and actuators provide the link between the controller and physical system 

to be controlled. In the presence of actuator or sensor failures the control performance of 

the system is widely affected. 

The main motivation behind this work is to the use the idea of FDI for vibration 

control. In order to maintain optimal performance for active vibration control in the 

presence of failures, the concept of fault-tolerant control is achieved. Also, for 

maintaining the optimal performance due to failures, controller reconfiguration needs to 

be implemented. Since controller reconfiguration is a discrete phenomenon and, vibration 
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control is a continuous phenomenon, the interaction between the two is achieved by 

hybrid automata. The main focus of this work is to deal with the failure of actuators in 

active vibration control. In this research work a new technique is proposed for the design 

of the fault detection for high order systems.  In addition to this a new methodology is 

developed for systems with feed-through dynamics.  

Chapter II mainly deals with the study of parity space techniques and BJ filter. 

The various advantages and limitations of both FDI methods are studied in detail for 

fault-tolerant active vibration control. This chapter establishes the criteria for the desired 

FDI filter to be used for experimental studies. Chapter III focuses on the BJ filter for high 

order systems. A new design procedure that uses the concept of invariant zero method is 

developed for systems such as beams, plates and shells (high order systems). Also, a new 

methodology is developed for systems (from system identification) with feed-through 

dynamics for the design of BJ filter.  

Chapter IV deals with the experimental verification of the proposed BJ filter 

design technique in discrete-time. Chapter V focuses on the experimental results of the 

fault-tolerant active vibration control for actuator failures. This experimental results 

shows that there is stability for the system under switching of various controllers for 

different fault case scenarios. Finally, chapter VI studies parametric failures of a system. 

In this chapter, parameter estimation method and BJ filter are used for these kinds of 

failures. Thus, simulations of fault-tolerant control are established with the presence of 

parametric failures. 
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Summary of Manuscript 1 

Active vibration control plays a crucial role in improving the performance 

objective of physical systems. The main objective of active vibration control is to reduce 

the vibration of a physical system by automatic modification of the system’s structural 

response. An active vibration control system can be modeled in many ways, but the most 

important components of such a system are the sensors (to detect the vibration), the 

electronic controller (to manipulate the signal from detector), and the actuators 

(component that influences the mechanical response of the system). Thus, failures in any 

of these components play a vital role in the performance of active vibration control. 

These component failures are referred as additive failures. The main objective in this 

section of proposed work is to study the fault-tolerant control with additive failures. The 

physical system studied in this work is a simply supported beam as shown in Figure 2-1. 

The system considered in this work is a three input-three output system. Initially, 

only three structural modes are considered. This is because current parity relation and BJ 

filter design techniques only apply to lower order systems. Two different types of FDI 

filters are studied for the application of vibration control. The various advantages and 

drawbacks of these filters are studied in detail. The two types of FDI filters are: parity 

relations and BJ filter.  

A constant gain output feedback compensator is designed for the vibration control 

for different fault case scenarios. Compensator design for the three fault case scenarios 

and one nominal case (no failure) have been designed is shown in Figure 2-2. The three 

fault case scenarios are: first actuator failure; second actuator failure; and, first and 

second (both) actuator failures. This research work implements the idea of multiple 
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switching of faults back and forth.  The fault-tolerant control is the process of detecting 

failures (in this case actuator failures) and appropriately switching compensators to 

obtain optimal vibration control performance.  

The process of fault-tolerant control is shown schematically in Figure 2-3 for 

parity space technique. In this diagram, there are multiple controllers and observers 

corresponding to different failures. Figure 2-5 explains the concept of threshold for 

switching for parity space techniques. Figure 2-6 shows controller reconfiguration for 

multiple fault case scenarios. Figure 2-7 shows the schematic representation for fault-

tolerant control using BJ filter. In this diagram, there are multiple controllers and single 

BJ filter (mutual detectability) for different failure conditions. Figure 2-8 explains the 

concept of threshold for switching for BJ filter. Figure 2-9 shows controller 

reconfiguration for multiple fault case scenarios for BJ filter. Figures 2-10 and 2-11 

shows the advantages and limitations of both the FDI techniques to be used for 

experimental studies. Finally, in this manuscript it is concluded that the BJ filter is more 

appropriate than the parity space technique for active vibration control. 

 

Summary of Manuscript 2 

In this manuscript, the BJ filter is designed for different cases of physical system. 

The cases depend on the system order, which in turn depends on the number of modes 

considered for the physical system. A new methodology for BJ filter design with feed 

through dynamics is also developed. Two types of plant models are used in this 

investigation: theoretical beam models and a model based on system identification of an  
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experimental setup. The fault case scenarios considered are the same as in the previous 

manuscript. And, the compensator design is based on constant gain output feedback. 

Based on this experimentally obtained data, a state variable model was created 

based on ARX technique. One unique aspect of this model, and one common to many 

experimentally derived models, is that the feed-through matrix, D in Equation (3-3), is 

non-zero. This necessitates the development of a new technique for designing FDI filters.  

Many systems that are encountered have feed-through dynamics (i.e. D ! 0). However, 

there is as yet no way of dealing with this situation when designing BJ filters. This is 

because potential actuator failures have a direct effect on the output of the system (which 

in turn can be interpreted to be sensor failures). In order to avoid the confusion and 

isolate the actuator failure, a new BJ filter design method is presented for this particular 

case in this manuscript. 

 The open loop system model in the absence of failures is given in Equation (3-3). 

The traditional BJ detection filter in this case is assumed to be of the form  shown in the 

Equation (3-7). Consider a system similar to Equation (3-3), but with a non-zero D 

matrix. In addition to this consider a failure in actuator one. This particular case can be 

described in Equation (3-14). 

 In order to develop a BJ filter it is assumed that "u1 behaves according to a first 

order dynamics shown in Equation (3-15). The value of #  plays a pivotal role in the 

convergence of the continuous residual in fault-tolerant control. This is because, if the 

response of first order dynamics is faster than the actual system, then the rate of 

convergence of the continuous residual is fast.  If the BJ theory fault is considered to be 

$ % "u1, then Equations (3-14) and (3-15) can be combined in to a new state-space form 



 8

shown in Equation (3-16). 

 Now, the usual BJ detection design outlined previously can be used on the 

appended system of Equation (3-16). It is possible that the appended system of Equation 

(3-16) might not be controllable even though the original system is controllable. The 

method described above deals with occurrence of multiple faults simultaneously at the 

same time. Also, if the system is not mutually detectable, it is possible to implement 

occurrence of faults in parallel.  

 For low order system, the detection gain matrix L  shown in Equation (3-7) is 

obtained by using the invariant zeros approach. In some situations it is not possible to 

design a stable closed-loop detection filter gain for higher order systems using invariant 

zeros approach. Thus, it is essential to present a new technique for higher order systems 

by using the idea behind the LQR design with eigenstructure assignment capability to 

minimize the quadratic cost function shown in Equation (3-20). This optimal gain matrix 

is then added to the original detection gain matrix (calculated using invariant zero 

approach) to obtain a closed-loop stable detection filter &'L  shown in Equation (3-18). 

In order to establish the capabilities of a fault-tolerant control system under 

various conditions, three different cases are considered and simulated. These cases are: a 

high order plant with full order BJ filter; a high order plant with truncated BJ filter; and, 

an experimentally obtained high order plant with a high order BJ filter. The necessary 

conditions and results for these cases are explained in detail using Figure (3-5), Figure (3-

6), Figure (3-7) and Figure (3-8). It is demonstrated that the new BJ filter design 

technique can be used for the high order systems to achieve fault-tolerant control. 
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Summary of Manuscript 3 

In this manuscript, BJ filter is designed for experimental model shown in Figure 

(4-1).  The system identification of the model is established based on the schematic 

shown in Figure (4-2).  Six sensors and six actuators are used for the system 

identification. The data is collected from the sensor and actuator uses Equation (4-1) for 

system identification and, from this Equation (4-2) is derived. The order of the system 

model in the experimental is chosen to be 36, and frequency responses of the all signal 

paths match the experimental results. Figure (4-3) and Figure (4-4) show the 

experimental and analytical frequency responses from the two signals. It is clearly 

established that the state space model derived from the experiment represents the beams 

dynamics.  

 Conversion of continuous BJ filter for high order systems (from manuscript 2) to 

discrete-time creates unstable poles. Therefore, it is necessary to design BJ filter in 

discrete-time. For low order system, the detection gain matrix L  shown in Equation (4-3) 

is obtained by using the invariant zeros approach. In some situations it is not possible to 

design a stable closed-loop detection filter gain for higher order systems using invariant 

zeros approach. Thus, it is essential to present a new technique for higher order systems 

by using the idea behind the LQR design with eigenstructure assignment capability to 

minimize the quadratic cost function shown in Equation (4-13)). This optimal gain matrix 

is then added to the original detection gain matrix (calculated using invariant zero 

approach) to obtain a closed-loop stable detection filter &'L  shown in Equation (4-11). 

 Figure (4-5) shows the simulations of the experimental model in discrete-time with 

and without noise. The disturbance in the subplot in Figure (4-6) is used to create 
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vibrations in the experimental setup. Figure (4-6) shows the residuals of actuator one and 

actuator two failures at different times. The limitations of BJ filter for real-time analysis 

are explained in manuscript 3. 

 

Summary of Manuscript 4 

In this manuscript, fault-tolerant control is conducted for vibration control of a 

simply supported beam shown in Figure (5-2). The system identification of the model is 

established based on the schematic shown in Figure (5-1).  Six sensors and six actuators 

are used for the system identification. The data is collected from the sensor and actuator 

to use Equation (5-1) for system identification. The order of the system model in the 

experimental is chosen to be 36, and frequency responses of the all signal paths match the 

experimental results. Figure (5-3) and Figure (5-4) show the experimental and analytical 

frequency responses from the two signals. It is clearly established that the state space 

model derived from the experiment represents the beams dynamics.  

The schematic for fault-tolerant active vibration control is shown in Figure (5-5). 

The controller design for various fault case scenarios is shown in Figure (5-6). Figure (5-

7) shows the time history of residual, fault states and sensor signal for actuator two 

failure. Figure (5-8) shows the continuous residuals for both actuators one and two 

failures. Figure (5-11) shows the control performance for different fault case scenarios. 

Finally, it is fault-tolerant active vibration control is conducted in real-time using the BJ 

filter. Also, from the experimental results it can be concluded that during switching of 

controllers, the physical system remains stable. 
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Summary of Manuscript 5 

In current technologies, given the high reliability required of systems, the ability 

to detect a system fault at the earliest possible stage is of primary interest. Therefore, 

damage detection (parametric failures) is an important asset. The design of a diagnostic 

tool for this purpose requires that many issues be addressed. Most of previous literature 

on vibration based damage detection techniques lack in use for the concept of fault-

tolerant control. 

Even when a proposed FDI scheme is technically good for general failures, ease 

of use considerations remains a core issue in engineering practice. The coupling of the 

physical system makes the implementation of FDI and its results more complicated. As a 

consequence, fewer investigations have been done for parameter failures as compared 

with additive failures. Therefore, there is a great incentive for developing better methods 

to accomplish the concept of FDI for multiplicative faults. Furthermore this work can be 

extended to designing the appropriate controller for multivariable control with the 

presence of failures. The majority of work conducted on FDI over the past years is on the 

faults associated with sensors and actuators. 

In this manuscript, parameter estimation is achieved for continuous multi-input 

multi output (MIMO) models with multiplicative faults. The advantage of the parameter 

estimation over other FDI methods is the ease of use for fault-tolerant control. The theory 

and development of Beard-Jones (BJ) filter for fault detection of parametric failures is 

studied in detail. BJ filter design is mainly implemented for sensor and actuator failures. 

Therefore, it is very important to study the pros and cons of both methods studied in this 

work for fault-tolerant control. For fault-tolerant control there is a transition from 
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continuous time to discrete event systems during the switching of the controllers. 

Therefore, it is also essential to use the idea of hybrid automata for this work. Thus, one 

of the critical issues is to integrate the FDI scheme, hybrid automata and active vibration 

control to achieve the objective of fault-tolerant control. 

In this study the parametric failure considered to be the addition of mass to the 

beam. Other parametric failure that can be addressed is the change in the stiffness of the 

beam KP  shown in Equation (6-2). This study features two types of fault case scenarios. 

The first one is where there is no change in the mass of the beam and, second one is the 

case where a significant amount of mass is added to the beam. It is very important to 

know the location of the additional mass, as it affects the mode shape of the beam. In this 

study the additional mass is located at half the length of the beam. The addition of mass 

of the beam can be expressed as shown in Equation (6-14). Similarly, mathematical 

representation of stiffness parameters can be implemented. In case of parameter 

estimation, the change in one of the parameter value is considered as the key to change in 

the physical system with the addition of mass. 

The primary goal of this work is to implement two different FDI schemes for 

parametric failures. Simulations for the multiplicative failures have been conducted on a 

simply supported beam, which in turn demonstrate the ability of such a system to 

maintain performance and stability are shown in Figures (6-4) and (6-6). The primary 

contribution of this work is to study the limitations of both methods for multiplicative 

failures. Also, this work will help to develop robust FDI methods with the presence of 

both the additive and multiplicative failures. 
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Abstract 

 The objective of this work is to detect failures in a vibration control system and 

adapt the control system in order to maintain optimal performance. Fault detection and 

isolation (FDI) filters, which are a subset of state observers specifically designed to detect 

and identify known types of system failures, are used to detect sensor and actuator 

malfunctions also called additive failures. The output of such filters is used, along with 

hybrid automata, to reconfigure feedback compensators in order to maintain closed loop 

objectives. Such reconfiguration allows the system to continue operating optimally under 

certain, pre-defined system failures. In this work, two types of FDI filters are compared: 
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those based on parity relations and those based on Beard-Jones filter concepts. The 

primary contribution of this work is the integration of active control with fault detection 

and hybrid system management. There are several challenges inherent in this effort but 

the most important is the management of compensator switching. Since switching 

involves system discontinuity, therefore stability of the system is very difficult to 

guarantee. Simulation results demonstrate some of these challenges and the effectiveness 

of the two types of FDI filters in maintaining suitable closed loop performance in the 

presence of system malfunctions. 

Keywords: Fault-Tolerant, Parity Relations, Beard-Jones and Additive Faults. 

