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CHAPTER I 

 

INTRODUCTION 

 

Motivation 

Radiation of sound into quiescent fluids from geometrically simple structures is 

well understood1.  However, little has been done to investigate this behavior in convected 

fluids. Of the works that do consider this phenomenon, only a small number consider 

coupling between modes of the structure via the fluid medium being investigated. 

It has been shown that fluid convection, coupled with structural motion, changes 

the way energy is radiated from, and absorbed by a structure2,3,4,5. 

The basic differential equation that governs the motion of any simple structure 

defines the relationship between lateral vibration of the structure and the lateral loading 

on that structure.  Changing the loading on a structure changes the form of that equation.  

When a structure is under some type of stress resulting from external loading, it is 

prudent to assume that the dynamic behavior of that structure will change. 

There are many different types of structure where the amount of energy emitted 

into the surrounding environment is of concern.  Whether it is the noise transmitted into 

the cabin of an aircraft in flight or noise emitted by a submarine into the sea as a result of 

the action of the fluid flowing over the hull, the problem is governed by the same basic 

equations.  The large difference in the physical parameters that describe these particular 

systems result in a need to quantify convection effects over a large range of fluid and 

structural parameter values in order to make judgments on when the effects of convection 
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should be included, but also when convection effects should be coupled to the structure to 

make accurate predictions of overall system performance. 

 

Previous Work 

Initial investigations into the effects of convection on radiation from structures 

have been done by Abrahams2, Atalla and Nicolas3, Graham4 and Frampton5.  Abrahams 

solves the convected wave equation using asymptotic techniques. His solution showed 

good agreement (within 2% for a large number of modes) with work done in the 

aeroelastic stability analysis community using Galerkin's Method6.  Atalla and Nicolas 

expanded on earlier work by Berry7 and used it to evaluate the radiation impedance for a 

rectangular piston in the presence of mean flow.  Berry, Atalla and Nicolas used a 

Rayleigh-Ritz approach to describe the kinetic and potential energy of the structure.  

Atalla and Nicolas noted an increase in radiation efficiency as flow speed increased for 

both rectangular pistons and a plate vibrating in the (1, 1) and (2, 2) modes.  Graham 

showed that the frequency at which any given mode becomes an efficient radiator 

decreases as flow velocity increases. 

Frampton, expanding on work done by Currey and Cunefare8 and by Wallace9, 

chose to cast the problem in state variable form, with the structural dynamics discretized 

using Galerkin's Method and the aerodynamic model discretized using the methods 

developed by Dowell10 for use in aeroelastic stability analysis.  He showed that the 

radiation efficiency can be expressed as a transfer function in the frequency domain of 

the aerodynamic model, and that increases in flow speed increase the radiation efficiency 
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of any given structural mode. Frampton's findings are in agreement with the earlier work 

cited. 

There are fewer references available that study the effects of flow induced 

intermodal coupling, including those of Sgard, Atalla and Nicolas11, Wu and Maestrello12 

and Frampton13.  Sgard, Atalla and Nicolas took the approach of discretizing the radiating 

structure with a FEM / BEM mixed approach. They showed that as flow speed increases, 

inter-modal coupling becomes a significant effect and must be considered when modeling 

the power radiated from a structure. They attribute the increase in radiated power as flow 

velocity increases to this effect.  Wu and Maestrello also argue that flow induced 

coupling is an important part of the modeling of radiated acoustic power from structures 

into a convected fluid. Since their work was concerned with stability analysis, their 

discussion of radiated power was limited to the importance of it's inclusion in stability 

calculations, not it's behavior per se. 

Frampton extended his earlier work with radiation efficiency to include the 

calculation of the kinetic energy of radiating structures and the associated radiated sound 

power when coupled with a convected fluid model. Earlier work by Fahy14 was expanded 

to show that the kinetic energy and radiated power of the coupled system could be 

represented by transfer functions in the frequency domain. This work also concluded that 

coupling is important and that the power radiated by a structure into a convected fluid 

increased as flow velocity increased.  Frampton included the important result that the 

coupling mechanism was the path to allow energy to be shared between modes of 

vibration in the structure, and that this mechanism accounted for the increased radiated 
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sound power as subsonic convection velocity increased.  Frampton also noted that the 

kinetic energy of the structure remained nearly constant with varying flow velocities. 

 

Purpose 

The purpose of this work is to expand the work done by Frampton in three areas.  

First, the work with coupled structural and aerodynamic subsystems will be expanded to 

the supersonic flow region to quantify the effects on structural response and on radiated 

sound power behavior.  Next, the method will be expanded by adding in-plane stresses to 

the structural system model, and exploring the effect that imposed stress has on the 

behavior of the structural response and radiated sound power for both subsonic and 

supersonic flow.  These effects will be studied with the same physical parameter set used 

in the preceding work so that the effects observed may be compared and contrasted.  

Finally, the aerodynamic and structural subsystem models will be put in non-dimensional 

form such that a wide range of physical structural and fluid parameters may be studied.  

In this way, engineering rules of thumb can be derived for when the effects of convection 

and coupling must be considered for any specific case of fluid structure interaction likely 

to be encountered by structures operating in typical engineering applications. 
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CHAPTER II 

 

THEORY 

 

System Conceptual Model 

The development begins by considering a finite, elastic, rectangular plate in an 

infinite baffle as depicted in Figure 2-1.  On one side of the plate is a semi-infinite fluid, 

flowing parallel to the plane of the plate in the positive x-axis direction.  The other side of 

the plate is exposed to a vacuum.  As the plate vibrates a pressure disturbance is created 

in the convected fluid. 

A mathematical model of this system begins with a modal description of the plate 

motion and the relationship of this motion to the dynamic behavior of the fluid.  Next, the 

dynamics of the convected fluid are described by the convected wave equation. Given 

these coupled dynamic equations, a method for solving them is presented as is a method 

for computing the radiated sound power. 
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Figure 2-1. Schematic of a plate in an infinite baffle 

 

 

Structural Model 

 

Plate dynamics 

The plate is modeled by employing Galerkin's technique to discretize the linear 

equations of motion6.  The partial differential equation of motion for a thin, uniform plate 

is15: 
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2
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t
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∂

+∇= ρ ,  (2-1) 

where w(x,y,t), D, ρ and h are the panel displacement, stiffness, density and thickness, 

respectively.  The plate is forced by the fluid and disturbance pressures, p(x,y,t) and 

pd(x,y,t) respectively. 
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A separable solution is assumed using the in vacuuo panel eigenfunctions and 

generalized coordinates of the form: 

)(),(),,(
1

tqyxtyxw n

N

n
n∑

=

= ψ      (2-2) 

where, ( )yxn ,ψ  is the mode shape and qn(t) is the generalized coordinate.  The velocity 

of the plate can also be represented using the panel eigenfunctions and generalized 

coordinates as 

)(),(),,(
1

tqyxtyxw n

N

n
n∑

=

= ψ .     (2-3) 

The approach presented here can accommodate any plate boundary condition. 

However, results will be presented for a simply supported plate, which has been shown to 

have the following mode shapes15: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛= y

b
kx

a
jyxn

ππψ  sin  sin, ,    (2-4) 

where the nth plate mode has (x,y) directional indices (j,k). 

Substituting Equation (2-2) and (2-4) into Equation (2-1) and multiplying by an 

arbitrary expansion function, ( )yxm ,ψ , yields the homogeneous form: 

0
11

4 =+∇ ∑∑
==

n

N

n
mnn

N

n
mn qqD ψψρψψ .    (2-5) 

Equation (2-5) can be written in integral form for a single mode.  The individual 

homogeneous equations are of the form: 

( ) 04 =+∇ ∫∫ dSqdSDq m
S

nnm
S

nn ψψρψψ .   (2-6) 

Equation (2-6) can be rewritten in the familiar form: 

0=+ nnnn qKqM ,      (2-7) 
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where 

dSM m
S

nn ψψρ∫=       (2-8) 

and 
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Substituting Equation (2-4) into (2-8) and (2-9) results in: 
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Integrating over the domain using the stated boundary conditions yields 

4
ρabM n =        (2-12) 

and 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

b
n
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mabDKn

224

4
π      (2-13) 

for the diagonal terms , i.e., m = n.  Equations (2-12) and (2-13) are identically equal to 

zero for nm ≠  due to the orthogonality of the mode shape functions.  Mn is referred to as 

the modal mass term, and Kn is referred to as the modal stiffness term. 

With these relationships in hand, a set of ordinary differential equations of the 

form: 

( ) ( ) ( ) ( ) ( )tQtQtqtqtqM d
nnnnnnnn ++++= ]2[0 2ωξω   (2-14) 
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can be written.  A damping term has been added to the non-homogeneous equation to 

account for energy dissipation in the structure. 

In order to proceed with analysis of the structural system, parameters that 

characterize the structure must be selected.  For this analysis, plate geometry is chosen 

that is representative of a physical system that may be exposed to the flow speeds and 

fluid properties that will be investigated.  The dimensions of the plate will be assumed to 

be 1 meter in the direction of flow (x direction) and 0.83 meters in the direction 

perpendicular to the flow (y direction).  For the non-dimensional portion of the study, 

physical dimensions are removed from the structural model, but the aspect ratio of the 

plate, defined as 

b
a

=η ,        (2-15) 

is retained from the dimensions assumed. 

Fixing the aspect ratio of the plate fixes the modal indices of the plate 

resonances15.  This is true for all variations of the structural model considered here.  

While the resonance frequencies will change based on changes to the structural model, 

the uncoupled mode shapes will remain the same.  For this analysis, a model that includes 

the first 20 mode shapes of the structure will be used.  Figures 2-2, 2-3 and 2-4 provide 

visualizations for selected mode shapes. 
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Table 2-1. Modal Indices of the Structural Model 

Mode Number Indices(j,k) Mode Number Indices(j,k) 
1 (1,1) 11 (3,3) 
2 (2,1) 12 (1,4) 
3 (1,2) 13 (5,1) 
4 (2,2) 14 (2,4) 
5 (3,1) 15 (4,3) 
6 (1,3) 16 (5,2) 
7 (3,2) 17 (3,4) 
8 (2,3) 18 (1,5) 
9 (4,1) 19 (6,1) 
10 (4,2) 20 (5,3) 
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Figure 2-2. Visualization of the (1, 1) mode 
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Figure 2-3. Visualization of the (1, 2) mode 
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Figure 2-4. Visualization of the (3, 1) mode 

 

Structural Dynamics with In-plane Stresses 

The partial differential equation of motion for a thin, uniform plate subjected to 

in-plane forces is15: 

( ) ( ) ( ) ,,,,,2,,

),,(),,(),,(),,(

2

22

2

2

2

2
4

y
tyxwN

yx
tyxwN

x
tyxwN

tyxptyxp
t

tyxwhtyxwD

yxyx

dss

∂
∂

+
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∂
+

∂
∂

=++
∂

∂
+∇ ρ

 (2-16) 

where w(x,y,t), D, ρ and h are the panel displacement, stiffness, density and thickness 

respectively.  Nx and Ny are the normal stresses in the indicated directions and Nxy is the 

shear stress on the plate.  The plate is forced by the fluid and disturbance pressures, 



13 

p(x,y,t) and pd(x,y,t) respectively.  For this work, it will be assumed that there is no shear 

stress acting on the plate ( 0=xyN ). 

This equation can be reduced to the form of Equation (2-14) in a similar fashion 

as shown in the previous section.  However, for the case of in-plane stress, it should be 

noted that the terms denoting the resonant frequencies in Equation (2-14) are no longer 

functions strictly of the mass and stiffness of the basic structural system, but involve Nx 

and Ny, such that: 
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2

24

ρ
π

ρ
π

ρ
πω . (2-17) 

 

Non-dimensional Structural Model 

Equation (2-14) can also be placed in non-dimensional form by utilizing the 

following relationships: 

h
a

sρ
ρµ ∞=        (2-18) 

D
aU 32

∞∞=
ρλ        (2-19) 

⎟
⎠
⎞

⎜
⎝
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a
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( ) ( )
h

tq
sr n

n =        (2-21) 

and 

( ) ( )
bhU

tQsQ n
^

n
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=
ρ2       (2-22) 
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where ∞ρ  is the density of the fluid,µ  is the mass ratio, ∞U is the convection velocity,λ  

is the non-dimensional dynamic pressure, s is dimensionless time, r is dimensionless 

plate generalized displacement and ( )sQ
^

n  is dimensionless plate generalized force.  

Utilizing these relationships, we can recast Equation (2-14) as: 

( ) ( ) ( ) ( ) ( ) 04
^^22224 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++++

••

sQsQsrkjsr
d

nnµη
λ
µπ . (2-23) 

 

State Space Form of the Structural Model 

Equations (2-14) and (2-23) actually represent N simultaneous ordinary 

differential equations where N is the number of structural modes used in the solution.  In 

order to facilitate integration of Equation (2-14) with the fluid dynamics, it is cast in state 

variable form such that16  

sss

sssss

xCy
uBxAx

=
+=

      (2-24) 

The As and Bs matrices are populated with the coefficients of Equation (2-14) while the 

state, input and output vectors xs, us and ys are defined as 

{ ( ) ( ) ( ) ( ) }T
NN tqtqtqtq        11=sx ,    (2-25) 

{ ( ) ( ) ( ) ( ) }Td
N

d
N tQtQtQtQ        11=su    (2-26) 

and 

{ ( ) ( ) ( ) ( ) }T
NN tqtqtqtq        11== ss xy .   (2-27) 

Similarly, for the non-dimensional model, these relationships are: 

{ ( ) ( ) ( ) ( ) }T
NN srsrsrsr

••

=        11sx ,    (2-28) 
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( ) ( ) ( ) T
d

N

d

N sQsQsQQ }        {
^

1

^^^

1=su     (2-29) 

and 

{ ( ) ( ) ( ) ( ) }T
NN srsrsrsr

••

==        11ss xy .   (2-30) 

The disturbance generalized forces in all cases are given by 

( ) ( ) ( ) dydxyxtzyxptQ n

b a

d
d
n   , ,0,,

0 0
ψ== ∫ ∫ ,   (2-31) 

and the fluid generalized forces are defined by 

( ) ( ) ( ) dydxyxtzyxptQ n

b a

n   , ,0,,
0 0

ψ== ∫ ∫ ,   (2-32) 

where pa(x,y,z=0,t) is the fluid pressure acting on the plate due to plate motion and Qn(t) 

is the resulting generalized force.  This generalized force is due entirely to the fluid 

response created by plate motion and is therefore the mechanism through which modal 

coupling is created.  Developing an expression for this generalized force is the next step 

toward studying the effects of flow on sound radiation. 

 

Aerodynamic Model 

 

Fluid Dynamics 

Other investigators have used two differing approaches to find the acoustic 

pressure that acts on the surface of a vibrating plate. One approach is the Helmholtz-

Kirchoff integral, typically solved using numerical methods3,9,11.  The alternate method 

involves spatial Fourier transform techniques that require approximated inverse 

transforms derived using asymptotic techniques2,4.  The approach detailed here is based 

on the Fourier transform method. 
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The generalized forces due to aerodynamic pressure in Equation (2-14) are 

obtained by solving the partial differential equation that describes the velocity potential in 

an inviscid, irrotational fluid flow in the x direction, as shown in Figure 2-1.  This 

relationship is also known as the convected wave equation. 

021
2

2
2

2

2

2

2
2 =

∂
Φ∂

+
∂∂
Φ∂

+
∂
Φ∂

−Φ∇
x

U
xt

U
tc

   (2-33) 

Equation (2-33) is subject to the boundary conditions for a plate embedded in an infinite 

baffle, 

plate  theoff                  0

plate on the     
0

t
w

x
wU

z z
∂
∂

+
∂
∂

=
∂
Φ∂

=

,    (2-34) 

as well as a finiteness condition as z approaches infinity.  Here, Φ, c, and U are the 

velocity potential, speed of sound and flow velocity respectively. 