 

Introduction 

 Most large-scale engineering systems are equipped with embedded systems for 

the purpose of monitoring and control. Hence, these kinds of systems require very high 

reliability. Therefore, it is essential that the components in such systems perform self-

diagnosis in locating faults and failures. Such a self-diagnostic method helps in vastly 

increasing the system efficiency and reducing the costs associated with risk. In the past 

there has been a widespread growth in the sophisticated diagnostic procedures in various 

embedded systems. These embedded systems consist of sensors that measure system 

variables, a microprocessor controller that determines the methodology to reduce the 

error between the actual and desired output, and an actuator that executes the commands 

initiated by the controller to ascertain the desired performance. 

One of the most active areas of research related to FDI is improving the 

implementation and design procedure using various methods. These methods, helped in 
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advent of more reliable and fault-tolerant applications. In this type of control, the most 

common form of faults is referred to as additive faults. These are typically failures of 

sensors and actuators. Also, there exist parametric faults such as changes in underlying 

system parameters. This work is limited to the identification of additive faults. The 

occurrence of any failure can cause the system to under-perform it’s desired objective. 

For example, if an actuator fails then the controller designed to perform optimally with it 

will no longer perform optimally. Systems that can adapt to such unexpected faults would 

be of great advantage due to improved robustness and stability. Thus, fault-tolerant 

control is designed to enable an increase in efficiency of the whole system. Also, this 

helps in improving the life expectancy of the plant. 

The objective of this research work is to implement the various methods to detect 

sensor and actuator failures, isolate the faults and adapt the feedback control in order to 

maintain closed loop performance in the presence of these faults. Many approaches have 

been proposed for the detection of additive faults such as actuator and sensor failures 

(Beard, 1971; Gertler, 1998). In this paper, FDI filters based on parity relations and 

Beard-Jones methodologies are studied. Also, studies are conducted on the pros and cons 

of these methodologies for fault-tolerant control. In this research work, pre-defined fault 

case scenarios are implemented and the closed loop control performance in the presence 

of the faults is studied. Furthermore, these pre-defined fault case scenarios can be 

extended depending on the requirement of the problem for achieving fault-tolerant 

control. It is established that the stability of the system while switching between the 

various controllers due to the presence of faults is critical. 
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Background 

 The primary contribution of this work is the integration of active control with 

fault detection and hybrid system management. Active vibration control of structures is 

one of the most important applications in the filed of smart structures. Currently, with the 

advent of smart structures, active vibration control is being applied to large-scale systems 

that are quite complex in nature. The control system objective is to reduce the sensitivity 

to disturbances and achieve active vibration control. Much work has been done on the 

development of various closed loop and adaptive algorithms. Complex multivariable 

control system architectures have been developed in order to handle complicated 

controller designs (Clark, Saunders, and Gibbs, 1998). The various adaptive structures 

paved the way for numerous new concepts associated with distributed and decentralized 

vibration control (Maroti et al., 2002). Most of this previous work pertains to the 

development of techniques related to feedback control and enhancing the performance 

capability of the vibration system. In addition, theories and issues associated with the 

implementation of distributed sensors and actuators in vibration control are developed in 

(Fuller, Elliot, and Nelson, 1997). FDI is a recently expanding research area. Today’s 

FDI filters are applied to wide variety of fields such as aeronautics, health monitoring 

systems, etc. (Douglas and Speyer, 1996). Most of the works with FDI’s are associated 

with the development of new techniques and methods to identify various faults. Different 

types of fault detection filters have been developed based on the requirement, which is 

the closed-loop control performance of the plant. Various concepts and development of 

FDI’s have been extensively studied (Chen, Patton and Zhang, 1996).  
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A hybrid system is defined as a dynamical system with both discrete and 

continuous components. These kinds of systems are mostly employed where safety issues 

are high priority. Such hybrid systems can be modeled using hybrid automata. These 

logical dynamic systems are called finite-state machines, since they can only achieve a 

finite number of systems states. Also, systems that interact with the environment are 

modeled using hybrid automata. Systems that interact with the environment are highly 

volatile, hence called reactive systems. Reactive systems can capture system 

specifications using functional, behavioral and structural views. Thus, reactive systems 

can be modeled using finite-state machines. Hybrid systems use the concepts of hybrid 

control, which is a combination of feedback and adaptive control. Another reason for the 

use of hybrid control architectures is to have robust performance for narrow band 

disturbance rejection (Sievers and Von Flotow, 1992). 

The contribution of this research work is the combined application of active 

vibration control, FDI’s techniques and hybrid automata to achieve fault-tolerant control. 

Furthermore, current research work yields a better understanding of robustness and 

stability of such systems concerning hybrid switching. Since the functional demand of the 

system is quite complex, the stability of the system plays a vital role in the FDI’s. In this 

paper, the stability associated with switching between the controllers and its impact on 

the closed-loop control performance of the system has been studied. Furthermore, studies 

are specifically conducted on parity relations and Beard-Jones filters that are more robust 

to disturbance rejection and stability during the switching of the appropriate 

compensators for fault-tolerant control. 
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Mathematical Model of the System 

 In order to implement the concept of fault-tolerant control, a multi-input multi-

output (MIMO) system is modeled. The MIMO system under consideration is a simply 

supported beam (1-D) subjected to a random disturbance as shown in Figure 2-1. A state 

space model is developed for the beam including surface bonded by piezoceramic 

transducers (Hagwood, Chung, and Von Flotow, 1990), which act simultaneously as 

actuators and sensors. The model includes not only the dynamic coupling effects between 

the structure and actuators or sensors through piezoelectric effect, but also the structural 

dynamic effects introduced by mass and stiffness contributions of the piezoelectric 

transducers.  

 

 

Figure 2-1: Simply supported beam with sensors and actuators 

 

The solution assumes that the structural displacement can be expressed as the 

summation of the orthogonal function called modes (Meirovitch, 1990). The modes of a 

simply supported beam can be represented as a linear expansion of assumed modes and 

generalized coordinates in the following form 

! 

w(x, t) = "n (x)qn (t)
n=1

mod
#       (2-1) 
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where 

! 

w(x, t)  is the beam displacement, 

! 

"n (x)  is the n
th

 mode shape and 

! 

qn (t) is the 

generalized coordinate of the n
th

 mode. In general the number of assumed modes is 

limited to a finite number, and the importance of this result helps the design and analysis 

of controlled adaptive structures. Following the development of Hagwood et al., the 

equation of motion for the beam becomes (Hagwood, Chung, and Von Flotow, 1990) 

! 

[Mp + Mt ]{q
••
(t)}+ [Kp + Kt ]{q(t)} = [Q

d
(t)]+ ["]{v(t)}  (2-2) 

where 

! 

Mp  and 

! 

M
t
 are the mass matrices for the beam and piezoceramic transducers 

respectively, similarly 

! 

Kp  and 

! 

K
t
 are the stiffness matrices for the beam and 

piezoceramic transducers respectively, 

! 

q(t)  is a vector of generalized coordinates, 

! 

Q
d
(t) 

is a vector of generalized disturbances, 

! 

" is the electromechanical coupling matrix and 

! 

v(t)  is the vector of control voltages applied to the transducers which act simultaneously 

as sensors and actuators (Vipperman, 1996). 

The beam model of Equation (2-2) can be cast in the state-space forms as follows 

(Clark, Saunders, and Gibbs, 1998) 

! 

x
•

= Ax + Bu

y = Cx + Du
        (2-3) 

where 

! 

x  is the state vector, 

! 

u  is a vector of control and disturbance inputs associated 

with the actuators, and 

! 

y  is the output vector associated with the sensors. 

The model used for simulations consisted of three structural modes. Using such a 

small model was necessary in order to meet the observability requirements for the Beard-

Jones filter design (discussed later). The use of a low order model for a vibrating beam 

means that there is the possibility for spillover in the closed loop design, and inaccuracy 

in the simulations.  However, constant gain output feedback using collocated transduction 
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has been shown to avoid spillover problems (Clark, Saunders, and Gibbs, 1998). 

Furthermore, low-pass filtering of the sensor signals sent to the FDI filters would limit 

the effects of higher order modes on the detection process. 

 

Output Feedback Compensator 

 In this paper, constant gain output feedback compensators are used to minimize the 

beam vibration (Levine and Athans, 1970). This is a very simple form of control, 

however it has been demonstrated to be very effective in such applications (Clark, 

Saunders, and Gibbs, 1998). The type of control is not critical to the results shown here 

and the work could easily be extended for complex, dynamic compensators. Each 

possible actuator and sensor failure leads to different configurations of the MIMO 

system. When a particular actuator fails it is removed from the feedback loop and only 

the remaining actuators are used to reduce vibration. The compensator is designed based 

on pre-defined or prior knowledge of the faults that can occur in the system. The control 

law is implemented 

  u Ky= !            (2-4) 

where K is the constant feedback gain matrix, 

! 

u  is the vector of control inputs and y  is 

the output vector containing the appropriate sensors. The feedback gain matrix can be 

found my minimizing the cost function (Levine and Athans, 1970) as shown in Equation 

(2-4) 
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where 

! 

J  is the cost function associated with each fault case scenario, 

! 

x  is the system 

state vector, 

! 

C  is the state-space system matrix from Equation (2-3), 

! 

W
s
 is the penalty 

associated with the sensor signals, 

! 

W
m

 is the penalty associated with the various modes, 

and finally R is the control effort penalty. The details associated with the implementation 

and calculation of the output feedback gain matrix can be found in (Levine and Athans, 

1970).  

The MIMO system considered in this work is a three input-three output system. 

Compensator design for the three fault case scenarios and one nominal case (no failure) 

have been designed. The three fault case scenarios are: 1. First actuator failure; 2. Second 

actuator failure; and, 3. First and second (both) actuator failures. The compensator 

performance is shown in Figure 2-2, which depicts the transfer function between the 

input and the sensor outputs for the various fault scenarios and for the uncontrolled 

transfer function. Note that the best attenuation is achieved when all the actuators are 

operational (no fault). As one would expect, when one actuator has failed the control 

performance is degraded and, when two actuators have failed the performance is the 

poorest. However, even when there are actuator failures the system reduces the 

amplitude, and system stability is still maintained. On the other hand, if no-fault 

controller were used with failed actuators then the performance would be suboptimal and, 

possibly, unstable. 
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 Figure 2-2: Transfer function for various fault case scenarios 

 

Hybrid Automata 

In the current work, a framework related to the faults is constructed based on 

hybrid automata. A hybrid automaton is a modeling formalism of the system 

specifications and, it is also an analysis of algorithms dealing with the hybrid system. The 

hybrid automata are used because may affect the behavior of the system in a 

discontinuous manner as does switching from one controller to another. In hybrid 

automata, continuous states are converted to discrete states based on pre-defined rules. In 

this case the discrete states correspond to particular failure modes of the system. These 
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failure modes (not to be confused with structural modes) are also referred to as finite-

states.  

Hybrid automata consist of components like variables, control graphs, initial flow 

conditions, jump conditions, and events. The set of all these components constitute the 

existence of hybrid modeling. The manner in which hybrid automata are executed results 

in transition from continuous dynamic evolution to discrete changes in the system 

dynamics. This kind of modeling is required to facilitate the representation of abrupt 

failures (actuator and sensor failures) caused by external or exogenous actions and by 

switching controllers. In general discrete transitions can be triggered by internal system 

events (fault detection) or, external trigger events. These systems have been simulated 

using state-charts. State-charts allow multilevel decomposition, concurrency, 

encapsulation, and broadcast communication mechanisms. Thus, state-charts are modeled 

using Matlab/Simulink/Stateflow environment for visual modeling and simulation of 

hybrid systems that have continuous signals mixed with discrete and event driven 

dynamics. Various other software tools exist that are used to model hybrid systems 

(Hytech, 1997). 

 

Formulation of FDI Filters 

 The primary contribution of this work is to detect actuator faults and then to switch 

among pre-designed, optimal controllers to maintain (as well as possible) system 

performance and stability.  Actuator faults are detected and isolated with Fault Detection 

and Isolation (FDI) filters based on either parity relations (Gertler, 1999) or Beard-Jones 

filters (Beard, 1971). In both methods, the measured behavior of the system is compared 
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with that of a system estimator referred to as a fault observer. Behavior deviations 

between the actual system and the observer indicate the presence of faults. These 

deviations are called primary residuals, which in turn are subjected to a linear 

transformation, to obtain the desired fault-detection and isolation properties. The linear 

transformation is termed a residual generator.  The theory behind each approach is 

discussed below. 

 

Parity Relations 

 For convenience (and consistency with Gertler, 1999), the plant is described here 

using transfer functions rather than the state-space relationships such that 

  

! 

y(t) = M(q)u(t) + S(q)p(t)        (2-6) 

where 

! 

M(q) and 

! 

S(q) are rational transfer function matrices. The vector 

! 

u(t) consists of 

control inputs and 

! 

p(t) is composed of additive faults. In detail, 

! 

M(q) is the transfer 

function between the control input and sensor outputs, 

! 

S(q) is the transfer function 

between the faults, 

! 

p(t), and the sensor outputs. The parity relation approach defines the 

residual generator as follows 

  

! 

r(t) =W (q)[y(t) "M(q)u(t)]        (2-7) 

where 

! 

r(t) is the vector of residuals, and 

! 

W (q) is called the residual generator. The 

residual generator operates on the error between the actual system output, y(t), and the 

predicted system output.  The objective is to design 

! 

W (q) so that the residual vector has a 

desirable response to errors resulting from system faults.  This goal is achieved by 

solving the equation  

  

! 

W (q)S(q) = Z(q)          (2-8) 
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where 

! 

Z(q) is the desired residual generator dynamics. Solving Equation (2-8) for 

! 

W (q) 

means that the residual generator will equal the inverse of the fault transfer function times 

the desired dynamics of the residual generator. The desired response used in this 

investigation was a first order that is "slow" relative to the plant.  Such a response would 

ensure that the fault generator would not respond to plant noise and that it would damp 

out oscillations in the residual preventing erratic switching.  Further detail on the theory 

and implementation of parity relation can be found in (Gertler, 1997). 

 

Beard-Jones Filter 

 The Beard-Jones detection filter approach has received significant attention among 

due to its unique properties. These filters are, essentially, traditional state observers 

whose free parameters are assigned such that the output (residual) vector has certain 

directional properties that can be associated with a set of faults (Beard, 1971). This 

detection filter is one of the most widely known diagnostic observers to be developed. 

The most significant aspect of the Beard-Jones approach is to identify the fault in a plant, 

which in turn is independent of the mode of the fault as long as the fault alters the plant to 

a certain degree. 