The solution to these equations follows the one presented by Dowell10, and 

summarized by Frampton5.  The first step is to perform a double Fourier transform with 

respect to the x and y spatial dimensions and a Laplace transform with respect to time 

according to the following relationships: 

( ) ( ) ( ) dydxszyxesz yx ,,,,,,~ Φ=Φ ∫ ∫
∞

∞−

∞

∞−

+− γαγα   (2-35) 

( ) ( )dttzyxeszyx st ,,,,,,
0

φ∫
∞ −=Φ .    (2-36) 

If these relationships are applied to Equation (2-33), the following is obtained: 

2
2

2 ~~
µΦ=Φ

dz
d        (2-37) 

where 
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( ) ,12 222
2

2

γααµ +−−+= M
c

Msi
c
s     (2-38) 

and where s is the Laplace transform variable, 
c
UM =  is the Mach number, 1−=i , 

and α  and γ  are the Fourier transform variables in x and y.  The triple transform of the 

boundary conditions is obtained in a similar way, resulting in: 

F
dz
d ~~

2

2

=
Φ .       (2-39) 

This transformed version of the convected wave equation (Equation 2-33), when 

solved with the transformed boundary condition of Equation (2-39), yields the 

transformed velocity potential on the plate surface, which is given by 

.
~~

0 µ
F

z

−
=Φ

=
       (2-40) 

If an inverse Laplace transform is taken of Equation (2-40), then the result is the velocity 

potential in the time domain on the surface of the plate, 
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   (2-41) 

where [ ]•kJ  is a Bessel function of the first kind and of order k and τ  is a variable of 

integration. 

In order to calculate aerodynamic forces on the plate, the pressure on the surface 

of the plate is needed.  The velocity potential is related to the acoustic pressure through 

Bernoulli’s equation, 

x
U

t
p

∂
Φ∂

+
∂
Φ∂

−= ρ .      (2-42) 
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where ρ  is the density of the fluid.  If Equations (2-41) and (2-42) are combined, the 

result is: 

( ) ( ) ( )
( ) ( ) ( ) ( ) ττγα

γαρργα

τα dtcJetf

ctfctzp

tiMct

⎥
⎦

⎤
⎢
⎣

⎡
−+

×+−==

−−∫ 2
1

22
10

222

~

~,0,,~

 (2-43) 

An inverse Fourier transform of Equation (2-43) can now be performed.  A 

logarithmic singularity exists for subsonic flows at the leading edge of the plate.  This 

presents problems if it is necessary to determine pressures at this specific location.  For 

this work, there is only a need to calculate the generalized force due to the aerodynamic 

pressure over the entire surface of the plate. 

The next step is to substitute Equation (2-43) into Equation (2-42).  Integration 

with respect to the x and y coordinates is performed next, followed by an inverse Fourier 

integration with respect to α and γ .  By performing the integrations in this order, the 

singularity at the leading edge of the plate is avoided.  This series of operations results in 

an expression for the generalized forces on the plate such that 

( )tQQ
N

m
mnn ∑

=

=
1

,      (2-44) 

where ( )tQmn  is the force on the nth panel mode due to the motion of the mth panel mode.  

The expression for ( )tQmn  is given by: 

( ) ( ) ( )[ ]

( ) ( )

( ) ( ) ,
1

0

1
0

1

∑ ∫

∑ ∫

∑

=

=

=

⎥⎦
⎤

⎢⎣
⎡ −+

⎥⎦
⎤

⎢⎣
⎡ −+

+=

N

m

t

mnm

N

m

t

mnm

N

m
mnmmnmmn

dtIq

dtHq

DtqStqtQ

τττ

τττ     (2-45) 
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with 

,1
0 0

dydx
xM

S n

a b m
mn ψψ

∫ ∫ ∂
∂

=      (2-46) 

,1
0 0

dydx
MU

D n

a b

mmn ψψ∫ ∫=      (2-47) 

( ) ,
4

22
1

22
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γαγα

γαα
π

α

ddctJ

eiG
M

UH Uti
mnmn

+

×+= −∞

∞−

∞

∞−∫ ∫    (2-48) 

( ) ,
4

1

22
1

22
22

γαγα

γα
π

α

ddctJ

eG
M

I Uti
mnmn

+

×+= −∞

∞−

∞

∞−∫ ∫    (2-49) 

( ) ( ) .
0 00 0

dydxedydxeG yxia b

n
yxia b

mmn
γαγα ψψ ++− ∫ ∫∫ ∫ ×=   (2-50) 

mnS  and mnD  are referred to as aerodynamic influence coefficients.  These terms relate 

instantaneous changes in structural generalized coordinates to instantaneous changes in 

the generalized forces due to aerodynamic pressure.  The influence coefficients 

(Equations 2-46 and 2-47) can be obtained analytically for most plate eigenfunctions.  

The same is true of Equation (2-50)5. 

The aerodynamic influence functions, ( )tHmn  and ( )tImn , are defined by integrals 

with no known closed form solution.  Dowell10 used numeric integration to find the 

influence functions, and then used numeric time stepping algorithms to simulate the 

system response.  This approach worked well for Dowell's area of interest, stability 

analysis.  This work depends on the ability to perform eigenvalue analysis, similar to that 

done by Currey and Cunefare8.  This necessitates the use of singular value decomposition 

technique, which results in a state variable representation of the fluid dynamic model.  
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This approach allows one to represent the relationship between the motion of the 

structure and the generalized forces in transfer function form. 

 

Approximation of the Aerodynamic Generalized Forces 

In order to approximate the aerodynamic generalized forces, a singular value 

decomposition (SVD) technique originally developed as a system identification tool is 

applied17.  This SVD method uses time domain impulse responses to obtain the system 

representation.  Since the aerodynamic influence functions, ( )tHmn  and ( )tImn , are 

essentially impulse responses of the aerodynamic model, the SVD method is easily 

applied to the problem at hand.  This SVD method also has the advantage of producing a 

model in state variable form, which is the desired formulation here.  This approach also 

allows the use of standard system analysis tools available based on linear systems theory. 

Since a state space model of the aerodynamic subsystem is desired, Equation (2-

45) must be rewritten in the proper form.  Equation (2-45) is a mapping of the 

relationship between the motion of the structure and the aerodynamic forces.  This 

relationship can be expressed in the following form: 

( )( ) ( ) ( )

( )( ) ( ) ( ),1

,1

kTkTTk

kTkTTk

DuCxy

BuAxx

+=+

+=+
    (2-51) 

where T is the discrete time increment and k is the time index.  The state variable system 

(A,B,C,D) has n states in x, p inputs in u and m outputs in y.  For the structure considered 

here with N modes included in the model expansion, the input (u) and output (y) vectors 

take the form 

[ ]NN qqqqqq 2121=u    (2-52) 
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and 

[ ]NQQQ 21=y .     (2-53) 

The first step in constructing that state variable model of the aerodynamic system 

is to build a block Hankel matrix of the system impulse responses.  The basic form of this 

matrix is 

( ) ( ) ( ) ( )( )
( ) ( ) ( )
( ) ( ) ( )

( )( ) ⎥
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⎥
⎥
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h
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H , (2-54) 

where the individual elements of the matrix are given by: 
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(2-55) 

This results in a Hankel matrix H with dimensions m(J+1) by p(J+1). 

The next step is to perform the SVD operation on the matrix H.  This operation 

yields 

,VU TT UVH =Σ=       (2-56) 
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where U is an orthogonal matrix containing the eigenvectors of HHT, of dimension 

m(J+1) by (J+1), V is an orthogonal matrix containing the eigenvectors of HTH, of 

dimension p(J+1) by (J+1), and the singular value matrix is given by: 

⎥
⎥
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⎥
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+

+

1

2

1

2

1

0

0

J

r

r

r

ε

ε
ε

σ

σ
σ

  (2-57) 

such that the singular values are arranged in descending order, 

,12121 +++ ≥≥≥≥≥ Jrrr εεεσσσ    (2-58) 

with 

. and , 2
1

2
1

TVU Σ=Σ= VU      (2-59) 

If the matrix H has a rank of r, then the singular values 121 ,,, +++ Jrr εεε  are 

equal to zero.  If these singular values are non-zero, but very small, H has a rank very 

near to r.  In this case, the small singular values represent degrees of freedom with 

negligible contribution to the system response or slight computational noise in the system 

impulse response.  This property of the system realization is used in selecting the order of 

the final model. 
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Reduced Order System Model 

A reduced order system, ( )DCBA ˆ,ˆ,ˆ,ˆ , which discards excess degrees of freedom is 

created.  This new system model, of order r, can be obtained by partitioning the output of 

the SVD operation as 

,
2,12,2,22,1

1,11,1,21,1

2,11,1
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where the block matrices U and V are sized as follows: 
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      (2-61) 

Based on these relationships, the reduced order system model is defined as: 
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,ˆ
1,1

TVB =        (2-63) 

,ˆ
1,1UC =        (2-64) 

and 

( ).0ˆ hD =        (2-65) 
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This reduced order aerodynamic model will receive inputs from the structural 

subsystem and provide output both to the structure and for use in analysis.  It should be 

noted that the formulation of the reduced order model renders the states of the model as 

mathematical constructs with no simple physical meaning. 

 

 

Subsystem Coupling 

 

The Coupled Model 

The plate and fluid systems in state variable form can be assembled into a coupled 

fluid/structure system as shown in Figure 2-5.  Note that this fluid/structure coupling is 

created by the dependence of the fluid generalized forces on the plate motion.  So, motion 

in the plate creates a response in the fluid, which in turn creates a force back on the plate.  

Furthermore, when cast in the form shown in Figure 2-5, the input/output relationships 

for the system can be easily manipulated and transfer functions between inputs and 

system variables can be obtained.  This feature of state variable modeling is important to 

for the calculation of surface velocity, radiated sound power and radiation efficiency of 

the structure. 

In order to quantify coupling, it is important to clarify the language used to 

describe the structural response.  The term “in vacuuo mode” will be used to describe the 

plate eigenfunctions of Equation (2-4).  (The in vacuuo modes could be more accurately 

called comparison functions6 since, in the fully coupled system, they are really just 

mathematically convenient functions with which to solve the differential equation.)  The 
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modes of the fully coupled system shown in Figure 2-5 will be referred to as coupled 

modes.  These are the structural mode shapes that result from solving the eigenvalue 

problem of the coupled fluid/structure system.  Each coupled mode includes degrees of 

freedom associated with the plate and with the fluid. 

 

 

 

 

 

 

 

 

 

 

Figure 2-5. Schematic of the coupled fluid / structure system 

 

 

Structural Response Relationships 

 

Kinetic Energy 

In this work, the kinetic energy of the structure in the frequency domain will be an 

important quantity used in calculating acoustical behavior.  The equation for kinetic 

energy is 

Plate
Dynamics

Fluid
Dynamics

Plate 
Disturbance

Plate
Response 

Fluid  
Generalized
Force
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( ) ( )2
2
1 ωω wmT =       (2-66) 

where m is the mass of the plate.  For a simply supported plate, with substitutions 

according to Galerkin's method, the modal mass term is given by Equation (2-12).  

Equation (2-12) is substituted into Equation (2-66) to yield 

( ) ( )2
8

ωρω wabT s= .      (2-67) 

for each mode of vibration.  Since our model is in state variable form, a transfer function 

relationship exists for the structural surface velocity.  Frampton5 showed that Equation 

(2-67) can be written as  

( ) ( ) ( ),
4

2

1
ωω

ρ
ω dd

N

i
qd

s IH
ab

T
i∑

=

=     (2-68) 

where 
iqdH is the transfer function between an external system disturbance and the 

generalized plate velocity, and ddI  is the frequency content of the external disturbance.  

For this work, the disturbance will be white noise, such that 1=ddI .  This leads to 

( ) ( )
2

14 ∑
=

=
N

i
qd

s
i

HabT ωρω .     (2-69) 

While this disturbance is not necessarily physically realistic, it does provide a worst case 

for analysis.  It also provides information strictly about the frequency response of the 

structure, independent of external excitation. 
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Average Velocity 

Another aspect of structural response of interest is the spatio-temporal average 

over the entire surface of the structure.  This quantity can also be determined for a simply 

supported plate analytically.  Frampton5 showed that  

22 ~
8
1

NN qq = ,       (2-70) 

where Nq~  is the complex amplitude of the generalized velocity of the plate for a single 

mode of vibration. 

 

 

Radiated Sound Power Relationships 

The instantaneous sound power radiated from a plate vibrating in it's nth mode can 

be expressed as 

( ) ( ) ( ) dStyxwtzyxpt n
S

nn ,,,0,,∫ ==Π ,   (2-71) 

where ( )tzyxpn ,0,, =  is the pressure on the plate created by the nth mode of vibration 

and ( )tyxwn ,,  is the velocity of the plate due to the motion of the nth mode of vibration.  

Substituting Equation (2-3) for the velocity of the plate yields 

( ) ( ) ( ) ( ) .,,0,, dSyxtzyxptqt n
S

nnn ψ∫ ==Π    (2-72) 

The integral term in Equation (2-72) is equivalent to Equation (2-32), so 

( ) ( ) ( )tqtQt nnn =Π .      (2-73) 

Harmonic motion of the structure will be assumed.  With this assumption, Equation (2-2) 

can be written as 
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( ) ( ) Nneqyxtyxw tj
nn ,...,2,1,~,,, == ωψ    (2-74) 

where nq~  is the complex modal amplitude of the generalized displacement and ω is the 

driving frequency.  Using this relationship, Equation (2-73) can be written as 

( ) ,~~ tj
nnn eqQt ω=Π       (2-75) 

where nq~  is the complex modal velocity magnitude ( )nqj ~ω , and nQ~  is the complex 

modal generalized force magnitude.  The total instantaneous radiated power is then given 

by: 

( ) ∑
=

=Π
N

n

tj
nn eqQt

1

~~ ω .      (2-76) 

The standard relationship18 for time averaged acoustic power is given by 

∫=Π
T

dtvF
T 0

1 ,      (2-77) 

where T is the sampling period.  In this case, Equation (2-77) can be written: 

( ) ( )∫ ∑
=

=Π
T N

n
nn dttqtQ

T 0
1

1 .     (2-78) 

Since harmonic motion is assumed, and realizing 
ω
π2

=T , Equation (2-78) becomes18: 
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    (2-79) 

Since a state variable model has been constructed, the transfer functions between an 

external disturbance and the nth generalized force input and between an external 

disturbance and the nth generalized velocity output are available.  These transfer functions 

allow Equation (2-79) to be written as: 
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( ) ( ){ } ( ) 2

1

*

2
1 ωωω dd

N

n
qddQ IHH∑

=

ℜ=Π    (2-80) 

 

where ( )ωdQH  is the transfer function between the external disturbance and the 

generalized force acting on the nth mode, ( )ω*
qdH  is the transfer function between the 

external disturbance and the generalized velocity of the nth mode and ( )ωddI  describes 

the frequency content of the disturbance.  The asterisk denotes the complex conjugate of 

the transfer function output.  Again assuming a disturbance composed of white noise 

results in 

( ) ( ){ }∑
=

ℜ=Π
N

n
qddQ HH

1

*

2
1 ωω .    (2-81) 

 

Radiation Resistance and Radiation Efficiency 

Radiation resistance is the real part of the radiation impedance of a structure.  

This quantity can be defined as9 

2
n

n
n

q
R

Π
= .       (2-82) 

Normalizing Equation (2-82) by the characteristic impedance of the fluid medium and the 

area radiating, yields the relationship for radiation efficiency or radiation ratio, 

2
n

n
n

qcabρ
σ

Π
= .      (2-83) 



30 

The state variable structure of the system model can also yield a transfer function 

between the nth input generalized force and the nth output generalized velocity.  This 

relationship can be written as 

( ) tj
nqQ

tj
n eqHeQ ωω ω ~~

= .     (2-84) 

Substituting Equation (2-84) into Equation (2-75) results in 

( ) ( ){ }( )2~ tj
nqQn eqHt ωωℜ=Π .     (2-85) 

Taking the time average of this relationship yields 

( ){ }( ) ( ){ } 2

0

2 ~
2
1~1

nqQ

T tj
nqQn qHdteqH

T
ωω ω ℜ=ℜ=Π ∫ , (2-86) 

when combined with Equation(2-61), this allows Equation (2-74) to be rewritten as 

( ){ }
cab

H qQ
n ρ

ω
σ

ℜ
=

4
.      (2-87) 

 

Validation of the Model and the Method 

This modeling method has been validated in previous work by Frampton5,13.  This 

work showed that the radiation efficiency curves published by Wallace9 are reproduced 

using the state variable, coupled aerodynamic / structural model derived in the previous 

section with the transfer function expressions for radiation efficiency.  Similarly, the 

model reproduces the curves for convected flow that were published by Graham4.  In this 

work, supersonic convection velocities will be used with the previously defined 

relationships describing kinetic energy and radiated power. 