 The Beard-Jones detection filter has been modified for various problems. And, new 

approaches are developed to suit complex cases. Various methods were subsequently 

analyzed and interpreted as an eigenstructure assignment (Kim and Park, 1999 & 2003; 

Park, 1991; Park and Rizzoni, 1994; White, 1985 &1987). The open loop dynamic model 

in the absence of failures is given in Equation (2-3). The detection filter in this case is 

assumed to be of the form    
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! 

x
^
•

= A x
"

+ Bu + D(y #C x
"

)         (2-9) 

where 

! 

x

^

 is the state estimate and 

! 

D is the detection gain. The state error is defined as 

  

! 

" =
#
x $ x

%
           (2-10) 

Then D is chosen such that the output error 

  

! 

"
#

= y #C x
$

           (2-11) 

has restricted directional properties in the presence of a failure. Therefore, observer 

dynamics, in the absence of failures, becomes 

  

! 

"
•

=G"            (2-12) 

where 

! 

G is defined as  

  

! 

G=
"

A #DC           (2-13)  

 The presence of an additive fault (i.e. actuator failure) in the system can be modeled 

by adding an additional input term to the system shown in Equation (2-3) to produce a 

new system equation 

  

! 

x
•

= Ax + Bu + fiµi          (2-14) 

where 

! 

fi  is a nx1 design failure direction associated with the i
th

 actuator failure and 

! 

µ
i
 is 

time-varying scalar component of the fault which may be function of 

! 

x(t)  or 

! 

u(t). The 

information regarding 

! 

µ
i
 is essential to differentiate plant failures modeled by the same 

design failure direction. Thus, for actuator failures, the error is 

  

! 

"
•

=G" + f iµi

" = C"

          (2-15) 

 Finally, the detection gain is determined using certain methodologies developed by 
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(Kim, 1999, 2003), in which 

! 

"
#

 is proportional to 

! 

Cfi  in response to failure corresponding 

to that modeled by the direction 

! 

fi . Also, the theory behind the sensor failure is similar to 

the actuator failure and, can be found in (Kim and Park, 1999 & 2003; Park, 1991; Park 

and Rizzoni, 1994; Rizzoni and Min, 1989; White, 1985 &1987). 

 

Fault-Tolerant Control 

 In general, fault-tolerant control is the process of detecting failures (in this case 

actuator failures) and appropriately switching compensators in order to maintain 

performance. This process is shown schematically in Figure 2-3.  In both cases a 

compensators are designed for each of the various fault case scenarios and also for the 

nominal case (no fault). This set of compensators is called the controller library. 

Similarly, fault observers were designed based on the closed loop system for each of the 

fault case scenarios.  This set of observers is referred to as the observer library. The 

hybrid automata selects the appropriate controller and observer from the libraries based 

on the fault mode detected by the FDI’s.  

 Results are presented in this section for fault-tolerant control implementations using 

either parity relation or Beard-Jones based fault observers.  The system objective is to 

minimize the vibration amplitude of a beam under the potential for actuator failures. The 

results presented will demonstrate the effectiveness of each approach and identify the 

relative strengths and weaknesses of the different methods. 
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     Figure 2-3: Hybrid model for parity FDI   

  

Fault-Tolerant Control with Parity Relations 

 In this section results are shown for simulations of the hybrid system shown in 

Figure 2-3 and employing parity relation based FDI.  Upon simulation start-up the system 

is operating under nominal conditions making use of a 3-input/ 3-output compensator. A 

fault is simulated by injecting a non-zero input into the system fault input (i.e. making 

! 

p(t) non-zero). While the approach can detect any form of 

! 

p(t), unit step functions are 

used for all faults in this work.  Furthermore, while this approach can accommodate any 

combination of sensor and actuator failures, we have restricted this investigation to 3 

possible fault case scenarios: fault case 1 corresponds to a fault in actuator 1; fault case 2 

corresponds to fault in actuator 2; and fault case 3 is a fault in both actuators 1 and 2 
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simultaneously. 

 

 

      Figure 2-4: Failure Modes 

 

 When a fault is introduced the physical system response will deviate from the 

observer estimate. This deviation is detected by the FDI filter resulting in a non-zero 

residual output. The continuous residual output vector is then converted into a discrete 

residual vector. The discrete residual vector has 3 elements, one for each fault case. If the 

FDI residual is greater than a minimum threshold, indicating a fault, then the 

corresponding discrete residual vector element is set to 1.  Otherwise it is set to zero.  

This discrete fault vector is then fed to the automata switch.  The automata, shown in the 

state chart of Figure 2-4, switches based on the values in the discrete residual vector. 

There are four possible automata states; one for each fault case scenarios such that   
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        (2-16) 

  

   Figure 2-5: Time history explaining the concept of threshold 

 

 These transitions encompass all possible failure scenarios; i.e. going from nominal 

to failure case 1; going from failure case 1 to failure case 3; going from failure case 3 to 

failure case 2; etc.  The results of a specific simulation are shown in Figure 2-5, which 

shows the time history of the fault,

! 

p(t); the continuous residual vector,

! 

r(t); the discrete 

residual vector; and finally the fault modes. The fault occurs at a time of one second in 
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the first actuator. The difference between the measured plant response and the observer 

output is input to the residual generator, which creates the continuous residual second 

plot of Figure 2-5. When the desired response reaches a threshold value, a fault is deemed 

to have occurred and the discrete residual vector is changed appropriately. This results in 

a change in the fault mode. Due to the use of a threshold in converting the residual from 

continuous to discrete, a time delay is introduced between the actual fault occurrences 

and switching of the finite-states.  This time delay helps to ensure that system noise will 

not produce false positives in the fault detection process. 

 Note that when a switch occurs the system will experience some transient behavior.  

However this transient behavior is small in magnitude and brief in duration compared to 

the disturbance.  Once steady state has been reached, the response of the system will be 

that predicted in Figure 2-2 for the appropriate fault mode. A result for a more complex 

fault scenario is shown in Figure 2-6.  In this case all four fault modes occur at some time 

while faults in actuators 1 and 2 turn on and off.  From the subplot 1 in Figure 6, actuator 

1 and 2 have failed between zero and 10 seconds i.e. fault case scenario 3. Between 15 

and 20 seconds, the second actuator malfunction has been rectified, which means that at 

that instant of time the finite-state is in fault case scenario 1. Between 25 and 30 seconds 

the first actuator malfunction has been rectified, which means that the finite-state is in the 

no fault case scenario. Note that the fault mode tracks the actual fault condition very well.  

Furthermore, it has been demonstrated (although not proven) that the system is stable 

when switching between fault case scenarios at a rate that is "slower" than the overall 

system dynamics. When fault occurrences are faster than the plant dynamics there is a 

potential for instability.  
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Figure 2-6: Time history of fault inputs, desired response, residual vector, and fault 

modes 

 

 

 

Fault-Tolerant Control with Beard-Jones Filters 

 Beard-Jones filters are used in exactly the same manner as the parity filters of the 

previous section. One of the main features of the Beard-Jones filter is that it is possible to 

use a single filter to detect all possible faults. The implementation of the detection is 

based on various assumptions and condition, which can be found in (Kim, 1999, 2003; 

Park, 1991; Park and Rizzoni, 1994; White, 1985; White, 1987). The physical system 

used here satisfied all the conditions necessary and essential to design a Beard-Jones 

filter. In the current research work it was possible to design a single detection filter for all 

the possible fault case scenarios. Therefore, the fault tolerant control system depicted in 
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Figure 2-7 is identical to that of Figure 2-3, except that it does not require an observer 

library.   

 

 

    Figure 2-7: Hybrid model for Beard-Jones FDI 

 

 Again, upon simulation start-up the system is operating under nominal conditions. 

A fault input is simulated by introducing a non-zero input into the system as described in 

the above section. Similar to the parity approach, this approach can accommodate any 

combination of sensor and actuator failures, but is restricted to actuator failures here. The 

results of a specific simulation are shown in Figure 2-8, which shows the time history of 

the fault; the continuous residual vector; the discrete residual vector; and the fault mode. 

The fault occurs at a time of two seconds. The difference between the measured plant 
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response and the detection filter is input fault to the fault isolation to get the residual 

vector shown in the second plot of Figure 2-8.  

 

 

   Figure 2-8: Time history explaining the concept of threshold 

 

 When the continuous residual reaches a threshold value a fault is deemed to have 

occurred. Hence, there is a switch in the failure modes in the finite-state machine. The 

response of the fault observer was chosen such that the residual dynamics were "slow" 

compared to the system (similar to the parity relation case). Due to this "slow" behavior, 

a time delay was created between the fault occurrences and switching of the finite-states 

using the values of residual vector, as shown in the Figures 2-4 and 2-8. This time delay 
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helps to ensure that system noise will not produce false positives in the fault detection 

process. 

 

Figure 2-9: Time history of fault inputs, desired response, residual vector, and fault 

modes 
 

 

 The case were multiple faults occur at various times is shown in Figure 2-9.  From 

the subplot 1 in Figure 2-6, actuator 1 and 2 have failed between zero and 10 seconds i.e. 

fault case scenario 3. At exactly 10 seconds, the first actuator malfunction has been 

rectified, which means that at that instant of time the finite-state is in fault case scenario 

1. Between 18 and 20 seconds, the first actuator malfunction has been occurred and 

rectified, which means that the finite-state is in fault case scenario 3 and fault case 
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scenario 1. Thus, in this work it has been established that the system is stable from 

switching between fault case scenarios and, also from fault case scenarios to the nominal 

case.  

 

Comparisons Under Non-Ideal Circumstances 

 One of the key features in this work is to compare the pros and cons of the two 

types of FDI filters used for controller switching. Previously discussed results have 

demonstrated that both filter types are good at isolating faults under ideal circumstances. 

However, their ability to perform under less than ideal circumstances has yet to be 

established. To this end, simulations were conducted under two cases: 1) when noise was 

added to the sensor signals prior to being provided to the FDI filters and 2) when the 

plant model deviates from the actual plant.  

 Figure 2-10 shows results from simulations, which included noise, added to the 

sensors prior to being supplied to the FDI filters.  In this case a fault was introduced to 

actuator 1 after 1 second and actuator 2 after 2 seconds.  Figure 10a shows the continuous 

residuals from Beard-Jones filters without noise and with noise having an RMS signal to 

noise ration of 99.5 percent. Note that even with very large noise levels the residual still 

tracks the faults reasonably well. This could be improved by "slowing" the response of 

the Beard-Jones filter thus reducing the high frequency noise transmission. Figure 10b 

shows the same results for the parity relation FDI filters.  Again, the filters continue to 

successfully track the fault with a high noise level. Thus, it can be concluded that both 

filters are robust to sensor noise. 
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Figure 2-10:  a) Time history of continuous residual for FDI with Beard-Jones filter 

 

 
Figure 2-10:  b) Time history of continuous residual for FDI with parity relations 

 The second non-ideal situation is when the plant model does not exactly match the  
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actual plant.  Simulations were run using the same FDI filters as previously used, but the 

natural frequency of one beam mode was changed by 50 percent (thus resulting in a 

change in one entry in the system A matrix).  Results from these simulations are shown in 

Figure 2-11.  In this case a failure in actuator 1 occurred after 1 second.  Note that the 

parity relation filter simultaneously indicates a fault in actuator 2 shortly after the actual 

failure.  However, the Beard-Jones filter shows only a slight deviation in the actuator 2 

residual.  Clearly, the parity relation based FDI filter is very sensitive to model 

uncertainty. Thus, FDI with parity is not robust to model mismatching than the Beard-

Jones filter. These results are schematically shown in Figure 2-11.  

 

 
 

Figure 2-11: Time history of continuous residual for FDI for model mismatching 
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Stability of Fault-Tolerant Control 

 The issue of stability is critical when switching occurs between observers and 

controllers. It has been shown that the vibration of the physical system can be suppressed 

using different controllers under various fault case scenarios. But to understand the 

conditions under which the system might be unstable is an open problem (Lin and 

Antsaklis, 2005). The key area for the open problem is during the threshold period, just 

before switching. It has been concluded that for general cases of higher order systems, 

and more than two fault modes, the existence of a common quadratic Lyapunov function 

for a switched systems is still lacking. Additional methods (Liberzon, Hespanha, and 

Morse, 1999; Liberzon and Tempo, 2003; Lin and Antsaklis, 2004) are proposed to show 

the stability of switching for linear systems can be accomplished under certain 

conditions, which in turn remains an area of interest for many researchers.  However, the 

stability of a multiple-fault system cannot be proven. 

 

Conclusions 

 The primary goal of this work is to implement a FDI scheme for fault-tolerant 

vibration control reconfiguration. Simulations have been conducted on a simply 

supported beam, which demonstrate the ability of such a system to maintain performance 

and stability. The primary contribution of this work is the integration of active control 

with fault detection and hybrid system management. Also, in this work the concepts 

implemented for switching the compensators have been studied. In this work various 

filter design criteria have been carefully examined in order to achieve the concept of 

fault-tolerant control. Furthermore, comparison of the FDI filters is conducted. This study 
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helped in choosing the appropriate filter for various experimental studies. Finally, the 

stability associated with switching from no fault case to fault case scenarios and back and 

forth has been studied. 
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Abstract 

The objective of this work is to demonstrate a fault-tolerant vibration control 

system applicable in higher order systems. System failures are detected and isolated by 

Beard-Jones (BJ) filters. When such a failure is detected, the Fault Detection and 

Isolation (FDI) filter output is supplied to a hybrid automaton that switches the system to 

a new controller specifically designed for the faulty system condition. The closed loop 

system, therefore, maintains optimal performance and stability under failure conditions. 

The two most significant contributions of this work are: 1) the demonstration of a fault 
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adaptive control system applicable to higher order systems, and 2) a new methodology 

for designing BJ filters for high order systems, and systems with feed-through dynamics 

(i.e. a non-zero   

! 

D matrix). The capabilities of such a system are demonstrated through 

simulations based on analytical and experimentally obtained system models. The results 

provide a benchmark for the design of detection filters for use in fault-tolerant vibration 

control. 

Keywords: Beard-Jones filter, Switching, Vibration control, Hybrid automata, System 

identification. 

 

Introduction 

A key feature for long-term safety in critical systems is the implementation of 

Fault Detection and Isolation (FDI) for fault-tolerant control. Many of these systems are 

large-scale, so it is important that fault-tolerant control systems (and the associated FDI 

filters) be able to accommodate their higher-order dynamic models. One example of such 

an application is the control of vibrations in structural beams, plates and shells. Active 

vibration control has been studied for many years. The goal of active vibration control is 

to employ sensors and actuators (integrated into a structure) to reduce vibration 

amplitudes. Much work has been done on the development of feed-forward, feedback and 

adaptive algorithms [6]. Complex multivariable control system architectures have also 

been developed in order to handle complicated controller designs. These various methods 

have paved the way for numerous new concepts associated with distributed and 

decentralized vibration control [22]. While some work has been done in the detection of 
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faults in vibration control systems [26], no work has yet been done in fault-tolerant 

vibration control. 

Most fault detection work to date has been concern with additive faults (i.e. 

actuator and sensor failures), and relatively low order systems [1,4,11]. These studies can 

be widely classified into four different categories [1,4,11,4,27]: 1. Algorithms based on 

kalman filters, 2. Parity space techniques, 3. Diagnostic observers and, 4. Parameter 

estimation methods. It has been previously established that BJ type diagnostic observers 

offer several advantages in vibration control applications [2,3]. One of these advantages 

is that BJ filters utilize subspace concepts to associate the residual with the system faults, 

thereby permitting simultaneous FDI [12,13,14,15]. 

However, two limitations to BJ filters limit their applicability to higher order 

systems. One limitation is that, when using currently available techniques, it is very 

difficult to obtain a BJ observer design that is stable for high order systems. The second 

limitation is that there are no existing design techniques that can accommodate a model 

with feed-through dynamics (i.e. a state space model with non-zero   

! 

D matrix). These 

limitations are particularly challenging when the application is active vibration control. 

This is because the systems of interest (beams, plates or shells) require very large order 

models to ensure accuracy. Secondly, the models are frequently obtained by system 

identification or model order reduction (or both), which frequently result in feed-through 

dynamics. 

Therefore, the primary objectives are to: 1) present new methods for designing BJ 

filters applicable for high order systems with feed-through dynamics and, 2) demonstrate 

the use of such filters in a fault-tolerant vibration control application. The system 
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considered here consists of a simply supported beam model, which is under closed loop 

vibration control. System actuators are allowed to fail, and this failure is detected by the 

BJ filter. The BJ filter output residual is sent to a hybrid automaton, which in turn 

determines the specific fault mode, and then switches to the appropriate feedback 

controller for the system condition. 

The discussion begins with a description of the vibrating beam theoretical model, 

an alternative system model derived from an experimental platform, and the feedback 

control design. This is followed by a summary of BJ FDI theory along with a description 

of the new BJ design methods for feed-through dynamics and high order systems. Next, 

the simulation of the complete hybrid system is described. Finally, results that 

demonstrate the effectiveness of the BJ filters and the fault-tolerant control system are 

presented. 

 

System Modeling and Compensator Design 

 Two types of plant models are used in this investigation: theoretical beam models 

and a model based on system identification of an experimental setup. Both of these 

structural models are described in this section along with the feedback compensator 

design method. 

 

Theoretical Model 

 The plant under consideration is a simply supported beam subject to a random 

disturbance. The beam is equipped with three piezoelectric transducers that act 

simultaneously as actuators and sensors [30]. The modeling technique follows that 
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presented by Hagwood et al. [9], which uses a Rayleigh-Ritz technique to create the 

equations of motion for the full electromechanical system. This representation includes 

the mass and stiffness contributions of the piezoelectric transducers as well as the 

dynamics of the transducers themselves. The solution assumes that the structural 

displacement can be expressed as summation of orthogonal function of the following 

form 

  

! 

w(x,t) = "n (x)qn (t) = sin(
n#x
a

)qn (t)
n=1

N
$

n=1

N
$      (3-1) 

where 

! 

w(x, t)  is beam displacement, 

! 

"
n

 is n
th

 mode shape, and 

! 

q
n
(t) is the generalized 

coordinate of the n
th

 mode. The result is a set of 

! 

N coupled ordinary differential 

equations of the form 

  

! 

[M
p

+ M
t
]{˙ ̇ q (t)} + [K

p
+ K

t
]{q(t)} = [Qd(t)] + ["]{u(t)}  (3-2) 

where 

! 

M
p

 and 

! 

M
t
 are the mass matrices for the beam and piezoceramic transducers 

respectively, similarly 

! 

K
p

 and 

! 

K
t
 are the stiffness matrices for the beam and 

piezoceramic transducers respectively, 

! 

q(t)  is a vector of generalized coordinates 

! 

q
n

, 

! 

Q
d
(t)  is a vector of generalized disturbances, 

! 

" is the electromechanical coupling 

matrix which relates the applied control voltages, 

! 

u(t) to the modal equations. These 

equations can be cast in state variable form as follows [6]: 

  

! 

˙ x = Ax + Bu

y = Cx + Du
          (3-3) 
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where 

! 

x  is the state vector containing the generalized coordinates, 

! 

q
n
(t) and their 

derivatives (

! 

x = {q  ˙ q }
T ), 

! 

u is a vector of control and disturbance inputs, and 

! 

y  is the 

output from each piezoceramic transducer. 

 

Experimental Model 

It is common in the applications of control system and observer design, to base 

the design upon a model that is obtained through experimental system identification. 

Such a model is obtained here in order to demonstrate its unique aspects and for 

comparison with theoretical models. A simply supported beam experiment was 

constructed for observer and controls investigations, as shown in Figure 3-1. The beam is 

clamped at the both ends, with grooves machined near both ends to approximate simply 

supported boundary conditions. The material properties used to develop the beam model 

are those for 2024-T4 aluminum shown in Table 3-1.  

 

 

Figure 3-1: Experimental set up for system identification 

 

This work focuses on the vibrations from 0-600Hz, which includes the first nine 

modes. These nine natural frequencies have been theoretically predicted to be: 6.5, 26.1, 

58.7, 104.3, 163.0, 234.7, 319.5, 417.3, and 528.2 Hz. System identification results 

discussed later show that the actual natural frequencies match the theoretical values very 
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well. The system was excited with broadband noise, and the input-output signals are 

collected. Band-limited white noise (0-600 Hz) was used as the disturbance to excite the 

beam, and the beam vibration was measured with PZT patches. The sensor signals were 

amplified and filtered with 4-pole Butterworth low-pass filters having a cut-off frequency 

of 600 Hz. The controller was implemented on a dSPACE DS1103 PPC board with 

AD/DA conversions. The control output was amplified by a 790A06 power amplifier 

from PZB Piezotronics, Inc. Further details on the set up, procedure and implementation 

can be found in [29].  

Lead Zirconate Titanate (PZT) patches were used as sensors and actuators. Since 

PZT materials have direct and inverse piezoelectric effect when an external load is 

applied, an electric charge is produced at the surface of the material. Similarly, when a 

voltage is applied to the material, a strain is induced within. Sensor and actuator patches 

were attached on opposite sides of the beam, and at the same locations. A band-limited 

voltage was applied to PZT1 in Figure 3-1 (left most transducer) as the disturbance, 

whose coordinate along the beam is 0.11m. Four collocated pairs of PZT patches, PZT2, 

PZT3, PZT6 and PZT8 in Figure 3-1, were used as control transducers, and their 

coordinates are 0.25m, 0.39m, 0.75m and 0.98m respectively. The size of each PZT patch 

is 0.055m by 0.027m. In order to obtain the most accurate system model from which 

controllers were designed a system identification approach was used. When the vibration 

displacements of the beam are small, a linear model can reasonably represent the system. 

Four sensors and four actuators were used for the control system resulting in sixteen 

transfer functions from the inputs to outputs. 
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Table 3-1: Properties of the physical system 

 Properties of the simply supported beam in SI units 

Plate thickness 0.003175 m 

Plate density 2770 kg/m
3 

Plate length 1.065 m 

Plate width 0.0508 m 

Plate modulus 73.1e9 Pa 

Modal damping ratio 0.05 

            

In addition, the path between disturbance and sensors was also identified. Band-

limited white noise was applied to each actuator and sensor data was collected from each 

sensor. This data was used to get the Auto-Regression with extra inputs model (ARX), 

shown in equation (3-4). 

  

! 

y(t) + a
1
y(t "1) +K+ a

n
y(t " n) = b

1
u(t "1) +K+ b

m
u(t "m)             (3-4) 

A batch least squares solution was used to find the desired ARX parameters, and a 

multi-input multi-output (MIMO) state space model was then derived from the ARX 

model [21]. In order to choose an appropriate system order and obtain the optimal system 

model, the frequency responses of all signal paths were measured and system 

identification was performed. The final order of the identified model was chosen to be 36, 

since it provided the best fit with the lowest order. In Figures 3-2a and 3-2b, the transfer 

functions measured directly from system identification data are depicted with solid lines, 

and the transfer functions derived from the corresponding state-space model were shown 
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with dotted lines. As shown, the state space model represents the beam dynamics very 

well, in both magnitude and phase of the system response.  

 

Figure 3-2a: Experimental and analytical frequency response from the disturbance to 

sensor 1 

 

The discrepancy at the low frequency range (0-20 Hz) is due to the effect of 

environmental noise on the response measurements.  All other system transfer functions 

compared similarly well. Furthermore, the frequency peaks of the identified model occur 

at 8.7, 29.3, 61.0, 105.9, 165.4, 235.8, 318.9, 413.3, and 515.4 Hz. These values compare 

very well with the theoretical values discussed earlier [29]. One unique aspect of this 

model, and one common to many experimentally derived models, is that the feed-through 

matrix, 

! 

D, is non-zero. This necessitates the development of a new technique for 

designing FDI filters, as discussed later. 



 52 

 

Figure 3-2a: Experimental & analytical frequency response from disturbance to sensor 4 

 

Compensator Design 

 The control approach used in this study is constant gain output feedback. While 

this is a very simple form of control, it has been demonstrated to be very effective for 

vibration control [5]. Furthermore, the fault-tolerant system presented here could easily 

accommodate other, more sophisticated, compensators.  

The control law implemented here is of the form 

! 

u = "Ky          (3-5) 

where 

! 

K  is the feedback gain matrix, 

! 

u is the control voltage and 

! 

y  is the output vector. 

The feedback gain matrix can be found by minimizing the cost function 

! 

J = x
T
C
T
WCx + u

T
Ru

" 
# $ 
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t
()  dt       (3-6) 
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where 

! 

J  is the cost, 

! 

x  is the system state vector, 

! 

C is the system output matrix,

! 

W is the 

sensor signal penalty, and 

! 

R is the control effort penalty [16]. The objective of each 

compensator is to minimize the sensor signal, which is related to vibration amplitude. 

This was accomplished by setting the performance penalty weight equal to the 

appropriate dimensional identity matrices multiplied by a constant. The constants are 

selected in order to achieve a control system performance that one could reasonably 

expect to obtain in a laboratory setting [5, 6, 30]. These values are held constant in all 

compensator designs. 

In this work, each possible fault leads to a different system configuration. When a 

particular actuator fails, it is removed from the feedback loop and only the remaining 

actuators are used for closed loop control. Therefore, several controllers are designed 

based on each possible fault case scenario. These compensators are maintained in a 

controller library that is accessed whenever the system fault states changes. Further 

details and implementation methodology for this approach can be found in [5,16]. 

    The four possible fault case scenarios are: 1) the nominal system with no fault, 

2) first actuator failure, 3) second actuator failure and, 4) first and second actuator 

failures. The performance of each of these controllers under steady state conditions is 

shown in Figure 3, which depicts the transfer function between the disturbance input and 

first sensor output. The uncontrolled transfer function is also shown in Figure 3-3. The 

best vibration attenuation is achieved when all the actuators are operational (no fault). As 

one would expect, when one actuator failed the control performance is degraded and, 

when two actuators failed the performance is the poorest. Furthermore, it can be 

concluded from Figure 3-3 that a failure of the second actuator has more impact on 
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control performance than failure of the first actuator. This is because the second actuator 

was able to observe more structural modes than actuator one. However, even when there 

are actuator failures, system performance and system stability are still maintained. On the 

other hand, if the nominal controller continued to operate with failed actuators, the 

performance would be suboptimal and might be even unstable. 

 
Figure 3-3: Transfer function for various fault case scenarios 
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BJ Detection Filter Theory and Design 

BJ filters are a special case of the traditional Luyenberg observer. The difference 

is that for a BJ filter, the “free” parameters of the observer feedback matrix are selected 

in such a way that the output residual has specific directional properties when specific 

faults occur. Therefore, the residual can be monitored to both detect a fault, and isolate 

the specific fault, which has occurred. The basic theory of BJ filters is summarized in this 

section. This is followed by the development of two modifications to existing feedback 

matrix design techniques. The first modification enables BJ filters to be designed for 

systems with feed-through dynamics while the second modification presents a gain 

matrix design suitable for high order systems. 

 

The Traditional BJ Filter 

 BJ detection filters are traditional observers designed in such that the output 

residual vector has specific directional properties that can be associated with specific 

faults [12,13,14,15,24,25,31,32]. Assuming we have a system model in the absence of 

failures, as given in Equation (3-3), the BJ filter is of the form 

  

! 

˙ ˆ x = Aˆ x + Bu + L(y "Cˆ x )         (3-7) 

where 

! 

ˆ x  is the state estimate and 

! 

L is the detection gain matrix. The state error is as 

  

! 

" =
#

x $ ˆ x            (3-8) 

Now the observer gain matrix 

! 

L is chosen in such a way that the output error  

  

! 

" = y #Cˆ x            (3-9) 

has restricted directional properties in the presence of a failure. Therefore, when there are 

no faults present, the closed loop dynamics become 
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! 

˙ " =G"            (3-10) 

where 

! 

G  is defined as 

  

! 

G =
"

A# LC            (3-11) 

 The presence of an additive fault, especially an actuator fault, can be modeled by 

adding a term to the open loop dynamic system shown in Equation (3-3) such that 

  

! 

˙ x = Ax + Bu + f
i
µ
i
         (3-12) 

where 

! 

f
i
 is a nx1 design failure direction associated with the i

th
 actuator failure and 

! 

µ
i
 is 

a time-varying scalar which may be function of 

! 

x(t) or 

! 

u(t) . Thus, the system output 

error in the presence of faults becomes 

  

! 

˙ " =G" + f
i
µ
i

" =C"
          (3-13) 

 The detection gain is designed in such a way that the directionality of the residual, 

! 

" , corresponds to specific faults. Design procedures are presented by Beard [1] and Jones 

[11], and more recently by Kim et al. [12,13,14,15]. In this case, 

! 

"  is proportional to 

! 

Cf
i
 

in response to a failure corresponding to the direction 

! 

f
i
. It should be noted that the 

sensor failure is similar to the actuator failure as can be found in 

[12,13,14,15,24,25,26,31,32]. 

 

Design of BJ Filter with Feed-Through Dynamics 

 It is not uncommon to encounter systems with feed-through dynamics (i.e. 

! 