It must be noted that the use of linearized potential flow (Equation 2-33) is known 

to be inaccurate in the transonic region.  Nonlinearities in the fluid dynamics become 
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significant and should be accounted for.  However, there are some interesting and 

instructive conclusions to be drawn from this linear model.  The establishment of more 

accurate, nonlinear results is left for future work. 

The radiation efficiency is evaluated using non-dimensional frequency, defined as 

22
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where k is the acoustic wave number, given by: 

c
k ω
= .        (2-89) 

Figure 2-6. Radiation efficiency of the (1, 1) mode at selected flow velocities 
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Figure 2-6 shows the behavior of the radiation efficiency of the (1, 1) mode at 

transonic speeds and at two subsonic speeds.  Note that the radiation efficiency for M =0 

compares well with that found by Wallace9, and the M = 0.7 case compares well with that 

noted by Frampton5.  In general, the radiation efficiency approaches a magnitude of unity 

for all frequencies as the speed of sound in the medium is exceeded. 

 

 

Figure 2-7. Radiation efficiency of the (2, 1) mode at selected flow velocities 
 

 

Figure 2-7 shows the behavior for the (2, 1) mode.  Again, the low frequency 

radiation efficiency increases significantly when the Mach number approaches unity.  
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Increases in radiation efficiency of in vacuuo modes without coupling were dealt 

with previously5.  The cause of this increase in radiation efficiency was found to be an 

effective increase in plate phase velocity for plate waves traveling upstream relative to 

the flow.  Furthermore, the radiating wave number region broadens as flow velocity 

increases, reaching an infinite width as Mach number approaches 1.  In the simplified 

case of a 1-dimensional plate the radiating wave number region is defined as the region in 

which the z-component of the wave numbers are real and positive5.  This corresponds to  

( )
2

2
2
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kM

k
kM

k
k xxz .    (2-90) 

As demonstrated in Equation (2-90), the supersonic wave number region shifts 

and expands as Mach number increases and becoming (semi-)infinitely wide when M = 1.  

The overall effect in subsonic flow is that, for a fixed wave number spectrum in the plate 

response, as the flow velocity increases more of the plate wave number spectrum is 

enveloped by the radiating region, thus resulting in increased radiation. 

When flow becomes supersonic, the non-radiating region shifts to wave number 

ratios that are strictly positive.  Figure 2-8 demonstrates this phenomenon. Equation (2-

90) is a description of the roots of 
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where kz is the wave number component in the convected fluid normal to the plate, kx is 

the wave number in the plate, and k is the wave number in the fluid. In order for radiation 

to take place,  

11 +
<<

− M
kk

M
k

x      (2-92) 
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Figure 2-8 shows a plot of this equation for a semi-infinite plate, where the plate 

is bounded in the x direction and unbounded in y.  The cases where M = 0 (no flow), M = 

0.8, M = 1.0 and M = 1.3 are shown.  The labeled vertical bars indicate the boundaries of 

the radiating wave number regions.  Note that the radiating regions are shifted due to the 

effect of the flow speed on the relationship between the wave number in the plate and the 

wave number in the fluid.  Also note that for M = 1.3 the radiating region is again 

affected by the flow.  All waves traveling against the flow of the fluid radiate to the far 

field. In addition some slower wave numbers that travel in the direction of the flow 

radiate as well.  While these wave numbers are not supersonic alone, the speed of the 

flow makes them appear supersonic to the fluid.  The faster wave numbers also radiate as 

one would expect. 
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Figure 2-8. Plot of the wave number spectrum of plate velocity showing the radiating 

portions for selected Mach numbers 
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CHAPTER III 

 

SIMULATION RESULTS 

 

Physical System Parameters 

A computational investigation was undertaken based on the theory presented in 

Chapter II.  The results presented focus on three areas: the behavior of the uncoupled 

modal radiation efficiency at transonic flow speeds, the effects of flow-induced coupling 

on the structural response and on the radiated sound power.  The physical parameters 

used were for a plate manufactured from 6061-T6 (UNS A96061) aluminum (density of 

2700 kg/m3, thickness of 4 mm, length of 1 m in the direction of flow, width of 0.83 m 

and modulus of elasticity of 69 GPa) exposed to air at an altitude of 10 km (density of 

0.422 kg/m3, speed of sound of 299.5 m/s).  A constant modal damping ratio of 2% was 

assumed in the formulation of the plate model. 

The accuracy of the modeling approach used in this work was established 

previously13, where results for the subsonic case were presented.  In order to ensure 

accurate results, the plate model of Equation (2-14) included 20 modes while the fluid 

dynamic system of Equations (2-62) – (2-65) included 600 degrees of freedom.  With this 

configuration, the plate response and radiated sound power demonstrated sufficient 

convergence over the first 15 plate modes.   
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Supersonic Flow  

 

Structural Response 

It is well established that fluid flow can have significant effects on structural 

acoustic behavior, along with the fact that induced coupling between discrete modes of 

vibration becomes significant as flow velocity increases.  It has also been established that 

this coupling mechanism is the venue for energy flow between distinct modes of 

vibration in a structure, explaining energy flow into the flowing fluid.  Work in this area 

has been confined to subsonic flows, with the effect on sound radiation efficiency and 

sound power radiation quantified and compared for various subsonic flow speeds. 

The effect of flow on plate dynamics is well understood in the field of 

aeroelasticity10.  However, this field of study is usually concerned with coupling induced 

instabilities.  These instabilities are not usually of interest in structural acoustics since 

structures being investigated are designed to avoid them.  However, the effects on plate 

dynamics can occur when the structure is far from instability, therefore affecting 

structural acoustic behavior.  In the structural acoustics literature Sgard, Attalla and 

Nicolas11 quantified modal coupling with an approach based on the coherence between 

modes.   

The results of this work showed some interesting behavior when compared to 

earlier work done for subsonic flow speeds.  Supersonic flow velocities produced 

structural response variations similar to those produced by subsonic flow, but exhibited a 

frequency shift proportional to flow speed, rather than the inverse relationship observed 

for subsonic flow speeds. 
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The effect of flow on the structural response is demonstrated in Figure 3-1 which 

shows the frequency dependent kinetic energy of the plate for one subsonic and various 

supersonic flow velocities.  A general upward shift in fundamental mode frequency is 

observed as the Mach number increases.  The resonant frequencies of the coupled modes 

do not change considerably as the Mach number increases above a value of 1.2.  The 

fundamental coupled mode has a resonant frequency of about 18 Hz when M = 1.2 

moving to 25 Hz when M = 2.0. 

Other modes show small changes in frequency and response amplitude as well.  

However, other than the fundamental mode frequency shift, the plate energy changes 

very little with increasing supersonic Mach number.  
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Figure 3-1. Structural kinetic energy in supersonic flow 

 

 

Radiated Sound Power 

Supersonic flow also had a significant effect on power flow in the structure, with 

some modes containing significant negative components at low supersonic flow velocity 

and with the entire structure exhibiting a negative net power flow at the higher supersonic 

speeds considered. 