D " 0), 

particularly when the working model results from model order reduction or system 

identification. However, there is as yet no way of dealing with this situation when 

designing BJ filters. This is because a potential actuator failure has a direct effect on the 

output of the system (which in turn can be interpreted to be a sensor failure). In order to 
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avoid the confusion and isolate the actuator failure, a new BJ filter design method is 

presented for this particular case. 

Consider a system similar to Equation (3-3), but with a non-zero 

! 

D matrix. In 

addition to this consider a failure in actuator one. This particular case can be described 

  

! 

˙ x = Ax + Bu + b1"u1

y = Cx + Du + d1"u1

         (3-14) 

where 

! 

b
1
 and 

! 

d
1
 are the first column vectors of 

! 

B and 

! 

D respectively, and 

! 

"u
1
 represents 

the deviation of the first input caused by the failure in the actuator one. In order to 

develop a BJ filter it is assumed that 

! 

"u
1
 behaves according to first order dynamics such 

that 

  

! 

d"u
1

dt
=#"u

1
+$          (3-15) 

where 

! 

"  and 

! 

" are constants. If the BJ theory fault is considered to be 

! 

µ = "u
1
, then 

Equations (3-14) and (3-15) can be combined in to a new state-space form   

  

! 
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       (3-16) 

 Now, the usual BJ detection design outlined previously can be used on the 

appended system of Equation (3-16). It is possible that the appended system of Equation 

(3-16) may not meet all the requirements necessary to implement a BJ filter (i.e. 

observabilty and mutual detectability). In such a case other means must be employed to 

design or implement fault detection filters. 
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Design of Detection Gain Matrix 

There are several gain selection methods available that work well for low order 

systems [1,11,12,13,14,15]. However, when the system order is large (greater than 10 or 

so), it is very difficult to use these methods and achieve a stable closed-loop detection 

filter. 

In order to overcome this difficulty an unstable detection gain matrix is created 

using the invariant zero approach, and then modified to ensure a stable result. In most 

physical the detection orders are equal to one, which means that, for a given fault vector 

! 

f , the triplet (A, 

! 

f , C) has no invariant zero [12,13,14,15]. In this case, the invariant zero 

approach yields a detection gain matrix 

! 

L that is given by 

  

! 

L = (AF "F#)(CF)
*         (3-17) 

where 

! 

"  is a diagonal matrix whose elements are given as the eigenvalues associated 

with the detection space of 

! 

F  and * indicates pseudo-inverse. Next, the result of equation 

(3-17) is modified to ensure a stable result according to the Equation (3-18) 

  

! 

" L = L + E(I# (CF)(CF)
*        (3-18) 

If the observer gain 

! 

" L  is applied to error state Equation (3-10) then, 

  

! 

G = (A " # L C) = (A "LC) "E(I" (CF)(CF)
*
)C    (3-19) 

Now, if we define 

! 

A
f

=A "LC and 

! 

Cf = [I" (CF)(CF)
*
]C , then 

! 

G =A
f
"EC

f
 and the 

dual of 

! 

G  is 

! 

(Af

T
"Cf

T
E
T
) . One will note that the definition of 

! 

G  is equivalent to the 

LQR control problem of finding an 

! 

E that stabilizes 

! 

(Af ,Cf )  and minimizes 

  

! 

J = z
T
Qz +mT

Rm+ 2zTNm[ ]"        (3-20) 

where 

! 

z and 

! 

m are the states and inputs associated with the new pair 

! 

(Af ,Cf ) . The 

weights 

! 

Q  and 

! 

R, can be altered to affect the closed-loop eigenvalues of the filter. It is 
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assumed 

! 

N = 0 in these calculations. Finally, once a suitable matrix 

! 

E is obtained the 

modified BJ filter gain matrix 

! 

" L  can be obtained from Equation (3-18). 

 

Hybrid System Simulation 

 Simulations of the fault-tolerant control system require a hybrid approach [10] due 

to the discrete switching between the compensators. This is accomplished by using a 

hybrid automaton to monitor the residual and execute controller switch. This 

methodology is shown in Figure 3-4. The hybrid model consists of the physical system or 

plant; a library of pre-designed controllers; the BJ filter; and the automata switch.  

 

    Figure 3-4: Hybrid model for Beard-Jones FDI 
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 A simulation consists of starting the system in the nominal state. A fault is 

simulated by injecting a non-zero input into the system. Due to the presence of fault, the 

physical system response deviates from that predicted by the BJ filter, resulting in a non-

zero residual output from the filter called the continuous residual. When the continuous 

residual exceeds a pre-set threshold values, the corresponding entry in the discrete 

residual vector is set to one. If the continuous residual value falls below the threshold, the 

discrete vector is set to zero. So, the discrete residual vector can take one of the following 

forms 

       (3-21) 

    This discrete residual vector is supplied to the automaton switch, which in turn selects 

the appropriate controller based on the fault case. The automaton is capable of detecting 

and switching between any of the four fault cases. One of the key features in the BJ filter 

is that it is able to detect multiple faults with a single filter; referred to as mutual 

detectability. Therefore, a single BJ filter is used to observe the system in any of the four 

fault modes. Not all systems are mutually detectable, however in systems where it is not; 

multiple BJ filters are designed and operated in parallel. 

 

Results 

In order to establish the capabilities of a fault-tolerant control system under 

various conditions, four different cases are considered and simulated, as described in the 

previous section. These cases are: 1) a high order plant with a full order BJ filter, 2) a 
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high-order plant with a truncated BJ filter, 3) a reduced-order plant with a reduced-order 

BJ filter, and 4) an experimentally obtained high order plant with a full order BJ filter. 

The necessary condition to study these cases is explained in detail in the following 

sections.  

 

High Order Plant with Full Order BJ Filter 

Many of the physical systems in active vibration control are continuous (i.e. 

beams, plates and shells) and, therefore require higher order models for more accurate 

representation. The first case considered here is modeled using 40 states (i.e. modes = 20 

in Equation (3-1)).  The BJ filter and feedback compensators are designed based on this 

40
th

 order model. One of the main difficulties in designing the BJ filter of this order is to 

ensure that the large number of closed-loop eigenvalues lie the left-hand plane (LHP). 

This is achieved by using the LQR idea as described in previous section to design the 

detection filter gains.  

Simulation results are shown in Figure 3-5 for fault-tolerant control of such a 

system. Figure 3-5 shows time histories of (a) the fault inputs, (b) the output from sensor 

one, (c) the continuous residual, and (d) the fault mode. Note that faults occur in actuator 

one 1 at 0.2 and actuator 2 at 0.4 seconds respectively. The continuous residual rises 

quickly to a steady state value when the fault occurs. Once the continuous residual 

crosses the pre-defined threshold a fault is deemed to have occurred and the fault mode 

(which began in mode one or no fault case) changes to mode two and the appropriate 

controller is selected from the controller library. When the controller switch occurs a 

transient is noted in the sensor but these quickly decay over time and the system 
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performance returns to normal. The results of Figure 3-5 demonstrate the ability of such a 

fault-tolerant control system to work well in a vibration control application. However, 

one key aspect of these systems is that they typically have dynamics, which are not 

included in the plant model. This case is considered in the following section.  

 

Figure 3-5: Time history of fault inputs, desired response, fault modes, and 

continuous residual for 20 modes theoretical model 

 

 

High Order Plant with Truncated BJ Filter 

Since the continuous systems (such as beams, plates and shells) theoretically 

possess an infinite number of modes, it is common to develop observer and controllers 

based on the truncated system models. To demonstrate the effectiveness of BJ filters and 
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fault-tolerant control in this case a theoretical systems model was created with six states 

(i.e. modes = 3 in Equation (3-1)). A BJ filter and a controller library were designed 

based on this sixth order system. Furthermore, the BJ filter was designed using the 

invariant zeros approach described in above section. However, simulations were run 

using a 40 state (20 mode) beam model. 

    Results of this simulation are shown in Figure 3-6, which shows the time histories 

of the fault, the continuous residuals, the fault modes, and a sensor signal. Since the 

threshold between continuous and discrete residual is user defined, a time delay is 

expected between the occurrence of failures and switching of the fault modes. This time 

delay helps in ensuring that system output error will not produce false positives in the 

detection process. In this particular case, since the plant has higher order dynamics than 

the BJ filter, it results in false positives. But the time delay (threshold period is user 

defined) takes care of the output error associated with the higher order dynamics. 

Therefore, Figure 3-6 upholds the justification of multiple faults and switching of 

controllers back and forth for this particular physical system. But in some analysis the 

threshold value might not be able to eradicate the false positives, and detect faults that are 

not present as shown in Figure 3-7. One of the prime reasons to design a BJ filter with a 

40
th

 order (the first case) is if the amplitudes of the false positives is grater than or equal 

to the threshold condition, then switching of the controllers occurs. Thus, even though 

there were no faults, the filter concurs that fault occurred. Therefore, it is important to 

study the first case in which the plant has 40
th

 order model and BJ filter design based on 

40
th

 order.  
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  Figure 3-6: Time history of fault inputs, desired response, fault modes, and continuous 

residual for 20 modes theoretical model (BJ filter design based on three modes theoretical 

model) 

  
 Figure 3-7: Time history explaining the limitation of 20 modes theoretical model 

(BJ filter design based on three modes theoretical model) due to the false positive 
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Experimental High Order Plant with High Order BJ Filter 

Most of the systems that are modeled experimentally, frequently encounters with 

feed-through dynamics. This particularly is common when the system model is developed 

from system identification methods. A method for designing BJ filter is discussed in 

above section. The system model is based on the beam experiment shown in Figure 3-1.  

 

Figure 3-8: Time history of fault inputs, desired response, fault modes, and continuous 

residual for 36
th
 order system (experimental model) with 

! 

D " 0  

 

The final model is a 36
th

 order, and the resulting BJ filter design is based on 37
th

 

order. Also, the LQR method is used to design the BJ filter feedback matrix to ensure that 

the closed-loop poles are in the LHP, as described in above section. The results of the 

simulation are shown in Figure 3-8. This figure explains the concept of multiple faults 
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and switching of controllers back and forth for this particular physical system. The 

convergence of the continuous residual depends of the value of 

! 

" . The computational 

time for simulation is far less when compared to the first case. This case helps to design 

the BJ filter for experimental validation of FDI for active vibration control. 

 

Comments on Stability 

 When there is switching between various controllers, the core issue that needs to be 

dealt with is the importance of stability for the linear systems. Figure 3 clearly 

established the fact the system is stable if it is individually operational. To assess the 

various conditions under which the system might be unstable is a vast area of research 

and also, an open problem [19,20]. The key area for the open problem is the threshold 

period; how the system behaves. It’s been concluded that for general cases of higher 

order systems and more than two fault modes, the existence of a common quadratic 

Lyapunov function for a switched systems is still lacking and an open problem. 

Additional methods [17,18,19] are proposed to show the stability of switching for linear 

systems (not higher order systems) can be accomplished under certain conditions, which 

in turn remains an area of interest for many researchers. 

 

Conclusions 

The main objective of this work is to implement the concept of FDI for active 

vibration control. In this work, a new method is proposed to design a BJ filter for certain 

case of higher order systems. Simulations are conducted for various orders of the physical 

systems. Also, the methodology to design the filter for various order systems is studied in 



 67 

detail. The primary contribution of this work is for fault-tolerant control using hybrid 

system management. This work was further extended on the experimental data associated 

with the system identification of the physical system. 
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CONTROL 
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Abstract 

In this paper Fault Detection and Isolation (FDI) method is integrated with active 

vibration control of a flexible structure. Beard-Jones (BJ) filter is chosen as the 

appropriate detection method for the application of active vibration control with the 

presence of multiple actuator failures. This paper investigates the difficulties in the 

implementation and limitations of the BJ filter for vibration control of a simply supported 
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beam. Furthermore, this paper provides a new design technique for the design of the 

detection filter in discrete-time. Experimental results are presented to show the 

effectiveness and limitations of the BJ filter. In this experiment, the beam vibration 

control is conducted for the structural modes under 600Hz. In addition, the results 

demonstrate the capability to conduct experiments for achieving fault-tolerant active 

vibration control for additive faults (actuator or sensor failures). 

 

Introduction 

An important criterion for the safety in dynamical systems is to incorporate the 

idea of Fault Detection and Isolation (FDI) in to the plant. Most of the development of 

FDI is inspired by large scale and complex systems that perform critical tasks. The idea 

behind FDI is to detect and isolate the kind of failure and compensate for the failure 

(fault-tolerant). Researchers developed new design techniques and concepts in the field of 

FDI in the early 1980s and mid 1990s [1,4,6]. These studies can be broadly classified in 

to different categories: a. Algorithms based on kalman filters b. Parity space techniques c. 

Diagnostic observers and, d. Parameter estimation methods. Advantages and limitations 

of various FDI methods mainly depend on the kind of the dynamical systems.  In area of 

active vibration control specifically for multiple actuator failures. parity space techniques 

and diagnostic observers are studied in detail [2,3]. Parity space techniques are limited to 

low order systems and corresponds to open-loop direction residual formation [3]. In 

addition to this, there is an instability factor associated with the inversion in the 

calculation of the residual using the parity space techniques. Therefore, diagnostic 

observer called the Beard-Jones (BJ) detection filter is used in this research work. The BJ 
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filter constitutes a technique for generating closed-loop residuals that have certain 

directional characteristics. The active vibration control on a simply supported beam is 

achieved by a closed-loop control system. 

Beard [1] detection filter mainly focuses on the determination of a cyclic basis 

representation for the closed-loop system in which the output error has certain directional 

properties. Beard adopted the matrix algebra techniques for the calculation of the 

detection gain matrix. Jones [6] extended the Beard’s work by using linear operators and 

vector space techniques. Later, Massoumnia [12] used geometric approach for the design 

of the detection gain matrix. Furthermore, Jones incorporated many failure directions for 

a single detection filter (multiple failures). Both the approaches and methodologies for 

designing the detection gain matrix are rather indirect and overly complicated, which are 

unfamiliar to the most engineers. In the mid 1980’s White and Speyer [17,18] proposed a 

spectral technique for the design of detection gain matrix by assigning the eigenvalues 

and eigenvectors directly. Therefore, the detection filter needs to be constructed inside 

and outside the detection space simultaneously, which is a limitation of this method. In 

order to avoid this problem, Kim and Park [7,8,9,10] proposed a methodology based on 

the invariant zero approach. 