The effect of aerodynamic flow on the radiated power in the plate is shown in 

Figure 3-2, which shows the radiated sound power as a function of frequency for one 

subsonic 3-2(a) and several supersonic Mach numbers 3-2(b) – 3-2(d).   
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Figure 3-2. Radiated sound power in supersonic flow 

 

 

Note that, while the kinetic energy changed little over the range of supersonic 

flows, the radiated power curves do change significantly.  Overall, the radiated power 

decreases with increasing flow speed.  As convection velocity increases, significant 

portions of the power flow curve become negative.  This behavior indicates energy 

absorption by the structure rather than radiation.  This is a very interesting aspect of the 

redistribution of energy through flow-induced modal coupling.  The path through which 
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energy moves from one coupled structural mode to another is the fluid. In this manner the 

motion of one mode drives other modes, causing them to be out of phase with the 

pressure applied by the aerodynamics, resulting in negative power flow at some 

frequencies.  This energy is then dissipated by damping in the plate. 
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Figure 3-3. Modal contributions to radiated sound power at M = 1.5 
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Figure 3-3 illustrates this behavior by plotting the total power flow at a selected velocity 

3-3(a) with the contributions of the first four coupled modes also plotted individually 3-

3(b) – 3-3(e).  Subplot 3-3(a) also lists the peak frequencies on the kinetic energy plot 

(Figure 3-1) attributable to the associated uncoupled modes for reference. 

Clearly, the exchange of energy among modes that occurs in the presence of 

modal coupling alters not only the dynamic response of the plate but the radiated sound 

as well.  The extent to which coupling affects radiation is demonstrated by the curve for 

M = 2.0 in Figure 3-2.  Many higher order modes absorb power, causing the total power 

radiated to the far field to decrease as flow speed rises.  Radiated power decreases, and 

actually becomes negative (i.e., net power is absorbed) as the flow speed approaches 

Mach 2. 

 

Radiation Efficiency 

The effect of modal coupling is also illustrated in Figure 3-4, which plots the total 

normalized power flow versus flow velocity.  Radiation efficiency for a single mode of 

vibration as a function of frequency is described by Equation (2-87).  The data shown in 

Figure 3-4 are given by 

ωσσ
ω

d
N

n
nT ∑∫

=

=
1

0

max .      (3-1) 

This quantity, which can be visualized as the energy flow out of the plate divided 

by the total kinetic energy from vibration, is considered the total radiation efficiency 

here. 
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Figure 3-4. Total radiation efficiency in supersonic flow 

 

 

The total radiation efficiency obtained for the range of flow speeds studied expands those 

found in previous work.  Rather than increasing with flow speed as previously postulated, 

the radiation efficiency rises with subsonic flow velocity.  Total radiation efficiency 

peaks at M = 1.0 as predicted, and decays with further increases in flow speed.  It should 

be noted that the radiation efficiency decays to a negative value with the radiated power 

as convection velocity increases.  This behavior illustrates the role of coupling on power 

flow at high convection velocities.  This result provides further insight into the dynamics 
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of power flow in the structure and may indicate a relationship between acoustic power 

radiation and the onset of instability of the structure.  Further work is needed to establish 

the existence of any meaningful connection between these two phenomena. 

 

Effects of In-plane Stress 

The significant impact of coupled fluid flow on structural acoustic behavior 

established by previous work has been confined to flow in air, over unloaded structures, 

with the effects on sound radiation efficiency, kinetic energy and sound power radiation 

quantified and compared for various flow speeds. 

The plate system was investigated for values of non-dimensional stress, defined 

as19: 

D
aNr x

2

2

π
=        (3-2) 

ranging from -2 to 20.  This group of plate models was coupled with aerodynamic models 

that represented speeds from Mach 0.001 up to Mach 2.0.  The values of non-dimensional 

stress were the same in both the x and y directions.  These limits were chosen to represent 

the lower end of static stability of the plate (r = -2) and a stress state that would be typical 

of the skin of an aircraft structure when in flight (r = 20).  The uncoupled plate system 

was found to be statically unstable when r was set to a value of -2.5 at flow speeds 

between Mach 0.8 and Mach 1.2.  Each coupled system was checked for dynamic 

instability, and all systems investigated were found to be stable, with the exception of the 

cases noted above. 
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Structural Response with In-plane Stress 

The overall effect of flow on the structural response is demonstrated in Figures 3-

5 and 3-6, which show the frequency dependent kinetic energy of the plate for various 

subsonic and supersonic flow velocities, with several selected values of non-dimensional 

stress. 

Initially, the structure was examined when placed in a biaxial state of stress.  That 

is, both the x and y directions in the plane of the plate had equivalent values of non-

dimensional stress.  The structural response of the system is similar to what would be 

expected based on earlier work with unloaded structures in subsonic flow5,13.  As 

subsonic flow speeds increase, the response frequency of the fundamental mode of 

vibration decreases.  This behavior is affected by the state of stress in the structure, 

however.  When the overall state of stress is compressive, as shown in Figure 3-5a, the 

shift in fundamental mode response frequency is most pronounced. 

Behavior at supersonic flow speeds also is as expected based on work in the 

previous section.  As supersonic flow speed is increased, response frequency of the 

fundamental mode of vibration also increases.  Again, the frequency shift of the structure 

when loaded in compression shows the largest frequency shift in fundamental mode 

response with variations in flow velocity, as shown in Figure 3-6a. 



46 

 

Figure 3-5. Structural kinetic energy at subsonic convection velocities for selected 
values of non-dimensional stress 

 

 

A general upward shift in coupled mode frequency is observed as the non-

dimensional stress in the plate rises, as one would expect from an effective increase in 

plate stiffness 
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Figure 3-6. Structural kinetic energy at supersonic convection velocities for selected 
values of non-dimensional stress 

 

 

It is also important to note that the total kinetic energy of the plate decreases as non-

dimensional stress is increased, but does not vary greatly as convection velocity is 

increased.  It should also be noted that the frequency shifts observed are attributable to 

convection effects.  While the level of applied stress changes the way these frequency 
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shifts manifest themselves, application of stress in and of itself will not produce similar 

effects. 

 

Radiated Sound Power with In-plane Stress 

The effect of aerodynamic flow on the radiated power from the plate is shown in 

Figures 3-7 through 3-10, which show the radiated sound power as a function of 

frequency for various subsonic and several supersonic Mach numbers at selected values 

of non-dimensional stress.  The effect of in-plane stress on radiated sound is greatly 

affected by the proximity to the system stability boundaries.  When the stress is 

compressive, and the uncoupled plate system is close to it's static stability boundary (i.e., 

near buckling), the radiated power is increased over what would be obtained from a plate 

with no imposed stress or with imposed tensile stress.  This is best illustrated by 

comparing Figures 3-7c, 3-8c and 3-9c, and noting the decreasing area under the power 

curve. 

When the coupled system is approaching the flutter boundary (as flow approaches 

Mach 2), the total radiated power can actually become negative, indicating a net 

absorption of power by the structure, as shown in Figures 3-9f and 3-10f. 

The power flow in the structure is also significantly affected by the state of stress 

in the structure.  When the stress in the structure is compressive, there is an increase in 

the amount of negative power flow at high convection velocities.  The amount of energy 

absorbed by the second mode of vibration can be seen to steadily decrease as the state of 

stress moves from compression to zero stress to tension, as shown in Figures 3-7f, 3-8f, 

3-9f and 3-10f, for example.  The number of modes of vibration having negative power 
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contributions decreases from 9 to 6 over this same progression of states of stress, and 

shown in these same figures.  The transition to higher levels of tensile stress also delays 

the onset of negative power contributions of particular modes of vibration as a function of 

flow velocity.  This behavior is illustrated in Figures 3-7d, 3-8d, 3-9d and 3-10d.  The 

2nd, 5th and 8th modes of vibration show a negative power flow until the highest state of 

stress studied is reached in Figure 3-10. 

Note that, while the general shapes of the kinetic energy curves change little over 

the range of values of non-dimensional stress, the radiated power curves do change 

significantly.  Overall, the radiated power decreases as flow speed increases or decreases 

from Mach = 1. 
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Figure 3-7. Radiated sound power for r = -1 at selected convection velocities 

 
 

Once again, note that as supersonic convection velocity increases, significant 

portions of the power flow curve become negative.  This behavior changes significantly 

when the state of stress in the structure is varied.  This indicates that the state of stress in 

the structure affects the redistribution of energy caused by flow-induced modal coupling. 
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Figure 3-8. Radiated sound power for r = 0 at selected convection velocities 
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Figure 3-9. Radiated sound power for r = 1 at selected convection velocities 

 

 

The extent to which coupling affects radiation is demonstrated by the curves for the data 

at higher Mach numbers.  Many higher order modes absorb power, causing the total 

power radiated to the far field to decrease as flow speed rises. 
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Figure 3-10. Radiated sound power for r = 10 at selected convection velocities 
 

 

Radiated Sound Power with Unidirectional In-Plane Stress 

In addition to varying the levels of stress in the plate, the effects of the direction 

of application of the stress were studied.  Simulations with stress applied only in the x 

and only in the y direction were examined.  Figures 3-11 and 3-12 show the results for 
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two of these unidirectional stress cases.  Application of stress in the direction of flow 

results in increased negative power flow at higher frequencies and at high convection 

velocities, as shown in Figure 3-11. 
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Figure 3-11. Radiated sound power for r = 10, stress applied in the x direction only at 
selected convection velocities 

 

 



55 

Figure 3-12 shows the application of stress perpendicular to the convection velocity (i.e., 

the y direction in Figure 2-1) results in less power radiated by the fundamental mode as 

convection velocity increases.  Unidirectional stresses in these cases resulted in lower 

resonance frequencies for the fundamental modes than shown for the case with 

bidirectional stress, as shown for example in Figures 3-8a, 3-9a and 3-10a. 
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Figure 3-12. Radiated sound power for r = 10, stress applied in the y direction only at 
selected convection velocities 

 

 

The frequency shifts in these cases were observed to be different, as would be 

expected from an overall lowering of the state of stress in the structure.  Differences in 

the power flow characteristics of individual coupled modes of vibration were observed.  

When stress is applied only in the x direction, which is also the direction of fluid flow, 
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the power flow in the 2nd coupled mode of vibration is positive for all convection 

velocities studied, as shown in Figure 3-11.  Very little negative power flow is induced in 

the structure, even at high convection velocities.  When stress is applied only in the y 

direction (perpendicular to the direction of flow) both the 2nd and 3rd coupled modes 

exhibit significant negative power flow, as shown in Figure 3-12.  It is also interesting to 

note the significant decrease in response of the fundamental coupled mode with increase 

in flow velocity.  The power associated with this mode is attenuated by about an order of 

magnitude over the range of flow speeds studied. 

This effect is strictly due to the reduced overall applied stress and is not 

attributable to convection effects.  It is interesting to note that the reduction in 

fundamental resonance frequency is greater in the case where the stress is applied in the 

direction of convection, which is attributable to structural interaction with the flow.  

Similar effects were noted for cases with reduced stress levels(r = 0, r = 1), but were not 

as prevalent as those illustrated in Figures 3-11 and 3-12. 

 

Radiation Efficiency with In-plane Stress 

As discussed previously, the linearized potential flow relationship shown in 

Equation (2-23) is known to be inaccurate for convection velocities around Mach = 1.  

Nonlinearities in the fluid dynamics are present and should be considered.  The linear 

model is useful in studying general trends of fluid behavior, even if numerical results can 

not be considered exact.  With these limitations in mind, the linear model will be used to 

generate a continuous curve for radiation efficiency for structures with imposed stress. 
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Figure 3-13 shows a plot of total radiation efficiency versus convection velocity 

for selected values of non-dimensional stress.  As shown, total radiation efficiency peaks 

at Mach = 1.0 and decays with further increases in flow speed.  It should be noted that the 

radiation efficiency can decay to a negative value with the radiated power as convection 

velocity increases.  This behavior illustrates the role of coupling on power flow at high 

convection velocities. 
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Figure 3-13. Total radiation efficiency for selected values of non-dimensional stress 
 

 

The overall behavior of the structure can be summarized by the relationship 

between radiation efficiency, flow speed and state of stress in the structure.  When the 
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structure is loaded in compression, it exhibits a very narrow range of "efficient" radiation 

of energy.  Conversely, increasing the value of the in-plane stress has the effect of 

widening the range of convection velocities where the structure can be considered an 

"efficient" radiator of sound power.  Selecting an arbitrary value of 10% as an indication 

of efficient radiation, Figure 3-13 shows that there is a minimum range of 10% radiation 

efficiency at r = -1 (0.8 < Mach Number < 1.2) and a maximum range of 10% efficiency 

at r = 20 (0.65 < Mach Number < 1.4).  It is also interesting that this broadening of the 

range of "efficient" radiation is associated with a decrease in peak radiation efficiency.  

The efficiency drops from a peak of 21% to a value of 17%.  Note that the peak value of 

radiation efficiency is associated with a state of compressive stress in the plate and that 

this particular plate model had the lowest effective stiffness of any that proved stable 

throughout the entire range of convection velocities studied. 

 

Decoupled Subsystems 

 

The Uncoupled Model 

Entire texts have been produced dealing with fluid structure interactions20.  These 

works tend to concentrate on problems where analytical solutions are possible.  One 

commonly used criterion for assuming that analytical techniques are valid is to assume a 

low Mach number in the convection velocity.  A more definitive criterion is sought for 

the method used here.  Making this distinction would allow modeling of the system in a 

more simplified manner if that approach is desirable. 
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Figure 2-5 shows the plate and aerodynamic models connected such that the 

aerodynamic model has a feedback path to the structure.  This configuration has been 

referred to as the coupled model.  Figure 3-14 shows the alternative connection scheme, 

where the generalized forces are not feed back into the structural subsystem.  This 

configuration will be referred to as the uncoupled model. 

When the models are cast in the forms shown in Figures 2-5 and 3-14, the 

input/output relationships for the system can be easily manipulated and transfer functions 

between inputs and system variables can be obtained. 

In order to make a decision about when the effects of coupling were important to 

structural response, a criterion had to be selected that provided a decision point.  A shift 

of 5% between the fundamental modal response of the uncoupled model and the coupled 

model was selected as this criterion.  For low values of mass ratio, this coupling 

boundary is a complex curve, similar to the stability boundary.  As the mass ratio 

increases, the coupling boundary becomes a simple logarithmic relationship. 
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Figure 3-14. Schematic of the uncoupled fluid / structure system 

 

 

Specific regions of the parameter space are defined wherein fluid coupling and 

convection effects must be included for accurate predictions of radiated power.  As was 

done with the structural response, a criterion to determine when coupling was important 

to calculation of radiated power had to be determined.  The threshold of a 15% difference 

between the total radiation resistance produced by an uncoupled and a coupled model 

was selected as this criterion.  The important result that there is a characteristic flow 

velocity where coupling the acoustic subsystem to the structural subsystem has a 

significant effect on radiated power.  This flow velocity depends only on the value of the 
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non-dimensional dynamic pressure with respect to the coupling and stability boundaries 

and is independent of the value of the mass ratio for many engineering applications. 

 

Non-dimensional Analysis 

 

Structural Response for the Non-dimensional Case 

Fluid / structure coupling has been shown to be important in determining both 

structural response and energy transfer to a convected medium.  The studies of fluid 

structure interactions herein have been confined to specific geometries and fluid 

parameter sets that characterize a problem of interest.  Results from studies of this nature 

may be narrowly applicable to other problems, but seldom apply directly.  The method is 

now expanded to quantify when the effects of structural / aerodynamic coupling should 

be considered as a function of non-dimensional parameters.  The difference between the 

coupled and the uncoupled models is the based on the ability of the aerodynamic 

subsystem to have a feedback path to the structure.  This difference is shown 

schematically in Figures 2-5 and 3-14.  The parameters considered in this effort will be 

non-dimensional dynamic pressure, mass ratio and Mach number.  These guidelines can 

be used in determining the dynamic response and acoustic power radiation associated 

with a wide range of structures exposed to a wide range of fluids.  This is accomplished 

using dimensionless analysis of both geometric and aerodynamic aspects of the problem.  

Theoretical development of the equations governing the vibration of a simply supported 

plate in an infinite baffle and a semi-infinite flowing medium along with the method for 

coupling these systems is included.  Relationships used to render these models non-
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dimensional are described in Equations (2-18) – (2-22), and implemented in Equation (2-

23). 