The current invariant zero approach for the design of detection filter is mainly 

applicable to low order systems. This limitation is particularly challenging when the 

application is active vibration control. This is because the systems of interest (beams, 

plates and shells) require very large order models to ensure accuracy. Furthermore, the 

design of the detection gain matrix needs to be carried out in discrete-time for the real-

time analysis. A new procedure for the design of detection gain matrix in discrete-time is 
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proposed for large order systems. Therefore, the primary interest of this research work is 

to: a) study the new design technique and, b) demonstrate experimentally the use of such 

filters in active vibration control application. The discussion begins with the description 

of the experimental setup and followed by the new design technique. Finally, the 

experimental results that demonstrate the effectiveness of this method for multiple 

failures in active vibration control are presented. This work later is applied 

experimentally to conduct fault-tolerant active vibration control. 

  

Experimental Setup 

The instrumentation arrangement in our experimental setup is shown 

schematically in Figure 4-1. The physical system is a beam made of aluminum 2024-T4, 

and the physical parameters are listed in Table 4-1.  

Table 4-1 Properties of the flexible structure 

Plate thickness 0.003175 m 

Plate density 2770 kg/m3 

Plate length 1.065 m 

Plate width 0.0508 m 

Plate modulus 73.1e9 Pa 

Modal damping ratio 0.05 

 
The beam is clamped at both ends, with grooves machined near both ends to 

approximate the simply supported boundary condition. System identification results in 

our experiments showed that the beam’s dynamic responses are very close to a simply 

supported beam.  
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Figure 4-1. Experimental setup for FDI with multiple actuators/sensor pairs 

 

Lead Zirconate Titanate (PZT) transducers are attached along the beam acting as 

sensors and actuators, shown in Figure 4-2. The size of each PZT patch is 0.055m by 

0.027m, and patches are not evenly distributed along the beam. All sensors are on the 

same side of the beam, and all actuators are on the opposite side. The band-limited noise 

is applied to PZT1 (left most transducer, with the coordinate 0.11m) as the disturbance. 

Although the placements of the transducers will affect the control performance, the 

transducers were chosen randomly in our experiments for a general purpose. 

The instrumentation arrangement is shown schematically in Figure 4-2. Band-

limited white noise (0-600 Hz) is used as the disturbance to excite the beam, and the 

beam vibration is measured with PZT patches. The sensor signals are amplified and 

filtered with 4-pole Butterworth low-pass filters having a cut-off frequency of 600 Hz. 

The controller is implemented on a dSPACE DS1103 PPC board with AD/DA 

conversions. The control output is amplified by a 790A06 power amplifier from PZB 

Piezotronics, Inc. 
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System Identification 

As specified previously, the system model obtained from theoretical derivation 

matches the experimental result pretty well. However, since the performance of the 

controller design depends much on the accuracy of the system model, the dynamics of the 

beam was obtained with system identification technique.  

 

 

Figure 4-2. Schematic representation of the experimental setup for closed loop system 

 

Six sensors and six actuators are used for the control system, which results in 36 

transfer functions from the inputs to outputs. In addition, the path between disturbance 

and sensors is also identified. A band-limited white noise is applied to each actuator, and 

then all sensor and actuator data are collected to derive the Auto-Regression with extra 

inputs (ARX)  [11] model: 

!!  y(t) !a1y(t "1) !"!any(t " n) # b1u(t "1)!"! bmu(t "m)   (4-1) 

The ARX parameters are obtained using batch least squares solution, and then a 

multi-input multi-output (MIMO) state-space model is derived from the corresponding 

ARX model in the following form 
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x[n +1]# Ax[n]!Bu[n]
Y[n]= Cx[n]+ Du[n]       (4-2) 

The order of the system model in our experiment was chosen to be 36, and 

frequency responses of all signal paths match the experimental results really well. 

Experimental and analytical frequency responses of two signal paths are shown in figures 

4-3 and 4-4. In figure 4-3, the solid lines represent the transfer function from the 

disturbance to sensor 1 measured directly from system identification data, while the 

dotted lines represent the derived state-space model with 36 states.  

 

Figure 4-3. Experimental and analytical frequency responses from the disturbance to 
sensor 1 

 
 

It is cleared shown that the state-space model represents the beam dynamics very 

well, in both magnitude and phase of the system response. Similarly, the transfer function 

from the disturbance to sensor 4 also shows good match between experimental and 

analytical responses, as in figure 4-4. All other signal paths have similar results. Another 
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important characteristic of the control system is also shown in figures 4-3 and 4-4, which 

is the unique modal sensitivity for different sensors. The modal sensitivity difference is 

because of the locations of different sensors, which serves as the criteria when 

implementing modal grouping strategy later. 

 

Figure 4-4. Experimental and analytical frequency responses from the disturbance to 
sensor 4 

 

 

BJ filter Theory and Design 

BJ filters are a special case of the traditional Luyenberg observer. The difference 

is that for a BJ filter, the “free” parameters of the observer feedback matrix are selected 

in such a way that the output residual has specific directional properties when specific 

faults occur. Therefore, the residual can be monitored to both detect a fault, and isolate 

the specific fault, which has occurred. The basic theory of BJ filters is summarized in this 

section. This is followed by the development of two modifications to existing feedback 
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matrix design techniques. The first modification enables BJ filters to be designed for 

systems with feed-through dynamics while the second modification presents a gain 

matrix design suitable for high order systems. 

BJ detection filters are traditional observers designed in such that the output 

residual vector has specific directional properties that can be associated with specific 

faults [7,8,9,10,13,14,15,17,18]. Assuming we have a system model in the absence of 

failures, the BJ filter is of the form     

  ˆ x [n +1]# Aˆ x [n]!Bu[n]!L(y[n]"C ˆ x [n])    (4-3) 

where ˆ x  is the state estimate and L is the detection gain matrix. The state error is as 

  $[n]#
%

x[n]" ˆ x [n]       (4-4) 

Now the observer gain matrix L is chosen in such a way that the output error  

  $&[n]# y[n]"C ˆ x [n]       (4-5) 

has restricted directional properties in the presence of a failure. Therefore, when there are 

no faults present, the closed loop dynamics become 

  $[n!1]#G$[n]        (4-6) 

where G  is defined as 

  G #
%

A"LC        (4-7) 

The presence of an additive fault, especially an actuator fault, can be modeled by 

adding a term to the open loop dynamic system shown in Equation (4-2) such that 

  x[n +1]# Ax[n]!Bu[n]! fi'i [n]     (4-8) 
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where fi  is a nx1 design failure direction associated with the ith actuator failure and ' i is 

a time-varying scalar which may be function of x(t)  or u(t) . Thus, the system output error 

in the presence of faults becomes 

  

$[n!1]#G$[n]! fi'i [n]
$&[n]#C$[n]       (4-9) 

The detection gain is designed in such a way that the directionality of the residual, 

$&, corresponds to specific faults. Design procedures are presented by Beard [1] and Jones 

[6], and more recently by Kim et al. [7,8,9,10]. In this case, $& is proportional to Cfi  in 

response to a failure corresponding to the direction fi . It should be noted that the sensor 

failure is similar to the actuator failure as can be found in [7,8,9,10,13,14,15,16]. 

There are several gain selection methods available that work well for low order 

systems [7,8,9,10,13,14,15,17,18]. However, when the system order is large (greater than 

10 or so), it is very difficult to use these methods and achieve a stable closed-loop 

detection filter.  

In order to overcome this difficulty an unstable detection gain matrix is created 

using the invariant zero approach, and then modified to ensure a stable result. In most 

physical the detection orders are equal to one, which means that, for a given fault vector 

f , the triplet (A, f , C) has no invariant zero [7,8,9,10]. In this case, the invariant zero 

approach yields a detection gain matrix L that is given by 

  L # (AF"F%)(CF)*       (4-10) 

where %  is a diagonal matrix whose elements are given as the eigenvalues associated 

with the detection space of F  and * indicates pseudo-inverse. Next, the result of equation 

(10) is modified to ensure a stable result according to the equation (4-11) 
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  (&L # L!E(I" (CF)(CF)*      (4-11) 

If the observer gain (&L  is applied to error state equation then, 

  G = (A" (&L C)# (A"LC)"E(I" (CF)(CF)*)C    (4-12) 

Now, if we define Af # A"LC and Cf # [I" (CF)(CF)*]C, then G # Af "ECf  and the 

dual of G is (Af
T "Cf

TET). One will note that the definition of G  is equivalent to the 

LQR control problem of finding an E that stabilizes (Af ,Cf ) and minimizes 

  
J # z[n]TQz[n]!m[n]TRm[n]! 2z[n]TNm[n])&

*&+&
,&
-&.&

n #1

/
0

   (4-13) 

where z  and m are the states and inputs associated with the new pair (Af ,Cf ) . The 

weights Q and R , can be altered to affect the closed-loop eigenvalues of the filter. It is 

assumed N # 0 in these calculations. Finally, once a suitable matrix E is obtained the 

modified BJ filter gain matrix (&L  can be obtained from Equation (11).  

 

Results 

In this section, the FDI implementation and its limitations are studied in detail to 

understand the significance of incorporating the FDI technique for active vibration 

control. The controller in this research work is based on H2 optimal theory. The H2 

optimal control is effective and robust at attenuating the structural vibrations of the beam. 

The first part of the results section provides a platform for the designing the BJ detection 

filter in discrete-time. Simulations results are provided to show the effectiveness of the 

detection filter design technique. The remaining section deal with the experimental 

results. 



 81

The system identification is based on six inputs and six outputs system. But in this 

research work we consider only three inputs and three outputs system. The locations of 

the actuator-sensor pairs are at 0.255 m, 0.535 m and 0.865 m. In order to validate the 

detection filter design technique simulations results are shown in Figure 4-5. 

 

Figure 4-5. Simulation results for actuator one and two failures without and with sensor 
noise 

 
 

In first subplot in Figure 4-1 at six seconds actuator one fails. Thus, we can see a 

residual output (indicated in solid line). Similarly in the first subplot in Figure 4-5 at 12 

seconds actuator 2 fails. Therefore, we can see a residual output (indicated by the dotted 

line). In the second subplot in Figure 4-5 we can see the occurrence of actuator one and 

actuator two at six and 12 seconds respectively. But in this subplot, we can see lot of 

noise associated with the residual. This is due to the fact that a band-limited white noise 
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is added to the sensor output in the simulation. The significance of the sensor noise to the 

residual output is explained in the experimental results. 

 

Figure 4-6. Experimental results for actuator one and two failures 

   

Experimental results are shown in Figure 4-6. The actuator failures are simulated by 

unplugging the control inputs from the dSPACE DS1103 PPC board. The first subplot in 

Figure 4-6 is the input disturbance to the beam. This disturbance creates the vibration in 

the beam. The second subplot in figure4-6 shows the failure of actuator one at around 58 

seconds. The residual for actuator one is in the positive direction (indicated by solid line). 

This indicates the isolation of the failure. At the same time, we can see a negative 

residual in the third subplot in Figure 4-6. This residual does not appear in the simulation 
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results but appears in the experimental results. This is due to the fact that there is lot of 

sensor noise associated with the experiment. The signal to noise ratio is high in this case. 

The eignevalues are moved close the origin of the unit circle in discrete-time. This helps 

in reducing the bandwidth of the transfer function associated with the detection space and 

enhances the ability to filter noises. Also, at the same time, the response for the fault 

signal becomes large while the response speed becomes slow. Furthermore, the ratio 

between the gains associated with the detection filter and control inputs is order of 1000. 

Therefore, the noise is amplified by the detection filter gains. We have two kinds of 

independent spaces: detection and completion space in the invariant zero approach. The 

noise can be reduced by changing the detection space eigenvalues. In addition, the there 

is a model mismatch between the actual plant and the detection filter. All these reasons 

create a negative residual rather than zero residual for no fault. The third subplot in figure 

6 shows the failure of actuator two at around 38 seconds. The residual for actuator two is 

in the positive direction (indicated by dotted line). At the same time, we can see a 

negative residual in the second subplot in Figure 4-6. 

 

Conclusions 

The primary objective of this work is to design the BJ detection filter for high 

order systems in discrete time. Experimental results are conducted for multiple faults on 

the flexible structure. The significant contribution of this work is to implement the BJ 

filter in real-time application for actuator failures. This work can be further extended to 

achieve the concept of fault-tolerant active vibration control. 
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Abstract 

In this paper a fault-tolerant active vibration control system is applied to a simply 

supported beam with high order.  System failures are detected and isolated by Beard-

Jones (BJ) filters, and then a controller specifically designed for the faulty system is 

switched on, in order to maintain optimal control performance and stability under failure 

conditions.  The BJ filters are designed based on system identification model for a simply 

supported beam.  The controller library includes four controller designs which are used 

for different fault situations.  The performance of a fault adaptive control system 

applicable to higher order systems are demonstrated experimentally, and the result 

provide a benchmark for the design of detection filters for use in fault-tolerant vibration 

control. 

Keywords: Beard-Jones filter, Vibration control, System Identification, Switching 
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Introduction 

Active Control has been used to reduce structural vibrations for many years1,2,3,4, 

and the application of active vibration control has been extended to large-scale 

systems5,6,7,8.  Many control algorithms, such as adaptive feedback and adaptive 

feedforward controls, have been developed for different situations9,10.  Since sensors and 

actuators are normally involved in such active control systems, the implementation of 

Fault Detection and Isolation (FDI) for sensor or actuator failures have been investigated 

for long-term safety11,12,13,14,15.  However, no work has been done in fault-tolerant 

vibration control, since the high order vibration system limits the application of 

traditional fault-tolerant strategies.   

The traditional fault detection work can be widely classified into four categories: 

1.  Algorithm based on Kalman filters; 2.  Parity space techniques; 3.  Diagnostic 

Observers; 4.  Parameter estimation methods.  The BJ filters are based on diagnostic 

observers, and have been demonstrated previously to offer several advantages in 

vibration control applications11,12,16.  One of these advantages is that BJ filters utilize 

subspace concepts to associate the residual with the system faults, thereby permitting 

simultaneous FDI.   

As described before, traditional fault detection algorithms including BJ filters are 

limited to relatively low order systems, since it is very difficult to obtain a BJ observer 

design that is stable when the system has high orders.  However, the vibration systems, 

such as beams and plates, require large order models to ensure accuracy5,17,18, which 

makes it hard to implement a fault toleration vibration control.  Another limitation is that 

there are no existing design techniques than can accommodate a model with feed-through 
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dynamics (i.e. a state space model with non-zero D matrix).  The vibration system models 

are normally obtained with system identification techniques, which usually result in 

models with feed-through dynamics19,20,21. 

In this work, the performance of a fault-tolerant active vibration control system is 

demonstrated experimentally.  The fault tolerant method in this paper is based on BJ 

filters, and applicable for high order systems with feed-through dynamics.  A simply 

supported beam with three pairs of piezoelectric transducers acting as sensors and 

actuators is the active structure investigated.  The work presented here begins with a 

description of the experimental platform, followed by system identification results.  Then, 

the design of fault-tolerant BJ filters applicable for high order systems are presented.  