One effect of employing the coupled model has been shown to be a shift in the 

frequency of response of the structure.  As velocity increases in subsonic flow, it has 

been shown that the modal response frequencies shift to lower values13.  Similarly it has 

also been shown here that in supersonic flow, this trend is reversed, i.e., the modal 

response frequencies increase as flow velocity increases in magnitude.  This behavior has 

been chosen as the criterion for when the selection of the type of modeling configuration 

becomes important to structural response.  A shift of 5% in fundamental mode frequency 

when compared to the case of no convection has been chosen as the criterion for 

determining when coupling significantly effects system behavior.  This will be referred to 

as the coupling boundary, denoted as cλ . 

Figure 3-15 shows plots of the stability boundary, Sλ , along with the coupling 

boundary for selected values of mass ratio.  The stability boundary is defined at the 

limiting value of non-dimensional dynamic pressure,λ , for a given mass ratio,µ , which 

results in the first occurrence of an unstable pole (first instance of a negative real 

component of an eigenvalue) for the coupled system at a given Mach number. 

For the lower values of mass ratio typical of structures in air, the coupling 

boundary is a complex curve, similar to the stability boundary for convection velocities 

of Mach 1.5 and below.  A significant jump in the coupling boundary occurs at or around 

Mach 1.6, indicating some potentially interesting structural aerodynamic interaction in 

that narrow region of convection velocities associated with a structure of this particular 

aspect ratio.  More detailed study of this portion of the problem is left for a future effort.   
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Figure 3-15. Stability and coupling boundaries for selected values of mass ratio 

 

 

As mass ratio rises further into areas that would be more typical of heavy 

structures exposed to water or other dense liquids, the discontinuity in the coupling 

boundary diminishes and then disappears.  For the larger values of mass ratio, the higher 

convection velocities are not necessarily representative of realistic flow cases, due to the 
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high velocities represented and the fact that the use of the potential flow model may not 

be applicable in these regions. 

These data suggest that a rough rule of thumb for determining the necessity of 

using a coupled model to accurately predict structural response would be when λ  is a 

significant fraction of Sλ in lightweight fluids and for most all values of λ in heavy fluids. 

 

Radiation Resistance for the Non-dimensional Case 

The radiation resistance has been chosen as a metric for this study because it lends 

itself well to the non-dimensional format of the problem.  Radiation efficiency has been 

used for dimensional studies of particular geometric and fluid parameter sets.  Radiation 

efficiency is defined as radiation resistance per unit area, and since the plate has no 

dimensions per se, the expression for radiation resistance can be considered a non-

dimensional efficiency term. 

If accurate prediction of energy flow between the convected medium and the 

structure is of paramount importance, then a different metric for determining when to use 

the coupled modeling approach is required.  Determining when accurate results using the 

uncoupled model can be obtained by comparing the power flow characteristics of such a 

model to the equivalent coupled model and noting where these behaviors begin to diverge 

significantly. 

One effect of this effort has been to show that accurate prediction of radiated 

power must always include the fluid dynamic subsystem in the overall system model.  

That portion of the system produces the generalized forces on the structure, which is 

integral to the calculation of radiated power, as shown in Equation (2-77). 
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The effect on the acoustic radiation of a structure exposed to convection can be 

characterized by the change in radiation resistance.  The radiation resistance, defined in 

Equation (2-82), is significantly affected by the structure of the system model.  In 

general, an uncoupled model will have a higher radiation resistance than a coupled 

model.  By comparing the difference between the radiation resistance in an uncoupled 

model with a coupled model, a conclusion can be drawn about when the selection of 

modeling approach becomes important.   

To determine this difference, representative values of λ (non-dimensional 

dynamic pressure, Equation (2-19)) had to be selected.  A total of three values of λ  were 

used to study the behavior of the radiation resistance.  cλ , which was determined in the 

previous sub-section, was selected to study the effect of frequency shift in the structural 

response.  Two additional values, 

2
c

L
λ

λ =       (3-3) 

and 

2
cS

H
λλ

λ
−

=       (3-4) 

were evaluated to represent flow regimes well above and well below the selected 

structural behavior criterion.  It is important to recall that these values of non-dimensional 

pressure are not constant (See Figure 3-15), but change significantly with changes in 

convection velocity and mass ratio.  A value of a 15% difference in radiation resistance 

between the uncoupled and coupled models was chosen to establish when the difference 

in energy flow was sufficient to justify using a coupled model. 
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Figure 3-16. 15% Radiation resistance threshold 

 

 

Figure 3-16 shows a plot of this radiation resistance threshold for the selected 

values of non-dimensional dynamic pressure.  Note that the mass ratio is the independent 

variable in this data, and that the critical values of convection velocity are nearly constant 

across the range of mass ratio magnitudes considered here.  These results imply that there 

is a specific Mach number that determines when coupling is important to determination 
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of radiated power, based on the system model proximity to the coupling or stability 

boundary.  While a weak dependence on mass ratio is apparent at extremely high and low 

values of mass ratio, the convection velocity of interest can be assumed to be constant for 

values of mass ratio commonly encountered in fluid structure interaction scenarios. 

Figure 3-16 illustrates a rule of thumb that coupled models should be used when 

Mach number exceeds 0.3 when the system model is near the stability boundary, when it 

exceeds 0.8 when the system is in the neighborhood of the coupling boundary.  The data 

also imply that coupling is not important for low values of λ  unless the Mach number 

exceeds 1.5.  It should also be noted that for low values of λ  and a mass ratio of 10.0, 

coupling effects were not significant in the range of convection velocities studied.   

Based on these findings, the following engineering rules of thumb are proposed: 

1. Coupling should be considered for accurate prediction of structural 

response when S of %10 λλ ≅  in lightweight fluids and when 

S of %1 λλ ≅  in heavy fluids. 

2. Coupling should be considered for accurate predictions of radiated power 

when coupled model eigenvalues are near the stability boundary and flow 

velocity exceeds Mach = 0.3, when the system eigenvalues are near the 

coupling boundary and the flow velocity exceeds Mach = 0.8 and for low 

values of λ and flow velocities exceed Mach = 1.5. 
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CHAPTER IV 

 

CONCLUSIONS 

 

The effect of flow-induced coupling on the radiated sound power from plates has 

been presented.  The modeling of the plate and fluid has been summarized and the effects 

of flow-induced coupling on the plate response have been described.  The effect of in-

plane stress on the radiated sound power from plates has also been discussed.  

Additionally, a parametric study of non-dimensional structure / convection interaction 

has been shown.  The non-dimensional parameters chosen encompass a wide range of 

flow regimes and structural configurations. 

The first notable effect observed is that the radiated sound power decreases as 

flow velocities increase from the transonic region.  However, the kinetic energy in the 

plate increases only slightly with flow speed.  This behavior is attributable to the flow 

induced coupling driving some modes out of phase with the aerodynamic model, 

resulting in decreased radiation.  The unstressed structure was also shown to be a net 

absorber of power when exposed to high convection velocities. 

The most interesting effect observed for the stressed structure studied is that total 

radiation efficiency of the plate is significantly affected by the state of stress in the plate.  

This effect is manifested as a broadening of the range of convection velocities where the 

plate is an "efficient" radiator of sound power, and an associated reduction of the peak 

radiation efficiency.  It was also observed that increasing the magnitude of tensile stress 
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in the plate eliminated the frequency shift in radiated power both in subsonic and 

supersonic flow 

In studying a non-dimensional aerodynamic / structural system model, specific 

regions of the non-dimensional parameter space have been defined wherein fluid 

coupling and convection effects must be included for accurate predictions of structural 

response and radiated power.  Utilization of a coupled model is advisable when certain 

values of non-dimensional pressure are exceeded for a given mass ratio and convection 

velocity if accuracy of the structural response is of paramount importance.  This applies 

when S of 10% λλ ≅ in lightweight fluids and when S of 1% λλ ≅ in heavy fluids.  If 

radiated sound power is the main concern, it was shown that specific convection 

velocities can be used as a criterion for when a coupled model is desirable for analysis.  

Specifically, when Mach number exceeds 0.3 and the system model eigenvalues are near 

the stability boundary, when Mach number exceeds 0.8 when the system is in the 

neighborhood of the coupling boundary and for low values of λ  when the Mach number 

exceeds 1.5. 
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