Finally, the performance of the BJ filters and the fault-tolerant control system is 

demonstrated. 

 

Experimental Setup 

The instrumentation arrangement used in the experimental setup is shown 

schematically in figure 5-1.  The simply supported beam is disturbed by a band-limited 

white noise (0 - 600Hz) , and sensor signals are amplified and filtered with four-pole 

Butterworth low-pass filters.  Distributed controllers are implemented on a dSPACE 

DS1103 PPC board, and control signals are amplified by a 790A06 power amplifier from 

PZB Piezotronics, Inc. 

 
The physical system is a beam made of aluminum 2024-T4, and the physical 

parameters are listed in table 5-1. The beam is clamped at both ends, with grooves 

machined near both ends to approximate the simply supported boundary condition18.  
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System identification results have shown that the beam’s dynamic response is very close 

theoretical predictions for a simply supported beam.  

 

 
 

Figure 5-1. Block diagram of the experimental setup. 
 

 
Table 5-1. Physical parameters of the experimental beam 

 
Physical parameters Values 

Density 2700 (kg/m3) 

Thickness 0.0032 (m) 

Length 1.0650 (m) 

Width 0.0508 (m) 

Young’s Modulus 73.1E9 (Pa) 
 

 

Lead Zirconate Titanate (PZT) transducers are attached along the beam acting as 

sensors and actuators, as shown in figure 5-2.  The size of each PZT patch is 0.055m by 

0.027m, and patches are not evenly distributed along the beam.  All sensors are on the 

same side of the beam, and all actuators are on the opposite side.  The band-limited noise 

is applied to PZT1 (left most transducer, with the coordinate 0.11m) as the disturbance.  
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It is known that the transducer placements will affect control performance19,22, and so the 

transducers were chosen to maximize sensitivity to the structural modes below 600 Hz.  

The three collocated pairs of transducers selected were: PZT2 (with a coordinate 0.26m) , 

PZT4 (with a coordinate 0.54m), and PZT7 (with a coordinate 0.87m) along the beam (as 

shown in figure 5-2). 

 

 

Figure 5-2. The experimental beam with multiple sensor/actuator pairs. 

 

System Identification 

As specified previously, the system model obtained from theoretical derivation 

matches the experimental result well.  However, since the control performance depends 

on the accuracy of the system model, the dynamics of the beam were obtained using 

experimental system identification.   

Six sensors and six actuators were used for the control system, resulting in 36 

transfer functions from the inputs to outputs.  In addition, the path between disturbance 

and all sensors was also identified.  A band-limited white noise was applied to each 

actuator, and then all sensor and actuator data were collected to derive the Auto-

Regression with eXtra inputs (ARX) model21: 

  )()1()()1()( 11 mtubtubntyatyaty mn !""!#!""!" !!   (5-1) 
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The ARX parameters were obtained using a batch least squares solution, and then a 

multi-input multi-output (MIMO) state-space model was derived from the corresponding 

ARX model.   

 

0 100 200 300 400 500 600
-80

-60

-40

-20

0

20

Frequency (Hz)

M
ag

 (d
B

)

Measured
Model

0 100 200 300 400 500 600
-200

-100

0

100

200

Frequency (Hz)

P
ha

se
 (d

eg
)

 
 

Figure 5-3. Experimental and analytical frequency responses from the disturbance to 
sensor 1. 

 

The order of the system model in our experiment was chosen to be 36, and 

frequency responses of all signal paths match the experimental results very well.  

Experimental and analytical frequency responses of two signal paths are shown in figures 

5-3 and 5-4.  In figure 5-3, the solid lines represent the transfer function from the 

disturbance to sensor 1 measured directly from system identification data, while the 
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dotted  lines represent the derived state-space model with 36 states.  It is clearly shown 

that the state-space model represent the beam dynamics very well, in both magnitude and 

phase of the system response.  Similarly, the transfer function from the disturbance to 

sensor 2, shown in figure 5-4, demonstrates a good match between experimental and 

analytical responses.  The other signal paths have similar results. 
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Figure 5-4. Experimental and analytical frequency responses from the disturbance to 
sensor 2. 

 

Design and Theory of BJ Filter 

BJ filters are a special case of the traditional Luyenberg observer.  The difference 

is that for a BJ filter, the “free” parameters of the observer feedback matrix are selected 

in such a way that the output residual has specific directional properties when specific 
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faults occur.  Therefore, the residual can be monitored to both detect a fault, and isolate 

the specific fault, which has occurred. The basic theory of BJ filters is summarized in this 

section.  This is followed by the development of two modifications to existing feedback 

matrix design techniques.  The first modification enables BJ filters to be designed for 

systems with feed-through dynamics while the second modification presents a gain 

matrix design suitable for high order systems. 

 

BJ Filter 

BJ detection filters are traditional observers designed in such that the output 

residual vector has specific directional properties that can be associated with specific 

faults14,23,24,25,26,27.  The model for BJ FDI is shown in figure 5-5.  

 

 

Figure 5-5. Basic model for Beard-Jones FDI. 
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The BJ filter is of the form 

  )xCL(yBuxAx ˆˆˆ !""#"       (5-2) 

where x̂  is the state estimate and L  is the detection gain matrix.  The state error is as 

  xx ˆ!
$
#%         (5-3) 

Now the observer gain matrix L  is chosen in such a way that the output error  

  xCy ˆ!#%         (5-4) 

has restricted directional properties in the presence of a failure.  Therefore, when there 

are no faults present, the closed loop dynamics become 

  %% G#"         (5-5) 

where G  is defined as 

  LCAG !#
$

        (5-6) 

The presence of an additive fault, especially an actuator fault, can be modeled by 

adding a term to the open loop dynamic system obtained from system identification 

  i&ifBuAxx ""#"        (5-7) 

where if  is a nx1 design failure direction associated with the ith actuator failure and i&  is 

a time-varying scalar which may be function of x(t)  or u(t) .  Thus, the system output 

error in the presence of faults becomes 

  %%
&%%

C
fG i

#
"# i"

        (5-8) 

The detection gain is designed in such a way that the directionality of the residual, 

% , corresponds to specific faults.  Design procedures are presented by Beard and Jones, 
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and more recently by Kim et al.14,23,24,25.  In this case, %  is proportional to iCf  in 

response to a failure corresponding to the direction if . 

 

Design of Detection Gain  

There are several gain selection methods available that work well for low order 

systems11,13,15,28,29.  However, when the system order is large (greater than 10 or so), it is 

very difficult to use these methods and achieve a stable closed-loop detection filter.   

In order to overcome this difficulty an unstable detection gain matrix is created 

using the invariant zero approach, and then modified to ensure a stable result.  In most 

physical the detection orders are equal to one, which means that, for a given fault vector 

f , the triplet (A, f , C) has no invariant zero.  In this case, the invariant zero approach 

yields a detection gain matrix L that is given by 

  
*))(CFF(AFL $!#        (5-12) 

where $  is a diagonal matrix whose elements are given as the eigenvalues associated 

with the detection space of F  and * indicates pseudo-inverse.  Next, the result of 

equation (5-12) is modified to ensure a stable result according to the equation (5-13) 

  
*(CF)(CF)E(ILL !"#'       (5-13) 

If the observer gain L'  is applied to error state equation (5) then, 

  )C(CF)(CF)E(ILC)(AC)L(A=G *!!!#'!     (5-14) 
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Now, if we define LCAAf !#  and C(CF)(CF)IC *
f ][ !# , then ff ECAG !#  and the 

dual of G  is )EC(A TT
f

T
f ! . One will note that the definition of G  is equivalent to the 

LQR control problem of finding an E  that stabilizes )C,(A ff  and minimizes 

  ( )* ""# Nm2zRmmQzz TTTJ      (5-15) 

where z  and m  are the states and inputs associated with the new pair )( ff C,A .  The 

weights Q  and R , can be altered to affect the closed-loop eigenvalues of the filter.  It is 

assumed 0N #  in these calculations.  Finally, once a suitable matrix E  is obtained the 

modified BJ filter gain matrix L'  can be obtained from equation (5-13). 

 

Continuous/Discrete Residuals and Fault Modes 

Where a fault is detected in the system, the physical system response deviates 

from that predicted by the BJ filter, resulting in a non-zero residual output from the filter 

called the continuous residual.  When the continuous residual exceeds a pre-set threshold 

values, the corresponding entry in the discrete residual vector is set to one.  If the 

continuous residual value falls below the threshold, the discrete vector is set to zero.  This 

discrete residual vector is supplied to select the appropriate controller based on the fault 

case.  One of the key features in the BJ filter is that it is able to detect multiple faults with 

a single filter; referred to as mutual detectability.  Therefore, a single BJ filter is used to 

observe the system in any of the four fault modes.  Not all systems are mutually 

detectable, however in systems where it is not; multiple BJ filters are designed and 

operated in parallel.  
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Controller design 

The distributed controllers in this work are designed based on H2 optimal control 

theory30,31.  The approach used here is no different from traditional H2 control theory.  

But the arrangement and implantation in a distributed manner is unique.  Such H2 

optimal control has been proven effective and robust at attenuating structural vibration in 

centralized strategy, and it is extended here to a distributed architecture.   

The basic block diagram of H2 closed-loop system is shown in figure 5-6, where 

G is the generalized plant, K is desired controller, w is the exogenous input vector 

consisting of the disturbance and sensor noises, u is the control signal vector, and y is the 

plant output vector.  In figure 5-5, z is the output to be minimized which consists of the 

filtered actuator signals, system states and plant outputs.  The goal of H2 optimal control 

is to compute an internally stabilizing controller K, which minimizes the transfer function 

2Tzw .  Details concerning the calculation of the optimal controller K can be found in 

reference30,31. 

 

 
Figure 5-6. Basic H2 closed-loop system. 

 



 98

In the control library, there are four controllers: controller for no fault, controller 

for actuator 1 failure, controller for actuator 2 failure, and controller for actuator 1 & 2 

failure.  All four controllers were designed based on H2 optimal control strategy. 

 

Experimental Results 

The failure of an actuator was implemented by unplugging the BNC cable from 

the Digital Analog Converter (DAC) on the dSPACE connection panel.  And the time 

history of continuous residual, discrete residual, finite state and the output of sensor 2 

were presented in figure 5-7.  It is shown that where there is a failure at actuator 2 around 

38 seconds, the BJ filter detects the failure and the discrete residual is set to be 1 for 

actuator 2.  The value of finite state is 3, which represents the failure of actuator 2 and 

switches the controller.  Although the performance of the controller is a little worse after 

switch, the closed-loop system is stable and the transition between controller switch is 

negligible. 

 
 

Figure 5-7. Time history of residuals and finite state for actuator 2 failure. 
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The results of the experiment with two actuator failures are shown in figures 5-8, 

5-9 and 5-10.  The failure of actuator 2 happened around 40 seconds, and the failure of 

actuator 1 took place around 60 seconds.  The continuous residuals for both actuators are 

shown in figure 5-8, and the BJ filter in our system detected both failures well.  The 

discrete residuals and finite state for actuators 1 & 2 failures are shown in figure 5-9.  

When actuator 2 failed around 40 seconds, the discrete residual for actuator 2 was 

changed to 1, and the finite state was set to be 3, which switched the controller to the 

specific one in the controller library.  Then, when actuator 1 failed around 60 seconds, the 

discrete residual for actuator 1 was changed to 1, and the finite state was set to be 4 and 

the controller was switched again.  The corresponding sensor signals are shown in figure 

10. 

 
 

Figure 5-8. Continuous residuals for actuators 1 & 2 failures. 
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Figure 5-9. Discrete Residuals and finite state for actuators 1 & 2 failures 

 
 

Figure 5-10. Sensor signals for actuator 1 & 2 failures. 
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Figure 5-11. Transfer functions from the disturbance to sensor 1. 
 

The transfer functions from the disturbance to sensor 1 in different fault situations 

are shown in figure 5-11.  It is shown that the system with no actuator failures has the 

best control performance, but the closed-loop system in our system is stable and fault-

tolerant, even the control performance is compromised. 

 

Conclusions 

In this work the fault-tolerant active vibration control system is implemented 

experimentally.  The method is demonstrated applicable high order systems, such as the 

vibrational system with 36 states.   
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Abstract 

 The purpose of this work is to make use of hybrid automata for vibration control 

reconfiguration under system failures.  Fault detection and isolation (FDI) filters are used 

to monitor an active vibration control system. When system failures occur (specifically 

parametric faults) the FDI filters detect and identify the specific failure. In this work we 

are specifically interested in parametric faults such as changes in system physical 

parameters; however this approach works equally well with additive faults such as sensor 

or actuator failures. The FDI filter output is used to drive a hybrid automaton, which 
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selects the appropriate controller and FDI filter from a library. The hybrid automata also 

implements switching between controllers and filter in order to maintain optimal 

performance under faulty operating conditions. The biggest challenge in developing this 

system is managing the switching and in maintaining stability during the discontinuous 

switches. Therefore, in addition to vibration control, the stability associated with 

switching compensators and FDI filters is studied. Furthermore, the performance of two 

types of FDI filters is compared: filters based on parameter estimation methods and so 

called "Beard-Jones" filters.  Finally, these simulations help in understanding the use of 

hybrid automata for fault-tolerant control. 

Keywords: Hybrid Automata, FDI, Parametric Faults and Fault-Tolerant Control 

 

Introduction 

 FDI is a key area of research for large-scale complex dynamic systems where 

reliability and safety is a high priority. Therefore, FDI is required for optimal 

performance in the presence of faults. Thus, identification of transfer function models 

with various fault case scenarios is required for tuning and design of controllers. For this 

purpose the physical system parameters are estimated. FDI issues associated with the 

multi-input multi-output (MIMO) systems are a focus of attention especially for 

parametric failures. Even when a proposed FDI scheme is technically great for general 

failures, ease of use consideration remains a core issue for engineering practice.  

 The coupling of the physical system makes the implementation of FDI and its 

results more complicated. As a consequence, very fewer investigations are done for 

parameter failures as compared with additive failures. Therefore, there is a vast area of 
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incentive for developing better methods to accomplish the concept of FDI for 

multiplicative faults. Furthermore this work can be extended for designing the 

appropriate controller for multivariable control with the presence of failures. The 

majority of work conducted on FDI over the past years is on the faults associated with 

sensors and actuators
1,2,3,4

.  

 Previous literature mainly concentrated on developing system identification 

algorithms for parametric estimation. This idea of system identification is used for the 

implementation of FDI for parametric failures. One such algorithm is a new recursive 

algorithm on model orders
5,6

. In this paper, the proposed algorithm worked well for a 

fault-tolerant control on a MIMO system.  Also, simulation results and modeling scheme 

was very effective. Most of the algorithms developed in the field of the parameter 

estimation have been extensively developed based on the discrete time MIMO models for 

system identification
7
.  

 In the work that is conducted currently, parameter estimation is done for continuous 

MIMO models for multiplicative faults rather than system identification. The advantage 

of the parameter estimation over other FDI methods is the use of this concept for fault-

tolerant control. The theory and development of Beard-Jones (BJ) filter for fault detection 

of parametric failures is studied in detail. BJ filter design is mainly implemented for 

sensor and actuator failures
1
. Therefore, it is very important to study the pros and cons of 

both methods studied in this work for fault-tolerant control. For fault-tolerant control 

there is a transition from continuous time to discrete event systems during the switching 

of the controllers. Therefore, it is essential to use the idea of hybrid automata for this 

work. Thus, one of the critical issues is to integrate the FDI scheme, hybrid automata and 
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active vibration control to achieve the objective of fault-tolerant control. 

 

System Modeling 

 In order to implement the concept of FDI scheme for fault-tolerant control, a simple 

MIMO system is modeled.  The MIMO system under consideration is a simply supported 

beam (1-D) subjected to a random disturbance as shown in Figure (6-1). The state space 

model is then developed for a simple beam with the surface bonded with a piezoceramic 

material
8
. The beam is equipped with numerous piezoelectric transducers that act 

simultaneously as sensors and actuators.  

 

 

Figure 6-1: Simply supported beam with piezoelectric actuators and sensors 

 

 The beam models the effects of dynamic coupling between a structure and an 

electric network through the piezoelectric effect. The coupling for the electromechanical 

system is represented by mass and stiffness contributions of the piezoelectric transducers 

as well as the dynamics of the transducers itself.  The solution assumes that the structural 

displacement can be expressed as a summation of the orthogonal functions (called 

modes). The modes of a simply supported beam can be represented as linear expansion of 

assumed modes and generalized coordinates in the following form 
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! 

w(x, t) = "
n
(x)q

n
(t)

n =1

mod
#

        (6-1) 

where 

! 

w(x, t)  is the beam displacement, 

! 

"n (x)  is the n
th

 mode shape and 

! 

q
n
(t)

 is the 

generalized coordinate of the n
th

 mode. In general, the expansion of the number of 

assumed modes is limited to finite number, and the importance of this result help the 

design and analysis of controlled adaptive structures. 

  

! 

[Mp + Mt ]{q
••
(t)}+ [Kp + Kt ]{q(t)} = [Q

d
(t)]+ ["]{v(t)}

  (6-2) 

where 

! 

M
p and 

! 

M
t  are the mass matrices for the beam and piezoceramic transducers 

respectively, similarly 

! 

K
p and 

! 

K
t  are the stiffness matrices for the beam and 

piezoceramic transducers respectively, 

! 

q(t)  is a vector of generalized coordinates, 

! 

Q
d
(t) 

is a vector of generalized disturbances, 

! 

" is the electromechanical coupling matrix and 

! 

v(t)  is the vector of control voltages applied to the transducers which act simultaneously 

as sensors and actuators.  The beam model can be cast in the state space form as follows 

  

! 

x
•

= Ax + Bu

y = Cx + Du          (6-3) 

where 

! 

x  is the state vector containing the generalized coordinates, 

! 

q
n
(t)

and their 

derivatives, 

! 

u  is a vector control and disturbance inputs, and 

! 

y  is the output for each 

piezoceramic transducer and is proportional to the strain rate such that 

  

! 

x = q ˙ q { }T           (6-4) 

The transfer function of the beam can be written in mathematical form as 
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where 

! 

"
n  is the natural frequency of the n

th
 orthogonal coordinate, 

! 

"
n  is the damping 

ratio of the n
th

 orthogonal coordinate, 

! 

"
n
(x
i
)
is a function of the assumed modes, and 

! 

"
n
(x
j
)
 is the n

th
 entry of the vector 

! 

"
n
(x
i
)
. In this paper, for MIMO system we 

considered three modes for the beam model. Therefore, the MIMO system in transfer 

function approach can be represented as follows 
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2 21 22 23 2

3 31 32 33 3

*

Y H H H u

Y H H H u

Y H H H u

! " ! " ! "
# $ # $ # $
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where 

! 

Y
i  is the output at node 

! 

i , 

! 

u
i  is the input at node 

! 

i  and, 

! 

H  is the transfer function 

represented in the Equation (6-5).  

 

Theory 

 In this section the theory associated with parameter estimation and BJ filter design 

are explained in detail. 

 

Parameter Estimation 

 The basic principle used for representing an unknown system and estimating the 

system parameters is a Recursive Least Squares (RLS) structure
9
. The relationship 

between output and input sequences of the system can be written in the mathematical 

form as 
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where 

! 

y  is the observed variables, 

! 
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n  are unknown parameters and 
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,...."

nare known functions that are dependent on r known variables. The 

variables 

! 

"
i  are called the regression variables, and the model in the Equation (6-7) is 

called the regression model. The continuous RLS estimation can be written as 
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The parameters associated with the modes are 

! 

a
n

= 2"#
n
,a
n +1

=#2n
. In this work, 

Equation (6-5) is used to define the various combinations of parameters as mentioned in 

Equation (6-7). An important observation is the numerator of the transfer function in 

Equation (6-5) is known (since it depends on the location of sensor and actuators). 

 

BJ filter design 

 The BJ detection filter has been modified for various problems. And, new 

approaches are developed to make the problem more tractable for different complex 

cases. In addition to these, solutions to the problem are developed to understand the 

mutual interaction of physical and mathematical interpretation. Various methods are 

subsequently analyzed and interpreted as an eigenstructure assignment
10,11,12,13,14

. The 

open loop dynamic model in the absence of failures is given in Equation (6-3). In case of 

parametric failures the system can be represented in Equation (6-9) 
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! 

x
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= (A + "A)x + Bu
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This system can be written in the form of actuator failures as shown in Equation (6-10) 
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where 

! 

("a
i
)
 is 

! 

ith  column vector of 

! 

"Aand 

! 

x
i is the 

! 

ith  element of 

! 

x . Therefore, 

! 

("a
i
)
 

is considered as the fault event vector since the above equation is similar to the actuator 

fault. Designing a fault detection filter for Equation (6-10), the information that comes 

from fault is shown in Equation (6-11) 

  

! 

e
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= (A "KC)e + (#a

i
)x
i

i

$

r = Ce         (6-11) 

When 

! 

r " 0, fault is deemed to occur. The details of BJ filter design can be found in 

references
15,16

. 

 

Design of Controller 

 In this paper, constant gain output feedback compensators are used to minimize the 

beam vibration. Each possible actuator and sensor failure leads to different configurations 

of the MIMO system. When a particular actuator fails it is removed from the feedback 

loop and only the remaining actuators are used to reduce vibration. The compensator is 

designed based on prior knowledge of the faults that can occur in the system. The control 

law implemented is 

  

! 

u = "Ky
i            (6-12) 
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where K is the constant feedback gain matrix, 

! 

u  is the local input and 

! 

y
i is the output 

associated with each sensor. The feedback gain matrix can be found my minimizing the 

cost function shown in Equation (6-13) 
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where 

! 

J  is the cost function associated with each fault case scenario, 

! 

x  is the system 

state vector, 

! 

C  is the state-space system matrix from Equation (6-3), 

! 

W
s is the penalty 

associated with the sensor signals, 

! 

W
m  is the penalty associated with the various modes, 

and finally R is the control effort penalty. The details associated with the implementation 

and calculation of the output feedback gain matrix can be found in reference
17

.  

 The MIMO system considered in this work is a three input-three output system. 

Compensators for the two fault case scenarios (including the nominal case – no failure) 

have been designed. Since the most dominant modes are the first three modes, the 

compensator design considered in this current work includes only three modes. Figure 6-

2 shows the physical system with control for different cases. From Figure 6-2, it can be 

concluded that there is a shift in mode frequencies with the addition of mass. Also, from 

the plot it can be inferred that there is no change in the second mode frequency (since the 

location of the additional mass is exactly at half the length of the beam) 

 

Results 

 In this study the parametric failure is considered to be the addition of mass to the 

beam. Other parametric failure that can be extended for this work is change in the 
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stiffness of the beam 

! 

K
P . This study features two types of fault case scenarios. The first 

one is the case where there is no change in the mass of the beam and, second one is the 

case where a significant amount of mass is added to the beam.  

 

 

Figure 6-2: Vibration suppression of the physical system for different parametric failures 

  

It is very important to know the location of the additional mass, as it affects the mode 

shape of the beam. In this study the additional mass is located at half the length of the 

beam. The details of the additional mass of the beam can be expressed as shown in 

Equation (6-14) 
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where 

! 

"
i

= sin(
n#z

i

L
),  z

i
 
is the location of additional mass and 

! 

n  is appropriate input-

output combination. Similarly, mathematical representation of stiffness parameters can be 

implemented. In case of parameter estimation, the change in one of the parameter value is 

considered as the key to change in the physical system with the addition of mass. Since 

there are only two fault case scenarios, the total number of transitions is four (2
2
). These 

transition conditions are modeled using a hybrid automaton. The hybrid model for this is 

shown in Figure 6-3. It is important to note that in the hybrid model for parameter 

estimation there is a controller library (there are only two different controllers for two 

fault case scenarios) and a system library. 

 Whenever there is a change in the system parameter, this change is represented in 

the discrete residual vector. This vector is the input to the hybrid automata. Based on the 

values of the discrete vector (transition conditions), the fault mode changes and thereby, 

reconfiguring to the appropriate controller. Figure 6-4 shows the discrete residual vector 

and fault modes with the occurrence of parametric failure. The switching in the controller 

takes place when the change in the parametric value reaches the threshold value. In this 

simulation, the change in the parametric fault occurred at a time less than the change in 

the fault mode from one (corresponds to nominal case) to two (addition of mass).  The 

time to reach the convergence of the parameter value depends on 

! 

"  in the RLS 

algorithm, which in turn determines the threshold time for switching. In this simulation, 

the total number of parameters estimated is 20. But any one change in parameter 
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corresponds to change in the physical system. But it is not possible to dynamically 

determine the location and mass that’s been added to the beam. Thus, we can conclude 

that it is very difficult to isolate the fault rather than detecting the fault. 

 

Figure 6-3: Hybrid model for parameter estimation 

  

This method mainly helps in the experimental validation of the parametric failure for the 

simply supported beam. Also, in the RLS algorithm is important to note that this method 

is robust to sensor noise. The main disadvantage of this method is it is very difficult to 

implement for higher order vibrating systems. This is due to the fact that for higher order 

systems, there are many parameters that need to converge. Furthermore, the rate of 

convergence increases with increase in number of parameters. Due to this it is better to 

study BJ filter design for parametric failures for higher order systems. But there are 

several challenges associated with the design. The next paragraph thus deals with pros 

and cons of BJ filter design. Also, in the next section the difference in the hybrid model 

with two different methods is studied. 

 The hybrid model associated with the BJ filter design is shown in Figure 6-5. There 



 116 

is a significant difference as compared to the parameter estimation method. In the BJ 

filter design, the control input and error output are input to the BJ filter. Also, there is no 

system library for the implementation of parametric failure. The prior fault information is 

the input to the beam, which changes the dynamics of the beam. 

 

Figure 6-4: Time history of discrete residual and finite-states for parameter estimation 

method 

 

 Figure 6-6, shows the occurrence of the fault at exactly two seconds as a parametric 

failure (even though in the simulation process it is considered as an actuator failure). The 

failure occurs at two seconds but the switching of the controller takes place after some 

time called the threshold period. The threshold period is different for parameter 

estimation and BJ filter method. Since there are only two fault scenarios, there are only 

two finite-states. 

 There are several drawbacks to the BJ filter design for the parametric failures for 
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active vibration control. The most important is that there are many sources for 

! 

r " 0, such 

as model uncertainties, actuator failure, sensor failure, parametric failure, noises etc. Thus 

whenever there is simultaneous presence of these faults, it is impossible to isolate the 

source of failure. Therefore, if we don’t know if the failure occurred from the particular 

kind, the controller design might not be stable. This is due to the fact that the controller 

design might be for parametric failure, but in the system 

! 

r " 0 is for actuator failure. 

 

  

Figure 6-5: Hybrid model for BJ filter 

 

Conclusions 

 The primary goal of this work is to implement two different FDI schemes for 

parametric failures. Simulations for the multiplicative failures have been conducted on a 

simply supported beam, which in turn demonstrate the ability of such a system to 

maintain performance and stability. The primary contribution of this work is to study the 

limitations of the both the methods for multiplicative failures. Also, this work helps in 

future to develop robust FDI methods with the presence of both the additive and 



 118 

multiplicative failures. The stability associated with vibration control during switching 

between the different physical systems is studied. 

 

   

Figure 6-6: Time history of discrete residual and finite-states for BJ filter design 
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CHAPTER VII 

CONCLUSIONS 

 

 FDI techniques are studied in detail for the application of active vibration control. 

Two types of FDI filters are studied in this research work; BJ and parity relations. In this 

study a simply supported beam with sensors and actuators is chosen as the appropriate 

flexible structure for vibration control. It is concluded that parity space techniques are 

inadequate for high order systems such as beams, shells and plates. BJ filter is chosen as 

the appropriate filter for high order systems. FDI is incorporated with active vibration 

control to achieve fault-tolerant active vibration control. 

 The main focus in this work is ability to perform optimal vibration control 

performance with multiple actuator failures. In order to achieve this new methodology 

using the invariant zero approach is developed for designing the detection filter gains for 

high order systems. In addition to this, a new technique for the design of detection gains 

for systems with feed-through dynamics is developed. Simulation results provide 

adequate information about fault-tolerant active vibration control for multiple actuator 

failures. Also, a detection filter is designed for the experimental data (system 

identification) of a simply supported beam. 

 Experimental FDI is conducted on a simply supported beam. It is concluded that 

the BJ filter is robust to disturbance and less appropriate to high sensor noise. 

Experimental results validated the new design methodology for detection gain matrix for 
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high order systems. Also, experimental results for fault-tolerant control demonstrate that 

during switching of controllers the system is found to be stable. In addition to this, the 

results are adequate to conclude that there was significance optimal vibration control 

performance with the presence of multiple actuator failures. 


